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Foreword

In less than four years, Transformers took the NLP community by storm, breaking any record 

achieved in the previous 30 years. Models such as BERT, T5, and GPT, now constitute the fun-

damental building bricks for new applications in everything from computer vision to speech 

recognition to translation to protein sequencing to writing code. For this reason, Stanford has 

recently introduced the term foundation models to define a set of large language models based on 

giant pre-trained transformers. All of this progress is thanks to a few simple ideas.

This book is a reference for everyone interested in understanding how transformers work both 

from a theoretical and from a practical perspective. The author does a tremendous job of explaining 

how to use transformers step-by-step with a hands-on approach. After reading this book, you 

will be ready to use this state-of-the-art set of techniques for empowering your deep learning 

applications. In Particular, this book gives a solid background on the architecture of transformers 

before covering, in detail, popular models, such as BERT, RoBERTa, T5, and GPT-3. It also explains 

many use cases (text summarization, image labeling, question-answering, sentiment analysis, 

and fake news analysis) that transformers can cover.

If these topics interest you, then this is definitely a worthwhile book. The first edition always has 

a place on my desk, and the same is going to happen with the second edition.

Antonio Gulli

Engineering Director for the Office of the CTO, Google
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Preface

Transformers are a game-changer for Natural Language Understanding (NLU), a subset of Nat-

ural Language Processing (NLP), which has become one of the pillars of artificial intelligence 

in a global digital economy.

Transformer models mark the beginning of a new era in artificial intelligence. Language under-

standing has become the pillar of language modeling, chatbots, personal assistants, question 

answering, text summarizing, speech-to-text, sentiment analysis, machine translation, and more. 

We are witnessing the expansion of social networks versus physical encounters, e-commerce 

versus physical shopping, digital newspapers, streaming versus physical theaters, remote doc-

tor consultations versus physical visits, remote work instead of on-site tasks, and similar trends 

in hundreds of more domains. It would be incredibly difficult for society to use web browsers, 

streaming services, and any digital activity involving language without AI language understanding. 

The paradigm shift of our societies from physical to massive digital information forced artificial 

intelligence into a new era. Artificial intelligence has evolved to billion-parameter models to face 

the challenge of trillion-word datasets.

The Transformer architecture is both revolutionary and disruptive. It breaks with the past, leaving 

the dominance of RNNs and CNNs behind. BERT and GPT models abandoned recurrent network 

layers and replaced them with self-attention. Transformer models outperform RNNs and CNNs. 

The 2020s are experiencing a major change in AI.

Transformer encoders and decoders contain attention heads that train separately, parallelizing 

cutting-edge hardware. Attention heads can run on separate GPUs opening the door to billion-pa-

rameter models and soon-to-come trillion-parameter models. OpenAI trained a 175 billion pa-

rameter GPT-3 Transformer model on a supercomputer with 10,000 GPUs and 285,000 CPU cores.

The increasing amount of data requires training AI models at scale. As such, transformers pave 

the way to a new era of parameter-driven AI. Learning to understand how hundreds of millions 

of words fit together in sentences requires a tremendous amount of parameters. 
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Transformer models such as Google BERT and OpenAI GPT-3 have taken emergence to another 

level. Transformers can perform hundreds of NLP tasks they were not trained for. 

Transformers can also learn image classification and reconstruction by embedding images as 

sequences of words. This book will introduce you to cutting-edge computer vision transformers 

such as Vision Transformers (ViT), CLIP, and DALL-E.

Foundation models are fully trained transformer models that can carry out hundreds of tasks 

without fine-tuning. Foundation models at this scale offer the tools we need in this massive 

information era. 

Think of how many humans it would take to control the content of the billions of messages 

posted on social networks per day to decide if they are legal and ethical before extracting the 

information they contain.

Think of how many humans would be required to translate the millions of pages published each 

day on the web. Or imagine how many people it would take to manually control the millions of 

messages made per minute!

Finally, think of how many humans it would take to write the transcripts of all of the vast amount 

of hours of streaming published per day on the web. Finally, think about the human resources 

required to replace AI image captioning for the billions of images that continuously appear online.

