


Maximilian Schwarzmüller

Consolidate your knowledge of React's  

core features

React  
Key Concepts 



React Key Concepts
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of 
the information presented. However, the information contained in this book is sold 
without warranty, either express or implied. Neither the author nor Packt Publishing 
and its dealers and distributors will be held liable for any damages caused or alleged 
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Maximilian Schwarzmüller

Reviewer: Cihan Yakar

Senior Editor: Megan Carlisle

Acquisitions Editors: Bridget Kenningham and Sneha Shinde

Production Editor: Shantanu Zagade

Editorial Board: Vijin Boricha, Megan Carlisle, Ketan Giri, Heather Gopsill, 
Akin Babu Joseph, Bridget Kenningham, Manasa Kumar, Alex Mazonowicz, 
Monesh Mirpuri, Aaron Nash, Abhishek Rane, Brendan Rodrigues, Ankita Thakur, 
Nitesh Thakur, and Jonathan Wray

First published: December 2022

Production reference: 1211222

ISBN: 978-1-80323-450-2

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK



Table of Contents

Preface 	  i

Chapter 1: React – What and Why 	  1

Introduction ............................................................................................... 2

What Is React? ...............................................................................................  2

The Problem with "Vanilla JavaScript" .......................................................  4

React and Declarative Code .........................................................................  8

How React Manipulates the DOM .............................................................  12

Introducing Single Page Applications .......................................................  14

Creating a React Project .............................................................................  14

Summary and Key Takeaways ...................................................................  17

What's Next? ................................................................................................  17

Test Your Knowledge! .................................................................................  18

Chapter 2: Understanding React Components and JSX 	  21

Introduction ............................................................................................  22

What Are Components? .............................................................................  22

Why Components? ......................................................................................  23

The Anatomy of a Component ..................................................................  24

What Exactly Are Component Functions? ................................................  27

What Does React Do with All These Components? .................................  28

Built-in Components ...................................................................................  32

Naming Conventions ..................................................................................  33

JSX vs HTML vs Vanilla JavaScript ..............................................................  34



Using React without JSX .............................................................................  36

JSX Elements Are Treated like Regular JavaScript Values! .....................  38

JSX Elements Must Be Self-Closing ............................................................  40

Outputting Dynamic Content ....................................................................  41

When Should You Split Components? ......................................................  41

Summary and Key Takeaways ...................................................................  43

What's Next? ................................................................................................  43

Test Your Knowledge! .................................................................................  44

Apply What You Learned ...........................................................................  44

Activity 2.1: Creating a React App to Present Yourself ...........................  44

Activity 2.2: Creating a React App to Log Your Goals for This Book .....  45

Chapter 3: Components and Props 	  49

Introduction ............................................................................................  50

Not There Yet ..............................................................................................  50

Using Props in Components ......................................................................  51

Passing Props to Components ..................................................................  51

Consuming Props in a Component ...........................................................  52

Components, Props, and Reusability .......................................................  53

The Special "children" Prop .......................................................................  54

Which Components Need Props? .............................................................  55

How to Deal with Multiple Props ..............................................................  56

Spreading Props ..........................................................................................  57

Prop Chains / Prop Drilling ........................................................................  59

Summary and Key Takeaways ...................................................................  60

What's Next? ................................................................................................  60



Test Your Knowledge! .................................................................................  61

Apply What You Learned ...........................................................................  61

Activity 3.1: Creating an App to Output Your Goals for This Book .......  61

Chapter 4: Working with Events and State 	  65

Introduction ............................................................................................  66

What's the Problem? ..................................................................................  66

How Not to Solve the Problem ..................................................................  67

A Better Incorrect Solution ........................................................................  69

Properly Reacting to Events .......................................................................  71

Updating State Correctly ............................................................................  73

A Closer Look at useState() ........................................................................  75

A Look under the Hood of React ...............................................................  76

Naming Conventions ..................................................................................  78

Allowed State Value Types .........................................................................  78

Working with Multiple State Values .........................................................  79

Using Multiple State Slices .........................................................................  80

Managing Combined State Objects ..........................................................  82

Updating State Based on Previous State Correctly ................................  84

Two-Way Binding ........................................................................................  88

Deriving Values from State ........................................................................  90

Working with Forms and Form Submission ............................................  92

Lifting State Up ............................................................................................  94

Summary and Key Takeaways ...................................................................  98

What's Next? ................................................................................................  99

Test Your Knowledge! .................................................................................  99



Apply What You Learned ...........................................................................  99

Activity 4.1: Building a Simple Calculator ...............................................  100

Activity 4.2: Enhancing the Calculator ....................................................  101

Chapter 5: Rendering Lists and Conditional Content 	  103

Introduction ..........................................................................................  104

What Are Conditional Content and List Data? ......................................  104

Rendering Content Conditionally ...........................................................  106

Different Ways of Rendering Content Conditionally ............................  109

Utilizing Ternary Expressions...........................................................................109

Abusing JavaScript Logical Operators.............................................................112

Get Creative!.......................................................................................................113

Which Approach Is Best?...................................................................................114

Setting Element Tags Conditionally ........................................................  114

Outputting List Data .................................................................................  116

Mapping List Data .....................................................................................  119

Updating Lists ............................................................................................  121

A Problem with List Items ........................................................................  124

Keys to the Rescue! ...................................................................................  127

Summary and Key Takeaways .................................................................  129

What's Next? ..............................................................................................  129

Test Your Knowledge! ...............................................................................  130

Apply What You Learned .........................................................................  130

Activity 5.1: Showing a Conditional Error Message ..............................  130

Activity 5.2: Outputting a List of Products .............................................  131



Chapter 6: Styling React Apps 	  135

Introduction ..........................................................................................  136

How Does Styling Work in React Apps? ..................................................  136

Using Inline Styles .....................................................................................  140

Setting Styles via CSS Classes ..................................................................  142

Setting Styles Dynamically .......................................................................  144

Conditional Styles .....................................................................................  146

Combining Multiple Dynamic CSS Classes .............................................  148

Merging Multiple Inline Style Objects ....................................................  149

Building Components with Customizable Styles ..................................  150

Customization with Fixed Configuration Options.........................................151

The Problem with Unscoped Styles ........................................................  152

Scoped Styles with CSS Modules .............................................................  152

The styled-components Library ..............................................................  156

Using Other CSS or JavaScript Styling Libraries  
and Frameworks .......................................................................................  158

Summary and Key Takeaways .................................................................  159

What's Next? .........................................................................................  160

Test Your Knowledge! ...............................................................................  160

Apply What You Learned ....................................................................  160

Activity 6.1: Providing Input Validity Feedback  
upon Form Submission ............................................................................  160

Activity 6.2: Using CSS Modules for Style Scoping ................................  162



Chapter 7: Portals and Refs 	  165

Introduction ..........................................................................................  166

A World without Refs ................................................................................  166

Refs versus State .......................................................................................  170

Using Refs for More than DOM Access ...................................................  172

Forwarding Refs ........................................................................................  175

Controlled versus Uncontrolled Components ......................................  181

React and Where Things End up in the DOM ........................................  184

Portals to the Rescue ................................................................................  187

Summary and Key Takeaways .................................................................  189

What's Next? ..............................................................................................  190

Test Your Knowledge! ...............................................................................  190

Apply What You Have Learned ................................................................  190

Activity 7.1: Extract User Input Values ...................................................  191

Activity 7.2: Add a Side-Drawer ...............................................................  192

Chapter 8: Handling Side Effects 	  197

Introduction ..........................................................................................  198

What's the Problem? ................................................................................  198

Understanding Side Effects .....................................................................  200

Side Effects Are Not Just about HTTP Requests ....................................  202

Dealing with Side Effects with the useEffect() Hook .............................  204

How to Use useEffect() .............................................................................  205

Effects and Their Dependencies .............................................................  207

Unnecessary Dependencies ....................................................................  209

Cleaning Up after Effects .........................................................................  212



Dealing with Multiple Effects ...................................................................  216

Functions as Dependencies .....................................................................  217

Avoiding Unnecessary Effect Executions ...............................................  223

Effects and Asynchronous Code .............................................................  230

Rules of Hooks ...........................................................................................  231

Summary and Key Takeaways .................................................................  232

What's Next? ..............................................................................................  233

Test Your Knowledge! ...............................................................................  233

Apply What You Learned .........................................................................  233

Activity 8.1: Building a Basic Blog ............................................................  234

Chapter 9: Behind the Scenes of React and  
Optimization Opportunities 	  237

Introduction ..........................................................................................  238

Revisiting Component Evaluations and Updates ..................................  238

What Happens When a Component Function Is Called .......................  241

The Virtual DOM vs the Real DOM ..........................................................  242

State Batching ...........................................................................................  245

Avoiding Unnecessary Child Component Evaluations .........................  247

Avoiding Costly Computations ................................................................  252

Utilizing useCallback() ..............................................................................  256

Avoiding Unnecessary Code Download .................................................  259

Reducing Bundle Sizes via Code Splitting (Lazy Loading) ....................  260

Strict Mode ................................................................................................  267

Debugging Code and the React Developer Tools ..................................  268

Summary and Key Takeaways .................................................................  272



What's Next? ..............................................................................................  273

Test Your Knowledge! ...............................................................................  273

Apply What You Learned .........................................................................  274

Activity 9.1: Optimize an Existing App ....................................................  274

Chapter 10: Working with Complex State 	  279

Introduction ..........................................................................................  280

A Problem with Cross-Component State ...............................................  280

Using Context to Handle Multi-Component State ................................  285

Providing and Managing Context Values ...............................................  286

Using Context in Nested Components ...................................................  290

Changing Context from Nested Components .......................................  293

Getting Better Code Completion .............................................................  294

Context or "Lifting State Up"? .................................................................  295

Outsourcing Context Logic into Separate Components ......................  295

Combining Multiple Contexts ..................................................................  297

Limitations of useState() ..........................................................................  298

Managing State with useReducer() .........................................................  300

Understanding Reducer Functions .........................................................  301

Dispatching Actions ..................................................................................  303

Summary and Key Takeaways .................................................................  306

What's Next? ..............................................................................................  306

Test Your Knowledge! ...............................................................................  307

Apply What You Learned .........................................................................  307

Activity 10.1: Migrating an App to the Context API ...............................  307

Activity 10.2: Replacing useState() with useReducer() .........................  309



Chapter 11: Building Custom React Hooks 	  313

Introduction ..........................................................................................  314

Why Would You Build Custom Hooks? ...................................................  314

What Are Custom Hooks? ........................................................................  317

A First Custom Hook .................................................................................  318

Custom Hooks: A Flexible Feature ..........................................................  321

Custom Hooks and Parameters ..............................................................  322

Custom Hooks and Return Values ..........................................................  324

A More Complex Example ........................................................................  326

Summary and Key Takeaways .................................................................  335

What's Next? ..............................................................................................  335

Test Your Knowledge! ...............................................................................  336

Apply What You Learned .........................................................................  336

Activity 11.1: Build a Custom Keyboard Input Hook .............................  336

Chapter 12: Multipage Apps with React Router 	  341

Introduction ..........................................................................................  342

One Page Is Not Enough ...........................................................................  342

Getting Started with React Router and Defining Routes .....................  343

Adding Page Navigation ...........................................................................  347

From Link to NavLink ...............................................................................  352

Route Components versus "Normal" Components ..............................  357

From Static to Dynamic Routes ...............................................................  361

Extracting Route Parameters ..................................................................  364

Creating Dynamic Links ...........................................................................  366

Navigating Programmatically ..................................................................  368



Redirecting .................................................................................................  372

Nested Routes ...........................................................................................  372

Handling Undefined Routes ....................................................................  376

Lazy Loading ..............................................................................................  377

Summary and Key Takeaways .................................................................  378

What's Next? ..............................................................................................  379

Test Your Knowledge! ...............................................................................  380

Apply What You Learned .........................................................................  380

Activity 12.1: Creating a Basic Three-Page Website ..............................  380

Activity 12.2: Enhancing the Basic Website ...........................................  382

Chapter 13: Managing Data with React Router 	  385

Introduction ..........................................................................................  386

Data Fetching and Routing Are Tightly Coupled ...................................  386

Sending HTTP Requests without React Router .....................................  388

Loading Data with React Router .............................................................  390

Enabling These Extra Router Features ...................................................  395

Loading Data for Dynamic Routes ..........................................................  397

Loaders, Requests, and Client-Side Code ...............................................  399

Layouts Revisited ......................................................................................  401

Reusing Data across Routes ....................................................................  407

Handling Errors .........................................................................................  409

Onward to Data Submission ....................................................................  411

Working with action() and Form Data ....................................................  415

Returning Data Instead of Redirecting ...................................................  418

Controlling Which <Form> Triggers Which Action ................................  421

Reflecting the Current Navigation Status ..............................................  421



Submitting Forms Programmatically .....................................................  423

Behind-the-Scenes Data Fetching and Submission ..............................  426

Deferring Data Loading ............................................................................  429

Summary and Key Takeaways .................................................................  432

What's Next? ..............................................................................................  433

Test Your Knowledge! ...............................................................................  433

Apply What You Learned .........................................................................  434

Activity 13.1: A To-Dos App...............................................................................434

Chapter 14: Next Steps and Further Resources 	  439

Introduction ..........................................................................................  440

How Should You Proceed? .......................................................................  440

Interesting Problems to Explore .............................................................  441

Build a Shopping Cart........................................................................................441

Build an Application's Authentication System  
(User Signup and Login)....................................................................................442

Build an Event Management Website.............................................................443

Common and Popular React Libraries ...................................................  444

Other Resources .......................................................................................  445

Beyond React for Web Applications .......................................................  445

Final Words ................................................................................................  446

Appendix 	  449

Index 	  549





Preface



ii | Preface

About the Book
As the most popular JavaScript library for building modern, interactive user interfaces, 
React is an in-demand framework that'll bring real value to your career or next 
project. But like any technology, learning React can be tricky, and finding the right 
teacher can make things a whole lot easier.

Maximilian Schwarzmüller is a bestselling instructor who has helped over two million 
students worldwide learn how to code, and his latest React video course (React—The 
Complete Guide) has over six hundred thousand students on Udemy.

Max has written this quick-start reference to help you get to grips with the world of 
React programming. Simple explanations, relevant examples, and a clear, concise 
approach make this fast-paced guide the ideal resource for busy developers.

This book distills the core concepts of React and draws together its key features with 
neat summaries, thus perfectly complementing other in-depth teaching resources. 
So, whether you've just finished Max's React video course and are looking for a handy 
reference tool, or you've been using a variety of other learning material and now 
need a single study guide to bring everything together, this is the ideal companion to 
support you through your next React projects. Plus, it's fully up to date for React 18, 
so you can be sure you're ready to go with the latest version.

About the Author

Maximilian Schwarzmüller is a professional web developer and bestselling online 
course instructor. Having learned to build websites and web user interfaces the hard 
way with just HTML, CSS, and (old-school) JavaScript, he embraced modern frontend 
frameworks and libraries like Angular and React right from the start. 

Having the perspective of a self-taught freelancer, Maximilian started teaching 
web development professionally in 2015. On Udemy, he is now one of the most 
popular and biggest online instructors, teaching more than 2mn students worldwide. 
Students can become developers by exploring more than 40 courses, most of those 
courses being bestsellers in their respective categories. In 2017, together with a 
friend, Maximilian also founded Academind to deliver even more and better courses 
to even more students. For example, Academind's "React – The Complete Guide" 
course is the bestselling React course on the Udemy platform, reaching more than 
500,000 students. 



About the Book | iii

Besides helping students from all over the world as an online instructor, Maximilian 
never stopped working as a web developer. He still loves exploring and mastering 
new technologies, building exciting digital products, and sharing his knowledge 
with fellow developers. He's driven by his passion for good code and engaging 
websites and apps. Beyond web development, Maximilian also works as a mobile 
app developer and cloud expert. He holds multiple AWS certifications, including the 
"AWS Certified Solutions Architect – Professional" certification. 

Apart from his courses on Udemy, Maximilian also publishes free tutorial videos 
on Academind's YouTube channel (https://youtube.com/c/academind) and articles on 
academind.com. You can also follow him on Twitter (@maxedapps). 

Audience

This book is designed for developers who already have some familiarity with React 
basics. It can be used as a standalone resource to consolidate understanding or as a 
companion guide to a more in-depth course. To get the most value from this book, it 
is advised that readers have some understanding of the fundamentals of JavaScript, 
HTML, and CSS. 

Prospective Table of Contents

Chapter 1, React – What and Why, will re-introduce the reader to React.js. Assuming 
that React.js is not brand-new to the reader, this chapter will clarify which problems 
React solves, which alternatives exist, how React generally works, and how React 
projects may be created. 

Chapter 2, Understanding React Components and JSX, will explain the general structure 
of a React app (a tree of components) and how components are created and used in 
React apps. 

Chapter 3, Components and Props, will ensure that readers are able to build reusable 
components by using a key concept called "props". 

Chapter 4, Working with Events and State, will cover how to work with state in React 
components, which different options exist (single state vs multiple state slices) and 
how state changes can be performed and used for UI updates.  

Chapter 5, Rendering Lists and Conditional Content, will explain how React apps can 
render lists of content (e.g. list of user posts) and conditional content (e.g. alert if 
incorrect values were entered into an input field). 

https://youtube.com/c/academind


iv | Preface

Chapter 6, Styling React Apps, will clarify how React components can be styled and 
how styles can be applied dynamically or conditionally, touching on popular styling 
solutions like vanilla CSS, styled components, and CSS modules for scoped styles.

Chapter 7, Portals and Refs, will explain how direct DOM access and manipulation is 
facilitated via the "refs" feature which is built-into React. In addition, readers will learn 
how Portals may be used to optimize the rendered DOM element structure.

Chapter 8, Handling Side Effects, will discuss the useEffect hook, explaining how it 
works, how it can be configured for different use-cases and scenarios, and how side 
effects can be handled optimally with this React hook. 

Chapter 9, Behind the Scenes of React and Optimization Opportunities, will take a look 
behind the scenes of React and dive into core topics like the virtual DOM, state update 
batching and key optimization techniques that help developers avoid unnecessary 
re-render cycles (and thus improve performance). 

Chapter 10, Working with Complex State, will explain how the advanced React hook 
useReducer works, when and why you might want to use it and how it can be used 
in React components to manage more complex component state with it. In addition, 
React's Context API will be explored and discussed in-depth, allowing developers to 
manage app-wide state with ease. 

Chapter 11, Building Custom React Hooks, will explain how developers can build their 
own, custom React hooks and what the advantage of doing so is. 

Chapter 12, Multipage Apps with React Router, will explain what React Router is 
and how this extra library can be used to build multipage experiences in a React 
single-page-application. 

Chapter 13, Managing Data with React Router, will dive deeper into React Router and 
explore how this package can also help with fetching and managing data.

Chapter 14, Next Steps and Further Resources, will further cover the core and "extended" 
React ecosystem and which resources may be helpful for next steps.

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Store the paragraph element reference in a constant named paragraphElement."

Words that you see on the screen, for example, in menus or dialog boxes, also appear 
in the text like this: "In the header with the navigation bar you will find the following 
components: the navigation items (Login and Profile) and the Logout button."



About the Book | v

A block of code is set as follows: 

const buttonElement = document.querySelector('button');

const paragraphElement = document.querySelector('p');

function updateTextHandler() {

  paragraphElement.textContent = 'Text was changed!';

}

buttonElement.addEventListener('click', updateTextHandler);

New terms and important words are shown like this: "It is currently used by over 
5% of the top 1,000 websites and compared to other popular frontend JavaScript 
frameworks like Angular, React is leading by a huge margin, when looking at key 
metrics like weekly package downloads via npm (Node Package Manager), which 
is a tool commonly used for downloading and managing JavaScript packages." 

Setting Up Your Environment

Before you can successfully install React.js on your system, you will need to ensure 
you have the following software installed:

Node.js and npm (included with your installation by default)

These are available for download at https://nodejs.org/en/. 

The home page of this site should automatically provide you with the most recent 
installation options for your platform and system. For more options, select Other 
Downloads (the first of three links visible beneath each of your default options). 
This will open a new page through which you can explore all installation choices for 
all main platforms, as shown in the screenshot below: 

Figure 0.1: Download Node.js source code or pre-built installer 

https://nodejs.org/en/


vi | Preface

At the bottom of this page, you will find a bullet list of available resources should your 
system require specialised instructions, including guidance on Node.js installation via 
source code and node package manager. 

Once you have downloaded Node.js through this website, find the .pkg file in your 
downloads folder. Double-click this file to open the Install Node.js pop-up 
window, then simply follow given instructions to complete your installation.

Installing React.js

React.js projects can be created in various ways, including custom-built project setups 
that incorporate webpack, babel and other tools. The easiest and recommended 
way is the usage of the create-react-app command though. This book uses this 
method. The creation of a react app will be covered in Chapter 1, React.js – What and 
Why, but you may refer to this section for step-by-step instructions on this task.

Note

For further guidance regarding the installation and setup of your  
React.js environment, resources are available at the following:  
https://reactjs.org/docs/getting-started.html

Perform the following steps to install React.js on your system:

1.	 Open your terminal (Powershell/command prompt for Windows; bash for Linux).

2.	 Use the make directory command to create a new project folder with a name of 
your choosing (e.g. mkdir react-projects) and navigate to that directory 
using the change directory command (e.g. cd react-projects).

3.	 Enter the following command prompt to create a new project directory within 
this folder:

npx create-react-app my-app

4.	 Grant permission when prompted to install all required files and folders needed 
for basic React setup. This may take several minutes.

5.	 Once completed, navigate to your new directory using the cd command:

cd my-app

https://reactjs.org/docs/getting-started.html 


About the Book | vii

6.	 Open a terminal window in this new project directory and run the following 
command to start a Node.js development server and lauch a new browser to 
preview your app locally:

npm start

7.	 This should open a new browser window automatically, but if it does not, 
open your browser manually type http://localhost:3000 in the 
address/location bar to navigate to localhost:3000, as shown in the 
screenshot below:

Figure 0.2: Access React App in Your Browser

8.	 When you are ready to stop development for the time being, use Ctrl + C in the 
same terminal as in step 6 to quit running your server. To relaunch it, simply run 
the npm start command in that terminal once again. Keep the process started 
by npm start up and running while developing, as it will automatically update 
the website loaded on localhost:3000 with any changes you make.



viii | Preface

Downloading the Code Bundle

Download the code files from GitHub at https://packt.link/IeoCT. Refer to these code 
files for the complete code bundle.

Get in Touch 

Feedback from our readers is always welcome. 

General feedback: If you have any questions about this book, please mention the 
book title in the subject of your message and email us at customercare@packtpub.com. 

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book, we would be grateful if 
you could report this to us. Please visit www.packtpub.com/support/errata and complete 
the form. 

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you could provide us with the location address or website 
name. Please contact us at copyright@packt.com with a link to the material. 

If you are interested in becoming an author: If there is a topic that you have expertise 
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com. 

Please Leave a Review 

Let us know what you think by leaving a detailed, impartial review on O'Reilly or 
Amazon. We appreciate all feedback. It helps us continue to make great products and 
help aspiring developers build their skills. Please spare a few minutes to give your 
thoughts. It makes a big difference to us.

https://packt.link/IeoCT
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
http://authors.packtpub.com


Download A Free PDF Copy Of This Book | ix

Download A Free PDF Copy Of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is 
your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book 
at no cost.

Read anywhere, any place, and on any device. Search, copy, and paste code from your 
favorite technical books directly into your application. 

The perks don't stop there; you can get exclusive access to discounts, newsletters, and 
great free content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803234502

2.	 Submit your proof of purchase.

3.	 That's it! We'll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781803234502




Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Describe what React is and why you would use it

�  Compare React to web projects built with just JavaScript

�  Create new React projects

React – What and Why

1



2 | React – What and Why

Introduction
React.js (or just React, as it's also called and as it'll be referred to for the majority 
of this book) is one of the most popular frontend JavaScript libraries—maybe 
even the most popular one, according to a 2021 Stack Overflow developer survey. 
It is currently used by over 5% of the top 1,000 websites and compared to other 
popular frontend JavaScript frameworks like Angular, React is leading by a huge 
margin, when looking at key metrics like weekly package downloads via npm (Node 
Package Manager), which is a tool commonly used for downloading and managing 
JavaScript packages.

Though it is certainly possible to write good React code without fully understanding 
how React works and why you're using it, you should always aim to understand 
the tools you're working with as well as the reasons for picking a certain tool in the 
first place. 

Therefore, before considering anything about its core concepts and ideas or 
reviewing example code, you first need to understand what React actually is and why 
it exists. This will help you understand how React works internally and why it offers 
the features it does.

If you already know why you're using React, why solutions like React in general are 
being used instead of vanilla JavaScript (i.e. JavaScript without any frameworks or 
libraries, more on this in the next section), and what the idea behind React and its 
syntax is, you may of course skip this section and jump ahead to the more practice-
oriented chapters later in this book.

But if you only think that you know it and are not 100% certain, you should definitely 
follow along with this chapter first.

What Is React?

React is a JavaScript library, and if you take a look at the official webpage (Official 
React website and documentation: https://reactjs.org), you learn that it's actually a 
"JavaScript library for building user interfaces".

https://reactjs.org


Introduction | 3

But what does this mean?

It should be clear what JavaScript is and why you use JavaScript in the browser (React 
is mostly a browser-side JavaScript library). JavaScript allows you to add interactivity 
to your website since, with JavaScript, you can react to user events and manipulate 
the page after it was loaded. This is extremely valuable as it allows you to build highly 
interactive web user interfaces.

But what is a "library" and how does React help with "building user interfaces"?

While you can have philosophical discussions about what a library is (and how it 
differs from a framework), the pragmatic definition of a library is that it's a collection 
of functionalities that you can use in your code to achieve results that would normally 
require more code and work from your side. Libraries help you write better and 
shorter code and enable you to implement certain features more quickly. In addition, 
since you can focus on your "core business logic", you not only move faster but are 
also likely to produce better code since you don't have to reinvent the wheel for 
problems that have been solved before by others.

React is such a library—one that focuses on providing functionalities that help you 
create interactive and reactive user interfaces. Indeed, React deals with more than 
web interfaces (i.e. websites loaded in browsers). You can also build native mobile 
devices with React and React Native, which is another library that utilizes React under 
the hood. No matter which platform you're targeting though, creating interactive user 
interfaces with just JavaScript can quickly become very complex and overwhelming.

Note

The focus of this book is on React in general, and for simplicity, the focus 
lies on React for websites. With projects like React Native, you can also use 
React to build user interfaces for native mobile apps. The React concepts 
covered in this book still apply, no matter which target platform is chosen. 
But examples will focus on React for web browsers.



4 | React – What and Why

The Problem with "Vanilla JavaScript"

Vanilla JavaScript is a term commonly used in web development for referring to 
"JavaScript without any frameworks or libraries". That means, you write all the 
JavaScript on your own, without falling back to any libraries or frameworks that 
would provide extra utility functionalities. When working with vanilla JavaScript, you 
especially don't use major frontend frameworks or libraries like React or Angular.

Using vanilla JavaScript generally has the advantage, that visitors of a website 
have to download less JavaScript code (as major frameworks and libraries typically 
are quite sizeable and can quickly add 50+ kb of extra JavaScript code that has to 
be downloaded).

The downside of relying on vanilla JavaScript is, that you, as the developer, must 
implement all functionalities from the ground up on your own. This can be error-
prone and highly time consuming. Therefore, especially more complex user interfaces 
and websites can quickly become very hard to manage with vanilla JavaScript.

React simplifies the creation and management of such user interfaces by moving 
from an imperative to a declarative approach. Though this is a nice sentence, it can 
be hard to grasp if you haven't worked with React or similar frameworks before. To 
understand it and the idea behind "imperative vs declarative approaches" and why 
you might want to use React instead of just vanilla JavaScript, it's helpful to take a step 
back and evaluate how vanilla JavaScript works.

Here's a short code snippet that shows how you could handle the following user 
interface actions with vanilla JavaScript:

1.	 Add an event listener to a button to listen for "click" events.

2.	 Replace the text of a paragraph with new text once a click on the button occurs.

const buttonElement = document.querySelector('button');

const paragraphElement = document.querySelector('p');

function updateTextHandler() {

  paragraphElement.textContent = 'Text was changed!';

}

buttonElement.addEventListener('click', updateTextHandler);



Introduction | 5

This example is deliberately kept simple, so it's probably not looking too bad or 
overwhelming. It's just a basic example to show how code is generally written with 
vanilla JavaScript (a more complex example will be discussed below). But even though 
this example is very straightforward and easy to digest, working with vanilla JavaScript 
will quickly reach its limits for feature-rich user interfaces and the code to handle 
various user interactions therefore also becomes more complex. Code can quickly 
grow significantly, and therefore maintaining it can become a challenge.

In the preceding example, code is written with vanilla JavaScript and, therefore, 
imperatively. This means that you write instruction after instruction, and you describe 
every step that needs to be taken in detail.

The code shown above could be translated to these more human-
readable instructions:

1.	 Look for an HTML element of type button to obtain a reference to the first 
button on the page.

2.	 Create a constant (i.e., a data container) named buttonElement that holds 
that button reference.

3.	 Repeat step 1 but get a reference to the first element that is of type of p.

4.	 Store the paragraph element reference in a constant named 
paragraphElement.

5.	 Add an event listener to the buttonElement that listens for click events 
and triggers the updateTextHandler function whenever such a click 
event occurs.

6.	 Inside the updateTextHandler function, use the paragraphElement to 
set its textContent to "Text was changed!".

Do you see how every step that needs to be taken is clearly defined and written out in 
the code?

This shouldn't be too surprising because that is how most programming languages 
work: you define a series of steps that must be executed in order. It's an approach 
that makes a lot of sense because the order of code execution shouldn't be random 
or unpredictable.

But when working with user interfaces, this imperative approach is not ideal. Indeed, 
it can quickly become cumbersome because, as a developer, you have to add a lot 
of instructions that despite adding little value, cannot simply be omitted. You need 
to write all the DOM (Document Object Model) instructions that allow your code to 
interact with elements, add elements, manipulate elements. etc. 



6 | React – What and Why

Your core business logic (e.g., deriving and defining the actual text that should be set 
after a click) therefore often makes up only a small chunk of the overall code. When 
controlling and manipulating web user interfaces with JavaScript, a huge chunk (often 
the majority) of your code is frequently made up of DOM instructions, event listeners, 
HTML element operations, and UI state management. 

Therefore, you end up describing all the steps that are required to interact with the 
UI technically and all the steps that are required to derive the output data (i.e., the 
desired final state of the UI).

Note

This book assumes that you are familiar with the DOM (Document Object 
Model). In a nutshell, the DOM is the "bridge" between your JavaScript code 
and the HTML code of the website with which you want to interact. Via the 
built-in DOM API, JavaScript is able to create, insert, manipulate, delete, 
and read HTML elements and their content. 

You can learn more about the DOM in this article: https://academind.com/
tutorials/what-is-the-dom.

Modern web user interfaces are often quite complex, with lots of interactivity 
going on behind the scenes. Your website might need to listen for user input in 
an input field, send that entered data to a server to validate it, output a validation 
feedback message on the screen, and show an error overlay modal if incorrect data 
is submitted. 

This is not a complex example in general, but the vanilla JavaScript code for 
implementing such a scenario can be overwhelming. You end up with lots of DOM 
selection, insertion, and manipulation operations, as well as multiple lines of code 
that do nothing but manage event listeners. And keeping the DOM updated, without 
introducing bugs or errors, can be a nightmare since you must ensure that you 
update the right DOM element with the right value at the right time. Below, you 
will find a screenshot of some example code for the described use-case. 

Note

The full, working, code can be found on GitHub at https://packt.link/tLSLU. 

https://academind.com/tutorials/what-is-the-dom. 
https://academind.com/tutorials/what-is-the-dom. 
https://packt.link/tLSLU


Introduction | 7

If you take a look at the JavaScript code in the screenshot (or in the linked repository), 
you will probably be able to imagine how a more complex user interface is likely 
to look.

Figure 1.1. An example JavaScript code file that contains over 100 lines  
of code for a fairly trivial user interface 

This example JavaScript file already contains roughly 110 lines of code. Even after 
minifying ("minifying" means that code is shortened automatically, e.g. by replacing 
long variable names with shorter ones and removing redundant whitespace; in this 
case via https://javascript-minifier.com/) it and splitting the code across multiple lines 
thereafter (to count the raw lines of code), it still has around 80 lines of code. That's 
a full 80 lines of code for a simple user interface with only basic functionality. The 
actual business logic (i.e., input validation, determining if and when overlays should 
be shown, and defining the output text) only makes up a small fraction of the overall 
codebase—around 20 to 30 lines of code, in this case (around 20 after minifying). 

That's roughly 75% of code spent on pure DOM interaction, DOM state management, 
and similar boilerplate tasks.

https://javascript-minifier.com/) 


8 | React – What and Why

As you can see by these examples and numbers, controlling all the UI elements and 
their different states (e.g., whether an info box is visible or not) is a challenging task 
and trying to create such interfaces with just JavaScript often leads to complex code 
that might even contain errors.

That's why the imperative approach, wherein you must define and write down 
every single step, has its limits in situations like this. This is the reason why React 
provides utility functionalities that allow you to write code differently: with a 
declarative approach.

Note

This is not a scientific paper, and the preceding example is not meant to 
act as an exact scientific study. Depending on how you count lines and 
which kind of code you consider to be "core business logic", you will end up 
with higher or lower percentage values. The key message doesn't change 
though: Lots of code (in this case most of it) deals with the DOM and DOM 
manipulation—not with the actual logic that defines your website and its 
key features.

React and Declarative Code

Coming back to the first, simple, code snippet from above, here's that same code 
snippet, this time using React:

import { useState } from 'react';

function App() {

  const [outputText, setOutputText] = useState('Initial text');

  function updateTextHandler() {

    setOutputText('Text was changed!');

  }

  return (

    <>

      <button onClick={updateTextHandler}>Click to change text</button>

      <p>{outputText}</p>



Introduction | 9

    </>

  );

}

This snippet performs the same operations as the first did with just vanilla JavaScript:

1.	 Add an event listener to a button to listen for click events (now with some 
React-specific syntax: onClick={…}).

2.	 Replace the text of a paragraph with new text once the click on the 
button occurred.

Nonetheless, this code looks totally different—like a mixture of JavaScript and HTML. 
And indeed, React uses a syntax extension called JSX (i.e., JavaScript with embedded 
XML). For the moment, it's enough to understand that this JSX code will work because 
of a pre-processing step that's part of the build workflow of every React project. 

Pre-processing means that certain tools, which are part of React projects, analyze 
and transform the code before its deployed. This allows for development-only syntax 
like JSX which would not work in the browser and is therefore transformed to regular 
JavaScript before deployment. (You'll get a thorough introduction into JSX in Chapter 2, 
Understanding React Components and JSX.)

In addition, the snippet shown above contains a React specific feature: State. State 
will be discussed in greater detail later in the book (Chapter 4, Working with Events and 
State will focus on handling events and state with React). For the moment, you can 
think of this state as a variable that, when changed, will trigger React to update the 
user interface in the browser. 

What you see in the preceding example is the "declarative approach" used by React: 
You write your JavaScript logic (e.g., functions that should eventually be executed), 
and you combine that logic with the HTML code that should trigger it or that is 
affected by it. You don't write the instructions for selecting certain DOM elements 
or changing the text content of some DOM elements. Instead, with React and JSX, 
you focus on your JavaScript business logic and define the desired HTML output that 
should eventually be reached. This output can and typically will contain dynamic 
values that are derived inside of your main JavaScript code. 



10 | React – What and Why

In the preceding example, outputText is some state managed by React. In 
the code, the updateTextHandler function is triggered upon a click, and the 
outputText state value is set to a new string value ('Text was changed!') 
with help of the setOutputText function. The exact details of what's going on 
here will be explored in Chapter 4. 

The general idea, though, is that the state value is changed and, since it's being 
referenced in the last paragraph (<p>{outputText}</p>), React outputs the 
current state value in that place in the actual DOM (and therefore on the actual 
web page). React will keep the paragraph updated, and therefore, whenever 
outputText changes, React will select this paragraph element again and 
update its textContent automatically. 

This is the declarative approach in action. As a developer, you don't need to 
worry about the technical details (for example, selecting the paragraph, updating its 
textContent). Instead, you will hand this work off to React. You will only need to 
focus on the desired end state(s) where the goal simply is to output the current value 
of outputText in a specific place (i.e., in the second paragraph in this case) on the 
page. It's React's job of doing the "behind the scenes" work of getting to that result.

It turns out that this code snippet isn't shorter than the vanilla JavaScript one; indeed, 
it's actually even a bit longer. But that's only the case because this first snippet was 
deliberately kept simple and concise. In such cases, React actually adds a bit of 
overhead code. If that were your entire user interface, using React indeed wouldn't 
make too much sense. Again, this snippet was chosen because it allows us to see the 
differences at a glance. Things change if you take a look at the more complex vanilla 
JavaScript example from before) and compare that to its React alternative. 

Note

Referenced code can be found on GitHub at http://packt.link/tLSLU and 
https://packt.link/YkpRa, respectively.

http://packt.link/tLSLU
https://packt.link/YkpRa


Introduction | 11

Figure 1.2. The code snippet from before, now implemented via React.

It's still not short because all the JSX code (i.e., the HTML output) is included in the 
JavaScript file. If you ignore pretty much the entire right side of that screenshot 
(since HTML was not part of the vanilla JavaScript files either), the React code gets 
much more concise. But, most importantly, if you take a closer look at all the React 
code (also in the first, shorter snippet), you will notice that there are absolutely no 
operations that would select DOM elements, create or insert DOM elements, or edit 
DOM elements. 

And this is the core idea of React. You don't write down all the individual steps and 
instructions; instead, you focus on the "big picture" and the desired end state(s) of 
your page content. With React, you can merge your JavaScript and markup code 
without having to deal with the low-level instructions of interacting with the DOM like 
selecting elements via document.getElementById() or similar operations.



12 | React – What and Why

Using this declarative approach, instead of the imperative approach with vanilla 
JavaScript, allows you, the developer, to focus on your core business logic and the 
different states of your HTML code. You don't need to define all the individual steps 
that have to be taken (like "adding an event listener", "selecting a paragraph", etc.), 
and this simplifies the development of complex user interfaces tremendously.

Note

It is worth emphasizing that React is not a great solution if you're working 
on a very simple user interface. If you can solve a problem with a few lines 
of vanilla JavaScript code, there is probably no strong reason to integrate 
React into the project.

Looking at React code for the first time, it can look very unfamiliar and strange. It's 
not what you're used to from JavaScript. Still, it is JavaScript—just enhanced with 
this JSX feature and various React-specific functionalities (like State). It may be less 
confusing if you remember that you typically define your user interface (i.e., your 
content and its structure) with HTML. You don't write step-by-step instructions there 
either, but rather create a nested tree structure with HTML tags. You express your 
content, the meaning of different elements, and the hierarchy of your user interface 
by using different HTML elements and by nesting HTML tags. 

If you keep this in mind, the "traditional" (vanilla JavaScript) approach of manipulating 
the UI should seem rather odd. Why would you start defining low-level instructions 
like "insert a paragraph element below this button and set its text to <some text>" if you 
don't do that in HTML at all? React in the end brings back that HTML syntax, which is 
far more convenient when it comes to defining content and structure. With React, you 
can write dynamic JavaScript code side-by-side with the UI code (i.e., the HTML code) 
that is affected by it or related to it.

How React Manipulates the DOM

As mentioned earlier, when writing React code, you typically write it as shown above: 
You blend HTML with JavaScript code by using the JSX syntax extension.

It is worth pointing out that JSX code does not run like this in browsers. It instead 
needs to be pre-processed before deployment. The JSX code must be transformed to 
regular JavaScript code before being served to browsers. The next chapter will take a 
closer look at JSX and what it's transformed to. For the moment, though, simply keep 
in mind that JSX code must be transformed.



Introduction | 13

Nonetheless, it is worth knowing that the code to which JSX will be transformed will 
also not contain any DOM instructions. Instead, the transformed code will execute 
various utility methods and functions that are built-into React (in other words, 
those that are provided by the React package that needs to be added to every React 
project). Internally, React creates a virtual DOM-like tree structure that reflects the 
current state of the user interface. This book takes a closer look at this abstract, 
virtual DOM and how React works in Chapter 9, Behind the Scenes of React and 
Optimization Opportunities. Therefore, React (the library) splits its core logic across two 
main packages:

•	 The main react package

•	 And the react-dom package

The main react package is a third-party JavaScript library that needs to be imported 
into a project to use React's features (like JSX or state) there. It's this package that 
creates this virtual DOM and derives the current UI state. But you also need the 
react-dom package in your project if you want to manipulate the DOM with React. 

The react-dom package, specifically the react-dom/client part of that package, 
acts as a "translation bridge" between your React code, the internally generated 
virtual DOM, and the browser with its actual DOM that needs to be updated. It's the 
react-dom package that will produce the actual DOM instructions that will select, 
update, delete, and create DOM elements.

This split exists because you can also use React with other target environments. A 
very popular and well-known alternative to the DOM (i.e., to the browser) would be 
React Native, which allows developers to build native mobile apps with help of React. 
With React Native, you also include the react package into your project, but in place 
of react-dom, you would use the react-native package. In this book, "React" 
refers to both the react package and the "bridge" packages (like react-dom).

Note

As mentioned earlier, this book focuses on React itself. The concepts 
explained in this book, therefore, will apply to both web browsers and 
websites as well as mobile devices. Nonetheless, all examples will focus 
on the web and react-DOM since that avoids introducing extra complexity.



14 | React – What and Why

Introducing Single Page Applications

React can be used to simplify the creation of complex user interfaces, and there are 
two main ways of doing that:

1.	 Manage parts of a website (e.g., a chat box in the bottom left corner).

2.	 Manage the entire page and all user interaction that occurs on it.

Both approaches are viable, but the more popular and common scenario is the 
second one: Using React to manage the entire web page, instead of just parts of 
it. This approach is more popular because most websites that have complex user 
interfaces, have not just one complex element but multiple elements on their pages. 
Complexity would actually increase if you were to start using React for some website 
parts without using it for other areas of the site. For this reason, it's very common to 
manage the entire website with React.

This doesn't even stop after using React on one specific page of the site. Indeed, 
React can be used to handle URL path changes and update the parts of the page 
that need to be updated in order to reflect the new page that should be loaded. This 
functionality is called "routing" and third-party packages like react-router-dom 
(see Chapter 12, Multipage Apps with React Router), which integrate with React, allow 
you to create a website wherein the entire user interfaces is controlled via React.

A website that does not just use React for parts of its pages but instead for all 
subpages and for routing is called a "Single Page Application" (SPA) because 
it consists of only one HTML file (typically named index.html) which is used to 
initially load the React JavaScript code. Thereafter, the React library and your React 
code take over and control the actual user interface. This means that the entire user 
interface is created and managed by JavaScript via React and your React code.

Creating a React Project

To work with React, the first step is the creation of a React project. This can be 
done in multiple ways, but the most straightforward and easiest way is to use the 
create-react-app utility command line tool. This is a tool maintained by (parts 
of) the React team, and you can install it as a Node.js package via the Node Package 
Manager (npm). Once installed, this tool can be used to create a project folder that 
comes with React pre-installed, as well as some other tools, such as the Jest package 
for automated testing.



Introduction | 15

You need a project setup like this because you typically use features like JSX which 
wouldn't work in the browser without prior code transformation. Therefore, as 
mentioned earlier, a pre-processing step is required, and the React project created 
via create-react-app includes such a step as part of the code build workflow.

To create a project with create-react-app, you must have Node.js installed—
preferably the latest (or latest LTS) version. You can get the official Node.js installer 
for all operating systems from https://nodejs.org/. Once you have installed Node.js, you 
will also gain access to the built-in npm and npx commands, which you can use to 
utilize the create-react-app package to create a new project.

You can run the following command inside of your command prompt (Windows), 
bash (Linux), or terminal (macOS) program. Just make sure that you navigated (via cd) 
into the folder in which you want to create your new project.

npx create-react-app my-react-project

This command will create a new subfolder with a basic React project setup (i.e., with 
various files and folders) in the place where you ran it. You should run it in some 
path on your system where you have full read and write access and where you're not 
conflicting with any system or other project files.

The exact project structure (that is, the file names and folder names) may vary over 
time, but generally, every new React project contains a couple of key files and folders:

•	 A src/ folder that contains the main source code files for the project:

•	 An index.js file which is the main entry script file that will be executed first

•	 An App.js file which contains the root component of the application (you'll 
learn more about components in the next chapter)

•	 Various styling (*.css) files that are imported by the JavaScript files

•	 Other files, like code files for automated tests

•	 A public/ folder which contains static files that will be part of the final website:

•	 This folder may contain static images like favicons

•	 The folder also contains an index.html file which is the single HTML page of 
this website

https://nodejs.org/


16 | React – What and Why

•	 package.json and package-lock.json are files that manage third-party 
dependencies of your project

•	 Production dependencies like react or react-dom

•	 Development dependencies like jest for automated tests

Note

package.json is the file in which you actually manage packages and 
their versions. package-lock.json is created automatically (by Node.
js). It locks in exact dependency and sub-dependency versions, whereas 
package.json only specifies version ranges. You can learn more about 
these files and package versions on https://docs.npmjs.com/.

•	 The node_modules folder holds the actual third-party package code of the 
packages that are listed in the package.json file. This node_modules folder 
can be deleted since you can recreate it by running npm install inside of the 
project folder

Most of the React code will be written in the App.js file or custom components that 
will be added to the project. This book will explore components in the next chapter.

Note

The node_modules folder can become very big since it contains all 
projects dependencies and dependencies of dependencies. Therefore, it's 
typically not included if projects are shared with other developers or pushed 
to GitHub. The package.json file is all you need. By running npm 
install, the node_modules folder will be recreated locally.

Once the project is created, you can start writing your code. To preview your code 
on a live website locally on your system, you can run npm start inside of the project 
folder. This will start a built-in development server that pre-processes, builds, and 
hosts your React-powered SPA. This process should normally open the preview page 
in a new browser tab automatically. If that doesn't happen, you can manually open a 
new tab and navigate to localhost:3000 there (unless you see a different address 
as output in the window where you executed npm start, in which case, use the 
address that's shown after you ran npm start).

https://docs.npmjs.com/


Introduction | 17

The preview website that opens up will automatically reload and reflect code changes 
whenever you save changes to your code.

When you're done with development for the day, you can quit the running 
development server process via CTRL + C (in the command prompt or terminal 
window where you started it via npm start). To continue development and get back 
that live preview website, you can always restart it by running npm start (inside of the 
project folder) again.

Summary and Key Takeaways

•	 React is a library, though it's actually a combination of two main packages: 
react and react-dom.

•	 Though it is possible to build non-trivial user interfaces without React, simply 
using vanilla JavaScript to do so can be cumbersome, error-prone, and hard 
to maintain.

•	 React simplifies the creation of complex user interfaces by providing a 
declarative way to define the desired end state(s) of the UI.

•	 Declarative means that you define the target user interface content and 
structure, combined with different states (e.g., "is a modal open or closed?"), 
and you leave it up to React to figure out the appropriate DOM instructions.

•	 The react package itself derives UI states and manages a virtual DOM. It's 
"bridges" like react-dom or react-native that translate this virtual DOM 
into actual UI (DOM) instructions.

•	 With React, you can build Single Page Applications (SPAs), meaning that React 
is used to control the entire user interface on all pages as well as the routing 
between pages.

•	 React projects can be created with help of the create-react-app 
package, which provides a readily configured project folder and a live 
preview development server.

What's Next?

At this point, you should have a basic understanding of what React is and why you 
might consider using it, especially for building non-trivial user interfaces. You learned 
how to create new React projects with create-react-app, and you are now ready to 
dive deeper into React and the actual key features it offers.



18 | React – What and Why

In the next chapter, you will learn about a concept called components which are the 
fundamental building blocks of React apps. You will learn how components are used 
to compose user interfaces and why those components are needed in the first place. 
The next chapter will also dive deeper into JSX and explore how it is transformed to 
regular JavaScript code and which kind of code you could write alternatively to JSX.

Test Your Knowledge!

Test your knowledge about the concepts covered in this chapter by answering the 
below questions. You can then compare your answers to example answers that can 
be found here: https://packt.link/ENPda.

1.	 What is React?

2.	 Which advantage does React offer over vanilla JavaScript projects?

3.	 What's the difference between imperative and declarative code?

4.	 What is a Single-Page-Application (SPA)?

5.	 How can you create new React projects and why do you need such a more 
complex project setup?

https://packt.link/ENPda






Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Define what exactly components are

�  Build and use components effectively

�  Utilize common naming conventions and code patterns

�  Describe the relation between components and JSX

�  Write JSX code and understand why it's used

�  Write React components without using JSX code

�  Write your first React apps

Understanding React 

Components and JSX

2



22 | Understanding React Components and JSX

Introduction
In the previous section, you learned about React in general, what it is and why you 
could consider using it for building user interfaces. You also learned how to create 
React projects with the help of npx create-react-app.

In this chapter, you will learn about one of the most important React concepts and 
building blocks: React as above, components. You will learn that components are 
reusable building blocks which are used to build user interfaces. In addition, JSX 
code will be discussed in greater detail so that you will be able to use the concept of 
components and JSX to build your own, first, basic React apps.

What Are Components?

A key concept of React is the usage of so-called components. Components are 
reusable building blocks which are combined to compose the final user interface. For 
example, a basic website could be made up of a header that includes a navigation bar 
and a main section that includes an authentication form. 

Figure 2.1 An example authentication screen with navigation bar.



Introduction | 23

If you look at this example page, you might be able to identify various building blocks 
(i.e., components). Some of these components are even reused. 

In the header with the navigation bar you will find the following components:

•	 The navigation items (Login and Profile)

•	 The Logout button

Below this, the main section displays the following:

•	 The container that contains the authentication form

•	 The input elements

•	 The confirmation button

•	 A link to switch to the New Account page

Please note that some components are nested inside other components—i.e., 
components are also made up of other components. That's a key feature of React 
and similar libraries.

Why Components?

No matter which web page you look at, they are all made up of building blocks 
like this. It's not a React-specific concept or idea. Indeed, HTML itself "thinks" in 
components if you take a closer look. You have elements like <img>, <header>, 
<nav>, etc. And you combine these elements to describe and structure your 
website content.

But React embraces this idea of breaking a web page into reusable building blocks 
because this is an approach that allows developers to work on small, manageable 
chunks of code. It's easier and more maintainable than working on a single, huge 
HTML (or React code) file.

That's why other libraries—both frontend libraries like React or Angular as well 
as backend libraries and templating engines like EJS (Embedded JavaScript 
templates)—also embrace components (though the names might differ, you also 
find "partials" or "includes" as common names).

Note

EJS is a popular templating engine for JavaScript. It's especially popular for 
backend web development with NodeJS. 



24 | Understanding React Components and JSX

When working with React, it's especially important to keep your code manageable 
and work with small, reusable components because React components are not just 
collections of HTML code. Instead, a React component also encapsulates JavaScript 
logic and often also CSS styling. For complex user interfaces, the combination of 
markup (JSX), logic (JavaScript) and styling (CSS) could quickly lead to large chunks of 
code, thus making it difficult to maintain that code. Think of a large HTML file that also 
includes JavaScript and CSS code. Working in such a code file wouldn't be a lot of fun.

To make a long story short, when working in a React project, you will work with lots 
of components. You will split your code into small, manageable building blocks and 
then combine these components to form the overall user interface. It's a key feature 
of React.

Note

When working with React, you should embrace this idea of working with 
components. But technically, they're  optional. You could, theoretically, build 
very complex web pages with one single component alone. It would not be 
much fun, and it would not be practical, but it would technically be possible 
without any issues.

The Anatomy of a Component

Components are important. But what exactly does a React component look like? How 
do you write React components on your own?

Here's an example component:

import { useState } from 'react';

function SubmitButton() {

  const [isSubmitted, setIsSubmitted] = useState(false);

  

  function submitHandler() {

    setIsSubmitted(true);

  };

  return (

    <button onClick={submitHandler}>

      { isSubmitted ? 'Loading…' : 'Submit' }



Introduction | 25

    </button>

  );

};

export default SubmitButton;

Typically, you would store a code snippet like this in a separate file (e.g., a file 
named SubmitButton.js, stored inside a /components folder which in turn 
resides in the /src folder of your React project) and import it into other component 
files that need this component. For example, the following component imports 
the component defined above and uses it in its return statement to output the 
SubmitButton component:

import SubmitButton from './submit-button';

function AuthForm() {

  return (

    <form>

      <input type="text" />

      <SubmitButton />

    </form>

  );

};

export default AuthForm;

The import statements you see in these examples are standard JavaScript import 
statements with one extra twist: the file extension (.js in this case) can be omitted in 
most React projects (like the one created via npx create-react-app). import 
and export are standard JavaScript keywords that help with splitting related code 
across multiple files. Things like variables, constants, classes, or functions can be 
exported via export or export default so that they can then be used in other 
files after importing them there. 

Note

If the concept of splitting code into multiple files and using import and 
export is brand-new to you, you might want to dive into more basic 
JavaScript resources on this topic first. For example, MDN has an excellent 
article that explains the fundamentals, which you can find at https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules


26 | Understanding React Components and JSX

Of course, the components shown in these examples are highly simplified and also 
contain features that you haven't learned about yet (e.g. useState()). But the 
general idea of having standalone building blocks that can be combined should 
be clear.

When working with React, there are two alternative ways to define components:

Class-based components (or "class components"): components defined via the 
class keyword

Functional components (or "function components"): components that are defined 
via regular JavaScript functions

In all the examples covered in this book thus far, components were built as JavaScript 
functions. As a React developer, you have to use one of these two approaches as 
React expects components to be functions or classes.

Note

Until late 2018, you had to use class-based components for certain kinds 
of tasks—specifically for components that use state internally. (State will 
be covered later in the book). However, in late 2018, a new concept was 
introduced: React Hooks. This allows you to perform all operations and 
tasks with functional components. Consequently, class-based components 
are on their way out and not covered in this book.

In the examples above, there are a couple of other noteworthy things:

•	 The component functions carry capitalized names (e.g., SubmitButton)

•	 Inside the component functions, other "inner" functions can be defined (e.g., 
submitHandler)

•	 The component functions return HTML-like code (JSX code)

•	 Features like useState() can be used inside the component functions

•	 The component functions are exported (via export default)

•	 Certain features (like useState or the custom component, SubmitButton) 
are imported via the import keyword



Introduction | 27

The following sections will take a closer look at these different concepts that make up 
components and their code.

What Exactly Are Component Functions?

In React, components are functions (or classes, but as mentioned above, those aren't 
relevant anymore).

A function is a regular JavaScript construct, not a React-specific concept. This is 
important to note. React is a JavaScript library and therefore uses JavaScript 
features (like functions); React is not a brand-new programming language.

When working with React, regular JavaScript functions can be used to encapsulate 
HTML (or, to be more precise, JSX) code and JavaScript logic that belongs to that 
markup code. However, it depends on the code you write in a function, whether 
it qualifies to be treated as a React component or not. For example, in the code 
snippets above, the submitHandler function is also a regular JavaScript function, 
but it's not a React component. The following example shows another regular 
JavaScript function that doesn't qualify as a React component:

function calculate(a, b) {

  return {sum: a + b};

};

Indeed, a function will be treated as a component and can therefore be used like 
a HTML element in JSX code if it returns a renderable value (typically JSX code). 
This  is very important. You can only use a function as a React component in JSX code 
if it is a function that returns something that can be rendered by React. The returned 
value technically doesn't have to be JSX code, but in most cases, it will be. You will 
see an example for non-JSX code being returned later in the book, in  Chapter 7, 
Portals and Refs.

In the code snippet where functions named SubmitButton and AuthForm 
were defined, those two functions qualified as React components because they 
both returned JSX code (which is code that can be rendered by React, making it 
renderable). Once a function qualifies as a React component, it can be used like 
a HTML element inside of JSX code, just as <SubmitButton /> was used like a 
(self-closing) HTML element.



28 | Understanding React Components and JSX

When working with vanilla JavaScript, you of course typically call functions to execute 
them. With functional components, that's different. React calls these functions on 
your behalf, and therefore, as a developer, you use them like HTML elements inside 
of this JSX code.

Note

When referring to renderable values, it is worth noting that by far the most 
common value type being returned or used is indeed JSX code—i.e., 
markup defined via JSX. This should make sense because, with JSX, you 
can define the HTML-like structure of your content and user interface.

But besides JSX markup, there are a couple of other key values that 
also qualify as renderable and therefore could be returned by custom 
components (instead of JSX code). Most notably, you can also return 
strings or numbers as well as arrays that hold JSX elements or strings 
or numbers.

What Does React Do with All These Components?

If you follow the trail of all components and their import + export statements 
to the top, you will find a root.render(...) instruction in the main entry script 
of the React project. Typically, this main entry script can be found in the index.js file, 
located in the project's src/ folder. This render() method, which is provided by 
the React library (to be precise, by the react-dom package), takes a snippet of JSX 
code and interprets and executes it for you. 

The complete snippet you find in the root entry file (index.js) typically looks 
like this: 

import React from 'react'; 

import ReactDOM from 'react-dom/client'; 

 

import './index.css'; 

import App from './App'; 

 

const root = ReactDOM.createRoot(document.getElementById('root')); 

root.render(<App />); 

The exact code you find in your new React project might look slightly different.



Introduction | 29

It may, for instance, include an extra <StrictMode> element that's wrapped 
around <App>. <StrictMode> turns on extra checks that can help catch subtle 
bugs in your React code. But it can also lead to confusing behavior and unexpected 
error messages, especially when experimenting with React or learning React. As this 
book is primarily interested in the coverage of React core features and key concepts, 
<StrictMode> will not be covered.  

To follow along smoothly then, cleaning up a newly created index.js file to look 
like the code snippet above is a good idea. 

The createRoot() method instructs React to create a new entry point which will 
be used to inject the generated user interface into the actual HTML document that 
will be served to website visitors. The argument passed to createRoot() therefore 
is a pointer to a DOM element that can be found in index.html—the single page 
that will be served to website visitors.  

In many cases, document.getElementById('root') is used as an argument. 
This built-in vanilla JavaScript method yields a reference to a DOM element that is 
already part of the index.html document. Therefore, as a developer, you must 
ensure that such an element with the provided id attribute value (root, in this 
example) exists in the HTML file into which the React app script is loaded. In a default 
React project created via npx create-react-app, this will be the case. You can 
find a <div id="root"> element in the index.html file in the public/ folder. 

This index.html file is a relatively empty file which only acts as a shell for the React 
app. React just needs an entry point (defined via createRoot()) which will be used 
to attach the generated user interface to the displayed website. The HTML file and 
its content therefore do not directly define the website content. Instead, the file just 
serves as a starting point for the React application, allowing React to then take over 
and control the actual user interface. 

Once the root entry point has been defined, a method called render() can be called 
on the root object created via createRoot(): 

root.render(<App />);

This render() method tells React which content (i.e., which React component) 
should be injected into that root entry point. In most React apps, this is a component 
called App. React will then generate appropriate DOM-manipulating instructions to 
reflect the markup defined via JSX in the App component on the actual webpage. 

This App component is a component function that is imported from some other file. 
In a default React project, the App component function is defined and exported in an 
App.js file which is also located in the src/ folder. 



30 | Understanding React Components and JSX

This component, which is handed to render() (<App />, typically), is also called 
the root component of the React app. It's the main component that is rendered to 
the DOM. All other components are nested in the JSX code of that App component 
or the JSX code of even more nested descendent components. You can think of all 
these components building up a tree of components which is evaluated by React and 
translated into actual DOM-manipulating instructions. 

Note

As mentioned in the previous chapter, React can be used on various 
platforms. With the react-native package, it could be used to build 
native mobile apps for iOS and Android. The react-dom package 
which provides the createRoot() method (and therefore implicitly 
the render() method) is focused on the browser. It provides the 
"bridge" between React's capabilities and the browser instructions that 
are required to bring the UI (described via JSX and React components) to 
life in the browser. If you would build for different platforms, replacements 
for ReactDOM.createRoot() and render() are required (and of 
course such alternatives do exist).

Either way, no matter whether you use a component function like an HTML element 
inside of JSX code of other components or use it like an HTML element that's passed 
as an argument to the render() method, React takes care of interpreting and 
executing the component function on your behalf. 

Of course, this is not a new concept. In JavaScript, functions are first-class objects, 
which means that you can pass functions as arguments to other functions. This is 
basically what happens here, just with the extra twist of using this JSX syntax which is 
not a default JavaScript feature. 

React executes these component functions for you and translates the returned JSX 
code into DOM instructions. To be precise, React traverses the returned JSX code 
and dives into any other custom components that might be used in that JSX code 
until it ends up with JSX code that is only made up of native, built-in HTML elements 
(technically, it's not really HTML, but that will be discussed later in this chapter).



Introduction | 31

Take these two components as an example:

function Greeting() {

  return <p>Welcome to this book!</p>;

};

function App() {

  return (

    <div>

      <h2>Hello World!</h2>

      <Greeting />

    </div>

  );

};

const root = ReactDOM.createRoot(document.getElementById('app'));

root.render(<App />);

The App component uses the Greeting component inside its JSX code. React will 
traverse the entire JSX markup structure and derive this final JSX code:

root.render((

  <div>

    <h2>Hello World!</h2>

    <p>Welcome to this book!</p>

  </div>

), document.getElementById('app'));

And this code would instruct React and ReactDOM to perform the following 
DOM operations:

•	 Create a <div> element

•	 Inside that <div>, create two child elements: <h2> and <p>

•	 Set the text content of the <h2> element to 'Hello World!'

•	 Set the text content of the <p> element to 'Welcome to this book!'

•	 Insert the <div> with its children into the already-existing DOM element which 
has the id 'app'



32 | Understanding React Components and JSX

This is a bit simplified, but you can think of React handling components and JSX code 
as described above.

Note

React doesn't actually work with JSX code internally. It's just easier to use 
as a developer. Later, in this chapter, you will learn what JSX code gets 
transformed to and how the actual code, with which React works, looks like.

Built-in Components

As shown in the earlier examples, you can create your own, custom components by 
creating functions that return JSX code. And indeed, that's one of the main things you 
will do all the time as a React developer: you create component functions. Lots of 
component functions.

But ultimately, if you would merge all JSX code into just one big snippet of JSX code, 
as shown in the last example above, you would end up with a chunk of JSX code that 
includes only standard HTML elements like <div>, <h2>, <p>, and so on.

When using React, you don't create brand-new HTML elements that the browser 
would be able to display and handle. Instead, you create components that only work 
inside the React environment. Before they reach the browser, they have been 
evaluated by React and "translated" into DOM-manipulating JavaScript instructions 
(like document.append(…)).

But keep in mind that all this JSX code is a feature that's not part of the JavaScript 
language itself. It's basically syntactical sugar (i.e., a simplification regarding the 
code syntax) provided by the React library and the project setup you're using to write 
React code. Therefore, elements like <div>, when used in JSX code, also aren't 
normal HTML elements because you don't write HTML code. It might look like that, 
but it's inside a .js file and it's not HTML markup. Instead, it's this special JSX code. It 
is important to keep this in mind. 

Therefore, these <div> and <h2> elements you see in all these examples are also 
just React components in the end. But they are not components built by you, but 
instead provided by React (or to be precise, by ReactDOM).



Introduction | 33

When working with React, you therefore always end up with these primitives—these 
built-in component functions that are later translated to browser instructions that 
generate and append or remove normal DOM elements. The idea behind building 
custom components is to group these elements together such that you end up with 
reusable building blocks that can be used to build the overall UI. But, in the end, this 
UI is made up of regular HTML elements.

Note

Depending on your level of frontend web development knowledge, you 
might have heard about a web feature called Web Components. The idea 
behind this feature is that you can indeed build brand-new HTML elements 
with vanilla JavaScript.

As mentioned, React does not pick up this feature; you don't build new 
custom HTML elements with React.

Naming Conventions

All component functions that you can find in this book carry names like 
SubmitButton, AuthForm, or Greeting. 

You can generally name your React functions however you want—at least in the file 
where you are defining them. But it is a common convention to use the PascalCase 
naming convention, wherein the first character is uppercase and multiple words are 
grouped into one single word (SubmitButton instead of Submit Button), where 
every "subword" then starts with another uppercase character.

In the place where you define your component function, it is only a naming 
convention, not a hard rule. However, it is a requirement in the place where you 
use the component functions—i.e., in the JSX code where you embed your own 
custom components.

You can't use your own custom component like this:

<greeting />

React forces you to use an uppercase starting character for your own custom 
component names, when using them in JSX code. This rule exists to give React a clear 
and easy way of telling custom components apart from built-in components like 
<div> etc. React only needs to look at the starting character to determine whether 
it's a built-in element or a custom component.



34 | Understanding React Components and JSX

Besides the names of the actual component functions, it is also important to 
understand file naming conventions. Custom components are typically stored in 
separate files that live inside a src/components/ folder. However, this is not a 
hard rule. The exact placement as well as folder name is up to you, but it should 
be somewhere inside the src/ folder. Using a folder named components/ is the 
standard though.

Where it is the standard to use PascalCase for the component functions, there is 
no general default regarding the file names. Some developers prefer PascalCase 
for file names as well; and, indeed, in brand-new React projects, created as 
described in this book, the App component can be found inside a file named App.
js. Nonetheless, you will also encounter many React projects where components 
are stored in files that follow the kebap-case naming convention. (All-lowercase, 
multiple words are combined into a single word via a dash.) With this convention, 
component functions could be stored in files named submit-button.js, 
for example.

Ultimately, it is up to you (and your team) which file naming convention you want to 
follow. In this book, PascalCase will be used for file names.

JSX vs HTML vs Vanilla JavaScript

As mentioned above, React projects typically contain lots of JSX code. Most custom 
components will return JSX code snippets. You can see this in all the examples 
shared thus far, and you will see in basically every React project you will explore, 
no matter whether you are using React for the browser or for other platforms like 
react-native.

But what exactly is this JSX code? How is it different from HTML? And how is it related 
to vanilla JavaScript?

JSX is a feature that's not part of vanilla JavaScript. What can be confusing, though, is 
that it's also not directly part of the React library.

Instead, JSX is syntactical sugar that is provided by the build workflow that's part 
of the overall React project. When you start the development web server via npm 
start or build the React app for production (i.e., for deployment) via npm run 
build, you kick off a process that transforms this JSX code back to regular JavaScript 
instructions. As a developer, you don't see those final instructions but React, the 
library, actually receives and evaluates them.



Introduction | 35

So, what does the JSX code get transformed to?

In the end, all JSX snippets get transformed into calls to the React.
createElement(…) method.

Here's a concrete example:

function Greeting() {

  return <p>Hello World!</p>;

};

The JSX code returned by this component would be translated into the following 
vanilla JavaScript code:

function Greeting() {

  return React.createElement('p', {}, 'Hello World!');

};

createElement() is a method built into the React library. It instructs React to 
create a paragraph element with 'Hello World!' as child content (i.e., as inner, 
nested content). This paragraph element is then created internally first (via a concept 
called virtual DOM, which will be discussed later in the book, in Chapter 9, Behind 
The Scenes Of React and Optimization Opportunities). Thereafter, once all elements 
for all JSX elements have been created, the virtual DOM is translated into real 
DOM-manipulating instructions that are executed by the browser.

Note

It has been mentioned before that React (in the browser) is actually a 
combination of two packages: react and react-dom.

With the introduction of React.createElement(…), it's now easier to 
explain how these two packages work together: React creates this virtual 
DOM internally and then passes it to the react-dom package. This 
package then generates the actual DOM-manipulating instructions that 
must be executed in order to update the web page such that the desired 
user interface is displayed there.

As mentioned, this will be covered in greater detail in Chapter 9.

The middle parameter value ({}, in the example) is a JavaScript object that may 
contain extra configuration for the element that is to be created.



36 | Understanding React Components and JSX

Here's an example where this middle argument becomes important:

function Advertisement() {

  return <a href="https://my-website.com">Visit my website</a>;

};

This would be transformed to the following:

function Advertisement() {

  return React.createElement(

    'a',

    { href: ' https://my-website.com ' },

    'Visit my website'  

  );

};

The last argument that's passed to React.createElement(…) is the child content 
of the element—i.e., the content that should be between the element's opening and 
closing tags. For nested JSX elements, nested React.createElement(…) calls 
would be produced:

function Alert() {

  return (

    <div>

      <h2>This is an alert!</h2>

    </div>

  );

};

This would be transformed like this:

function Alert() {

  return React.createElement(

    'div', {}, React.createElement('h2', {}, 'This is an alert!')

  );

};

Using React without JSX

Since all JSX code gets transformed to these native JavaScript method calls anyways, 
you can actually build React apps and user interfaces with React without using JSX.



Introduction | 37

You can skip JSX entirely if you want to. Instead of writing JSX code in your 
components and all the places where JSX is expected, you can simply call React.
createElement(…).

For example, the following two snippets will produce exactly the same user interface 
in the browser:

function App() {

  return (

    <p>Please visit my <a href="https://my-blog-site.com">Blog</a></p>

  );

};

The preceding snippet will ultimately be the same as the following: 

function App() {

  return React.createElement(

    'p', 

    {},

    [

      'Please visit my ',

      React.createElement(

        'a', 

        { href: 'https://my-blog-site.com' }, 

        'Blog'

      )

    ]

  );

};

Of course, it's a different question whether you would want to do this. As you can see 
in this example, it's way more cumbersome to rely on React.createElement(…) 
only. You end up writing a lot more code and deeply nested element structures will 
lead to code that can become almost impossible to read.

That's why, typically, React developers do use JSX. It's a great feature that makes 
building user interfaces with React way more enjoyable. But it is important to 
understand that it's neither HTML nor a vanilla JavaScript feature, but that it instead is 
some syntactical sugar that gets transformed to these React.createElement(…) 
calls behind the scenes.



38 | Understanding React Components and JSX

JSX Elements Are Treated like Regular JavaScript Values!

Because JSX is just syntactical sugar that gets transformed to React.
createElement() calls, there are a couple of noteworthy concepts and rules you 
should be aware of:

•	 JSX elements are just regular JavaScript values (functions, to be precise) in 
the end

•	 The same rules that apply to all JavaScript values also apply to JSX elements

•	 As a result, in a place, where only one value is expected (e.g., after the return 
keyword), you must only have one JSX element

This code would cause an error:

function App() {

  return (

    <p>Hello World!</p>

    <p>Let's learn React!</p>

  );

};

The code might look valid at first, but it's actually incorrect. In this example, you 
would return two values instead of just one. That is not allowed in JavaScript.

For example, the following non-React code would also be invalid:

function calculate(a, b) {

  return (

    a + b

    a - b

  );

};

You can't return more than one value. No matter how you write it.

Of course, you can return an array or an object though. For example, this code would 
be valid:

function calculate(a, b) {

  return [

    a + b,

    a - b

  ];

};



Introduction | 39

It would be valid because you only return one value: an array. This array than 
contains multiple values as arrays typically do. That would be fine and the same 
would be the case if you used JSX code:

function App() {

  return [

    <p>Hello World!</p>,

    <p>Let's learn React!</p>

  ];

};

This kind of code would be allowed since you are returning one array with two 
elements inside of it. The two elements are JSX elements in this case, but as 
mentioned earlier, JSX elements are just regular JavaScript values. Thus, you can use 
them anywhere, where values would be expected.

When working with JSX, you won't see this array approach too often though—simply 
because it can become annoying to remember wrapping JSX elements via square 
brackets. It also looks less like HTML which kind of defeats the purpose and core 
idea behind JSX (it was invented to allow developers to write HTML code inside of 
JavaScript files). 

Instead, if sibling elements are required, as in these examples, a special kind of 
wrapping component is used: a React fragment. That's a built-in component that 
serves the purpose of allowing you to return or define sibling JSX elements.

function App() {

  return (

    <>

      <p>Hello World!</p>

      <p>Let's learn React!</p>

    </>

  );

};

This special <>…</> element is available in most modern React projects (like the 
one that is created via npx create-react-app), and you can think of it wrapping 
your JSX elements with an array behind the scenes. Alternatively, you can also 
use <React.Fragment>…</React.Fragment>. This built-in component is 
always available.



40 | Understanding React Components and JSX

The parentheses (()) that are wrapped around the JSX code in all these examples are 
required to allow for nice multiline formatting. Technically, you could put all your JSX 
code into one single line, but that would be pretty unreadable. In order to split the 
JSX elements across multiple lines, just as you typically do with regular HTML code 
in .html files, you need those parentheses; they tell JavaScript where the returned 
value starts and ends.

Since JSX elements are regular JavaScript values (after being translated to React.
createElement(…) calls, at least), you can also use JSX elements in all the places 
where values can be used.

Thus far, that has been the case for all these return statements, but you can also 
store JSX elements in variables or pass them as arguments to other functions.

function App() {

  const content = <p>Stored in a variable!</p>; // this works!

  return content;

};

This will be important once you dive into slightly more advanced concepts like 
conditional or repeated content—something that will be covered later in the book, 
of course.

JSX Elements Must Be Self-Closing

Another important rule related to JSX elements is that they must be self-closing if 
there is no content between the opening and closing tags.

function App() {

  return <img src="some-image.png" />;

};

In regular HTML, you would not need that forward backslash at the end. Instead, 
regular HTML supports void elements (i.e., <img src="…">). You can add that 
forward slash there as well, but it's not mandatory.

When working with JSX, these forward slashes are mandatory, if your element doesn't 
contain any child content.



Introduction | 41

Outputting Dynamic Content

Thus far, in all these examples, the content that was returned was static. It was 
content like <p>Hello World!</p>—which of course is content that never 
changes. It will always output a paragraph that says, 'Hello World!'.

At this point in the book, you don't yet have any tools to make the content more 
dynamic. To be precise, React requires that state concept (which will be covered in a 
later chapter) to change the content that is displayed (e.g. upon user input or some 
other event).

Nonetheless, since this chapter is about JSX, it is worth diving into the syntax for 
outputting dynamic content, even though it's not yet dynamic.

function App() {

  const userName = 'Max';

  return <p>Hi, my name is {userName}!</p>;

};

This example technically still produces static output since userName never changes; 
but you can already see the syntax for outputting dynamic content as part of the JSX 
code. You use opening and closing curly braces ({…}) with a JavaScript expression 
(like the name of a variable or constant, as is the case here) between those braces.

You can put any valid JavaScript expression between those curly braces. For example, 
you can also call a function (e.g. {getMyName()}) or do simple inline calculations 
(e.g. {1 + 1}).

You can't add complex statements like loops or if-statements between those curly 
braces though. Again, standard JavaScript rules apply. You output a (potentially) 
dynamic value, and therefore, anything that produces a single value is allowed in 
that place.

When Should You Split Components?

As you work with React and learn more and more about it, and as you dive into 
more challenging React projects, you will most likely come up with one very 
common question: "When should I split a single React component into multiple, 
separate components?".

Because, as mentioned earlier in this chapter, React is all about components, and 
it is therefore very common to have dozens, hundreds or even thousands of React 
components in a single React project. 



42 | Understanding React Components and JSX

When it comes to splitting a single React component into multiple smaller 
components, there is no hard rule you must follow. As mentioned earlier, you could 
put all your UI code into one single, large component. Alternatively, you could create a 
separate custom component for every single HTML element and piece of content that 
you have in your UI. Both approaches are probably not that great. Instead, a good 
rule of thumb is to create a separate React component for every data entity that can 
be identified.

For example, if you're outputting a "to do" list, you could identify two main entities: 
the individual to-do item and the overall list. In this case, it could make sense to 
create two separate components instead of writing one bigger component.

The advantage of splitting your code into multiple components is that the individual 
components stay manageable because there's less code per component and 
component file.

However, when it comes to splitting components into multiple components, a new 
problem arises: how do you make your components reusable and configurable?

import Todo from './todo';

function TodoList() {

  return (

    <ul>

      <Todo />

      <Todo />

    </ul>

  );

};

In this example, all "to-dos" would be the same because we use the same <Todo 
/> component which can't be configured. You might want to make it configurable 
by either adding custom attributes (<Todo text="Learn React!" />) or by 
passing content between the opening and closing tags (<Todo>Learn React!</
Todo>). 

And, of course, React supports this. In the next course chapter, you will learn about 
a key concept called props which allows you to make your components configurable 
like this.



Introduction | 43

Summary and Key Takeaways

•	 React embraces components: reusable building blocks that are combined to 
define the final user interface

•	 Components must return renderable content, typically JSX code which defines 
the HTML code that should be produced in the end

•	 React provides a lot of built-in components: besides special components like 
<>…</> you get components for all standard HTML elements

•	 To allow React to tell custom components apart from built-in components, 
custom component names have to start with capital characters, when being 
used inside of JSX code (typically, PascalCase naming is used therefore)

•	 JSX is neither HTML nor a standard JavaScript feature, instead it's syntactical 
sugar provided by build workflows that are part of all React projects

•	 You could replace JSX code with React.createElement(…) calls; but since 
this leads to significantly more unreadable code, it's typically avoided.

•	 When using JSX elements, you must not have sibling elements in places where 
single values are expected (e.g., directly after the return keyword)

•	 JSX elements must always be self-closing, if there is no content between the 
opening and closing tags

•	 Dynamic content can be output via curly braces (e.g., <p>{someText}</p>)

•	 In most React projects, you split your UI code across dozens or hundreds 
of components which are then exported and imported in order to be 
combined again

What's Next?

In this chapter, you learned a lot about components and JSX. The next chapter builds 
up on this key knowledge and explains how you can make components reusable by 
making them configurable. 

Before you continue, you can also practice what you learned up this point by going 
through the questions and exercises below.



44 | Understanding React Components and JSX

Test Your Knowledge!

Test your knowledge about the concepts covered in this chapter by answering the 
below questions. You can then compare your answers to example answers that can 
be found here: https://packt.link/iSHGL.

1.	 What's the idea behind using components?

2.	 How can you create a React component?

3.	 What turns a regular function into a React component function?

4.	 Which core rules should you keep in mind regarding JSX elements?

5.	 How is JSX code handled by React and ReactDOM?

Apply What You Learned

With this and the previous chapter, you have all the knowledge you need to create a 
React project and populate it with some first, basic components.

Below, you'll find your first two activities for this book: 

Activity 2.1: Creating a React App to Present Yourself

Suppose you are creating your personal portfolio page, and as part of that page, you 
want to output some basic information about yourself (e.g., your name or age). You 
could use React and build a React component that outputs this kind of information, 
as outlined in the following activity.

The aim is to create a React app as you learned it in the previous chapter (i.e., 
create it via npx create-react-app, run npm start to start the development 
server) and edit the App.js file such that you output some basic information about 
yourself. You could, for example output your full name, address, job title or other 
kinds of information. In the end, it is up to you what content you want to output and 
which HTML elements you choose.

The idea behind this first exercise is that you practice project creation and working 
with JSX code.

The steps are as follows:

1.	 Create a new React project via npx create-react-app.

2.	 Edit the App.js file in the /src folder of the created project and return 
JSX code with any HTML elements of your choice to output basic information 
about yourself.

https://packt.link/iSHGL


Introduction | 45

You should get output like this in the end:

Figure 2.2: The final activity result—some user information being output on the screen.

Note

The solution to this activity can be found via this link.

Activity 2.2: Creating a React App to Log Your Goals for This Book

Suppose you are adding a new section to your portfolio site, where you plan to track 
your learning progress. As part of this page, you plan to define and output your main 
goals for this book (e.g., "Learn about key React features", "Do all the exercises" etc.).

The aim of this activity is to create another new React project in which you add 
multiple new components. Each goal will be represented by a separate component, 
and all these goal components will be grouped together into another component that 
lists all main goals. In addition, you can add an extra header component that contains 
the main title for the webpage.

The steps to complete this activity are as follows:

1.	 Create a new React project via npx create-react-app.

2.	 Inside the new project, create a components folder which contains multiple 
component files (for the individual goals as well as for the list of goals and the 
page header).

3.	 Inside the different component files, define and export multiple component 
functions (FirstGoal, SecondGoal, ThirdGoal, etc.) for the different goals 
(one component per file).

4.	 Also, define one component for the overall list of goals (GoalList) and another 
component for the page header (Header).

5.	 In the individual goal components, return JSX code with the goal text and a fitting 
HTML element structure to hold this content.



46 | Understanding React Components and JSX

6.	 In the GoalList component, import and output the individual 
goal components.

7.	 Import and output the GoalList and Header components in the root App 
component (replace the existing JSX code).

You should get the following output in the end:

Figure 2.3: The final page output, showing a list of goals.

Note

The solution to this activity can be found via this link.







Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Build reusable React components

�  Utilize a concept called Props to make components configurable

�  Build flexible user interfaces by combining components with props

Components and Props

3



50 | Components and Props

Introduction
In the previous chapter, you learned about the key building block of any React-based 
user interface: components. You learned why components matter, how they are 
used, and how you may build components yourself.

You also learned about JSX, which is the HTML-like markup that's typically returned by 
component functions. It's this markup that defines what should be rendered on the 
final web page (in other words, which HTML markup should end up on the final web 
page that is being served to visitors).

Not There Yet

But up to this point, those components haven't been too useful. While you could 
use them to split your web page content into smaller building blocks, the actual 
reusability of these components was pretty limited. For example, every course 
goal that you might have as part of an overall course goal list would go into its own 
component (if you decided to split your web page content into multiple components 
in the first place).

