

PostgreSQL: Up and Running

THIRD EDITION

A Practical Guide to the Advanced Open Source Database

Regina O. Obe and Leo S. Hsu

2

Editor: Andy Oram

Production Editor: Melanie Yarbrough

Copyeditor: Kim Cofer

Proofreader: Christina Edwards

Indexer: Lucie Haskins

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

October 2017: Third Edition

Revision History for the Third Edition

2017-10-10: First Release

PostgreSQL: Up and Running

by Regina O. Obe and Leo S. Hsu

Copyright © 2018 Regina Obe, Leo Hsu. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

3

http://oreilly.com/safari

See http://oreilly.com/catalog/errata.csp?isbn=9781491963418 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
PostgreSQL: Up and Running, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-96341-8

[LSI]

4

http://oreilly.com/catalog/errata.csp?isbn=9781491963418

Preface

PostgreSQL bills itself as the world’s most advanced open source database.
We couldn’t agree more.

What we hope to accomplish in this book is to give you a firm grounding in
the concepts and features that make PostgreSQL so impressive. Along the
way, we should convince you that PostgreSQL does indeed stand up to its
claim to fame. Because the database is advanced, no book short of the 3500
pages of documentation can bring out all its glory. But then again, most users
don’t need to delve into the most abstruse features that PostgreSQL has to
offer. So in our shorter 300-pager, we hope to get you, as the subtitle
proclaims, Up and Running.

Each topic is presented with some context so you understand when to use it
and what it offers. We assume you have prior experience with some other
database so that we can jump right to the key points of PostgreSQL. We
generously litter the pages of this book with links to references so you can
dig deeper into topics of interest. These links lead to sections in the manual,
to helpful articles, to blog posts of PostgreSQL vanguards. We also link to
our own site at Postgres OnLine Journal, where we have collected many
pieces that we have written on PostgreSQL and its interoperability with other
applications.

This book focuses on PostgreSQL versions 9.5, 9.6, and 10, but we will cover
some unique and advanced features that are also present in prior versions.

Audience

For migrants from other database engines, we’ll point out parallels that
PostgreSQL shares with other leading products. Perhaps more importantly,
we highlight feats you can achieve with PostgreSQL that are difficult or
impossible to do in other databases.

5

http://www.postgresonline.com

Planet PostgreSQL is an aggregator of PostgreSQL blogs. You’ll find
PostgreSQL core developers and general users showcasing new features,
novel ways to use existing ones, and reporting of bugs that have yet to be
patched.

PostgreSQL Wiki provides tips and tricks for managing various facets of
the database and migrating from other databases.

PostgreSQL Books is a list of books about PostgreSQL.

We stop short of teaching you SQL, as you’ll find many excellent sources for
that. SQL is much like chess—a few hours to learn, a lifetime to master. You
have wisely chosen PostgreSQL. You’ll be greatly rewarded.

If you’re currently a savvy PostgreSQL user or a weather-beaten DBA, much
of the material in this book should be familiar terrain, but you’ll be sure to
pick up some pointers and shortcuts introduced in newer versions of
PostgreSQL. Perhaps you’ll even find the hidden gem that eluded you. If
nothing else, this book is at least ten times lighter than the PostgreSQL
manual.

Not using PostgreSQL yet? This book is propaganda—the good kind. Each
day you continue to use a database with limited SQL capabilities, you
handicap yourself. Each day that you’re wedded to a proprietary system,
you’re bleeding dollars.

Finally, if your work has nothing to do with databases or IT, or if you’ve just
graduated from kindergarten, the cute picture of the elephant shrew on the
cover should be worthy of the price alone.

For More Information on PostgreSQL

PostgreSQL has a well-maintained set of online documentation: PostgreSQL
manuals. We encourage you to bookmark it. The manual is available both as
HTML and as a PDF. Hardcopy collector editions are available for purchase.

Other PostgreSQL resources include:

6

http://www.postgresql.org/docs/manuals
http://planet.postgresql.org
http://wiki.postgresql.org
http://www.postgresql.org/docs/books/

PostGIS in Action Books is the website for the books we’ve written on
PostGIS, the spatial extender for PostgreSQL, and more recently
pgRouting, another PostgreSQL extension that provides network routing
capabilities useful for building driving apps.

Code and Output Formatting

For elements in parentheses, we gravitate toward placing the open parenthesis
on the same line as the preceding element and the closing parenthesis on a
line by itself. This is a classic C formatting style that we like because it cuts
down on the number of blank lines:

function(
Welcome to PostgreSQL

);

We also remove gratuitous spaces in screen output, so if the formatting of
your results doesn’t match ours exactly, don’t fret.

We omit the space after a serial comma for short elements. For example,
('a','b','c').

The SQL interpreter treats tabs, newlines, and carriage returns as whitespace.
In our code, we generally use whitespaces for indentation, not tabs. Make
sure that your editor doesn’t automatically remove tabs, newlines, and
carriage returns or convert them to something other than spaces.

After copying and pasting, if you find your code not working, check the
copied code to make sure it looks like what we have in the listing.

We use examples based on both Linux and Windows. Path notations differ
between the two, namely the use of solidus (/) versus reverse solidus (\).
While on Windows, use the Linux solidus, always! /, not \. You may see a
path such as /postgresql_book/somefile.csv. These are always relative to the
root of your server. If you are on Windows, you must include the drive letter:
C:/postgresql_book/somefile.csv.

7

http://www.postgis.us

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings. Used within paragraphs, where needed for
clarity, to refer to programming elements such as variables, functions,
databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP

This icon signifies a tip, suggestion, or general note.

WARNING

This icon indicates a warning or caution.

Using Code Examples

Code and data examples are available for download at
http://www.postgresonline.com/downloads/postgresql_book_3e.zip.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

8

http://www.postgresonline.com/downloads/postgresql_book_3e.zip

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “PostgreSQL: Up and
Running, Third Edition by Regina Obe and Leo Hsu (O’Reilly). Copyright
2018 Regina Obe and Leo Hsu, 978-1-491-96341-8.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among
others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

9

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

Please submit errata using the book’s errata page.

The companion site for this book is at http://bit.ly/postgresql-up-and-
running-3e.

To contact the authors, send email to lr@pcorp.us.

To comment or ask technical questions to the publisher, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

10

http://bit.ly/postgresql-up-and-running-3e
http://bit.ly/postgresql-up-and-running-3e
mailto:lr@pcorp.us
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 1. The Basics

PostgreSQL is an extremely powerful piece of software that introduces
features you may not have seen before. Some of the features are also present
in other well-known database engines, but under different names. This
chapter lays out the main concepts you should know when starting to attack
PostgreSQL documentation, and mentions some related terms in other
databases.

We begin by pointing you to resources for downloading and installing
PostgreSQL. Next, we provide an overview of indispensable administration
tools followed by a review of PostgreSQL nomenclature. PostgreSQL 10 was
recently released. We’ll highlight some of the new features therein. We close
with resources to turn to when you need additional guidance and to submit
bug reports.

Why PostgreSQL?

PostgreSQL is an enterprise-class relational database management system, on
par with the very best proprietary database systems: Oracle, Microsoft SQL
Server, and IBM DB2, just to name a few. PostgreSQL is special because it’s
not just a database: it’s also an application platform, and an impressive one at
that.

PostgreSQL is fast. In benchmarks, PostgreSQL either exceeds or matches
the performance of many other databases, both open source and proprietary.

PostgreSQL invites you to write stored procedures and functions in numerous
programming languages. In addition to the prepackaged languages of C,
SQL, and PL/pgSQL, you can easily enable support for additional languages
such as PL/Perl, PL/Python, PL/V8 (aka PL/JavaScript), PL/Ruby, and PL/R.
This support for a wide variety of languages allows you to choose the
language with constructs that can best solve the problem at hand. For

11

entest

entest

entest

entest

instance, use R for statistics and graphing, Python for calling web services,
the Python SciPy library for scientific computing, and PL/V8 for validating
data, processing strings, and wrangling with JSON data. Easier yet, find a
freely available function that you need, find out the language that it’s written
in, enable that specific language in PostgreSQL, and copy the code. No one
will think less of you.

Most database products limit you to a predefined set of data types: integers,
texts, Booleans, etc. Not only does PostgreSQL come with a larger built-in
set than most, but you can define additional data types to suit your needs.
Need complex numbers? Create a composite type made up of two floats.
Have a triangle fetish? Create a coordinate type, then create a triangle type
made up of three coordinate pairs. A dozenal activist? Create your own
duodecimal type. Innovative types are useful insofar as the operators and
functions that support them. So once you’ve created your special number
types, don’t forget to define basic arithmetic operations for them. Yes,
PostgreSQL will let you customize the meaning of the symbols (+,-,/,*).
Whenever you create a type, PostgreSQL automatically creates a companion
array type for you. If you created a complex number type, arrays of complex
numbers are available to you without additional work.

PostgreSQL also automatically creates types from any tables you define. For
instance, create a table of dogs with columns such as breed, cuteness, and
barkiness. Behind the scenes, PostgreSQL maintains a dogs data type for you.
This amazingly useful bridge between the relational world and the object
world means that you can treat data elements in a way that’s convenient for
the task at hand. You can create functions that work on one object at a time or
functions that work on sets of objects at a time. Many third-party extensions
for PostgreSQL leverage custom types to achieve performance gains, provide
domain-specific constructs for shorter and more maintainable code, and
accomplish feats you can only fantasize about with other database products.

Our principal advice is this: don’t treat databases as dumb storage. A
database such as PostgreSQL can be a full-fledged application platform. With
a robust database, everything else is eye candy. Once you’re versant in SQL,
you’ll be able to accomplish in seconds what would take a casual

12

entest

entest

programmer hours, both in coding and running time.

In recent years, we’ve witnessed an upsurge of NoSQL movements (though
much of it could be hype). Although PostgreSQL is fundamentally relational,
you’ll find plenty of facilities to handle nonrelational data. The ltree
extension to PostgreSQL has been around since time immemorial and
provides support for graphs. The hstore extensions let you store key-value
pairs. JSON and JSONB types allow storage of documents similar to
MongoDb. In many ways, PostgreSQL accommodated NoSQL before the
term was even coined!

PostgreSQL just celebrated its 20th birthday, dating from its christening to
PostgreSQL from Postgres95. The beginnings of the PostgreSQL code-base
began well before that in 1986. PostgreSQL is supported on all major
operating systems: Linux, Unix, Windows, and Mac. Every year brings a new
major release, offering enhanced performance along with features that push
the envelope of what’s possible in a database offering.

Finally, PostgreSQL is open source with a generous licensing policy.
PostgreSQL is supported by a community of developers and users where
profit maximization is not the ultimate pursuit. If you want features, you’re
free to contribute, or at least vocalize. If you want to customize and
experiment, no one is going to sue you. You, the mighty user, make
PostgreSQL what it is.

In the end, you will wonder why you ever used any other database, because
PostgreSQL does everything you could hope for and does it for free. No more
reading the licensing cost fineprint of those other databases to figure out how
many dollars you need to spend if you have eight cores on your virtualized
servers with X number of concurrent connections. No more fretting about
how much more the next upgrade will cost you.

Why Not PostgreSQL?

Given all the proselytizing thus far, it’s only fair that we point out situations
when PostgreSQL might not be suitable.

13

https://opensource.org/licenses/postgresql
entest

entest

entest

The typical installation size of PostgreSQL without any extensions is more
than 100 MB. This rules out PostgreSQL for a database on a small device or
as a simple cache store. Many lightweight databases abound that could better
serve your needs without the larger footprint.

Given its enterprise stature, PostgreSQL doesn’t take security lightly. If
you’re developing lightweight applications where you’re managing security
at the application level, PostgreSQL security with its sophisticated role and
permission management could be overkill. You might consider a single-user
database such as SQLite or a database such as Firebird that can be run either
as a client server or in single-user embedded mode.

All that said, it is a common practice to combine PostgreSQL with other
database types. One common combination you will find is using Redis or
Memcache to cache PostgreSQL query results. As another example, SQLite
can be used to store a disconnected set of data for offline querying when
PostgreSQL is the main database backend for an application.

Finally, many hosting companies don’t offer PostgreSQL on a shared hosting
environment, or they offer an outdated version. Most still gravitate toward the
impotent MySQL. To a web designer, for whom the database is an
afterthought, MySQL might suffice. But as soon as you learn to write any
SQL beyond a single-table select and simple joins, you’ll begin to sense the
shortcomings of MySQL. Since the first edition of this book, virtualization
has resown the landscape of commerical hosting, so having your own
dedicated server is no longer a luxury, but the norm. And when you have
your own server, you’re free to choose what you wish to have installed.
PostgreSQL bodes well with the popularity of cloud computing such as
Platform as a Service (PaaS) and Database as a Service (DbaaS). Most of the
major PaaS and DbaaS providers offer PostgreSQL, notably Heroku, Engine
Yard, Red Hat OpenShift, Amazon RDS for PostgreSQL, Google Cloud SQL
for PostgreSQL, Amazon Aurora for PostgreSQL, and Microsoft Azure for
PostgreSQL.

Where to Get PostgreSQL

14

entest

entest

entest

Years ago, if you wanted PostgreSQL, you had to compile it from source.
Thankfully, those days are long gone. Granted, you can still compile from
source, but using packaged installers won’t make you any less cool. A few
clicks or keystrokes, and you’re on your way.

If you’re installing PostgreSQL for the first time and have no existing
database to upgrade, you should install the latest stable release version for
your OS. The downloads page for the PostgreSQL core distribution maintains
a listing of places where you can download PostgreSQL binaries for various
OSes. In Appendix A, you’ll find useful installation instructions and links to
additional custom distributions.

Administration Tools

Four tools widely used with PostgreSQL are psql, pgAdmin, phpPgAdmin,
and Adminer. PostgreSQL core developers actively maintain the first three;
therefore, they tend to stay in sync with PostgreSQL releases. Adminer, while
not specific to PostgreSQL, is useful if you also need to manage other
relational databases: SQLite, MySQL, SQL Server, or Oracle. Beyond the
four that we mentioned, you can find plenty of other excellent administration
tools, both open source and proprietary.

psql

psql is a command-line interface for running queries and is included in all
distributions of PostgreSQL (see “psql Interactive Commands”). psql has
some unusual features, such as an import and export command for delimited
files (CSV or tab), and a minimalistic report writer that can generate HTML
output. psql has been around since the introduction of PostgreSQL and is the
tool of choice for many expert users, for people working in consoles without
a GUI, or for running common tasks in shell scripts. Newer converts favor
GUI tools and wonder why the older generation still clings to the command
line.

15

https://www.postgresql.org/download
entest

pgAdmin

pgAdmin is a popular, free GUI tool for PostgreSQL. Download it separately
from PostgreSQL if it isn’t already packaged with your installer. pgAdmin
runs on all OSes supported by PostgreSQL.

Even if your database lives on a console-only Linux server, go ahead and
install pgAdmin on your workstation, and you’ll find yourself armed with a
fantastic GUI tool.

pgAdmin recently entered its fourth release, dubbed pgAdmin4. pgAdmin4 is
a complete rewrite of pgAdmin3 that sports a desktop as well as a web server
application version utilizing Python. pgAdmin4 is currently at version 1.5. It
made its debut at the same time as PostgreSQL 9.6 and is available as part of
several PostgreSQL distributions. You can run pgAdmin4 as a desktop
application or via a browser interface.

An example of pgAdmin4 appears in Figure 1-1.

If you’re unfamiliar with PostgreSQL, you should definitely start with
pgAdmin. You’ll get a bird’s-eye view and appreciate the richness of
PostgreSQL just by exploring everything you see in the main interface. If
you’re deserting Microsoft SQL Server and are accustomed to Management
Studio, you’ll feel right at home.

pgAdmin4 still has a couple of pain points compared to pgAdmin3, but its
feature set is ramping up quickly and in some ways already surpasses
pgAdmin3. That said, if you are a long-time user of pgAdmin3, you might
want to go for the pgAdmin3 Long Time support (LTS) version supported
and distributed by BigSQL, and spend a little time test-driving pgAdmin4
before you fully commit to it. But keep in mind that the pgAdmin project is
fully committed to pgAdmin4 and no longer will make changes to
pgAdmin3.

16

http://www.pgadmin.org
http://www1.bigsql.org/pgadmin3/

17

Figure 1-1. pgAdmin4 tree browser

phpPgAdmin

phpPgAdmin, pictured in Figure 1-2, is a free, web-based administration tool
patterned after the popular phpMyAdmin. phpPgAdmin differs from
phpMyAdmin by including ways to manage PostgreSQL objects such as
schemas, procedural languages, casts, operators, and so on. If you’ve used
phpMyAdmin, you’ll find phpPgAdmin to have the same look and feel.

Figure 1-2. phpPgAdmin

Adminer

If you manage other databases besides PostgreSQL and are looking for a
unified tool, Adminer might fit the bill. Adminer is a lightweight, open
source PHP application with options for PostgreSQL, MySQL, SQLite, SQL
Server, and Oracle, all delivered through a single interface.

One unique feature of Adminer we’re impressed with is the relational
diagrammer that can produce a schematic layout of your database schema,
along with a linear representation of foreign key relationships. Another
hassle-reducing feature is that you can deploy Adminer as a single PHP file.

Figure 1-3 is a screenshot of the login screen and a snippet from the
diagrammer output. Many users stumble in the login screen of Adminer

18

https://github.com/phppgadmin/phppgadmin
http://www.adminer.org/

Figure 1-3. Adminer

PostgreSQL Database Objects

So you installed PostgreSQL, fired up pgAdmin, and expanded its browse
tree. Before you is a bewildering display of database objects, some familiar
and some completely foreign. PostgreSQL has more database objects than
most other relational database products (and that’s before add-ons). You’ll
probably never touch many of these objects, but if you dream up something
new, more likely than not it’s already implemented using one of those
esoteric objects. This book is not even going to attempt to describe all that
you’ll find in a standard PostgreSQL install. With PostgreSQL churning out

because it doesn’t include a separate text box for indicating the port number.
If PostgreSQL is listening on the standard 5432 port, you need not worry. But
if you use some other port, append the port number to the server name with a
colon, as shown in Figure 1-3.

Adminer is sufficient for straightforward querying and editing, but because
it’s tailored to the lowest common denominator among database products,
you won’t find management applets that are specific to PostgreSQL for such
tasks as creating new users, granting rights, or displaying permissions.
Adminer also treats each schema as a separate database, which severely
reduces the usefulness of the relational diagrammer if your relationships
cross schema boundaries. If you’re a DBA, stick to pgAdmin or psql.

19

Schemas are part of the ANSI SQL standard. They are the immediate next
level of organization within each database. If you think of the database as
a country, schemas would be the individual states (or provinces,
prefectures, or departments, depending on the country). Most database
objects first belong to a schema, which belongs to a database. When you
create a new database, PostgreSQL automatically creates a schema named
public to store objects that you create. If you have few tables, using
public would be fine. But if you have thousands of tables, you should
organize them into different schemas.

Tables

Tables are the workhorses of any database. In PostgreSQL, tables are first
citizens of their respective schemas, which in turn are citizens of the
database.

PostgreSQL tables have two remarkable talents: first, they are inheritable.
Table inheritance streamlines your database design and can save you
endless lines of looping code when querying tables with nearly identical
structures. Second, whenever you create a table, PostgreSQL
automatically creates an accompanying custom data type.

Views

Almost all relational database products offer views as a level of
abstraction from tables. In a view, you can query multiple tables and
present additional derived columns based on complex calculations. Views
are generally read-only, but PostgreSQL allows you to update the
underlying data by updating the view, provided that the view draws from

features at breakneck speed, we can’t imagine any book that could possibly
do this. We limit our quick overview to those objects that you should be
familiar with:

Databases

Each PostgreSQL service houses many individual databases.

Schemas

20

entest

entest

entest

entest

entest

entest

entest

entest

entest

entest

entest

a single table. To update data from views that join multiple tables, you
need to create a trigger against the view. Version 9.3 introduced
materialized views, which cache data to speed up commonly used queries
at the sacrifice of having the most up-to-date data. See “Materialized
Views”.

Extension

Extensions allow developers to package functions, data types, casts,
custom index types, tables, attribute variables, etc., for installation or
removal as a unit. Extensions are similar in concept to Oracle packages
and have been the preferred method for distributing add-ons since
PostgreSQL 9.1. You should follow the developer’s instructions on how
to install the extension files onto your server, which usually involves
copying binaries into your PostgreSQL installation folders and then
running a set of scripts. Once done, you must enable the extension for
each database separately. You shouldn’t enable an extension in your
database unless you need it. For example, if you need advanced text
search in only one database, enable fuzzystrmatch for that one only.

When you enable extensions, you choose the schemas where all
constituent objects will reside. Accepting the default will place everything
from the extension into the public schema, littering it with potentially
thousands of new objects. We recommend that you create a separate
schema that will house all extensions. For an extension with many
objects, we suggest that you create a separate schema devoted entirely to
it. Optionally, you can append the name of any schemas you add to the
search_path variable of the database so you can refer to the function
without having to prepend the schema name. Some extensions, especially
ones that install a new procedural language (PL), will dictate the
installation schema. For example, PL/V8 must be installed the pg_catalog
schema.

Extensions may depend on other extensions. Prior to PostgreSQL 9.6, you
had to know all dependent extensions and install them first. With 9.6, you
simply need to add the CASCADE option and PostgreSQL will take care of

21

the rest. For example:

CREATE EXTENSION postgis_tiger_geocoder CASCADE;

first installs the dependent extensions postgis and fuzzystrmatch, if not
present.

Functions

You can program your own custom functions to handle data
manipulation, perform complex calculations, or wrap similar
functionality. Create functions using PLs. PostgreSQL comes stocked
with thousands of functions, which you can view in the postgres database
that is part of every install. PostgreSQL functions can return scalar
values, arrays, single records, or sets of records. Other database products
refer to functions that manipulate data as stored procedures. PostgreSQL
does not make this distinction.

Languages

Create functions using a PL. PostgreSQL installs three by default: SQL,
PL/pgSQL, and C. You can easily install additional languages using the
extension framework or the CREATE PRODCEDURAL LANGUAGE command.
Languages currently in vogue are PL/Python, PL/V8 (JavaScript), and
PL/R. We’ll show you plenty of examples in Chapter 8.

Operators

Operators are nothing more than symbolically named aliases such as = or
&& for functions. In PostgreSQL, you can invent your own. This is often
the case when you create custom data types. For example, if you create a
custom data type of complex numbers, you’d probably want to also create
addition operators (+,-,*,/) to handle arithmetic on them.

Foreign tables and foreign data wrappers

Foreign tables are virtual tables linked to data outside a PostgreSQL
database. Once you’ve configured the link, you can query them like any

22

other tables. Foreign tables can link to CSV files, a PostgreSQL table on
another server, a table in a different product such as SQL Server or
Oracle, a NoSQL database such as Redis, or even a web service such as
Twitter or Salesforce.

Foreign data wrappers (FDWs) facilitate the magic handshake between
PostgreSQL and external data sources. FDW implementations in
PostgreSQL follow the SQL/Management of External Data (MED)
standard.

Many charitable programmers have already developed FDWs for popular
data sources. You can try your hand at creating your own FDWs as well.
(Be sure to publicize your success so the community can reap the fruits of
your toil.) Install FDWs using the extension framework. Once installed,
pgAdmin lists them under a node called Foreign Data Wrappers.

Triggers and trigger functions

You will find triggers in all enterprise-level databases; triggers detect
data-change events. When PostgreSQL fires a trigger, you have the
opportunity to execute trigger functions in response. A trigger can run in
response to particular types of statements or in response to changes to
particular rows, and can fire before or after a data-change event.

In pgAdmin, to see which table triggers, drill down to the table level. Pick
the table of interest and look under triggers.

Create trigger functions to respond to firing of triggers. Trigger functions
differ from regular functions in that they have access to special variables
that store the data both before and after the triggering event. This allows
you to reverse data changes made by the event during the execution of the
trigger function. Because of this, trigger functions are often used to write
complex validation routines that are beyond what can be implemented
using check constraints.

Trigger technology is evolving rapidly in PostgreSQL. Starting in 9.0, a
WITH clause lets you specify a boolean WHEN condition, which is
tested to see whether the trigger should be fired. Version 9.0 also

23

http://en.wikipedia.org/wiki/SQL/MED

introduced the UPDATE OF clause, which allows you to specify which
column(s) to monitor for changes. When data in monitored columns
changes, the trigger fires. In 9.1, a data change in a view can fire a trigger.
Since 9.3, data definition language (DDL) events can fire triggers. For a
list of triggerable DDL events, refer to the Event Trigger Firing Matrix.
pgAdmin lists DDL triggers under the Event Triggers branch. Finally, as
of version 9.4, you may place triggers against foreign tables.

Catalogs

Catalogs are system schemas that store PostgreSQL builtin functions and
metadata. Every database contains two catalogs: pg_catalog, which holds
all functions, tables, system views, casts, and types packaged with
PostgreSQL; and information_schema, which offers views exposing
metadata in a format dictated by the ANSI SQL standard.

PostgreSQL practices what it preaches. You will find that PostgreSQL
itself is built atop a self-replicating structure. All settings to finetune
servers are kept in system tables that you’re free to query and modify.
This gives PostgreSQL a level of extensibility (read hackability)
impossible to attain by proprietary database products. Go ahead and take
a close look inside the pg_catalog schema. You’ll get a sense of how
PostgreSQL is put together. If you have superuser privileges, you are at
liberty to make updates to the pg_catalog directly (and screw things up
royally).

The information_schema catalog is one you’ll find in MySQL and SQL
Server as well. The most commonly used views in the PostgreSQL
information_schema are columns, which list all table columns in a
database; tables, which list all tables (including views) in a database; and
views, which list all views and the associated SQL to rebuild the view.

Types

Type is short for data type. Every database product and every
programming language has a set of types that it understands: integers,
characters, arrays, blobs, etc. PostgreSQL has composite types, which are

24

http://bit.ly/12sbQI8
entest

entest

entest

entest

made up of other types. Think of complex numbers, polar coordinates,
vectors, or tensors as examples.

Whenever you create a new table, PostgreSQL automatically creates a
composite type based on the structure of the table. This allows you to
treat table rows as objects in their own right. You’ll appreciate this
automatic type creation when you write functions that loop through
tables. pgAdmin doesn’t make the automatic type creation obvious
because it does not list them under the types node, but rest assured that
they are there.

Full text search

Full text search (FTS) is a natural language–based search. This kind of
search has some “intelligence” built in. Unlike regular expression search,
FTS can match based on the semantics of an expression, not just its
syntactical makeup. For example, if you’re searching for the word
running in a long piece of text, you may end up with run, running, ran,
runner, jog, sprint, dash, and so on. Three objects in PostgreSQL together
support FTS: FTS configurations, FTS dictionaries, and FTS parsers.
These objects exist to support the built-in Full Text Search engine
packaged with PostgreSQL. For general use cases, the configurations,
dictionaries, and parsers packaged with PostgreSQL are sufficient. But
should you be working in a specific industry with specialized vocabulary
and syntax rules such as pharmacology or organized crime, you can swap
out the packaged FTS objects with your own. We cover FTS in detail in
“Full Text Search”.

Casts

Casts prescribe how to convert from one data type to another. They are
backed by functions that actually perform the conversion. In PostgreSQL,
you can create your own casts and override or enhance the default casting
behavior. For example, imagine you’re converting zip codes (which are
five digits long in the US) to character from integer. You can define a
custom cast that automatically prepends a zero when the zip is between
1000 and 9999.

25

Casting can be implicit or explicit. Implicit casts are automatic and
usually expand from a more specific to a more generic type. When an
implicit cast is not offered, you must cast explicitly.

Sequences

A sequence controls the autoincrementation of a serial data type.
PostgresSQL automatically creates sequences when you define a serial
column, but you can easily change the initial value, step, and next
available value. Because sequences are objects in their own right, more
than one table can share the same sequence object. This allows you to
create a unique key value that can span tables. Both SQL Server and
Oracle have sequence objects, but you must create them manually.

Rules

Rules are instructions to rewrite an SQL prior to execution. We’re not
going to cover rules as they’ve fallen out of favor because triggers can
accomplish the same things.

For each object, PostgreSQL makes available many attribute variables that
you can set. You can set variables at the server level, at the database level, at
the function level, and so on. You may encounter the fancy term GUC, which
stands for grand unified configuration, but it means nothing more than
configuration settings in PostgreSQL.

What’s New in Latest Versions of PostgreSQL?

Every September a new PostgreSQL is released. With each new release
comes greater stability, heightened security, better performance—and avant-
garde features. The upgrade process itself gets easier with each new version.
The lesson here? Upgrade. Upgrade often. For a summary chart of key
features added in each release, refer to the PostgreSQL Feature Matrix.

Why Upgrade?

If you’re using PostgreSQL 9.1 or below, upgrade now! Version 9.1 retired to

26

http://www.postgresql.org/about/featurematrix

There are new planner strategies for parallel queries: Parallel Bitmap
Heap Scan, Parallel Index Scan, and others. These changes allow a wider
range of queries to be parallelized for. See “Parallelized Queries”.

Logical replication

Prior versions of PostgreSQL had streaming replication that replicates the
whole server cluster. Slaves in streaming replication were read-only and

end-of-life (EOL) status in September 2016. Details about PostgreSQL EOL
policy can be found here: PostgreSQL Release Support Policy. EOL is not
where you want to be. New security updates and fixes to serious bugs will no
longer be available. You’ll need to hire specialized PostgreSQL core
consultants to patch problems or to implement workarounds—probably not a
cheap proposition, assuming you can even locate someone willing to
undertake the work.

Regardless of which major version you are running, you should always keep
up with the latest micro versions. An upgrade from say, 9.1.17 to 9.1.21,
requires no more than a file replacement and a restart. Micro versions only
patch bugs. Nothing will stop working after a micro upgrade. Performing a
micro upgrade can in fact save you much grief down the road.

Features Introduced in PostgreSQL 10

PostgreSQL 10 is the latest stable release and was released in October 2017.
Starting with PostgreSQL 10, the PostgreSQL project adopted a new
versioning convention. In prior versions, major versions got a minor version
number bump. For example, PostgreSQL 9.6 introduced some major new
features that were not in its PostgreSQL 9.5 predecessor. In contrast, starting
with PostgreSQL 10, major releases will have the first digit bumped. So
major changes to PostgreSQL 10 will be called PostgreSQL 11. This is more
in line with what other database vendors follow, such as SQLite, SQL Server,
and Oracle.

Here are the key new features in 10:

Query parallelization improvements

27

http://www.postgresql.org/support/versioning/

could be used only for queries that don’t change data. Nor could they
have tables of their own. Logical replication provides two features that
streaming replication did not have. You can now replicate just a table or a
database (no need for the whole cluster); since you are replicating only
part of the data, the slaves can have their own set of data that is not
involved in replication.

Full text support for JSON and JSONB

In prior versions, to_tsvector would work only with plain text when
generating a full text vector. Now to_tsvector can understand the json and
jsonb types, ignoring the keys in JSON and including only the values in
the vector. The ts_headline function for json and jsonb was also
introduced. It highlights matches in a json document during a tsquery.
Refer to “Full Text Support for JSON and JSONB”.

ANSI standard XMLTABLE construct

XMLTABLE provides a simpler way of deconstructing XML into a
standard table structure. This feature has existed for some time in Oracle
and IBM DB2 databases. Refer to Example 5-41.

FDW push down aggregates to remote servers

The FDW API can now run aggregations such as COUNT(*) or SUM(*)
on remote queries. postgres_fdw takes advantage of this new feature.
Prior to postgres_fdw, any aggregation would require the local server to
request all the data that needed aggregation and do the aggregation
locally.

Declarative table partitioning

In prior versions, if you had a table you needed to partition but query as a
single unit, you would utilize PostgreSQL table inheritance support.
Using inheritance was cumbersome in that you had to write triggers to
reroute data to a table PARTITION if adding to the parent table.
PostgreSQL 10 introduces the PARTITION BY construct. PARTITION
BY allows you to create a parent table with no data, but with a defined

28

PARTITION formula. Now you can insert data into the parent table
without the need to define triggers. Refer to “Partitioned Tables”.

Query execution

Various speedups have been added.

CREATE STATISTICS

New construct for creating statistics on multiple columns. Refer to
Example 9-18.

IDENTITY

A new IDENTITY qualifier in DDL table creation and ALTER
statements provides a more standards-compliant way to designate a table
column as an auto increment. Refer to Example 6-2.

Features Introduced in PostgreSQL 9.6

PostgreSQL 9.6 was released in September 2016. PostgreSQL 9.6 is the last
of the PostgreSQL 9+ series:

Query parallelization

Up to now, PostgreSQL could not take advantage of multiple processor
cores. In 9.6, the PostgreSQL engine can distribute certain types of
queries across multiple cores and processers. Qualified queries include
those with sequential scans, some joins, and some aggregates. However,
queries that involve changing data such as deletes, inserts, and updates
are not parallelizable. Parallelization is a work in progress with the
eventual hope that all queries will take advantage of multiple processor
cores. See “Parallelized Queries”.

Phrase full text search

Use the distance operator <-> in a full text search query to indicate how
far two words can be apart from each other and still be considered a
match. In prior versions you could indicate only which words should be
searched; now you can control the sequence of the words. See “Full Text

29

Search”.

psql \gexec options

These read an SQL statement from a query and execute it. See “Dynamic
SQL Execution”.

postgres_fdw

Updates, inserts, and deletes are all much faster for simple cases. See
Depesz: Directly Modify Foreign Table for details.

Pushed-down FDW joins

This is now supported by some FDWs. postgres_fdw supports this
feature. When you join foreign tables, instead of retrieving the data from
the foreign server and performing the join locally, FDW will perform the
join remotely if foreign tables involved in the join are from the same
foreign server and then retrieve the result set. This could lower the
number of rows that have to come over from the foreign server,
dramatically improving performance when joins eliminate many rows.

Features Introduced in PostgreSQL 9.5

Version 9.5 came out in January of 2016. Notable new features are as
follows:

Improvements to foreign table architecture

A new IMPORT FOREIGN SCHEMA command allows for bulk creation of
foreign tables from a foreign server. Foreign table inheritance means that
a local table can inherit from foreign tables; foreign tables can inherit
from local tables; and foreign tables can inherit from other foreign tables.
You can also add constraints to foreign tables. See “Foreign Data
Wrappers” and “Querying Other PostgreSQL Servers”.

Using unlogged tables as a fast way to populate new tables

The downside is that unlogged tables would get truncated during a crash.

30

http://bit.ly/2kD8DnN

In prior versions, promoting an unlogged table to a logged table could not
be done without creating a new table and repopulating the records. In 9.5,
just use the ALTER TABLE ... SET UNLOGGED command.

Arrays in array_agg

The array_agg function accepts a set of values and combines them into a
single array. Prior to 9.5, passing in arrays would throw an error. With
9.5, array_agg is smart enough to automatically construct
multidimensional arrays for you. See Example 5-17.

Block range indexes (BRIN)

A new kind of index with smaller footprint than B-Tree and GIN. Under
some circumstances BRIN can outperform the former two. See “Indexes”.

Grouping sets, ROLLUP, AND CUBE SQL predicates

This feature is used in conjunction with aggregate queries to return
additional subtotal rows. See “GROUPING SETS, CUBE, ROLLUP” for
examples.

Index-only scans

These now support GiST indexes.

Insert and update conflict handling

Prior to 9.5, any inserts or updates that conflicted with primary key and
check constraints would automatically fail. Now you have an opportunity
to catch the exception and offer an alternative course, or to skip the
records causing the conflict. See “UPSERTs: INSERT ON CONFLICT
UPDATE”.

Update lock failures

If you want to select and lock rows with the intent of updating the data,
you can use SELECT ... FOR UPDATE. If you’re unable to obtain the
lock, prior to 9.5, you’d receive an error. With 9.5, you can add the SKIP
LOCKED option to bypass rows for which you’re unable to obtain locks.

31

Row-level security

You now have the ability to set visibility and updatability on rows of a
table using policies. This is especially useful for multitenant databases or
situations where security cannot be easily isolated by segmenting data
into different tables.

Features Introduced in PostgreSQL 9.4

Version 9.4 came out in September 2014. Notable new features are as
follows:

Materialized view enhancements

In 9.3, materialized views are inaccessible during a refresh, which could
be a long time. This makes their deployment in a production undesirable.
9.4 eliminated the lock provided for materizalized views with a unique
index.

New analytic functions to compute percentiles

percentile_disc (percentile discrete) and percentile_cont (percentile
continuous) were added. They must be used with the special WITHIN
GROUP (ORDER BY ...) construct. PostgreSQL vanguard Hubert
Lubaczewski described their use in Ordered Set Within Group
Aggregates. If you’ve ever looked for an aggregate median function in
PostgreSQL, you didn’t find it. Recall from your introduction to medians
that the algorithm has an extra tie-breaker step at the end, making it
difficult to program as an aggregate function. The new percentile
functions approximate the true median with a “fast” median. We cover
these two functions in more detail in “Percentiles and Mode”.

Protection against updates in views

WITH CHECK OPTION clause added to the CREATE VIEW statement will
block, update, or insert on the view if the resulting data would no longer
be visible in the view. We demonstrate this feature in Example 7-3.

32

http://bit.ly/12sbTnq
entest

A new data type, JSONB

The JavaScript object notation binary type allows you to index a full
JSON document and expedite retrieval of subelements. For details, see
“JSON” and check out these blog posts: Introduce jsonb: A Structured
Format for Storing JSON and JSONB: Wildcard Query.

Improved Generalized Inverted Index (GIN)

GIN was designed with FTS, trigrams, hstores, and JSONB in mind.
Under many circumstances, you may choose GIN with its smaller
footprint over B-Tree without loss in performance. Version 9.5 improved
its query speed. Check out GIN as a Substitute for Bitmap Indexes.

More JSON functions

These are json_build_array, json_build_object, json_object,
json_to_record, and json_to_recordset.

Expedited moves between tablespaces

You can now move all database objects from one tablespace to another by
using the syntax ALTER TABLESPACE old_space MOVE ALL TO
new_space;.

Row numbers in returned sets

You can add a row number for set-returning functions with the system
column ordinality. This is particularly handy when converting
denormalized data stored in arrays, hstores, and composite types to
records. Here is an example using hstore:

SELECT ordinality, key, value
 FROM EACH('breed=>pug,cuteness=>high'::hstore) WITH ordinality;

Using SQL to alter system-configuration settings

The ALTER system SET ... construct allows you to set global system
settings without editing the postgresql.conf, as detailed in “The

33

http://bit.ly/1yo0Tp9
http://bit.ly/12sbZv4
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes

postgresql.conf File”. This also means you can now programmatically
change system settings, but keep in mind that PostgreSQL may require a
restart for new settings to take effect.

Triggers

Version 9.4 lets you place triggers on foreign tables.

Better handling of unnesting

The unnest function predictably allocates arrays of different sizes into
columns. Prior to 9.4, unnesting arrays of different sizes resulted in
shuffling of columns in unexpected ways.

ROWS FROM

This construct allows the use of multiple set-returning functions in a
series, even if they have an unbalanced number of elements in each set:

SELECT *
FROM ROWS FROM (jsonb_each('{"a":"foo1","b":"bar"}'::jsonb),

 jsonb_each('{"c":"foo2"}'::jsonb)
)

 x (a1,a1_val,a2,a2_val);

Dynamic background workers

You can code these in C to do work that is not available through SQL or
functions. A trivial example is available in the 9.4 source code in the
contrib/worker_spi directory.

Database Drivers

Chances are that you’re not using PostgreSQL in a vacuum. You need a
database driver to interact with applications and other databases. PostgreSQL
works with free drivers for many programming languages and tools.
Moreover, various commercial organizations provide drivers with extra bells
and whistles at modest prices. Here are some of the notable open source

34

entest

entest

entest

drivers:

PHP is a popular language for web development, and most PHP
distributions include at least one PostgreSQL driver: the old pgsql driver
or the newer pdo_pgsql. You may need to enable them in your php.ini.

For Java developers, the JDBC driver keeps up with latest PostgreSQL
versions. Download it from PostgreSQL.

For .NET (both Microsoft or Mono), you can use the Npgsql driver. Both
the source code and the binary are available for .NET Framework,
Microsoft Entity Framework, and Mono.NET.

If you need to connect from Microsoft Access, Excel, or any other
products that support Open Database Connectivity (ODBC), download
drivers from the PostgreSQL ODBC drivers site. You’ll have your choice
of 32-bit or 64-bit.

LibreOffice 3.5 and later comes packaged with a native PostgreSQL
driver. For OpenOffice and older versions of LibreOffice, you can use the
JDBC driver or the SDBC driver. Learn more details from our article OO
Base and PostgreSQL.

Python has support for PostgreSQL via many database drivers. At the
moment, psycopg2 is the most popular. Rich support for PostgreSQL is
also available in the Django web framework. If you are looking for an
object-relational mapper, SQL Alchemy is the most popular and is used
internally by the Multicorn Foreign Data Wrapper.

If you use Ruby, connect to PostgreSQL using rubygems pg.

You’ll find Perl’s connectivity to PostgreSQL in the DBI and the
DBD::Pg drivers. Alternatively, there’s the pure Perl DBD::PgPP driver
from CPAN.

Node.js is a JavaScript framework for running scalable network programs.
There are two PostgreSQL drivers currently: Node Postgres with optional
native libpq bindings and pure JS (no compilation required) and Node-

35

http://jdbc.postgresql.org
http://www.npgsql.org/
http://www.postgresql.org/ftp/odbc/versions/msi
http://www.postgresonline.com/journal/categories/23-oobase
http://wiki.postgresql.org/wiki/Python
http://initd.org/psycopg/
http://bit.ly/1w5GbtX
http://www.sqlalchemy.org/
http://multicorn.org
http://bit.ly/1vXsUSk
http://search.cpan.org
https://github.com/brianc/node-postgres
https://github.com/DrBenton/Node-DBI
entest

entest

entest

DBI.

Where to Get Help

There will come a day when you need help. That day always arrives early; we
want to point you to some resources now rather than later. Our favorite is the
lively mailing list designed for helping new and old users with technical
issues. First, visit PostgreSQL Help Mailing Lists. If you are new to
PostgreSQL, the best list to start with is the PGSQL General Mailing List. If
you run into what appears to be a bug in PostgreSQL, report it at PostgreSQL
Bug Reporting.

Notable PostgreSQL Forks

The MIT/BSD-style licensing of PostgreSQL makes it a great candidate for
forking. Various groups have done exactly that over the years. Some have
contributed their changes back to the original project or funded PostgreSQL
work. For list of forks, refer to PostgreSQL-derived databases.

Many popular forks are proprietary and closed source. Netezza, a popular
database choice for data warehousing, was a PostgreSQL fork at inception.
Similarly, the Amazon Redshift data warehouse is a fork of a fork of
PostgreSQL. Amazon has two other offerings that are closer to standard
PostgreSQL: Amazon RDS for PostgreSQL and Amazon Aurora for
PostgreSQL. These stay in line with PostgreSQL versions in SQL syntax but
with more management and speed features.

PostgreSQL Advanced Plus by EnterpriseDB is a fork that adds Oracle
syntax and compatibility features to woo Oracle users. EnterpriseDB ploughs
funding and development support back to the PostgreSQL community. For
this, we’re grateful. Its Postgres Plus Advanced Server is fairly close to the
most recent stable version of PostgreSQL.

Postgres-X2, Postgres-XL, and GreenPlum are three budding forks with open
source licensing (although GreenPlum was closed source for a period). These

36

http://www.postgresql.org/community/lists/
http://archives.postgresql.org/pgsql-general
http://www.postgresql.org/docs/current/interactive/bug-reporting.html
http://bit.ly/2kCW8bU
http://www.netezza.com
http://aws.amazon.com/redshift/
http://enterprisedb.com
http://postgres-x2.github.io/
http://www.postgres-xl.org/
http://greenplum.org/

three target large-scale data analytics and replication.

Part of the reason for forking is to advance ahead of the PostgreSQL release
cycle and try out new features that may or may not be of general interest.
Many of the new features developed this way do find their way back into a
later PostgreSQL core release. Such is the case with the multi-master bi-
directional replication (BDR) fork developed by 2nd Quadrant. Pieces of
BDR, such as the logical replication support, are beefing up the built-in
replication functionality in PostgreSQL proper. Some of the parallelization
work of Postgres-XL will also likely make it into future versions of
PostgreSQL.

Citus is a project that started as a fork of PostgreSQL to support real-time big
data and parallel queries. It has since been incorporated back and can be
installed in PostgreSQL 9.5 as an extension.

Google Cloud SQL for PostgreSQL is a fairly recent addition by Google and
is currently in beta.

37

http://2ndquadrant.com/en/resources/bdr/
http://2ndquadrant.com
https://www.citusdata.com/
https://cloud.google.com/sql/docs/postgres/

This chapter covers what we consider basic administration of a PostgreSQL
server: managing roles and permissions, creating databases, installing
extensions, and backing up and restoring data. Before continuing, you should
have already installed PostgreSQL and have administration tools at your
disposal.

Configuration Files

Three main configuration files control operations of a PostgreSQL server:

postgresql.conf

Controls general settings, such as memory allocation, default storage
location for new databases, the IP addresses that PostgreSQL listens on,
location of logs, and plenty more.

pg_hba.conf

Controls access to the server, dictating which users can log in to which
databases, which IP addresses can connect, and which authentication
scheme to accept.

pg_ident.conf

If present, this file maps an authenticated OS login to a PostgreSQL user.
People sometimes map the OS root account to the PostgresSQL superuser
account, postgres.

NOTE

PostgreSQL officially refers to users as roles. Not all roles need to have login

Chapter 2. Database
Administration

38

privileges. For example, group roles often do not. We use the term user to refer
to a role with login privileges.

If you accepted default installation options, you will find these configuration
files in the main PostgreSQL data folder. You can edit them using any text
editor or the Admin Pack in pgAdmin. Instructions for editing with pgAdmin
are in “Editing postgresql.conf and pg_hba.conf from pgAdmin3”. If you are
unable to find the physical location of these files, run the Example 2-1 query
as a superuser while connected to any database.

Example 2-1. Location of configuration files
SELECT name, setting FROM pg_settings WHERE category = 'File Locations';

 name | setting
-------------------+--
 config_file | /etc/postgresql/9.6/main/postgresql.conf
 data_directory | /var/lib/postgresql/9.6/main
 external_pid_file | /var/run/postgresql/9.6-main.pid
 hba_file | /etc/postgresql/9.6/main/pg_hba.conf
 ident_file | /etc/postgresql/9.6/main/pg_ident.conf
(5 rows)

Making Configurations Take Effect

Some configuration changes require a PostgreSQL service restart, which
closes any active connections from clients. Other changes require just a
reload. New users connecting after a reload will receive the new setting.
Extant users with active connections will not be affected during a reload. If
you’re not sure whether a configuration change requires a reload or restart,
look under the context setting associated with a configuration. If the context
is postmaster, you’ll need a restart. If the context is user, a reload will
suffice.

Reloading

A reload can be done in several ways. One way is to open a console window
and run this command:

39

pg_ctl reload -D your_data_directory_here

If you have PostgreSQL installed as a service in RedHat Enterprise Linux,
CentOS, or Ubuntu, enter instead:

service postgresql-9.5 reload

postgresql-9.5 is the name of your service. (For older versions of
PostgreSQL, the service is sometimes called postgresql sans version
number.)

You can also log in as a superuser to any database and execute the following
SQL:

SELECT pg_reload_conf();

Finally, you can reload from pgAdmin; see “Editing postgresql.conf and
pg_hba.conf from pgAdmin3”.

Restarting

More fundamental configuration changes require a restart. You can perform a
restart by stopping and restarting the postgres service (daemon). Yes, power
cycling will do the trick as well.

You can’t restart with a PostgreSQL command, but you can trigger a restart
from the operating system shell. On Linux/Unix with a service, enter:

service postgresql-9.6 restart

For any PostgreSQL instance not installed as a service:

pg_ctl restart -D your_data_directory_here

On Windows you can also just click Restart on the PostgreSQL service in the
Services Manager.

40

SELECT
 name,
 context ,
 unit ,
 setting, boot_val, reset_val

FROM pg_settings
WHERE name IN ('listen_addresses','deadlock_timeout','shared_buffers',
 'effective_cache_size','work_mem','maintenance_work_mem')

ORDER BY context, name;
name | context | unit | setting | boot_val |
reset_val
---------------------+------------+------+-------- +-----------+---------
-
listen_addresses | postmaster | | * | localhost | *
shared_buffers | postmaster | 8kB | 131584 | 1024 | 131584
deadlock_timeout | superuser | ms | 1000 | 1000 | 1000
effective_cache_size | user | 8kB | 16384 | 16384 | 16384
maintenance_work_mem | user | kB | 16384 | 16384 | 16384
work_mem | user | kB | 5120 | 1024 | 5120

The context is the scope of the setting. Some settings have a wider effect
than others, depending on their context.

The postgresql.conf File

postgresql.conf controls the life-sustaining settings of the PostgreSQL server.
You can override many settings at the database, role, session, and even
function levels. You’ll find many details on how to finetune your server by
tweaking settings in the article Tuning Your PostgreSQL Server.

Version 9.4 introduced an important change: instead of editing
postgresql.conf directly, you should override settings using an additional file
called postgresql.auto.conf. We further recommend that you don’t touch the
postgresql.conf and place any custom settings in postgresql.auto.conf.

Checking postgresql.conf settings

An easy way to read the current settings without opening the configuration
files is to query the view named pg_settings. We demonstrate in Example 2-
2.

Example 2-2. Key settings

41

http://bit.ly/2kDH2Tq

User settings can be changed by each user to affect just that user’s
sessions. If set by the superuser, the setting becomes a default for all users
who connect after a reload.

Superuser settings can be changed only by a superuser, and will apply to
all users who connect after a reload. Users cannot individually override
the setting.

Postmaster settings affect the entire server (postmaster represents the
PostgreSQL service) and take effect only after a restart.

Settings with user or superuser context can be set for a specific database,
user, session, and function level. For example, you might want to set
work_mem higher for an SQL guru-level user who writes mind-boggling
queries. Similarly, if you have one function that is sort-intensive, you
could raise work_mem just for it. Settings set at database, user, session,
and function levels do not require a reload. Settings set at the database
level take effect on the next connect to the database. Settings set for the
session or function take effect right away.
Be careful checking the units of measurement used for memory. As you
can see in Example 2-2, some are reported in 8-KB blocks and some just
in kilobytes. Regardless of how a setting displays, you can use any unit of
choice when setting; 128 MB is a versatile choice for most memory
settings.

Showing units as 8 KB is annoying at best and is destabilizing at worst.
The SHOW command in SQL offers display settings in labeled and more
intuitive units. For example, running:

SHOW shared_buffers;

returns 1028MB. Similarly, running:

SHOW deadlock_timeout;

returns 1s. If you want to see the units for all settings, enter SHOW ALL.

42

setting is the current setting; boot_val is the default setting;
reset_val is the new setting if you were to restart or reload the server.
Make sure that setting and reset_val match after you make a change.
If not, the server needs a restart or reload.

New in version 9.5 is a system view called pg_file_settings, which you can
use to query settings. Its output lists the source file where the settings can be
found. The applied tells you whether the setting is in effect; if the setting has
an f in that column you need to reload or restart to make it take effect. In
cases where a particular setting is present in both postgresql.conf and
postgresql.auto.conf, the postgresql.auto.conf one will take precedent and
you’ll see the other files with applied set to false (f). The applied is shown in
Example 2-3.

Example 2-3. Querying pg_file_settings
SELECT name, sourcefile, sourceline, setting, applied
FROM pg_file_settings
WHERE name IN ('listen_addresses','deadlock_timeout','shared_buffers',
 'effective_cache_size','work_mem','maintenance_work_mem')

ORDER BY name;
name | sourcefile | sourceline |
setting | applied
---------------------+-------------------------------+------------+------
---+--------
effective_cache_size | E:/data96/postgresql.auto.conf| 11 | 8GB
| t
listen_addresses | E:/data96/postgresql.conf | 59 | *
| t
maintenance_work_mem | E:/data96/postgresql.auto.conf| 3 | 16MB
| t
shared_buffers | E:/data96/postgresql.conf | 115 | 128MB
| f
shared_buffers | E:/data96/postgresql.auto.conf| 5 |
131584 | t

Pay special attention to the following network settings in postgresql.conf or
postgresql.auto.conf, because an incorrect entry here will prevent clients
from connecting. Changing their values requires a service restart:

listen_addresses

43

Informs PostgreSQL which IP addresses to listen on. This usually
defaults to local (meaning a socket on the local system), or localhost,
meaning the IPv6 or IPv4 localhost IP address. But many people change
the setting to *, meaning all available IP addresses.

port

Defaults to 5432. You may wish to change this well-known port to
something else for security or if you are running multiple PostgreSQL
services on the same server.

max_connections

The maximum number of concurrent connections allowed.

log_destination

This setting is somewhat a misnomer. It specifies the format of the
logfiles rather than their physical location. The default is stderr. If you
intend to perform extensive analysis on your logs, we suggest changing it
to csvlog, which is easier to export to third-party analytic tools. Make
sure you have the logging_collection set to on if you want logging.

The following settings affect performance. Defaults are rarely the optimal
value for your installation. As soon as you gain enough confidence to tweak
configuration settings, you should tune these values:

shared_buffers

Allocated amount of memory shared among all connections to store
recently accessed pages. This setting profoundly affects the speed of your
queries. You want this setting to be fairly high, probably as much as 25%
of your RAM. However, you’ll generally see diminishing returns after
more than 8 GB. Changes require a restart.

effective_cache_size

An estimate of how much memory PostgreSQL expects the operating
system to devote to it. This setting has no effect on actual allocation, but
the query planner figures in this setting to guess whether intermediate

44

steps and query output would fit in RAM. If you set this much lower than
available RAM, the planner may forgo using indexes. With a dedicated
server, setting the value to half of your RAM is a good starting point.
Changes require a reload.

work_mem

Controls the maximum amount of memory allocated for each operation
such as sorting, hash join, and table scans. The optimal setting depends on
how you’re using the database, how much memory you have to spare, and
whether your server is dedicated to PostgreSQL. If you have many users
running simple queries, you want this setting to be relatively low to be
democratic; otherwise, the first user may hog all the memory. How high
you set this also depends on how much RAM you have to begin with. A
good article to read for guidance is Understanding work_mem. Changes
require a reload.

maintenance_work_mem

The total memory allocated for housekeeping activities such as
vacuuming (pruning records marked for deletion). You shouldn’t set it
higher than about 1 GB. Reload after changes.

max_parallel_workers_per_gather

This is a new setting introduced in 9.6 for parallelism. The setting
determines the maximum parallel worker threads that can be spawned for
each gather operation. The default setting is 0, which means parallelism is
completely turned off. If you have more than one CPU core, you will
want to elevate this. Parallel processing is new in version 9.6, so you may
have to experiment with this setting to find what works best for your
server. Also note that the number you have here should be less than
max_worker_processes, which defaults to 8 because the parallel
background worker processes are a subset of the maximum allowed
processes.

In version 10, there is an additional setting called
max_parallel_workers, which controls the subset of

45

http://bit.ly/15SWsHh

max_worker_processes allocated for parallelization.

Changing the postgresql.conf settings

PostgreSQL 9.4 introduced the ability to change settings using the ALTER
SYSTEM SQL command. For example, to set the work_mem globally, enter
the following:

ALTER SYSTEM SET work_mem = '500MB';

This command is wise enough to not directly edit postgres.conf but will make
the change in postgres.auto.conf.

Depending on the particular setting changed, you may need to restart the
service. If you just need to reload it, here’s a convenient command:

SELECT pg_reload_conf();

If you have to track many settings, consider organizing them into multiple
configuration files and then linking them back using the include or
include_if_exists directive within the postgresql.conf. The exact syntax is as
follows:

include 'filename'

The filename argument can be an absolute path or a relative path from the
postgresql.conf file.

“I edited my postgresql.conf and now my server won’t
start.”

The easiest way to figure out what you screwed up is to look at the logfile,
located at the root of the data folder, or in the pg_log subfolder. Open the
latest file and read what the last line says. The error raised is usually self-
explanatory.

A common culprit is setting shared_buffers too high. Another suspect is an
old postmaster.pid left over from a failed shutdown. You can safely delete

46

this file, located in the data cluster folder, and try restarting again.

The pg_hba.conf File

The pg_hba.conf file controls which IP addresses and users can connect to
the database. Furthermore, it dictates the authentication protocol that the
client must follow. Changes to the file require at least a reload to take effect.
A typical pg_hba.conf looks like Example 2-4.

Example 2-4. Sample pg_hba.conf
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 ident
host all all ::1/128 trust
host all all 192.168.54.0/24 md5
hostssl all all 0.0.0.0/0 md5

TYPE DATABASE USER ADDRESS METHOD
Allow replication connections from localhost,
by a user with replication privilege.
#host replication postgres 127.0.0.1/32 trust
#host replication postgres ::1/128 trust

Authentication method. The usual choices are ident, trust, md5, peer, and
password.
IPv6 syntax for defining network range. This applies only to servers with
IPv6 support and may prevent pg_hba.conf from loading if you add this
section without actually having IPv6 networking enabled on the server.
IPv4 syntax for defining network range. The first part is the network
address followed by the bit mask; for instance: 192.168.54.0/24.
PostgreSQL will accept connection requests from any IP address within
the range.
SSL connection rule. In our example, we allow anyone to connect to our
server outside of the allowed IP range as long as they can connect using
SSL.

SSL configuration settings can be found in postgres.conf or
postgres.auto.conf: ssl, ssl_cert_file, ssl_key_file. Once the server
confirms that the client is able to support SSL, it will honor the

47

connection request and all transmissions will be encrypted using the key
information.
Range of IP addresses allowed to replicate with this server.

For each connection request, pg_hba.conf is checked from the top down. As
soon as a rule granting access is encountered, a connection is allowed and the
server reads no further in the file. As soon as a rule rejecting access is
encountered, the connection is denied and the server reads no further in the
file. If the end of the file is reached without any matching rules, the
connection is denied. A common mistake people make is to put the rules in
the wrong order. For example, if you added 0.0.0.0/0 reject before
127.0.0.1/32 trust, local users won’t be able to connect, even though a
rule is in place allowing them to.

New in version 10 is the pg_hba_file_rules system view that lists all the
contents of the pg_hba.conf file.

“I edited my pg_hba.conf and now my server is broken.”

Don’t worry. This happens quite often, but is easy to recover from. This error
is generally caused by typos or by adding an unavailable authentication
scheme. When the postgres service can’t parse pg_hba.conf, it blocks all
access just to be safe. Sometimes, it won’t even start up. The easiest way to
figure out what you did wrong is to read the logfile located in the root of the
data folder or in the pg_log subfolder. Open the latest file and read the last
line. The error message is usually self-explanatory. If you’re prone to
slippery fingers, back up the file prior to editing.

Authentication methods

PostgreSQL gives you many choices for authenticating users—probably
more than any other database product. Most people are content with the
popular ones: trust, peer, ident, md5, and password. And don’t forget about
reject, which immediately denies access. Also keep in mind that pg_hba.conf
offers settings at many other levels as the gatekeeper to the entire
PostgreSQL server. Users or devices must still satisfy role and database

48

This is the least secure authentication, essentially no password is needed.
As long as the user and database exist in the system and the request
comes from an IP within the allowed range, the user can connect. You
should implement trust only for local connections or private network
connections. Even then it’s possible for someone to spoof IP addresses, so
the more security-minded among us discourage its use entirely.
Nevertheless, it’s the most common for PostgreSQL installed on a
desktop for single-user local access where security is not a concern.

md5

Very common, requires an md5-encrypted password to connect.

password

Uses clear-text password authentication.

ident

Uses pg_ident.conf to check whether the OS account of the user trying to
connect has a mapping to a PostgreSQL account. The password is not
checked. ident is not available on Windows.

peer

Uses the OS name of the user from the kernel. It is available only for
Linux, BSD, macOS, and Solaris, and only for local connections on these
systems.

cert

Stipulates that connections use SSL. The client must have a registered
certificate. cert uses an ident file such as pg_ident to map the certificate to
a PostgreSQL user and is available on all platforms where SSL
connection is enabled.

access restrictions after being admitted by pg_hba.conf.

We describe the common authentication methods here:

trust

49

SELECT * FROM pg_stat_activity;

pg_stat_activity is a view that lists the last query running on each
connection, the connected user (usename), the database (datname) in use,
and the start times of the queries. Review the list to identify the PIDs of
connections you wish to terminate.

2. Cancel active queries on a connection with PID 1234:

SELECT pg_cancel_backend(1234);

More esoteric options abound, such as gss, radius, ldap, and pam. Some may
not always be installed by default.

You can elect more than one authentication method, even for the same
database. Keep in mind that pg_hba.conf is processed from top to bottom.

Managing Connections

More often than not, someone else (never you, of course) will execute an
inefficient query that ends up hogging resources. They could also run a query
that’s taking much longer than what they have patience for. Cancelling the
query, terminating the connection, or both will put an end to the offending
query.

Cancelling and terminating are far from graceful and should be used
sparingly. Your client application should prevent queries from going haywire
in the first place. Out of politeness, you probably should alert the connected
role that you’re about to terminate its connection, or wait until after hours to
do the dirty deed.

There are few scenarios where you should cancel all active update queries:
before backing up the database and before restoring the database.

To cancel running queries and terminate connections, follow these steps:

1. Retrieve a listing of recent connections and process IDs (PIDs):

50

This does not terminate the connection itself, though.

3. Terminate the connection:

SELECT pg_terminate_backend(1234);

You may need to take the additional step of terminating the client
connection. This is especially important prior to a database restore. If you
don’t terminate the connection, the client may immediately reconnect after
restore and run the offending query anew. If you did not already cancel the
queries on the connection, terminating the connection will cancel all of its
queries.

PostgreSQL lets you embed functions within a regular SELECT statement.
Even though pg_terminate_backend and pg_cancel_backend act on only one
connection at a time, you can kill multiple connections by wrapping them in a
SELECT. For example, let’s suppose you want to kill all connections
belonging to a role with a single blow. Run this SQL command:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity
WHERE usename = 'some_role';

You can set certain operational parameters at the server, database, user,
session, or function level. Any queries that exceed the parameter will
automatically be cancelled by the server. Setting a parameter to 0 disables the
parameter:

deadlock_timeout

This is the amount of time a deadlocked query should wait before giving
up. This defaults to 1000 ms. If your application performs a lot of
updates, you may want to increase this value to minimize contention.

Instead of relying on this setting, you can include a NOWAIT clause in
your update SQL: SELECT FOR UPDATE NOWAIT

The query will be automatically cancelled upon encountering a deadlock.

51

In PostgreSQL 9.5, you have another choice: SELECT FOR UPDATE SKIP
LOCKED will skip over locked rows.

statement_timeout

This is the amount of time a query can run before it is forced to cancel.
This defaults to 0, meaning no time limit. If you have long-running
functions that you want cancelled if they exceed a certain time, set this
value in the definition of the function rather than globally. Cancelling a
function cancels the query and the transaction that’s calling it.

lock_timeout

This is the amount of time a query should wait for a lock before giving
up, and is most applicable to update queries. Before data updates, the
query must obtain an exclusive lock on affected records. The default is 0,
meaning that the query will wait infinitely. This setting is generally used
at the function or session level. lock_timeout should be lower than
statement_timeout, otherwise statement_timeout will always occur first,
making lock_timeout irrelevant.

idle_in_transaction_session_timeout

This is the amount of time a transaction can stay in an idle state before it
is terminated. This defaults to 0, meaning it can stay alive infinitely. This
setting is new in PostgreSQL 9.6. It’s useful for preventing queries from
holding on to locks on data indefinitely or eating up a connection.

Check for Queries Being Blocked

The pg_stat_activity view has changed considerably since version 9.1
with the renaming, dropping, and addition of new columns. Starting from
version 9.2, procpid was renamed to pid.

pg_stat_activity changed in PostgreSQL 9.6 to provide more detail about
waiting queries. In prior versions of PostgreSQL, there was a field called
waiting that could take the value true or false. true denoted a query that

52

WARNING

Recent versions of PostgreSQL no longer use the terms users and groups. You
will still run into these terms; just know that they mean login roles and group
roles, respectively. For backward compatibility, CREATE USER and CREATE
GROUP still work in current versions, but shun them and use CREATE ROLE
instead.

Creating Login Roles

was being blocked waiting some resource, but the resource being waited for
was never stated. In PostgreSQL 9.6, waiting was removed and replaced
with wait_event_type and wait_event to provide more information about
what resource a query was waiting for. Therefore, prior to PostgreSQL 9.6,
use waiting = true to determine what queries are being blocked. In
PostgreSQL 9.6 or higher, use wait_event IS NOT NULL.

In addition to the change in structure, PostgreSQL 9.6 will now track
additional wait locks that did not get set to waiting=true in prior versions.
As a result, you may find lighter lock waits being listed for queries than you
saw in prior versions. For a list of different wait_event types, refer to
PostgreSQL Manual: wait_event names and types.

Roles

PostgreSQL handles credentialing using roles. Roles that can log in are called
login roles. Roles can also be members of other roles; the roles that contain
other roles are called group roles. (And yes, group roles can be members of
other group roles and so on, but don’t go there unless you have a knack for
hierarchical thinking.) Group roles that can log in are called group login
roles. However, for security, group roles generally cannot log in. A role can
be designated as a superuser. These roles have unfettered access to the
PostgreSQL service and should be assigned with discretion.

53

http://bit.ly/2kCag53

CREATE ROLE leo LOGIN PASSWORD 'king' VALID UNTIL 'infinity' CREATEDB;

Specifying VALID UNTIL is optional. If omitted, the role remains active
indefinitely. CREATEDB grants database creation privilege to the new role.

To create a user with superuser privileges, follow Example 2-6. Naturally,
you must be a superuser to create other superusers.

Example 2-6. Creating superuser roles
CREATE ROLE regina LOGIN PASSWORD 'queen' VALID UNTIL '2020-1-1 00:00'
SUPERUSER;

Both of the previous examples create roles that can log in. To create roles that
cannot log in, omit the LOGIN PASSWORD clause.

Creating Group Roles

Group roles generally cannot log in. Rather, they serve as containers for other
roles. This is merely a best-practice suggestion. Nothing stops you from
creating a role that can log in as well as contain other roles.

Create a group role using the following SQL:

CREATE ROLE royalty INHERIT;

Note the use of the modifier INHERIT. This means that any member of
royalty will automatically inherit privileges of the royalty role, except for the
superuser privilege. For security, PostgreSQL never passes down the

When you initialize the data cluster during setup, PostgreSQL creates a single
login role with the name postgres. (PostgreSQL also creates a namesake
database called postgres.) You can bypass the password setting by mapping
an OS root user to the new role and using ident, peer, or trust for
authentication. After you’ve installed PostgreSQL, before you do anything
else, you should log in as postgres and create other roles. pgAdmin has a
graphical section for creating user roles, but if you want to create one using
SQL, execute an SQL command like the one shown in Example 2-5.