This book will take you from developing code to prompt design, a new “programming” skill that 

controls the behavior of a transformer model. Each chapter will take you through the key aspects 

of language understanding from scratch in Python, PyTorch, and TensorFlow.

You will learn the architecture of the original Transformer, Google BERT, OpenAI GPT-3, T5, and 

several other models. You will fine-tune transformers, train models from scratch, and learn to 

use powerful APIs. Facebook, Google, Microsoft, and other big tech corporations share large 

datasets for us to explore.

You will keep close to the market and its demand for language understanding in many fields such 

as media, social media, and research papers, for example. Among hundreds of AI tasks, we need 

to summarize the vast amounts of data for research, translate documents for every area of our 

economy, and scan all social media posts for ethical and legal reasons.

Throughout the book, you will work hands-on with Python, PyTorch, and TensorFlow. You will 

be introduced to the key AI language understanding neural network models. You will then learn 

how to explore and implement transformers.
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You will learn the new skills required to become an Industry 4.0 AI Specialist in this disruptive 

AI era. The book aims to give readers the knowledge and tools for Python deep learning needed 

for effectively developing the key aspects of language understanding.

Who this book is for
This book is not an introduction to Python programming or machine learning concepts. Instead, 

it focuses on deep learning for machine translations, speech-to-text, text-to-speech, language 

modeling, question answering, and many more NLP domains. 

Readers who can benefit the most from this book are:

• Deep learning and NLP practitioners who are familiar with Python programming.

• Data analysts and data scientists who want an introduction to AI language understanding 

to process the increasing amounts of language-driven functions.

What this book covers
Part I: Introduction to Transformer Architectures

Chapter 1, What are Transformers?, explains, at a high level, what transformers are. We’ll look at 

the transformer ecosystem and the properties of foundation models. The chapter highlights many 

of the platforms available and the evolution of Industry 4.0 AI specialists.

Chapter 2, Getting Started with the Architecture of the Transformer Model, goes through the background 

of NLP to understand how RNN, LSTM, and CNN deep learning architectures evolved into the 

Transformer architecture that opened a new era. We will go through the Transformer’s architec-

ture through the unique Attention Is All You Need approach invented by the Google Research and 

Google Brain authors. We will describe the theory of transformers. We will get our hands dirty 

in Python to see how the multi-attention head sub-layers work. By the end of this chapter, you 

will have understood the original architecture of the Transformer. You will be ready to explore 

the multiple variants and usages of the Transformer in the following chapters.

Chapter 3, Fine-Tuning BERT Models, builds on the architecture of the original Transformer. Bidirec-

tional Encoder Representations from Transformers (BERT) shows you a new way of perceiving 

the world of NLP. Instead of analyzing a past sequence to predict a future sequence, BERT attends 

to the whole sequence! We will first go through the key innovations of BERT’s architecture and 

then fine-tune a BERT model by going through each step in a Google Colaboratory notebook. 

Like humans, BERT can learn tasks and perform other new ones without having to learn the 

topic from scratch.
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Chapter 4, Pretraining a RoBERTa Model from Scratch, builds a RoBERTa transformer model from 

scratch using the Hugging Face PyTorch modules. The transformer will be both BERT-like and 

DistilBERT-like. First, we will train a tokenizer from scratch on a customized dataset. The trained 

transformer will then run on a downstream masked language modeling task.

Part II: Applying Transformers for Natural Language Understanding and Generation

Chapter 5, Downstream NLP Tasks with Transformers, reveals the magic of transformer models with 

downstream NLP tasks. A pretrained transformer model can be fine-tuned to solve a range of NLP 

tasks such as BoolQ, CB, MultiRC, RTE, WiC, and more, dominating the GLUE and SuperGLUE 

leaderboards. We will go through the evaluation process of transformers, the tasks, datasets, 

and metrics. We will then run some of the downstream tasks with Hugging Face’s pipeline of 

transformers.