If you think about it, this isn't too helpful: it would be much better if different list 
items could share one common component and you would just configure that one 
component with different content or attributes—just like how HTML works.

When writing plain HTML code and describing content with it, you use reusable HTML 
elements and configure them with different content or attributes. For example, you 
have one <a> HTML element, but thanks to the href attribute and the element child 
content, you can build an endless amount of different anchor elements that point at 
different resources, as in the following snippets:

<a href="https://google.com">Use Google</a>

<a href="https://academind.com">Browse Free Tutorials</a>

These two elements use the exact same HTML element (<a>) but lead to totally 
different links that would end up on the web page (pointing to two totally 
different websites).



Introduction | 51

To fully unlock the potential of React components, it would therefore be very useful if 
you could configure them just like regular HTML elements. And it turns out that you 
can do exactly that—with another key React concept called props.

Using Props in Components

How do you use props in your components? And when do you need them?

The second question will be answered in greater detail a little bit later. For the 
moment, it's enough to know that you typically will have some components that are 
reusable that therefore need props and some components that are unique that might 
not need props.

The "how" part is the more important part at this point.

And this part can be split into two complementary problems:

1.	 Passing props to components

2.	 Consuming props in a component

Passing Props to Components

How would you expect props and component configurability to work if you were to 
design React from the ground up?

Of course, there would be a broad variety of possible solutions, but there is one 
great role model that can be considered: HTML. As mentioned above, when working 
with HTML, you pass content and configuration either between element tags or 
via attributes.

And fortunately, React components work just like HTML elements when it comes to 
configuring them. Props are simply passed as attributes (to your component) or as 
child data between component tags, and you can also mix both approaches:

•	 <Product id="abc1" price="12.99" />

•	 <FancyLink target="https://some-website.com">Click me</
FancyLink>



52 | Components and Props

For this reason, configuring components is quite straightforward—at least, if you look 
at them from the consumer's angle (in other words, at how you use them in JSX).

But what about defining component functions? How are props handled in 
those functions?

Consuming Props in a Component

Imagine you're building a GoalItem component that is responsible for outputting 
a single goal item (for example, a course goal or project goal) that will be part of an 
overall goals list.

The parent component JSX markup could look like this:

<ul>

  <GoalItem />

  <GoalItem />

  <GoalItem />

</ul>

Inside GoalItem, the goal (no pun intended) would be to accept different goal 
titles so that the same component (GoalItem) can be used to output these 
different titles as part of the final list that's displayed to website visitors. Maybe the 
component should also accept another piece of data (for example, a unique ID that is 
used internally).

That's how the GoalItem component could be used in JSX, as in the 
following example:
<ul>

  <GoalItem id="g1" title="Finish the book!" />

  <GoalItem id="g2" title="Learn all about React!" />

</ul>

Inside the GoalItem component function, the plan would probably be to output 
dynamic content (in other words, the data received via props) like this:

function GoalItem() {

  return <li>{title} (ID: {id})</li>;

}

But this component function would not work. It has a problem: title and id are 
never defined inside that component function. This code would therefore cause an 
error because you're using a variable that wasn't defined.



Introduction | 53

Of course, it shouldn't be defined inside the GoalItem component, though, because 
the idea was to make the GoalItem component reusable and receive different 
title and id values from outside the component (i.e., from the component that 
renders the list of <GoalItem> components).

React provides a solution for this problem: a special parameter value that will be 
passed into every component function automatically by React. This is a special 
parameter that contains the extra configuration data that is set on the component in 
JSX code, called the props parameter.

The preceding component function could (and should) be rewritten like this:

function GoalItem(props) {

  return <li>{props.title} (ID: {props.id})</li>;

}

The name of the parameter (props) is up to you, but using props as a name is a 
convention because the overall concept is called props. 

To understand this concept, it is important to keep in mind that these component 
functions are not called by you somewhere else in your code, but that instead, React 
will call these functions on your behalf. And since React calls these functions, it can 
pass extra arguments into the functions when calling them. 

This props argument is indeed such an extra argument. React will pass it into every 
component function, irrespective of whether you defined it as an extra parameter 
in the component function definition. Though, if you didn't define that props 
parameter in a component function, you, of course, won't be able to work with 
the props data in that component.

This automatically provided props argument will always contain an object (because 
React passes an object as a value for this argument), and the properties of this object 
will be the "attributes" you added to your component inside the JSX code where the 
component is used.

That's why in this GoalItem component example, custom data can be passed via 
attributes (<GoalItem id="g1" … />) and consumed via the props object and 
its properties (<li>{props.title}</li>).

Components, Props, and Reusability

Thanks to this props concept, components become actually reusable, instead of just 
being theoretically reusable.



54 | Components and Props

Outputting three <GoalItem> components without any extra configuration could 
only render the same goal three times since the goal text (and any other data you 
might need) would have to be hardcoded into the component function.

By using props as described above, the same component can be used multiple 
times with different configurations. That allows you to define some general markup 
structure and logic once (in the component function) but then use it as often as 
needed with different configurations.

And if that sounds familiar, that is indeed exactly the same idea as for regular 
JavaScript (or any other programming language) functions. You define logic once, and 
you can then call it multiple times with different inputs to receive different results. It's 
the same for components—at least when embracing this props concept.

The Special "children" Prop

It was mentioned before that React passes this props object automatically into 
component functions. That is the case, and, as described, this object contains all the 
attributes you set on the component (in JSX) as properties.

But React does not just package your attributes into this object; it also adds another 
extra property into the props object: the special children property (a built-in 
property whose name is fixed, meaning you can't change it).

The children property holds a very important piece of data: the content you might 
have provided between the component's opening and closing tags.

Thus far, in the examples shown above, the components were mostly self-closing. 
<GoalItem id="…" title="…" /> holds no content between the component 
tags. All the data is passed into the component via attributes.

There is nothing wrong with this approach. You can configure your components with 
attributes only. But for some pieces of data and some components, it might make 
more sense and be more logical to actually stick to regular HTML conventions and 
pass that data between the component tags instead. And the GoalItem component 
is actually a great example.

Which approach looks more intuitive?

1.	 <GoalItem id="g1" title="Learn React" />

2.	 <GoalItem id="g1">Learn React</GoalItem>



Introduction | 55

You might determine that the second option looks a bit more intuitive and in line with 
regular HTML because, there, you would also configure a normal list item like this: 
<li id="li1">Some list item</li>.

While you have no choice when working with regular HTML elements (you can't just 
add a goal attribute to a <li> just because you want to), you do have a choice 
when working with React and your own components. It simply depends on how 
you consume props inside the component function. Both approaches can work, 
depending on that internal component code.

Still, you might want to pass certain pieces of data between component tags, and the 
special children property allows you to do just that. It contains any content you 
define between the component opening and closing tags. Therefore, in the case of 
example 2 (in the list above), children would contain the string "Learn React". 

In your component function, you can work with the children value just as you work 
with any other prop value:

function GoalItem(props) {

  return <li>{props.children} (ID: {props.id})</li>;

}

Which Components Need Props?

It was mentioned before already, but it is extremely important: Props are optional! 

React will always pass prop data into your components, but you don't have to work 
with that prop parameter. You don't even have to define it in your component 
function if you don't plan on working with it.

There is no hard rule that would define which components need props and which 
don't. It comes with experience and simply depends on the role of a component. 

You might have a general Header component that displays a static header 
(with a logo, title, and so on), and such a component probably needs no external 
configuration (in other words, no "attributes" or other kinds of data passed into it). It 
could be self-contained, with all the required values hardcoded into the component.



56 | Components and Props

But you will also often build and use components like the GoalItem component 
(in other words, components that do need external data to be useful). Whenever a 
component is used more than once in your React app, there is a high chance that it 
will utilize props. However, the opposite is not necessarily true. While you will have 
one-time components that don't use props, you absolutely will also have components 
that are only used once in the entire app and still take advantage of props. As 
mentioned, it depends on the exact use case and component. 

Throughout this book, you will see plenty of examples and exercises that will help you 
gain a deeper understanding of how to build components and use props.

How to Deal with Multiple Props

As shown in the preceding examples, you are not limited to only one prop per 
component. Indeed, you can pass and use as many props as your component 
needs—no matter if that's 1 or 100 (or more) props.

Once you do create components with more than just two or three props, a new 
question might come up: do you have to add all those props individually (in other 
words, as separate attributes)? Or can you pass fewer attributes that contain grouped 
data, such as arrays or objects?

And indeed, you can. React allows you to pass arrays and objects as prop values as 
well. In fact, any valid JavaScript value can be passed as a prop value!

This allows you to decide whether you want to have a component with 20 individual 
props ("attributes") or just one "big" prop. Here's an example of where the same 
component is configured in two different ways:

<Product title="A book" price={29.99} id="p1" />

// or

const productData = {title: 'A book', price: 29.99, id: 'p1'}

<Product data={productData} />

Of course, the component must also be adapted internally (in other words, in the 
component function) to expect either individual or grouped props. But since you're 
the developer, that is, of course, your choice.

Inside the component function, you can also make your life easier.

There is nothing wrong with accessing prop values via props.XYZ, but if you have a 
component that receives multiple props, repeating props.XYZ over and over again 
could become cumbersome and make the code a bit harder to read.



Introduction | 57

You can use a default JavaScript feature to improve readability: object destructuring.

Object destructuring allows you to extract values from an object and assign those 
values to new variables or constants in a single step:

const user = {name: 'Max', age: 29};

const {name, age} = user; // <-- this is object destructuring in action

console.log(name); // outputs 'Max'

You can therefore use this syntax to extract all prop values and assign them to 
equally named variables directly at the start of your component function:

function Product({title, price, id}) { // destructuring in action

  … // title, price, id are now available as variables inside this 
function
}

You don't have to use this syntax, but it can make your life easier.

Note

When using object destructuring to extract prop values, it is worth noting 
that this only works if single-value props were passed to the component. 
You can also extract grouped props, but there you only have one property to 
destructure: the attribute that contains the grouped data.

For more information on object destructuring, MDN is a great place to dive 
deeper. You can access this at https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Destructuring_assignment.

Spreading Props

Imagine you're building a custom component that should act as a "wrapper" around 
some other component— a built-in component, perhaps.

For instance, you could be building a custom Link component that should return a 
standard <a> element with some custom styling (covered in Chapter 6, Styling React 
Apps) or logic added:

function Link({children}) {

  return <a target="_blank" rel="noopener noreferrer">{children}</a>

};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment


58 | Components and Props

This very simple example component returns a pre-configured <a> element. This 
custom Link component configures the anchor element such that new pages are 
always opened in a new tab. In place of the standard <a> element, you could be 
using this Link component in your React app to get that behavior out of the box for 
all your links. 

But this custom component suffers from a problem: it's a wrapper around a core 
element, but by creating your own component, you remove the configurability of that 
core element. If you were to use this Link component in your app, how would you 
set the href prop to configure the link destination?

You might try the following:

<Link href="https://some-site.com">Click here</Link>

However, this example code wouldn't work because Link doesn't accept or use a 
href prop.

Of course, you could adjust the Link component function such that a href prop 
is used:

function Link({children, href}) {

  return <a href={href} target="_blank" rel="noopener 
noreferrer">{children}</a>
};

But what if you also wanted to ensure that the download prop could be added 
if needed?

Well, it's true that you can always accept more and more props (and pass them on 
to the <a> element inside your component), but this reduces the reusability and 
maintainability of your custom component.

A better solution is to use the standard JavaScript spread operator (i.e., the... 
operator) and React's support for that operator when working with components.

For example, the following component code is valid:

function Link({children, config}) {

  return <a {...config} target="_blank" rel="noopener 
noreferrer">{children}</a>
};

In this example, config is expected to be a JavaScript object (i.e., a collection of 
key-value pairs). The spread operator (...), when used in JSX code on a JSX element, 
converts that object into multiple props.



Introduction | 59

Consider this example config value:

const config = { href: 'https://some-site.com', download: true };

In this case, when spreading it on <a>, (i.e., <a {…config}>), the result would be 
the same as if you had written this code:

<a href="https://some-site.com" download={true}>

The behavior and pattern can be used to build reusable components that should still 
maintain the configurability of the core element they may be wrapping. This helps 
you avoid long lists of pre-defined, accepted props and improves the reusability 
of components.

Prop Chains / Prop Drilling

There is one last phenomenon that is worth noting when learning about props: "prop 
drilling" or "prop chains".

This isn't an official term, but it's a problem every React developer will encounter at 
some point. It occurs when you build a slightly more complex React app that contains 
multiple layers of nested components that need to send data to each other.

For example, assume that you have a NavItem component that should output 
a navigation link. Inside that component, you might have another nested 
component, AnimatedLink, that outputs the actual link (maybe with some nice 
animation styling).

The NavItem component could look like this:

function NavItem(props) {

  return <div><AnimatedLink target={props.target} text="Some text" /></
div>;
}

And AnimatedLink could be defined like this:

function AnimatedLink(props) {

  return <a href={props.target}>{props.text}</a>;

}

In this example, the target prop is passed through the NavItem component to the 
AnimatedLink component. The NavItem component must accept the target 
prop because it must be passed on to AnimatedLink.



60 | Components and Props

That's what prop drilling / prop chains is all about: you forward a prop from a 
component that doesn't really need it to another component that does need it.

Having some prop drilling in your app isn't necessarily bad and you can definitely 
accept it. But if you should end up with longer chains of props (in other words, 
multiple pass-through components), you can use a solution that will be discussed in 
Chapter 10, Working with Complex States.

Summary and Key Takeaways

•	 Props are a key React concept that makes components configurable and 
therefore reusable.

•	 Props are automatically collected and passed into component functions 
by React.

•	 You decide (on a per-component basis) whether you want to use the props data 
(an object) or not.

•	 Props are passed into components like attributes or, via the special children 
prop, between the opening and closing tags.

•	 Since you are writing the code, it's up to you how you want to pass data via 
props. Between the tags or as attributes? A single grouped attribute or many 
single-value attributes? It's up to you.

What's Next?

Props allow you to make components configurable and reusable. Still, they are rather 
static. Data and therefore the UI output doesn't change. You can't react to user events 
like button clicks.

But the true power of React only becomes visible once you do add events (and 
reactions to them).

In the next chapter, you will learn how you can add event listeners when working with 
React and you will learn how you can react (no pun intended) to events and change 
the (invisible and visible) state of your application.



Introduction | 61

Test Your Knowledge!

Test your knowledge regarding the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to the example answers 
that can be found here: https://packt.link/ekAg6.

1.	 Which "problem" do props solve?

2.	 How are props passed into components?

3.	 How are props consumed inside a component function?

4.	 Which options exist for passing (multiple) props into components?

Apply What You Learned

With this and the previous chapters, you now have enough basic knowledge to build 
truly reusable components.

Below, you will find an activity that allows you to apply all the knowledge, including 
the new props knowledge, you have acquired up to this point:

Activity 3.1: Creating an App to Output Your Goals for This Book

This activity builds upon Activity 2.2, "Create a React app to log your goals for this book" 
from the previous chapter. If you followed along there, you can use your existing code 
and enhance it by adding props. Alternatively, you can also use the solution provided 
as a starting point accessible through the following link: https://packt.link/8tvm6.

The aim of this activity is to build reusable GoalItem components that can be 
configured via props. Every GoalItem component should receive and output a 
goal title and a short description text with extra information about the goal.

https://packt.link/ekAg6
https://packt.link/8tvm6


62 | Components and Props

The steps are as follows:

1.	 Complete the second activity from the previous chapter.

2.	 Replace the hardcoded goal item components with a new 
configurable component.

3.	 Output multiple goal components with different titles and descriptions 
(configured via props).

The final user interface could look like this: 

Figure 3.1: The final result: Multiple goals output below each other

Note

The solution to this activity can be found via this link.







Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Add user event handlers (for example, for reacting to button clicks) to 
React apps.

�  Update the UI via a concept called state.

�  Build real dynamic and interactive UIs (that is, so that they are not 
static anymore).

Working with Events and 

State

4



66 | Working with Events and State

Introduction
In the previous chapters, you learned how to build UIs with the help of React 
components. You also learned about props—a concept and feature that enables 
React developers to build and reuse configurable components.

These are all important React features and building blocks, but with these features 
alone, you would only be able to build static React apps (that is, web apps that never 
change). You would not be able to change or update the content on the screen if you 
only had access to those features. You also would not be able to react to any user 
events and update the UI in response to such events (for instance, to show an overlay 
window upon a button click).

Put in other words, you would not be able to build real websites and web applications 
if you were limited to just components and props.

Therefore, in this chapter, a brand-new concept is introduced: state. State is a React 
feature that allows developers to update internal data and trigger a UI update based 
on such data adjustments. In addition, you will learn how to react (no pun intended) 
to user events such as button clicks or text being entered into input fields.

What's the Problem?

As outlined previously, at this point in the book, there is a problem with all React apps 
and sites you might be building: they're static. The UI can't change.

To understand this issue a bit better, take a look at a typical React component, as you 
are able to build it up to this point in the book:

function EmailInput() {

  return (

    <div>

      <input placeholder="Your email" type="email" />

      <p>The entered email address is invalid.</p>

    </div>

  );

};

This component might look strange though. Why is there a <p> element that informs 
the user about an incorrect email address?



Introduction | 67

Well, the goal might be to show that paragraph only if the user did enter an incorrect 
email address. That is to say, the web app should wait for the user to start typing 
and evaluate the user input once the user is done typing (that is, once the input loses 
focus). Then, the error message should be shown if the email address is considered 
invalid (for example, an empty input field or a missing @ symbol).

But at the moment, with the React skills picked up thus far, this is something you 
would not be able to build. Instead, the error message would always be shown since 
there is no way of changing it based on user events and dynamic conditions. In other 
words, this React app is a static app, not dynamic. The UI can't change.

Of course, changing UIs and dynamic web apps are things you might want to build. 
Almost every website that exists contains some dynamic UI elements and features. 
Therefore, that's the problem that will be solved in this chapter.

How Not to Solve the Problem

How could the component shown previously be made more dynamic?

The following is one solution you could come up with. (Spoiler, the code won't work, 
so you don't need to try running it!)

function EmailInput() {

  return (

    <div>

      <input placeholder="Your email" type="email" />

      <p></p>

    </div>

  );

};

const input = document.querySelector('input');

const errorParagraph = document.querySelector('p');

function evaluateEmail(event) {

  const enteredEmail = event.target.value;

  if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {

    errorParagraph.textContent = ' The entered email address is 
invalid.';
  } else {



68 | Working with Events and State

    errorParagraph.textContent = '';

  }

};

input.addEventListener('blur', evaluateEmail);

This code won't work, because you can't select React-rendered DOM elements from 
inside the same component file this way. This is just meant as a dummy example of 
how you could try to solve this. That being said, you could put the code below the 
component function some place where it does execute successfully (for example, into 
a setTimeout() callback that fires after a second, allowing the React app to render 
all elements onto the screen). 

Put in the right place, this code will add the email validation behavior described 
earlier in this chapter. Upon the built-in blur event, the evaluateEmail function 
is triggered. This function receives the event object as an argument (automatically, 
by the browser), and therefore the evaluateEmail function is able to parse the 
entered value from that event object via event.target.value. The entered 
value can then be used in an if check to conditionally display or remove the 
error message. 

Note

All the preceding code that deals with the blur event (such as 
addEventListener) and the event object, including the code in the 
if check, is standard JavaScript code. It is not specific to React in any way.

If you find yourself struggling with this non-React code, it's strongly 
recommended that you dive into more vanilla JavaScript resources (such as 
the guides on the MDN website at https://developer.mozilla.org/en-US/docs/
Web/JavaScript) first.

But what's wrong with this code, if it would work in some places of the overall 
application code?

It's imperative code! That means you are writing down step-by-step instructions on 
what the browser should do. You are not declaring the desired end state; you are 
instead describing a way of getting there. And it's not using React.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript


Introduction | 69

Keep in mind that React is all about controlling the UI and that writing React code is 
about writing declarative code—instead of imperative code. Revisit Chapter 2, What Is 
React?, if that sounds brand new to you.

You could achieve your goal by introducing this kind of code, but you would be 
working against React and its philosophy (React's philosophy being that you declare 
your desired end state(s) and let React figure out how to get there). A clear indicator 
of this is the fact that you would be forced to find the right place for this kind of code 
in order for it to work.

This is not a philosophical problem, and it's not just some weird hard rule that you 
should follow. Instead, by working against React like this, you will make your life as 
a developer unnecessarily hard. You are neither using the tools React gives you nor 
letting React figure out how to achieve the desired (UI) state. 

That does not just mean that you spend time on solving problems you wouldn't have 
to solve. It also means that you're passing up possible optimizations React might be 
able to perform under the hood. Your solution is very likely not just leading to more 
work (that is, more code) for you; it also might result in a buggy result that could also 
suffer from suboptimal performance. 

The example shown previously is a simple one. Think about more complex websites 
and web apps, such as online shops, vacation rental websites, or web apps such as 
Google Docs. There, you might have dozens or hundreds of (dynamic) UI features 
and elements. Managing them all with a mixture of React code and standard vanilla 
JavaScript code will quickly become a nightmare. Again, refer to Chapter 2 of this book 
to understand the merits of React.

A Better Incorrect Solution

The naïve approach discussed previously doesn't work well. It forces you to figure 
out how to make the code run correctly (for example, by wrapping parts of it in some 
setTimeout() call to defer execution) and leads to your code being scattered 
all over the place (that is, inside of React component functions, outside of those 
functions, and maybe also in totally unrelated files). How about a solution that 
embraces React, like this:

function EmailInput() {

  let errorMessage = '';

  function evaluateEmail(event) {

    const enteredEmail = event.target.value;

    if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {



70 | Working with Events and State

      errorMessage = ' The entered email address is invalid.';

    } else {

      errorMessage = '';

    }

  }; 
 
  const input = document.querySelector('input');

  input.addEventListener('blur', evaluateEmail);

  return (

    <div>

      <input placeholder="Your email" type="email" />

      <p>{errorMessage}</p>

    </div>

  );

};

This code again would not work (even though it's technically valid JavaScript code). 
Selecting JSX elements doesn't work like this. It doesn't work because document.
querySelector('input') executes before anything is rendered to the DOM 
(when the component function is executed for the first time). Again, you would have 
to delay the execution of that code until the first render cycle is over (you would 
therefore be once again working against React).

But even though it still would not work, it's closer to the correct solution.

It's closer to the ideal implementation because it embraces React way more than the 
first attempted solution did. All the code is contained in the component function to 
which it belongs. The error message is handled via an errorMessage variable that 
is output as part of the JSX code.

The idea behind this possible solution is that the React component that controls a 
certain UI feature or element is also responsible for its state and events. You might 
identify two important keywords of this chapter here!

This approach is definitely going in the right direction, but it still wouldn't work for 
two reasons:

•	 Selecting the JSX <input> element via document.
querySelector('input') would fail.

•	 Even if the input could be selected, the UI would not update as expected.



Introduction | 71

These two problems will be solved next—finally leading to an implementation that 
embraces React and its features. The upcoming solution will avoid mixing React and 
non-React code. As you will see, the result will be easier code where you have to do 
less work (that is, write less code).

Properly Reacting to Events

Instead of mixing imperative JavaScript code such as document.
querySelector('input') with React-specific code, you should fully embrace 
React and its features.

And since listening to events and triggering actions upon events is an extremely 
common requirement, React has a built-in solution. You can attach event listeners 
directly to the JSX elements to which they belong.

The preceding example would be rewritten like this:

function EmailInput() {

  let errorMessage = '';

  function evaluateEmail(event) {

    const enteredEmail = event.target.value;

    if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {

      errorMessage = 'The entered email address is invalid.';

    } else {

      errorMessage = '';

    }

  };

  return (

    <div>

      <input placeholder="Your email" type="email" onBlur={evaluateEmail} 
/>
      <p>{errorMessage}</p>

    </div>

  );

};

The onBlur prop was added to the built-in input element. This prop is made 
available by React, just as all these base HTML elements (such as <input> and 
<p>) are made available as components by React. In fact, all these built-in HTML 
components come with their standard HTML attributes as React props (plus some 
extra props, such as the onBlur event handling prop).



72 | Working with Events and State

React exposes all standard events that can be connected to DOM elements as onXYZ 
props (where XYZ is the event name, such as blur or click, starting with a capital 
character). You can react to the blur event by adding the onBlur prop. You could 
listen to a click event via the onClick prop. You get the idea.

Note

For more information on standard events see https://developer.mozilla.org/
en-US/docs/Web/Events#event_listing.

These props require values to fulfill their job. To be precise, they need a pointer to the 
function that should be executed when the event occurs. In the preceding example, 
the onBlur prop receives a pointer to the evaluateEmail function as a value.

Note

There's a subtle difference between evaluateEmail and 
evaluateEmail(). The first is a pointer to the function; the second 
actually executes the function (and yields the return value, if any). Again, 
this is not something specific to React but a standard JavaScript concept. 
If it's not clear, this resource explains it in greater detail: https://developer.
mozilla.org/en-US/docs/Web/Events#event_listing.

By using these event props, the preceding example code will now finally execute 
without throwing any errors. You could verify this by adding a console.
log('Hello'); statement inside the evaluateEmail function. This will display 
the text 'Hello' in the console of your browser developer tools, whenever the 
input loses focus:

function EmailInput() {

  let errorMessage = '';

  function evaluateEmail(event) {

    console.log('Hello');

    const enteredEmail = event.target.value;

    if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {

      errorMessage = 'The entered email address is invalid.';

    } else {

https://developer.mozilla.org/en-US/docs/Web/Events#event_listing
https://developer.mozilla.org/en-US/docs/Web/Events#event_listing
https://developer.mozilla.org/en-US/docs/Web/Events#event_listing
https://developer.mozilla.org/en-US/docs/Web/Events#event_listing


Introduction | 73

      errorMessage = '';

    }

  };

  return (

    <div>

      <input placeholder="Your email" type="email" onBlur={evaluateEmail} 
/>
      <p>{errorMessage}</p>

    </div>

  );

};

In the browser console, this looks as follows:

Figure 4.1: Displaying some text in the browser console upon removing focus  
from the input field

This is definitely one step closer to the best possible implementation, but it also still 
won't produce the desired result of updating the page content dynamically.

Updating State Correctly

By now, you understand how to correctly set up event listeners and execute functions 
upon certain events. What's missing is a feature that forces React to update the 
visible UI on the screen and the content that is displayed to the app users.

That's where React's state concept comes into play. Like props, state is a key concept 
of React, but whereas props are about receiving external data inside a component, 
state is about managing and updating internal data. And, most importantly, 
whenever such state is updated, React goes ahead and updates the parts of the UI 
that are affected by the state change.

Here's how state is used in React (of course, the code will then be explained in 
detail afterward):

import { useState } from 'react';



74 | Working with Events and State

function EmailInput() {

  const [errorMessage, setErrorMessage] = useState('');

  function evaluateEmail(event) {

    const enteredEmail = event.target.value;

    if (enteredEmail.trim() === '' || !enteredEmail.includes('@')) {

      setErrorMessage('The entered email address is invalid.');

    } else {

      setErrorMessage('');

    }

  };

  return (

    <div>

      <input placeholder="Your email" type="email" onBlur={evaluateEmail} 
/>
      <p>{errorMessage}</p>

    </div>

  );

};

Compared to the example code discussed earlier in this chapter, this code 
doesn't look much different. But there is a key difference: the usage of the 
useState() Hook.

Hooks are another key concept of React. These are special functions that can only 
be used inside of React components (or inside of other Hooks, as will be covered in 
Chapter 11, Building Custom React Hooks). Hooks add special features and behaviors 
to the React components in which they are used. For example, the useState() 
Hook allows a component (and therefore, implicitly React) to set and manage some 
state that is tied to this component. React provides various built-in Hooks, and they 
are not all focused on state management. You will learn about other Hooks and their 
purposes throughout this book.

The useState() Hook is an extremely important and commonly used Hook as it 
enables you to manage data inside a component, which, when updated, tells React to 
update the UI accordingly. 

That is the core idea behind state management and this state concept: state is data, 
which, when changed, should force React to re-evaluate a component and update the 
UI if needed.



Introduction | 75

Using Hooks such as useState() is pretty straightforward: You import them from 
'react' and you then call them like a function inside your component function. 
You call them like a function because, as mentioned, React Hooks are functions—just 
special functions (from React's perspective).

A Closer Look at useState()

How exactly does the useState() Hook work and what does it do internally?

By calling useState() inside a component function, you register some data with 
React. It's a bit like defining a variable or constant in vanilla JavaScript. But there is 
something special: React will track the registered value internally, and whenever 
you update it, React will re-evaluate the component function in which the state 
was registered. 

React does this by checking whether the data used in the component changed. Most 
importantly, React validates whether the UI needs to change because of changed 
data (for example, because a value is output inside the JSX code). If React determines 
that the UI needs to change, it goes ahead and updates the real DOM in the places 
where an update is needed (for example, changing some text that's displayed on the 
screen). If no update is needed, React ends the component re-evaluation without 
updating the DOM. 

React's internal workings will be discussed in great detail later in the book, in 
Chapter 9, Behind the Scenes of React and Optimization Opportunities).

The entire process starts with calling useState() inside a component. This creates 
a state value (which will be stored and managed by React) and ties it to a specific 
component. An initial state value is registered by simply passing it as a parameter 
value to useState(). In the preceding example, an empty string ('') is registered 
as a first value:

const [errorMessage, setErrorMessage] = useState('');

As you can see in the example, useState() does not just accept a parameter value. 
It also returns a value: an array with exactly two elements.

The preceding example uses array destructuring, which is a standard JavaScript 
feature that allows developers to retrieve values from an array and immediately 
assign them to variables or constants. In the example, the two elements that make 
up the array returned by useState() are pulled out of that array and stored in two 
constants (errorMessage and setErrorMessage). You don't have to use array 
destructuring when working with React or useState(), though. 



76 | Working with Events and State

You could also write the code like this instead:

const stateData = useState('');

const errorMessage = stateData[0];

const setErrorMessage = stateData[1];

This works absolutely fine, but when using array destructuring, the code stays a bit 
more concise. That's why you typically see the syntax using array destructuring when 
browsing React apps and examples. You also don't have to use constants; variables 
(via let) would be fine as well. As you will see throughout this chapter and the rest 
of the book, though, the variables won't be reassigned, and so using constants makes 
sense (but it is not required in any way).

Note

If array destructuring or the difference between variables and constants 
sounds brand new to you, it's strongly recommended that you refresh 
your JavaScript basics before progressing with this book. As always, MDN 
provides great resources for that (see http://packt.link/3B8Ct for array 
destructuring,  https://packt.link/hGjqL for information on the let variable, 
and https://packt.link/TdPPS for guidance on the use of const.)

As mentioned before, useState() returns an array with exactly two elements. It 
will always be exactly two elements—and always exactly the same kind of elements. 
The first element is always the current state value, and the second element is a 
function that you can call to set the state to a new value.

But how do these two values (the state value and the state-updating function) work 
together? What does React do with them internally? And how are these two array 
elements used (by React) to update the UI?

A Look under the Hood of React

React manages the state values for you, in some internal storage that you, the 
developer, can't directly access. Since you often do need access to a state value (for 
instance, some entered email address, as in the preceding example), React provides a 
way of reading state values: the first element in the array returned by useState(). 
The first element of the returned array holds the current state value. You can 
therefore use this element in any place where you need to work with the state value 
(for example, in the JSX code to output it there).

http://packt.link/3B8Ct
https://packt.link/hGjqL
https://packt.link/TdPPS


Introduction | 77

In addition, you often also need to update the state—for example, because a user 
entered a new email address. Since you don't manage the state value yourself, React 
gives you a function that you can call to inform React about the new state value. 
That's the second element in the returned array.

In the example shown before, you call setErrorMessage('Error!') to set the 
errorMessage state value to a new string ('Error!').

But why is this managed like this? Why not just use a standard JavaScript variable that 
you can assign and reassign as needed?

Because React must be informed whenever there's a state that impacts the UI 
changes. Otherwise, the visible UI doesn't change at all, even in cases where it should. 
React does not track regular variables and changes to their values, and so they have 
no influence on the state of the UI.

The state-updating function exposed by React (that second array element returned 
by useState()) does trigger some internal UI-updating effect though. This state-
updating function does more than set a new value; it also informs React that a state 
value changed, and that the UI might therefore be in need of an update.

So, whenever you call setErrorMessage('Error!'), React does not just update 
the value that it stores internally; it also checks the UI and updates it when needed. UI 
updates can involve anything from simple text changes up to the complete removal 
and addition of various DOM elements. Anything is possible there!

React determines the new target UI by rerunning (also called re-evaluating) any 
component functions that are affected by a state change. That includes the 
component function that executed the useState() function that returned the 
state-updating function that was called. But it also includes any child components, 
since an update in a parent component could lead to new state data that's also used 
by some child components (the state value could be passed to child components 
via props).

It's important to understand and keep in mind that React will re-execute (re-evaluate) 
a component function if a state-updating function was called in the component 
function or some parent component function. Because this also explains why the 
state value returned by useState() (that is, the first array element) can be a 
constant, even though you can assign new values by calling the state-updating 
function (the second array element). Since the entire component function is 
re-executed, useState() is also called again (because all the component function 
code is executed again) and hence a new array with two new elements is returned by 
React. And the first array element is still the current state value. 



78 | Working with Events and State

However, as the component function was called because of a state update, the 
current state value now is the updated value. 

This can be a bit tricky to wrap your head around, but it is how React works internally. 
In the end, it's just about component functions being called multiple times by React. 
Just as any JavaScript function can be called multiple times.

Naming Conventions

The useState() Hook is typically used in combination with array destructuring, 
like this:

const [enteredEmail, setEnteredEmail] = useState('');

But when using array destructuring, the names of the variables or constants 
(enteredEmail and setEnteredEmail, in this case) are up to you, the 
developer. Therefore, a valid question is how you should name these variables 
or constants. Fortunately, there is a clear convention when it comes to React and 
useState(), and these variable or constant names.

The first element (that is, the current state value) should be named such that it 
describes what the state value is all about. Examples would be enteredEmail, 
userEmail, providedEmail, just email, or similar names. You should avoid 
generic names such as a or value or misleading names such as setValue (which 
sounds like it is a function—but it isn't).

The second element (that is, the state-updating function) should be named such that 
it becomes clear that it is a function and that it does what it does. Examples would be 
setEnteredEmail or setEmail. In general, the convention for this function is to 
name it setXYZ, where XYZ is the name you chose for the first element, the current 
state value variable. (Note, though, that you start with an uppercase character, as in 
setEnteredEmail, not setenteredEmail.)

Allowed State Value Types

Managing entered email addresses (or user input in general) is indeed a common use 
case and example for working with state. But you're not limited to this scenario and 
value type.

In the case of entered user input, you will often deal with string values such as email 
addresses, passwords, blog posts, or similar values. But any valid JavaScript value 
type can be managed with the help of useState(). You could, for example, manage 
the total sum of multiple shopping cart items—that is, a number—or a Boolean value 
(for example, "did a user confirm the terms of use?"). 



Introduction | 79

Besides managing primitive value types, you can also store and update reference 
value types such as objects and arrays.

Note

If the difference between primitive and reference value types is not entirely 
clear, it's strongly recommended that you dive into this core JavaScript 
concept before proceeding with this book through the following link: https://
academind.com/tutorials/reference-vs-primitive-values.

React gives you the flexibility of managing all these value types as state. You can even 
switch the value type at runtime (just as you can in vanilla JavaScript). It is absolutely 
fine to store a number as the initial state value and update it to a string at a later 
point in time.

Just as with vanilla JavaScript, you should, of course, ensure that your program deals 
with this behavior appropriately, though there's nothing technically wrong with 
switching types.

Working with Multiple State Values

When building anything but very simple web apps or UIs, you will need multiple 
state values. Maybe users can not only enter their email but also a username or their 
address. Maybe you also need to track some error state or save shopping cart items. 
Maybe users can click a "Like" button whose state should be saved and reflected in 
the UI. There are many values that change frequently and whose changes should be 
reflected in the UI.

Consider this concrete scenario: you have a component that needs to manage both 
the value entered by a user into an email input field and the value that was inserted 
into a password field. Each value should be captured once a field loses focus.

Since you have two input fields that hold different values, you have two state values: 
the entered email and the entered password. Even though you might use both values 
together at some point (for example, to log a user in), the values are not provided 
simultaneously. In addition, you might also need every value to stand alone, since you 
use it to show potential error messages (for example, "password too short") while the 
user is entering data.

https://academind.com/tutorials/reference-vs-primitive-values
https://academind.com/tutorials/reference-vs-primitive-values


80 | Working with Events and State

Scenarios like this are very common, and therefore, you can also manage multiple 
state values with the useState() Hook. There are two main ways of doing that:

1.	 Use multiple state slices (multiple state values)

2.	 Using one single, big state object

Using Multiple State Slices

You can manage multiple state values (also often called state slices), by simply calling 
useState() multiple times in your component function.

For the example described previously, a (simplified) component function could look 
like this:

function LoginForm() {

  const [enteredEmail, setEnteredEmail] = useState('');  

  const [enteredPassword, setEnteredPassword] = useState(''); 

  function emailEnteredHandler(event) {

    setEnteredEmail(event.target.value);

  };

  function passwordEnteredHandler(event) {

    setEnteredPassword(event.target.value);

  };

  // Below, props are split across multiple lines for better readability

  // This is allowed when using JSX, just as it is allowed in standard 
HTML
  return (

    <form>

      <input 

        type="email" 

        placeholder="Your email" 

        onBlur={emailEnteredHandler} />

      <input 

        type="password" 

        placeholder="Your password"

        onBlur={passwordEnteredHandler} />

    </form>

  );

};



Introduction | 81

In this example, two state slices are managed by calling useState() twice. 
Therefore, React registers and manages two state values internally. These two 
values can be read and updated independently from each other.

Note

In the example, the functions that are triggered upon events 
end with handler (emailEnteredHandler and 
passwordEnteredHandler). This is a convention used by some 
React developers. Event handler functions end with …handler to make 
it clear that these functions are executed upon certain (user) events. This 
is not a convention you have to follow. The functions could have also been 
named updateEmail, updatePassword, handleEmailUpdate, 
handlePasswordUpdate, or anything else. If the name is meaningful 
and follows some stringent convention, it's a valid choice.

You can register as many state slices (by calling useState() multiple times) as you 
need in a component. You could have one state value, but you could also have dozens 
or even hundreds. Typically, though, you will only have a couple of state slices per 
component since you should try to split bigger components (which might be doing 
lots of different things) into multiple smaller components to keep them manageable.

The advantage of managing multiple state values like this is that you can update them 
independently. If the user enters a new email address, you only need to update that 
email state value. The password state value doesn't matter for your purposes.

A possible disadvantage could be that multiple state slices—and therefore 
multiple useState() calls—leads to lots of lines of code that might bloat your 
component. As mentioned before though, you typically should try to break up 
big components (that handle lots of different slices of state) into multiple smaller 
components anyways.

Still, there is an alternative to managing multiple state values like this: you can also 
manage a single, merged state value object.



82 | Working with Events and State

Managing Combined State Objects

Instead of calling useState() for every single state slice, you can go for one big 
state object that combines all the different state values:

function LoginForm() {

  const [userData, setUserData] = useState({

    email: '',

    password: ''

  });  

  function emailEnteredHandler(event) {

    setUserData({

      email: event.target.value,

      password: userData.password

    });

  };

  function passwordEnteredHandler(event) {

    setUserData({

      email: userData.email,

      password: event.target.value

    });

  };

  // ... code omitted, because the returned JSX code is the same as 
before
};

In this example, useState() is called only once, and the initial value passed to 
useState() is a JavaScript object. The object contains two properties: email and 
password. The property names are up to you, but they should describe the values 
that will be stored in the properties.

useState() still returns an array with exactly two elements. That the initial value 
is an object does not change anything about that. The first element of the returned 
array is now just an object instead of a string (as it was in the examples shown 
earlier). As mentioned before, any valid JavaScript value type can be used when 
working with useState(). Primitive value types such as strings or numbers can 
be used just as you would reference value types such as objects or arrays (which, 
technically, are objects of course).



Introduction | 83

The state-updating function (setUserData, in the preceding example) is still a 
function created by React that you can call to set the state to a new value. And you 
wouldn't have to set it to an object again, though that is typically the default. You 
don't change value types when updating the state, unless you have a good reason for 
doing so (though, technically, you are allowed to switch to a different type any time).

Note

In the preceding example, the way the state-updating function is used is 
not entirely correct. It would work but it does violate recommended best 
practices. You will learn later in this chapter why this is the case and how 
you should use the state-updating function instead.

When managing state objects as shown in the preceding example, there's one crucial 
thing you should keep in mind: you must always set all properties the object contains, 
even the ones that didn't change. This is required because, when calling the state-
updating function, you tell React which new state value should be stored internally. 

Thus, any value you pass as an argument to the state-updating function will overwrite 
the previously stored value. If you provide an object that contains only the properties 
that changed, all other properties will be lost since the previous state object is 
replaced by the new one, which contains fewer properties. 

This is a common pitfall and therefore something you must pay attention to. For 
this reason, in the example shown previously, the property that is not changed is 
set to the previous state value—for example, email: userData.email, where 
userData is the current state snapshot and the first element of the array returned 
by useState(), while setting password to event.target.value.

It is totally up to you whether you prefer to manage one state value (that is, an 
object grouping together multiple values) or multiple state slices (that is, multiple 
useState() calls) instead. There is no right or wrong way and both approaches 
have their advantages and disadvantages.



84 | Working with Events and State

However, it is worth noting that you should typically try to break up big components 
into smaller ones. Just as regular JavaScript functions shouldn't do too much work 
in a single function (it is considered a good practice to have separate functions for 
different tasks), components should focus on one or only a few tasks per component 
as well. Instead of having a huge <App /> component that handles multiple forms, 
user authentication, and a shopping cart directly in one component, it would be 
preferable to split the code of that component into multiple smaller components 
that are then combined together to build the overall app.

When following that advice, most components shouldn't have too much state to 
manage anyway, since managing many state values is an indicator of a component 
doing too much work. That's why you might end up using a few state slices per 
component, instead of large state objects. 

Updating State Based on Previous State Correctly

When learning about objects as state values, you learned that it's easy to accidentally 
overwrite (and lose) data because you might set the new state to an object that 
contains only the properties that changed—not the ones that didn't. That's why, 
when working with objects or arrays as state values, it's important to always add the 
existing properties and elements to the new state value.

And, in general, setting a state value to a new value that is (at least partially) based on 
the previous state is a common task. You might set password to event.target.
value but also set email to userData.email to ensure that the stored email 
address is not lost due to updating a part of the overall state (that is, because of 
updating the password to the newly entered value).

That's not the only scenario where the new state value could be based on the 
previous one though. Another example would be a counter component—for 
example, a component like this:

function Counter() {

  const [counter, setCounter] = useState(0);

  function incrementCounterHandler() {

    setCounter(counter + 1);

  };

 

  return (

    <>

      <p>Counter Value: {counter}</p>



Introduction | 85

      <button onClick={incrementCounterHandler}>Increment</button>

    </>

  );

};

In this example, a click event handler is registered for <button> (via the 
onClick prop). Upon every click, the counter state value is incremented by 1.

This component would work, but the code shown in the example snippet is actually 
violating an important best practice and recommendation: state updates that 
depend on some previous state should be performed with the help of a function 
that's passed to the state-updating function. To be precise, the example should be 
rewritten like this:

function Counter() {

  const [counter, setCounter] = useState(0);

  function incrementCounterHandler() {

    setCounter(function(prevCounter) { return prevCounter + 1; });

    // alternatively, JS arrow functions could be used:

    // setCounter(prevCounter => prevCounter + 1);

  };

 

  return (

    <>

      <p>Counter Value: {counter}</p>

      <button onClick={incrementCounterHandler}>Increment</button>

    </>

  );

};

This might look a bit strange. It might seem like a function is now passed as the new 
state value to the state-updating function (that is, the number stored in counter is 
replaced with a function). But indeed, that is not the case.

Technically, a function is passed as an argument to the state-updating function, 
but React won't store that function as the new state value. Instead, when receiving 
a function as a new state value in the state-updating function, React will call that 
function for you and pass the latest state value to that function. Therefore, you 
should provide a function that accepts at least one parameter: the previous state 
value. This value will be passed into the function automatically by React, when React 
executes the function (which it will do internally).



86 | Working with Events and State

The function should then also return a value—the new state value that should be 
stored by React. And since the function receives the previous state value, you can now 
derive the new state value based on the previous state value (for example, by adding 
the number 1 to it, but any operation could be performed here).

Why is this required, if the app worked fine before this change as well? It's required 
because in more complex React applications and UIs, React could be processing 
many state updates simultaneously—potentially triggered from different sources at 
different times. 

When not using the approach discussed in the last paragraphs, the order of state 
updates might not be the expected one and bugs could be introduced into the 
app. Even if you know that your use case won't be affected and the app does its job 
without issue, it is recommended to simply adhere to the discussed best practice 
and pass a function to the state-updating function if the new state depends on the 
previous state.

With this newly gained knowledge in mind, take another look at an earlier 
code  example:

function LoginForm() {

  const [userData, setUserData] = useState({

    email: '',

    password: ''

  });  

  function emailEnteredHandler(event) {

    setUserData({

      email: event.target.value,

      password: userData.password

    });

  };

  function passwordEnteredHandler(event) {

    setUserData({

      email: userData.email,

      password: event.target.value

    });



Introduction | 87

  };

  // ... code omitted, because the returned JSX code is the same as 
before
};

Can you spot the error in this code? 

It's not a technical error; the code will execute fine, and the app will work as expected. 
But there is a problem with this code nonetheless. It violates the discussed best 
practice. In the code snippet, the state in both handler functions is updated by 
referring to the current state snapshot via userData.password and userData.
email, respectively.

The code snippet should be rewritten like this:

function LoginForm() {

  const [userData, setUserData] = useState({

    email: '',

    password: ''

  });  

  function emailEnteredHandler(event) {

    setUserData(prevData => ({

      email: event.target.value,

      password: prevData.password

    }));

  };

  function passwordEnteredHandler(event) {

    setUserData(prevData => ({

      email: prevData.email,

      password: event.target.value

    }));

  };

  // ... code omitted, because the returned JSX code is the same as 
before
  // userData is not actively used here, hence you could get a warning 

  // regarding that. Simply ignore it or start using userData

  // (e.g., via console.log(userData))

};



88 | Working with Events and State

By passing an arrow function as an argument to setUserData, you allow React 
to call that function. React will do this automatically (that is, if it receives a function 
in this place, React will call it) and it will provide the previous state (prevState) 
automatically. The returned value (the object that stores the updated email or 
password and the currently stored email or password) is then set as the new 
state. The result, in this case, might be the same as before, but now the code adheres 
to recommended best practices.

Note

In the previous example, an arrow function was used instead of a "regular" 
function. Both approaches are fine though. You can use either of the two 
function types; the result will be the same.

In summary, you should always pass a function to the state-updating function if the 
new state depends on the previous state. Otherwise, if the new state depends on 
some other value (for instance, user input), directly passing the new state value as a 
function argument is absolutely fine and recommended.

Two-Way Binding

There is one special usage of React's state concept that is worth discussing: two-way 
binding.

Two-way binding is a concept that is used if you have an input source (typically an 
<input> element) that sets some state upon user input (for instance, upon the 
change event) and outputs the input at the same time.

Here's an example:

function NewsletterField() {

  const [email, setEmail] = useState('');

  function changeEmailHandler(event) {

    setEmail(event.target.value);

  };

  return (

    <>

      <input 

        type="email" 



Introduction | 89

        placeholder="Your email address"

        value={email}

        onChange={changeEmailHandler} />

    </>

  );

};

Compared to the other code snippets and examples, the difference here is that the 
component does not just store the user input (upon the change event, in this case) 
but that the entered value is also output in the <input> element (via the default 
value prop) thereafter.

This might look like an infinite loop, but React deals with this and ensures that it 
doesn't become one. Instead, this is what's commonly referred to as two-way binding 
as a value is both set and read from the same source.

You may wonder why this is being discussed here, but it is important to know that it is 
perfectly valid to write code like this. And this kind of code could be necessary if you 
don't just want to set a value (in this case, the email value) upon user input in the 
<input> field but also from other sources. For example, you might have a button in 
the component that, when clicked, should clear the entered email address. 

It might look like this:

function NewsletterField() {

  const [email, setEmail] = useState('');

  function changeEmailHandler(event) {

    setEmail(event.target.value);

  };

  function clearInputHandler() {

    setEmail(''); // reset email input (back to an empty string)

  };

  return (

    <>

      <input 

        type="email" 

        placeholder="Your email address"

        value={email}

        onChange={changeEmailHandler} />

      <button onClick={clearInputHandler}>Reset</button>



90 | Working with Events and State

    </>

  );

};

In this updated example, the clearInputHandler function is executed when 
<button> is clicked. Inside the function, the email state is set back to an empty 
string. Without two-way binding, the state would be updated, but the change would 
not be reflected in the <input> element. There, the user would still see their last 
input. The state reflected on the UI (the website) and the state managed internally by 
React would be different—a bug you absolutely must avoid.

Deriving Values from State

As you can probably tell by now, state is a key concept in React. State allows you to 
manage data that, when changed, forces React to re-evaluate a component and, 
ultimately, the UI.

As a developer, you can use state values anywhere in your component (and in your 
child components, by passing state to them via props). You could, for example, repeat 
what a user entered like this:

function Repeater() {

  const [userInput, setUserInput] = useState('');

 

  function inputHandler(event) {

    setUserInput(event.target.value);

  };

 

  return (

    <>

      <input type="text" onChange={inputHandler} />

      <p>You entered: {userInput}</p>

    </>

  );

};

This component might not be too useful, but it will work, and it does use state.



Introduction | 91

Often, in order to do more useful things, you will need to use a state value as a basis 
to derive a new (often more complex) value. For example, instead of simply repeating 
what the user entered, you could count the number of entered characters and show 
that information to the user:

function CharCounter() {

  const [userInput, setUserInput] = useState('');

 

  function inputHandler(event) {

    setUserInput(event.target.value);

  };

  const numChars = userInput.length;

 

  return (

    <>

      <input type="text" onChange={inputHandler} />

      <p>Characters entered: {numChars}</p>

    </>

  );

};

Note the addition of the new numChars constant (it could also be a variable, via 
let). This constant is derived from the userInput state by accessing the length 
property on the string value that's stored in the userInput state.

This is important! You're not limited to working with state values only. You can 
manage some key value as state (that is, the value that will change) and derive other 
values based on that state value—such as, in this case, the number of characters 
entered by the user. And, indeed, this is something you will do frequently as a 
React developer.

You might also be wondering why numChars is a constant and outside of the 
inputHandler function. After all, that is the function that is executed upon user 
input (that is, upon every keystroke the user makes).

Keep in mind what you learned about how React handles state internally. When you 
call the state-updating function (setUserInput, in this case), React will re-evaluate 
the component to which the state belongs. This means that the CharCounter 
component function will be called again by React. All the code in that function is 
therefore executed again. 



92 | Working with Events and State

React does this to determine what the UI should look like after the state update; 
and, if it detects any differences compared to the currently rendered UI, React will go 
ahead and update the browser UI (that is, the DOM) accordingly. Otherwise, nothing 
will happen.

Since React calls the component function again, useState() will yield its array of 
values (current state value and state-updating function). The current state value will 
be the state to which it was set when setUserInput was called. Therefore, this 
new userInput value can be used to perform other calculations anywhere in the 
component function—such as deriving numChars by accessing the length property 
of userInput. 

That's why numChars can be a constant. For this component execution, it won't 
be re-assigned. A new value might only be derived when the component function is 
executed again in the future (that is, if setUserInput is called again). And in that 
case, a brand-new numChars constant would be created (and the old one would 
be discarded). 

Working with Forms and Form Submission

State is commonly used when working with forms and user input. Indeed, most 
examples in this chapter dealt with some form of user input.

Up to this point, all examples focused on listening to user events that are directly 
attached to individual input elements. That makes sense because you will often want 
to listen to events such as keystrokes or an input losing focus. Especially when adding 
input validation (that is, checking entered values), you might want to use input events 
to give website users useful feedback while they're typing.

But it's also quite common to react to the overall form submission. For example, the 
goal could be to combine the input from various input fields and send the data to 
some backend server. How could you achieve this? How can you listen and react to 
the submission of a form?

You can do all these things with the help of standard JavaScript events and the 
appropriate event handler props provided by React. Specifically, the onSubmit prop 
can be added to <form> elements to assign a function that should be executed once 
a form is submitted. In order to then handle the submission with React and JavaScript, 
you must ensure that the browser won't do its default thing and generate (and send) 
an HTTP request automatically. 



Introduction | 93

As in vanilla JavaScript, this can be achieved by calling the preventDefault() 
method on the automatically generated event object.

Here's a full example:

function NewsletterSignup() {

  const [email, setEmail] = useState('');

  const [agreed, setAgreed] = useState(false);

  function updateEmailHandler(event) {

    // could add email validation here

    setEmail(event.target.value);

  };

  function updateAgreementHandler(event) {

    setAgreed(event.target.checked); // checked is a default JS boolean 
property
  };

  function signupHandler(event) {

    event.preventDefault(); // prevent browser default of sending a Http 
request

    const userData = {userEmail: email, userAgrees: agreed};

    // doWhateverYouWant(userData);

  };

  return (

    <form onSubmit={signupHandler}>

      <div>

        <label htmlFor="email">Your email</label>

        <input type="email" id="email" onChange={updateEmailHandler}/>

      </div>

      <div>

        <input type="checkbox" id="agree" 
onChange={updateAgreementHandler}/>
        <label htmlFor="agree">Agree to terms and conditions</label>

      </div>

    </form>

  );

};



94 | Working with Events and State

This code snippet handles form submission via the signupHandler() function 
that's assigned to the built-in onSubmit prop. User input is still fetched with the 
help of two state slices (email and agreed), which are updated upon the inputs' 
change events.

Note

In the preceding code example, you might've noticed a new prop that 
wasn't used before in this book: htmlFor. This is a special prop, built into 
React and the core JSX elements it provides. It can be added to <label> 
elements in order to set the for attribute for these elements. The reason 
it is called htmlFor instead of just for is that, as explained earlier in the 
book, JSX looks like HTML but isn't HTML. It's JavaScript under the hood. 
And in JavaScript, for is a reserved keyword for for loops. To avoid 
problems, the prop is therefore named htmlFor.

Lifting State Up

Here's a common scenario and problem: you have two components in your React app 
and a change or event in component A should change the state in component B. To 
make this less abstract, consider the following simplified example:

function SearchBar() {

  const [searchTerm, setSearchTerm] = useState('');

  function updateSearchTermHandler(event) {

    setSearchTerm(event.target.value);

  };

  return <input type="search" onChange={updateSearchTermHandler} />;

};

function Overview() {

  return <p>Currently searching for {searchTerm}</p>;

};

function App() {

  return (

    <>



Introduction | 95

      <SearchBar />

      <Overview />

    </>

  );

};

In this example, the Overview component should output the entered search 
term. But the search term is actually managed in another component—namely, 
the SearchBar component. In this simple example, the two components could of 
course be merged into one single component, and the problem would be solved. But 
it's very likely that when building more realistic apps, you'll face similar scenarios but 
with way more complex components. Breaking components up into smaller pieces is 
considered a good practice, since it keeps the individual components manageable.

Having multiple components depend on some shared piece of state is therefore a 
scenario you will face frequently when working with React. 

This problem can be solved by lifting state up. When lifting state up, the state is not 
managed in either of the two components that use it—neither in Overview, which 
reads the state, nor in SearchBar, which sets the state—but in a shared ancestor 
component instead. To be precise, it is managed in the closest shared ancestor 
component. Keep in mind that components are nested into each other and thus a 
"tree of components" (with the App component as the root component) is built up in 
the end.

Figure 4.2: An example component tree



96 | Working with Events and State

In the previous simple code example, the App component is the closest (and, in this 
case, only) ancestor component of both SearchBar and Overview. If the app 
was structured as shown in the figure, with state set in Navigation and used in 
Products, Layout would be the closest ancestor component.

State is lifted up by using props in the components that need to manipulate (that is, 
set) or read the state, and by registering the state in the ancestor component that is 
shared by the two other components. Here's the updated example from previously:

function SearchBar(props) {

  return <input type="search" onChange={props.onUpdateSearch} />;

};

function Overview({currentTerm}) {

  return <p>Currently searching for {currentTerm}</p>;

};

function App() {

  const [searchTerm, setSearchTerm] = useState('');

  function updateSearchTermHandler(event) {

    setSearchTerm(event.target.value);

  };

  return (

    <>

      <SearchBar onUpdateSearch={updateSearchTermHandler} />

      <Overview currentTerm={searchTerm} />

    </>

  );

};

The code didn't actually change that much; it mostly moved around a bit. The state 
is now managed inside of the shared ancestor component and App component, and 
the two other components get access to it via props.



Introduction | 97

Three key things are happening in this example:

1.	 The SearchBar component receives a prop called onUpdateSearch, whose 
value is a function—a function created in the App component and passed down 
to SearchBar from App.

2.	 The onUpdateSearch prop is then set as a value to the onChange prop on 
the <input> element inside of the SearchBar component.

3.	 The searchTerm state (that is, its current value) is passed from App to 
Overview via a prop named currentTerm.

The first two points could be confusing. But keep in mind that, in JavaScript, functions 
are first-class objects and regular values. You can store functions in variables and, 
when using React, pass functions as values for props. And indeed, you could already 
see that in action at the very beginning of this chapter. When introducing events 
and event handling, functions were provided as values to all these onXYZ props 
(onChange, onBlur, and so on).

In this code snippet, a function is passed as a value for a custom prop (that 
is, a prop expected in a component created by you, not built into React). The 
onUpdateSearch prop expects a function as a value because the prop is then 
itself being used as a value for the onChange prop on the <input> element. 

The prop is named onUpdateSearch to make it clear that it expects a function as 
a value and that it will be connected to an event. Any name could've been chosen 
though; it doesn't have to start with on. But it's a common convention to name props 
that expect functions as values and that are intended to be connected to events 
like this. 

Of course, updateSearch is not a default event, but since the function will 
effectively be called upon the change event of the <input> element, the prop 
acts like a custom event.

With this structure, the state was lifted up to the App component. This component 
registers and manages the state. But it also exposes the state-updating function 
(indirectly, in this case, as it is wrapped by the updateSearchTermHandler 
function) to the SearchBar component. And it also provides the current state 
value (searchTerm) to the Overview component via the currentTerm prop.



98 | Working with Events and State

Since child and descendent components are also re-evaluated by React when 
state changes in a component, changes in the App component will also lead to the 
SearchBar and Overview components being re-evaluated. Therefore, the new 
prop value for searchTerm will be picked up, and the UI will be updated by React.

No new React features are needed for this. It's only a combination of state and props. 
But depending on how these features are connected and where they are used, both 
simple and more complex app patterns can be achieved.

Summary and Key Takeaways

•	 Event handlers can be added to JSX elements via on[EventName] props (for 
example, onClick, onChange).

•	 Any function can be executed upon (user) events.

•	 In order to force React to re-evaluate components and (possibly) update the 
rendered UI, state must be used.

•	 State refers to data managed internally by React, and a state value can be 
defined via the useState() Hook.

•	 React Hooks are JavaScript functions that add special features to React 
components (for example, the state feature, in this chapter).

•	 useState() always returns an array with exactly two elements:

•	 The first element is the current state value.

•	 The second element is a function to set the state to a new value (the state-
updating function).

•	 When setting the state to a new value that depends on the previous value, a 
function should be passed to the state-updating function. This function then 
receives the previous state as a parameter (which will be provided automatically 
by React) and returns the new state that should be set.

•	 Any valid JavaScript value can be set as state—besides primitive values such 
as strings or numbers. This also includes reference values such as objects 
and arrays.

•	 If state needs to change because of some event that occurs in another 
component, you should lift the state up and manage it on a higher, shared level 
(that is, a common ancestor component).



Introduction | 99

What's Next?

State is an extremely important building block because it enables you to build truly 
dynamic applications. With this key concept out of the way, the next chapter will 
dive into utilizing state (and other concepts learned thus far) to render content 
conditionally and to render lists of content.

These are common tasks that are required in almost any UI or web app you're 
building, no matter whether it's about showing a warning overlay or displaying a list 
of products. The next chapter will help you add such features to your React apps.

Test Your Knowledge!

Test your knowledge about the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to examples that can be 
found at https://packt.link/Zu02Z.

1.	 What problem does state solve?

2.	 What's the difference between props and state?

3.	 How is state registered in a component?

4.	 Which values does the useState() Hook provide?

5.	 How many state values can be registered for a single component?

6.	 Does state affect components other than the component in which it 
was registered?

7.	 How should state be updated if the new state depends on the previous state?

8.	 How can state be shared across multiple components?

Apply What You Learned

With the new knowledge gained in this chapter, you are finally able to build truly 
dynamic UIs and React applications. Instead of being limited to hardcoded, static 
content and pages, you can now use state to set and update values and force React to 
re-evaluate components and the UI.

Here, you will find an activity that allows you to apply all the knowledge, including this 
new state knowledge, you have acquired up to this point.

https://packt.link/Zu02Z


100 | Working with Events and State

Activity 4.1: Building a Simple Calculator

In this activity, you'll build a very basic calculator that allows users to add, subtract, 
multiply, and divide two numbers with each other.

The steps are as follows:

1.	 Build the UI by using React components. Be sure to build four separate 
components for the four math operations, even though lots of code could 
be reused.

2.	 Collect the user input and update the result whenever the user enters a value 
into one of the two related input fields.

Note that when working with numbers and getting those numbers from user 
input, you will need to ensure that the entered values are treated as numbers 
and not as strings.

The final result and UI of the calculator should look like this:

Figure 4.3: Calculator user interface

Note

The solution to this activity can be found via this link.



Introduction | 101

Activity 4.2: Enhancing the Calculator

In this activity, you'll build upon Activity 4.1 to make the calculator built there slightly 
more complex. The goal is to reduce the number of components and build one single 
component in which users can select the mathematical operation via a drop-down 
element. In addition, the result should be output in a different component—that is, 
not in the component where the user input is gathered.

The steps are as follows:

1.	 Remove three of the four components from the previous activity and use one 
single component for all mathematical operations.

2.	 Add a drop-down element (<select> element) to that remaining component 
(between the two inputs) and add the four math operations as options 
(<option> elements) to it. 

3.	 Use state to gather both the numbers entered by the user and the math 
operation chosen via the drop-down (it's up to you whether you prefer one 
single state object or multiple state slices).

4.	 Output the result in another component. (Hint: Choose a good place for 
registering and managing the state.)

The result and UI of the calculator should look like this:

Figure 4.4: User interface of the enhanced calculator

Note

The solution to this activity can be found via this link.





Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Output dynamic content conditionally.

�  Render lists of data and map list items to JSX elements.

�  Optimize lists such that React is able to efficiently update the user 
interface when needed.

Rendering Lists and 

Conditional Content

5



104 | Rendering Lists and Conditional Content

Introduction
By this point in the book, you are already familiar with several key concepts, including 
components, props, state, and events, with which you have all the core tools you 
need to build all kinds of different React apps and websites. You have also learned 
how to output dynamic values and results as part of the user interface.

But there is one topic related to outputting dynamic data that has not yet been 
discussed in depth: outputting content conditionally and rendering list content. Since 
most (if not all) websites and web apps you build will require at least one of these two 
concepts, it is crucial to know how to work with conditional content and list data.

In this chapter, you will therefore learn how to render and display different user 
interface elements (and even entire user interface sections), based on dynamic 
conditions. In addition, you will learn how to output lists of data (such as a to-do list 
with its items) and render JSX elements dynamically for the items that make up a list. 
This chapter will also explore important best practices related to outputting lists and 
conditional content.

What Are Conditional Content and List Data?

Before diving into the techniques for outputting conditional content or list content, it 
is important to understand what exactly is meant by those terms.

Conditional content simply means any kind of content that should only be displayed 
under certain circumstances. Examples are as follows:

•	 Error overlays that should only show up if a user submits incorrect data in a form

•	 Additional form input fields that appear once the user chooses to enter extra 
details (such as business details)

•	 A loading spinner that is displayed while data is sent or fetched to or from a 
backend server

•	 A side navigation menu that slides into view when the user clicks on a 
menu button

This is just a very short list of a few examples. You could, of course, come up with 
hundreds of additional examples. But it should be clear what all these examples are 
about in the end: visual elements or entire sections of the user interface that are only 
shown if certain conditions are met.



Introduction | 105

In the first example (an error overlay), the condition would be that a user entered 
incorrect data into a form. The conditionally shown content would then be the 
error overlay.

Conditional content is extremely common, since virtually all websites and web apps 
have some content that is similar or comparable to the preceding examples. 

In addition to conditional content, many websites also output lists of data. It might 
not always be immediately obvious, but if you think about it, there is virtually no 
website that does not display some kind of list content. Again, here are some 
examples of list content that may be outputted on a site:

•	 An online shop displaying a grid or list of products

•	 An event booking site displaying a list of events

•	 A shopping cart displaying a list of cart items

•	 An orders page displaying a list of orders

•	 A blog displaying a list of blog posts—and maybe a list of comments below a 
blog post

•	 A list of navigation items in the header

An endless list (no pun intended) of examples could be created here. Lists are 
everywhere on the web. And, as the preceding examples show, many (probably even 
most) websites have multiple lists with various kinds of data on the same site. 

Take an online shop, for example. Here, you would have a list (or a grid, which is really 
just another kind of list) of products, a list of shopping cart items, a list of orders, a list 
of navigation items in the header, and certainly a lot of other lists as well. This is why 
it is important that you know how to output any kind of list with any kind of data in 
React-driven user interfaces.



106 | Rendering Lists and Conditional Content

Rendering Content Conditionally

Imagine the following scenario. You have a button that, when clicked, should result in 
the display of an extra text box, as shown in the following diagram: 

Figure 5.1: A button that, once clicked, reveals another element

This is a very simple example, but not an unrealistic one. Many websites have parts of 
the user interface that work like this. Showing extra information upon a button click 
(or some similar interaction) is a common pattern. Just think of nutrition information 
below a meal on a food order site or an FAQ section where answers are shown after 
selecting a question.

So, how could this scenario be implemented in a React app? 

If you ignore the requirement of rendering some of the content conditionally, the 
overall React component could look like this:

function TermsOfUse() {

  return (

    <section>

      <button>Show Terms of Use Summary</button>

      <p>By continuing, you accept that we will not indemnify you for any 
damage or harm caused by our products.</p>
    </section>

  );

}

This component has absolutely no conditional code in it, and therefore, both the 
button and the extra information box are shown all the time.



Introduction | 107

In this example, how could the paragraph with the terms-of-use summary text be 
shown conditionally (that is, only after the button is clicked)?

With the knowledge gained throughout the previous chapters, especially Chapter 4, 
Working with Events and State, you already have the skills needed to only show the text 
after the button is clicked. The following code shows how the component could be 
rewritten to show the full text only after the button is clicked:

import { useState } from 'react';

function TermsOfUse() {

  const [showTerms, setShowTerms] = useState(false);

  function showTermsSummaryHandler() {

    setShowTerms(true);

  }

  let paragraphText = '';

  if (showTerms) {

    paragraphText = 'By continuing, you accept that we will not indemnify 
you for any damage or harm caused by our products.';
  }

  return (

    <section>

      <button onClick={showTermsSummaryHandler}>Show Terms of Use 
Summary</button>
      <p>{paragraphText}</p>

    </section>

  );

}

Parts of the code shown in this snippet already qualify as conditional content. The 
paragraphText value is set conditionally, with the help of an if statement based 
on the value stored in the showTerms state.



108 | Rendering Lists and Conditional Content

But the <p> element itself is actually not conditional. It is always there, regardless 
of whether it contains a full sentence or an empty string. If you were to open the 
browser developer tools and inspect that area of the page, an empty paragraph 
element would be visible, as shown:

Figure 5.2: An empty paragraph element is rendered as part of the DOM

You can translate your knowledge about conditional values (such as the paragraph 
text) to conditional elements, however. Besides storing standard values such as text 
or numbers in variables, you can also store JSX elements in variables. This is possible 
because, as mentioned in Chapter 1, React: What and Why, JSX is just syntactic sugar. 
Behind the scenes, a JSX element is a standard JavaScript function that is executed by 
React. And, of course, the return value of a function call can be stored in a variable 
or constant.

With that in mind, the following code could be used to render the entire 
paragraph conditionally:

import { useState } from 'react';

function TermsOfUse() {

  const [showTerms, setShowTerms] = useState(false);

  function showTermsSummaryHandler() {

    setShowTerms(true);

  }

  let paragraph;

  if (showTerms) {

    paragraph = <p>By continuing, you accept that we will not indemnify 
you for any damage or harm caused by our products.</p>;
  }

  return (



Introduction | 109

    <section>

      <button onClick={showTermsSummaryHandler}>Show Terms of Use 
Summary</button>
      {paragraph}

    </section>

  );

}

In this example, if showTerms is true, the paragraph variable does not store text 
but instead an entire JSX element (the <p> element). In the returned JSX code, the 
value stored in the paragraph variable is outputted dynamically via {paragraph}. 
If showTerms is false, paragraph stores the value undefined and nothing is 
rendered to the DOM. Therefore, inserting null or undefined in JSX code leads 
to nothing being outputted by React. But if showTerms is true, the complete 
paragraph is saved as a value and outputted in the DOM.

This is how entire JSX elements can be rendered dynamically. Of course, you are not 
limited to single elements. You could store entire JSX tree structures (such as multiple, 
nested, or sibling JSX elements) inside variables or constants. As a simple rule, 
anything that can be returned by a component function can be stored in a variable.

Different Ways of Rendering Content Conditionally

In the example shown previously, content is rendered conditionally by using 
a variable, which is set with the help of an if statement and then outputted 
dynamically in JSX code. This is a common (and perfectly fine) technique of 
rendering content conditionally, but it is not the only approach you can use.

Alternatively, you could also do the following:

•	 Utilize ternary expressions.

•	 Abuse JavaScript logical operators.

•	 Use any other valid JavaScript way of selecting values conditionally.

Utilizing Ternary Expressions

In JavaScript (and many other programming languages), you can use ternary 
expressions as alternatives to if statements. Ternary expressions can save you lines 
of code, especially with simple conditions where the main goal is to assign some 
variable value conditionally.



110 | Rendering Lists and Conditional Content

Here is a direct comparison—first starting with a regular if statement:

let a = 1;

if (someCondition) {

  a = 2;

}

And here is the same logic, implemented with a ternary expression:

const a = someCondition ? 1 : 2;

This is standard JavaScript code, not React-specific. But it is important to understand 
this core JavaScript feature in order to understand how it can be used in React apps.

Translated to the previous React example, the paragraph content could be set and 
outputted conditionally with the help of ternary expressions like this:

import { useState } from 'react';

function TermsOfUse() {

  const [showTerms, setShowTerms] = useState(false);

  function showTermsSummaryHandler() {

    setShowTerms(true);

  }

  const paragraph = showTerms ? <p>By continuing, you accept that we will 
not indemnify you for any damage or harm caused by our products.</p> : 
null;

  return (

    <section>

      <button onClick={showTermsSummaryHandler}>Show Terms of Use 
Summary</button>
      {paragraph}

    </section>

  );

}

As you can see, the overall code is a bit shorter than before, when an if statement 
was used. The paragraph constant contains either the paragraph (including the text 
content) or null. null is used as an alternative value because null can safely be 
inserted into JSX code as it simply leads to nothing being rendered in its place.



Introduction | 111

A disadvantage of ternary expressions is that readability and understandability 
may suffer—especially when using nested ternary expressions, like in the 
following example:

const paragraph = !showTerms ? null : someOtherCondition ? <p>By 
continuing, you accept that we will not indemnify you for any damage or 
harm caused by our products.</p> : null;

This code is difficult to read and even more difficult to understand. For this reason, 
you should typically avoid writing nested ternary expressions and fall back to if 
statements in such situations.

But, despite these potential disadvantages, ternary expressions can help you write 
less code in React apps, especially when using them inline, directly inside some 
JSX code:

import { useState } from 'react';

function TermsOfUse() {

  const [showTerms, setShowTerms] = useState(false);

  function showTermsSummaryHandler() {

    setShowTerms(true);

  }

  return (

    <section>

      <button>Show Terms of Use Summary</button>

      {showTerms ? <p>By continuing, you accept that we will not 
indemnify you for any damage or harm caused by our products.</p> : null}
    </section>

  );

}

This is the same example as before, only now it's even shorter since here you avoid 
using the paragraph constant by utilizing the ternary expression directly inside of 
the JSX snippet. This allows for relatively lean component code, so it is quite common 
to use ternary expressions in JSX code in React apps to take advantage of this.



112 | Rendering Lists and Conditional Content

Abusing JavaScript Logical Operators

Ternary expressions are popular because they enable you to write less code, which, 
when used in the right places (and avoiding nesting multiple ternary expressions), can 
help with overall readability.

Especially in React apps, in JSX code you will often write ternary expressions like this:

<div>

  {showDetails ? <h1>Product Details</h1> : null}

</div>

Or like this:

<div>

  {showTerms ? <p>Our terms of use …</p> : null}

</div>

What do these two snippets have in common?

They are unnecessarily long, because in both examples, the else case (: null) 
must be specified, even though it adds nothing to the final user interface. After all, 
the primary purpose of these ternary expressions is to render JSX elements (<h1> 
and <p>, in the preceding examples). The else case (: null) simply means nothing 
is rendered if the conditions (showDetails and showTerms, respectively) are 
not met.

This is why a different pattern is popular among React developers:

<div>

  {showDetails && <h1>Product Details</h1>}

</div>

This is the shortest possible way of achieving the intended result, rendering only the 
<h1> element and its content if showDetails is true.

This code uses (or abuses) an interesting behavior of JavaScript's logical operators, 
and specifically of the && (logical "and") operator. In JavaScript, the && operator 
returns the second value (that is, the value after &&), if the first value (that is, the 
value before &&) is true or truthy (that is, not false, undefined, null, 0, and 
so on).

For example, the following code would output 'Hello':

console.log(1 === 1 && 'Hello');



Introduction | 113

This behavior can be used to write very short expressions that check a condition and 
then output another value, as shown in the preceding example.

Note

It is worth noting that using && can lead to unexpected results if you're 
using it with non-Boolean condition values (that is, if the value in front of && 
holds a non-Boolean value). If showDetails were 0 instead of false 
(for whatever reason), the number 0 would be displayed on the screen. You 
should therefore ensure that the value acting as a condition yields null 
or false instead of arbitrary falsy values. You could, for example, force a 
conversion to a Boolean by adding !! (for example, !!showDetails). 
That is not required if your condition value already holds null or false.

Get Creative!

At this point, you have learned about three different ways of defining and outputting 
content conditionally (regular if statements, ternary expressions, and using the && 
operator). But the most important point is that React code is ultimately just regular 
JavaScript code. Hence, any approach that selects values conditionally will work.

If it makes sense in your specific use case and React app, you could also have a 
component that selects and outputs content conditionally like this:

const languages = {

  de: 'de-DE',

  us: ‚en-US',

  uk: ‚en-GB'

};

function LanguageSelector({country}) {

  return <p>Selected Language: {languages[country]}</p>

}

This component outputs either 'de-DE', 'en-US', or 'en-GB' based on the value 
of the country prop. This result is achieved by using JavaScript's dynamic property 
selection syntax. Instead of selecting a specific property via the dot notation (such as 
person.name), you can select property values via the bracket notation. With that 
notation, you can either pass a specific property name (languages['de-DE']) or 
an expression that yields a property name (languages[country]).



114 | Rendering Lists and Conditional Content

Selecting property values dynamically like this is another common pattern for picking 
values from a map of values. It is therefore an alternative to specifying multiple if 
statements or ternary expressions.

And, in general, you can use any approach that works in standard JavaScript—
because React is, after all, just standard JavaScript at its core.

Which Approach Is Best?

Various ways of setting and outputting content conditionally have been discussed, but 
which approach is best?

That really is up to you (and, if applicable, your team). The most important advantages 
and disadvantages have been highlighted, but ultimately, it is your decision. If you 
prefer ternary expressions, there's nothing wrong with choosing them over the logical 
&& operator, for example.

It will also depend on the exact problem you are trying to solve. If you have a map 
of values (such as a list of countries and their country language codes), going for 
dynamic property selection instead of multiple if statements might be preferable. 
On the other hand, if you have a single true/false condition (such as age > 18), 
using a standard if statement or the logical && operator might be best.

Setting Element Tags Conditionally

Outputting content conditionally is a very common scenario. But sometimes, you 
will also want to choose the type of HTML tag that will be outputted conditionally. 
Typically, this will be the case when you build components whose main task is to wrap 
and enhance built-in components.

Here's an example:

function Button({isButton, config, children}) {

  if (isButton) {

    return <button {...config}>{children}</button>;

  }

  return <a {...config}>{children}</a>;

};



Introduction | 115

This Button component checks whether the isButton prop value is truthy and, if 
that is the case, returns a <button> element. The config prop is expected to be a 
JavaScript object, and the standard JavaScript spread operator (...) is used to then 
add all key-value pairs of the config object as props to the <button> element. 
If isButton is not truthy (maybe because no value was provided for isButton, 
or because the value is false), the else condition becomes active. Instead of a 
<button> element, an <a> element is returned.

Note

Using the spread operator (...) to translate an object's properties (key-
value pairs) into component props is another common React pattern (and 
was introduced in Chapter 3, Components and Props). The spread operator 
is not React-specific but using it for this special purpose is. 

When spreading an object such as {link: 'https://some-
url.com', isButton: false} onto an <a> element (via <a 
{...obj}>), the result would be the same as if all props had been 
set individually (that is, <a link="https://some-url.com" 
isButton={false}>). 

This pattern is particularly popular in situations where you build custom 
wrapper components that wrap a common core component (e.g., 
<button>, <input>, or <a>) to add certain styles or behaviors, while 
still allowing for the component to be used in the same way as the built-in 
component (that is, you can set all the default props).

The Button component from the preceding example returns two totally different JSX 
elements, depending on the isButton prop value. This is a great way of checking a 
condition and returning different content (that is, conditional content).

But, by using a special React behavior, this component could be written with even 
less code:

function Button({isButton, config, children}) {

  const Tag = isButton ? 'button' : 'a';

  return <Tag {...config}>{children}</Tag>;

};



116 | Rendering Lists and Conditional Content

The special behavior is that tag names can be stored (as string values) in variables or 
constants, and that those variables or constants can then be used like JSX elements in 
JSX code (as long as the variable or constant name starts with an uppercase character, 
like all your custom components).

The Tag constant in the preceding example stores either the 'button' or 'a' 
string. Since it starts with an uppercase character (Tag, instead of tag), it can then 
be used like a custom component inside of JSX code snippets. React accepts this as 
a component, even though it isn't a component function. This is because a standard 
HTML element tag name is stored, and so React can render the appropriate built-in 
component. The same pattern could also be used with custom components. Instead 
of storing string values, you would store pointers to your custom component 
functions through the following:

import MyComponent from './my-component';

import MyOtherComponent from './my-other-component';

const Tag = someCondition ? MyComponent : MyOtherComponent;

This is another useful pattern that can help save code and hence leads to 
leaner components.

Outputting List Data

Besides outputting conditional data, you will often work with list data that should be 
outputted on a page. As mentioned earlier in this chapter, some examples are lists of 
products, transactions, and navigation items.

Typically, in React apps, such list data is received as an array of values. For example, a 
component might receive an array of products via props (passed into the component 
from inside another component that might be getting that data from some 
backend API):

function ProductsList({products}) {

  // … todo!

};

In this example, the products array could look like this:

const products = [

  {id: 'p1', title: 'A Book', price: 59.99},

  {id: 'p2', title: 'A Carpet', price: 129.49},

  {id: 'p3', title: 'Another Book', price: 39.99},

];



Introduction | 117

This data can't be outputted like this, though. Instead, the goal is typically to translate 
it into a list of JSX elements which fits. For example, the desired result could be 
the following:

<ul>

  <li>

    <h2>A Book</h2>

    <p>$59.99</p>

  </li>

  <li>

    <h2>A Carpet</h2>

    <p>$129.49</p>

  </li>

  <li>

    <h2>Another Book</h2>

    <p>$39.99</p>

  </li>

</ul>

How can this transformation be achieved?

Again, it's a good idea to ignore React and find a way to transform list data with 
standard JavaScript. One possible way to achieve this would be to use a for loop, 
as shown:

const transformedProducts = [];

for (const product of products) {

  transformedProducts.push(product.title);

}

In this example, the list of product objects (products) is transformed into a 
list of product titles (that is, a list of string values). This is achieved by looping 
through all product items in products and extracting only the title property 
from each product. This title property value is then pushed into the new 
transformedProducts array.

A similar approach can be used to transform the list of objects into a list of 
JSX elements:

const productElements = [];

for (const product of products) {

  productElements.push((

    <li>



118 | Rendering Lists and Conditional Content

      <h2>{product.title}</h2>

      <p>${product.price}</p>

    </li>

  ));

}

The first time you see code like this, it might look a bit strange. But keep in mind 
that JSX code can be used anywhere where regular JavaScript values (that is, 
numbers, strings, objects, and so on) can be used. Therefore, you can also push a 
JSX value onto an array of values. And since it's JSX code, you can also output content 
dynamically in those JSX elements (such as <h2>{product.title}</h2>).