Example 2-5. Creating login roles

54

GRANT royalty TO leo;
GRANT royalty TO regina;

Some privileges can’t be inherited. For example, although you can create a
group role that you mark as superuser, this doesn’t make its member roles
superusers. However, those users can impersonate their group role by using
the SET ROLE command, thereby gaining superuser privileges for the
duration of the session. For example:

Let’s give the royalty role superuser rights with the command:

ALTER ROLE royalty SUPERUSER;

Although leo is a member of the royalty group and he inherits most rights of
royalty, when he logs in, he still will not have superuser rights. He can gain
superuser rights by doing:

SET ROLE royalty;

His superuser rights will last only for his current session.

This feature, though peculiar, is useful if you want to prevent yourself from
unintentionally doing superuser things while you are logged in.

SET ROLE is a command available to all users, but a more powerful command
called SET SESSION AUTHORIZATION is available to people who log in as
superusers. In order to understand the differences, we’ll first introduce two
global variables that PostgreSQL has called: current_user and
session_user. You can see these values when you log in by running the

superuser privilege. INHERIT is the default, but we recommend that you
always include the modifier for clarity.

To refrain from passing privileges from the group to its members, create the
role with the NOINHERIT modifier.

To add members to a group role, you would do:

55

SQL statement:

SELECT session_user, current_user;

When you first log in, the values of these two variables are the same. SET
ROLE changes the current_user, while SET SESSION AUTHORIZATION
changes both the current_user and session_user variables.

Here are the salient properties of SET ROLE:

SET ROLE does not require superuser rights.

SET ROLE changes the current_user variable, but not the session_user
variable.

A session_user that has superuser rights can SET ROLE to any other role.

Nonsuperusers can SET ROLE only to the role the session_user is or the
roles the session_user belongs to.

When you do SET ROLE you gain all privileges of the impersonated user
except for SET SESSION_AUTHORIZATION and SET ROLE.

A more powerful command, SET SESSION AUTHORIZATION, is available as
well. Key features of SET SESSION AUTHORIZATION are as follows:

Only a user that logs in as a superuser has permission to do SET
SESSION AUTHORIZATION to another role.

The SET SESSION AUTHORIZATION privilege is in effect for the life
of the session, meaning that even if you SET SESSION
AUTHORIZATION to a user that is not a superuser, you still have the
SET SESSION AUTHORIZATION privilege for the life of your session.

SET SESSION AUTHORIZATION changes the values of the
current_user and session_user variables to those of the user being
impersonated.

A session_user that has superuser rights can SET ROLE to any other role.

56

SELECT session_user, current_user;
 session_user | current_user
--------------+--------------
 leo | leo
(1 row)
SET SESSION AUTHORIZATION regina;
ERROR: permission denied to set session authorization
SET ROLE regina;
ERROR: permission denied to set role "regina"
ALTER ROLE leo SUPERUSER;
ERROR: must be superuser to alter superusers
SET ROLE royalty;
SELECT session_user, current_user;
 session_user | current_user
--------------+--------------
 leo | royalty
(1 row)
SET ROLE regina;
ERROR: permission denied to set role "regina"
ALTER ROLE leo SUPERUSER;
SET ROLE regina;
SELECT session_user, current_user;
 session_user | current_user
--------------+--------------
 leo | regina
(1 row)
SET SESSION AUTHORIZATION regina;
ERROR: permission denied to set session authorization
-- After ending session and logging back in as leo
SELECT session_user, current_user;
SET SESSION AUTHORIZATION regina;
SELECT session_user, current_user;
session_user | current_user
--------------+--------------
leo | leo
(1 row)
SET SESSION AUTHORIZATION

We’ll do a set of exercises that illustrate the differences between SET ROLE
and SET SESSION AUTHORIZATION by first logging in as leo and then
running the code in Example 2-7.

Example 2-7. SET ROLE and SET AUTHORIZATION

57

CREATE DATABASE mydb;

This creates a copy of the template1 database. Any role with CREATEDB
privilege can create new databases.

Template Databases

A template database is, as the name suggests, a database that serves as a
skeleton for new databases. When you create a new database, PostgreSQL
copies all the database settings and data from the template database to the
new database.

The default PostgreSQL installation comes with two template databases:
template0 and template1. If you don’t specify a template database to follow
when you create a database, template1 is used.

session_user | current_user
--------------+--------------
regina | regina
(1 row)

In Example 2-7 leo was unable to use SET SESSION AUTHORIZATION
because he’s not a superuser. He was also unable to SET ROLE to regina
because he is not in the regina group. However, he was able to SET ROLE
royalty since he is a member of the royalty group (he’s a king consort).
Even though royalty has superuser rights, he still wasn’t able to impersonate
the queen, regina, because his SET ROLE abilities are still based on being the
powerless leo. Since royalty is a group that has superuser rights, he was able
to promote his own account leo to be a superuser. Once leo is promoted to
power, he can then impersonate regina. He is now able to completely take
over her session_user and current_user persona with SET SESSION
AUTHORIZATION.

Database Creation

The minimum SQL command to create a database is:

58

entest

WARNING

You should never alter template0 because it is the immaculate model that you’ll
need to copy from if you screw up your templates. Make your customizations to
template1 or a new template database you create. You can’t change the
encoding and collation of a database you create from template1 or any other
template database you create. So if you need a different encoding or collation
from those in template1, create the database from template0.

The basic syntax to create a database modeled after a specific template is:

CREATE DATABASE my_db TEMPLATE my_template_db;

You can pick any database to serve as the template. This could come in quite
handy when making replicas. You can also mark any database as a template
database. Once you do, the database is no longer editable and deletable. Any
role with the CREATEDB privilege can use a template database. To make
any database a template, run the following SQL as a superuser:

UPDATE pg_database SET datistemplate = TRUE WHERE datname = 'mydb';

If ever you need to edit or drop a template database, first set the datistemplate
attribute to FALSE. Don’t forget to change the value back after you’re done
with edits.

Using Schemas

Schemas organize your database into logical groups. If you have more than
two dozen tables in your database, consider cubbyholing them into schemas.
Objects must have unique names within a schema but need not be unique
across the database. If you cram all your tables into the default public
schema, you’ll run into name clashes sooner or later. It’s up to you how to
organize your schemas. For example, if you are an airline, you can place all
tables of planes you own and their maintenance records into a planes schema.
Place all your crew and staff into an employees schema and place all

59

CREATE SCHEMA customer1;
CREATE SCHEMA customer2;

You then move the dog records into the schema that corresponds with the
client. The final touch is to create different login roles for each schema with
the same name as the schema. Dogs are now completely isolated in their
respective schemas. When customers log in to your database to make
appointments, they will be able to access only information pertaining to their
own dogs.

Wait, it gets better. Because we named our roles to match their respective
schemas, we’re blessed with another useful technique. But we must first
introduce the search_path database variable.

As we mentioned earlier, object names must be unique within a schema, but
you can have same-named objects in different schemas. For example, you
have the same table called dogs in all 12 of your schemas. When you execute
something like SELECT * FROM dogs, how does PostgreSQL know which
schema you’re referring to? The simple answer is to always prepend the
schema name onto the table name with a dot, such as in SELECT * FROM
customer1.dogs. Another method is to set the search_path variable to be
something like customer1, public. When the query executes, the planner
searches for the dogs table first in the customer1 schema. If not found, it

passenger-related information into a passengers schema.

Another common way to organize schemas is by roles. We found this to be
particularly handy with applications that serve multiple clients whose data
must be kept separate.

Suppose that you started a dog beauty management business (doggie spa).
You start with a table in public called dogs to track all the dogs you hope to
groom. You convince your two best friends to become customers. Whimsical
government privacy regulation passes, and now you have to put in iron-clad
assurances that one customer cannot see dog information from another. To
comply, you set up one schema per customer and create the same dogs table
in each as follows:

60

entest

search_path = "$user", public;

Now, if role customer1 logs in, all queries will first look in the customer1
schema for the tables before moving to public. Most importantly, the SQL
remains the same for all customers. Even if the business grows to have
thousands or hundreds of thousands of dog owners, none of the SQL scripts
need to change. Commonly shared tables such as common lookup tables can
be put in the public schema.

Another practice that we strongly encourage is to create schemas to house
extensions (“Step 2: Installing into a database”). When you install an
extension, new tables, functions, data types, and plenty of other relics join
your server. If they all swarm into the public schema, it gets cluttered. For
example, the entire PostGIS suite of extensions will together add thousands
of functions. If you’ve already created a few tables and functions of your own
in the public schema, imagine how maddening it would be to scan a list of
tables and functions trying to find your own among the thousands.

Before you install any extensions, create a new schema:

CREATE SCHEMA my_extensions;

Then add your new schema to the search path:

ALTER DATABASE mydb SET search_path='$user', public, my_extensions;

When you install extensions, be sure to indicate your new schema as their

continues to the public schema and stops there.

PostgreSQL has a little-known variable called user that retrieves the role
currently logged in. SELECT user returns this name. user is just an alias for
current_user, so you can use either.

Recall how we named our customers’ schemas to be the same as their login
roles. We did this so that we can take advantage of the default search path set
in postgresql.conf:

61

new home.

WARNING

ALTER DATABASE .. SET search_path will not take effect for existing
connections. You’ll need to reconnect.

Privileges

Privileges (often called permissions) can be tricky to administer in
PostgreSQL because of the granular control at your disposal. Security can
bore down to the column and row level. Yes! You can assign different
privileges to each data point of your table, if that ever becomes necessary.

NOTE

Row-level security (RLS) first appeared in PostgreSQL 9.5. Although RLS is
available on all PostgreSQL installations, when used in SELinux, certain
advanced features are enabled.

Teaching you all there is to know about privileges could take a few chapters.
What we’ll aim for in this section instead is to give you enough information
to get up and running and to guide you around some of the more nonintuitive
land mines that could either lock you out completely or expose your server
inappropriately.

Privilege management in PostgreSQL is no cakewalk. The pgAdmin
graphical administration tool can ease some of the tasks or, at the very least,
paint you a picture of your privilege settings. You can accomplish most, if
not all, of your privilege assignment tasks in pgAdmin. If you’re saddled with
the task of administering privileges and are new to PostgreSQL, start with
pgAdmin. Jump to “Creating Database Assets and Setting Privileges” if you
can’t wait.

62

NOTE

Privileges in other database products might be called rights or permissions.

Getting Started

So you successfully installed PostgreSQL; you should have one superuser,
whose password you know by heart. Now you should take the following steps
to set up additional roles and assign privileges:

1. PostgreSQL creates one superuser and one database for you at installation,
both named postgres. Log in to your server as postgres.

2. Before creating your first database, create a role that will own the database
and can log in, such as:

CREATE ROLE mydb_admin LOGIN PASSWORD 'something';

3. Create the database and set the owner:

CREATE DATABASE mydb WITH owner = mydb_admin;

Types of Privileges

PostgreSQL has a few dozen privileges, some of which you may never need
to worry about. The more mundane privileges are SELECT, INSERT,
UPDATE, ALTER, EXECUTE, DELETE, and TRUNCATE.

Most privileges must have a context. For example, a role having an ALTER
privilege is meaningless unless qualified with a database object such as
ALTER privilege on tables1, SELECT privilege on table2, EXECUTE
privilege on function1, and so on. Not all privileges apply to all objects: an
EXECUTE privilege for a table is nonsense.

Some privileges make sense without a context. CREATEDB and CREATE
ROLE are two privileges where context is irrelevant.

63

4. Now log in as the mydb_admin user and start setting up additional schemas
and tables.

GRANT

The GRANT command is the primary means to assign privileges. Basic
usage is:

GRANT some_privilege TO some_role;

A few things to keep in mind when it comes to GRANT:

Obviously, you need to have the privilege you’re granting. And, you must
have the GRANT privilege yourself. You can’t give away what you don’t
have.

Some privileges always remain with the owner of an object and can never
be granted away. These include DROP and ALTER.

The owner of an object retains all privileges. Granting an owner privilege
in what it already owns is unnecessary. Keep in mind, though, that
ownership does not drill down to child objects. For instance, if you own a
database, you may not necessarily own all the schemas within it.

When granting privileges, you can add WITH GRANT OPTION. This
means that the grantee can grant her own privileges to others, passing
them on:

GRANT ALL ON ALL TABLES IN SCHEMA public TO mydb_admin WITH GRANT

OPTION;

To grant specific privileges on ALL objects of a specific type use ALL
instead of the specific object name, as in:

GRANT SELECT, REFERENCES, TRIGGER ON

ALL TABLES IN SCHEMA my_schema TO

64

entest

PUBLIC;

Note that ALL TABLES includes regular tables, foreign tables, and views.

To grant privileges to all roles, you can use the PUBLIC alias, as in:

GRANT USAGE ON SCHEMA my_schema TO PUBLIC;

The GRANT command is covered in detail in GRANT. We strongly
recommend that you take the time to study this document before you
inadvertently knock a big hole in your security wall.

Some privileges are, by default, granted to PUBLIC. These are CONNECT
and CREATE TEMP TABLE for databases and EXECUTE for functions. In
many cases you might consider revoking some of the defaults with the
REVOKE command, as in:

REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA my_schema FROM PUBLIC;

Default Privileges

Default privileges ease privilege management by letting you set privileges
before their creation.

WARNING

Adding or changing default privileges won’t affect privilege settings on existing
objects.

Let’s suppose we want all users of our database to have EXECUTE and
SELECT privileges access to any future tables and functions in a particular
schema. We can define privileges as shown in Example 2-8. All roles of a
PostgreSQL server are members of the group PUBLIC.

Example 2-8. Defining default privileges on a schema

65

http://www.postgresql.org/docs/current/interactive/sql-grant.html
entest

ALTER DEFAULT PRIVILEGES IN SCHEMA my_schema
GRANT SELECT, UPDATE ON SEQUENCES TO public;

ALTER DEFAULT PRIVILEGES IN SCHEMA my_schema
GRANT ALL ON FUNCTIONS TO mydb_admin WITH GRANT OPTION;

ALTER DEFAULT PRIVILEGES IN SCHEMA my_schema
GRANT USAGE ON TYPES TO PUBLIC;

Allows all users that can connect to the database to also be able to use and
create objects in a schema if they have rights to those objects in the
schema. GRANT USAGE on a schema is the first step to granting access
to objects in the schema. If a user has rights to select from a table in a
schema but no USAGE on the schema, then he will not be able to query
the table.
Grant read and reference rights (the ability to create foreign key
constraints against columns in a table) for all future tables created in a
schema to all users that have USAGE of the schema.
GRANT ALL permissions on future tables to role mydb_admin. In
addition, allow members in mydb_admin to be able to grant a subset or
all privileges to other users to future tables in this schema. GRANT ALL
gives permission to add/update/delete/truncate rows, add triggers, and
create constraints on the tables.

GRANT permissions on future sequences, functions, and types.

To read more about default privileges, see ALTER DEFAULT
PRIVILEGES.

Privilege Idiosyncrasies

GRANT USAGE ON SCHEMA my_schema TO PUBLIC;

ALTER DEFAULT PRIVILEGES IN SCHEMA my_schema
GRANT SELECT, REFERENCES ON TABLES TO PUBLIC;

ALTER DEFAULT PRIVILEGES IN SCHEMA my_schema
GRANT ALL ON TABLES TO mydb_admin WITH GRANT OPTION;

66

http://bit.ly/1vwCs6L

TIP

Older add-ons outside the extension model are still called contribs, but with an
eye toward the future, we’ll call them all extensions.

Not all extensions need to be in all databases. You should install extensions
to your individual database on an as-needed basis. If you want all your
databases to have a certain set of extensions, you can develop a template
database, as discussed in “Template Databases”, with all the extensions
installed, and then beget future databases from that template.

Occasionally prune extensions that you no longer need to avoid bloat.
Leaving old extensions you don’t need may cause problems during an in-
place upgrade since all extensions you have installed must be also installed in
the new PostgreSQL version you are upgrading to.

Before we unleash you to explore privileges on your own, we do want to
point out a few quirks that may not be apparent.

Unlike in other database products, being the owner of a PostgreSQL database
does not give you access to all objects in the database. Another role could
conceivably create a table in your database and deny you access to it!
However, the privilege to drop the entire database could never be wrestled
away from you.

After granting privileges to tables and functions with a schema, don’t forget
to grant usage on the schema itself.

Extensions

Extensions, formerly called contribs, are add-ons that you can install in a
PostgreSQL database to extend functionality beyond the base offerings. They
exemplify the best of open source software: people collaborating, building,
and freely sharing new features. Since version 9.1, the new extension model
has made adding extensions a cinch.

67

SELECT name, default_version, installed_version, left(comment,30) As
comment
FROM pg_available_extensions
WHERE installed_version IS NOT NULL
ORDER BY name;
 name | default_version | installed_version | comment

---------------+-----------------+-------------------+-------------------

 btree_gist | 1.5 | 1.5 | support for
indexing common da
 fuzzystrmatch | 1.1 | 1.1 | determine
similarities and dis
 hstore | 1.4 | 1.4 | data type for
storing sets of
 ogr_fdw | 1.0 | 1.0 | foreign-data
wrapper for GIS d
 pgrouting | 2.4.1 | 2.4.1 | pgRouting
Extension
 plpgsql | 1.0 | 1.0 | PL/pgSQL
procedural language
 plv8 | 1.4.10 | 1.4.10 | PL/JavaScript (v8)
trusted pro
 postgis | 2.4.0dev | 2.4.0dev | PostGIS geometry,
geography, a
(8 rows)

If you want to see all the extensions installed on the server, regardless of if
they are installed in your current database, leave out the WHERE
installed_version IS NOT NULL.

To get more details about a particular extension already installed in your
database, enter the following command from psql:

\dx+ fuzzystrmatch

Alternatively, execute the following query:

To see which extensions you have already installed in a database, connect to
the database and run the query in Example 2-9. Your list could vary
significantly from ours.

Example 2-9. Extensions installed in a database

68

SELECT pg_describe_object(D.classid,D.objid,0) AS description
FROM pg_catalog.pg_depend AS D INNER JOIN pg_catalog.pg_extension AS E
ON D.refobjid = E.oid
WHERE
D.refclassid = 'pg_catalog.pg_extension'::pg_catalog.regclass AND
deptype = 'e' AND
E.extname = 'fuzzystrmatch';

This shows what’s packaged in the extension:

description

function dmetaphone_alt(text)
function dmetaphone(text)
function difference(text,text)
function text_soundex(text)
function soundex(text)
function metaphone(text,integer)
function
levenshtein_less_equal(text,text,integer,integer,integer,integer)
function levenshtein_less_equal(text,text,integer)
function levenshtein(text,text,integer,integer,integer)
function levenshtein(text,text)

Extensions can include database assets of all types: functions, tables, data
types, casts, languages, operators, etc., but functions usually constitute the
bulk of the payload.

Installing Extensions

Getting an extension into your database takes two installation steps. First,
download the extension and install it onto your server. Second, install the
extension into your database.

TIP

69

We’ll be using the same term—install—to refer to both procedures but
distinguish between the installation on the server and the installation into the
database when the context is unclear.

We cover both steps in this section as well as how to install on PostgreSQL
versions prior to extension support.

Step 1: Installing on the server

The installation of extensions on your server varies by OS. The overall idea is
to download binary files and requisite libraries, then copy the respective
binaries to the bin and lib folders and the script files to share/extension
(versions 9.1 and above) or share/contrib (prior to version 9.1). This makes
the extension available for the second step.

For smaller popular extensions, many of the requisite libraries come
prepackaged with your PostgreSQL installation or can be easily retrieved
using yum or apt-get postgresql-contrib. For others, you’ll need to compile
your own, find installers that someone has already created, or copy the files
from another equivalent server setup. Larger extensions, such as PostGIS, can
usually be found at the same location where you downloaded PostgreSQL.
To view all extension binaries already available on your server, enter:

SELECT * FROM pg_available_extensions;

Step 2: Installing into a database

The extension support makes installation of added features simple. Use the
CREATE EXTENSION command to install extensions into each database.
The three big benefits are that you don’t have to figure out where the
extension files are kept (share/extension), you can uninstall them at will
using DROP EXTENSION, and you will have a readily available listing of
what is installed and what is available.

PostgreSQL installation packages already include the most popular
extensions. To retrieve additional extensions, visit the PostgreSQL Extension

70

http://pgxn.org/

CREATE EXTENSION fuzzystrmatch;

You can still install an extension noninteractively using psql. Make sure
you’re connected to the database where you need the extension, then run:

psql -p 5432 -d mydb -c "CREATE EXTENSION fuzzystrmatch;"

WARNING

C-based extensions must be installed by a superuser. Most extensions fall into
this category.

We strongly suggest you create one or more schemas to house extensions to
keep them separate from production data. After you create the schema, install
extensions into it through a command like the following:

CREATE EXTENSION fuzzystrmatch SCHEMA my_extensions;

Upgrading to the new extension model

If you’ve been using a version of PostgreSQL older than 9.1 and restored
your old database into version 9.1 or later during a version upgrade, all
extensions should continue to function without intervention. For
maintainability, you should upgrade your old extensions in the contrib folder
to use the new approach to extensions. You can upgrade extensions,
especially the ones that come packaged with PostgreSQL, from the old
contrib model to the new one. Remember that we’re referring only to the
upgrade in the installation model, not to the extension itself.

For example, suppose you had installed the tablefunc extension (for cross-tab
queries) to your PostgreSQL 9.0 in a schema called contrib, and you have just

Network. You’ll also find many PostgreSQL extensions on GitHub by
searching for postgresql extension.

Here is how we would install the fuzzystrmatch extension using SQL:

71

https://github.com

restored your database to a 9.1 server. Run the following command to
upgrade:

CREATE EXTENSION tablefunc SCHEMA contrib FROM unpackaged;

This command searches through contrib schema (assuming this is where you
placed all the extensions), retrieves all components of the extension, and
repackages them into a new extension object so it appears in the
pg_available_extensions list as being installed.

This command leaves the old functions in the contrib schema intact but
removes them from being a part of a database backup.

Common Extensions

Many extensions come packaged with PostgreSQL but are not installed by
default. Some past extensions have gained enough traction to become part of
the PostgreSQL core. If you’re upgrading from an ancient version, you may
gain functionality without needing any extensions.

Popular extensions

Since version 9.1, PostgreSQL prefers the extension model to deliver all add-
ons. These include basic extensions consisting only of functions and types, as
well as PLs, index types, and FDWs. In this section we list the most popular
extensions (some say, “must-have” extensions) that PostgreSQL doesn’t
install into your database by default. Depending on your PostgreSQL
distribution, you’ll find many of these already available on your server:

btree_gist

Provides GiST index operator classes that implement B-Tree equivalent
behavior for common B-Tree services data types. See “PostgreSQL Stock
Indexes” for more details.

btree_gin

Provides GIN index operator classes that implement B-Tree equivalent

72

http://www.postgresql.org/docs/current/interactive/btree-gist.html
http://www.postgresql.org/docs/current/interactive/btree-gin.html

behavior for common B-Tree serviced data types. See “PostgreSQL Stock
Indexes” for more details.

postgis

Elevates PostgreSQL to a state-of-the-art spatial database outrivaling all
commercial options. If you deal with standard OGC GIS data,
demographic statistics data, or geocoding, 3d data, or even raster data,
you don’t want to be without this one. You can learn more about PostGIS
in our book PostGIS in Action. PostGIS is a whopper of an extension,
weighing in at more than 800 functions, types, and spatial indexes.
PostGIS is so big it has extensions that extend it. There exist extensions
on top of PostGIS such as those included with PostGIS itself. In addition,
there is pgpointcloud for managing point clouds and pgRouting for
network routing, which are packaged separately.

fuzzystrmatch

A lightweight extension with functions such as soundex, levenshtein, and
metaphone algorithms for fuzzy string matching. We discuss its use in
Where is Soundex and Other Fuzzy Things.

hstore

An extension that adds key-value pair storage and index support, well-
suited for storing pseudonormalized data. If you are looking for a
comfortable medium between a relational database and NoSQL, check
out hstore. Usage of hstore in many cases has been replaced with the
built-in jsonb type. So this extension isn’t as popular as it used to be.

pg_trgm (trigram)

Another fuzzy string search library, used in conjunction with
fuzzystrmatch. It includes an operator class, making searches using the
ILIKE operator indexable. trigram can also allow wildcard searches in the
form of LIKE %something%' or regular expression searches such as
somefield ~ '(foo|bar)' to utilize an index. See Teaching ILIKE and
LIKE New Tricks for further discussion.

73

http://postgis.net
http://www.postgis.us
http://www.postgresql.org/docs/current/interactive/fuzzystrmatch.html
http://www.postgresonline.com/journal/archives/158-Where-is-soundex-and-other-warm-and-fuzzy-string-things.html
http://www.postgresql.org/docs/current/interactive/hstore.html
http://www.postgresql.org/docs/current/interactive/pgtrgm.html
http://www.postgresonline.com/journal/archives/212-PostgreSQL-9.1-Trigrams-teaching-LIKE-and-ILIKE-new-tricks.html

dblink

Allows you to query a PostgreSQL database on another server. Prior to
the introduction of FDWs in version 9.3, this was the only supported
mechanism for cross-database interactions. It remains useful for one-time
connections or ad hoc queries, especially where you need to call functions
on the foreign server. Prior to PostgreSQL 9.6, postgres_fdw doesn’t
allow a statement to call functions on the foreign server, only local ones.
In PostgreSQL 9.6 you can call functions defined in an extension if you
denote in the foreign server that the server has that extension installed.

pgcrypto

Provides encryption tools, including the popular PGP. It’s handy for
encrypting top-secret information stored in the database. See our quick
primer on it at Encrypting Data with pgcrypto.

Classic extensions

Here are a few venerable ex-extensions that have gained enough of a
following to make it into official PostgreSQL releases. We call them out here
because you could still run into them as separate extensions on older servers:

tsearch

A suite of indexes, operators, custom dictionaries, and functions that
enhance FTSs. It is now part of PostgreSQL proper. If you’re still relying
on behavior from the old extension, you can install tsearch2. A better
tactic would be just to update servers where you’re using the old
functions, because compatibility could end at any time.

xml

An extension that added an XML data type, related functions, and
operators. The XML data type is now an integral part of PostgreSQL, in
part to meet the ANSI SQL XML standard. The old extension, now
dubbed xml2, can still be installed and contains functions that didn’t
make it into the core. In particular, you need this extension if you relied
on the xlst_process function for processing XSL templates. There are

74

http://www.postgresql.org/docs/current/interactive/dblink.html
http://www.postgresql.org/docs/current/interactive/pgcrypto.html
http://bit.ly/12scJQW
http://www.postgresql.org/docs/current/interactive/textsearch-intro.html
http://bit.ly/12scNQD
http://www.postgresql.org/docs/current/interactive/functions-xml.html
http://bit.ly/12scKV7

also a couple of old XPath functions only found in xml2.

Backup and Restore

PostgreSQL ships with three utilities for backup: pg_dump, pg_dumpall, and
pg_basebackup. You’ll find all of them in the PostgreSQL bin folder.

Use pg_dump to back up specific databases. To back up all databases in plain
text along with server globals, use pg_dumpall, which needs to run under a
superuser account so that it back up all databases. Use pg_basebackup to do
system-level disk backup of all databases.

For the rest of this section, we’ll focus our discussion on using pg_dump and
pg_dumpall. pg_basebackup is the most efficient way of doing a full
postgresql server cluster backup. If you have a reasonably sized database, as
in 500 GB or more, you should be using pg_basebackup as part of your
backup strategy. pg_basebackup, however, requires enabling of features that
are often turned off, but that are also needed for replication, so we’ll save
discussion of pg_basebackup for “Setting Up Full Server Replication”.

Most of the command-line options for these tools exist both in GNU style
(two hyphens plus a word) and the traditional single-letter style (one hyphen
plus an alphabetic character). You can use both styles interchangeably, even
in the same command. We’ll be covering just the basics here; for a more in-
depth discussion, see the PostgreSQL documentation Backup and Restore.

In this section we will not discuss third-party tools that are often used for
PostgreSQL backup and restore. Two popular open source ones you might
want to consider are pgBackRest and Barman. These offer additional features
like backup scheduling, multiserver support, and restore shortcuts.

As you wade through this section, you’ll find that we often specify the port
and host in our examples. This is because we often run backups for a
different server as scheduled jobs using pgAgent, as discussed in “Job
Scheduling with pgAgent”. We often have multiple instances of PostgreSQL
running on the same machine, on different ports as well. Sometimes
specifying the host can cause problems if your service is set to listen only on

75

http://bit.ly/12scOUX
http://www.pgbackrest.org/
http://www.pgbarman.org/

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -f mydb.backup mydb

To create a plain-text single database backup, including a -C option, which
stands for CREATE DATABASE:

pg_dump -h localhost -p 5432 -U someuser -C -F p -b -v -f mydb.backup
mydb

To create a compressed backup of tables whose names start with pay in any
schema:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -t *.pay* -f

localhost. You can safely leave out the host if you are running the examples
directly on the server.

You may also want to create a ~/.pgpass file to store all passwords. pg_dump
and pg_dumpall don’t have password options. Alternatively, you can set a
password in the PGPASSWORD environment variable.

Selective Backup Using pg_dump

For day-to-day backup, pg_dump is more expeditious than pg_dumpall
because pg_dump can selectively back up tables, schemas, and databases.
pg_dump can back up to plain SQL, as well as compressed, TAR, and
directory formats. Compressed, TAR, and directory format backups can take
advantage of the parallel restore feature of pg_restore. Directory backups
allow parallel pg_dump of a large database. Because we believe you’ll be
using pg_dump as part of your daily regimen, we have included a full dump
of the help in “Database Backup Using pg_dump” so you can see the myriad
switches in a single glance.

The next examples demonstrate a few common backup scenarios and
corresponding pg_dump options. They should work for any version of
PostgreSQL.

To create a compressed, single database backup:

76

http://bit.ly/12scPrZ

pay.backup mydb

To create a compressed backup of all objects in the hr and payroll schemas:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v \
-n hr -n payroll -f hr.backup mydb

To create a compressed backup of all objects in all schemas, excluding the
public schema:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -N public \
-f all_sch_except_pub.backup mydb

To create a plain-text SQL backup of select tables, useful for porting
structure and data to lower versions of PostgreSQL or non-PostgreSQL
databases (plain text generates an SQL script that you can run on any system
that speaks SQL):

pg_dump -h localhost -p 5432 -U someuser -F p --column-inserts \
-f select_tables.backup mydb

TIP

If your file paths contain spaces or other characters that could throw off the
command-line interpreter, wrap the file path in double quotes: "/path with
spaces/mydb.backup". As a general rule, you can always use double quotes if
you aren’t sure.

The directory format option was introduced in version PostgreSQL 9.1. This
option backs up each table as a separate file in a folder and gets around file
size limitations. This option is the only pg_dump backup format option that
results in multiple files, as shown in Example 2-10. It creates a new directory
and populates it with a gzipped file for each table; also included is a file
listing the hierarchy. This backup command exits with an error if the
directory already exists.

77

Example 2-10. Directory format backup
pg_dump -h localhost -p 5432 -U someuser -F d -f /somepath/a_directory
mydb

A parallel backup option was introduced in version 9.3 using the --jobs or -
j option and specifying the number of jobs. For example: --jobs=3 (-j 3)
runs three backups in parallel. Parallel backup makes sense only with the
directory format option, because it’s the only backup where multiple files are
created. Example 2-11 demonstrates its use.

Example 2-11. Directory format parallel backup
pg_dump -h localhost -p 5432 -U someuser -j 3 -Fd -f
/somepath/a_directory mydb

Systemwide Backup Using pg_dumpall

Use the pg_dumpall utility to back up all databases on a server into a single
plain-text file. This comprehensive backup automatically includes server
globals such as tablespace definitions and roles. See “Server Backup:
pg_dumpall” for a listing of available pg_dumpall command options.

It’s a good idea to back up globals on a daily basis. Although you can use
pg_dumpall to back up databases as well, we prefer backing up databases
individually using pg_dump or using pg_basebackup to do a PostgreSQL
service-level backup. Restoring from a huge plain-text backup tries our
patience. Using pg_basebackup in conjunction with streaming replication is
the fastest way to recover from major server failure.

To back up all globals and tablespace definitions only, use the following:

pg_dumpall -h localhost -U postgres --port=5432 -f myglobals.sql --
globals-only

To back up specific global settings, use the following:

pg_dumpall -h localhost -U postgres --port=5432 -f myroles.sql --roles-
only

78

Use psql to restore plain-text backups generated with pg_dumpall or
pg_dump.

Use pg_restore to restore compressed, TAR, and directory backups
created with pg_dump.

Using psql to restore plain-text SQL backups

A plain SQL backup is nothing more than a text file containing a hefty SQL
script. It’s the least convenient backup to have, but it’s the most versatile.
With SQL backup, you must execute the entire script. You can’t cherry-pick
objects unless you’re willing to manually edit the file. Run all of the
following examples from the OS console or psql.

To restore a backup and ignore errors:

psql -U postgres -f myglobals.sql

To restore, stopping if any error is found:

psql -U postgres --set ON_ERROR_STOP=on -f myglobals.sql

To restore to a specific database:

psql -U postgres -d mydb -f select_objects.sql

Using pg_restore

If you backed up using pg_dump and chose a format such as TAR, custom, or
directory, you have to use the pg_restore utility to restore. pg_restore
provides a dizzying array of options, far surpassing the restore utility found in
other database products we’ve used. Some of its outstanding features include:

Restoring Data

There are two ways to restore data in PostgreSQL from backups created with
pg_dump or pg_dumpall:

79

You can perform parallel restores using the -j (equivalent to --jobs=)
option to indicate the number of threads to use. This allows each thread to
restore a separate table simultaneously, significantly picking up the pace
of what could otherwise be a lengthy process.

You can use pg_restore to generate a table of contents file from your
backup file to check what has been backed up. You can also edit this table
of contents and use the revised file to control what gets restored.

pg_restore allows you to selectively restore, even from within a backup of
a full database. If you just need one table restored, you can do that.

pg_restore is backward-compatible, for the most part. You can back up a
database on an older version of PostgreSQL and restore to a newer
version.

See “Database Restore: pg_restore” for a listing of pg_restore options.

To perform a restore using pg_restore, first create the database anew using
SQL:

CREATE DATABASE mydb;

Then restore:

pg_restore --dbname=mydb --jobs=4 --verbose mydb.backup

If the name of the database is the same as the one you backed up, you can
create and restore the database in one step:

pg_restore --dbname=postgres --create --jobs=4 --verbose mydb.backup

When you use the --create option, the database name is always the name of
the one you backed up. You can’t rename it. If you’re also using the --
dbname option, that database name must be different from the name of the
database being restored. We usually just specify the postgres database.

80

WARNING

If you restore over an existing database, the content of the backup may replace
things in your current database. Be careful during a restore: don’t accidentally
pick the wrong backup file or the wrong database to restore to!

With PostgreSQL 9.2 or later, you can take advantage of the --section
option to restore just the structure without the data. This is useful if you want
to use an existing database as a template for a new one. To do so, first create
the target database:

CREATE DATABASE mydb2;

Then use pg_restore:

pg_restore --dbname=mydb2 --section=pre-data --jobs=4 mydb.backup

Managing Disk Storage with Tablespaces

PostgreSQL uses tablespaces to ascribe logical names to physical locations
on disk. Initializing a PostgreSQL cluster automatically begets two
tablespaces: pg_default, which stores all user data, and pg_global, which
stores all system data. These are located in the same folder as your default
data cluster. You’re free to create tablespaces at will and house them on any
serverdisks. You can explicitly assign default tablespaces for new objects by
database. You can also move existing database objects to new ones.

Normally, a restore will not re-create objects already present in a database. If
you have data in the database, and you want to replace it with what’s in the
backup, you need to add the --clean switch to the pg_restore command.
This will cause objects to be dropped from the current database so that restore
can re-create them.

81

CREATE TABLESPACE secondary LOCATION 'C:/pgdata94_secondary';

For Unix-based systems, you first must create the folder or define an fstab
location, then use this command:

CREATE TABLESPACE secondary LOCATION '/usr/data/pgdata94_secondary';

Moving Objects Among Tablespaces

You can shuffle database objects among different tablespaces. To move all
objects in the database to your secondary tablespace, issue the following SQL
command:

ALTER DATABASE mydb SET TABLESPACE secondary;

To move just one table:

ALTER TABLE mytable SET TABLESPACE secondary;

New in PostgreSQL 9.4 is the ability move a group of objects from one
tablespace to another. If the role running the command is a superuser, all
objects will be moved. If not, only the owned objects will be moved.

To move all objects from default tablespace to secondary use:

ALTER TABLESPACE pg_default MOVE ALL TO secondary;

During the move, your database or table will be locked.

Creating Tablespaces

To create a new tablespace, specify a logical name and a physical folder and
make sure that the postgres service account has full access to the physical
folder. If you are on a Windows server, use the following command (note the
use of Unix-style forwardslashes):

82

path/to/your/bin/pg_ctl -D your_postgresql_data_folder

Don’t Delete PostgreSQL Core System Files and
Binaries

Perhaps this is stating the obvious, but when people run out of disk space, the
first thing they do is start deleting files from the PostgreSQL data cluster
folder because it’s so darn big. Part of the reason this mistake happens so
frequently is that some folders sport innocuous names such as pg_log,
pg_xlog, and pg_clog. Yes, there are some files you can safely delete, but
unless you know precisely which ones, you could end up destroying your
data.

The pg_log folder, often found in your data folder, is a folder that builds up
quickly, especially if you have logging enabled. You can always purge files
from this folder without harm. In fact, many people schedule jobs to remove
logfiles on a regular basis.

Files in the other folders, except for pg_xlog, should never be deleted, even if
they have log-sounding names. Don’t even think of touching pg_clog, the
active commit log, unless you want to invite disaster.

pg_xlog stores transaction logs. Some systems we’ve seen are configured to
move processed transaction logs into a subfolder called archive. You’ll often
have an archive folder somewhere (not necessarily as a subfolder of pg_xlog)
if you are running synchronous replication, doing continuous archiving, or

Verboten Practices

We have acted as first responders to many PostgreSQL accidents, so we
thought it best to end this chapter by itemizing the most common mistakes.

For starters, if you don’t know what you did wrong, the logfile could provide
clues. Look for the pg_log folder in your PostgreSQL data folder or the root
of the PostgreSQL data folder. It’s also possible that your server shut down
before a log entry could be written, in which case the log won’t help you. If
your server fails to restart, try the following from the OS command line:

83

NOTE

In version 10, the pg_xlog folder was renamed to pg_wal and pg_clog was
renamed to pg_xact to prevent people from thinking these are log folders where
contents can be deleted without destructive consequences.

Don’t Grant Full OS Administrative Privileges
to the Postgres System Account (postgres)

Many people are under the misconception that the postgres account needs to
have full administrative privileges to the server. In fact, depending on your
PostgreSQL version, if you give the postgres account full administrative
privileges to the server, your database server might not even start.

The postgres account should always be created as a regular system user in the
OS with privileges just to the data cluster and additional tablespace folders.
Most installers will set up the correct permissions without you needing to
worry. Don’t try to do postgres any favors by giving it more access than it
needs. Granting unnecessary access leaves your system vulnerable if you fall
victim to an SQL injection attack.

There are cases where you’ll need to give the postgres account
write/delete/read rights to folders or executables outside of the data cluster.

just keeping logs around in case you need to revert to a different point in
time. Deleting files in the root of pg_xlog will mess up the process. Deleting
files in the archived folder will just prevent you from performing point-in-
time recovery, or if a slave server hasn’t played back the logs, will prevent
the slave from fetching them. If these scenarios don’t apply to you, it’s safe
to remove files in the archive folder.

Be leery of overzealous antivirus programs, especially on Windows. We’ve
seen cases in which antivirus software removed important binaries in the
PostgreSQL bin folder. If PostgreSQL fails to start on a Windows system, the
event viewer is the first place to look for clues as to why.

84

You’ve already started the postgres service.

You are trying to run PostgreSQL on a port already in use by another
service.

Your postgres service had a sudden shutdown and you have an orphan
postgresql.pid file in the data folder. Delete the file and try again.

You have an orphaned PostgreSQL process. When all else fails, kill all
running PostgreSQL processes and then try starting again.

With scheduled jobs that execute batch files and FDWs that have foreign
tables in files, this need often arises. Practice restraint and bestow only the
minimum access necessary to get the job done.

Don’t Set shared_buffers Too High

Loading up your server with RAM doesn’t mean you can set the
shared_buffers as high as your physical RAM. Try it and your server may
crash or refuse to start. If you are running PostgreSQL on 32-bit Windows,
setting it higher than 512 MB often results in instability. With 64-bit
Windows, you can push the envelope higher, and can even exceed 8 GB
without any issues. On some Linux systems, shared_buffers can’t be higher
than the SHMMAX variable, which is usually quite low.

PostgreSQL 9.3 changed how kernel memory is used, so that many of the
issues people ran into with limitations in prior versions are no longer issues.
You can find more details in Kernel Resources.

Don’t Try to Start PostgreSQL on a Port
Already in Use

If you try to start PostgreSQL on a port that’s already in use, you’ll see errors
in your pg_log files of the form: make sure PostgreSQL is not already
running. Here are the common reasons why this happens:

85

http://bit.ly/12scSDW

Chapter 3. psql

psql is the de rigueur command-line utility packaged with PostgreSQL. Aside
from its common use of running queries, you can use psql to execute scripts,
import and export data, restore tables, do other database administration, and
even generate reports. If you have access only to a server’s command line
with no GUI, psql is your only choice to interact with PostgreSQL. If you fall
into this group, you have to be intimate with myriad commands and options.
We suggest that you print out the dump of psql help as discussed in “psql
Interactive Commands” and enshrine it above your workstation.

Environment Variables

As with other command-line tools packaged with PostgreSQL, you can forgo
specifying your connection settings—host, port, user—by initializing the
PGHOST, PGPORT, and PGUSER environment variables. To avoid having to
retype the password, you can initialize the variable PGPASSWORD. For more
secure access, create a password file as described in PostgreSQL Password
File. Since version 9.2 psql accepts two new environment variables:

PSQL_HISTORY

Sets the name of the psql history file that lists all commands executed in
the recent past. The default is ~/.psql_history.

PSQLRC

Specifies the location and name of a custom configuration file. Should
you decide to create this file, you can place most of your settings in here.
At startup, psql will read settings from your configuration file before
loading default values, and your file’s settings will override the defaults.

If you omit the parameters when starting psql and failed to initialize
environment variables, psql will use the standard defaults.

86

http://bit.ly/12scPrZ
entest

entest

entest

NOTE

If you use pgAdmin3, once connected to a database, you can click an icon to
open up psql with the same parameters you have in pgAdmin.

Interactive versus Noninteractive psql

Run psql interactively by typing psql from your OS command line. Your
prompt will transfigure to the psql prompt, signaling that you are now in the
interactive psql console. Begin typing in commands. For SQL statements,
terminate with a semicolon. If you press Enter without a semicolon, psql will
assume that your statement continues to the next line.

Typing \? while in the psql console brings up a list of available commands.
For convenience, we’ve reprinted this list in Appendix B, highlighting new
additions in the latest versions; see “psql Interactive Commands”. Typing \h
followed by the command will bring up the relevant sections of the
PostgreSQL documentation pertaining to the command.

To run commands repeatedly or in a sequence, you’re better off creating a
script first and then running it using psql noninteractively. At your OS
prompt, type psql followed by the name of the script file. Within this script
you can mix an unlimited number of SQL and psql commands. Alternatively,
you can pass in one or more SQL statements surrounded by double quotes.
Noninteractive psql is well-suited for automated tasks. Batch your commands
into a file; then schedule it to run at regular intervals using a scheduling
daemon like pgAgent, crontab in Linux/Unix, or Windows Scheduler.

Noninteractive psql offers few command-line options because the script file
does most of the work. For a listing of all options, see “psql Noninteractive
Commands”. To execute a file, use the -f option, as in the following:

psql -f some_script_file

To execute SQL on the fly, use the -c option. Separate multiple statements

87

with a semicolon as in the following:

psql -d postgresql_book -c "DROP TABLE IF EXISTS dross; CREATE SCHEMA
staging;"

You can embed interactive commands inside script files. Example 3-1 is the
contents of a script named build_stage.psql, which we will use to create a
staging table called staging.factfinder_import that is loaded in Example 3-10.
The script first generates a CREATE TABLE statement, which it writes to a new
file called create_script.sql. It then executes the generated create_script.sql.

Example 3-1. Script that includes psql interactive commands
\a
\t
\g create_script.sql
SELECT

 'CREATE TABLE staging.factfinder_import (
 geo_id varchar(255), geo_id2 varchar(255), geo_display

varchar(255),' ||
 array_to_string(array_agg('s' ||
 lpad(i::text,2,'0') || ' varchar(255),s' ||
 lpad(i::text,2,'0') || '_perc varchar(255)'),',') ||

 ');'
FROM generate_series(1,51) As i;
\o
\i create_script.sql

Since we want the output of our query to be saved as an executable
statement, we need to remove the headers by using the \t option
(shorthand for --tuples-only) and use the \a option to get rid of the extra
breaking elements that psql normally puts in. We then use the \g option
to force our query output to be redirected to a file.
We call the \o without file arguments to stop redirection of query results
to file.
To execute our generated script, we use the \i followed by the generated
script name create_script.sql. The \i is the interactive version of the
noninteractive -f option.

88

\pset null 'NULL'
\encoding latin1
\set PROMPT1 '%n@%M:%>%x %/# '
\pset pager always
\timing on
\set qstats92 '

 SELECT usename, datname, left(query,100) || ''...'' As query
 FROM pg_stat_activity WHERE state != ''idle'' ;

'

WARNING

To run Example 3-1, we enter the following at an OS prompt:

psql -f build_stage.psql -d postgresql_book

Example 3-1 is an adaptation of an approach we describe in How to Create an
N-column Table. As noted in the article, you can perform this without an
intermediary file by using the DO command introduced in PostgreSQL 9.0.

psql Customizations

If you spend most of your day in psql, consider tailoring the psql
environment to make you more productive. psql reads settings from a
configuration file called psqlrc, if present. When psql launches, it searches
for this file and runs all commands therein.

On Linux/Unix, the file is customarily named .psqlrc and should be placed in
your home directory. On Windows, the file is called psqlrc.conf and should
be placed in the %APPDATA%\postgresql folder, which usually resolves to
C:\Users\username\AppData\Roaming\postgresql. Don’t worry if you can’t
find the file right after installation; you usually need to create it. Any settings
in the file will override psql defaults.

Example 3-2 is a glimpse into the contents of a psqlrc file. You can include
any psql command.

Example 3-2. Example psqlrc file

89

http://bit.ly/12scVQi

Each command must be on a single line without breaks. Our examples may add
line breaks to accommodate printing.

When you launch psql now, the result of executing the configuration file
echoes to the screen:

Null display is "NULL".
Timing is on.
Pager is always used.
psql (9.6beta3)
Type "help" for help.
postgres@localhost:5442 postgresql_book#

Some commands work only on Linux/Unix systems, while others work only
on Windows. In either OS, you should use the Linux/Unix−style slash
(forward slash) for path. If you want to bypass the configuration file and start
psql with all its defaults, start it with the -X option.

You can change settings on the fly while in psql, though the change will only
be in effect during your psql session. To remove a configuration variable or
set it back to the default, issue the \unset command followed by the setting,
as in: \unset qstat92.

When using set, keep in mind that the variable you set is case sensitive. Use
all caps to set system options, and lowercase for your own variables. In
Example 3-2, PROMPT1 is a system setting for how the psql prompt should
appear, whereas qstats92 is a variable initialized as shorthand to display
current activities on the PostgreSQL server.

Custom Prompts

If you spend your waking hours playing with psql connecting to multiple
servers and databases, customizing your prompt to display the connected
server and database will enhance your situational awareness and possibly
avoid disaster. Here’s a simple way to set a highly informational prompt:

90

\set PROMPT1 '%n@%M:%>%x %/# '

This includes whom we are logged in as (%n), the host server (%M), the port
(%>), the transaction status (%x), and the database (%/). This is probably
overkill, so economize as you see fit. The complete listing of prompt symbols
is documented in the psql Reference Guide.

When we connect with psql to our database, our enhanced prompt looks like:

postgres@localhost:5442 postgresql_book#

Should we switch to another database using \connect postgis_book, our
prompt changes to:

postgres@localhost:5442 postgis_book#

Timing Executions

You may find it instructive to have psql output the time it took for each query
to execute. Use the \timing command to toggle it on and off.

When enabled, each query you run will report the duration at the end. For
example, with \timing on, executing SELECT COUNT(*) FROM pg_tables;
outputs:

count

73
(1 row)
Time: 18.650 ms

Autocommit Commands

By default, autocommit is on, meaning any SQL command you issue that
changes data will immediately commit. Each command is its own transaction
and is irreversible. If you are running a large batch of precarious updates, you
may want a safety net. Start by turning off autocommit: \set AUTOCOMMIT

91

http://www.postgresql.org/docs/current/interactive/app-psql.html

COMMIT;

WARNING

Don’t forget to commit your changes if autocommit is off; otherwise, they roll
back when you exit psql.

Shortcuts

You can use the \set command to create useful keyboard shortcuts. Store
universally applicable shortcuts in your psqlrc file. For example, if you use
EXPLAIN ANALYZE VERBOSE once every 10 minutes, create a shortcut as
follows:

\set eav 'EXPLAIN ANALYZE VERBOSE'

Now, all you have to type is :eav (the colon resolves the variable):

:eav SELECT COUNT(*) FROM pg_tables;

You can even save entire queries as shortcuts as we did in Example 3-2. Use
lowercase to name your shortcuts to distinguish them from system settings.

Retrieving Prior Commands

off. Now, you have the option to roll back your statements:

UPDATE census.facts SET short_name = 'This is a mistake.';

To undo the update, run:

ROLLBACK;

To make the update permanent, run:

92

\set HISTFILE ~/.psql_history - :DBNAME

WARNING

Windows does not store the command history unless you’re running a
Linux/Unix virtual environment such as Cygwyn, MingW, or MSYS.

psql Gems

In this section, we cover helpful featurettes buried inside the psql
documentation.

Executing Shell Commands

In psql, you can call out to the OS shell with the \! command. Let’s say
you’re on Windows and need a directory listing. Instead of exiting psql or
opening another window, you can just type \! dir at the psql prompt.

Watching Statements

The \watch command has been in psql since PostgreSQL 9.3. Use it to
repeatedly run an SQL statement at fixed intervals so you can monitor the
output. For example, suppose you want to keep tabs on queries that have yet
to complete. Tag the watch command to the end of the query as shown in
Example 3-3.

As with many command-line tools, you can use the up arrows in psql to recall
commands. The HISTSIZE variable determines the number of previous
commands that you can recall. For example, \set HISTSIZE 10 lets you
recover the past 10 commands.

If you spent time building and testing a difficult query or performing a series
of important updates, you may want to have the history of commands piped
into separate files for perusal later:

93

Example 3-3. Watching connection traffic every 10 seconds
SELECT datname, query
FROM pg_stat_activity
WHERE state = 'active' AND pid != pg_backend_pid();
\watch 10

Although \watch is primarily for monitoring query output, you can use it to
execute statements at fixed intervals. In Example 3-4, we first create a table
using bulk insert syntax and then log activity every five seconds after. Only
the last statement that does the insert is repeated every five seconds.

Example 3-4. Log traffic every five seconds
SELECT * INTO log_activity
FROM pg_stat_activity;
INSERT INTO log_activity
SELECT * FROM pg_stat_activity; \watch 5

Create table and do first insert.
Insert every five seconds.

To kill a watch, use CTRL-X CTRL-C.

Retrieving Details of Database Objects

Various psql describe commands list database objects along with details.
Example 3-5 demonstrates how to list all tables and their sizes on disk in the
pg_catalog schema that begins with the letters pg_t.

Example 3-5. List tables with \dt+
\dt+ pg_catalog.pg_t*
Schema | Name | Type | Owner | Size | Description
-----------+------------------+-------+----------+--------+------------
pg_catalog | pg_tablespace | table | postgres | 40 kB |
pg_catalog | pg_trigger | table | postgres | 16 kB |
pg_catalog | pg_ts_config | table | postgres | 40 kB |
pg_catalog | pg_ts_config_map | table | postgres | 48 kB |
pg_catalog | pg_ts_dict | table | postgres | 40 kB |
pg_catalog | pg_ts_parser | table | postgres | 40 kB |
pg_catalog | pg_ts_template | table | postgres | 40 kB |
pg_catalog | pg_type | table | postgres | 112 kB |

94

\d+ pg_ts_dict
Table "pg_catalog.pg_ts_dict"
Column | Type | Modifiers | Storage | Stats target | Description
---------------+------+-----------+----------+--------------+------------
dictname | name | not null | plain | |
dictnamespace | oid | not null | plain | |
dictowner | oid | not null | plain | |
dicttemplate | oid | not null | plain | |
dictinitoption | text | | extended | |
Indexes:
"pg_ts_dict_dictname_index" UNIQUE, btree (dictname, dictnamespace)
"pg_ts_dict_oid_index" UNIQUE, btree (oid)
Has OIDs: yes

Crosstabs

New in PostgreSQL 9.6 psql is the \crosstabview command, which greatly
simplifies crosstab queries. This labor-saving command is available only in
the psql enviroment. We’ll illustrate with an example in Example 3-7,
following it with an explanation.

Example 3-7. Crosstab view
SELECT student, subject, AVG(score)::numeric(5,2) As avg_score
FROM test_scores
GROUP BY student, subject
ORDER BY student, subject
\crosstabview student subject avg_score
 student | algebra | calculus | chemistry | physics | scheme
---------+---------+----------+-----------+---------+--------
 alex | 74.00 | 73.50 | 82.00 | 81.00 |
 leo | 82.00 | 65.50 | 75.50 | 72.00 |
 regina | 72.50 | 64.50 | 73.50 | 84.00 | 90.00
 sonia | 76.50 | 67.50 | 84.00 | 72.00 |
(4 rows)

The \crosstabview immediately follows the query you want to cross

If you need further detail on a particular object, use the \d+ command as
shown in Example 3-6.

Example 3-6. Describe object with \d+

95

SELECT
 'CREATE TABLE ' || person.name || '(a integer, b integer)' As

create,
 'INSERT INTO ' || person.name || ' VALUES(1,2) ' AS insert

 FROM (VALUES ('leo'),('regina')) AS person (name) \gexec

tabulate. The \crosstabview should list three columns selected by the
query, with an optional fourth column to control sorting. The cross tabulation
outputs a table where the first column serves as a row header, the second
column as a column header, and the last as the value that goes in each cell.
You can also omit the column names from the \crosstabview command, in
which case the SELECT statement must request exactly three columns used in
order for the cross tabulation.

In Example 3-7, student is the row header and subject is the column
header. The average score column provides the entry for each pivoted cell.
Should our data contain a missing student-subject pair, the corresponding cell
would be null. We specified all the columns in the \crosstabview
command, but we could have omitted them because they are in our SELECT in
the right order.

Dynamic SQL Execution

Suppose you wanted to construct SQL statements to run based on the output
of a query. In prior versions of PostgreSQL, you would build the SQL, output
it to a file, then execute the file. Alternatively you could use the DO construct,
which could be unwieldy in psql for long SQL statements. Starting with
PostgreSQL 9.6, you can execute generated SQL in a single step with the
new \gexec command, which iterates through each cell of your query and
executes the SQL therein. Iteration is first by row then by column. It’s not yet
smart enough to discern whether each cell contains a legitimate SQL. gexec
is also oblivious to the result of the SQL execution. Should the SQL within a
particular cell throw an error, gexec merrily treads along. However, it skips
over nulls. Example 3-8 creates two tables and inserts one row in each table
using the \gexec command.

Example 3-8. Using gexec to create tables and insert data

96

SELECT
'SELECT ' || quote_literal(table_name) || ' AS table_name,
COUNT(*) As count FROM ' || quote_ident(table_name) AS cnt_q
FROM information_schema.tables
WHERE table_name IN ('leo','regina') \gexec
table_name | count
-----------+------
leo | 1
(1 row)

table_name | count
-----------+------
 regina | 1
(1 row)

Importing and Exporting Data

psql has a \copy command that lets you import data from and export data to a
text file. The tab is the default delimiter, but you can specify others. Newline
breaks must separate the rows. For our first example, we downloaded data
from US Census Fact Finder covering racial demographics of housing in
Massachusetts. You can download the file we use in this example,
DEC_10_SF1_QTH1_with_ann.csv, from the PostgreSQL Book Data.

psql Import

Our usual sequence in loading denormalized or unfamiliar data is to create a
staging schema to accept the incoming data. We then write explorative
queries to get a sense of what we have on our hands. Finally, we distribute

CREATE TABLE
INSERT 0 1
CREATE TABLE
INSERT 0 1

In the next example we use gexec to obtain metadata by querying
information_schema.

Example 3-9. Using gexec to retrieve counts of records in each table

97

http://factfinder2.census.gov
http://bit.ly/1tZXANx
entest

entest

\connect postgresql_book
\cd /postgresql_book/ch03
\copy staging.factfinder_import FROM DEC_10_SF1_QTH1_with_ann.csv CSV

In Example 3-10, we launch interactive psql, connect to our database, use \cd
to change the current directory to the folder containing our file, and import
our data using the \copy command. Because the default delimiter is a tab, we
augment our statement with CSV to tell psql that our data is comma-separated
instead.

If your file has nonstandard delimiters such as pipes, indicate the delimiter as
follows:

\copy sometable FROM somefile.txt DELIMITER '|';

During import, you can replace null values with something of your own
choosing by adding a NULL AS, as in the following:

the data into various normalized production tables and delete the staging
schema.

Before bringing the data into PostgreSQL, you must first create a table to
store the incoming data. The data must match the file both in the number of
columns and in data types. This could be an annoying extra step for a well-
formed file, but it does obviate the need for psql to guess at data types.

psql processes the entire import as a single transaction; if it encounters any
errors in the data, the entire import fails. If you’re unsure about the data
contained in the file, we recommend setting up the table with the most
accommodating data types and then recasting them later if necessary. For
example, if you can’t be sure that a column will have just numeric values,
make it character varying to get the data in for inspection and then recast it
later.

Example 3-10 loads data into the table we created in Example 3-1. Launch
psql from the command line and run the commands in Example 3-10.

Example 3-10. Importing data with psql

98

\copy sometable FROM somefile.txt NULL As '';

WARNING

Don’t confuse the \copy command in psql with the COPY statement provided by
the SQL language. Because psql is a client utility, all paths are interpreted
relative to the connected client. The SQL copy is server-based and runs under
the context of the postgres service OS account. The input file for an SQL copy
must reside in a path accessible by the postgres service account.

psql Export

Exporting data is even easier than importing. You can even export selected
rows from a table. Use the psql \copy command to export. Example 3-11
demonstrates how to export the data we just loaded back to a tab-delimited
file.

Example 3-11. Exporting data with psql
\connect postgresql_book
\copy (SELECT * FROM staging.factfinder_import WHERE s01 ~ E'^[0-9]+')
TO '/test.tab'
WITH DELIMITER E'\t' CSV HEADER

The default behavior of exporting data without qualifications is to export to a
tab-delimited file. However, the tab-delimited format does not export header
columns. You can use the HEADER option only with the comma-delimited
format (see Example 3-12).

Example 3-12. Exporting data with psql
\connect postgresql_book
\copy staging.factfinder_import TO '/test.csv'
WITH CSV HEADER QUOTE '"' FORCE QUOTE *

FORCE QUOTE * double quotes all columns. For clarity, we specified the
quoting character even though psql defaults to double quotes.

99

\connect postgresql_book
CREATE TABLE dir_list (filename text);
\copy dir_list FROM PROGRAM 'dir C:\projects /b'

Hubert Lubaczewski has more examples of using \copy. Visit Depesz:
Piping copy to from an external program.

Basic Reporting

Believe it or not, psql is capable of producing basic HTML reports. Try the
following and check out the generated output, shown in Figure 3-1.

psql -d postgresql_book -H -c "
SELECT category, COUNT(*) As num_per_cat
FROM pg_settings
WHERE category LIKE '%Query%'
GROUP BY category
ORDER BY category;
" -o test.html

Figure 3-1. Minimalist HTML report

Copying from or to Program

Since PostgreSQL 9.3, psql can fetch data from the output of command-line
programs such as curl, ls, and wget, and dump the data into a table.
Example 3-13 imports a directory listing using a dir command.

Example 3-13. Import directory listing with psql

100

http://bit.ly/1BlpKLt

\o settings_report.html
\T 'cellspacing=0 cellpadding=0'
\qecho '<html><head><style>H2{color:maroon}</style>'
\qecho '<title>PostgreSQL Settings</title></head><body>'
\qecho '<table><tr valign=''top''><td><h2>Planner Settings</h2>'
\x on
\t on
\pset format html
SELECT category,
string_agg(name || '=' || setting, E'\n' ORDER BY name) As settings
FROM pg_settings
WHERE category LIKE '%Planner%'
GROUP BY category
ORDER BY category;
\H
\qecho '</td><td><h2>File Locations</h2>'
\x off
\t on
\pset format html
SELECT name, setting FROM pg_settings WHERE category = 'File Locations'
ORDER BY name;
\qecho '<h2>Memory Settings</h2>'
SELECT name, setting, unit FROM pg_settings WHERE category ILIKE
'%memory%'
ORDER BY name;
\qecho '</td></tr></table>'
\qecho '</body></html>'
\o

Redirects query output to a file.
CSS table settings for query output.
Appends additional HTML.
Expand mode. Repeats the column headers for each row and outputs each
column of each row as a separate row.
Forces the queries to output as an HTML table.

Not too shabby. But the command outputs only an HTML table, not a fully
qualified HTML document. To create a meatier report, compose a script, as
shown in Example 3-14.

Example 3-14. Script to generate report

101

string_agg(), introduced in PostgreSQL 9.0, concatenates all properties
in the same category into a single column.
Turns off expand mode. The second and third queries should output one
row per table row.
Toggles tuples mode. When on, column headers and row counts are
omitted.

Example 3-14 demonstrates that by interspersing SQL and psql commands,
you can create a comprehensive tabular report replete with subreports. Run
Example 3-14 by connecting interactively with psql and executing \i
settings_report.psql. Alternatively, run psql noninteractively by
executing psql -f settings_report.psql from your OS command line.
The output generated by settings_report.html is shown in Figure 3-2.

Figure 3-2. Advanced HTML report

As demonstrated, composing psql scripts lets you show output from many
queries within a single report. Further, after you write a script, you can
schedule its execution in the future, and at fixed intervals. Use a daemon like

102

pgAgent, crontab, or Windows Scheduler.

103

Chapter 4. Using pgAdmin

pgAdmin4 version 1.6 is the current rendition of the tried-and-true graphical
administration tool for PostgreSQL. It is a complete rewrite of the
predecessor pgAdmin3. Some features of pgAdmin3 have not been ported to
pgAdmin4, though they may be in the future. In this chapter we’ll focus on
what’s available in pgAdmin4. Much of the functionality you will find in
pgAdmin4 was present in pgAdmin3, so this discussion will be valuable even
if you are still using pgAdmin3. We will also cover some popular features of
pgAdmin3 not yet ported to pgAdmin4. For the rest of this chapter, we’ll
simply refer to both as pgAdmin, and only make distinguishing version notes
where the functionality is different.

NOTE

Most of the key changes thus far with pgAdmin4 compared to pgAdmin3 is that
pgAdmin4 better supports the new 9.6 and 10 constructs including the ability to
run in a server or desktop mode; an improved query results pane with ability to
edit records and also select noncontiguous rows; and improved performance. If
you are using Windows, make sure to use pgAdmin4 1.6 or above. Prior
pgAdmin4 versions had performance issues on Windows when running in
desktop mode.

Although pgAdmin has shortcomings, we are always encouraged by not only
how quickly bugs are fixed, but also how quickly new features are added.
Because the PostgreSQL developers position pgAdmin as the most
commonly used graphical-administration tool for PostgreSQL and it is
packaged with many binary distributions of PostgreSQL, the developers have
taken on the responsibility of keeping pgAdmin always in sync with the latest
PostgreSQL releases. If a new release of PostgreSQL introduces new
features, you can count on the latest pgAdmin to let you manage it. If you’re
new to PostgreSQL, you should definitely start with pgAdmin before

104

exploring other tools.

Getting Started

pgAdmin4 comes packaged with many distributions. The BigSQL and EDB
distributions from PostgreSQL 9.6 on include pgAdmin4 as an option. Note if
you have a need for pgAdmin3 for PostgreSQL 9.6+, you’ll want to use the
BigSQL pgAdmin3 LTS, which has been patched to handle versions 9.6 and
10. pgAdmin3 LTS is installable via the BigSQL package manager. After
version 9.5, the EDB package only includes pgAdmin4. The pgAdmin group
will no longer be making updates or enhancements to pgAdmin3.

If you are installing pgAdmin without PostgreSQL, you can download
pgAdmin from pgadmin.org. While on the site, you can opt to peruse one of
the guides introducing pgAdmin. The tool is well-organized and, for the most
part, guides itself quite well. Adventurous users can always try beta and alpha
releases of pgAdmin. Your help in testing would be greatly appreciated by
the PostgreSQL community.

Overview of Features

To whet your appetite, here’s a list of our favorite goodies in pgAdmin. More
are listed in pgAdmin Features:

Server and Desktop mode

pgAdmin4 can be installed in desktop mode or as a web server WSGI
application. pgAdmin3 was a desktop-only application.

Graphical explain for your queries

This awesome feature offers pictorial insight into what the query planner
is thinking. While verbose text-based planner output still has its place, a
graphical explain provides a more digestible bird’s-eye view.

SQL pane

pgAdmin ultimately interacts with PostgreSQL via SQL, and it’s not shy

105

https://www.bigsql.org/pgadmin3/
http://www.pgadmin.org
http://pgadmin.org/features.php

about letting you see the generated SQL. When you use the graphical
interface to make changes to your database, pgAdmin automatically
displays, in an SQL pane, the underlying SQL that will perform the tasks.
For novices, studying the generated SQL is a superb learning opportunity.
For pros, taking advantage of the generated SQL is a great timesaver.

GUI editor for configuration files such as postgresql.conf and pg_hba.conf

You no longer need to dig around for the files and use another editor.
This is currently only present in pgAdmin3, and to use it, you also need to
install the pgadmin extension in the database called postgres.

Data export and import

pgAdmin can easily export query results as a CSV file or other delimited
format and import such files as well. pgAdmin3 can even export results as
HTML, providing you with a turnkey reporting engine, albeit a bit crude.

Backup and restore wizard

Can’t remember the myriad commands and switches to perform a backup
or restore using pg_restore and pg_dump? pgAdmin has a nice interface
that lets you selectively back up and restore databases, schemas, single
tables, and globals. You can view and copy the underlying pg_dump or
pg_restore command that pgAdmin used in the Message tab.

Grant wizard

This timesaver allows you to change privileges on many database objects
in one fell swoop.

pgScript engine

This is a quick-and-dirty way to run scripts that don’t have to complete as
transactions. With this you can execute loops that commit on each
iteration, unlike functions that require all steps to be completed before the
work is committed. Unfortunately, you cannot use this engine outside of
pgAdmin and it is currently only available in pgAdmin3 (not 4).

SQL Editor Autocomplete feature

106

To trigger the autocomplete popup use CTRL-Space. The autocomplete
feature is improved in pgAdmin4.

pgAgent

We’ll devote an entire section to this cross-platform job scheduling agent.
pgAdmin provides a cool interface to it.