Chapter 6, Machine Translation with the Transformer, defines machine translation to understand 

how to go from human baselines to machine transduction methods. We will then preprocess a 

WMT French-English dataset from the European Parliament. Machine translation requires precise 

evaluation methods, and in this chapter, we explore the BLEU scoring method. Finally, we will 

implement a Transformer machine translation model with Trax.

Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines, explores many aspects of 

OpenAI’s GPT-2 and GPT-3 transformers. We will first examine the architecture of OpenAI’s GPT 

models before explaining the different GPT-3 engines. Then we will run a GPT-2 345M parameter 

model and interact with it to generate text. Next, we’ll see the GPT-3 playground in action before 

coding a GPT-3 model for NLP tasks and comparing the results to GPT-2.

Chapter 8, Applying Transformers to Legal and Financial Documents for AI Text Summarization, goes 

through the concepts and architecture of the T5 transformer model. We will initialize a T5 model 

from Hugging Face to summarize documents. We will task the T5 model to summarize various 

documents, including a sample from the Bill of Rights, exploring the successes and limitations of 

transfer learning approaches applied to transformers. Finally, we will use GPT-3 to summarize 

some corporation law text to a second-grader.

Chapter 9, Matching Tokenizers and Datasets, analyzes the limits of tokenizers and looks at some of 

the methods applied to improve the data encoding process’s quality. We will first build a Python 

program to investigate why some words are omitted or misinterpreted by word2vector tokenizers. 

Following this, we find the limits of pretrained tokenizers with a tokenizer-agonistic method. 
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We will improve a T5 summary by applying some of the ideas that show that there is still much 

room left to improve the methodology of the tokenization process. Finally, we will test the limits 

of GPT-3’s language understanding.

Chapter 10, Semantic Role Labeling with BERT-Based Transformers, explores how transformers learn 

to understand a text’s content. Semantic Role Labeling (SRL) is a challenging exercise for a human. 

Transformers can produce surprising results. We will implement a BERT-based transformer model 

designed by the Allen Institute for AI in a Google Colab notebook. We will also use their online 

resources to visualize SRL outputs. Finally, we will question the scope of SRL and understand the 

reasons behind its limitations.

Part III: Advanced Language Understanding Techniques

Chapter 11, Let Your Data Do the Talking: Story, Questions, and Answers, shows how a transformer 

can learn how to reason. A transformer must be able to understand a text, a story, and also dis-

play reasoning skills. We will see how question answering can be enhanced by adding NER and 

SRL to the process. We will build the blueprint for a question generator that can be used to train 

transformers or as a stand-alone solution.

Chapter 12, Detecting Customer Emotions to Make Predictions, shows how transformers have im-

proved sentiment analysis. We will analyze complex sentences using the Stanford Sentiment 

Treebank, challenging several transformer models to understand not only the structure of a 

sequence but also its logical form. We will see how to use transformers to make predictions that 

trigger different actions depending on the sentiment analysis output. The chapter finishes with 

some edge cases using GPT-3.

Chapter 13, Analyzing Fake News with Transformers, delves into the hot topic of fake news and how 

transformers can help us understand the different perspectives of the online content we see each 

day. Every day, billions of messages, posts, and articles are published on the web through social 

media, websites, and every form of real-time communication available. Using several techniques 

from the previous chapters, we will analyze debates on climate change and gun control and the 

Tweets from a former president. We will go through the moral and ethical problem of determining 

what can be considered fake news beyond reasonable doubt and what news remains subjective.

Chapter 14, Interpreting Black Box Transformer Models, lifts the lid on the black box that is trans-

former models by visualizing their activity. We will use BertViz to visualize attention heads and 

Language Interpretability Tool (LIT) to carry out a principal component analysis (PCA). Finally, 

we will use LIME to visualize transformers via dictionary learning.
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Chapter 15, From NLP to Task-Agnostic Transformer Models, delves into the advanced models, Re-

former and DeBERTa, running examples using Hugging Face. Transformers can process images 

as sequences of words. We will also look at different vision transformers such as ViT, CLIP, and 

DALL-E. We will test them on computer vision tasks, including generating computer images.

Chapter 16, The Emergence of Transformer-Driven Copilots, explores the maturity of Industry 4.0. 