This code is valid, and is an important first step toward outputting list data. But it is 
only the first step, since the current data was transformed but still isn't returned by 
a component.

How can such an array of JSX elements be returned then?

The answer is that it can be returned without any special tricks or code. JSX actually 
accepts array values as dynamically outputted values.

You can output the productElements array like this:

return (

  <ul>

    {productElements}

  </ul>

);

When inserting an array of JSX elements into JSX code, all JSX elements inside that 
array are outputted next to each other. So, the following two snippets would produce 
the same output:

return (

  <div>

    {[<p>Hi there</p>, <p>Another item</p>]}

  </div>

);

return (

  <div>

    <p>Hi there</p>



Introduction | 119

    <p>Another item</p>

  </div>

);

With this in mind, the ProductsList component could be written like this:

function ProductsList({products}) {

  const productElements = [];

  for (const product of products) {

    productElements.push((

      <li>

        <h2>{product.title}</h2>

        <p>${product.price}</p>

      </li>

    ));

  }

  return (

    <ul>

      {productElements}

    </ul>

  );

};

This is one possible approach for outputting list data. As explained earlier in this 
chapter, it's all about using standard JavaScript features and combining those 
features with JSX.

Mapping List Data

Outputting list data with for loops works, as you can see in the preceding examples. 
But just as with if statements and ternary expressions, you can replace for loops 
with an alternative syntax to write less code and improve component readability.

JavaScript offers a built-in array method that can be used to transform array items: 
the map() method. map() is a default method that can be called on any JavaScript 
array. It accepts a function as a parameter and executes that function for every array 
item. The return value of this function should be the transformed value. map() 
then combines all these returned, transformed values into a new array that is then 
returned by map().



120 | Rendering Lists and Conditional Content

You could use map() like this:

const users = [

  {id: 'u1', name: 'Max', age: 35},

  {id: 'u2', name: 'Anna', age: 32}

];

const userNames = users.map(user => user.name);

// userNames = ['Max', 'Anna']

In this example, map() is used to transform the array of user objects into an array of 
usernames (that is, an array of string values).

The map() method is often able to produce the same result as that of a for loop, 
but with less code.

Therefore, map() can also be used to generate an array of JSX elements and the 
ProductsList component from before could be rewritten like this:

function ProductsList({products}) {

  const productElements = products.map(product => (

      <li>

        <h2>{product.title}</h2>

        <p>${product.price}</p>

      </li>

    )

  );

  return (

    <ul>

      {productElements}

    </ul>

  );

};

This is already shorter than the earlier for loop example. But, just as with ternary 
expressions, the code can be shortened even more by moving the logic directly into 
the JSX code:

function ProductsList({products}) {

  return (

    <ul>

      {products.map(product => (

          <li>



Introduction | 121

            <h2>{product.title}</h2>

            <p>${product.price}</p>

          </li>

        )

      )}

    </ul>

  );

};

Depending on the complexity of the transformation (that is, the complexity of the 
code executed inside the inner function, which is passed to the map() method), for 
readability reasons, you might want to consider not using this inline approach (such 
as when mapping array elements to some complex JSX structure or when performing 
extra calculations as part of the mapping process). Ultimately, this comes down to 
personal preference and judgment.

Because it's very concise, using the map() method (either with the help of an 
extra variable or constant, or directly inline in the JSX code) is the de facto standard 
approach for outputting list data in React apps and JSX in general.

Updating Lists

Imagine you have a list of data mapped to JSX elements, and a new list item is added 
at some point. Or, consider a scenario in which you have a list wherein two list items 
swap places (that is, the list is reordered). How can such updates be reflected in 
the DOM?

The good news is that React will take care of that for you if the update is performed 
in a stateful way (that is, by using React's state concept, as explained in Chapter 4, 
Working with Events and State). 

However, there are a couple of important aspects to updating (stateful) lists you 
should be aware of.

Here's a simplified example that would not work as intended:

import { useState } from 'react';

function Todos() {

  const [todos, setTodos] = useState(['Learn React', 'Recommend this 
book']);

  function addTodoHandler() {

    todos.push('A new todo');



122 | Rendering Lists and Conditional Content

  };

  return (

    <div>

      <button onClick={addTodoHandler}>Add Todo</button>

      <ul>

        {todos.map(todo => <li>{todo}</li>)}

      </ul>

    </div>

  );

};

Initially, two to-do items would be displayed on the screen (<li>Learn React</
li> and <li>Recommend this book</li>). But once the button is clicked and 
addTodoHandler is executed, the expected result of another to-do item being 
displayed will not materialize. 

This is because executing todos.push('A new todo') will update the todos 
array, but React won't notice it. Keep in mind that you must only update the state 
via the state updating function returned by useState(); otherwise, React will not 
re-evaluate the component function.

So how about this code?

function addTodoHandler() {

  setTodos(todos.push('A new todo'));

};

This is also incorrect because the state updating function (setTodos, in this case) 
should receive the new state (that is, the state that should be set) as an argument. 
But the push() method doesn't return the updated array. Instead, it mutates the 
existing array in place. Even if push() were to return the updated array, it would still 
be wrong to use the preceding code, because the data would be changed (mutated) 
behind the scenes before the state updating function would be executed. Technically, 
data would be changed before informing React about that change. Following the 
React best practices, this should be avoided.



Introduction | 123

Therefore, when updating an array (or, as a side note, an object in general), you 
should perform this update in an immutable way—i.e., without changing the original 
array or object. Instead, a new array or object should be created. This new array 
can be based on the old array and contain all the old data, as well as any new or 
updated data.

Therefore, the todos array should be updated like this:

function addTodoHandler() {

  setTodos(curTodos => [...curTodos, 'A new todo']);

  // alternative: Use concat() instead of the spread operator:

  // concat(), unlike push(), returns a new array

  // setTodos(curTodos => curTodos.concat('A new todo'));

};

By using concat() or a new array, combined with the spread operator, a brand-new 
array is provided to the state updating function. Note also that a function is passed to 
the state updating function, since the new state depends on the previous state.

When updating an array (or any object) state value like this, React is able to pick up 
those changes. Therefore, React will re-evaluate the component function and apply 
any required changes to the DOM.

Note

Immutability is not a React-specific concept, but it's a key one in React apps 
nonetheless. When working with state and reference values (that is, objects 
and arrays), immutability is extremely important to ensure that React is able 
to pick up changes and no "invisible" (that is, not recognized by React) state 
changes are performed. 

There are different ways of updating objects and arrays immutably, but 
a popular approach is to create new objects or arrays and then use the 
spread operator (...) to merge existing data into those new arrays 
or objects.



124 | Rendering Lists and Conditional Content

A Problem with List Items

If you're following along with your own code, you might've noticed that React 
actually shows a warning in the browser developer tools console, as shown in the 
following screenshot:

Figure 5.3: React sometimes generates a warning regarding missing unique keys

React is complaining about missing keys. 

To understand this warning and the idea behind keys, it's helpful to explore a specific 
use case and a potential problem with that scenario. Assume that you have a React 
component that is responsible for displaying a list of items—maybe a list of to-do 
items. In addition, assume that those list items can be reordered and that the list can 
be edited in other ways (for example, new items can be added, existing items can be 
updated or deleted, and so on). Put in other words, the list is not static.



Introduction | 125

Consider this example user interface, in which a new item is added to a list of 
to-do items:

Figure 5.4: A list gets updated by inserting a new item at the top

In the preceding figure, you can see the initially rendered list (1), which is then 
updated after a user entered and submitted a new to-do value (2). A new to-do item 
was added to the top of the list (that is, as the first item of the list) (3).

Note

The example source code for this demo app can be found at  
https://packt.link/LsP33.

If you work on this app and open the browser developer tools (and then the 
JavaScript console), you will see the "missing keys" warning that has been mentioned 
before. This app also helps with understanding where this warning is coming from.

https://packt.link/LsP33


126 | Rendering Lists and Conditional Content

In the Chrome DevTools, navigate to the Elements tab and select one of the to-do 
items or the empty to-do list (that is, the <ul> element). Once you add a new to-do 
item, any DOM elements that were inserted or updated are highlighted by Chrome in 
the Elements tab (by flashing briefly). Refer to the following screenshot:

Figure 5.5: Updated DOM items are highlighted in the Chrome DevTools

The interesting part is that not only the newly added to-do element (that is, the newly 
inserted <li> element) is flashing. Instead, all existing <li> elements, which reflect 
existing to-do items that were not changed, are highlighted by Chrome. This implies 
that all these other <li> elements were also updated in the DOM—even though 
there was no need for that update. The items existed before, and their content (the 
to-do text) didn't change.

For some reason, React seems to destroy the existing DOM nodes (that is, the existing 
<li> items), just to then recreate them immediately. This happens for every new 
to-do item that is added to the list. As you might imagine, this is not very efficient and 
can cause performance problems for more complex apps that might be rendering 
dozens or hundreds of items across multiple lists. 

This happens because React has no way of knowing that only one DOM node should 
be inserted. It cannot tell that all other DOM nodes should stay untouched because 
React only received a brand-new state value: a new array, filled with new JavaScript 
objects. Even if the content of those objects didn't change, they are technically still 
new objects (new values in memory).



Introduction | 127

As the developer, you know how your app works and that the content of the to-dos 
array didn't actually change that much. But React doesn't know that. Therefore, React 
determines that all existing list items (<li> items) must be discarded and replaced 
by new items that reflect the new data that was provided as part of the state update. 
That is why all list-related DOM nodes are updated (that is, destroyed and recreated) 
for every state update.

Keys to the Rescue!

The problem outlined previously is an extremely common one. Most list updates are 
incremental updates, not bulk changes. But React can't tell whether that is the case 
for your use case and your list.

That's why React uses the concept of keys when working with list data and rendering 
list items. Keys are simply unique id values that can (and should) be attached to 
JSX elements when rendering list data. Keys help React identify elements that were 
rendered before and didn't change. By allowing for the unique identification of all list 
elements, keys also help React to move (list item) DOM elements around efficiently.

Keys are added to JSX elements via the special built-in key prop that is accepted by 
every component:

<li key={todo.id}>{todo.text}</li>

This special prop can be added to all components, be they built-in or custom. You 
don't need to accept or handle the key prop in any way on your custom components; 
React will do that for you automatically.

The key prop requires a value that is unique for every list item. No two list items 
should have the same key. In addition, good keys are directly attached to the 
underlying data that makes up the list item. Therefore, list item indexes are poor keys 
because the index isn't attached to the list item data. If you reorder items in a list, the 
indexes stay the same (an array always starts with index 0, followed by 1, and so on) 
but the data is changed.

Consider the following example:

const hobbies = ['Sports', 'Cooking']; 

const reversed = hobbies.reverse(); // ['Cooking', 'Sports']

In this example, 'Sports' has the index 0 in the hobbies array. In the reversed 
array, its index would be 1 (because it's the second item now). In this case, if the 
index were used as a key, the data would not be attached to it. 



128 | Rendering Lists and Conditional Content

Good keys are unique id values, such that every id belongs to exactly one value. If 
that value moves or is removed, its id should move or disappear with that value.

Finding good id values typically isn't a huge problem since most list data is fetched 
from databases anyway. No matter whether you're dealing with products, orders, 
users, or shopping cart items, it's all data that would typically be stored in a database. 
This kind of data already has unique id values since you always have some kind of 
unique identification criteria when storing data in databases.

Sometimes, even the values themselves can be used as keys. Consider the 
following example:

const hobbies = ['Sports', 'Cooking']; 

Hobbies are string values, and there is no unique id value attached to individual 
hobbies. Every hobby is a primitive value (a string). But in cases like this, you typically 
won't have duplicate values as it doesn't make sense for a hobby to be listed more 
than once in an array like this. Therefore, the values themselves qualify as good keys:

hobbies.map(hobby => <li key={hobby}>{hobby}</li>);

In cases where you can't use the values themselves and there is no other possible 
key value, you can generate unique id values directly in your React app code. As a 
last resort, you can also fall back to using indexes; but be aware that this can lead to 
unexpected bugs and side effects if you reorder list items.

With keys added to list item elements, React is able to identify all items correctly. 
When the component state changes, it can identify JSX elements that were rendered 
before already. Those elements are therefore not destroyed or recreated anymore.

You can confirm this by again opening the browser DevTools to check which DOM 
elements are updated upon changes to the underlying list data:

Figure 5.6: From multiple list items, only one DOM element gets updated



Introduction | 129

After adding keys, when updating the list state, only the new DOM item is highlighted 
in the Chrome DevTools. The other items are (correctly) ignored by React.

Summary and Key Takeaways

•	 Like any other JavaScript value, JSX elements can be set and changed 
dynamically, based on different conditions.

•	 Content can be set conditionally via if statements, ternary expressions, the 
logical "and" operator (&&), or in any other way that works in JavaScript.

•	 There are multiple ways to handle conditional content—any approach that 
would work in vanilla JavaScript can also be used in React apps.

•	 Arrays with JSX elements can be inserted into JSX code and will lead to the array 
elements being outputted as sibling DOM elements.

•	 List data can be converted into JSX element arrays via for loops, the map() 
method, or any other JavaScript approach that leads to a similar conversion.

•	 Using the map() method is the most common way of converting list data to JSX 
element lists.

•	 Keys (via the key prop) should be added to the list JSX elements to help React 
update the DOM efficiently.

What's Next?

With conditional content and lists, you now have all the key tools needed to build 
both simple and more complex user interfaces with React. You can hide and show 
elements or groups of elements as needed, and you can dynamically render and 
update lists of elements to output lists of products, orders, or users.

Of course, that's not all that's needed to build realistic user interfaces. Adding logic 
for changing content dynamically is one thing, but most web apps also need CSS 
styling that should be applied to various DOM elements. This book is not about CSS, 
but the next chapter will still explore how React apps can be styled. Especially when 
it comes to setting and changing styles dynamically or scoping styles to specific 
components, there are various React-specific concepts that should be familiar to 
every React developer.



130 | Rendering Lists and Conditional Content

Test Your Knowledge!

Test your knowledge about the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to examples that can be 
found at https://packt.link/QyB9E.

1.	 What is "conditional content"?

2.	 Name at least two different ways of rendering JSX elements conditionally.

3.	 Which elegant approach can be used to define element tags conditionally?

4.	 What's a potential downside of using only ternary expressions 
(for conditional content)?

5.	 How can lists of data be rendered as JSX elements?

6.	 Why should keys be added to rendered list items?

7.	 Give one example each for a good and a bad key.

Apply What You Learned

You are now able to use your React knowledge to change dynamic user interfaces in a 
variety of ways. Besides being able to change displayed text values and numbers, you 
can now also hide or show entire elements (or chunks of elements) and display lists 
of data.

In the following sections, you will find two activities that allow you to apply your newly 
gained knowledge (combined with the knowledge gained in the other book chapters).

Activity 5.1: Showing a Conditional Error Message

In this activity, you'll build a basic form that allows users to enter their email address. 
Upon form submission, the user input should be validated and invalid email 
addresses (for simplicity, here email addresses that contain no @ sign are being 
referred to here) should lead to an error message being shown below the form. When 
invalid email addresses are made valid, potentially visible error messages should be 
removed again.

Perform the following steps to complete this activity:

1.	 Build a user interface that contains a form with a label, an input field (of the text 
type—to make entering incorrect email addresses easier for demo purposes), 
and a submit button that leads to the form being submitted.

https://packt.link/QyB9E


Introduction | 131

2.	 Collect the entered email address and show an error message below the form if 
the email address contains no @ sign.

The final user interface should look and work as shown here:

Figure 5.7: The final user interface of this activity

Note

The solution to this activity can be found via this link.

Activity 5.2: Outputting a List of Products

In this activity, you will build a user interface where a list of (dummy) products is 
displayed on the screen. The interface should also contain a button that, when 
clicked, adds another new (dummy) item to the existing list of products.

Perform the following steps to complete this activity:

1.	 Add a list of dummy product objects (every object should have an ID, title, and 
price) to a React component and add code to output these product items as 
JSX elements.

2.	 Add a button to the user interface. When clicked, the button should add a new 
product object to the product data list. This should then cause the user interface 
to update and display an updated list of product elements.



132 | Rendering Lists and Conditional Content

The final user interface should look and work as shown here:

Figure 5.8: The final user interface of this activity

Note

The solution to this activity can be found via this link.







Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Style JSX elements via inline style assignments or with the help of 
CSS classes

�  Set inline and class styles, both statically and dynamically or conditionally

�  Build reusable components that allow for style customization

�  Utilize CSS Modules to scope styles to components

�  Understand the core idea behind styled-components, a third-party 
CSS-in-JS library

Styling React Apps

6



136 | Styling React Apps

Introduction
React.js is a frontend JavaScript library. This means that it's all about building (web) 
user interfaces and handling user interaction.

Up to this point, this book has extensively explored how React may be used to 
add interactivity to a web app. State, event handling, and dynamic content are key 
concepts relating to this.

Of course, websites and web apps are not just about interactivity. You could build 
an amazing web app that offers interactive and engaging features, and yet it may 
still be unpopular if it lacks appealing visuals. Presentation is key, and the web is 
no exception.

Therefore, like all other apps and websites, React apps and websites need proper 
styling. And when working with web technologies, Cascading Style Sheets (CSS) is 
the language of choice.

This book is not about CSS, though. It won't explain or teach you how to use CSS as 
there are dedicated, better resources for that (e.g., the free CSS guides at https://
developer.mozilla.org). But this chapter will teach you how to combine CSS code with 
JSX and React concepts such as state and props. You will learn how to add styles to 
your JSX elements, style custom components, and make those components' styles 
configurable. This chapter will also teach you how to set styles dynamically and 
conditionally and explore popular third-party libraries that may be used for styling.

How Does Styling Work in React Apps?

Up to this point, the apps and examples presented in this book have only had 
minimal styling. But they at least had some basic styling, rather than no styling at all.

But how was that styling added? How can styles be added to user interface elements 
(such as DOM elements) when using React?

The short answer is "just as you would to non-React apps". You can add CSS styles 
and classes to JSX elements just as you would to regular HTML elements. And in your 
CSS code, you can use all the features and selectors you know from CSS. There are no 
React-specific changes you have to make when writing CSS code.

https://developer.mozilla.org
https://developer.mozilla.org


Introduction | 137

The code examples used up to this point (i.e., the activities or other examples hosted 
on GitHub) always used regular CSS styling with the help of CSS selectors to apply 
some basic styles to the final user interface. Those CSS rules were defined in an 
index.css file, which is part of every newly created React project (when using 
create-react-app for project creation, as shown in Chapter 1, React – What 
and Why).

For example, here's the index.css file used in Activity 5.1 of the previous chapter 
(Chapter 5, Rendering Lists and Conditional Content):

body {

  margin: 2rem;

  font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 
'Oxygen',
    'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue',

    sans-serif;

  -webkit-font-smoothing: antialiased;

  -moz-osx-font-smoothing: grayscale;

}

ul {

  list-style: none;

  margin: 0;

  padding: 0;

}

li {

  background-color: #ede6f3;

  box-shadow: 0 1px rgba(0, 0, 0, 0.2);

  padding: 0.5rem;

  margin: 1rem 0;

  max-width: 30rem;

}

The actual CSS code and its meaning is not important (as mentioned, this book is not 
about CSS). What is important, though, is the fact that this code contains no JavaScript 
or React code at all. As mentioned, the CSS code you write is totally independent of 
the fact that you're using React in your app.



138 | Styling React Apps

The more interesting question is how that code is actually applied to the rendered 
web page. How is it imported into that page?

Normally, you would expect style file imports (via <link href="…">) inside of 
the HTML files that are being served. Since React apps are typically about building 
single-page applications (see Chapter 1, React – What and Why), you only have 
one HTML file—the index.html file—which can be found in the public/ 
folder of your React project. But if you inspect that file, you won't find any <link 
href="…"> import that would point to the index.css file (only some other 
<link> elements that import favicons or the web page manifest file), as you can 
see in the following screenshot:

Figure 6.1: The <head> section of the index.html file contains no <link> import  
that points to the index.css file



Introduction | 139

How are the styles defined in index.css imported and applied then?

You find an import statement in the root entry file (this is the index.js file in 
projects generated via create-react-app):

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

ReactDOM.render(

  <React.StrictMode>

    <App />

  </React.StrictMode>,

  document.getElementById('root')

);

The import './index.css'; statement leads to the CSS file being imported and 
the defined CSS code being applied to the rendered web page. 

It is worth noting that this is not standard JavaScript behavior. You can't import CSS 
files into JavaScript—at least not if you're just using vanilla JavaScript.

It works in React apps because the code is transpiled before it's loaded into the 
browser. Therefore, you won't find that import statement in the final JavaScript 
code that's executed in the browser. Instead, during the transpilation process, the 
transpiler identifies the CSS import, removes it from the JavaScript file, and injects 
the CSS code (or an appropriate link to the potentially bundled and optimized CSS 
file) into the index.html file. You can confirm this by inspecting the rendered 
Document Object Model (DOM) content of the loaded web page in the browser. 



140 | Styling React Apps

To do so, select the Elements tab in developer tools in Chrome, as 
shown below:

Figure 6.2: The injected CSS <style> can be found in the DOM at runtime

You can define any styles you want to apply to your HTML elements (that is, to your 
JSX elements in your components) directly inside of the index.css file or in any 
other CSS files that are imported by the index.css file.

You could also add additional CSS import statements, pointing at other CSS 
files, to the index.js file or any other JavaScript files (including files that store 
components). However, it is important to keep in mind that CSS styles are always 
global. No matter whether you import a CSS file in index.js or in a component-
specific JavaScript file, the styles defined in that CSS file will be applied globally. 

That means that styles defined in a goal-list.css file, which may be imported 
in a GoalList.js file, could still affect JSX elements defined in a totally different 
component. Later in this chapter, you will learn about techniques that allow you to 
avoid accidental style clashes and implement style scoping.

Using Inline Styles

You can use CSS files to define global CSS styles and use different CSS selectors to 
target different JSX elements (or groups of elements). 



Introduction | 141

But even though it's typically discouraged, you can also set inline styles directly on JSX 
elements via the style prop.

Note

If you're wondering why inline styles are discouraged, the following 
discussion on Stack Overflow provides many arguments against inline 
styles: https://stackoverflow.com/questions/2612483/whats-so-bad-about-in-
line-css.

Setting inline styles in JSX code works like this:

function TodoItem() {

  return <li style={{color: 'red', fontSize: '18px'}}>Learn React!</li>;

};

In this example, the style prop is added to the <li> element (all JSX elements 
support the style prop) and both the color and size properties of the text are 
set via CSS.

This approach differs from what you would use to set inline styles when working 
with just HTML (instead of JSX). When using plain HTML, you would set inline styles 
like this:

<li style="color: red; font-size: 18px">Learn React!</li>

The difference is that the style prop expects to receive a JavaScript object that 
contains the style settings—not a plain string. This is something that must be kept 
in mind, though, since, as mentioned previously, inline styles typically aren't used 
that often.

Since the style object is an object and not a plain string, it is passed as a value 
between curly braces—just as an array, a number, or any other non-string value 
would have to be set between curly braces (anything between double or single quotes 
is treated as a string value). Therefore, it's worth noting that the preceding example 
does not use any kind of special "double curly braces" syntax, but instead uses one 
pair of curly braces to surround the non-string value and another pair to surround 
the object data.

Inside the style object, any CSS style properties supported by the underlying DOM 
element can be set. The property names are those defined for the HTML element (i.e., 
the same CSS property names you could target and set with vanilla JavaScript, when 
mutating an HTML element). 

https://stackoverflow.com/questions/2612483/whats-so-bad-about-in-line-css
https://stackoverflow.com/questions/2612483/whats-so-bad-about-in-line-css


142 | Styling React Apps

When setting styles in JavaScript code (as with the style prop shown above), 
JavaScript CSS property names have to be used. Those names are similar to the CSS 
property names you would use in CSS code but not quite the same. Differences occur 
for property names that consist of multiple words (e.g., font-size). When targeting 
such properties in JavaScript, camelCase notation must be used (fontSize instead 
of font-size) as JavaScript properties cannot contain dashes. Alternatively, you 
could wrap the property name with quotes ('font-size').

Note

You can find more information about the HTML element style property and 
JavaScript CSS property names here: https://developer.mozilla.org/en-US/
docs/Web/API/HTMLElement/style.

Setting Styles via CSS Classes

As mentioned, using inline styles is typically discouraged, and therefore, CSS styles 
defined in CSS files (or between <style> tags in the document <head> section) 
are preferred.

In those CSS code blocks, you can write regular CSS code and use CSS selectors to 
apply CSS styles to certain elements. You could, for example, style all <li> elements 
on a page (no matter which component may have rendered them) like this:

li {

  color: red;

  font-size: 18px;

}

As long as this code gets added to the page (because the CSS file in which it is defined 
is imported in index.js, for instance), the styling will be applied.

Quite frequently, developers aim to target specific elements or groups of elements. 
Instead of applying some style to all <li> elements on a page, the goal could be 
to only target the <li> elements that are part of a specific list. Consider this HTML 
structure that's rendered to the page (it may be split across multiple components, but 
this doesn't matter here):

<nav>

  <ul>

    <li><a href="…">Home</a></li>

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style


Introduction | 143

    <li><a href="…">New Goals</a></li>

  </ul>

  ...

  <h2>My Course Goals</h2>

  <ul>

    <li>Learn React!</li>

    <li>Master React!</li>

  </ul>

</nav>

In this example, the navigation list items should most likely not receive the same 
styling as the course goal list items (and vice versa).

Typically, this problem would be solved with the help of CSS classes and the class 
selector. You could adjust the HTML code like this:

<nav>

  <ul>

    <li><a href="…">Home</a></li>

    <li><a href="…">New Goals</a></li>

  </ul>

  ...

  <h2>My Course Goals</h2>

  <ul>

    <li class="goal-item">Learn React!</li>

    <li class="goal-item">Master React!</li>

  </ul>

</nav>

The following CSS code would then only target the course goal list items but not 
the navigation list items:

.goal-item {

  color: red;

  font-size: 18px;

}

And this approach almost works in React apps as well.



144 | Styling React Apps

But if you try to add CSS classes to JSX elements as shown in the previous example, 
you will face a warning in the browser developer tools:

Figure 6.3: A warning output by React

As illustrated in the preceding figure, you should not add class as a prop but 
instead use className. Indeed, if you swap class for className as a prop 
name, the warning will disappear, and the class CSS styles will be applied. Hence, the 
proper JSX code looks like this:

<ul>

  <li className="goal-item">Learn React!</li>

  <li className="goal-item">>Master React!</li>

</ul>

But why is React suggesting you use className instead of class? 

It's similar to using htmlFor instead of for when working with <label> objects 
(discussed in Chapter 4, Working with Events and State. Just like for, class is a 
keyword in JavaScript, and therefore, className is used as a prop name instead.

Setting Styles Dynamically

With inline styles and CSS classes (and global CSS styles in general), there are various 
ways of applying styles to elements. Thus far, all examples have shown static styles—
that is, styles that will never change once the page has been loaded.

But while most page elements don't change their styles after a page is loaded, you 
also typically have some elements that should be styled dynamically or conditionally. 
Here are some examples:

•	 A to-do app where different to-do priorities receive different colors

•	 An input form where invalid form elements should be highlighted following an 
unsuccessful form submission

•	 A web-based game where players can choose colors for their avatars



Introduction | 145

In such cases, applying static styles is not enough, and dynamic styles should be used 
instead. Setting styles dynamically is straightforward. It's again just about applying 
key React concepts covered earlier (most importantly, those regarding the setting 
of dynamic values from Chapter 2, Understanding React Components and JSX, and 
Chapter 4, Working with Events and State).

Here's an example where the color of a paragraph is set dynamically to the color a 
user enters into an input field:

function ColoredText() {

  const [enteredColor, setEnteredColor] = useState('');

  function updateTextColorHandler(event) {

    setEnteredColor(event.target.value);

  };

  return (

    <>

      <input type="text" onChange={updateTextColorHandler}/>

      <p style={{color: enteredColor}}>This text's color changes 
dynamically!</p>
    </>

  );

};

The text entered in the <input> field is stored in the enteredColor state. This 
state is then used to set the color CSS property of the <p> element dynamically. 
This is achieved by passing a style object with the color property set to the 
enteredColor value as a value to the style prop of the <p> element. The text 
color of the paragraph is therefore set dynamically to the value entered by the user 
(assuming that users enter valid CSS color values into the <input> field).

You're not limited to inline styles; CSS classes can also be set dynamically, as in the 
following snippet:

function TodoPriority() {

  const [chosenPriority, setChosenPriority] = useState('low-prio');

  function choosePriorityHandler(event) {

    setChosenPriority(event.target.value);

  };

  return (



146 | Styling React Apps

    <>

      <p className={chosenPriority}>Chosen Priority: {chosenPriority}</p>

      <select onChange={choosePriorityHandler}>

        <option value="low-prio">Low</option>

        <option value="high-prio">High</option>

      </select>

    </>

  );

};

In this example, the chosenPriority state will alternate between low-prio and 
high-prio, depending on the drop-down selection. The state value is then output 
as text inside the paragraph and is also used as a dynamic CSS class name applied 
to the <p> element. For this to have any visual effect, there must, of course, be 
low-prio and high-prio CSS classes defined in some CSS file or <style> block. 
For example, consider the following code in index.css:

.low-prio {

  background-color: blue;

  color: white;

}

.high-prio {

  background-color: red;

  color: white;

}

Conditional Styles

Closely related to dynamic styles are conditional styles. In fact, in the end, they 
are really just a special case of dynamic styles. In the previous examples, inline style 
values and class names were set equal to values chosen or entered by the user.

However, you can also derive styles or class names dynamically based on different 
conditions, as shown here:

function TextInput({isValid, isRecommended, inputConfig}) {

  let cssClass = 'input-default';

  if (isRecommended) {

    cssClass = 'input-recommended';

  }



Introduction | 147

  if (!isValid) {

    cssClass = 'input-invalid';

  }

  return <input className={cssClass} {...inputConfig} />

};

In this example, a wrapper component around the standard <input> element is 
built. (For more information about wrapper components see Chapter 3, Components 
and Props.) The main purpose of this wrapper component is to set some default styles 
for the wrapped <input> element. The wrapper component is built to provide a 
pre-styled input element that can be used anywhere in the app. Indeed, providing 
pre-styled elements is one of the most common and popular use cases for building 
wrapper components.

In this concrete example, the default styles are applied using CSS classes. If the 
isValid prop value is true and the value of the isRecommended prop is false, 
the input-default CSS class will be applied to the <input> element since 
neither of the two if statements become active.

If isRecommended is true (but isValid is false), the input-recommended 
CSS class would be applied. If isValid is false, the input-invalid class is 
added instead. Of course, the CSS classes must be defined in some imported CSS files 
(for example, in index.css).

Inline styles could be set in a similar way as shown in the following snippet: 

function TextInput({isValid, isRecommended, inputConfig}) {

  let bgColor = 'black';

  if (isRecommended) {

    bgColor = 'blue';

  }

  if (!isValid) {

    bgColor = 'red';

  }

  return <input style={{backgroundColor: bgColor}} {...inputConfig} />

};

In this example, the background color of the <input> element is set conditionally, 
based on the values received via the isValid and isRecommended props.



148 | Styling React Apps

Combining Multiple Dynamic CSS Classes

In previous examples, a maximum of one CSS class was set dynamically at a time. 
However, it's not uncommon to encounter scenarios where multiple, dynamically 
derived CSS classes should be merged and added to an element. 

Consider the following example:

function ExplanationText({children, isImportant}) {

  const defaultClasses = 'text-default text-expl';

  return <p className={defaultClasses}>{children}</p>;

}

Here, two CSS classes are added to <p> by simply combining them in one string. 
Alternatively, you could directly add a string with the two classes like this:

return <p className="text-default text-expl">{children}</p>;

This code will work, but what if the goal is to also add another class name to the 
list of classes, based on the isImportant prop value (which is ignored in the 
preceding example)?

Replacing the default list of classes would be easy, as you have learned:

function ExplanationText({children, isImportant}) {

  let cssClasses = 'text-default text-expl';

  if (isImportant) {

    cssClasses = 'text-important';

  }

  return <p className={cssClasses}>{children}</p>;

}

But what if the goal is not to replace the list of default classes? What if text-
important should be added as a class to <p>, in addition to text-default and 
text-expl?

The className prop expects to receive a string value, and so passing an array of 
classes isn't an option. However, you can simply merge multiple classes into one 
string. And there are a couple of different ways of doing that:

1.	 String concatenation: 

cssClasses = cssClasses + ' text-important';



Introduction | 149

2.	 Using a template literal: 

cssClasses = `${cssClasses} text-important`;

3.	 Joining an array: 

cssClasses = [cssClasses, 'text-important'].join(' ');

These examples could all be used inside the if statement (if (isImportant)) 
to conditionally add the text-important class based on the isImportant 
prop value. All three approaches, as well as variations of these approaches, will work 
because all these approaches produce a string. In general, any approach that yields a 
string can be used to generate values for className.

Merging Multiple Inline Style Objects

When working with inline styles, instead of CSS classes, you can also merge multiple 
style objects. The main difference is that you don't produce a string with all values, 
but rather an object with all combined style values.

This can be achieved by using standard JavaScript techniques for merging multiple 
objects into one object. The most popular technique involves using the spread 
operator, as shown in this example:

function ExplanationText({children, isImportant}) {

  let defaultStyle = { color: 'black' };

  if (isImportant) {

    defaultStyle = { ...defaultStyle, backgroundColor: 'red' };

  }

  return <p style={defaultStyle}>{children}</p>;

}

Here, you will observe that defaultStyle is an object with a color property. If 
isImportant is true, it's replaced with an object that contains all the properties 
it had before (via the spread operator, ...defaultStyle) as well as the 
backgroundColor property.

Note

For more information on the function and use of the spread operator, see 
Chapter 5, Rendering Lists and Conditional Content.



150 | Styling React Apps

Building Components with Customizable Styles

As you are aware by now, components can be reused. This is supported by the fact 
that they can be configured via props. The same component can be used in different 
places on a page with different configurations to yield a different output.

Since styles can be set both statically and dynamically, you can also make the 
styling of your components customizable. The preceding examples already show 
such customization in action; for example, the isImportant prop was used in 
the previous example to conditionally add a red background color to a paragraph. 
The ExplanationText component therefore already allows for indirect style 
customization via the isImportant prop.

Besides this form of customization, you could also build components that accept 
props already holding CSS class names or style objects. For example, the following 
wrapper component accepts a className prop that is merged with a default CSS 
class (btn):

function Button({children, config, className}) {

  return <button {...config} className={`btn ${className}`}>{children}</
button>;
};

This component could be used in another component in the following way:

<Button config={{onClick: doSomething}} className="btn-alert">Click me!</
Button>

If used like this, the final <button> element would receive both the btn as well as 
btn-alert classes.

You don't have to use className as a prop name; any name can be used, since 
it's your component. However, it's not a bad idea to use className because you 
can then keep your mental model of setting CSS classes via className (for built-in 
components, you will not have that choice).

Instead of merging prop values with default CSS class names or style objects, you can 
also overwrite default values. This allows you to build components that come with 
some styling out of the box without enforcing that styling:

function Button({children, config, className}) {

  let cssClasses = 'btn';

  if (className) {

    cssClasses = className;

  }



Introduction | 151

  return <button {...config} className={cssClasses}>{children}</button>;

};

You can see how all these different concepts covered throughout this book are 
coming together here: props allow customization, values can be set, swapped, 
and changed dynamically and conditionally, and therefore, highly reusable and 
configurable components can be built.

Customization with Fixed Configuration Options

Besides exposing props such as className or style, which are merged with other 
classes or styles defined inside a component function, you can also build components 
that apply different styles or class names based on other prop values.

This has been shown in the previous examples where props such as isValid or 
isImportant were used to apply certain styles conditionally. This way of applying 
styles could therefore be called "indirect styling" (though this is not an official term).

Both approaches can shine in different circumstances. For wrapper components, 
for example, accepting className or style props (which may be merged with 
other styles inside the component) enables the component to be used just like a 
built-in component (e.g., like the component it wraps). Indirect styling, on the other 
hand, can be very useful if you want to build components that provide a couple of 
pre-defined variations.

A good example is a text box that provides two built-in themes that can be selected 
via a specific prop:

function TextBox({children, mode}) {

  let cssClasses;

  if (mode === 'alert') {

    cssClasses = 'box-alert';

  } else if (mode === 'info') {

    cssClasses = 'box-info';

  }

  return <p className={cssClasses}>{children}</p>;

};

This TextBox component always yields a paragraph element. If the mode prop is 
set to any value other than 'alert' or 'info', the paragraph doesn't receive any 
special styling. But if mode is equal to 'alert' or 'info', specific CSS classes are 
added to the paragraph.



152 | Styling React Apps

This component therefore doesn't allow direct styling via some className or 
style prop that would be merged, but it does offer different variations or themes 
that can be set with the help of a specific prop (the mode prop in this case).

The Problem with Unscoped Styles

If you consider the different examples you've so far dealt with in this chapter, there's 
one specific use case that occurs quite frequently: styles are relevant to a specific 
component only.

For example, in the TextBox component in the previous section, 'box-alert' 
and 'box-info' are CSS classes that are likely only relevant for this specific 
component and its markup. If any other JSX element in the app had a 'box-alert' 
class applied to it (even though that might be unlikely), it probably shouldn't be styled 
the same as the <p> element in the TextBox component.

Styles from different components could clash with each other and overwrite each 
other because styles are not scoped (i.e., restricted) to a specific component. CSS 
styles are always global, unless inline styles are used (which is discouraged, as 
mentioned earlier).

When working with component-based libraries such as React, this lack of scoping is a 
common issue. It's easy to write conflicting styles as app sizes and complexities grow 
(or, in other words, as more and more components are added to the code base of a 
React app).

That's why various solutions for this problem have been developed by members of 
the React community. The following are two of the most popular solutions:

•	 CSS Modules (supported out of the box in React projects created with create-
react-app)

•	 Styled components (using a third-party library called styled-components)

Scoped Styles with CSS Modules

CSS Modules is the name for an approach where individual CSS files are linked 
to specific JavaScript files and the components defined in those files. This link is 
established by transforming CSS class names, such that every JavaScript file receives 
its own, unique CSS class names. This transformation is performed automatically 
as part of the code build workflow. Therefore, a given project setup must support 
CSS Modules by performing the described CSS class name transformation. Projects 
created via create-react-app support CSS Modules by default.



Introduction | 153

CSS Modules are enabled and used by naming CSS files in a very specific and clearly 
defined way: <anything>.module.css. <anything> is any value of your 
choosing, but the .module part in front of the file extension is required as it signals 
(to the project build workflow) that this CSS file should be transformed according to 
the CSS Modules approach.

Therefore, CSS files named like this must be imported into components in a 
specific way:

import classes from './file.module.css';

This import syntax is different from the import syntax shown at the beginning of 
this section for index.css:

import './index.css';

When importing CSS files as shown in the second snippet, the CSS code is simply 
merged into the index.html file and applied globally. When using CSS Modules 
instead (first code snippet), the CSS class names defined in the imported CSS file are 
transformed such that they are unique for the JS file that imports the CSS file.

Since the CSS class names are transformed and are therefore no longer equal to 
the class names you defined in the CSS file, you import an object (classes, in the 
preceding example) from the CSS file. This object exposes all transformed CSS class 
names under keys that match the CSS class names defined by you in the CSS file. The 
values of those properties are the transformed class names (as strings).

Here's a complete example, starting with a component-specific CSS file (TextBox.
module.css):

.alert {

  padding: 1rem;

  border-radius: 6px;

  background-color: salmon;

  color: red;

}

.info {

  padding: 1rem;

  border-radius: 6px;

  background-color: #d6aafa;

  color: #410474;

}



154 | Styling React Apps

The JavaScript file (TextBox.js) for the component to which the CSS code should 
belong looks like this:

import classes from './TextBox.module.css';

function TextBox({ children, mode }) {

  let cssClasses;

  if (mode === 'alert') {

    cssClasses = classes.alert;

  } else if (mode === 'info') {

    cssClasses = classes.info;

  }

  return <p className={cssClasses}>{children}</p>;

}

export default TextBox;

Note

The full example code can also be found at https://packt.link/13nwz.

If you inspect the rendered text element in the browser developer tools, you will note 
that the CSS class name applied to the <p> element does not match the class name 
specified in the TextBox.module.css file:

Figure 6.4: CSS class name transforms because of CSS Modules usage

https://packt.link/13nwz


Introduction | 155

This is the case because, as described previously, the class name was transformed 
during the build process to be unique. If any other CSS file, imported by another 
JavaScript file, were to define a class with the same name (info in this case), the 
styles would not clash and not overwrite each other because the interfering class 
names would be transformed into different class names before being applied to the 
DOM elements.

Indeed, in the example provided on GitHub, you can find another info CSS class 
defined in the index.css file:

.info {

  border: 5px solid red;

}

That file is still imported into index.js, and hence its styles are applied globally 
to the entire document. Nonetheless, the .info styles clearly aren't affecting <p> 
rendered by TextBox (there is no red border around the text box in Figure 6.4). They 
aren't affecting that element because it doesn't have an info class anymore; the 
class was renamed to text-box_info__vCxmZ by the build workflow (though the 
name will differ as it contains a random element).

It's also worth noting that the index.css file is still imported into index.js, as 
shown at the beginning of this chapter. The import statement is not changed to 
import classes from './index.css';, nor is the CSS file called index.
module.css.

Note, too, that you can use CSS Modules to scope styles to components and can 
also mix the usage of CSS Modules with regular CSS files, which are imported into 
JavaScript files without using CSS Modules (i.e., without scoping).

One other important aspect of using CSS Modules is that you can only use CSS class 
selectors (that is, in your .module.css files) because CSS Modules rely on CSS 
classes. You can write selectors that combine classes with other selectors, such as 
input.invalid, but you can't add selectors that don't use classes at all in your 
.module.css files. For example, input { ... } or #some-id { ... } 
selectors wouldn't work here.

CSS Modules are a very popular way of scoping styles to (React) components, and 
they will be used throughout many examples for the rest of this book.



156 | Styling React Apps

The styled-components Library

The styled-components library is a so-called CSS-in-JS solution. CSS-in-JS 
solutions aim to remove the separation between CSS code and JavaScript code by 
merging them into the same file. Component styles would be defined right next 
to the component logic. It comes down to personal preference whether you favor 
separation (as enforced by using CSS files) or keeping the two languages close to 
each other.

Since styled-components is a third-party library that's not pre-installed in newly 
created React projects, you have to install this library as a first step if you want to use 
it. This can be done via npm (which was automatically installed together with Node.js 
in Chapter 1, React – What and Why):

npm install styled-components

The styled-components library essentially provides wrapper components 
around all built-in core components (as in, around p, a, button, input, and so 
on). It exposes all these wrapper components as tagged templates—JavaScript 
functions that aren't called like regular functions, but are instead executed by 
adding backticks (a template literal) right after the function name, for example, 
doSomething'text data'.

Note

Tagged templates can be confusing when you see them for the first time, 
especially since it's a JavaScript feature that isn't used too frequently. 
Chances are high that you haven't worked with them too often. It's even 
more likely that you have never built a custom tagged template before. You 
can learn more about tagged templates in this excellent documentation on 
MDN at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Template_literals#tagged_templates.

Here is a component that imports and uses styled-components to set and 
scope styling:

import styled from 'styled-components';

const Button = styled.button`

  background-color: #370566;

  color: white;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#tagged_templates
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#tagged_templates


Introduction | 157

  border: none;

  padding: 1rem;

  border-radius: 4px;

`;

export default Button;

This component isn't a component function but rather a constant that stores the 
value returned by executing the styled.button tagged template. That tagged 
template returns a component function that yields a <button> element. The styles 
passed via the tagged template (i.e., inside the template literal) are applied to that 
returned button element. You can see this if you inspect the button in the browser 
developer tools:

Figure 6.5: The rendered button element receives the defined component styles

In Figure 6.5, you can also see how the styled-components library applies your 
styles to the element. It extracts your style definitions from the tagged template string 
and injects them into a <style> element in the <head> section of the document. 
The injected styles are then applied via a class selector that is generated (and named) 
by the styled-components library. Finally, the automatically generated CSS class 
name is added to the element (<button>, in this case) by the library.



158 | Styling React Apps

The components exposed by the styled-components library spread any extra 
props you pass to a component onto the wrapped core component. In addition, any 
content inserted between the opening and closing tags is also inserted between the 
tags of the wrapped component.

That's why the Button created previously can be used like this without adding any 
extra logic to it:

import Button from './components/button';

function App() {

  function clickHandler() {

    console.log('This button was clicked!');

  }

  return <Button onClick={clickHandler}>Click me!</Button>;

}

export default App;

Note

The complete example code can be found on GitHub at https://packt.link/
XD6IL.

You can do more with the styled-components library. For example, you can 
set styles dynamically and conditionally. This book is not primarily about that 
library though. It's just one of many alternatives to CSS Modules. Therefore, it is 
recommended that you explore the official styled-components documentation 
if you want to learn more, which you can find at https://styled-components.com/.

Using Other CSS or JavaScript Styling Libraries and Frameworks

As mentioned, there are many third-party styling libraries that can be used in React 
apps. There are alternatives to styled-components or CSS Modules that help with 
scoping styles. But there are also other kinds of CSS libraries:

•	 Utility libraries that solve very specific CSS problems—independent of the fact 
that you're using them in a React project (for example, Animate.css, which 
helps with adding animations)

https://packt.link/XD6IL
https://packt.link/XD6IL
https://styled-components.com/


Introduction | 159

•	 CSS frameworks that provide a broad variety of pre-built CSS classes that 
can be applied to elements to quickly achieve a certain look (e.g., Bootstrap 
or Tailwind)

It is important to realize that you can use any of these CSS libraries with React. You 
can bring your favorite CSS framework (such as Bootstrap or Tailwind) and use the 
CSS classes provided by that framework on the JSX elements of your React app.

Some libraries and frameworks have React-specific extensions or specifically support 
React, but that does not mean that you can't use libraries that don't have this.

Summary and Key Takeaways

•	 Standard CSS can be used to style React components and JSX elements.

•	 CSS files are typically directly imported into JavaScript files, which is possible 
thanks to the project build process, which extracts the CSS code and injects it 
into the document (the HTML file).

•	 As an alternative to global CSS styles (with element, id, class, or other 
selectors), inline styles can be used to apply styling to JSX elements.

•	 When using CSS classes for styling, you must use the className prop 
(not class).

•	 Styles can be set statically and dynamically or conditionally with the same syntax 
that is used for injecting other dynamic or conditional values into JSX code—a 
pair of curly braces.

•	 Highly configurable custom components can be built by setting styles (or CSS 
classes) based on prop values or by merging received prop values with other 
styles or class name strings.

•	 When using just CSS, clashing CSS class names can be a problem.

•	 CSS Modules solve this problem by transforming class names into unique names 
(per component) as part of the build workflow.

•	 Alternatively, third-party libraries such as styled-components can be used. 
This library is a CSS-in-JS library that also has the advantage or disadvantage 
(depending on your preference) of removing the separation between JS and 
CSS code.

•	 Other CSS libraries or frameworks can be used as well; React does not impose 
any restrictions regarding that.



160 | Styling React Apps

What's Next?
With styling covered, you're now able to build not just functional but also visually 
appealing user interfaces. Even if you often work with dedicated web designers or 
CSS experts, you still typically need to be able to set and assign styles (dynamically) 
that are delivered to you.

With styling being a general concept that is relatively independent of React, the next 
chapter will dive back into more React-specific features and topics. You will learn 
about portals and refs, which are two key concepts that are built into React. You will 
understand which problems are solved by these concepts and how the two features 
are used.

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to examples that can be 
found here: https://packt.link/vJgKI.

1.	 With which language are styles for React components defined?

2.	 Which important difference between projects with and without React has to be 
kept in mind when assigning classes to elements?

3.	 How can styles be assigned dynamically and conditionally?

4.	 What does "scoping" mean in the context of styling?

5.	 How could styles be scoped to components? Briefly explain at least one concept 
that helps with scoping.

Apply What You Learned
You are now not only able to build interactive user interfaces but also style those user 
interface elements in engaging ways. You can set and change those styles dynamically 
or based on conditions.

In this section, you will find two activities that allow you to apply your newly gained 
knowledge in combination with what you learned in previous chapters.

Activity 6.1: Providing Input Validity Feedback upon Form Submission

In this activity, you will build a basic form that allows users to enter an email address 
and a password. The provided input of each input field is validated, and the validation 
result is stored (for each individual input field). 

https://packt.link/vJgKI


Apply What You Learned | 161

The aim of this activity is to add some general form styling and some conditional 
styling that becomes active once an invalid form has been submitted. The exact styles 
are up to you, but for highlighting invalid input fields, the background color of the 
affected input field must be changed, as well as its border color and the text color of 
the related label.

The steps are as follows:

1.	 Create a new React project and add a form component to it.

2.	 Output the form component in the project's root component.

3.	 In the form component, output a form that contains two input fields: one for 
entering an email address and one for entering a password. 

4.	 Add labels to the input fields.

5.	 Store the entered values and check their validity upon form submission (you can 
be creative in forming your own validation logic).

6.	 Pick appropriate CSS classes from the provided index.css file (you can write 
your own classes as well).

7.	 Add them to the invalid input fields and their labels once invalid values have 
been submitted.

The final user interface should look like this:

Figure 6.6: The final user interface with invalid input values highlighted in red



162 | Styling React Apps

Since this book is not about CSS and you may not be a CSS expert, you can use the 
index.css file from the solution and focus on the React logic to apply appropriate 
CSS classes to JSX elements. 

Note

The solution to this activity can be found via this link.

Activity 6.2: Using CSS Modules for Style Scoping

In this activity, you'll take the final app built in Activity 6.01 and adjust it to use CSS 
Modules. The goal is to migrate all component-specific styles into a component-
specific CSS file, which uses CSS Modules for style scoping.

The final user interface therefore looks the same as it did in the previous activity. But 
the styles will be scoped to the Form component so that clashing class names won't 
interfere with styling. 

The steps are as follows:

1.	 Finish the previous activity or take the finished code from GitHub.

2.	 Identify the styles belonging specifically to the Form component and move them 
into a new, component-specific CSS file.

3.	 Change CSS selectors to class name selectors and add classes to JSX elements as 
needed (this is because CSS Modules require class name selectors).

4.	 Use the component-specific CSS file as explained throughout this chapter and 
assign the CSS classes to the appropriate JSX elements.

Note

The solution to this activity can be found via this link.







Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Use direct DOM element access to interact with elements

�  Expose the functions and data of your components to other components

�  Control the position of rendered JSX elements in the DOM

Portals and Refs

7



166 | Portals and Refs

Introduction
React.js is all about building user interfaces, and, in the context of this book, it's about 
building web user interfaces specifically.

Web user interfaces are ultimately all about the Document Object Model (DOM). 
You can use JavaScript to read or manipulate the DOM. This is what allows you to 
build interactive websites: you can add, remove, or edit DOM elements after a page 
was loaded. This can be used to add or remove overlay windows or to read values 
entered into input fields.

This was already discussed in Chapter 1,  React – What and Why, and, as you learned 
there, React is used to simplify this process. Instead of manipulating the DOM or 
reading values from DOM elements manually, you can use React to describe the 
desired state. React then takes care of the steps needed to achieve this desired state.

However, there are scenarios and use cases wherein, despite using React, you still 
want to be able to directly reach out to specific DOM elements—for example, to read 
a value entered by a user into an input field or if you're not happy with the position of 
a newly inserted element in the DOM that was chosen by React.

React provides certain functionalities that help you in exactly these kinds of 
situations: Portals and Refs. 

A World without Refs

Consider the following example: you have a website that renders an input field, 
requesting a user's email address. It could look something like this:

Figure 7.1: An example form with an email input field



Introduction | 167

The code for the component that's responsible for rendering the form and handling 
the entered email address value might look like this:

function EmailForm() {

  const [enteredEmail, setEnteredEmail] = useState('');

  function updateEmailHandler(event) {

  setEnteredEmail(event.target.value);

  }

  function submitFormHandler(event) {

  event.preventDefault();

  // could send enteredEmail to a backend server

  }

  return (

  <form className={classes.form} onSubmit={submitFormHandler}>

    <label htmlFor="email">Your email</label>

    <input type="email" id="email" onChange={updateEmailHandler} />

    <button>Save</button>

  </form>

  );

}

As you can see, this example uses the useState() Hook, combined with the 
change event, to register keystrokes in the email input field and store the 
entered value.

This code works fine and there is nothing wrong with having this kind of code in 
your application. But adding the extra event listener and state, as well as adding the 
function to update the state whenever the change event is triggered, is quite a bit of 
boilerplate code for one simple task: getting the entered email address.

The preceding code snippet does nothing else with the email address other than 
submit it. In other words, the only reason for using the enteredEmail state in the 
example is to read the entered value.

In scenarios such as this, quite a bit of code could be saved if you fell back to some 
vanilla JavaScript logic:

const emailInputEl = document.getElementById('email');

const enteredEmailVal = emailInputEl.value;



168 | Portals and Refs

These two lines of code (which could be merged into one line theoretically) allow you 
to get hold of a DOM element and read the currently stored value.

The problem with this kind of code is that it does not use React. And if you're building 
a React app, you should really stick to React when working with the DOM. Don't start 
blending your own vanilla JavaScript code that accesses the DOM into the React code. 

This can lead to unintended behaviors or bugs, especially if you start manipulating 
the DOM. It could lead to bugs because React would not be aware of your changes in 
that case; the actual rendered UI would not be in sync with React's assumed UI. Even 
if you're just reading from the DOM, it's a good habit to not even start merging vanilla 
JavaScript DOM access methods with your React code.

To still allow you to get hold of DOM elements and read values, as shown above, 
React gives you a special concept that you can use: Refs.

Ref stands for reference, and it's a feature that allows you to reference (i.e., get hold 
of) elements from inside a React component. The preceding vanilla JavaScript code 
would do the same (it also gives you access to a rendered element), but when using 
refs, you can get access without mixing vanilla JavaScript code into your React code.

Refs can be created using a special React Hook called the useRef() Hook.

This Hook can be executed to generate a ref object:

import { useRef } from 'react';

function EmailForm() {

  const emailRef = useRef();

  // other code ...

};

This generated ref object, emailRef in the preceding example, can then be assigned 
to any JSX element. This assignment is done via a special prop (the ref prop) that is 
automatically supported by every JSX element:

return (

  <form className={classes.form} onSubmit={submitFormHandler}>

  <label htmlFor="email">Your email</label>

  <input

    ref={emailRef}

    type="email"

    id="email"



Introduction | 169

  />

  <button>Save</button>

  </form>

);

Just like the key prop introduced in Chapter 5, Rendering Lists and Conditional Content, 
the ref prop is provided by React. The ref prop wants a ref object, e.g., one that 
was created via useRef().

With that ref object created and assigned, you can then use it to get access to the 
connected JSX element (to the <input> element in this example). There's just one 
important thing to note: to get hold of the connected element, you must access a 
special current prop on the created ref object. This is required because React 
stores the value assigned to the ref object in a nested object, accessible via the 
current property, as shown here:

function submitFormHandler(event) {

  event.preventDefault();

  const enteredEmail = emailRef.current.value; // .current is mandatory!

  // could send enteredEmail to a backend server

};

emailRef.current yields the underlying DOM object that was rendered for the 
connected JSX element. In this case, it therefore allows access to the input element 
DOM object. Since that DOM object has a value property, this value property can 
be accessed without issue.

Note

For further information on this topic see https://developer.mozilla.org/en-US/
docs/Web/HTML/Element/input#attributes.

With this kind of code, you can read the value from the DOM element without having 
to use useState() and an event listener. The final component code therefore 
becomes quite a bit leaner:

function EmailForm() {

  const emailRef = useRef();

  function submitFormHandler(event) {

  event.preventDefault();

  const enteredEmail = emailRef.current.value;

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attributes


170 | Portals and Refs

  // could send enteredEmail to a backend server

  }

  return (

  <form className={classes.form} onSubmit={submitFormHandler}>

    <label htmlFor="email">Your email</label>

    <input

      ref={emailRef}

      type="email"

      id="email"

    />

    <button>Save</button>

  </form>

  );

}

Refs versus State

Since refs can be used to get quick and easy access to DOM elements, the question 
that might come up is whether you should always use refs instead of state.

The clear answer to this question is "no".

Refs can be a very good alternative in use cases like the one shown above, when you 
need read access to an element. This is very often the case when dealing with user 
input. In general, refs can replace state if you're just accessing some value to read it 
when some function (a form submit handler function, for example) is executed. As 
soon as you need to change values and those changes must be reflected in the UI (for 
example, by rendering some conditional content), refs are out of the game. 

In the example above, if, besides getting the entered value, you'd also like to reset 
(i.e., clear) the email input after the form was submitted, you should use state again. 
While you could reset the input with the help of a ref, you should not do that. You 
would start manipulating the DOM and only React should do that—with its own, 
internal methods, based on the declarative code you provide to React. 

You should not reset the email input like this:

function EmailForm() {

  const emailRef = useRef();

  function submitFormHandler(event) {

  event.preventDefault();



Introduction | 171

  const enteredEmail = emailRef.current.value;

  // could send enteredEmail to a backend server

  emailRef.current.value = ''; // resetting the input value

  }

  return (

  <form className={classes.form} onSubmit={submitFormHandler}>

    <label htmlFor="email">Your email</label>

    <input

      ref={emailRef}

      type="email"

      id="email"

    />

    <button>Save</button>

  </form>

  );

}

Instead, you should reset it by using React's state concept and by following the 
declarative approach embraced by React:

function EmailForm() {

  const [enteredEmail, setEnteredEmail] = useState('');

  function updateEmailHandler(event) {

  setEnteredEmail(event.target.value);

  }

  function submitFormHandler(event) {

  event.preventDefault();

  // could send enteredEmail to a backend server

  // reset by setting the state + using the value prop below

  setEnteredEmail(''); 

  }

  return (

  <form className={classes.form} onSubmit={submitFormHandler}>

    <label htmlFor="email">Your email</label>

    <input 



172 | Portals and Refs

      type="email" 

      id="email" 

      onChange={updateEmailHandler}

      value={enteredEmail}

    />

    <button>Save</button>

  </form>

  );

}

Note

As a rule, you should simply try to avoid writing imperative code in React 
projects. Instead, tell React how the final UI should look and let React figure 
out how to get there.

Reading values via refs is an acceptable exception and manipulating DOM 
elements (with or without refs) should be avoided. A rare exception would 
be scenarios such as calling focus() on an input element DOM object as 
methods like focus() don't typically cause any DOM changes that could 
break the React app.

Using Refs for More than DOM Access

Accessing DOM elements (for reading values) is one of the most common use cases 
for using refs. As shown above, it can help you reduce code in certain situations.

But refs are more than just "element connection bridges"; they are objects that can 
be used to store all kinds of values—not just pointers at DOM objects. You can, for 
example, also store strings or numbers or any other kind of value in a ref:

const passwordRetries = useRef(0);

You can pass an initial value to useRef() (0 in this example) and then access 
or change that value at any point in time, inside of the component to which the 
ref belongs:

passwordRetries.current = 1;

However, you still have to use the current property to read and change the stored 
value, because, as mentioned above, this is where React will store the actual value 
that belongs to the Ref.



Introduction | 173

This can be useful for storing data that should "survive" component re-evaluations. As 
you learned in Chapter 4, Working with Events and State, React will execute component 
functions every time the state of a component changes. Since the function is executed 
again, any data stored in function-scoped variables would be lost. Consider the 
following example:

function Counters() {

  const [counter1, setCounter1] = useState(0);

  const counterRef = useRef(0);

  let counter2 = 0;

  function changeCountersHandler() {

  setCounter1(1);

  counter2 = 1;

  counterRef.current = 1;

  };

  return (

  <>

    <button onClick={changeCountersHandler}>Change Counters</button>

    <ul>

      <li>Counter 1: {counter1}</li>

      <li>Counter 2: {counter2}</li>

      <li>Counter 3: {counterRef.current}</li>

    </ul>

  </>

  );

};

In this example, counters 1 and 3 would change to 1 once the button is clicked. 
However, counter 2 would remain zero, even though the counter2 variable gets 
changed to a value of 1 in changeCountersHandler as well:

Figure 7.2: Only two of the three counter values changed



174 | Portals and Refs

In this example, it should be expected that the state value changes, and the new 
value is reflected in the updated user interface. That is the whole idea behind state, 
after all. 

The ref (counterRef) also keeps its updated value across component 
re-evaluations, though. That's the behavior described above: refs are not reset or 
cleared when the surrounding component function is executed again. The vanilla 
JavaScript variable (counter2) does not keep its value. Even though it is changed 
in changeCountersHandler, a new variable is initialized when the component 
function is executed again; thus the updated value (1) is lost.

In this example, it might again look like refs can replace state, but the example 
actually shows very well why that is not the case. Try replacing counter1 with 
another ref (so that there is no state value left in the component) and clicking 
the button:

import { useRef } from 'react';

function Counters() {

  const counterRef1 = useRef(0);

  const counterRef2 = useRef(0);

  let counter2 = 0;

  function changeCountersHandler() {

  counterRef1.current = 1;

  counter2 = 1;

  counterRef2.current = 1;

  }

  return (

  <>

    <button onClick={changeCountersHandler}>Change Counters</button>

    <ul>

      <li>Counter 1: {counterRef1.current}</li>

      <li>Counter 2: {counter2}</li>

      <li>Counter 3: {counterRef2.current}</li>

    </ul>

  </>

  );



Introduction | 175

export default Counters;

Nothing will change on the page because, while the button click is registered and the 
changeCountersHandler function is executed, no state change is initiated. And 
state changes (initiated via the setXYZ state updating function calls) are the triggers 
that cause React to re-evaluate a component. Changes to ref values do not do that.

Therefore, if you have data that should survive component re-evaluations but 
should not be managed as state (because changes to that data should not cause the 
component to be re-evaluated when changed), you could use a ref:

const passwordRetries = useRef(0);

// later in the component ...

passwordRetries.current = 1; // changed from 0 to 1

// later ...

console.log(passwordRetries.current); // prints 1, even if the component 
changed

This is not a feature that's used frequently, but it can be helpful from time to time. In 
all other cases, use normal state values.

Forwarding Refs

Refs cannot just be used to access DOM elements. You can also use them to access 
React components—including your own components.

This can sometimes be useful. Consider this example: you have a <Form> 
component that contains a nested <Preferences> component. The latter 
component is responsible for displaying three checkboxes, asking the user for their 
newsletter preferences:

Figure 7.3: A newsletter sign-up form that shows two checkboxes  
to set newsletter preferences



176 | Portals and Refs

The code of the Preferences component could look like this:

function Preferences() {

  const [wantsNewProdInfo, setWantsNewProdInfo] = useState(false);

  const [wantsProdUpdateInfo, setWantsProdUpdateInfo] = useState(false);

  function changeNewProdPrefHandler() {

    setWantsNewProdInfo((prevPref) => !prevPref);

  }

  function changeUpdateProdPrefHandler() {

    setWantsProdUpdateInfo((prevPref) => !prevPref);

  }

  return (

    <div className={classes.preferences}>

      <label>

        <input

          type="checkbox"

          id="pref-new"

          checked={wantsNewProdInfo}

          onChange={changeNewProdPrefHandler}

        />

        <span>New Products</span>

      </label>

      <label>

        <input

          type="checkbox"

          id="pref-updates"

          checked={wantsProdUpdateInfo}

          onChange={changeUpdateProdPrefHandler}

        />

        <span>Product Updates</span>

      </label>

    </div>

  );

};

As you can see, it's a basic component that essentially outputs the two checkboxes, 
adds some styling, and keeps track of the selected checkbox via state.



Introduction | 177

The Form component code could look like this:

function Form() {

  function submitHandler(event) {

    event.preventDefault();

  }

  return (

    <form className={classes.form} onSubmit={submitHandler}>

      <div className={classes.formControl}>

        <label htmlFor="email">Your email</label>

        <input type="email" id="email" />

      </div>

      <Preferences />

      <button>Submit</button>

    </form>

  );

}

Now imagine that upon form submission (inside of the submitHandler function), 
the Preferences should be reset (i.e., no checkbox is selected anymore). In 
addition, prior to resetting, the selected values should be read and used in the 
submitHandler function.

This would be straightforward if the checkboxes were not put into a separate 
component. If the entire code and JSX markup reside in the Form component, state 
could be used in that component to read and change the values. But this is not the 
case in this example and rewriting the code just because of this problem sounds like 
an unnecessary restriction.

Fortunately, Refs can help in this situation.

You can expose features (for example, functions or state values) of a component 
to other components by forwarding refs. Refs can essentially be used as a 
"communication device" between two components, just as they were used as a 
"communication device" with a DOM element in the previous sections.

To forward Refs, you must wrap the receiving component (Preferences, in this 
example) with a special function provided by React: forwardRef().



178 | Portals and Refs

This can be done like this:

const Preferences = forwardRef((props, ref) => {

  // component code ...

});

export default Preferences;

This looks slightly different than all the other components in this book because an 
arrow function is used instead of the function keyword. You can always use arrow 
functions instead of "normal functions", but here it's helpful to switch as it makes 
wrapping the function with forwardRef() very easy. Alternatively, you could stick 
to the function keyword and wrap the function like this:

function Preferences(props, ref) {

 // component code ...

};

export default forwardRef(Preferences);

It is up to you which syntax you prefer. Both work and both are commonly used in 
React projects.

The interesting part about this code is that the component function now receives two 
parameters instead of one. Besides receiving props, which component functions 
always do, it now also receives a special ref parameter. And this parameter is only 
received because the component function is wrapped with forwardRef().

This ref parameter will contain any ref value set by the component using the 
Preferences component. For example, the Form component could set a ref 
parameter on Preferences like this:

function Form() {

  const preferencesRef = useRef({});

  function submitHandler(event) {

    // other code ...

  }

  return (

    <form className={classes.form} onSubmit={submitHandler}>

      <div className={classes.formControl}>

        <label htmlFor="email">Your email</label>



Introduction | 179

        <input type="email" id="email" />

      </div>

      <Preferences ref={preferencesRef} />

      <button>Submit</button>

    </form>

  );

}

Again, useRef() is used to create a ref object (preferencesRef), and that 
object is then passed via the special ref prop to the Preferences component. 
The created ref receives a default value of an empty object ({}); it's this object that 
can then be accessed via ref.current. In the Preferences component, the ref 
value is not received as a regular prop on the props parameter, though. Instead, it's 
received via this second ref parameter, which exists because of forwardRef().

But what's the benefit of that? How can this preferencesRef object now be used 
inside Preferences to enable cross-component interaction?

Since ref is an object that is never replaced, even if the component in which it was 
created via useRef() is re-evaluated (see previous sections above), the receiving 
component can assign properties and methods to that object and the creating 
component can then use these methods and properties. The ref object is therefore 
used as a communication vehicle.

In this example, the Preferences component could be changed like this to use the 
ref object:

const Preferences = forwardRef((props, ref) => {

  const [wantsNewProdInfo, setWantsNewProdInfo] = useState(false);

  const [wantsProdUpdateInfo, setWantsProdUpdateInfo] = useState(false);

  function changeNewProdPrefHandler() {

    setWantsNewProdInfo((prevPref) => !prevPref);

  }

  function changeUpdateProdPrefHandler() {

    setWantsProdUpdateInfo((prevPref) => !prevPref);

  }

  function reset() {

    setWantsNewProdInfo(false);

    setWantsProdUpdateInfo(false);

  }



180 | Portals and Refs

  ref.current.reset = reset;

  ref.current.selectedPreferences = {

    newProductInfo: wantsNewProdInfo,

    productUpdateInfo: wantsProdUpdateInfo,

  };

  // also return JSX code (has not changed) ...

});

In Preferences, both the state values and a pointer at a newly added reset 
function are stored in the received ref object. ref.current is used since the 
object created by React (when using useRef()) always has such a current 
property, and that property should be used for storing the actual values in ref.

Since Preferences and Form operate on the same object that's stored in the ref 
object, the properties and methods assigned to the object in Preferences can also 
be used in Form:

function Form() {

  const preferencesRef = useRef({});

  function submitHandler(event) {

    event.preventDefault();

    console.log(preferencesRef.current.selectedPreferences); // reading a 
value
    preferencesRef.current.reset(); // executing a function stored in 
Preferences
  }

  return (

    <form className={classes.form} onSubmit={submitHandler}>

      <div className={classes.formControl}>

        <label htmlFor="email">Your email</label>

        <input type="email" id="email" />

      </div>

      <Preferences ref={preferencesRef} />

      <button>Submit</button>

    </form>

  );

}



Introduction | 181

By using forward refs like this, a parent component (Form, in this case) is able to 
use some child component (for instance, Preferences) in an imperative way—
meaning properties can be accessed and methods called to manipulate the child 
component (or, to be precise, to trigger some internal functions and behavior inside 
the child component).

Controlled versus Uncontrolled Components

Forwarding refs is a method that can be used to allow the Form and Preferences 
components to work together. But even though it might look like an elegant solution 
at first, it should typically not be your default solution for this kind of problem. 

Using forward refs, as shown in the example above, leads to more imperative code 
in the end. It's imperative code because instead of defining the desired user interface 
state via JSX (which would be declarative), individual step-by-step instructions are 
added in JavaScript. 

If you revisit Chapter 1, React – What and Why (the "The Problem with Vanilla JavaScript" 
section), you'll see that code such as preferencesRef.current.reset() (from 
the example above) looks quite similar to instructions such as buttonElement.
addEventListener(…) (example from Chapter 1). Both examples use 
imperative code and should be avoided for the reasons mentioned in Chapter 1 
(writing step-by-step instructions leads to inefficient micro-management and often 
unnecessarily complex code).

Inside the Form component, the reset() function of Preferences is invoked. 
Hence the code describes the desired action that should be performed (instead of 
the expected outcome). Typically, when working with React you should strive for 
describing the desired (UI) state instead. Remember, when working with React, that 
you should write declarative, rather than imperative, code.

When using refs to read or manipulate data as shown in the previous sections of this 
chapter, you are building so-called uncontrolled components. The components 
are considered "uncontrolled" because React is not directly controlling the UI state. 
Instead, values are read from other components or the DOM. It's therefore the 
DOM that controls the state (e.g., a state such as the value entered by a user into an 
input field).

As a React developer, you should try to minimize the use of uncontrolled 
components. It's absolutely fine to use refs to save some code if you only need to 
gather some entered values. But as soon as your UI logic becomes more complex 
(for example, if you also want to clear user input), you should go for controlled 
components instead.



182 | Portals and Refs

And doing so is quite straightforward: a component becomes controlled as soon 
as React manages the state. In the case of the EmailForm component from the 
beginning of this chapter, the controlled component approach was shown before refs 
were introduced. Using useState() for storing the user's input (and updating the 
state with every keystroke) meant that React was in full control of the entered value.

For the previous example, the Form and Preferences components, switching to a 
controlled component approach could look like this:

function Preferences({newProdInfo, prodUpdateInfo, onUpdateInfo}) {

  return (

    <div className={classes.preferences}>

      <label>

        <input

          type="checkbox"

          id="pref-new"

          checked={newProdInfo}

          onChange={onUpdateInfo.bind(null, 'pref-new')}

        />

        <span>New Products</span>

      </label>

      <label>

        <input

          type="checkbox"

          id="pref-updates"

          checked={prodUpdateInfo}

          onChange={onUpdateInfo.bind(null, 'pref-updates')}

        />

        <span>Product Updates</span>

      </label>

    </div>

  );

};

In this example, the Preferences component stops managing the checkbox state 
and instead receives props from its parent component (the Form component).

bind() is used on the onUpdateInfo prop (which will receive a function as a 
value) to "pre-configure" the function for future execution. bind() is a default 
JavaScript method that can be called on any JavaScript function to control which 
arguments will be passed to that function once it's invoked in the future.



Introduction | 183

Note

You can learn more about this JavaScript feature at https://academind.com/
tutorials/function-bind-event-execution.

The Form component now manages the checkbox states, even though it 
doesn't directly contain the checkbox elements. But it now begins to control the 
Preferences component and its internal state, hence turning Preferences into 
a controlled component instead of an uncontrolled one:

function Form() {

  const [wantsNewProdInfo, setWantsNewProdInfo] = useState(false);

  const [wantsProdUpdateInfo, setWantsProdUpdateInfo] = useState(false);

  function updateProdInfoHandler(selection) {

    // using one shared update handler function is optional

    // you could also use two separate functions (passed to Preferences) 
as props
    if (selection === 'pref-new') {

      setWantsNewProdInfo((prevPref) => !prevPref);

    } else if (selection === 'pref-update') {

      setWantsProdUpdateInfo((prevPref) => !prevPref);

    }

  }

  function reset() {

    setWantsNewProdInfo(false);

    setWantsProdUpdateInfo(false);

  }

  function submitHandler(event) {

    event.preventDefault();

    // state values can be used here

    reset();

  }

  return (

    <form className={classes.form} onSubmit={submitHandler}>

      <div className={classes.formControl}>

        <label htmlFor="email">Your email</label>

https://academind.com/tutorials/function-bind-event-execution
https://academind.com/tutorials/function-bind-event-execution


184 | Portals and Refs

        <input type="email" id="email" />

      </div>

      <Preferences 

        newProdInfo={wantsNewProdInfo}

        prodUpdateInfo={wantsProdUpdateInfo}

        onUpdateInfo={updateProdInfoHandler} 

      />

      <button>Submit</button>

    </form>

  );

}

Form manages the checkbox selection state, including resetting the state via the 
reset() function, and passes the managed state values (wantsNewProdInfo and 
wantsProdUpdateInfo) as well as the updateProdInfoHandler function, 
which updates the state values, to Preferences. The Form component now 
controls the Preferences component.

If you go through the two code snippets above, you'll notice that the final code is 
once again purely declarative. Across all components, state is managed and used to 
declare the expected user interface.

It is considered a good practice to go for controlled components in most cases. If you 
are only extracting some entered user input values, however, then using refs and 
creating an uncontrolled component is absolutely fine. 

React and Where Things End up in the DOM

Leaving the topic of refs, there is one other important React feature that can help 
with influencing (indirect) DOM interaction: Portals.

When building user interfaces, you sometimes need to display elements and content 
conditionally. This was already covered in Chapter 5, Rendering Lists and Conditional 
Content. When rendering conditional content, React will inject that content into the 
place in the DOM where the overall component (in which the conditional content is 
defined) is located.

For example, when showing a conditional error message below an input field, that 
error message is right below the input in the DOM:



Introduction | 185

Figure 7.4: The error message DOM element sits right below the <input> it belongs to

This behavior makes sense. Indeed, it would be pretty irritating if React were to start 
inserting DOM elements in random places. But in some scenarios, you may prefer 
a (conditional) DOM element to be inserted in a different place in the DOM—for 
example, when working with overlay elements such as error dialogs.

In the preceding example, you could add logic to ensure that some error dialog is 
presented to the user if the form is submitted with an invalid email address. This 
could be implemented with logic similar to the "Invalid email address!" 
error message, and therefore the dialog element would, of course, also be injected 
dynamically into the DOM:

Figure 7.5: The error dialog and its backdrop are injected into the DOM

In this screenshot, the error dialog is opened as an overlay above a backdrop 
element, which is itself added such that it acts as an overlay to the rest of the 
user interface. 



186 | Portals and Refs

Note

The appearance is handled entirely by CSS, and you can take a look at the 
complete project (including the styling) here: https://packt.link/wFmZ7.

This example works and looks fine. However, there is room for improvement. 

Semantically, it doesn't entirely make sense to have the overlay elements injected 
somewhere nested into the DOM next to the <input> element. It would make more 
sense for overlay elements to be closer to the root of the DOM (in other words, to 
be direct child elements of <div id="root"> or even <body>), instead of being 
children of <form>. And it's not just a semantic problem. If the example app contains 
other overlay elements, those elements might clash with each other like this:

Figure 7.6: The <footer> element at the bottom is visible above the backdrop

In this example, the <footer> element at the bottom ("An example project") is not 
hidden or grayed out by the backdrop that belongs to the error dialog. The reason 
for that is that the footer also has some CSS styling attached that turns it into a de 
facto overlay (because of position: fixed and left + bottom being used in its 
CSS styles).

https://packt.link/wFmZ7


Introduction | 187

As a solution to this problem, you could tweak some CSS styles and, for example, use 
the z-index CSS property to control overlay levels. However, it would be a cleaner 
solution if the overlay elements (i.e., the <div> backdrop and the <dialog> error 
elements) were inserted into the DOM in a different place—for example, at the very 
end of the <body> element (but as direct children to <body>).

And that's exactly the kind of problem React Portals help you solve.

Portals to the Rescue

A Portal, in React's world, is a feature that allows you to instruct React to insert a 
DOM element in a different place thanwhere it would normally be inserted.

Considering the example shown above, this portal feature can be used to "tell" React 
to not insert the <dialog> error and the <div> backdrop that belongs to the dialog 
inside the <form> element, but to instead insert those elements at the end of the 
<body> element.

To use this portal feature, you first must define a place wherein elements can be 
inserted (an "injection hook"). This can be done in the HTML file that belongs to the 
React app (i.e., public/index.html). There, you can add a new element (for 
example, a <div> element) somewhere in the <body> element:

<body>

  <noscript>You need to enable JavaScript to run this app.</noscript>

  <div id="root"></div>

  <div id="dialogs"></div>

</body>

In this case, a <div id="dialogs"> element is added at the end of the <body> 
element to make sure that any components (and their styles) inserted in that 
element are evaluated last. This will ensure that their styles take a higher priority 
and overlay elements inserted into <div id="dialogs"> would not be overlaid 
by other content coming earlier in the DOM. Adding and using multiple hooks would 
be possible, but for this example, only one "injection point" is needed. You can also 
use HTML elements other than <div> elements.



188 | Portals and Refs

With the index.html file adjusted, React can be instructed to render certain JSX 
elements (i.e., components) in a specified hook via the createPortal() function 
of react-dom:

import { createPortal } from 'react-dom';

import classes from './ErrorDialog.module.css';

function ErrorDialog({ onClose }) {

  return createPortal(

    <>

      <div className={classes.backdrop}></div>

      <dialog className={classes.dialog} open>

        <p>

          This form contains invalid values. Please fix those errors 
before
          submitting the form again!

        </p>

        <button onClick={onClose}>Okay</button>

      </dialog>

    </>,

    document.getElementById(‚dialogs')

  );

}

export default ErrorDialog;

Inside this ErrorDialog component, which is rendered conditionally 
by another component (the EmailForm component, the example code for which 
is available on GitHub), the returned JSX code is wrapped by createPortal(). 
createPortal() takes two arguments: the JSX code that should be rendered in 
the DOM and a pointer at the element in index.html where the content should 
be injected.

In this example, the newly added <div id="dialogs"> is selected via 
document.getElementById('dialogs'). Therefore, createPortal() 
ensures that the JSX code generated by ErrorDialog is rendered in that place in 
the HTML document:



Introduction | 189

Figure 7.7: The overlay elements are inserted into <div id="dialogs">

In this screenshot, you can see that the overlay elements (<div> backdrop and 
<dialog> error) are indeed inserted into the <div id="dialogs"> element, 
instead of the <form> element (as they were before).

As a result of this change, <footer> no longer overlays the error dialog backdrop—
without any CSS code changes. Semantically, the final DOM structure also makes 
more sense since you would typically expect overlay elements to be closer to the root 
DOM node.

Still, using this portal feature is optional. The same visual result (though not the DOM 
structure) could have been achieved by changing some CSS styles. Nonetheless, 
aiming for a clean DOM structure is a worthwhile pursuit, and avoiding unnecessarily 
complex CSS code is also not a bad thing.

Summary and Key Takeaways

•	 Refs can be used to gain direct access to DOM elements or to store values that 
won't be reset or changed when the surrounding component is re-evaluated.

•	 Only use this direct access to read values, not to manipulate DOM elements 
(let React do this instead).

•	 Components that gain DOM access via refs, instead of state and other React 
features, are considered uncontrolled components (because React is not in 
direct control).



190 | Portals and Refs

•	 Prefer controlled components (using state and a strictly declarative approach) 
over uncontrolled components unless you're performing very simple tasks such 
as reading an entered input value.

•	 Using forward refs, you can also expose features of your own components such 
that they may be used imperatively.

•	 Portals can be used to instruct React to render JSX elements in a different place 
in the DOM than they normally would.

What's Next?

At this point in the book, you've encountered many key tools and concepts that can 
be used to build interactive and engaging user interfaces. But, as you will learn in the 
next chapter, one crucial concept is still missing: a way of handling side effects.

The next chapter will explore what exactly side effects are, why they need special 
handling, and how React helps you with that.

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers with examples that can 
be found at https://packt.link/pFCSN.

1.	 How can refs help with handling user input in forms?

2.	 What is an uncontrolled component?

3.	 What is a controlled component?

4.	 When should you not use refs?

5.	 What's the main idea behind portals?

Apply What You Have Learned

With this newly gained knowledge about refs and portals, it's again time to practice 
what you have learned. 