Connecting to a PostgreSQL Server

Connecting to a PostgreSQL server with pgAdmin is straightforward. The
General and Connection tabs are shown in Figure 4-1.

Figure 4-1. pgAdmin4 register server connection dialog

Navigating pgAdmin

The tree layout of pgAdmin is intuitive to follow but does engender some
possible anxiety, because it starts off by showing you every esoteric object
found in the database. You can pare down the tree display by going into the
Browser section of Preferences and deselecting objects that you would rather
not have to stare at every time you use pgAdmin. To declutter the browse tree
sections, go to Files→Preferences→Browser→Nodes. You will see the

107

screen shown in Figure 4-2.

Figure 4-2. Hide or unhide database objects in the pgAdmin4 browse tree

If you select Show System Objects in the Display section, you’ll see the guts
of your server: internal functions, system tables, hidden columns in tables,
and so forth. You will also see the metadata stored in the PostgreSQL system
catalogs: information_schema catalog and the pg_catalog.
information_schema is an ANSI SQL standard catalog found in other
databases such as MySQL and SQL Server. You may recognize some of the
tables and columns from working with other database products.

pgAdmin Features

pgAdmin is chock full of goodies. We don’t have the space to bring them all
to light, so we’ll just highlight the features that many use on a regular basis.

108

Figure 4-3. Table Scripts menu

The “SELECT Script” option is particularly handy because it will create a
query that lists all the columns in the table. If you have a lot of columns in a
table and want to select a large subset but not all columns, this is a great
timesaver. You can remove columns you don’t need in your query from the
autogenerated statement.

Accessing psql from pgAdmin3

Although pgAdmin is a great tool, psql does a better job in a few cases. One
of them is the execution of very large SQL files, such as those created by
pg_dump and other dump tools. You can easily jump to psql from pgAdmin3,

Autogenerating Queries from Table Definitions

pgAdmin has this menu option that will autogenerate a template for SELECT,
INSERT, and UPDATE statements from a table definition. You access this
feature by right-clicking the table and accessing the SCRIPTS context menu
option as shown in Figure 4-3.

109

Figure 4-4. psql plugin

Because this feature relies on a database connection, you’ll see it disabled
until you’re connected to a database.

Editing postgresql.conf and pg_hba.conf from
pgAdmin3

You can edit configuration files directly from pgAdmin, provided that you
installed the adminpack extension on your server. PostgreSQL one-click
installers generally create the adminpack extension. If it’s present, you should
see the Server Configuration menu enabled, as shown in Figure 4-5.

Figure 4-5. PgAdmin3 configuration file editor

If the menu is grayed out and you are connected to a PostgreSQL server,
either you don’t have the adminpack installed on that server or you are not
logged in as a superuser. To install the adminpack run the SQL statement
CREATE EXTENSION adminpack; or use the graphical interface for installing
extensions, as shown in Figure 4-6. Disconnect from the server and
reconnect; you should see the menu enabled.

but this feature is not available in pgAdmin4. Click the plugin menu, as
shown in Figure 4-4, and then click PSQL Console. This opens a psql session
connected to the database you are currently connected to in pgAdmin. You
can then use the \cd and \i commands to change directory and run the SQL
file.

110

Figure 4-6. Installing extensions using pgAdmin4

Creating Database Assets and Setting
Privileges

pgAdmin lets you create all kinds of database assets and assign privileges.

Creating databases and other database assets

Creating a new database in pgAdmin is easy. Just right-click the database
section of the tree and choose New Database, as shown in Figure 4-7. The
Definition tab provides a drop-down menu for you to select a template
database, similar to what we did in “Template Databases”.

111

Figure 4-7. Creating a new database in pgAdmin4

Follow the same steps to create roles, schemas, and other objects. Each will
have its own relevant set of tabs for you to specify additional attributes.

Privilege management

To manage the privileges of database assets, nothing beats the pgAdmin
Grant Wizard, which you access from the Tools→Grant Wizard menu of
pgAdmin. If you are interested in granting permissions only for objects in a
specific schema, right-click the schema and choose “Grant Wizard.” The list
will be filtered to just objects in the schema. As with many other features,
this option is grayed out unless you are connected to a database. It’s also
sensitive to the location in the tree you are on. For example, to set privileges

112

Figure 4-8. Grant Wizard in pgAdmin4

More often than setting privileges on existing objects, you may want to set
default privileges for new objects in a schema or database. To do so, right-
click the schema or database, select Properties, and then go to the Default
Privileges tab, as shown in Figure 4-9.

for items in the census schema, select the schema and then choose Grant
Wizard. The Grant Wizard screen is shown in Figure 4-8. You can then select
all or some of the items and switch to the Privileges tab to set the roles and
privileges you want to grant.

113

Figure 4-9. Granting default privileges in pgAdmin4

When setting privileges for a schema, make sure to also set the usage
privilege on the schema to the groups you will be giving access to.

Import and Export

Like psql, pgAdmin allows you to import and export text files.

Importing files

The import/export feature is really a wrapper around the psql \copy

114

Figure 4-10. Import menu in pgAdmin4

Exporting queries as a structured file or report in pgAdmin

In addition to importing data, you can export your queries as well. pgAdmin3
allows exporting to delimited CSV, HTML, or XML formats. The pgAdmin4
export feature is much simpler and basic than pgAdmin3.

In pgAdmin to export with delimiters, perform the following:

1. Open the query window ().

2. Write the query.

3. Run the query.

4. In pgAdmin3, you’d choose File→Export. In pgAdmin4, you click the

download icon () and browse to where you want to save.

5. For pgAdmin3, you get additional prompts before being given a save
option. Fill out the settings as shown in Figure 4-11.

command and requires the table that will receive the data to exist already. In
order to import data, right-click the table you want to import/export data to.
Figure 4-10 shows the menu that comes up after we right-click the
lu_fact_types table on the left.

115

Figure 4-11. Export menu

Exporting as HTML or XML is much the same, except you use the
File→Quick Report option (see Figure 4-12).

116

Figure 4-12. Export report options

Backup and Restore

pgAdmin offers a graphical interface to pg_dump and pg_restore, covered in
“Backup and Restore”. In this section, we’ll repeat some of the same
examples using pgAdmin instead of the command line.

If several versions of PostgreSQL or pgAdmin are installed on your
computer, it’s a good idea to make sure that the pgAdmin version is using the
versions of the utilities that you expect. Check what the bin setting in
pgAdmin is pointing to in order to ensure it’s the latest available, as shown in
Figure 4-13.

117

Figure 4-13. pgAdmin File→Preferences

WARNING

If your server is remote or your databases are huge, we recommend using the
command-line tools for backup and restore instead of pgAdmin to avoid adding
another layer of complexity to what could already be a pretty lengthy process.
Also keep in mind that if you do a compressed/TAR/directory backup with a
newer version of pg_dump, you need to use the same or later version of
pg_restore.

Backing up an entire database

In “Selective Backup Using pg_dump”, we demonstrated how to back up a
database. To repeat the same steps using the pgAdmin interface, right-click

118

the database you want to back up and choose Custom for Format, as shown in
Figure 4-14.

Figure 4-14. Backup database

Backing up systemwide objects

pgAdmin provides a graphical interface to pg_dumpall for backing up
system objects. To use the interface, first connect to the server you want to
back up. Then, from the top menu, choose Tools→Backup Globals.

119

Figure 4-15. pgAdmin schema backup

To back up the selected asset, you can forgo the other tabs (see Figure 4-14).
In pgAdmin3, you can selectively drill down to more items by clicking the
Objects tab, as shown in Figure 4-16. This feature is not yet present in
pgAdmin4.

pgAdmin doesn’t give you control over which global objects to back up, as
the command-line interface does. pgAdmin backs up all tablespaces and
roles.

If you ever want to back up the entire server, invoke pg_dumpall by going to
the top menu and choosing Tools→Backup Server.

Selective backup of database assets

pgAdmin provides a graphical interface to pg_dump for selective backup.
Right-click the asset you want to back up and select Backup (see Figure 4-
15). You can back up an entire database, a particular schema, a table, or
anything else.

120

Figure 4-16. pgAdmin3 selective backup Objects tab

TIP

Behind the scenes, pgAdmin simply runs pg_dump to perform backups. If you
ever want to know the actual commands pgAdmin is using, say for scripting,
look at the Messages tab after you click the Backup button. You’ll see the exact
call with arguments to pg_dump.

pgScript

pgScript is a built-in scripting tool in pgAdmin3 but is not present in
pgAdmin4. It’s most useful for running repetitive SQL tasks. pgScript can
make better use of memory, and thus be more efficient, than equivalent
PostgreSQL functions. This is because stored functions maintain all their
work in memory and commit all the results of a function in a single batch. In

121

DECLARE @I, @labels, @tdef;
SET @I = 0;

Labels will hold records.
SET @labels =

 SELECT
 quote_ident(

 replace(
 replace(lower(COALESCE(fact_subcats[4],

fact_subcats[3])), ' ', '_')
,':',''

)

contrast, pgScript commits each SQL insert or update statement as it runs
through the script. This makes pgScript particularly handy for memory-
hungry processes that you don’t need completed as single transactions. After
each transaction commits, memory becomes available for the next one. You
can see an example where we use pgScript for batch geocoding at Using
pgScript for Geocoding.

The pgScript language is lazily typed and supports conditionals, loops, data
generators, basic print statements, and record variables. The general syntax is
similar to that of Transact SQL, the stored procedure language of Microsoft
SQL Server. Variables, prepended with @, can hold scalars or arrays,
including the results of SQL commands. Commands such as DECLARE and
SET, and control constructs such as IF-ELSE and WHILE loops, are part of the
pgScript language.

Launch pgScript by opening a regular SQL query window. After typing in
your script, execute it by clicking the pgScript icon ().

We’ll now show you some examples of pgScripts. Example 4-1 demonstrates
how to use pgScript record variables and loops to build a crosstab table, using
the lu_fact_types table we create in Example 7-22. The pgScript creates an
empty table called census.hisp_pop with numeric columns:
hispanic_or_latino, white_alone,
black_or_african_american_alone, and so on.

Example 4-1. Create a table using record variables in pgScript

122

http://bit.ly/126mRPB

) As col_name,
 fact_type_id
 FROM census.lu_fact_types

 WHERE category = 'Population' AND fact_subcats[3] ILIKE 'Hispanic or
Latino%'

 ORDER BY short_name;

SET @tdef = 'census.hisp_pop(tract_id varchar(11) PRIMARY KEY ';

Loop through records using LINES function.
WHILE @I < LINES(@labels)
BEGIN

 SET @tdef = @tdef + ', ' + @labels[@I][0] + ' numeric(12,3) ';
 SET @I = @I + 1;

END

SET @tdef = @tdef + ')';

Print out table def.
PRINT @tdef;

create the table.
CREATE TABLE @tdef;

Although pgScript does not have an execute command that allows you to run
dynamically generated SQL, we accomplished the same thing in Example 4-1
by assigning an SQL string to a variable. Example 4-2 pushes the envelope a
bit further by populating the census.hisp_pop table we just created.

Example 4-2. Populating tables with pgScript loop
DECLARE @I, @labels, @tload, @tcols, @fact_types;
SET @I = 0;
SET @labels =

 SELECT
 quote_ident(

 replace(
 replace(

 lower(COALESCE(fact_subcats[4], fact_subcats[3])), '
', '_'),':'
,''

)
) As col_name,

123

 fact_type_id
 FROM census.lu_fact_types
 WHERE category = 'Population' AND fact_subcats[3] ILIKE 'Hispanic or

Latino%'
 ORDER BY short_name;

SET @tload = 'tract_id';
SET @tcols = 'tract_id';
SET @fact_types = '-1';

WHILE @I < LINES(@labels)
BEGIN

 SET @tcols = @tcols + ', ' + @labels[@I][0] ;
 SET @tload = @tload +

 ', MAX(CASE WHEN fact_type_id = ' +
 CAST(@labels[@I][1] AS STRING) +
 ' THEN val ELSE NULL END)';

 SET @fact_types = @fact_types + ', ' + CAST(@labels[@I][1] As
STRING);

 SET @I = @I + 1;
END

INSERT INTO census.hisp_pop(@tcols)
SELECT @tload FROM census.facts
WHERE fact_type_id IN(@fact_types) AND yr=2010
GROUP BY tract_id;

The lesson to take away from Example 4-2 is that you can dynamically
append SQL fragments into a variable.

Graphical Explain

One of the great gems in pgAdmin is its at-a-glance graphical explain of the
query plan. You can access the graphical explain plan by opening up an SQL
query window, writing a query, and clicking the explain icon ().

Suppose we run the query:

SELECT left(tract_id, 5) As county_code, SUM(hispanic_or_latino) As
tot,

124

 SUM(white_alone) As tot_white,
 SUM(COALESCE(hispanic_or_latino,0) - COALESCE(white_alone,0)) AS

non_white
FROM census.hisp_pop
GROUP BY county_code
ORDER BY county_code;

We will get the graphical explain shown in Figure 4-17. Here’s a quick tip for
interpreting the graphical explain: trim the fat! The fatter the arrow, the
longer a step takes to complete.

Figure 4-17. Graphical explain example

Graphical explain is disabled if Query→Explain→Buffers is enabled. So
make sure to uncheck buffers before trying a graphical explain. In addition to
the graphical explain, the Data Output tab shows the textual explain plan,
which for this example looks like:

125

GroupAggregate (cost=111.29..151.93 rows=1478 width=20)
 Output: ("left"((tract_id)::text, 5)), sum(hispanic_or_latino),
sum(white_alone), ...
 -> Sort (cost=111.29..114.98 rows=1478 width=20)

 Output: tract_id, hispanic_or_latino, white_alone,
 ("left"((tract_id)::text, 5))

Sort Key: ("left"((tract_id)::text, 5))
-> Seq Scan on census.hisp_pop (cost=0.00..33.48 rows=1478

width=20)
 Output: tract_id, hispanic_or_latino
 , white_alone, "left"((tract_id)::text, 5)

Job Scheduling with pgAgent

pgAgent is a handy utility for scheduling PostgreSQL jobs. But it can also
execute batch scripts on the OS, replacing crontab on Linux/Unix and the
Task Scheduler on Windows. pgAgent goes even further: you can schedule
jobs to run on any other host regardless of OS. All you have to do is install
the pgAgent service on the host and point it to use a specific PostgreSQL
database with pgAgent tables and functions installed. The PostgreSQL server
itself is not required, but the client connection libraries are. Because pgAgent
is built atop PostgreSQL, you are blessed with the added advantage of having
access to all the tables controlling the agent. If you ever need to replicate a
complicated job multiple times, you can go straight into the database tables
directly and insert the records for new jobs, skipping the pgAdmin interface.

We’ll get you started with pgAgent in this section. Visit Setting Up pgAgent
and Doing Scheduled Backups to see more working examples and details on
how to set it up.

Installing pgAgent

You can download pgAgent from pgAgent Download. It is also available via
the EDB Application Stackbuilder and BigSQL package. The packaged
extension script creates a new schema named pgAgent in the postgres
database. When you connect to your server via pgAdmin, you will see a new
section called Jobs, as shown in Figure 4-18.

126

http://bit.ly/1AvqVVs
http://www.pgadmin.org/download/pgagent.php

Figure 4-18. pgAdmin4 with pgAgent installed

NOTE

Although pgAgent is installed by default in postgres db, you can install in a
different database using CREATE EXTENSION pgagent;. If you decide to install
in a different database, make sure to set your pgagent service to use that
database and in pgAdmin set the maintenance db in the server connection tab to
be this database.

If you want pgAgent to run batch jobs on additional servers, follow the same
steps, except that you don’t have to reinstall the SQL script packaged with
pgAgent. Pay particular attention to the OS permission settings of the
pgAgent service/daemon account. Make sure each agent has sufficient
privileges to execute the batch jobs that you will be scheduling.

WARNING

Batch jobs often fail in pgAgent even when they might run fine from the
command line. This is often due to permission issues. pgAgent always runs
under the same account as the pgAgent service/daemon. If this account doesn’t
have sufficient privileges or the necessary network path mappings, jobs fail.

Scheduling Jobs

Each scheduled job has two parts: the execution steps and the schedule.
When creating a new job, start by adding one or more job steps. Figure 4-19

127

shows what the step add/edit screen looks like.

Figure 4-19. pgAdmin4 step edit screen

For each step, you can enter an SQL statement to run, point to a shell script
on the OS, or even cut and paste in a full shell script as we commonly do.

If you choose SQL, the connection type option becomes enabled and defaults
to local. With a local connection, the job step runs on the same server as the
pgAgent and uses the same authentication username and password. You need
to additionally specify the database that pgAgent should connect to in order
to run the jobs. The screen offers you a drop-down list of databases to choose
from. If you choose a remote connection type, the text box for entering a
connection string becomes enabled. Type in the full connection string,
including credentials and the database. When you connect to a remote
PostgreSQL server with an earlier version of PostgreSQL, make sure that all
the SQL constructs you use are supported on that version.

If you choose to run batch jobs, the syntax must be specific to the OS running
the job. For example, if your pgAgent is running on Windows, your batch
jobs should have valid DOS commands. If you are on Linux, your batch jobs
should have valid shell or Bash commands.

128

TIP

pgAgent consists of two parts: the data defining the jobs and the logging of the
job. Log information resides in the pgAgent schema, usually in the postgres
database; the job agents query the jobs for the next job to run and then insert
relevant logging information in the database. Generally, both the PostgreSQL
server holding the data and the job agent executing the jobs reside on the same
server, but they are not required to. Additionally, a single PostgreSQL server
can service many job agents residing on different servers.

A fully formed job is shown in Figure 4-20.

Steps run in alphabetical order, and you can decide what kinds of actions you
want to take upon success or failure of each step. You have the option of
disabling steps that should remain dormant but that you don’t want to delete
because you might reactivate them later.

Once you have the steps ready, go ahead and set up a schedule to run them.
You can set up intricate schedules with the scheduling screen. You can even
set up multiple schedules.

If you installed pgAgent on multiple servers and have them all pointing to the
same pgAgent database, all these agents by default will execute all jobs.

If you want to run the job on just one specific machine, fill in the host
agent field when creating the job. Agents running on other servers will skip
the job if it doesn’t match their hostname.

129

Figure 4-20. pgAgent jobs in pgAdmin

Helpful pgAgent Queries

With your finely honed SQL skills, you can easily replicate jobs, delete jobs,
and edit jobs directly by messing with pgAgent metatables. Just be careful!
For example, to get a glimpse inside the tables controlling all of your agents
and jobs, connect to the postgres database and execute the query in
Example 4-3.

Example 4-3. Description of pgAgent tables
SELECT c.relname As table_name, d.description
FROM

 pg_class As c INNER JOIN
 pg_namespace n ON n.oid = c.relnamespace INNER JOIN
 pg_description As d ON d.objoid = c.oid AND d.objsubid = 0

WHERE n.nspname = 'pgagent'
ORDER BY c.relname;
table_name | description
---------------+-------------------------
pga_job | Job main entry
pga_jobagent | Active job agents
pga_jobclass | Job classification
pga_joblog | Job run logs.

130

pga_jobstep | Job step to be executed
pga_jobsteplog | Job step run logs.
pga_schedule | Job schedule exceptions

Although pgAdmin already provides an intuitive interface to pgAgent
scheduling and logging, you may find the need to generate your own job
reports. This is especially true if you have many jobs or you want to compile
stats from your job results. Example 4-4 demonstrates the one query we use
often.

Example 4-4. List log step results from today
SELECT j.jobname, s.jstname, l.jslstart,l.jslduration, l.jsloutput
FROM

 pgagent.pga_jobsteplog As l INNER JOIN
 pgagent.pga_jobstep As s ON s.jstid = l.jsljstid INNER JOIN
 pgagent.pga_job As j ON j.jobid = s.jstjobid

WHERE jslstart > CURRENT_DATE
ORDER BY j.jobname, s.jstname, l.jslstart DESC;

We find this query essential for monitoring batch jobs because sometimes a
job will report success even though it failed. pgAgent can’t always discern
the success or failure of a shell script on the OS. The jsloutput field in the
logs provides the shell output, which usually details what went wrong.

WARNING

In some versions of pgAgent running on Windows, shell scripts often default to
failed even when they succeeded. If this happens, you should set the step status
to ignore. This is a known bug that we hope will be fixed in a future release.

131

Chapter 5. Data Types

PostgreSQL supports the workhorse data types of any database: numerics,
strings, dates, times, and booleans. But PostgreSQL sprints ahead by adding
support for arrays, time zone−aware datetimes, time intervals, ranges, JSON,
XML, and many more. If that’s not enough, you can invent custom types. In
this chapter, we don’t intend to cover every data type. For that, there’s always
the manual. We showcase data types that are unique to PostgreSQL and
nuances in how PostgreSQL handles common data types.

No data type would be useful without a cast of supporting functions and
operators. And PostgreSQL has plenty of them. We’ll cover the more popular
ones in this chapter.

TIP

When we use the term function, we’re talking about something that’s of the
form f(x). When we use the term operator, we’re talking about something
that’s symbolic and either unary (having one argument) or binary (having two
arguments) such as +, -, *, or /. When using operators, keep in mind that the
same symbol can take on a different meaning when applied to different data
types. For example, the plus sign means adding for numerics but unioning for
ranges.

Numerics

You will find your everyday integers, decimals, and floating-point numbers
in PostgreSQL. Of the numeric types, we want to discuss serial data types
and a nifty function to quickly generate arithmetic series of integers.

Serials

132

CREATE SEQUENCE s START 1;
CREATE TABLE stuff(id bigint DEFAULT nextval('s') PRIMARY KEY, name
text);

WARNING

If you rename a table that has a serial based on a sequence, PostgreSQL will not
automatically rename the sequence object. To avoid confusion, you should

Serial and its bigger sibling, bigserial, are auto-incrementing integers often
used as primary keys of tables in which a natural key is not apparent. This
data type goes by different names in different database products, with
autonumber being the most common alternative moniker. When you create a
table and specify a column as serial, PostgreSQL first creates an integer
column and then creates a sequence object named
table_name_column_name_seq located in the same schema as the table. It
then sets the default of the new integer column to read its value from the
sequence. If you drop the column, PostgreSQL also drops the companion
sequence object.

In PostgreSQL, the sequence type is a database asset in its own right. You
can inspect and edit the sequences using SQL with the ALTER SEQUENCE
command or using PGAdmin. You can set the current value, boundary values
(both the upper and lower bounds), and even how many numbers to
increment each time. Though decrementing is rare, you can do it by setting
the increment value to a negative number. Because sequences are
independent database assets, you can create them separately from a table
using the CREATE SEQUENCE command, and you can use the same sequence
across multiple tables. The cross-table sharing of the same sequence comes in
handy when you’re assigning a universal key in your database.

To use an extant sequence for subsequent tables, create a new column in the
table as integer or bigint—not as serial—then set the default value of the
column using the nextval(sequence_name) function as shown in
Example 5-1.

Example 5-1. Using existing sequence for new tables

133

http://bit.ly/1w5Hvgn
http://bit.ly/1yx5TXd
entest

entest

entest

entest

entest

rename the sequence object.

Generate Series Function

PostgreSQL has a nifty function called generate_series not found in other
database products. The function comes in two forms. One is a numeric
version that creates a sequence of integers incremented by some value and
one that creates a sequence of dates or timestamps incremented by some time
interval. What makes generate_series so convenient is that it allows you to
effectively mimic a for loop in SQL. Example 5-2 demonstrates the numeric
version. Example 5-13 demonstrates the temporal version.

Example 5-2 uses integers with an optional step parameter.

Example 5-2. generate_series() with stepping of 13
SELECT x FROM generate_series(1,51,13) As x;
x

1
14
27
40

The default step is 1. As demonstrated in Example 5-2, you can pass in an
optional step argument to specify how many steps to skip for each successive
element. The end value will never exceed our prescribed range, so although
our range ends at 51, our last number is 40 because adding another 13 to our
40 busts the upper bound.

Textuals

There are three primitive textual types in PostgreSQL: character (abbreviable
as char), character varying (abbreviable as varchar), and text.

Use char only when the values stored are fixed length, such as postal codes,
phone numbers, and Social Security numbers in the US. If your value is

134

http://bit.ly/1yUbohy

SELECT
 lpad('ab', 4, '0') As ab_lpad,

under the length specified, PostgreSQL automatically adds spaces to the end.
When compared with varchar or text, the right-padding takes up more
superfluous storage, but you get the assurance of an invariable length. There
is absolutely no speed performance benefit of using char over varchar or text
and char will always take up more disk space. Use character varying to store
strings with varying length. When defining varchar columns, you should
specify the maximum length of a varchar. Text is the most generic of the
textual data types. With text, you cannot specify a maximum length.

The max length modifier for varchar is optional. Without it, varchar behaves
almost identically to text. Subtle differences do surface when connecting to
PostgreSQL via drivers. For instance, the ODBC driver cannot sort text
columns. Both varchar and text have a maximum storage of 1G for each
value—that’s a lot! Behind the scenes, any value larger than what can fit in a
record page gets pushed to TOAST.

Some folks advocate abandoning varchar and always using text. Rather than
waste space arguing about it here, read the debate at In Defense of
Varchar(X).

Often, for cross-system compatibility, you want to remove case sensitivity
from your character types. To do this, you need to override comparison
operators that take case into consideration. Overriding operators is easier for
varchar than it is for text. We demonstrate an example in Using MS Access
with PostgreSQL, where we show how to make varchar behave without case
sensitivity and still be able to use an index.

String Functions

Common string manipulations are padding (lpad, rpad), trimming
whitespace (rtrim, ltrim, trim, btrim), extracting substrings (substring),
and concatenating (||). Example 5-3 demonstrates padding, and Example 5-4
demonstrates trimming.

Example 5-3. Using lpad and rpad

135

http://bit.ly/12sdEAM
http://bit.ly/1vwE68w
http://bit.ly/1w5HIQF

SELECT
 a As a_before, trim(a) As a_trim, rtrim(a) As a_rt,
 i As i_before, ltrim(i, '0') As i_lt_0,
 rtrim(i, '0') As i_rt_0, trim(i, '0') As i_t_0

FROM (
SELECT repeat(' ', 4) || i || repeat(' ', 4) As a, '0' || i As i
FROM generate_series(0, 200, 50) As i

) As x;
a_before | a_trim | a_rt | i_before | i_lt_0 | i_rt_0 | i_t_0
---------+--------+------+----------+--------+--------+------
0 | 0 | 0 | 00 | | |
50 | 50 | 50 | 050 | 50 | 05 | 5
100 | 100 | 100 | 0100 | 100 | 01 | 1
150 | 150 | 150 | 0150 | 150 | 015 | 15
200 | 200 | 200 | 0200 | 200 | 02 | 2

A helpful function for aggregating strings is the string_agg function, which
we demonstrate in Examples 3-14 and 5-26.

Splitting Strings into Arrays, Tables, or
Substrings

There are a couple of useful functions in PostgreSQL for tearing strings apart.

The split_part function is useful for extracting an element from a delimited
string, as shown in Example 5-5. Here, we select the second item in a string
of items delimited by periods.

Example 5-5. Getting the nth element of a delimited string

 rpad('ab', 4, '0') As ab_rpad,
 lpad('abcde', 4, '0') As ab_lpad_trunc;
ab_lpad | ab_rpad | ab_lpad_trunc
--------+---------+---------------
00ab | ab00 | abcd

lpad truncates instead of padding if the string is too long.

By default, trim functions remove spaces, but you can pass in an optional
argument indicating other characters to trim.

Example 5-4. Trimming spaces and characters

136

SELECT unnest(string_to_array('abc.123.z45', '.')) As x;
x

abc
123
z45

Regular Expressions and Pattern Matching

PostgreSQL’s regular expression support is downright fantastic. You can
return matches as tables or arrays and choreograph replaces and updates.
Back-referencing and other fairly advanced search patterns are also
supported. In this section, we’ll provide a small sampling. For more
information, see Pattern Matching and String Functions.

Example 5-7 shows you how to format phone numbers stored simply as
contiguous digits.

Example 5-7. Reformat a phone number using back-referencing
SELECT regexp_replace(
'6197306254',
'([0-9]{3})([0-9]{3})([0-9]{4})',
 E'\(\\1\) \\2-\\3'
) As x;
x

(619) 730-6254

The \\1, \\2, etc., refer to elements in our pattern expression. We use a

SELECT split_part('abc.123.z45','.',2) As x;
x

123

The string_to_array function is useful for creating an array of elements
from a delimited string. By combining string_to_array with the unnest
function, you can expand the returned array into a set of rows, as shown in
Example 5-6.

Example 5-6. Converting a delimited string to an array to rows

137

http://bit.ly/1s2nQXB
http://bit.ly/1Iaix2K

SELECT unnest(regexp_matches(
'Cell (619) 852-5083. Work (619)123-4567 , Casa 619-730-6254. Bésame
mucho.',
E'[(]{0,1}[0-9]{3}[)-.]{0,1}[\\s]{0,1}[0-9]{3}[-.]{0,1}[0-9]{4}', 'g')
) As x;
x

(619) 852-5083
(619)123-4567
619-730-6254
(3 rows)

The matching rules for Example 5-8 are:

[(]{0,1}: starts with zero or one open parenthesis.

[0-9]{3}: followed by three digits.

[)-.]{0,1}: followed by zero or one closed parenthesis, hyphen, or
period.

[\\s]+: followed by zero or more spaces.

[0-9]{4}: followed by four digits.

regexp_matches returns a string array consisting of matches of a regular
expression. The last input to our function is the flags parameter. We set
this to g, which stands for global and returns all matches of a regular
expression as separate elements. If you leave out this flags parameter,
then your array will only contain the first match. The flags parameter can
consist of more than one flag. For example, if you have letters in your
regular expression and text and you want to make the check case

backslash (\) to escape the parentheses. The E' construct is PostgreSQL
syntax for denoting that the string to follow should be taken literally.

Suppose some field contains text with embedded phone numbers; Example 5-
8 shows how to extract the phone numbers and turn them into rows all in one
step.

Example 5-8. Return phone numbers in piece of text as separate rows

138

insensitive and global, you would use two flags, gi. In addition to the
global flag, other allowed flags are listed in POSIX EMBEDDED
OPTIONS.

unnest explodes an array into a row set.

TIP

There are many ways to compose the same regular expression. For instance,
\\d is shorthand for [0-9]. But given the few characters you’d save, we prefer
the more descriptive longhand.

If you only care about the first match, you can utilize the substring
function, which will return the first matching value as shown in Example 5-9.

Example 5-9. Return first phone number in piece of text
SELECT substring(
'Cell (619) 852-5083. Work (619)123-4567 , Casa 619-730-6254. Bésame
mucho.'
from E'[(]{0,1}[0-9]{3}[)-.]{0,1}[\\s]{0,1}[0-9]{3}[-.]{0,1}[0-9]{4}')
 As x;

 x

(619) 852-5083

(1 row)

In addition to the wealth of regular expression functions, you can use regular
expressions with the SIMILAR TO (~) operators. The following example
returns all description fields with embedded phone numbers:

SELECT description
FROM mytable
WHERE description ~
E'[(]{0,1}[0-9]{3}[)-.]{0,1}[\\s]{0,1}[0-9]{3}[-.]{0,1}[0-9]{4}';

Temporals

139

http://bit.ly/2kDHYao

Stores the month, day, and year, with no time zone awareness and no
concept of hours, minutes, or seconds.

time (aka time without time zone)

Stores hours, minutes, and seconds with no awareness of time zone or
calendar dates.

timestamp (aka timestamp without time zone)

Stores both calendar dates and time (hours, minutes, seconds) but does
not care about the time zone.

timestamptz (aka timestamp with time zone)

A time zone−aware date and time data type. Internally, timestamptz is
stored in Coordinated Universal Time (UTC), but its display defaults to

PostgreSQL support for temporal data is second to none. In addition to the
usual dates and times types, PostgreSQL supports time zones, enabling the
automatic handling of daylight saving time (DST) conversions by region.
Specialized data types such as interval offer datetime arithmetic.
PostgreSQL also understands infinity and negative infinity, relieving us from
having to create conventions that we’ll surely forget. Range types provide
support for temporal ranges with a slew of companion operators, functions,
and indexes. We cover range types in “Range Types”.

At last count, PostgreSQL has nine temporal data types. Understanding their
distinctions is important in ensuring that you choose the right data type for
the job. All the types except range abide by ANSI SQL standards. Other
leading database products support some, but not all, of these data types.
Oracle has the most varieties of temporal types; SQL Server ranks second;
and MySQL comes in last.

PostgreSQL temporal types vary in a number of ways to handle different
situations. If a type is time zone−aware, the time changes if you change your
server’s time zone. The types are:

date

140

http://bit.ly/126nQPP

the time zone of the server, the service config, the database, the user, or
the session. Yes, you can observe different time zones at different levels.
If you input a timestamp with no time zone and cast it to one with the
time zone, PostgreSQL assumes the default time zone in effect. If you
don’t set your time zone in postgresql.conf, the server’s default takes
effect. This means that if you change your server’s time zone, you’ll see
all the displayed times change after the PostgreSQL server restarts.

timetz (aka time with time zone)

The lesser-used sister of timestamptz. It is time zone−aware but does
not store the date. It always assumes DST of the current date and time.
Some programming languages with no concept of time without date
might map timetz to a timestamp with some arbitrary date such as Unix
Epoch 1970, resulting in year 1970 being assumed.

interval

A duration of time in hours, days, months, minutes, and others. It comes
in handy for datetime arithmetic. For example, if the world is supposed to
end in exactly 666 days from now, all you have to do is add an interval of
666 days to the current time to get the exact moment (and plan
accordingly).

tsrange

Allows you to define opened and closed ranges of timestamp with no
timezone. The type consists of two timestamps and opened/closed range
qualifiers. For example, '[2012-01-01 14:00, 2012-01-01
15:00)'::tsrange defines a period starting at 14:00 but ending before
15:00. Refer to Range Types for details.

tstzrange

Allows you to define opened and closed ranges of timestamp with
timezone.

daterange

141

http://bit.ly/1vXxIXI

Allows you to define opened and closed ranges of dates.

Time Zones: What They Are and Are Not

A common misconception with PostgreSQL time zone−aware data types is
that PostgreSQL records an extra time marker with the datetime value itself.
This is incorrect. If you save 2012-2-14 18:08:00-8 (-8 being the Pacific
offset from UTC), PostgreSQL internally thinks like this:

1. Calculate the UTC time for 2012-02-14 18:08:00-8. This is 2012-02-15
04:08:00-0.

2. Store the value 2012-02-15 04:08:00.

When you call the data back for display, PostgreSQL internally works like
this:

1. Start with the requested time zone, defaulting to the server time zone if
none is requested.

2. Compute the offset for time zone for this UTC time (-5 for
America/New_York).

3. Determine the datetime with the offset (2012-02-15 16:08:00 with a -5
offset becomes 2012-02-15 21:08:00).

4. Display the result (2012-02-15 21:08:00-5).

So PostgreSQL doesn’t store the time zone, but uses it only to convert the
datetime to UTC before storage. After that, the time zone information is
discarded. When PostgreSQL displays datetime, it does so in the default time
zone dictated by the session, user, database, or server, in that order. If you use
time zone−aware data types, you should consider the consequence of a server
move from one time zone to another. Suppose you based a server in New
York City and subsequently restored the database in Los Angeles. All
timestamps with time zone fields could suddenly display in Pacific time. This
is fine as long as you anticipate this behavior.

142

SELECT '2012-03-11 3:10 AM America/Los_Angeles'::timestamptz
- '2012-03-11 1:50 AM America/Los_Angeles'::timestamptz;

gives you 20 minutes, whereas:

Here’s an example of how something can go wrong. Suppose that
McDonald’s had its server on the East Coast and the opening time for stores
is stored as timetz. A new McDonald’s opens up in San Francisco. The new
franchisee phones McDonald’s headquarters to add its store to the master
directory with an opening time of 7 a.m. The data entry dude entered the
information as he is told: 7 a.m. The East Coast PostgreSQL server interprets
this to mean 7 a.m. Eastern, and now early risers in San Francisco are lining
up at the door wondering why they can’t get their McBreakfasts at 4 a.m.
Being hungry is one thing, but we can imagine many situations in which
confusion over a difference of three hours could mean life or death.

Given the pitfalls, why would anyone want to use time zone−aware data
types? First, it does spare you from having to do time zone conversions
manually. For example, if a flight leaves Boston at 8 a.m. and arrives in Los
Angeles at 11 a.m., and your server is in Europe, you don’t want to have to
figure out the offset for each time manually. You could just enter the data
with the Boston and Los Angeles local times. There’s another convincing
reason to use time zone−aware data types: the automatic handling of DST.
With countries deviating more and more from one another in DST schedules,
manually keeping track of DST changes for a globally used database would
require a dedicated programmer who does nothing but keep up-to-date with
the latest DST schedules and map them to geographic enclaves.

Here’s an interesting example: a traveling salesperson catches a flight home
from San Francisco to nearby Oakland. When she boards the plane, the clock
at the terminal reads 2012-03-11 1:50 a.m. When she lands, the clock in the
terminal reads 2012-03-11 3:10 a.m. How long was the flight? The key to the
solution is that the change to DST occurred during the flight—the clocks
sprang forward. With time zone−aware timestamps, you get 20 minutes, to
which is a plausible answer for a short flight across the Bay. We get the
wrong answer if we don’t use time zone−aware timestamps:

143

SELECT '2012-03-11 3:10 AM'::timestamp - '2012-03-11 1:50
AM'::timestamp;

gives you 1 hour and 20 minutes.

Let’s drive the point home with more examples, using a Boston server. For
Example 5-10, I input my time in Los Angeles local time, but because my
server is in Boston, I get a time returned in Boston local time. Note that it
does give me the offset but that is merely display information. The timestamp
is internally stored in UTC.

Example 5-10. Inputting time in one time zone and output in another
SELECT '2012-02-28 10:00 PM America/Los_Angeles'::timestamptz;
2012-02-29 01:00:00-05

In Example 5-11, we are getting back a timestamp without time zone. So the
answer you get when you run this same query will be the same as mine,
regardless of where in the world you are.

Example 5-11. Timestamp with time zone to timestamp at location
SELECT '2012-02-28 10:00 PM America/Los_Angeles'::timestamptz
AT TIME ZONE 'Europe/Paris';
2012-02-29 07:00:00

The query is asking: what time is it in Paris if it’s 2012-02-28 10:00 p.m. in
Los Angeles? Note the absence of the UTC offset in the result. Also, notice
how you can specify a time zone with its official name rather than just an
offset. Visit Wikipedia for a list of official time zone names.

Datetime Operators and Functions

The inclusion of a temporal interval data type greatly eases date and time
arithmetic in PostgreSQL. Without it, we’d have to create another family of
functions or use a nesting of functions as many other databases do. With
intervals, we can add and subtract timestamp data simply by using the
arithmetic operators we’re intimately familiar with. The following examples
demonstrate operators and functions used with date and time data types.

144

http://en.wikipedia.org/wiki/Zoneinfo

The addition operator (+) adds an interval to a timestamp:

SELECT '2012-02-10 11:00 PM'::timestamp + interval '1 hour';

2012-02-11 00:00:00

You can also add intervals:

SELECT '23 hours 20 minutes'::interval + '1 hour'::interval;

24:20:00

The subtraction operator (-) subtracts an interval from a temporal type:

SELECT '2012-02-10 11:00 PM'::timestamptz - interval '1 hour';

2012-02-10 22:00:00-05

OVERLAPS, demonstrated in Example 5-12, returns true if two temporal
ranges overlap. This is an ANSI SQL predicate equivalent to the overlaps
function. OVERLAPS takes four parameters, the first pair constituting one
range and the last pair constituting the other range. An overlap considers the
time periods to be half open, meaning that the start time is included but the
end time is outside the range. This is slightly different behavior from the
common BETWEEN predicate, which considers both start and end to be
included. This quirk won’t make a difference unless one of your ranges is a
fixed point in time (a period for which start and end are identical). Watch out
for this if you’re an avid user of the OVERLAPS function.

Example 5-12. OVERLAPS for timestamp and date
SELECT

('2012-10-25 10:00 AM'::timestamp, '2012-10-25 2:00
PM'::timestamp)

OVERLAPS
('2012-10-25 11:00 AM'::timestamp,'2012-10-26 2:00

PM'::timestamp) AS x,
('2012-10-25'::date,'2012-10-26'::date)

145

OVERLAPS
('2012-10-26'::date,'2012-10-27'::date) As y;

x |y
---+---
t |f

In addition to operators and predicates, PostgreSQL comes with functions
supporting temporal types. A full listing can be found at Datetime Functions
and Operators. We’ll demonstrate a sampling here.

Once again, we start with the versatile generate_series function. You can
use this function with temporal types and interval steps.

As you can see in Example 5-13, we can express dates in our local datetime
format or the more global ISO yyyy-mm-dd format. PostgreSQL
automatically interprets differing input formats. To be safe, we tend to stick
with entering dates in ISO, because date formats vary from culture to culture,
server to server, or even database to database.

Example 5-13. Generate time series using generate_series()
SELECT (dt - interval '1 day')::date As eom
FROM generate_series('2/1/2012', '6/30/2012', interval '1 month') As dt;
eom

2012-01-31
2012-02-29
2012-03-31
2012-04-30
2012-05-31

Another popular activity is to extract or format parts of a datetime value.
Here, the functions date_part and to_char fit the bill. Example 5-14 also
drives home the behavior of DST for a time zone−aware data type. We
intentionally chose a period that crosses a daylight saving switchover in
US/East. Because the clock springs forward at 2 a.m., the final row of the
table reflects the new time.

Example 5-14. Extracting elements of a datetime value
SELECT dt, date_part('hour',dt) As hr, to_char(dt,'HH12:MI AM') As mn
FROM

146

http://bit.ly/1A0Wju9
http://bit.ly/15SXGCd

generate_series(
'2012-03-11 12:30 AM',
'2012-03-11 3:00 AM',
interval '15 minutes'

) As dt;
dt | hr | mn
-----------------------+----+----------
2012-03-11 00:30:00-05 | 0 | 12:30 AM
2012-03-11 00:45:00-05 | 0 | 12:45 AM
2012-03-11 01:00:00-05 | 1 | 01:00 AM
2012-03-11 01:15:00-05 | 1 | 01:15 AM
2012-03-11 01:30:00-05 | 1 | 01:30 AM
2012-03-11 01:45:00-05 | 1 | 01:45 AM
2012-03-11 03:00:00-04 | 3 | 03:00 AM

By default, generate_series assumes timestamptz if you don’t explicitly
cast values to timestamp.

Arrays

Arrays play an important role in PostgreSQL. They are particularly useful in
building aggregate functions, forming IN and ANY clauses, and holding
intermediary values for morphing to other data types. In PostgreSQL, every
data type has a companion array type. If you define your own data type,
PostgreSQL creates a corresponding array type in the background for you.
For example, integer has an integer array type integer[], character has a
character array type character[], and so forth. We’ll show you some useful
functions to construct arrays short of typing them in manually. We will then
point out some handy functions for array manipulations. You can get the
complete listing of array functions and operators in the Official Manual:
Array Functions and Operators.

Array Constructors

The most rudimentary way to create an array is to type the elements:

SELECT ARRAY[2001, 2002, 2003] As yrs;

147

http://www.postgresql.org/docs/current/interactive/functions-array.html

If the elements of your array can be extracted from a query, you can use the
more sophisticated constructor function, array():

SELECT array(
SELECT DISTINCT date_part('year', log_ts)
FROM logs
ORDER BY date_part('year', log_ts)
);

Although the array function has to be used with a query returning a single
column, you can specify a composite type as the output, thereby achieving
multicolumn results. We demonstrate this in “Custom and Composite Data
Types”.

You can cast a string representation of an array to an array with syntax of the
form:

SELECT '{Alex,Sonia}'::text[] As name, '{46,43}'::smallint[] As age;

name | age
-------------+--------
{Alex,Sonia} | {46,43}

You can convert delimited strings to an array with the string_to_array
function, as demonstrated in Example 5-15.

Example 5-15. Converting a delimited string to an array
SELECT string_to_array('CA.MA.TX', '.') As estados;
estados

{CA,MA,TX}
(1 row)

array_agg is an aggregate function that can take a set of any data type and
convert it to an array, as demonstrated in Example 5-16.

Example 5-16. Using array_agg
SELECT array_agg(log_ts ORDER BY log_ts) As x
FROM logs

148

SELECT array_agg(f.t)
 FROM (VALUES ('{Alex,Sonia}'::text[]),
 ('{46,43}'::text[])) As f(t);

array_agg

{{Alex,Sonia},{46,43}}
(1 row)

In order to aggregate arrays, they must be of the same data type and the same
dimension. To force that in Example 5-17, we cast the ages to text. We also
have the same number of items in the arrays being aggregated: two people
and two ages. Arrays with the same number of elements are called balanced
arrays.

Unnesting Arrays to Rows

A common function used with arrays is unnest, which allows you to expand
the elements of an array into a set of rows, as demonstrated in Example 5-18.

Example 5-18. Expanding arrays with unnest
SELECT unnest('{XOX,OXO,XOX}'::char(3)[]) As tic_tac_toe;
tic_tac_toe

XOX
OXO

WHERE log_ts BETWEEN '2011-01-01'::timestamptz AND '2011-01-
15'::timestamptz;
x
--
{'2011-01-01', '2011-01-13', '2011-01-14'}

PostgreSQL 9.5 introduced array_agg function support for arrays. In prior
versions if you wanted to aggregate rows of arrays with array_agg, you’d get
an error. array_agg support for arrays makes it much easier to build
multidimensional arrays from one-dimensional arrays, as shown in
Example 5-17.

Example 5-17. Creating multidimensional arrays from one-dimensional
arrays

149

SELECT
unnest('{three,blind,mice}'::text[]) As t,
unnest('{1,2,3}'::smallint[]) As i;
t |i
------+-
three |1
blind |2
mice |3

If you remove an element of one array so that you don’t have an equal
number of elements in both, you get the result shown in Example 5-20.

Example 5-20. Unnesting unbalanced arrays
SELECT
unnest('{blind,mouse}'::varchar[]) AS v,
unnest('{1,2,3}'::smallint[]) AS i;
v |i
------+-
blind |1
mouse |2
blind |3
mouse |1
blind |2
mouse |3

Version 9.4 introduced a multiargument unnest function that puts in null
placeholders where the arrays are not balanced. The main drawback with the
new unnest is that it can appear only in the FROM clause. Example 5-21
revisits our unbalanced arrays using the version 9.4 construct.

Example 5-21. Unnesting unbalanced arrays with multiargument unnest
SELECT * FROM unnest('{blind,mouse}'::text[], '{1,2,3}'::int[]) AS

XOX

Although you can add multiple unnests to a single SELECT, if the number of
resultant rows from each array is not balanced, you may get some head-
scratching results.

A balanced unnest, as shown in Example 5-19, yields three rows.

Example 5-19. Unnesting balanced arrays

150

SELECT fact_subcats[1:2] || fact_subcats[3:4] FROM
census.lu_fact_types;

You can also add additional elements to an existing array as follows:

SELECT '{1,2,3}'::integer[] || 4 || 5;

The result is {1,2,3,4,5}.

Referencing Elements in an Array

Elements in arrays are most commonly referenced using the index of the
element. PostgreSQL array indexes start at 1. If you try to access an element
above the upper bound, you won’t get an error—only NULL will be returned.
The next example grabs the first and last element of our array column:

SELECT
 fact_subcats[1] AS primero,

 fact_subcats[array_upper(fact_subcats, 1)] As segundo
FROM census.lu_fact_types;

f(t,i);
t | i
-------+---
blind | 1
mouse | 2
<NULL> | 3

Array Slicing and Splicing

PostgreSQL also supports array slicing using the start:end syntax. It
returns another array that is a subarray of the original. For example, to return
new arrays that just contain elements 2 through 4 of each original array, type:

SELECT fact_subcats[2:4] FROM census.lu_fact_types;

To glue two arrays together end to end, use the concatenation operator ||:

151

SELECT fact_subcats
FROM census.lu_fact_types
WHERE fact_subcats && '{OCCUPANCY STATUS,For rent}'::varchar[];
fact_subcats

{S01,"OCCUPANCY STATUS","Total housing units"...}
{S02,"OCCUPANCY STATUS","Total housing units"...}
{S03,"OCCUPANCY STATUS","Total housing units"...}
{S10,"VACANCY STATUS","Vacant housing units","For rent"...}
(4 rows)

The equality operator (=) returns true only if elements in all the arrays are
equal and in the same order. If you don’t care about order of elements, and
just need to know whether all the elements in one array appear as a subset of
the other array, use the containment operators (@> , <@). Example 5-23
demonstrates the difference between the contains (@>) and contained by (@<)
operators.

We used the array_upper function to get the upper bound of the array. The
second required parameter of the function indicates the dimension. In our
case, our array is one-dimensional, but PostgreSQL does support
multidimensional arrays.

Array Containment Checks

PostgreSQL has several operators for working with array data. We already
saw the concatenation operator (||) for combining multiple arrays into one or
adding an element to an array in “Array Slicing and Splicing”. Arrays also
support the following comparison operators: =, <>, <, >, @>, <@, and &&. These
operators require both sides of the operator to be arrays of the same array data
type. If you have a GiST or GIN index on your array column, the comparison
operators can utilize them.

The overlap operator (&&) returns true if two arrays have any elements in
common. Example 5-22 will list all records in our table where the
fact_subcats contains elements OCCUPANCY STATUS or For rent.

Example 5-22. Array overlaps operator

152

Example 5-23. Array containment operators
SELECT '{1,2,3}'::int[] @> '{3,2}'::int[] AS contains;
contains

t
(1 row)
SELECT '{1,2,3}'::int[] <@ '{3,2}'::int[] AS contained_by;
contained_by

f
(1 row)

Range Types

Range data types represent data with a beginning and an end. PostgreSQL
also rolled out many operators and functions to identify overlapping ranges,
check to see whether a value falls inside the range, and combine adjacent
smaller ranges into larger ranges. Prior to range types, we had to kludge our
own functions. These often were clumsy and slow, and didn’t always produce
the expected results. We’ve been so happy with ranges that we’ve converted
all of our temporal tables to use them where possible. We hope you share our
joy.

Range types replace the need to use two separate fields to represent ranges.
Suppose we want all integers between −2 and 2, but not including 2. The
range representation would be [-2,2). The square bracket indicates a range
that is closed on that end, whereas a parenthesis indicates a range that is open
on that end. Thus, [-2,2) includes exactly four integers: −2, −1, 0, 1.
Similarly:

The range (-2,2] includes four integers: -1, 0, 1, 2.

The range (-2,2) includes three integers: -1, 0, 1.

The range [-2,2] includes five integers: -2, -1, 0, 1, 2.

Discrete Versus Continuous Ranges

153

http://www.postgresql.org/docs/current/interactive/rangetypes.html

A range of integers. Integer ranges are discrete and subject to
canonicalization.

numrange

A continuous range of decimals, floating-point numbers, or double-
precision numbers.

daterange

A discrete date range of calendar dates without time zone awareness.

tsrange, tstzrange

A continuous date and time (timestamp) range allowing for fractional
seconds. tstrange is not time zone−aware; tstzrange is time zone

PostgreSQL makes a distinction between discrete and continuous ranges. A
range of integers or dates is discrete because you can enumerate each value
within the range. Think of dots on a number line. A range of numerics or
timestamps is continuous, because an infinite number of values lies between
the end points.

A discrete range has multiple representations. Our earlier example of [-2,2)
can be represented in the following ways and still include the same number of
values in the range: [-2,1], (-3,1], (-3,2), [-2,2). Of these four
representations, the one with [) is considered the canonical form. There’s
nothing magical about closed-open ranges except that if everyone agrees to
using that representation for discrete ranges, we can easily compare among
many ranges without having to worry first about converting open to close or
vice versa. PostgreSQL canonicalizes all discrete ranges, for both storage and
display. So if you enter a date range as (2014-1-5,2014-2-1], PostgreSQL
rewrites it as [2014-01-06,2014-02-02).

Built-in Range Types

PostgreSQL comes with six built-in range types for numbers and datetimes:

int4range, int8range

154

SELECT '[2013-01-05,2013-08-13]'::daterange;
SELECT '(2013-01-05,2013-08-13]'::daterange;
SELECT '(0,)'::int8range;
SELECT '(2013-01-05 10:00,2013-08-13 14:00]'::tsrange;
[2013-01-05,2013-08-14)
[2013-01-06,2013-08-14)
[1,)
("2013-01-05 10:00:00","2013-08-13 14:00:00"]

A date range between 2013-01-05 and 2013-08-13 inclusive. Note the
canonicalization on the upper bound.
A date range greater than 2013-01-05 and less than or equal to 2013-08-
13. Notice the canonicalization.
All integers greater than 0. Note the canonicalization.
A timestamp greater than 2013-01-05 10:00 AM and less than or equal to
2013-08-13 2 PM.

−aware.

For number-like ranges, if either the start point or the end point is left blank,
PostgreSQL replaces it with a null. For practicality, you can interpret the null
to represent either -infinity on the left or infinity on the right. In
actuality, you’re bound by the smallest and largest values for the particular
data type. So a int4range of (,) would be [-2147483648,2147483647).

For temporal ranges, -infinity and infinity are valid upper and lower
bounds.

In addition to the built-in range types, you can create your own range types.
When you do, you can set the range to be either discrete or continuous.

Defining Ranges

A range, regardless of type, is always comprised of two elements of the same
type with the bounding condition denoted by brackets or parentheses, as
shown in Example 5-24.

Example 5-24. Defining ranges with casts

155

TIP

Datetimes in PostgreSQL can take on the values of -infinity and infinity.
For uniformity and in keeping with convention, we suggest that you always use
[for the former and) for the latter as in [-infinity, infinity).

Ranges can also be defined using range constructor functions, which go by
the same name as the range and can take two or three arguments. Here’s an
example:

SELECT daterange('2013-01-05','infinity','[]');

The third argument denotes the bound. If omitted, the open-close [)
convention is used by default. We suggest that you always include the third
element for clarity.

Defining Tables with Ranges

Temporal ranges are popular. Suppose you have an employment table that
stores employment history. Instead of creating separate columns for start and
end dates, you can design a table as shown in Example 5-25. In the example,
we added an index to the period column to speed up queries using our range
column.

Example 5-25. Table with date range
CREATE TABLE employment (id serial PRIMARY KEY, employee varchar(20),
period daterange);
CREATE INDEX ix_employment_period ON employment USING gist (period);
INSERT INTO employment (employee,period)
VALUES

('Alex','[2012-04-24, infinity)'::daterange),
('Sonia','[2011-04-24, 2012-06-01)'::daterange),
('Leo','[2012-06-20, 2013-04-20)'::daterange),
('Regina','[2012-06-20, 2013-04-20)'::daterange);

Add a GiST index on the range field.

156

SELECT
e1.employee,
string_agg(DISTINCT e2.employee, ', ' ORDER BY e2.employee) As

colleagues
FROM employment As e1 INNER JOIN employment As e2
ON e1.period && e2.period
WHERE e1.employee <> e2.employee
GROUP BY e1.employee;
employee | colleagues
---------+-------------------
Alex | Leo, Regina, Sonia
Leo | Alex, Regina
Regina | Alex, Leo
Sonia | Alex

Contains and contained in operators

In the contains operator (@>), the first argument is a range and the second is a
value. If the second is within the first, the contains operator returns true.
Example 5-27 demonstrates its use.

Example 5-27. Who is currently working?
SELECT employee FROM employment WHERE period @> CURRENT_DATE GROUP BY
employee;
employee

Range Operators

Two range operators tend to be used most often: overlap (&&) and contains
(@>). Those are the ones we’ll cover. To see the full catalog of range
operators, go to Range Operators.

Overlap operator

As the name suggests, the overlap operator && returns true if two ranges
have any values in common. Example 5-26 demonstrates this operator and
puts to use the string_agg function for aggregating the list of employees
into a single text field.

Example 5-26. Who worked with whom?

157

http://bit.ly/1s2o6WE

CREATE TABLE persons (id serial PRIMARY KEY, person json);

Example 5-28 inserts JSON data. PostgreSQL automatically validates the
input to make sure what you are adding is valid JSON. Remember that you
can’t store invalid JSON in a JSON column, nor can you cast invalid JSON to
a JSON data type.

Example 5-28. Populating a JSON field
INSERT INTO persons (person)
VALUES (

 '{
 "name":"Sonia",
 "spouse":
 {

 "name":"Alex",
 "parents":

Alex

The reverse of the contains operator is the contained operator (<@), whose
first argument is the value and the second the range.

JSON

PostgreSQL provides JSON (JavaScript Object Notation) and many support
functions. JSON has become the most popular data interchange format for
web applications. Version 9.3 significantly beefed up JSON support with new
functions for extracting, editing, and casting to other data types. Version 9.4
introduced the JSONB data type, a binary form of JSON that can also take
advantage of indexes. Version 9.5 introduced more functions for jsonb,
including functions for setting elements in a jsonb object. Version 9.6
introduced the jsonb_insert function for inserting elements into an existing
jsonb array or adding a new key value.

Inserting JSON Data

To create a table to store JSON, define a column as a json type:

158

http://json.org

 {
 "father":"Rafael",
 "mother":"Ofelia"

 },
 "phones":
[

 {
 "type":"work",
 "number":"619-722-6719"

 },
 {

 "type":"cell",
 "number":"619-852-5083"

 }
]

 },
 "children":
[

 {
 "name":"Brandon",
 "gender":"M"

 },
 {

 "name":"Azaleah",
 "girl":true,
 "phones": []

 }
]

 }'
);

Querying JSON

The easiest way to traverse the hierarchy of a JSON object is by using pointer
symbols. Example 5-29 shows some common usage.

Example 5-29. Querying the JSON field
SELECT person->'name' FROM persons;
SELECT person->'spouse'->'parents'->'father' FROM persons;

You can also write the query using a path array as in the following example:

159

SELECT person#>array['spouse','parents','father'] FROM persons;

Notice that you must use the #> pointer symbol if what comes after is a path
array.

To penetrate JSON arrays, specify the array index. JSON arrays is zero-
indexed, unlike PostgreSQL arrays, whose indexes start at 1.

SELECT person->'children'->0->'name' FROM persons;

And the path array equivalent:

SELECT person#>array['children','0','name'] FROM persons;

All queries in the prior examples return the value as JSON primitives
(numbers, strings, booleans). To return the text representation, add another
greater-than sign as in the following examples:

SELECT person->'spouse'->'parents'->>'father' FROM persons;
SELECT person#>>array['children','0','name'] FROM persons;

If you are chaining the -> operator, only the very last one can be a ->>
operator.

The json_array_elements function takes a JSON array and returns each
element of the array as a separate row as in Example 5-30.

Example 5-30. json_array_elements to expand JSON array
SELECT json_array_elements(person->'children')->>'name' As name FROM
persons;
name

Brandon
Azaleah
(2 rows)

NOTE

160

We strongly encourage you to use pointer symbols when drilling down into a
JSON object. The syntax is more succinct and you can use the same operators
as for JSONB (which we’ll cover shortly). PostgreSQL does offer functional
equivalents if you need them: json_extract_path is a variadic function
(functions with an unlimited number of arguments). The first argument is
always the JSON object you are trying to navigate; subsequent parameters are
the key value for each tier of the hierarchy. The equivalent to ->> and #>> is
json_extract_path_text.

Outputting JSON

In addition to querying JSON data, you can convert other data to JSON. In
these next examples, we’ll demonstrate the use of JSON built-in functions to
create JSON objects.

Example 5-31 demonstrates the use of row_to_json to convert a subset of
columns in each record from the table we created and loaded in Example 5-
28.

Example 5-31. Converting rows to individual JSON objects (requires version
9.3 or later)
SELECT row_to_json(f) As x
FROM (
 SELECT id, json_array_elements(person->'children')->>'name' As cname

FROM persons
) As f;

 x

{"id":1,"cname":"Brandon"}
{"id":1,"cname":"Azaleah"}
(2 rows)

To output each row in our persons table as JSON:

SELECT row_to_json(f) As jsoned_row FROM persons As f;

The use of a row as an output field in a query is a feature unique to
PostgreSQL. It’s handy for creating complex JSON objects. We describe it

161

jsonb is internally stored as a binary object and does not maintain the
formatting of the original JSON text as the json data type does. Spaces
aren’t preserved, numbers can appear slightly different, and attributes
become sorted. For example, a number input as e-5 would be converted to
its decimal representation.

jsonb does not allow duplicate keys and silently picks one, whereas the
json type preserves duplicates. This is demonstrated in Michael Paquier’s
article “Manipulating jsonb data by abusing of key uniqueness”.

jsonb columns can be directly indexed using the GIN index method
(covered in “Indexes”), whereas json requires a functional index to
extract key elements.

To demonstrate these concepts, we’ll create another persons table, replacing
the json column with a jsonb:

CREATE TABLE persons_b (id serial PRIMARY KEY, person jsonb);

To insert data into our new table, we would repeat Example 5-28.

So far, working with JSON and binary JSON has been the same. Differences
appear when you query. To make the binary JSON readable, PostgreSQL

further in “Composite Types in Queries”, and Example 7-20 demonstrates the
use of array_agg and array_to_json to output a set of rows as a single
JSON object. In version 9.3 we have at our disposal the json_agg function.
We demonstrate its use in Example 7-21.

Binary JSON: jsonb

New in PostgreSQL 9.4 is the jsonb data type. It is handled through the same
operators as those for the json type, and similarly named functions, plus
several additional ones. jsonb performance is much better than json
performance because jsonb doesn’t need to be reparsed during operations.
There are a couple of key differences between the jsonb and json data types:

162

http://bit.ly/2v1E1wV

converts it to a canonical text representation, as shown in Example 5-32.

Example 5-32. jsonb versus json output
SELECT person As b FROM persons_b WHERE id = 1;
SELECT person As j FROM persons WHERE id = 1;
b

{"name": "Sonia",
"spouse": {"name": "Alex", "phones": [{"type": "work", "number": "619-
722-6719"},
{"type": "cell", "number": "619-852-5083"}],
"parents": {"father": "Rafael", "mother": "Ofelia"}},
"children": [{"name": "Brandon", "gender": "M"},
 {"girl": true, "name": "Azaleah", "phones": []}]}
(1 row)

 j

 {

 "name":"Sonia",
 "spouse":
 {

 "name":"Alex",
 "parents":
 {

 "father":"Rafael",
 "mother":"Ofelia"

 },
 "phones":
[

 {
 "type":"work",
 "number":"619-722-6719"+

 },
 {

 "type":"cell",
 "number":"619-852-5083"+

 }
]

 },
 "children":
 [

163

 {
 "name":"Brandon",
 "gender":"M"

 },
 {

 "name":"Azaleah",
 "girl":true,
 "phones": []

 }
]

 }
(1 row)

jsonb reformats input and removes whitespace. Also, the order of
attributes is not maintained from the insert.
json maintains input whitespace and the order of attributes.

jsonb has similarly named functions as json, plus some additional ones. So,
for example, the json family of functions such as json_extract_path_text
and json_each are matched in jsonb by jsonb_extract_path_text,
jsonb_each, etc. However, the equivalent operators are the same, so you will
find that the examples in “Querying JSON” work largely the same without
change for the jsonb type—just replace the table name and
json_array_elements with jsonb_array_elements.

In addition to the operators supported by json, jsonb has additional
comparator operators for equality (=), contains (@>), contained (<@), key
exists (?), any of array of keys exists (?|), and all of array of keys exists (?&).

So, for example, to list all people that have a child named Brandon, use the
contains operator as demonstrated in Example 5-33.

Example 5-33. jsonb contains operator
 SELECT person->>'name' As name
FROM persons_b
WHERE person @> '{"children":[{"name":"Brandon"}]}';
name

Sonia

164

These additional operators provide very fast checks when you complement
them with a GIN index on the jsonb column:

CREATE INDEX ix_persons_jb_person_gin ON persons_b USING gin (person);

We don’t have enough records in our puny table for the index to kick in, but
for more rows, you’d see that Example 5-33 utilizes the index.

Editing JSONB data

PostgreSQL 9.5 introduced native jsonb concatenation (||) and subtraction
operators (-, #-) as well as companion functions for setting data. These
operators do not exist for the json datatype. To be able to accomplish these
tasks in prior versions, you’d have to lean on “Writing PL/V8,
PL/CoffeeScript, and PL/LiveScript Functions” to do the work.

The concatenation operator can be used to add and replace attributes of a
jsonb object. In Example 5-34 we add an address attribute to the Gomez
family and use the RETURNING construct covered in “Returning Affected
Records to the User” to return the updated value. The new value has an
address attribute.

Example 5-34. Using JSONB || to add address
UPDATE persons_b
SET person = person || '{"address": "Somewhere in San Diego, CA"}'::jsonb
WHERE person @> '{"name":"Sonia"}'
RETURNING person;
profile

{"name": "Sonia", ... "address": "Somewhere in San Diego, CA",
"children": ...}
(1 row)
UPDATE 1

Because JSONB requires that keys be unique, if you try to add a duplicate
key, the original value will be replaced instead. So to update with a new
address, we would repeat the exercise in Example 5-34, but replacing

165

UPDATE persons_b
SET person = person - 'address'
WHERE person @> '{"name":"Sonia"}';

The simple - operator works for first-level elements, but what if you wanted
to remove an attribute from a particular member? This is when you’d use the
#- operator. #- takes an array of text values that denotes the path of the
element you want to remove. In Example 5-36 we remove the girl
designator of Azaleah.

Example 5-36. Using JSONB #- to remove nested element
UPDATE persons_b
SET person = person #- '{children,1,girl}'::text[]
WHERE person @> '{"name":"Sonia"}'
RETURNING person->'children'->1;
{"name": "Azaleah", "phones": []}

When removing elements from an array, you need to denote the index.
Because JavaScript indexes start at 0, to remove an element from the second
child, we use 1 instead of 2. If we wanted to remove Azaleah entirely, we
would have used '{children,1}'::text[].

To add a gender attribute, or replace one that was previously set, we can use
the jsonb_set function as shown in Example 5-37.

Example 5-37. Using the jsonb_set function to change a nested value
UPDATE persons_b
SET person = jsonb_set(person,'{children,1,gender}'::text[],'"F"'::jsonb,
true)
WHERE person @> '{"name":"Sonia"}';

jsonb_set takes three arguments of form jsonb_set(jsonb_to_update,
text_array_path, new_jsonb_value,allow_creation). If you set

Somewhere in San Diego, CA with something else.

If we decided we no longer wanted an address, we could use the - as shown
in Example 5-35.

Example 5-35. Using JSONB - to remove an element

166

CREATE TABLE families (id serial PRIMARY KEY, profile xml);
INSERT INTO families(profile)
VALUES (

 '<family name="Gomez">
 <member><relation>padre</relation><name>Alex</name></member>
 <member><relation>madre</relation><name>Sonia</name></member>
 <member><relation>hijo</relation><name>Brandon</name></member>
 <member><relation>hija</relation><name>Azaleah</name></member>

allow_creation to false when the property did not already exist, the
statement will return an error.