The chapter begins with prompt engineering examples using informal/casual English. Next, we 

will use GitHub Copilot and OpenAI Codex to create code from a few lines of instructions. We 

will see that vision transformers can help NLP transformers visualize the world around them. We 

will create a transformer-based recommendation system, which can be used by digital humans 

in whatever metaverse you may end up in!

Appendix I, Terminology of Transformer Models, examines the high-level structure of a transformer, 

from stacks and sublayers to attention heads.

Appendix II, Hardware Constraints for Transformer Models, looks at CPU and GPU performance run-

ning transformers. We will see why transformers and GPUs and transformers are a perfect match, 

concluding with a test using Google Colab CPU, Google Colab Free GPU, and Google Colab Pro GPU.

Appendix III, Generic Text Completion with GPT-2, provides a detailed explanation of generic text 

completion using GPT-2 from Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines.

Appendix IV, Custom Text Completion with GPT-2, supplements Chapter 7, The Rise of Suprahuman 

Transformers with GPT-3 Engines by building and training a GPT-2 model and making it interact 

with custom text.

Appendix V, Answers to the Questions, provides answers to the questions at the end of each chapter.

To get the most out of this book
Most of the programs in the book are Colaboratory notebooks. All you will need is a free Google 

Gmail account, and you will be able to run the notebooks on Google Colaboratory’s free VM.

You will need Python installed on your machine for some of the educational programs.

Take the necessary time to read Chapter 2, Getting Started with the Architecture of the Transformer 

Model and Appendix I, Terminology of Transformer Models. Chapter 2 contains the description of the 

original Transformer, which is built from building blocks explained in Appendix I, Terminology of 

Transformer Models, that will be implemented throughout the book. If you find it difficult, then 

pick up the general intuitive ideas out of the chapter. You can then go back to these chapters when 

you feel more comfortable with transformers after a few chapters.
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After reading each chapter, consider how you could implement transformers for your customers 

or use them to move up in your career with novel ideas.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/Denis2054/

Transformers-for-NLP-2nd-Edition. We also have other code bundles from our rich catalog of 

books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that contains color images of the screenshots/diagrams used in this 

book. You can download it here: https://static.packt-cdn.com/downloads/9781803247335_

ColorImages.pdf.

Conventions used
There are several text conventions used throughout this book.

CodeInText: Indicates sentences and words run through the models in the book, code words in 

text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, 

user input, and Twitter handles. For example, “However, if you wish to explore the code, you will 

find it in the Google Colaboratory positional_encoding.ipynb notebook and the text.txt file 

in this chapter’s GitHub repository.”

A block of code is set as follows:

import numpy as np

from scipy.special import softmax

When we wish to draw your attention to a particular part of a code block, the relevant lines or 

items are set in bold:

The black cat sat on the couch and the brown dog slept on the rug.

Please note that we use OpenAI Codex later on in the book, which currently has a 

waiting list. Sign up now to avoid a long wait time at https://openai.com/blog/

openai-codex/.

https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition
https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803247335_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803247335_ColorImages.pdf
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/
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Any command-line input or output is written as follows:

vector similarity

[[0.9627094]] final positional encoding similarity

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, 

in menus or dialog boxes, also appear in the text like this. For example: “In our case, we are looking 

for t5-large, a t5-large model we can smoothly run in Google Colaboratory.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you would report this 

to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on 

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
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Share your thoughts
Once you’ve read Transformers for Natural Language Processing - Second Edition, we’d love to hear 

your thoughts! Please click here to go straight to the Amazon review page for this book 

and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1803247339
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What are Transformers?

Transformers are industrialized, homogenized post-deep learning models designed for parallel 

computing on supercomputers. Through homogenization, one transformer model can carry out 

a wide range of tasks with no fine-tuning. Transformers can perform self-supervised learning on 

billions of records of raw unlabeled data with billions of parameters.