Below, you'll find two activities that allow you to practice working with refs and 
portals. As always, you will, of course, also need some of the concepts covered in 
earlier chapters (e.g., working with state).

https://packt.link/pFCSN


Introduction | 191

Activity 7.1: Extract User Input Values

In this activity, you have to add logic to an existing React component to extract values 
from a form. The form contains an input field and a drop-down menu and you should 
make sure that, upon form submission, both values are read and, for the purpose of 
this dummy app, output to the browser console.

Use your knowledge about Refs and uncontrolled components to implement a 
solution without using React state.

Note

You can find the starting code for this activity at https://packt.link/PAvKn. 
When downloading this code, you'll always download the entire repository. 
Make sure to then navigate to the subfolder with the starting code 
(activities/practice-1/starting-code in this case) to use 
the right code snapshot.

After downloading the code and running npm install in the project folder (to 
install all the required dependencies), the solution steps are as follows:

1.	 Create two Refs, one for each input element that should be read (input field and 
drop-down menu).

2.	 Connect the Refs to the input elements.

3.	 In the submit handler function, access the connected DOM elements via the refs 
and read the currently entered or selected values.

4.	 Output the values to the browser console.

The expected result (user interface) should look like this:

Figure 7.8: The browser developer tools console outputs the selected values

https://packt.link/PAvKn


192 | Portals and Refs

Note

The solution to this activity can be found via this link.

Activity 7.2: Add a Side-Drawer

In this activity, you will connect an already existing SideDrawer component with a 
button in the main navigation bar to open the side drawer (i.e., display it) whenever 
the button is clicked. After the side drawer opens, a click on the backdrop should 
close the drawer again.

In addition to implementing the general logic described above, your goal will be to 
ensure proper positioning in the final DOM such that no other elements are overlaid 
on top of the SideDrawer (without editing any CSS code). The SideDrawer should 
also not be nested in any other components or JSX elements.

Note

This activity comes with some starting code, which can be found here: 
https://packt.link/Q4RSe.

After downloading the code and running npm install to install all the required 
dependencies, the solution steps are as follows:

1.	 Add logic to conditionally show or hide the SideDrawer component in the 
MainNavigation component.

2.	 Add an "injection hook" for the side drawer in the HTML document.

3.	 Use React's portal feature to render the JSX elements of SideDrawer in the 
newly added hook.

https://packt.link/Q4RSe


Introduction | 193

The final user interface should look and behave like this:

Figure 7.9: A click on the menu button opens the side drawer

Upon clicking on the menu button, the side drawer opens. If the backdrop behind the 
side drawer is clicked, it should close again.



194 | Portals and Refs

The final DOM structure (with the side drawer opened) should look like this:

Figure 7.10: The drawer-related elements are inserted in a separate place in the DOM

The side drawer-related DOM elements (the <div> backdrop and <aside>) are 
inserted into a separate DOM node (<div id="drawer">).

Note

The solution to this activity can be found via this link.







Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Identify side effects in your React apps.

�  Understand and use the useEffect() Hook.

�  Utilize the different features and concepts related to the useEffect() 
Hook to avoid bugs and optimize your code.

�  Handle side effects related and unrelated to state changes.

Handling Side Effects

8



198 | Handling Side Effects

Introduction
While all React examples previously covered in this book have been relatively 
straightforward, and many key React concepts were introduced, it is unlikely that 
many real apps could be built with those concepts alone. 

Most real apps that you will build as a React developer also need to send HTTP 
requests, access the browser storage and log analytics data, or perform any other 
kind of similar task. And with components, props, events, and state alone, you'll 
often encounter problems when trying to add such features to your app. Detailed 
explanations and examples will be discussed later in this chapter, but the core 
problem is that tasks like this will often interfere with React's component rendering 
cycle, leading to unexpected bugs or even breaking the app.

This chapter will take a closer look at those kinds of actions, analyze what they have 
in common, and most importantly, teach you how to correctly handle such tasks in 
React apps.

What's the Problem?

Before exploring a solution, it's important to first understand the concrete problem. 

Actions that are not directly related to producing a (new) user interface state often 
clash with React's component rendering cycle. They may introduce bugs or even 
break the entire web app.

Consider the following example code snippet:

import { useState } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  const blogPosts = await response.json();

  return blogPosts;

}

function BlogPosts() {

  const [loadedPosts, setLoadedPosts] = useState([]);

  fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));



Introduction | 199

  return (

    <ul className={classes.posts}>

      {loadedPosts.map((post) => (

        <li key={post.id}>{post.title}</li>

      ))}

    </ul>

  );

}

export default BlogPosts;

Don't execute this code as it will cause an infinite loop and send a large number of 
HTTP requests behind the scenes! 

Next, you'll learn more about this problem, as well as a solution for it.

In this example, a React component (BlogPosts) is created. In addition, a 
non-component function (fetchPosts()) is defined. That function uses the built-in 
fetch() function (provided by the browser) to send an HTTP request to an external 
application programming interface (API) and fetch some data.

Note

The fetch() function is made available by the browser (all modern 
browsers support this function). You can learn more about fetch() at 
https://academind.com/tutorials/xhr-fetch-axios-the-fetch-api.

The fetch() function yields a promise, which, in this example, is 
handled via async/await. Just like fetch(), promises are a key 
web development concept, which you can learn more about (along with 
async/await) at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Statements/async_function.

An API, in this context, is a site that exposes various paths to which 
requests can be sent—either to submit or to fetch data. jsonplaceholder.
typicode.com is a dummy API, responding with dummy data. It can be 
used in scenarios like the preceding example, where you just need an API 
to send requests to. You can use it to test some concept or code without 
connecting or creating a real backend API. In this case, it's used to explore 
some React problems and concepts. Basic knowledge about sending HTTP 
requests with fetch() and APIs is expected for this chapter and the book 
overall. If needed, you can use pages such as MDN (https://developer.
mozilla.org/) to strengthen your knowledge of such core concepts.

https://academind.com/tutorials/xhr-fetch-axios-the-fetch-api
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
https://developer.mozilla.org/
https://developer.mozilla.org/


200 | Handling Side Effects

In the preceding code snippet, the BlogPosts component utilizes useState() 
to register a loadedPosts state value. The state is used to output a list of blog 
posts. Those blog posts are not defined in the app itself though. Instead, they are 
fetched from an external API (in this case, from a dummy backend API found at 
jsonplaceholder.typicode.com).

fetchPosts(), which is the utility function that contains the code for fetching 
blog posts data from that backend API using the built-in fetch() function, is called 
directly in the component function body. Since fetchPosts() is an async function 
(using async/await), it returns a promise. In BlogPosts, the code that should be 
executed once the promise resolves is registered via the built-in then() method 
(because React component functions shouldn't be async functions, async/await 
can't be used here).

Once the fetchPosts() promise resolves, the extracted posts 
data (fetchedPosts) is set as the new loadedPosts state (via 
setLoadedPosts(fetchedPosts)).

If you were to run the preceding code (which you should not do!), it would at 
first seem to work. But behind the scenes, it would actually start an infinite loop, 
hammering the API with HTTP requests. This is because, as a result of getting a 
response from the HTTP request, setLoadedPosts() is used to set a new state. 

Earlier in this book (in Chapter 4, Working with Events and State), you learned that 
whenever the state of a component changes, React re-evaluates the component to 
which the state belongs. "Re-evaluating" simply means that the component function 
is executed again (by React, automatically). 

Since this BlogPosts component calls fetchPosts() (which sends an HTTP 
request) directly inside the component function body, this HTTP request will be sent 
every time the component function is executed. And as the state (loadedPosts) is 
updated as a result of getting a response from that HTTP request, this process begins 
again, and an infinite loop is created.

The root problem, in this case, is that sending an HTTP request is a side effect—a 
concept that will be explored in greater detail in the next section.

Understanding Side Effects

Side effects are actions or processes that occur in addition to another "main process". 
At least, this is a concise definition that helps with understanding side effects in the 
context of a React app.

http://jsonplaceholder.typicode.com


Introduction | 201

Note 

You can also look up a more scientific definition here: https://en.wikipedia.
org/wiki/Side_effect_(computer_science).

In the case of a React component, the main process would be the component 
render cycle in which the main task of a component is to render the user 
interface that is defined in the component function (the returned JSX code). The 
React component should return the final JSX code, which is then translated into 
DOM-manipulating instructions. 

For this, React considers state changes as the trigger for updating the user interface. 
Registering event handlers such as onClick, adding refs, or rendering child 
components (possibly by using props) would be other elements that belong to this 
main process—because all these concepts are directly related to the main task of 
rendering the desired user interface.

Sending an HTTP request, as in the preceding example, is not part of this main 
process, though. It doesn't directly influence the user interface. While the response 
data might eventually be output on the screen, it definitely won't be used in the exact 
same component render cycle in which the request is sent (because HTTP requests 
are asynchronous tasks).

Since sending the HTTP request is not part of the main process (rendering the user 
interface) that's performed by the component function, it's considered a "side effect". 
It's invoked by the same function (the BlogPosts component function), which 
primarily has a different goal.

If the HTTP request were sent upon a click of a button rather than as part of the main 
component function body, it would not be a side effect. Consider this example:

import { useState } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  const blogPosts = await response.json();

  return blogPosts;

}

https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)


202 | Handling Side Effects

function BlogPosts() {

  const [loadedPosts, setLoadedPosts] = useState([]);

  function fetchPostsHandler() {

    fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

  }

  return (

    <>

      <button onClick={fetchPostsHandler}>Fetch Posts</button>

      <ul className={classes.posts}>

        {loadedPosts.map((post) => (

          <li key={post.id}>{post.title}</li>

        ))}

      </ul>

    </>

  );

}

export default BlogPosts;

This code is almost identical to the previous example, but it has one important 
difference: a <button> was added to the JSX code. And it's this button that invokes a 
newly added fetchPostsHandler() function, which then sends the HTTP request 
(and updates the state).

With this change made, the HTTP request is not sent every time the component 
function re-renders (that is, is executed again). Instead, it's only sent whenever 
the button is clicked, and therefore, this does not create an infinite loop. The HTTP 
request, in this case, also doesn't postulate a side effect, because the primary goal of 
fetchPostsHandler() (i.e., the main process) is to fetch new posts and update 
the state.

Side Effects Are Not Just about HTTP Requests

In the previous example, you learned about one potential side effect that could occur 
in a component function: an HTTP request. You also learned that HTTP requests are 
not always side effects. It depends on where they are created.

In general, any action that's started upon the execution of a React component 
function is a side effect if that action is not directly related to the main task of 
rendering the component's user interface.



Introduction | 203

Here's a non-exhaustive list of examples for side effects:

•	 Sending an HTTP request (as shown previously)

•	 Storing data to or fetching data from browser storage (for example, via the 
built-in localStorage object)

•	 Setting timers (via setTimeout()) or intervals (via setInterval())

•	 Logging data to the console via console.log()

•	 Not all side effects cause infinite loops, however. Such loops only occur if the 
side effect leads to a state update.

•	 Here's an example of a side effect that would not cause an infinite loop:

function ControlCenter() {

  function startHandler() {

    // do something ...

  }

  console.log('Component is rendering!'); // this is a side effect!

  return (

    <div>

      <p>Press button to start the review process</p>

      <button onClick={startHandler}>Start</button>

    </div>

  );

}

In this example, console.log(…) is a side effect because it's executed as part 
of every component function execution and does not influence the rendered user 
interface (neither for this specific render cycle nor indirectly for any future render 
cycles in this case, unlike the previous example with the HTTP request).

Of course, using console.log() like this is not causing any problems. During 
development, it's quite normal to log messages or data for debugging purposes. Side 
effects aren't necessarily a problem and, indeed, side effects like this can be used 
or tolerated.

But you also often need to deal with side effects such as the HTTP request from 
before. Sometimes, you need to fetch data when a component renders—probably 
not for every render cycle, but typically the first time it is executed (that is, when its 
generated user interface appears on the screen for the first time).



204 | Handling Side Effects

React offers a solution for this kind of problem, as well.

Dealing with Side Effects with the useEffect() Hook

In order to deal with side effects such as the HTTP request shown previously in a safe 
way (that is, without creating an infinite loop), React offers another core Hook: the 
useEffect() Hook.

The first example can be fixed and rewritten like this:

import { useState, useEffect } from 'react';

import classes from './BlogPosts.module.css';

async function fetchPosts() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  const blogPosts = await response.json();

  return blogPosts;

}

function BlogPosts() {

  const [loadedPosts, setLoadedPosts] = useState([]);

  useEffect(function () {

    fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

  }, []);

  return (

    <ul className={classes.posts}>

      {loadedPosts.map((post) => (

        <li key={post.id}>{post.title}</li>

      ))}

    </ul>

  );

}

export default BlogPosts;



Introduction | 205

In this example, the useEffect() Hook is imported and used to control the side 
effect (hence the name of the Hook, useEffect(), as it deals with side effects in 
React components). The exact syntax and usage will be explored in the next section, 
but if you use this Hook, you can safely run the example and get some output 
like this:

Figure 8.1: A list of dummy blog posts and no infinite loop of HTTP requests

In the preceding screenshot, you can see the list of dummy blog posts, and most 
importantly, when inspecting the sent network requests, you find no infinite list 
of requests.

useEffect() is therefore the solution for problems like the one outlined 
previously. It helps you deal with side effects so that you can avoid infinite loops 
and extract them from your component function's main process.

But how does useEffect() work and how is it used correctly?

How to Use useEffect()

As shown in the previous example code snippet, useEffect(), like all React Hooks, 
is executed as a function inside the component function (BlogPosts, in this case). 

Though, unlike useState() or useRef(), useEffect() does not return a 
value, it does accept an argument (or, actually, two arguments) like those other 
Hooks. The first argument is always a function. In this case, the function passed to 
useEffect() is an anonymous function, created via the function keyword. 



206 | Handling Side Effects

Alternatively, you could also provide an anonymous function created as an arrow 
function (useEffect(() => { … })) or point at some named function 
(useEffect(doSomething)). The only thing that matters is that the first 
argument passed to useEffect() must be a function. It must not be any other 
kind of value.

In the preceding example, useEffect() also receives a second argument: an 
empty array ([]). The second argument must be an array, but providing it is optional. 
You could also omit the second argument and just pass the first argument (the 
function) to useEffect(). However, in most cases, the second argument is needed 
to achieve the correct behavior. Both arguments and their purpose will be explored in 
greater detail as follows.

The first argument is a function that will be executed by React. It will be executed after 
every component render cycle (that is, after every component function execution).

In the preceding example, if you only provide this first argument and omit the second, 
you will therefore still create an infinite loop. There will be an (invisible) timing 
difference because the HTTP request will now be sent after every component function 
execution (instead of as part of it), but you will still trigger a state change, which will 
still trigger the component function to execute again. Therefore, the effect function 
will run again, and an infinite loop will be created. In this case, the side effect will be 
extracted out of the component function technically, but the problem with the infinite 
loop will not be solved: 

useEffect(function () {

  fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

}); // this would cause an infinite loop again!

Extracting side effects out of React component functions is the main job of 
useEffect(), and so only the first argument (the function that contains the side 
effect code) is mandatory. But, as mentioned previously, you will also typically need 
the second argument to control the frequency with which the effect code will be 
executed, because that's what the second argument (an array) will do.

The second parameter received by useEffect() is always an array (unless 
it's omitted). This array specifies the dependencies of the effect function. Any 
dependency specified in this array will, once it changes, cause the effect function to 
execute again. If no array is specified (that is, if the second argument is omitted), the 
effect function will be executed again for every component function execution:



Introduction | 207

useEffect(function () {

  fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

}, []);

In the preceding example, the second argument was not omitted, but it's an empty 
array. This informs React that this effect function has no dependencies. Therefore, 
the effect function will never be executed again. Instead, it will only be executed once, 
when the component is rendered for the first time. This is React's default behavior. If 
you set no dependencies (by providing an empty array), React will execute the effect 
function once—directly after the component function was executed for the first time.

It's important to note that specifying an empty array is very different from omitting 
it. If omitted, no dependency information is provided to React. Therefore, React 
executes the effect function after every component re-evaluation. If an empty array 
is provided instead, you explicitly state that this effect has no dependencies and 
therefore should only run once.

This brings up another important question, though: when should you add 
dependencies? And how exactly are dependencies added or specified?

Effects and Their Dependencies

Omitting the second argument to useEffect() causes the effect function (the first 
argument) to execute after every component function execution. Providing an empty 
array causes the effect function to run only once (after the first component function 
invocation). But is that all you can control?

No, it isn't. 

The array passed to useEffect() can and should contain all variables, constants, 
or functions that are used inside the effect function—if those variables, constants, or 
functions were defined inside the component function (or in some parent component 
function, passed down via props). 

Consider this example:

import { useState, useEffect } from 'react';

import classes from './BlogPosts.module.css';

const DEFAULT_URL = 'https://jsonplaceholder.typicode.com/posts';

async function fetchPosts(url) {

  const response = await fetch(url);



208 | Handling Side Effects

  const blogPosts = await response.json();

  return blogPosts;

}

function BlogPosts() {

  const [postsUrl, setPostsUrl] = useState(DEFAULT_URL);

  const [loadedPosts, setLoadedPosts] = useState([]);

  function adjustUrlHandler(event) {

    setPostsUrl(event.target.value);

  }

  useEffect(function () {

    fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

  }, [postsUrl]);

  return (

    <>

      <input className={classes.input} type="text" 
onBlur={adjustUrlHandler} />
      <ul className={classes.posts}>

        {loadedPosts.map((post) => (

          <li key={post.id}>{post.title}</li>

        ))}

      </ul>

    </>

  );

}

export default BlogPosts;

This example is based on the previous example, but it was adjusted in multiple places.

The BlogPosts component now contains a second state value (postsUrl), which 
is updated inside adjustUrlHandler() whenever a newly added <input> field 
blurs (i.e., loses focus). This allows the website visitor to enter a custom URL to which 
the HTTP request will be sent. 

By default (DEFAULT_URL), a dummy API (https://jsonplaceholder.
typicode.com/posts) will be used, but the user could insert any URL of their 
choice. Of course, if that API doesn't return a list of blog posts, the app won't work 
as intended. This component therefore might be of limited practical use, but it does 
show the importance of effect dependencies quite well.



Introduction | 209

A new effect (and therefore a new HTTP request) should only be triggered if 
postsUrl changes. That's why postsUrl was added to the dependencies array of 
useEffect(). If the array had been kept empty, the effect function would only run 
once (as described in the previous section). Therefore, any changes to postsUrl 
wouldn't have any effect (no pun intended) on the effect function or the HTTP request 
executed as part of that function. No new HTTP request would be sent.

By adding postsUrl to the dependencies array, React registers this value (in this 
case, a state value, but any value can be registered) and re-executes the effect 
function whenever that value changes (that is, whenever a new value is set).

The most common types of effect dependencies are state values, props, and 
functions that might be executed inside of the effect function. The latter will be 
analyzed in greater depth later in this chapter.

As a rule, you should add all values (including functions) that are used inside an effect 
function to the effect dependencies array.

With this new knowledge in mind, if you take another look at the preceding 
useEffect() example code, you might spot some missing dependencies:

useEffect(function () {

  fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

}, [postsUrl]);

Why are fetchPosts, fetchedPosts, and setLoadedPosts not added as 
dependencies? These are, after all, values and functions used inside of the effect 
function. The next section will address this in detail.

Unnecessary Dependencies

In the previous example, it might seem as if fetchPosts, fetchedPosts, 
and setLoadedPosts should be added as dependencies to useEffect(), 
as shown here:

useEffect(function () {

  fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

}, [postsUrl, fetchPosts, fetchedPosts, setLoadedPosts]);

However, for fetchPosts and fetchedPosts, this would be incorrect. And for 
setLoadedPosts, it would be unnecessary.



210 | Handling Side Effects

fetchedPosts should not be added because it's not an external dependency. 
It's a local variable (or argument, to be precise), defined and used inside the effect 
function. It's not defined in the component function to which the effect belongs. If you 
try to add it as a dependency, you'll get an error:

Figure 8.2: An error occurred – fetchedPosts could not be found

fetchPosts, the function that sends the actual HTTP request, is not a function 
defined inside of the effect function. But it still shouldn't be added because it is 
defined outside the component function. 

Therefore, there is no way for this function to change. It's defined once (in the 
BlogPosts.js file), and it can't change. That said, this would not be the case if it 
were defined inside the component function. In that case, whenever the component 
function executes again, the fetchPosts function would be recreated as well. 
This is a scenario that will be discussed later in this chapter (in the "Functions as 
Dependencies" section).

In this example though, fetchPosts can't change. Therefore, it doesn't have to be 
added as a dependency (and consequently should not be). The same would be true 
for functions, or any kind of values, provided by the browser or third-party packages. 
Any value that's not defined inside a component function shouldn't be added to the 
dependencies array.

Note

It may be confusing that a function could change—after all, the logic is 
hardcoded, right? But in JavaScript, functions are actually just objects and 
therefore may change. When the code that contains a function is executed 
again (e.g., a component function being executed again by React), a new 
function object will be created in memory.

If this is not something you're familiar with, the following resource should be 
helpful: https://academind.com/tutorials/javascript-functions-are-objects.

https://academind.com/tutorials/javascript-functions-are-objects


Introduction | 211

So fetchedPosts and fetchPosts should both not be added (for different 
reasons). What about setLoadedPosts?

setLoadedPosts is the state updating function returned by useState() for 
the loadedPosts state value. Therefore, like fetchPosts, it's a function. Unlike 
fetchPosts, though, it's a function that's defined inside the component function 
(because useState() is called inside the component function). It's a function 
created by React (since it's returned by useState()), but it's still a function. 
Theoretically, it should therefore be added as a dependency. And indeed, you 
can add it without any negative consequences.

But state updating functions returned by useState() are a special case: React 
guarantees that those functions will never change or be recreated. When the 
surrounding component function (BlogPosts) is executed again, useState() 
also executes again. However, a new state (and a new state updating function) is only 
created the first time a component function is called by React. Subsequent executions 
don't lead to a new state value or state updating function being created.

Because of this special behavior (i.e., React guaranteeing that the function itself never 
changes), state updating functions may (and actually should) be omitted from the 
dependencies array.

For all these reasons, fetchedPosts, fetchPosts, and setLoadedPosts 
should all not be added to the dependencies array of useEffect(). postsUrl is 
the only dependency used by the effect function that may change (that is, when the 
user enters a new URL into the input field) and therefore should be listed in the array.

To sum it up, when it comes to adding values to the effect dependencies array, there 
are three kinds of exceptions:

•	 Internal values (or functions) that are defined and used inside the effect (such as 
fetchedPosts)

•	 External values that are not defined inside a component function (such as 
fetchPosts)

•	 State updating functions (such as setLoadedPosts)

In all other cases, if a value is used in the effect function, it must be added to the 
dependencies array! Omitting values incorrectly can lead to unexpected effect 
executions (that is, an effect executing too often or not often enough).



212 | Handling Side Effects

Cleaning Up after Effects

To perform a certain task (for example, sending an HTTP request), many effects 
should simply be triggered when their dependencies change. While some effects 
can be re-executed multiple times without issue, there are also effects that, if they 
execute again before the previous task has finished, are an indication that the task 
performed needs to be canceled. Or, maybe there is some other kind of cleanup work 
that should be performed when the same effect executes again.

Here's an example, where an effect sets a timer:

import { useState, useEffect } from 'react';

function Alert() {

  const [alertDone, setAlertDone] = useState(false);

  useEffect(function () {

    console.log('Starting Alert Timer!');

    setTimeout(function () {

      console.log('Timer expired!');

      setAlertDone(true);

    }, 2000);

  }, []);

  return (

    <>

      {!alertDone && <p>Relax, you still got some time!</p>}

      {alertDone && <p>Time to get up!</p>}

    </>

  );

}

export default Alert;

This Alert component is used in the App component:

import { useState } from 'react';

import Alert from './components/Alert';

function App() {

  const [showAlert, setShowAlert] = useState(false);



Introduction | 213

  function showAlertHandler() {

    // state updating is done by passing a function to setShowAlert

    // because the new state depends on the previous state (it's the 
opposite)
    setShowAlert((isShowing) => !isShowing);

  }

  return (

    <>

      <button onClick={showAlertHandler}>

        {showAlert ? 'Hide' : 'Show'} Alert

      </button>

      {showAlert && <Alert />}

    </>

  );

}

export default App;

Note

You can also clone or download the full example from GitHub at  
https://packt.link/Zmkp9.

In the App component, the Alert component is shown conditionally. The 
showAlert state is toggled via the showAlertHandler function (which is 
triggered upon a button click).

In the Alert component, a timer is set using useEffect(). Without 
useEffect(), an infinite loop would be created, since the timer, upon expiration, 
changes some component state (the alertDone state via the setAlertDone state 
updating function).

The dependency array is an empty array because this effect function does not use any 
component values, variables, or functions. console.log() and setTimeout() 
are functions built into the browser (and therefore external functions), and 
setAlertDone() can be omitted because of the reasons mentioned in the 
previous section.

https://packt.link/Zmkp9


214 | Handling Side Effects

If you run this app and then start toggling the alert (by clicking the button), you'll 
notice strange behavior. The timer is set every time the Alert component is 
rendered. But it's not clearing the existing timer. This is due to the fact that multiple 
timers are running simultaneously, as you can clearly see if you look at the JavaScript 
console in your browser's developer tools:

Figure 8.3: Multiple timers are started

This example is deliberately kept simple, but there are other scenarios in which you 
may have an ongoing HTTP request that should be aborted before a new one is 
sent. There are cases like that, where an effect should be cleaned up first before it 
runs again.

React also offers a solution for those kinds of situations: the effect function passed 
as a first argument to useEffect() can return an optional cleanup function. If you 
do return a function inside your effect function, React will execute that function every 
time before it runs the effect again.

Here's the useEffect() call of the Alert component with a cleanup function 
being returned:

useEffect(function () {

  let timer;

  console.log('Starting Alert Timer!');

  timer = setTimeout(function () {

    console.log('Timer expired!');

    setAlertDone(true);

  }, 2000);



Introduction | 215

  return function() {

    clearTimeout(timer);

  }

}, []);

In this updated example, a new timer variable (a local variable that is only accessible 
inside the effect function) is added. That variable stores a reference to the timer 
that's created by setTimeout(). This reference can then be used together with 
clearTimeout() to remove a timer.

The timer is removed in a function returned by the effect function—which is the 
cleanup function that will be executed automatically by React before the effect 
function is called the next time.

You can see the cleanup function in action if you add a console.log() statement 
to it:

return function() {

  console.log('Cleanup!');

  clearTimeout(timer);

}

In your JavaScript console, this looks as follows:

Figure 8.4: The cleanup function is executed before the effect runs again



216 | Handling Side Effects

In the preceding screenshot, you can see that the cleanup function is executed 
(indicated by the Cleanup! log) right before the effect function is executed again. 
You can also see that the timer is cleared successfully: the first timer never expires 
(there is no Timer expired! log for the first timer in the screenshot).

The cleanup function is not executed when the effect function is called for the first 
time. However, it will be called by React whenever a component that contains an 
effect unmounts (that is, when it's removed from the DOM).

If an effect has multiple dependencies, the effect function will be executed whenever 
any of the dependency values change. Therefore, the cleanup function will also be 
called every time some dependency changes.

Dealing with Multiple Effects

Thus far, all the examples in this chapter have dealt with only one useEffect() 
call. You are not limited to only one call per component though. You can call 
useEffect() as often as needed—and can therefore register as many effect 
functions as needed.

But how many effect functions do you need?

You could start putting every side effect into its own useEffect() wrapper. Every 
HTTP request, every console.log() statement, and every timer, you could put 
into separate effect functions.

That said, as you can see in some of the previous examples—specifically, the code 
snippet in the previous section—that's not necessary. There, you have multiple effects 
in one useEffect() call (three console.log() statements and one timer).

A better approach would be to split your effect functions by dependencies. If one 
side effect depends on state A and another side effect depends on state B, you could 
put them into separate effect functions (unless those two states are related), as 
shown here:

function Demo() {

  const [a, setA] = useState(0); // state updating functions aren't 
called
  const [b, setB] = useState(0); // in this example

  useEffect(function() {

    console.log(a);

  }, [a]);   

  



Introduction | 217

  useEffect(function() {

    console.log(b);

  }, [b]);

  // return some JSX code ...

}

But the best approach is to split your effect functions by logic. If one effect deals 
with fetching data via an HTTP request and another effect is about setting a timer, 
it will often make sense to put them into different effect functions (that is, different 
useEffect() calls).

Functions as Dependencies

Different effects have different kinds of dependencies, and one common kind of 
dependency is functions.

As mentioned previously, functions in JavaScript are just objects. Therefore, whenever 
some code that contains a function definition is executed, a new function object is 
created and stored in memory. When calling a function, it's that specific function 
object in memory that is executed. In some scenarios (for example, for functions 
defined in component functions), it's possible that multiple objects based on the 
same function code exist in memory.

Because of this behavior, functions that are referenced in code are not necessarily 
equal, even if they are based on the same function definition.

Consider this example:

function Alert() {

  function setAlert() {

    setTimeout(function() {

      console.log('Alert expired!');

    }, 2000);

  }

  useEffect(function() {

    setAlert();

  }, [setAlert]);

  // return some JSX code ...

}



218 | Handling Side Effects

In this example, instead of creating a timer directly inside the effect function, 
a separate setAlert() function is created in the component function. That 
setAlert() function is then used in the effect function passed to useEffect(). 
Since that function is used there, and because it's defined in the component function, 
it should be added as a dependency to useEffect().

Another reason for this is that every time the Alert component function is executed 
again (e.g., because some state or prop value changes), a new setAlert function 
object will be created. In this example, that wouldn't be problematic because 
setAlert only contains static code. A new function object created for setAlert 
would work exactly in the same way as the previous one, therefore, it would 
not matter.

But now consider this adjusted example 

Note

The complete app can be found on GitHub at https://packt.link/pna08.

function Alert() {

  const [alertMsg, setAlertMsg] = useState('Expired!');

  function changeAlertMsgHandler(event) {

    setAlertMsg(event.target.value);

  }

  function setAlert() {

    setTimeout(function () {

      console.log(alertMsg);

    }, 2000);

  }

  useEffect(

    function () {

      setAlert();

    },

https://packt.link/pna08


Introduction | 219

    []

  );

  return <input type="text" onChange={changeAlertMsgHandler} />;

}

export default Alert;

Now, a new alertMsg state is used for setting the actual alert message that's 
logged to the console. In addition, the setAlert dependency was removed from 
useEffect(). 

If you run this code, you'll get the following output:

Figure 8.5: The console log does not reflect the entered value

In this screenshot, you can see that, despite a different value being entered into the 
input field, the original alert message is output.

The reason for this behavior is that the new alert message is not picked up. It's not 
used because, despite the component function being executed again (because the 
state changed), the effect is not executed again. And the original execution of the 
effect still uses the old version of the setAlert function—the old setAlert 
function object, which has the old alert message locked in. That's how JavaScript 
functions work, and that's why, in this case, the desired result is not achieved.

The solution to the problem is simple though: add setAlert as a dependency to 
useEffect(). You should always add all values, variables, or functions used in 
an effect as dependencies, and this example shows why you should do that. Even 
functions can change.



220 | Handling Side Effects

If you add setAlert to the effect dependency array, you'll get a different output:

useEffect(

  function () {

    setAlert();

  },

  [setAlert]

);

Please note that only a pointer to the setAlert function is added. You don't 
execute the function in the dependencies array (that would add the return value of 
the function as a dependency, which is typically not the goal).

Figure 8.6: Multiple timers are started

Now, a new timer is started for every keystroke, and as a result, the entered message 
is output in the console. 

Of course, this might also not be the desired result. You might only be interested in 
the final error message that was entered. This can be achieved by adding a cleanup 
function to the effect (and adjusting setAlert a little bit):

function setAlert() {

  return setTimeout(function () {

    console.log(alertMsg);

  }, 2000);

}

useEffect(



Introduction | 221

  function () {

    const timer = setAlert();

    return function () {

      clearTimeout(timer);

    };

  },

  [setAlert]

);

As shown in the "Cleaning Up after Effects" section, the timer is cleared with the help of 
a timer reference and clearTimeout() in the effect's cleanup function.

After adjusting the code like this, only the final alert message that was entered will 
be output.

Seeing the cleanup function in action again is helpful; the main takeaway is the 
importance of adding all dependencies, though—including function dependencies.

An alternative to including the function as a dependency would be to move the entire 
function definition into the effect function because any value that's defined and used 
inside of an effect function must not be added as a dependency:

useEffect(

  function () {

    function setAlert() {

      return setTimeout(function () {

        console.log(alertMsg);

      }, 2000);

    }

    const timer = setAlert();

    return function () {

      clearTimeout(timer);

    };

  },

  []

);

Of course, you could also get rid of the setAlert function altogether then and just 
move the function's code into the effect function.



222 | Handling Side Effects

Either way, you will have to add a new dependency: alertMsg, which is now used 
inside of the effect function. Even though the setAlert function isn't a dependency 
anymore, you still must add any values used (and alertMsg is used in the effect 
function now):

useEffect(

  function () {

    function setAlert() {

      return setTimeout(function () {

        console.log(alertMsg);

      }, 2000);

    }

    const timer = setAlert();

    return function () {

      clearTimeout(timer);

    };

  },

  [alertMsg]

);

Hence, this alternative way of writing the code just comes down to personal 
preferences. It does not reduce the number of dependencies.

You would get rid of a function dependency if you were to move the function out 
of the component function. This is because, as mentioned in the "Unnecessary 
Dependencies" section, external dependencies (for example, built into the browser or 
defined outside of component functions) should not be added as dependencies.

However, in the case of the setAlert function, this is not possible because 
setAlert uses alertMsg. Since alertMsg is a component state value, the 
function that uses it must be defined inside the component function; otherwise, it 
won't have access to that state value.

This can all sound quite confusing, but it comes down to two simple rules:

•	 Always add all non-external dependencies—no matter whether they're variables 
or functions.

•	 Functions are just objects and can change if their surrounding code 
executes again.



Introduction | 223

Avoiding Unnecessary Effect Executions

Since all dependencies should be added to useEffect(), you sometimes end up 
with code that causes an effect to execute unnecessarily.

Consider the example component below.

Note

The complete example can be found on GitHub at https://packt.link/htQiK.

import { useState, useEffect } from 'react';

function Alert() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [enteredPassword, setEnteredPassword] = useState('');

  function updateEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function updatePasswordHandler(event) {

    setEnteredPassword(event.target.value);

  }

  function validateEmail() {

    if (!enteredEmail.includes('@')) {

      console.log('Invalid email!');

    }

  }

  useEffect(function () {

    validateEmail();

  }, [validateEmail]);

  return (

    <form>

      <div>

        <label>Email</label>

        <input type="email" onChange={updateEmailHandler} />

https://packt.link/htQiK


224 | Handling Side Effects

      </div>

      <div>

        <label>Password</label>

        <input type="password" onChange={updatePasswordHandler} />

      </div>

      <button>Save</button>

    </form>

  );

}

export default Alert;

This component contains a form with two inputs. The entered values are stored 
in two different state values (enteredEmail and enteredPassword). The 
validateEmail() function then performs some email validation and, if the email 
address is invalid, logs a message to the console. validateEmail() is executed 
with the help of useEffect().

The problem with this code is that the effect function will be executed whenever 
validateEmail changes because, correctly, validateEmail was added as a 
dependency. But validateEmail will change whenever the component function 
is executed again. And that's not just the case for state changes to enteredEmail 
but also whenever enteredPassword changes—even though that state value is not 
used at all inside of validateEmail.

This unnecessary effect execution can be avoided with various solutions:

•	 You could move the code inside of validateEmail directly into the effect 
function (enteredEmail would then be the only dependency of the effect, 
avoiding effect executions when any other state changes).

•	 You could avoid using useEffect() altogether since you could perform email 
validation inside of updateEmailHandler. Having console.log() (a side 
effect) in there would be acceptable since it wouldn't cause any harm.

But in some other scenarios, you might need to use useEffect() (for example, to 
avoid an infinite loop). Fortunately, React also offers a solution for situations like this: 
you can wrap the function that's used as a dependency with another React Hook, the 
useCallback() Hook.



Introduction | 225

The adjusted code would look like this:

import { useState, useEffect, useCallback } from 'react';

function Alert() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [enteredPassword, setEnteredPassword] = useState('');

  function updateEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function updatePasswordHandler(event) {

    setEnteredPassword(event.target.value);

  }

  const validateEmail = useCallback(

    function () {

      if (!enteredEmail.includes('@')) {

        console.log('Invalid email!');

      }

    },

    [enteredEmail]

  );

  useEffect(

    function () {

      validateEmail();

    },

    [validateEmail]

  );

  // return JSX code ...

}

export default Alert;

useCallback(), like all React Hooks, is a function that's executed directly inside 
the component function. Like useEffect(), it accepts two arguments: another 
function (can be anonymous or a named function) and a dependencies array. 



226 | Handling Side Effects

Unlike useEffect(), though, useCallback() does not execute the received 
function. Instead, useCallback() ensures that a function is only recreated if 
one of the specified dependencies has changed. The default JavaScript behavior of 
creating a new function object whenever the surrounding code executes again is 
(synthetically) disabled.

useCallback() returns the latest saved function object. Hence, that returned 
value (which is a function) is saved in a variable or constant (validateEmail in the 
previous example).

Since the function wrapped by useCallback() now only changes when one of 
the dependencies changes, the returned function can be used as a dependency 
for useEffect() without executing that effect for all kinds of state changes or 
component updates.

In the case of the preceding example, the effect function would then only execute 
when enteredEmail changes—because that's the only change that will lead to a 
new validateEmail function object being created.

Another common reason for unnecessary effect execution is the usage of objects as 
dependencies, like in this example:

import { useEffect } from 'react';

function Error(props) {

  useEffect(

    function () {

      // performing some error logging

      // in a real app, a HTTP request might be sent to some analytics 
API
      console.log('An error occurred!');

      console.log(props.message);

    },

    [props]

  );

  return <p>{props.message}</p>;

}

export default Error;



Introduction | 227

This Error component is used in another component, the Form component, 
like this:

import { useState } from 'react';

import Error from './Error';

function Form() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [errorMessage, setErrorMessage] = useState('');

  function updateEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function submitFormHandler(event) {

    event.preventDefault();

    if (!enteredEmail.endsWith('.com')) {

      setErrorMessage('Only email addresses ending with .com are 
accepted!');
    }

  }

  return (

    <form onSubmit={submitFormHandler}>

      <div>

        <label>Email</label>

        <input type="email" onChange={updateEmailHandler} />

      </div>

      {errorMessage && <Error message={errorMessage} />}

      <button>Submit</button>

    </form>

  );

}

export default Form;



228 | Handling Side Effects

The Error component receives an error message via props (props.message) and 
displays it on the screen. In addition, with the help of useEffect(), it does some 
error logging. In this example, the error is simply output to the JavaScript console. In 
a real app, the error might be sent to some analytics API via an HTTP request. Either 
way, a side effect that depends on the error message is performed.

The Form component contains two state values, tracking the entered email address 
as well as the error status of the input. If an invalid input value is submitted, 
errorMessage is set and the Error component is displayed.

The interesting part about this example is the dependency array of useEffect() 
inside the Error component. It contains the props object as a dependency 
(props is always an object, grouping all prop values together). When using objects 
(props or any other object, it does not matter) as dependencies for useEffect(), 
unnecessary effect function executions can be the result. 

You can see this problem in this example. If you run the app and enter an invalid 
email address (e.g., test@test.de), you'll notice that subsequent keystrokes in the 
email input field will cause the error message to be logged (via the effect function) for 
every keystroke.

Note

The full code can be found on GitHub at https://packt.link/qqaDG.

Figure 8.7: A new error message is logged for every keystroke

https://packt.link/qqaDG


Introduction | 229

Those extra executions can occur because component re-evaluations (i.e., component 
functions being invoked again by React) will produce brand-new JavaScript objects. 
Even if the values of properties of those objects did not change (as in the preceding 
example), technically, a brand-new object in memory is created by JavaScript. Since 
the effect depends on the entire object, React only "sees" that there is a new version 
of that object and hence runs the effect again.

In the preceding example, a new props object (for the Error component) is created 
whenever the Form component function is called by React—even if the error 
message (the only prop value that's set) did not change.

In this example, that's just annoying since it clutters the JavaScript console in the 
developer tools. However, if you were sending an HTTP request to some analytics 
backend API, it could cause bandwidth problems and make the app slower. 
Therefore, it's best if you get into the habit of avoiding unnecessary effect executions 
as a general rule.

In the case of object dependencies, the best way to avoid unnecessary executions is 
to simply destructure the object so that you can pass only those object properties as 
dependencies that are needed by the effect:

function Error(props) {

  const { message } = props; // destructure to extract required 
properties

  useEffect(

    function () {

      console.log('An error occurred!');

      console.log(props.message);

    },

    // [props] // don't use the entire props object!

    [message]

  );

  return <p>{props.message}</p>;

}

In the case of props, you could also destructure the object right in the component 
function parameter list:

function Error({message}) {

  // ...

}



230 | Handling Side Effects

Using this approach, you ensure that only the required property values are set as 
dependencies. Therefore, even if the object gets recreated, the property value (in this 
case, the value of the message property) is the only thing that matters. If it doesn't 
change, the effect function won't be executed again.

Effects and Asynchronous Code

Some effects deal with asynchronous code (sending HTTP requests is a typical 
example). When performing asynchronous tasks in effect functions, there is one 
important rule to keep in mind, though: the effect function itself should not be 
asynchronous and should not return a promise.

You might want to use async/await to simplify asynchronous code, but when doing 
so inside of an effect function, it's easy to accidentally return a promise. For example, 
the following code would work but does not follow best practices:

useEffect(async function () {

  const fetchedPosts = await fetchPosts();

  setLoadedPosts(fetchedPosts);

}, []);

Adding the async keyword in front of function unlocks the usage of await inside 
the function—which makes dealing with asynchronous code (that is, with promises) 
more convenient.

But the effect function passed to useEffect() should only return a normal 
function, if anything. It should not return a promise. Indeed, React actually issues a 
warning when trying to run code like the preceding:

Figure 8.8: React shows a warning about async being used in an effect function



Introduction | 231

To avoid this warning, you can use promises without async/await, like this:

useEffect(function () {

  fetchPosts().then((fetchedPosts) => setLoadedPosts(fetchedPosts));

}, []);

Alternatively, if you want to use async/await, you can create a separate wrapper 
function inside of the effect function, which is then executed in the effect:

useEffect(function () {

  async function loadData() {

    const fetchedPosts = await fetchPosts();

    setLoadedPosts(fetchedPosts);

  }

  

  loadData();

}, []);

By doing that, the effect function itself is not asynchronous (it does not return a 
promise), but you can still use async/await.

Rules of Hooks

In this chapter, two new Hooks were introduced: useEffect() and 
useCallback(). Both Hooks are very important—useEffect() especially, as 
this is a Hook you will typically use a lot. Together with useState() (introduced 
in Chapter 4, Working with Events and State) and useRef() (introduced in Chapter 7, 
Portals and Refs), you now have a solid set of key React Hooks. 

When working with React Hooks, there are two rules (the so-called rules of Hooks) 
you must follow:

•	 Only call Hooks at the top level of component functions. Don't call them inside of 
if statements, loops, or nested functions.

•	 Only call Hooks inside of React components or custom Hooks (custom Hooks will 
be covered in Chapter 11, Building Custom React Hooks).

These rules exist because React Hooks won't work as intended if used in a 
non-compliant way. Fortunately, React will generate a warning message if you 
violate one of these rules, hence you will notice if you accidentally do so.



232 | Handling Side Effects

Summary and Key Takeaways

•	 Actions that are not directly related to the main process of a function can be 
considered side effects.

•	 Side effects can be asynchronous tasks (for example, sending an HTTP request), 
but can also be synchronous (for example, console.log() or accessing 
browser storage).

•	 Side effects are often needed to achieve a certain goal, but it's a good idea to 
separate them from the main process of a function.

•	 Side effects can become problematic if they cause infinite loops (because of the 
update cycles between effect and state).

•	 useEffect() is a React Hook that should be used to wrap side effects and 
perform them in a safe way.

•	 useEffect() takes an effect function and an array of effect dependencies.

•	 The effect function is executed directly after the component function was 
invoked (not simultaneously).

•	 Any value, variable, or function used inside of an effect should be added to the 
dependencies array.

•	 Dependency array exceptions are external values (defined outside of a 
component function), state updating functions, or values defined and used 
inside of the effect function. 

•	 If no dependency array is specified, the effect function executes after every 
component function invocation.

•	 If an empty dependency array is specified, the effect function runs once when 
the component first mounts (that is, when it is created for the first time).

•	 Effect functions can also return optional cleanup functions that are called right 
before an effect function is executed again (and right before a component is 
removed from the DOM).

•	 Effect functions must not return promises.

•	 For function dependencies, useCallback() can help reduce the number of 
effect executions.

•	 For object dependencies, destructuring can help reduce the number of 
effect executions.



Introduction | 233

What's Next?

Dealing with side effects is a common problem when building apps because most 
apps need some kind of side effects (for example, sending an HTTP request) to work 
correctly. Therefore, side effects aren't a problem themselves, but they can cause 
problems (for example, infinite loops) if handled incorrectly.

With the knowledge gained in this chapter, you know how to handle side effects 
efficiently with useEffect() and related key concepts.

At this point in the book, you now know all the key React concepts you need to 
build feature-rich web applications. The next chapter will look behind the scenes of 
React and explore how it works internally. You will also learn about some common 
optimization techniques that can make your apps more performant.

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to examples that can be 
found at https://packt.link/k0K8S:

1.	 How would you define a side effect?

2.	 What's a potential problem that could arise with some side effects in 
React components?

3.	 How does the useEffect() Hook work?

4.	 Which values should not be added to the useEffect() dependencies array?

5.	 Which value can be returned by the effect function? And which kind of value 
must not be returned?

Apply What You Learned

Now that you know about effects, you can add even more exciting features to your 
React apps. Fetching data via HTTP upon rendering a component is just as easy as 
accessing browser storage when some state changes.

In the following section, you'll find an activity that allows you to practice working with 
effects and useEffect(). As always, you will need to employ some of the concepts 
covered in earlier chapters (such as working with state).

https://packt.link/k0K8S


234 | Handling Side Effects

Activity 8.1: Building a Basic Blog

In this activity, you must add logic to an existing React app to render a list of blog 
post titles fetched from a backend web API and submit newly added blog posts to 
that same API. The backend API used is https://jsonplaceholder.typicode.com/, which is a 
dummy API that doesn't actually store any data you send to it. It will always return the 
same dummy data, but it's perfect for practicing sending HTTP requests.

As a bonus, you can also add logic to change the text of the submit button while the 
HTTP request to save the new blog post is on its way.

Use your knowledge about effects and browser-side HTTP requests to implement 
a solution.

Note

You can find the starting code for this activity at https://packt.link/C3bLv. 
When downloading this code, you'll always download the entire repository. 
Make sure to then navigate to the subfolder with the starting code 
(activities/practice-1/starting-code, in this case) to use 
the right code snapshot.

For this activity, you need to know how to send HTTP requests (GET, 
POST, and so on) via JavaScript (for example, via the fetch() function 
or with the help of a third-party library). If you don't have that knowledge yet, 
this resource can get you started: http://packt.link/DJ6Hx.

After downloading the code and running npm install in the project folder to 
install all required dependencies, the solution steps are as follows:

1.	 Send a GET HTTP request to the dummy API to fetch blog posts inside the App 
component (when the component is first rendered).

2.	 Display the fetched dummy blog posts on the screen.

3.	 Handle form submissions and send a POST HTTP request (with some dummy 
data) to the dummy backend API.

4.	 Bonus: Set the button caption to "Saving…" while the request is on its way (and 
to "Save" when it's not).

https://jsonplaceholder.typicode.com/
https://packt.link/C3bLv
http://packt.link/DJ6Hx


Introduction | 235

The expected result should be a user interface that looks like this:

Figure 8.9: The final user interface

Note

The solution to this activity can be found via this link.





Learning Objectives

By the end of this chapter, you will be able to do the following:

�	 Avoid unnecessary component update evaluations via React's 
memo() function.

�	 Avoid unnecessary code execution via the useMemo() and 
useCallback() Hooks.

�	 Load optional code lazily, only when it's needed, via React's 
lazy() function.

�	 Use React's developer tools to analyze your app.

Behind the Scenes of React 

and Optimization Opportunities

9



238 | Behind the Scenes of React and Optimization Opportunities

Introduction
Using all the features covered up to this point, you can build non-trivial React apps 
and therefore highly interactive and reactive user interfaces.

This chapter, while introducing some new functions and concepts, will not provide 
you with tools that would enable you to build even more advanced web apps. You will 
not learn about groundbreaking, key concepts such as state or props (though you will 
learn about more advanced concepts in later chapters).

Instead, this chapter allows you to look behind the scenes of React. You will learn 
how React calculates required DOM updates, and how it ensures that such updates 
happen without impacting performance in an unacceptable way. You will also learn 
about some other optimization techniques employed by React—all with the goal of 
ensuring that your React app runs as smoothly as possible.

Besides this look behind the scenes, you will learn about various built-in functions 
and concepts that can be used to further optimize app performance. This chapter will 
not only introduce those concepts but also explain why they exist, how they should 
be used, and when to use which feature.

Revisiting Component Evaluations and Updates

Before exploring React's internal workings, it makes sense to briefly revisit React's 
logic for executing component functions.

Component functions are executed whenever their internal state changes or their 
parent component function is executed again. The latter happens because, if a parent 
component function is called, its entire JSX code (which points at the child component 
function) is re-evaluated. Any component functions referenced in that JSX code are 
therefore also invoked again.

Consider a component structure like this:

function NestedChild() {

  console.log('<NestedChild /> is called.');

  return <p id="nested-child">A component, deeply nested into the 
component tree.</p>;
}

function Child() {

  console.log('<Child /> is called.');



Introduction | 239

  return (

    <div id="child">

      <p>

        A component, rendered inside another component, containing yet 
another
        component.

      </p>

      <NestedChild />

    </div>

  );

}

function Parent() {

  console.log('<Parent /> is called.');

  const [counter, setCounter] = useState(0);

  function incCounterHandler() {

    setCounter((prevCounter) => prevCounter + 1);

  }

  return (

    <div id="parent">

      <p>A component, nested into App, containing another component 
(Child).</p>
      <p>Counter: {counter}</p>

      <button onClick={incCounterHandler}>Increment</button>

      <Child />

    </div>

  );

}

In this example structure, the Parent component renders a <div> with two 
paragraphs, a button, and another component: the Child component. That 
component in turn outputs a <div> with a paragraph and yet another component: 
the NestedChild component (which then only outputs a paragraph).



240 | Behind the Scenes of React and Optimization Opportunities

The Parent component also manages some state (a dummy counter), which is 
changed whenever the button is clicked. All three components print a message via 
console.log(), simply to make it easy to spot when each component is called 
by React.

The following screenshot shows those components in action—after the button 
was clicked:

Figure 9.1: Each component function is executed

In this screenshot, you can not only see how the components are nested into each 
other, but also how they are all invoked by React when the Increment button is 
clicked. Child and NestedChild are invoked even though they don't manage or 
use any state. But since they are a child (Child) or descendent (NestedChild) of 
the Parent component, which did receive a state change, the nested component 
functions are called as well.

Understanding this flow of component function execution is important because this 
flow implies that any component function invocation also influences its descendent 
components. It also shows you how frequently component functions may be 
invoked by React and how many component functions may be affected by a single 
state change.



Introduction | 241

Therefore, there's one important question that should be answered: what happens 
to the actual page DOM (i.e., to the loaded and rendered website in the browser) 
when one or more component functions are invoked? Is the DOM recreated? Is the 
rendered UI updated?

What Happens When a Component Function Is Called

Whenever a component function is executed, React evaluates whether or not the 
rendered user interface (i.e., the DOM of the loaded page) must be updated.

This is important: React evaluates whether an update is needed. It's not forcing an 
update automatically!

Internally, React does not take the JSX code returned by a component (or multiple 
components) and replace the page DOM with it.

That could be done, but it would mean that every component function execution 
would lead to some form of DOM manipulation—even if it's just a replacement of 
the old DOM content with a new, similar version. In the example shown above, the 
Child and NestedChild JSX code would be used to replace the currently rendered 
DOM every time those component functions were executed.

As you can see in the example above, those component functions are executed quite 
frequently. But the returned JSX code is always the same because it's static. It does 
not contain any dynamic values (e.g., state or props). 

If the actual page DOM were replaced with the DOM elements implied by the 
returned JSX code, the visual result would always be the same. But there still would 
be some DOM manipulation behind the scenes. And that's a problem, because 
manipulating the DOM is quite a performance-intensive task—especially when done 
with a high frequency. Removing and adding or updating DOM elements should 
therefore only be done when needed—not unnecessarily.

Because of this, React does not throw away the current DOM and replace it with 
the new DOM (implied by the JSX code), just because a component function was 
executed. Instead, React first checks whether an update is needed. And if it's needed, 
only the parts of the DOM that need to change are replaced or updated.

For determining whether an update is needed (and where), React uses a concept 
called the virtual DOM.



242 | Behind the Scenes of React and Optimization Opportunities

The Virtual DOM vs the Real DOM

To determine whether (and where) a DOM update might be needed, React 
(specifically, the react-dom package) compares the current DOM structure to the 
structure implied by the JSX code returned by the executed component functions. If 
there's a difference, the DOM is updated accordingly; otherwise, it's left untouched.

However, just as manipulating the DOM is relatively performance-intensive, reading 
the DOM is as well. Even without changing anything in the DOM, reaching out to it, 
traversing the DOM elements, and deriving the structure from it is something you 
typically want to reduce to a minimum. 

If multiple component functions are executed and each trigger a process where the 
rendered DOM elements are read and compared to the JSX structure implied by the 
invoked component functions, the rendered DOM will be hit with read operations 
multiple times within a very short time frame. 

For bigger React apps that are made up of dozens, hundreds, or even thousands 
of components, it's highly probable that dozens of component function executions 
might occur within a single second. If that were to lead to the same amount of DOM 
read operations, there's a quite high chance that the web app would feel slow or 
laggy to the user.

That's why React does not use the real DOM to determine whether any user interface 
updates are needed. Instead, it constructs and manages a virtual DOM internally—an 
in-memory representation of the DOM that's rendered in the browser. The virtual 
DOM is not a browser feature, but a React feature. You can think of it as a deeply 
nested JavaScript object that reflects the components of your web app, including all 
the built-in HTML components such as <div>, <p>, etc. (that is, the actual HTML 
elements that should show up on the page in the end).



Introduction | 243

Figure 9.2: React manages a virtual representation of the expected element structure

In the figure above, you can see that the expected element structure (in other words, 
the expected final DOM) is actually stored as a JavaScript object (or an array with 
a list of objects). This is the virtual DOM, which is managed by React and used for 
identifying required DOM updates.

Note

Please note that the actual structure of the virtual DOM is more complex 
than the structure shown in the image. The chart above aims to give you 
an idea of what the virtual DOM is and how it might look. It's not an exact 
technical representation of the JavaScript data structure managed by React.

React manages this virtual DOM because comparing this virtual DOM to the expected 
user interface state is much less performance-intensive than reaching out to the 
real DOM.



244 | Behind the Scenes of React and Optimization Opportunities

Whenever a component function is called, React compares the returned JSX code 
to the respective virtual DOM nodes stored in the virtual DOM. If differences are 
detected, React will determine which changes are needed to update the DOM. 
Once the required adjustments are derived, these changes are applied to both the 
virtual and the real DOM. This ensures that the real DOM reflects the expected user 
interface state without having to reach out to it or update it all the time.

Figure 9.3: React detects required updates via the virtual DOM

In the figure above, you can see how React compares the current DOM and the 
expected structure with help of the virtual DOM first, before reaching out to the real 
DOM to manipulate it accordingly.

As a React developer, you don't need to actively interact with the virtual DOM. 
Technically, you don't even need to know that it exists and that React uses it 
internally. But it's always helpful to understand the tool (React in that case) you're 
working with. It's good to know that React is doing various performance optimizations 
for you and that you get those on top of the many other features that make your life 
as a developer (hopefully) easier.



Introduction | 245

State Batching

Since React uses this concept of a virtual DOM, frequent component function 
executions aren't a huge problem. But of course, even if comparisons are only 
conducted virtually, there is still some internal code that must be executed. Even with 
the virtual DOM, performance could degrade if lots of unnecessary (and at the same 
time quite complex) virtual DOM comparisons must be made.

One scenario where unnecessary comparisons are performed is in the execution of 
multiple sequential state updates. Since each state update causes the component 
function to be executed again (as well as all potential nested components), multiple 
state updates that are performed together (for example., in the same event handler 
function) will cause multiple component function invocations.

Consider this example:

function App() {

  const [counter, setCounter] = useState(0);

  const [showCounter, setShowCounter] = useState(false);

  function incCounterHandler() {

    setCounter((prevCounter) => prevCounter + 1);

    if (!showCounter) {

      setShowCounter(true);

    }

  }

  return (

    <>

      <p>Click to increment + show or hide the counter</p>

      <button onClick={incCounterHandler}>Increment</button>

      {showCounter && <p>Counter: {counter}</p>}

    </>

  );

}

This component contains two state values: counter and showCounter. When 
the button is clicked, the counter is incremented by 1. Now, showCounter is set to 
true if it was set to false. Therefore, the first time the button is clicked, both the 
counter and the showCounter states are changed (because showCounter is 
false initially).



246 | Behind the Scenes of React and Optimization Opportunities

Since two state values are changed, the expectation would be that the App 
component function is called twice by React—because every state update causes 
the connected component function to be invoked again.

However, if you add a console.log() statement to the App component function 
(to track how often it's executed), you will see that it's only invoked once, when the 
Increment button is clicked:

Figure 9.4: Only one console log message is displayed

Note

If you're seeing two log messages instead of one, make sure you're 
not using React's "Strict Mode." When running in Strict Mode during 
development, React executes component functions more often than it 
normally would.

If necessary, you can disable Strict Mode by removing the <React.
StrictMode> component from your index.js file. You will learn more 
about React's Strict Mode toward the end of this chapter.

This behavior is called state batching. React performs state batching when multiple 
state updates are initiated from the same place in your code (e.g., from inside the 
same event handler function).

It's a built-in functionality that ensures that your component functions are not called 
more often than needed. This prevents unnecessary virtual DOM comparisons.

State batching is a very useful mechanism. But there is another kind of unnecessary 
component evaluation that it does not prevent: child component functions that get 
executed when the parent component function is called.



Introduction | 247

Avoiding Unnecessary Child Component Evaluations

Whenever a component function is invoked (because its state changed, for example), 
any nested component functions will be called as well. See the first section of this 
chapter for more details.

As you saw in the example in the first section of this chapter, it is often the case that 
those nested components don't actually need to be evaluated again. They might not 
depend on the state value that changed in the parent component. They might not 
even depend on any values of the parent component at all.

Here's an example where the parent component function contains some state that is 
not used by the child component:

function Error({ message }) {

  if (!message) {

    return null;

  }

  return <p className={classes.error}>{message}</p>;

}

function Form() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [errorMessage, setErrorMessage] = useState();

  function updateEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function submitHandler(event) {

    event.preventDefault();

    if (!enteredEmail.endsWith('.com')) {

      setErrorMessage('Email must end with .com.');

    }

  }

  return (

    <form className={classes.form} onSubmit={submitHandler}>

      <div className={classes.control}>

        <label htmlFor="email">Email</label>



248 | Behind the Scenes of React and Optimization Opportunities

        <input

          id="email"

          type="email"

          value={enteredEmail}

          onChange={updateEmailHandler}

        />

      </div>

      <Error message={errorMessage} />

      <button>Sign Up</button>

    </form>

  );

}

Note

You can find the complete example code on GitHub at https://packt.link/
z3Hg2.

In this example, the Error component relies on the message prop, which is set to 
the value stored in the errorMessage state of the Form component. However, 
the Form component also manages an enteredEmail state, which is not used 
(not received via props) by the Error component. Therefore, changes to the 
enteredEmail state will cause the Error component to be executed again, 
despite the component not needing that value.

You can track the unnecessary Error component function invocations by adding a 
console.log() statement to that component function:

function Error({ message }) {

  console.log('<Error /> component function is executed.');

  if (!message) {

    return null;

  }

  return <p className={classes.error}>{message}</p>;

}

https://packt.link/z3Hg2
https://packt.link/z3Hg2


Introduction | 249

Figure 9.5: The Error component function is executed for every keystroke

In the preceding screenshot, you can see that the Error component function 
is executed for every keystroke on the input field (that is, once for every 
enteredEmail state change).

This is in line with what you have learned previously, but it is also unnecessary. 
The Error component does depend on the errorMessage state and should 
certainly be re-evaluated whenever that state changes, but executing the Error 
component function because the enteredEmail state value was updated is clearly 
not required.

That's why React offers another built-in function that you can use to control (and 
prevent) this behavior: the memo() function.

memo is imported from react and is used like this:

import { memo } from 'react';

import classes from './Error.module.css';

function Error({ message }) {

  console.log('<Error /> component function is executed.');

  if (!message) {

    return null;

  }

  return <p className={classes.error}>{message}</p>;

}

export default memo(Error);



250 | Behind the Scenes of React and Optimization Opportunities

You wrap the component function that should be protected from unnecessary, 
parent-initiated re-evaluations with memo(). This causes React to check whether the 
component's props did change, compared to the last time the component function 
was called. If prop values are equal, the component function is not executed again.

By adding memo(), the unnecessary component function invocations are avoided, as 
shown below:

Figure 9.6: No console log messages appear

As you can see in the figure, no messages are printed to the console. This proves that 
unnecessary component executions are avoided (remember: before adding memo(), 
many messages were printed to the console).

memo() also takes an optional second argument that can be used to add your own 
logic to determine whether prop values have changed or not. This can be useful if 
you're dealing with more complex prop values (e.g., objects or arrays) where custom 
comparison logic might be needed, as in the following example:

memo(SomeComponent, function(prevProps, nextProps) {

  return prevProps.user.firstName !== nextProps.user.firstName;

});

The (optional) second argument passed to memo() must be a function that 
automatically receives the previous props object and the next props object. The 
function then must return true if the component (SomeComponent, in this 
example) should be re-evaluated and false if it should not.



Introduction | 251

Often, the second argument is not needed because the default behavior of memo() 
(where it compares all props for inequality) is exactly what you need. But if more 
customization or control is needed, memo() allows you to add your custom logic.

With memo() in your toolbox, it's tempting to wrap every React component function 
with memo(). Why wouldn't you do it? After all, it avoids unnecessary component 
function executions.

But there is a very good reason for not using memo() in all your component 
functions. Indeed, you typically only want to use it in a few selected components.

Because avoiding unnecessary component re-evaluations with using memo() comes 
at a cost: comparing props (old versus new) also requires some code to run. It's not 
"free." It's especially problematic if the result then is that the component function 
must be executed again (because props changed) as, in that case, you will have spent 
time comparing props just to then invoke the component function anyway. 

Hence memo() really only makes sense if you have relatively simple props (i.e., props 
with no deeply nested objects that you need to compare manually with a custom 
comparison function) and most parent component state changes don't affect those 
props of the child component. And even in those cases, if you have a relatively simple 
component function (i.e., without any complex logic in it), using memo() still might 
not yield any measurable benefit.

The example code above (the Error component) is a good example: in theory, using 
memo() makes sense here. Most state changes in the parent component won't affect 
Error, and the prop comparison will be very simple because it's just one prop (the 
message prop, which holds a string) that must be compared. But despite that, using 
memo() to wrap Error will very likely not be worth it. Error is an extremely basic 
component with no complex logic in it. It simply doesn't matter if the component 
function gets invoked frequently. Hence, using memo() in this spot would be 
absolutely fine—but so is not using it.



252 | Behind the Scenes of React and Optimization Opportunities

A great spot to use memo(), on the other hand, is a component that's relatively close 
to the top of the component tree (or of a deeply nested branch of components in 
the component tree). If you are able to avoid unnecessary executions of that one 
component via memo(), you also implicitly avoid unnecessary executions of all 
nested components beneath that one component. This is visually illustrated in the 
diagram below:

Figure 9.7: Using memo at the start of a component tree branch

In the preceding figure, memo() is used on the Shop component, which has 
multiple nested descendent components. Without memo(), whenever the Shop 
component function gets invoked, Products, ProdItem, Cart, etc. would also 
be executed. With memo(), assuming that it's able to avoid some unnecessary 
executions of the Shop component function, all those descendent components are 
no longer evaluated.

Avoiding Costly Computations

The memo() function can help avoid unnecessary component function executions. As 
mentioned in the previous section, this is especially valuable if a component function 
performs a lot of work (e.g., sorting a long list).



Introduction | 253

But as a React developer, you will also encounter situations in which you have a 
work-intensive component that needs to be executed again because some prop 
value changed. In such cases, using memo() won't prevent the component function 
from executing again. But the prop that changed might not be needed for the 
performance-intensive task that is performed as part of the component.

Consider the following example:

function sortItems(items) {

  console.log('Sorting');

  return items.sort(function (a, b) {

    if (a.id > b.id) {

      return 1;

    } else if (a.id < b.id) {

      return -1;

    }

    return 0;

  });

}

function List({ items, maxNumber }) {

  const sortedItems = sortItems(items);

  const listItems = sortedItems.slice(0, maxNumber);

  return (

    <ul>

      {listItems.map((item) => (

        <li key={item.id}>

          {item.title} (ID: {item.id})

        </li>

      ))}

    </ul>

  );

}

export default List;



254 | Behind the Scenes of React and Optimization Opportunities

The List component receives two prop values: items and maxNumber. It then 
calls sortItems() to sort the items by id. Thereafter, the sorted list is limited to a 
certain amount (maxNumber) of items. As a last step, the sorted and shortened list is 
then rendered to the screen via map() in the JSX code. 

Note

A full example app can be found on GitHub at https://packt.link/dk9ag.

Depending on the number of items passed to the List component, sorting it can 
take a significant amount of time (for very long lists, even up to a few seconds). It's 
definitely not an operation you want to perform unnecessarily or too frequently. 
The list needs to be sorted whenever items change, but it should not be sorted 
if maxNumber changes—because this does not impact the items in the list (i.e., it 
doesn't affect the order). But with the code snippet shared above, sortItems() will 
be executed whenever either of the two prop values changes, no matter whether it's 
items or maxNumber.

As a result, when running the app and changing the number of displayed items, you 
can see multiple "Sorting" log messages—implying that sortItems() was 
executed every time the number of items was changed. 

Figure 9.8: Multiple "Sorting" log messages appear in the console

The memo() function won't help here because the List component function should 
(and will) execute whenever items or maxNumber change. memo() does not help 
control partial code execution inside the component function.

For that, you can use another feature provided by React: the useMemo() Hook. 

https://packt.link/dk9ag


Introduction | 255

useMemo() can be used to wrap a compute-intensive operation. For it to work 
correctly, you also must define a list of dependencies that should cause the operation 
to be executed again. To some extent, it's similar to useEffect() (which also 
wraps an operation and defines a list of dependencies), but the key difference is that 
useMemo() runs at the same time as the rest of the code in the component function, 
whereas useEffect() executes the wrapped logic after the component function 
execution finished. useEffect() should not be used for optimizing compute-
intensive tasks but for side effects.

useMemo(), on the other hand, exists to control the execution of performance-
intensive tasks. Applied to the example mentioned above, the code can be adjusted 
like this:

import { useMemo } from 'react';

function List({ items, maxNumber }) {

  const sortedItems = useMemo(

    function () {

      console.log('Sorting');

      return items.sort(function (a, b) {

        if (a.id > b.id) {

          return 1;

        } else if (a.id < b.id) {

          return -1;

        }

        return 0;

      });

    },

    [items]

  );

  const listItems = sortedItems.slice(0, maxNumber);

  return (

    <ul>

      {listItems.map((item) => (

        <li key={item.id}>

          {item.title} (ID: {item.id})

        </li>

      ))}

    </ul>



256 | Behind the Scenes of React and Optimization Opportunities

  );

}

export default List;

useMemo() wraps an anonymous function (the function that previously existed as 
a named function, sortItems), which contains the entire sorting code. The second 
argument passed to useMemo() is the array of dependencies for which the function 
should be executed again (when a dependency value changes). In this case, items is 
the only dependency of the wrapped function, and so that value is added to the array.

With useMemo() used like this, the sorting logic will only execute when items 
change, not when maxNumber (or anything else) changes. As a result, you see 
"Sorting" being output in the developer tools console only once:

Figure 9.9: Only one "Sorting" output in the console

useMemo() can be very useful for controlling code execution inside of your 
component functions. It can be a great addition to memo() (which controls the 
overall component function execution). But also like memo(), you should not start 
wrapping all your logic with useMemo(). Only use it for very performance-intensive 
computations since checking for dependency changes and storing and retrieving 
past computation results (which useMemo() does internally) also comes at a 
performance cost.

Utilizing useCallback()

In the previous chapter, you learned about useCallback(). Just like useMemo() 
can be used for "expensive" calculations, useCallback() can be used to avoid 
unnecessary function re-creations. In the context of this chapter, useCallback() 
can be helpful because, in conjunction with memo() or useMemo(), it can help you 
avoid unnecessary code execution. It can help you in cases where a function is passed 
as a prop (i.e., where you might use memo()) or is used as a dependency in some 
"expensive" computation (i.e., possibly solved via useMemo()).



Introduction | 257

Here's an example where useCallback() can be combined with memo() to avoid 
unnecessary component function executions:

import { memo } from 'react';

import classes from './Error.module.css';

function Error({ message, onClearError }) {

  console.log('<Error /> component function is executed.');

  if (!message) {

    return null;

  }

  return (

    <div className={classes.error}>

      <p>{message}</p>

      <button className={classes.errorBtn} onClick={onClearError}>X</
button>
    </div>

  );

}

export default memo(Error);

The Error component is wrapped with the memo() function and so will only 
execute if one of the received prop values changes. 

The Error component is used by another component, the Form component, 
like this:

function Form() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [errorMessage, setErrorMessage] = useState();

  function updateEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function submitHandler(event) {

    event.preventDefault();

    if (!enteredEmail.endsWith('.com')) {

      setErrorMessage('Email must end with .com.');



258 | Behind the Scenes of React and Optimization Opportunities

    }

  }

  function clearErrorHandler() {

    setErrorMessage(null);

  }

  return (

    <form className={classes.form} onSubmit={submitHandler}>

      <div className={classes.control}>

        <label htmlFor="email">Email</label>

        <input

          id="email"

          type="email"

          value={enteredEmail}

          onChange={updateEmailHandler}

        />

      </div>

      <Error message={errorMessage} onClearError={clearErrorHandler} />

      <button>Sign Up</button>

    </form>

  );

}

In this component, the Error component receives a pointer to the 
clearErrorHandler function (as a value for the onClearError prop). You 
might recall a very similar example from earlier in this chapter (from the "Avoiding 
Unnecessary Child Component Evaluations" section). There, memo() was used to 
ensure that the Error component function was not invoked when enteredEmail 
changed (because its value was not used in the Error component function at all). 

Now with the adjusted example and the clearErrorHandler function pointer 
passed to Error, memo() unfortunately isn't preventing component function 
executions anymore. Why? Because functions are objects in JavaScript, and the 
clearErrorHandler function is recreated every time the Form component 
function is executed (which happens on every state change, including changes to 
the enteredEmail state).



Introduction | 259

Since a new function object is created for every state change, clearErrorHandler 
is technically a different value for every execution of the Form component. 
Therefore, the Error component receives a new onClearError prop value 
whenever the Form component function is invoked. To memo(), the old and new 
clearErrorHandler function objects are different from each other, and it 
therefore will not stop the Error component function from running again.

That's exactly where useCallback() can help:

const clearErrorHandler = useCallback(() => {

  setErrorMessage(null);

}, []);

By wrapping clearErrorHandler with useCallback(), the re-creation of 
the function is prevented, and so no new function object is passed to the Error 
component. Hence, memo() is able to detect equality between the old and new 
onClearError prop value and prevents unnecessary function component 
executions again.

Similarly, useCallback() can be used in conjunction with useMemo(). If the 
compute-intensive operation wrapped with useMemo() uses a function as a 
dependency, you can use useCallback() to ensure that this dependent function is 
not recreated unnecessarily.

Avoiding Unnecessary Code Download

Thus far, this chapter has mostly discussed strategies for avoiding unnecessary code 
execution (and that it's not always worth the effort). But it's not just the execution of 
code that can be an issue. It's also not great if your website visitors have to download 
lots of code that might never be executed at all. Because every kilobyte of JavaScript 
code that has to be downloaded will slow down the initial loading time of your web 
page—not just because of the time it takes to download the code bundle (which 
can be significant, if users are on a slow network and code bundles are big) but 
also because the browser has to parse all the downloaded code before your page 
becomes interactive.

For this reason, a lot of community and ecosystem effort is spent on reducing 
JavaScript code bundle sizes. Minification (automatic shortening of variable names 
and other measures to reduce the final code) and compression can help a lot and is 
therefore a common technique. Actually, projects created with create-react-app 
already come with a build workflow (initiated by running npm run build), which 
will produce a production-optimized code bundle that is as small as possible.



260 | Behind the Scenes of React and Optimization Opportunities

But there also are steps that can be taken by you, the developer, to reduce the overall 
code bundle size:

1.	 Try to write short and concise code.

2.	 Be thoughtful about including lots of third-party libraries and don't use them 
unless you really need to.

3.	 Consider using code-splitting techniques.

The first point should be fairly obvious. If you write less code, your website visitors 
have less code to download. Therefore, trying to be concise and write optimized code 
makes sense.

The second point should also make sense. For some tasks, you will actually save code 
by including third-party libraries that may be much more elaborate than the code 
solution you might come up with. But there are also situations and tasks in which you 
might get away with writing your own code or using some built-in function instead of 
including a third-party library. You should at least always think about this alternative 
and only include third-party libraries you absolutely need.

The last point is something React can help with.

Reducing Bundle Sizes via Code Splitting (Lazy Loading)

React exposes a lazy() function that can be used to load component code 
conditionally—meaning, only when it's actually needed (instead of upfront).

Consider the following example, consisting of two components working together.

A DateCalculator component is defined like this:

import { useState } from 'react';

import { add, differenceInDays, format, parseISO } from 'date-fns';

import classes from './DateCalculator.module.css';

const initialStartDate = new Date();

const initialEndDate = add(initialStartDate, { days: 1 });

function DateCalculator() {

  const [startDate, setStartDate] = useState(

    format(initialStartDate, 'yyyy-MM-dd')

  );

  const [endDate, setEndDate] = useState(format(initialEndDate, 'yyyy-



Introduction | 261

MM-dd'));

  const daysDiff = differenceInDays(parseISO(endDate), 
parseISO(startDate));

  function updateStartDateHandler(event) {

    setStartDate(event.target.value);

  }

  function updateEndDateHandler(event) {

    setEndDate(event.target.value);

  }

  return (

    <div className={classes.calculator}>

      <p>Calculate the difference (in days) between two dates.</p>

      <div className={classes.control}>

        <label htmlFor="start">Start Date</label>

        <input

          id="start"

          type="date"

          value={startDate}

          onChange={updateStartDateHandler}

        />

      </div>

      <div className={classes.control}>

        <label htmlFor="end">End Date</label>

        <input

          id="end"

          type="date"

          value={endDate}

          onChange={updateEndDateHandler}

        />

      </div>

      <p className={classes.difference}>Difference: {daysDiff} days</p>

    </div>

  );

}

export default DateCalculator;



262 | Behind the Scenes of React and Optimization Opportunities

This DateCalculator component is then rendered conditionally by the 
App component:

import { useState } from 'react';

import DateCalculator from './components/DateCalculator';

function App() {

  const [showDateCalc, setShowDateCalc] = useState(false);

  function openDateCalcHandler() {

    setShowDateCalc(true);

  }

  return (

    <>

      <p>This app might be doing all kinds of things.</p>

      <p>

        But you can also open a calculator which calculates the difference

        between two dates.

      </p>

      <button onClick={openDateCalcHandler}>Open Calculator</button>

      {showDateCalc && <DateCalculator />}

    </>

  );

}

export default App;

In this example, the DateCalculator component uses a third-party library (the 
date-fns library) to access various date-related utility functions (for example, a 
function for calculating the difference between two dates, or differenceInDays).

The component then accepts two date values and calculates the difference between 
those dates in days—though the actual logic of the component isn't too important 
here. What is important is the fact that a third-party library and various utility 
functions are used. This adds quite a bit of JavaScript code to the overall code bundle, 
and all that code must be downloaded when the entire website is loaded for the first 
time, even though the date calculator isn't even visible at that point in time (because 
it is rendered conditionally).



Introduction | 263

You can see the overall bundle being downloaded in the following screenshot:

Figure 9.10: Only one bundle file is downloaded

The Network tab in the browser's developer tools reveals outgoing network 
requests. As you can see in the screenshot, a JavaScript bundle file is downloaded. 
You won't see any extra requests being sent when the button is clicked. This 
implies that all the code, including the code needed for DateCalculator, 
was downloaded upfront.

That's where code splitting with React's lazy() function becomes useful.

This function can be wrapped around a dynamic import to load the imported 
component only once it's needed. 

Note

For further information on this topic, visit https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Statements/import#dynamic_imports.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import#dynamic_imports
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import#dynamic_imports


264 | Behind the Scenes of React and Optimization Opportunities

In the preceding example, it would be used like this in the App component file:

import { lazy, useState } from 'react';

const DateCalculator = lazy(() => import('./components/DateCalculator'));

function App() {

  const [showDateCalc, setShowDateCalc] = useState(false);

  function openDateCalcHandler() {

    setShowDateCalc(true);

  }

  return (

    <>

      <p>This app might be doing all kinds of things.</p>

      <p>

        But you can also open a calculator which calculates the difference

        between two dates.

      </p>

      <button onClick={openDateCalcHandler}>Open Calculator</button>

      {showDateCalc && <DateCalculator />}

    </>

  );

}

export default App;

This alone won't do the trick though. You must also wrap the conditional JSX code, 
where the dynamically imported component is used, with another component 
provided by React: the <Suspense> component, like this:

import { lazy, Suspense, useState } from 'react';

const DateCalculator = lazy(() => import('./components/DateCalculator'));

function App() {

  const [showDateCalc, setShowDateCalc] = useState(false);

  function openDateCalcHandler() {

    setShowDateCalc(true);



Introduction | 265

  }

  return (

    <>

      <p>This app might be doing all kinds of things.</p>

      <p>

        But you can also open a calculator which calculates the difference

        between two dates.

      </p>

      <button onClick={openDateCalcHandler}>Open Calculator</button>

      <Suspense fallback={<p>Loading...</p>}>

        {showDateCalc && <DateCalculator />}

      </Suspense>

    </>

  );

}

export default App;

Note

You can find the finished example code on GitHub at https://packt.link/wj5Pi.

Suspense is a component built into React, and you must wrap it around any 
conditional code that uses React's lazy() function. Suspense also has one 
mandatory prop that must be provided, the fallback prop, which expects a JSX 
value that will be rendered as fallback content until the dynamically loaded content 
is available.

lazy() leads to the overall JavaScript code being split up into multiple bundles. And 
the bundle that contains the DateCalculator component (and its dependencies, 
such as the date-fns library code) is only downloaded when it's needed—that is, 
when the button in the App component is clicked. If that download were to take a 
bit longer, the fallback content of Suspense would be shown on the screen in 
the meantime.

https://packt.link/wj5Pi


266 | Behind the Scenes of React and Optimization Opportunities

Note

React's Suspense component is not limited to being used in conjunction 
with the lazy() function. In the past it was, but starting with React 18, it 
can also be used to show some fallback content while other data (i.e., data 
from a database) is being fetched.

Right now, capabilities are nonetheless quite limited. However, in future 
React versions, this should become more useful.

After adding lazy() and the Suspense component as described, a smaller 
bundle is initially downloaded. In addition, if the button is clicked, more code files 
are downloaded:

Figure 9.11: Multiple bundles are downloaded

Just as with all the other optimization techniques described thus far, the lazy() 
function is not a function you should start wrapping around all your imports. If an 
imported component is very small and simple (and doesn't use any third-party code), 
splitting the code isn't really worth it, especially since you have to consider that the 
additional HTTP request required for downloading the extra bundle also comes with 
some overhead.

It also doesn't make sense to use lazy() on components that will be loaded initially 
anyways. Only consider using it on conditionally loaded components.



Introduction | 267

Strict Mode

Throughout this chapter, you have learned a lot about React's internals and various 
optimization techniques. Not really an optimization technique, but still related, is 
another feature offered by React called Strict Mode.

You may have stumbled across code like this before:

import React from 'react';

// ... other code ...

root.render(<React.StrictMode><App /></React.StrictMode >);

<React.StrictMode> is another built-in component provided by React. It doesn't 
render any visual element, but it will enable some extra checks that are performed 
behind the scenes by React.

Most checks are related to identifying the use of unsafe or legacy code (i.e., features 
that will be removed in the future). But there are also some checks that aim to help 
you identify potential problems with your code.

For example, when using strict mode, React will execute component functions twice 
and also unmount and remount every component whenever it mounts for the first 
time. This is done to ensure that you're managing your state and side effects in a 
consistent and correct way (for example, that you do have cleanup functions in your 
effect functions).