XML

The XML data type, similar to JSON, is “controversial” in a relational
database because it violates the principles of normalization. Nonetheless, all
of the high-end relational database products (IBM DB2, Oracle, SQL Server)
support XML. PostgreSQL also jumped on the bandwagon and offers plenty
of functions to boot. (We’ve authored many articles on working with XML in
PostgreSQL.) PostgreSQL comes packaged with functions for generating,
manipulating, and parsing XML data. These are outlined in XML Functions.
Unlike the jsonb type, there is currently no direct index support for it. So
you need to use functional indexes to index subparts, similar to what you can
do with the plain json type.

Inserting XML Data

When you create a column of the xml data type, PostgreSQL automatically
ensures that only valid XML values populate the rows. This is what
distinguishes an XML column from just any text column. However, the XML
is not validated against any Document Type Definition (DTD) or XML
Schema Definition (XSD), even if it is specified in the XML document. To
freshen up on what constitutes valid XML, Example 5-38 shows you how to
append XML data to a table by declaring a column as xml and inserting into
it as usual.

Example 5-38. Populate an XML field

167

http://bit.ly/1yx7ixc
http://bit.ly/1BlrAvL

</family>');

Each XML value could have a different XML structure. To enforce
uniformity, you can add a check constraint, covered in “Check Constraints”,
to the XML column. Example 5-39 ensures that all family has at least one
relation element. The '/family/member/relation' is XPath syntax, a
basic way to refer to elements and other parts of XML.

Example 5-39. Ensure that all records have at least one member relation
ALTER TABLE families ADD CONSTRAINT chk_has_relation
CHECK (xpath_exists('/family/member/relation', profile));

If we then try to insert something like:

INSERT INTO families (profile) VALUES ('<family name="HsuObe">
</family>');

we will get this error: ERROR: new row for relation "families"
violates check constraint "chk_has_relation".

For more involved checks that require checking against DTD or XSD, you’ll
need to resort to writing functions and using those in the check constraint,
because PostgreSQL doesn’t have built-in functions to handle those kinds of
checks.

Querying XML Data

To query XML, the xpath function is really useful. The first argument is an
XPath query, and the second is an xml object. The output is an array of XML
elements that satisfies the XPath query. Example 5-40 combines xpath with
unnest to return all the family members. unnest unravels the array into a
row set. We then cast the XML fragment to text.

Example 5-40. Query XML field
SELECT ordinality AS id, family,

 (xpath('/member/relation/text()', f))[1]::text As relation,
 (xpath('/member/name/text()', f))[1]::text As mem_name

FROM (

168

 SELECT
 (xpath('/family/@name', profile))[1]::text As family,
f.ordinality, f.f
FROM families, unnest(xpath('/family/member', profile)) WITH

ORDINALITY AS f
) x;
 id | family | relation | mem_name
----+--------+----------+----------
 1 | Gomez | padre | Alex
 2 | Gomez | madre | Sonia
 3 | Gomez | hijo | Brandon

 4 | Gomez | hija | Azaleah
(4 rows)

Get the text element in the relation and name tags of each member
element. We need to use array subscripting because xpath always returns
an array, even if only one element is returned.
Get the name attribute from family root. For this we use
@attribute_name.
Break the result of the SELECT into the subelements <member>,
<relation>, </relation>, <name>, </name>, and </member> tags. The
slash is a way of getting at subtag elements. For example,
xpath('/family/member', 'profile') will return an array of all
members in each family that is defined in a profile. The @ sign is used to
select attributes of an element. So, for example, family/@name returns
the name attribute of a family. By default, xpath always returns an
element, including the tag part. The text() forces a return of just the text
body of an element.

New in version 10 is the ANSI-SQL standard XMLTABLE construct.
XMLTABLE converts text of XML into individual rows and columns based
on some defined transformation. We’ll repeat Example 5-40 using
XMLTABLE.

Example 5-41. Query XML using XMLTABLE
SELECT xt.*
 FROM families,

 XMLTABLE ('/family/member' PASSING profile

169

 COLUMNS
 id FOR ORDINALITY ,
 family text PATH '../@name' ,
 relation text NOT NULL ,
 member_name text PATH 'name' NOT NULL

) AS xt;
 id | family | relation | mem_name
----+--------+----------+----------
 1 | Gomez | padre | Alex
 2 | Gomez | madre | Sonia
 3 | Gomez | hijo | Brandon

 4 | Gomez | hija | Azaleah
(4 rows)

The first part is an XML path element that defines the row. The word
PASSING is followed by the table column to parse out rows. This column
has to be of type xml. We use the families.profile column of our
families table.
The COLUMNS component should define the list of columns to be
parsed out of the xml.
Similar to WITH ORDINALITY in conjunction with set-returning
functions, you can use FOR ORDINALITY to assign numeric order to
each record.
You can use ../ to move up a level above the base of the row. In this case
we use ./@name to get the family name, which is one level above
family/member. The @ is used to denote this is an attribute (something of
form name='a value') and not an element.
If a path element matches the name of your defined column, you don’t
need to specify the PATH. In this case, because /family/member/relation
matches our column name relation, we can skip the PATH clause.

Full Text Search

I’m sure you’ve seen websites where you can search by typing in keywords.
An ecommerce site will bring up a list of matching products; a film site will
bring up a list of matching movies; a knowledgebase site will bring up
matching questions and answers, etc.

170

To search textual data by keywords, you have at your disposal the like or
ilike (case insensitive) commands. You can also avail yourself of powerful
regular expression and Soundex searches. But both of these methods stop
short of offering natural language−based match conditions. For example, if
you’re looking for LGBT movies and type that abbreviation into your search,
you’re going to miss movies described as lesbian, gay, bisexual, or
transgendered. If you type in the search term lots of steamy sex scenes, you
may end up with nothing unless the description very closely matches what
you typed in.

FTS is a suite of tools that adds a modicum of “intelligence” to your searches.
Though it’s far from being able to read your mind, it can find words that are
close in meaning, rather than spelling. FTS is packaged into PostgreSQL,
with no additional installation necessary.

At the core of FTS is an FTS configuration. The configuration codifies the
rules under which match will occur by referring to one or more dictionaries.
For instance, if your dictionary contains entries that equate the words love,
romance, infatuation, lust, then any search by one of the words will find
matches with any of the words. Dictionaries may also equate words with the
same stem. For example, love, loving, and loved share a common stem. A
dictionary could equate all principle parts of a verb; for example, eat, eats,
ate, and eaten could be considered the same.

A dictionary can also list stop words. These are usually parts of speech that
add little to the meaning. Articles, conjunctions, prepositions, and pronouns
such as a, the, on, and that often make up the list of stop words.

Beyond matching synonyms and pruning stop words, FTS can be used to
rank searches. FTS can utilize the proximity of words to each other and the
frequency of terms in text to rank search results. For example, if you’re
interested in viewing movies where sex is depicted with smoking, you could
search for the two words sex and smoking, but also specify that the two words
must be two words apart and rank higher if they appear in the title. And so
they smoked after sex would hit, whereas sex took place in a hotel, which has
a foyer for smoking guests would miss. FTS can apply unequal weights to the

171

cfgname

simple
danish
dutch
english
finnish
french
german
hungarian
italian
norwegian
portuguese
romanian
russian
spanish
swedish
turkish
(16 rows)

If you need to create your own configurations or dictionaries, refer to
PostgreSQL Manual: Full Text Search Configuration and PostgreSQL
Manual: Full Text Search Dictionaries.

You’re not limited to built-in FTS configurations. You can create your own.

places where the sought-after words appear in the text. For instance, if you
have a movie where the word sex appears in either the title or the byline, you
could make this movie rank higher than movies where sex is only in the
description.

FTS Configurations

Most PostgreSQL distributions come packaged with over 10 FTS
configurations. All these are installed in the pg_catalog schema.

To see the listing of installed FTS configurations, run the query SELECT
cfgname FROM pg_ts_config;. Or use the \dF command in psql. A typical
list follows:

172

https://www.postgresql.org/docs/current/static/textsearch-configuration.html
https://www.postgresql.org/docs/current/static/textsearch-dictionaries.html

1. Download everything in the folder.

2. Copy en_us.affix and en_us.dict to your PostgreSQL installation directory
share/tsearch_data.

3. Copy the hunspell_en_us--*.sql and hunspell_en_us.control files to your
PostgreSQL installation directory share/extension folder.

Next, run:

CREATE EXTENSION hunspell_en_us SCHEMA pg_catalog;

From psql, if you now run Example 5-42, you’ll see details of the hunspell
configuration and dictionary we just installed.

Example 5-42. FTS configuration hunspell
\dF+ english_hunspell;
Text search configuration "pg_catalog.english_hunspell"
Parser: "pg_catalog.default"
Token | Dictionaries
----------------+-------------------------------
asciihword | english_hunspell,english_stem
asciiword | english_hunspell,english_stem
email | simple
file | simple
float | simple

But before you do, you may wish to see what other users have already created
that may suit your needs. If your text is medical-related, you may be able to
find a configuration with dictionaries chock full of specialized anatomy
terms. If your text is in Spanish, find a configuration that tailors to your
particular dialect of Spanish.

Once you locate a configuration that you’d like added to your arsenal,
installation is quite simple and usually doesn’t require additional compilation.
We demonstrate by installing the popular hunspell configuration.

Start by downloading hunspell configurations from hunspell_dicts. You’ll be
greeted by hunspell for many different languages. We’ll go with
hunspell_en_us:

173

https://github.com/postgrespro/hunspell_dicts

host | simple
hword | english_hunspell,english_stem
hword_asciipart | english_hunspell,english_stem
hword_numpart | simple
hword_part | english_hunspell,english_stem
int | simple
numhword | simple
numword | simple
sfloat | simple
uint | simple
url | simple
url_path | simple
version | simple
word | english_hunspell,english_stem

WARNING

Keep in mind that not all FTS configurations install in the same way. Read the
instructions.

Contrast that output to the built-in English configuration in Example 5-43,
which gives you the dictionaries used by the English configuration.

Example 5-43. FTS English configuration
\dF+ english;
Text search configuration "pg_catalog.english"
Parser: "pg_catalog.default"
Token | Dictionaries
----------------+--------------
asciihword | english_stem
asciiword | english_stem
email | simple
file | simple
float | simple
host | simple
hword | english_stem
hword_asciipart | english_stem
hword_numpart | simple
hword_part | english_stem
int | simple

174

numhword | simple
numword | simple
sfloat | simple
uint | simple
url | simple
url_path | simple
version | simple
word | english_stem

The only difference between the two is that hunspell draws from an
additional dictionary.

Not sure which configuration is the default? Run:

SHOW default_text_search_config;

To replace the default with another, run:

ALTER DATABASE postgresql_book
SET default_text_search_config = 'pg_catalog.english';

This replacement takes place at the database level, but as with most
PostgreSQL configuration settings, you can make the change at the server,
user, or session levels.

TSVectors

A text column must be vectorized before FTS can search against it. The
resultant vector column is a tsvector data type. To create a tsvector from text,
you must specify the FTS configuration to use. The vectorization reduces the
original text to a set of word skeletons, referred to as lexemes, by removing
stop words. For each lexeme, the TSVector records where in the original text
it appears. The more frequently a lexeme appears, the higher the weight. Each
lexeme therefore is imbued with at least one position, much like a vector in
the physical sense.

Use the to_tsvector function to vectorize a blob of text. This function will
resort to the default FTS configuration unless you specify another.

175

SELECT
c.name,
CASE

 WHEN c.name ='default' THEN to_tsvector(f.t)
 ELSE to_tsvector(c.name::regconfig,f.t)

 END As vect
FROM (

 SELECT 'Just dancing in the rain. I like to dance.'::text) As f(t), (
 VALUES ('default'),('english'),('english_hunspell'),('simple')

) As c(name);
name | vect
-----------------+---

default | 'danc':2,9 'like':7 'rain':5
english | 'danc':2,9 'like':7 'rain':5
english_hunspell | 'dance':2,9 'dancing':2 'like':7 'rain':5
simple | 'dance':9 'dancing':2 'i':6 'in':3 'just':1 'like':7
'rain':5 'the':4 'to':8
(4 rows)

Example 5-44 demonstrates how four different FTS configurations result in
different vectors. Note how the English and Hunspell configurations remove
all stop words, such as just and to. English and Hunspell also convert words
to their normalized form as dictated by their dictionaries, so dancing becomes
danc and dance, respectively. The simple configuration has no concept of
stemming and stop words.

The to_tsvector function returns where each lexeme appears in the text. So,
for example, 'danc':2,9 means that dancing and dance appear as the second
and the ninth words.

To incorporate FTS into your database, add a tsvector column to your table.
You then either schedule the tsvector column to be updated regularly, or add
a trigger to the table so that whenever relevant fields update, the tsvector field
recomputes.

Example 5-44 shows how TSVectors differ depending on which FTS
configuration was used in their construction.

Example 5-44. TSVector derived from different FTS configurations

176

For our examples, we gathered fictitious movie data. Load the tables from
psql using the file.sql script as follows:

\encoding utf8;
\i film.sql

Next, we add and compute a tsvector column to the film table as shown in
Example 5-45.

Example 5-45. Add tsvector column and populate with weights
ALTER TABLE film ADD COLUMN fts tsvector;
UPDATE film
SET fts =

 setweight(to_tsvector(COALESCE(title,'')),'A') ||
 setweight(to_tsvector(COALESCE(description,'')),'B');

CREATE INDEX ix_film_fts_gin ON film USING gin (fts);

Example 5-45 vectorizes the title and description columns and stores the
vector in a newly created tsvector column. To speed up searches, we add a
GIN index on the tsvector column. GIN is a lossless index. You can also add
a GiST index on a vector column. GiST is lossy and slower to search but
builds quicker and takes up less disk space. We explore indexes in more
detail in “Indexes”.

By populating the fts column, we’ve introduced two new constructs, the
setweight function and the concatenation operator (||), to tsvector.

To distinguish the relative importance of different lexemes, you could assign
a weight to each. The weights must be A, B, C, or D, with A ranking highest
in importance. In Example 5-45, we assigned A to lexemes culled from the
title and B to lexemes from the description. If our search term matches a
lexeme from the title, we deem the match to be more relevant than a match
from the description of the movie.

TSVectors can be formed from other tsvectors using the concatenation (||)
operator. We used it here to combine the title and description into a single
tsvector. This way when we search, we have to contend with only a single
column.

177

https://www.postgresql.org/ftp/projects/pgFoundry/dbsamples/pagila/pagila/

CREATE TRIGGER trig_tsv_film_iu
BEFORE INSERT OR UPDATE OF title, description ON film FOR EACH ROW
EXECUTE PROCEDURE tsvector_update_trigger(fts,'pg_catalog.english',
title,description);

Example 5-46 reacts to an insert or update in the title or description by
revectoring the fts column. One shortcoming though: tsvector_update_trigger
does not support weighting.

TSQueries

A FTS, or any text search for that matter, has two components: the searched
text and the search terms. For FTS to work, both must be vectorized. We
have already seen how to vectorize the searched text to create tsvector
columns. We now show you how to vectorize the search terms.

FTS refers to vectorized search terms as tsqueries, and PostgreSQL offers
several functions that will convert plain-text search terms to tsqueries:
to_tsquery, plainto_tsquery, and phraseto_tsquery. The latter is a new
function in 9.6 and takes the ordering of words in the search term into
consideration.

tsqueries are normally created on the fly rather than being stored in a table.
However, if you are building a system where people can save their queries
and run them, you could define a tsquery column in a table.

Example 5-47 shows the output using the to_tsquery functions against two
configurations: the default English configuration and the Hunspell
configuration.

Example 5-47. TSQuery constructions: to_query
SELECT to_tsquery('business & analytics');

Should data change in one of the basis columns forming the tsvector, you
must re-vectorize. To avoid having to manually run to_tsvector every time
data changes, create a trigger that responds to updates. In the trigger, use the
handy tsvector_update_trigger function as shown in Example 5-46.

Example 5-46. Trigger to automatically update tsvector

178

WARNING

You should use the same FTS configuration as the one you used to build the
tsvector.

A slight variant of to_tsquery is plain_totsquery. This function automatically
inserts the and operator between words for you, saving you a few key clicks.
See Example 5-48.

Example 5-48. TSQuery constructions: plainto_query
SELECT plainto_tsquery('business analytics');
plainto_tsquery

'busi' & 'analyt'

to_tsquery and plainto_tsquery look only at words, not their sequence. So
business analytics and analytics business produce the same tsquery. This is a
shortcoming because you’re limited to searching by single words only.
Version 9.6 addressed this with the function phraseto_tsquery. In Example 5-
49, the phraseto_tsquery vectorizes the words, inserting the distance operator
between the words. This means that the searched text must contain the words
business and analytics in that order, upgrading a word search to a phrase

to_tsquery

'busi' & 'analyt'
SELECT to_tsquery('english_hunspell','business & analytics');
to_tsquery

('business' | 'busy') & 'analyt'

Both examples are akin to searching for text containing the words business
and analytics. The and operator (&) means that both words must appear in the
searched text. The or operator (|) means one or both of the words must
appear in the searched text. If the configuration in use finds multiple stems
for a word, they are stitched together by the or operator.

179

search.

Example 5-49. TSQuery constructions: phraseto_query
SELECT phraseto_tsquery('business analytics');
phraseto_tsquery

'busi' <-> 'analyt'
SELECT phraseto_tsquery('english_hunspell','business analytics');
phraseto_tsquery

'business' <-> 'analyt' | 'busy' <-> 'analyt'

You can also cast text to tsquery without using any functions, as in
'business & analytics'::tsquery. However, with casts, words are not
replaced with lexemes and are taken literally.

TSQueries can be combined using the or operator (||) or the and operator
(&&). The expression tsquery1 || tsquery2 means matching text must
satisfy either tsquery1 or tsquery2. The expression tsquery1 && tsquery2
means matching text must satisfy both tsquery1 and tsquery2.

Examples of each are shown in Example 5-50.

Example 5-50. Combining tsqueries
SELECT plainto_tsquery('business analyst') || phraseto_tsquery('data
scientist');
tsquery

'busi' & 'analyst' | 'data' <-> 'scientist'
SELECT plainto_tsquery('business analyst') && phraseto_tsquery('data
scientist');
tsquery
--
'busi' & 'analyst' & ('data' <-> 'scientist')

tsqueries and tsvectors have additional operators for doing things like
determining if one is a subset of another, and several other functions. All this
is detailed in PostgreSQL Manual: Text Search Functions and Operators.

Using Full Text Search

180

https://www.postgresql.org/docs/current/static/functions-textsearch.html

SELECT left(title,50) As title, left(description,50) as description
FROM film
WHERE fts @@ to_tsquery('hunter & (scientist | chef)') AND title > '';
title | description
-----------------------+---
--
ALASKA PHANTOM | A Fanciful Saga of a Hunter And a Pastry Chef
who
CAUSE DATE | A Taut Tale of a Explorer And a Pastry Chef who
mu
CINCINATTI WHISPERER | A Brilliant Saga of a Pastry Chef And a Hunter
who
COMMANDMENTS EXPRESS | A Fanciful Saga of a Student And a Mad Scientist
w
DAUGHTER MADIGAN | A Beautiful Tale of a Hunter And a Mad Scientist
w
GOLDFINGER SENSIBILITY | A Insightful Drama of a Mad Scientist And a
Hunter
HATE HANDICAP | A Intrepid Reflection of a Mad Scientist And a
Pio
INSIDER ARIZONA | A Astounding Saga of a Mad Scientist And a
Hunter
WORDS HUNTER | A Action-Packed Reflection of a Composer And a
Mad
(9 rows)

Example 5-51 finds all films with a title or description containing the word
hunter and either the word scientist, or the word chef, or both.

If you are running PostgreSQL 9.6, you can specify the proximity and order
of words. See Example 5-52.

Example 5-52. FTS with order and proximity
SELECT left(title,50) As title, left(description,50) as description
FROM film
WHERE fts @@ to_tsquery('hunter <4> (scientist | chef)') AND title > '';
title | description

We have created a tsvector from our text; we have created a tsquery from our
search terms. Now, we can perform an FTS. We do so by using the @@
operator. Example 5-51 demonstrates it.

Example 5-51. FTS in action

181

SELECT title, left(description,50) As description,
 ts_rank(fts,ts)::numeric(10,3) AS r

FROM film, to_tsquery('english','love & (wait | indian | mad)') AS ts
WHERE fts @@ ts AND title > ''
ORDER BY r DESC;
title | description | r
--------------+--+-----
-
INDIAN LOVE | A Insightful Saga of a Mad Scientist And a Mad Sci |
0.999
LAWRENCE LOVE | A Fanciful Yarn of a Database Administrator And a |
0.252
(2 rows)

Let’s suppose we wish to retrieve a field only if the search terms appear in
the title. For this situation we would assign 1 to the title field and 0 to all
others. Example 5-54 repeats Example 5-53, passing in an array of weights.

-----------------+---
ALASKA PHANTOM | A Fanciful Saga of a Hunter And a Pastry Chef who
DAUGHTER MADIGAN | A Beautiful Tale of a Hunter And a Mad Scientist w
(2 rows)

Example 5-52 requires that the word hunter precede scientist or chef by
exactly four words.

Ranking Results

FTS includes functions for ranking results. These functions are ts_rank and
ts_rank_cd. ts_rank considers only the frequency of terms and weights, while
ts_rank_cd (cd stands for coverage density) also considers the position of the
search term within the searched text. If lexemes are found closer together, the
result ranks higher. ts_rank_cd is meaningful only if you have position
markers in your tsvector; otherwise, it returns zero. The frequency with
which a search term appears also depends on position markers. So the ts_rank
function will consider only weights if positional markers are missing. By
default, ts_rank and ts_rank_cd apply the weights 0.1, 0.2, 0.4, and 1.0,
respectively, for D, C, B, and A. Example 5-53 follows the default order.

Example 5-53. Ranking search results

182

Example 5-54. Ranking search results using custom weights
SELECT

 left(title,40) As title,
 ts_rank('{0,0,0,1}'::numeric[],fts,ts)::numeric(10,3) AS r,
 ts_rank_cd('{0,0,0,1}'::numeric[],fts,ts)::numeric(10,3) As rcd

FROM film, to_tsquery('english', 'love & (wait | indian | mad)') AS ts
WHERE fts @@ ts AND title > ''
ORDER BY r DESC;
title | r | rcd
--------------+-------+------
INDIAN LOVE | 0.991 | 1.000
LAWRENCE LOVE | 0.000 | 0.000
(2 rows)

Notice how in Example 5-54 the second entry has a ranking of zero because
the title does not contain all the words to satisfy the tsquery.

NOTE

If performance is a concern, you should explicitly declare the FTS
configuration in queries instead of allowing the default behavior. As noted in
Some FTS Tricks by Oleg Bartunov, you can achieve twice the speed by using
to_tsquery('english','social & (science | scientist)') in lieu of
to_tsquery('social & (science | scientist)').

Full Text Stripping

By default, vectorization adds markers (location of the lexemes within the
vector) and optionally weights (A, B, C, D). If your searches care only
whether a particular term can be found, regardless of where it is in the text,
how frequently it occurs, or its prominence, you can declutter your vectors
using the strip function. This saves disk space and gains some speed.
Example 5-55 compares what an unstripped versus stripped vector looks like.

Example 5-55. Unstripped versus stripped vector
SELECT fts
FROM film

183

http://obartunov.livejournal.com/189806.html

SELECT to_tsvector(person)
 FROM persons WHERE id=1;
 to_tsvector

 '-5083':19 '-6719':13 '-722':12 '-852':18 '619':11,17 'alex':3
'azaleah':25
 'brandon':21 'cell':15 'm':23 'ofelia':7 'rafael':5 'sonia':1 'work':9
(1 row)

To apply this function to the jsonb table persons_b, swap out the persons
table for persons_b. Similar to the to_tsvector for text, these functions also
have a variant that takes the FTS configuration to use as their first argument.
To make best use of these functions, create a tsvector column in your table

WHERE film_id = 1;
'academi':1A 'battl':15B 'canadian':20B 'dinosaur':2A 'drama':5B
'epic':4B
'feminist':8B 'mad':11B 'must':14B 'rocki':21B 'scientist':12B
'teacher':17B
SELECT strip(fts)
FROM film
WHERE film_id = 1;
'academi' 'battl' 'canadian' 'dinosaur' 'drama' 'epic' 'feminist' 'mad'
'must' 'rocki' 'scientist' 'teacher'

Keep in mind that although a stripped vector is faster to search and takes up
less disk space, many operators and functions cannot be used in conjunction
with them. For instance, because a stripped vector has no markers, distance
operators cannot be used.

Full Text Support for JSON and JSONB

New in version 10 are ts_headline and to_tsvector, which take as input
json and jsonb data. The functions work just like the text ones, except they
consider only the values of json/jsonb data and not the keys or json markup.
Example 5-56 applies the function to the json person column of the table we
created in Example 5-28.

Example 5-56. Converting json/jsonb to tsvector

184

SELECT ts_headline(person->'spouse'->'parents', 'rafael'::tsquery)
FROM persons_b WHERE id=1;
{"father": "Rafael", "mother": "Ofelia"}
(1 row)

Note the bold HTML tags around the matching value.

Custom and Composite Data Types

This section demonstrates how to define and use a custom type. The
composite (aka record, row) object type is often used to build an object that
is then cast to a custom type, or as a return type for functions needing to
return multiple columns.

All Tables Are Custom Data Types

PostgreSQL automatically creates custom types for all tables. For all intents
and purposes, you can use custom types just as you would any other built-in
type. So we could conceivably create a table that has a column type that is
another table’s custom type, and we can go even further and make an array of
that type. We demonstrate this “turducken” in Example 5-58.

Example 5-58. Turducken
CREATE TABLE chickens (id integer PRIMARY KEY);
CREATE TABLE ducks (id integer PRIMARY KEY, chickens chickens[]);
CREATE TABLE turkeys (id integer PRIMARY KEY, ducks ducks[]);

INSERT INTO ducks VALUES (1, ARRAY[ROW(1)::chickens, ROW(1)::chickens]);
INSERT INTO turkeys VALUES (1, array(SELECT d FROM ducks d));

We create an instance of a chicken without adding it to the chicken table

and populate the field using either a trigger or update as needed.

Also available now for json and jsonb is the ts_headline function, which
tags as HTML all matching text in the json document. Example 5-57 flags all
references to Rafael in the document.

Example 5-57. Tag matching words

185

SELECT * FROM turkeys;

output

id | ducks
---+----------------------
1 | {"(1,\"{(1),(1)}\")"}

We can also replace subelements of our turducken. This next example
replaces our second chicken in our first turkey with a different chicken:

UPDATE turkeys SET ducks[1].chickens[2] = ROW(3)::chickens
WHERE id = 1 RETURNING *;

output

id | ducks
---+----------------------
 1 | {"(1,\"{(1),(3)}\")"}

We used the RETURNING clause as discussed in “Returning Affected Records
to the User” to output the changed record.

Any complex row or column, regardless of how complex, can be converted to
a json or jsonb column like so:

SELECT id, to_jsonb(ducks) AS ducks_jsonb
FROM turkeys;

id | ducks_jsonb
---+--
 1 | [{"id": 1, "chickens": [{"id": 1}, {"id": 3}]}]
(1 row)

itself; hence we’re able to repeat id with impunity. We take our array of two
chickens, stuff them into one duck, and add it to the ducks table. We take the
duck we added and stuff it into the turkeys table.

Finally, let’s see what we have in our turkey:

186

CREATE TABLE circuits (circuit_id serial PRIMARY KEY, ac_volt
complex_number);

We can then query our table with statements such as:

SELECT circuit_id, (ac_volt).* FROM circuits;

or an equivalent:

SELECT circuit_id, (ac_volt).r, (ac_volt).i FROM circuits;

WARNING

Puzzled by the parentheses surrounding ac_volt? If you leave them out,
PostgreSQL will raise the error missing FROM-clause entry for table
“ac_volt” because it assumes ac_volt without parentheses refers to a table.

PostgreSQL internally keeps track of object dependencies. The
ducks.chickens column is dependent on the chickens table. The
turkeys.ducks column is dependent on the ducks table. You won’t be able
to drop the chickens table without specifying CASCADE or first dropping the
ducks.chickens column. If you do a CASCADE, the ducks.chickens column
will be gone, and without warning, your turkeys will have no chickens in
their ducks.

Building Custom Data Types

Although you can easily create composite types just by creating a table, at
some point, you’ll probably want to build your own from scratch. For
example, let’s build a complex number data type with the following
statement:

CREATE TYPE complex_number AS (r double precision, i double precision);

We can then use this complex number as a column type:

187

Composites and NULLs

NULL is a confusing concept in the ANSI SQL Standard, primarily because
NULL != NULL. When working with NULLs, instead, you need to use IS
NULL, IS NOT NULL, or NOT (somevalue IS NULL). With noncomposite
types, something IS NULL is generally the antithesis to something IS NOT
NULL. This is not the case with composites, however.

PostgreSQL abides by the ANSI SQL standard specs when dealing with
NULLs. The specs require that in order for a composite to be IS NULL, all
elements of the composite must be NULL. Here is where confusion can enter.
In order for a composite to be considered IS NOT NULL, every element in
the composite must return true for IS NOT NULL.

Building Operators and Functions for Custom
Types

After you build a custom type such as a complex number, naturally you’ll
want to create functions and operators for it. We’ll demonstrate building a +
operator for the complex_number we created. For more details about building
functions, see Chapter 8. As stated earlier, an operator is a symbol alias for a
function that takes one or two arguments. You can find more details about
what symbols and sets of symbols are allowed in CREATE OPERATOR.

In addition to being an alias, an operator contains optimization information
that can be used by the query optimizer to decide how indexes should be
used, how best to navigate the data, and which operator expressions are
equivalent. More details about these optimizations and how each can help the
optimizer are in Operator Optimization.

The first step to creating an operator is to create a function, as shown in
Example 5-59.

Example 5-59. Add function for complex number
CREATE OR REPLACE FUNCTION add(complex_number, complex_number)

188

http://www.postgresql.org/docs/current/interactive/sql-createoperator.html
http://bit.ly/1vXzPek

RETURNS complex_number AS
$$

 SELECT
 ((COALESCE(($1).r,0) + COALESCE(($2).r,0)),
 (COALESCE(($1).i,0) + COALESCE(($2).i,0)))::complex_number;

$$
language sql;

The next step is to create a symbolic operator to wrap the function, as in
Example 5-60.

Example 5-60. + operator for complex number
CREATE OPERATOR + (

 PROCEDURE = add,
 LEFTARG = complex_number,
 RIGHTARG = complex_number,
 COMMUTATOR = +

);

We can then test our new + operator:

SELECT (1,2)::complex_number + (3,-10)::complex_number;

which outputs (4,-8).

Although we didn’t demonstrate it here, you can overload functions and
operators to take different types as inputs. For example, you can create an
add function and companion + operator that takes a complex_number and an
integer.

The ability to build custom types and operators pushes PostgreSQL to the
boundary of a full-fledged development environment, bringing us ever closer
to our utopia where everything is table-driven.

189

Tables constitute the building blocks of relational database storage.
Structuring tables so that they form meaningful relationships is the key to
relational database design. In PostgreSQL, constraints enforce relationships
between tables. To distinguish a table from just a heap of data, we establish
indexes. Much like the indexes you find at the end of books or the tenant list
at the entrances to grand office buildings, indexes point to locations in the
table so you don’t have to scour the table from top to bottom every time
you’re looking for something.

In this chapter, we introduce syntax for creating tables and adding rows. We
then move on to constraints to ensure that your data doesn’t get out of line.
Finally, we show you how to add indexes to your tables to expedite searches.

Indexing a table is as much a programming task as it is an experimental
endeavor. A misappropriated index is worse than useless. Not all indexes are
created equal. Algorithmists have devised different kinds of indexes for
different data types and different query types, all in an attempt to scrape that
last morsel of speed from a query.

Tables

In addition to ordinary data tables, PostgreSQL offers several kinds of tables
that are rather uncommon: temporary, unlogged, inherited, typed, and foreign
(covered in Chapter 10).

Basic Table Creation

Example 6-1 shows the table creation syntax, which is similar to what you’ll
find in all SQL databases.

Chapter 6. Tables,
Constraints, and Indexes

190

Example 6-1. Basic table creation
CREATE TABLE logs (
log_id serial PRIMARY KEY,
user_name varchar(50),
description text,
log_ts timestamp with time zone NOT NULL DEFAULT current_timestamp
);
CREATE INDEX idx_logs_log_ts ON logs USING btree (log_ts);

serial is the data type used to represent an incrementing autonumber.
Adding a serial column automatically adds an accompanying sequence
object to the database schema. A serial data type is always an integer with
the default value set to the next value of the sequence object. Each table
usually has just one serial column, which often serves as the primary key.
For very large tables, you should opt for the related bigserial.
varchar is shorthand for “character varying,” a variable-length string
similar to what you will find in other databases. You don’t need to
specify a maximum length; if you don’t, varchar will be almost identical
to the text data type.
text is a string of indeterminate length. It’s never followed by a length
restriction.
timestamp with time zone (shorthand timestamptz) is a date and
time data type, always stored in UTC. It displays date and time in the
server’s own time zone unless you tell it to otherwise. See “Time Zones:
What They Are and Are Not” for a more thorough discussion.

New in version 10 is the IDENTITY qualifier for a column. IDENTITY is a
more standard-compliant way of generating an autonumber for a table
column.

You could turn the existing log_id column to the new IDENTITY construct
using a sequence object:

DROP SEQUENCE logs_log_id_seq CASCADE;
ALTER TABLE logs

 ALTER COLUMN log_id ADD GENERATED BY DEFAULT AS IDENTITY;

191

If we already had data in the table, we’d need to prevent the numbering from
starting at 1 with a statement like this:

ALTER TABLE logs
 ALTER COLUMN log_id RESTART WITH 2000;

If we were starting with a new table, we’d create it as shown in Example 6-2
using IDENTITY instead of serial.

Example 6-2. Basic table creation using IDENTITY
CREATE TABLE logs (
log_id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
user_name varchar(50),
description text,
log_ts timestamp with time zone NOT NULL DEFAULT current_timestamp
);

The structure of Example 6-2 is much the same as what we saw in
Example 6-1 but more verbose.

Under what cases would you prefer to use IDENTITY over serial? The main
benefit of the IDENTITY construct is that an identity is always tied to a
specific table, so incrementing and resetting the value is managed with the
table. A serial, on the other hand, creates a sequence object that may or may
not be reused by other tables and needs to be dropped manually when it’s no
longer needed. If you wanted to reset the number of a serial, you’d need to
modify the related SEQUENCE object, which means knowing what the name
of it is.

The serial approach is still useful if you need to reuse an autonumber
generator across many tables. In that case, though, you’d create the sequence
object separate from the table and set the table column default to the next
value of the sequence. Internally, the new IDENTITY construct behaves
much the same by creating behind the scenes a sequence object, but
preventing that sequence object from being edited directly.

Inherited Tables

192

CREATE TABLE logs_2011 (PRIMARY KEY (log_id)) INHERITS (logs);
CREATE INDEX idx_logs_2011_log_ts ON logs_2011 USING btree(log_ts);
ALTER TABLE logs_2011

 ADD CONSTRAINT chk_y2011
 CHECK (
 log_ts >= '2011-1-1'::timestamptz AND log_ts < '2012-1-

1'::timestamptz
);

We define a check constraint to limit data to the year 2011. Having the
check constraint in place allows the query planner to skip inherited tables
that do not satisfy the query condition.

A new feature in PostgreSQL 9.5 is inheritance between local and foreign
tables: each type can now inherit from the other. This is all in pursuit of
making sharding easier.

Partitioned Tables

New in version 10 are partitioned tables. Partitioned tables are much like
inherited tables in that they allow partitioning of data across many tables and
the planner can conditionally skip tables that don’t satisfy a query condition.

PostgreSQL stands alone as the only database product offering inherited
tables. When you specify that a table (the child table) inherits from another
table (the parent table), PostgreSQL creates the child table with its own
columns plus all the columns of the parent table. PostgreSQL will remember
this parent-child relationship so that any subsequent structural changes to the
parent automatically propagate to its children. Parent-child table design is
perfect for partitioning your data. When you query the parent table,
PostgreSQL automatically includes all rows in the child tables. Not every
trait of the parent passes down to the child. Notably, primary key constraints,
foreign key constraints, uniqueness constraints, and indexes are never
inherited. Check constraints are inherited, but children can have their own
check constraints in addition to the ones they inherit from their parents (see
Example 6-3).

Example 6-3. Inherited table creation

193

A partitioned table group is created using the declarative partition syntax
CREATE TABLE .. PARTITION BY RANGE ...

When partitions are used, data can be inserted into the core table and is
rerouted automatically to the matching partition. This is not the case with
inherited tables, where you either need to insert data into the child table, or
have a trigger that reroutes data to the child tables.

All tables in a partition must have the same exact columns. This is unlike
inherited tables, where child tables are allowed to have additional columns
that are not in the parent tables.

Each partitioned table belongs to a single partitioned group. Internally that
means it can have only one parent table. Inherited tables, on other hand,
can inherit columns from multiple tables.

The parent of the partition can’t have primary keys, unique keys, or
indexes, although the child partitions can. This is different from the
inheritance tables, where the parent and each child can have a primary key
that needs only to be unique within the table, not necessarily across all the
inherited children.

Unlike inherited tables, the parent partitioned table can’t have any rows of
its own. All inserts are redirected to a matching child partition and when
no matching child partition is available, an error is thrown.

We’ll re-create the logs table from Example 6-1 as a partitioned table and
create the child tables using partition syntax instead of the inheritance shown
in Example 6-3.

First, we’ll drop our existing logs table and all its child tables:

Internally they are implemented much the same, but use a different DDL
syntax.

Although partitioned tables replace the functionality of inherited tables in
many cases, they are not complete replacements. Here are some key
differences between inherited tables and partition tables:

194

DROP TABLE IF EXISTS logs CASCADE;

For a partitioned table set, the parent table must be noted as a partitioned
table through the PARTITION BY syntax, as shown in Example 6-4. Contrast
that to Example 6-1 where we just start with a regular table definition. Also
note that we do not define a primary key because primary keys are not
supported for the parent partition table.

Example 6-4. Basic table creation for partition
CREATE TABLE logs (
log_id int GENERATED BY DEFAULT AS IDENTITY,
user_name varchar(50),
description text,
log_ts timestamp with time zone NOT NULL DEFAULT current_timestamp
) PARTITION BY RANGE (log_ts);

Similar to inheritance, we create child tables of the partition, except instead
of using CHECK constraints to denote allowed data in the child table, we use
the FOR VALUES FROM DDL construct. We repeat the exercise from
Example 6-3 in Example 6-5 but using the FOR VALUES FROM construct
instead of INHERITS.

Example 6-5. Create a child partition
CREATE TABLE logs_2011 PARTITION OF logs
FOR VALUES FROM ('2011-1-1') TO ('2012-1-1') ;
CREATE INDEX idx_logs_2011_log_ts ON logs_2011 USING btree(log_ts);
ALTER TABLE logs_2011 ADD CONSTRAINT pk_logs_2011 PRIMARY KEY (log_id)
;

Define the new table as a partition of logs.
Define the set of data to be stored in this partition. Child partitions must
not have overlapping ranges, so if you try to define a range that overlaps
an existing range, the CREATE TABLE command will fail with an error.
Child partitions can have indexes and primary keys. As with inheritance,
the primary key is not enforced across the whole partition set of tables.

Now if we were to insert data as follows:

INSERT INTO logs(user_name, description) VALUES ('regina',

195

'Sleeping');

We’d get an error such as:

ERROR: no partition of relation "logs" found for row
DETAIL: Partition key of the failing row contains
(log_ts) = (2017-05-25 02:58:28.057101-04).

If we then create a partition table for the current year:

CREATE TABLE logs_gt_2011 PARTITION OF logs
FOR VALUES FROM ('2012-1-1') TO (unbounded);

Unlike Example 6-5, we opted to use the PARTITION range keyword
unbounded, which allows our partition to be used for future dates.

Repeating our insert now, we can see by SELECT * FROM logs_gt_2011;
that our data got rerouted to the new partition.

In the real world, you would need to create indexes and primary keys on the
new child for query efficiency.

Similar to the way inheritance works, when we query the parent table, all
partitions that don’t satisfy the date filter are skipped, as shown in
Example 6-6.

Example 6-6. Planner skipping other partitions
EXPLAIN ANALYZE SELECT * FROM logs WHERE log_ts > '2017-05-01';
Append (cost=0.00..15.25 rows=140 width=162)
(actual time=0.008..0.009 rows=1 loops=1)
 -> Seq Scan on logs_gt_2011 (cost=0.00..15.25 rows=140 width=162)
(actual time=0.008..0.008 rows=1 loops=1)

 Filter: (log_ts > '2017-05-01 00:00:00-04'::timestamp with time
zone)
Planning time: 0.152 ms
Execution time: 0.022 ms

If you are using the PSQL packaged with PostgreSQL 10, you will get more
information when you use the describe table command that details the

196

partition ranges of the parent table:

\d+ logs

Table "public.logs"
:
Partition key: RANGE (log_ts)
Partitions: logs_2011
 FOR VALUES FROM ('2011-01-01 00:00:00-05') TO ('2012-01-01

00:00:00-05'),
 logs_gt_2011
 FOR VALUES FROM ('2012-01-01 00:00:00-05') TO (UNBOUNDED)

Unlogged Tables

For ephemeral data that could be rebuilt in the event of a disk failure or
doesn’t need to be restored after a crash, you might prefer having more speed
than redundancy. The UNLOGGED modifier allows you to create unlogged
tables, as shown in Example 6-7. These tables will not be part of any write-
ahead logs. The big advantage of an unlogged table is that writing data to it is
much faster than to a logged table—10−15 times faster in our experience.

If you accidentally unplug the power cord on the server and then turn the
power back on, the rollback process will wipe clean all data in unlogged
tables. Another consequence of making a table unlogged is that its data won’t
be able to participate in PostgreSQL replication. A pg_dump option also
allows you to skip the backing up of unlogged data.

Example 6-7. Unlogged table creation
CREATE UNLOGGED TABLE web_sessions (

session_id text PRIMARY KEY,
add_ts timestamptz,
upd_ts timestamptz,
session_state xml);

There are a few other sacrifices you have to make with unlogged tables. Prior
to PostgreSQL 9.3, unlogged tables didn’t support GiST indexes (see
“PostgreSQL Stock Indexes”), which are commonly used for more advanced

197

ALTER TABLE some_table SET LOGGED;

TYPE OF

PostgreSQL automatically creates a corresponding composite data type in the
background whenever you create a new table. The reverse is not true. But you
can use a composite data type as a template for creating tables. We’ll
demonstrate this by first creating a type with the definition:

CREATE TYPE basic_user AS (user_name varchar(50), pwd varchar(10));

We can then create a table with rows that are instances of this type as shown
in Example 6-8.

Example 6-8. Using TYPE to define a new table structure
CREATE TABLE super_users OF basic_user (CONSTRAINT pk_su PRIMARY KEY
(user_name));

After creating tables from data types, you can’t alter the columns of the table.
Instead, add or remove columns to the composite data type, and PostgreSQL
will automatically propagate the changes to the table structure. Much like
inheritance, the advantage of this approach is that if you have many tables
sharing the same underlying structure and you need to make a universal
alteration, you can do so by simply changing the underlying composite type.

Let’s say we now need to add a phone number to our super_users table
from Example 6-8. All we have to do is execute the following command:

ALTER TYPE basic_user ADD ATTRIBUTE phone varchar(10) CASCADE;

Normally, you can’t change the definition of a type if tables depend on that

data types such as arrays, ranges, json, full text, and spatial. Unlogged tables
in any version will accommodate the common B-Tree and GIN indexes.

Prior to PostgreSQL 9.5, you couldn’t easily convert an UNLOGGED table
to a logged one. To do so in version 9.5+, enter:

198

WARNING

Names of primary key and unique key constraints must be unique within a
given schema. A good practice is to include the name of the table and column
as part of the name of the key. For the sake of brevity, our examples might not
abide by this practice.

Foreign Key Constraints

PostgreSQL follows the same convention as most databases that support
referential integrity. You can specify cascade update and delete rules to avoid
pesky orphaned records. We show you how to add foreign key constraints in
Example 6-9.

Example 6-9. Building foreign key constraints and covering indexes
SET search_path=census, public;
ALTER TABLE facts ADD CONSTRAINT fk_facts_1 FOREIGN KEY (fact_type_id)
REFERENCES lu_fact_types (fact_type_id) ON UPDATE CASCADE ON DELETE
RESTRICT;

type. The CASCADE modifier overrides this restriction, applying the same
change to all dependent tables.

Constraints

PostgreSQL constraints are the most advanced (and most complex) of any
database we’ve worked with. You can control all facets of how a constraint
handles existing data, all cascade options, how to perform the matching,
which indexes to incorporate, conditions under which the constraint can be
violated, and more. On top of it all, you can pick your own name for each
constraint. For the full treatment, we suggest you review the official
documentation. You’ll find comfort in knowing that using the default settings
usually works out fine. We’ll start off with something familiar to most
relational folks: foreign key, unique, and check constraints. Then we’ll move
on to exclusion constraints.

199

http://bit.ly/1q2fBPG

CREATE INDEX fki_facts_1 ON facts (fact_type_id);

We define a foreign key relationship between our facts and fact_types
tables. This prevents us from introducing fact types into facts tables
unless they are already present in the fact_types lookup table.
We add a cascade rule that automatically updates the fact_type_id in our
facts table should we renumber our fact types. We restrict deletes from
our lookup table so fact types in use cannot be removed. RESTRICT is the
default behavior, but we suggest stating it for clarity.
Unlike for primary key and unique constraints, PostgreSQL doesn’t
automatically create an index for foreign key constraints; you should add
this yourself to speed up queries.

Foreign key constraints are important for data integrity. Newer versions of
PostgreSQL can also use them to improve the planner’s thinking. In version
9.6, the planner was revised to use foreign key relationships to infer
selectivity for join predicates, thus improving many types of queries.

Unique Constraints

Each table can have no more than a single primary key. If you need to
enforce uniqueness on other columns, you must resort to unique constraints
or unique indexes. Adding a unique constraint automatically creates an
associated unique index. Similar to primary keys, unique key constraints can
participate as the foreign key in foreign key constraints, but can have null
values. A unique index without a unique key constraint can also have null
values and in addition can use functions in its definition. The following
example shows how to add a unique key:

ALTER TABLE logs_2011 ADD CONSTRAINT uq UNIQUE (user_name,log_ts);

Often you’ll find yourself needing to ensure uniqueness for only a subset of
your rows. PostgreSQL does not offer conditional unique constraints, but you
can achieve the same effect by using a partial uniqueness index. See “Partial
Indexes”.

200

ALTER TABLE logs ADD CONSTRAINT chk CHECK (user_name =
lower(user_name));

The other noteworthy aspect of check constraints is that unlike primary key,
foreign key, and unique key constraints, they inherit from parent tables.

Exclusion Constraints

Exclusion constraints allow you to incorporate additional operators to enforce
uniqueness that can’t be satisfied by the equality operator. Exclusion
constraints are especially useful in problems involving scheduling.

PostgreSQL 9.2 introduced the range data types that are perfect candidates
for exclusion constraints. You’ll find a fine example of using exclusion
constraints for range data types at Waiting for 9.2 Range Data Types.

Exclusion constraints are generally enforced using GiST indexes, but you can
create compound indexes that incorporate B-Tree as well. Before you do this,
you need to install the btree_gist extension. A classic use of a compound
exclusion constraint is for scheduling resources.

Here’s an example using exclusion constraints. Suppose you have a fixed
number of conference rooms in your office, and groups must book them in
advance. See how we’d prevent double-booking in Example 6-10, and how
we are able to use the overlap operator (&&) for our temporal comparison and

Check Constraints

Check constraints are conditions that must be met for a field or a set of fields
for each row. The query planner takes advantage of check constraints by
skipping tables that don’t meet the check constraints outright. We saw an
example of a check constraint in Example 6-3. That particular example
prevents the planner from having to scan rows failing to satisfy the date range
specified in a query. You can exercise some creativity in your check
constraints, because you can use functions and Boolean expressions to build
complicated matching conditions. For example, the following constraint
requires all usernames in the logs tables to be lowercase:

201

http://bit.ly/1z3emS1

the usual equality operator for the room number.

Example 6-10. Prevent overlapping bookings for the same room
CREATE TABLE schedules(id serial primary key, room int, time_slot
tstzrange);
ALTER TABLE schedules ADD CONSTRAINT ex_schedules
EXCLUDE USING gist (room WITH =, time_slot WITH &&);

Just as with uniqueness constraints, PostgreSQL automatically creates a
corresponding index of the type specified in the constraint declaration.

Arrays are another popular type where EXCLUSION constraints come in
handy. Let’s suppose you have a set of rooms that you need to assign to a
group of people. We’ll call these room “blocks.” For expediency, you decide
to store one record per party, but you want to ensure that two parties are
never given the same room. So you set up a table as follows:

CREATE TABLE room_blocks(block_id integer primary key, rooms int[]);

To ensure that no two blocks have a room in common, you can set up an
exclusion constraint preventing blocks from overlapping (two blocks having
the same room). Exclusion constraints unfortunately work only with GiST
indexes, and because GIST indexes don’t exist for arrays out of the box, you
need to install an additional extension before you can do this, as shown in
Example 6-11.

Example 6-11. Prevent overlapping array blocks
CREATE EXTENSION IF NOT EXISTS intarray;
ALTER TABLE room_blocks
 ADD CONSTRAINT ex_room_blocks_rooms
 EXCLUDE USING gist(rooms WITH &&);

The intarray extension provides GiST index support for integer arrays (int4,
int8). After intarray is installed, you can then use GiST with arrays and create
exclusion constraints on integer arrays.

Indexes

202

WARNING

Index names must be unique within a given schema.

PostgreSQL Stock Indexes

To take full advantage of all that PostgreSQL has to offer, you’ll want to
understand the various types of indexes and situations where they will aid or
harm. Following is a list of stock indexes:

B-Tree

B-Tree is a general-purpose index common in relational databases. You
can usually get by with B-Tree alone if you don’t want to experiment
with additional index types. If PostgreSQL automatically creates an index
for you or you don’t bother specifying the index method, B-Tree will be
chosen. It is currently the only indexing method for primary keys and
unique keys.

BRIN

PostgreSQL comes with a lavish framework for creating and fine-tuning
indexes. The art of PostgreSQL indexing could fill a tome all by itself.
PostgreSQL is packaged with several types of indexes. If you find these
inadequate, you can define new index operators and modifiers to supplement.
If still unsatisfied, you’re free to invent your own index type.

PostgreSQL also allows you to mix and match different index types in the
same table with the expectation that the planner will consider them all. For
instance, one column could use a B-Tree index while an adjacent column
uses a GiST index, with both indexes contributing to speed up the queries. To
delve more into the mechanics of how the planner takes advantage of
indexes, visit Bitmap Index Scan Strategy.

You can create indexes on tables (with the exception of foreign tables) as
well as materialized views.

203

http://bit.ly/1vUs2fU

Block range index (BRIN) is an index type introduced in PostgreSQL 9.4.
It’s designed specifically for very large tables where using an index such
as B-Tree would take up too much space and not fit in memory. The
approach of BRIN is to treat a range of pages as one unit. BRIN indexes
are much smaller than B-Tree and other indexes and faster to build. But
they are slower to use and can’t be used for primary keys or certain other
situations.

GiST

Generalized Search Tree (GiST) is an index optimized for FTS, spatial
data, scientific data, unstructured data, and hierarchical data. Although
you can’t use it to enforce uniqueness, you can create the same effect by
using it in an exclusion constraint.

GiST is a lossy index, in the sense that the index itself will not store the
value of what it’s indexing, but merely a bounding value such as a box for
a polygon. This creates the need for an extra lookup step if you need to
retrieve the value or do a more fine-tuned check.

GIN

Generalized Inverted Index (GIN) is geared toward the built-in full text
search and binary json data type of PostgreSQL. Many other extensions,
such as hstore and pg_trgm, also utilize it. GIN is a descendent of GiST
but without the lossiness. GIN will clone the values in the columns that
are part of the index. If you ever need a query limited to covered
columns, GIN is faster than GiST. However, the extra replication required
by GIN means the index is larger and updating the index is slower than a
comparable GiST index. Also, because each index row is limited to a
certain size, you can’t use GIN to index large objects such as large hstore
documents or text. If there is a possibility you’ll be inserting a 600-page
manual into a field of a table, don’t use GIN to index that column.

You can find a wonderful example of GIN in Waiting for Faster
LIKE/ILIKE. As of version 9.3, you can index regular expressions that
leverage the GIN-based pg_trgm extension.

204

http://bit.ly/1vwG2ht
http://bit.ly/1FUiaW9
http://bit.ly/1vnL7DJ

SP-GiST

Space-Partitioned Generalized Search Tree (SP-GiST) can be used in the
same situations as GiST but can be faster for certain kinds of data
distribution. PostgreSQL’s native geometric data types, such as point and
box, and the text data type, were the first to support SP-GiST. In version
9.3, support extended to range types.

hash

Hash indexes were popular prior to the advent of GiST and GIN. General
consensus rates GiST and GIN above hash in terms of both performance
and transaction safety. The write-ahead log prior to PostgreSQL 10 did
not track hash indexes; therefore, you couldn’t use them in streaming
replication setups. Although hash indexes were relegated to legacy status
for some time, they got some love in PostgreSQL 10. In that version, they
gained transactional safety and some performance improvements that
made them more efficient than B-Tree in some cases.

B-Tree-GiST/B-Tree-GIN

If you want to explore indexes beyond what PostgreSQL installs by
default, either out of need or curiosity, start with the composite B-Tree-
GiST or B-Tree-GIN indexes, both available as extensions and included
with most PostgreSQL distributions.

These hybrids support the specialized operators of GiST or GIN, but also
offer indexability of the equality operator like B-Tree indexes. You’ll find
them indispensable when you want to create a compound index
comprised of multiple columns containing both simple and complex
types. For example, you can have a compound index that consists of a
column of plain text and a column of full text. Normally complex types
such as full-text, ltree, geometric, and spatial types can use only GIN or
GiST indexes, and thus can never be combined with simpler types that
can only use B-Tree. These combo methods allow you to combine
columns indexed with GIST with columns indexed with B-Tree in a
single index.

205

http://bit.ly/1vXAtIK

Although not packaged with PostgreSQL, other indexes can be found in
extensions for PostgreSQL. Most popular others are the VODKA and RUM
(a variant based on GIN) index method types, which will work with
PostgreSQL 9.6 and up. RUM is most suited for work with complex types
such as full-text and is required if you need index support for full-text phrase
searches. It also offers additional distance operators.

Another recent addition is pgroonga, a PostgreSQL extension currently
supported for PostgreSQL 9.5 and 9.6. It brings the power of the groonga
full-text engine and column store to PostgreSQL. PGRoonga includes with it
an index called pgroonga and companion operators. PGRoonga supports
indexing of regular text to produce full-text like functionality without
needing to have a full-text vector, as the built-in PostgreSQL FTS requires.
PGRoonga also makes ILIKE and LIKE '%something%' indexable similar to
the pg_trgm extension. In addition, it supports indexing of text arrays and
JSONB. There are binaries available for Linux/Mac and Windows.

Operator Classes

Most of you will skate through your index-capades without ever needing to
know what operator classes (opclasses for short) are and why they matter for
indexes. But if you falter, you’ll need to understand opclasses to troubleshoot
the perennial question, “Why is the planner not taking advantage of my
index?”

Index architects intend for their indexes to work only against certain data
types and with specific comparison operators. An expert in indexing ranges
could obsess over the overlap operator (&&), whereas an expert in indexing
text searches may find little meaning in an overlap. A linguist trying to index
logographic languages, such as Chinese, probably has little use for
inequalities, whereas a linguist trying to index alphabetic languages would
find A-to-Z sorting indispensable.

PostgreSQL groups operators into operator classes. For example, the
int4_ops operator class includes the operators = < > > < to be applied
against the data type of int4 (commonly known as an integer). The

206

https://www.pgcon.org/2014/schedule/attachments/318_pgcon-2014-vodka.pdf
https://github.com/postgrespro/rum
http://pgroonga.github.io
http://groonga.org/
http://www.postgresonline.com/journal/archives/212-PostgreSQL-9.1-Trigrams-teaching-LIKE-and-ILIKE-new-tricks.html

SELECT am.amname AS index_method, opc.opcname AS opclass_name,
opc.opcintype::regtype AS indexed_type, opc.opcdefault AS is_default
FROM pg_am am INNER JOIN pg_opclass opc ON opc.opcmethod = am.oid
WHERE am.amname = 'btree'
ORDER BY index_method, indexed_type, opclass_name;
index_method | opclass_name | indexed_type | is_default
-------------+---------------------+--------------+------------
btree | bool_ops | boolean | t
⋮
btree | text_ops | text | t
btree | text_pattern_ops | text | f
btree | varchar_ops | text | f
btree | varchar_pattern_ops | text | f
 :

In Example 6-12, we limit our result to B-Tree. Notice that one opclass per
indexed data type is marked as the default. When you create an index without
specifying the opclass, PostgreSQL chooses the default opclass for the index.
Generally, this is good enough, but not always.

For instance, B-Tree against text_ops (aka varchar_ops) doesn’t include
the ~~ operator (the LIKE operator), so none of your LIKE searches can use an
index in the text_ops opclass. If you plan on doing many wildcard searches
on varchar or text columns, you’d be better off explicitly choosing the
text_pattern_ops/varchar_pattern_ops opclass for your index. To
specify the opclass, just append the opclass after the column name, as in:

CREATE INDEX idx1 ON census.lu_tracts USING btree (tract_name
text_pattern_ops);

NOTE

pg_opclass system table provides a complete listing of available operator
classes, both from your original install and from extensions. A particular
index will work only against a given set of opclasses. To see this complete
list, you can either open up pgAdmin and look under operator classes, or
execute the query in Example 6-12 to get a comprehensive view.

Example 6-12. Which data types and operator classes does B-Tree support?

207

You will notice that the list contains both varchar_ops and text_ops, but they
map only to text. character varying doesn’t have B-Tree operators of its
own, because it is essentially text with a length constraint. varchar_ops and
varchar_pattern_ops are just aliases for text_ops and text_pattern_ops
to satisfy the desire of some to maintain this symmetry of opclasses starting
with the name of the type they support.

Finally, remember that each index you create works against only a single
opclass. If you would like an index on a column to cover multiple opclasses,
you must create separate indexes. To add the default index text_ops to a
table, run:

CREATE INDEX idx2 ON census.lu_tracts USING btree (tract_name);

Now you have two indexes against the same column. (There’s no limit to the
number of indexes you can build against a single column.) The planner will
choose idx2 for basic equality queries and idx1 for comparisons using
LIKE.

You’ll find operator classes detailed in the Operator Classes section of the
official documentation. We also strongly recommend that you read our article
for tips on troubleshooting index issues, Why is My Index Not Used?

Functional Indexes

PostgreSQL lets you add indexes to functions of columns. Functional indexes
prove their usefulness in mixed-case textual data. PostgreSQL is a case-
sensitive database. To perform a case-insensitive search you could create a
functional index:

CREATE INDEX idx ON featnames_short
USING btree (upper(fullname) varchar_pattern_ops);

This next example uses the same function to uppercase the fullname column

208

http://bit.ly/1yx8sZs
http://bit.ly/1FZVSnP

SELECT fullname FROM featnames_short WHERE upper(fullname) LIKE 'S%';

WARNING

Always use the same functional expression when querying to ensure use of the
index.

Partial Indexes

Partial indexes (sometimes called filtered indexes) are indexes that cover only
rows fitting a predefined WHERE condition. For instance, if you have a table of
1,000,000 rows, but you care about a fixed set of 10,000, you’re better off
creating partial indexes. The resulting indexes can be faster because more can
fit into RAM, plus you’ll save a bit of disk space on the index itself.

Partial indexes let you place uniqueness constraints only on some rows of the
data. Pretend that you manage newspaper subscribers who signed up in the
past 10 years and want to ensure that nobody is getting more than one paper
delivered per day. With dwindling interest in print media, only about 5% of
your subscribers have a current subscription. You don’t care about
subscribers being duplicated who have stopped getting newspapers, because
they’re not on the carriers’ list anyway. Your table looks like this:

CREATE TABLE subscribers (
 id serial PRIMARY KEY,
 name varchar(50) NOT NULL, type varchar(50),
 is_active boolean);

We add a partial index to guarantee uniqueness only for current subscribers:

CREATE UNIQUE INDEX uq ON subscribers USING btree(lower(name)) WHERE

before comparing. Since we created the index with the same
upper(fullname) expression, the planner will be able to use the index for
this query:

209

is_active;

WARNING

Functions used in the index’s WHERE condition must be immutable. This means
you can’t use time functions like CURRENT_DATE or data from other tables (or
other rows of the indexed table) to determine whether a record should be
indexed.

One warning we stress is that when you query the data, in order for the index
to be considered by the planner, the conditions used when creating the index
must be a part of your WHERE condition and any functions used in the index
must also be used in the query filter. This index is both PARTIAL and
functional because what it indexes is upper(name) (not name). An easy way
to not have to worry about this is to use a view. Back to our subscribers
example, create a view as follows:

CREATE OR REPLACE VIEW vw_subscribers_current AS
SELECT id, lower(name) As name FROM subscribers WHERE is_active = true;

Then always query the view instead of the table (many purists advocate never
querying tables directly anyway). A view is a saved query that is transparent
to the planner. Any query done on a view will include the view’s WHERE
conditions and functional additions as well as what other additions the query
adds. The view we created does two things to make indexes available to
queries. The view replaces the name column with lower(name), so that when
we do a query against name with the view, it’s short-hand for lower(name)
against the underlying table. The view also enables is_active = true,
which means any query against the view will automatically have that
condition in it and be able to use the PARTIAL index:

SELECT * FROM vw_subscribers_current WHERE name = 'sandy';

You can open up the planner and confirm that the planner indeed used your

210

index.

Multicolumn Indexes

You’ve already seen many examples of multicolumn (aka compound)
indexes in this chapter, but you can also create functional indexes using more
than one underlying column. Here is an example of a multicolumn index:

CREATE INDEX idx ON subscribers
USING btree (type, upper(name) varchar_pattern_ops);

The PostgreSQL planner uses a strategy called bitmap index scan that
automatically tries to combine indexes on the fly, often from single-column
indexes, to achieve the same goal as a multicolumn index. If you’re unable to
predict how you’ll be querying compound fields in the future, you may be
better off creating single-column indexes and let the planner decide how to
combine them during search.

If you have a multicolumn B-Tree index on type and upper(name), there is
no need for an index on just type, because the planner can still use the
compound index for cases in which you just need to filter by type. Although
the planner can use the index even if the columns you are querying are not
the first in the index, querying by the first column in an index is much more
efficient than querying by just secondary columns.

The planner can also employ a strategy called an index-only scan, which
enables the planner to use just the index and not the table if the index
contains all the columns needed to satisfy a query. So if you commonly filter
by the same set of fields and output those, a compound index can improve
speed since it can skip the table. Keep in mind that the more columns you
have in an index, the fatter your index and the less of it that can easily fit in
RAM. Don’t go overboard with compound indexes.

211

PostgreSQL surpasses other database products in ANSI SQL compliance. It
cements its lead by adding constructs that range from convenient syntax
shorthands to avant-garde features that break the bounds of traditional SQL.
In this chapter, we’ll cover some SQL tidbits not often found in other
databases. For this chapter, you should have a working knowledge of SQL;
otherwise, you may not appreciate the labor-saving amuse-bouche that
PostgreSQL brings to the table.

Views

Well-designed relational databases store data in normalized form. To access
this data across scattered tables, you write queries to join underlying tables.
When you find yourself writing the same query over and over again, create a
view. Simply put, a view is nothing more than a query permanently stored in
the database.

Some purists have argued that one should always query a view, never tables.
This means you must create a view for every table that you intend to query
directly. The added layer of indirection eases management of permissions and
facilitates abstraction of table data. We find this to be sound advice, but
laziness gets the better of us.

Views in PostgreSQL have evolved over the years. Version 9.3 unveiled
automatically updatable views. If your view draws from a single table and
you include the primary key as an output column, you can issue an update
command directly against your view. Data in the underlying table will follow
suit.

Version 9.3 also introduced materialized views. When you mark a view as

Chapter 7. SQL: The PostgreSQL
Way

212

CREATE OR REPLACE VIEW census.vw_facts_2011 AS
SELECT fact_type_id, val, yr, tract_id FROM census.facts WHERE yr = 2011;

As of version 9.3, you can alter the data in this view by using INSERT,
UPDATE, or DELETE commands. Updates and deletes will abide by any WHERE
condition you have as part of your view. For example, the following query
will delete only records whose value is 0:

DELETE FROM census.vw_facts_2011 WHERE val = 0;

And the following will not update any records, because the view explicitly
includes only records for 2011:

UPDATE census.vw_facts_2011 SET val = 1 WHERE yr = 2012;

Be aware that you can insert data that places it outside of the view’s WHERE or
update data so it is no longer visible from the view as shown in Example 7-2.

Example 7-2. View update that results in data no longer visible in view
UPDATE census.vw_facts_2011 SET yr = 2012 WHERE yr = 2011;

materialized, it will requery the data only when you issue the REFRESH
command. The upside is that you’re not wasting resources running complex
queries repeatedly; the downside is that you might not have the most up-to-
date data when you use the view. Furthermore, under some circumstances
you are barred from access to the view during a refresh.

Version 9.4 allows users to access materialized views during refreshes. It also
introduced the WITH CHECK OPTION modifier, which prevents inserts and
updates outside the scope of the view.

Single Table Views

The simplest view draws from a single table. Always include the primary key
if you intend to write data back to the table, as shown in Example 7-1.

Example 7-1. Single table view

213

CREATE OR REPLACE VIEW census.vw_facts_2011 AS
SELECT fact_type_id, val, yr, tract_id FROM census.facts
WHERE yr = 2011 WITH CHECK OPTION;

Now try to run an update such as:

UPDATE census.vw_facts_2011 SET yr = 2012 WHERE val > 2942;

You’ll get an error:

ERROR: New row violates WITH CHECK OPTION for view "vw_facts_2011"
DETAIL: Failing row contains (1, 25001010500, 2012, 2985.000, 100.00).

Using Triggers to Update Views

Views can encapsulate joins among tables. When a view draws from more
than one table, updating the underlying data with a simple command is no
longer possible. Drawing data from more than one table introduces inherent
ambiguity when you’re trying to update the underlying data, and PostgreSQL
is not about to make an arbitrary decision for you. For instance, if you have a
view that joins a table of countries with a table of provinces, and then decide
to delete one of the rows, PostgreSQL won’t know whether you intend to
delete only a country, a province, or a particular country-province pairing.
Nonetheless, you can still modify the underlying data through the view using

The update of Example 7-2 does not violate the WHERE condition. But, once
executed, you would have emptied your view. For the sake of sanity, you
may find it desirable to prevent updates or inserts that leave data invisible to
further queries. Version 9.4 introduced the WITH CHECK OPTION to
accomplish this. Include this modifier when creating the view and
PostgreSQL will forever balk at any attempts to add records outside the view
and to update records that will put them outside the view. In our example
view, our goal is to limit vw_facts_2011 to allow inserts only of 2011 data
and disallow updates of the yr to something other than 2011. To add this
restriction, we revise our view definition as shown in Example 7-3.