These particular architectures of post-deep learning are called foundation models. Foundation 

model transformers represent the epitome of the Fourth Industrial Revolution that began in 2015 

with machine-to-machine automation that will connect everything to everything. Artificial in-

telligence in general and specifically Natural Language Processing (NLP) for Industry 4�0 (I4�0) 

has gone far beyond the software practices of the past.

In less than five years, AI has become an effective cloud service with seamless APIs. The former 

paradigm of downloading libraries and developing is becoming an educational exercise in many 

cases.

An Industry 4.0 project manager can go to OpenAI’s cloud platform, sign up, obtain an API key, 

and get to work in a few minutes. A user can then enter a text, specify the NLP task, and obtain 

a response sent by a GPT-3 transformer engine. Finally, a user can go to GPT-3 Codex and create 

applications with no knowledge of programming. Prompt engineering is a new skill that emerged 

from these models.

However, sometimes a GPT-3 model might not fit a specific task. For example, a project manager, 

consultant, or developer might want to use another system provided by Google AI, Amazon Web 

Services (AWS), the Allen Institute for AI, or Hugging Face.
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Should a project manager choose to work locally? Or should the implementation be done directly 

on Google Cloud, Microsoft Azure, or AWS? Should a development team select Hugging Face, 

Google Trax, OpenAI, or AllenNLP? Should an artificial intelligence specialist or a data scientist 

use an API with practically no AI development?

The answer is all the above. You do not know what a future employer, customer, or user may 

want or specify. Therefore, you must be ready to adapt to any need that comes up. This book does 

not describe all the offers that exist on the market. However, this book provides the reader with 

enough solutions to adapt to Industry 4.0 AI-driven NLP challenges.

This chapter first explains what transformers are at a high level. Then the chapter explains the 

importance of acquiring a flexible understanding of all types of methods to implement transform-

ers. The definition of platforms, frameworks, libraries, and languages is blurred by the number 

of APIs and automation available on the market.

Finally, this chapter introduces the role of an Industry 4.0 AI specialist with advances in embed-

ded transformers.

We need to address these critical notions before starting our journey to explore the variety of 

transformer model implementations described in this book.

This chapter covers the following topics:

• The emergence of the Fourth Industrial Revolution, Industry 4.0

• The paradigm change of foundation models

• Introducing prompt engineering, a new skill

• The background of transformers

• The challenges of implementing transformers

• The game-changing transformer model APIs 

• The difficulty of choosing a transformer library

• The difficulty of choosing a transformer model

• The new role of an Industry 4.0 artificial intelligence specialist

• Embedded transformers
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Our first step will be to explore the ecosystem of transformers.

The ecosystem of transformers
Transformer models represent such a paradigm change that they require a new name to describe 

them: foundation models. Accordingly, Stanford University created the Center for Research on 

Foundation Models (CRFM). In August 2021, the CRFM published a two-hundred-page paper 

(see the References section) written by over one hundred scientists and professionals: On the Op-

portunities and Risks of Foundation Models.

Foundation models were not created by academia but by the big tech industry. For example, Goo-

gle invented the transformer model, which led to Google BERT. Microsoft entered a partnership 

with OpenAI to produce GPT-3.

Big tech had to find a better model to face the exponential increase of petabytes of data flowing 

into their data centers. Transformers were thus born out of necessity.

Let’s first take Industry 4.0 into consideration to understand the need to have industrialized 

artificial intelligence models.

Industry 4.0
The Agricultural Revolution led to the First Industrial Revolution, which introduced machinery. 

The Second Industrial Revolution gave birth to electricity, the telephone, and airplanes. The Third 

Industrial Revolution was digital.

The Fourth Industrial Revolution, or Industry 4.0, has given birth to an unlimited number of ma-

chine to machine connections: bots, robots, connected devices, autonomous cars, smartphones, 

bots that collect data from social media storage, and more. 
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In turn, these millions of machines and bots generate billions of data records every day: images, 

sound, words, and events, as shown in Figure 1.1:

Figure 1.1: The scope of Industry 4.0

Industry 4.0 requires intelligent algorithms that process data and make decisions without hu-

man intervention on a large scale to face this unseen amount of data in the history of humanity.