Note

Strict Mode only affects your app and its behavior during development. It 
does not influence your app once you build it for production. Extra checks of 
effects such as double component function execution will not be performed 
in production.

Building React apps with Strict Mode enabled can sometimes lead to confusion or 
annoying error messages. You might, for example, wonder why your component 
effects are executing too often.

Therefore, it's your personal decision whether you want to use Strict Mode or 
not. You could also enable it (by wrapping it around your <App /> component) 
occasionally only.



268 | Behind the Scenes of React and Optimization Opportunities

Debugging Code and the React Developer Tools

Earlier in this chapter, you learned that component functions may execute quite 
frequently and that you can prevent unnecessary executions using memo() and 
useMemo() (and that you shouldn't always prevent it).

Identifying component executions by adding console.log() inside the component 
functions is one way of gaining insight into a component. It's the approach used 
throughout this chapter. However, for large React apps with dozens, hundreds, or 
even thousands of components, using console.log() can get tedious. 

That's why the React team also built an official tool to help with gaining app insights. 
The React developer tools are an extension that can be installed into all major 
browsers (Chrome, Firefox, and Edge). You can find and install the extension by 
simply searching the web for "<your browser> react developer tools" 
(e.g., "chrome react developer tools").

Once you have installed the extension, you can access it directly from inside the 
browser. For example, when using Chrome, you can access the React developer 
tools extensions directly from inside Chrome's developer tools (which can be opened 
via the menu in Chrome). Explore the specific extension documentation (in your 
browser's extensions store) for details on how to access it.

The React developer tools extension offers two areas: a Components page and a 
Profile page:

Figure 9.12: The React developer tools can be accessed via browser developer tools



Introduction | 269

The Components page can be used to analyze the component structure of the 
currently rendered page. You can use this page to understand the structure of your 
components (i.e., the "tree of components"), how components are nested into each 
other, and even the configuration (props, state) of components.

Figure 9.13: Component relations and data are shown

This page can be very useful when attempting to understand the current state of 
a component, how a component is related to other components, and which other 
components may therefore influence a component (e.g., cause it to be re-evaluated).



270 | Behind the Scenes of React and Optimization Opportunities

However, in the context of this chapter, the more useful page is the Profiler page:

Figure 9.14: The Profiler page (without any data gathered)

On this page, you can begin recording component evaluations (i.e., component 
function executions). You can do this by simply pressing the Record button in the 
top-left corner (the blue circle). This button will then be replaced by a Stop button, 
which you can press to end the recording.

After recording the React app for a couple of seconds (and interacting with it during 
that period), an example result could look like this:

Figure 9.15: The Profiler page shows various bars after recording finished



Introduction | 271

This result consists of two main areas:

•	 A list of bars, indicating the number of component re-evaluations (every bar 
reflects one re-evaluation cycle that affected one or more components). You can 
click these bars to explore more details about a specific cycle.

•	 For the selected evaluation cycle, a list of the affected components is presented. 
You can identify affected components easily as their bars are colored and timing 
information is displayed for them.

You can select any render cycle from 1 (in this case, there are two for this recording 
session) to view which components were affected. The bottom part of the window (2) 
shows all affected components by highlighting them with some color and outputting 
the overall amount of time taken by this component to be re-evaluated (for example, 
0.1ms of 0.3ms).

Note

It's worth noting that this tool also proves that component evaluation is 
extremely fast—0.1ms for re-evaluating a component is way too fast for 
any human to realize that something happened behind the scenes.

On the right side of the window, you also learn more about this component 
evaluation cycle. For example, you learn where it was triggered. In this case, it was 
triggered by the Form component (it's the same example as discussed earlier in this 
chapter, in the "Avoiding Unnecessary Child Component Evaluations" section).

The Profiler page can therefore also help you to identify component evaluation 
cycles and determine which components are affected. In this example, you can see a 
difference if the memo() function is wrapped around the Error component:

Figure 9.16: Only the Form component is affected, not the Error component



272 | Behind the Scenes of React and Optimization Opportunities

After re-adding the memo() function as a wrapper around the Error component 
(as explained earlier in this chapter), you can use the Profiler page of the React 
developer tools to confirm that the Error component is no longer unnecessarily 
evaluated. To do this, you should start a new recording session and reproduce the 
situation, where previously, without memo(), the Error component would've been 
called again.

The diagonal grayed-out lines across the Error component in the Profiler 
window signal that this component was not affected by some other component 
function invocation.

The React developer tools can therefore be used to gain deeper insights into your 
React app and your components. You can use them in addition or instead of calling 
console.log() in a component function.

Summary and Key Takeaways

•	 React components are re-evaluated (executed) whenever their state changes or 
the parent component is evaluated.

•	 React optimizes component evaluation by calculating required user interface 
changes with help of a virtual DOM first.

•	 Multiple state updates that occur at the same time and in the same place 
are batched together by React. This ensures that unnecessary component 
evaluations are avoided.

•	 The memo() function can be used to control component function executions.

•	 memo() looks for prop value differences (old props versus new props) to 
determine whether a component function must be executed again.

•	 useMemo() can be used to wrap performance-intensive computations and only 
perform them if key dependencies changed.

•	 Both memo() and useMemo() should be used carefully since they also come at 
a cost (the comparisons performed).

•	 The initial code download size can be reduced with help of code splitting via the 
lazy() function (in conjunction with the built-in Suspense component)



Introduction | 273

•	 React's Strict Mode can be enabled (via the built-in <React.StrictMode> 
component) to perform various extra checks and detect potential bugs in 
your application.

•	 The React developer tools can be used to gain deeper insights into your React 
app (for example, component structure and re-evaluation cycles).

What's Next?

As a developer, you should always know and understand the tool you're working 
with—in this case, React.

This chapter allowed you to get a better idea of how React works under the hood and 
which optimizations are implemented automatically. In addition, you also learned 
about various optimization techniques that can be implemented by you.

The next chapter will go back to solving actual problems you might face when trying 
to build React apps. Instead of optimizing React apps, you will learn more about 
techniques and features that can be used to solve more complex problems related to 
component and application state management. 

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to examples that can be 
found at https://packt.link/hPDal: 

1.	 Why does React use a virtual DOM to detect required DOM updates?

2.	 How is the real DOM affected when a component function is executed?

3.	 Which components are great candidates for the memo() function? Which 
components are bad candidates?

4.	 How is useMemo() different from memo()?

5.	 What's the idea behind code splitting and the lazy() function?

https://packt.link/hPDal


274 | Behind the Scenes of React and Optimization Opportunities

Apply What You Learned

With your newly gained knowledge about React's internals and some of the 
optimization techniques you can employ in order to improve your apps, you can 
now apply this knowledge in the following activity.

Activity 9.1: Optimize an Existing App

In this activity, you're handed an existing React app that can be optimized in 
various places. Your task is to identify optimization opportunities and implement 
appropriate solutions. Keep in mind that too much optimization can actually lead to a 
worse result. 

Note

You can find the starting code for this activity at https://packt.link/cYqyu. 
When downloading this code, you'll always download the entire repository. 
Make sure to then navigate to the subfolder with the starting code 
(activities/practice-1/starting-code in this case) to use 
the right code snapshot.

The provided project also uses many features covered in earlier chapters. 
Take the time to analyze it and understand the provided code. This is a 
great practice and allows you to see many key concepts in action.

Once you have downloaded the code and run npm install in the project folder 
(to install all required dependencies), you can start the development server via npm 
start. As a result, upon visiting localhost:3000, you should see the following 
user interface:

https://packt.link/cYqyu


Introduction | 275

Figure 9.17: The running starting project

Take your time to get acquainted with the provided project. Experiment with the 
different buttons in the user interface, fill in some dummy data into the form input 
fields, and analyze the provided code. Please note that this dummy project does not 
send any HTTP requests to any server. All entered data is discarded the moment it 
is entered.

To complete the activity, the solution steps are as follows:

1.	 Find optimization opportunities by looking for unnecessary component 
function executions. 

2.	 Also identify unnecessary code execution inside of component functions 
(where the overall component function invocation can't be prevented).

3.	 Determine which code could be loaded lazily instead of eagerly.

4.	 Use the memo() function, the useMemo() Hook, and React's lazy() 
function to improve the code.



276 | Behind the Scenes of React and Optimization Opportunities

You can tell that you came up with a good solution and sensible adjustments if 
you can see extra code fetching network requests (in the Network tab of your 
browser developer tools) for clicking on the Reset password or Create a new 
account buttons:

Figure 9.18: In the final solution, some code is lazy loaded

In addition, you should see no Validated password. console message when 
typing into the email input fields (Email and Confirm Email) of the signup form 
(that is, the form you switch to when clicking Create a new account):

Figure 9.19: No "Validated password." output in the console



Introduction | 277

You also shouldn't get any console outputs when clicking the More 
Information button:

Figure 9.20: No console messages when clicking "More Information"

Note

The solution to this activity can be found via this link.





Learning Objectives

By the end of this chapter, you will be able to do the following:

�	 Manage cross-component or even app-wide state (instead of just 
component-specific state).

�	 Distribute data across multiple components.

�	 Handle complex state values and changes.

Working with Complex State

10



280 | Working with Complex State

Introduction
State is one of the core concepts you must understand (and work with) to use 
React effectively. Basically, every React app utilizes (many) state values across many 
components to present a dynamic, reactive user interface.

From simple state values that contain a changing counter or values entered by users, 
all the way up to more complex state values such as the combination of multiple form 
inputs or user authentication information, state is everywhere. And in React apps, it's 
typically managed with the help of the useState() Hook. 

However, once you start building more complex React applications (e.g., online shops, 
admin dashboards, and similar sites), it is likely that you'll face various challenges 
related to state. State values might be used in component A but changed in 
component B or be made up of multiple dynamic values that may change for a broad 
variety of reasons (e.g., a cart in an online shop, which is a combination of products, 
where every product has a quantity, a price, and possibly other traits that may be 
changed individually).

You can handle all these problems with useState(), props, and the other 
concepts covered by this book thus far. But you will notice that solutions based 
on useState() alone gain a complexity that can be difficult to understand and 
maintain. That's why React has more tools to offer—tools created for these kinds of 
problems, which this chapter will highlight and discuss.

A Problem with Cross-Component State

You don't even need to build a highly sophisticated React app to encounter a 
common problem: state that spans multiple components. 

For example, you might be building a news app where users can bookmark certain 
articles. The user interface could look like this:



Introduction | 281

Figure 10.1: An example user interface

As you can see in the preceding figure, the list of articles is on the left, and a summary 
of the bookmarked articles can be found in a sidebar on the right. 

A common solution is to split this user interface into multiple components. The list of 
articles, specifically, would probably be in its own component—just like the bookmark 
summary sidebar.

However, in that scenario, both components would need to access the same shared 
state—that is, the list of bookmarked articles. The article list component would 
require access in order to add (or remove) articles. The bookmark summary sidebar 
component would require it as it needs to display the bookmarked articles.



282 | Working with Complex State

The component tree and state usage for this kind of app could look like this:

Figure 10.2: Two sibling components share the same state

In this figure, you can see that the state is shared across these two components. 
You also see that the two components have a shared parent component (the News 
component, in this example).

Since the state is used by two components, you would not manage it in either of 
those components. Instead, it's lifted up, as described in Chapter 4, Working with Events 
and State (in the "Lifting State Up" section). When lifting state up, the state values and 
pointers to the functions that manipulate the state values are passed down to the 
actual components that need access via props.

This works and is a common pattern. You can (and should) keep on using it. But what 
if a component that needs access to some shared state is deeply nested in other 
components? What if the app component tree from the preceding example looked 
like this?



Introduction | 283

Figure 10.3: A component tree with multiple layers of state-dependent components

In this figure, you can see that the BookmarkSummary component is a deeply 
nested component. Between it and the News component (which manages the shared 
state), you have two other components: the InfoSidebar component and the 
BookmarkInformation component. In more complex React apps, having multiple 
levels of component nesting, as in this example, is very common.

Of course, even with those extra components, state values can still be passed down 
via props. You just need to add props to all components between the component 
that holds the state and the component that needs the state. For example, you must 
pass the bookmarkedArticles state value to the InfoSidebar component (via 
props) so that that component can forward it to BookmarkInformation:

import BookmarkInformation from '../BookmarkSummary/BookmarkInformation';

import classes from './InfoSidebar.module.css';

function InfoSidebar({ bookmarkedArticles }) {

  return (

    <aside className={classes.sidebar}>



284 | Working with Complex State

      <BookmarkInformation bookmarkedArticles={bookmarkedArticles} />

    </aside>

  );

}

export default InfoSidebar;

The same procedure is repeated inside of the BookmarkInformation component. 

Note

You can find the complete example on GitHub at https://packt.link/Ft8AM.

This kind of pattern is called prop drilling. Prop drilling means that a state value is 
passed through multiple components via props. And it's passed through components 
that don't need the state themselves at all—except for forwarding it to a child 
component (as the InfoSidebar and BookmarkInformation components are 
doing in the preceding example).

As a developer, you will typically want to avoid this pattern because prop drilling has a 
few weaknesses:

•	 Components that are part of prop drilling (such as InfoSidebar or 
BookmarkInformation) are not really reusable anymore because any 
component that wants to use them has to provide a value for the forwarded 
state prop.

•	 Prop drilling also leads to a lot of overhead code that has to be written (the code 
to accept props and forward props).

•	 Refactoring components becomes more work because state props have to be 
added or removed.

For these reasons, prop drilling is only acceptable if all components involved are only 
used in this specific part of the overall React app, and the probability of reusing or 
refactoring them is low.

Since prop drilling should be avoided (in most situations), React offers an alternative: 
the context API.

 https://packt.link/Ft8AM


Introduction | 285

Using Context to Handle Multi-Component State

React's context feature is one that allows you to create a value that can easily be 
shared across as many components as needed, without using props.

Using the context API is a multi-step process, the steps for which are described here:

1.	 You must create a context value that should be shared.

2.	 The context must be provided in a parent component of the components that 
need access to the context object.

3.	 Components that need access (for reading or writing) must subscribe to 
the context.

React manages the context value (and its changes) internally and automatically 
distributes it to all components that have subscribed to the context.

Before any component may subscribe, however, the first step is to create a context 
object. This is done via React's createContext() function:

import { createContext } from 'react';

createContext('Hello Context'); // a context with an initial string value

createContext({}); // a context with an initial (empty) object as a value

This function takes an initial value that should be shared. It can be any kind of value 
(e.g., a string or a number), but typically, it's an object. This is because most shared 
values are a combination of the actual values and functions that should manipulate 
those values. All these things are then grouped together into a single context object.

Of course, the initial context value can also be an empty value (e.g., null, 
undefined, an empty string, etc.) if needed.

createContext() also returns a value: a context object that should be stored in a 
capitalized variable (or constant) because it contains a nested property that is a React 
component (and React components should start with capital characters).



286 | Working with Complex State

Here's how the createContext() function can be used for the example discussed 
earlier in this chapter:

import { createContext } from 'react';

const BookmarkContext = createContext({

  bookmarkedArticles: []

});

export default BookmarkContext; // making it available outside of its file

Here, the initial value is an object that contains the bookmarkedArticles 
property, which holds an (empty) array. You could also store just the array as an initial 
value (i.e., createContext([])) but an object is better since more will be added to 
it later in the chapter.

This code is typically placed in a separate context code file that's often stored in a 
folder named store (because this context feature can be used as a central state 
store) or context. However, this is just a convention and is not technically required. 
You can put this code anywhere in your React app.

Of course, this initial value is not a replacement for state; it's a static value that never 
changes. But this was just the first of three steps related to context. The next step is 
to provide the context.

Providing and Managing Context Values

In order to use context values in other components, you must first provide the value. 
This is done using the value returned by createContext(). That function yields 
an object that contains a nested Provider property. And that property contains a 
React component that should be wrapped around all other components that need 
access to the context value.

In the preceding example, the BookmarkContext.Provider component 
could be used in the News component to wrap it around both the Articles and 
InfoSidebar components:

import Articles from '../Articles/Articles';

import InfoSidebar from '../InfoSidebar/InfoSidebar';

import BookmarkContext from '../../store/bookmark-context';

function News() {

  return (



Introduction | 287

    <BookmarkContext.Provider>

      <Articles />

      <InfoSidebar />

    </BookmarkContext.Provider>

  );

}

However, this code does not work because one important thing is missing: the 
Provider component expects a value prop, which should contain the current 
context value that should be distributed to interested components. While you do 
provide an initial context value (which could have been empty), you also need to 
inform React about the current context value because, very often, context values 
change (they are often used as a replacement for the cross-component state, 
after all).

Hence, the code could be altered like this:

import Articles from '../Articles/Articles';

import InfoSidebar from '../InfoSidebar/InfoSidebar';

import BookmarkContext from '../../store/bookmark-context';

function News() {

  const bookmarkCtxValue = {

    bookmarkedArticles: []

  }; // for now, it's the same value as used before, for the initial 
context
 

  return (

    <BookmarkContext.Provider value={bookmarkCtxValue}>

      <Articles />

      <InfoSidebar />

    </BookmarkContext.Provider>

  );

}

With this code, an object with a list of bookmarked articles is distributed to interested 
descendent components.



288 | Working with Complex State

The list is still static though. But that can be changed with a tool you already know 
about: the useState() Hook. Inside the News component, you can use the 
useState() Hook to manage the list of bookmarked articles, like this:

import { useState } from 'react';

import Articles from '../Articles/Articles';

import InfoSidebar from '../InfoSidebar/InfoSidebar';

import BookmarkContext from '../../store/bookmark-context';

function News() {

  const [savedArticles, setSavedArticles] = useState([]);

  const bookmarkCtxValue = {

    bookmarkedArticles: savedArticles // using the state as a value now!

  };

 

  return (

    <BookmarkContext.Provider value={bookmarkCtxValue}>

      <Articles />

      <InfoSidebar />

    </BookmarkContext.Provider>

  );

}

With this change, the context changes from static to dynamic. Whenever the 
savedArticles state changes, the context value will change.

Therefore, that's the missing piece when it comes to providing the context. If 
the context should be dynamic (and changeable from inside some nested child 
component), the context value should also include a pointer to the function that 
triggers a state update.

For the preceding example, the code is therefore adjusted like this:

import { useState } from 'react';

import Articles from '../Articles/Articles';

import InfoSidebar from '../InfoSidebar/InfoSidebar';

import BookmarkContext from '../../store/bookmark-context';

function News() {



Introduction | 289

  const [savedArticles, setSavedArticles] = useState([]);

  function addArticle(article) {

    setSavedArticles((prevSavedArticles) => [...prevSavedArticles, 
article]);
  }

  function removeArticle(articleId) {

    setSavedArticles((prevSavedArticles) => prevSavedArticles.filter(

      (article) => article.id !== articleId)

    );

  }

  const bookmarkCtxValue = {

    bookmarkedArticles: savedArticles,

    bookmarkArticle: addArticle, 

    unbookmarkArticle: removeArticle

  };

 

  return (

    <BookmarkContext.Provider value={bookmarkCtxValue}>

      <Articles />

      <InfoSidebar />

    </BookmarkContext.Provider>

  );

}

The following are two important things changed in this code snippet:

•	 Two new functions were added: addArticle and removeArticle.

•	 Properties that point at these functions were added to bookmarkCtxValue: 
the bookmarkArticle and unbookmarkArticle methods.

The addArticle function adds a new article (which should be bookmarked) to the 
savedArticles state. The function form of updating the state value is used since 
the new state value depends on the previous state value (the bookmarked article is 
added to the list of already bookmarked articles).

Similarly, the removeArticle function removes an article from the 
savedArticles list by filtering the existing list such that all items, except for 
the one that has a matching id value, are kept.



290 | Working with Complex State

If the News component did not use the new context feature, it would be a component 
that uses state just as you saw many times before in this book. But now, by using 
React's context API, those existing capabilities are combined with a new feature (the 
context) to create a dynamic, distributable value. 

Any components nested in the Articles or InfoSidebar components (or their 
descendent components) will be able to access this dynamic context value, and the 
bookmarkArticle and unbookmarkArticle methods in the context object, 
without any prop drilling.

Note

You don't have to create dynamic context values. You could also distribute 
a static value to nested components. This is possible but a rare scenario, 
since most React apps do typically need dynamic state values that can 
change across components. 

Using Context in Nested Components

With the context created and provided, it's ready to be used by components that 
need to access or change the context value. 

To make the context value accessible by components nested inside the context's 
Provider component (BookmarkContext.Provider, in the preceding 
example), React offers a useContext() Hook that can be used.

useContext() requires one argument: the context object that was created via 
createContext(), i.e., the value returned by that function. useContext() then 
returns the value passed to the Provider component (via its value prop).

For the preceding example, the context value can be used in the BookmarkSummary 
component like this:

import { useContext } from 'react';

import BookmarkContext from '../../store/bookmark-context';

import classes from './BookmarkSummary.module.css';

function BookmarkSummary() {

  const bookmarkCtx = useContext(BookmarkContext);



Introduction | 291

  const numberOfArticles = bookmarkCtx.bookmarkedArticles.length;

  return (

    <>

      <p className={classes.summary}>{numberOfArticles} articles 
bookmarked</p>
      <ul className={classes.list}>

        {bookmarkCtx.bookmarkedArticles.map((article) => (

          <li key={article.id}>{article.title}</li>

        ))}

      </ul>

    </>

  );

}

export default BookmarkSummary;

In this code, useContext() receives the BookmarkContext value, which is 
imported from the store/bookmark-context.js file. It then returns the value 
stored in the context, which is the bookmarkCtxValue found in the previous code 
example. As you can see in that snippet, bookmarkCtxValue is an object with 
three properties: bookmarkedArticles, bookmarkArticle (a method), and 
unbookmarkArticle (also a method).

This returned object is stored in a bookmarkCtx constant. Whenever the context 
value changes (because the setSavedArticles state-updating function in the 
News component is executed), this BookmarkSummary component will also be 
executed again by React, and thus bookmarkCtx will hold the latest state value.

Finally, in the BookmarkSummary component, the bookmarkedArticles 
property is accessed on the bookmarkCtx object. This list of articles is then used to 
calculate the number of bookmarked articles, output a short summary, and display 
the list on the screen.

Similarly, BookmarkContext can be used via useContext() in the 
Articles component:

import { useContext } from 'react';

import { FaBookmark, FaRegBookmark } from 'react-icons/fa';

import dummyArticles from '../../data/dummy-articles';

import BookmarkContext from '../../store/bookmark-context';



292 | Working with Complex State

import classes from './Articles.module.css';

function Articles() {

  const bookmarkCtx = useContext(BookmarkContext);

  return (

    <ul className={classes.list}>

      {dummyArticles.map((article) => {

        // will be true if this article item is also

        // included in the bookmarkedArticles array

        const isBookmarked = bookmarkCtx.bookmarkedArticles.some(

          (bArticle) => bArticle.id === article.id

        );

        let buttonAction = () => {}; // dummy value, will be finished 
later!
        // default button icon: Empty bookmark icon, because not 
bookmarked
        let buttonIcon = <FaRegBookmark />;

        if (isBookmarked) {

          buttonAction = () => {}; // dummy value, will be finished later!

          buttonIcon = <FaBookmark />;

        }

        return (

          <li key={article.id}>

            <h2>{article.title}</h2>

            <p>{article.description}</p>

            <button onClick={buttonAction}>{buttonIcon}</button>

          </li>

        );

      })}

    </ul>

  );

}

export default Articles;

In this component, the context is used to determine whether or not a given article is 
currently bookmarked (this information is required in order to change the icon and 
functionality of the button).



Introduction | 293

That's how context values (whether static or dynamic) can be read in components. Of 
course, they can also be changed, as discussed in the next section.

Changing Context from Nested Components

React's context feature is often used to share data across multiple components 
without using props. It's therefore also quite common that some components must 
manipulate that data. For example, the context value for a shopping cart must be 
adjustable from inside the component that displays product items (because those 
probably have an "Add to cart" button).

However, to change context values from inside a nested component, you cannot 
simply overwrite the stored context value. The following code would not work 
as intended:

const bookmarkCtx = useContext(BookmarkContext);

// Note: This does NOT work

bookmarkCtx.bookmarkedArticles = []; // setting the articles to an empty 
array

This code does not work. Just as you should not try to update state by simply 
assigning a new value, you can't update context values by assigning a new value. 
That's why two methods (bookmarkArticle and unbookmarkArticle) were 
added to the context value in the "Providing and Managing Context Values" section. 
These two methods point at functions that trigger state updates (via the state-
updating function provided by useState()). 

Therefore, in the Articles component, where articles can be bookmarked or 
unbookmarked via button clicks, these methods should be called:

// This code is part of the Article component function

// default button action => bookmark article, because not bookmarked yet

let buttonAction = () => bookmarkCtx.bookmarkArticle(article);

// default button icon: Empty bookmark icon, because not bookmarked

let buttonIcon = <FaRegBookmark />;

if (isBookmarked) {

  buttonAction = () => bookmarkCtx.unbookmarkArticle(article.id);

  buttonIcon = <FaBookmark />;

}



294 | Working with Complex State

The bookmarkArticle and unbookmarkArticle methods are called inside of 
anonymous functions that are stored in a buttonAction variable. That variable is 
assigned to the onClick prop of the <button> (see the previous code snippet).

With this code, the context value can be changed successfully. Thanks to the steps 
taken in the previous section ("Using Context in Nested Components"), whenever the 
context value is updated, it is then also automatically reflected in the user interface.

Note

The finished example code can be found on GitHub at https://packt.link/
ocLLR.

Getting Better Code Completion

In the section "Using Context to Handle Multi-Component State", a context object was 
created via createContext(). That function received an initial context value—an 
object that contains a bookmarkedArticles property, in the preceding example.

In this example, the initial context value isn't too important. It's not often used 
because it's overwritten with a new value inside the News component regardless. 
However, depending on which Integrated Development Environment (IDE) you're 
using, you can get better code auto-completion when defining an initial context value 
that has the same shape and structure as the final context value that will be managed 
in other React components. 

Therefore, since two methods were added to the context value in the section 
"Providing and Managing Context Values", those methods should also be added to 
the initial context value in store/bookmark-context.js:

const BookmarkContext = createContext({

  bookmarkedArticles: [],

  bookmarkArticle: () => {},

  unbookmarkArticle: () => {}

});

export default BookmarkContext;

https://packt.link/ocLLR
https://packt.link/ocLLR


Introduction | 295

The two methods are added as empty functions that do nothing because the actual 
logic is set in the News component. The methods are only added to this initial context 
value to provide better IDE auto-completion. This step is therefore optional.

Context or "Lifting State Up"?

At this point, you now have two tools for managing cross-component state:

•	 You can lift state up, as described earlier in the book (in Chapter 4, Working with 
Events and State, in section "Lifting State Up").

•	 Alternatively, you can use React's context API as explained in this chapter.

Which of the two approaches should you use in each scenario?

Ultimately, it is up to you how you manage this, but there are some straightforward 
rules you can follow:

•	 Lift the state up if you only need to share state across one or two levels of 
component nesting.

•	 Use the context API if you have long chains of components (i.e., deep nesting of 
components) with shared state. Once you start to use a lot of prop drilling, it's 
time to consider React's context feature.

•	 Also use the context API if you have a relatively flat component tree but want 
to reuse components (i.e., you don't want to use props for passing state to 
components).

Outsourcing Context Logic into Separate Components

With the previously explained steps, you have everything you need to manage cross-
component state via context. 

But there is one pattern you can consider for managing your dynamic context 
value and state: creating a separate component for providing (and managing) the 
context value.

In the preceding example, the News component was used to provide the context 
and manage its (dynamic, state-based) value. While this works, your components can 
get unnecessarily complex if they have to deal with context management. Creating 
a separate, dedicated component for that can therefore lead to code that's easier to 
understand and maintain.



296 | Working with Complex State

For the preceding example, that means that, inside of the store/bookmark-
context.js file, you could create a BookmarkContextProvider component 
that looks like this:

export function BookmarkContextProvider({ children }) {

  const [savedArticles, setSavedArticles] = useState([]);

  function addArticle(article) {

    setSavedArticles((prevSavedArticles) => [...prevSavedArticles, 
article]);
  }

  function removeArticle(articleId) {

    setSavedArticles((prevSavedArticles) =>

      prevSavedArticles.filter((article) => article.id !== articleId)

    );

  }

  const bookmarkCtxValue = {

    bookmarkedArticles: savedArticles,

    bookmarkArticle: addArticle,

    unbookmarkArticle: removeArticle,

  };

  return (

    <BookmarkContext.Provider value={bookmarkCtxValue}>

      {children}

    </BookmarkContext.Provider>

  );

} 

This component contains all the logic related to managing a list of bookmarked 
articles via state. It creates the same context value as before (a value that contains 
the list of articles as well as two methods for updating that list).

The BookmarkContextProvider component does one additional thing though. 
It uses the special children prop (covered in Chapter 3, Components and Props, 
in section "The Special 'children' Prop") to wrap whatever is passed between the 
BookmarkContextProvider's component tags with BookmarkContext.
Provider.

This allows for the use of the BookmarkContextProvider component in the 
News component, like so:



Introduction | 297

import Articles from '../Articles/Articles';

import InfoSidebar from '../InfoSidebar/InfoSidebar';

import { BookmarkContextProvider } from '../../store/bookmark-context';

function News() {

  return (

    <BookmarkContextProvider>

      <Articles />

      <InfoSidebar />

    </BookmarkContextProvider>

  );

}

export default News; 

Instead of managing the entire context value, the News component now simply 
imports the BookmarkContextProvider component and wraps that component 
around Articles and BookmarkSummary. The News component, therefore, 
is leaner.

Note

This pattern is entirely optional. It's neither an official best practice nor does 
it yield any performance benefits.

Combining Multiple Contexts

Especially in bigger and more feature-rich React applications, it is possible (and 
quite probable), that you will need to work with multiple context values that are 
likely unrelated to each other. For example, an online shop could use one context 
for managing the shopping cart, another context for the user authentication status, 
and yet another context value for tracking page analytics.

React fully supports use cases like this. You can create, manage, provide, and use 
as many context values as needed. You can manage multiple (related or unrelated) 
values in a single context or use multiple contexts. You can provide multiple contexts 
in the same component or in different components. It is totally up to you and your 
app's requirements.



298 | Working with Complex State

You can also use multiple contexts in the same component (meaning that you can call 
useContext() multiple times, with different context values).

Limitations of useState()

Thus far in this chapter, the complexity of cross-component state has been explored. 
But state management can also get challenging in scenarios where some state is only 
used inside a single component. 

useState() is a great tool for state management in most scenarios (of course, right 
now, it's also the only tool that's been covered). Therefore, useState() should be 
your default choice for managing state. But useState() can reach its limits if you 
need to derive a new state value that's based on the value of another state variable, 
as in this example:

setIsLoading(fetchedPosts ? false : true);

This short snippet is taken from a component where an HTTP request is sent to fetch 
some blog posts. 

Note

You'll find the complete example code on GitHub at https://packt.link/FiOCM. 
You will also see more excerpts from the code later in this chapter.

When initiating the request, an isLoading state value (responsible for showing a 
loading indicator on the screen) should be set to true only if no data was fetched 
before. If data was fetched before (i.e., fetchedPosts is not null), that data 
should still be shown on the screen, instead of some loading indicator. 

At first sight, this code might not look problematic. But it actually violates an 
important rule related to useState(): you should not reference the current 
state for setting a new state value. If you need to do so, you should instead use the 
function form of the state updating function (see Chapter 4, Working with Events and 
State, section "Updating State Based on Previous State Correctly").

However, in the preceding example, this solution won't work. If you switch to the 
functional state-updating form, you only get access to the current value of the state 
you're trying to update. You don't get (safe) access to the current value of some other 
state. And in the preceding example, another state (fetchedPosts instead of 
isLoading) is referenced. Therefore, you must violate the mentioned rule.

https://packt.link/FiOCM


Introduction | 299

This violation also has real consequences (in this example). The following 
code snippet is part of a function called fetchPosts, which is wrapped with 
useCallback():

const fetchPosts = useCallback(async function fetchPosts() {

  setIsLoading(fetchedPosts ? false : true);

  setError(null);

  try {

    const response = await fetch(

      'https://jsonplaceholder.typicode.com/posts'

    );

    if (!response.ok) {

      throw new Error('Failed to fetch posts.');

    }

    const posts = await response.json();

    setIsLoading(false);

    setError(null);

    setFetchedPosts(posts);

  } catch (error) {

    setIsLoading(false);

    setError(error.message);

    setFetchedPosts(null);

  }

}, []);

This function sends an HTTP request and changes multiple state values based on the 
state of the request.

useCallback() is used to avoid an infinite loop related to useEffect() (see 
Chapter 8, Handling Side Effects to learn more about useEffect(), infinite loops, 
and useCallback() as a remedy). Normally, fetchedPosts should be added 
as a dependency to the dependencies array passed as a second argument to the 
useCallback() function. However, in this example, this can't be done because 
fetchedPosts is changed inside the function wrapped by useCallback(), and 
the state value is therefore not just a dependency but also actively changed. This 
causes an infinite loop. 



300 | Working with Complex State

As a result, a warning is shown in the terminal and the intended behavior of not 
showing the loading indicator if data was fetched before is not achieved:

Figure 10.4: A warning about the missing dependency is output in the terminal

Problems like the one just described are common if you have multiple related state 
values that depend on each other.

One possible solution would be to move from multiple, individual state slices 
(fetchedPosts, isLoading, and error) to a single, combined state value (i.e., 
to an object). That would ensure that all state values are grouped together and can 
thereby be accessed safely when using the functional state-updating form. The state-
updating code then could look like this:

setHttpState(prevState => ({

  fetchedPosts: prevState.fetchedPosts,

  isLoading: prevState.fetchedPosts ? false : true,

  error: null

}));

This solution would work. However, ending up with ever more complex (and nested) 
state objects is not typically desirable as it can make state management a bit harder 
and bloat your component code.

That's why React offers an alternative to useState(): the useReducer() Hook.

Managing State with useReducer()

Just like useState(), useReducer() is a React Hook. And just like useState(), 
it is a Hook that can trigger component function re-evaluations. But, of course, it 
works slightly differently; otherwise, it would be a redundant Hook.

useReducer() is a Hook meant to be used for managing complex state objects. 
You will rarely (probably never) use it to manage simple string or number values.

This Hook takes two main arguments:

•	 A reducer function

•	 An initial state value

This brings up an important question: what is a reducer function?



Introduction | 301

Understanding Reducer Functions

In the context of useReducer(), a reducer function is a function that itself receives 
two parameters:

•	 The current state value

•	 An action that was dispatched

Besides receiving arguments, a reducer function must also return a value: the new 
state. It's called a reducer function because it reduces the old state (combined with an 
action) to a new state.

To make this all a bit easier to grasp and reason through, the following code snippet 
shows how useReducer() is used in conjunction with such a reducer function:

const initialHttpState = {

  data: null,

  isLoading: false,

  error: null,

};

function httpReducer(state, action) {

  if (action.type === 'FETCH_START') {

    return {

      ...state, // copying the existing state

      isLoading: state.data ? false : true,

      error: null,

    };

  }

  if (action.type === 'FETCH_ERROR') {

    return {

      data: null,

      isLoading: false,

      error: action.payload,

    };

  }

  if (action.type === 'FETCH_SUCCESS') {

    return {

      data: action.payload,

      isLoading: false,



302 | Working with Complex State

      error: null,

    };

  }

  return initialHttpState; // default value for unknown actions

}

function App() {

  useReducer(httpReducer, initialHttpState);

  // more component code, not relevant for this snippet / explanation

}

At the bottom of this snippet, you can see that useReducer() is called inside 
of the App component function. Like all React Hooks, it must be called inside of 
component functions or other Hooks. You can also see the two arguments that were 
mentioned previously (the reducer function and initial state value) being passed to 
useReducer().

httpReducer is the reducer function. The function takes two arguments (state, 
which is the old state, and action, which is the dispatched action) and returns 
different state objects for different action types.

This reducer function takes care of all possible state updates. The entire 
state-updating logic is therefore outsourced from the component (note that 
httpReducer is defined outside of the component function).

But the component function must, of course, be able to trigger the defined state 
updates. That's where actions become important.

Note

In this example, the reducer function is created outside of the component 
function. You could also create it inside the component function, but that is 
not recommended. If you create the reducer function inside the component 
function, it will technically be recreated every time the component function 
is executed. This impacts performance unnecessarily since the reducer 
function does not need access to any component function values.



Introduction | 303

Dispatching Actions

The code shown previously is incomplete. When calling useReducer() in a 
component function, it does not just take two arguments. Instead, the Hook also 
returns a value—an array with exactly two elements (just like useState(), though 
the elements are different).

useReducer() should therefore be used like this (in the App component):

const [httpState, dispatch] = useReducer(httpReducer, initialHttpState);

In this snippet, array destructuring is used to store the two elements (and it is always 
exactly two!) in two different constants: httpState and dispatch.

The first element in the returned array (httpState, in this case) is the state value 
returned by the reducer function. It's updated (meaning that the component function 
is called by React) whenever the reducer function is executed again. The element 
is called httpState in this example because it contains the state value, which is 
related to an HTTP request in this instance. That said, how you name the element in 
your own case is up to you.

The second element (dispatch, in the example) is a function. It's a function that can 
be called to trigger a state update (i.e., to execute the reducer function again). When 
executed, the dispatch function must receive one argument—that is, the action 
value that will be available inside of the reducer function (via the reducer function's 
second argument). Here's how dispatch can be used in a component:

dispatch({ type: 'FETCH_START' });

The element is called dispatch in the example because it's a function used for 
dispatching actions to the reducer function. Just as before, the name is up to you, but 
dispatch is a commonly chosen name.

The shape and structure of that action value are also entirely up to you, but it's often 
set to an object that contains a type property. The type property is used in the 
reducer function to perform different actions for different types of actions. type 
therefore acts as an action identifier. You can see the type property being used 
inside the httpReducer function:

function httpReducer(state, action) {

  if (action.type === 'FETCH_START') {

    return {

      ...state, // copying the existing state

      isLoading: state.data ? false : true,

      error: null,



304 | Working with Complex State

    };

  }

  if (action.type === 'FETCH_ERROR') {

    return {

      data: null,

      isLoading: false,

      error: action.payload,

    };

  }

  if (action.type === 'FETCH_SUCCESS') {

    return {

      data: action.payload,

      isLoading: false,

      error: null,

    };

  }

  return initialHttpState; // default value for unknown actions

}

You can add as many properties to the action object as needed. In the preceding 
example, some state updates access action.payload to extract some extra data 
from the action object. Inside a component, you would pass data along with the 
action like this:

dispatch({ type: 'FETCH_SUCCESS', payload: posts });

Again, the property name (payload) is up to you, but passing extra data along with 
the action allows you to perform state updates that rely on data generated by the 
component function.

Here's the complete, final code for the entire App component function:

// code for httpReducer etc. did not change

function App() {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  // Using useCallback() to prevent an infinite loop in useEffect() below

  const fetchPosts = useCallback(async function fetchPosts() {



Introduction | 305

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(

        'https://jsonplaceholder.typicode.com/posts'

      );

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, []);

  useEffect(

    function () {

      fetchPosts();

    },

    [fetchPosts]

  );

  return (

    <>

      <header>

        <h1>Complex State Blog</h1>

        <button onClick={fetchPosts}>Load Posts</button>

      </header>

      {httpState.isLoading && <p>Loading...</p>}

      {httpState.error && <p>{httpState.error}</p>}

      {httpState.data && <BlogPosts posts={httpState.data} />}

    </>

  );

}



306 | Working with Complex State

In this code snippet, you can see how different actions (with different type and 
sometimes payload properties) are dispatched. You can also see that the 
httpState value is used to show different user interface elements based on the 
state (e.g., <p>Loading…</p> is shown if httpState.isLoading is true).

Summary and Key Takeaways

•	 State management can have its challenges—especially when dealing with cross-
component (or app-wide) state or complex state values.

•	 Cross-component state can be managed by lifting state up or by using React's 
Context API.

•	 The Context API is typically preferable if you do a lot of prop drilling (forwarding 
state values via props across multiple component layers).

•	 When using the context API, you use createContext() to create a new 
context object.

•	 The created context object yields a Provider component that must be 
wrapped around the part of the component tree that should get access to 
the context.

•	 Components can access the context value via the useContext() Hook.

•	 For managing complex state values, useReducer() can be a good alternative 
to useState().

•	 useReducer() utilizes a reducer function that converts the current state and a 
dispatched action to a new state value.

•	 useReducer() returns an array with exactly two elements: the state value and 
a dispatch function, which is used for dispatching actions

What's Next?

Being able to manage both simple and complex state values efficiently is important. 
This chapter introduced two crucial tools that help with the task.

With the context API's useContext() and useReducer() Hooks, two new React 
Hooks were introduced. Combined with all the other Hooks covered thus far in the 
book, these mark the last of the React Hooks you will need in your everyday work as a 
React developer. 



Introduction | 307

As a React developer, you're not limited to the built-in Hooks though. You can also 
build your own Hooks. The next chapter will finally explore how that works and why 
you might want to build custom Hooks in the first place. 

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to the examples that can be 
found at https://packt.link/wc8xd:

1.	 What problem can be solved with React's context API?

2.	 Which three main steps have to be taken when using the context API?

3.	 When might useReducer() be preferred over useState()?

4.	 When working with useReducer(), what's the role of actions?

Apply What You Learned

Apply your knowledge about the context API and the useReducer() Hook to some 
real problems.

Activity 10.1: Migrating an App to the Context API

In this activity, your task is to improve an existing React project. Currently, the app 
is built without the context API and so cross-component state is managed by lifting 
the state up. In this project, prop drilling is the consequence in some components. 
Therefore, the goal is to adjust the app such that the context API is used for cross-
component state management.

Note

You can find the starting code for this activity at https://packt.link/93LSa. 
When downloading this code, you'll always download the entire repository. 
Make sure to then navigate to the subfolder with the starting code 
(activities/practice-1/starting-code in this case) to use 
the right code snapshot.

The provided project also uses many features covered in earlier chapters. 
Take your time to analyze it and understand the provided code. This is a 
great practice and allows you to see many key concepts in action.

https://packt.link/wc8xd
https://packt.link/93LSa


308 | Working with Complex State

Once you have downloaded the code and run npm install in the project folder 
(to install all required dependencies), you can start the development server via npm 
start. As a result, upon visiting localhost:3000, you should see the following 
user interface:

Figure 10.5: The running starting project

To complete the activity, the steps are as follows:

1.	 Create a new context for the cart items.

2.	 Create a Provider component for the context and handle all context-related 
state changes there.

3.	 Provide the context (with the help of the Provider component) and make sure 
all components that need access to the context have access.



Introduction | 309

4.	 Remove the old logic (where state was lifted up).

5.	 Use the context in all the components that need access to it.

The user interface should be the same as that shown in Figure 10.5 once you have 
completed the activity. Make sure that the user interface works exactly as it did 
before you implemented React's context features.

Note

The solution to this activity can be found via this link.

Activity 10.2: Replacing useState() with useReducer()

In this activity, your task is to replace the useState() Hooks in the Form 
component with useReducer(). Use only one single reducer function (and 
thus only one useReducer() call) and merge all relevant state values into one 
state object.

Note

You can find the starting code for this activity at https://packt.link/wUDJu. 
When downloading this code, you'll always download the entire repository. 
Make sure to then navigate to the subfolder with the starting code 
(activities/practice-1/starting-code in this case) to use 
the right code snapshot.

The provided project also uses many features covered in earlier chapters. 
Take your time to analyze it and understand the provided code. This is a 
great practice and allows you to see many key concepts in action.

https://packt.link/wUDJu


310 | Working with Complex State

Once you have downloaded the code and run npm install in the project folder 
(to install all required dependencies), you can start the development server via npm 
start. As a result, upon visiting localhost:3000, you should see the following 
user interface:

Figure 10.6: The running starting project

To complete the activity, the solution steps are as follows:

1.	 Remove (or comment out) the existing logic in the Form component that uses 
the useState() Hook for state management.

2.	 Add a reducer function that handles two actions (email changed and password 
changed) and also returns a default value.

3.	 Update the state object based on the dispatched action type (and payload, 
if needed).



Introduction | 311

4.	 Use the reducer function with the useReducer() Hook.

5.	 Dispatch the appropriate actions (with the appropriate data) in the 
Form component.

6.	 Use the state value where needed.

The user interface should be the same as that shown in Figure 10.6 once you've 
finished the activity. Make sure that the user interface works exactly as it did before 
you implemented React's context features.

Note

The solution to this activity can be found via this link.





Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Build your own React Hooks.

�  Use custom and default React Hooks in your components.

Building Custom React Hooks

11



314 | Building Custom React Hooks

Introduction
Throughout this book, one key React feature has been referenced repeatedly in many 
different variations. That feature is React Hooks.

Hooks power almost all core functionalities and concepts offered by React—from 
state management in a single component to accessing cross-component state 
(context) in multiple components. They enable you to access JSX elements via refs 
and allow you to handle side effects inside of component functions.

Without Hooks, modern React would not work, and building feature-rich applications 
would be impossible.

Thus far, only built-in Hooks have been introduced and used. However, you can build 
your own custom Hooks as well. In this chapter, you will learn why you might want to 
do this and how it works.

Why Would You Build Custom Hooks?

In the previous chapter (Chapter 10, Working with Complex State), when the 
useReducer() Hook was introduced, an example was provided in which the Hook 
was utilized in sending an HTTP request. Here's the relevant, final code again:

const initialHttpState = {

  data: null,

  isLoading: false,

  error: null,

};

function httpReducer(state, action) {

  if (action.type === 'FETCH_START') {

    return {

      ...state, // copying the existing state

      isLoading: state.data ? false : true,

      error: null,

    };

  }

  if (action.type === 'FETCH_ERROR') {

    return {

      data: null,

      isLoading: false,

      error: action.payload,



Introduction | 315

    };

  }

  if (action.type === 'FETCH_SUCCESS') {

    return {

      data: action.payload,

      isLoading: false,

      error: null,

    };

  }

  return initialHttpState; // default value for unknown actions

}

function App() {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  // Using useCallback() to prevent an infinite loop in useEffect() below

  const fetchPosts = useCallback(async function fetchPosts() {

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(

        'https://jsonplaceholder.typicode.com/posts'

      );

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, []);

  useEffect(

    function () {



316 | Building Custom React Hooks

      fetchPosts();

    },

    [fetchPosts]

  );

  return (

    <>

      <header>

        <h1>Complex State Blog</h1>

        <button onClick={fetchPosts}>Load Posts</button>

      </header>

      {httpState.isLoading && <p>Loading...</p>}

      {httpState.error && <p>{httpState.error}</p>}

      {httpState.data && <BlogPosts posts={httpState.data} />}

    </>

  );

};

In this code example, an HTTP request is sent whenever the App component is 
rendered for the first time. The HTTP request fetches a list of (dummy) posts. Until the 
request finishes, a loading message (<p>Loading…</p>) is displayed to the user. In 
the case of an error, an error message is displayed.

As you can see, quite a lot of code must be written to handle this relatively basic use 
case. And, especially in bigger React apps, it is quite likely that multiple components 
will need to send HTTP requests. They probably won't need to send the exact same 
request to the same URL (https://jsonplaceholder.typicode.com/
posts, in this example), but it's definitely possible that different components will 
fetch different data from different URLs.

Therefore, almost the exact same code must be written over and over again in 
multiple components. And it's not just the code for sending the HTTP request 
(i.e., the function wrapped by useCallback()). Instead, the HTTP-related state 
management (done via useReducer(), in this example), as well as the request 
initialization via useEffect(), must be repeated in all those components.

And that is where custom Hooks come in to save the day. Custom Hooks help you 
avoid this repetition by allowing you to build reusable, potentially stateful "logic 
snippets" that can be shared across components.



Introduction | 317

What Are Custom Hooks?

Before starting to build custom Hooks, it's very important to understand what exactly 
custom Hooks are.

In React apps, custom Hooks are regular JavaScript functions that satisfy the 
following conditions:

•	 The function name starts with "use" (just as all built-in Hooks start with "use": 
useState(), useReducer(), etc.).

•	 The function does not just return JSX code (otherwise, it would essentially be a 
React component with a strange function name), though it could return some JSX 
code—as long as that's not the only value returned.

And that's it. If a function simply meets these two conditions, it can (and should) be 
called a custom (React) Hook.

Custom Hooks are special because you can call other built-in and custom React Hooks 
inside of their function bodies. Normally, this would not be allowed. React Hooks 
(both built-in and custom) can only be called inside of component functions. If you try 
to call a Hook in some other place (e.g., in a regular, non-Hook function), you will get 
an error, as shown below:

Figure 11.1: React complains if you call a Hook function in the wrong place

Hooks, whether custom or built-in, must only be called inside of component 
functions. And, even though the error message doesn't explicitly mention it, they 
may be called inside of custom Hooks.

This is an extremely important feature because it means that you can build reusable 
non-component functions that can contain state logic (via useState() or 
useReducer()), handle side effects in your reusable custom Hook functions (via 
useEffect()), or use any other React Hook. With normal, non-Hook functions, 
none of these would be possible, and you would therefore be unable to outsource 
any logic that involves a React Hook into such functions.

In this way, custom Hooks complement the concept of React components. While 
React components are reusable UI building blocks (which may contain stateful logic), 
custom Hooks are reusable logic snippets that can be used in your component 
functions. Thus, custom Hooks help you reuse shared logic across components.



318 | Building Custom React Hooks

Applied to the problem discussed previously (regarding the HTTP request logic), 
custom Hooks enable you to outsource the logic for sending an HTTP request and 
handling the related states (loading, error, etc.).

A First Custom Hook

Before exploring advanced scenarios and solving the HTTP request problem 
mentioned previously, here's a more basic example for a first, custom Hook:

import { useState } from 'react';

function useCounter() {

  const [counter, setCounter] = useState(0);

  function increment() {

    setCounter(oldCounter => oldCounter + 1);

  };

  function decrement() {

    setCounter(oldCounter => oldCounter - 1);

  };

  return { counter, increment, decrement };

};

export default useCounter;

As you can see, useCounter is a regular JavaScript function. The name of the 
function starts with use, and React therefore treats this function as a custom Hook 
(meaning you won't get any error messages when using other Hooks inside of it).

Inside useCounter(), a counter state is managed via useState(). The 
state is changed via two nested functions (increment and decrement), and the 
state, as well as the functions, is returned by useCounter (grouped together in a 
JavaScript object).



Introduction | 319

Note

The syntax used to group counter, increment, and decrement 
together uses a regular JavaScript feature: shorthand property names.

If a property name in an object literally matches the name of the variable 
whose value is assigned to the property, you can use this shorter notation.

Instead of writing { counter: counter, increment: 
increment, decrement: decrement }, you can use the 
shorthand notation shown in the snippet above.

This custom Hook can be stored in a separate file (e.g., in a hooks folder inside the 
React project, such as src/hooks/use-counter.js). Thereafter, it can be used 
in any React component, and you can use it in as many React components as needed.

For example, the following two components (Demo1 and Demo2) could use this 
useCounter Hook as follows:

import useCounter from './hooks/use-counter';

function Demo1() {

  const { counter, increment, decrement } = useCounter();

  return (

    <>

      <p>{counter}</p>

      <button onClick={increment}>Inc</button>

      <button onClick={decrement}>Dec</button>

    </>

  );

};

function Demo2() {

  const { counter, increment, decrement } = useCounter();



320 | Building Custom React Hooks

  return (

    <>

      <p>{counter}</p>

      <button onClick={increment}>Inc</button>

      <button onClick={decrement}>Dec</button>

    </>

  );

};

function App() {

  return (

    <main>

      <Demo1 />

      <Demo2 />

    </main>

  );

};

export default App;

Note

You will find the full example code at  https://packt.link/e8zRK.

The Demo1 and Demo2 components both execute useCounter() inside of their 
component functions. The useCounter() function is called a normal function 
because it is a regular JavaScript function.

Since the useCounter Hook returns an object with three properties (counter, 
increment, and decrement), Demo1 and Demo2 use object destructuring to 
store the property values in local constants. These values are then used in the JSX 
code to output the counter value and connect the two <button> elements to the 
increment and decrement functions.



Introduction | 321

After pressing the buttons a couple of times each, the resulting user interface might 
look like this:

Figure 11.2: Two independent counters

In this screenshot, you can also see a very interesting and important behavior 
of custom Hooks. That is, if the same stateful custom Hook is used in multiple 
components, every component gets its own state. The counter state is not 
shared. The Demo1 component manages its own counter state (through the 
useCounter() custom Hook), and so does the Demo2 component.

Custom Hooks: A Flexible Feature

The two independent states of Demo1 and Demo2 show a very important feature 
of custom Hooks: you use them to share logic, not to share state. If you needed 
to share state across components, you would do so with React context (see the 
previous chapter).

When using Hooks, every component uses its own "instance" (or "version") of that 
Hook. It's always the same logic, but any state or side effects handled by a Hook are 
handled on a per-component basis.

It's also worth noting that custom Hooks can be stateful but don't have to be. They 
can manage state via useState() or useReducer(), but you could also build 
custom Hooks that only handle side effects (without any state management).



322 | Building Custom React Hooks

There's only one thing you implicitly have to do in custom Hooks: you must use 
some other React Hook (custom or built-in). This is because, if you didn't include 
any other Hook, there would be no need to build a custom Hook in the first place. A 
custom Hook is just a regular JavaScript function (with a name starting with use) with 
which you are allowed to use other Hooks. If you don't need to use any other Hooks, 
you can simply build a normal JavaScript function with a name that does not start 
with use.

You also have a lot of flexibility regarding the logic inside the Hook, its parameters, 
and the value it returns. Regarding the Hook logic, you can add as much logic as 
needed. You can manage no state or multiple state values. You can include other 
custom Hooks or only use built-in Hooks. You can manage multiple side effects, work 
with refs, or perform complex calculations. There are no restrictions regarding what 
can be done in a custom Hook. 

Custom Hooks and Parameters

You can also accept and use parameters in your custom Hook functions. For example, 
the useCounter Hook from the "A First Custom Hook" section above can be adjusted 
to take an initial counter value and separate values by which the counter should be 
increased or decreased, as shown in the following snippet:

import { useState } from 'react';

function useCounter(initialValue, incVal, decVal) {

  const [counter, setCounter] = useState(initialValue);

  function increment() {

    setCounter(oldCounter => oldCounter + incVal);

  };

  function decrement() {

    setCounter(oldCounter => oldCounter - decVal);

  };

  return { counter, increment, decrement };

};

export default useCounter;



Introduction | 323

In this adjusted example, the initialValue parameter is used to set the initial 
state via useState(initialValue). The incVal and decVal parameters are 
used in the increment and decrement functions to change the counter state 
with different values.

Of course, once parameters are used in a custom Hook, fitting parameter values must 
be provided when the custom Hook is called in a component function (or in another 
custom Hook). Therefore, the code for the Demo1 and Demo2 components must also 
be adjusted—for example, like this:

function Demo1() {

  const { counter, increment, decrement } = useCounter(1, 2, 1);

  return (

    <>

      <p>{counter}</p>

      <button onClick={increment}>Inc</button>

      <button onClick={decrement}>Dec</button>

    </>

  );

};

function Demo2() {

  const { counter, increment, decrement } = useCounter(0, 1, 2);

  return (

    <>

      <p>{counter}</p>

      <button onClick={increment}>Inc</button>

      <button onClick={decrement}>Dec</button>

    </>

  );

};

Note

You can also find this code on GitHub at https://packt.link/bMony.



324 | Building Custom React Hooks

Now, both components pass different parameter values to the useCounter Hook 
function. Therefore, they can reuse the same Hook and its internal logic dynamically.

Custom Hooks and Return Values

As shown with useCounter, custom Hooks may return values. And this is important: 
they may return values, but they don't have to. If you build a custom Hook that only 
handles some side effects (via useEffect()), you don't have to return any value 
(because there probably isn't any value that should be returned).

But if you do need to return a value, you decide which type of value you want to 
return. You could return a single number or string. If your Hook must return multiple 
values (like useCounter does), you can group these values into an array or object. 
You can also return arrays that contain objects or vice versa. In short, you can return 
anything. It is a normal JavaScript function, after all.

Some built-in Hooks such as useState() and useReducer() return arrays (with 
a fixed number of elements). useRef(), on the other hand, returns an object (which 
always has a current property). useEffect() returns nothing. Your Hooks can 
therefore return whatever you want.

For example, the useCounter Hook from prevously could be rewritten to return an 
array instead:

import { useState } from 'react';

function useCounter(initialValue, incVal, decVal) {

  const [counter, setCounter] = useState(initialValue);

  function increment() {

    setCounter((oldCounter) => oldCounter + incVal);

  }

  function decrement() {

    setCounter((oldCounter) => oldCounter - decVal);

  }

  return [counter, increment, decrement];

}

export default useCounter;



Introduction | 325

To use the returned values, then, the Demo1 and Demo2 components need to switch 
from object destructuring to array destructuring, as follows:

function Demo1() {

  const [counter, increment, decrement] = useCounter(1, 2, 1);

  return (

    <>

      <p>{counter}</p>

      <button onClick={increment}>Inc</button>

      <button onClick={decrement}>Dec</button>

    </>

  );

}

function Demo2() {

  const [counter, increment, decrement] = useCounter(0, 1, 2);

  return (

    <>

      <p>{counter}</p>

      <button onClick={increment}>Inc</button>

      <button onClick={decrement}>Dec</button>

    </>

  );

}

The two components behave like before, so you can decide which return value 
you prefer.

Note

This finished code can also be found on GitHub at https://packt.link/adTM2.



326 | Building Custom React Hooks

A More Complex Example

The previous examples were deliberately rather simple. Now that the basics of 
custom Hooks are clear, it makes sense to dive into a slightly more advanced and 
realistic example.

Consider the HTTP request example from the beginning of this chapter:

const initialHttpState = {

  data: null,

  isLoading: false,

  error: null,

};

function httpReducer(state, action) {

  if (action.type === 'FETCH_START') {

    return {

      ...state, // copying the existing state

      isLoading: state.data ? false : true,

      error: null,

    };

  }

  if (action.type === 'FETCH_ERROR') {

    return {

      data: null,

      isLoading: false,

      error: action.payload,

    };

  }

  if (action.type === 'FETCH_SUCCESS') {

    return {

      data: action.payload,

      isLoading: false,

      error: null,

    };

  }

  return initialHttpState; // default value for unknown actions

}



Introduction | 327

function App() {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  // Using useCallback() to prevent an infinite loop in useEffect() below

  const fetchPosts = useCallback(async function fetchPosts() {

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(

        'https://jsonplaceholder.typicode.com/posts'

      );

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, []);

  useEffect(

    function () {

      fetchPosts();

    },

    [fetchPosts]

  );

  return (

    <>

      <header>

        <h1>Complex State Blog</h1>

        <button onClick={fetchPosts}>Load Posts</button>

      </header>

      {httpState.isLoading && <p>Loading...</p>}

      {httpState.error && <p>{httpState.error}</p>}



328 | Building Custom React Hooks

      {httpState.data && <BlogPosts posts={httpState.data} />}

    </>

  );

};

In that example, the entire useReducer() logic (including the reducer function, 
httpReducer) and the useEffect() call can be outsourced into a custom Hook. 
The result would be a very lean App component and a reusable Hook that could be 
used in other components as well.

This custom Hook could be named useFetch (since it fetches data), and it could be 
stored in hooks/use-fetch.js. Of course, both the Hook name as well as the file 
storage path are up to you. Here's how the first version of useFetch might look:

import { useCallback, useEffect, useReducer } from 'react';

const initialHttpState = {

  data: null,

  isLoading: false,

  error: null,

};

function httpReducer(state, action) {

  if (action.type === 'FETCH_START') {

    return {

      ...state,

      isLoading: state.data ? false : true,

      error: null,

    };

  }

  if (action.type === 'FETCH_ERROR') {

    return {

      data: null,

      isLoading: false,

      error: action.payload,

    };

  }

  if (action.type === 'FETCH_SUCCESS') {

    return {

      data: action.payload,



Introduction | 329

      isLoading: false,

      error: null,

    };

  }

  return initialHttpState;

}

function useFetch() {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  const fetchPosts = useCallback(async function fetchPosts() {

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(

        'https://jsonplaceholder.typicode.com/posts'

      );

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, []);

  useEffect(

    function () {

      fetchPosts();

    },

    [fetchPosts]

  );

}

export default useFetch;



330 | Building Custom React Hooks

Please note that this is not the final version.

In this first version, the useFetch Hook contains the useReducer() and 
useEffect() logic. It's worth noting that the httpReducer function is created 
outside of useFetch. This ensures that the function is not recreated unnecessarily 
when useFetch() is re-executed (which will happen often as it is called every time 
the component that uses this Hook is re-evaluated). The httpReducer function will 
therefore only be created once (for the entire application lifetime), and that same 
function instance will be shared by all components that use useFetch. 

Since httpReducer is a pure function (that is, it always produces new return values 
that are based purely on the parameter values), sharing this function instance is fine 
and won't cause any unexpected bugs. If httpReducer were to store or manipulate 
any values that are not based on function inputs, it should be created inside of 
useFetch instead. This way, you avoid having multiple components accidentally 
manipulate and use shared values.

However, this version of the useFetch Hook has two big issues:

•	 Currently, no value is returned. Therefore, components that use this Hook won't 
get access to the fetched data or the loading state.

•	 The HTTP request URL is hardcoded into useFetch. As a result, all components 
that use this Hook will send the same kind of request to the same URL. 

The first issue can be solved by returning the fetched data (or undefined, if no data 
was fetched yet), the loading state value, and the error value. Since these values are 
exactly the values that make up the httpState object returned by useReducer(), 
useFetch can simply return that entire httpState object, as shown here:

// httpReducer function and initial state did not change, hence omitted 
here
function useFetch() {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  const fetchPosts = useCallback(async function fetchPosts() {

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(

        'https://jsonplaceholder.typicode.com/posts'

      );



Introduction | 331

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, []);

  useEffect(

    function () {

      fetchPosts();

    },

    [fetchPosts]

  );

  return httpState;

}

The only thing that changed in this code snippet is the last line of the useFetch 
function. With return httpState, the state managed by useReducer() (and 
therefore by the httpReducer function) is returned by the custom Hook.

To fix the second problem (i.e., the hardcoded URL), a parameter should be added 
to useFetch:

// httpReducer function and initial state did not change, hence omitted 
here
function useFetch(url) {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  const fetchPosts = useCallback(async function fetchPosts() {

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(url);

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');



332 | Building Custom React Hooks

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, [url]);

  useEffect(

    function () {

      fetchPosts();

    },

    [fetchPosts]

  );

  return httpState;

}

In this snippet, the url parameter was added to useFetch. This parameter value is 
then used inside the try block when calling fetch(url). Please note that url was 
also added as a dependency to the useCallback() dependencies array. 

Since useCallback() is wrapped around the fetching function (to prevent infinite 
loops by useEffect()), any external values used inside of useCallback() 
must be added to its dependencies array. Since url is an external value (meaning 
it's not defined inside of the wrapped function), it must be added. This also makes 
sense logically: if the url parameter were to change (i.e., if the component that uses 
useFetch changes it), a new HTTP request should be sent.

This final version of the useFetch Hook can now be used in all components to 
send HTTP requests to different URLs and use the HTTP state values as needed by 
the components.

For example, the App component can use useFetch like this:

import BlogPosts from './components/BlogPosts';

import useFetch from './hooks/use-fetch';

function App() {

  const { data, isLoading, error } = useFetch(

    'https://jsonplaceholder.typicode.com/posts'



Introduction | 333

  );

  return (

    <>

      <header>

        <h1>Complex State Blog</h1>

      </header>

      {isLoading && <p>Loading...</p>}

      {error && <p>{error}</p>}

      {data && <BlogPosts posts={data} />}

    </>

  );

}

export default App;

The component imports and calls useFetch() (with the appropriate URL as an 
argument) and uses object destructuring to get the data, isLoading, and error 
properties from the httpState object. These values are then used in the JSX code.

Of course, the useFetch Hook could also return a pointer to the fetchPosts 
function (in addition to httpState) to allow components such as the App 
component to manually trigger a new request, as shown here:

// httpReducer function and initial state did not change, hence omitted 
here
function useFetch(url) {

  const [httpState, dispatch] = useReducer(httpReducer, 
initialHttpState);

  const fetchPosts = useCallback(async function fetchPosts() {

    dispatch({ type: 'FETCH_START' });

    try {

      const response = await fetch(url);

      if (!response.ok) {

        throw new Error('Failed to fetch posts.');

      }

      const posts = await response.json();

      dispatch({ type: 'FETCH_SUCCESS', payload: posts });



334 | Building Custom React Hooks

    } catch (error) {

      dispatch({ type: 'FETCH_ERROR', payload: error.message });

    }

  }, []);

  useEffect(

    function () {

      fetchPosts();

    },

    [fetchPosts]

  );

  return [ httpState, fetchPosts ];

}

In this example, the return statement was changed. Instead of returning just 
httpState, useFetch now returns an array that contains the httpState 
object and a pointer to the fetchPosts function. Alternatively, httpState and 
fetchPosts could have been merged into an object (instead of an array).

In the App component, useFetch could now be used like this:

import BlogPosts from './components/BlogPosts';

import useFetch from './hooks/use-fetch';

function App() {

  const [{ data, isLoading, error }, fetchPosts] = useFetch(

    'https://jsonplaceholder.typicode.com/posts'

  );

  return (

    <>

      <header>

        <h1>Complex State Blog</h1>

        <button onClick={fetchPosts}>Load Posts</button>

      </header>

      {isLoading && <p>Loading...</p>}

      {error && <p>{error}</p>}

      {data && <BlogPosts posts={data} />}

    </>



Introduction | 335

  );

}

export default App;

The App component uses array and object destructuring combined to extract the 
returned values (and the values nested in the httpState object). A newly added 
<button> element is then used to trigger the fetchPosts function.

This example effectively shows how custom Hooks can lead to much leaner 
component functions by allowing for easy logic reuse, with or without state or 
side effects.

Summary and Key Takeaways

•	 You can create custom Hooks to outsource and reuse logic that relies on other 
built-in or custom Hooks.

•	 Custom Hooks are regular JavaScript functions with names that start with use.

•	 Custom Hooks can call any other Hooks.

•	 Therefore, custom Hooks can, for example, manage state or perform 
side effects.

•	 All components can use custom Hooks by simply calling them like any other 
(built-in) Hooks.

•	 When multiple components use the same custom Hook, every component 
receives its own "instance" (i.e., its own state value, etc.).

•	 Inside of custom Hooks, you can accept any parameter values and return any 
values of your choice.

What's Next?

Custom Hooks are a key React feature since they help you to write leaner 
components and reuse (stateful) logic across them. Especially when building more 
complex React apps (consisting of dozens or even hundreds of components), custom 
Hooks can lead to tremendously more manageable code.

Custom Hooks are the last key React feature you must know about. Combined with 
components, props, state (via useState() or useReducer()), side effects, and all 
the other concepts covered in this and previous chapters, you now have everything 
you need to build production-ready React apps—or, to be precise, almost everything.



336 | Building Custom React Hooks

Most React apps don't just consist of one single page. Instead, at least on most 
websites, users should be able to switch between multiple pages. For example, an 
online shop has a list of products, product detail pages, a shopping cart page, and 
many other pages.

The next chapter will therefore explore how you can build such multipage apps 
with React.

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to examples that can be 
found at https://packt.link/sRKeZ:

1.	 What is the definition of a custom Hook?

2.	 Which special feature can be used inside a custom Hook?

3.	 What happens when multiple components use the same custom Hook?

4.	 How can custom Hooks be made more reusable?

Apply What You Learned

Apply your knowledge about custom Hooks.

Activity 11.1: Build a Custom Keyboard Input Hook

In this activity, your task is to refactor a provided component such that it's leaner and 
no longer contains any state or side-effect logic. Instead, you should create a custom 
Hook that contains that logic. This Hook could then potentially be used in other areas 
of the React application as well.

Note

You can find the starting code for this activity at https://packt.link/rdwd9. 
When downloading this code, you'll always download the entire repository. 
Make sure to then navigate to the subfolder with the starting code 
(activities/practice-1/starting-code, in this case) to use 
the right code snapshot.

The provided project also uses many features covered in earlier chapters. 
Take your time to analyze it and understand the provided code. This is a 
great practice and allows you to see many key concepts in action.



Introduction | 337

Once you have downloaded the code and run npm install in the project folder 
to install all required dependencies, you can start the development server via npm 
start. As a result, upon visiting localhost:3000, you should see the following 
user interface:

Figure 11.3: The running starting project

To complete the activity, the solution steps are as follows:

1.	 Create a new custom Hook file (e.g., in the src/hooks folder) and create a 
Hook function in that file.

2.	 Move the side effect and state management logic into that new Hook function.

3.	 Make the custom Hook more reusable by accepting and using a parameter that 
controls which keys are allowed.

4.	 Return the state managed by the custom Hook.

5.	 Use the custom Hook and its returned value in the App component.

The user interface should be the same once you have completed the activity, but the 
code of the App component should change. After finishing the activity, App should 
contain only this code:

function App() {

  const pressedKey = useKeyEvent(['s', 'c', 'p']); // this is your Hook!

  let output = '';

  if (pressedKey === 's') {

    output = ' ';

  } else if (pressedKey === 'c') {

    output = ' ';

  } else if (pressedKey === 'p') {

    output = ' ';

  }

  return (



338 | Building Custom React Hooks

    <main>

      <h1>Press a key!</h1>

      <p>

        Supported keys: <kbd>s</kbd>, <kbd>c</kbd>, <kbd>p</kbd>

      </p>

      <p id="output">{output}</p>

    </main>

  );

}

Note

The solution to this activity can be found via this link.







Learning Objectives

By the end of this chapter, you will be able to do the following:

�	 Build multipage single-page applications (and understand why this is not 
an oxymoron).

�	 Use the React Router package to load different React components for 
different URL paths.

�	 Create static and dynamic routes (and understand what routes are in the 
first place).

�	 Navigate the website user via both links and programmatic commands.

�	 Build nested page layouts.

Multipage Apps with React 

Router

12



342 | Multipage Apps with React Router

Introduction
Having worked through the first eleven chapters of this book, you should now 
know how to build React components and web apps, as well as how to manage 
components and app-wide state, and how to share data between components (via 
props or context).

But even though you know how to compose a React website from multiple 
components, all these components are on the same single website page. Sure, you 
can display components and content conditionally, but users will never switch to a 
different page. This means that the URL path will never change; users will always stay 
on your-domain.com. Also, at this point in time, your React apps don't support 
any paths such as your-domain.com/products or your-domain.com/blog/
latest. 

Note

Uniform Resource Locators (URLs) are references to web resources. For 
example, https://academind.com/courses is a URL that points to a specific 
page of the author's website. In this example, academind.com is the 
domain name of the website and /courses is the path to a specific 
website page.

For React apps, it might make sense that the path of the loaded website 
never changes. After all, in Chapter 1, React – What and Why, you learned that you 
build single-page applications (SPAs) with React.

But even though it might make sense, it's also quite a serious limitation.

One Page Is Not Enough

Having just a single page means that complex websites that would typically consist 
of multiple pages (e.g., an online shop with pages for products, orders, and more) 
become quite difficult to build with React. Without multiple pages, you have to fall 
back to state and conditional values to display different content on the screen.

But without changing URL paths, your website visitors can't share links to anything 
but the starting page of your website. Also, any conditionally loaded content will be 
lost when a new visitor visits that starting page. That will also be the case if users 
simply reload the page they're currently on. A reload fetches a new version of the 
page, and so any state (and therefore user interface) changes are lost.

https://academind.com/courses


Introduction | 343

For these reasons, you absolutely need a way of including multiple pages (with 
different URL paths) in a single React app for most React websites. Thanks to modern 
browser features and a highly popular third-party package, that is indeed possible 
(and the default for most React apps).

Via the React Router package, your React app can listen to URL path changes and 
display different components for different paths. For example, you could define the 
following path-component mappings:

•	 <domain>/ => <Home /> component is loaded.

•	 <domain>/products => <ProductList /> component is loaded.

•	 <domain>/products/p1 => <ProductDetail /> component is loaded.

•	 <domain>/about => <AboutUs /> component is loaded.

•	 Technically, it's still an SPA because there's still only one HTML page being sent 
to website users. But in that single-page React app, different components are 
rendered conditionally by the React Router package based on the specific URL 
paths that are being visited. As the developer of the app, you don't have to 
manually manage this kind of state or render content conditionally. In addition, 
your website is able to handle different URL paths, and therefore, individual 
pages can be shared or reloaded.

Getting Started with React Router and Defining Routes

React Router is a third-party React library that can be installed in any React project. 
Once installed, you can use various components in your code to enable the 
aforementioned features.

Inside your React project, the package is installed via this command:

npm install react-router-dom

Once installed, you can import and use various components (and Hooks) from 
that library.



344 | Multipage Apps with React Router

To start supporting multiple pages in your React app, you need to set up routing by 
going through the following steps:

1.	 Create different components for your different pages (e.g., Dashboard and 
Orders components).

2.	 Use the BrowserRouter, Routes, and Route components from the React 
Router library to enable routing and define the routes that should be supported 
by the React app.

In this context, the term routing refers to the React app being able to load different 
components for different URL paths (e.g., different components for the / and /
orders paths). A route is a definition that's added to the React app that defines the 
URL path for which a predefined JSX snippet should be rendered (e.g., the Orders 
component should be loaded for the /orders path).

In an example React app that contains Dashboard and Orders components, 
and wherein the React Router library was installed via npm install, you can 
enable routing and navigation between these two components by editing the App 
component (in src/App.js) like this:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  return (

    <BrowserRouter>

      <Routes>

        <Route path="/" element={<Dashboard />} />

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;



Introduction | 345

Note

You can find the complete example code on GitHub at https://packt.link/
uX1mb.

In the preceding code snippet, three components are used from the react-
router-dom package:

•	 BrowserRouter, which enables all routing-related features (e.g., it sets up a 
listener that detects and analyzes URL changes). This component must only be 
used once in the entire application (typically in your root component, such as the 
App component).

•	 Routes, which contains your route definitions. You can use this component 
multiple times to define multiple, independent groups of routes. Whenever 
the URL path changes, Routes checks whether any of its route definitions (via 
Route) matches that URL path and should therefore be activated.

•	 Route, which is used to define an individual route. The path prop is used to 
define the URL path that should activate this route. Only one route can be active 
per Routes group. Once activated, the content defined via the elements prop 
is rendered.

The placement of the Routes and Route components also defines where the 
conditional page content should be displayed. You can think of the <Route /> 
element being replaced with the content defined via the element prop once the 
route becomes active. Therefore, the positioning of the Route components matter. 

If you run the provided example React app (via npm start), you'll see the following 
output on the screen:

Figure 12.1: The Dashboard component content is loaded for localhost:3000

https://packt.link/uX1mb
https://packt.link/uX1mb


346 | Multipage Apps with React Router

The content of the Dashboard component is displayed on the screen. Please note 
that this content is not defined in the App component (in the code snippet shared 
previously). Instead, there, only two route definitions were added: one for the / path 
(i.e., for localhost.3000/) and one for the /orders path (localhost:3000/
orders).

Note

localhost is a local address that's typically used for development. When 
you deploy your React app (i.e., you upload it to a web server), you will 
receive a different domain—or assign a custom domain. Either way, it will 
not be localhost after deployment.

The part after localhost (:3000) defines the network port to which 
the request will be sent. Without the additional port information, ports 80 
or 443 (as the default HTTP(S) ports) are used automatically. During 
development, however, these are not the ports you want. Instead, you 
would typically use ports such as 3000, 8000, or 8080 as these are 
normally unoccupied by any other system processes and hence can be 
used safely. Projects created via create-react-app use port 3000.

Since localhost:3000 is loaded by default (when running npm start), the 
first route definition (<Route path="/" element={<Dashboard />} />) 
becomes active. This route is active because its path ("/") matches the path of 
localhost:3000 (since this is the same as localhost:3000/).

As a result, the JSX code defined via element is rendered on the screen. In this case, 
this means that the content of the Dashboard component is displayed because the 
element prop value of this route definition is <Dashboard />. It is quite common 
to use single components (such as <Dashboard />, in this example), but you could 
render any JSX content. 

In the preceding example, no complex page is displayed. Instead, only some text 
shows up on the screen. This will change later in this chapter, though.

But it gets interesting if you manually change the URL from just localhost:3000 
to localhost:3000/orders in the browser address bar. In any of the previous 
chapters, this would not have changed the page content. But now, with routing 
enabled and the appropriate routes being defined, the page content does change, 
as shown:



Introduction | 347

Figure 12.2: For /orders, the content of the Orders component is displayed

Once the URL changes, the content of the Orders component is displayed on the 
screen. It's again just some basic text in this first example, but it shows that different 
code is rendered for different URL paths.

However, this basic example has a major flaw (besides the quite boring page content). 
Right now, users must enter URLs manually. But, of course, that's not how you 
typically use websites.

Adding Page Navigation

To allow users to switch between different website pages without editing the browser 
address bar manually, websites normally contain links. A link is typically added via the 
<a> HTML element (the anchor element), like this:

<a href="/orders">All Orders</a>

For the previous example, on-page navigation could therefore be added by modifying 
the App component code like this:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  return (

    <BrowserRouter>

    <nav>

      <ul>

        <li><a href="/">Home</a></li>

        <li><a href="/orders">All Orders</a></li>

  </ul>

    </nav>

      <Routes>

        <Route path="/" element={<Dashboard />} />



348 | Multipage Apps with React Router

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

The <nav>, <ul>, and <li> elements are optional. It's just an approach for 
structuring the main navigation of a page in a semantically correct way. But with the 
two <a> elements added, website visitors see two navigation options that they can 
click to switch between pages:

Figure 12.3: Two navigation links are presented to the user

Of course, you would typically add more CSS styling, but these two links allow 
users to navigate to either the Dashboard or Orders page (i.e., render the 
respective component).

Note

The code for this example can be found at https://packt.link/8H5yI.

This approach works but has a major flaw: the website is reloaded every time a user 
clicks one of those links. You can tell that it's reloaded because the browser's refresh 
icon changes to a cross (briefly) whenever you click a link.

https://packt.link/8H5yI


Introduction | 349

This happens because the browser sends a new HTTP request to the server whenever 
a link is clicked. Even though the server always returns the same single HTML page, 
the page is reloaded during that process (because of the new HTTP request that 
was sent).

While that's not a problem on this simple demo page, it would be an issue if you had 
a state (e.g., an app-wide state managed via context) that should not be reset during a 
page change.

The following, slightly adjusted, example app illustrates this problem:

function App() {

  const [counter, setCounter] = useState(0);

  function incCounterHandler() {

    setCounter((prevCounter) => prevCounter + 1);

  }

  return (

    <BrowserRouter>

      <nav>

        <ul>

          <li>

            <a href="/">Home</a>

          </li>

          <li>

            <a href="/orders">All Orders</a>

          </li>

        </ul>

      </nav>

      <p>

        {counter} - <button onClick={incCounterHandler}>Increase</button>

      </p>

      <Routes>

        <Route path="/" element={<Dashboard />} />

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}



350 | Multipage Apps with React Router

Note

The code for this example can be found at https://packt.link/ZZgPu.

In this example, a simple counter was added to the App component. Since the two 
route definitions (the <Route /> elements) are inside the App component, that 
component should not be replaced when a user visits a different page.

At least, that's the theory. As you can see in the following screenshot, the counter 
state is lost whenever any link is clicked:

Figure 12.4: The counter state is reset when switching the page

In the screenshot, you can see that the counter is initially set to 2 (because the button 
was clicked twice). After navigating from Dashboard to the Orders page (via the 
appropriate navigation link), the counter changes to 0. 

That happens because the page is reloaded due to the HTTP request that's sent by 
the browser.

To work around this issue and avoid this unintended page reload, you must prevent 
the browser's default behavior. Instead of sending a new HTTP request, the browser 
should simply update the URL (from localhost:3000 to localhost:3000/
orders). The React Router library can then react to this URL change and update 
the screen as needed. Therefore, to the website user, it seems as if a different page 
was loaded. But behind the scenes, it's just the page document (the DOM) that 
was updated.

Thankfully, you don't have to implement the logic for this on your own. Instead, the 
React Router library exposes a special Link component that should be used for 
rendering links that behave as described previously.

To use this new component, the code in src/App.js must be adjusted like this:

import { useState } from 'react';

import { BrowserRouter, Routes, Route, Link } from 'react-router-dom';

https://packt.link/ZZgPu


Introduction | 351

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  const [counter, setCounter] = useState(0);

  function incCounterHandler() {

    setCounter((prevCounter) => prevCounter + 1);

  }

  return (

    <BrowserRouter>

      <nav>

        <ul>

          <li>

            <Link to="/">Home</Link>

          </li>

          <li>

            <Link to="/orders">All Orders</Link>

          </li>

        </ul>

      </nav>

      <p>

        {counter} - <button onClick={incCounterHandler}>Increase</button>

      </p>

      <Routes>

        <Route path="/" element={<Dashboard />} />

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

Note

The code for this example can be found at https://packt.link/kPXCL.

https://packt.link/kPXCL


352 | Multipage Apps with React Router

Inside the <li> elements, the new Link component is used. That component 
requires the to prop, which is used to define the URL path that should be loaded.