Example 7-3. Single table view WITH CHECK OPTION

214

CREATE OR REPLACE VIEW census.vw_facts AS
SELECT

y.fact_type_id, y.category, y.fact_subcats, y.short_name,
x.tract_id, x.yr, x.val, x.perc

FROM census.facts As x INNER JOIN census.lu_fact_types As y
ON x.fact_type_id = y.fact_type_id;

To make this view updatable with a trigger, you can define one or more
INSTEAD OF triggers. We first define the trigger function to handle the
trifecta: INSERT, UPDATE, DELETE. In addition, PostgreSQL supports triggers
on the TRUNCATE event. You can use any language to write the function
except SQL, and you’re free to name it whatever you like. We chose
PL/pgSQL in Example 7-5.

Example 7-5. Trigger function for vw_facts to insert, update, delete
CREATE OR REPLACE FUNCTION census.trig_vw_facts_ins_upd_del() RETURNS
trigger AS
$$
BEGIN

 IF (TG_OP = 'DELETE') THEN
 DELETE FROM census.facts AS f
 WHERE

f.tract_id = OLD.tract_id AND f.yr = OLD.yr AND
f.fact_type_id = OLD.fact_type_id;

 RETURN OLD;
 END IF;
 IF (TG_OP = 'INSERT') THEN

 INSERT INTO census.facts(tract_id, yr, fact_type_id, val, perc)
 SELECT NEW.tract_id, NEW.yr, NEW.fact_type_id, NEW.val, NEW.perc;
 RETURN NEW;

 END IF;
 IF (TG_OP = 'UPDATE') THEN

 IF
 ROW(OLD.fact_type_id, OLD.tract_id, OLD.yr, OLD.val,

OLD.perc) !=

triggers.
Let’s start by creating a view that pulls rows from the facts table and a lookup
table, as shown in Example 7-4.
Example 7-4. Creating view vw_facts

215

http://bit.ly/1w5ISeU

 ROW(NEW.fact_type_id, NEW.tract_id, NEW.yr, NEW.val,
NEW.perc)

 THEN
 UPDATE census.facts AS f
 SET

 tract_id = NEW.tract_id,
 yr = NEW.yr,
 fact_type_id = NEW.fact_type_id,
 val = NEW.val,
 perc = NEW.perc

 WHERE
f.tract_id = OLD.tract_id AND
f.yr = OLD.yr AND
f.fact_type_id = OLD.fact_type_id;

 RETURN NEW;
 ELSE

 RETURN NULL;
 END IF;

 END IF;
END;
$$
LANGUAGE plpgsql VOLATILE;

Handles deletes. Delete only records with matching keys in the OLD
record.
Handles inserts.
Handles updates. Use the OLD record to determine which records to
update. NEW record has the new data.
Update rows only if at least one of the columns from the facts table has
changed.

Next, we bind the trigger function to the view, as shown in Example 7-6.

Example 7-6. Bind trigger function to view
CREATE TRIGGER trig_01_vw_facts_ins_upd_del
INSTEAD OF INSERT OR UPDATE OR DELETE ON census.vw_facts
FOR EACH ROW EXECUTE PROCEDURE census.trig_vw_facts_ins_upd_del();

The binding syntax is uncharacteristically English-like.

Now when we update, delete, or insert into our view, we update the

216

underlying facts table instead:

UPDATE census.vw_facts SET yr = 2012
WHERE yr = 2011 AND tract_id = '25027761200';

Upon a successful update, PostgreSQL returns the following message:

Query returned successfully: 56 rows affected, 40 ms execution time.

If we try to update a field not in our update row comparison, the update will
not take place:

UPDATE census.vw_facts SET short_name = 'test';

With a message:

Query returned successfully: 0 rows affected, 931 ms execution time.

Although this example created a single trigger function to handle multiple
events, we could have just as easily created a separate trigger and trigger
function for each event.

PostgreSQL has another approach for updating views called rules, which
predates the introduction of INSTEAD OF triggers view support. You can see
an example using rules in Database Abstraction with Updatable Views.

You can still use rules to update view data, but INSTEAD OF triggers are
preferred now. Internally PostgreSQL still uses rules to define the view (a
view is nothing but an INSTEAD OF SELECT rule on a virtual table) and to
implement single table updatable views. The difference between using a
trigger and a rule is that a rule rewrites the underlying query and a trigger
gets called for each virtual row. As such, rules become overwhelmingly
difficult to write (and understand) when many tables are involved. Rules are
also limited because they can be written only in SQL, not in other procedural
languages.

217

http://bit.ly/1A0YJc4

CREATE MATERIALIZED VIEW census.vw_facts_2011_materialized AS
SELECT fact_type_id, val, yr, tract_id FROM census.facts WHERE yr = 2011;

Create an index on a materialized view as you would do on a regular table, as
shown in Example 7-8.

Example 7-8. Add index to materialized view
CREATE UNIQUE INDEX ix
ON census.vw_facts_2011_materialized (tract_id, fact_type_id, yr);

For speedier access to a materialized view with a large number of records,
you may want to control the physical sort of the data. The easiest way is to
include an ORDER BY when you create the view. Alternatively, you can add a
cluster index to the view. First, create an index in the physical sort order you
want to have. Then run the CLUSTER command, passing it the index, as shown
in Example 7-9.

Example 7-9. Clustering and reclustering a view on an index
CLUSTER census.vw_facts_2011_materialized USING ix;
CLUSTER census.vw_facts_2011_materialized;

Name the index to cluster on. Needed only during view creation.

Materialized Views

Materialized views cache the fetched data. This happens when you first create
the view as well as when you run the REFRESH MATERIALIZED VIEW
command. To use materialized views, you need at least version 9.3.

The most convincing cases for using materialized views are when the
underlying query takes a long time and when having timely data is not
critical. You often encounter these scenarios when building online analytical
processing (OLAP) applications.

Unlike nonmaterialized views, you can add indexes to materialized views to
speed up the read.

Example 7-7 demonstrates how to make a materialized version of the view in
Example 7-1.

Example 7-7. Materialized view

218

http://bit.ly/1FZWaeg

REFRESH MATERIALIZED VIEW census.vw_facts_2011_materialized;

The view cannot be queried while the REFRESH MATERIALIZED VIEW
step is running.

In PostgreSQL 9.4, to allow the view to be queried while it’s refreshing, you
can use:

REFRESH MATERIALIZED VIEW CONCURRENTLY
census.vw_facts_2011_materialized;

Current limitations of materialized views include:

You can’t use CREATE OR REPLACE to edit an existing materialized view.
You must drop and re-create the view even for the most trivial of changes.
Use DROP MATERIALIZED VIEW name_of_view. Annoyingly, you’ll lose
all your indexes.

You need to run REFRESH MATERIALIZED VIEW to rebuild the cache.
PostgreSQL doesn’t perform automatic recaching of any kind. You need
to resort to mechanisms such as crontab, pgAgent jobs, or triggers to
automate any kind of refresh. We have an example using triggers in
Caching Data with Materialized Views and Statement-Level Triggers.

Refreshing materialized views in version 9.3 is a blocking operation,

Each time you refresh, you must recluster the data.

The advantage of using ORDER BY in the materialized view over using the
CLUSTER approach is that the sort is maintained with each REFRESH
MATERIALIZED VIEW call, alleviating the need to recluster. The downside is
that ORDER BY generally adds more processing time to the REFRESH step of
the view. You should test the effect of ORDER BY on performance of REFRESH
before using it. One way to test is just to run the underlying query of the view
with an ORDER BY clause.

To refresh the view in PostgreSQL 9.3, use:

219

http://bit.ly/1yn1ySK

meaning that the view will not be accessible during the refresh process. In
version 9.4 you can lift this quarantine by adding the CONCURRENTLY
keyword to your REFRESH command, provided that you have established
a unique index on your view. The trade-off is concurrent refreshes could
take longer to complete.

Handy Constructions

In our many years of writing SQL, we have come to appreciate the little
things that make better use of our typing. Only PostgreSQL offers some of
the gems we present in this section. Often this means that the construction is
not ANSI-compliant. If thy God demands strict observance to the ANSI SQL
standards, abstain from the short-cuts that we’ll be showing.

DISTINCT ON

One of our favorites is DISTINCT ON. It behaves like DISTINCT, but with two
enhancements: you can specify which columns to consider as distinct and to
sort the remaining columns. One little word—ON—replaces numerous lines of
additional code to achieve the same result.

In Example 7-10, we demonstrate how to get the details of the first tract for
each county.

Example 7-10. DISTINCT ON
SELECT DISTINCT ON (left(tract_id, 5))
 left(tract_id, 5) As county, tract_id, tract_name

FROM census.lu_tracts
ORDER BY county, tract_id;
county | tract_id | tract_name
-------+-------------+---
25001 | 25001010100 | Census Tract 101, Barnstable County, Massachusetts
25003 | 25003900100 | Census Tract 9001, Berkshire County, Massachusetts
25005 | 25005600100 | Census Tract 6001, Bristol County, Massachusetts
25007 | 25007200100 | Census Tract 2001, Dukes County, Massachusetts
25009 | 25009201100 | Census Tract 2011, Essex County, Massachusetts
:

220

SELECT DISTINCT ON (left(tract_id, 5))
 left(tract_id, 5) As county, tract_id, tract_name

FROM census.lu_tracts
ORDER BY county, tract_id LIMIT 3 OFFSET 2;
county | tract_id | tract_name
-------+-------------+---
25005 | 25005600100 | Census Tract 6001, Bristol County, Massachusetts
25007 | 25007200100 | Census Tract 2001, Dukes County, Massachusetts
25009 | 25009201100 | Census Tract 2011, Essex County, Massachusetts
(3 rows)

Shorthand Casting

ANSI SQL defines a construct called CAST that allows you to morph one data
type to another. For example, CAST('2011-1-11' AS date) casts the text
2011-1-1 to a date. PostgreSQL has shorthand for doing this, using a pair of
colons, as in '2011-1-1'::date. This syntax is shorter and easier to apply
for cases in which you can’t directly cast from one type to another and have

(14 rows)

The ON modifier accepts multiple columns, considering all of them to
determine distinctness. The ORDER BY clause has to start with the set of
columns in the DISTINCT ON; then you can follow with your preferred
ordering.

LIMIT and OFFSET

LIMIT returns only the number of rows indicated; OFFSET indicates the
number of rows to skip. You can use them in tandem or separately. You
almost always use them in conjunction with an ORDER BY. In Example 7-11,
we demonstrate use of a positive offset. Leaving out the offset yields the
same result as setting the offset to zero.

Limits and offsets are not unique to PostgreSQL and are in fact copied from
MySQL, although implementation differs widely among database products.

Example 7-11. First tract for counties 2 through 5

221

INSERT INTO logs_2011 (user_name, description, log_ts)
VALUES

 ('robe', 'logged in', '2011-01-10 10:15 AM EST'),
 ('lhsu', 'logged out', '2011-01-11 10:20 AM EST');

The latter portion of the multirow constructor, starting with the VALUES
keyword, is often referred to as a values list. A values list can stand alone and
effectively creates a table on the fly, as in Example 7-13.

Example 7-13. Using a multirow constructor as a virtual table
SELECT *
FROM (

 VALUES
 ('robe', 'logged in', '2011-01-10 10:15 AM EST'::timestamptz),

 ('lhsu', 'logged out', '2011-01-11 10:20 AM EST'::timestamptz)
) AS l (user_name, description, log_ts);

When you use VALUES as a stand-in for a virtual table, you need to specify the
names for the columns. You also need to explicitly cast the values to the data
types in the table if the parser can’t infer the data type from the data. The
multirow VALUES construct also exists in MySQL and SQL Server.

ILIKE for Case-Insensitive Search

PostgreSQL is case-sensitive. However, it does have mechanisms in place to
ignore casing. You can apply the upper function to both sides of the ANSI
LIKE operator, or you can simply use the ILIKE (~~*) operator:

to intercede with one or more intermediary types, such as
someXML::text::integer.

Multirow Insert

PostgreSQL supports the multirow constructor to insert more than one record
at a time. Example 7-12 demonstrates how to use a multirow construction to
insert data into the table we created in Example 6-3.

Example 7-12. Using a multirow constructor to insert data

222

SELECT tract_name FROM census.lu_tracts WHERE tract_name ILIKE
'%duke%';

tract_name
--
Census Tract 2001, Dukes County, Massachusetts
Census Tract 2002, Dukes County, Massachusetts
Census Tract 2003, Dukes County, Massachusetts
Census Tract 2004, Dukes County, Massachusetts
Census Tract 9900, Dukes County, Massachusetts

ANY Array Search

PostgreSQL has a construct called ANY that can be used in conjunction with
arrays, combined with a comparator operator or comparator keyword. If any
element of the array matches a row, that row is returned.

Here is an example:

SELECT tract_name
FROM census.lu_tracts
WHERE tract_name ILIKE
ANY(ARRAY['%99%duke%','%06%Barnstable%']::text[]);

tract_name

Census Tract 102.06, Barnstable County, Massachusetts
Census Tract 103.06, Barnstable County, Massachusetts
Census Tract 106, Barnstable County, Massachusetts
Census Tract 9900, Dukes County, Massachusetts
(4 rows)

The example just shown is a shorthand way of using multiple ILIKE OR
clauses. You can use ANY with other comparators such as LIKE, =, and ~ (the
regex like operator).

ANY can be used with any data types and comparison operators (operators that
return a Boolean), including ones you built yourself or installed via
extensions.

223

CREATE TABLE interval_periods (i_type interval);
INSERT INTO interval_periods (i_type)
VALUES ('5 months'), ('132 days'), ('4862 hours');

Example 7-14. Set-returning function in SELECT
SELECT i_type,
 generate_series('2012-01-01'::date,'2012-12-31'::date,i_type) As dt

FROM interval_periods;
i_type | dt
-----------+-----------------------
5 months | 2012-01-01 00:00:00-05
5 months | 2012-06-01 00:00:00-04
5 months | 2012-11-01 00:00:00-04
132 days | 2012-01-01 00:00:00-05
132 days | 2012-05-12 00:00:00-04
132 days | 2012-09-21 00:00:00-04
4862 hours | 2012-01-01 00:00:00-05
4862 hours | 2012-07-21 15:00:00-04

Restricting DELETE, UPDATE, and SELECT from
Inherited Tables

When you query from a table that has child tables, the query automatically

Set-Returning Functions in SELECT

A set-returning function is a function that could return more than one row.

PostgreSQL allows set-returning functions to appear in the SELECT clause of
an SQL statement. This is not true of most other databases, in which only
scalar functions can appear in the SELECT.

Interweaving some set-returning functions into an already complicated query
could produce results beyond what you expect, because these functions
usually result in the creation of new rows. You must anticipate this if you’ll
be using the results as a subquery. In Example 7-14, we demonstrate row
creation resulting from using a temporal version of generate_series. The
example uses a table that we construct with:

224

DELETE FROM census.facts
USING census.lu_fact_types As ft
WHERE facts.fact_type_id = ft.fact_type_id AND ft.short_name = 's01';

The standards-compliant way would be to use a clunkier IN expression in the
WHERE.

Returning Affected Records to the User

The RETURNING predicate is supported by ANSI SQL standards but not
commonly found in other relational databases. We show an example in
Example 7-37, where we return the records deleted. RETURNING can also be
used for inserts and updates. For inserts into tables with a serial key,

drills down into the children, creating a union of all the child records
satisfying the query condition. DELETE and UPDATE work the same way,
drilling down the hierarchy for victims. Sometimes this is not desirable
because you want data to come only from the table you specified, without the
kids tagging along.

This is where the ONLY keyword comes in handy. We show an example of its
use in Example 7-37, where we want to delete only those records from the
production table that haven’t migrated to the log table. Without the ONLY
modifier, we’d end up deleting records from the child table that might have
already been moved previously.

DELETE USING

Often, when you delete data from a table, you’ll want to delete the data based
on its presence in another set of data. Specify this additional set with the
USING predicate. Then, in the WHERE clause, you can use both datasets in the
USING and in the FROM to define conditions for deletion. Multiple tables can
be included in USING, separated by commas. Example 7-15 deletes all records
from census.facts that correspond to a fact type of short_name = 's01'.

Example 7-15. DELETE USING

225

UPDATE census.lu_fact_types AS f
SET short_name = replace(replace(lower(f.fact_subcats[4]),'
','_'),':','')
WHERE f.fact_subcats[3] = 'Hispanic or Latino:' AND f.fact_subcats[4] >
''
RETURNING fact_type_id, short_name;
fact_type_id | short_name
-------------+---
96 | white_alone
97 | black_or_african_american_alone
98 | american_indian_and_alaska_native_alone
99 | asian_alone
100 | native_hawaiian_and_other_pacific_islander_alone
101 | some_other_race_alone
102 | two_or_more_races

UPSERTs: INSERT ON CONFLICT UPDATE

New in version 9.5 is the INSERT ON CONFLICT construct, which is often
referred to as an UPSERT. This feature is useful if you don’t know a record
already exists in a table and rather than having the insert fail, you want it to
either update the existing record or do nothing.

This feature requires a unique key, primary key, unique index, or exclusion
constraint in place, that when violated, you’d want different behavior like
updating the existing record or not doing anything. To demonstrate, imagine
we have a table of colors to create:

CREATE TABLE colors(color varchar(50) PRIMARY KEY, hex varchar(6));
 INSERT INTO colors(color, hex)
 VALUES('blue', '0000FF'), ('red', 'FF0000');

We then get a new batch of colors to add to our table, but some may be

RETURNING is invaluable because it returns the key value of the new rows—
something you wouldn’t know prior to the query execution. Although
RETURNING is often accompanied by * for all fields, you can limit the fields as
we do in Example 7-16.

Example 7-16. Returning changed records of an UPDATE with RETURNING

226

https://www.postgresql.org/docs/current/static/sql-insert.html

INSERT INTO colors(color, hex)
 VALUES('blue', '0000FF'), ('red', 'FF0000'), ('green', '00FF00')
ON CONFLICT DO NOTHING ;

Someone could come and put in a different case 'Blue' in our system, and
we’d then have two different cased blues. To remedy this, we can put a
unique index on our table:

CREATE UNIQUE INDEX uidx_colors_lcolor ON colors USING
btree(lower(color));

As before, if we tried to insert a 'Blue', we’d be prevented from doing so
and the ON CONFLICT DO NOTHING would result in nothing happening.
If we really wanted to spell the colors as given to us, we could use code like
that given in Example 7-18.

Example 7-18. ON CONFLICT DO UPDATE
INSERT INTO colors(color, hex)
 VALUES('Blue', '0000FF'), ('Red', 'FF0000'), ('Green', '00FF00')
ON CONFLICT(lower(color))

 DO UPDATE SET color = EXCLUDED.color, hex = EXCLUDED.hex;

In Example 7-18 we specified the conflict, which matches the expression of a
constraint or unique index, so using something like upper(color) would not
work since the colors table has no matching index for that expression.

In the case of INSERT ON CONFLICT DO UPDATE, you need to specify
the conflicting condition or CONSTRAINT name. If using a constraint,
you’d use ON CONFLICT ON CONSTRAINT constraint_name_here as shown
in Example 7-19.

Example 7-19. ON CONFLICT DO UPDATE

present already. If we do a regular insert, we’d get a primary key violation
when we tried to add colors already in the table. When we run Example 7-17,
we get only one record inserted, the green that is not already in our table, and
each subsequent run would result in no records being inserted.

Example 7-17. ON CONFLICT DO NOTHING

227

SELECT x FROM census.lu_fact_types As x LIMIT 2;

At first glance, you might think that we left out a .* by accident, but check
out the result:

x
--
(86,Population,"{D001,Total:}",d001)
(87,Population,"{D002,Total:,""Not Hispanic or Latino:""}",d002)

Instead of erroring out, the preceding example returns the canonical
representation of a lu_fact_type data type. Composites can serve as input
to several useful functions, among which are array_agg and hstore (a
function packaged with the hstore extension that converts a row into a key-
value pair object).

If you are building web applications, you can take advantage of the built-in
JSON and JSONB support we covered in “JSON” and use a combination of

INSERT INTO colors(color, hex)
 VALUES('Blue', '0000FF'), ('Red', 'FF0000'), ('Green', '00FF00')

ON CONFLICT ON CONSTRAINT colors_pkey
DO UPDATE SET color = EXCLUDED.color, hex = EXCLUDED.hex;;

The DO part of the INSERT construct will only happen if there is a primary
key, unique index, or unique key constraint error triggered. However, errors
such as data type ones or check constraints will fail and never be processed
by DO UPDATE.

Composite Types in Queries

PostgreSQL automatically creates data types of all tables. Because data types
derived from tables contain other data types, they are often called composite
data types, or just composites. The first time you see a query with
composites, you might be surprised. In fact, you might come across their
versatility by accident when making a typo in an SQL statement. Try the
following query:

228

SELECT array_to_json(array_agg(f)) As cat
FROM (

 SELECT MAX(fact_type_id) As max_type, category
 FROM census.lu_fact_types
 GROUP BY category

) As f;

This will give you an output of:
cats
--
[{"max_type":102,"category":"Population"},
{"max_type":153,"category":"Housing"}]

Defines a subquery with name f. f can then be used to reference each row
in the subquery.
Aggregate each row of subquerying using array_agg and then convert the
array to json with array_to_json.

In version 9.3, the json_agg function replaces the chain of array_to_json
and array_agg, offering both convenience and speed. In Example 7-21, we
repeat Example 7-20 using json_agg, and both examples will have the same
output.

Example 7-21. Query to JSON using json_agg
SELECT json_agg(f) As cats
FROM (

 SELECT MAX(fact_type_id) As max_type, category
 FROM census.lu_fact_types
 GROUP BY category

) As f;

Dollar Quoting

In standard ANSI SQL, single quotes (') surround string literals. Should you

array_agg and array_to_json to output a query as a single JSON object as
shown in Example 7-20. In PostgreSQL 9.4, you can use json_agg. See
Example 7-21.

Example 7-20. Query to JSON output

229

SELECT $$It's O'Neil's play. $$ || $$It'll start at two o'clock.$$

The pair of dollar signs replaces the single quote and escapes all single quotes
within.

A variant of dollar quoting is named dollar quoting. We cover this in the
following section.

DO

The DO command allows you to inject a piece of procedural code into your
SQL on the fly. You can think of it as a one-time anonymous function. As an
example, we’ll load the data collected in Example 3-10 into production tables

have a single quote in the string itself, such as last names like O’Nan,
possesives like mon’s place, or contractions like can’t, you need to escape it
with another. The escape character is another single quote placed in front of
the single quote you’re trying to escape. Say you’re writing an insert
statement where you copied a large passage from a novel. Affixing yet
another single quote to all existing single quotes is both tedious to add and
challenging to read. After all, two single quotes look awfully like one double
quote, which is another character entirely.

PostgreSQL lets you escape single quotes in strings of any length by
surrounding them with two sequential dollar signs ($$), hence the name
dollar quoting.

Dollar quoting is also useful in situations where you’re trying to execute a
piece of SQL dynamically, such as exec(some sql). In Example 7-5, we
enclosed the body of a trigger using dollar quoting.

If you are writing an SQL statement that glues two sentences with many
single quotes, the ANSI standard way would be to escape as in the following:

SELECT 'It''s O''Neil''s play. ' || 'It''ll start at two o''clock.'

With dollar quoting:

230

set search_path=census;
DROP TABLE IF EXISTS lu_fact_types CASCADE;
CREATE TABLE lu_fact_types (

 fact_type_id serial,
 category varchar(100),
 fact_subcats varchar(255)[],
 short_name varchar(50),
 CONSTRAINT pk_lu_fact_types PRIMARY KEY (fact_type_id)

);

Then we’ll use DO to populate it as shown in Example 7-22. CASCADE will
force the drop of any related objects such as foreign key constraints and
views, so be cautious when using CASCADE.

Example 7-22 generates a series of INSERT INTO SELECT statements. The
SQL also performs an unpivot operation to convert columnar data into rows.

WARNING

Example 7-22 is only a partial listing of the code needed to build
lu_fact_types. For the full code, refer to the building_census_tables.sql file
that is part of the book code and data download.

Example 7-22. Using DO to generate dynamic SQL
DO language plpgsql
$$
DECLARE var_sql text;
BEGIN

 var_sql := string_agg(
 sql
 INSERT INTO lu_fact_types(category, fact_subcats, short_name)
 SELECT

 'Housing',

from our staging table. We’ll use PL/pgSQL for our procedural snippet, but
you’re free to use other languages.

First, we’ll create the table:

231

 array_agg(ssql || lpad(i::text,2,'0')
 || ') As fact_subcats,'
 || quote_literal('s' || lpad(i::text,2,'0')) || ' As

short_name
 FROM staging.factfinder_import
 WHERE s' || lpad(I::text,2,'0') || sql ~ '^[a-zA-Z]+' sql,

';'
)
 FROM generate_series(1,51) As I;
 EXECUTE var_sql;

END
$$;

Use of dollar quoting, so we don’t need to escape ' in Housing. Since the
DO command is also wrapped in dollars, we need to use a named $
delimiter inside. We chose sql.
Use string_agg to form a set of SQL statements as a single string of the
form INSERT INTO lu_fact_type(...) SELECT ... WHERE s01 ~
'[a-zA-Z]+';
Execute the SQL.

In Example 7-22, we are using the dollar-quoting syntax covered in “Dollar
Quoting” for the body of the DO function and some fragments of the SQL
statements inside the function. Since we use dollar quoting to define the
whole body of the DO as well as internally, we need to use named dollar
quoting for at least one part. The same dollar-quoting nested approach can be
used for functon definitions as well.

FILTER Clause for Aggregates

New in version 9.4 is the FILTER clause for aggregates, recently standardized
in ANSI SQL. This replaces the standard CASE WHEN clause for reducing the
number of rows included in an aggregation. For example, suppose you used
CASE WHEN to break out average test scores by student, as shown in
Example 7-23.

Example 7-23. CASE WHEN used in AVG
SELECT student,

232

SELECT student,
 AVG(score) FILTER (WHERE subject ='algebra') As algebra,

 AVG(score) FILTER (WHERE subject ='physics') As physics
FROM test_scores
GROUP BY student;

In the case of averages and sums and many other aggregates, the CASE and
FILTER are equivalent. The benefit is that FILTER is a little clearer in purpose
and for large datasets is faster. However, there are some aggregates—such as
array_agg, which considers NULL fields—where the CASE statement gives
you extra NULL values you don’t want. In Example 7-25 we try to get the list
of scores for each subject of interest for each student using the CASE ..
WHEN.. approach.

Example 7-25. CASE WHEN used in array_agg
SELECT student,
 array_agg(CASE WHEN subject ='algebra' THEN score ELSE NULL END) As

algebra,
 array_agg(CASE WHEN subject ='physics' THEN score ELSE NULL END) As

physics
FROM test_scores
GROUP BY student;
student | algebra | physics
--------+---------------------------+-------------------------------
jojo | {74,NULL,NULL,NULL,74,..} | {NULL,83,NULL,NULL,NULL,79,..}
jdoe | {75,NULL,NULL,NULL,78,..} | {NULL,72,NULL,NULL,NULL,72..}
robe | {68,NULL,NULL,NULL,77,..} | {NULL,83,NULL,NULL,NULL,85,..}
lhsu | {84,NULL,NULL,NULL,80,..} | {NULL,72,NULL,NULL,NULL,72,..}
(4 rows)

Observe that in Example 7-25 we get a bunch of NULL fields in our arrays.

 AVG(CASE WHEN subject ='algebra' THEN score ELSE NULL END) As
algebra,
 AVG(CASE WHEN subject ='physics' THEN score ELSE NULL END) As physics
FROM test_scores
GROUP BY student;

The FILTER clause equivalent for Example 7-23 is shown in Example 7-24.

Example 7-24. FILTER used with AVG aggregate

233

SELECT student,
 array_agg(score) FILTER (WHERE subject ='algebra') As algebra,

 array_agg(score) FILTER (WHERE subject ='physics') As physics
FROM test_scores
GROUP BY student;
student | algebra | physics
--------+---------+--------
jojo | {74,74} | {83,79}
jdoe | {75,78} | {72,72}
robe | {68,77} | {83,85}
lhsu | {84,80} | {72,72}

FILTER works for all aggregate functions, not just aggregate functions built
into PostgreSQL.

Percentiles and Mode

New in PostgreSQL 9.4 are statistical functions for computing percentile,
median (aka .5 percentile), and mode. These functions are percentile_disc
(percentile discrete), percentile_cont (percentile continuous), and mode.

The two percentile functions differ in how they handle even counts. For the
discrete function, the first value encountered is taken, so the ordering of the
data matters. For the continuous case, values within the same percentile are
averaged.

Median is merely the .5 percentile; therefore, it does not deserve a separate
function of its own. The mode function finds the most common value. Should
there be more than one mode, the first one encountered is returned; therefore,
ordering matters, as shown in Example 7-27.

Example 7-27. Compute median and mode scores
SELECT

 student,

We could work around this issue with some clever use of subselects, but most
of those will be more verbose and slower than the FILTER alternative shown
in Example 7-26.

Example 7-26. FILTER used with array_agg

234

 percentile_cont(0.5) WITHIN GROUP (ORDER BY score) As cont_median,
 percentile_disc(0.5) WITHIN GROUP (ORDER BY score) AS disc_median,
 mode() WITHIN GROUP (ORDER BY score) AS mode,
 COUNT(*) As num_scores

FROM test_scores
GROUP BY student
ORDER BY student;
student | cont_median | disc_median | mode | num_scores
--------+-------------+-------------+------+------------
alex | 78 | 77 | 74 | 8
leo | 72 | 72 | 72 | 8
regina | 76 | 76 | 68 | 9
sonia | 73.5 | 72 | 72 | 8
(4 rows)

Example 7-27 computes both the discrete and the continuous median score,
which could differ when students have an even number of scores.

The inputs of these functions differ from other aggregate functions. The
column being aggregated is the column in the ORDER BY clauses of the
WITHIN GROUP modifiers. The column is not direct input to the function, as
we’re used to seeing.

The percentile functions have another variant that accepts an array of
percentiles, letting you retrieve multiple percentiles all in one call.
Example 7-28 computes the median, the 60 percentile, and the highest score.

Example 7-28. Compute multiple percentiles
SELECT

 student,
 percentile_cont('{0.5,0.60,1}'::float[])

WITHIN GROUP (ORDER BY score) AS cont_median,
 percentile_disc('{0.5,0.60,1}'::float[])

WITHIN GROUP (ORDER BY score) AS disc_median,
COUNT(*) As num_scores
FROM test_scores
GROUP BY student
ORDER BY student;
student | cont_median | disc_median | num_scores
--------+----------------+-------------+------------
alex | {78,79.2,84} | {77,79,84} | 8

235

leo | {72,73.6,84} | {72,72,84} | 8
regina | {76,76.8,90} | {76,77,90} | 9
sonia | {73.5,75.6,86} | {72,75,86} | 8
(4 rows)

As with all aggregates, you can combine these functions with modifiers.
Example 7-29 combines WITHIN GROUP with FILTER.

Example 7-29. Compute median score for two subjects
SELECT

 student,
 percentile_disc(0.5) WITHIN GROUP (ORDER BY score)

 FILTER (WHERE subject = 'algebra') AS algebra,
 percentile_disc(0.5) WITHIN GROUP (ORDER BY score)
 FILTER (WHERE subject = 'physics') AS physics

FROM test_scores
GROUP BY student
ORDER BY student;
student | algebra | physics
--------+---------+--------
alex | 74 | 79
leo | 80 | 72
regina | 68 | 83
sonia | 75 | 72
(4 rows)

Window Functions

Window functions are a common ANSI SQL feature. A window function has
the prescience to see and use data beyond the current row; hence the term
window. A window defines which other rows need to be considered in
addition to the current row. Windows let you add aggregate information to
each row of your output where the aggregation involves other rows in the
same window. Window functions such as row_number and rank are useful
for ordering your data in sophisticated ways that use rows outside the
selected results but within a window.

Without window functions, you’d have to resort to using joins and subqueries
to poll neighboring rows. On the surface, window functions violate the set-

236

SELECT tract_id, val, AVG(val) OVER () as val_avg
FROM census.facts
WHERE fact_type_id = 86;
tract_id | val | val_avg
------------+----------+----------------------
25001010100 | 2942.000 | 4430.0602165087956698
25001010206 | 2750.000 | 4430.0602165087956698
25001010208 | 2003.000 | 4430.0602165087956698
25001010304 | 2421.000 | 4430.0602165087956698
:

The OVER sets the boundary of the window. In this example, because the
parentheses contain no constraint, the window covers all the rows in our
WHERE. So the average is calculated across all rows with fact_type_id =
86. The clause also morphed our conventional AVG aggregate function into a
window aggregate function. For each row, PostgreSQL submits all the rows
in the window to the AVG aggregation and outputs the value as part of the
row. Because our window has multiple rows, the result of the aggregation is
repeated. Notice that with window functions, we were able to perform an
aggregation without GROUP BY. Furthermore, we were able to rejoin the
aggregated result back with the other variables without using a formal join.

You can use all SQL aggregate functions as window functions. In addition,
you’ll find ROW, RANK, LEAD, and others listed in Window Functions.

PARTITION BY

You can run a window function over rows containing particular values

based principle of SQL, but we mollify the purist by claiming that they are
merely shorthand. You can find more details and examples in Window
Functions.

Example 7-30 gives you a quick start. Using a window function, we can
obtain both the detail data and the average value for all records with
fact_type_id of 86 in one single SELECT. Note that the WHERE clause is
always evaluated before the window function.

Example 7-30. The basic window

237

http://bit.ly/1yUcnhM
http://bit.ly/1FUiJ2d

SELECT tract_id, val, AVG(val) OVER (PARTITION BY left(tract_id,5)) As
val_avg_county
FROM census.facts
WHERE fact_type_id = 2 ORDER BY tract_id;
tract_id | val | val_avg_county
------------+----------+----------------------
25001010100 | 1765.000 | 1709.9107142857142857
25001010206 | 1366.000 | 1709.9107142857142857
25001010208 | 984.000 | 1709.9107142857142857
:
25003900100 | 1920.000 | 1438.2307692307692308
25003900200 | 1968.000 | 1438.2307692307692308
25003900300 | 1211.000 | 1438.2307692307692308
:

ORDER BY

Window functions also allow an ORDER BY in the OVER clause. Without
getting too abstruse, the best way to think about this is that all the rows in the
window will be ordered as indicated by ORDER BY, and the window function
will consider only rows that range from the first row in the window up to and
including the current row in the window or partition. The classic example
uses the ROW_NUMBER function to sequentially number rows. In Example 7-32,
we demonstrate how to number our census tracts in alphabetical order. To
arrive at the row number, ROW_NUMBER counts all rows up to and including the
current row based on the order dictated by the ORDER BY.

Example 7-32. Numbering using the ROW_NUMBER window function
SELECT ROW_NUMBER() OVER (ORDER BY tract_name) As rnum, tract_name
FROM census.lu_tracts

instead of using the whole table. This requires the addition of a PARTITION
BY clause, which instructs PostgreSQL to take the aggregate over the
indicated rows. In Example 7-31, we repeat what we did in Example 7-30 but
partition our window by county code, which is always the first five characters
of the tract_id column. Thus, the rows in each county code are averaged
separately.

Example 7-31. Partitioning our window by county code

238

ORDER BY rnum LIMIT 4;
rnum | tract_name
-----+---
1 | Census Tract 1, Suffolk County, Massachusetts
2 | Census Tract 1001, Suffolk County, Massachusetts
3 | Census Tract 1002, Suffolk County, Massachusetts
4 | Census Tract 1003, Suffolk County, Massachusetts

In Example 7-32, we also have an ORDER BY for the entire query. Don’t get
confused between this and the ORDER BY that’s specific to the window
function.

You can combine ORDER BY with PARTITION BY, restarting the ordering for
each partition. Example 7-33 returns to our example of county codes.

Example 7-33. Combining PARTITION BY and ORDER BY
SELECT tract_id, val,
 SUM(val) OVER (PARTITION BY left(tract_id,5) ORDER BY val) As

sum_county_ordered
FROM census.facts
WHERE fact_type_id = 2
ORDER BY left(tract_id,5), val;
tract_id | val | sum_county_ordered
-------------+----------+-----------------
25001014100 | 226.000 | 226.000
25001011700 | 971.000 | 1197.000
25001010208 | 984.000 | 2181.000
:
25003933200 | 564.000 | 564.000
25003934200 | 593.000 | 1157.000
25003931300 | 606.000 | 1763.000
:

The key observation to make in the output is how the sum changes from row
to row. The ORDER BY clause means that the sum will be taken only from the
beginning of the partition to the current row, giving you a running total,
where the location of the current row in the list is dictated by the ORDER BY
clause. For instance, if your row is in the fifth row in the third partition, the
sum will cover only the first five rows in the third partition. We put an ORDER
BY left(tract_id,5), val at the end of the query so you can easily see

239

SELECT * FROM (
 SELECT

 ROW_NUMBER() OVER(wt) As rnum,
 substring(tract_id,1, 5) As county_code,
 tract_id,
 LAG(tract_id,2) OVER wt As tract_2_before,
 LEAD(tract_id) OVER wt As tract_after

 FROM census.lu_tracts
 WINDOW wt AS (PARTITION BY substring(tract_id,1, 5) ORDER BY

tract_id)
) As x
WHERE rnum BETWEEN 2 and 3 AND county_code IN ('25007','25025')
ORDER BY county_code, rnum;
rnum | county_code | tract_id | tract_2_before | tract_after
-----+-------------+-------------+----------------+------------
2 | 25007 | 25007200200 | | 25007200300
3 | 25007 | 25007200300 | 25007200100 | 25007200400
2 | 25025 | 25025000201 | | 25025000202
3 | 25025 | 25025000202 | 25025000100 | 25025000301

Naming our window wt window.
Using our window name instead of retyping.

Both LEAD and LAG take an optional step argument that defines how many
rows to skip forward or backward; the step can be positive or negative. LEAD
and LAG return NULL when trying to retrieve rows outside the window
partition. This is a possibility that you always have to account for.

the pattern, but keep in mind that the ORDER BY of the query is independent of
the ORDER BY in each OVER clause.

You can explicitly control the rows under consideration by adding a RANGE or
ROWS clause: ROWS BETWEEN CURRENT ROW AND 5 FOLLOWING.

PostgreSQL also supports window naming, which is useful if you have the
same window for each of your window columns. Example 7-34 demonstrates
how to name windows as well as how to use the LEAD and LAG window
functions to show a record value before and after for a given partition.

Example 7-34. Naming windows, demonstrating LEAD and LAG

240

This is your plain-vanilla CTE, used to make your SQL more readable or
to encourage the planner to materialize a costly intermediate result for
better performance.

Writable CTE

This is an extension of the basic CTE with UPDATE, INSERT, and DELETE
commands. A common final step in the CTE is to return changed rows.

Recursive CTE

This puts an entirely new whirl on standard CTE. The rows returned by a
recursive CTE vary during the execution of the query.

PostgreSQL allows you to have a CTE that is both writable and recursive.

Basic CTEs

The basic CTE looks like Example 7-35. The WITH keyword introduces the
CTE.

Example 7-35. Basic CTE
WITH cte AS (

 SELECT

In PostgreSQL, any aggregate function you create can be used as a window
function. Other databases tend to limit window functions to using built-in
aggregates such as AVG, SUM, MIN, and MAX.

Common Table Expressions

Essentially, common table expressions (CTEs) allow you to define a query
that can be reused in a larger query. CTEs act as temporary tables defined
within the scope of the statement; they’re gone once the enclosing statement
has finished executing.

There are three ways to use CTEs:

Basic CTE

241

 tract_id, substring(tract_id,1, 5) As county_code,
 COUNT(*) OVER(PARTITION BY substring(tract_id,1, 5)) As

cnt_tracts
 FROM census.lu_tracts

)
SELECT MAX(tract_id) As last_tract, county_code, cnt_tracts
FROM cte
WHERE cnt_tracts > 100
GROUP BY county_code, cnt_tracts;

cte is the name of the CTE in Example 7-35, defined using a SELECT
statement to contain three columns: tract_id, county_code, and
cnt_tracts. The main SELECT refers to the CTE.

You can stuff as many CTEs as you like, separated by commas, into the WITH
clause, as shown in Example 7-36. The order of the CTEs matters in that
CTEs defined later can call CTEs defined earlier, but not vice versa.

Example 7-36. Multiple CTEs
WITH

 cte1 AS (
 SELECT

 tract_id,
 substring(tract_id,1, 5) As county_code,
 COUNT(*) OVER (PARTITION BY substring(tract_id,1,5)) As

cnt_tracts
 FROM census.lu_tracts

),
 cte2 AS (

 SELECT
 MAX(tract_id) As last_tract,
 county_code,
 cnt_tracts

 FROM cte1
 WHERE cnt_tracts < 8 GROUP BY county_code, cnt_tracts

)
SELECT c.last_tract, f.fact_type_id, f.val
FROM census.facts As f INNER JOIN cte2 c ON f.tract_id = c.last_tract;

Writable CTEs

242

CREATE TABLE logs_2011_01_02 (
 PRIMARY KEY (log_id),
 CONSTRAINT chk

 CHECK (log_ts >= '2011-01-01' AND log_ts < '2011-03-01')
)
INHERITS (logs_2011);

In Example 7-37, we move data from our parent 2011 table to our new child
Jan-Feb 2011 table. The ONLY keyword is described in “Restricting DELETE,
UPDATE, and SELECT from Inherited Tables” and the RETURNING keyword
in “Returning Affected Records to the User”.

Example 7-37. Writable CTE moving data from one branch to another
WITH t AS (

 DELETE FROM ONLY logs_2011 WHERE log_ts < '2011-03-01' RETURNING *
)
INSERT INTO logs_2011_01_02 SELECT * FROM t;

Recursive CTE

The official documentation for PostgreSQL describes it best: “The optional
RECURSIVE modifier changes CTE from a mere syntactic convenience into a
feature that accomplishes things not otherwise possible in standard SQL.” A
more interesting CTE is one that uses a recursively defining construct to
build an expression. PostgreSQL recursive CTEs utilize UNION ALL to
combine tables, a kind of combination that can be done repeatedly as the
query adds the tables over and over.

To turn a basic CTE to a recursive one, add the RECURSIVE modifier after the
WITH. WITH RECURSIVE can contain a mix of recursive and nonrecursive table
expressions. In most other databases, the RECURSIVE keyword is not
necessary to denote recursion.

The writable CTE extends the CTE to allow for update, delete, and insert
statements. We’ll revisit our logs tables that we created in Example 6-3,
adding another child table and populating it:

243

http://www.postgresql.org/docs/current/interactive/queries-with.html

WITH RECURSIVE tbls AS (
 SELECT

c.oid As tableoid,
n.nspname AS schemaname,
c.relname AS tablename

 FROM
 pg_class c LEFT JOIN
 pg_namespace n ON n.oid = c.relnamespace LEFT JOIN
 pg_tablespace t ON t.oid = c.reltablespace LEFT JOIN
 pg_inherits As th ON th.inhrelid = c.oid

 WHERE
 th.inhrelid IS NULL AND
c.relkind = 'r'::"char" AND c.relhassubclass

 UNION ALL
 SELECT

c.oid As tableoid,
n.nspname AS schemaname,
tbls.tablename || '->' || c.relname AS tablename

 FROM
 tbls INNER JOIN
 pg_inherits As th ON th.inhparent = tbls.tableoid INNER JOIN
 pg_class c ON th.inhrelid = c.oid LEFT JOIN
 pg_namespace n ON n.oid = c.relnamespace LEFT JOIN

 pg_tablespace t ON t.oid = c.reltablespace
)
SELECT * FROM tbls ORDER BY tablename;
tableoid | schemaname | tablename
---------+------------+---------------------------------------
3152249 | public | logs
3152260 | public | logs->logs_2011
3152272 | public | logs->logs_2011->logs_2011_01_02

Get a list of all tables that have child tables but no parent table.
This is the recursive part; it gets all children of tables in tbls.

A common use of recursive CTEs is to represent message threads and other
tree-like structures. We have an example of this in Recursive CTE to Display
Tree Structures.

In Example 7-38, we query the system catalog to list the cascading table
relationships we have in our database.

Example 7-38. Recursive CTE

244

http://bit.ly/1yx9ggR

The names of the child tables start with the parental name.
Return parents and all child tables. Because we sort by table name, which
prepends the parent name, all child tables will follow their parents in their
output.

Lateral Joins

LATERAL is a new ANSI SQL construction in version 9.3. Here’s the
motivation behind it: suppose you perform joins on two tables or subqueries;
normally, the pair participating in the join are independent units and can’t
read data from each other. For example, the following interaction would
generate an error because l.yr = 2011 is not a column on the righthand side
of the join:

SELECT *
 FROM

 census.facts L
 INNER JOIN
 (

 SELECT *
 FROM census.lu_fact_types
 WHERE category = CASE WHEN L.yr = 2011

THEN 'Housing' ELSE category END
) R

 ON L.fact_type_id = R.fact_type_id;

Now add the LATERAL keyword, and the error is gone:

SELECT *
 FROM

 census.facts L INNER JOIN LATERAL
 (

 SELECT *
 FROM census.lu_fact_types
 WHERE category = CASE WHEN L.yr = 2011

THEN 'Housing' ELSE category END
) R
 ON L.fact_type_id = R.fact_type_id;

245

CREATE TABLE interval_periods(i_type interval);
INSERT INTO interval_periods (i_type)
VALUES ('5 months'), ('132 days'), ('4862 hours');

Example 7-39. Using LATERAL with generate_series
SELECT i_type, dt
FROM

 interval_periods CROSS JOIN LATERAL
 generate_series('2012-01-01'::date, '2012-12-31'::date, i_type) AS dt

WHERE NOT (dt = '2012-01-01' AND i_type = '132 days'::interval);
i_type | dt
------------+-----------------------
 5 mons | 2012-01-01 00:00:00-05
 5 mons | 2012-06-01 00:00:00-04
 5 mons | 2012-11-01 00:00:00-04
 132 days | 2012-05-12 00:00:00-04
 132 days | 2012-09-21 00:00:00-04
 4862:00:00 | 2012-01-01 00:00:00-05
 4862:00:00 | 2012-07-21 15:00:00-04

Lateral is also helpful for using values from the lefthand side to limit the
number of rows returned from the righthand side. Example 7-40 uses
LATERAL to return, for each superuser who has used our site within the last
100 days, the last five logins and what they were up to. Tables used in this
example were created in “TYPE OF” and “Basic Table Creation”.

Example 7-40. Using LATERAL to limit rows from a joined table
SELECT u.user_name, l.description, l.log_ts
FROM

 super_users AS u CROSS JOIN LATERAL (
 SELECT description, log_ts

LATERAL lets you share data in columns across two tables in a FROM clause.
However, it works only in one direction: the righthand side can draw from
the lefthand side, but not vice versa.

There are situations when you should avail yourself of LATERAL to avoid
extremely convoluted syntax. In Example 7-39, a column on the left serves as
a parameter in the generate_series function on the right:

246

 FROM logs
 WHERE

 log_ts > CURRENT_TIMESTAMP - interval '100 days' AND
 logs.user_name = u.user_name

 ORDER BY log_ts DESC LIMIT 5
) AS l;

Although you can achieve the same results by using window functions,
lateral joins yield faster results with more succinct syntax.

You can use multiple lateral joins in your SQL and even chain them in
sequence as you would when joining more than two subqueries. You can
sometimes get away with omitting the LATERAL keyword; the query parser is
smart enough to figure out a lateral join if you have a correlated expression.
But we advise that you always include the keyword for the sake of clarity.
Also, you’ll get an error if you write your statement assuming the use of a
lateral join but run the statement on a prelateral version PostgreSQL. Without
the keyword, PostgreSQL might end up performing a join with unintended
results.

Other database products also offer lateral joins, although they don’t abide by
the ANSI moniker. In Oracle, you’d use a table pipeline construct. In SQL
Server, you’d use CROSS APPLY or OUTER APPLY.

WITH ORDINALITY

Introduced in version 9.4, the WITH ORDINALITY clause is an SQL ANSI
standard construct. WITH ORDINALITY adds a sequential number column to a
set-returning function result.

NOTE

Although you can’t use WITH ORDINALITY with tables and subqueries, you can
achieve the same result for those by using the window function
ROW_NUMBER.

247

SELECT dt.*
FROM generate_series('2016-01-01'::date,'2016-12-31'::date,interval '1
month')
WITH ORDINALITY As dt;
dt | ordinality
-----------------------+-----------
2016-01-01 00:00:00-05 | 1
2016-02-01 00:00:00-05 | 2
2016-03-01 00:00:00-05 | 3
2016-04-01 00:00:00-04 | 4
2016-05-01 00:00:00-04 | 5
2016-06-01 00:00:00-04 | 6
2016-07-01 00:00:00-04 | 7
2016-08-01 00:00:00-04 | 8
2016-09-01 00:00:00-04 | 9
2016-10-01 00:00:00-04 | 10
2016-11-01 00:00:00-04 | 11
2016-12-01 00:00:00-05 | 12
(12 rows)

WITH ORDINALITY always adds an additional column at the end of the result
called ordinality, and WITH ORDINALITY can only appear in the FROM clause
of an SQL statement. You are free to rename the ordinality column.

You’ll often find WITH ORDINALITY paired with the LATERAL construct. In
Example 7-42 we repeat the LATERAL in Example 7-39, but add on a
sequential number to each set.

Example 7-42. Using WITH ORDINALITY with LATERAL
SELECT d.ord, i_type, d.dt
FROM

You’ll find WITH ORDINALITY often used with functions like
generate_series, unnest, and other functions that expand out composite
types and arrays. It can be used with any set-returning function, including
ones you create yourself.

Example 7-41 demonstrates WITH ORDINALITY used in conjunction with the
temporal variant of the generate_series function.

Example 7-41. Numbering results from set-returning functions

248

 1 | 5 mons | 2012-01-01 00:00:00-05
 2 | 5 mons | 2012-06-01 00:00:00-04
 3 | 5 mons | 2012-11-01 00:00:00-04
 2 | 132 days | 2012-05-12 00:00:00-04
 3 | 132 days | 2012-09-21 00:00:00-04
 1 | 4862:00:00 | 2012-01-01 00:00:00-05

 2 | 4862:00:00 | 2012-07-21 15:00:00-04
(7 rows)

In Example 7-42, WITH ORDINALITY gets applied to the result of the set-
returning function. It always gets applied before the WHERE condition. As a
result, there is a gap in numbering in the final result (the number 1 is lacking
for the 132 day interval), because the number was filtered out by our WHERE
condition.

If we didn’t have the WHERE condition excluding the 2012-01-01, 132 day
record, we would have 8 rows with the 4th row being 1 | 132 days |
2012-01-01 00:00:00-04

GROUPING SETS, CUBE, ROLLUP

If you’ve ever tried to create a summary report that includes both totals and
subtotals, you’ll appreciate the capability to partition your data on the fly.
Grouping sets let you do exactly that.

For our table of test scores, if we need to find both the overall average per
student and the average per student by subject, we could write a query as
shown in Example 7-43, taking advantage of grouping sets.

Example 7-43. Avg score for each student and student in subject
SELECT student, subject, AVG(score)::numeric(10,2)
FROM test_scores
WHERE student IN ('leo','regina')

 interval_periods CROSS JOIN LATERAL
 generate_series('2012-01-01'::date, '2012-12-31'::date, i_type)
WITH ORDINALITY AS d(dt,ord)
WHERE NOT (dt = '2012-01-01' AND i_type = '132 days'::interval);
ord | i_type | dt
----+------------+-----------------------

249

GROUP BY GROUPING SETS ((student),(student,subject))
ORDER BY student, subject NULLS LAST;
 student | subject | avg
---------+-----------+-------
 leo | algebra | 82.00
 leo | calculus | 65.50
 leo | chemistry | 75.50
 leo | physics | 72.00
 leo | NULL | 73.75
 regina | algebra | 72.50
 regina | calculus | 64.50
 regina | chemistry | 73.50
 regina | economics | 90.00
 regina | physics | 84.00
 regina | NULL | 75.44
(11 rows)

In a single query, Example 7-43 gives us both the average of each student
across all subjects and his or her average in each subject.

We can even include a total for each subject across all students by having
multiple grouping sets as shown in Example 7-44.

Example 7-44. Avg score for each student, student in subject, and subject
SELECT student, subject, AVG(score)::numeric(10,2)
FROM test_scores
WHERE student IN ('leo','regina')
GROUP BY GROUPING SETS ((student,subject),(student),(subject))
ORDER BY student NULLS LAST, subject NULLS LAST;
 student | subject | avg
---------+-----------+-------
 leo | algebra | 82.00
 leo | calculus | 65.50
 leo | chemistry | 75.50
 leo | physics | 72.00
 leo | NULL | 73.75
 regina | algebra | 72.50
 regina | calculus | 64.50
 regina | chemistry | 73.50
 regina | economics | 90.00
 regina | physics | 84.00
 regina | NULL | 75.44

250

 NULL | algebra | 77.25
 NULL | calculus | 65.00
 NULL | chemistry | 74.50
 NULL | economics | 90.00
 NULL | physics | 78.00
(16 rows)

What if we wanted to have total breakdowns for student, student plus subject,
and overall average? We could revise our query to add a universal grouping
set GROUPING SETS ((student),(student, subject),()). This is
equivalent to the shorthand ROLLUP (student, subject). See Example 7-
45.

Example 7-45. Avg score for each student in subject, student, and overall
SELECT student, subject, AVG(score)::numeric(10,2)
FROM test_scores
WHERE student IN ('leo','regina')
GROUP BY ROLLUP (student,subject)
ORDER BY student NULLS LAST, subject NULLS LAST;
 student | subject | avg
---------+-----------+-------
 leo | algebra | 82.00
 leo | calculus | 65.50
 leo | chemistry | 75.50
 leo | physics | 72.00
 leo | NULL | 73.75
 regina | algebra | 72.50
 regina | calculus | 64.50
 regina | chemistry | 73.50
 regina | economics | 90.00
 regina | physics | 84.00
 regina | NULL | 75.44
 NULL | NULL | 74.65
(12 rows)

If we reverse the order of columns in ROLLUP, we get the score for each
student/subject pair, average for each subject, and overall average as shown
in Example 7-46.

Example 7-46. Avg score for each student in subject, subject, and overall
SELECT student, subject, AVG(score)::numeric(10,2)

251

 student | subject | avg
---------+-----------+-------
 leo | algebra | 82.00
 leo | calculus | 65.50
 leo | chemistry | 75.50
 leo | physics | 72.00
 regina | algebra | 72.50
 regina | calculus | 64.50
 regina | chemistry | 73.50
 regina | economics | 90.00
 regina | physics | 84.00
 NULL | algebra | 77.25
 NULL | calculus | 65.00
 NULL | chemistry | 74.50
 NULL | economics | 90.00
 NULL | physics | 78.00
 NULL | NULL | 74.65
(15 rows)

If we also wanted to include subtotals for just the subject and just the student,
we’d use GROUPING SETS ((student), (student, subject),
(subject), ()), or the shorthand CUBE (student, subject) in
Example 7-47.

Example 7-47. Avg score for each student, student in subject, subject, and
overall
SELECT student, subject, AVG(score)::numeric(10,2)
FROM test_scores
WHERE student IN ('leo','regina')
GROUP BY CUBE (student, subject)
ORDER BY student NULLS LAST, subject NULLS LAST;
 student | subject | avg
---------+-----------+-------
 leo | algebra | 82.00
 leo | calculus | 65.50
 leo | chemistry | 75.50
 leo | physics | 72.00
 leo | NULL | 73.75

FROM test_scores
WHERE student IN ('leo','regina')
GROUP BY ROLLUP (subject,student)
ORDER BY student NULLS LAST, subject NULLS LAST;

252

 regina | algebra | 72.50
 regina | calculus | 64.50
 regina | chemistry | 73.50
 regina | economics | 90.00
 regina | physics | 84.00
 regina | NULL | 75.44
 NULL | algebra | 77.25
 NULL | calculus | 65.00
 NULL | chemistry | 74.50
 NULL | economics | 90.00
 NULL | physics | 78.00
 NULL | NULL | 74.65
(17 rows)

253

Chapter 8. Writing Functions

In PostgreSQL, as in most databases, you can string a series of SQL
statements together and treat them as a unit, even customizing each run by
passing arguments. Different databases ascribe different names for this unit:
stored procedures, user-defined functions, and so on. PostgreSQL simply
refers to them as functions.

Aside from marshalling SQL statements, functions often add the capability to
control the execution of the SQL using PLs. PostgreSQL offers a rich choice
of languages for writing functions. SQL, C, PL/pgSQL, PL/Perl, and
PL/Python are often packaged with installers. You’ll also find PL/V8, which
allows you to write procedural functions in JavaScript. PL/V8 is a favorite for
web developers and a darling companion to the built-in JSON and JSONB
data types covered in “JSON”.

You can also install additional languages such as PL/R, PL/Java, PL/sh,
PL/TSQL, and even experimental ones geared for high-end data processing
and artificial intelligence, such as PL/Scheme or PL/OpenCL. You can find a
listing of available languages in Procedural Languages.

Anatomy of PostgreSQL Functions

PostgreSQL functions fall into the categories of basic function, aggregate
function, window function, and trigger function. We’ll start by detailing the
basic anatomy of a function and then go into detail about how the various
kinds of specialized function types extends from this.

Function Basics

Regardless of which languages you choose for writing functions, all functions
share a similar structure, as shown in Example 8-1.

254

http://code.google.com/p/plv8js/
http://bit.ly/12sf8v9
http://bit.ly/1vUsHxX
http://bit.ly/1yUcwll
http://bit.ly/1q2gCHA
http://bit.ly/1Iam4hw
http://bit.ly/1q2gFDe
http://bit.ly/1vUsHxX

Example 8-1. Basic function structure
CREATE OR REPLACE FUNCTION func_name(arg1 arg1_datatype DEFAULT
arg1_default)
RETURNS some type | set of some type | TABLE (..) AS
$$
BODY of function
$$
LANGUAGE language_of_function

Arguments can have default values, which allow the caller of the function to
omit them. Optional arguments must be positioned after nonoptional
arguments in the function definition.

Argument names are optional but are useful because they let you refer to an
argument by name inside the function body. For example, think of a function
that is defined to take three input arguments (two being optional):

big_elephant(ear_size numeric, skin_color text DEFAULT 'blue',
name text DEFAULT 'Dumbo')

You can refer to the arguments by name (ear_size, skin_color, etc.) inside
the body of the function. If they are not named, you need to refer to the
arguments inside the function by their order in the argument list: $1, $2, and
$3.

If you name the arguments, you also have the option of using named notation
when calling the function:

big_elephant(name => 'Wooly', ear_size => 1.2)

You can always use the positional notation big_elephant(1.2, 'blue',
'Wooly') even if function arguments are named. Named notation is useful if
you have a function that takes several arguments and many of the arguments
are optional. By using named notation, you can override a default value and
keep other defaults regardless of the order in which the arguments are
defined. You also don’t need to state the arguments in the order they appear
in the function definition. In the big_elephant example we were able to

255

TIP

In PostgreSQL 9.5 and above, the named notation convention is name =>
'Wooly'. In 9.4 and below you would use name := 'Wooly'. For backward
compatibility, the old syntax of arg1_name := arg1_value is still supported
in 9.5 and above, but may be removed in the future.

Functional definitions often include additional qualifiers to optimize
execution and to enforce security:

LANGUAGE

The language must be one installed in your database. Obtain a list with
the SELECT lanname FROM pg_language; query.

VOLATILITY

This setting clues the query planner as to whether outputs can be cached
and used across multiple calls. Your choices are:

IMMUTABLE

The function will always return the same output for the same input.
Think of arithmetic functions. Only immutable functions can be used
in the definition of indexes.

STABLE

The function will return the same value for the same inputs within the
same query.

VOLATILE

The function can return different values with each call, even with the

accept the default skin color of blue and override the default name, even
though name appears last in the argument list. If we were to call the function
simply by the order of arguments, we couldn’t skip over skin_color if we
wanted to override the name argument.

256

same inputs. Think of functions that change data or depend on
environment settings like system time. This is the default.

Keep in mind that the volatility setting is merely a hint to the planner. The
default value of VOLATILE ensures that the planner will always recompute
the result. If you use one of the other values, the planner can still choose
to forgo caching should it decide that recomputing is more cost-effective.

STRICT

A function marked with this qualifier will always return NULL if any
inputs are NULL. The planner skips evaluating the function altogether
with any NULL inputs. When writing SQL functions, be cautious

when marking a function as STRICT, because it could prevent the
planner from taking advantage of indexes. Read our article STRICT on
SQL Functions for more details.

COST

This is a relative measure of computational intensiveness. SQL and
PL/pgSQL functions default to 100 and C functions to 1. This affects the
order that the planner will follow when evaluating the function in a WHERE
clause, and the likelihood of caching. The higher you set the cost, the
more computation the planner will assume the function needs.

ROWS

Applies only to functions returning sets of records. The value provides an
estimate of how many rows will be returned. The planner will take this
value into consideration when coming up with the best strategy.

SECURITY DEFINER

This causes execution to take place within the security context of the
owner of the function. If omitted, the function executes under the context
of the user calling the function. This qualifier is useful for giving people
rights to update a table via a function when they do not have direct update
privileges.

257

http://bit.ly/1rX26C5

PARALLEL

New in PostgreSQL 9.6. This qualifier allows the planner to run in
parallel mode. By default, a function is marked as PARALLEL UNSAFE,
which prevents any queries containing the function from being distributed
into separate work processes. Refer to Parallel Safety. Your choices are:

SAFE

This allows parallel use, and is generally a safe choice for
IMMUTABLE functions or functions that don’t update data or change
transaction state or other variables.

UNSAFE

Functions that change nontemp table data, access sequences, or state
should be marked as UNSAFE. They prevent the query from being
run in parallel mode and therefore risking the corruption of the tables
or other system state.

RESTRICTED

You may want to use this value for functions that use temporary
tables, prepared statements, or client connection state. This value does
not prevent a query from running in parallel mode, but processing of
these functions can happen only on the lead query.

In many of the examples in this chapter, we’ll be including PARALLEL
mode options. If you are running lower than version 9.6, leave out the
parallel clauses.

Triggers and Trigger Functions

No worthy database should lack triggers, which automatically detect and
handle changes in data. PostgreSQL allows you to attach triggers to tables,
views, and even DDL events like creation of a new table.

Triggers can actuate at both the statement level and the row level. Statement
triggers run once per SQL statement, whereas row triggers run for each row

258

https://www.postgresql.org/docs/9.6/static/parallel-safety.html

affected by the SQL. For example, if you execute an UPDATE statement that
affects 1,500 rows, a statement-level update trigger will fire only once,
whereas the row-level trigger can fire up to 1,500 times.

You can further refine the timing of the trigger by making a distinction
between BEFORE, AFTER, and INSTEAD OF triggers. A BEFORE trigger fires
prior to the execution of the statement, giving you a chance to cancel or back
up data before the change. An AFTER trigger fires after statement execution,
giving you a chance to retrieve the new data values. AFTER triggers are often
used for logging or replication purposes. INSTEAD OF triggers execute in lieu
of the statement. You can attach BEFORE and AFTER triggers only to tables
and events, and INSTEAD OF triggers only to views.

Trigger functions that change values of a row should be called only in the
BEFORE event, because in the AFTER event, all updates to the NEW record will
be ignored.

You can also adorn a trigger with a WHEN condition to control which rows
being updated will fire the trigger, or an UPDATE OF columns_list clause to
have the trigger fire only if certain columns are updated. To gain a more
nuanced understanding of the interplay between triggers and the underlying
statement, see the official documentation: Overview of Trigger Behavior. We
also demonstrated a view-based trigger in Example 7-5.

PostgreSQL offers specialized functions to handle triggers. These are called
trigger functions and behave like any other function and have the same basic
structure. Where they differ is in the input parameter and the output type. A
trigger function never takes an argument, because internally the function
already has access to the data and can modify it.

A trigger function always outputs a data type called a trigger. Because
PostgreSQL trigger functions are no different from any other function, you
can reuse the same trigger function across different triggers. This is usually
not the case for other databases, where each trigger is wedded to its own
handler code.

In PostgreSQL, each trigger must have exactly one associated triggering

259

http://bit.ly/1vUsXgq

CREATE AGGREGATE my_agg (input data type) (
SFUNC=state function name,
STYPE=state type,
FINALFUNC=final function name,

function to handle the firing. To apply multiple triggering functions, you
must create multiple triggers against the same event. The alphabetical order
of the trigger name determines the order of firing. Each trigger will have
access to the revised data from the previous trigger. If any trigger issues a
rollback, all data amended by earlier triggers fired by the same event will roll
back.

You can use almost any language to create trigger functions, with SQL being
the notable exception. PL/pgSQL is by far the most popular language. We
demonstrate writing trigger functions using PL/pgSQL in “Writing Trigger
Functions in PL/pgSQL”.

Aggregates

Most other databases limit you to ANSI SQL built-in aggregate functions
such as MIN, MAX, AVG, SUM, and COUNT. In PostgreSQL, you don’t have this
limitation. If you need a more esoteric aggregate function, you’re welcome to
write your own. Because you can use any aggregate function in PostgreSQL
as a window function (see “Window Functions”), you get twice the use out of
any aggregate function that you author.

You can write aggregates in almost any language, SQL included. An
aggregate is generally comprised of one or more functions. It must have at
least a state transition function to perform the computation; usually this
function runs repeatedly to create one output row from two input rows. You
can also specify optional functions to manage initial and final states. You can
also use a different language for each of the subfunctions. We have various
examples of building aggregates using PL/pgSQL, PL/Python, and SQL in
the article PostgreSQL Aggregates.

Regardless of which language you use to code the functions, the glue that
brings them all together is the CREATE AGGREGATE command:

260

http://bit.ly/1CNAd3Y

INITCOND=initial state value, SORTOP=sort_operator
);

The final function is optional, but if specified, it must take as input the result
of the state function. The state function always takes a data type as the input
along with the result of the last call to the state function. Sometimes this
result is what you want as the result of the aggregate function, and sometimes
you want to run a final function to massage the result. The initial condition is
also optional. When the initial condition value is present, the command uses
it to initialize the state value.

The optional sort operator can serve as the associated sort operator for a MIN-
or MAX-like aggregate. It is used to take advantage of indexes. It is just an
operator name such as > and <. It should be used only when the two
following statements are equivalent:

SELECT agg(col) FROM sometable;

SELECT col FROM sometable ORDER BY col USING sortop LIMIT 1;

TIP

The PostgreSQL 9.4 CREATE AGGREGATE structure was expanded to include
support for creating moving aggregates, which are useful with window
functions that move the window. See PostgreSQL 9.4: CREATE
AGGREGATE for details.

TIP

In PostgreSQL 9.6, aggregates were expanded to include support for
parallelization. This was accomplished through the parallel property, which
can take the values of safe, unsafe, or restricted. If the parallel property
is left out, the aggregate is marked as parallel unsafe. In addition to the
parallel setting, combinefunc, serialfunc, and deserialfunc properties
were added to support parallel aggregates. Refer to SQL Create Aggregate for

261

http://bit.ly/12IFIRA
https://www.postgresql.org/docs/9.6/static/sql-createaggregate.html

details.