By using this component in place of the <a> anchor element, the counter state is 
no longer reset. This is because React Router now prevents the browser's default 
behavior (i.e., the unintended page reload described above) and displays the correct 
page content.

The Link component is therefore the default component that should be used for 
adding links to React websites. However, there are the following two exceptions:

•	 External links: Links that lead to external resources and websites

•	 Navigation links: Links that should (possibly) change their appearance upon 
route changes

External links are links that lead to any resource that's not one of your React app 
routes. For example, you could have a link that leads to a Wikipedia page. Since that's 
not part of your React app, the Link component is not the correct choice. Instead, 
you should use the <a> element for those kinds of links:

<a href="https://wikipedia.org">Look it up!</a>

But the second exception, navigation links, is worth a closer look.

From Link to NavLink

You can, in theory, always use the Link component for internal links. But you will 
sometimes have links on your page that should change their appearance (e.g., 
their color) when they lead to the currently active route. Links placed in the main 
navigation bar often need that behavior in order to reflect which page is active at 
the moment.

On many websites, the main navigation bar signals to the user which page they are 
currently on—simply by highlighting the navigation item that leads to the current 
page in the navigation bar.

Consider this code snippet, which is the example from previously without the state 
but with some extra styling and a <header> element (also only added for styling and 
semantic purposes):

import { BrowserRouter, Routes, Route, Link } from 'react-router-dom';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';



Introduction | 353

function App() {

  return (

    <BrowserRouter>

      <header>

        <nav>

          <ul>

            <li>

              <Link to="/">Dashboard</Link>

            </li>

            <li>

              <Link to="/orders">All Orders</Link>

            </li>

          </ul>

        </nav>

      </header>

      <Routes>

        <Route path="/" element={<Dashboard />} />

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

This code snippet does not yet have any new functionality or behavior. It just adds a 
more realistic-looking main navigation bar:

Figure 12.5: The styled navigation bar is above the main route content



354 | Multipage Apps with React Router

In this screenshot, the navigation bar received some styling. It now looks more like a 
proper website.

But you might notice that it's not always immediately obvious which page the user 
is currently on. Sure, the dummy page content currently displays the page name 
("Orders" or "Dashboard"), and the URL path also is /orders or /. But, when 
navigating a website, the most obvious clue users are accustomed to is a highlighted 
element in the main navigation bar.

To prove this point, compare the previous screenshot to the following one:

Figure 12.6: The highlighted All Orders navigation link appears bold

In this version of the website, it's immediately clear that the user is on the "Orders" 
page since the All Orders navigation link is highlighted (in this case by making 
it bold). It's subtle things such as this that make websites more usable and can 
ultimately lead to higher user engagement.

But how can this be achieved? 

To do this, you would not use the Link component but instead, a special alternative 
component, offered by react-router-dom: the NavLink component.

The NavLink component is used pretty much like the Link component. You wrap it 
around some text (the link's caption), and you define the target path via the to prop. 
But the NavLink component offers two special props:

•	 The style prop

•	 The className prop

To be precise, the Link component also supports style and className, which 
are standard HTML element props, after all. Link supports these props to allow 
developers to style the link elements.



Introduction | 355

But when using NavLink, style and className work slightly differently. Instead 
of requiring the standard style and className prop values (see Chapter 6, Styling 
React Apps), the two props now accept functions. 

The function passed to either style or className automatically receives an 
argument (provided by the React Router library). This will be an object with a 
Boolean isActive property that indicates whether this link is leading to the 
currently active route.

This isActive value can then be used to conditionally return different style or 
className values based on the current state of the navigation link.

The adjusted App.js code that leads to the user interface shown in the previous 
screenshot looks like this:

import { BrowserRouter, Routes, Route, NavLink } from 'react-router-dom';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  return (

    <BrowserRouter>

      <header>

        <nav>

          <ul>

            <li>

              <NavLink

                to="/"

                style={({ isActive }) =>

                  isActive ? { fontWeight: 'bold' } : undefined

                }

              >

                Dashboard

              </NavLink>

            </li>

            <li>

              <NavLink

                to="/orders"

                style={({ isActive }) =>

                  isActive ? { fontWeight: 'bold' } : undefined

                }



356 | Multipage Apps with React Router

              >

                All Orders

              </NavLink>

            </li>

          </ul>

        </nav>

      </header>

      <Routes>

        <Route path="/" element={<Dashboard />} />

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

In this code snippet, the NavLink component replaces the Link component. The 
style prop is added to both NavLink components, and for both links, an arrow 
function is passed to style (though you can also use a normal function). The 
isActive property is extracted from the received object via object destructuring. 
In the function body, a ternary expression is used to either return a style value of 
{ fontWeight: 'bold' } or undefined (in which case no special styling 
is added).

Note

You can find the finished code for this example on GitHub at https://packt.
link/FcM7A.

One important note is that NavLink will consider a route to be active if its path 
matches the current URL path or if its path starts with the current URL path. For 
example, if you had a /blog/all-posts route, a NavLink component that points 
at just /blog would be considered active if the current route is /blog/all-posts 
(because that route path starts with /blog). If you don't want this behavior, you can 
add the special end prop to the NavLink component, as follows:

<NavLink 

  to="/blog" 

  style={({ isActive }) => isActive ? { color: 'red' } : undefined}

https://packt.link/FcM7A
https://packt.link/FcM7A


Introduction | 357

  end>

    Blog

</NavLink>

With this special prop added, this NavLink would only be considered active if the 
current route is exactly /blog—for /blog/all-posts, the link would not 
be active.

NavLink is always the preferred choice when the styling of a link depends on the 
currently active route. For all other internal links, use Link. For external links, <a> is 
the element of choice.

Route Components versus "Normal" Components

It's worth mentioning and noting that, in the previous examples, the Dashboard 
and Orders components were regular React components. You could use these 
components anywhere in your React app—not just as values for the element prop 
of the Route component.

The two components are special in that both are stored in the src/routes folder in 
the project directory. They are not stored in the src/components folder, which was 
used for components throughout this book.

That's not something you have to do, though. Indeed, the folder names are entirely 
up to you. These two components could be stored in src/components. You could 
also store them in an src/elements folder. It really is up to you. But using src/
routes is quite common for components that are exclusively used for routing. 
Popular alternatives are src/screens, src/views, and src/pages (again, it is 
up to you).

If your app includes any other components that are not used as routing elements, 
you would still store those in src/components (i.e., in a different path). This is 
not a hard rule or a technical requirement, but it does help with keeping your React 
projects manageable. Splitting your components across multiple folders makes it 
easier to quickly understand which components fulfill which purpose in the project.



358 | Multipage Apps with React Router

In the example project mentioned previously, you can, for example, refactor 
the code such that the navigation code is stored in a separate component (e.g., 
a MainNavigation component, stored in src/components/shared/
MainNavigation.js). The component code looks like this:

import { NavLink } from 'react-router-dom';

import classes from './MainNavigation.module.css';

function MainNavigation() {

  return (

    <header className={classes.header}>

      <nav>

        <ul className={classes.links}>

          <li>

            <NavLink

              to="/"

              className={({ isActive }) =>

                isActive ? classes.active : undefined

              }

              end

            >

              Dashboard

            </NavLink>

          </li>

          <li>

            <NavLink

              to="/orders"

              className={({ isActive }) =>

                isActive ? classes.active : undefined

              }

            >

              All Orders

            </NavLink>

          </li>

        </ul>

      </nav>

    </header>



Introduction | 359

  );

}

export default MainNavigation;

In this code snippet, the NavLink component is adjusted to assign a CSS class 
named active to any link that belongs to the currently active route. In general, CSS 
classes are added to various elements (with the help of CSS Modules, as discussed in 
Chapter 6, Styling React Apps). Besides that, it's essentially the same navigation menu 
code as that used earlier in this chapter.

This MainNavigation component can then be imported and used in the App.js 
file like this:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import MainNavigation from './components/shared/MainNavigation';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  return (

    <BrowserRouter>

      <MainNavigation />

      <Routes>

        <Route path="/" element={<Dashboard />} />

        <Route path="/orders" element={<Orders />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

Importing and using the MainNavigation component leads to a leaner App 
component and yet preserves the same functionality as before. 

These changes show how you can combine routing, components that are only used 
for routing (Dashboard and Orders), and components that are used outside of 
routing (MainNavigation).



360 | Multipage Apps with React Router

But you can also take it a step further. Semantically, it makes sense to wrap your 
route component content (i.e., the JSX code returned by Dashboard and Orders) 
with the <main> element. This default HTML element is commonly used to wrap the 
main content of the page.

Since both components would therefore wrap their returned values with <main>, 
you can create a separate Layout component that's wrapped around the entire 
block of route definitions (i.e., around the Routes component) and looks like this: 

import MainNavigation from './MainNavigation';

function Layout({ children }) {

  return (

    <>

      <MainNavigation />

      <main>{children}</main>

    </>

  );

}

export default Layout;

This component uses the special children prop (see Chapter 3, Components and 
Props) to wrap the <main> element around whatever JSX content is placed between 
the <Layout> tags. In addition, it renders the MainNavigation component above 
the <main> element.

The Layout component (which could be stored in src/components/shared/
Layout.js) can then be imported and used in App.js, as follows:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Layout from './components/shared/Layout';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  return (

    <BrowserRouter>

      <Layout>

        <Routes>

          <Route path="/" element={<Dashboard />} />



Introduction | 361

          <Route path="/orders" element={<Orders />} />

        </Routes>

      </Layout>

    </BrowserRouter>

  );

}

export default App;

<Layout> is wrapped around the <Routes> element, which contains the various 
route definitions. Therefore, no matter which route is active, its content is wrapped 
with the <main> element and MainNavigation is placed above it.

As a result, with some additional CSS styling added, the website looks like this:

Figure 12.7: Both route components share the same layout

It's essentially the same look as before, but it's now achieved via a leaner App 
component and by splitting application responsibilities (such as providing navigation, 
managing routes, etc.) into different components.

Note

You can find the finished code for this example on GitHub at https://packt.
link/TkNsc.

But even with this split into multiple components, the demo application still suffers 
from an important problem: it only supports static, predefined routes. But, for most 
websites, those kinds of routes are not enough. 

From Static to Dynamic Routes

Thus far, all examples have had two routes: / for the Dashboard component and /
orders for the Orders component. But you can, of course, add as many routes as 
needed. If your website consists of 20 different pages, you can (and should) add 20 
route definitions (i.e., 20 Route components) to your App component.

https://packt.link/TkNsc
https://packt.link/TkNsc


362 | Multipage Apps with React Router

On most websites, however, you will also have some routes that can't be defined 
manually—because not all routes are known in advance.

Consider the example from before, enriched with additional components and some 
realistic dummy data:

Figure 12.8: A list of order items

Note

You can find the code for this example on GitHub at https://packt.link/KcDA6. 
In the code, you'll notice that many new components and style files were 
added. The code does not use any new features, though. It's just used to 
display a more realistic user interface and output some dummy data.

In the preceding screenshot, Figure 12.8, you can see a list of order items being output 
on the All Orders page (i.e., by the Orders component).

https://packt.link/KcDA6


Introduction | 363

In the underlying code, every order item is wrapped with a Link component so that 
a separate page with more details will be loaded for each item:

function OrdersList() {

  return (

    <ul className={classes.list}>

      {orders.map((order) => (

        <li key={order.id}>

          <Link to='/orders'><OrderItem order={order} /></Link>

        </li>

      ))}

    </ul>

  );

}

In this code snippet, the path for the Link component is set to /orders. However, 
that's not the final value that should be assigned. Instead, this example highlights an 
important problem: while it's the same component that should be loaded for every 
order item (i.e., some component that displays detailed data about the selected 
order), the exact content of the component depends on which order item was 
selected. It's the same component with different data.

Outside of routing, you would use props to reuse the same component with different 
data. But with routing, it's not just about the component. You also must support 
different paths—because the detailed data for different orders should be loaded via 
different paths. Otherwise, you would again end up with URLs that are not shareable 
or reloadable. 

Therefore, the path must include not only some static identifier (such as /orders) 
but also a dynamic value that's different for every order item. For three order items 
with id values o1, o2, and o3, the goal could be to support the /orders/o1, /
orders/o2, and /order/o3 paths.

For this reason, the following three route definitions could be added:

<Route path="/orders/o1" element={ <OrderDetail id="o1" /> } />

<Route path="/orders/o2" element={ <OrderDetail id="o2" /> } />

<Route path="/orders/o3" element={ <OrderDetail id="o3" /> } />



364 | Multipage Apps with React Router

But this solution has a major flaw. Adding all these routes manually is a huge amount 
of work. And that's not even the biggest problem. You typically don't even know all 
values in advance. In this example, when a new order is placed, a new route would 
have to be added. But you can't adjust the source code of your website every time a 
visitor places an order.

Clearly, then, a better solution is needed. React Router offers that better solution as it 
supports dynamic routes.

Dynamic routes are defined just like other routes, except that, when defining their 
path values, you will need to include one or more placeholder values with identifiers 
of your choice.

The OrderDetail route definition therefore looks like this:

<Route path="/orders/:id" element={ <OrderDetail /> } />

The following three key things have changed:

•	 It's just one route definition instead of a (possibly) infinite list of definitions.

•	 path contains a dynamic route segment (:id).

•	 OrderDetail no longer receives an id prop.

The :id syntax is a special syntax supported by React Router. Whenever a segment 
of a path starts with a colon, React Router treats it as a dynamic segment. That 
means that it will be replaced with a different value in the actual URL path. For the 
/orders/:id route path, the /orders/o1, /orders/o2, and /orders/abc 
paths would all match and therefore activate the route.

Of course, you don't have to use :id. You can use any identifier of your choice. For 
the preceding example, :orderId, :order, or :oid could also make sense. 

The identifier will help your app to load the correct data inside the page component 
(inside OrderDetail in this case). That's why the id prop was removed from 
OrderDetail. Since only one route is defined, only one specific id value can be 
passed via props. That won't help. Therefore, a different way of loading order-specific 
data must be used.

Extracting Route Parameters

In the previous example, when a website user visits /orders/o1 or /orders/o2 
(or the same path for any other order ID), the OrderDetail component is loaded. 
This component should then output more information about the specific order that 
was selected (i.e., the order whose id is encoded in the URL path).



Introduction | 365

By the way, that's not just the case for this example; you can think of many other 
types of websites as well. You could also have, for example, an online shop with 
routes for products (/products/p1, /products/p2, etc.), or a travel blog where 
users can visit individual blog posts (/blog/post1, /blog/post2, etc.).

In all these cases, the question is, how do you get access to the data that should be 
loaded for the specific identifier (e.g., the ID) that's included in the URL path? Since it's 
always the same component that's loaded, you need a way of dynamically identifying 
the order, product, or blog post for which the detail data should be fetched.

One possible solution would be the usage of props. Whenever you build a component 
that should be reusable yet configurable and dynamic, you can use props to accept 
different values. For example, the OrderDetail component could accept an id 
prop and then, inside the component function body, load the data for that specific 
order ID.

However, as mentioned in the previous section, this is not a possible solution when 
loading the component via routing. Keep in mind that the OrderDetail component 
is created when defining the route: 

<Route path="/orders/:id" element={ <OrderDetail />} />

Since the component is created when defining the route in the App component, you 
can't pass in any dynamic, ID-specific prop values. 

Fortunately, though, that's not necessary. React Router gives you a solution 
that allows you to extract the data encoded in the URL path from inside the 
component that's displayed on the screen (when the route becomes active): the 
useParams() Hook.

This Hook can be used to get access to the route parameters of the currently active 
route. Route parameters are simply the dynamic values encoded in the URL path—
id, in the case of this OrderDetail example.

Inside the OrderDetail component, useParams() can therefore be used to 
extract the specific order id and load the appropriate order data, as follows:

import { useParams } from 'react-router-dom';

import Details from '../components/orders/Details';

import { getOrderById } from '../data/orders';

function OrderDetail() {

  const params = useParams();



366 | Multipage Apps with React Router

  const orderId = params.id; // in this example, orderId is "o1" or "o2" 
etc.
  const order = getOrderById(orderId);

  return <Details order={order} />;

}

export default OrderDetail;

As you can see in this snippet, useParams() returns an object that contains all 
route parameters of the currently active route as properties. Since the route path was 
defined as /orders/:id, the params object contains an id property. The value of 
that property is then the actual value encoded in the URL path (e.g., o1). If you choose 
a different identifier name in the route definition (e.g., /orders/:orderId instead 
of /orders/:id), that property name must be used to access the value in the 
params object (i.e., access params.orderId).

Note

You find the complete code on GitHub at https://packt.link/YKmjL.

By using route parameters, you can thus easily create dynamic routes that lead 
to different data being loaded. But, of course, defining routes and handling route 
activation are not that helpful if you do not have links leading to the dynamic routes.

Creating Dynamic Links

As mentioned earlier in this chapter (in the Adding Page Navigation section), website 
visitors should be able to click on links that should then take them to the different 
pages that make up the overall website—meaning, those links should activate the 
various routes defined with the help of React Router.

As explained in the Adding Page Navigation and From Link to NavLink sections, for 
internal links (i.e., links leading to routes defined inside the React app), the Link or 
NavLink components are used.

So, for static routes such as /orders, links are created like this:

<Link to="/orders">All Orders</Link> // or use <NavLink> instead

https://packt.link/YKmjL


Introduction | 367

When building a link to a dynamic route such as /orders/:id, you can therefore 
simply create a link like this:

<Link to="/orders/o1">All Orders</Link>

This specific link loads the OrderDetails component for the order with the ID o1.

Building the link as follows would be incorrect:

<Link to="/orders/:id">All Orders</Link>

The dynamic path segment (:id) is only used when defining the route—not 
when creating a link. The link has to lead to a specific resource (a specific order, 
in this case).

But creating links to specific orders, as shown previously, is not very practical. Just as 
it wouldn't make sense to define all dynamic routes individually (see the From Static to 
Dynamic Routes section), it doesn't make sense to create the respective links manually.

Sticking to the orders example, there is also no need to create links like that as you 
already have a list of orders that's output on one page (the Orders component, in 
this case). Similarly, you could have a list of products in an online shop. In all these 
cases, the individual items (orders, products, etc.) should be clickable and lead to 
details pages with more information.

Figure 12.9: A list of clickable order items



368 | Multipage Apps with React Router

Therefore, the links can be generated dynamically when rendering the list of JSX 
elements. In the case of the orders example, the code looks like this:

function OrdersList() {

  return (

    <ul className={classes.list}>

      {orders.map((order) => (

        <li key={order.id}>

          <Link to={`/orders/${order.id}`}><OrderItem order={order} /></
Link>
        </li>

      ))}

    </ul>

  );

}

In this code example, the value of the to prop is set equal to a string that includes 
the dynamic order.id value. Therefore, every list item receives a unique link that 
leads to a different details page. Or, to be precise, the link always leads to the same 
component but with a different order id value, hence loading different order data.

Note

In this code snippet (which can be found at https://packt.link/iDObH, the 
string is created as a template literal. That's a default JavaScript feature 
that simplifies the creation of strings that include dynamic values. 

You can learn more about template literals on MDN at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals.

Navigating Programmatically

In the previous section, as well as earlier in this chapter, user navigation was 
enabled by adding links to the website. Indeed, links are the default way of adding 
navigation to a website. But there are scenarios where programmatic navigation is 
required instead. 

Programmatic navigation means that a new page should be loaded via JavaScript 
code (rather than using a link). This kind of navigation is typically required if the active 
page changes in response to some action—e.g., upon form submission.

https://packt.link/iDObH
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals


Introduction | 369

If you take the example of form submission, you will normally want to extract 
and save the submitted data. But thereafter, the user will sometimes need to be 
redirected to a different page. For example, it makes no sense to keep the user on a 
Checkout page after processing the entered credit card details. You might want to 
redirect the user to a Success page instead. 

In the example discussed throughout this chapter, the All Orders page could 
include an input field that allows users to directly enter an order id and load the 
respective orders data after clicking the Find button.

Figure 12.10: An input field that can be used to quickly load a specific order

In this example, the entered order id is first processed and validated before the user 
is sent to the respective details page. If the provided id is invalid, an error message is 
shown instead. The code looks like this:

function OrdersSummary() {

  const orderIdInputRef = useRef();

  const { quantity, total } = getOrdersSummaryData();

  function findOrderHandler(event) {

    event.preventDefault();



370 | Multipage Apps with React Router

    const orderId = orderIdInputRef.current.value;

    const orderExists = orders.some((order) => order.id === orderId);

    if (!orderExists) {

      alert('Could not find an order for the entered id.');

      return;

    }

    // should navigate the user here

  }

  return (

    <div className={classes.row}>

      <p className={classes.summary}>

        ${total.toFixed(2)} | {orders.length} Orders | {quantity} 
Products
      </p>

      <form className={classes.form} onSubmit={findOrderHandler}>

        <input

          type="text"

          placeholder="Enter order id"

          aria-label="Find an order by id."

          ref={orderIdInputRef}

        />

        <button>Find</button>

      </form>

    </div>

  );

}

The code snippet does not yet include the code that will actually trigger the page 
change, but it does show how the user input is read and validated. 

Therefore, this is a perfect scenario for the use of programmatic navigation. A link 
can't be used here since it would immediately trigger a page change—without 
allowing you to validate the user input first (at least not after the link was clicked).



Introduction | 371

The React Router library also supports programmatic navigation for cases like 
this. You can import and use the special useNavigate() Hook to gain access 
to a navigation function that can be used to trigger a navigation action (i.e., a 
page change):

import { useNavigate } from 'react-router-dom';

const navigate = useNavigate();

navigate('/orders'); // programmatic alternative to <Link to="/orders">

Hence, the OrdersSummary component from previously can be adjusted like this to 
use this new Hook:

function OrdersSummary() {

  const orderIdInputRef = useRef();

  const navigate = useNavigate();

  const { quantity, total } = getOrdersSummaryData();

  function findOrderHandler(event) {

    event.preventDefault();

    const orderId = orderIdInputRef.current.value;

    const orderExists = orders.some((order) => order.id === orderId);

    if (!orderExists) {

      alert('Could not find an order for the entered id.');

      return;

    }

    navigate(`/orders/${orderId}`);

  }

  // returned JSX code did not change, hence omitted

}

It's worth noting that the value passed to navigate() is a dynamically constructed 
string. Programmatic navigation supports both static and dynamic paths.

Note

The code for this example can be found at https://packt.link/9cdSZ.

https://packt.link/9cdSZ


372 | Multipage Apps with React Router

No matter whether you need link-based or programmatic navigation, the two 
approaches also support another important feature: redirecting users.

Redirecting

Thus far, all the explored navigation options (links and programmatic navigation) 
forward a user to a specific page. 

In most cases, that's the intended behavior. But in some cases, the goal is to redirect 
a user instead of forwarding them.

The difference is subtle but important. When a user is forwarded, they can use the 
browser's navigation buttons (Back and Forward) to go back to the previous page 
or forward to the page they came from. For redirects, that's not possible. Whenever a 
user is redirected to a specific page (rather than forwarded), they can't use the Back 
button to return to the previous page.

Redirecting users can, for example, be useful for ensuring that users can't go back to 
a login page after authenticating successfully. 

When using React Router, the default behavior is to forward users. But you can easily 
switch to redirecting by adding the special replace prop to the Link (or NavLink) 
components, as follows:

<Link to="/success" replace>Confirm Checkout</Link>

When using programmatic navigation, you can pass a second, optional argument 
to the navigate() function. That second parameter value must be an object 
that can contain a replace property that should be set to true, if you want to 
redirect users:

navigate('/dashboard', { replace: true });

Being able to redirect or forward users allows you to build highly user-friendly web 
applications that offer the best possible user experience for different scenarios.

Nested Routes

Another core feature offered by React Router that has not yet been covered is its 
support for nested routes.

Nested routes are routes that are descendants of other routes. Just as you can build 
a tree of components, you can also build a tree of route definitions. Though, typically, 
you don't need very deep levels of route nesting.



Introduction | 373

This feature can be tricky to understand at first, however, so consider the following 
example App component:

function App() {

  return (

    <BrowserRouter>

      <Layout>

        <Routes>

          <Route path="/" element={<Dashboard />} />

          <Route path="/orders" element={<OrdersRoot />}>

            <Route element={<Orders />} index />

            <Route path=":id" element={<OrderDetail />} />

          </Route>

        </Routes>

      </Layout>

    </BrowserRouter>

  );

}

Note

You can find the complete code on GitHub at https://packt.link/PKFAv.

As you can see in this example, the route definition for the /orders route contains 
two child route definitions:

•	 <Route element={<Orders />} index />

•	 <Route path=":id" element={<OrderDetail />} />

The first interesting thing about these two route definitions is that they are children 
of another route definition (that is, another Route component). Thus far, all route 
definitions were only direct children of Routes (and therefore siblings to each other). 

Besides being nested inside another route definition, these two route definitions 
also have some strange props. The second nested route has a path of ":id" 
instead of "/:id", and the first nested route has no path at all but a special index 
prop instead.

The index prop will be explained further shortly. 

https://packt.link/PKFAv


374 | Multipage Apps with React Router

Regarding the paths, paths starting with a slash (/) are absolute paths. They're 
always appended directly after the domain name. On the other hand, paths that 
do not start with a slash are relative paths; they are appended after the currently 
active path. Hence, the nested :id path yields an overall path of /orders/:id if 
activated, while the /orders route is active. This switch from absolute to relative 
paths is needed when building nested routes because the inner routes will actually be 
connected to the outer route.

But what's the idea behind nested routes?

You might notice that the parent route of the two nested routes will render an 
<OrdersRoot /> element when activated (due to its element prop value). So, 
whenever a user visits /orders, that component gets rendered. 

But it's actually not just that component that will be rendered. The first nested 
component (which displays <Orders />) will also be displayed because of its 
index prop. The index prop "tells" React Router that this route should also be 
active if its parent route is displayed and no other nested route was activated.

The idea of nested routes is that multiple routes can be active simultaneously to 
render a hierarchical component structure. In the preceding example, when a 
user visits /orders, both the OrdersRoot and Orders components would be 
rendered. For /orders/o1, OrdersRoot and OrderDetail would be shown on 
the screen.

But these components would not only show up on the screen at the same time 
(as they would were they simply rendered as siblings), but are also nested into 
each other. The final structure for /orders/o1 would be similar to the following 
component composition:

<App>

  <OrdersRoot>

    <OrderDetail />

  </OrdersRoot>

</App>

But this still doesn't explain why you might want to use nested routes. What's the 
advantage of producing such nested component structures via routing?

It can be helpful if multiple routes have some shared user interface. 



Introduction | 375

For example, both the OrderDetail and Orders components might need to 
display the order search input field like this:

Figure 12.11: Both components have a shared order-specific user interface element

In this screenshot, the Orders and OrderDetail components share the order 
search input. But this input is not part of the overall layout (that is, the one stored in 
the Layout component, which is wrapped around the entire set of route definitions). 
It's not included in the general page layout because it should not affect all routes—
only the order-specific ones. For example, the / route (the dashboard route) should 
not display this order ID search field.

Thanks to nested routes, this can be achieved. This piece of the user interface can be 
shared by including it in the OrdersRoot component. Since that's the component 
loaded for the parent route of the two nested routes, it and its content will be 
included for both child routes.

The code for the OrdersRoot component looks like this:

import { Outlet } from 'react-router-dom';

import OrderSearch from '../components/orders/OrderSearch';

function OrdersRoot() {

  return (

    <>

      <OrderSearch />

      <Outlet />

    </>

  );

}



376 | Multipage Apps with React Router

It's quite a simple component, but it does include that shared OrderSearch 
component (which renders and controls the search input field you see in the 
preceding screenshot).

However, the OrdersRoot component also renders another interesting component: 
the Outlet component.

Outlet is a special component provided by React Router. After importing it from 
react-router-dom, it can be used to denote the location where child route 
components should be rendered.

React Router does not guess where to render any child routes you might have 
defined. Instead, you have to "tell" it by adding the <Outlet /> element in exactly 
that location where React Router should create and display the child route elements. 
For the preceding example, Orders and OrderDetail (which are the child route 
components) are therefore rendered into this place.

Nested routes are a feature that's not necessarily needed all the time. But they can 
be very useful for building more complex user interfaces where certain elements 
should be shared among different routes. Especially if components must be shared 
across some but not all routes, nested routes can be a great solution that's easy to 
implement. On the other hand, if some component is needed on all pages (e.g., the 
main navigation bar), creating a Layout component that wraps all route definitions 
might be more feasible. That said, if you prefer to, you could also use nested routes in 
that case.

Handling Undefined Routes

Previous sections in this chapter have all assumed that you have predefined routes 
that should be reachable by website visitors. But what if a visitor enters a URL that's 
simply not supported?

For example, the demo website used throughout this chapter supports the /, /
orders, and /orders/<some-id> paths. But it does not support /home, /
products/p1, /abc, or any other path that's not one of the defined route paths.

To show a custom "Not Found" page, you can define a "Catch All" route with a 
special path—the * path:

<Route path="*" element={ <NotFound /> } />

When adding this route to the list of route definitions in the App component, the 
NotFound component will be displayed on the screen when no other route matches 
the entered or generated URL path.



Introduction | 377

Lazy Loading

In Chapter 9, Behind the Scenes of React and Optimization Opportunities, you learned 
about lazy loading—a technique that can be used to load certain pieces of the React 
application code only when needed.

Code splitting makes a lot of sense if some components will be loaded conditionally 
and may not be needed at all. Hence, routing is a perfect scenario for lazy loading. 
When applications have multiple routes, some routes may never be visited by a 
user. Even if all routes are visited, not all the code for all app routes (i.e., for their 
components) must be downloaded right at the start of the application. Instead, 
it makes sense to only download code for individual routes when they actually 
become active.

Thankfully, lazy loading with routing works just as explained in Chapter 9; you use 
React's lazy() function, the dynamic import() function, and React's Suspense 
component to split your code into multiple bundles.

Since the goal is to split code by route, all these features are used in the place where 
your route definitions are. In most cases, that will be the App component.

For the example application discussed throughout this chapter, lazy loading is 
implemented like this:

import { lazy, Suspense } from 'react';

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Layout from './components/shared/Layout';

import Dashboard from './routes/Dashboard';

const OrdersRoot = lazy(() => import('./routes/OrdersRoot'));

const Orders = lazy(() => import('./routes/Orders'));

const OrderDetail = lazy(() => import('./routes/OrderDetail'));

function App() {

  return (

    <BrowserRouter>

      <Layout>

        <Suspense fallback={<p>Loading...</p>}>

          <Routes>

            <Route path="/" element={<Dashboard />} />

            <Route path="/orders" element={<OrdersRoot />}>

              <Route element={<Orders />} index />



378 | Multipage Apps with React Router

              <Route path=":id" element={<OrderDetail />} />

            </Route>

          </Routes>

        </Suspense>

      </Layout>

    </BrowserRouter>

  );

}

export default App;

In this code example, lazy and Suspense are imported from React. The 
OrdersRoot, Orders, and OrderDetail components are no longer directly 
imported but are instead created via the lazy() function, which uses the dynamic 
import() function to dynamically load the component code when needed.

Note

The code for this example can be found at https://packt.link/NIfVW.

Finally, the route definitions are wrapped with the Suspense component so 
that React can show some fallback content (<p>Loading…</p>, in this case) if 
downloading the code takes a bit longer.

As explained in Chapter 9, Behind the Scenes of React and Optimization Opportunities, 
adding lazy loading can improve your React application's performance considerably. 
You should always consider using lazy loading, but you should not use it for every 
route. It would be especially illogical for routes that are guaranteed to be loaded 
early, for instance. In the previous example, it would not make too much sense to lazy 
load the Dashboard component since that's the default route (with a path of /). 

But routes that are not guaranteed to be visited at all (or at least not immediately 
after the website is loaded) are great candidates for lazy loading.

Summary and Key Takeaways

•	 Routing is a key feature for many React apps.

•	 With routing, users can visit multiple pages despite being on an SPA.

•	 The most common package that helps with routing is the React Router library 
(react-router-dom).

https://packt.link/NIfVW


Introduction | 379

•	 Routes are defined with the help of the Routes and Route components 
(typically in the App component, but you can do it anywhere).

•	 The Route component takes a path (for which the route should become active) 
and an element (the content that should be displayed) prop.

•	 Users can navigate between routes by manually changing the URL path, by 
clicking links or because of programmatic navigation.

•	 Internal links (i.e., links leading to application routes defined by you) should be 
created via the Link or NavLink components, while links to external resources 
use the standard <a> element.

•	 Programmatic navigation is triggered via the navigate() function, which is 
yielded by the useNavigate() Hook.

•	 You can define static and dynamic routes: static routes are the default, while 
dynamic routes are routes where the path (in the route definition) contains a 
dynamic segment (denoted by a colon, e.g., :id).

•	 The actual values for dynamic path segments can be extracted via the 
useParams() Hook.

•	 React Router also supports nested routes, which helps with sharing user 
interface elements between routes.

•	 You can use lazy loading to load route-specific code only when the route is 
actually visited by the user.

What's Next?

Routing is a feature that's not supported by React out of the box but still matters 
for most React applications. That's why it's included in this book and why the React 
Router library exists. Routing is a crucial concept that completes your knowledge 
about the most essential React ideas and concepts, allowing you to build both simple 
and complex React applications.

This chapter also concludes the list of core React features you must know as a React 
developer. Of course, you can always dive deeper to explore more patterns and third-
party libraries. The next (and last) chapter will share some resources and possible 
next steps you could dive into after finishing this book. 



380 | Multipage Apps with React Router

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to the examples that can 
be found at https://packt.link/xQKlJ:

1.	 How is routing different from loading content conditionally?

2.	 What's the purpose of the Routes and Route components?

3.	 How should you add links to different routes to your pages?

4.	 How can dynamic routes (e.g., details for one of many products) be added to 
your app?

5.	 How can dynamic route parameter values be extracted (e.g., to load 
product data)?

6.	 What's the purpose of nested routes?

Apply What You Learned

Apply your knowledge about routing to the following activities.

Activity 12.1: Creating a Basic Three-Page Website

In this activity, your task is to create a basic first version for a brand-new online shop 
website. The website must support three main pages:

•	 A welcome page

•	 A products overview page that shows a list of available products

•	 A product details page, which allows users to explore product details

Final website styling, content, and data will be added by other teams, but you should 
provide some dummy data and default styling. You must also add a main navigation 
bar at the top of each website page. 

https://packt.link/xQKlJ


Introduction | 381

The finished pages should look like this:

Figure 12.12: The final welcome page

Figure 12.13: The final products page

Figure 12.14: The final product details page



382 | Multipage Apps with React Router

Note

For this activity, you can, of course, write all CSS styles on your own. But if 
you want to focus on the React and JavaScript logic, you can also use the 
finished CSS file from the solution at https://packt.link/Am59v.

If you use that file, explore it carefully to ensure you understand which IDs 
or CSS classes might need to be added to certain JSX elements of your 
solution. You can also use the solution's dummy data instead of creating 
your own dummy product data. You will find the data for this at https://packt.
link/xLCx1.

To complete the activity, the solution steps are as follows:

1.	 Create a new React project and install the React Router package.

2.	 Create components (with the content shown in the preceding screenshot) that 
will be loaded for the three required pages.

3.	 Enable routing and add the route definitions for the three pages.

4.	 Add a main navigation bar that's visible for all pages.

5.	 Add all required links and ensure that the navigation bar links reflect whether or 
not a page is active.

Note

The solution to this activity can be found via this link.

Activity 12.2: Enhancing the Basic Website

In this activity, your task is to enhance the basic website you built in the previous 
activity. In addition to all the features added there, this website should also use a 
main layout that wraps all pages. Your job is to implement this layout with the help of 
a feature provided by React Router.

You must also improve the initial loading time of the website by conditionally loading 
code that's not needed immediately once it is required.

https://packt.link/Am59v
https://packt.link/xLCx1
https://packt.link/xLCx1


Introduction | 383

Last but not least, you have been asked to implement a "Not Found" page that should 
be displayed for all URL paths that are not supported by the website.

Note

If you skipped the previous activity or need a refresher, you can use the 
solution provided for it as a starting point for this activity. You will find this in 
the GitHub repository at http://packt.link/wPcgN.

The "Not Found" page should look like this:

Figure 12.15: The final "Not Found" page

To complete the activity, the solution steps are as follows:

1.	 Create a new layout component (which includes the main navigation) and use it 
with the help of React Router's nested routes feature.

2.	 Add code splitting to the website and load all routes, for which it makes 
sense, lazily.

3.	 Add a new Not Found page component to the website. Also, add the respective 
route definition and consider loading it lazily.

Note

The solution to this activity can be found via this link.

http://packt.link/wPcgN




Learning Objectives

By the end of this chapter, you will be able to do the following:

�  Use React Router to fetch or send data without using useEffect() 
or useState()

�  Share data between different routes without using React's context feature

�  Update the UI based on the current data submission status

�  Create page and action routes

�  Improve the user experience by deferring the loading of non-critical data

Managing Data with React 

Router

13



386 | Managing Data with React Router

Introduction
In the preceding chapter, you learned how to use React Router to load different 
components for different URL paths. This is an important feature as it allows you to 
build multipage websites while still using React.

Routing is a crucial feature for many web applications, and React Router is therefore 
a very important package. But just as most websites need routing, almost all websites 
need to fetch and manipulate data. For example, HTTP requests in most websites 
are sent to load data (such as a list of products or blog posts) or to mutate data (for 
example, to create a product or a blog post).

In Chapter 8, Handling Side Effects, you learned that you can use the useEffect() 
Hook and various other React features to send HTTP requests from inside a React 
application. But if you're using React Router (specifically, version 6.4. or higher), you 
get some new, even more powerful tools for working with data.

This chapter will explore which new features are added by React Router 6.4 and how 
they may be used to simplify the process of fetching or sending data.

Data Fetching and Routing Are Tightly Coupled

As mentioned previously, most websites do need to fetch (or send) data and most 
websites do need more than one page. But it's important to realize that these two 
concepts are typically closely related.

Whenever a user visits a new page (such as /posts), it's likely that some data will 
need to be fetched. In the case of a /posts page, the required data is probably a list 
of blog posts that is retrieved from a backend server. The rendered React component 
(such as Posts) must therefore send an HTTP request to the backend server, wait for 
the response, handle the response (as well as potential errors) and, ultimately, display 
the fetched data.

Of course, not all pages need to fetch data. Landing pages, "About Us" pages, or 
"Terms & Use" pages probably don't need to fetch data when a user visits them. 
Instead, data on those pages is likely to be static. It might even be included in the 
source code as it doesn't change frequently.

But many pages do need to get data from a backend every time they're loaded—for 
instance,  "Products", "News", "Events" pages, or other infrequently updated pages 
like the "User Profile".



Introduction | 387

And data fetching isn't everything. Most websites also contain features that require 
data submission—be it a blog post that can be created or updated, product data 
that's administered, or a user comment that can be added. Hence, sending data to a 
backend is also a very common use case.

And beyond requests, components might also need to interact with other browser 
APIs, such as localStorage. For example, user settings might need to be fetched 
from storage as a certain page loads.

Naturally, all these interactions happen on pages. But it might not be immediately 
obvious how tightly data fetching and submission are coupled to routing.

Most of the time, data is fetched when a route becomes active, i.e., when a 
component (the page component) is rendered for the first time. Sure, users might 
also be able to click a button to refresh the data, but while this is optional, data 
fetching upon initial page load is almost always required.

And when it comes to sending data, there is also a close connection to routing. At first 
sight, it's not clear how it's related because, while it makes sense to fetch data upon 
page load, it's less likely that you will need to send some data immediately (except 
perhaps tracking or analytics data).

But it's very likely that after sending data, you will want to navigate to a different 
page, meaning that it's actually the other way around and instead of initiating data 
fetching as a page loads, you want to load a different page after sending some 
data. For example, after an administrator entered some product data and submitted 
the form, they should typically be redirected to a different page (for example, from /
products/new to the /products page).

The connection between data fetching, submission, and routing can therefore be 
summarized by the following points:

•	 Data fetching often should be initiated when a route becomes active (if that 
page needs data)

•	 After submitting data the user should often be redirected to another route

Because these concepts are tightly coupled, React Router (since version 6.4) provides 
extra features that vastly simplify the process of working with data.



388 | Managing Data with React Router

Sending HTTP Requests without React Router

Working with data is not just about sending HTTP requests. As mentioned in the 
previous section, you may also need to store or retrieve data via localStorage or 
perform some other operation as a page gets loaded. But sending HTTP requests is 
an especially common scenario and will therefore be the main use case considered 
for the majority of this chapter. Nonetheless, it's vital to keep in mind that what you 
learn in this chapter is not limited to sending HTTP requests.

As you will learn in this chapter, React Router (6.4 or higher) provides various 
features that help with sending HTTP requests (or using other data fetching and 
manipulation APIs) and routing, but you can also send HTTP requests (or interact 
with localStorage or other APIs) without these features. Indeed, Chapter 8, 
Handling Side Effects, already taught you how HTTP requests can be sent from 
inside React components.

The following snippet exemplifies how a given list of blog posts could be fetched 
and displayed:

import { useState, useEffect } from 'react';

function Posts() {

  const [loadedPosts, setLoadedPosts] = useState();

  const [isLoading, setIsLoading] = useState(false);

  const [error, setError] = useState();

  useEffect(() => {

    async function fetchPosts() {

      setIsLoading(true);

      try {

        const response = await fetch(

          'https://jsonplaceholder.typicode.com/posts'

        );

        if (!response.ok) {

          throw new Error('Fetching posts failed.');

        }

        const resData = await response.json();

        setLoadedPosts(resData);

      } catch (error) {



Introduction | 389

        setError(error.message);

      }

      setIsLoading(false);

    }

    fetchPosts();

  }, []);

  let content = <p>No posts found.</p>;

  if (isLoading) {

    content = <p>Loading...</p>;

  }

  if (error) {

    content = <p>{error}</p>;

  }

  if (loadedPosts) {

    content = (

      <ul className="posts">

        {loadedPosts.map((post) => (

          <li key={post.id}>{post.title}</li>

        ))}

      </ul>

    );

  }

  return (

    <main>

      <h1>Your Posts</h1>

      {content}

    </main>

  );

}



390 | Managing Data with React Router

This example component uses the same dummy backend server (returning 
dummy data) that was used in Chapter 8, Handling Side Effects: https://
jsonplaceholder.typicode.com.

Note

You can find the complete code on GitHub at https://packt.link/hlXz6.

This backend returns a list of blog posts, which are then displayed as list items by 
the Posts component. However, these items are only displayed if the following 
statements are true:

•	 The HTTP request is done (i.e., isLoading is false)

•	 There is no error (i.e., error is undefined or null)

The request is sent via useEffect(). The fetchPosts() function defined in 
useEffect() is called when the component renders for the first time. That's the 
case because useEffect() has an empty list of dependencies. It therefore only 
executes once.

This example contains no new concepts. Instead, all these topics (and a very similar 
example) were covered in Chapter 8, Handling Side Effects. But even though it's a 
relatively basic example, where only one request is sent and the response data 
can be used without any further transformations, quite a bit of code is required to 
implement this functionality.

And that's where React Router (6.4. or higher) comes in.

Loading Data with React Router

With React Router, the example from the previous chapter can be simplified down to 
this code snippet:

import { useLoaderData } from 'react-router-dom';

function Posts() {

  const loadedPosts = useLoaderData();

  return (

    <main>

      <h1>Your Posts</h1>

https://packt.link/hlXz6


Introduction | 391

      <ul className="posts">

        {loadedPosts.map((post) => (

          <li key={post.id}>{post.title}</li>

        ))}

      </ul>

    </main>

  );

}

export default Posts;

export async function loader() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  if (!response.ok) {

    throw new Error('Could not fetch posts');

  }

  return response;

}

Believe it or not, it really is that much less code than in the previous example. Though, 
to be fair, the content that should be displayed in case of an error is missing here. It's 
in a separate file (which will be shown later), but it would only add three extra lines 
of code.

Note

Don't try pasting the preceding example into an existing React app—even 
if that app has React Router 6.4 installed. A special route definition syntax 
(introduced later in this chapter) is required to enable these new React 
Router features.

In the preceding code snippet, you see a couple of new features that haven't been 
covered yet in the book. The loader() function and the useLoaderData() 
Hook are added by React Router. These features, along with many others that will be 
explored throughout this chapter, have been available since version 6.4 of the React 
Router package.



392 | Managing Data with React Router

With that version (or a more recent one) installed, you can set an extra loader prop 
on your route definitions. This prop accepts a function that will be executed by React 
Router whenever this route is activated:

<Route path="/posts" element={<Posts />} loader={() => {...}} />

This function can be used to perform any data fetching or other tasks required to 
successfully display the page component. The logic for getting that required data can 
therefore be extracted from the component and moved into a separate function.

Since many websites have dozens or even hundreds of routes, adding these 
loader functions inline on the <Route /> element can quickly lead to complex 
and confusing route definitions. For this reason, you will typically add (and export) 
the loader() function in the same file that contains the component that needs 
the data.

When setting up the route definitions, you can then import the component and its 
loader function and use it like this:

import Posts, { loader as postsLoader } from './components/Posts';

// … other code …

<Route path="/posts" element={<Posts />} loader={postsLoader} />

Assigning an alias (postsLoader, in this example) to the imported loader function is 
optional but recommended since you most likely have multiple loader functions from 
different components, which would otherwise lead to name clashes.

With this loader defined, React Router will execute the loader() function 
whenever a route is activated. To be precise, the loader() function is called before 
the component function is executed (that is, before the component is rendered).

Figure 13.1: The Posts component is rendered after the loader is executed



Introduction | 393

This also explains why the Posts component example at the beginning of this 
section contained no code that handled any loading state. This is simply because 
there was no loading state since a component function is only executed after its 
loader has finished (and the data is available). React Router won't finish the page 
transition until the loader() function has finished its job (though, as you will learn 
towards the end of this chapter, there is a way of changing this behavior).

The loader() function can perform any operation of your choice (such as sending 
an HTTP request, or reaching out to browser storage via the localStorage API). 
Inside that function, you should return the data that should be exposed to the 
component function. It's also worth noting that the loader() function can return 
any kind of data. It may also return a Promise object that then resolves to any 
kind of data. In that case, React Router will automatically wait for the Promise to 
be fulfilled before executing the related route component function. The loader() 
function can thus perform both asynchronous and synchronous tasks.

Note

It's important to understand that the loader() function, like all the 
other code that makes up your React app, executes on the client side 
(that is, in the browser of a website visitor). Therefore, you may perform 
any action that could be performed anywhere else (for example, inside 
useEffect()) in your React app as well. 

You must not try to run code that belongs to the server side. Directly 
reaching out to a database, writing to the file system, or performing any 
other server-side tasks will fail or introduce security risks, meaning that 
you might accidentally expose database credentials on the client side.

Of course, the component that belongs to a loader (that is, the component 
that's part of the same <Route /> definition) needs the data returned by the 
loader. This is why React Router offers a new Hook for accessing that data: the 
useLoaderData() Hook.

When called inside a component function, this Hook yields the data returned by the 
loader that belongs to the component. If that returned data is a Promise, React 
Router (as mentioned earlier) will automatically wait for that Promise to resolve and 
provide the resolved data when useLoaderData() is called.



394 | Managing Data with React Router

The loader() function may also return an HTTP response object (or a Promise 
resolving to a response). This is the case in the preceding example because the 
fetch() function yields a Promise that resolves to a response. In that instance, 
useLoaderData() automatically extracts the response body and provides direct 
access to the data that was attached to the response.

Note

If a response should be returned, the returned object must adhere to the 
standard Response interface, as defined here: https://developer.mozilla.
org/en-US/docs/Web/API/Response.

Returning responses might be strange at first. After all, the loader() 
code is still executed inside the browser (not on a server). Therefore, 
technically, no request was sent, and no response should be required (since 
the entire code is executed in the same environment, that is, the browser).

For that reason, you don't have to return a response; you may return any 
kind of value. But Remix supports the usage of a response object (as a 
"data vehicle") as an alternative. 

useLoaderData() can be called in any component rendered by the currently 
active route component. That may be the route component itself (Posts, in the 
preceding example), but it may also be any nested component.

For example, useLoaderData() can also be used in a PostsList component 
that's included in the Posts component (which has a loader added to its 
route definition):

import { useLoaderData } from 'react-router-dom';

function PostsList() {

  const loadedPosts = useLoaderData();

  return (

    <main>

      <h1>Your Posts</h1>

      <ul className="posts">

        {loadedPosts.map((post) => (

          <li key={post.id}>{post.title}</li>

        ))}

https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response


Introduction | 395

      </ul>

    </main>

  );

}

export default PostsList;

For this example, the Posts component file looks like this:

import PostsList from '../components/PostsList';

function Posts() {

  return (

    <main>

      <h1>Your Posts</h1>

      <PostsList />

    </main>

  );

}

export default Posts;

export async function loader() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  if (!response.ok) {

    throw new Error('Could not fetch posts');

  }

  return response;

}

This means that useLoaderData() can be used in exactly the place where you 
need the data. The loader() function can also be defined wherever you want but it 
must be added to the route where the data is required.

You can't use useLoaderData() in components where no loader is defined for the 
currently active route.

Enabling These Extra Router Features

If you want to use these data-related React Router features, it's not enough to have 
version 6.4 or higher installed. This is an important prerequisite, but you also must 
tweak your route definition code a little bit.



396 | Managing Data with React Router

In Chapter 12, Multipage Apps with React Router, you learned that routes can be defined 
as follows:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Posts from './pages/Posts';

import Welcome from './pages/Welcome';

function App() {

  return (

    <BrowserRouter>

      <Routes>

          <Route index element={<Welcome />} />

          <Route path="/posts" element={<Posts />} />

      </Routes>

    </BrowserRouter>

  );

}

You can still do that with version 6.4, but you won't be able to use React Router's 
new data-related features. Instead, to enable these features, the preceding route 
definition code must be changed to look like this:

import {

  createBrowserRouter,

  createRoutesFromElements,

  Route,

  RouterProvider,

} from 'react-router-dom';

import Posts, { loader as postsLoader } from './pages/Posts';

import Welcome from './pages/Welcome';

const router = createBrowserRouter(

  createRoutesFromElements(

    <>

      <Route path="/" element={<Welcome />} />

      <Route path="/posts" element={<Posts />} loader={postsLoader} />

    </>

  )

);



Introduction | 397

function App() {

  return <RouterProvider router={router} />;

}

Instead of returning <BrowserRouter> (which includes the route definitions, 
wrapped by <Routes>), you must now create a router object by calling 
createBrowserRouter().

This function then accepts an array of route definition objects. You can create 
this array on your own (shown later) or get a valid list of objects by executing 
createRoutesFromElements() and passing your route definition JSX code to 
that function.

Note that createRoutesFromElements() only takes a single element, such as 
a fragment (see Chapter 2, Understanding React Components and JSX), as used in this 
example, or a <Route> element. This single element is wrapped around all other 
<Route> elements.

The created router object is then passed as a value for the router prop to the 
<RouterProvider> component.

As an alternative to createRoutesFromElements(), you can also define your 
route objects manually, like this:

const router = createBrowserRouter([

  { path: '/', element: <Welcome /> },

  { path: '/posts', element: <Posts />, loader: postsLoader },

]);

This approach is a bit more concise, though it may be unfamiliar. Essentially, instead 
of using React components (such as <Route>) to define routes, you would use plain 
JavaScript objects (grouped into an array) for this method.

You can use whichever approach you prefer. Conceptually and feature-wise there is 
no difference between the two.

Loading Data for Dynamic Routes

For most websites, it's unlikely that static, pre-defined routes alone will be sufficient 
to meet your needs. For instance, if you created a blogging site with exclusively static 
routes, you would be limited to a simple list of blog posts on /posts. To add more 
details about a selected blog post on routes such as /posts/1 or /posts/2 (for 
posts with different id values) you would need to include dynamic routes.



398 | Managing Data with React Router

As you learned in the previous chapter, dynamic routes can be defined like this:

<Route path="/posts/:id" element={<PostDetails />} />

This code still works (when using createRoutesFromElements()), though you 
can also use the alternative approach of defining route objects, as mentioned earlier, 
and define a dynamic route (via createBrowserRouter()), as shown here:

const router = createBrowserRouter([

  // … other routes

  { path: '/posts/:id', element: <PostDetails /> }

]);

Of course, React Router also supports data fetching with help of the loader() 
function for dynamic routes.

The PostDetails component can be implemented like this:

import { useLoaderData } from 'react-router-dom';

function PostDetails() {

  const post = useLoaderData();

  return (

    <main id="post-details">

      <h1>{post.title}</h1>

      <p>{post.body}</p>

    </main>

  );

}

export default PostDetails;

export async function loader({ params }) {

  const response = await fetch(

    'https://jsonplaceholder.typicode.com/posts/' + params.id

  );

  if (!response.ok) {

    throw new Error('Could not fetch post for id ' + params.id);

  }

  return response;

}



Introduction | 399

If it looks very similar to the Posts component in the "Loading Data with React Router" 
section, that's no coincidence. Because the loader() function works in exactly the 
same way, there is just one extra feature being used to get hold of the dynamic path 
segment value: a params object that's made available by React Router.

When adding a loader() function to a route definition, React Router calls 
that function whenever the route becomes active, right before the component 
is rendered. When executing that function, React Router passes an object that 
contains extra information as an argument to loader().

This object passed to loader() includes two main properties:

•	 A request property that contains an object with more details about the request 
that led to the route activation

•	 A params property that yields an object containing a key-value map of all 
dynamic route parameters for the active route

The request object doesn't matter for this example and will be discussed in the next 
section. But the params object contains an id property that carries the id value 
of the post for which the route is loaded. The property is named id because, in the 
route definition, /posts/:id was chosen as a path. If a different placeholder name 
had been chosen, a property with that name would have been available on params 
(for example, for /posts/:postId, this would be params.postId). This behavior 
is similar to the params object yielded by useParams(), as explained in Chapter 12, 
Multipage Apps with React Router.

With help of the params object and the post id, the appropriate post id can be 
included in the outgoing request URL (for the fetch() request), and hence the 
correct post data can be loaded from the backend API. Once the data arrives, React 
Router will render the PostDetails component and expose the loaded post via the 
useLoaderData() Hook.

Loaders, Requests, and Client-Side Code

In the preceding section, you learned about a request object being provided to the 
loader() function. Getting such a request object might be confusing because 
React Router is a client-side library—all the code executes in the browser, not on a 
server. Therefore, no request should reach the React app (as HTTP requests are sent 
from the client to the server, not between JavaScript functions on the client side).



400 | Managing Data with React Router

And, indeed, there is no request being sent via HTTP. Instead, React Router creates 
a request object via the browser's built-in Request interface to use it as a "data 
vehicle." This request is not sent via HTTP, but it's used as a value for the request 
property on the data object that is passed to your loader() function.

Note

For more information on the built-in Request interface, visit https://
developer.mozilla.org/en-US/docs/Web/API/Request.

This request object will be unnecessary in many loader functions, but there are 
occasional scenarios in which you can extract useful information from that object—
information that might be needed in the loader to fetch the right data.

For example, you can use the request object and its url property to get access 
to any search parameters (query parameters) that may be included in the currently 
active page's URL:

export async function loader({ request }) {

  // e.g. for localhost:3000/posts?sort=desc

  const sortDirection = new URL(request.url).searchParams.get('sort');

  // Example: Fetch sorted posts, based on local 'sort' query param value

  const response = await fetch(

    'https://example.com/posts?sorting=' + sortDirection

  );

  return response;

}

In this code snippet, the request value is used to get hold of a query 
parameter value that's used in the React app URL. That value is then used in 
an outgoing request.

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request


Introduction | 401

However, it is vital that you keep in mind that the code inside your loader() 
function, just like all your other React code, always executes on the client side (at 
least, as long as you don't combine React with any other frameworks like NextJS 
or Remix).

Note

These frameworks are beyond the scope of this book. Both NextJS and 
Remix build up on top of React and, for example, add server-side rendering 
of React components. Visit https://nextjs.org or https://remix.run for more 
information. In addition, the author also offers courses for both frameworks. 
For NextJS, visit https://acad.link/nextjs and, for Remix, visit https://acad.link/
remix.

Layouts Revisited

React Router supports the concept of layout routes. These are routes that contain 
other routes and render those other routes as nested children, and as you may recall, 
this concept was introduced in Chapter 12, Multipage Apps with React Router.

With React Router 6.4, a layout route can be defined like this:

const router = createBrowserRouter([

  {

    path: '/',

    element: <Root />,

    children: [

      { index: true, element: <Welcome /> },

    ]

  }

]);

The index route is a child route of the / route, which in turn is the layout route in 
this example. The Root component could look like this:

function Root() {

  return (

    <>

      <header>

        <MainNavigation />

      </header>

https://nextjs.org
https://remix.run
https://acad.link/nextjs
https://acad.link/remix
https://acad.link/remix


402 | Managing Data with React Router

      <Outlet />

    </>

  );

}

As mentioned, layout routes were introduced in the previous chapter. But 
when using the extra data capabilities offered by React Router, there are two 
noteworthy changes:

•	 Unlike with <BrowserRouter />, if you need some shared layout, 
you can't wrap a React component around your route definitions. 
createBrowserRouter() only accepts React fragments and <Route /> 
elements—no other components. For that reason, you must use a layout route 
as shown in the previous example instead.

•	 Layout routes can also be used to share data across routes without using React's 
context feature.

Because of the first point, you'll typically use more layout routes than you did prior 
to the release of React Router 6.4. Before that version, you could simply wrap any 
component you wanted around your route definitions. For example, the following 
code works without issue:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Layout from './components/shared/Layout';

import Dashboard from './routes/Dashboard';

import Orders from './routes/Orders';

function App() {

  return (

    <BrowserRouter>

      <Layout>

        <Routes>

          <Route path="/" element={<Dashboard />} />

          <Route path="/orders" element={<Orders />} />

        </Routes>

      </Layout>

    </BrowserRouter>

  );

}

export default App;



Introduction | 403

Since BrowserRouter does not support the extra data capabilities (such as the 
loader() function) you must use createBrowserRouter() instead. But 
createBrowserRouter() does not accept anything but route definitions. That's 
why shared layouts must be implemented via layout routes instead of wrapper 
components.

The second point is the more interesting one, though. Layout routes can be used for 
sharing data across routes.

Consider this example website:

Figure 13.2: A website with a header, a sidebar, and some main content

This website has a header with a navigation bar, a sidebar showing a list of available 
posts, and a main area that displays the currently selected blog post.

Note

The dummy data shown in Figure 13.2 is fetched from https://
jsonplaceholder.typicode.com/posts. You will find the complete source code 
for this example at https://packt.link/Ef8LS.

https://jsonplaceholder.typicode.com/posts
https://jsonplaceholder.typicode.com/posts
https://packt.link/Ef8LS


404 | Managing Data with React Router

This example includes two layout routes:

•	 The root layout route, which includes the top navigation bar that is shared across 
all pages

•	 A posts layout route, which includes the sidebar and the main content of its child 
routes (for example, the details for a selected post)

The route definitions code looks like this:

const router = createBrowserRouter([

  {

    path: '/',

    element: <Root />, // main layout, adds navigation bar

    children: [

      { index: true, element: <Welcome /> },

      {

        path: '/posts',

        element: <PostsLayout />, // posts layout, adds posts sidebar

        loader: postsLoader,

        children: [

          { index: true, element: <Posts /> },

          { path: ':id', element: <PostDetails />, loader: 
postDetailLoader },
        ],

      },

    ],

  },

]);

With this setup, both the <Posts /> and the <PostDetails /> components are 
rendered next to the sidebar (since the sidebar is part of the <PostsLayout /> 
element).



Introduction | 405

The interesting part is that the /posts route (i.e., the layout route) loads the 
post data, as it has the postsLoader assigned to it, and so the PostsLayout 
component file looks like this:

import { Outlet, useLoaderData } from 'react-router-dom';

import PostsList from '../components/PostsList';

function PostsLayout() {

  const loadedPosts = useLoaderData();

  return (

    <div id="posts-layout">

      <nav>

        <PostsList posts={loadedPosts} />

      </nav>

      <main>

        <Outlet />

      </main>

    </div>

  );

}

export default PostsLayout;

export async function loader() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  if (!response.ok) {

    throw new Error('Could not fetch posts');

  }

  return response;

}



406 | Managing Data with React Router

Since layout routes are also regular routes, you can add loader() functions and 
useLoaderData() just as you could in any other route. But because layout routes 
are activated for multiple child routes, their data is also displayed for different routes. 
In the preceding example, the list of blog posts is always displayed on the left side of 
the screen, no matter if a user visits /posts or /posts/10:

Figure 13.3: The same layout and data are used for different child routes

In this screenshot, the layout and data used do not change as different child routes 
are activated. React Router also avoids unnecessary data refetching (for the blog 
posts list data) as you switch between child routes. It's smart enough to realize that 
the surrounding layout hasn't changed.



Introduction | 407

Reusing Data across Routes

Layouts do not just help you share data by sharing components that use data (such 
as the sidebar in the previous example). They also allow you to load data in a layout 
route and use it in a child route.

For example, the PostDetails component (that is, the component that's rendered 
for the /posts/:id route) needs the data for a single post, and that data can be 
retrieved via a loader attached to the /posts/:id route:

export async function loader({ params }) {

  const response = await fetch(

    'https://jsonplaceholder.typicode.com/posts/' + params.id

  );

  if (!response.ok) {

    throw new Error('Could not fetch post for id ' + params.id);

  }

  return response;

}

This example was discussed earlier in this chapter in the Loading Data for Dynamic 
Routes section. This approach is fine, but in some situations, this extra HTTP request 
can be avoided.

In the example from the previous section, the PostsLayout route already fetched 
a list of all posts. That layout component is also active for the PostDetails route. 
In such a scenario, fetching a single post is unnecessary, since all the data has already 
been fetched for the list of posts. Of course, refetching would be required if the 
request for the list of posts didn't yield all the data required by PostDetails.

But if all the data is available, React Router allows you to tap into the loader data of a 
parent route component via the useRouteLoaderData() Hook.

This Hook can be used like this:

const posts = useRouteLoaderData('posts');



408 | Managing Data with React Router

useRouteLoaderData() requires a route identifier as an argument. It requires an 
identifier assigned to the ancestor route that contains the data that should be reused. 
You can assign such an identifier via the id property to your routes as part of the 
route definitions code:

const router = createBrowserRouter([

  {

    path: '/',

    element: <Root />, // main layout, adds navigation bar

    children: [

      { index: true, element: <Welcome /> },

      {

        path: '/posts',

        id: 'posts', // the id value is up to you

        element: <PostsLayout />, // posts layout, adds posts sidebar

        loader: postsLoader,

        children: [

          { index: true, element: <Posts /> },

          { path: ':id', element: <PostDetails />, loader: 
postDetailLoader },
        ],

      },

    ],

  },

]);

The useRouteLoaderData() Hook then returns the same data 
useLoaderData() yields in that route to which you added the id. In this example, 
it would provide a list of blog posts.

In PostDetails, this list can be used like this:

import { useParams, useRouteLoaderData } from 'react-router-dom';

function PostDetails() {

  const params = useParams();

  const posts = useRouteLoaderData('posts');

  const post = posts.find((post) => post.id.toString() === params.id);

  return (

    <main id="post-details">

      <h1>{post.title}</h1>

      <p>{post.body}</p>



Introduction | 409

    </main>

  );

}

export default PostDetails;

The useParams() Hook is used to get access to the dynamic route parameter value, 
and the find() method is used on the list of posts to identify a single post with a 
fitting id property. In this example, you would thus avoid sending an unnecessary 
HTTP request by reusing data that's already available.

Handling Errors

In the first example at the very beginning of this chapter (where the HTTP request 
was sent with help of useEffect()), the code did not just handle the success case 
but also possible errors. In all the React Router-based examples since then, error 
handling was omitted. Error handling was not discussed up to this point because 
while React Router plays an important role in error handling, it's vital to first gain a 
solid understanding of how React Router 6.4 works in general and how it helps with 
data fetching. But, of course, errors can't always be avoided and definitely should not 
be ignored.

Thankfully, handling errors is also very straightforward and easy when using React 
Router's data capabilities. You can set an errorElement property on your route 
definitions and define the element that should be rendered when an error occurs:

// ... other imports

import Error from './components/Error';

const router = createBrowserRouter([

  {

    path: '/',

    element: <Root />,

    errorElement: <Error />,

    children: [

      { index: true, element: <Welcome /> },

      {

        path: '/posts',

        id: 'posts',

        element: <PostsLayout />,

        loader: postsLoader,

        children: [



410 | Managing Data with React Router

          { index: true, element: <Posts /> },

          { path: ':id', element: <PostDetails /> },

        ],

      },

    ],

  },

]);

This errorElement property can be set on any route definition of your choice, 
or even multiple route definitions simultaneously. React Router will render the 
errorElement of the route closest to the place where the error was thrown.

In the preceding snippet, no matter which route produced an error, it would always 
be the root route's errorElement that was displayed (since that's the only route 
definition with an errorElement). But if you also added an errorElement 
to the /posts route, and the :id route produced an error, it would be the 
errorElement of the /posts route that was shown on the screen, as follows:

const router = createBrowserRouter([

  {

    path: '/',

    element: <Root />,

    errorElement: <Error />, // used for any errors not handled by nested 
routes
    children: [

      { index: true, element: <Welcome /> },

      {

        path: '/posts',

        id: 'posts',

        element: <PostsLayout />,

        // used if /posts or /posts/:id throws an error

        errorElement: <PostsError />,

        loader: postsLoader,

        children: [

          { index: true, element: <Posts /> },

          { path: ':id', element: <PostDetails /> },

        ],

      },

    ],

  },

]);



Introduction | 411

This allows you, the developer, to set up fine-grained error handling.

Inside the component used as a value for the errorElement, you can get access to 
the error that was thrown via the useRouteError() Hook:

import { useRouteError } from 'react-router-dom';

function Error() {

  const error = useRouteError();

  return (

    <>

      <h1>Oh no!</h1>

      <p>An error occurred</p>

      <p>{error.message}</p>

    </>

  );

}

export default Error;

With this simple yet effective error-handling solution, React Router allows you to 
avoid managing error states yourself. Instead, you simply define a standard React 
element (via the element prop) that should be displayed when things go right and 
an errorElement to be displayed if things go wrong.

Onward to Data Submission

Thus far, you've learned a lot about data fetching. But as mentioned earlier in this 
chapter, React Router also helps with data submission.

Consider the following example component:

function NewPost() {

  return (

    <form id="post-form">

      <p>

        <label htmlFor="title">Title</label>

        <input type="text" id="title" name="title" />

      </p>

      <p>

        <label htmlFor="text">Text</label>

        <textarea id="text" name="text" rows={3} />



412 | Managing Data with React Router

      </p>

      <button>Save Post</button>

    </form>

  );

}

export default NewPost;

This component renders a <form> element that allows users to enter the details 
for a new post. Due to the following route configuration, the component is displayed 
whenever the /posts/new route becomes active:

const router = createBrowserRouter([

  {

    path: '/',

    element: <Root />,

    errorElement: <Error />,

    children: [

      { index: true, element: <Welcome /> },

      {

        path: '/posts',

        id: 'posts',

        element: <PostsLayout />,

        loader: postsLoader,

        children: [

          { index: true, element: <Posts /> },

          { path: ':id', element: <PostDetails /> },

          { path: 'new', element: <NewPost /> },

        ],

      },

    ],

  },

]);

Without React Router's data-related features, you would typically handle form 
submission like this:

function NewPost() {

  const titleInput = useRef();

  const textInput = useRef();

  const navigate = useNavigate();



Introduction | 413

  async function submitHandler(event) {

    event.preventDefault(); // prevent the browser from sending a HTTP 
request
    const enteredTitle = titleInput.current.value;

    const enteredText = textInput.current.value;

    const postData = {

      title: enteredTitle,

      text: enteredText

    };

    await fetch('https://jsonplaceholder.typicode.com/posts', {

      method: 'POST',

      body: JSON.stringify(postData),

      headers: {'Content-Type': 'application/json'}

    });

    navigate('/posts');

  }  

  return (

    <form onSubmit={submitHandler}>

      <p>

        <label htmlFor="title">Title</label>

        <input type="text" id="title" ref={titleInput} />

      </p>

      <p>

        <label htmlFor="text">Text</label>

        <textarea id="text" rows={3} ref={textInput} />

      </p>

      <button>Save Post</button>

    </form>

  );

}

Just as before when fetching data, this requires a lot of code and logic added to the 
component. You must manually handle the form submission, input data extraction, 
sending the HTTP request, and transitioning to a different page after sending the 
HTTP request. All these things happen inside the component. In addition, you 
might also need to manage loading state and potential errors (excluded in the 
preceding example).

.



414 | Managing Data with React Router

Again, React Router offers some help. Where a loader() function can be 
added to handle data loading, an action() function can be defined to handle 
data submission.

When using the new action() function, the preceding example component looks 
like this:

import { Form, redirect } from 'react-router-dom';

function NewPost() {

  return (

    <Form method="post" id="post-form">

      <p>

        <label htmlFor="title">Title</label>

        <input type="text" id="title" name="title" />

      </p>

      <p>

        <label htmlFor="text">Text</label>

        <textarea id="text" rows={3} name="text" />

      </p>

      <button>Save Post</button>

    </Form>

  );

}

export default NewPost;

export async function action({ request }) {

  const formData = await request.formData();

  const postData = Object.fromEntries(formData);

  await fetch('https://jsonplaceholder.typicode.com/posts', {

    method: 'POST',

    body: JSON.stringify(postData),

    headers: { 'Content-Type': 'application/json' },

  });

  return redirect('/posts');

}



Introduction | 415

This code is shorter and, most importantly, simpler (even though it might not look 
simpler yet, since it includes a couple of new features).

Besides the addition of the action() function, the example code snippet includes 
the following important changes and features:

•	 A <Form> component that's used instead of <form>.

•	 The method prop is set on the <Form> (to "post"), and the onSubmit event 
handler was removed.

•	 The form input elements have names assigned to them (via the name prop), and 
the refs were removed.

•	 In the action, the entered data is extracted via a formData() method 
(combined with Object.fromEntries()).

•	 The user is redirected via a newly added redirect() function (instead of 
useNavigate() and navigate()).

But what are these elements about?

Working with action() and Form Data

Just like loader(), action() is a special function that can be added to route 
definitions, as follows:

import NewPost, { action as newPostAction } from './components/NewPost';

// ...

{ path: 'new', element: <NewPost />, action: newPostAction },

With the action prop set on a route definition, the assigned function is 
automatically called whenever a <Form> targeting this route is submitted. Form is 
a component provided by React Router that should be used instead of the default 
<form> element.



416 | Managing Data with React Router

Internally, Form uses the default <form> element but prevents the browser default 
of creating and sending an HTTP request upon form submission. Instead, React 
Router creates a FormData object and calls the action() function defined for 
the route that's targeted by the <Form>, passing a request object, based on the 
built-in Request interface, to it. The passed request object contains the form data 
generated by React Router.

Note

For further reading on React Router's FormData object, visit https://
developer.mozilla.org/en-US/docs/Web/API/FormData.

The form data object that is created by React Router includes all form input values 
entered into the submitted form. To be registered, an input element such as 
<input>, <select>, or <textarea> must have the name attribute assigned 
to it. The values set for those name attributes can later be used to extract the 
entered data.

The Form component also sets the HTTP method of the request object to the value 
assigned to the method prop. It's important to understand that the request is not 
sent via HTTP since action(), just like loader() or the component function, still 
executes in the browser rather than the server. React Router simply uses this request 
object as a "data vehicle" for passing information (such as the form data or chosen 
method) to the action() function.

The action() function then receives an object with a request property that 
contains the created request object with the included form data:

export function action({ request }) {

 // do something with 'request' (e.g., extract data)

}

The method property could be used inside the action() function to perform 
different actions for different forms. For example, one form could generate and 
pass a POST request via <Form method="post">, whereas another form might 
yield a DELETE request via <Form method="delete">. The same action could 
handle both form submissions and perform different tasks based on the value of the 
method property:

export function action({ request }) {

  if (request.method === 'DELETE') {

https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData


Introduction | 417

    // do something, e.g., send a "delete post" request to backend API

  }

  if (request.method === 'POST') {

    // do something, e.g., send a "create new post" request to backend 
API
  }

}

But while using the method for performing different tasks for different forms can be 
very useful, the form data that's attached to the request object is often even more 
important. The request object can be used to extract the values entered into the 
form input fields like this:

export async function action({ request }) {

  const formData = await request.formData();

  const postData = Object.fromEntries(formData);

  // ...

}

The built-in formData() method yields a Promise that resolves to an object that 
offers a get() method that could be used to get an entered value by its identifier 
(that is, by the name attribute value set on the input element). For example, the 
value entered into <input name="title"> could be retrieved via formData.
get('title').

Alternatively, you can follow the approach chosen in the preceding code snippet 
and convert the formData object to a simple key-value object via Object.
fromEntries(formData). This object (postData, in the preceding example) 
contains the names set on the form input elements as properties and the entered 
values as values for those properties (meaning that postData.title would yield 
the value entered in <input name="title">).

The extracted data can then be used for any operations of your choice. That could 
be an extra validation step or an HTTP request sent to some backend API, where the 
data may get stored in a database or file:

export async function action({ request }) {

  const formData = await request.formData();

  const postData = Object.fromEntries(formData);

  await fetch('https://jsonplaceholder.typicode.com/posts', {

    method: 'POST',

    body: JSON.stringify(postData),



418 | Managing Data with React Router

    headers: { 'Content-Type': 'application/json' },

  });

  return redirect('/posts');

}

Finally, once all intended steps were performed, the action() function should 
return a value—any value of any type. Though, as with the loader() function, you 
may also return a response.

Indeed, for actions, it's highly likely that you will want to navigate to a different page 
once the action has been performed (that is, once the HTTP request to an API has 
been sent). This may be required to navigate the user away from the data input page 
to a page that displays all available data entries (for example, from /posts/new to /
posts).

To simplify this common pattern, React Router provides a redirect() function that 
yields a response object that causes React Router to switch to a different route. You 
can therefore return the result of calling redirect() in your action() function 
to ensure that the user is navigated to a different page. It's the equivalent of calling 
navigate() (via useNavigate()) when manually handling form submissions.

Returning Data Instead of Redirecting

As mentioned, your action() functions may return anything. You don't have to 
return a response object. And while it is quite common to return a redirect response, 
you may occasionally want to return some raw data instead.

One scenario in which you might not want to redirect the user is after validating the 
user's input. Inside the action() function, before sending the entered data to some 
API, you may wish to validate the provided values first. If an invalid value (such as 
an empty title) is detected, a great user experience is typically achieved by keeping 
the user on the route with the <Form>. The values entered by the user shouldn't be 
cleared and lost; instead, the form should be updated to present useful validation 
error information to the user. This information can be passed from the action() 
to the component function so that it can be displayed there (for example, next to the 
form input fields).

In situations like this, you can return a "normal" value (that is, not a redirect response) 
from your action() function:

export async function action({ request }) {

  const formData = await request.formData();

  const postData = Object.fromEntries(formData);



Introduction | 419

  let validationErrors = [];

  if (postData.title.trim().length === 0) {

    validationErrors.push('Invalid post title provided.')

  }

  if (postData.text.trim().length === 0) {

    validationErrors.push('Invalid post text provided.')

  }

  if (validationErrors.length > 0) {

    return validationErrors;

  }

  await fetch('https://jsonplaceholder.typicode.com/posts', {

    method: 'POST',

    body: JSON.stringify(postData),

    headers: { 'Content-Type': 'application/json' },

  });

  return redirect('/posts');

}

In this example, a validationErrors array is returned if the entered title or 
text values are empty.

Data returned by an action() function can be used in the route component (or any 
other nested component) via the useActionData() Hook:

import { Form, redirect, useActionData } from 'react-router-dom';

function NewPost() {

  const validationErrors = useActionData();

  return (

    <Form method="post" id="post-form">

      <p>

        <label htmlFor="title">Title</label>

        <input type="text" id="title" name="title" />

      </p>

      <p>

        <label htmlFor="text">Text</label>

        <textarea id="text" name="text" rows={3} />

      </p>



420 | Managing Data with React Router

      <ul>

        {validationErrors &&

          validationErrors.map((err) => <li key={err}>{err}</li>)}

      </ul>

      <button>Save Post</button>

    </Form>

  );

}

useActionData() works a lot like useLoaderData(), but unlike 
useLoaderData(), it's not guaranteed to yield any data. This is because while 
loader() functions always get called before the route component is rendered, the 
action() function only gets called once the <Form> is submitted.

In this example, useActionData() is used to get access to the 
validationErrors returned by action(). If validationErrors is truthy 
(that is, is not undefined), the array will be mapped to a list of error items that are 
displayed to the user:

Figure 13.4: Validation errors are output below the input fields

The action() function is therefore quite versatile in that you can use it to perform 
an action and redirect away as well as to conduct more than one operation and 
return different values for different use cases.



Introduction | 421

Controlling Which <Form> Triggers Which Action

In Chapter 12, Multipage Apps with React Router, you learned that when <Form> is 
used instead of <form>, React Router will execute the targeted action() function. 
But which action() function is targeted by <Form>?

By default, it's the action() function assigned to the route that also renders the 
form. Consider this route definition:

{ path: '/posts/new', element: <NewPost />, action: newPostAction }

With this definition, the newPostAction() function would be triggered whenever 
any <Form> inside of the NewPost component (or any nested component) 
is submitted.

In many cases, this default behavior is exactly what you want. But you can also target 
action() functions defined on other routes, and these can be triggered by setting 
the action prop on <Form> to the path of the route that contains the action() 
that should be executed:

// form rendered in a component that belongs to /posts

<Form method="post" action="/save-data">

  ...

</Form>

This form would lead to the action belonging to the /save-data route to be 
executed—even though the <Form> component is rendered as part of a component 
that belongs to a different route (e.g., /posts).

It is worth noting, though, that targeting a different route will lead to a page transition 
to that route's path, even if your action does not return a redirect response. In a later 
section of this chapter, entitled "Behind-the-Scenes Data Fetching and Submission", you 
will learn how that behavior could be avoided.

Reflecting the Current Navigation Status

After submitting a form, the action() function that's triggered may need some 
time to perform all intended operations. Sending HTTP requests to APIs in particular 
can take up to a few seconds.

Of course, it's not a great user experience if the user doesn't get any feedback about 
the current data submission status. It's not immediately clear if anything happened at 
all after the submit button was clicked.



422 | Managing Data with React Router

For that reason, you might want to show a loading spinner or update the button 
caption while the action() function is running. Indeed, one common way of 
providing user feedback is to disable the submit button and change its caption 
like this:

Figure 13.5: The submit button is grayed out

You can get the current React Router status (that is, whether it's currently 
transitioning to another route or executing an action() function) via the 
useNavigation() Hook. This Hook provides a navigation object that contains 
various pieces of routing-related information.

Most importantly, this object has a state property that yields a string describing 
the current navigation status. This property is set to one of the following three 
possible values:

•	 submitting: If an action() function is currently executing

•	 loading: If a loader() function is currently executing (for example, because 
of a redirect() response)

•	 idle: If no action() or loader() functions are currently being executed

You can therefore use this state property to find out whether React Router is 
currently navigating to a different page or executing an action(). Hence, the 
submit button can be updated as shown in the preceding screenshot via this code:

import { Form, redirect, useActionData, useNavigation } from 'react-
router-dom';

function NewPost() {

  const validationErrors = useActionData();

  const navigation = useNavigation();



Introduction | 423

  const isSubmitting = navigation.state !== 'idle';

  return (

    <Form method="post" id="post-form">

      <p>

        <label htmlFor="title">Title</label>

        <input type="text" id="title" name="title" />

      </p>

      <p>

        <label htmlFor="text">Text</label>

        <textarea id="text" name="text" rows={3} />

      </p>

      <ul>

        {validationErrors &&

          validationErrors.map((err) => <li key={err}>{err}</li>)}

      </ul>

      <button disabled={isSubmitting}>

        {isSubmitting ? 'Saving...' : 'Save Post'}

      </button>

    </Form>

  );

}

In this example, the isSubmitting constant is true if the current navigation state 
is anything but 'idle'. This constant is then used to disable the submit button (via 
the disabled attribute) and adjust the button's caption.

Submitting Forms Programmatically

In some cases, you won't want to instantly trigger an action() when a form is 
submitted—for example, if you need to ask the user for confirmation first such as 
when triggering actions that delete or update data.

For such scenarios, React Router allows you to submit a form (and therefore trigger 
an action() function) programmatically. Instead of using the Form component 
provided by React Router, you handle the form submission manually using the 
default <form> element. As part of your code, you can then use a submit() 
function provided by React Router's useSubmit() Hook to trigger the action() 
manually once you're ready for it.