Aggregates need not depend on a single column. If you need more than one
column for your aggregate (an example is a built-in covariance function), see
How to Create Multi-Column Aggregates for guidance.

SQL language functions are easy to write. You don’t have fancy control flow
commands to worry about, and you probably have a good grasp of SQL to
begin with. When it comes to writing aggregates, you can get pretty far with
the SQL language alone. We demonstrate aggregates in “Writing SQL
Aggregate Functions”.

Trusted and Untrusted Languages

Function languages can be either trusted or untrusted. Many—but not all—
languages offer both a trusted and untrusted version. The term trusted
connotes that the language can do no harm to the underlying operating
system by denying it access to the key OS operations. In short:

Trusted

A trusted language lacks access to the server’s filesystem beyond the data
cluster. It therefore cannot execute OS commands. Users of any level can
create functions in a trusted language. Languages such as SQL,
PL/pgSQL, PL/Perl, and PL/V8 are trusted.

Untrusted

An untrusted language can interact with the OS. It can execute OS
functions and call web services. Only superusers have the privilege of
authoring functions in an untrusted language. However, a superuser can
grant permission to another role to run an untrusted function. By
convention, languages that are untrusted end in the letter U (PL/PerlU,
PL/PythonU, etc.). But ending in U is not a requirement. For example,
PL/R is such an exception.

262

http://bit.ly/1s2pEQD

CREATE OR REPLACE FUNCTION write_to_log(param_user_name varchar,
param_description text)
RETURNS integer AS
$$
INSERT INTO logs(user_name, description) VALUES($1, $2)
RETURNING log_id;
$$
LANGUAGE 'sql' VOLATILE;

To call the function, execute something like:

SELECT write_to_log('alex', 'Logged in at 11:59 AM.') As new_id;

Similarly, you can update data with an SQL function and return a scalar or
void, as shown in Example 8-3.

Example 8-3. SQL function to update a record

Writing Functions with SQL

Although SQL is mostly a language for issuing queries, it can also be used to
write functions. In PostgreSQL, using an existing piece of SQL for the
function is fast and easy: take your existing SQL statements, add a functional
header and footer, and you’re done. But the ease comes at a price. You can’t
use control features like conditional branches, looping, or defining variables.
More restrictively, you can’t run dynamic SQL statements that you assemble
on the fly using arguments passed into the function.

On the positive side, the query planner can peek into an SQL function and
optimize execution—a process called inlining. Query planners treat other
languages as black boxes. Only SQL functions can be inlined, which lets
them take advantage of indexes and collapse repetitive computations.

Basic SQL Function

Example 8-2 shows a primitive SQL function that inserts a row into a table
and returns a scalar value.

Example 8-2. SQL function that returns the identifier of an inserted record

263

Using RETURNS TABLE:
CREATE OR REPLACE FUNCTION select_logs_rt(param_user_name varchar)
RETURNS TABLE (log_id int, user_name varchar(50),
description text, log_ts timestamptz) AS
$$
SELECT log_id, user_name, description, log_ts FROM logs WHERE user_name =
$1;
$$
LANGUAGE 'sql' STABLE PARALLEL SAFE;

Using OUT parameters:
CREATE OR REPLACE FUNCTION select_logs_out(param_user_name varchar, OUT
log_id int
 , OUT user_name varchar, OUT description text, OUT log_ts timestamptz)
RETURNS SETOF record AS
$$
SELECT * FROM logs WHERE user_name = $1;
$$
LANGUAGE 'sql' STABLE PARALLEL SAFE;

Using a composite type:

CREATE OR REPLACE FUNCTION
update_logs(log_id int, param_user_name varchar, param_description text)
RETURNS void AS
$$
UPDATE logs SET user_name = $2, description = $3
 , log_ts = CURRENT_TIMESTAMP WHERE log_id = $1;
$$
LANGUAGE 'sql' VOLATILE;

To execute:
SELECT update_logs(12, 'alex', 'Fell back asleep.');

Functions, in almost all languages, can return sets. SQL functions are no
exception. There are three common approaches to doing this: the ANSI SQL
standard RETURNS TABLE syntax, OUT parameters, and composite data types.
The RETURNS TABLE approach is closest to what you’ll find in other database
products. In Example 8-4, we demonstrate how to write the same function
three ways.

Example 8-4. Examples of function returning sets

264

SELECT * FROM select_logs_xxx('alex');

Writing SQL Aggregate Functions

Yes! In PostgreSQL you are able to author your own aggregate functions to
expand beyond the usual aggregates MIN, MA, COUNT, AVG, etc. We
demonstrate by creating an aggregate function to compute the geometric
mean. A geometric mean is the nth root of a product of n positive numbers
((x1*x2*x3...xn)). It has various uses in finance, economics, and
statistics. A geometric mean substitutes for the more common arithmetic
mean when the numbers range across vastly different scales. A more suitable
computational formula uses logarithms to transform a multiplicative process
to an additive one (EXP(SUM(LN(x))/n)). We’ll be using this method in our
example.

To build our geometric mean aggregate, we need two subfunctions: a state
transition function to sum the logs (see Example 8-5) and a final function to
exponentiate the logs. We’ll also specify an initial condition of zero when we
assemble everything together.

Example 8-5. Geometric mean aggregate: state function
CREATE OR REPLACE FUNCTION geom_mean_state(prev numeric[2], next numeric)
RETURNS numeric[2] AS
$$
SELECT
 CASE
 WHEN $2 IS NULL OR $2 = 0 THEN $1

 ELSE ARRAY[COALESCE($1[1],0) + ln($2), $1[2] + 1]
 END;

$$

(1/n)

CREATE OR REPLACE FUNCTION select_logs_so(param_user_name varchar)
RETURNS SETOF logs AS
$$
SELECT * FROM logs WHERE user_name = $1;
$$
LANGUAGE 'sql' STABLE PARALLEL SAFE;

Call all these functions using:

265

http://www.buzzardsbay.org/geomean.htm

CREATE OR REPLACE FUNCTION geom_mean_final(numeric[2])
RETURNS numeric AS
$$
SELECT CASE WHEN $1[2] > 0 THEN exp($1[1]/$1[2]) ELSE 0 END;
$$
LANGUAGE sql IMMUTABLE PARALLEL SAFE;

Now we stitch all the subfunctions together in our aggregate definition, as
shown in Example 8-7. (Note that our aggregate has an initial condition that
is the same data type as the one returned by our state function.)

Example 8-7. Geometric mean aggregate: assembling the pieces
CREATE AGGREGATE geom_mean(numeric) (
SFUNC=geom_mean_state,
STYPE=numeric[],
FINALFUNC=geom_mean_final,
PARALLEL = safe,
INITCOND='{0,0}'
);

Let’s take our new function for a test drive. In Example 8-8, we compute a
heuristic rating for racial diversity and list the top five most racially diverse
counties in Massachusetts.

Example 8-8. Top five most racially diverse counties using geometric mean
SELECT left(tract_id,5) As county, geom_mean(val) As div_county
FROM census.vw_facts
WHERE category = 'Population' AND short_name != 'white_alone'

LANGUAGE sql IMMUTABLE PARALLEL SAFE;

Our state transition function takes two inputs: the previous state passed in as
an array with two elements, and the next added in the summation. If the
next argument evaluates to NULL or zero, the state function returns the prior
state. Otherwise, it returns a new array in which the first element is the sum
of the logs and the second element is the running count.

We also need a final function, shown in Example 8-6, that divides the sum
from the state transition by the count.

Example 8-6. Geometric mean aggregate: final function

266

25025 | 85.1549046212833364
25013 | 79.5972921427888918
25017 | 74.7697097102419689
25021 | 73.8824162064128504
25027 | 73.5955049035237656

Let’s go into overdrive and engage our new function as a window aggregate,
as shown in Example 8-9.

Example 8-9. Top five most racially diverse census tracts with averages
WITH X AS (SELECT
 tract_id,
 left(tract_id,5) As county,
 geom_mean(val) OVER (PARTITION BY tract_id) As div_tract,
 ROW_NUMBER() OVER (PARTITION BY tract_id) As rn,
 geom_mean(val) OVER(PARTITION BY left(tract_id,5)) As div_county

FROM census.vw_facts WHERE category = 'Population' AND short_name !=
'white_alone'
)
SELECT tract_id, county, div_tract, div_county
FROM X
WHERE rn = 1
ORDER BY div_tract DESC, div_county DESC LIMIT 5;
tract_id | county | div_tract | div_county
------------+--------+----------------------+---------------------
25025160101 | 25025 | 302.6815688785928786 | 85.1549046212833364
25027731900 | 25027 | 265.6136902148147729 | 73.5955049035237656
25021416200 | 25021 | 261.9351057509603296 | 73.8824162064128504
25025130406 | 25025 | 260.3241378371627137 | 85.1549046212833364
25017342500 | 25017 | 257.4671462282508267 | 74.7697097102419689

Writing PL/pgSQL Functions

When your functional needs outgrow SQL, turning to PL/pgSQL is a
common practice. PL/pgSQL surpasses SQL in that you can declare local
variables using DECLARE and you can incorporate control flow.

GROUP BY county
ORDER BY div_county DESC LIMIT 5;
county | div_county
-------+---------------------

267

CREATE FUNCTION select_logs_rt(param_user_name varchar)
RETURNS TABLE (log_id int, user_name varchar(50),
description text, log_ts timestamptz) AS
$$
BEGIN

RETURN QUERY
 SELECT log_id, user_name, description, log_ts FROM logs
 WHERE user_name = param_user_name;

END;
$$
LANGUAGE 'plpgsql' STABLE;

Writing Trigger Functions in PL/pgSQL

Because you can’t write trigger functions in SQL, PL/pgSQL is your next
best bet. In this section, we’ll demonstrate how to write a basic trigger
function in PL/pgSQL.

We proceed in two steps. First, we write the trigger function. Second, we
explicitly attach the trigger function to the appropriate trigger. The second
step is a powerful feature of PostgreSQL that decouples the function handling
the trigger from the trigger itself. You can attach the same trigger function to
multiple triggers, adding another level of reuse not found in other databases.
Because each trigger function can stand on its own, you have your choice of
languages, and mixing is completely OK. For a single triggering event, you
can set up multiple triggers, each with functions written in a different
language. For example, you can have a trigger email a client written in
PL/PythonU or PL/PerlU and another trigger write to a log table with
PL/pgSQL.

A basic trigger function and accompanying trigger is demonstrated in
Example 8-11.

Basic PL/pgSQL Function

To demonstrate syntax differences from SQL, in Example 8-10 we rewrite
Example 8-4 as a PL/pgSQL function.

Example 8-10. Function to return a table using PL/pgSQL

268

Example 8-11. Trigger function to timestamp new and changed records
CREATE OR REPLACE FUNCTION trig_time_stamper() RETURNS trigger AS
$$
BEGIN

 NEW.upd_ts := CURRENT_TIMESTAMP;
 RETURN NEW;

END;
$$
LANGUAGE plpgsql VOLATILE;

CREATE TRIGGER trig_1
BEFORE INSERT OR UPDATE OF session_state, session_id
ON web_sessions
FOR EACH ROW EXECUTE PROCEDURE trig_time_stamper();

Defines the trigger function. This function can be used on any table that
has a upd_ts column. It updates the upd_ts field to the current time
before returning the changed record.
This is a new feature introduced in version 9.0 that allows us to limit the
firing of the trigger so it happens only if specified columns have changed.
Prior to version 9.0, the trigger would fire on any update and you would
need to perform a column-wise comparison using OLD.some_column and
NEW.some_column to determine what changed. (This feature is not
supported for INSTEAD OF triggers.)

Writing PL/Python Functions

Python is a slick language with a vast number of available libraries.
PostgreSQL is the only database we know of that lets you compose functions
using Python. PostgreSQL supports both Python 2 and Python 3.

CAUTION

Although you can install both plpython2u and plpython3u in the same
database, you can’t use both during the same session. This means that you can’t
write a query that calls both plpython2u and plpython3u functions. You may
encounter a third extension called plpythonu; this is an alias for plpython2u

269

and is left around for backward compatibility.

In order to use PL/Python, you first need to install Python on your server. For
Windows and Mac, Python installers are available. For Linux/Unix systems,
Python binaries are usually available via the various distributions. For details,
see PL/Python. After installing Python, install the PostgreSQL Python
extension:

CREATE EXTENSION plpython2u;
CREATE EXTENSION plpython3u;

Make absolutely sure that you have Python properly running on your server
before attempting to install the extension, or else you will run into errors that
could be difficult to troubleshoot.

The extensions are compiled against a specific minor version of Python. You
should install the minor version of Python that matches what your plpythonu
extensions were compiled against. For example, if your plpython2u was
compiled against Python 2.7, you should install Python 2.7.

Basic Python Function

PostgreSQL automatically converts PostgreSQL data types to Python data
types and back. PL/Python is capable of returning arrays and composite
types. You can use PL/Python to write triggers and create aggregate
functions. We’ve demonstrated some of these in the Postgres OnLine Journal,
in PL/Python Examples.

Python allows you to perform feats that aren’t possible in PL/pgSQL. In
Example 8-12, we demonstrate how to write a PL/Python function to do a
text search of the online PostgreSQL document site.

Example 8-12. Searching PostgreSQL documents using PL/Python
CREATE OR REPLACE FUNCTION postgresql_help_search(param_search text)
RETURNS text AS
$$

270

http://www.python.org/download/
http://bit.ly/1zvCawf
http://bit.ly/12IG0rC

Imports the libraries we’ll be using.
Performs a search after concatenating the search term.
Reads the response and saves the retrieved HTML to a variable called
raw_html.
Saves the part of the raw_html that starts with <!-- docbot goes here
--> and ends just before the beginning of <!-- pgContentWrap --> into
a new variable called result.
Removes leading and trailing HTML symbols and whitespace.
Returns result.

Calling Python functions is no different from calling functions written in
other languages. In Example 8-13, we use the function we created in
Example 8-12 to output the result with three search terms.

Example 8-13. Using Python functions in a query
SELECT search_term, left(postgresql_help_search(search_term),125) AS
result
FROM (VALUES ('regexp_match'),('pg_trgm'),('tsvector')) As
x(search_term);

Recall that PL/Python is an untrusted language, without a trusted counterpart.
This means only superusers can write functions using PL/Python, and the
function can interact with the filesystem of the OS. Example 8-14 takes
advantage of the untrusted nature of PL/Python to retrieve file listings from a
directory. Keep in mind that from the perspective of the OS, a PL/Python

import urllib, re
response = urllib.urlopen(
 'http://www.postgresql.org/search/?u=%2Fdocs%2Fcurrent%2F&q=' +
param_search
)
raw_html = response.read()
result =

raw_html[raw_html.find("<!-- docbot goes here -->") :
raw_html.find("<!-- pgContentWrap -->") - 1]

result = re.sub('<[^<]+?>', '', result).strip()
return result
$$
LANGUAGE plpython2u SECURITY DEFINER STABLE;

271

CREATE OR REPLACE FUNCTION list_incoming_files()
RETURNS SETOF text AS
$$
import os
return os.listdir('/incoming')
$$
LANGUAGE 'plpython2u' VOLATILE SECURITY DEFINER;

Run the function in Example 8-14 with the following query:

SELECT filename
FROM list_incoming_files() As filename
WHERE filename ILIKE '%.csv'

Writing PL/V8, PL/CoffeeScript, and
PL/LiveScript Functions

PL/V8 (aka PL/JavaScript) is a trusted language built atop the Google V8
engine. It allows you to write functions in JavaScript and interface with the
JSON data type. It is not part of the core PostgreSQL offering, so you won’t
find it in all popular PostgreSQL distributions. You can always compile it
from source. For Windows, we’ve built PL/V8 extension windows binaries.
You can download them from our Postgres OnLine Journal site for
PostgreSQL 9.6 (both 32-bit and 64-bit).

When you add PL/V8 binaries to your PostgreSQL setup, you get not one,
but three JavaScript-related languages:

PL/V8 (plv8)

This is the basic language that serves as the basis for the other two
JavaScript languages.

PL/CoffeeScript (plcoffee)

function runs under the context of the postgres user account created during
installation, so you need to be sure that this account has adequate access to
the relevant directories.

Example 8-14. Listing files in directories

272

http://code.google.com/p/plv8js/wiki/PLV8
http://code.google.com/p/v8/
http://bit.ly/1u09x5B
http://www.postgresonline.com/journal/archives/367-PLV8

This language lets you write functions in CoffeeScript. CoffeeScript is
JavaScript with a more succinct syntax structure that resembles Python.
Like Python, it relies on indentation to impart context but does away with
annoying curly braces.

PL/LiveScript (plls)

PL/LiveScript allows you to write functions in LiveScript, a fork of
CoffeeScript. LiveScript is similar to CoffeeScript but with some added
syntactic condiments. This article promotes LiveScript as a superior
alternative to CoffeeScript: 10 Reasons to Switch from CoffeeScript to
LiveScript. If anything, LiveScript does have more Python, F#, and
Haskell features than CoffeeScript. If you’re looking for a language that
has a lighter footprint than PL/Python and is trusted, you might want to
give LiveScript a try.

PL/CoffeeScript and PL/LiveScript are compiled using the same PL/V8
library. Their functionality is therefore identical to that of PL/V8. In fact, you
can easily convert back to PL/V8 if they don’t suit your taste buds. All three
languages are trusted. This means they can’t access OS filesystems, but they
can be used by nonsuperusers to create functions.

Example 8-15 has the commands to install the three languages using
extensions. For each database where you’d like to install the support, you
must run these lines. You need not install all three if you choose not to.

Example 8-15. Installing PL/V8 family of languages
CREATE EXTENSION plv8;
CREATE EXTENSION plcoffee;
CREATE EXTENSION plls;

The PL/V8 family of languages has many key qualities that make them stand
apart from PL/pgSQL, some of which you’ll find only in other high-end
procedural languages like PL/R:

Generally faster numeric processing than SQL and PL/pgSQL.

The ability to create window functions. You can’t do this using SQL,
PL/pgSQL, or PL/Python. (You can in PL/R and C, though.)

273

http://coffeescript.org/
http://livescript.net/
http://bit.ly/1BltJrs

The ability to create triggers and aggregate functions.

Support for prepared statements, subtransactions, inner functions, classes,
and try-catch error handling.

The ability to dynamically generate executable code using an eval
function.

JSON support, allowing for looping over and filtering of JSON objects.

Access to functions from DO commands.

Compatibility with Node.js. Node.js users, and other users who want to
use Javascript for building network applications, will appreciate that
PL/V8 and Node.js are built on the same Google V8 engine and that many
of the libraries available for Node.js will work largely unchanged when
used in PL/V8. There is an extension called plv8x that makes using
Node.js modules and modules you build easier to reuse in PL/V8.

You can find several examples on our site of PL/V8 use. Some involved
copying fairly large bodies of JavaScript code that we pulled from the web
and wrapped in a PL/V8 wrapper, as detailed in Using PLV8 to Build JSON
Selectors. The PL/V8 family mates perfectly with web applications because
much of the same client-side JavaScript logic can be reused. More important,
it makes a great all-purpose language for developing numeric functions,
updating data, and so on.

Basic Functions

One of the great benefits of PL/V8 is that you can use any JavaScript
function in your PL/V8 functions with minimal change. For example, you’ll
find many JavaScript examples on the web to validate email addresses. We
arbitrarily picked one and made a PL/V8 out of it in Example 8-16.

Example 8-16. Using PL/V8 to validate an email address
CREATE OR REPLACE FUNCTION
validate_email(email text) returns boolean as
$$

274

http://nodejs.org
https://github.com/clkao/plv8x
http://bit.ly/1Blrkgm

SELECT email, validate_email(email) AS is_valid
 FROM (VALUES ('alexgomezq@gmail.com')
 ,('alexgomezqgmail.com'),('alexgomezq@gmailcom')) AS x (email);

which outputs:
 email | is_valid

----------------------+----------
 alexgomezq@gmail.com | t
 alexgomezqgmail.com | f
 alexgomezq@gmailcom | f

Although you can code the same function using PL/pgSQL and
PostgreSQL’s own regular expression support, we guiltlessly poached
someone else’s time-tested code and wasted no time of our own. If you’re a
web developer and find yourself having to validate data on both the client
side and the database side, using PL/V8 could halve your development
efforts, pretty much by cutting and pasting.

You can store a whole set of these validation functions in a modules table.
You can then inject results onto the page but also use the validation functions
directly in the database, as described in Andrew Dunstan’s “Loading Useful
Modules in PLV8”. This is possible because the eval function is part of the
PL/V8 JavaScript language. The built-in function allows you to compile
functions at startup for later use.

We fed Example 8-17 through an online converter and added a return
statement to generate its CoffeeScript counterpart in Example 8-18.

Example 8-18. PL/Coffee validation of email function
CREATE OR REPLACE FUNCTION
validate_email(email text) returns boolean as
$$

 var re = /\S+@\S+\.\S+/;
 return re.test(email);
$$ LANGUAGE plv8 IMMUTABLE STRICT PARALLEL SAFE;

Our code uses a JavaScript regex object to check the email address. To use
the function, see Example 8-17.

Example 8-17. Calling the PL/V8 email validator

275

http://bit.ly/1q2htrz
http://js2coffee.org

 re = /\S+@\S+\.\S+/
 return re.test email

$$
LANGUAGE plcoffee IMMUTABLE STRICT PARALLEL SAFE;

CoffeeScript doesn’t look all that different from JavaScript, except for the
lack of parentheses, curly braces, and semicolons. The LiveScript version
looks exactly like the CoffeeScript except with a LANGUAGE plls specifier.

Writing Aggregate Functions with PL/V8

In Examples 8-19 and 8-20, we reformulate the state transition and final
function of the geometric mean aggregate function (see “Writing SQL
Aggregate Functions”) using PL/V8.

Example 8-19. PL/V8 geometric mean aggregate: state transition function
CREATE OR REPLACE FUNCTION geom_mean_state(prev numeric[2], next numeric)
RETURNS numeric[2] AS
$$

 return (next == null || next == 0) ? prev :
 [(prev[0] == null)? 0: prev[0] + Math.log(next), prev[1] + 1];

$$
LANGUAGE plv8 IMMUTABLE PARALLEL SAFE;

Example 8-20. PL/V8 geometric mean aggregate: final function
CREATE OR REPLACE FUNCTION geom_mean_final(in_num numeric[2])
RETURNS numeric AS
$$
 return in_num[1] > 0 ? Math.exp(in_num[0]/in_num[1]) : 0;

$$
LANGUAGE plv8 IMMUTABLE PARALLEL SAFE;

The final CREATE AGGREGATE puts all the pieces together and looks more or
less the same in all languages. Our PL/V8 variant is shown in Example 8-21.

Example 8-21. PL/V8 geometric mean aggregate: putting all the pieces
together
CREATE AGGREGATE geom_mean(numeric) (
 SFUNC=geom_mean_state,
 STYPE=numeric[],

276

 FINALFUNC=geom_mean_final,
 PARALLEL = safe,
 INITCOND='{0,0}'

);

When you run Example 8-9, calling our new PL/V8 function, you get the
same answers as the version written in SQL, but the PL/V8 version is two to
three times faster. Generally, for mathematical operations, you’ll find that
PL/V8 functions are 10 to 20 times faster than their SQL counterparts.

Writing Window Functions in PL/V8

PostgreSQL has many built-in window functions, as discussed in “Window
Functions”. Any aggregate function, including the ones you create, can be
used as window aggregate functions. These two points alone make
PostgreSQL stand out from most other relational databases. Even more
impressive is that PostgreSQL allows you to create your own window
functions.

The only caveat is that most PLs you can install in PostgreSQL will not allow
you to create window functions. If you need to write a window function in
PostgreSQL, you cannot do it with built-in PL/PGSQL or SQL languages.
Nor can you do it in other popular PLs like PL/Python or PL/Perl. You can
do it in C, but that requires compilation. You can also to some extent do it in
a language like PL/R. PL/V8, on the other hand, fully supports writing
window functions and is fairly efficient (in many cases just as fast as a
window function written in C), but unlike C, doesn’t require compilation of
your function code.

What makes writing window functions in PL/V8 possible is that PL/V8
comes packaged with a plv8.window_object() helper function that returns
a handle to the current window object. This object includes methods for
inspecting and accessing elements within the window.

In Example 8-22, we’ll create a window function that, for each row, returns
true if it’s the beginning of a run, and false otherwise. Runs, or streaks, are
sequences of identical outcome. The function lets the caller decide how many

277

rows constitute a “run” through the ofs argument.

Example 8-22. PL/V8 window function to flag repeating data values
CREATE FUNCTION run_begin(arg anyelement, ofs int) RETURNS boolean AS $$
 var winobj = plv8.get_window_object();
 var result = true;
 /** Get current value **/
 var cval = winobj.get_func_arg_in_partition(0,

 0,
 winobj.SEEK_CURRENT,
 false);

 for (i = 1; i < ofs; i++){
 /** get next value **/
 nval = winobj.get_func_arg_in_partition(0,

 i,
 winobj.SEEK_CURRENT,
 false);

 result = (cval == nval) ? true : false;
 if (!result){

 break;
 }
 /** next current value is our last value **/
 cval = nval;

 }
 return result;
$$ LANGUAGE plv8 WINDOW;

To declare a function as a window function, it must have a WINDOW designator
in the function envelope as in the last line of Example 8-22.

The body of the function must inspect elements of the window set of data and
use them. PL/V8 has a handle to this window and helper methods outlined in
the PL/V8 documentation PL/V8 Window function API. Our function needs
to look forward in the window for values from the current position in the
window through ofs values. If these values are all the same, it will return
true, otherwise false. The function method that PL/V8 provides for scanning
values of a window is get_func_arg_in_partition. We use that to look
forward and exit with false, as soon as the pattern of equality fails or we’ve
reached the last value.

278

http://pgxn.org/dist/plv8/doc/plv8.html#Window.function.API

SELECT id, player, toss,
 run_begin(toss,3) OVER (PARTITION BY player ORDER BY id) AS rb
 FROM coin_tosses

ORDER BY player, id;
 id | player | toss | rb
----+--------+------+----
 4 | alex | H | t
 8 | alex | H | t

 12 | alex | H | f
 16 | alex | H | f
 2 | leo | T | f
 6 | leo | H | f

 10 | leo | H | f
 14 | leo | T | f
 1 | regina | H | f
 5 | regina | H | f
 9 | regina | T | f
 13 | regina | T | f
 3 | sonia | T | t
 7 | sonia | T | t

 11 | sonia | T | f
 15 | sonia | T | f
(16 rows)

For other examples of writing PL/V8 functions in PL/V8, check out the
PL/V8 window regression script, which demonstrates how to create many of
the built-in PostgreSQL window functions (lead, lag, row_number,
cume_dist, and first_value, last_value) in PL/V8.

We’ll use this function to find the winner in a simple game of coin toss. Each
player gets four tosses, and the winner must have a run of three heads, as
shown in Example 8-23.

Example 8-23. PL/V8 window function example usage

279

https://github.com/plv8/plv8/blob/master/sql/window.sql

Sooner or later, we’ll all face a query that takes just a bit longer to execute
than we have patience for. The best and easiest fix is to perfect the underlying
SQL, followed by adding indexes and updating planner statistics. To guide
you in these pursuits, PostgreSQL comes with a built-in explainer that tells
you how the query planner is going to execute your SQL. Armed with your
knack for writing flawless SQL, your instinct to sniff out useful indexes, and
the insight of the explainer, you should have no trouble getting your queries
to run as fast as your hardware budget will allow.

EXPLAIN

The easiest tools for targeting query performance problems are the EXPLAIN
and EXPLAIN (ANALYZE) commands. EXPLAIN has been around since the
early years of PostgreSQL. Over time the command has matured into a full-
blown tool capable of reporting highly detailed information about the query
execution. Along the way, it added more output formats. EXPLAIN can even
dump the output to XML, JSON, or YAML.

Perhaps the most exciting enhancement for the casual user came several years
back when pgAdmin introduced graphical explain. With a hard and long
stare, you can identify where the bottlenecks are in your query, which tables
are missing indexes, and whether the path of execution took an unexpected
turn.

EXPLAIN Options

To use the nongraphical version of EXPLAIN, simply preface your SQL with
the word EXPLAIN, qualified by some optional arguments:

Chapter 9. Query Performance
Tuning

280

EXPLAIN by itself will just give you an idea of how the planner intends to
execute the query without running it.

Adding the ANALYZE argument, as in EXPLAIN (ANALYZE), will execute
the query and give you a comparative analysis of expected versus actual
behavior.

Adding the VERBOSE argument, as in EXPLAIN (VERBOSE), will report the
planner’s activities down to the columnar level.

Adding the BUFFERS argument, which must be used in conjunction with
ANALYZE, as in EXPLAIN (ANALYZE, BUFFERS), will report share hits.
The higher this number, the more records were already in memory from
prior queries, meaning that the planner did not have to go back to disk to
reretrieve them.

An EXPLAIN that provides all details, including timing, output of columns,
and buffers, would look like EXPLAIN (ANALYZE, VERBOSE, BUFFERS)
your_query_here;.

To see the results of EXPLAIN (ANALYZE) on a data-changing statement such
as UPDATE or INSERT without making the actual data change, wrap the
statement in a transaction that you abort: place BEGIN before the statement
and ROLLBACK after it.

You can use graphical explain with a GUI such as pgAdmin. After launching
pgAdmin, compose your query as usual, but instead of executing it, choose
EXPLAIN or EXPLAIN (ANALYZE) from the drop-down menu.

Sample Runs and Output

Let’s try an example. First, we’ll use the EXPLAIN (ANALYZE) command with
a table we created in Examples 4-1 and 4-2.

In order to ensure that the planner doesn’t use an index, we first drop the
primary key from our table:

281

ALTER TABLE census.hisp_pop DROP CONSTRAINT IF EXISTS hisp_pop_pkey;

Dropping all indexes lets us see the most basic of plans in action, the
sequential scan strategy. See Example 9-1.

Example 9-1. EXPLAIN (ANALYZE) of a sequential scan
EXPLAIN (ANALYZE)
SELECT tract_id, hispanic_or_latino
FROM census.hisp_pop
WHERE tract_id = '25025010103';

Using EXPLAIN alone gives us estimated plan costs. Using EXPLAIN in
conjunction with ANALYZE gives us both estimated and actual costs to
execute the plan. Example 9-2 shows the output of Example 9-1.

Example 9-2. EXPLAIN (ANALYZE) output
Seq Scan on hisp_pop

 (cost=0.00..33.48 rows=1 width=16)
 (actual time=0.213..0.346 rows=1 loops=1)
 Filter: ((tract_id)::text = '25025010103'::text)
 Rows Removed by Filter: 1477

Planning time: 0.095 ms
Execution time: 0.381 ms

In EXPLAIN plans, you’ll see a breakdown by steps. Each step has a reported
cost that looks something like cost=0.00..33.48, as shown in Example 9-2.
In this case we have 0.00, which is the estimated startup cost, and the second
number, 33.48, which is the total estimated cost of the step. The startup is the
time before retrieval of data and could include scanning of indexes, joins of
tables, etc. For sequential scan steps, the startup cost is zero because the
planner mindlessly pulls all data; retrieval begins right away.

Keep in mind that the cost measure is reported in arbitrary units, which varies
based on hardware and configuration cost settings. As such, it’s useful only
as an estimate when comparing different plans on the same server. The
planner’s job is to pick the plan with the lowest estimated overall costs.

Because we opted to include the ANALYZE argument in Example 9-1, the
planner will run the query, and we’re blessed with the actual timings as well.

282

ALTER TABLE census.hisp_pop ADD CONSTRAINT hisp_pop_pkey PRIMARY
KEY(tract_id);

Now we’ll repeat Example 9-1, with the plan output in Example 9-3.

Example 9-3. EXPLAIN (ANALYZE) output of index strategy plan
Index Scan using idx_hisp_pop_tract_id_pat on hisp_pop

 (cost=0.28..8.29 rows=1 width=16)
 (actual time=0.018..0.019 rows=1 loops=1)
 Index Cond: ((tract_id)::text = '25025010103'::text)

Planning time: 0.110 ms
Execution time: 0.046 ms

The planner concludes that using the index is cheaper than a sequential scan
and switches to an index scan. The estimated overall cost drops from 33.48 to
8.29. The startup cost is no longer zero, because the planner first scans the
index, then pulls the matching records from data pages (or from memory if in
shared buffers already). You’ll also notice that the planner no longer needed
to scan 1,477 records. This greatly reduced the cost.

More complex queries, such as in Example 9-4, include additional steps
referred to as subplans, with each subplan having its own cost and all adding
up to the total cost of the plan. The parent plan is always listed first, and its
cost and time is equal to the sum of all its subplans. The output indents the
subplans.

Example 9-4. EXPLAIN (ANALYZE) with GROUP BY and SUM

From the plan in Example 9-2, we can see that the planner elected a
sequential scan because it couldn’t find any indexes. The additional tidbit of
information Rows Removed by Filter: 1477 shows the number of rows
that the planner examined before excluding them from the output.

If you are running PostgreSQL 9.4 or above, the output makes a distinction
between planning time and execution time. Planning time is the amount of
time it takes for the planner to come up with the execution plan, whereas the
execution time is everything that follows.

Let’s now add back our primary key:

283

HashAggregate
 (cost=29.57..32.45 rows=192 width=16)
 (actual time=0.664..0.664 rows=1 loops=1)
 Group Key: "left"((tract_id)::text, 5)
 -> Bitmap Heap Scan on hisp_pop

 (cost=10.25..28.61 rows=192 width=16)
 (actual time=0.441..0.550 rows=204 loops=1)
 Recheck Cond:

 (((tract_id)::text >= '25025000000'::text) AND
 ((tract_id)::text <= '25025999999'::text))

 Heap Blocks: exact=15
 -> Bitmap Index Scan on hisp_pop_pkey

 (cost=0.00..10.20 rows=192 width=0)
 (actual time=0.421..0.421 rows=204 loops=1)
 Index Cond:

 (((tract_id)::text >= '25025000000'::text) AND
 ((tract_id)::text <= '25025999999'::text))

Planning time: 4.835 ms
Execution time: 0.732 ms

The parent of Example 9-5 is the HashAggregate. It contains a subplan of
Bitmap Heap Scan, which in turn contains a subplan of Bitmap Index Scan.
In this example, because this is the first time we’re running this query, our
planning time greatly overshadows the execution time. However,
PostgreSQL caches plans and data, so if we were to run this query or a
similar one within a short period of time, we should be rewarded with a much
reduced planning time and also possibly reduced execution time if much of
the data it needs is already in memory. Because of caching, our second run
has these stats:

EXPLAIN (ANALYZE)
SELECT left(tract_id,5) AS county_code, SUM(white_alone) As w
FROM census.hisp_pop
WHERE tract_id BETWEEN '25025000000' AND '25025999999'
GROUP BY county_code;

The output of Example 9-4 is shown in Example 9-5, consisting of a
grouping and sum.

Example 9-5. EXPLAIN (ANALYZE) output of HashAggregate strategy plan

284

Planning time: 0.200 ms
Execution time: 0.635 ms

Graphical Outputs

If reading the output is giving you a headache, see Figure 9-1 for the
graphical EXPLAIN (ANALYZE) of Example 9-4.

Figure 9-1. Graphical explain output

You can get more detailed information about each part by mousing over the
node in the display.

Before wrapping up this section, we must pay homage to the tabular explain
plan created by Hubert Lubaczewski. Using his site, you can copy and paste
the text output of your EXPLAIN output, and it will show you a beautifully
formatted table, as shown in Figure 9-2.

285

http://explain.depesz.com

Figure 9-2. Online EXPLAIN statistics

In the HTML tab, you’ll see a nicely reformatted color-coded table of the
plan, with problem areas highlighted in vibrant colors, as shown in Figure 9-
3. It has columns for exclusive time (time consumed by the parent step) and
inclusive time (the time of the parent step plus its child steps).

Figure 9-3. Tabular explain output

Although the HTML table in Figure 9-3 provides much the same information
as our plain-text output, the color coding and the breakout of numbers makes
it easier to digest. For example, yellow, brown, and red highlight potential
bottlenecks.

286

1. In postgresql.conf, change shared_preload_libraries = '' to
shared_preload_libraries = 'pg_stat_statements'.

2. In the customized options section of postgresql.conf, add the lines:

pg_stat_statements.max = 10000

pg_stat_statements.track = all

3. Restart your postgresql service.

4. In any database you want to use for monitoring, enter CREATE EXTENSION
pg_stat_statements;.

The extension provides two key features:

A view called pg_stat_statements, which shows all the databases to
which the currently connected user has access.

The rows x column is the expected number of rows, while the rows column
shows the actual number after execution. This reveals that, although our
planner’s final step was expecting 192 records, we ended up with just one.
Bad row estimates are often caused by out-of-date table statistics. It’s always
a good habit to analyze tables frequently to update the statistics, especially
right after an extensive update or insert.

Gathering Statistics on Statements

The first step in optimizing performance is to determine which queries are
bottlenecks. One monitoring extension useful for getting a handle on your
most costly queries is pg_stat_statements. This extension provides metrics on
running queries, the most frequently run queries, and how long each takes.
Studying these metrics will help you determine where you need to focus your
optimization efforts.

pg_stat_statements comes packaged with most PostgreSQL distributions but
must be preloaded on startup to initiate its data-collection process:

287

http://bit.ly/1IanI2K

A function called pg_stat_statements_reset, which flushes the query
log. This function can be run only by superusers.

The query in Example 9-6 lists the five most costly queries in the
postgresql_book database.

Example 9-6. Expensive queries in database
SELECT

 query, calls, total_time, rows,
 100.0*shared_blks_hit/NULLIF(shared_blks_hit+shared_blks_read,0) AS

hit_percent
FROM pg_stat_statements As s INNER JOIN pg_database As d On d.oid =
s.dbid
WHERE d.datname = 'postgresql_book'
ORDER BY total_time DESC LIMIT 5;

Writing Better Queries

The best and easiest way to improve query performance is to start with well-
written queries. Four out of five queries we encounter are not written as
efficiently as they could be.

There appear to be two primary causes for all this bad querying. First, we see
people reuse SQL patterns without thinking. For example, if they
successfully write a query using a left join, they will continue to use left join
when incorporating more tables instead of considering the sometimes more
appropriate inner join. Unlike other programming languages, the SQL
language does not lend itself well to blind reuse.

Second, people don’t tend to keep up with the latest developments in their
dialect of SQL. Don’t be oblivious to all the syntax-saving (and sanity-
saving) addenda that have come along in new versions of PostgreSQL.

Writing efficient SQL takes practice. There’s no such thing as a wrong query
as long as you get the expected result, but there is such a thing as a slow
query. In this section, we point out some of the common mistakes we see
people make. Although this book is about PostgreSQL, our recommendations
are applicable to other relational databases as well.

288

SELECT tract_id,
 (SELECT COUNT(*) FROM census.facts As F

WHERE F.tract_id = T.tract_id) As num_facts,
 (SELECT COUNT(*)
 FROM census.lu_fact_types As Y
 WHERE Y.fact_type_id IN (

 SELECT fact_type_id
 FROM census.facts F
 WHERE F.tract_id = T.tract_id

)
) As num_fact_types

FROM census.lu_tracts As T;

Example 9-7 can be more efficiently written as Example 9-8. This query,
consolidating selects and using a join, is not only shorter than the prior one,
but faster. If you have a larger dataset or weaker hardware, the difference
could be even more pronounced.

Example 9-8. Overused subqueries simplified
SELECT T.tract_id,

 COUNT(f.fact_type_id) As num_facts,
 COUNT(DISTINCT fact_type_id) As num_fact_types

FROM census.lu_tracts As T LEFT JOIN census.facts As F ON T.tract_id =
F.tract_id
GROUP BY T.tract_id;

Overusing Subqueries in SELECT

A classic newbie mistake is to think of subqueries as independent entities.
Unlike conventional programming languages, SQL doesn’t take kindly to
black-boxing—writing a bunch of subqueries independently and then
assembling them mindlessly to get the final result. You have to treat each
query holistically. How you piece together data from different views and
tables is every bit as important as how you go about retrieving the data in the
first place.

The unnecessary use of subqueries, as shown in Example 9-7, is a common
symptom of piecemeal thinking.

Example 9-7. Overusing subqueries

289

Figure 9-4. Graphical plan when overusing subqueries

Figure 9-5. Tabular plan when overusing subqueries

Figure 9-4 shows the graphical plan for Example 9-7 (we’ll save you the
eyesore of seeing the gnarled output of the text EXPLAIN), while Figure 9-5
shows the tabular output from http://explain.depesz.com, revealing a great
deal of inefficiency.

290

http://explain.depesz.com

Figure 9-6 shows the graphical plan of Example 9-8, demonstrating how
much less work goes on in it.

Figure 9-6. Graphical plan after removing subqueries

Keep in mind that we’re not asking you to avoid subqueries entirely. We’re
only asking you to use them judiciously. When you do use them, pay extra
attention to how you incorporate them into the main query. Finally,
remember that a subquery should work with the main query, not
independently of it.

Avoid SELECT *

SELECT * is wasteful. It’s akin to printing out a 1,000-page document when
you need only 10 pages. Besides the obvious downside of adding to network
traffic, there are two other drawbacks that you might not think of.

First, PostgreSQL stores large blob and text objects using TOAST (The
Oversized-Attribute Storage Technique). TOAST maintains side tables for
PostgreSQL to store this extra data and may chunk a single text field into
multiple rows. So retrieving a large field means that TOAST must assemble
the data from several rows of a side TOAST table. Imagine the extra
processing if your table contains text data the size of War and Peace and you
perform an unnecessary SELECT *.

Second, when you define views, you often will include more columns than
you’ll need. You might even go so far as to use SELECT * inside a view. This
is understandable and perfectly fine. PostgreSQL is smart enough to let you
request all the columns you want in your view definition and even include
complex calculations or joins without incurring penalty, as long as no user

291

CREATE OR REPLACE VIEW vw_stats AS
SELECT tract_id,

 (SELECT COUNT(*)
 FROM census.facts As F

 WHERE F.tract_id = T.tract_id) As num_facts,
 (SELECT COUNT(*)
 FROM census.lu_fact_types As Y
 WHERE Y.fact_type_id IN (
 SELECT fact_type_id
 FROM census.facts F
 WHERE F.tract_id = T.tract_id

)
) As num_fact_types

FROM census.lu_tracts As T;

Now we query our view with this query:

SELECT tract_id FROM vw_stats;

Execution time is about 21 ms on our server because it doesn’t run any
computation for certain fields such as num_facts and num_fact_types,
fields we did not ask for. If you looked at the plan, you may be startled to
find that it never even touches the facts table because it’s smart enough to
know it doesn’t need to. But suppose we enter:

SELECT * FROM vw_stats;

Our execution time skyrockets to 681 ms, and the plan is just as we had in
Figure 9-4. Although our results in this example suffer the loss of just
milliseconds, imagine tables with tens of millions of rows and hundreds of
columns. Those milliseconds could translate into overtime at the office
waiting for a query to finish.

runs a query referring to individual columns.

To drive home our point, let’s wrap our census in a view and use the slow
subquery example from Example 9-7:

292

SELECT T.tract_id, COUNT(*) As tot, type_1.tot AS type_1
FROM

 census.lu_tracts AS T LEFT JOIN
 (SELECT tract_id, COUNT(*) As tot

 FROM census.facts
 WHERE fact_type_id = 131
 GROUP BY tract_id

) As type_1 ON T.tract_id = type_1.tract_id LEFT JOIN
 census.facts AS F ON T.tract_id = F.tract_id

GROUP BY T.tract_id, type_1.tot;

Figure 9-7 shows the graphical plan of Example 9-9.

Figure 9-7. Graphical plan when using subqueries instead of CASE

We now rewrite the query using CASE. You’ll find that the economized query,
shown in Example 9-10, is generally faster and much easier to read.

Example 9-10. Using CASE instead of subqueries
SELECT T.tract_id, COUNT(*) As tot,
 COUNT(CASE WHEN F.fact_type_id = 131 THEN 1 ELSE NULL END) AS type_1

FROM census.lu_tracts AS T LEFT JOIN census.facts AS F
ON T.tract_id = F.tract_id
GROUP BY T.tract_id;

Figure 9-8 shows the graphical plan of Example 9-10.

Make Good Use of CASE

We’re always surprised how frequently people forget about using the ANSI
SQL CASE expression. In many aggregate situations, a CASE can obviate the
need for inefficient subqueries. We’ll demonstrate the point with two
equivalent queries and their corresponding plans. Example 9-9 uses
subqueries.

Example 9-9. Using subqueries instead of CASE

293

Figure 9-8. Graphical explain when using CASE

Even though our rewritten query still doesn’t use the fact_type index, it’s
faster than using subqueries because the planner scans the facts table only
once. A shorter plan is generally not only easier to comprehend but also often
performs better than a longer one, although not always.

Using FILTER Instead of CASE

PostgreSQL 9.4 introduced the FILTER construct, which we introduced in
“FILTER Clause for Aggregates”. FILTER can often replace CASE in
aggregate expressions. Not only is this syntax more pleasant to look at, but in
many situations it performs better. We repeat Example 9-10 with the
equivalent filter version in Example 9-11.

Example 9-11. Using FILTER instead of subqueries
SELECT T.tract_id, COUNT(*) As tot,
 COUNT(*) FILTER (WHERE F.fact_type_id = 131) AS type_1

FROM census.lu_tracts AS T LEFT JOIN census.facts AS F
ON T.tract_id = F.tract_id
GROUP BY T.tract_id;

For this particular example, the FILTER performance is only about a
millisecond faster than our CASE version, and the plans are more or less the
same.

Parallelized Queries

A parallelized query is one whose execution is distributed by the planner

294

Any data modifying queries, such as updates, inserts, and deletes.

Any data definition queries, such as the creation of new tables, columns,
and indexes.

Queries called by cursors or for loops.

Some aggregates. Common ones like COUNT and SUM are
parallelizable, but aggregates that include DISTINCT or ORDER BY are
not.

Functions of your own creation. By default they are PARALLEL
UNSAFE, but you can enable parallelization through the PARALLEL
setting of the function as described in “Anatomy of PostgreSQL
Functions”.

The following setting requirements are needed to enable the use of
parallelism:

dynamic_shared_memory_type cannot be set to none.

max_worker_processes needs to be greater than zero.

max_parallel_workers, a new setting in PostgreSQL 10, needs to be
greater than zero and less than or equal to max_worker_processes.

among multiple backend processes. By so doing, PostgreSQL is able to
utilize multiple processor cores so that work completes in less time.
Depending on the number of processor cores in your hardware, the time
savings could be significant. Having two cores could halve your time; four
could quarter your time, etc.

Parallelization was introduced in version 9.6. The kinds of queries available
for parallelization are limited, usually consisting only of the most
straightforward select statements. But with each new release, we expect the
range of parallelizable queries to expand.

The kinds of queries that cannot be parallelized as of version 10.0 are:

295

max_parallel_workers_per_gather needs to be greater than zero and
less than or equal to max_worker_processes. For PostgreSQL 10, this
setting must also be less than or equal to max_parallel_workers. You
can apply this particular setting at the session or function level.

What Does a Parallel Query Plan Look Like?

How do you know if your query is a beneficiary of parallelization? Look in
the plan. Parallelization is done by a part of the planner called a gather node.
So if you see a gather node in your query plan, you have some kind of
parallelization. A gather node contains exactly one plan, which it divides
amongst what are called workers. Each worker runs as separate backend
processes, each process working on a portion of the overall query. The results
of workers are collected by a worker acting as the leader. The leader does the
same work as other workers but has the added responsibility of collecting all
the answers from fellow workers. If the gather node is the root node of a plan,
the whole query will be run in parallel. If it’s lower down, only the subplan it
encompasses will be parallelized.

For debugging purposes, you can invoke a setting called
force_parallel_mode. When true, it will encourage the planner to use
parallel mode if a query is parallelizable even when the planner concludes it’s
not cost-effective to do so. This setting is useful during debugging to figure
out why a query is not parallelized. Don’t switch on this setting in a
production environment, though!

The queries you’ve seen thus far in this chapter will not trigger a parallel plan
because the cost of setting up the background workers outweighs the benefit.
To confirm that our query takes longer when forced to be parallel, try the
following:

set force_parallel_mode = true;

And then run Example 9-4 again. The output of the new plan is shown in
Example 9-12.

296

Example 9-12. EXPLAIN (ANALYZE) output of Parallel plan
Gather

 (cost=1029.57..1051.65 rows=192 width=64)
 (actual time=12.881..13.947 rows=1 loops=1)
 Workers Planned: 1
 Workers Launched: 1
 Single Copy: true
 -> HashAggregate

 (cost=29.57..32.45 rows=192 width=64)
 (actual time=0.230..0.231 rows=1 loops=1)
 Group Key: "left"((tract_id)::text, 5)
 -> Bitmap Heap Scan on hisp_pop

 (cost=10.25..28.61 rows=192 width=36)
 (actual time=0.127..0.184 rows=204 loops=1)
 Recheck Cond:

 (((tract_id)::text >= '25025000000'::text) AND
 ((tract_id)::text <= '25025999999'::text))
 -> Bitmap Index Scan on hisp_pop_pkey

 (cost=0.00..10.20 rows=192 width=0)
 (actual time=0.106..0.106 rows=204 loops=1)
 Index Cond:

 (((tract_id)::text >= '25025000000'::text) AND
 ((tract_id)::text <= '25025999999'::text))

Planning time: 0.416 ms
Execution time: 16.160 ms

The cost of organizing additional workers (even one) significantly increases
the total time of the query.

Generally, parallelization is rarely worthwhile for queries that finish in a few
milliseconds. But for queries over a ginormous dataset that normally take
seconds or minutes to complete, parallelization is worth the initial setup cost.

To illustrate the benefit of parallelization, we downloaded a table from the
US Bureau of Labor Statistics with 6.5 million rows of data and ran the query
in Example 9-13.

Example 9-13. Group by with parallelization
set max_parallel_workers_per_gather=4;
EXPLAIN ANALYZE VERBOSE
SELECT COUNT(*), area_type_code

297

 (cost=104596.49..104596.61 rows=3 width=10)
 (actual time=500.440..500.444 rows=3 loops=1)
 Output: COUNT(*), area_type_code
 Group Key: labor.area_type_code
 -> Sort

 (cost=104596.49..104596.52 rows=12 width=10)
 (actual time=500.433..500.435 rows=15 loops=1)
 Output: area_type_code, (PARTIAL COUNT(*))
 Sort Key: labor.area_type_code
 Sort Method: quicksort Memory: 25kB
 -> Gather

 (cost=104595.05..104596.28 rows=12 width=10)
 (actual time=500.159..500.382 rows=15 loops=1)
 Output: area_type_code, (PARTIAL COUNT(*))
 Workers Planned: 4
 Workers Launched: 4
 -> Partial HashAggregate

 (cost=103595.05..103595.08 rows=3 width=10)
 (actual time=483.081..483.082 rows=3 loops=5)
 Output: area_type_code, PARTIAL count(*)
 Group Key: labor.area_type_code
 Worker 0: actual time=476.705..476.706 rows=3 loops=1
 Worker 1: actual time=480.704..480.705 rows=3 loops=1
 Worker 2: actual time=480.598..480.599 rows=3 loops=1
 Worker 3: actual time=478.000..478.000 rows=3 loops=1
 -> Parallel Seq Scan on public.labor

 (cost=0.00..95516.70 rows=1615670 width=2)
 (actual time=1.550..282.833 rows=1292543 loops=5)
 Output: area_type_code
 Worker 0: actual time=0.078..282.698 rows=1278313

loops=1
 Worker 1: actual time=3.497..282.068 rows=1338095

loops=1
 Worker 2: actual time=3.378..281.273 rows=1232359

loops=1
 Worker 3: actual time=0.761..278.013 rows=1318569

loops=1
Planning time: 0.060 ms
Execution time: 512.667 ms

FROM labor
GROUP BY area_type_code
ORDER BY area_type_code;
Finalize GroupAggregate

298

set max_parallel_workers_per_gather=0;
EXPLAIN ANALYZE VERBOSE
SELECT COUNT(*), area_type_code
FROM labor
GROUP BY area_type_code
ORDER BY area_type_code;
Sort

 (cost=176300.24..176300.25 rows=3 width=10)
 (actual time=1647.060..1647.060 rows=3 loops=1)
 Output: (COUNT(*)), area_type_code
 Sort Key: labor.area_type_code
 Sort Method: quicksort Memory: 25kB
 -> HashAggregate

 (cost=176300.19..176300.22 rows=3 width=10)
 (actual time=1647.025..1647.025 rows=3 loops=1)
 Output: count(*), area_type_code
 Group Key: labor.area_type_code
 -> Seq Scan on public.labor

 (cost=0.00..143986.79 rows=6462679 width=2)
 (actual time=0.076..620.563 rows=6462713 loops=1)
 Output: series_id, year, period, value, footnote_codes,

area_type_code
Planning time: 0.054 ms
Execution time: 1647.115 ms

In both cases, the output is the following:

count | area_type_code
--------+---------------
3718937 | M
2105205 | N
 638571 | S
(3 rows)

In the parallel plan, four workers each take about 280 ms to accomplish their
portion of the task.

To see the cost and timing without parallelization, set
max_parallel_workers_per_gather=0, and compare the plan, as shown in
Example 9-14.

Example 9-14. Group by without parallelization

299

Parallel Scans

A parallel query has a particular scan strategy for partitioning the set of data
among workers. In PostgreSQL 9.6, only a sequential scan is parallelizable.
PostgreSQL 10 is also able to parallelize bitmap heap scans, index scans, and
index-only scans. However, for index and index-only scans, only B-Tree
indexes will parallelize. No such limitation exists for bitmap heap scans: for
them, any index type will qualify. But in the bitmap heap scan, the building
of the bitmap index is not parallelizable, so workers must wait for the bitmap
index to be fully built.

Parallel Joins

Joins also benefit from parallelization. In PostgreSQL 9.6, nested loops and
hash joins are parallelizable.

In nested loops, each worker matches its subset of data against a complete
reference set of data shared by all workers.

In hash joins, each worker builds a separate copy of the hash table and joins
this with their partitioned share of other tables. Thus, in a hash join, workers
are doing redundant work by doing a full hash. So in cases where creating the
hash table is expensive, a parallel hash join is less efficient than a nonparallel
join.

In PostgreSQL 10, merge joins are parallelizable. Merge joins have a similar
limitation to hash joins, in that one side of the join is repeated in its entirety
by each worker.

Guiding the Query Planner

The planner’s behavior is driven by the presence of indexes, cost settings,
strategy settings, and its general perception of the distribution of data. In this
section, we’ll go over various approaches for optimizing the planner’s
behavior.

300

Strategy Settings

Although the PostgreSQL query planner doesn’t accept index hints as some
other database products do, you can disable various strategy settings on a per-
query or permanent basis to dissuade the planner from going down an
unproductive path. All planner optimizing settings are documented in the
section Planner Method Configuration of the manual. By default, all strategy
settings are enabled, arming the planner with maximum flexibility. You can
disable various strategies if you have some prior knowledge of the data. Keep
in mind that disabling doesn’t necessarily mean that the planner will be
barred from using the strategy. You’re only making a polite request to the
planner to avoid it.

Two settings that we occasionally disable are enable_nestloop and
enable_seqscan. The reason is that these two strategies tend to be the
slowest, though not in all cases. Although you can disable them, the planner
can still use them when it has no viable alternative. When you do see them
being used, it’s a good idea to double-check that the planner is using them out
of efficiency, and not out of ignorance. One quick way to check is to disable
them. If they are used by default but not used when you disable them,
compare the actual costs between the two cases to confirm that using them is
more efficient than not using them.

How Useful Is Your Index?

When the planner decides to perform a sequential scan, it loops through all
the rows of a table. It opts for this route when it finds no index that could
satisfy a query condition, or it concludes that using an index is more costly
than scanning the table. If you disable the sequential scan strategy, and the
planner still insists on using it, this means that indexes are missing or that the
planner can’t use the indexes you have in place for the particular query. Two
common mistakes people make are to leave useful indexes out of their tables
or to put in indexes that can’t be used by their queries. An easy way to check
whether your indexes are being used is to query the pg_stat_user_indexes
and pg_stat_user_tables views. To target slow queries, use the

301

http://www.postgresql.org/docs/current/static/runtime-config-query.html

CREATE INDEX idx_lu_fact_types ON census.lu_fact_types USING gin
(fact_subcats);

To test our index, we’ll execute a query to find all rows with subcats
containing “White alone” or “Asian alone.” We explicitly enabled sequential
scan even though it’s the default setting, just to be sure. The accompanying
EXPLAIN output is shown in Example 9-15.

Example 9-15. Allow planner to choose sequential scan
set enable_seqscan = true;
EXPLAIN (ANALYZE)
SELECT *
FROM census.lu_fact_types
WHERE fact_subcats && '{White alone, Black alone}'::varchar[];
Seq Scan on lu_fact_types

 (cost=0.00..2.85 rows=2 width=200)
 actual time=0.066..0.076 rows=2 loops=1)

Filter: (fact_subcats
&& '{"White alone","Black alone"}'::character varying[])

Rows Removed by Filter: 66
Planning time: 0.182 ms
Execution time: 0.108 ms

Observe that when enable_seqscan is enabled, our index is not being used
and the planner has chosen to do a sequential scan. This could be because our
table is so small or because the index we have is no good for this query. If we
repeat the query but turn off sequential scan beforehand, as shown in
Example 9-16, we can see that we have succeeded in forcing the planner to
use the index.

Example 9-16. Disable sequential scan, coerce index use
set enable_seqscan = false;

pg_stat_statements extension described in “Gathering Statistics on
Statements”.

Let’s start off with a query against the table we created in Example 7-22.
We’ll add a GIN index on the array column. GIN indexes are among the few
indexes you can use to index arrays:

302

(cost=12.02..14.04 rows=2 width=200)
 (actual time=0.058..0.058 rows=2 loops=1)

Recheck Cond: (fact_subcats
&& '{"White alone","Black alone"}'::character varying[])

Heap Blocks: exact=1
-> Bitmap Index Scan on idx_lu_fact_types

 (cost=0.00..12.02 rows=2 width=0)
 (actual time=0.048..0.048 rows=2 loops=1)
 Index Cond: (fact_subcats

&& '{"White alone","Black alone"}'::character varying[])
Planning time: 0.230 ms
Execution time: 0.119 ms

From this plan, we learn that our index can be used but ends up making the
query take longer because the cost is more than doing a sequential scan.
Therefore, under normal circumstances, the planner will opt for the sequential
scan. As we add more data to our table, we’ll probably find that the planner
changes strategies to an index scan.

In contrast to the previous example, suppose we were to write a query of the
form:

SELECT * FROM census.lu_fact_types WHERE 'White alone' =
ANY(fact_subcats);

We would discover that, regardless of how we set enable_seqscan, the
planner will always perform a sequential scan because the index we have in
place can’t service this query. So it is important to consider which indexes
will be useful and to write queries to take advantage of them. And
experiment, experiment, experiment!

Table Statistics

Despite what you might think or hope, the query planner is not a magician.

EXPLAIN (ANALYZE)
SELECT *
FROM census.lu_fact_types
WHERE fact_subcats && '{White alone, Black alone}'::varchar[];
Bitmap Heap Scan on lu_fact_types

303

SELECT
 attname As colname,
 n_distinct,
 most_common_vals AS common_vals,
 most_common_freqs As dist_freq

FROM pg_stats
WHERE tablename = 'facts'
ORDER BY schemaname, tablename, attname;
colname | n_distinct | common_vals | dist_freq
-------------+------------+------------------+---------------------------

fact_type_id | 68 | {135,113... | {0.0157,0.0156333,...
perc | 985 | {0.00,... | {0.1845,0.0579333,0.056...
tract_id | 1478 | {25025090300... |
{0.00116667,0.00106667,0.0...
val | 3391 | {0.000,1.000,2...| {0.2116,0.0681333,0...
yr | 2 | {2011,2010} | {0.748933,0.251067}

pg_stats gives the planner a sense of how actual values are dispersed within
a given column and lets it plan accordingly. The pg_stats table is constantly
updated as a background process. After a large data load or a major deletion,

Its decisions follow prescribed logic that’s far beyond the scope of this book.
The rules that the planner follows depend heavily on the current state of the
data. The planner can’t possibly scan all the tables and rows prior to
formulating its plan. That would be self-defeating. Instead, it relies on
aggregated statistics about the data.

Therefore, having accurate and current stats is crucial for the planner to make
the right decision. If stats differ greatly from reality, the planner will often
come up with bad plans, the most detrimental of these being unnecessary
sequential table scans. Generally, only about 20 percent of the entire table is
sampled to produce stats. This percentage could be even lower for very large
tables. You can control the number of rows sampled on a column-by-column
basis by setting the STATISTICS value.

To get a sense of the information culled and used by the planner, query the
pg_stats table, as illustrated in Example 9-17.

Example 9-17. Data distribution histogram

304

ALTER TABLE census.facts ALTER COLUMN fact_type_id SET STATISTICS 1000;

Version 10 introduced support for multicolumn stats via the new CREATE
STATISTICS DDL construct. This feature allows you to create stats against a
combination of columns. A multicolumn stat is useful if you have columns
that are correlated in value. Say, for example, that you have a particular kind
of data for only one year and not other years. In that case, you might want to
create a compound stat for fact_type_id and yr as shown in Example 9-18.

Example 9-18. Multicolumn stats
CREATE STATISTICS census.stats_facts_type_yr_dep_dist (dependencies,
ndistinct)

 ON fact_type_id, yr FROM census.facts;
ANALYZE census.facts;

A CREATE STATISTICS statement must specify two or more columns in a
single table. Example 9-18 creates stats on the columns fact_type_id and
yr in the census.facts table. The statistics should also be named, although
that is optional. If you specify a schema as part of the name, the statistics will
be created in that schema; otherwise, they get created in the default schema.

You can collect two kinds of statistics, and must specify one or both in your
statement:

The dependencies statistic catalogs dependencies between columns. For
example, zip code 02109 is seen only with Boston in the city column.
dependencies statistics are used only to optimize queries with equalities,
such as a query specifying city = 'Boston' and zip = '02109'.

The ndistinct statistic catalogs how often column values are seen
together and tries to catalog statistics for each group of columns.

you should manually update the stats by executing VACUUM ANALYZE. VACUUM
permanently removes deleted rows from tables; ANALYZE updates the stats.

For columns that participate often in joins and are used heavily in WHERE
clauses, consider increasing the number of sampled rows:

305

https://www.postgresql.org/docs/10/static/sql-createstatistics.html

ndistinct statistics are only used for improving GROUP BY clauses.
Specifically, they are useful only on queries that group by all the columns
in your statistic.

Statistics created using CREATE STATISTICS are stored in the table
pg_statistic_ext and can be dropped using DROP STATISTICS. Similar
to other statistics, they are computed during an ANALYZE run, which
happens during the system vacuum analyze process. After creating a table,
it’s a good idea to run an ANALYZE on it so the new stats can be used
immediately.

Random Page Cost and Quality of Drives

Another setting that influences the planner is the random_page_cost (RPC)
ratio, which is the relative cost of disk access when retrieving a record using
a sequential read versus random access. Generally, the faster (and more
expensive) the physical disk, the lower the ratio. The default value for RPC is
4, which works well for most mechanical hard drives on the market today.
The use of solid-state drives (SSDs), high-end storage area networks (SANs),
or cloud storage makes it worth tweaking this value.

You can set the RPC ratio per database, per server, or per tablespace. At the
server level, it makes most sense to set the ratio in the postgresql.conf file. If
you have different kinds of disks, you can set the values at the tablespace
level using the ALTER TABLESPACE command:

ALTER TABLESPACE pg_default SET (random_page_cost=2);

Details about this setting can be found at Random Page Cost Revisited. The
article suggests the following settings:

High-end NAS/SAN: 2.5 or 3.0

Amazon EBS and Heroku: 2.0

iSCSI and other mediocre SANs: 6.0, but varies widely

306

http://bit.ly/1AvAsf1
http://bit.ly/15SZdrT

SSDs: 2.0 to 2.5

NvRAM (or NAND): 1.5

Caching

If you execute a complex query that takes a while to run, subsequent runs are
often much faster. Thank caching. If the same query executes in sequence, by
the same user or different users, and no changes have been made to the
underlying data, you should get back the same result. As long as there’s space
in memory to cache the data, the planner can skip replanning or reretrieving.
Using common table expressions and immutable functions in your queries
encourages caching.

How do you check what’s in the current cache? You can install the
pg_buffercache extension:

CREATE EXTENSION pg_buffercache;

You can then run a query against the pg_buffercache view, as shown in
Example 9-19.

Example 9-19. Are my table rows in the buffer cache?
SELECT

C.relname,
COUNT(CASE WHEN B.isdirty THEN 1 ELSE NULL END) As dirty_buffers,
COUNT(*) As num_buffers

FROM
 pg_class AS C INNER JOIN
 pg_buffercache B ON C.relfilenode = B.relfilenode INNER JOIN
 pg_database D ON B.reldatabase = D.oid AND D.datname =

current_database()
WHERE C.relname IN ('facts','lu_fact_types')
GROUP BY C.relname;

Example 9-19 returns the number of buffered pages of the facts and
lu_fact_types tables. Of course, to actually see buffered rows, you need to
run a query. Try this one:

307

SELECT T.fact_subcats[2], COUNT(*) As num_fact
FROM

census.facts As F
INNER JOIN
census.lu_fact_types AS T ON F.fact_type_id = T.fact_type_id

GROUP BY T.fact_subcats[2];

The second time you run the query, you should notice at least a 10%
performance speed increase and should see the following cached in the
buffer:

relname | dirty_buffers | num_buffers
--------------+---------------+------------
facts | 0 | 736
lu_fact_types | 0 | 4

The more onboard memory you have dedicated to the cache, the more room
you’ll have to cache data. You can set the amount of dedicated memory by
changing the shared_buffers setting in postgresql.conf. Don’t go
overboard; raising shared_buffers too much will bloat your cache, leading
to more time wasted scanning the cache.

Nowadays, there’s no shortage of onboard memory. You can take advantage
of this by precaching commonly used tables using an extension called
pg_prewarm. pg_prewarm lets you prime your PostgreSQL by loading data
from commonly used tables into memory so that the first user to hit the
database can experience the same performance boost offered by caching as
later users. A good article that describes this feature is Prewarming Relational
Data.

308

http://bit.ly/1FUkmNa

PostgreSQL has a number of options for sharing data with external servers or
data sources. The first option is the built-in replication options of
PostgreSQL, which allow you to create a copy of your server ready to run on
another PostgreSQL server. The second option is to use third-party add-ons,
many of which are freely available and time-tested. The third option is to use
a foreign data wrapper (FDW). FDWs give you the flexibility to query from a
wide array of external data sources. Since version 9.3, some FDWs also
permit updating: these include postgres_fdw, hadoop_fdw, and ogr_fdw
(see “Querying Other Tabular Formats with ogr_fdw”).

Replication Overview

The reasons for replicating your databases distill down to two: availability
and scalability. Availability is assured by providing a redundant server so
that, if your main server goes down, you have another that can immediately
assume its role. For small databases, you could just make sure you have
another physical server ready and restore the database onto it. But for large
databases (in the terabytes), the restore itself could take hours, if not days. To
avoid downtime, you’ll need to replicate.

The other motivation for replications is scalability. Suppose you set up a
database to breed fancy elephant shrews for profit. After a few years of
breeding, you now have thousands of elephant shrews. People all over the
world come to your site to gawk and purchase. You’re overwhelmed by the
traffic, but replication comes to your aid. You arrange a read-only slave
server to replicate with your main server. Then you direct the countless
gawkers to the slave, and let only serious buyers onto the master server to
finalize their purchases.

Chapter 10. Replication and
External Data

309

http://bit.ly/1z3iIIZ
http://bit.ly/1yxbFIn
https://github.com/pramsey/pgsql-ogr-fdw
http://en.wikipedia.org/wiki/elephant_shrew

The master server is the database server sourcing the data being replicated
and where all updates take place. You’re allowed only one master when
using the built-in server replication features of PostgreSQL. Plans are in
place to support multimaster replication scenarios. Watch for it in future
releases. You may also hear the term publisher used to mean the provider
of the data. Publisher/subscriber terminology gains more traction in
PostgreSQL 10 for built-in logical replication.

Slave

A slave server consumes the replicated data and provides a replica of the
master. More aesthetically pleasing terms such as subscriber and agent
have been bandied about, but slave is still the most apropos. PostgreSQL
built-in replication supports only read-only slaves at this time.

Write-ahead log (WAL)

WAL is the log that keeps track of all transactions, often referred to as the
transaction log in other database products. To stage replication,
PostgreSQL simply makes the logs available to the slaves. Once slaves
have pulled the logs, they just need to execute the transactions therein.

Synchronous replication

A transaction on the master will not be considered complete until at least
one synchronous slave listed in synchronous_standby_names updates
and reports back. Prior to version 9.6, if any synchronous slave responds,
the transaction is complete. In version 9.6 and higher, the number of
standbys that must respond is configurable using the
synchronous_standby_names postgresql.conf configuration variable.
Version 10 introduced the keywords FIRST and ANY that can be added
to the synchronous_standby_names configuration variable that dictates

Replication Jargon

Before we get too carried away, we should introduce some common lingo in
PostgreSQL replication:

Master

310

which nodes need to report back. FIRST is the default behavior if not
specified and the behavior of 9.6.

Asynchronous replication

A transaction on the master will commit even if no slave updates. This is
expedient for distant servers where you don’t want transactions to wait
because of network latency, but the downside is that your dataset on the
slave might lag behind. Should the lag be severe, the slave might need to
be reinitialized if the transaction it needs to continue has already been
removed from the WAL logs.

To minimize the risk of WALs being removed before all slaves have used
them, version 9.4 introduced replication slots. A replication slot is a
contract between a slave and its master whereby the master will not wipe
out any WAL logs that are still needed by any replication slots. The
hazard is that if a slave holding a replication slot fails or loses
communication for a long time, the master will keep the WALS
indefinitely and run out of disk space and shut down.

Streaming replication

The slave does not require direct file access between master and slaves.
Instead, it relies on the PostgreSQL connection protocol to transmit the
WALs.

Cascading replication

Slaves can receive logs from nearby slaves instead of directly from the
master. This allows a slave to behave like a master for replication
purposes. The slave remains read-only. When a slave acts both as a
receiver and a sender, it is called a cascading standby.

Logical replication

This is a new replication option in version 10 that allows the replication
of individual tables instead of requiring the whole server cluster to be
replicated. It relies on a feature called logical decoding, which extracts
changes to a database table from the WAL logs in an easy-to-understand

311

format without detailed knowledge of the database’s internal state.
Logical decoding has existed since 9.4 and has been used by some
extensions for auditing and providing replication. This new feature comes
with the new DDL commands CREATE PUBLICATION and CREATE
SUBSCRIPTION for designating what tables to replicate and what servers
and corresponding database to send data to.

To use this feature, you must set wal_level to logical.

Refer to Logical Replication in PostgreSQL 10 for an example of its use.

Remastering

Remastering promotes a slave to be the master. Version 9.3 introduced
streaming-only remastering, which eliminates the need for remastering to
consult a WAL archive; it can be done via streaming, and slaves no
longer need to be recloned. As of version 9.4, though, a restart is still
required. This may change in future releases.

PostgreSQL binary replication replicates only changes that are transactional.
Because any DDL command is transactional, the creation of tables, views,
and installation of extensions can be replicated as well. But because unlogged
table inserts and updates are not transactional, they cannot be replicated.
When installing extensions, you should make sure all slaves have the binaries
for the extension and version of extension you are installing; otherwise,
replication will fail when the CREATE EXTENSION command is executed on
the master.

Evolution of PostgreSQL Replication

PostgreSQL’s stock replication relies on WAL shipping. Streaming
replication slaves should be running the same OS and bitness (32-bit/64-bit)
as the master. It is also recommended that all servers be running the same
minor version as the master, though running the same patch level
(microversion) is not required. Though not recommended, the slave and
master can be running a different minor version. In this case, it’s preferable
for the slave to be running a newer minor version than the master.

312

https://blog.2ndquadrant.com/logical-replication-postgresql-10/

Support for built-in replication improved over the following PostgreSQL
releases:

Version 9.4 added replication slots. A replication slot is a contract
between a master and a slave that requires the master to hold on to WALs
until a slave is done processing them.

Version 9.5 added several functions for monitoring the progress of
replication: refer to Replication Progress Tracking in the documentation.

Version 9.6 introduced multiple standby servers in synchronous
replication for increased reliability.

Version 10 introduced built-in logical replication, which allows the
replication of individual tables. The other benefit of logical replication is
that a slave can have databases and tables of its own that are not part of
replication and that can be updated on the slave. Version 10 also
introduced temporary replication slots, which allow a process to create a
replication slot on a one-time basis and have it disappear after the session
is over. This is particularly useful for initializing a new copy of the server
via pg_basebackup.

Although logical replication is built into PostgreSQL for the first time in
version 10, you can use logical replication in PostgreSQL 9.4 and higher
versions of PostgreSQL 9 through the open source PostgreSQL extension
pglogical. If you need to replicate between version 10 and versions
9.4−9.6, you’ll need to have pglogical installed on both version 10 and the
lower-versioned server. For logical replication between version 10 and
future versions of PostgreSQL, you can use the built-in logical replication
feature.

Third-Party Replication Options

As alternatives to PostgreSQL’s built-in replication, common third-party
options abound. Slony and Bucardo are two popular open source ones.
Although PostgreSQL is improving replication with each new release, Slony,
Bucardo, and other third-party replication options still offer more flexibility.

313

https://www.postgresql.org/docs/current/static/replication-origins.html
https://2ndquadrant.com/en/resources/pglogical/release-notes/
http://slony.info/
http://bucardo.org/wiki/Bucardo

CREATE ROLE pgrepuser REPLICATION LOGIN PASSWORD 'woohoo';

2. Alter the following configuration settings in postgresql.auto.conf. These
can be done using ALTER SYSTEM set variable=value followed by
SELECT pg_reload_conf(); without the need to touch the physical
config file:

listen_addresses = *

wal_level = hot_standby

archive_mode = on

Slony and Bucardo allow you to replicate individual databases or even tables
instead of the entire server. They also don’t require that all masters and slaves
run the same PostgreSQL version and OS. Both also support multimaster
scenarios. However, both rely on additional triggers and possible addition of
columns to tables to initiate the replication and often don’t replicate DDL
commands for rare actions such as creating new tables, installing extensions,
and so on. Thus, they require more manual intervention, such as the addition
of triggers, additional table fields, or views.

We urge you to consult a comparison matrix of popular third-party options
before deciding what to use.

Setting Up Full Server Replication

Let’s go over the steps to replicate the whole server cluster. We’ll take
advantage of streaming replication. Recall that streaming replication only
requires connections at the PostgreSQL database level between the master
and slaves.

Configuring the Master

The steps for setting up the master are:

1. Create a replication account:

314

http://bit.ly/1vUu5AP

max_wal_senders = 5

wal_keep_segments = 10

If you want to use logical replication to do partial replication of only some
tables, you’ll need to set wal_level = logical. Logical does more logging
than hot_standby so will also work for doing full server replication.

These settings are described in Server Configuration: Replication. You
may want to set wal_keep_segments higher if your servers are far apart
and your production server has a lot of transactions. If you are running
version 9.6 or above, you should use replica instead of hot_standby for
the wal_level. hot_standby is still accepted in 9.6 for backward
compatibility, but will be read as replica.

3. Add the archive_command configuration directive to postgresql.auto.conf
or use ALTER SYSTEM to indicate where the WALs will be saved. With
streaming, you’re free to choose any directory. More details on this setting
can be found in the PostgreSQL PGStandby documentation.

On Linux/Unix, your archive_command line should look something like:

archive_command = 'cp %p ../archive/%f'

You can also use rsync instead of cp if you want to store the WALs on a
different server:

archive_command = 'rsync -av %p postgres@192.168.0.10:archive/%f'

On Windows:

archive_command = 'copy %p ..\\archive\\%f'

4. Add a rule to pg_hba.conf allowing the slaves to replicate. As an example,
the following rule will allow a PostgreSQL account named pgrepuser on
a server on your private network with an IP address in the range

315

http://bit.ly/1z3iXUq
http://bit.ly/1yxbOvw

192.168.0.1 to 192.168.0.254 to replicate using an md5 password:

host replication pgrepuser 192.168.0.0/24 md5

5. Restart the PostgreSQL service for the settings to take effect.

Use the pg_basebackup utility, found in the bin folder of your
PostgreSQL installation, to create a cluster backup. This will create a copy
of the data cluster files in the specified directory.

When using pg_basebackup, use the --xlog-method-stream switch to
also copy over the WAL logs and the -R switch to automatically create a
config file. The command --xlog-method-stream will spawn another
database connection for copying the WALs.

NOTE

In version 10 and above, the pg_xlog directory is pg_wal.

In the following example, we are on the slave server and performing a
streaming basebackup from our master server (192.168.0.1):

pg_basebackup -D /target_dir -h 192.168.0.1 \

--port=5432 --checkpoint=fast

--xlog-method=stream -R

If you are using pg_basebackup primarily for backup purposes, you can use
the tarred/compressed form, which will create a tar.gz file in the target_dir
folder for each table space. -X is shorthand for --xlog-method. The
tarred/compression format does not support streaming logs, so you have to
resort to fetching the logs with that format:

pg_basebackup -Z9 -D /target_dir/ -h 192.168.0.1 -Ft -Xfetch

316

https://www.postgresql.org/docs/current/interactive/app-pgbasebackup.html

1. Create a new instance of PostgreSQL with the same version (preferably
even microversions) as your master server. For PostgreSQL, keeping
servers identical for microversions is not a requirement, and you’re
welcome to experiment and see how far you can deviate.

2. Shut down PostgreSQL on the new slave.

3. Overwrite the data folder files with those you generated with
pg_basebackup.

4. Add the following configuration setting to the postgresql.auto.conf file:

hot_standby = on

max_connections = 20 #set to higher or equal to master

5. You don’t need to run the slaves on the same port as the master, so you
can optionally change the port either via postgresql.auto.conf,
postgresql.conf, or via some other OS-specific startup script that sets the
PGPORT environment variable before startup.

For backup, you will want to augment your backup to include transaction log
shipping backup using pg_receivexlog for versions prior to 10. For versions
10 and above, pg_receivexlog was renamed to pg_receivewal. This you’ll
want to keep running as a cronjob or service to continually make log
backups.

Configuring the Slaves for Full Server Cluster
Replication

This part is not needed for logical replication. To minimize headaches, slaves
should have the same configuration as the master, especially if you’ll be
using them for failover. They must also have the same set of PostgreSQL
extensions installed in binary; otherwise, when CREATE EXTENSION is
played back, it will fail and stop restore. In order for the server to be a slave,
it must be able to play back the WAL transactions of the master. The steps
for creating a slave are as follows:

317

https://www.postgresql.org/docs/9.6/static/app-pgreceivexlog.html
https://www.postgresql.org/docs/10/static/app-pgreceivewal.html

6. Create a new file in the data folder called recovery.conf with the following
contents, but substitute the actual hostname, IP address, and port of your
master on the second line. This file is automatically created if you used
pg_basebackup. You will have to add the trigger_file line though.

The application_name is optional but useful if you want to track the
replica in postgresql system views:

standby_mode = 'on'

primary_conninfo = 'host=192.168.0.1 port=5432 user=pgrepuser

password=woohoo application_name=replica1'

trigger_file = 'failover.now'

7. If you find that the slave can’t play back WALs fast enough, you can
specify a location for caching. In that case, add to the recovery.conf file a
line such as the following, which varies depending on the OS.

On Linux/Unix:

restore_command = 'cp %p ../archive/%f'

On Windows:

restore_command = 'copy %p ..\\archive\\%f'

In this example, the archive folder is where we’re caching.

Initiating the Streaming Replication Process

After you have made the basebackup with pg_basebackup and put it in place,
verify that the settings in the recovery.conf look right. Then start up the slave
server.

You should now be able to connect to both servers. Any changes you make
on the master, even structural changes such as installing extensions or
creating tables, should trickle down to the slave. You should also be able to

318

SHOW wal_level

query the slave.

When and if the time comes to liberate a chosen slave, create a blank file
called failover.now in the data folder of the slave. PostgreSQL will then
complete playback of the WAL and rename the recovery.conf file to
recover.done. At that point, your slave will be unshackled from the master
and continue life on its own with all the data from the last WAL. Once the
slave has tasted freedom, there’s no going back. In order to make it a slave
again, you’ll need to go through the whole process from the beginning.

Replicating Only Some Tables or Databases with
Logical Replication

New in version 10 is the ability to replicate only some of the tables or some
of the databases in your master using an approach called logical replication.
One big benefit of logical replication is you can use it to replicate between a
PostgreSQL 10 database and future versions of PostgreSQL and even
replicate when OS platforms or architectures are different. For example, you
can use it to replicate between a Linux server and a Windows server.

In logical replication, the server providing the data is called the publisher
and the server receiving the data is called the subscriber. You use CREATE
PUBLICATION on the publishing server in the database with tables you want to
publish to dictate what tables to replicate and CREATE SUBSCRIPTION on
the subscriber database denoting the server and publication name it should
subscribe to. The main caveat with logical replication is that DDL is not
replicated, so in order to replicate a table, the table structure must exist on
both the publisher database and the subscriber database.

We have two PostgreSQL 10 servers running on our server. The publisher is
on port 5447 and the subscriber is on port 5448. The process is the same if
clusters are on separate servers. To replicate:

1. Make sure the following configuration setting is set on the publisher:

319

If anything other than logical, do:

ALTER SYSTEM SET wal_level = logical;

And then restart the postgres service.

This can be set on the subscription server as well, especially if in some
cases the subscription server will act as a publisher for some tables or
databases.

2. On the database where you will be replicating data, create the table
structures for tables you will be replicating. If you have a lot of tables or
want to replicate a whole database, as we will be doing, use pg_dump on
the publishing database to create backup structure of tables. For example,
for the postgresql_book database, we would dump out the structure:

pg_dump -U postgres -p5447 -Fp --section pre-data --section post-

data \

-f pub_struct.sql postgresql_book

And then use psql on the subscriber server to create our subscription
database with structures as follows:

CREATE DATABASE book_sub;

\connect book_sub;

\i pub_struct.sql

3. We then create a publication on the publisher database of items we want
to replicate. For this exercise, we’ll replicate all the tables in the database
using CREATE PUBLICATION. Note that this command will also
replicate future tables created, though we’ve had to create the structure on
the subscription databases:

CREATE PUBLICATION full_db_pub

 FOR ALL TABLES;

320

http://bit.ly/2kDdFR3

4. In order to use the publication, we need to subscribe to it. We do this by
executing this command when connected to the subscriber database
book_sub:

\connect book_sub;

 CREATE SUBSCRIPTION book_sub

 CONNECTION 'host=localhost port=5447 dbname=postgresql_book \

user=postgres'

 PUBLICATION full_db_pub;

When you inspect the tables on the book_sub database, you should find that
all the tables are full of data collected during the initial synchronization. If
you add data to the postgresql_book database, you should see the new records
appear on the book_sub database.

If you no longer need a subscription or publication, you can drop them from
the publisher with DROP SUBSCRIPTION and DROP PUBLICATION.

Foreign Data Wrappers

FDWs are an extensible, standard-compliant method for your PostgreSQL
server to query other data sources, both other PostgreSQL servers and many
types of non-PostgreSQL data sources. At the center of the architecture is a
foreign table, a table that you can query like other tables in your PostgreSQL
database but that resides on another database, perhaps even on another
physical server. Once you put in the effort to establish foreign tables, they
persist in your database and you’re forever free from having to worry about
the intricate protocols of communicating with alien data sources. You can
also find the status of popular FDWs and examples of usage at PostgreSQL
Wiki FDW. You can find a catalog of some FDWs for PostgreSQL at PGXN
FDW and PGXN Foreign Data Wrapper. You’ll find the source code for
many of these and for additional ones on GitHub by searching for
PostgreSQL Foreign Data Wrappers. If you need to wrap foreign data
sources, start by visiting these links to see whether someone has already done

321

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://pgxn.org/tag/fdw/
http://bit.ly/1z3j9D3
http://bit.ly/2tnWdRf

CREATE EXTENSION file_fdw;

Although file_fdw can read only from file paths accessible by your local
server, you still need to define a server for it for the sake of consistency. Issue
the following command to create a “faux” foreign server in your database:

CREATE SERVER my_server FOREIGN DATA WRAPPER file_fdw;

Next, you must register the tables. You can place foreign tables in any
schema you want. We usually create a separate schema to house foreign data.
For this example, we’ll use our staging schema, as shown in Example 10-1.

Here are a few initial lines of the pipe-delimited file we are linking to, to
show the format of the data we are taking in:

Dev|Company
Tom Lane|Crunchy Data

the work of creating wrappers. If not, try creating one yourself. If you
succeed, be sure to share it with others.

Most PostgreSQL installs provide two FDWs; you can install file_fdw and
postgres_fdw using the CREATE EXTENSION command.

Up through PostgreSQL 9.2, you could use FDWs only to read from foreign
sources. Version 9.3 introduced an API feature to update foreign tables as
well. postgres_fdw supports updates.

In this section, we’ll demonstrate how to register foreign servers, foreign
users, and foreign tables, and finally, how to query foreign tables. Although
we use SQL to create and delete objects in our examples, you can perform the
exact same commands using pgAdmin.

Querying Flat Files

The file_fdw wrapper is packaged as an extension. To install it, use the
following SQL:

322

http://www.postgresql.org/docs/current/interactive/file-fdw.html
http://www.postgresql.org/docs/current/interactive/postgres-fdw.html

Bruce Momjian|EnterpriseDB

Example 10-1. Make a foreign table from a delimited file
CREATE FOREIGN TABLE staging.devs (developer VARCHAR(150), company
VARCHAR(150))
SERVER my_server
OPTIONS (

 format 'csv',
 header 'true',
 filename '/postgresql_book/ch10/devs.psv',
 delimiter '|',
 null ''

);

In our example, even though we’re registering a pipe-delimited file, we still
use the csv option. A CSV file, as far as FDW is concerned, represents a file
delimited by any specified character.

When the setup is finished, you can finally query your pipe-delimited file
directly:

SELECT * FROM staging.devs WHERE developer LIKE 'T%';

Once you no longer need the foreign table, drop it using:

DROP FOREIGN TABLE staging.devs;

Querying Flat Files as Jagged Arrays

Often, flat files have a different number of columns on each line and could
include multiple header and footer rows. Our favorite FDW for handling
these files is file_textarray_fdw. This wrapper can handle any kind of
delimited flat file, even if the number of elements vary from row to row, by
treating each row as a text array (text[]).

Unfortunately, file_textarray_fdw is not part of the core PostgreSQL, so
you’ll need to compile it yourself. First, install PostgreSQL with PostgreSQL
development headers. Then download the file_textarray_fdw source code

323

CREATE FOREIGN TABLE staging.factfinder_array (x text[])
SERVER file_taserver
OPTIONS (

 format 'csv',
 filename '/postgresql_book/ch10/DEC_10_SF1_QTH1_with_ann.csv',
 header 'false',
 delimiter ',',
 quote '"',
 encoding 'latin1',
 null ''

);

Our example CSV begins with eight header rows and has more columns than
we care to count. When the setup is finished, you can finally query our
delimited file directly. The following query will give us the names of the
header rows where the first column of the header is GEO.id:

from the Adunstan GitHub site. There is a different branch for each version
of PostgreSQL, so make sure to pick the right one. Once you’ve compiled the
code, install it as an extension, as you would any other FDW.

If you are on Linux/Unix, it’s an easy compile if you have the postgresql-
dev package installed. We did the work of compiling for Windows; you can
download our binaries from one of the following links: one for Windows
32/64 9.4 FDWs, and another for Windows 32/64 9.5 and 32/64 9.6 FDWs.

The first step to perform after you have installed an FDW is to create an
extension in your database:

CREATE EXTENSION file_textarray_fdw;

Then create a foreign server as you would with any FDW:

CREATE SERVER file_taserver FOREIGN DATA WRAPPER file_textarray_fdw;

Next, register the tables. You can place foreign tables in any schema you
want. In Example 10-2, we use our staging schema again.

Example 10-2. Make a file text array foreign table from a delimited file

324

https://github.com/adunstan/file_text_array_fdw
http://bit.ly/2occRB6
http://bit.ly/2oRDY6X

SELECT unnest(x) FROM staging.factfinder_array WHERE x[1] = 'GEO.id'

This next query will give us the first two columns of our data:

SELECT x[1] As geo_id, x[2] As tract_id
FROM staging.factfinder_array WHERE x[1] ~ '[0-9]+';

Querying Other PostgreSQL Servers

The PostgreSQL FDW, postgres_fdw, is packaged with most distributions
of PostgreSQL since PostgreSQL 9.3. This FDW allows you to read as well
as push updates to other PostgreSQL servers, even different versions.

Start by installing the FDW for the PostgreSQL server in a new database:

CREATE EXTENSION postgres_fdw;

Next, create a foreign server:

CREATE SERVER book_server
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'localhost', port '5432', dbname 'postgresql_book');

If you need to change or add connection options to the foreign server after
creation, you can use the ALTER SERVER command. For example, if you
needed to change the server you are pointing to, you could enter:

ALTER SERVER book_server OPTIONS (SET host 'prod');

WARNING

Changes to connection settings such as the host, port, and database do not take
effect until a new session is created. This is because the connection is opened
on first use and is kept open.

Next, create a user, mapping its public role to a role on the foreign server:

325

http://bit.ly/1z3iIIZ

CREATE USER MAPPING FOR public SERVER book_server
OPTIONS (user 'role_on_foreign', password 'your_password');

The role you map to must exist on the foreign server and have login rights.
Anyone who can connect to your database will be able to access the foreign
server as well.

Now you are ready to create a foreign table. This table can have a subset of
columns of the table it connects to. In Example 10-3, we create a foreign
table that maps to the census.facts table.

Example 10-3. Defining a PostgreSQL foreign table
CREATE FOREIGN TABLE ft_facts (

 fact_type_id int NOT NULL,
 tract_id varchar(11),
 yr int, val numeric(12,3),
 perc numeric(6,2)

)
SERVER book_server OPTIONS (schema_name 'census', table_name 'facts');

This example includes only the most basic options for the foreign table. By
default, all PostgreSQL foreign tables are updatable, unless the remote
account you use doesn’t have update access. The updatable setting is a
Boolean setting that can be changed at the foreign table or the foreign server
definition. For example, to make your table read-only, execute:

ALTER FOREIGN TABLE ft_facts OPTIONS (ADD updatable 'false');

You can set the table back to updatable by running:

ALTER FOREIGN TABLE ft_facts OPTIONS (SET updatable 'true');

The updatable property at the table level overrides the foreign server
setting.

In addition to changing OPTIONS, you can also add and drop columns with the
ALTER FOREIGN TABLE .. DROP COLUMN statement.

326

This copies the collation settings from the foreign server for the foreign
tables. The default for this setting is true.

import_default

This controls whether default values for columns should be included. The
default for the option is false, so columns on the local server have no
defaults. But default values are useful during inserts: if you neglect to
specify the value of a column, PostgreSQL automatically inserts the
default. Be careful, though—the behavior of default could be unexpected
if you’re relying on a sequence for auto-numbering. The next assigned
value from the sequence could be different between the foreign server and
the local server.

import_not_null

This controls whether NOT NULL constraints are imported. The default
is true.

In Example 10-4, we import all tables in our books.public schema.

Example 10-4. Use IMPORT FOREIGN SCHEMA to link all tables in a
schema
CREATE SCHEMA remote_census;
IMPORT FOREIGN SCHEMA public
FROM SERVER book_server
INTO remote_census
OPTIONS (import_default 'true');

The IMPORT FOREIGN SCHEMA, as shown in Example 10-4, will create
foreign tables with the same names as those in the foreign schema and create

PostgreSQL 9.5 introduced the IMPORT FOREIGN SCHEMA command, which
saves a great deal of time by automatically creating the foreign tables for you.
Not all FDWs support IMPORT FOREIGN SCHEMA. Each FDW can also
support a custom set of server options when importing. postgres_fdw
supports the following custom options:

import_collate

327

IMPORT FOREIGN SCHEMA census
 LIMIT TO (facts, lu_fact_types)
 FROM SERVER book_server INTO remote_census;

If a table specified in the LIMIT TO does not exist on the remote server, no
error will be thrown. You might want to verify after the import that you have
all the foreign tables you expected.

A companion clause to LIMIT TO is the EXCEPT clause. Instead of bringing in
tables listed, it brings in tables not listed.

If you take advantage of PostgreSQL extensions, you’ll want to use the
performance enhancement foreign server option introduced in version 9.6,
called extensions. To utilize it, add the option to an existing postgres_fdw
server as we do in the following example:

ALTER SERVER census(OPTION ADD extensions 'btree_gist, pg_trgm');

The extensions option is a comma-separated list of extensions installed on the
foreign server. When PostgreSQL runs a query involving any of the types or
functions defined in the extension in a WHERE clause, it will try to push the
function calls to the remote server for improved performance. If the
extensions option is not specified, all extension functions will be run locally,
which may require transferring more data.

Querying Other Tabular Formats with ogr_fdw

There are many FDWs for querying other relational databases or flat file
formats. Most FDWs target a specific kind of data source. For example, you
can find the MongoDB FDW for querying MongoDb data, Hadoop FDW for

them in the designated schema remote_census.

To bring in only a subset of tables, use LIMIT TO or EXCEPT modifiers. For
example, to bring in just the facts and lu_fact_types tables, we could
have written:

328

querying Hadoop datasources, and MySQL FDW for querying MySQL data
sources.

There are two FDWs we are aware of that bundle many formats. Multicorn
FDW is really an FDW API that allows you to write your own FDW in
Python. There are some ready-made drivers available, but the Multicorn
FDW currently has no offering on Windows and is often tricky to get
working on Linux.

ogr_fdw is another FDW that supports many formats, and the one we’ll
demonstrate in this section. ogr_fdw supports many tabular formats, such as
spreadsheets, Dbase files, and CSVs, as well as other relational databases. It
is also a spatial database driver that transforms spatial columns from other
databases like SQL Server or Oracle into the PostGIS PostgreSQL spatial
geometry type.

Several packages that distribute PostGIS also offer the ogr_fdw extension.
For instance, the PostGIS Bundle for Windows found on the stack builder
includes the ogr_fdw extension, ogr_fdw for CentOS/RHEL is available via
yum.postgresql.org, and BigSQL Linux/Mac/Windows PostgreSQL
distribution also offers ogr_fdw. If you need or want to compile it yourself,
the source for ogr_fdw is on GitHub.

Underneath the hood, ogr_fdw relies on the Geospatial Data Abstraction
Library (GDAL) to do the heavy lifting. Therefore, you need to have GDAL
compiled and installed before being able to compile or use ogr_fdw. GDAL
has undergone quite a few evolutions, and its capabilities vary according to
the dependencies it was compiled with. So be warned that your GDAL may
not be our GDAL. GDAL is generally installed as part of PostGIS, the spatial
extension for PostgreSQL. So to make GDAL use easier, we recommend
always installing the latest version of PostGIS.

Many GDAL instances come with support for Excel, LibreOffice Calc,
ODBC, and various Spatial web services. You will find support for Microsoft
Access on Windows, but rarely on Linux/Mac distributions.

After you have installed the ogr_fdw binaries, to enable the ogr_fdw in a
particular database, connect to the database and run:

329

http://www.bigsql.org
https://github.com/pramsey/pgsql-ogr-fdw

CREATE EXTENSION ogr_fdw;

Foreign servers take on different meanings depending on the type of data
source. For example, a folder of CSV files would be considered a server, with
each file being a separate table. A Microsoft Excel or LibreOffice Calc
workbook would be considered a server, with each sheet in the workbook
being a separate table. An SQLite database would be considered a server and
each table a foreign table.

The following example links a LibreOffice workbook as a server and
corresponding spreadsheets as foreign tables:

CREATE SERVER ogr_fdw_wb
FOREIGN DATA WRAPPER ogr_fdw
OPTIONS (

 datasource '/fdw_data/Budget2015.ods',
 format 'ODS'

);

CREATE SCHEMA wb_data;
IMPORT FOREIGN SCHEMA ogr_all
FROM SERVER ogr_fdw_wb INTO wb_data;

The ogr_all schema is a catch-all that imports all tables in the foreign server
regardless of schema. Some datasources schemas and some don’t. To
accommodate all inputs, ogr_fdw (in place of ogr_all) accepts the initial
characters of a table name as the schema. So, for example, if you wanted to
import just a subset of worksheets where the worksheet name begins with
“Finance,” you would replace ogr_all with “Finance”:

CREATE SCHEMA wb_data;
IMPORT FOREIGN SCHEMA "Finance"
FROM SERVER ogr_fdw_wb INTO wb_data;

The schema is case-sensitive, so if the name of a worksheet contains
uppercase characters or nonstandard characters, it needs to be quoted.

This next example will create a server pointing to a folder of CSV files.

330

CREATE SERVER ogr_fdw_ff
FOREIGN DATA WRAPPER ogr_fdw
OPTIONS (datasource '/fdw_data/factfinder', format 'CSV');
CREATE SCHEMA ff;
IMPORT FOREIGN SCHEMA "Housing"
FROM SERVER ogr_fdw_ff INTO ff;

In the aforementioned example CSV files named Housing_2015.csv and
Housing_2016.csv will be linked in as foreign tables in schema ff with names
housing_2015 and housing_2016.

ogr_fdw by default launders table names and column names: all uppercase
table names and column names are converted to lowercase. If you don’t want
this behavior, you can pass in settings in IMPORT FOREIGN SCHEMA to
keep table names and column names as they were named in the foreign table.
For example:

IMPORT FOREIGN SCHEMA "Housing"
 FROM SERVER ogr_fdw_ff INTO ff

 OPTIONS(launder_table_names 'false', launder_column_names
'false');

This creates the tables with names Housing_2015 and Housing_2016, where
the column names of the tables would appear in the same case as they are in
the header of the files.

Querying Nonconventional Data Sources

The database world does not appear to be getting more homogeneous. Exotic
databases are spawned faster than virile elephants. Some are fads and quickly
drown in their own hype. Some aspire to dethrone relational databases
altogether. Some could hardly be considered databases. The introduction of
FDWs is in part a response to the growing diversity. FDW assimilates

Create a schema ff to house foreign tables for the CSV server. The FDW will
then create foreign tables linked to CSV files where the CSV filename begins
with Housing in schema ff:

331

CREATE SERVER www_fdw_server_google_search
 FOREIGN DATA WRAPPER www_fdw

 OPTIONS (uri 'http://ajax.googleapis.com/ajax/services/search/web?
v=1.0');

The default format supported by www_fdw is JSON, so we didn’t need to
include it in the OPTIONS modifier. The other supported format is XML. For
details on additional parameters that you can set, refer to the www_fdw
documentation. Each FDW is different and comes with its own API settings.

Next, establish at least one user for your FDW. All users that connect to your
server should be able to access the Google search server, so here we create
one for the entire public group:

CREATE USER MAPPING FOR public SERVER www_fdw_server_google_search;

Now create your foreign table, as shown in Example 10-5. Each field in the
table corresponds to a GET parameter in the URL that Google creates for a
search.

Example 10-5. Make a foreign table from Google

without compromising the PosgreSQL core.

In this next example, we’ll demonstrate how to use the www_fdw FDW to
query web services. We borrowed the example from www_fdw Examples.

The www_fdw FDW is not generally packaged with PostgreSQL. If you are on
Linux/Unix, it’s an easy compile if you have the postgresql-dev package
installed and can download the latest source. We did the work of compiling
for some Windows platforms; you can download our binaries from Windows-
32 9.1 FDWs and Windows-64 9.3 FDWs.

Now create an extension to hold the FDW:

CREATE EXTENSION www_fdw;

Then create your Google foreign data server:

332

http://bit.ly/12sggyN
https://github.com/cyga/www_fdw
http://bit.ly/1FUkLPQ
http://bit.ly/1yn3cne
https://github.com/cyga/www_fdw/wiki/Documentation

CREATE FOREIGN TABLE www_fdw_google_search (
 q text,
 GsearchResultClass text,
 unescapedUrl text,
 url text,
 visibleUrl text,
 cacheUrl text,
 title text,
 content text

) SERVER www_fdw_server_google_search;

The user mapping doesn’t assign any rights. You still need to grant rights
before being able to query the foreign table:

GRANT SELECT ON TABLE www_fdw_google_search TO public;

Now comes the fun part. We search with the term New in PostgreSQL 9.4
and mix in a bit of regular expression goodness to strip off HTML tags:

SELECT regexp_replace(title,E'(?x)(< [^>]*? >)','','g') As title
FROM www_fdw_google_search
WHERE q = 'New in PostgreSQL 10'
LIMIT 2;

Voilà! We have our response:

title

PostgreSQL 10 Roadmap
PostgreSQL: Roadmap
(2 rows)

333

Windows and Desktop Linux

EnterpriseDB builds installers for Windows and desktop versions of Linux.
They offer both 32-bit and 64-bit versions for each OS.

The installers are easy to use. They come packaged with PgAdmin
(PostgreSQL 9.6+ come with pgAdmin4 while older versions come with
pgAdmin3) and a stack builder from which you can install add-ons like
JDBC, .NET drivers, Ruby, PostGIS, phpPgAdmin, and pgAgent.

EnterpriseDB has two PostgreSQL offerings: the official, open source edition
of PostgreSQL, dubbed the Community Edition; and its proprietary edition,
called Advanced Plus. The proprietary fork offers Oracle compatibility and
enhanced management features. Don’t get confused between the two when
you download installers. In this book, we focused on the official PostgreSQL,
not Postgres Plus Advanced Server; however, much of the material applies to
Postgres Plus Advanced Server.

BigSQL is an open source PostgreSQL distribution, largely funded by the
company OpenSCG. The BigSQL distribution is similar to EnterpriseDB and
has installers for 64-bit versions of Windows, Mac, and Linux.

It is newer than the EnterpriseDB distribution and targets interoperability,
DevOps, and Big Data. As such, it includes extensions you wouldn’t
commonly find in other distributions. It is packaged with pgTSQL, a
procedural language that emulates Microsoft SQL Server’s Transact-SQL
stored procedure language, and lots of goodies for benchmarking and
monitoring like pgBadger.

You’ll also find other enhancements like PostGIS (including ogr_fdw), many
other FDWs such as hadoop_fdw, cassandra_fdw, oracle_fdw, and various

Appendix A. Installing
PostgreSQL

334

http://www.EnterpriseDB.com
http://www.bigsql.org
http://www.openscg.com/

pgc update
pgc list

The output will show something like:

Category | Component | Version | ReleaseDt | Status
| Cur?
PostgreSQL pg92 9.2.21-1 2017-05-11
1
PostgreSQL pg93 9.3.17-1 2017-05-11
1
PostgreSQL pg94 9.4.12-1 2017-05-11
1
PostgreSQL pg95 9.5.7-1 2017-05-11
1
PostgreSQL pg96 9.6.3-1 2017-05-11 Installed
1
Extensions cassandra_fdw3-pg96 3.0.1-1 2016-11-08
1
Extensions hadoop_fdw2-pg96 2.5.0-1 2016-09-01
1
Extensions oracle_fdw1-pg96 1.5.0-1 2016-09-01
1
Extensions orafce3-pg96 3.3.1-1 2016-09-23
1
Extensions pgaudit11-pg96 1.1.0-2 2017-05-18
1
Extensions pgpartman2-pg96 2.6.4-1 2017-04-15
1
Extensions pldebugger96-pg96 9.6.0-1 2016-12-28

PLs.

Like EnterpriseDB, BigSQL has its own installer system. The installer can be
triggered via a web interface or via the shell command-line tool they call pgc,
which stands for “pretty good command-line.” The pgc package management
tool follows the same pattern as Linux yum, apt-get, etc., even on Windows.
So to install new packages, start by opening up a shell prompt and changing
the directory to the folder where you installed BigSQL.

To update your local list of packages and see list of packages:

335

1
Extensions plprofiler3-pg96 3.2-1 2017-04-15
1
Extensions postgis23-pg96 2.3.2-3 2017-05-18 Installed
1
Extensions setuser1-pg96 1.2.0-1 2017-02-23
1
Extensions tds_fdw1-pg96 1.0.8-1 2016-11-23
1
Servers pgdevops 1.4-1 2017-05-18 Installed
1
Applications backrest 1.18 2017-05-18
1
Applications ora2pg 18.1 2017-03-23
1
Applications pgadmin3 1.23.0a 2016-10-20 Installed
1
Applications pgagent 3.4.1-1 2017-02-23
1
Applications pgbadger 9.1 2017-02-09
1
Frameworks java8 8u121 2017-02-09
1
Frameworks perl5 5.20.3.3 2016-03-14
1
Frameworks python2 2.7.12-1 2016-10-20 Installed
0
Frameworks tcl86 8.6.4-1 2016-03-11
1

To install the binaries for a package:

pgc install pgdevops

The pgdevops package is a web-based administration tool that includes
pgadmin4 and the ability to install and monitor bigsql packages.

After you install it, you would do:

pgc init pgdevops
pgc start pgdevops

336

The default port it installs on is http://localhost:8051.

To upgrade an existing package, use pgc upgrade instead of pgc install.

TIP

To help you try out different versions of PostgreSQL on the same machine or
run it from a USB device, both EnterpriseDB and BigSQL offer standalone
setups. Read Starting PostgreSQL in Windows without Install for guidance on
EnterpriseDB. For BigSQL, read Installing pgDevOps.

CentOS, Fedora, Red Hat, Scientific Linux

Most Linux/Unix distributions offer PostgreSQL in their main repositories,
although the version might be outdated. To compensate, many people use
backports, which are alternative package repositories offering newer versions.

For adventurous Linux users, download the latest PostgreSQL, including the
developmental versions, by going to the PostgreSQL Yum repository. Not
only will you find the core server, but you can also retrieve popular add-ons.
PostgreSQL developers maintain this repository and release patches and
updates as soon as they are available. The PostgreSQL Yum repository
generally maintains updated packages for the newest stable PostgreSQL for
2−4 versions of CentOS, RedHat EL, Fedora, Scientific Linux, Amazon
AMI, and Oracle Enterprise. If you have older versions of the OS or still need
older PostgreSQL versions that have reached EOL, check the documentation
to see what repository still maintains. For detailed installation instructions
using YUM, refer to the Yum section of our PostgresOnLine journal site.

Debian, Ubuntu

You can install the latest stable and development versions of PostgreSQL on
both Debian and Ubuntu from the apt-postgresql repository. apt_postgresql is
a repository, similar to yum postgresql, that is maintained by the PostgreSQL

337

http://bit.ly/1yxcuAY
https://www.openscg.com/2017/05/installing-pgdevops/
http://yum.postgresql.org
http://www.postgresonline.com/journal/categories/53-yum
https://wiki.postgresql.org/wiki/Apt

sudo apt-get install postgresql-9.6

If you plan to compile add-ons you don’t find listed in the repo, you need to
also install the postgresql-server-dev:

sudo apt-get install postgresql-server-dev-9.6

If your repository doesn’t have the latest version of PostgreSQL, try visiting
the Apt PostgreSQL packages for the latest stable and beta releases. It also
offers additional packages such as PL/V8 and PostGIS. It generally supports
the latest two or three versions of Debian and Ubuntu.

FreeBSD

FreeBSD is a popular platform for PostgreSQL. You can find the latest
versions of PostgreSQL at FreeBSD and install it via the FreeBSD ports
package management system.

macOS

We’ve seen a variety of ways to install PostgreSQL on Macs. Both
EnterpriseDB and BigSQL offer an installer. The Homebrew package
manager is gaining popularity and attracts advanced Mac users. Postgres.app
is a variant distributed by Heroku that is very popular with novice users. The
long-standing MacPorts and Fink distributions are still around. We do advise
against mixing installers for Mac users. For instance, if you installed
PostgreSQL using BigSQL, don’t go to EnterpriseDB to get add-ons.

The following list describes each of these options:

EnterpriseDB maintains an easy-to-use, one-step installer for macOS.

development group. The latest stable version is generally also available via
the default Ubuntu and Debian repos. A typical installation command looks
like:

338

http://apt.postgresql.org
http://www.freebsd.org/ports/databases.html
http://www.EnterpriseDB.com

PgAdmin comes as part of the installer. For add-ons, EnterpriseDB offers
a stack builder program, from which you can install popular extensions,
drivers, languages, and administration tools.

BigSQL maintains an easy-to-use, one-step installer for macOS 64-bit
users. For add-ons, BigSQL offers a command-line tool called pgc and a
pgDevops web browser interface, which we covered in “Windows and
Desktop Linux” and from which you can install popular extensions,
drivers, languages, and administration tools. BigSQL currently includes
PL/V8 for non-Windows.

Homebrew is a macOS package manager for many things PostgreSQL.
PostgreSQL, Homebrew, and You provides instructions for installing
PostgreSQL using Homebrew. You’ll find other articles at the Homebrew
PostgreSQL Wiki.

Postgres.app, distributed by Heroku, is a free desktop distribution touted
as the easiest way to get started with PostgreSQL on the Mac. It usually
maintains the latest version of PostgreSQL bundled with popular
extensions such as PostGIS, PL/Python, and PLV8. Postgres.app runs as a
standalone application that you can stop and start as needed, making it
suitable for development or single users.

MacPorts is a macOS package distribution for compiling, installing, and
upgrading many open source packages. It’s the oldest of the macOS
distribution systems that carries PostgreSQL.

Fink is a macOS/Darwin packagedistribution based on the Debian apt-get
installation framework.

339

http://www.bigsql.org
http://brew.sh
http://bit.ly/2ujEaxH
https://wiki.postgresql.org/wiki/Homebrew
http://postgresapp.com/
http://www.macports.org
http://www.finkproject.org

This appendix summarizes indispensable command-line tools packaged with
PostgreSQL server. We discussed them at length in the book. Here we list
their help messages. We hope to save you a bit of time with their inclusion
and perhaps make this book a not-so-strange bedfellow.

Database Backup Using pg_dump

Use pg_dump to back up all or part of a database. Backup file formats
available are TAR, compressed (PostgreSQL custom format), plain text, and
plain-text SQL. Plain-text backup can copy psql-specific commands;
therefore, restore by running the file within psql. A plain-text SQL backup is
merely a file with standard SQL CREATE and INSERT commands. To restore,
you can run the file using psql or pgAdmin. Example B-1 shows the pg_dump
help output. For full coverage of pg_dump usage, see “Selective Backup
Using pg_dump”.

Example B-1. pg_dump help
pg_dump --help
pg_dump dumps a database as a text file or to other formats.
Usage:
pg_dump [OPTION]... [DBNAME]

General options:
-f, --file=FILENAME output file or directory name
-F, --format=c|d|t|p output file format (custom, directory, tar,
plain
text)
-j, --jobs=NUM use this many parallel jobs to dump
-v, --verbose verbose mode
-Z, --compress=0-9 compression level for compressed formats

Appendix B. PostgreSQL
Packaged Command-Line Tools

340

http://www.postgresql.org/docs/current/interactive/app-pgdump.html

--lock-wait-timeout=TIMEOUT fail after waiting TIMEOUT for a table lock
--no-sync do not wait for changes to be written safely
to disk
--help show this help, then exit
--version output version information, then exit
Options controlling the output content:
-a, --data-only dump only the data, not the schema
-b, --blobs include large objects in dump
-B, --no-blobs exclude large objects in dump
-c, --clean clean (drop) database objects before
recreating
-C, --create include commands to create database in dump
-E, --encoding=ENCODING dump the data in encoding ENCODING
-n, --schema=SCHEMA dump the named schema(s) only
-N, --exclude-schema=SCHEMA do NOT dump the named schema(s)
-o, --oids include OIDs in dump
-O, --no-owner skip restoration of object ownership in
plain-text format
-s, --schema-only dump only the schema, no data
-S, --superuser=NAME superuser user name to use in plain-text
format
-t, --table=TABLE dump the named table(s) only
-T, --exclude-table=TABLE do NOT dump the named table(s)
-x, --no-privileges do not dump privileges (grant/revoke)
--binary-upgrade for use by upgrade utilities only
--column-inserts dump data as INSERT commands with column
names
--disable-dollar-quoting disable dollar quoting, use SQL standard
quoting
--disable-triggers disable triggers during data-only restore
--enable-row-security enable row security (dump only content user
has

 access to)
--exclude-table-data=TABLE do NOT dump data for the named table(s)
--if-exists use IF EXISTS when dropping objects
--inserts dump data as INSERT commands, rather than
COPY
--no-publications do not dump publications
--no-security-labels do not dump security label assignments
--no-subscriptions do not dump subscriptions
--no-synchronized-snapshots do not use synchronized snapshots in parallel
jobs
--no-tablespaces do not dump tablespace assignments

341

--no-unlogged-table-data do not dump unlogged table data
--quote-all-identifiers quote all identifiers, even if not key words
--section=SECTION dump named section (pre-data, data, or post-
data)
--serializable-deferrable wait until the dump can run without anomalies
--snapshot=SNAPSHOT use given snapshot for the dump
--strict-names require table and/or schema include patterns
to

 match at least one entity each
--use-set-session-authorization
use SET SESSION AUTHORIZATION commands instead of
ALTER OWNER commands to set ownership
Connection options:
-d, --dbname=DBNAME database to dump
-h, --host=HOSTNAME database server host or socket directory
-p, --port=PORT database server port number
-U, --username=NAME connect as specified database user
-w, --no-password never prompt for password
-W, --password force password prompt (should happen
automatically)
--role=ROLENAME do SET ROLE before dump

New features introduced in PostgreSQL 10.
New features introduced in PostgreSQL 9.6.
New features introduced in PostgreSQL 9.5.

New features introduced in PostgreSQL 9.4.

Server Backup: pg_dumpall

Use pg_dump_all to back up all databases on your server onto a single plain-
text or plain-text SQL file. The backup routine will automatically include
server-level objects such as roles and tablespaces. Example B-2 shows the
pg_dumpall help output. See “Systemwide Backup Using pg_dumpall” for
the full discussion.

Example B-2. pg_dumpall help
pg_dumpall --help
pg_dumpall extracts a PostgreSQL database cluster into an SQL script
file.

342

http://bit.ly/1q2iRdW

-f, --file=FILENAME output file name
-v, --verbose verbose mode
-V, --version output version information, then exit
--lock-wait-timeout=TIMEOUT fail after waiting TIMEOUT for a table lock
-?, --help show this help, then exit

Options controlling the output content:
 -a, --data-only dump only the data, not the schema
 -c, --clean clean (drop) databases before recreating
 -g, --globals-only dump only global objects, no databases
 -o, --oids include OIDs in dump
 -O, --no-owner skip restoration of object ownership
 -r, --roles-only dump only roles, no databases or tablespaces
 -s, --schema-only dump only the schema, no data
 -S, --superuser=NAME superuser user name to use in the dump
 -t, --tablespaces-only dump only tablespaces, no databases or roles
 -x, --no-privileges do not dump privileges (grant/revoke)
 --binary-upgrade for use by upgrade utilities only
 --column-inserts dump data as INSERT commands with column

names
 --disable-dollar-quoting disable dollar quoting, use SQL standard

quoting
 --disable-triggers disable triggers during data-only restore
 --inserts dump data as INSERT commands, rather than

COPY
 --no-publications do not dump publications
 --no-security-labels do not dump security label assignments
 --no-subscriptions do not dump subscriptions
 --no-sync do not wait for changes to be written safely

to disk
 --no-tablespaces do not dump tablespace assignments
 --no-unlogged-table-data do not dump unlogged table data
 --no-role-passwords do not dump passwords for roles
 --quote-all-identifiers quote all identifiers, even if not keywords

 --use-set-session-authorization
use SET SESSION AUTHORIZATION commands instead o
ALTER OWNER commands to set ownership

Connection options:

Usage:
pg_dumpall [OPTION]...

General options:

343

-d, --dbname=CONNSTR connect using connection string
-h, --host=HOSTNAME database server host or socket directory
-l, --database=DBNAME alternative default database
-p, --port=PORT database server port number
-U, --username=NAME connect as specified database user
-w, --no-password never prompt for password
-W, --password force password prompt (should happen

automatically)
 --role=ROLENAME do SET ROLE before dump

If -f/--file is not used, then the SQL script will be written to the
standard
output.

New in PostgreSQL 10.

Database Restore: pg_restore

Use pg_restore to restore backup files in tar, custom, or directory formats
created using pg_dump. Example B-3 shows the pg_restore help output. See
“Restoring Data” for more examples.

Example B-3. pg_restore help
pg_restore --help
pg_restore restores a PostgreSQL database from an archive created by
pg_dump.
Usage:
 pg_restore [OPTION]... [FILE]

General options:
-d, --dbname=NAME connect to database name
-f, --file=FILENAME output file name
-F, --format=c|d|t backup file format (should be automatic)
-l, --list print summarized TOC of the archive
-v, --verbose verbose mode
-V, --version output version information, then exit
-?, --help show this help, then exit

Options controlling the restore:
 -a, --data-only restore only the data, no schema
 -c, --clean clean (drop) database objects before

344

recreating
-C, --create create the target database
-e, --exit-on-error exit on error, default is to continue
-I, --index=NAME restore named index
-j, --jobs=NUM use this many parallel jobs to restore
-L, --use-list=FILENAME use table of contents from this file for

 selecting/ordering output
-n, --schema=NAME restore only objects in this schema
-N, --exclude-schema=NAME do not restore objects in this schema
-O, --no-owner skip restoration of object ownership
-P, --function=NAME(args) restore named function
-s, --schema-only restore only the schema, no data
-S, --superuser=NAME superuser user name to use for disabling

triggers
-t, --table=NAME restore named relation (table, view, etc.)

-T, --trigger=NAME restore named trigger
-x, --no-privileges skip restoration of access privileges

(grant/revoke)
-1, --single-transaction restore as a single transaction
--enable-row-security enable row security
--disable-triggers disable triggers during data-only restore

 --no-data-for-failed-tables do not restore data of tables that could
not be

 created
 --no-publications do not restore publications
 --no-security-labels do not restore security labels
 --no-subscriptions do not restore subscriptions
 --no-tablespaces do not restore tablespace assignments
 --section=SECTION restore named section (pre-data, data, or

post-data)
 --strict-names require table and/or schema include
patterns to

 match at least one entity each
 --use-set-session-authorization

 use SET SESSION AUTHORIZATION commands
instead of

 ALTER OWNER commands to set ownership

Connection options:
-h, --host=HOSTNAME database server host or socket directory
-p, --port=PORT database server port number
-U, --username=NAME connect as specified database user

345

-w, --no-password never prompt for password
-W, --password force password prompt (should happen

automatically)
 --role=ROLENAME do SET ROLE before restore

New features introduced in PostgreSQL 10.
New features introduced in PostgreSQL 9.6. Prior to 9.6, the -t option

matched only tables. In 9.6 it was changed to also match foreign tables,
views, materialized views, and sequences.
New features introduced in PostgreSQL 9.5.

psql Interactive Commands

Example B-4 lists commands available in psql when you launch an
interactive session. For examples of usage, see “Environment Variables” and
“Interactive versus Noninteractive psql”.

Example B-4. Getting a list of interactive psql commands
\?
General
 \copyright show PostgreSQL usage and distribution terms

 \errverbose show most recent error message at maximum
verbosity
 \g [FILE] or ; execute query (and send results to file or

|pipe)
 \gexec execute query, then execute each value in its
result
 \gset [PREFIX] execute query and store results in psql
variables
 \h [NAME] help on syntax of SQL commands, * for all
commands
 \gx [FILE] as \g, but forces expanded output mode
 \q quit psql
 \crosstabview [COLUMNS] execute query and display results in crosstab
 \watch [SEC] execute query every SEC seconds

Help
 \? [commands] show help on backslash commands
 \? options show help on psql command-line options
 \? variables show help on special variables
 \h [NAME] help on syntax of SQL commands, * for all

346

 \ef [FUNCNAME [LINE]] edit function definition with external editor
 \ev [VIEWNAME [LINE]] edit view definition with external editor
 \p show the contents of the query buffer
 \r reset (clear) the query buffer
 \w FILE write query buffer to file

Input/Output
 \copy ... perform SQL COPY with data stream to the client

host
 \echo [STRING] write string to standard output

 \i FILE execute commands from file
 \ir FILE as \i, but relative to location of current script
 \o [FILE] send all query results to file or |pipe
 \qecho [STRING] write string to query output stream (see \o)

Conditional
 \if EXPR begin conditional block
 \elif EXPR alternative within current conditional block
 \else final alternative within current conditional

block
 \endif end conditional block
Informational
 (options: S = show system objects, + = additional detail)
 \d[S+] list tables, views, and sequences
 \d[S+] NAME describe table, view, sequence, or index
 \da[S] [PATTERN] list aggregates
 \dA[+] [PATTERN] list access methods
 \db[+] [PATTERN] list tablespaces
 \dc[S] [PATTERN] list conversions
 \dC [PATTERN] list casts
 \dd[S] [PATTERN] show comments on objects
 \ddp [PATTERN] list default privileges
 \dD[S] [PATTERN] list domains
 \det[+] [PATTERN] list foreign tables
 \des[+] [PATTERN] list foreign servers
 \deu[+] [PATTERN] list user mappings
 \dew[+] [PATTERN] list foreign-data wrappers
 \df[antw][S+] [PATRN] list [only agg/normal/trigger/window] functions
 \dF[+] [PATTERN] list text search configurations
 \dFd[+] [PATTERN] list text search dictionaries
 \dFp[+] [PATTERN] list text search parsers

commands
Query Buffer
 \e [FILE] [LINE] edit the query buffer (or file) with external
editor

347

 \dFt[+] [PATTERN] list text search templates
 \dg[S+] [PATTERN] list roles
 \di[S+] [PATTERN] list indexes
 \dl list large objects, same as \lo_list
 \dL[S+] [PATTERN] list procedural languages
 \dm[S+] [PATTERN] list materialized views
 \dn[S+] [PATTERN] list schemas
 \do[S] [PATTERN] list operators
 \dO[S+] [PATTERN] list collations
 \dp [PATTERN] list table, view, and sequence access privileges
 \drds [PATRN1 [PATRN2]] list per-database role settings
 \dRp[+] [PATTERN] list replication publications
 \dRs[+] [PATTERN] list replication subscriptions
 \ds[S+] [PATTERN] list sequences
 \dt[S+] [PATTERN] list tables
 \dT[S+] [PATTERN] list data types
 \du[S+] [PATTERN] list roles
 \dv[S+] [PATTERN] list views
 \dE[S+] [PATTERN] list foreign tables
 \dx[+] [PATTERN] list extensions
 \dy [PATTERN] list event triggers
 \l[+] list databases
 \sf[+] FUNCNAME show a function's definition
 \sv[+] VIEWNAME show a view's definition
 \z [PATTERN] same as \dp

Formatting
 \a toggle between unaligned and aligned output mode
 \C [STRING] set table title, or unset if none
 \f [STRING] show or set field separator for unaligned query

output
 \H toggle HTML output mode (currently off)
 \pset NAME [VALUE] set table output option

 (NAME :=
{format|border|expanded|fieldsep|fieldsep_zero

 | footer|null|

numericlocale|recordsep|tuples_only|title|tableattr|pager
 |unicode_border_linestyle|unicode_column_linestyle
 |unicode_header_linestyle
 })

 \t [on|off] show only rows (currently off)
 \T [STRING] set HTML <table> tag attributes, or unset if
none

348

 \x [on|off] toggle expanded output (currently off)
Connection
 \c[onnect] {[DBNAME|- USER|- HOST|- PORT|-] | conninfo}

 connect to new database (currently "postgres")
 \encoding [ENCODING] show or set client encoding
 \password [USERNAME] securely change the password for a user
 \conninfo display information about current connection

Operating System
 \cd [DIR] change the current working directory
\setenv NAME [VALUE] set or unset environment variable
 \timing [on|off] toggle timing of commands (currently off)

 \! [COMMAND] execute command in shell or start interactive
shell

New features introduced in PostgreSQL 10. All conditional options are
new.

New features introduced in PostgreSQL 9.6.
New feature introduced in PostgreSQL 9.5.

psql Noninteractive Commands

Example B-5 shows the noninteractive commands help screen. Examples of
their usage are covered in “Interactive versus Noninteractive psql”.

Example B-5. psql basic help screen
psql --help
psql is the PostgreSQL interactive terminal.
Usage:
psql [OPTION]... [DBNAME [USERNAME]]

General options:
-c, --command=COMMAND run only single command (SQL or internal) and
exit
-d, --dbname=DBNAME database name to connect to
-f, --file=FILENAME execute commands from file, then exit
-l, --list list available databases, then exit
-v, --set=, --variable=NAME=VALUE

 set psql variable NAME to VALUE
 (e.g., -v ON_ERROR_STOP=1)

-X, --no-psqlrc do not read startup file (~/.psqlrc)

349

-1 ("one"), --single-transaction
execute command file as a single transaction
 -?, --help[=options] show this help, then exit

 --help=commands list backslash commands, then exit
 --help=variables list special variables, then exit

--version output version information, then exit

Input and output options:
-a, --echo-all echo all input from script
-b, --echo-errors echo failed commands
-e, --echo-queries echo commands sent to server
-E, --echo-hidden display queries that internal commands generate
-L, --log-file=FILENAME send session log to file
-n, --no-readline disable enhanced command-line editing (readline)
-o, --output=FILENAME send query results to file (or |pipe)
-q, --quiet run quietly (no messages, only query output)
-s, --single-step single-step mode (confirm each query)
-S, --single-line single-line mode (end of line terminates SQL
command)

Output format options:
-A, --no-align unaligned table output mode
-F, --field-separator=STRING
set field separator (default: "|")
-H, --html HTML table output mode
-P, --pset=VAR[=ARG] set printing option VAR to ARG (see \pset
command)
-R, --record-separator=STRING
set record separator (default: newline)
-t, --tuples-only print rows only
-T, --table-attr=TEXT set HTML table tag attributes (e.g., width,
border)
-x, --expanded turn on expanded table output
-z, --field-separator-zero

 set field separator to zero byte
-0, --record-separator-zero

 set record separator to zero byte

Connection options:
-h, --host=HOSTNAME database server host or socket directory
-p, --port=PORT database server port (default: "5432")
-U, --username=USERNAME database user name

350

-w, --no-password never prompt for password
-W, --password force password prompt (should happen
automatically)

For more information, type "\?" (for internal commands) or "\help" (for
SQL
commands) from within psql, or consult the psql section in the PostgreSQL
documentation.

These items are new features introduced in PostgreSQL 9.5.