424 | Managing Data with React Router

Consider this example:

import {

  redirect,

  useParams,

  useRouteLoaderData,

  useSubmit,

} from 'react-router-dom';

function PostDetails() {

  const params = useParams();

  const posts = useRouteLoaderData('posts');

  const post = posts.find((post) => post.id.toString() === params.id);

  const submit = useSubmit();

  function submitHandler(event) {

    event.preventDefault();

    const proceed = window.confirm('Are you sure?');

    if (proceed) {

      submit(

        { message: 'Your data, if needed' },

        {

          method: 'delete',

        }

      );

    }

  }

  return (

    <main id="post-details">

      <h1>{post.title}</h1>

      <p>{post.body}</p>



Introduction | 425

      <form onSubmit={submitHandler}>

        <button>Delete</button>

      </form>

    </main>

  );

}

export default PostDetails;

// action must be added to route definition!

export async function action({ request }) {

  const formData = await request.formData();

  console.log(formData.get('message'));

  console.log(request.method);

  return redirect('/posts');

}

In this example, the action() is manually triggered by programmatically submitting 
data via the submit() function provided by useSubmit(). This approach is 
required as it would otherwise be impossible to ask the user for confirmation (via the 
browser's window.confirm() method). 

Because data is submitted programmatically, the default <form> element should be 
used and the submit event handled manually. As part of this process, the browser's 
default behavior of sending an HTTP request must also be prevented manually.

Typically, using <Form> instead of programmatic submission is preferable. But 
in certain situations, such as the preceding example, being able to control form 
submission manually can be useful.



426 | Managing Data with React Router

Behind-the-Scenes Data Fetching and Submission

There also are situations in which you may need to trigger an action or load data 
without causing a page transition.

A "Like" button would be an example. When it's clicked, a process should be triggered 
in the background (such as storing information about the user and the liked post), but 
the user should not be directed to a different page:

Figure 13.6: A like button below a post

To achieve this behavior, you could wrap the button into a <Form> and, at the end of 
the action() function, simply redirect back to the page that is already active.

But technically, this would still lead to an extra navigation action. Therefore, 
loader() functions would be executed and other possible side-effects might occur 
(the current scroll position could be lost, for example). For that reason, you might 
want to avoid this kind of behavior.

Thankfully, React Router offers a solution: the useFetcher() Hook, which yields an 
object that contains a submit() method. Unlike the submit() function provided 
by useSubmit(), the submit() method yielded by useFetcher() is meant for 
triggering actions (or loader() functions) without starting a page transition.

A "Like" button, as described previously, can be implemented like this (with help of 
useFetcher()):

import {

  // ... other imports

  useFetcher,

} from 'react-router-dom';



Introduction | 427

import { FaHeart } from 'react-icons/fa';

function PostDetails() {

  // ... other code & logic

  const fetcher = useFetcher();

  function likePostHandler() {

    fetcher.submit(null, {

      method: 'post',

      action: `/posts/${post.id}/like`, // targeting an action on another 
route
    });

  }

  return (

    <main id="post-details">

      <h1>{post.title}</h1>

      <p>{post.body}</p>

      <p>

        <button className="icon-btn" onClick={likePostHandler}>

          <FaHeart />

          <span>Like this post</span>

        </button>

      </p>

      <form onSubmit={submitHandler}>

        <button>Delete</button>

      </form>

    </main>

  );

}

The fetcher object returned by useFetcher() has various properties. For 
example, it also contains properties that provide information about the current status 
of the triggered action or loader (including any data that may have been returned). 

But this object also includes two important methods:

•	 load(): To trigger the loader() function of a route (e.g., fetcher.
load('/route-path'))

•	 submit(): To trigger an action() function with the provided data 
and configuration



428 | Managing Data with React Router

In the code snippet above, the submit() method is called to trigger the action 
defined on the /posts/<post-id>/like route. Without useFetcher() (i.e., 
when using useSubmit() or <Form>), React Router would switch to the selected 
route path when triggering its action. With useFetcher(), this is avoided, and 
the action of that route can be called from inside another route (meaning the action 
defined for /posts/<post-id>/like is called while the /posts/<post-id> 
route is active).

This also allows you to define routes that don't render any element (that is, in which 
there is no page component) and instead only contain a loader() or action() 
function. For example, the /posts/<post-id>/like route file looks like this:

export function action({ params }) {

  console.log('Triggered like action.');

  console.log(`Liking post with id ${params.id}.`);

  // Do anything else

  // May return data or response, including redirect() if needed

}

It's registered as a route as follows:

import { action as likeAction } from './pages/like';

// ...

{ path: ':id/like', action: likeAction },

This works because this action() is only triggered via the submit() method 
provided by useFetcher(). <Form> and the submit() function yielded by 
useSubmit() would instead initiate a route transition to /posts/<post-id>/
like. Without the element property being set on the route definition, this 
transition would lead to an empty page, as shown here:

Figure 13.7: An empty (nested) page is displayed, along with a warning message



Introduction | 429

Because of the extra flexibility it offers, useFetcher() can be very useful when 
building highly interactive user interfaces. It's not meant as a replacement for 
useSubmit() or <Form> but rather as an additional tool for situations where no 
route transition is required or wanted.

Deferring Data Loading

Up to this point in the chapter, all data-fetching examples have assumed that a 
page should only be displayed once all its data has been fetched. That's why there 
was never any loading state that would have been managed (and hence no loading 
spinner that would have been displayed). 

In many situations, this is exactly the behavior you want as it does not often make 
sense to show a loading spinner for a fraction of a second just to then replace it with 
the actual page data.

But there are also situations in which the opposite behavior might be desirable—
for example, if you know that a certain page will take quite a while to load its data 
(possibly due to a complex database query that must be executed on the backend) 
or if you have a page that loads different pieces of data and some pieces are much 
slower than others.

In such scenarios, it may make sense to render the page component even though 
some data is still missing. React Router also supports this use case by allowing you to 
defer data loading, which in turn enables the page component to be rendered before 
the data is available.

Deferring data loading is as simple as using the defer() function provided by React 
Router like this:

import { defer } from 'react-router-dom';

// ... other imports

export async function loader() {

  return defer({

    posts: getPosts(),

  });

}



430 | Managing Data with React Router

In this example, getPosts() is a function that returns a (slow) Promise:

async function getPosts() {

  const response = await fetch('https://jsonplaceholder.typicode.com/
posts');
  await wait(3); // utility function, simulating a slow response

  if (!response.ok) {

    throw new Error('Could not fetch posts');

  }

  const data = await response.json();

  return data;

}

React Router's defer() function takes an object as an argument. This object 
contains one key-value pair for every data fetching operation that's part of the 
loader() function. The values in this object are of type Promise; otherwise, 
there wouldn't be anything to defer.

Inside the component function where useLoaderData() is used, you must also 
use a new component provided by React Router: the Await component. It's used 
like this:

import { Suspense } from 'react';

import { Await } from 'react-router-dom';

// ... other imports

function PostsLayout() {

  const data = useLoaderData();

  return (

    <div id="posts-layout">

      <nav>

        <Suspense fallback={<p>Loading posts...</p>}>

          <Await resolve={data.posts}>

            {(loadedPosts) => <PostsList posts={loadedPosts} />}

          </Await>

        </Suspense>

      </nav>

      <main>

        <Outlet />

      </main>

    </div>



Introduction | 431

  );

}

The <Await> element takes a resolve prop that receives a value from the loader 
data. It's wrapped by the < Suspense> component provided by React.

The value passed to resolve is a Promise. It's one of the values stored in the object 
that was passed to defer(). For that reason, you use the key names defined 
in the object that was passed to defer() to access the data in the component 
function (meaning that data.posts is used because of defer({posts: 
getPosts()})).

Await automatically waits for the Promise to resolve before then calling the 
function that's passed to <Await> as a child (that is, the function passed between 
the <Await> opening and closing tags). This function is executed by React Router 
once the data of the deferred operation is available. Therefore, inside that function, 
loadedPosts is received as a parameter, and the final user interface elements can 
be rendered.

The Suspense component that's used as a wrapper around <Await> defines some 
fallback content that is rendered as long as the deferred data is not yet available. In 
the "Lazy Loading"  section of the previous chapter, the Suspense component was 
used to show some fallback content until the missing code was downloaded. Now, it's 
used to bridge the time until the required data is available.

When using defer() (and <Await>) like this, you would still load other parts of the 
website while waiting for the posts data:

Figure 13.8: Post details are already visible while the list of posts is loading



432 | Managing Data with React Router

Another big advantage of defer() is that you can easily combine multiple fetching 
processes and control which processes should be deferred and which ones should 
not. For example, a route might be fetching different pieces of data. If only one 
process tends to be slow, you could defer only the slow one like this:

export async function loader() {

  return defer(

    {

      posts: getPosts(), // slow operation => deferred

      userData: await getUserData() // fast operation => NOT deferred

    }

  );

}

In this example, getUserData() is not deferred because the await keyword is 
added in front of it. Therefore, JavaScript waits for that Promise (the Promise 
returned by getUserData()) to resolve before returning from loader(). Hence, 
the route component is rendered once getUserData() finishes but before 
getPosts() is done.

Summary and Key Takeaways

•	 React Router can help you with data fetching and submission.

•	 You can register loader() functions for your routes, causing data fetching to 
be initialized as a route becomes active.

•	 loader() functions return data (or responses, wrapping data) that can be 
accessed via useLoaderData() in your component functions.

•	 loader() data can be used across components via 
useRouteLoaderData().

•	 You can also register action() functions on your routes that are triggered 
upon form submissions.

•	 To trigger action() functions, you must use React Router's <Form> 
component or submit data programmatically via useSubmit() or 
useFetcher().



Introduction | 433

•	 useFetcher() can be used to load or submit data without initiating a 
route transition.

•	 When fetching slow data, you can use defer() to defer loading some or all of a 
route's data.

What's Next?

Fetching and submitting data are extremely common tasks, especially when building 
more complex React applications.

Typically, those tasks are closely connected to route transitions, and React Router is 
the perfect tool for handling this kind of operation. With the release of version 6.4, 
the React Router package offers powerful data management capabilities that vastly 
simplify these processes.

In this chapter, you learned how React Router assists you with fetching or submitting 
data and which advanced features help you handle both basic and more complex 
data manipulation scenarios.

This chapter also concludes the list of core React features you must know as a React 
developer. Of course, you can always dive deeper to explore more patterns and third-
party libraries. The next (and last) chapter will share some resources and possible 
next steps you could dive into after finishing this book. 

Test Your Knowledge!

Test your knowledge of the concepts covered in this chapter by answering the 
following questions. You can then compare your answers to the examples found at 
https://packt.link/cbDjn:

1.	 How are data fetching and submission related to routing?

2.	 What is the purpose of loader() functions?

3.	 What is the purpose of action() functions?

4.	 What is the difference between <Form> and <form>?

5.	 What is the difference between useSubmit() and useFetcher()?

6.	 What is the idea behind defer()?

https://packt.link/cbDjn


434 | Managing Data with React Router

Apply What You Learned

Apply your knowledge about routing, combined with data manipulation, to the 
following activity.

Activity 13.1: A To-Dos App

In this activity, your task is to create a basic to-do list web app that allows users to 
manage their daily to-do tasks. The finished page must allow users to add to-do 
items, update to-do items, delete to-do items and view a list of to-do items.

The following paths must be supported:

•	 /: The main page, responsible for loading and displaying a list of to-do items

•	 /new: A page, opened as a modal above the main page, allowing users to add a 
new to-do item

•	 /:id: A page, also opened as a modal above the main page, allowing users to 
update or delete a selected to-do item

If no to-do items exist yet, a fitting info message should be shown on the / page. If 
users try to visit /:id with an invalid to-do ID, an error modal should be displayed.

Note

For this activity, there is no backend API you could use. Instead, use 
localStorage to manage the to-dos data. Keep in mind that the 
loader() and action() functions are executed on the client side and 
can therefore use any browser APIs, including localStorage.

You will find example implementations for adding, updating, deleting, and 
getting to-do items from localStorage at https://packt.link/XCbu0.

Also, don't be confused by the pages that open as modals above other 
pages. Ultimately, these are simply nested pages, styled as modal 
overlays. In case you get stuck, you can use the example Modal 
wrapper component found at https://packt.link/qPIvp.

For this activity, you can write all CSS styles on your own if you so choose. 
But if you want to focus on the React and JavaScript logic, you can also use 
the finished CSS file from the solution at https://packt.link/G0IKW.

If you use that file, explore it carefully to ensure you understand which 
IDs or CSS classes might need to be added to certain JSX elements of 
your solution.

https://packt.link/XCbu0
https://packt.link/qPIvp
https://packt.link/G0IKW


Introduction | 435

To complete the activity, perform the following steps:

1.	 Create a new React project and install the React Router package (make sure it's 
version 6.4 or later).

2.	 Create components (with the content shown in the preceding screenshots) that 
will be loaded for the three required pages. Also add links (or programmatic 
navigation) between these pages.

3.	 Enable routing and add the route definitions for the three pages.

4.	 Create loader() functions to load (and use) all the data needed by the 
individual pages.

5.	 Add action() functions for adding, updating, and deleting to-dos.

6.	 Add error handling in case data loading or saving fails.

The finished pages should look like this:

Figure 13.9: The main page displaying a list of to-dos



436 | Managing Data with React Router

Figure 13.10: The /new page, opened as a modal, allowing users to add a new to-do

Figure 13.11: The /:id page, also opened as a modal, allowing users to edit or delete a to-do



Introduction | 437

Figure 13.12: An info message, displayed if no to-dos were found

Note

The solution to this activity can be found via this link.





Learning Objectives

By the end of this chapter, you will know the following:

�  How to best practice what you've learned throughout this book

�  Which React topics you can explore next

�  Which popular third-party React packages might be worth a closer look

Next Steps and Further 

Resources

14



440 | Next Steps and Further Resources

Introduction
With this book, you've gotten a thorough (re-)introduction to the key React concepts 
you must know in order to work with React successfully, providing both theoretical 
and practical guidance for components, props, state, context, React Hooks, routing, 
and many other crucial concepts.

But React is more than just a collection of concepts and ideas. It powers an entire 
ecosystem of third-party libraries that help with many common React-specific 
problems. There is also a huge React community that shares solutions for common 
problems or popular patterns.

In this last, brief chapter, you'll learn about some of the most important and popular 
third-party libraries you might want to explore. You will also be introduced to other 
great resources that help with learning React. In addition, this chapter will share some 
recommendations on how best to proceed and continue to grow as a React developer 
after finishing this book.

How Should You Proceed?

In working through this book, you've learned a lot about React. But it's always 
challenging to then proceed and apply that knowledge to real projects.

So, how should you proceed? How do you best apply your knowledge and, hence, 
continue to grow as a React developer?

The most important factor is that you use your knowledge. Don't just read a book. 
Instead, use your newly gained skills to build some demo projects.

You don't have to build the next Amazon or TikTok. There's a reason why applications 
like these are built by huge teams. But you should build small demo projects that 
focus on a couple of core problems. You could, for example, build a very basic 
website that allows users to store and view their daily goals, or build a basic meetups 
page where visitors can organize and join meetup events.

To put it simply: practice is king. You must apply what you've learned and build 
stuff. Because by building demo projects, you'll automatically encounter problems 
that you'll have to solve without a solution at hand. You'll have to try out different 
approaches and search the internet for possible (partial) solutions. Ultimately, this is 
how you learn the most and how you develop your problem-solving skills.



Introduction | 441

You won't find a solution for all problems in this book, but this book does give you the 
basic tools and building blocks that will help you with those problems. Solutions are 
then built by combining these building blocks and by building upon the knowledge 
gathered throughout this book.

Interesting Problems to Explore

So, which problems and demo apps could you explore and try to build? 

In general, you can try to build (simplified) clones of popular web apps (such as a 
highly simplified version of Amazon). Ultimately, your imagination is the limit, but in 
the following sections, you will find details and advice for three project ideas and the 
challenges that come with them.

Build a Shopping Cart

A very common type of website is an online shop. You can find online shops for all 
kinds of products—ranging from physical goods such as books, clothing, or furniture 
to digital products such as video games or movies—and building such an online shop 
would be an interesting project idea and challenge. 

Online shops do come with many features that can't be built with React. For 
example, the whole payment process is mostly a backend task where requests 
must be handled by servers. Inventory management would be another feature that 
takes place in databases and on servers, and not in the browsers of your website 
visitors. But there are also features that require interactive user interfaces (and 
that therefore benefit from using React), such as different pages that show lists of 
available products, product details, or the current status of an order, as you learned 
in Chapter 12, Multipage Apps with React Router. You also typically have shopping carts 
on websites. Building such a cart, combined with the functionality of adding and 
removing items, would similarly utilize several React features—for example, state 
management, as explained in Chapter 4, Working with Events and State.

It all starts with having a couple of pages (routes) for dummy products, product 
details, and the shopping cart itself. The shopping cart displays items that need to 
be managed via app-wide state (e.g., via context as covered in Chapter 10, Working 
with Complex State), as website visitors must be able to add items to the cart from the 
product detail page. You will also need a broad variety of React components—many 
of which must be reusable (e.g., the individual shopping cart items that are displayed). 
Your knowledge of React components and props from Chapter 2, Understanding React 
Components and JSX, and Chapter 3, Components and Props, will help with that.



442 | Next Steps and Further Resources

The shopping cart state is also a non-trivial state. A simple list of products typically 
won't do the trick—though you can, of course, at least apply your knowledge from 
Chapter 5, Rendering Lists and Conditional Content. Instead, you must check whether an 
item is already part of the cart or if it's added for the first time. If it's part of the cart 
already, you must update the quantity of the cart item. Of course, you'll also need 
to ensure users are able to remove items from the cart or reduce the quantity of an 
item. And if you want to get even fancier, you can even simulate price changes that 
must be factored in when updating the shopping cart state.

As you can see, this extremely simple dummy online shop already offers quite a bit 
of complexity. Of course, you could also add backend functionality and store dummy 
products in a database. This can be done but is not required to practice working with 
React. Instead, you can use dummy data that's stored in variables or constants in 
your React code.

Build an Application's Authentication System (User Signup and Login)

A lot of websites allow users to sign up or log in. For many websites, user 
authentication is required before performing certain tasks. For example, you must 
create a Google account before uploading videos to YouTube or using Gmail (and 
many other Google services). Similarly, an account is typically needed before taking 
paid online courses or buying (digital) video games online. You also can't perform 
online banking without being logged in. And that's just a short list; many more 
examples could be added, but you get the idea. User authentication is required for a 
broad variety of reasons on many websites.

And on even more websites, it's optionally available. For example, you might be able 
to order products as a guest, but you benefit from extra advantages when creating an 
account (e.g., you may track your order history or collect reward points).

Of course, building your own version of YouTube is much too challenging to be a 
good practice project. There's a reason why Google has thousands of developers 
on its payroll. But you can identify and clone individual features—such as 
user authentication.

Build your own user authentication system with React. Make sure that users can 
sign up and log in. Add a few example pages (routes) to your website and find a way 
of making some pages only available to logged-in users. These targets might not 
sound like much, but you will actually face quite a lot of challenges along the way—
challenges that force you to find solutions for brand-new problems.



Introduction | 443

In addition, you can get even more advanced and dive into backend development 
as well (in addition to the frontend development done with React). While you could 
just use some dummy logic in your React app code to simulate HTTP requests that 
are sent to your servers behind the scenes, you could also add a real demo backend 
instead. That backend would need to store user accounts in a database, validate login 
requests, and send back authentication tokens that inform the React frontend about 
the current authentication status of a user. In your React app, these HTTP requests 
would be treated as side effects, as covered in Chapter 8, Handling Side Effects.

The backend would be built with a different technology than React though (such as 
with Node.js and the Express library) and is therefore quite a bit more advanced. 
Alternatively, you can keep things simple by instead having some app-wide "user 
is authenticated" state in your React app. In that case, you could still get a bit more 
advanced by storing that state in the browser (e.g., via localStorage) to restore it 
after page reloads.

As you can tell, this "simple" project idea (or, rather, feature idea) presents a lot of 
challenges and will require you to build on your React knowledge and find solutions 
for a broad variety of problems.

Build an Event Management Website

If you first were to build your own shopping cart system and get started with user 
authentication, you could then take it a step further and build a more complex 
website that combines these features (and offers new, additional features).

One such project idea would be an event management site. This is a website on which 
users can create accounts and, once they're logged in, events. All visitors can then 
browse these events and register for them. It would be up to you whether registration 
as guests (without creating an account first) is possible or not. 

It's also your choice whether you want to add backend logic (that is, a server that 
handles requests and stores users and events in a database) or you will simply store 
all data in your React application (via app-wide state). If you don't add a backend, 
all data will be lost whenever the page is reloaded, and you can't see the events 
created by other users on other machines, but you can still practice all these key 
React features.

And there are many React features that are needed for this kind of dummy 
website: reusable components, pages (routes), component-specific and app-wide 
state, handling and validating user input, displaying conditional and list data, and 
much more.



444 | Next Steps and Further Resources

Again, this is clearly not an exhaustive list of examples. You can build whatever you 
want. Be creative and experiment, because you'll only master React if you use it to 
solve problems.

Common and Popular React Libraries

No matter which kind of React app you're building, you'll encounter many problems 
and challenges along the way. From handling and validating user input to sending 
HTTP requests, complex applications come with many challenges.

You can solve all challenges on your own and even write all the (React) code that's 
needed on your own. And for practicing, this might indeed be a good idea. But as 
you're building more and more complex apps, it might make sense to outsource 
certain problems.

Thankfully, React features a rich and vibrant ecosystem that offers third-party 
packages that solve all kinds of common problems. Here's a brief, non-exhaustive list 
of popular third-party libraries that might be helpful:

•	 React Hook Form: A library that simplifies the process of handling and 
validating user input (https://react-hook-form.com/).

•	 Formik: Another popular library that helps with form input handling and 
validation (https://formik.org/).

•	 Axios: A general JavaScript library that simplifies the process of sending HTTP 
requests and handling responses (https://axios-http.com/).

•	 SWR: A React-specific alternative to Axios, also aiming to simplify the process of 
sending HTTP requests and using response data (https://swr.vercel.app/).

•	 Redux: In the past, this was an essential React library. Nowadays, it can still 
be important as it can greatly simplify the management of (complex) cross-
component or app-wide state (https://redux.js.org/).

This is just a short list of some helpful and popular libraries. Since there's an endless 
number of potential challenges, you could also compile an infinite list of libraries. 
Search engines and Stack Overflow (a message board for developers) are your friends 
when it comes to finding more libraries that solve other problems.

https://react-hook-form.com/
https://formik.org/
https://axios-http.com/
https://swr.vercel.app/
https://redux.js.org/


Introduction | 445

Other Resources

As mentioned, React does have a highly vibrant ecosystem—and not just when it 
comes to third-party libraries. You'll also find hundreds of thousands of blog posts, 
discussing all kinds of best practices, patterns, ideas, and solutions to possible 
problems. Searching for the right keywords (such as "React form validation with 
Hooks") will almost always yield interesting articles or helpful libraries.

You'll also find plenty of paid online courses, such as the "React – The Complete 
Guide" course at https://www.udemy.com/course/react-the-complete-guide-incl-
redux/?couponCode=D_0922, and free tutorials on YouTube.

The official documentation is another great place to explore as it contains deep dives 
into core topics as well as more tutorial articles: https://reactjs.org/.

Beyond React for Web Applications

This book focused on using React to build websites. This was for a couple of reasons. 
The first is that React, historically, was created to simplify the process of building 
complex web user interfaces, and React is powering more and more websites every 
day. It's one of the most widely used client-side web development libraries and more 
popular than ever before.

But it also makes sense to learn how to use React for web development because you 
need no extra tools—only a text editor and a browser.

That said, React can be used to build user interfaces outside the browser and 
websites as well. With React Native and Ionic for React, you have two very popular 
projects and libraries that use React to build native mobile apps for iOS and Android.

Therefore, after learning all these React essentials, it makes a lot of sense to also 
explore these projects. Pick up some React Native or Ionic courses (or use the official 
documentation) to learn how you can use all the React concepts covered in this 
book to build real native mobile apps that can be distributed through the platform 
app stores.

React can be used to build all kinds of interactive user interfaces for various 
platforms. Now that you've finished this book, you have the tools you need to 
build your next project with React—no matter which platform it targets.

https://www.udemy.com/course/react-the-complete-guide-incl-redux/?couponCode=D_0922
https://www.udemy.com/course/react-the-complete-guide-incl-redux/?couponCode=D_0922
https://reactjs.org/


446 | Next Steps and Further Resources

Final Words

With all the concepts discussed throughout this book, as well as the extra resources 
and starting points to dive deeper, you are well prepared to build feature-rich and 
highly user-friendly web applications with  React.

No matter if it's a simple blog or a complex Software-as-a-Service solution, you now 
know the key React concepts you need in order to build a React-driven web app your 
users will love.

I hope you got a lot out of this book. Definitely share any feedback you have, for 
example, via Twitter (@maxedapps) or by sending an email to customercare@packt.
com.

mailto:customercare@packt.com
mailto:customercare@packt.com






Appendix



450 | Appendix

Chapter 2: Understanding React Components & JSX

Activity 2.1: Creating a React App to Present Yourself

Solution:

Perform the following steps to complete this activity: 

1.	 Create a new React project by running npx create-react-app my-app. You can 
replace my-app with any name of your choice, and you can run this command in 
any fitting place on your system (e.g., on your desktop). Start the development 
web server by running npm start inside the created project folder. 

2.	 Open the project with any code editor of your choice—for example, with Visual 
Studio Code (https://code.visualstudio.com/). 

3.	 Open the App.js file and replace the existing JSX code that is returned with JSX 
code that structures and contains the information about yourself that you want 
to output. 

function App() { 

  return ( 

    <> 

      <h2>Hi, this is me - Max!</h2> 

      <p>Right now, I am 32 years old and I live in Munich.</p> 

      <p> 

        My full name is Maximilian Schwarzmüller and I am a web 
developer as 
        well as top-rated, bestselling online course instructor. 

      </p> 

    </> 

  ); 

} 

4.	 The final output should look like the following:

Figure 2.5: The final activity result—some user information being output on the screen. 



Chapter 2: Understanding React Components & JSX | 451

Note 

You will find all code files for this solution at https://packt.link/DJh7X. 

Activity 2.2: Creating a React App to Log Your Goals for This Book 

Solution:

Perform the following steps to complete this activity:

1.	 Create a new React project by running npx create-react-app my-app. You can 
replace my-app with any name of your choice, and you can run this command in 
any fitting place on your system (e.g., on your desktop). Start the development 
web server by running npm start inside the created project folder. 

2.	 Create a new /src/components folder in the project 

3.	 In the /src/components folder, create multiple component files—for example, 
FirstGoal.js, SecondGoal.js, ThirdGoal.js, GoalList.js and Header.js 

Your project folder should now look something like this: 

 

Figure 2.6: React project with a "components" folder and multiple component files added. 

https://packt.link/DJh7X


452 | Appendix

4.	 Edit the individual goal component files (FirstGoal.js, etc.) and define and export 
component functions inside of them. Every component function should return 
a list item with any JSX markup of your choice and the goal title and text as main 
content. Here's an example for the first goal: 

function FirstGoal() { 

  return ( 

    <li> 

      <article> 

        <h2>Teach React in a highly-understandable way</h2> 

        <p> 

          I want to ensure, that you get the most out of this book 
and you         
          learn all about React! 

        </p> 

      </article> 

    </li> 

  ); 

} 

 

export default FirstGoal; 

5.	 In the GoalList.js file, define and export a GoalList component function and 
import the individual components. Thereafter, return JSX code that renders an 
unordered list (<ul>) with the custom goal components as list items: 

import FirstGoal from './FirstGoal'; 

import SecondGoal from './SecondGoal'; 

import ThirdGoal from './ThirdGoal'; 

 

function GoalList() { 

  return ( 

    <ul> 

      <FirstGoal /> 

      <SecondGoal /> 

      <ThirdGoal /> 



Chapter 2: Understanding React Components & JSX | 453

    </ul> 

  ); 

} 

 

export default GoalList; 

6.	 In the Header.js file, define and export a Header component and return some 
header JSX markup: 

function Header() { 

  return ( 

    <header> 

      <h1>My Goals For This Book</h1> 

    </header> 

  ); 

} 

 

export default Header; 

7.	 Import the GoalList and Header components into the App.js file and replace the 
default JSX code with your own JSX code that renders these two components: 

import GoalList from './components/GoalList'; 

import Header from './components/Header'; 

 

function App() { 

  return ( 

    <> 

      <Header /> 

      <GoalList /> 

    </> 

  ); 

} 

 

export default App; 



454 | Appendix

The final output should look like the following:

Figure 2.7: The final page output, showing a list of goals.

Note 

You will find all code files for this solution at https://packt.link/8tvm6. 

https://packt.link/8tvm6


Chapter 3: Components & Props | 455

Chapter 3: Components & Props

Activity 3.1: Creating an App to Output Your Goals for This Book

Solution:

1.	 Finish Activity 2.2 from the previous chapter.

2.	 Add a new component to the src/components folder, a component function 
named GoalItem, in a new GoalItem.js file.

3.	 Copy the component function (including the returned JSX code) from 
FirstGoal.js and add a new props parameter to the function. 
Remove the title and description text from the JSX code:

function GoalItem(props) {

  return (

    <li>

      <article>

        <h2></h2>

        <p>

          

        </p>

      </article>

    </li>

  );

}

export default GoalItem;

4.	 Output the title and description in the GoalItem component via props—for 
example, by using props.title and props.children (in the fitting places 
in the JSX code, in other words, between the <h2> and <p> tags).

5.	 In the GoalList component, remove the FirstGoal, SecondGoal, and so 
on components (imports and JSX code) and import and use the new GoalItem 
component instead. Output <GoalItem> once for every goal that should be 
displayed, and pass the title prop and a value for the children prop to 
these components:

import GoalItem from './GoalItem';

function GoalList() {

  return (



456 | Appendix

    <ul>

      <GoalItem title="Teach React in a highly-understandable way">

        Some goal text…

      </GoalItem>

      <GoalItem title="Allow you to practice what you learned">

        Some goal text…

      </GoalItem>

      <GoalItem title="Motivate you to continue learning">

        Some goal text…

      </GoalItem>

    </ul>

  );

}

export default GoalList;

6.	 Delete the redundant FirstGoal.js, SecondGoal.js, etc. files.

The final user interface could look like this: 

Figure 3.2: The final result: Multiple goals output below each other

Note

You will all code files for this solution at https://packt.link/2R4Xo.

https://packt.link/2R4Xo


Chapter 4: Working with Events & State | 457

Chapter 4: Working with Events & State

Activity 4.1: Building a Simple Calculator

Solution:

Perform the following steps to complete this activity:

1.	 Add four new components into an src/components folder in a new React 
project: Add.js, Subtract.js, Divide.js, and Multiply.js (also add 
appropriately named component functions inside the component files).

2.	 Add the following code to Add.js:

function Add() {

  function changeFirstNumberHandler(event) {

    

  }

  function changeSecondNumberHandler(event) {

    

  }

  return (

    <p>

      <input type="number" onChange={changeFirstNumberHandler} /> + 

      <input type="number" onChange={changeSecondNumberHandler} /> = 
...
    </p>

  );

}

export default Add;

This component outputs a paragraph that contains two input elements 
(for the two numbers) and the result of the calculation. The input elements 
use the onChange prop to listen to the change event. Upon this event, the 
changeFirstNumberHandler and changeSecondNumberHandler 
functions are executed.



458 | Appendix

3.	 In order to make the component dynamic and derive the result based on the 
actual user input, state must be added. Import the useState Hook from React 
and initialize an object that contains a property for each of the two numbers. 
Alternatively, you could also use two individual state slices. Update the state(s) 
inside the two functions that are connected to the change event and set the 
state to the entered user value. 

Make sure you convert the entered value to a number by adding a + in front 
of the value. Otherwise, string values will be stored, which will lead to incorrect 
results when adding the numbers. 

The updated Add.js component should look like this:

import { useState } from 'react';

function Add() {

  const [enteredNumbers, setEnteredNumbers] = useState({

    first: 0, second: 0 

  });

  function changeFirstNumberHandler(event) {

    setEnteredNumbers((prevNumbers) => ({

      first: +event.target.value, // "+" converts strings to numbers!

      second: prevNumbers.second,

    }));

  }

  function changeSecondNumberHandler(event) {

    setEnteredNumbers((prevNumbers) => ({

      first: prevNumbers.first,

      second: +event.target.value,

    }));

  }

  return (

    <p>

      <input type="number" onChange={changeFirstNumberHandler} /> + 

      <input type="number" onChange={changeSecondNumberHandler} /> = 
...
    </p>

  );



Chapter 4: Working with Events & State | 459

}

export default Add;

4.	 Next, derive the actual result of the mathematical operation. For this, a new 
result variable or constant can be added. Set it to the result of adding the two 
numbers that are stored in state. 

The finished Add.js file looks like this:

import { useState } from 'react';

function Add() {

  const [enteredNumbers, setEnteredNumbers] = useState({

    first: 0, second: 0 

  });

  function changeFirstNumberHandler(event) {

    setEnteredNumbers((prevNumbers) => ({

      first: +event.target.value,

      second: prevNumbers.second,

    }));

  }

  function changeSecondNumberHandler(event) {

    setEnteredNumbers((prevNumbers) => ({

      first: prevNumbers.first,

      second: +event.target.value,

    }));

  }

  const result = enteredNumbers.first + enteredNumbers.second;

  return (

    <p>

      <input type="number" onChange={changeFirstNumberHandler} /> +{' 
'}
      <input type="number" onChange={changeSecondNumberHandler} /> = 
{result}
    </p>

  );



460 | Appendix

}

export default Add;

5.	 Finally, copy the same code into the three other component files (Subtract.
js, Multiply.js, and Divide.js). Just make sure to replace the 
component function name (also in the export statement) and to update 
the mathematical operation.

The final result and UI of the calculator should look like this:

Figure 4.5: Calculator user interface

Note

You'll find all code files for this solution at https://packt.link/kARx8.

Activity 4.2: Enhancing the Calculator

Solution:

Perform the following steps to complete this activity:

1.	 Remove three of the four components from the previous activity and rename 
the remaining one to Calculation.js (also rename the function in the 
component file).

2.	 Add a <select> drop-down (between the two inputs) to the Calculation 
component and add the four math operations as options (<option> elements) 
to it. You might want to give each option a clear identifier (such as 'add', 
'subtract', and so on) via the built-in value prop. Remove the result. 

https://packt.link/kARx8


Chapter 4: Working with Events & State | 461

The finished JSX code of the Calculation component should look like this:

  return (

    <p>

      <input type="number" onChange={changeFirstNumberHandler} />

      <select>

        <option value="add">+</option>

        <option value="subtract">-</option>

        <option value="multiply">*</option>

        <option value="divide">/</option>

      </select>

      <input type="number" onChange={changeSecondNumberHandler} />

    </p>

3.	 Next, add a Result.js file with a Result component in the src/
components folder. In that component, output the result of the 
calculation (for the moment, output some dummy number):

function Result() {

  return <p>Result: 5000</p>;

}

export default Result;

4.	 The problem now is that the inputs are in a different component than the 
result. The solution is to lift the state up to a common ancestor component. In 
this simple app, that would again be the App component. That component 
should manage the entered numbers and the chosen math operation states. 
It should also derive the result—dynamically, based on the chosen operation 
and the entered numbers. For this, an if statement can be used in the 
component function:

import { useState } from 'react';

import Calculation from './components/Calculation';

import Result from './components/Result';

function App() {

  const [enteredNumbers, setEnteredNumbers] = useState({

    first: 0, second: 0 

  });

  const [chosenOperation, setChosenOperation] = useState('add'); 



462 | Appendix

  // valid state values: 'add', 'subtract', 'multiply', 'divide'

  function changeFirstNumberHandler(event) {

    setEnteredNumbers((prevNumbers) => ({

      first: +event.target.value,

      second: prevNumbers.second,

    }));

  }

  function changeSecondNumberHandler(event) {

    setEnteredNumbers((prevNumbers) => ({

      first: prevNumbers.first,

      second: +event.target.value,

    }));

  }

  function updateOperationHandler(event) {

    setChosenOperation(event.target.value);

  }

  let result;

  if (chosenOperation === 'add') {

    result = enteredNumbers.first + enteredNumbers.second;

  } else if (chosenOperation === 'subtract') {

    result = enteredNumbers.first - enteredNumbers.second;

  } else if (chosenOperation === 'multiply') {

    result = enteredNumbers.first * enteredNumbers.second;

  } else {

    result = enteredNumbers.first / enteredNumbers.second;

  }

  // return statement omitted, will be defined in the next step

}

export default App;

Since the component function will be re-executed by React whenever some state 
changes, result will be recalculated upon every state change.



Chapter 4: Working with Events & State | 463

5.	 Finally, include the two other components (Calculation and 
Result) in the returned JSX code of the App component. Use props to 
pass the event handler functions (changeFirstNumberHandler, 
changeSecondNumberHandler, and updateOperationHandler) to the 
Calculation component. Similarly, pass the derived result to the Result 
component. For the event handler functions, the props can be named onXYZ to 
indicate that functions are provided as values and that those functions will be 
used as event handler functions.

Therefore, the returned JSX code of the App component should look like this:

  return (

    <>

      <Calculation

        onFirstNumberChanged={changeFirstNumberHandler}

        onSecondNumberChanged={changeSecondNumberHandler}

        onOperationChanged={updateOperationHandler}

      />

      <Result calculationResult={result} />

    </>

  );

The Calculation component receives and uses the three onXYZ props 
like this:

function Calculation({

  onFirstNumberChanged,

  onSecondNumberChanged,

  onOperationChanged,

}) {

  return (

    <p>

      <input type="number" onChange={onFirstNumberChanged} />

      <select onChange={onOperationChanged}>

        <option value="add">+</option>

        <option value="subtract">-</option>

        <option value="multiply">*</option>

        <option value="divide">/</option>

      </select>

      <input type="number" onChange={onSecondNumberChanged} />

    </p>

  );



464 | Appendix

}

export default Calculation;

The Result component receives calculationResult and uses it like this:

function Result({ calculationResult }) {

  return <p>Result: {calculationResult}</p>;

}

export default Result;

The final result and UI of the calculator should look like this:

Figure 4.6: User interface of the enhanced calculator

Note

You'll find all code files for this solution at https://packt.link/0tdpg.

https://packt.link/0tdpg


Chapter 5: Rendering Lists & Conditional Content | 465

Chapter 5: Rendering Lists & Conditional Content

Activity 5.1: Showing a Conditional Error Message

Solution:

Perform the following steps to complete this activity:

1.	 Create a new React project and remove the default JSX code returned by the App 
component. Instead, return a <form> element that contains an <input> of 
type="text" (for the purpose of this activity, it should not be type="email" 
to make entering incorrect email addresses easier). Also add a <label> for the 
<input> and a <button> that submits the form. The final JSX code returned 
by App should look something like this:

function App() {

  return (

      <form>

        <label htmlFor="email">Your email</label>

        <input type="text" id="email"/>

        <button>Submit</button>

      </form>

  );

}

export default App;

2.	 Register change events on the <input> element to store and update the 
entered email address via state:

import { useState } from 'react';

function App() {

  const [enteredEmail, setEnteredEmail] = useState();

  function emailChangeHandler(event) {

    setEnteredEmail(event.target.value);

    // enteredEmail is then not used hered, hence you could get a 

    // warning related to this. You can ignore it for this example

  }

  return (

      <form>



466 | Appendix

        <label htmlFor="email">Your email</label>

        <input type="text" id="email" onChange={emailChangeHandler} 
/>
        <button>Submit</button>

      </form>

  );

}

export default App;

3.	 Add a submit event handler function that is triggered every time the form is 
submitted. Prevent the browser default (of sending an HTTP request) by calling 
event.preventDefault() inside the submit event handler function. Also 
add logic to determine whether an email address is valid (contains an @ sign) or 
not (no @ sign):

import { useState } from 'react';

function App() {

  const [enteredEmail, setEnteredEmail] = useState();

  function emailChangeHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function submitFormHandler(event) {

    event.preventDefault();

    const emailIsValid = enteredEmail.includes('@');

    // emailIsValid is then not used hered, hence you could get a 

    // warning related to this. You can ignore it for this example

  }

  return (

      <form onSubmit={submitFormHandler}>

        <label htmlFor="email">Your email</label>

        <input type="text" id="email" onChange={emailChangeHandler} 
/>
        <button>Submit</button>

      </form>

  );



Chapter 5: Rendering Lists & Conditional Content | 467

}

export default App;

4.	 Add a new state slice (the following example has been named 
inputIsInvalid and set to false as a default) that stores the email 
validity information. Update the inputIsInvalid state based on the 
emailIsValid constant defined in submitFormHandler. Use the state to 
show an error message (inside a <p>) conditionally:

import { useState } from 'react';

function App() {

  const [enteredEmail, setEnteredEmail] = useState();

  const [inputIsInvalid, setInputIsInvalid] = useState(false);

  function emailChangeHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function submitFormHandler(event) {

    event.preventDefault();

    const emailIsValid = enteredEmail.includes('@'); 

    setInputIsInvalid(!emailIsValid);

  }

  return (

    <section>

      <form onSubmit={submitFormHandler}>

        <label htmlFor="email">Your email</label>

        <input type="text" id="email" onChange={emailChangeHandler} 
/>
        <button>Submit</button>

      </form>

      {inputIsInvalid && <p>Invalid email address entered!</p>}

    </section>

  );

}

export default App;



468 | Appendix

5.	 The && operator is used in this example, but you could also use if statements, 
ternary expressions, or any other possible approach. It's also up to you 
whether you prefer to create and output conditional JSX elements inline (that is, 
directly inside of the returned JSX code) or with the help of a separate variable 
or constant.

The final user interface should look and work as shown here:

Figure 5.9: The final user interface of this activity

Note

You can find all code files for this solution at https://packt.link/GgEPO.

https://packt.link/GgEPO


Chapter 5: Rendering Lists & Conditional Content | 469

Activity 5.2: Outputting a List of Products

Solution:

Perform the following steps to complete this activity:

1.	 Create a new React project and remove the default JSX code returned by the 
App component. Instead, return a <section> that contains both a <button> 
(which will later be used to add a new product) and an (empty) <ul> element:

import { useState } from 'react';

function App() {

  return (

    <section>

      <button>Add Product</button>

      <ul></ul>

    </section>

  );

}

export default App;

2.	 Add an array of initial dummy products to the App component. Use this 
array as the initial value for the products state that must be added to the 
App component:

import { useState } from 'react';

const INITIAL_PRODUCTS = [

  { id: 'p1', title: 'React - The Complete Guide [Course]', price: 
19.99 },
  { id: 'p2', title: 'Stylish Chair', price: 329.49 },

  { id: 'p3', title: 'Ergonomic Chair', price: 269.99 },

  { id: 'p4', title: 'History Video Game Collection', price: 99.99 },

];

function App() {

  const [products, setProducts] = useState(INITIAL_PRODUCTS);

  return (

    <section>

      <button>Add Product</button>



470 | Appendix

      <ul></ul>

    </section>

  );

}

export default App;

3.	 Output the list of products as part of the returned JSX code:

import { useState } from 'react';

const INITIAL_PRODUCTS = [

  { id: 'p1', title: 'React - The Complete Guide [Course]', price: 
19.99 },
  { id: 'p2', title: 'Stylish Chair', price: 329.49 },

  { id: 'p3', title: 'Ergonomic Chair', price: 269.99 },

  { id: 'p4', title: 'History Video Game Collection', price: 99.99 },

];

function App() {

  const [products, setProducts] = useState(INITIAL_PRODUCTS);

  return (

    <section>

      <button>Add Product</button>

      <ul>

        {products.map((product) => (

          <li key={product.id}>

            {product.title} (${product.price})

          </li>

        ))}

      </ul>

    </section>

  );

}

export default App;



Chapter 5: Rendering Lists & Conditional Content | 471

4.	 This example uses the map() method, but you could also use a for loop to 
populate an array with JSX elements, and then output that array as part of 
the JSX code. It's also up to you whether you create and output the list of JSX 
elements inline (that is, directly inside of the returned JSX code) or with the help 
of a separate variable or constant.

5.	 Add a click event handler to the <button>. Also, add a new function that 
is triggered upon click events on the button. Inside the function, update the 
products state such that a new (dummy) product is added. For the id value 
of that product, you can generate a pseudo-unique id by using a new Date().
toString():

import { useState } from 'react';

const INITIAL_PRODUCTS = [

  { id: 'p1', title: 'React - The Complete Guide [Course]', price: 
19.99 },
  { id: 'p2', title: 'Stylish Chair', price: 329.49 },

  { id: 'p3', title: 'Ergonomic Chair', price: 269.99 },

  { id: 'p4', title: 'History Video Game Collection', price: 99.99 },

];

function App() {

  const [products, setProducts] = useState(INITIAL_PRODUCTS);

  function addProductHandler() {

    setProducts((curProducts) =>

      curProducts.concat({

        id: new Date().toString(),

        title: 'Another new product',

        price: 15.99,

      })

    );

  }

  return (

    <section>

      <button onClick={addProductHandler}>Add Product</button>

      <ul>

        {products.map((product) => (

          <li key={product.id}>



472 | Appendix

            {product.title} (${product.price})

          </li>

        ))}

      </ul>

    </section>

  );

}

export default App;

The final user interface should look and work as shown here:

Figure 5.10: The final user interface of this activity

Note

You can find all code files for this solution at https://packt.link/XaL84.

https://packt.link/XaL84


Chapter 6: Styling React Apps | 473

Chapter 6: Styling React Apps

Activity 6.1: Providing Input Validity Feedback upon Form Submission

Solution:

Perform the following steps to complete this activity:

1.	 Create a new React project and add a Form component function in a 
components/Form.js file in the project. 

2.	 Export the component and import it into App.js.

3.	 Output the <Form /> component as part of App's JSX code.

4.	 In the component, output a <form> that contains two <input> elements as 
well as <label>  elements that belong to those input elements—one input for 
entering an email address and another input for entering a password.

5.	 Add a <button> element that submits the form:

function Form() {

  return (

    <form>

      <div>

        <label htmlFor="email">

          Your email

        </label>

        <input

          id="email"

          type="email"

        />

      </div>

      <div>

        <label htmlFor="password">

          Your password

        </label>

        <input

          id="password"

          type="password"

        />

      </div>

      <button>Submit</button>

    </form>



474 | Appendix

  );

}

export default Form;

6.	 Add state and event handler functions to register and store entered email and 
password values:

import { useState } from 'react';

function Form() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [enteredPassword, setEnteredPassword] = useState('');

  function changeEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function changePasswordHandler(event) {

    setEnteredPassword(event.target.value);

  }

  return (

    <form>

      <div>

        <label htmlFor="email">

          Your email

        </label>

        <input

          id="email"

          type="email"

          onChange={changeEmailHandler}

        />

      </div>

      <div>

        <label htmlFor="password">

          Your password

        </label>

        <input

          id="password"

          type="password"

          onChange={changePasswordHandler}

        />

      </div>

      <button>Submit</button>

    </form>



Chapter 6: Styling React Apps | 475

  );

}

export default Form;

7.	 Add a form submission handler function to Form.

8.	 Inside that function, validate the entered email and password values (with 
any validation logic of your choosing).

The validation results (true or false) for the two input fields are then 
stored in two new state slices (one for the email's validity and one for the 
password's validity):

import { useState } from 'react';

function Form() {

  const [enteredEmail, setEnteredEmail] = useState('');

  const [emailIsValid, setEmailIsValid] = useState(true);

  const [enteredPassword, setEnteredPassword] = useState('');

  const [passwordIsValid, setPasswordIsValid] = useState(true);

  function changeEmailHandler(event) {

    setEnteredEmail(event.target.value);

  }

  function changePasswordHandler(event) {

    setEnteredPassword(event.target.value);

  }

  function submitFormHandler(event) {

    event.preventDefault();

    const emailIsValid = enteredEmail.includes('@');

    const passwordIsValid = enteredPassword.trim().length >= 6;

    setEmailIsValid(emailIsValid);

    setPasswordIsValid(passwordIsValid);

    if (!emailIsValid || !passwordIsValid) {

      return;

    }

    // do something...

    console.log('Inputs are valid, form submitted!');

  }

  return (

    <form onSubmit={submitFormHandler}>

      <div>

        <label htmlFor="email">

          Your email



476 | Appendix

        </label>

        <input

          id="email"

          type="email"

          onChange={changeEmailHandler}

        />

      </div>

      <div>

        <label htmlFor="password">

          Your password

        </label>

        <input

          id="password"

          type="password"

          onChange={changePasswordHandler}

        />

      </div>

      <button>Submit</button>

    </form>

  );

}

export default Form;

9.	 Use the validation result state values to conditionally add the invalid CSS class 
(defined in index.css) to the <label> and <input> elements:

function Form() {

  // ... code didn't change, hence omitted ...

  return (

    <form onSubmit={submitFormHandler}>

      <div>

        <label htmlFor="email" className={!emailIsValid && 
'invalid'}>
          Your email

        </label>

        <input

          id="email"

          type="email"

          onChange={changeEmailHandler}

          className={!emailIsValid && 'invalid'}

        />

      </div>



Chapter 6: Styling React Apps | 477

      <div>

        <label htmlFor="password" className={!passwordIsValid && 
'invalid'}>
          Your password

        </label>

        <input

          id="password"

          type="password"

          onChange={changePasswordHandler}

          className={!passwordIsValid && 'invalid'}

        />

      </div>

      <button>Submit</button>

    </form>

  );

}

This example does not use CSS Modules; hence, the CSS classes are added as 
string values and no special CSS import syntax is used here.

The final user interface should look like this:

Figure 6.7: The final user interface with invalid input values highlighted in red

Note

You will find all code files used for this solution at https://packt.link/1iAe9.

https://packt.link/1iAe9


478 | Appendix

Activity 6.2: Using CSS Modules for Style Scoping

Solution:

Perform the following steps to complete this activity:

1.	 Finish Activity 6.01 or use the provided code on GitHub.

2.	 Identify all Form-related CSS rules defined in index.css. The relevant rules 
are as follows:

Figure 6.8: Table for Form-related CSS rules

You could, of course, argue that the form, input, label, and button styles 
should be global styles because you might have multiple forms (and inputs, 
labels, and buttons) in your app—not just in the Form component. This would 
be a valid argument, especially for bigger apps. However, in this demo, all these 
styles are only used in the Form component and therefore should be migrated.

3.	 Cut the identified styles from index.css and add them into a newly created 
components/Form.module.css file. The file must end with .module.
css to enable the CSS Modules feature. Since CSS Modules need class selectors, 
all selectors that don't use classes right now must be changed so that form { 
... } becomes .form { ... }, input { ... } becomes .input { 
... }, and so on.

The leading dots (.) matter because the dot is what defines a CSS class selector. 
The class names are up to you and don't have to be .form, .input, and so 
on. Use any class names of your choice, but you must migrate all non-class 
selectors to class selectors. For consistency, input.invalid is also changed to 
.input.invalid and label.invalid is changed to .label.invalid. 



Chapter 6: Styling React Apps | 479

The finished Form.module.css file looks like this:

.form {

  max-width: 30rem;

  margin: 2rem auto;

  padding: 1rem;

  border-radius: 6px;

  text-align: center;

  background-color: #eee8f8;

}

.input {

  display: block;

  width: 100%;

  font: inherit;

  padding: 0.5rem;

  margin-bottom: 0.5rem;

  font-size: 1.25rem;

  border-radius: 4px;

  background-color: #f9f6fc;

  border: 1px solid #ccc;

}

.label {

  display: block;

  margin-bottom: 0.5rem;

}

.button {

  cursor: pointer;

  font: inherit;

  padding: 0.5rem 1.5rem;

  background-color: #310485;

  color: white;

  border: 1px solid #310485;

  border-radius: 4px;

}

.button:hover {

  background-color: #250364;

}

.label.invalid {

  font-weight: bold;

  color: #ce0653;



480 | Appendix

}

.input.invalid {

  background-color: #fcbed6;

  border-color: #ce0653;

}

4.	 Import Form.module.css into the Form.js file as follows:

import classes from './Form.module.css';.

5.	 Assign the defined and imported classes to the appropriate JSX elements. Keep 
in mind that you must use the imported classes object to access the class 
names since the final class names are unknown to you (they transformed during 
the build process). For example, <button> receives its class (.button) like 
this: <button className={classes.button}>. For the conditional 
classes (the .invalid classes), the final code looks as follows: 

<label

  htmlFor="email"

  className={

      !emailIsValid ? `${classes.label} ${classes.invalid}` : 
classes.label
    }

  >

  Your email

</label>

6.	 Work with extra variables that store the ternary expressions (or replace them 
using if statements) to reduce the amount of logic injected into the JSX code. 

The final Form.js file looks like this:

import { useState } from 'react';

import classes from './Form.module.css';

function Form() {

  // ... other code – did not change ...

  return (

    <form className={classes.form} onSubmit={submitFormHandler}>

      <div>

        <label

          htmlFor="email"

          className={

            !emailIsValid

              ? `${classes.label} ${classes.invalid}`



Chapter 6: Styling React Apps | 481

              : classes.label

          }

        >

          Your email

        </label>

        <input

          id="email"

          type="email"

          onChange={changeEmailHandler}

          className={

            !emailIsValid

              ? `${classes.input} ${classes.invalid}`

              : classes.input

          }

        />

      </div>

      <div>

        <label

          htmlFor="password"

          className={

            !passwordIsValid

              ? `${classes.label} ${classes.invalid}`

              : classes.label

          }

        >

          Your password

        </label>

        <input

          id="password"

          type="password"

          onChange={changePasswordHandler}

          className={

            !passwordIsValid

              ? `${classes.input} ${classes.invalid}`

              : classes.input

          }

        />

      </div>

      <button className={classes.button}>Submit</button>

    </form>



482 | Appendix

  );

}

export default Form;

As explained above, the final user interface will look the same on the surface as that 
of the previous activity:

Figure 6.9: The final user interface with invalid input values highlighted in red

Test your new interface to see CSS scoped styles in action.

Note

You will find all code files used for this solution at https://packt.link/fPvg1.

https://packt.link/fPvg1


Chapter 7: Portals & Refs | 483

Chapter 7: Portals & Refs

Activity 7.1: Extract User Input Values

Solution:

After downloading the code and running npm install in the project folder 
(to install all the required dependencies), the solution steps are as follows:

1.	 Inside the Form component, create two ref objects via useRef(). Make sure 
that you don't forget to run import { useRef } from 'react':

import { useRef } from 'react';

function Form() {

  const nameRef = useRef();

  const programRef = useRef();

 

  // ... other code ...

}

2.	 Still in the Form component, connect the ref objects to their respective JSX 
elements (<input> and <select>) via the special ref prop:

return (

  <form onSubmit={formSubmitHandler}>

    <div className="form-control">

      <label htmlFor="name">Your name</label>

      <input type="text" id="name" ref={nameRef} />

    </div>

    <div className="form-control">

      <label htmlFor="program">Choose your program</label>

      <select id="program" ref={programRef}>

        <option value="basics">The Basics</option>

        <option value="advanced">Advanced Concepts</option>

        <option value="mastery">Mastery</option>

      </select>

    </div>

    <button>Submit</button>

  </form>

);



484 | Appendix

3.	 In the formSubmitHandler function, extract the entered values by accessing 
the connected ("stored") DOM elements via the special current property on 
the ref object. Also output the extracted values to the console via console.
log():

function formSubmitHandler(event) {

  event.preventDefault();

  const enteredName = nameRef.current.value;

  const selectedProgram = programRef.current.value;

  console.log('Entered Name: ' + enteredName);

  console.log('Selected Program: ' + selectedProgram);

}

The expected result (user interface) should look like this:

Figure 7.11: The browser developer tools console outputs the selected values

Note

You will find all code files used for this solution at https://packt.link/RnnoT.

https://packt.link/RnnoT


Chapter 7: Portals & Refs | 485

Activity 7.2: Add a Side-Drawer

Solution:

After downloading the code and running npm install to install all the required 
dependencies, the solution steps are as follows:

1.	 Add the conditional rendering logic by adding a drawerIsOpen state (via 
useState()) to the MainNavigation component. Set the state to false 
initially and in a function that should later be executed whenever the backdrop is 
clicked, while setting the state to true in a function that is executed upon a click 
of the menu button:

import { useState } from 'react';

import SideDrawer from './SideDrawer';

import classes from './MainNavigation.module.css';

function MainNavigation() {

  const [drawerIsOpen, setDrawerIsOpen] = useState(false);

  function openDrawerHandler() {

    setDrawerIsOpen(true);

  }

  function closeDrawerHandler() {

    setDrawerIsOpen(false);

  }

  return (

    <>

      <header className={classes.header}>

        <h1>Demo App</h1>

        <button className={classes.btn} onClick={openDrawerHandler}>

          <div />

          <div />

          <div />

        </button>



486 | Appendix

      </header>

      {drawerIsOpen && <SideDrawer />}

    </>

  );

}

export default MainNavigation;

2.	 Pass a pointer to the closeDrawerHandler function to the SideDrawer 
component (here, this is via a prop called onClose: <SideDrawer 
onClose={closeDrawerHandler} />) and execute that function inside 
the SideDrawer component whenever the <div> backdrop is clicked:

import classes from './SideDrawer.module.css';

function SideDrawer({ onClose }) {

  return (

    <>

      <div className={classes.backdrop} onClick={onClose} />

      <aside className={classes.drawer}>

        <nav>

          <ul>

            <li>

              <a href="/">Dashboard</a>

            </li>

            <li>

              <a href="/products">All Products</a>

            </li>

            <li>

              <a href="/profile">Your Profile</a>

            </li>

          </ul>

        </nav>

      </aside>

    </>

  );

}

export default SideDrawer;



Chapter 7: Portals & Refs | 487

3.	 To control where the side drawer JSX elements are inserted into the DOM, use 
React's portal feature. As a first step, add an "injection hook" to the public/
index.html file:

<body>

  <noscript>You need to enable JavaScript to run this app.</noscript>

  <div id="root"></div>

  <div id="drawer"></div>

</bod>

4.	 In this case, <div id="drawer"> was inserted at the end of the <body> 
element to make sure that it would be positioned (visually) above any other 
overlays that might exist.

5.	 Use the newly added hook (<div id="drawer">) and the createPortal() 
function of react-dom inside the SideDrawer component to instruct React to 
render the component's JSX code in this specific place in the DOM:

import { createPortal } from 'react-dom';

import classes from './SideDrawer.module.css';

function SideDrawer({ onClose }) {

  return createPortal(

    <>

      <div className={classes.backdrop} onClick={onClose} />

      <aside className={classes.drawer}>

        <nav>

          <ul>

            <li>

              <a href="/">Dashboard</a>

            </li>

            <li>

              <a href="/products">All Products</a>

            </li>

            <li>

              <a href="/profile">Your Profile</a>

            </li>

          </ul>

        </nav>

      </aside>

    </>,



488 | Appendix

    document.getElementById('drawer')

  );

}

export default SideDrawer;

The final user interface should look and behave like this:

Figure 7.12: A click on the menu button opens the side drawer

Upon clicking on the menu button, the side drawer opens. If the backdrop behind the 
side drawer is clicked, it should close again.



Chapter 7: Portals & Refs | 489

The final DOM structure (with the side drawer opened) should look like this:

Figure 7.13: The drawer-related elements are inserted in a separate place in the DOM

The side drawer-related DOM elements (the <div> backdrop and <aside>) are 
inserted into a separate DOM node (<div id="drawer">).

Note

You will find all code files used for this solution at https://packt.link/APvHg.

https://packt.link/APvHg


490 | Appendix

Chapter 8: Handling Side Effects

Activity 8.1: Building a Basic Blog

Solution:

After downloading the code and running npm install in the project folder to 
install all required dependencies, the solution steps are as follows:

1.	 Inside the NewPost component, in the submitHandler function, use the 
fetch() function to send a POST request to https://jsonplaceholder.typicode.com/
posts:

function submitHandler(event) {

  event.preventDefault();

  fetch('https://jsonplaceholder.typicode.com/posts', {

    method: 'POST',

    body: JSON.stringify({ title: enteredTitle }),

  });

}

You can confirm that everything works as intended and view the network 
request in the browser developer tools via the Network tab:

Figure 8.10: The network request is sent successfully

https://jsonplaceholder.typicode.com/posts
https://jsonplaceholder.typicode.com/posts


Chapter 8: Handling Side Effects | 491

useEffect() is not required for this outgoing request because the HTTP 
request is not triggered when the component function is invoked but rather 
when the form is submitted. Indeed, if you tried to use useEffect() for 
this request, you'd have to get creative as using useEffect() inside of 
submitHandler violates the rules of Hooks.

2.	 To fetch blog posts when the app is rendered, you should import useEffect 
from react in App.js. Thereafter, inside the App component, call 
useEffect() directly in the component function and pass an effect function 
(an empty function for now) and an empty dependencies array to the effect:

import { useEffect } from 'react';

import BlogPosts from './components/BlogPosts';

import NewPost from './components/NewPost';

function App() {

  useEffect(function () {}, []);

  return (

    <>

      <NewPost />

      <BlogPosts />

    </>

  );

}

export default App;

3.	 Inside the effect function (in the App component), send a GET request via the 
fetch() function to https://jsonplaceholder.typicode.com/posts. To extract the 
response and response data in a convenient way, wrap the HTTP request code 
in a separate async function loadPosts (defined as part of the effect 
function), which is called in the effect function. await both the response as well 
as the data extracted from the response (via the json() method):

useEffect(function () {

  async function loadPosts() {

    const response = await fetch(

      'https://jsonplaceholder.typicode.com/posts'

    );

https://jsonplaceholder.typicode.com/posts


492 | Appendix

    const blogPosts = await response.json();

  }

  loadPosts();

}, []);

Keep in mind that the effect function itself must not be turned into an async 
function since it must not return a promise.

4.	 Add a state value (named loadedPosts here) to the App component and set 
the state value from inside loadPosts() (the function in the effect function) 
to the fetched blogPosts value. Pass the loadedPosts state value to 
<BlogPosts> via props (for example, via a posts prop):

import { useState, useEffect } from 'react';

import BlogPosts from './components/BlogPosts';

import NewPost from './components/NewPost';

function App() {

  const [loadedPosts, setLoadedPosts] = useState([]);

  useEffect(function () {

    async function loadPosts() {

      const response = await fetch(

        'https://jsonplaceholder.typicode.com/posts'

      );

      const blogPosts = await response.json();

      setLoadedPosts(blogPosts);

    }

    loadPosts();

  }, []);

  return (

    <>

      <NewPost />

      <BlogPosts posts={loadedPosts} />

    </>

  );



Chapter 8: Handling Side Effects | 493

}

export default App;

5.	 Inside of BlogPosts, render the list of blog posts received via props by 
mapping all blog post list items to <li> elements. Output the blog post titles in 
the list:

function BlogPosts({ posts }) {

  return (

    <ul className={classes.posts}>

      {posts.map((post) => (

        <li key={post.id}>{post.title}</li>

      ))}

    </ul>

  );

}

6.	 For the bonus task, inside of the NewPost component, add a new state value 
called isSendingRequest via useState(). Set the state to true right 
before the POST HTTP request is sent and to false thereafter. Wait for the 
request to complete by turning submitHandler into an async function and 
await the fetch() function call:

import { useState } from 'react';

import classes from './NewPost.module.css';

function NewPost() {

  const [enteredTitle, setEnteredTitle] = useState('');

  const [isSendingRequest, setIsSendingRequest] = useState(false);

  function updateTitleHandler(event) {

    setEnteredTitle(event.target.value);

  }

  async function submitHandler(event) {

    event.preventDefault();

    setIsSendingRequest(true);

    await fetch('https://jsonplaceholder.typicode.com/posts', {



494 | Appendix

      method: 'POST',

      body: JSON.stringify({ title: enteredTitle }),

    });

    setIsSendingRequest(false);

    setEnteredTitle('');

  }

  // JSX code didn't change…

}

export default NewPost;

7.	 Still inside NewPost, set the <button> caption conditionally based on 
isSendingRequest to either show "Saving..." (if isSendingRequest is 
true) or "Save":

return (

  <form onSubmit={submitHandler} className={classes.form}>

    <div>

      <label>Title</label>

      <input 

        type="text" 

        onChange={updateTitleHandler} 

        value={enteredTitle} />

    </div>

    <button disabled={isSendingRequest}>

      {isSendingRequest ? 'Saving...' : 'Save'}

    </button>

  </form>

);



Chapter 8: Handling Side Effects | 495

The expected result should be a user interface that looks like this:

Figure 8.11: The final user interface

Note

All code files used for this solution can be found at https://packt.link/NoEZz.

https://packt.link/NoEZz


496 | Appendix

Chapter 9: Behind the Scenes of React & Optimization Opportunities 

Activity 9.1: Optimize An Existing App

Solution:

Naturally, for an activity like this, chances are high that every developer comes up 
with different ideas for optimizing the app. And indeed, there will be more than one 
correct solution. Below, you will find solution steps describing the optimizations I 
would implement. Definitely feel free to go beyond those steps. For example, in the 
solution provided below, the code structure will not be changed (that is, components 
will not be broken apart, etc.). You could absolutely consider such measures as 
well though.

Four areas of possible improvement were identified for this solution:

•	 In the Authentication component, the app allows for switching between 
the Login and Signup forms. While the Login form is always loaded (it's the 
first thing every page visitor sees), the Signup area will not always be needed—
existing users will very likely not create a new account after all. Therefore, 
loading the code for Signup lazily makes sense, especially since the Signup 
component also internally uses the Validation component, which is rather 
complex and even includes a third-party package (react-icons). Being able 
to load all that code only when it's needed ensures that the initially loaded code 
bundle is kept lean.

•	 In the Validation component, both the email addresses and the password 
are validated. While the email validation is relatively simple and straightforward, 
validating the password involves various regular expressions (that is, matching 
for text patterns). Avoiding unnecessary execution of the password validation 
code therefore makes sense.

•	 In addition, the Validation component function will be re-executed whenever 
the Signup component function is invoked. Since Signup also includes 
state for conditionally showing or hiding extra information (via the More 
Information button), ensuring that the Validation component is not 
re-evaluated unnecessarily is another important step.



Chapter 9: Behind the Scenes of React & Optimization Opportunities  | 497

•	 The last identified area of improvement can be found in the Login component. 
There, the ResetPassword component code should only be loaded when it's 
needed. Typically, resetting a password involves quite a bit of code and logic 
(for example, asking a security question, checking for bots, etc.), therefore only 
loading that code when it's really needed makes sense, especially since most 
users will not need that feature for most of their visits.

As mentioned, you could identify other areas of improvement as well. However, as 
explained throughout this chapter, you should be careful not to overoptimize.

Below are the solution steps to tackle the four problems described above:

1.	 To load the Signup component lazily (in the Authentication component), 
you must import two things from react: the lazy() function and the 
Suspense component:

import { useState, lazy, Suspense } from 'react';

2.	 As a next step, the Signup component import (import Signup from 
'./Signup/Signup') should be removed from Authentication.js. 
Instead, add code to store the lazy-loaded component in a variable or constant 
named Signup:

const Signup = lazy(() => import('./Signup/Signup'));

3.	 It's important that the variable or constant is called Signup, not signup. It 
must start with a capital character since it's used as a JSX element.

4.	 This constant can now be used like a component in your JSX code. However, 
since it's loaded lazily, the component must be wrapped with the imported 
Suspense component (in Authentication's returned JSX code). The 
Suspense component also needs a fallback JSX element (for example, 
<p>Loading…</p>, passed to Suspense via its fallback prop). 
The final Authentication component looks like this:

import { useState, lazy, Suspense } from 'react';

import Login from './Login/Login';

import classes from './Authentication.module.css';

const Signup = lazy(() => import('./Signup/Signup'));



498 | Appendix

function Authentication() {

  const [mode, setMode] = useState('login');

  function switchAuthModeHandler() {

    setMode((prevMode) => (prevMode === 'login' ? 'signup' : 
'login'));
  }

  let authElement = <Login />;

  let switchBtnCaption = 'Create a new account';

  if (mode !== 'login') {

    authElement = <Signup />;

    switchBtnCaption = 'Login instead';

  }

  return (

    <div className={classes.auth}>

      <h1>You must authenticate yourself first!</h1>

      <Suspense fallback={<p>Loading...</p>}>{authElement}</Suspense>

      <button 

        className={classes.btn}

        onClick={switchAuthModeHandler}>

          {switchBtnCaption}

      </button>

    </div>

  );

}

export default Authentication;

5.	 Next, in order to avoid unnecessary code execution in the Validation 
component, start by importing the useMemo() Hook from react (in the 
Validation.js file):

import { useMemo } from 'react';



Chapter 9: Behind the Scenes of React & Optimization Opportunities  | 499

6.	 Use the useMemo() Hook to wrap the password validation code (the code 
between lines 12 to 20 in Validation.js) with it. Extract that code into an 
anonymous function that is passed as a first argument to useMemo(). Make 
sure to return an object that groups the three-password validation Booleans 
together. Also, pass a second argument to useMemo(). It's the dependencies 
array and should contain the password variable, since changes to password 
should cause the code to execute again. As a last step, store the value returned 
by useMemo() in the passwordValidityData constant. The final code 
looks like this:

const passwordValidityData = useMemo(() => {

  const pwHasMinLength = password.length >= 8;

  const pwHasMinSpecChars = specCharsRegex.test(password);

  const pwHasMinNumbers = numberRegex.test(password);

  return {

    length: pwHasMinLength,

    specChars: pwHasMinSpecChars,

    numbers: pwHasMinNumbers,

  };

}, [password]);

7.	 To ensure that the Validation component function itself is not executed 
unnecessarily, wrap it with React's memo() function. To do this, as a first step, 
import memo from react (still in Validation.js):

import { useMemo, memo } from 'react';

8.	 Thereafter, wrap the exported Validation function with memo():

export default memo(Validation);

9.	 To improve the code in the Login component, add lazy loading for the 
ResetPassword component. As a first step, import both lazy and Suspense 
from react (in Login.js):

import { useState, lazy, Suspense } from 'react';

10.	Next, replace the ResetPassword import with a constant or variable that 
stores the result of calling lazy() and passing a dynamic import function to it:

const ResetPassword = lazy(() => import('./ResetPassword));



500 | Appendix

11.	 Finally, wrap ResetPassword in your JSX code with React's Suspense 
component and pass an appropriate fallback element (e.g., <p>Loading…</
p>) to Suspense. The final Login component function looks like this:

import { useState, lazy, Suspense } from 'react';

const ResetPassword = lazy(() => import('./ResetPassword'));

function Login() {

  const [isResetting, setIsResetting] = useState();

  function loginHandler(event) {

    event.preventDefault();

  }

  function startResetPasswordHandler() {

    setIsResetting(true);

  }

  function finishResetPasswordHandler() {

    setIsResetting(false);

  }

  return (

    <>

      <form onSubmit={loginHandler}>

        <div className="form-control">

          <label htmlFor="email">Email</label>

          <input id="email" type="email" />

        </div>

        <div className="form-control">

          <label htmlFor="password">Password</label>

          <input id="password" type="password" />

        </div>

        <button className="main-btn">Login</button>

      </form>

      <button className="alt-btn" onClick={startResetPasswordHandler}>

        Reset password



Chapter 9: Behind the Scenes of React & Optimization Opportunities  | 501

      </button>

      <Suspense fallback={<p>Loading...</p>}>

        {isResetting && <ResetPassword 

                          onFinish={finishResetPasswordHandler} />}

      </Suspense>

    </>

  );

}

export default Login;

You can tell that you came up with a good solution and sensible adjustments if 
you can see extra code fetching network requests (in the Network tab of your 
browser developer tools) for clicking on the Reset password or Create a new 
account buttons:

Figure 9.22: In the final solution, some code is lazy loaded

In addition, you should see no Validated password. console message when typing 
into the email input fields (Email and Confirm Email) of the signup form (that is, 
the form you switch to when clicking Create a new account):

Figure 9.23: No "Validated password." output in the console



502 | Appendix

You also shouldn't get any console outputs when clicking the More 
Information button:

Figure 9.24: No console messages when clicking "More Information"

Note

All code files used for this solution can be found at https://packt.link/gBNHd.

https://packt.link/gBNHd


Chapter 10: Working with Complex State | 503

Chapter 10: Working with Complex State

Activity 10.1: Migrating an App to the Context API

Solution:

Perform the following solution steps to complete this activity:

1.	 As a first step, create a store/cart-context.js file. This file will hold 
the context object and the Provider component that contains the cross-
component state logic (which is exposed via the Provider component).

2.	 In the newly added cart-context.js file, create a new CartContext 
via React's createContext() function. To get better IDE auto-completion, 
the initial context value can be set to an object that has an items property 
(an empty array) and two methods: an (empty) addItem and an (empty) 
removeItem method. The created context also must be exported, so that it 
can be referenced by other project files. 

This is the final cart-context.js file content (for the moment):

import { createContext } from 'react';

const CartContext = createContext({

  items: [],

  addItem: () => {},

  removeItem: () => {},

});

export default CartContext;



504 | Appendix

3.	 To provide the context, the CartContext.Provider component will be 
used. To manage the cross-component state in a central place (and not bloat 
any other component with that logic), you should add an extra React component 
to the cart-context.js file: a CartContextProvider component. That 
component returns its children (i.e., content passed between its opening and 
closing tags), wrapped by CartContext.Provider:

export function CartContextProvider({ children }) {

  return (

    <CartContext.Provider>

      {children}

    </CartContext.Provider>

  );

}

4.	 The Provider component requires a value prop. That value prop contains 
the actual value that is distributed to all components that subscribe to the 
context. In this project, the value prop is set equal to an object that contains 
an items property and the two methods defined in the initial context value 
previously (in Step 2). The two methods (addItem and removeItem) are empty 
named functions for the moment but will be populated with logic over the next 
steps, as follows:

export function CartContextProvider({ children }) {

  function addItemHandler(item) {

    // to be added ...

  }

  function removeItemHandler(itemId) {

    // to be added ...

  }

  const contextVal = {

    items: cartItems,

    addItem: addItemHandler,

    removeItem: removeItemHandler

  }

  return (

    <CartContext.Provider value={contextVal}>

      {children}



Chapter 10: Working with Complex State | 505

    </CartContext.Provider>

  );

}

5.	 To make the context value dynamic, the CartContextProvider component 
must start managing state (via useState()) and distribute that state via the 
context value. In order to trigger state updates, appropriate logic must be added 
to addItemHandler and removeItemHandler. The final cart-context.
js file therefore contains the following code:

import { createContext, useState } from 'react';

const CartContext = createContext({

  items: [],

  addItem: () => {},

  removeItem: () => {},

});

export function CartContextProvider({ children }) {

    const [cartItems, setCartItems] = useState([]);

  function addItemHandler(item) {

    setCartItems((prevItems) => [...prevItems, item]);

  }

  function removeItemHandler(itemId) {

    setCartItems(

      (prevItems) => prevItems.filter((item) => item.id !== itemId)

    );

  }

  const contextVal = {

    items: cartItems,

    addItem: addItemHandler,

    removeItem: removeItemHandler

  }

  return (

    <CartContext.Provider value={contextVal}>

      {children}

    </CartContext.Provider>



506 | Appendix

  );

}

export default CartContext;

6.	 Now that all cross-component state management logic has been moved into the 
CartContextProvider component, that code must be removed from the 
App component (where cross-component state was managed before, when it 
was lifted up). 

You also must remove all props (and their usage) that were used for passing 
cart-item-related state down to other components. For the moment, the App 
component looks like this:

import Events from './components/Events/Events';

import MainHeader from './components/MainHeader/MainHeader';

function App() {

  return (

    <>

      <MainHeader />

      <main>

        <Events />

      </main>

    </>

  );

}

export default App;

7.	 The CartContextProvider component must be wrapped around that part 
of the overall application component tree that needs access to the context. In 
this example app, that means that all JSX code in the App.js file should be 
wrapped (since both MainHeader and the Events component need access to 
the context value):

import Events from './components/Events/Events';

import MainHeader from './components/MainHeader/MainHeader';

import { CartContextProvider } from './store/cart-context';

function App() {

  return (

    <>



Chapter 10: Working with Complex State | 507

      <CartContextProvider>

        <MainHeader />

        <main>

          <Events />

        </main>

      </CartContextProvider>

    </>

  );

}

export default App;

8.	 Now, all components that need context access (either for reading the context 
value or for calling one of the exposed context value methods) can subscribe 
to the context via React's useContext() Hook. In this example project, 
the MainHeader, EventItem, and Cart components need access. The 
MainHeader component therefore uses the useContext() Hook (and the 
received context value) like this:

import { useContext, useState } from 'react';

import CartContext from '../../store/cart-context';

import Cart from '../Cart/Cart';

import classes from './MainHeader.module.css';

function MainHeader({ cartItems }) {

  const cartCtx = useContext(CartContext);

  const [modalIsOpen, setModalIsOpen] = useState();

  function openCartModalHandler() {

    setModalIsOpen(true);

  }

  function closeCartModalHandler() {

    setModalIsOpen(false);

  }

  const numCartItems = cartCtx.items.length;

  return (

    <>



508 | Appendix

      <header className={classes.header}>

        <h1>StateEvents Shop</h1>

        <button onClick={openCartModalHandler}>Cart 
({numCartItems})</button>
      </header>

      {modalIsOpen && <Cart onClose={closeCartModalHandler} />}

    </>

  );

}

export default MainHeader;

9.	 Ensure the EventItem component looks like this:

import { useContext } from 'react';

import CartContext from '../../store/cart-context';

import classes from './EventItem.module.css';

function EventItem({ event }) {

  const cartCtx = useContext(CartContext);

  const isInCart = cartCtx.items.some((item) => item.id === event.
id);

  let buttonCaption = 'Add to Cart';

  let buttonAction = () => cartCtx.addItem(event);

  if (isInCart) {

    buttonCaption = 'Remove from Cart';

    buttonAction = () => cartCtx.removeItem(event.id);

  }

  return (

    <li className={classes.event}>

      <img src={event.image} alt={event.title} />

      <div className={classes.content}>

        <h2>{event.title}</h2>

        <p className={classes.price}>${event.price}</p>

        <p>{event.description}</p>

        <div className={classes.actions}>

          <button onClick={buttonAction}>{buttonCaption}</button>



Chapter 10: Working with Complex State | 509

        </div>

      </div>

    </li>

  );

}

export default EventItem;

10.	And confirm that the Cart component contains this code:

import { useContext } from 'react';

import ReactDOM from 'react-dom';

import CartContext from '../../store/cart-context';

import classes from './Cart.module.css';

function Cart({ onClose }) {

  const cartCtx = useContext(CartContext);

  const total = cartCtx.items.reduce(

    (prevVal, item) => prevVal + item.price,

    0

  );

  return ReactDOM.createPortal(

    <>

      <div className={classes.backdrop} onClick={onClose} />

      <aside className={classes.cart}>

        <h2>Your Cart</h2>

        <ul>

          {cartCtx.items.map((item) => (

            <li key={item.id}>

              {item.title} (${item.price})

            </li>

          ))}

        </ul>

        <p className={classes.total}>Total: ${total}</p>

        <div className={classes.actions}>

          <button onClick={onClose}>Close</button>

          <button onClick={onClose}>Buy</button>

        </div>



510 | Appendix

      </aside>

    </>,

    document.getElementById('modal')

  );

}

export default Cart;

Note

All code files used for this activity can be found at https://packt.link/vjkCr.

Activity 10.2: Replacing useState() with useReducer()

Solution:

Perform the following solution steps to complete this activity:

1.	 Remove the existing logic in the Form component that uses the useState() 
Hook for state management. 

2.	 Import and use the useReducer() Hook in the Form component. For the 
moment, pass an empty (newly added) reducer function as a first argument 
to useReducer(). Make sure to create the reducer function outside of the 
component function. Also, pass an initial state value as the second argument to 
useReducer(). That initial value should be an object containing values and 
validity information for both the email and password fields. Overall, for the 
moment, the code in Form.js looks like this:

import { useReducer } from 'react';

import classes from './Form.module.css';

const initialFormState = {

  email: {

    value: '',

    isValid: false,

  },

  password: {

    value: '',

    isValid: false,

https://packt.link/vjkCr


Chapter 10: Working with Complex State | 511

  },

};

function formReducer(state, action) {

  // to be added

}

function Form() {

  useReducer(formReducer, initialFormState);

  const formIsValid = true; // will be changed!

  function changeEmailHandler(event) {

    const value = event.target.value;

  }

  function changePasswordHandler(event) {

    const value = event.target.value;

  }

  function submitFormHandler(event) {

    event.preventDefault();

    if (!formIsValid) {

      alert('Invalid form inputs!');

      return;

    }

    console.log('Good job!');

    console.log(formState.email.value, formState.password.value);

  }

  return (

    <form className={classes.form} onSubmit={submitFormHandler}>

      <div className={classes.control}>

        <label htmlFor="email">Email</label>

        <input id="email" type="email" onChange={changeEmailHandler} 
/>
      </div>

      <div className={classes.control}>

        <label htmlFor="password">Password</label>



512 | Appendix

        <input id="password" 

          type="password" onChange={changePasswordHandler} />

      </div>

      <button>Submit</button>

    </form>

  );

}

export default Form;

3.	 As the next step, fill the reducer function. It must handle two main types of 
actions: an email address change and a password change. In both cases, the 
state value must be updated appropriately (i.e., the newly entered value must 
be stored and the validity of the input must be derived and stored as well). You 
also must return a default value in case of unknown action types. The updated 
reducer function looks like this:

function formReducer(state, action) {

  if (action.type === 'EMAIL_CHANGE') {

    return {

      ...state,

      email: {

        value: action.payload,

        isValid: action.payload.includes('@'),

      },

    };

  }

  if (action.type === 'PASSWORD_CHANGE') {

    return {

      ...state,

      password: {

        value: action.payload,

        isValid: action.payload.trim().length > 7,

      },

    };

  }

  return initialFormState;

}



Chapter 10: Working with Complex State | 513

Please note that the type values you want to support ('EMAIL_CHANGE' and 
'PASSWORD_CHANGE' in the preceding snippet) are up to you. You can use any 
identifier values of your choice. You can also assign a different name to the type 
property (e.g., use action.identifier instead of action.type). Similarly, 
you can also use any other name than payload for the extra data required by 
the state updates. If you do choose different identifier values or property names, 
you must use the same values and names in the following steps.