351

Index

Symbols

#> pointer symbol, Querying JSON

#>> operator, Querying JSON

$$ (dollar quoting), Dollar Quoting-DO

& (and operator), TSQueries

&& (and operator), TSQueries

&& (overlap operator), Array Containment Checks, Overlap operator,
Exclusion Constraints

() (parentheses), Building Custom Data Types

+ (addition operator), Datetime Operators and Functions

- (subtraction operator), Datetime Operators and Functions, Editing JSONB
data, Editing JSONB data

-> operator, Querying JSON

->> operator, Querying JSON

: (colon), Shortcuts

<-> (distance operator), Features Introduced in PostgreSQL 9.6

<@ (contained in operator), Array Containment Checks, Contains and
contained in operators, Binary JSON: jsonb

= (equality operator), Array Containment Checks, Binary JSON: jsonb

352

? (key exists operator), Binary JSON: jsonb

?& (all of array of keys exists operator), Binary JSON: jsonb

?| (any of array of keys exists operator), Binary JSON: jsonb

@ sign, selecting attributes of elements, Querying XML Data

@> (contains operator), Array Containment Checks, Contains and contained

in operators, Binary JSON: jsonb

@@ operator, Using Full Text Search

\ (backslash), Regular Expressions and Pattern Matching

\! command, Executing Shell Commands

| (or operator), TSQueries

|| (concatenation operator), String Functions, Array Slicing and Splicing,

Editing JSONB data, TSVectors

|| (or operator), TSQueries

~ (similar to operator), Regular Expressions and Pattern Matching

~~ operator, Operator Classes

A

addition operator (+), Datetime Operators and Functions

Adminer tool, Adminer

adminpack extension, Editing postgresql.conf and pg_hba.conf from

pgAdmin3

AFTER trigger, Triggers and Trigger Functions

aggregate functions

353

about, Aggregates-Aggregates

window functions and, Aggregates

writing in SQL, Writing SQL Aggregate Functions-Writing SQL
Aggregate Functions

writing with PL/V8, Writing Aggregate Functions with PL/V8

aggregates

about, Aggregates-Aggregates

FILTER clause and, FILTER Clause for Aggregates-FILTER Clause for
Aggregates

PL/V8 and, Writing Aggregate Functions with PL/V8

SQL and, Writing SQL Aggregate Functions-Writing SQL Aggregate
Functions

window functions, Window Functions-ORDER BY

all of array of keys exists operator (?&), Binary JSON: jsonb

ALTER DATABASE command, Using Schemas, Moving Objects Among
Tablespaces, FTS Configurations

ALTER DEFAULT PRIVILEGES command, Default Privileges

ALTER FOREIGN TABLE command, Querying Other PostgreSQL Servers

ALTER ROLE command, Creating Group Roles

ALTER SEQUENCE command, Serials

ALTER SERVER command, Querying Other PostgreSQL Servers

ALTER SYSTEM command, Changing the postgresql.conf settings,

354

adding unique keys, Unique Constraints

dropping primary key, Sample Runs and Output

moving tables, Moving Objects Among Tablespaces

unlogged tables and, Features Introduced in PostgreSQL 9.5

ALTER TABLESPACE command, Features Introduced in PostgreSQL 9.4,
Moving Objects Among Tablespaces, Random Page Cost and Quality of
Drives

ALTER TYPE command, TYPE OF

Amazon Redshift data warehouse, Notable PostgreSQL Forks

and operator (&&), TSQueries

and operator (&), TSQueries

any of array of keys exists operator (?|), Binary JSON: jsonb

ANY operator, ANY Array Search

apt_postgresql repository, Debian, Ubuntu

archive_command configuration directive, Configuring the Master

arguments in functions, Function Basics

array function, Array Constructors

arrays

Configuring the Master

ALTER SYSTEM SET command, Features Introduced in PostgreSQL 9.4

ALTER TABLE command

355

about, Arrays

ANY operator and, ANY Array Search

containment checks for, Array Containment Checks

creating, Array Constructors

passing in, Features Introduced in PostgreSQL 9.5

referencing elements in, Referencing Elements in an Array

slicing and splicing, Array Slicing and Splicing

splitting strings into, Splitting Strings into Arrays, Tables, or Substrings

unnest function, Features Introduced in PostgreSQL 9.4

unnesting to rows, Unnesting Arrays to Rows

zero-indexed for JSON, Querying JSON

array_agg function, Features Introduced in PostgreSQL 9.5, Array
Constructors, Outputting JSON, Composite Types in Queries

array_to_json function, Outputting JSON, Composite Types in Queries

array_upper function, Referencing Elements in an Array

asynchronous replication, Replication Jargon

at sign, selecting attributes of elements, Querying XML Data

authentication methods, The pg_hba.conf File-Authentication methods

autocommit commands, Autocommit Commands

B

B-Tree indexes, PostgreSQL Stock Indexes, Operator Classes

356

about, Backup and Restore

pgAdmin tool, Backup and Restore-Selective backup of database assets

pg_basebackup tool, Backup and Restore

pg_dump tool, Backup and Restore-Selective Backup Using pg_dump,
Backup and Restore-pgScript, Database Backup Using pg_dump

pg_dumpall tool, Backup and Restore, Systemwide Backup Using
pg_dumpall, Backing up systemwide objects, Server Backup: pg_dumpall

pg_restore tool, Selective Backup Using pg_dump, Restoring Data-Using
pg_restore, Backup and Restore, Database Restore: pg_restore

psql tool, Restoring Data

third-party tools, Backup and Restore

Barman tool, Backup and Restore

Bartunov, Oleg, Ranking Results

basic CTEs, Basic CTEs

batch jobs, pgAgent and, Installing pgAgent

BDR (bi-directional replication), Notable PostgreSQL Forks

B-Tree-GIN indexes, PostgreSQL Stock Indexes

B-Tree-GiST indexes, PostgreSQL Stock Indexes

back-referencing, Regular Expressions and Pattern Matching

background workers, dynamic, Features Introduced in PostgreSQL 9.4

backslash (\), Regular Expressions and Pattern Matching

backup and restore

357

BEFORE trigger, Triggers and Trigger Functions

BETWEEN operator, Datetime Operators and Functions

bi-directional replication (BDR), Notable PostgreSQL Forks

bigint data type, Serials

bigserial data type, Serials

BigSQL technology, Getting Started, Windows and Desktop Linux, macOS

bitmap index scan, Multicolumn Indexes

block range indexes (BRIN), Features Introduced in PostgreSQL 9.5,

PostgreSQL Stock Indexes

BRIN (block range indexes), Features Introduced in PostgreSQL 9.5,

PostgreSQL Stock Indexes

btree_gin extension, Popular extensions

btree_gist extension, Popular extensions, Exclusion Constraints

btrim function, String Functions

C

caching, Caching-Caching

canonical form, Discrete Versus Continuous Ranges

CASCADE modifier, TYPE OF

cascading replication, Replication Jargon

cascading standby, Replication Jargon

CASE expression

358

FILTER clause and, FILTER Clause for Aggregates, Using FILTER
Instead of CASE

usage considerations, Make Good Use of CASE

case sensitivity

removing from character types, Textuals

searches and, ILIKE for Case-Insensitive Search

casts, PostgreSQL Database Objects, Shorthand Casting

catalogs, PostgreSQL Database Objects

\cd command, psql Import, Accessing psql from pgAdmin3

cert authentication method, Authentication methods

char data type, Textuals

characters and strings

about, Textuals

dollar quoting, Dollar Quoting-DO

pattern matching and, Regular Expressions and Pattern Matching-Regular
Expressions and Pattern Matching

regular expressions and, Regular Expressions and Pattern Matching-
Regular Expressions and Pattern Matching

removing case sensitivity from character types, Textuals

splitting strings, Splitting Strings into Arrays, Tables, or Substrings

string functions, String Functions

check constraints, Inserting XML Data, Inherited Tables, Check Constraints

359

fetching output from, Copying from or to Program

packaged, PostgreSQL Packaged Command-Line Tools-psql
Noninteractive Commands

retrieving prior commands, Retrieving Prior Commands

common table expressions (CTEs)

about, Common Table Expressions

basic, Basic CTEs

recursive, Recursive CTE

writable, Writable CTEs

composite data type

about, Custom and Composite Data Types, Composite Types in Queries

NULL value and, Composites and NULLs

set-returning functions and, Basic SQL Function

Citus project, Notable PostgreSQL Forks

CLUSTER command, Materialized Views

CoffeeScript language, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript

Functions

colon (:), Shortcuts

COLUMNS clause, Querying XML Data

columns view, PostgreSQL Database Objects

command-line tools

360

about, Tables, Constraints, and Indexes, Constraints

check, Inserting XML Data, Inherited Tables, Check Constraints

exclusion, Exclusion Constraints

foreign key, Foreign Key Constraints

unique, Unique Constraints, Partial Indexes

contained in operator (<@), Array Containment Checks, Contains and
contained in operators, Binary JSON: jsonb

contains operator (@>), Array Containment Checks, Contains and contained
in operators, Binary JSON: jsonb

tables and, TYPE OF

concatenation operator (||), String Functions, Array Slicing and Splicing,

Editing JSONB data, TSVectors

CONCURRENTLY qualifier, Materialized Views

configuration files, Configuration Files-Authentication methods, Editing

postgresql.conf and pg_hba.conf from pgAdmin3

configuration variables, Replication Jargon

conflict handling, Features Introduced in PostgreSQL 9.5

\connect command, Custom Prompts

connections

managing, Managing Connections-Check for Queries Being Blocked

to servers, Connecting to a PostgreSQL Server

constraints

361

about, Step 2: Installing into a database

installing adminpack, Editing postgresql.conf and pg_hba.conf from
pgAdmin3

installing FDWs, Foreign Data Wrappers, Querying Other PostgreSQL
Servers

installing hunspell, FTS Configurations

installing pgAgent, Installing pgAgent

installing PL/V8 language family, Writing PL/V8, PL/CoffeeScript, and
PL/LiveScript Functions

slave servers and, Replication Jargon

CREATE FOREIGN TABLE command, Querying Other PostgreSQL
Servers

continuous range types, Discrete Versus Continuous Ranges

contribs (see extensions)

Coordinated Universal Time (UTC), Temporals

\copy command, Importing and Exporting Data-Copying from or to Program,

Importing files

COST qualifier, Function Basics

CREATE AGGREGATE command, Aggregates, Writing Aggregate

Functions with PL/V8

CREATE DATABASE command, Database Creation, Getting Started,

Selective Backup Using pg_dump, Using pg_restore

CREATE EXTENSION command, PostgreSQL Database Objects

362

CREATE GROUP command, Roles

CREATE INDEX command, Binary JSON: jsonb

CREATE MATERIALIZED VIEW command, Materialized Views

CREATE OPERATOR command, Building Operators and Functions for

Custom Types

CREATE OR REPLACE VIEW command, Single Table Views

CREATE PRODCEDURAL LANGUAGE command, PostgreSQL Database

Objects

CREATE PUBLICATION command, Replication Jargon, Replicating Only

Some Tables or Databases with Logical Replication

CREATE ROLE command, Roles, Creating Login Roles, Getting Started,

Configuring the Master

CREATE SCHEMA command, Using Schemas, Querying Other Tabular

Formats with ogr_fdw

CREATE SEQUENCE command, Serials

CREATE STATISTICS command, Features Introduced in PostgreSQL 10,

Table Statistics

CREATE SUBSCRIPTION command, Replication Jargon, Replicating Only

Some Tables or Databases with Logical Replication

CREATE TABLE command, Serials, Inserting JSON Data, Binary JSON:

jsonb, Partitioned Tables

CREATE TABLESPACE command, Creating Tablespaces

CREATE TYPE command, TYPE OF

363

about, Common Table Expressions

basic, Basic CTEs

recursive, Recursive CTE

writable, Writable CTEs

CUBE operator, Features Introduced in PostgreSQL 9.5, GROUPING SETS,
CUBE, ROLLUP

current_user global variable, Creating Group Roles

custom data types

building, Building Custom Data Types

building operators and functions for, Building Operators and Functions for
Custom Types

tables as, All Tables Are Custom Data Types

D

CREATE UNIQUE INDEX command, Materialized Views

CREATE USER command, Roles, Querying Other PostgreSQL Servers

CREATEDB privilege, Database Creation

crontab command, Job Scheduling with pgAgent

\crosstab command, Crosstabs

\crosstabview command, Crosstabs

CSV format, Exporting queries as a structured file or report in pgAdmin,

Querying Flat Files, Querying Other Tabular Formats with ogr_fdw

CTEs (common table expressions)

364

about, PostgreSQL Database Objects, Data Types

ANY operator and, ANY Array Search

arrays, Arrays-Array Containment Checks

characters and strings, Textuals-Regular Expressions and Pattern Matching

custom and composite, Custom and Composite Data Types-Building
Operators and Functions for Custom Types

json, JSON-Editing JSONB data

jsonb, JSON, Binary JSON: jsonb-Editing JSONB data

numerics, Numerics-Generate Series Function

range types, Range Types-Contains and contained in operators

shorthand casting, Shorthand Casting

temporals, Temporals-Datetime Operators and Functions

tsvector, TSVectors-TSVectors

xml, XML-Querying XML Data

database administration

backup and restore, Backup and Restore-Using pg_restore, Backing up an
entire database-Selective backup of database assets, Database Backup
Using pg_dump-Database Restore: pg_restore

\d+ command, Retrieving Details of Database Objects

data definition language (DDL), PostgreSQL Database Objects, Replication

Jargon

data types

365

common mistakes, Verboten Practices-Don’t Try to Start PostgreSQL on a
Port Already in Use

configuration files, Configuration Files-Authentication methods

creating assets, Creating Database Assets and Setting Privileges

database creation, Database Creation-Using Schemas

extensions and, Extensions-Classic extensions

logical replication and, Replicating Only Some Tables or Databases with
Logical Replication-Replicating Only Some Tables or Databases with
Logical Replication

making configurations take effect, Making Configurations Take Effect-
Restarting

managing connections, Managing Connections-Check for Queries Being
Blocked

managing disk storage, Managing Disk Storage with Tablespaces

privileges and, Privileges, Creating Database Assets and Setting
Privileges-Privilege management

roles and, Roles-Creating Group Roles

services and, PostgreSQL Database Objects

database drivers, Database Drivers

database objects

retrieving details of, Retrieving Details of Database Objects

types supported, PostgreSQL Database Objects-PostgreSQL Database
Objects

366

date data type, Temporals

daterange data type, Temporals, Built-in Range Types

datetime operators and functions, Datetime Operators and Functions-

Datetime Operators and Functions

date_part function, Datetime Operators and Functions

daylight saving time (DST), Temporals

dblink extension, Popular extensions

DDL (data definition language), PostgreSQL Database Objects, Replication

Jargon

deadlock_timeout setting, Managing Connections

Debian platform, Debian, Ubuntu

DECLARE command, Writing PL/pgSQL Functions

default privileges, Default Privileges-Default Privileges

DELETE command, Restricting DELETE, UPDATE, and SELECT from

Inherited Tables

DELETE USING command, DELETE USING

delimiters, psql Export, Exporting queries as a structured file or report in

pgAdmin

dependencies statistic, Table Statistics

\dF command, FTS Configurations

discrete range types, Discrete Versus Continuous Ranges

distance operator <->, Features Introduced in PostgreSQL 9.6

367

DISTINCT ON clause, DISTINCT ON

Django web framework, Database Drivers

DO command, DO

Document Type Definition (DTD), Inserting XML Data

dollar quoting ($$), Dollar Quoting-DO

DROP FOREIGN TABLE command, Querying Flat Files

DROP MATERIALIZED VIEW command, Materialized Views

DROP PUBLICATION command, Replicating Only Some Tables or

Databases with Logical Replication

DROP STATISTICS command, Table Statistics

DROP SUBSCRIPTION command, Replicating Only Some Tables or

Databases with Logical Replication

DROP TABLE command, Partitioned Tables

DST (daylight saving time), Temporals

DTD (Document Type Definition), Inserting XML Data

Dunstan Andrew, Basic Functions

dynamic background workers, Features Introduced in PostgreSQL 9.4

dynamic SQL execution, Dynamic SQL Execution-Dynamic SQL Execution

dynamic_shared_memory_type network setting, Parallelized Queries

E

effective_cache_size network setting, Checking postgresql.conf settings

enable_nestloop setting, Strategy Settings

368

about, EXPLAIN, EXPLAIN Options

graphical outputs, Graphical Outputs-Graphical Outputs

sample runs and output, Sample Runs and Output-Sample Runs and Output

EXPLAIN command

about, EXPLAIN

graphical outputs, Graphical Outputs-Graphical Outputs

optional arguments, EXPLAIN Options

sample runs and output, Sample Runs and Output-Sample Runs and Output

EXPLAIN VERBOSE command, EXPLAIN Options

explicit casts, PostgreSQL Database Objects

enable_seqscan setting, Strategy Settings

end-of-life (EOL) support, Why Upgrade?

EnterpriseDB, Notable PostgreSQL Forks, Windows and Desktop Linux-

macOS

environment variables, Environment Variables

EOL (end-of-life) support, Why Upgrade?

equality operator (=), Array Containment Checks, Binary JSON: jsonb

eval function, Basic Functions

EXCEPT modifier, Querying Other PostgreSQL Servers

exclusion constraints, Exclusion Constraints

EXPLAIN ANALYZE command

369

exporting data

pgAdmin and, Exporting queries as a structured file or report in pgAdmin-
Exporting queries as a structured file or report in pgAdmin

psql and, Importing and Exporting Data-psql Export

extensions

about, PostgreSQL Database Objects, Extensions-Extensions

classic, Classic extensions

common, Common Extensions-Classic extensions

creating schemas to house, PostgreSQL Database Objects, Using Schemas,
Step 2: Installing into a database

downloading, Installing Extensions

getting information about, Extensions

installing, Extensions-Upgrading to the new extension model

popular, Popular extensions

upgrading to new model, Upgrading to the new extension model

F

FDWs (foreign data wrappers)

about, PostgreSQL Database Objects, Replication and External Data,
Foreign Data Wrappers

querying flat files, Querying Flat Files-Querying Flat Files as Jagged
Arrays

querying foreign servers, Querying Other PostgreSQL Servers-Querying

370

Other PostgreSQL Servers

querying nonconventional data sources, Querying Nonconventional Data
Sources-Querying Nonconventional Data Sources

querying other tabular formates, Querying Other Tabular Formats with
ogr_fdw-Querying Other Tabular Formats with ogr_fdw

version improvements, Features Introduced in PostgreSQL 10

Fedora platform, CentOS, Fedora, Red Hat, Scientific Linux

file_fdw wrapper, Foreign Data Wrappers

file_textarray_fdw wrapper, Querying Flat Files as Jagged Arrays

FILTER clause, FILTER Clause for Aggregates-FILTER Clause for
Aggregates, Using FILTER Instead of CASE

filtered indexes, Unique Constraints, Partial Indexes

Fink package distribution, macOS

flat files, querying, Querying Flat Files-Querying Flat Files as Jagged Arrays

FOR ORDINALITY modifier, Querying XML Data

FOR VALUES FROM clause, Partitioned Tables

force_parallel_mode setting, What Does a Parallel Query Plan Look Like?

foreign data wrappers (FDWs)

about, PostgreSQL Database Objects, Replication and External Data,
Foreign Data Wrappers

querying flat files, Querying Flat Files-Querying Flat Files as Jagged
Arrays

371

querying foreign servers, Querying Other PostgreSQL Servers-Querying
Other PostgreSQL Servers

querying nonconventional data sources, Querying Nonconventional Data
Sources-Querying Nonconventional Data Sources

querying other tabular formats, Querying Other Tabular Formats with
ogr_fdw-Querying Other Tabular Formats with ogr_fdw

version improvements, Features Introduced in PostgreSQL 10

foreign key constraints, Foreign Key Constraints

foreign servers

creating, Querying Flat Files as Jagged Arrays

querying, Querying Other PostgreSQL Servers-Querying Other
PostgreSQL Servers

foreign tables

about, PostgreSQL Database Objects, Foreign Data Wrappers

creating, Querying Other PostgreSQL Servers

inheritance and, Inherited Tables

placing triggers in, Features Introduced in PostgreSQL 9.4

forking databases, Notable PostgreSQL Forks

FreeBSD platform, FreeBSD

FROM clause, WITH ORDINALITY

FTS (full text search)

about, PostgreSQL Database Objects, Features Introduced in PostgreSQL

372

9.6, Full Text Search

FTS configurations, FTS Configurations-FTS Configurations

full text stripping, Full Text Stripping

json data type support, Features Introduced in PostgreSQL 10, Full Text
Support for JSON and JSONB

jsonb data type support, Features Introduced in PostgreSQL 10, Full Text
Support for JSON and JSONB

ranking results, Ranking Results

tsqueries, TSQueries-TSQueries

tsvector data type, TSVectors

usage considerations, Using Full Text Search

functional indexes, Functional Indexes

functions

about, PostgreSQL Database Objects, Data Types, Writing Functions

aggregate, Aggregates-Aggregates, Writing SQL Aggregate Functions-
Writing SQL Aggregate Functions, Writing Aggregate Functions with
PL/V8

anatomy of, Anatomy of PostgreSQL Functions-Trusted and Untrusted
Languages

arguments in, Function Basics

basic structure of, Function Basics-Function Basics

building for custom data types, Building Operators and Functions for
Custom Types

373

cancelling, Managing Connections

computing percentiles, Features Introduced in PostgreSQL 9.4

datetime, Datetime Operators and Functions-Datetime Operators and
Functions

embedding within SELECT command, Managing Connections

PL/CoffeeScript, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript
Functions-Writing Window Functions in PL/V8

PL/LiveScript, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript
Functions-Writing Window Functions in PL/V8

PL/pgSQL, Writing PL/pgSQL Functions-Writing Trigger Functions in
PL/pgSQL

PL/Python, Writing PL/Python Functions-Basic Python Function

PL/V8, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript Functions-
Writing Window Functions in PL/V8

ranking search results, Ranking Results

set-returning, Set-Returning Functions in SELECT, WITH ORDINALITY,
Basic SQL Function

state, Aggregates

statistical, Percentiles and Mode-Percentiles and Mode

string, String Functions

trigger, PostgreSQL Database Objects, Triggers and Trigger Functions-
Triggers and Trigger Functions, Writing Trigger Functions in PL/pgSQL

trusted and untrusted languages, Trusted and Untrusted Languages, Basic

374

Python Function

window, Window Functions-ORDER BY, Writing Window Functions in
PL/V8-Writing Window Functions in PL/V8

writing with SQL, Writing Functions with SQL-Writing SQL Aggregate
Functions

fuzzystrmatch extension, Step 2: Installing into a database, Popular
extensions

G

gather mode, What Does a Parallel Query Plan Look Like?

GDAL (Geospatial Data Abstraction Library), Querying Other Tabular
Formats with ogr_fdw

Generalized Inverted Index (GIN), Features Introduced in PostgreSQL 9.4,
PostgreSQL Stock Indexes

Generalized Search Tree (GiST) indexes, Features Introduced in PostgreSQL
9.5, Unlogged Tables, PostgreSQL Stock Indexes

generate_series function, Generate Series Function, Datetime Operators and
Functions, Set-Returning Functions in SELECT, WITH ORDINALITY

geocoding, pgScript and, pgScript

geometric mean, Writing SQL Aggregate Functions-Writing SQL Aggregate
Functions, Writing Aggregate Functions with PL/V8

Geospatial Data Abstraction Library (GDAL), Querying Other Tabular
Formats with ogr_fdw

\gexec command, Dynamic SQL Execution

GIN (Generalized Inverted Index), Features Introduced in PostgreSQL 9.4,

375

about, Roles

creating, Creating Group Roles-Creating Group Roles

inheriting privileges from, Creating Group Roles

grouping sets, Features Introduced in PostgreSQL 9.5, GROUPING SETS,
CUBE, ROLLUP-GROUPING SETS, CUBE, ROLLUP

GUC (grand unified configuration), PostgreSQL Database Objects

PostgreSQL Stock Indexes

GiST (Generalized Search Tree) indexes, Features Introduced in PostgreSQL

9.5, Unlogged Tables, PostgreSQL Stock Indexes

global variables, Creating Group Roles

Google Cloud SQL for PostgreSQL, Notable PostgreSQL Forks

Google V8 engine, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript

Functions

grand unified configuration (GUC), PostgreSQL Database Objects

GRANT command, Creating Group Roles, GRANT-Default Privileges

Grant Wizard, Privilege management

graphical explain plan, Graphical Explain-Graphical Explain

GreenPlum database, Notable PostgreSQL Forks

groonga engine, PostgreSQL Stock Indexes

GROUP BY clause, Table Statistics

group login roles, Roles

group roles

376

H

hadoop_fdw wrapper, Replication and External Data

hash indexes, PostgreSQL Stock Indexes

hash joins, Parallel Joins

HEADER option, psql Export

HISTSIZE environment variable, Retrieving Prior Commands

Homebrew package manager, macOS

hstore extension, Popular extensions, Composite Types in Queries

HTML format, Basic Reporting-Basic Reporting, Exporting queries as a

structured file or report in pgAdmin

hunspell configuration, FTS Configurations-FTS Configurations

I

\i command, Accessing psql from pgAdmin3

ident authentication method, Authentication methods

IDENTITY qualifier, Features Introduced in PostgreSQL 10, Basic Table

Creation-Basic Table Creation

idle_in_transaction_session_timeout setting, Managing Connections

ILIKE operator, Popular extensions, Full Text Search, ILIKE for Case-

Insensitive Search

implicit casts, PostgreSQL Database Objects

IMPORT FOREIGN SCHEMA command, Features Introduced in

PostgreSQL 9.5, Querying Other PostgreSQL Servers

377

importing data

pgAdmin and, Import and Export

psql and, Importing and Exporting Data-psql Import

index-only scan, Multicolumn Indexes

indexes

about, Tables, Constraints, and Indexes, Indexes

bitmap index scan, Multicolumn Indexes

determining usefulness of, How Useful Is Your Index?-How Useful Is
Your Index?

filtered, Unique Constraints, Partial Indexes

functional, Functional Indexes

multicolumn, Multicolumn Indexes

operator classes and, Operator Classes-Operator Classes

partial, Unique Constraints, Partial Indexes

types of, PostgreSQL Stock Indexes-PostgreSQL Stock Indexes

information_schema catalog, PostgreSQL Database Objects, Dynamic SQL
Execution, Navigating pgAdmin

INHERIT modifier, Creating Group Roles

inheriting

privileges from group roles, Creating Group Roles

tables, PostgreSQL Database Objects, Inherited Tables, Restricting
DELETE, UPDATE, and SELECT from Inherited Tables

378

hash, Parallel Joins

lateral, Lateral Joins-Lateral Joins

parallel, Parallel Joins

JSON (JavaScript Object Notation), JSON-Editing JSONB data

json data type

about, JSON

INSERT command, Inserting JSON Data

insert conflict handling, Features Introduced in PostgreSQL 9.5

INSERT INTO clause, UPSERTs: INSERT ON CONFLICT UPDATE

INSTEAD OF triggers, Using Triggers to Update Views-Using Triggers to

Update Views, Triggers and Trigger Functions, Writing Trigger Functions in

PL/pgSQL

int4range data type, Built-in Range Types

int8range data type, Built-in Range Types

integer data type, Serials

interval data type, Temporals-Temporals

J

Java language, Database Drivers

JavaScript Object Notation (JSON), JSON-Editing JSONB data

job scheduling, Job Scheduling with pgAgent-Helpful pgAgent Queries

joins

379

full text support, Features Introduced in PostgreSQL 10, Full Text Support
for JSON and JSONB

inserting data, Inserting JSON Data

outputting data, Outputting JSON

PL/V8 and, Writing Functions

queries and, Querying JSON

jsonb data type

about, Features Introduced in PostgreSQL 9.4, JSON, Binary JSON: jsonb-
Binary JSON: jsonb

editing data, Editing JSONB data-Editing JSONB data

full text support, Features Introduced in PostgreSQL 10, Full Text Support
for JSON and JSONB

PL/V8 and, Writing Functions

jsonb_array_elements function, Binary JSON: jsonb

jsonb_each function, Binary JSON: jsonb

jsonb_extract_path_text function, Binary JSON: jsonb

jsonb_insert function, JSON

jsonb_set function, Editing JSONB data

json_agg function, Outputting JSON, Composite Types in Queries

json_array_elements function, Querying JSON, Binary JSON: jsonb

json_build_array function, Features Introduced in PostgreSQL 9.4

json_build_object function, Features Introduced in PostgreSQL 9.4

380

json_each function, Binary JSON: jsonb

json_extract_path function, Querying JSON

json_extract_path_text function, Querying JSON, Binary JSON: jsonb

json_object function, Features Introduced in PostgreSQL 9.4

json_to_record function, Features Introduced in PostgreSQL 9.4

json_to_recordset function, Features Introduced in PostgreSQL 9.4

K

key exists operator (?), Binary JSON: jsonb

L

LAG function, ORDER BY

LANGUAGE qualifier, Function Basics

lateral joins, Lateral Joins-Lateral Joins

LATERAL keyword, Lateral Joins-Lateral Joins

LEAD function, ORDER BY

lexemes, TSVectors

LibreOffice office suite, Database Drivers

LIKE operator, Popular extensions, Full Text Search, Operator Classes,

ILIKE for Case-Insensitive Search

LIMIT clause, LIMIT and OFFSET

LIMIT TO modifier, Querying Other PostgreSQL Servers

Linux platform

381

archive_command directive and, Configuring the Master

crontab command, Job Scheduling with pgAgent

installing PostgreSQL, Windows and Desktop Linux

psql tool and, psql Customizations

restore_command directive and, Configuring the Slaves for Full Server
Cluster Replication

retrieving command history, Retrieving Prior Commands

listen_addresses network setting, Checking postgresql.conf settings

lists of objects, Retrieving Details of Database Objects

LiveScript language, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript
Functions

local variables, Writing PL/pgSQL Functions

lock_timeout setting, Managing Connections

logical decoding, Replication Jargon

logical replication, Replication Jargon, Replicating Only Some Tables or
Databases with Logical Replication-Replicating Only Some Tables or
Databases with Logical Replication

LOGIN PASSWORD clause, Creating Login Roles

login roles, Roles-Creating Login Roles

log_destination network setting, Checking postgresql.conf settings

lpad function, String Functions

ltrim function, String Functions

382

Lubaczewski, Hubert, Features Introduced in PostgreSQL 9.4, Copying from
or to Program, Graphical Outputs

M

Mac OS X platform, macOS

MacPorts package distribution, macOS

maintenance_work_mem network setting, Checking postgresql.conf settings

master servers, Replication Jargon, Configuring the Master-Configuring the

Master

materialized views, Features Introduced in PostgreSQL 9.4, Views,

Materialized Views-Materialized Views

max_connections network setting, Checking postgresql.conf settings

max_parallel_workers network setting, Checking postgresql.conf settings,

Parallelized Queries

max_parallel_workers_per_gather network setting, Checking postgresql.conf

settings, Parallelized Queries, What Does a Parallel Query Plan Look Like?

max_worker_processes network setting, Parallelized Queries

md5 authentication method, Authentication methods

median (statistic), Percentiles and Mode

mode function, Percentiles and Mode

multicolumn indexes, Multicolumn Indexes

multirow constructor, Multirow Insert

N

383

named dollar quoting, Dollar Quoting-DO

named notation, Function Basics

naming considerations

function arguments, Function Basics

primary keys, Constraints

navigating pgAdmin tool, Navigating pgAdmin-Navigating pgAdmin

ndistinct statistic, Table Statistics

.NET Framework, Database Drivers

Netezza database, Notable PostgreSQL Forks

nextval function, Serials

Node.js framework, Database Drivers, Writing PL/V8, PL/CoffeeScript, and

PL/LiveScript Functions

NOINHERIT modifier, Creating Group Roles

NOWAIT clause, Managing Connections

NULL value, Composites and NULLs

numeric data types, Serials

numrange data type, Built-in Range Types

O

ODBC (Open Database Connectivity), Database Drivers

OFFSET clause, LIMIT and OFFSET

ogr_all schema, Querying Other Tabular Formats with ogr_fdw

384

about, PostgreSQL Database Objects, Data Types

building for custom data types, Building Operators and Functions for
Custom Types

datetime, Datetime Operators and Functions-Datetime Operators and
Functions

json data type, Querying JSON

jsonb data type, Binary JSON: jsonb

overriding for case sensitivity, Textuals

range, Range Operators

sort, Aggregates

string, String Functions

ogr_fdw extension, Querying Other Tabular Formats with ogr_fdw

ogr_fdw wrapper, Replication and External Data, Querying Other Tabular

Formats with ogr_fdw-Querying Other Tabular Formats with ogr_fdw

OLAP (online analytical processing) applications, Materialized Views

ON CONFLICT DO clause, UPSERTs: INSERT ON CONFLICT UPDATE

ONLY modifier, Restricting DELETE, UPDATE, and SELECT from

Inherited Tables, Writable CTEs

Open Database Connectivity (ODBC), Database Drivers

OpenSCG (company), Windows and Desktop Linux

operator classes, Operator Classes-Operator Classes

operators

385

about, Features Introduced in PostgreSQL 9.6, Parallelized Queries

feature improvements, Features Introduced in PostgreSQL 10

parallel joins, Parallel Joins

parallel query plans, What Does a Parallel Query Plan Look Like?-What
Does a Parallel Query Plan Look Like?

parallel scans, Parallel Scans

parentheses (), Building Custom Data Types

partial indexes, Unique Constraints, Partial Indexes

PARTITION BY clause, Features Introduced in PostgreSQL 10, Partitioned
Tables, PARTITION BY

or operator (|), TSQueries

or operator (||), TSQueries

ORDER BY clause, Materialized Views, LIMIT and OFFSET, Percentiles

and Mode, ORDER BY-ORDER BY

overlap operator (&&), Array Containment Checks, Overlap operator,

Exclusion Constraints

overlaps function, Datetime Operators and Functions

OVERLAPS operator (ANSI SQL), Datetime Operators and Functions

P

Paquier, Michael, Binary JSON: jsonb

PARALLEL qualifier, Function Basics

parallelized queries

386

about, pgAdmin-pgAdmin, Using pgAdmin

accessing pqsql from, Accessing psql from pgAdmin3

autogenerating queries from table definitions, Autogenerating Queries
from Table Definitions

backup and restore, Backup and Restore-Selective backup of database
assets

PARTITION BY RANGE modifier, Partitioned Tables

partitioned tables, Partitioned Tables-Partitioned Tables

PASSING modifier, Querying XML Data

password authentication method, Authentication methods

PATH clause, Querying XML Data

pattern matching, Regular Expressions and Pattern Matching-Regular

Expressions and Pattern Matching

peer authentication method, Authentication methods

percentile_cont function, Features Introduced in PostgreSQL 9.4, Percentiles

and Mode

percentile_disc function, Features Introduced in PostgreSQL 9.4, Percentiles

and Mode

performance tuning (see query performance tuning)

Perl language, Database Drivers

permissions (see privileges)

pgAdmin tool

387

connecting to servers, Connecting to a PostgreSQL Server

downloading, Getting Started

editing configuration files, Editing postgresql.conf and pg_hba.conf from
pgAdmin3

exporting data and, Exporting queries as a structured file or report in
pgAdmin-Exporting queries as a structured file or report in pgAdmin

features overview, Overview of Features-Overview of Features, pgAdmin
Features-Selective backup of database assets

graphical explain, Graphical Explain-Graphical Explain

importing data and, Import and Export

job scheduling and, Job Scheduling with pgAgent-Helpful pgAgent
Queries

listing DDL triggers, PostgreSQL Database Objects

navigating, Navigating pgAdmin-Navigating pgAdmin

pgScript and, pgScript-pgScript

privilege settings and, Privileges

version considerations, Using pgAdmin

pgAgent tool

about, Job Scheduling with pgAgent

batch jobs and, Installing pgAgent

installing, Installing pgAgent

query examples, Helpful pgAgent Queries

388

scheduling jobs, Scheduling Jobs-Scheduling Jobs

pgBackRest tool, Backup and Restore

pgc command-line tool, Windows and Desktop Linux

pgcrypto extension, Popular extensions

pgdevops package, Windows and Desktop Linux

PGHOST environment variable, Environment Variables

pglogical extension, Evolution of PostgreSQL Replication

PGPASSWORD environment variable, Backup and Restore

PGPORT environment variable, Environment Variables

pgrepuser account, Configuring the Master

pgroonga extension, PostgreSQL Stock Indexes

pgScript tool, pgScript-pgScript

pgTSQL language, Windows and Desktop Linux

PGUSER environment variable, Environment Variables

pg_available_extensions view, Step 1: Installing on the server, Upgrading to

the new extension model

pg_basebackup tool, Backup and Restore, Configuring the Master

pg_buffercache extension, Caching

pg_cancel_backend function, Managing Connections

pg_catalog catalog, PostgreSQL Database Objects, Navigating pgAdmin

pg_clog folder, Don’t Delete PostgreSQL Core System Files and Binaries

389

about, Backup and Restore-Selective Backup Using pg_dump, Database
Backup Using pg_dump

pgAdmin and, Selective backup of database assets

selective backup and, Selective backup of database assets

unlogged tables and, Unlogged Tables

version considerations, Backup and Restore

pg_dumpall tool

about, Backup and Restore

selective backup and, Backing up systemwide objects

server backup and, Server Backup: pg_dumpall

systemwide backup, Systemwide Backup Using pg_dumpall

pg_file_settings view, Checking postgresql.conf settings

pg_global tablespace, Managing Disk Storage with Tablespaces

pg_hba.conf file

about, Configuration Files, The pg_hba.conf File-Authentication methods

authentication methods, The pg_hba.conf File-Authentication methods

editing, Editing postgresql.conf and pg_hba.conf from pgAdmin3

replicating slaves, Configuring the Master

pg_ctl reload command, Reloading

pg_default tablespace, Managing Disk Storage with Tablespaces

pg_dump tool

390

about, Restoring Data-Using pg_restore

database restore and, Database Restore: pg_restore

parallel restore and, Selective Backup Using pg_dump

version considerations, Backup and Restore

pg_settings view, Checking postgresql.conf settings

pg_stat_activity view, Managing Connections, Check for Queries Being
Blocked

pg_stat_statements extension, Gathering Statistics on Statements, How
Useful Is Your Index?

pg_stat_statements view, Gathering Statistics on Statements

pg_stat_statements_reset function, Gathering Statistics on Statements

pg_stat_user_indexes view, How Useful Is Your Index?

pg_hba_file_rules view, The pg_hba.conf File

pg_ident.conf file, Configuration Files, Authentication methods

pg_log folder, “I edited my postgresql.conf and now my server won’t start.”,

“I edited my pg_hba.conf and now my server is broken.”, Don’t Delete

PostgreSQL Core System Files and Binaries

pg_opclass system table, Operator Classes

pg_prewarm extension, Caching

pg_receivewal daemon, Configuring the Master

pg_receivexlog daemon, Configuring the Master

pg_restore tool

391

pg_stat_user_tables view, How Useful Is Your Index?

pg_terminate_backend function, Managing Connections

pg_trgm extension, Popular extensions, PostgreSQL Stock Indexes

pg_ts_config function, FTS Configurations

pg_wal folder, Don’t Delete PostgreSQL Core System Files and Binaries

pg_xact folder, Don’t Delete PostgreSQL Core System Files and Binaries

pg_xlog folder, Don’t Delete PostgreSQL Core System Files and Binaries

PHP language, Database Drivers

phpPgAdmin tool, phpPgAdmin

phraseto_tsquery function, TSQueries

PL/CoffeeScript language, Writing PL/V8, PL/CoffeeScript, and

PL/LiveScript Functions-Writing Window Functions in PL/V8

PL/LiveScript language, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript

Functions-Writing Window Functions in PL/V8

PL/pgSQL language, Writing PL/pgSQL Functions-Writing Trigger

Functions in PL/pgSQL

PL/Python language, Writing PL/Python Functions-Basic Python Function

PL/V8 language, Writing Functions, Writing PL/V8, PL/CoffeeScript, and

PL/LiveScript Functions-Writing Window Functions in PL/V8

plainto_tsquery function, TSQueries

plpython2u extension, Writing PL/Python Functions

plpython3u extension, Writing PL/Python Functions

392

administrative privileges and, Don’t Grant Full OS Administrative
Privileges to the Postgres System Account (postgres)

creating login roles, Creating Login Roles

mapping OS root account to, Configuration Files

PL/Python functions and, Basic Python Function

Postgres-X2 database, Notable PostgreSQL Forks

Postgres-XL database, Notable PostgreSQL Forks

Postgres.app distribution, macOS

PostgreSQL

additional resources, For More Information on PostgreSQL

administration tools, Administration Tools-Adminer

plpythonu extension, Writing PL/Python Functions

PLs (procedural languages), PostgreSQL Database Objects, Writing

Functions, Trusted and Untrusted Languages

plv8x extension, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript

Functions

pointer symbols, Querying JSON

port network setting, Checking postgresql.conf settings

positional notation, Function Basics

postgis extension, Popular extensions

postgres service, Don’t Try to Start PostgreSQL on a Port Already in Use

postgres superuser account

393

downloading, Where to Get PostgreSQL

help resources, Where to Get Help

installing, Windows and Desktop Linux-macOS

reasons for not using, Why Not PostgreSQL?

reasons for using, Why PostgreSQL?-Why PostgreSQL?

reloading, Reloading

restarting, Restarting

version enhancements, What’s New in Latest Versions of PostgreSQL?-
Features Introduced in PostgreSQL 9.4

postgresql-dev package, Querying Flat Files as Jagged Arrays, Querying
Nonconventional Data Sources

postgresql-server-dev package, Debian, Ubuntu

postgresql.auto.conf file, The postgresql.conf File

postgresql.conf file

about, Configuration Files, The postgresql.conf File

changing settings, Changing the postgresql.conf settings

checking settings, Checking postgresql.conf settings-Checking
postgresql.conf settings

editing, Editing postgresql.conf and pg_hba.conf from pgAdmin3

global system settings and, Features Introduced in PostgreSQL 9.4

postgres_fdw wrapper

about, Features Introduced in PostgreSQL 9.6, Querying Other

394

PostgreSQL Servers

installing, Foreign Data Wrappers

options supported, Querying Other PostgreSQL Servers

updating and, Replication and External Data

postmaster.pid file, “I edited my postgresql.conf and now my server won’t
start.”

primary keys

B-Tree and, PostgreSQL Stock Indexes

dropping from tables, Sample Runs and Output

inheritance and, Inherited Tables

naming considerations, Constraints

serial data type and, Serials, Basic Table Creation

table constraints, Unique Constraints

privileges

about, Privileges

batch jobs and, Installing pgAgent

default, Default Privileges-Default Privileges

getting started, Getting Started

GRANT command, GRANT

idiosyncrasies of, Privilege Idiosyncrasies

inheriting from group roles, Creating Group Roles

395

postgres superuser account, Don’t Grant Full OS Administrative Privileges
to the Postgres System Account (postgres)

setting, Creating Database Assets and Setting Privileges-Privilege
management

types of, Types of Privileges

procedural languages (PLs), PostgreSQL Database Objects, Writing
Functions, Trusted and Untrusted Languages

PROMPT1 system setting, psql Customizations

psql tool

about, psql, psql

accessing from pgAdmin, Accessing psql from pgAdmin3

autocommit commands, Autocommit Commands

basic reporting, Basic Reporting-Basic Reporting

crosstab queries, Crosstabs

custom prompts, Custom Prompts

customizations, psql Customizations-Retrieving Prior Commands

dynamic SQL execution, Dynamic SQL Execution-Dynamic SQL
Execution

environment variables and, Environment Variables

executing shell commands, Executing Shell Commands

exporting data, Importing and Exporting Data-psql Export

feature enhancements, Features Introduced in PostgreSQL 9.6

396

importing data, Importing and Exporting Data-psql Import

interactive commands, Interactive versus Noninteractive psql, psql
Interactive Commands-psql Interactive Commands

lists and, Retrieving Details of Database Objects

noninteractive commands, Interactive versus Noninteractive psql, psql
Noninteractive Commands

partitioned tables and, Partitioned Tables

restoring data, Restoring Data

retrieving details of database objects, Retrieving Details of Database
Objects

retrieving prior commands, Retrieving Prior Commands

shortcuts for, Shortcuts

timing executions, Timing Executions

watching statements, Watching Statements

PSQLRC environment variable, Environment Variables

psqlrc.conf file, psql Customizations-Retrieving Prior Commands

PSQL_HISTORY environment variable, Environment Variables

Python language

database drivers, Database Drivers

writing PL/Python functions, Writing PL/Python Functions-Basic Python
Function

Q

397

quality of drives, Random Page Cost and Quality of Drives

queries

autogenerating from table definitions, Autogenerating Queries from Table
Definitions

checking for blocked, Check for Queries Being Blocked

composite types in, Composite Types in Queries

crosstab, Crosstabs

flat files, Querying Flat Files-Querying Flat Files as Jagged Arrays

foreign servers, Querying Other PostgreSQL Servers-Querying Other
PostgreSQL Servers

json data type and, Querying JSON

lateral joins, Lateral Joins-Lateral Joins

managing connections for, Managing Connections-Managing Connections

nonconventional data sources, Querying Nonconventional Data Sources-
Querying Nonconventional Data Sources

other tabular formats, Querying Other Tabular Formats with ogr_fdw-
Querying Other Tabular Formats with ogr_fdw

parallelized, Features Introduced in PostgreSQL 10, Features Introduced in
PostgreSQL 9.6, Parallelized Queries-Parallel Joins

pgAgent and, Helpful pgAgent Queries

tsqueries, TSQueries-TSQueries

writing better, Writing Better Queries-Using FILTER Instead of CASE

398

xml data type and, Querying XML Data-Querying XML Data

query performance tuning

about, Query Performance Tuning

caching and, Caching-Caching

EXPLAIN command and, EXPLAIN-Graphical Outputs

gathering statistics on statements, Gathering Statistics on Statements

guiding the query planner, Guiding the Query Planner-Random Page Cost
and Quality of Drives

parallelized queries, Parallelized Queries-Parallel Joins

writing better queries, Writing Better Queries-Using FILTER Instead of
CASE

query planner

about, Guiding the Query Planner

index usefulness, How Useful Is Your Index?-How Useful Is Your Index?

parallel query plans, What Does a Parallel Query Plan Look Like?-What
Does a Parallel Query Plan Look Like?

quality of drives, Random Page Cost and Quality of Drives

random page cost and, Random Page Cost and Quality of Drives

strategy settings, Strategy Settings

table statistics, Table Statistics-Table Statistics

quotes, escaping in strings, Dollar Quoting-DO

R

399

about, Range Types

built-in, Built-in Range Types

defining ranges, Defining Ranges

defining tables with, Defining Tables with Ranges

discrete versus continuous, Discrete Versus Continuous Ranges

temporals and, Temporals

range operators, Range Operators

rank function, Window Functions

records (rows)

converting to JSON objects, Outputting JSON

partitioned tables and, Partitioned Tables

returning affected records to users, Returning Affected Records to the User

row numbers in returned sets, Features Introduced in PostgreSQL 9.4

unnesting arrays to, Unnesting Arrays to Rows

recursive CTEs, Recursive CTE

Red Hat platform, CentOS, Fedora, Red Hat, Scientific Linux

REFRESH command, Views

REFRESH MATERIALIZED VIEW command, Materialized Views-

random page cost (RPC) ratio, Random Page Cost and Quality of Drives

range constructor functions, Defining Ranges

range data types

400

about, Replication and External Data

asynchronous, Replication Jargon

cascading, Replication Jargon

common terminology, Replication Jargon-Replication Jargon

evolution of, Evolution of PostgreSQL Replication

feature improvements, Features Introduced in PostgreSQL 10

initiating process, Initiating the Streaming Replication Process

logical, Replication Jargon, Replicating Only Some Tables or Databases
with Logical Replication-Replicating Only Some Tables or Databases with
Logical Replication

setting up, Setting Up Full Server Replication-Replicating Only Some
Tables or Databases with Logical Replication

streaming, Replication Jargon, Initiating the Streaming Replication Process

synchronous, Replication Jargon

Materialized Views

regexp_matches function, Regular Expressions and Pattern Matching

regexp_replace function, Regular Expressions and Pattern Matching

regular expressions, Regular Expressions and Pattern Matching-Regular

Expressions and Pattern Matching

reloading PostgreSQL, Reloading

remastering process, Replication Jargon

replication

401

about, Configuration Files, Roles

backing up, Systemwide Backup Using pg_dumpall

group, Roles-Creating Group Roles

login, Roles-Creating Login Roles

organizing schemas by, Using Schemas

third-party options, Third-Party Replication Options

replication slots, Replication Jargon

reports

export options, Exporting queries as a structured file or report in pgAdmin

psql and, Basic Reporting-Basic Reporting

restarting PostgreSQL, Restarting

restore (see backup and restore)

restore_command configuration directive, Configuring the Slaves for Full

Server Cluster Replication

RETURNING clause, Editing JSONB data, All Tables Are Custom Data

Types

RETURNING predicate, Returning Affected Records to the User, Writable

CTEs

RETURNS TABLE clause, Basic SQL Function

REVOKE command, GRANT

rights (see privileges)

roles

402

converting to JSON objects, Outputting JSON

partitioned tables and, Partitioned Tables

returning affected records to users, Returning Affected Records to the User

row numbers in returned sets, Features Introduced in PostgreSQL 9.4

unnesting arrays to, Unnesting Arrays to Rows

ROWS FROM clause, Features Introduced in PostgreSQL 9.4

ROWS qualifier, Function Basics

row_number function, Window Functions, ORDER BY

row_to_json function, Outputting JSON

rpad function, String Functions

RPC (random page cost) ratio, Random Page Cost and Quality of Drives

rtrim function, String Functions

Ruby language, Database Drivers

rules, PostgreSQL Database Objects, Using Triggers to Update Views

RUM index method type, PostgreSQL Stock Indexes

S

scans, parallel, Parallel Scans

ROLLUP operator, Features Introduced in PostgreSQL 9.5, GROUPING

SETS, CUBE, ROLLUP

row-level security, Features Introduced in PostgreSQL 9.5

rows (records)

403

scheduling jobs, Job Scheduling with pgAgent-Helpful pgAgent Queries

schemas

about, PostgreSQL Database Objects

creating to house extensions, PostgreSQL Database Objects, Using
Schemas, Step 2: Installing into a database

index names and, Indexes

ogr_all, Querying Other Tabular Formats with ogr_fdw

usage considerations, Using Schemas-Using Schemas

searches

ANY operator and, ANY Array Search

case-insensitive, ILIKE for Case-Insensitive Search

full text, PostgreSQL Database Objects, Features Introduced in
PostgreSQL 9.6, Full Text Search-Full Text Support for JSON and JSONB

SECURITY DEFINER qualifier, Function Basics

security, row-level, Features Introduced in PostgreSQL 9.5

SELECT command

avoiding *, Avoid SELECT *

embedding functions within, Managing Connections

overusing subqueries in, Overusing Subqueries in SELECT-Overusing
Subqueries in SELECT

restricting from inherited tables, Restricting DELETE, UPDATE, and
SELECT from Inherited Tables

404

set-returning functions in, Set-Returning Functions in SELECT

sequences

about, PostgreSQL Database Objects

serial data types and, Serials

serial data type, Serials, Basic Table Creation

session_user global variable, Creating Group Roles

\set command, psql Customizations, Autocommit Commands

set force_parallel_mode setting, What Does a Parallel Query Plan Look Like?

SET ROLE command, Creating Group Roles-Creating Group Roles

SET SESSION AUTHORIZATION command, Creating Group Roles-
Creating Group Roles

set-returning functions, Set-Returning Functions in SELECT, WITH
ORDINALITY, Basic SQL Function

sets

grouping, Features Introduced in PostgreSQL 9.5, GROUPING SETS,
CUBE, ROLLUP-GROUPING SETS, CUBE, ROLLUP

row numbers in returned, Features Introduced in PostgreSQL 9.4

setweight function, TSVectors

shared_buffers network setting, Checking postgresql.conf settings, “I edited
my postgresql.conf and now my server won’t start.”, Don’t Set
shared_buffers Too High

shell commands, executing, Executing Shell Commands

405

about, Writing Functions with SQL

basic functions, Basic SQL Function-Basic SQL Function

dynamic execution, Dynamic SQL Execution-Dynamic SQL Execution

writing aggregate functions, Writing SQL Aggregate Functions-Writing
SQL Aggregate Functions

state function, Aggregates

statement_timeout setting, Managing Connections

statistics

computing percentiles, median, mode, Percentiles and Mode-Percentiles
and Mode

shorthand casting, Shorthand Casting

SHOW ALL command, Checking postgresql.conf settings

SHOW command, Checking postgresql.conf settings

similar to operator (~), Regular Expressions and Pattern Matching

single table views, Single Table Views

SKIP LOCKED clause, Managing Connections

slave servers, Replication Jargon, Configuring the Slaves for Full Server

Cluster Replication

sort operator, Aggregates

SP-GIST indexes, PostgreSQL Stock Indexes

split_part function, Splitting Strings into Arrays, Tables, or Substrings

SQL language

406

command history, Retrieving Prior Commands

managing with tablespaces, Managing Disk Storage with Tablespaces

streaming replication, Replication Jargon, Initiating the Streaming
Replication Process

STRICT qualifier, Function Basics

strings (see characters and strings)

string_agg function, Basic Reporting, String Functions, Overlap operator, DO

string_to_array function, Splitting Strings into Arrays, Tables, or Substrings,
Array Constructors

strip function, Full Text Stripping

stripping, full text, Full Text Stripping

subqueries, Overusing Subqueries in SELECT-Overusing Subqueries in
SELECT, Make Good Use of CASE

substring function, String Functions

substrings

extracting, String Functions

splitting strings into, Splitting Strings into Arrays, Tables, or Substrings

subtraction operator (#-), Editing JSONB data, Editing JSONB data

subtraction operator (-), Datetime Operators and Functions

gathering on statements, Gathering Statistics on Statements

table, Table Statistics-Table Statistics

storage

407

about, PostgreSQL Database Objects, Tables, Constraints, and Indexes

as custom data types, All Tables Are Custom Data Types

autogenerating queries from definitions, Autogenerating Queries from
Table Definitions

automatic type creation, PostgreSQL Database Objects

composite data type and, TYPE OF

creating, Basic Table Creation-Basic Table Creation

creating columns in, Serials

creating to store json data, Inserting JSON Data

creating using pgScript, pgScript

defining with ranges, Defining Tables with Ranges

dropping primary keys from, Sample Runs and Output

foreign, PostgreSQL Database Objects, Features Introduced in PostgreSQL
9.4, Inherited Tables, Foreign Data Wrappers, Querying Other PostgreSQL
Servers

IDENTITY qualifier, Features Introduced in PostgreSQL 10

superuser roles, Roles-Creating Group Roles

synchronous replication, Replication Jargon

synchronous_standby_name configuration variable, Replication Jargon

T

tab-delimited files, psql Export

tables

408

inherited, PostgreSQL Database Objects, Inherited Tables, Restricting
DELETE, UPDATE, and SELECT from Inherited Tables

inserting data into, Binary JSON: jsonb

lateral joins, Lateral Joins-Lateral Joins

logical replication and, Replicating Only Some Tables or Databases with
Logical Replication-Replicating Only Some Tables or Databases with
Logical Replication

moving, Moving Objects Among Tablespaces

partitioned, Partitioned Tables-Partitioned Tables

populating, Features Introduced in PostgreSQL 9.5

populating with pgScript, pgScript

querying, Querying Other Tabular Formats with ogr_fdw-Querying Other
Tabular Formats with ogr_fdw

single views, Single Table Views

splitting strings into, Splitting Strings into Arrays, Tables, or Substrings

statistics and, Table Statistics-Table Statistics

types supported, Tables

unlogged, Features Introduced in PostgreSQL 9.5, Unlogged Tables

tables view, PostgreSQL Database Objects

tablespaces

backing up, Systemwide Backup Using pg_dumpall

creating, Creating Tablespaces

409

expedited moves between, Features Introduced in PostgreSQL 9.4

managing disk storage with, Managing Disk Storage with Tablespaces

moving objects among, Moving Objects Among Tablespaces

tabular explain plan, Graphical Outputs

template databases, Template Databases

temporal data types

about, Temporals-Temporals

adding intervals, Datetime Operators and Functions

datetime operators and functions, Datetime Operators and Functions-
Datetime Operators and Functions

subtracting intervals, Datetime Operators and Functions

text data type, Textuals, Basic Table Creation

textuals (see characters and strings)

third-party replication options, Third-Party Replication Options

time data type, Temporals

time zones

about, Time Zones: What They Are and Are Not-Time Zones: What They
Are and Are Not

temporals and, Temporals

timestamp data type, Temporals, Datetime Operators and Functions-Datetime
Operators and Functions

timestamptz data type, Temporals, Basic Table Creation

410

about, PostgreSQL Database Objects, Triggers and Trigger Functions-
Triggers and Trigger Functions

writing in PL/pgSQL, Writing Trigger Functions in PL/pgSQL

triggers

about, PostgreSQL Database Objects, Triggers and Trigger Functions-
Triggers and Trigger Functions

INSTEAD OF, Using Triggers to Update Views-Using Triggers to Update
Views, Triggers and Trigger Functions, Writing Trigger Functions in
PL/pgSQL

placing on foreign tables, Features Introduced in PostgreSQL 9.4

PLpg/SQL and, Writing Trigger Functions in PL/pgSQL

updating views, Using Triggers to Update Views-Using Triggers to Update
Views

timetz data type, Temporals

\timing command, Timing Executions

timing executions (psql), Timing Executions

TOAST (The Oversized-Attribute Storage Technique), Avoid SELECT *

to_char function, Datetime Operators and Functions

to_tsquery function, TSQueries

to_tsvector function, Features Introduced in PostgreSQL 10, TSVectors, Full

Text Support for JSON and JSONB

transaction log, Replication Jargon

trigger functions

411

archive_command directive and, Configuring the Master

crontab command, Job Scheduling with pgAgent

trim function, String Functions

TRUNCATE event, Using Triggers to Update Views

trust authentication method, Authentication methods

trusted languages, Trusted and Untrusted Languages

tsearch extension, Classic extensions

tsqueries, TSQueries-TSQueries

tsrange data type, Temporals, Built-in Range Types

tstzrange data type, Temporals, Built-in Range Types

tsvector data type, TSVectors-TSVectors

tsvector_update_trigger function, TSVectors

ts_headline function, Features Introduced in PostgreSQL 10, Full Text

Support for JSON and JSONB

ts_rank function, Ranking Results

ts_rank_cd function, Ranking Results

types (data) (see data types)

U

Ubuntu platform, Debian, Ubuntu

unique constraints, Unique Constraints, Partial Indexes

Unix platform

412

installing PostgreSQL, CentOS, Fedora, Red Hat, Scientific Linux

psql tool and, psql Customizations

restore_command directive and, Configuring the Slaves for Full Server
Cluster Replication

retrieving command history, Retrieving Prior Commands

UNLOGGED modifier, Unlogged Tables

unlogged tables, Features Introduced in PostgreSQL 9.5, Unlogged Tables

unnest function

improved functionality, Features Introduced in PostgreSQL 9.4

string_to_array function and, Splitting Strings into Arrays, Tables, or
Substrings

unnesting arrays into rows, Regular Expressions and Pattern Matching,
Unnesting Arrays to Rows

xpath function and, Querying XML Data

\unset command, psql Customizations

untrusted languages, Trusted and Untrusted Languages, Basic Python
Function

updatable setting, Querying Other PostgreSQL Servers

UPDATE command, Template Databases, Single Table Views, Restricting
DELETE, UPDATE, and SELECT from Inherited Tables

UPDATE OF clause, PostgreSQL Database Objects, Triggers and Trigger
Functions

updates

413

conflict handling, Features Introduced in PostgreSQL 9.5

lock failures, Features Introduced in PostgreSQL 9.5

protecting against in views, Features Introduced in PostgreSQL 9.4

upper function, ILIKE for Case-Insensitive Search

UPSERT construct, UPSERTs: INSERT ON CONFLICT UPDATE

UTC (Coordinated Universal Time), Temporals

V

VACUUM ANALYZE command, Table Statistics

VALID UNTIL clause, Creating Login Roles

VALUES keyword, Multirow Insert

values list, Multirow Insert

varchar data type, Textuals, Basic Table Creation

variables

configuration, Replication Jargon

environment, Environment Variables

global, Creating Group Roles

local, Writing PL/pgSQL Functions

psql shortcuts and, Shortcuts

versions

pgAdmin tool, Using pgAdmin

pgAgent tool, Helpful pgAgent Queries

414

pg_dump tool, Backup and Restore

pg_restore tool, Backup and Restore

PostgreSQL 10, Features Introduced in PostgreSQL 10

PostgreSQL 9.4, Features Introduced in PostgreSQL 9.4-Features
Introduced in PostgreSQL 9.4

PostgreSQL 9.5, Features Introduced in PostgreSQL 9.5

PostgreSQL 9.6, Features Introduced in PostgreSQL 9.6

upgrade recommendations, Why Upgrade?

views, PostgreSQL Database Objects

(see also specific views)

about, PostgreSQL Database Objects, Views

avoiding SELECT * within, Avoid SELECT *

materialized, Features Introduced in PostgreSQL 9.4, Views, Materialized
Views-Materialized Views

protecting against updates in, Features Introduced in PostgreSQL 9.4

single table, Single Table Views

updating with triggers, Using Triggers to Update Views-Using Triggers to
Update Views

views view, PostgreSQL Database Objects

VODKA index method type, PostgreSQL Stock Indexes

VOLATILITY setting, Function Basics

W

415

about, Window Functions

aggregate functions and, Aggregates

ORDER BY clause, ORDER BY-ORDER BY

PARTITION BY clause, PARTITION BY

writing in PL/V8, Writing Window Functions in PL/V8-Writing Window
Functions in PL/V8

Windows platform

archive_command directive and, Configuring the Master

installing PostgreSQL, Windows and Desktop Linux

pgAgent versions and, Helpful pgAgent Queries

psql tool and, psql Customizations

restore_command directive and, Configuring the Slaves for Full Server
Cluster Replication

retrieving command history, Retrieving Prior Commands

window_object helper function, Writing Window Functions in PL/V8

WAL (write-ahead log), Replication Jargon

\watch command, Watching Statements

WHEN trigger condition, Triggers and Trigger Functions

WHERE clause, Single Table Views

whitespace, trimiming, String Functions

window functions

416

about, Writing Better Queries

avoiding SELECT *, Avoid SELECT *

CASE usage considerations, Make Good Use of CASE

FILTER usage considerations, Using FILTER Instead of CASE

overusing subqueries in SELECT, Overusing Subqueries in SELECT-
Overusing Subqueries in SELECT

writing functions

about, Writing Functions

anatomy of functions, Anatomy of PostgreSQL Functions-Trusted and
Untrusted Languages

WITH CHECK OPTION modifier, Features Introduced in PostgreSQL 9.4,

Views

WITH clause, PostgreSQL Database Objects

WITH GRANT OPTION modifier, GRANT

WITH ORDINALITY clause, Querying XML Data, WITH ORDINALITY-

WITH ORDINALITY

WITHIN GROUP modifier, Features Introduced in PostgreSQL 9.4,

Percentiles and Mode

work_mem network setting, Checking postgresql.conf settings

writable CTEs, Writable CTEs

write-ahead log (WAL), Replication Jargon

writing better queries

417

in PL/CoffeeScript, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript
Functions-Writing Window Functions in PL/V8

in PL/LiveScript, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript
Functions-Writing Window Functions in PL/V8

in PL/pgSQL, Writing PL/pgSQL Functions-Writing Trigger Functions in
PL/pgSQL

in PL/Python, Writing PL/Python Functions-Basic Python Function

in PL/V8, Writing PL/V8, PL/CoffeeScript, and PL/LiveScript Functions-
Writing Window Functions in PL/V8

in SQL, Writing Functions with SQL-Writing SQL Aggregate Functions

www_fdw wrapper, Querying Nonconventional Data Sources

X

xlst_process function, Classic extensions

xml data type

about, XML

inserting data, Inserting XML Data

querying data, Querying XML Data-Querying XML Data

xml extension, Classic extensions

XML format, Exporting queries as a structured file or report in pgAdmin

XML Schema Definition (XSD), Inserting XML Data

XMLTABLE clause, Features Introduced in PostgreSQL 10, Querying XML
Data

418

xpath function, Querying XML Data

XSD (XML Schema Definition), Inserting XML Data

Y

Yum repository, CentOS, Fedora, Red Hat, Scientific Linux

yyyy-mm-dd format, Datetime Operators and Functions

Z

zero-indexed arrays, Querying JSON

419

About the Authors

Regina Obe is a coprincipal of Paragon Corporation, a database consulting
company based in Boston. She has more than 20 years of professional
experience in various programming languages and database systems, with
special focus on spatial databases. She is a member of the PostGIS steering
committee and the PostGIS core development team as well as the pgRouting
and GEOS development teams. Regina holds a BS degree in mechanical
engineering from the Massachusetts Institute of Technology. She coauthored
PostGIS in Action (Manning) and pgRouting: A Practical Guide (Locate
Press).

Leo Hsu is a coprincipal of Paragon Corporation, a database consulting
company based in Boston. He has more than 20 years of professional
experience developing and thinking about databases for organizations large
and small. Leo holds an MS degree in engineering of economic systems from
Stanford University and BS degrees in mechanical engineering and
economics from the Massachusetts Institute of Technology. He coauthored
PostGIS in Action (Manning) and pgRouting: A Practical Guide (Locate
Press).

420

Colophon

The animal on the cover of PostgreSQL: Up and Running is an elephant
shrew (Macroscelides proboscideus), an insectivorous mammal native to
Africa named for its lengthy trunk, which resembles that of an elephant. They
are distributed across southern Africa in many types of habitat, from the
Namib Desert to boulder-covered terrain in South Africa and thick forests.

The elephant shrew is small and quadrupedal; they resemble rodents and
opossums with their scaly tails. Their legs are long for their size, allowing
them to move around in a hopping fashion similar to a rabbit. The trunk
varies in size depending on species, but are all able to twist around in search
of food.

They are diurnal and active, though they are hardly seen due to being wary
animals, which makes them difficult to trap. They are well camouflaged and
quick at dashing away from threats.

Though elephant shrews are not very social, many of them live in
monogamous pairs, sharing and defending their home territory. Female
elephant shrews experience a menstrual cycle similar to that of human
females; their mating period lasts for several days. Gestation lasts from 45 to
60 days, and the female gives birth to litters of one to three young, which are
born fairly developed and remain in the nest for several days before venturing
out. This can happen several times a year.

Five days after birth, young elephant shrews add mashed insects—which
their mother collects and transports in her cheeks—to their milk diet. The
young begin their migratory phase after about 15 days, lessening their
dependency on the mother. They subsequently establish their own home
range and become sexually active within 41 to 46 days.

Adult elephant shrews feed on invertebrates, such as insects, spiders,
centipedes, millipedes, and earthworms. Eating larger prey can be somewhat
messy. The elephant shrew must pin down the prey using its feet, then chews
pieces with its cheek teeth, which can result in many dropped bits. The
elephant shrew then uses its tongue to flick small food into its mouth, similar
to an anteater. When available, some also eat small amounts of plant matter,

421

such as new leaves, seeds, and small fruits.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

422

http://animals.oreilly.com

	Preface
	Audience
	For More Information on PostgreSQL
	Code and Output Formatting
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	1. The Basics
	Why PostgreSQL?
	Why Not PostgreSQL?
	Where to Get PostgreSQL
	Administration Tools
	psql
	pgAdmin
	phpPgAdmin
	Adminer

	PostgreSQL Database Objects
	What’s New in Latest Versions of PostgreSQL?
	Why Upgrade?
	Features Introduced in PostgreSQL 10
	Features Introduced in PostgreSQL 9.6
	Features Introduced in PostgreSQL 9.5
	Features Introduced in PostgreSQL 9.4

	Database Drivers
	Where to Get Help
	Notable PostgreSQL Forks

	2. Database Administration
	Configuration Files
	Making Configurations Take Effect
	The postgresql.conf File
	The pg_hba.conf File

	Managing Connections
	Check for Queries Being Blocked

	Roles
	Creating Login Roles
	Creating Group Roles

	Database Creation
	Template Databases
	Using Schemas

	Privileges
	Types of Privileges
	Getting Started
	GRANT
	Default Privileges
	Privilege Idiosyncrasies

	Extensions
	Installing Extensions
	Common Extensions

	Backup and Restore
	Selective Backup Using pg_dump
	Systemwide Backup Using pg_dumpall
	Restoring Data

	Managing Disk Storage with Tablespaces
	Creating Tablespaces
	Moving Objects Among Tablespaces

	Verboten Practices
	Don’t Delete PostgreSQL Core System Files and Binaries
	Don’t Grant Full OS Administrative Privileges to the Postgres System Account (postgres)
	Don’t Set shared_buffers Too High
	Don’t Try to Start PostgreSQL on a Port Already in Use

	3. psql
	Environment Variables
	Interactive versus Noninteractive psql
	psql Customizations
	Custom Prompts
	Timing Executions
	Autocommit Commands
	Shortcuts
	Retrieving Prior Commands

	psql Gems
	Executing Shell Commands
	Watching Statements
	Retrieving Details of Database Objects
	Crosstabs
	Dynamic SQL Execution

	Importing and Exporting Data
	psql Import
	psql Export
	Copying from or to Program

	Basic Reporting

	4. Using pgAdmin
	Getting Started
	Overview of Features
	Connecting to a PostgreSQL Server
	Navigating pgAdmin

	pgAdmin Features
	Autogenerating Queries from Table Definitions
	Accessing psql from pgAdmin3
	Editing postgresql.conf and pg_hba.conf from pgAdmin3
	Creating Database Assets and Setting Privileges
	Import and Export
	Backup and Restore

	pgScript
	Graphical Explain
	Job Scheduling with pgAgent
	Installing pgAgent
	Scheduling Jobs
	Helpful pgAgent Queries

	5. Data Types
	Numerics
	Serials
	Generate Series Function

	Textuals
	String Functions
	Splitting Strings into Arrays, Tables, or Substrings
	Regular Expressions and Pattern Matching

	Temporals
	Time Zones: What They Are and Are Not
	Datetime Operators and Functions

	Arrays
	Array Constructors
	Unnesting Arrays to Rows
	Array Slicing and Splicing
	Referencing Elements in an Array
	Array Containment Checks

	Range Types
	Discrete Versus Continuous Ranges
	Built-in Range Types
	Defining Ranges
	Defining Tables with Ranges
	Range Operators

	JSON
	Inserting JSON Data
	Querying JSON
	Outputting JSON
	Binary JSON: jsonb
	Editing JSONB data

	XML
	Inserting XML Data
	Querying XML Data

	Full Text Search
	FTS Configurations
	TSVectors
	TSQueries
	Using Full Text Search
	Ranking Results
	Full Text Stripping
	Full Text Support for JSON and JSONB

	Custom and Composite Data Types
	All Tables Are Custom Data Types
	Building Custom Data Types
	Composites and NULLs
	Building Operators and Functions for Custom Types

	6. Tables, Constraints, and Indexes
	Tables
	Basic Table Creation
	Inherited Tables
	Partitioned Tables
	Unlogged Tables
	TYPE OF

	Constraints
	Foreign Key Constraints
	Unique Constraints
	Check Constraints
	Exclusion Constraints

	Indexes
	PostgreSQL Stock Indexes
	Operator Classes
	Functional Indexes
	Partial Indexes
	Multicolumn Indexes

	7. SQL: The PostgreSQL Way
	Views
	Single Table Views
	Using Triggers to Update Views
	Materialized Views

	Handy Constructions
	DISTINCT ON
	LIMIT and OFFSET
	Shorthand Casting
	Multirow Insert
	ILIKE for Case-Insensitive Search
	ANY Array Search
	Set-Returning Functions in SELECT
	Restricting DELETE, UPDATE, and SELECT from Inherited Tables
	DELETE USING
	Returning Affected Records to the User
	UPSERTs: INSERT ON CONFLICT UPDATE
	Composite Types in Queries
	Dollar Quoting
	DO
	FILTER Clause for Aggregates
	Percentiles and Mode

	Window Functions
	PARTITION BY
	ORDER BY

	Common Table Expressions
	Basic CTEs
	Writable CTEs
	Recursive CTE

	Lateral Joins
	WITH ORDINALITY
	GROUPING SETS, CUBE, ROLLUP

	8. Writing Functions
	Anatomy of PostgreSQL Functions
	Function Basics
	Triggers and Trigger Functions
	Aggregates
	Trusted and Untrusted Languages

	Writing Functions with SQL
	Basic SQL Function
	Writing SQL Aggregate Functions

	Writing PL/pgSQL Functions
	Basic PL/pgSQL Function
	Writing Trigger Functions in PL/pgSQL

	Writing PL/Python Functions
	Basic Python Function

	Writing PL/V8, PL/CoffeeScript, and PL/LiveScript Functions
	Basic Functions
	Writing Aggregate Functions with PL/V8
	Writing Window Functions in PL/V8

	9. Query Performance Tuning
	EXPLAIN
	EXPLAIN Options
	Sample Runs and Output
	Graphical Outputs

	Gathering Statistics on Statements
	Writing Better Queries
	Overusing Subqueries in SELECT
	Avoid SELECT *
	Make Good Use of CASE
	Using FILTER Instead of CASE

	Parallelized Queries
	What Does a Parallel Query Plan Look Like?
	Parallel Scans
	Parallel Joins

	Guiding the Query Planner
	Strategy Settings
	How Useful Is Your Index?
	Table Statistics
	Random Page Cost and Quality of Drives

	Caching

	10. Replication and External Data
	Replication Overview
	Replication Jargon
	Evolution of PostgreSQL Replication
	Third-Party Replication Options

	Setting Up Full Server Replication
	Configuring the Master
	Configuring the Slaves for Full Server Cluster Replication
	Initiating the Streaming Replication Process
	Replicating Only Some Tables or Databases with Logical Replication

	Foreign Data Wrappers
	Querying Flat Files
	Querying Flat Files as Jagged Arrays
	Querying Other PostgreSQL Servers
	Querying Other Tabular Formats with ogr_fdw
	Querying Nonconventional Data Sources

	A. Installing PostgreSQL
	Windows and Desktop Linux
	CentOS, Fedora, Red Hat, Scientific Linux
	Debian, Ubuntu
	FreeBSD
	macOS

	B. PostgreSQL Packaged Command-Line Tools
	Database Backup Using pg_dump
	Server Backup: pg_dumpall
	Database Restore: pg_restore
	psql Interactive Commands
	psql Noninteractive Commands

	Index