4.	 Update the code where useReducer() is called. That Hook returns an array 
with exactly two elements: the current state value and a function that can 
be used for dispatching actions. Store both elements in different constants 
(or variables):

// ... more code ...

function Form() {

  const [formState, dispatch] = useReducer(formReducer, 
initialFormState);
  // ... more code ...

}

5.	 Dispatch the actions in the appropriate places. 'EMAIL_CHANGE' is dispatched 
in the changeEmailHandler function and 'PASSWORD_CHANGE' is 
dispatched in the changePasswordHandler function. Both actions also need 
payload data (the value entered by the user). Pass that data along with the action 
via the payload property:

// ... more code ...

function changeEmailHandler(event) {

  const value = event.target.value;

  dispatch({ type: 'EMAIL_CHANGE', payload: value });

}

function changePasswordHandler(event) {

  const value = event.target.value;

  dispatch({ type: 'PASSWORD_CHANGE', payload: value });

}

// ... more code ...



514 | Appendix

6.	 Lastly, use the state managed via useReducer() in all the places where it's 
needed (in the Form component) to derive the formIsValid Boolean and log 
(via console.log()) the entered values inside the submitFormHandler 
function. The finished Form component code looks like this:

function Form() {

  const [formState, dispatch] = useReducer(formReducer, 
initialFormState);

  const formIsValid = formState.email.isValid && formState.password.
isValid;

  function changeEmailHandler(event) {

    const value = event.target.value;

    dispatch({ type: 'EMAIL_CHANGE', payload: value });

  }

  function changePasswordHandler(event) {

    const value = event.target.value;

    dispatch({ type: 'PASSWORD_CHANGE', payload: value });

  }

  function submitFormHandler(event) {

    event.preventDefault();

    if (!formIsValid) {

      alert('Invalid form inputs!');

      return;

    }

    console.log('Good job!');

    console.log(formState.email.value, formState.password.value);

  }



Chapter 10: Working with Complex State | 515

  return (

    <form className={classes.form} onSubmit={submitFormHandler}>

      <div className={classes.control}>

        <label htmlFor="email">Email</label>

        <input id="email" type="email" onChange={changeEmailHandler} 
/>
      </div>

      <div className={classes.control}>

        <label htmlFor="password">Password</label>

        <input id="password" type="password" 
onChange={changePasswordHandler} />
      </div>

      <button>Submit</button>

    </form>

  );

}

Note

All code files used for this activity can be found at https://packt.link/Ua7VH.

https://packt.link/Ua7VH


516 | Appendix

Chapter 11: Building Custom React Hooks

Activity 11.1: Build a Custom Keyboard Input Hook

Solution:

Perform the following solution steps to complete this activity:

1.	 As a first step, create a hooks/use-key-event.js file. This file will hold the 
custom Hook function.

2.	 Create the useKeyEvent Hook function in the newly added use-key-
event.js file. Also, export the useKeyEvent function so that it can be used 
in other files (it will be used in the App component later):

function useKeyEvent() {

  // logic to be added...

}

export default useKeyEvent;

3.	 Move the useEffect() import and call (and all the logic inside of it) from the 
App component body to the useKeyEvent function body:

import { useEffect } from 'react';

function useKeyEvent() {

  useEffect(() => {

    function keyPressedHandler(event) {

      const pressedKey = event.key;

      if (!['s', 'c', 'p'].includes(pressedKey)) {

        alert('Invalid key!');

        return;

      }

      setPressedKey(pressedKey);

    }

    window.addEventListener('keydown', keyPressedHandler);

    return () => window.removeEventListener('keydown', 
keyPressedHandler);



Chapter 11: Building Custom React Hooks | 517

  }, []);

}

export default useKeyEvent;

4.	 Make sure to remove that useEffect() logic (and the useEffect import) 
from the App component file. At the moment, the useKeyEvent Hook won't 
work correctly as there are multiple problems:

•	 Inside the effect function, it's calling setPressedKey(pressedKey) 
without that function existing in the Hook function.

•	 The custom Hook does not communicate with the component in which it 
might be used. It should return the key that was pressed (after validating that 
it's an allowed key).

•	 The allowed keys ('s', 'c', and 'p') are hardcoded into the custom Hook.

These issues will be fixed over the next steps.

5.	 Start by adding state to the useKeyEvent Hook. Import and use useState to 
manage the pressedKey state:

import { useEffect, useState } from 'react';

function useKeyEvent() {

  const [pressedKey, setPressedKey] = useState();

  // ... unchanged rest of the code

}

6.	 Add a return statement at the end of the custom Hook function and return 
the pressedKey state value. Since it's the only value that must be returned, 
you don't need to group it into an array or object:

function useKeyEvent() {

  const [pressedKey, setPressedKey] = useState();

  useEffect(() => {

    // unchanged logic ...

  }, []);

  return pressedKey;

}



518 | Appendix

7.	 Make the Hook more reusable by converting the hardcoded list of allowed keys 
(['s', 'c', 'p']) to a parameter (allowedKeys) that is received and used 
by the useKeyEvent Hook function. Don't forget to add the parameter variable 
as a dependency to the useEffect() dependencies array since the value is 
used inside of useEffect(): 

import { useEffect, useState } from 'react';

function useKeyEvent(allowedKeys) {

  const [pressedKey, setPressedKey] = useState();

  useEffect(() => {

    function keyPressedHandler(event) {

      const pressedKey = event.key;

      if (!allowedKeys.includes(pressedKey)) {

        alert('Invalid key!');

        return;

      }

      setPressedKey(pressedKey);

    }

    window.addEventListener('keydown', keyPressedHandler);

    return () => window.removeEventListener('keydown', 
keyPressedHandler);
  }, [allowedKeys]);

  return pressedKey;

}

export default useKeyEvent;



Chapter 11: Building Custom React Hooks | 519

8.	 The custom Hook is now finished and hence can be used in other components. 
Import and use it in the App component like this:

import useKeyEvent from './hooks/use-key-event';

function App() {

  const pressedKey = useKeyEvent(['s', 'c', 'p']);

  let output = '';

  if (pressedKey === 's') {

    output = ' ';

  } else if (pressedKey === 'c') {

    output = ' ';

  } else if (pressedKey === 'p') {

    output = ' ';

  }

  return (

    <main>

      <h1>Press a key!</h1>

      <p>

        Supported keys: <kbd>s</kbd>, <kbd>c</kbd>, <kbd>p</kbd>

      </p>

      <p id="output">{output}</p>

    </main>

  );

}

export default App;

Note

All code files used for this activity can be found at https://packt.link/LzxOO.

https://packt.link/LzxOO


520 | Appendix

Chapter 12: Multipage Apps with React Router

Activity 12.1: Creating a Basic Three-Page Website
Solution:

Perform the following steps to complete this activity:

1.	 Create a new React project via npx create-react-app as explained in 
Chapter 1, React: What & Why?. Then, install the React Router library by running 
npm install react-router-dom inside the project folder.

2.	 For the three required pages, create three components: a Welcome component, 
a Products component, and a ProductDetail component. Store these 
components in files inside the src/routes folder since these components will 
only be used for routing.

For the Welcome component, enter the following code:

// src/routes/Welcome.js

function Welcome() {

  return (

    <main>

      <h1>Welcome to our shop!</h1>

      <p>

        Please explore our products or share this

        site with others.

      </p>

    </main>

  );

}

export default Welcome;

To create the Products component, run the following:

// src/routes/Products.js

import products from '../data/products';

function Products() {

  return (

    <main>



Chapter 12: Multipage Apps with React Router | 521

      <h1>Our Products</h1>

      <ul id="products-list">

        {products.map((product) => (

          <li key={product.id}>           

            {product.title} (${product.price})

          </li>

        ))}

      </ul>

    </main>

  );

}

export default Products;

The code for the ProductDetail component will look as follows:

// src/routes/ProductDetail.js

function ProductDetail() {

  return (

    <main>

      <h1>PRODUCT TITLE</h1>

      <p id="product-price">$PRODUCT PRICE</p>

      <p>PRODUCT DESCRIPTION</p>

    </main>

  );

}

export default ProductDetail;

3.	 At the moment, no routing logic has been added yet. Therefore, dummy 
content such as "PRODUCT TITLE" is output in ProductDetail. This will 
change later.

4.	 With the components added, it's time to add route definitions. For this, you 
must first enable React Router by importing and using the BrowserRouter 
component (in the App component):

import { BrowserRouter } from 'react-router-dom';

function App() {

  return (

    <BrowserRouter>



522 | Appendix

      // ...

    </BrowserRouter>

  );

}

export default App;

5.	 Between the BrowserRouter tags, add the route definitions for the three 
routes. This is done via the Route component. Keep in mind that the individual 
Route definitions must be wrapped in the Routes components. For each route 
definition, you must add a path and an element prop—the latter of which 
should render the respective component that belongs to the route:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import ProductDetail from './routes/ProductDetail';

import Products from './routes/Products';

import Welcome from './routes/Welcome';

function App() {

  return (

    <BrowserRouter>

      <Routes>

        <Route path="/" element={<Welcome />} />

        <Route path="/products" element={<Products />} />

        <Route path="/products/:id" element={<ProductDetail />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

6.	 The paths are up to you, but with the provided page descriptions, /, /
products, and /products/:id are sensible choices. Though, instead of :id, 
you could, of course, use :productId or any other identifier.



Chapter 12: Multipage Apps with React Router | 523

7.	 The website should also have a main navigation bar. Therefore, as a next step, 
create a MainNavigation component and store it in an src/components/
MainNavigation.js file. It's not a component that will be assigned directly 
to a route, and therefore it does not go in the src/routes folder. Inside the 
MainNavigation component, you should render a <header> element that 
contains a <nav> element, which then outputs a list (<ul>) of links. The actual 
links, however, will be added in a later step:

function MainNavigation() {

  return (

    <header id="main-nav">

      <nav>

        <ul>

          <li>

            Home

          </li>

          <li>

            Our Products

          </li>

        </ul>

      </nav>

    </header>

  );

}

export default MainNavigation;

8.	 Import the newly created MainNavigation component into the App 
component file and output it right above the routes:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import MainNavigation from './components/MainNavigation';

import ProductDetail from './routes/ProductDetail';

import Products from './routes/Products';

import Welcome from './routes/Welcome';

function App() {

  return (

    <BrowserRouter>

      <MainNavigation />



524 | Appendix

      <Routes>

        <Route path="/" element={<Welcome />} />

        <Route path="/products" element={<Products />} />

        <Route path="/products/:id" element={<ProductDetail />} />

      </Routes>

    </BrowserRouter>

  );

}

export default App;

9.	 It's time to add some links. Place one link in the Welcome component. There, 
the text "our products" (in 'Please explore "Our Products" …') 
should be turned into a link. Since it's an internal link, use the <Link> element:

import { Link } from 'react-router-dom';

function Welcome() {

  return (

    <main>

      <h1>Welcome to our shop!</h1>

      <p>

        Please explore <Link to="/products">our products</Link> 

        or share this site with others.

      </p>

    </main>

  );

}

export default Welcome;

10.	 In the MainNavigation component, use NavLink so that the navigation 
items reflect whether or not they are linked to the currently active route:

import { NavLink } from 'react-router-dom';

function MainNavigation() {

  return (

    <header id="main-nav">

      <nav>

        <ul>

          <li>



Chapter 12: Multipage Apps with React Router | 525

            <NavLink

              to="/"

              className={({ isActive }) => (isActive ? 'active' : 
'')}
            >

              Home

            </NavLink>

          </li>

          <li>

            <NavLink

              to="/products"

              className={({ isActive }) => (isActive ? 'active' : 
'')}
            >

              Our Products

            </NavLink>

          </li>

        </ul>

      </nav>

    </header>

  );

}

export default MainNavigation;

11.	More links must be added to the Products component. In the list of products 
that's rendered there, ensure every list item links to the ProductDetail 
component (i.e., to the /products/:id route). The link, therefore, must be 
generated dynamically with the help of the product id:

import { Link } from 'react-router-dom';

import products from '../data/products';

function Products() {

  return (

    <main>

      <h1>Our Products</h1>

      <ul id="products-list">

        {products.map((product) => (

          <li key={product.id}>

            <Link to={`/products/${product.id}`}>



526 | Appendix

              {product.title} (${product.price})

            </Link>

          </li>

        ))}

      </ul>

    </main>

  );

}

export default Products;

12.	To finish this project, dynamic product detail data must be output in the 
ProductDetail component. For this, use the useParams() Hook to get 
access to the product id that's encoded in the URL path. With the help of that 
ID, you can find the product that's needed and output its data:

import { useParams } from 'react-router-dom';

import products from '../data/products';

function ProductDetail() {

  const params = useParams();

  const prodId = params.id;

  const product = products.find((product) => product.id === prodId);

  return (

    <main>

      <h1>{product.title}</h1>

      <p id="product-price">${product.price}</p>

      <p>{product.description}</p>

    </main>

  );

}

export default ProductDetail;



Chapter 12: Multipage Apps with React Router | 527

The finished pages should look like this:

Figure 12.16: The final welcome page

Figure 12.17: The final products page

Figure 12.18: The final product details page

Note

All code files for this solution can be found at https://packt.link/wPcgN.



528 | Appendix

Activity 12.2: Enhancing the Basic Website
Solution:

Perform the following steps to complete the activity:

1.	 Create a new Layout component in the src/components folder. In that 
component, include MainNavigation (remove that component from the App 
component), as well as a <main> element, which should be wrapped around the 
special children prop:

import MainNavigation from './MainNavigation';

function Layout({ children }) {

  return (

    <>

      <MainNavigation />

      <main>{children}</main>

    </>

  );

}

export default Layout;

2.	 Since you are using React Router's nested routes feature, you must also add 
a new route component—e.g., a component named Root. Add it in the src/
routes folder and make sure it outputs the Layout component, wrapped 
around the special Outlet component:

import { Outlet } from 'react-router-dom';

import Layout from '../components/Layout';

function Root() {

  return (

    <Layout>

      <Outlet />

    </Layout>

  );

}

export default Root;



Chapter 12: Multipage Apps with React Router | 529

3.	 Next, add a new route definition to Routes in the App component. The 
definition for the Root route should wrap all other routes (i.e., the other routes 
are now nested into the Root route). Since the existing routes are converted 
into nested routes, you must change their paths to relative paths. You also 
should remove the path from the Welcome route and instead add the index 
prop to it:

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Root from './routes/Root';

import ProductDetail from './routes/ProductDetail';

import Products from './routes/Products';

import Welcome from './routes/Welcome';

function App() {

  return (

    <BrowserRouter>

      <Routes>

        <Route path="/" element={<Root />}>

          <Route element={<Welcome />} index />

          <Route path="products" element={<Products />} />

          <Route path="products/:id" element={<ProductDetail />} />

        </Route>

      </Routes>

    </BrowserRouter>

  );

}

export default App;

4.	 Add code splitting to the application by importing lazy and Suspense from 
React in the App component file. Thereafter, replace the existing imports for 
Products and ProductDetail with the code to load these components 
lazily. Don't forget to use the Suspense component as a wrapper around your 
route definitions:

import { Suspense, lazy } from 'react';

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Root from './routes/Root';



530 | Appendix

import Welcome from './routes/Welcome';

const ProductDetail = lazy(() => import('./routes/ProductDetail'));

const Products = lazy(() => import('./routes/Products'));

function App() {

  return (

    <BrowserRouter>

      <Suspense fallback={<p>Loading...</p>}>

        <Routes>

          <Route path="/" element={<Root />}>

            <Route path="" element={<Welcome />} index />

            <Route path="products" element={<Products />} />

            <Route path="products/:id" element={<ProductDetail />} />

          </Route>

        </Routes>

      </Suspense>

    </BrowserRouter>

  );

}

export default App;

Lazy loading makes a lot of sense for Products and ProductDetail since 
their routes are not necessarily visited by users (at least not immediately). It 
makes no sense for the Root component as this component wraps all other 
routes and is therefore always loaded. The Welcome component is the starting 
page and so does not significantly benefit from code splitting either.

5.	 For the "Not Found" page, first add a new NotFound component and store it 
in src/routes/NotFound.js. Add the content shown in Figure 12.15 in the 
activity description:

function NotFound() {

  return (

    <>

      <h1>We're really sorry!</h1>

      <p>We could not find this page.</p>

    </>

  );



Chapter 12: Multipage Apps with React Router | 531

}

export default NotFound;

6.	 Thereafter, add a new (nested) route definition in your App component and use 
the special "catch-all" path (*) to ensure that this route becomes active when no 
other route is matched. Since this page should rarely be shown, you can load 
it lazily:

import { Suspense, lazy } from 'react';

import { BrowserRouter, Routes, Route } from 'react-router-dom';

import Root from './routes/Root';

import Welcome from './routes/Welcome';

const ProductDetail = lazy(() => import('./routes/ProductDetail'));

const Products = lazy(() => import('./routes/Products'));

const NotFound = lazy(() => import('./routes/NotFound'));

function App() {

  return (

    <BrowserRouter>

      <Suspense fallback={<p>Loading...</p>}>

        <Routes>

          <Route path="/" element={<Root />}>

            <Route path="" element={<Welcome />} index />

            <Route path="products" element={<Products />} />

            <Route path="products/:id" element={<ProductDetail />} />

            <Route path="*" element={<NotFound />} />

          </Route>

        </Routes>

      </Suspense>

    </BrowserRouter>

  );

}

export default App;



532 | Appendix

The final "Not Found" page should look like this:

Figure 12.19: The final "Not Found" page

Note

All code files for this solution can be found at https://packt.link/HChZi.



Chapter 13: Managing Data with React Router | 533

Chapter 13: Managing Data with React Router

Activity 13.1: A To-Dos App

Solution:

Perform the following steps to complete this activity:

1.	 Create a new React project via npx create-react-app as explained in 
Chapter 1, React—What and Why?. Then, install the React Router library by 
running npm install react-router-dom inside the project folder. 
Check the package.json file to confirm that you have at least version 6.4 
of the react-router-dom package installed.

2.	 For the three required pages, create three components: a Todos component, 
a NewTodo component, and a SelectedTodo component. Store these 
components in files inside the src/routes folder since these components 
will only be used for routing.

3.	 For the Todos component, enter the following code:

// src/routes/Todos.js

function Todos() {

  const todos = [];

  let content = (

    <main>

      <h1>No todos found</h1>

      <p>Start adding some!</p>

      <p>

        <Link className=”btn-cta” to=”/new”>

          Add Todo

        </Link>

      </p>

    </main>

  );

  if (todos && todos.length > 0) {

    content = (

      <main>



534 | Appendix

        <section>

          <Link className=”btn-cta” to=”/new”>

            Add Todo

          </Link>

        </section>

        <ul id=”todos”>

          

        </ul>

      </main>

    );

  }

  return (

    <>

      {content}

      <Outlet />

    </>

  );

}

export default Todos;

4.	 The code for the NewTodo component should look like this:

// src/routes/NewTodo.js

import Modal from ‘../components/Modal’;

function NewTodo() {

  return (

    <Modal>

      <Form method=”post”>

        <p>

          <label htmlFor=”text”>Your todo</label>

          <input type=”text” id=”text” name=”text” />

        </p>

        <p className=”form-actions”>

          <button>Save Todo</button>

        </p>



Chapter 13: Managing Data with React Router | 535

      </Form>

    </Modal>

  );

}

export default NewTodo;

5.	 The code for the SelectedTodo component will look as follows:

// src/routes/SelectedTodo.js

import Modal from ‘../components/Modal’;

function SelectedTodo() {

  return (

    <Modal>

      <Form method=”patch”>

        <p>

          <label htmlFor=”text”>Your todo</label>

          <input type=”text” id=”text” name=”text” />

        </p>

        <p className=”form-actions”>

          <button>Update Todo</button>

        </p>

      </Form>

      <Form method=”delete”>

        <p className=”form-actions”>

          <button className=’btn-alt’>Delete Todo</button>

        </p>

      </Form>

    </Modal>

  );

}

export default SelectedTodo;

6.	 At the moment, the route definitions are missing, and no data loading or 
submission logic has been added. Please note, however, that the components 
already use <Link> and <Form>.



536 | Appendix

7.	 With the components added, it’s time to add route definitions. For this, you 
must first enable React Router by importing and using the RouterProvider 
component (in the App component):

import { RouterProvider } from ‘react-router-dom’;

function App() {

  return <RouterProvider />;

}

export default App;

RouterProvider requires a value for its router prop. That value must be an 
array of route definition objects. These objects can be created directly by you, or 
indirectly via the createRoutesFromElements() function. For this solution, 
use the direct approach (in App.js):

import { createBrowserRouter, RouterProvider } from ‘react-router-
dom’;

import Todos from ‘./routes/Todos’;

import NewTodo from ‘./routes/NewTodo’;

import SelectedTodo from ‘./routes/SelectedTodo’;

const router = createBrowserRouter([

  {

    path: ‘/’,

    element: <Todos />,

    children: [

      { path: ‘new’, element: <NewTodo /> },

      { path: ‘:id’, element: <SelectedTodo /> },

    ],

  },

]);

function App() {

  return <RouterProvider router={router} />;

}

export default App;



Chapter 13: Managing Data with React Router | 537

8.	 Please note that the /new and /:id routes are child routes of the / route. The 
/ route is thus a layout route, wrapping these child routes. That’s why this layout 
route (Todos in Todos.js) renders an <Outlet /> element.

9.	 To load and display to-dos, add a loader() function to the Todos route. As a 
first step, export such a function in the routes/Todos.js file:

// other imports ... 
import { getTodos } from ‘../data/todos’;
 
export function loader() { 
  // getTodos() is a utility function that uses localStorage under 
the hood
  return getTodos(); 

}

10.	Thereafter, assign it as a value for the loader prop on the / route definition:

import Todos, { loader as todosLoader } from ‘./routes/Todos’;

// other imports ...

const router = createBrowserRouter([

  {

    path: ‘/’,

    element: <Todos />,

    loader: todosLoader,

    children: [

      // child routes ...

    ],

  },

]);

11.	getTodos() from the previous step is a utility function that reaches out to 
localStorage to retrieve and parse stored to-dos. Implement this function 
using the following code:

function getTodosFromStorage() {

  return JSON.parse(localStorage.getItem(‘todos’));

}

export function getTodos() {

  return getTodosFromStorage();

}



538 | Appendix

12.	To use the loaded to-dos data, use the useLoaderData() Hook inside the 
Todos component. The loaded to-dos are then output via an unordered list 
(<ul>):

import { Link, Outlet, useLoaderData } from ‘react-router-dom’;

import { getTodos } from ‘../data/todos’;

function Todos() {

  const todos = useLoaderData();

  let content = (

    <main>

      <h1>No todos found</h1>

      <p>Start adding some!</p>

      <p>

        <Link className=”btn-cta” to=”/new”>

          Add Todo

        </Link>

      </p>

    </main>

  );

  if (todos && todos.length > 0) {

    content = (

      <main>

        <section>

          <Link className=”btn-cta” to=”/new”>

            Add Todo

          </Link>

        </section>

        <ul id=”todos”>

          {todos.map((todo) => (

            <li key={todo.id}>

              <Link to={todo.id}>{todo.text}</Link>

            </li>

          ))}

        </ul>

      </main>

    );



Chapter 13: Managing Data with React Router | 539

  }

  return (

    <>

      {content}

      <Outlet />

    </>

  );

}

13.	Another route that needs to-do data is the /:id route. There, a single to-do 
item must be loaded as the route is activated. You could reuse the to-dos data 
from the / route (via useRouteLoaderData()) but for practice purposes, use 
a separate loader() function for this activity. This loader() function, which 
is added to and exported from routes/SelectedTodo.js has this shape:

import { getTodo } from ‘../data/todos’;

// ... other imports

export async function loader({ params }) {

  return getTodo(params.id);

}

14.	getTodo() is yet another utility function. Implement it as follows:

export function getTodo(id) {

  const todos = getTodosFromStorage();

  const todo = todos.find((t) => t.id === id);

  if (!todo) {

    throw new Error(‘Could not find todo for id ‘ + id);

  }

  return todo;

}

15.	Please note that this function throws an error if no to-do is found for the 
specified id. For that reason, error handling will be implemented in a later step.



540 | Appendix

16.	 Inside the SelectedTodo component, access the selected to-do item data 
via useLoaderData(). Then, use that data to set a default value on the 
form input:

function SelectedTodo() {

  const todo = useLoaderData();

  return (

    <Modal>

      <Form method=”post”>

        <p>

          <label htmlFor=”text”>Your todo</label>

          <input 

            type=”text” 

            id=”text”

            name=”text”

            defaultValue={todo.text} />

        </p>

        <p className=”form-actions”>

          <button>Update Todo</button>

        </p>

      </Form>

      <Form method=”delete”>

        <p className=”form-actions”>

          <button className=’btn-alt’>Delete Todo</button>

        </p>

      </Form>

    </Modal>

  );

}

17.	To ensure users are able to submit new to-dos, export an action() function in 
the NewTodo component file, as shown here:

import { addTodo } from ‘../data/todos’;

// ... other imports

export async function action({ request }) {

  const formData = await request.formData();

  const enteredText = formData.get(‘text’);

  addTodo(enteredText);



Chapter 13: Managing Data with React Router | 541

  return redirect(‘/’);

}

18.	This function extracts the submitted form data, retrieves the entered text 
value, calls the addTodo() utility function, and then redirects the user back 
to the main page (/). Since the NewTodo component uses <Form> instead of 
<form>, React Router will automatically prevent the browser default and call the 
action() function assigned to the route that contains the form (/new route, in 
this case).

19.	 Implement the addTodo() function (defined in data/todos.js) by running 
the following code:

function saveTodosToStorage(todos) {

  const serializedTodos = JSON.stringify(todos);

  localStorage.setItem(‘todos’, serializedTodos);

}

export function addTodo(text) {

  let todos = getTodosFromStorage();

  const newTodo = {

    id: new Date().toISOString(),

    text,

  };

  if (todos) {

    todos.unshift(newTodo);

  } else {

    todos = [newTodo];

  }

  saveTodosToStorage(todos);

}

20.	To allow React Router to execute the preceding action() function when the 
<Form> in NewTodo is submitted, register the action in the route definition:

import NewTodo, { action as newTodoAction } from ‘./routes/NewTodo’;

// ... other imports

const router = createBrowserRouter([

  {

    path: ‘/’,

    element: <Todos />,

    loader: todosLoader,



542 | Appendix

    children: [

      { path: ‘new’, element: <NewTodo />, action: newTodoAction }

    ],

  },

]);

21.	To allow users to update or delete to-do items, add an action() function to 
the SelectedTodo component file. In that function, use request.method 
to differentiate between PATCH and DELETE requests. This is required because 
inside the SelectedTodo component, two forms are created via <Form> (see 
step 3): one <Form> creates a PATCH request (for updating to-do data), and the 
other <Form> creates a DELETE request (for deleting a to-do). The action() 
function is implemented like this:

import { deleteTodo, getTodo, updateTodo } from ‘../data/todos’;

// ... other imports

export async function action({ request, params }) {

  const todoId = params.id;

  if (request.method === ‘PATCH’) {

    const formData = await request.formData();

    const enteredText = formData.get(‘text’);

    updateTodo(todoId, enteredText);

  }

  if (request.method === ‘DELETE’) {

    deleteTodo(todoId);

  }

  return redirect(‘/’);

}

22.	Once again, define updateTodo() and deleteTodo() in the data/todos.
js file:

export function updateTodo(id, newText) {

  const todos = getTodos();

  const updatedTodo = todos.find((t) => t.id === id);

  updatedTodo.text = newText;

  saveTodosToStorage(todos);

}



Chapter 13: Managing Data with React Router | 543

export function deleteTodo(id) {

  const todos = getTodos();

  const updatedTodos = todos.filter((t) => t.id !== id);

  saveTodosToStorage(updatedTodos);

}

23.	Finally, to make React Router aware of this action() function and ensure 
that it gets executed as the respective forms are submitted, register the action 
created in step 16, as follows:

import SelectedTodo, {

  action as changeTodoAction,

  loader as todoLoader,

} from ‘./routes/SelectedTodo’;

// ... other imports

const router = createBrowserRouter([

  {

    path: ‘/’,

    element: <Todos />,

    loader: todosLoader,

    children: [

      { path: ‘new’, element: <NewTodo />, action: newTodoAction },

      {

        path: ‘:id’,

        element: <SelectedTodo />,

        action: changeTodoAction,

        loader: todoLoader,

      },

    ],

  },

]);

}



544 | Appendix

24.	To handle any errors that have occurred, add a new Error component that is 
displayed when things go wrong. This component is stored in routes/Error.
js:

import { useRouteError } from ‘react-router-dom’;

import Modal from ‘../components/Modal’;

function Error() {

  const error = useRouteError();

  return (

    <Modal>

      <h1>An error occurred!</h1>

      <p>{error.message}</p>

    </Modal>

  );

}

export default Error;

25.	This component uses React Router’s useRouteError() Hook to access the 
error that was thrown. The error is then used to output the error message.

26.	To use this Error component as a fallback, add it as a value for the 
errorElement property in your route definitions:

import Error from ‘./routes/Error’;

// ... other imports

const router = createBrowserRouter([

  {

    path: ‘/’,

    element: <Todos />,

    errorElement: <Error />,

    loader: todosLoader,

    children: [

      { path: ‘new’, element: <NewTodo />, action: newTodoAction },

      {

        path: ‘:id’,

        element: <SelectedTodo />,

        action: changeTodoAction,



Chapter 13: Managing Data with React Router | 545

        loader: todoLoader,

      },

    ],

  },

]);

27.	Here, Error is set as an errorElement on the main route and is used by 
React Router for all errors occurring anywhere in the entire app.

Note

All code for this solution is available at https://packt.link/oaFoZ.

https://packt.link/oaFoZ




Maximilian Schwarzmüller

Hey!

I am Maximilian Schwarzmüller, the author of this book. I really hope you enjoyed 
reading my book and found it useful.

It would really help me (and other potential readers!) if you could leave a review on 
Amazon sharing your thoughts on React Key Concepts.

Go to the link https://packt.link/r/1803234504.

OR

Scan the QR code to leave your review.

Your review will help me to understand what's worked well in this book and what 
could be improved upon for future editions, so it really is appreciated.

Best wishes,

Maximilian Schwarzmüller

https://packt.link/r/1803234504




Index



A
access: 15, 57, 66, 76, 

96, 165, 168-170, 
172, 175, 189, 191, 
198, 222, 262, 268, 
281-282, 285-286, 
290, 298, 302, 304, 
306, 308-309, 314, 
330, 365-366, 371, 
394, 400, 409, 
411, 420, 431

adding: 5, 12, 42, 
45, 61, 72, 86, 92, 
113, 129, 156, 158, 
167, 187, 201, 
209, 211, 220-221, 
230, 241, 248, 250, 
266, 268, 347, 352, 
364, 366, 368, 372, 
376, 378, 392, 399, 
434-435, 441

advanced: 40, 238, 
318, 326, 433, 443

api: 6, 116, 142, 
199-200, 208, 226, 
228-229, 234, 
284-285, 290, 
295, 306-307, 
393-394, 399-400, 
416-418, 434

app: 8, 15-16, 28-31, 
34, 37-41, 44-46, 56, 
58-61, 67-68, 73, 84, 
86-87, 94-99, 106, 
113, 125, 127-128, 
136-137, 139, 144, 
147, 152, 158-159, 
162, 168, 172, 

186-187, 191, 198, 
200, 208, 212-214, 
218, 226, 228-229, 
234, 237-239, 242, 
245-246, 254, 262, 
264-265, 267-268, 
270, 272-274, 280, 
282, 284, 286, 
297, 302-304, 
307, 315-316, 320, 
327-328, 332-335, 
337, 343-353, 
355-357, 359-361, 
364-366, 373-374, 
376-380, 391, 393, 
396-397, 399-400, 
402, 434, 443-446

approach: 4-5, 8-10, 
12, 14, 23, 39, 54, 
69-70, 86, 109, 
113-114, 117, 119, 
121, 123, 129-130, 
141, 143, 149, 
152-153, 171, 182, 
190, 216-217, 230, 
268, 348, 397-398, 
407, 417, 425

arguments: 30, 40, 
53, 141, 182, 
188, 205-206, 
225, 300-303

array: 38-39, 75-78, 
82-83, 92, 98, 
116-123, 126-129, 
141, 148-149, 
206-207, 209-211, 
213, 220, 225, 228, 
232-233, 243, 256, 

286, 292-293, 299, 
303, 306, 324-325, 
332, 334-335, 
397, 419-420

arrays: 28, 39, 56, 79, 
82, 84, 98, 123, 
129, 250, 324

async: 198-201, 204, 
207, 230-231, 299, 
304, 315, 327, 
329-331, 333, 388, 
391, 395, 398, 400, 
405, 407, 413-414, 
417-418, 425, 
429-430, 432

await: 198-201, 204, 
207-208, 230-231, 
299, 305, 315, 
327, 329-333, 388, 
391, 395, 398, 
400, 405, 407, 
413-414, 417-419, 
425, 430-432

B
back: 4, 8, 12, 17, 34, 

89-90, 111, 128, 
160, 167, 273, 342, 
372, 426, 443

batching: 245-246
benefits:297
binding: 88-90
blog: 37, 78, 105, 

200, 205, 208, 
234, 298, 305, 
316, 327, 333-334, 
342, 356-357, 



365, 386-388, 390, 
397, 403, 406, 
408, 445-446

building: 2-3, 17-18, 
22-24, 26, 30, 33, 
37, 43, 50, 52, 57, 
66, 74, 79, 95, 
99-100, 136, 138, 
147, 150, 166, 
168, 181, 184, 
231, 233-234, 267, 
280, 313-314, 317, 
335, 367, 374, 
376, 429, 433, 
440-442, 444-445

bundle: 259-260, 
262-263, 265-266

C
challenges: 280, 

306, 441-444
checkboxes: 175-177
checking: 75, 92, 

115, 256
child: 31, 35-36, 40, 

50-51, 77, 90, 98, 
181, 186, 201, 
238-241, 246-247, 
251, 258, 271, 
284, 288, 373, 
375-376, 401, 404, 
406-407, 431

children: 31, 54-55, 
57-58, 60, 114-115, 
148-151, 154, 
186-187, 296, 360, 

373, 401, 404, 
408-410, 412

class: 26, 135, 
143-144, 146-155, 
157, 159, 162, 359

classes: 25-27, 
135-136, 142-155, 
159-162, 167-168, 
170-171, 176-178, 
180, 182-183, 
188, 198-199, 
201-202, 204, 
207-208, 247-249, 
257-258, 260-261, 
283, 290-292, 
358-359, 363, 368, 
370, 382, 434

classname: 144, 
146-152, 154, 159, 
167-168, 170-171, 
176-178, 180, 
182-183, 188, 199, 
202, 204, 208, 
247-249, 257-258, 
261, 283, 291-292, 
354-355, 358, 363, 
368, 370, 389, 
391, 394, 427

code: 2-18, 21-46, 50, 
52-53, 55-56, 58-61, 
67-77, 81-82, 84-89, 
91, 94, 96-97, 100, 
106-113, 115-116, 
118-122, 124-125, 
128-129, 131, 
136-139, 141-144, 
146, 148, 152-154, 

156, 158-159, 162, 
167-170, 172, 
176-178, 180-181, 
184, 188-189, 
191-192, 197-202, 
205-206, 209-210, 
216-219, 221-226, 
228, 230, 234, 
237-238, 241-242, 
244-246, 248, 251, 
254-256, 259-260, 
262-268, 272-276, 
284, 286-289, 291, 
293-295, 298-304, 
306-310, 314, 
316-317, 320, 323, 
325, 331, 333, 
335-337, 343, 
345-348, 350-353, 
355-356, 358-364, 
366, 368-371, 373, 
375, 377-379, 
382-383, 386, 
390-404, 408-409, 
413, 415, 417, 
422-423, 427-428, 
431, 442-444

colors: 144
complex: 3-8, 10, 12, 

14, 17-18, 24, 41, 
59-60, 69, 86, 91, 
95, 98, 101, 121, 
126, 129, 181, 189, 
243, 245, 250-251, 
273, 279-280, 283, 
295, 300, 305-306, 
314, 316, 322, 



326-327, 333-335, 
342, 346, 376, 379, 
392, 429, 433, 
441, 443-446

component: 15, 24-27, 
29-35, 39, 41-46, 
50-62, 66-70, 73-75, 
77-81, 84-85, 89-92, 
94-99, 101, 106-107, 
109, 111, 113, 
115-116, 118-120, 
122-124, 127-128, 
131, 140, 142, 
147, 150-152, 154, 
156-159, 161-162, 
167-169, 172-179, 
181-184, 188-192, 
198-203, 205-208, 
210-214, 216-219, 
222-229, 231-234, 
237-242, 244-260, 
262-273, 275, 
280-288, 290-298, 
300, 302-304, 306, 
308-311, 314, 
316-317, 319-321, 
323, 328, 330, 
332-337, 343-348, 
350, 352, 354, 
356-365, 367-368, 
371, 373-379, 383, 
386-387, 390, 
392-395, 397-399, 
401-402, 405, 407, 
411-416, 418-421, 
423, 428-432, 434

components: 9, 15-16, 
18, 21-28, 30-34, 
37, 41-46, 49-56, 
58-62, 66, 71, 74, 

77, 81, 84, 90, 
94-96, 98-101, 104, 
114-116, 127, 129, 
135-136, 140, 142, 
145, 147, 150-153, 
155-156, 158-160, 
165, 175, 177-178, 
181-182, 184, 
187-192, 198, 201, 
205, 212, 231, 233, 
240-242, 245, 247, 
251-252, 260, 262, 
264, 266, 268-269, 
271-273, 279-287, 
290, 293-297, 
306-309, 313-314, 
316-317, 319-321, 
323-325, 328, 330, 
332-336, 341-346, 
356-362, 365-366, 
372, 374-380, 382, 
386-388, 392, 395, 
397, 401-405, 407, 
409, 415, 432, 435, 
440-441, 443

computer:201
concepts: 2-3, 13, 18, 

22, 26, 29, 38, 40, 
44, 61, 99, 104, 
129-130, 136, 145, 
151, 160, 190, 
197-199, 201, 233, 
237-238, 273-274, 
280, 307, 309, 314, 
335-336, 379-380, 
386-387, 390, 433, 
440, 445-446

const: 4, 8, 24, 28, 31, 
40-41, 56-57, 59, 67, 
69-72, 74-76, 78, 80, 

82, 84-91, 93-94, 96, 
107-108, 110-111, 
113, 115-117, 
119-121, 127-128, 
145, 148, 156, 
167-176, 178-180, 
183, 198, 201-202, 
204, 207-208, 212, 
216, 218, 221-223, 
225, 227, 229-231, 
239, 245, 247, 253, 
255, 257, 259-262, 
264, 286-294, 296, 
299, 301, 303-305, 
314-315, 318-319, 
322-334, 337, 
349, 351, 365-366, 
369-371, 377, 388, 
390-391, 394-398, 
400-401, 404-405, 
407-414, 417-419, 
422-425, 427, 430

context: 160, 166, 
199-200, 256, 270, 
284-288, 290-298, 
301, 306-309, 311, 
314, 321, 342, 
344, 349, 385, 
402, 440-441

controlled: 14, 
181-184, 190

core: 2-3, 6, 8, 11-13, 
29, 39, 44, 58-59, 
74, 79, 94, 104, 
110, 114-115, 135, 
156, 158, 198-199, 
204, 280, 314, 372, 
379, 433, 440, 445

coverage:29
create: 1, 3, 5-6, 8, 



11-15, 17-18, 22, 29, 
31-32, 35, 42, 44-45, 
56, 61, 123, 161, 
179, 191, 202, 206, 
231, 276, 285, 290, 
296-297, 302, 306, 
308, 335-337, 341, 
344, 360, 366-367, 
376, 380, 382-383, 
385-386, 397, 417, 
434-435, 442-443

creating: 3, 14, 32, 
44-45, 58, 61, 179, 
184, 199, 204, 218, 
226, 295, 366-367, 
376, 380, 382, 
416, 442-443

creation: 4, 14, 17, 
44, 137, 368

custom: 16, 26, 28, 
30, 32-34, 42-43, 
53, 57-58, 74, 97, 
115-116, 127, 
136, 156, 159, 
208, 231, 250-251, 
307, 313-314, 
316-319, 321-324, 
326, 328, 331, 
335-337, 346, 376

D
data: 5-6, 42, 51-57, 

59-60, 66, 73-75, 
77, 79, 84, 90, 
92, 98, 103-105, 
116-119, 121-123, 
127-131, 141, 156, 
165, 173, 175, 181, 
198-201, 203, 217, 

233-234, 243, 266, 
269-270, 275, 279, 
291, 293, 298, 
300-301, 303-305, 
311, 314-316, 326, 
328, 330, 332-334, 
342, 362-366, 
368-369, 380, 382, 
385-388, 390, 
392-395, 397-400, 
402-403, 405-409, 
411, 413-421, 
423-435, 442-444

declaring: 68
default: 25-26, 29-30, 

34, 57, 83, 89, 
92-93, 97, 115, 119, 
147-148, 150, 152, 
154, 157-158, 175, 
178-179, 181-182, 
188, 199, 202, 204, 
207-208, 212-213, 
219, 224-227, 249, 
251, 253, 256-257, 
261-262, 264-265, 
284, 286, 291-294, 
297-298, 302, 304, 
310, 313, 315, 
318, 320, 322, 
324, 326, 329, 
333, 335, 343-344, 
346, 348, 350-353, 
356, 359-361, 366, 
368, 372, 378-380, 
391, 395, 398, 
402, 405, 409, 
411-412, 414-416, 
421, 423, 425

definition: 3, 53, 
200-201, 217, 221, 

336, 344, 346, 364, 
366, 373, 379, 
383, 391, 393-397, 
399, 410, 415, 
421, 425, 428

dependency: 16, 
206-207, 210-211, 
213, 216-222, 224, 
226, 228, 232, 256, 
259, 299-300, 332

developer: 2, 4-5, 10, 
12, 25-26, 28-29, 
32, 34, 56-57, 59, 
68-69, 72, 76, 78, 
90-91, 108, 124-125, 
127, 129, 136, 140, 
142, 144, 154, 
156-157, 169, 181, 
191, 198-199, 214, 
229, 237, 244, 253, 
256, 260, 263, 268, 
272-273, 276, 284, 
306-307, 343, 368, 
379, 394, 400, 411, 
416, 433, 440

document: 4-6, 11, 
28-29, 31-32, 
67, 70-71, 139, 
142, 155, 157, 
159, 166-167, 
188, 192, 350

dom: 5-13, 17, 29-31, 
33, 35, 68, 70, 72, 
75, 77, 92, 108-109, 
121, 123, 126-129, 
136, 139-141, 155, 
165-166, 168-170, 
172, 175, 177, 
181, 184-192, 
194, 216, 232, 



237-238, 241-246, 
272-273, 350

domain: 342-343, 
346, 374

down: 8, 11, 68, 97, 
121, 156, 207, 222, 
259, 282-283, 390

E
effects: 128, 190, 

197, 200, 202-207, 
212, 216-217, 221, 
230, 232-234, 255, 
267, 299, 314, 317, 
321-322, 324, 335, 
386, 388, 390, 443

ejs: 23
element: 5-6, 10, 

12, 14, 27, 29-31, 
33, 35-40, 42, 45, 
50-51, 57-59, 66, 
70-71, 76-78, 82-83, 
88-90, 97-98, 101, 
106, 108-109, 112, 
114-116, 126, 
128-130, 141-142, 
145-148, 150-152, 
154-155, 157, 159, 
165-166, 168-170, 
172, 177, 185-189, 
191, 243, 267, 
303, 335, 344-349, 
351-354, 356-357, 
359-361, 363-365, 
373-379, 392, 
396-398, 401-402, 
404, 408-412, 

415-417, 421, 423, 
425, 428, 431

elements: 5-6, 8-9, 
11-14, 23, 28, 
30-33, 35-36, 38-40, 
43-44, 50-51, 55, 
67-72, 75-77, 82, 
84, 92, 94, 98, 101, 
103-104, 108-109, 
112, 115-118, 
120-121, 126-131, 
135-136, 138, 
140-142, 144, 147, 
155, 159-160, 162, 
165-166, 168, 170, 
172, 175, 183-192, 
194, 201, 241-242, 
303, 306, 314, 320, 
324, 345, 348, 350, 
352, 354, 357, 359, 
368, 376, 379, 382, 
397, 402, 415, 
417, 431, 434

embedded: 9, 23
enhancing: 101, 382
entity:42
entry: 15, 28-29, 139
error: 6, 29, 38, 52, 

67-68, 70, 77, 
79, 87, 104-105, 
130-131, 184-187, 
189, 210, 220, 
226-229, 247-249, 
251, 257-259, 267, 
271-272, 299-305, 
314-318, 326-334, 
369, 388-391, 395, 
398, 405, 407, 

409-412, 418, 420, 
430, 434-435

evaluation: 246, 
271-272

external: 55-56, 73, 
199-200, 210-211, 
213, 222, 232, 332, 
352, 357, 379

F
feature: 9, 12, 23-24, 

30, 32-34, 37, 43, 
57, 66, 70, 73, 75, 
98, 110, 156, 168, 
175, 183-184, 187, 
189, 192, 238, 
242, 254, 267, 
285-286, 290, 293, 
295, 314, 317, 
319, 321, 335-336, 
368, 372-373, 376, 
378-379, 382-383, 
385-386, 399, 
402, 441, 443

features: 2-3, 8, 13, 
15, 17, 26-27, 29, 
45, 66-67, 69, 71, 
74, 98-99, 119, 136, 
160, 177, 189-190, 
197-198, 233, 238, 
244, 267, 273-274, 
307, 309, 311, 336, 
343, 345, 362, 377, 
379, 382, 386-388, 
391, 395-396, 412, 
415, 433, 441-444

fetch: 198-204, 207, 



234, 298-299, 301, 
303-305, 314-316, 
326-334, 385-388, 
391, 394-395, 
398-400, 405, 
407, 413-414, 
417, 419, 430

file: 7, 11, 14-16, 
23-25, 28-29, 
32-34, 42, 44-45, 
68, 137-140, 142, 
146, 152-156, 159, 
161-162, 187-188, 
210, 246, 263-264, 
286, 291, 296, 319, 
328, 337, 359, 382, 
391-393, 395, 405, 
417, 428, 434

files: 11, 15-16, 25, 
34, 39-40, 45, 69, 
138-140, 142, 147, 
152-153, 155-156, 
159, 266, 362

flow: 240
follow: 2, 28-29, 

34, 42, 69, 81, 
230-231, 295, 417

form: 22-25, 80, 
92-94, 104-105, 
130-131, 144, 150, 
160-162, 166-172, 
175, 177-189, 191, 
223-224, 227-229, 
234, 241, 247-248, 
257-259, 271, 
275-276, 280, 289, 
298, 300, 309-311, 
368-370, 387, 

411-423, 425-429, 
432-433, 444-445

forms: 84, 92, 190, 
416-417, 423

fragment: 39, 397
fragments: 402
function: 4-5, 8, 10, 

24-27, 29-31, 33, 
35-42, 44, 52-59, 
61, 66-72, 74-78, 
80, 82-94, 96-98, 
106-111, 113-116, 
119-123, 141, 
145-151, 154, 
156-158, 167-171, 
173-184, 188, 191, 
198-234, 237-242, 
244-267, 270-273, 
275, 283, 285-294, 
296-306, 309-311, 
314-320, 322-335, 
337, 344, 347, 349, 
351, 353, 355-356, 
358-360, 363, 365, 
368-369, 371-373, 
375, 377-379, 388, 
390-403, 405, 
407-408, 411-432

functional: 26, 28, 
160, 298, 300

functions: 9, 13, 25-28, 
30, 32-34, 38, 40, 
45, 50, 52-54, 60, 
69, 73-75, 77-78, 
81, 84-85, 87, 
97-98, 116, 156, 
165, 173, 177-178, 
181, 183, 200, 

206-207, 209-211, 
213, 216-217, 219, 
222, 229-232, 238, 
240-242, 246-247, 
251, 256, 258, 
262, 267-268, 275, 
282, 285, 289, 
293-295, 301-302, 
314, 317-318, 320, 
322-323, 335, 355, 
392, 399-400, 406, 
418, 420-422, 
426, 432-435

future: 92, 182, 
203, 266-267

G
github: 6, 10, 16, 137, 

155, 158, 162, 188, 
213, 218, 223, 228, 
248, 254, 265, 284, 
294, 298, 323, 325, 
345, 356, 361-362, 
366, 373, 383, 390

H
handle: 4-5, 14, 32, 

81, 92, 127, 129, 
197-198, 233-234, 
279-280, 285, 294, 
308, 314, 316-317, 
321, 343, 386, 
409, 412-414, 
416, 423, 433

handling: 9, 32, 71, 
97, 136, 167, 190, 



197, 299, 318, 366, 
376, 386, 388, 390, 
409, 411, 418, 433, 
435, 443-444

history: 442
hook: 74-75, 78, 80, 

98-99, 167-168, 
187-188, 192, 197, 
204-205, 224, 
231-233, 254, 
275, 280, 288, 
290, 300, 303, 
306-307, 310-311, 
314, 317-324, 328, 
330-333, 335-337, 
365, 371, 379, 386, 
391, 393, 399, 
407-409, 411, 419, 
422-423, 426, 444

hooks: 26, 74-75, 
98, 187, 205, 225, 
231, 237, 302, 
306-307, 309, 
313-314, 316-319, 
321-322, 324, 326, 
328, 332, 334-337, 
343, 440, 445

how: 2-5, 7-8, 12-13, 
17-18, 22, 24, 32, 
34-35, 38, 42-44, 
50-52, 55-56, 58, 
60-61, 66-69, 73, 
75-76, 78, 83, 
91-92, 98-99, 
104-107, 109-110, 
117-118, 121-122, 
127, 129-130, 136, 

138-139, 151, 157, 
160, 172, 179, 
190, 198, 205, 
207, 216, 219, 
233-234, 237-238, 
240, 243-244, 246, 
268-269, 273, 286, 
293, 295, 301, 
303, 306-307, 314, 
328, 335-336, 342, 
347, 354, 359, 365, 
370, 380, 386-388, 
409, 421, 433, 
439-440, 445

html: 5-6, 9, 11-12, 
14-15, 23-24, 27-30, 
32-34, 37, 39-40, 
42-45, 50-51, 54-55, 
71, 80, 94, 114, 116, 
136, 138-143, 153, 
159, 169, 187-188, 
192, 242, 343, 347, 
349, 354, 360

I
ide: 294-295
imperative: 4-5, 8, 

12, 18, 68-69, 
71, 172, 181

import: 8, 24-26, 
28, 42, 46, 73, 75, 
107-108, 110-111, 
116, 121, 138-140, 
153-156, 158, 168, 
174, 188, 198, 201, 
204, 207, 212, 

223, 225-227, 249, 
255, 257, 260, 
262-264, 267, 283, 
285-288, 290-292, 
297, 318-319, 322, 
324, 328, 332, 
334, 343-344, 347, 
350-352, 355, 
358-360, 365, 371, 
375, 377-378, 
388, 390, 392, 
394-396, 398, 402, 
405, 408-409, 411, 
414-415, 419, 422, 
424, 426-430

inspecting: 139, 205
integrated: 294

J
javascript: 1-15, 17-18, 

23-30, 32-41, 43, 54, 
56-58, 68-72, 75-79, 
82, 84, 92-94, 97-98, 
108-110, 112-115, 
117-119, 125-126, 
129, 136-137, 
139-142, 144, 149, 
152, 154-156, 
158-159, 166-168, 
174, 181-183, 
187, 199, 210, 
214-215, 217, 219, 
226, 228-229, 234, 
242-243, 258-259, 
262-263, 265, 
317-320, 322, 324, 



335, 368, 382, 397, 
399, 432, 434, 444

jest: 14, 16
jsx: 9, 11-13, 15, 18, 

21-22, 24, 26-41, 
43-46, 50, 52-54, 
58, 70-71, 75-76, 
80, 82, 87, 94, 98, 
103-104, 108-112, 
115-121, 127-131, 
135-136, 140-141, 
144-145, 152, 159, 
162, 165, 168-169, 
177, 180-181, 188, 
190, 192, 201-202, 
217, 225, 238, 
241-242, 244, 254, 
264-265, 314, 317, 
320, 333, 344, 346, 
360, 368, 371, 382, 
397, 434, 441

K
keyword: 26, 38, 

43, 94, 144, 178, 
205, 230, 432

L
language: 27, 32, 54, 

113-114, 136, 160
layers: 59, 283, 306
legacy: 267
let: 38-39, 69, 71-72, 

76, 91, 107-108, 

110, 146-151, 154, 
172-174, 189, 
214, 292-293, 
337, 389, 419

library: 2-3, 13-14, 
17, 27-28, 32, 
34-35, 135-136, 
152, 156-159, 234, 
260, 262, 265, 
343-344, 350, 
355, 371, 378-379, 
399, 443-444

links: 50, 58, 341-342, 
347-348, 350, 
352, 356-358, 
366-368, 372, 
379-380, 382, 435

lists: 45, 59, 99, 
103-105, 116, 121, 
126, 129-130, 137, 
149, 169, 184, 
254, 441-442

literal: 149, 
156-157, 368

loader: 391-401, 
403-410, 412, 
414-416, 418, 420, 
422, 426-435

loading: 24, 104, 
259-260, 265, 298, 
300, 305-306, 
316, 318, 327, 
330, 333-334, 
364-365, 368, 
377-380, 382-383, 
385, 389-390, 

393, 397, 399, 
407, 413-414, 422, 
429-431, 433-435

locally:16
locators: 342

M
management: 4, 6-7, 

74, 273, 295, 298, 
300, 306-307, 310, 
314, 316, 321, 337, 
433, 441, 443-444

manager: 2, 14
managing: 2, 69, 73, 

78-79, 81-84, 101, 
182, 267, 286, 
293-298, 300, 306, 
361, 385, 411

map: 103, 114, 
119-122, 128-129, 
199, 202, 204, 208, 
253-255, 291-292, 
363, 368, 389, 391, 
394, 399, 420, 423

mapping: 119, 121
means: 4-5, 7, 9, 14, 

17, 30, 68-69, 91, 
104, 112, 136, 
140, 200, 284, 296, 
317, 342, 346, 
364, 368, 395

method: 28-30, 35-36, 
93, 119-122, 129, 
181-182, 200, 291, 
397, 409, 413-417, 



419, 421, 423-428

mode: 151-152, 154, 
237, 246, 267, 273

model: 5-6, 51, 
139, 150, 166

module: 153-155, 
188, 198, 201, 204, 
207, 249, 257, 260, 
283, 290, 292, 358

modules: 16, 25, 
135, 152-155, 
158-159, 162, 359

multiple: 6-7, 14, 25, 
33-34, 39-42, 45, 50, 
54, 56, 58-62, 78-81, 
83-84, 95, 99, 101, 
105, 109, 112, 114, 
126, 128-129, 142, 
148-149, 187, 208, 
212, 214, 216-217, 
220, 237, 241-242, 
245-246, 252, 254, 
265-266, 272, 
279-281, 283-284, 
293, 297-300, 306, 
314, 316, 321-322, 
324, 330, 335-336, 
342-345, 357, 361, 
374, 377-378, 392, 
406, 410, 432

N
native: 3, 13, 30, 

36, 445
navigation: 22-23, 

59, 96, 104-105, 
116, 143, 192, 

344, 347-348, 350, 
352-355, 358-359, 
361, 366, 368, 
370-372, 376, 
379-380, 382-383, 
403-404, 408, 
421-423, 426, 435

need: 2, 5-6, 10, 12-16, 
18, 25, 40, 44, 51, 
54-56, 59-60, 67, 
72, 76-77, 79, 81, 
91, 96, 100, 104, 
126-127, 129, 136, 
160, 170, 181, 
184, 187, 190, 
198-199, 203, 206, 
216, 224, 233-234, 
241, 244, 247, 
251, 260, 280-287, 
290, 295, 297-298, 
302, 306, 308-309, 
316, 322, 324-325, 
335, 343-344, 352, 
364-365, 367, 369, 
372, 375, 382-383, 
386-388, 395, 397, 
402, 413, 421, 
423, 426, 434, 
441-443, 445-446

nested: 12, 23, 30, 
35-37, 59, 95, 109, 
111, 169, 175, 
186, 192, 231, 
238-240, 242, 245, 
247, 251-252, 269, 
282-283, 285-286, 
288, 290, 293-294, 
300, 318, 335, 341, 

372-376, 379-380, 
383, 394, 401, 410, 
419, 421, 428, 434

nesting: 12, 112, 
283, 295, 372

network: 205, 259, 
263, 276, 346

node: 2, 14-16, 126, 
156, 189, 194, 443

npm: 2, 14-17, 34, 
44, 156, 191-192, 
234, 259, 274, 308, 
310, 337, 343-346

O
object: 5-6, 29, 35, 38, 

53-54, 57-58, 60, 
68, 80-84, 88, 93, 
101, 115, 123, 131, 
139, 141, 145, 149, 
153, 166, 168-169, 
172, 179-180, 203, 
210, 217-219, 
226, 228-230, 232, 
242-243, 250, 259, 
285-287, 290-291, 
294, 300, 303-304, 
306, 309-310, 
318-320, 324-325, 
330, 333-335, 
355-356, 366, 
372, 393-394, 
397, 399-400, 
414-418, 422, 
426-427, 430-431

objects: 30, 56, 79, 
82-84, 97-98, 



117-118, 120, 123, 
126, 131, 144, 
149-150, 172, 
210, 217, 222, 
226, 228-229, 
243, 250-251, 
258-259, 300, 302, 
324, 397-398

operator: 58, 112-115, 
123, 129, 149

P
package: 2, 13-17, 28, 

30, 35, 54, 242, 341, 
343, 345, 378, 382, 
386, 391, 433, 435

page: 3, 5, 10-11, 
14-17, 23, 29, 35, 
44-46, 50, 62, 73, 
100-101, 105, 108, 
116, 131-132, 
138-139, 142, 144, 
150, 162, 166, 
175, 192, 194, 
235, 241-242, 259, 
268-272, 277, 297, 
309, 311, 336, 338, 
341-343, 345-350, 
352, 354, 360, 
362-364, 366-372, 
375-376, 380-383, 
385-388, 392-393, 
400, 413, 418, 
421-422, 426, 
428-429, 434-437, 
440-441, 443

parameters: 178, 

301, 322-323, 
364-366, 399-400

pascalcase: 33-34, 43
passing: 42, 51, 61, 

69, 75, 88, 90, 145, 
148, 213, 295, 
304, 397, 416

past: 256, 266, 444
path: 14-15, 328, 

342-349, 351-354, 
356-357, 359-361, 
363-367, 373-374, 
376-379, 392, 
396-399, 401-402, 
404, 408-410, 412, 
415, 421, 428

personal: 44, 121, 
156, 222, 267

point: 17, 29, 41, 43, 
50-51, 59, 61, 66, 
79, 92, 99, 104, 
113, 121, 136-138, 
172, 187, 190, 206, 
233, 238, 260, 262, 
289, 293, 295, 
342, 354, 383, 
402-403, 409, 429

portal: 187, 189, 192
portals: 27, 160, 

165-166, 184, 
187, 190, 231

post: 105, 199, 202, 
204, 208, 234, 
365, 386-387, 
389, 391, 394, 
397-399, 403-405, 
407-409, 412-417, 
419-421, 423-424, 

426-428, 431

prior: 15, 177, 402
profiler: 270-272
project: 9, 12-18, 

24-25, 28-29, 32, 
34, 41, 44-45, 52, 
137-138, 152-153, 
158-159, 161, 
186, 191, 234, 
274-275, 307-310, 
319, 336-337, 343, 
357-358, 382, 435, 
441-443, 445

promise: 199-200, 
230-231, 393-394, 
417, 430-432

promises: 199, 
230-232

prop: 54-60, 71-72, 85, 
89, 92, 94, 97-98, 
113, 115, 127, 129, 
141-142, 144-145, 
147-152, 159, 
168-169, 171, 179, 
182, 218, 228-229, 
248, 250-251, 
253-254, 256-259, 
265, 272, 284, 
287, 290, 294-296, 
306-307, 345-346, 
352, 354-357, 360, 
364-365, 368, 
372-374, 379, 
392, 397, 411, 
415-416, 421, 431

properties: 53-54, 
82-84, 115, 141-142, 
149, 153, 179-181, 



229, 289, 291, 304, 
306, 320, 333, 366, 
399, 417, 427

props: 42, 49, 51-62, 
66, 71-73, 77, 80, 
90, 92, 96-99, 104, 
115-116, 136, 147, 
150-151, 158, 
178-179, 182-183, 
198, 201, 207, 
209, 226, 228-229, 
238, 241, 248, 
250-251, 269, 272, 
280, 282-285, 293, 
295-296, 306, 335, 
342, 354-355, 
360, 363-365, 
373, 440-441

pure: 7, 330
purpose: 39, 112, 

115, 147, 191, 206, 
357, 380, 433

put: 40-42, 66, 68, 
124, 177, 216-217, 
286, 440

putting:216

R
react: 1-4, 8-18, 21-45, 

49, 51-61, 65-79, 
81, 83, 85-86, 
88-92, 94-95, 
97-100, 103-104, 
106-117, 121-124, 
126-131, 135-139, 
141, 143-145, 152, 

155-156, 158-162, 
166, 168-175, 
177-178, 180-182, 
184-185, 187-192, 
197-202, 204-207, 
209-212, 214-216, 
223-227, 229-234, 
237-238, 240-246, 
249-251, 253-255, 
257, 260, 262-268, 
270, 272-275, 280, 
283-288, 290-291, 
293-295, 297, 300, 
302-303, 306-307, 
309, 311, 313-314, 
316-319, 321-322, 
324, 328, 335-336, 
341-346, 350, 352, 
355, 357, 359, 
364-366, 371-372, 
374, 376-379, 
382-383, 385-388, 
390-393, 395-402, 
406-407, 409-412, 
414-416, 418, 
421-423, 426, 
428-435, 439-446

reactdom: 28, 
30-32, 44, 139

redirects:372
reducer: 300-303, 

306, 309-311, 328
refactor: 336, 358
refs: 27, 160, 165-166, 

168, 170, 172, 
174-175, 177, 
181-182, 184, 

189-191, 201, 231, 
314, 322, 415

render: 28-31, 54, 68, 
70, 99, 103-104, 
108, 112, 116, 129, 
139, 188, 190, 192, 
201, 203, 206, 234, 
267, 271, 343, 346, 
348, 374, 376, 399, 
401, 410, 428-429

renderable: 27-28, 43
rendering: 103-104, 

106, 109, 112, 
126-127, 130, 
137, 149, 167, 
169-170, 184, 198, 
201-203, 233, 350, 
368, 401, 442

repository: 7, 191, 
234, 274, 307, 
309, 336, 383

request: 92-93, 
199-204, 206, 
208-210, 212, 214, 
216-217, 226, 
228-229, 232-234, 
266, 298-299, 303, 
314, 316, 318, 326, 
330, 332-333, 346, 
349-350, 386, 390, 
393-394, 399-400, 
407, 409, 413-414, 
416-418, 425

requesting: 166
requests: 198-202, 

205, 230, 234, 263, 
275-276, 316, 332, 



386-388, 399, 421, 
441, 443-444

resource: 72, 210, 
234, 342, 352, 367

retrieving: 256
returns: 27, 58, 75-76, 

82, 98, 112, 115, 
123, 157, 200, 
226, 285, 290-291, 
302-303, 306, 310, 
320, 322, 324, 
334, 349, 366, 
390, 408, 430

reuse: 66, 295, 317, 
324, 335, 363

router: 14, 341, 
343-344, 350, 352, 
355, 364-366, 
371-372, 374, 376, 
378-379, 382-383, 
385-388, 390-393, 
395-402, 404, 
406-412, 414-416, 
418, 421-423, 426, 
428-433, 435, 441

routes: 341, 343-353, 
355-357, 359-362, 
364-367, 372-380, 
383, 385, 392, 
396-398, 401-404, 
406-408, 410, 421, 
428, 432, 441-443

routing: 14, 17, 344, 
346, 357, 359, 363, 
365, 374, 377-380, 
382, 386-388, 

433-435, 440

rules: 38, 41, 44, 137, 
222, 231, 295

S
sending: 93, 199-201, 

203, 212, 229-230, 
232-234, 314, 316, 
318, 350, 386-388, 
393, 409, 413, 
416, 418, 421, 
425, 444, 446

server: 6, 16-17, 34, 
44, 92, 104, 167, 
169-171, 274-275, 
308, 310, 337, 
346, 349, 386, 
390, 393-394, 
399, 416, 443

setup: 15, 18, 32, 
152, 404

side: 3, 11, 104, 123, 
128, 190, 192-194, 
197, 200-206, 216, 
224, 228, 232-233, 
255, 267, 271, 299, 
314, 317, 321-322, 
324, 335, 337, 386, 
388, 390, 393, 399, 
401, 406, 434, 443

simple: 5, 7-8, 10, 12, 
41, 58, 69, 77, 79, 
95-96, 98, 100, 106, 
109, 129, 167, 190, 
214, 219, 222, 251, 

266, 280, 300, 306, 
326, 349-350, 376, 
379, 397, 411, 417, 
429, 442-443, 446

single: 8, 14-15, 17, 
23-24, 29, 33-34, 
40-43, 52, 57, 60, 
80-82, 84, 95, 99, 
101, 109, 114, 141, 
240, 242, 285, 
297-298, 300, 309, 
314, 324, 336, 
342-343, 346, 349, 
397, 407, 409

slices: 80-81, 83-84, 
94, 101, 300

source: 15, 88-89, 
125, 364, 386, 403

sources: 86, 89
spa: 14, 16, 18, 

343, 378
spas: 17, 342
splitting: 7, 25, 42, 260, 

263, 266, 272-273, 
357, 361, 377, 383

spread: 58, 115, 
123, 149, 158

spreading: 57, 59, 115
state: 6-7, 9-13, 17, 26, 

41, 60, 65-66, 68-70, 
73-88, 90-92, 94-99, 
101, 104, 107, 
121-123, 126-129, 
136, 144-146, 
166-167, 170-171, 
173-177, 180-184, 



189-191, 197-198, 
200-203, 206-209, 
211, 213, 216, 
218-219, 222, 224, 
226, 228, 231-233, 
237-238, 240-241, 
243-249, 251, 
258-259, 267, 269, 
272-273, 279-291, 
293-296, 298-311, 
314, 316-318, 
321-323, 326-328, 
330-337, 342-343, 
349-350, 352, 355, 
393, 413, 422-423, 
429, 440-444

stateful: 121, 316-317, 
321, 335

statements: 25, 28, 
40-41, 109, 111, 
113-114, 119, 129, 
140, 147, 199, 216, 
231, 263, 390

states: 8, 12, 17, 60, 
183, 216, 245, 
318, 321, 411

stop: 14, 259, 270
storage: 76, 198, 

203, 232-233, 
328, 387, 393

strict: 237, 246, 
267, 273

string: 10, 55, 75, 
77-79, 82, 89-91, 
108, 116-117, 120, 
128, 141, 148-149, 

157, 251, 285, 300, 
324, 368, 371, 422

strings: 28, 82, 98, 
100, 118, 153, 
159, 172, 368

strong: 12
sugar: 32, 34, 

37-38, 43, 108
suspense: 264-266, 

272, 377-378, 
430-431

switching: 79, 182, 350
system: 15-16, 346, 

393, 442-443

T
template: 149, 

156-157, 368
templates: 23, 156
testing: 14
throwing: 72
tools: 2, 9, 14, 41, 

69, 72, 104, 108, 
124-125, 129, 140, 
144, 154, 157, 
190-191, 214, 229, 
237-238, 256, 263, 
268, 272-273, 276, 
280, 295, 306, 
386, 441, 445

two-way: 88-90
type: 5, 25, 28, 66-67, 

70-71, 73-74, 
78-80, 82-83, 88-91, 
93-94, 96, 114, 

130, 145, 167-168, 
170-172, 176-177, 
179-180, 182, 184, 
208, 219, 223-224, 
227, 248, 258, 
261, 301, 303-306, 
310, 314-315, 324, 
326-334, 370, 411, 
413-414, 418-419, 
423, 430, 441

U
under: 3, 69, 76, 94, 

104, 153, 273
uniform: 342
uploading: 442
url: 14, 207-208, 

211, 316, 330-333, 
341-347, 350, 352, 
354, 356, 364-366, 
376, 379, 383, 
386, 399-400

urls: 316, 332, 
342, 347, 363

usecontext: 290-293, 
298, 306

useeffect: 197, 
204-209, 211-214, 
216-226, 228-233, 
255, 299, 304-305, 
315-317, 324, 
327-332, 334, 
385-386, 388, 
390, 393, 409

usefetch: 328-334
usememo: 237, 



254-256, 259, 268, 
272-273, 275

user: 2-7, 9-10, 12-14, 
17-18, 22, 24, 28-29, 
35-37, 41, 43, 45, 
49-50, 57, 60, 62, 
65-67, 77-79, 81, 
84, 88-92, 94, 98, 
100-101, 103-106, 
112, 120, 125, 
129-132, 136-137, 
145-146, 160-162, 
166, 170, 174-175, 
181-182, 184-185, 
190-191, 193, 198, 
201-203, 208, 
211, 235, 238, 
241-244, 250, 272, 
274-275, 280-281, 
294, 297, 306, 
308-311, 316, 321, 
337, 341-342, 348, 
350, 352, 354-355, 
362, 364, 368-370, 
372, 374-377, 379, 
385-387, 406, 415, 
418, 420-423, 
425-426, 429, 
431, 441-445

usereducer: 300-304, 
306-307, 309, 311, 
314-317, 321, 324, 
327-331, 333, 335

useref: 168-170, 
172-175, 178-180, 
205, 231, 324, 

369, 371, 412

usestate: 8, 24, 26, 
73-78, 80-94, 96, 
98-99, 107-108, 
110-111, 121-122, 
145, 167, 169, 
171, 173, 176, 
179, 182-183, 198, 
200-202, 204-205, 
207-208, 211-212, 
216, 218, 223, 225, 
227, 231, 239, 245, 
247, 257, 260, 262, 
264, 280, 288-289, 
293, 296, 298, 
300, 303, 306-307, 
309-310, 317-318, 
321-324, 335, 
349-351, 385, 388

using: 2, 4, 8, 10, 
12, 14, 17, 21-22, 
25, 30, 32-34, 36, 
43-44, 51-54, 57-58, 
68-69, 72, 75-76, 
78, 80, 84, 86-87, 
96-97, 100, 109, 
111, 113-115, 119, 
121, 123, 128-130, 
136-137, 139-142, 
144, 147, 149, 
152-153, 155-156, 
158-159, 162, 
166-168, 171-172, 
178, 180-184, 187, 
189-191, 200-201, 
203, 213, 224, 

228, 230, 238, 
246, 251-253, 260, 
266-268, 282, 
285-286, 288, 290, 
293-294, 300, 304, 
306-307, 315, 318, 
321, 327, 337, 352, 
355, 357, 359, 
366, 368, 372, 
378, 385-386, 388, 
397-398, 402, 409, 
414, 417, 423, 
425, 428-429, 431, 
441-442, 444-445

V
values: 8-9, 28, 

38-40, 43, 53, 
55-57, 72, 75-84, 
90-92, 97-100, 
104, 108-109, 
113-114, 116-120, 
123, 126-128, 130, 
145-147, 149-151, 
153, 159, 161, 166, 
168, 170, 172-173, 
175, 177, 180-181, 
183-184, 188-189, 
191, 209-211, 213, 
216, 219, 222, 224, 
228-230, 232-233, 
241, 245-247, 250, 
254, 257, 262, 
279-280, 282-283, 
285-287, 290, 
293-294, 297-300, 



302, 306, 309, 
320, 322-325, 330, 
332-333, 335, 
342, 355, 357, 
360, 363-365, 
368, 379-380, 
397, 416-420, 
422, 430-431

vanilla: 2, 4-6, 9-12, 
17-18, 28-29, 33-35, 
37, 68-69, 75, 79, 
93, 129, 139, 141, 
167-168, 174, 181

variable: 7, 9, 40-41, 
52, 70, 75-78, 91, 
108-109, 116, 121, 
173-174, 210, 215, 
226, 232, 259, 285, 
294, 298, 319

variables: 25, 40, 57, 
75-78, 97, 108-109, 
116, 173, 207, 213, 
219, 222, 442

versions: 16, 266
virtual: 13, 17, 35, 237, 

241-246, 272-273

W
waiting: 431
web: 1, 3-4, 6, 10, 

13-14, 23-25, 33-35, 
50, 57, 66-69, 72, 
79, 99, 104-105, 
129, 136, 138-139, 
142, 156, 160, 
166, 169, 198-199, 
233-234, 238, 242, 

259, 263, 268, 342, 
346, 368, 372, 386, 
394, 400, 416, 434, 
441, 445-446

welcome: 31, 380-381, 
396-397, 401, 404, 
408-410, 412

working: 2, 4-6, 9, 12, 
23-24, 26-28, 33, 
39-40, 44, 51, 55, 
58, 60, 65, 69-70, 
75, 78-79, 82, 84, 
91-92, 95, 100, 107, 
121, 123, 127, 136, 
141, 144-145, 149, 
152, 168, 173, 181, 
185, 190, 200, 231, 
233, 244, 260, 273, 
279, 282, 295, 298, 
307, 314, 386-388, 
415, 440-442






	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: React – What and Why
	Introduction
	What Is React?
	The Problem with "Vanilla JavaScript"
	React and Declarative Code
	How React Manipulates the DOM
	Introducing Single Page Applications
	Creating a React Project
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!


	Chapter 2: Understanding React Components and JSX
	Introduction
	What Are Components?
	Why Components?
	The Anatomy of a Component
	What Exactly Are Component Functions?
	What Does React Do with All These Components?
	Built-in Components
	Naming Conventions
	JSX vs HTML vs Vanilla JavaScript
	Using React without JSX
	JSX Elements Are Treated like Regular JavaScript Values!
	JSX Elements Must Be Self-Closing
	Outputting Dynamic Content
	When Should You Split Components?
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 2.1: Creating a React App to Present Yourself
	Activity 2.2: Creating a React App to Log Your Goals for This Book


	Chapter 3: Components and Props
	Introduction
	Not There Yet
	Using Props in Components
	Passing Props to Components
	Consuming Props in a Component
	Components, Props, and Reusability
	The Special "children" Prop
	Which Components Need Props?
	How to Deal with Multiple Props
	Spreading Props
	Prop Chains / Prop Drilling
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 3.1: Creating an App to Output Your Goals for This Book


	Chapter 4: Working with Events and State
	Introduction
	What's the Problem?
	How Not to Solve the Problem
	A Better Incorrect Solution
	Properly Reacting to Events
	Updating State Correctly
	A Closer Look at useState()
	A Look under the Hood of React
	Naming Conventions
	Allowed State Value Types
	Working with Multiple State Values
	Using Multiple State Slices
	Managing Combined State Objects
	Updating State Based on Previous State Correctly
	Two-Way Binding
	Deriving Values from State
	Working with Forms and Form Submission
	Lifting State Up
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 4.1: Building a Simple Calculator
	Activity 4.2: Enhancing the Calculator


	Chapter 5: Rendering Lists and Conditional Content
	Introduction
	What Are Conditional Content and List Data?
	Rendering Content Conditionally
	Different Ways of Rendering Content Conditionally
	Utilizing Ternary Expressions
	Abusing JavaScript Logical Operators
	Get Creative!
	Which Approach Is Best?

	Setting Element Tags Conditionally
	Outputting List Data
	Mapping List Data
	Updating Lists
	A Problem with List Items
	Keys to the Rescue!
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 5.1: Showing a Conditional Error Message
	Activity 5.2: Outputting a List of Products


	Chapter 6: Styling React Apps
	Introduction
	How Does Styling Work in React Apps?
	Using Inline Styles
	Setting Styles via CSS Classes
	Setting Styles Dynamically
	Conditional Styles
	Combining Multiple Dynamic CSS Classes
	Merging Multiple Inline Style Objects
	Building Components with Customizable Styles
	Customization with Fixed Configuration Options

	The Problem with Unscoped Styles
	Scoped Styles with CSS Modules
	The styled-components Library
	Using Other CSS or JavaScript Styling Libraries and Frameworks
	Summary and Key Takeaways

	What's Next?
	Test Your Knowledge!

	Apply What You Learned
	Activity 6.1: Providing Input Validity Feedback upon Form Submission
	Activity 6.2: Using CSS Modules for Style Scoping


	Chapter 7: Portals and Refs
	Introduction
	A World without Refs
	Refs versus State
	Using Refs for More than DOM Access
	Forwarding Refs
	Controlled versus Uncontrolled Components
	React and Where Things End up in the DOM
	Portals to the Rescue
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Have Learned
	Activity 7.1: Extract User Input Values
	Activity 7.2: Add a Side-Drawer


	Chapter 8: Handling Side Effects
	Introduction
	What's the Problem?
	Understanding Side Effects
	Side Effects Are Not Just about HTTP Requests
	Dealing with Side Effects with the useEffect() Hook
	How to Use useEffect()
	Effects and Their Dependencies
	Unnecessary Dependencies
	Cleaning Up after Effects
	Dealing with Multiple Effects
	Functions as Dependencies
	Avoiding Unnecessary Effect Executions
	Effects and Asynchronous Code
	Rules of Hooks
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 8.1: Building a Basic Blog


	Chapter 9: Behind the Scenes of React and Optimization Opportunities
	Introduction
	Revisiting Component Evaluations and Updates
	What Happens When a Component Function Is Called
	The Virtual DOM vs the Real DOM
	State Batching
	Avoiding Unnecessary Child Component Evaluations
	Avoiding Costly Computations
	Utilizing useCallback()
	Avoiding Unnecessary Code Download
	Reducing Bundle Sizes via Code Splitting (Lazy Loading)
	Strict Mode
	Debugging Code and the React Developer Tools
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 9.1: Optimize an Existing App


	Chapter 10: Working with Complex State
	Introduction
	A Problem with Cross-Component State
	Using Context to Handle Multi-Component State
	Providing and Managing Context Values
	Using Context in Nested Components
	Changing Context from Nested Components
	Getting Better Code Completion
	Context or "Lifting State Up"?
	Outsourcing Context Logic into Separate Components
	Combining Multiple Contexts
	Limitations of useState()
	Managing State with useReducer()
	Understanding Reducer Functions
	Dispatching Actions
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 10.1: Migrating an App to the Context API
	Activity 10.2: Replacing useState() with useReducer()


	Chapter 11: Building Custom React Hooks
	Introduction
	Why Would You Build Custom Hooks?
	What Are Custom Hooks?
	A First Custom Hook
	Custom Hooks: A Flexible Feature
	Custom Hooks and Parameters
	Custom Hooks and Return Values
	A More Complex Example
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 11.1: Build a Custom Keyboard Input Hook


	Chapter 12: Multipage Apps with React Router
	Introduction
	One Page Is Not Enough
	Getting Started with React Router and Defining Routes
	Adding Page Navigation
	From Link to NavLink
	Route Components versus "Normal" Components
	From Static to Dynamic Routes
	Extracting Route Parameters
	Creating Dynamic Links
	Navigating Programmatically
	Redirecting
	Nested Routes
	Handling Undefined Routes
	Lazy Loading
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 12.1: Creating a Basic Three-Page Website
	Activity 12.2: Enhancing the Basic Website


	Chapter 13: Managing Data with React Router
	Introduction
	Data Fetching and Routing Are Tightly Coupled
	Sending HTTP Requests without React Router
	Loading Data with React Router
	Enabling These Extra Router Features
	Loading Data for Dynamic Routes
	Loaders, Requests, and Client-Side Code
	Layouts Revisited
	Reusing Data across Routes
	Handling Errors
	Onward to Data Submission
	Working with action() and Form Data
	Returning Data Instead of Redirecting
	Controlling Which <Form> Triggers Which Action
	Reflecting the Current Navigation Status
	Submitting Forms Programmatically
	Behind-the-Scenes Data Fetching and Submission
	Deferring Data Loading
	Summary and Key Takeaways
	What's Next?
	Test Your Knowledge!
	Apply What You Learned
	Activity 13.1: A To-Dos App



	Chapter 14: Next Steps and Further Resources
	Introduction
	How Should You Proceed?
	Interesting Problems to Explore
	Build a Shopping Cart
	Build an Application's Authentication System (User Signup and Login)
	Build an Event Management Website

	Common and Popular React Libraries
	Other Resources
	Beyond React for Web Applications
	Final Words


	Appendix
	Index