Big tech needed to find a single AI model that could perform a variety of tasks that required several 

separate algorithms in the past.

Foundation models
Transformers have two distinct features: a high level of homogenization and mind-blowing emer-

gence properties. Homogenization makes it possible to use one model to perform a wide variety 

of tasks. These abilities emerge through training billion-parameter models on supercomputers. 
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The paradigm change makes foundation models a post-deep learning ecosystem, as shown in 

Figure 1.2:

Figure 1.2: The scope of an I4.0 AI specialist

Foundation models, although designed with an innovative architecture, are built on top of the 

history of AI. As a result, an artificial intelligence specialist’s range of skills is stretching!

The present ecosystem of transformer models is unlike any other evolution in artificial intelligence 

and can be summed up with four properties:

• Model architecture

The model is industrial. The layers of the model are identical, and they are specifically 

designed for parallel processing. We will go through the architecture of transformers in 

Chapter 2, Getting Started with the Architecture of the Transformer Model.

• Data

Big tech possesses the hugest data source in the history of humanity, first generated by the 

Third Industrial Revolution (digital) and boosted to unfathomable sizes by Industry 4.0.
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• Computing power

Big tech possesses computer power never seen before at that scale. For example, GPT-3 

was trained at about 50 PetaFLOPS/second, and Google now has domain-specific super-

computers that exceed 80 PetaFLOPS/second.

• Prompt engineering

Highly trained transformers can be triggered to do a task with a prompt. The prompt is 

entered in natural language. However, the words used require some structure, making 

prompts a metalanguage.

A foundation model is thus a transformer model that has been trained on supercomputers on 

billions of records of data and billions of parameters. The model can then perform a wide range 

of tasks with no further fine-tuning. Thus, the scale of foundation models is unique. These fully 

trained models are often called engines. Only GPT-3, Google BERT, and a handful of transformer 

engines can thus qualify as foundation models.

Let’s now explore an example of how foundation models work and have changed the way we 

develop programs.

Is programming becoming a sub-domain of NLP?
Chen et al. (2021) published a bombshell paper in August 2021 on Codex, a GPT-3 model that 

can convert natural language into source code. Codex was trained on 54 million public GitHub 

software repositories. Codex can produce interesting natural language to source code, as we will 

see in Chapter 16, The Emergence of Transformer-Driven Copilots.

Is programming now a translation task from natural language to source code languages?

Is programming becoming an NLP task for GPT-3 engines?

Let’s look into an example before answering that question.

Bear in mind that Codex is a stochastic algorithm, so the metalanguage is tricky. You might not 

generate what you expect if you are not careful to engineer the prompt correctly.

I will only refer to foundation models in this book when mentioning OpenAI’s GPT-3 

or Google’s BERT model. This is because GPT-3 and Google BERT were fully trained 

on supercomputers. Though interesting and effective for limited use, other models do 

not reach the homogenization level of foundation models due to the lack of resources.
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I created some prompts as I was experimenting with Codex. This example is just to give an idea 

of how Codex works and is purely for educational purposes.

My prompts were:

• “generate a random distribution of 200 integers between 1 and 100” in Python

• “plot the data using matplotlib”

• “create a k-means clustering model with 3 centroids and fit the model”

• “print the cluster labels”

• “plot the clusters”

• “plot the clusters with centroids”

Codex translated my natural metalanguage prompts into Python automatically!

Codex is a stochastic model, so it might not reproduce exactly the same code if you try again. You 

will have to learn the metalanguage through experimentation until you can drive it like a race car!

The Python program is generated automatically and can be copied and tested:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.datasets.samples_generator import make_blobs

# generate random data

np.random.seed(0)

X, y = make_blobs(n_samples=200, centers=3, n_features=2, cluster_std=2, 
random_state=0)

# plot the data

plt.scatter(X[:, 0], X[:, 1], s=50)

plt.show()

# create the k-means model

kmeans = KMeans(n_clusters=3, random_state=0)

# fit the model to the data

kmeans.fit(X)
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# print the cluster labels

print(kmeans.labels_)

#plot the clusters

plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_, cmap='rainbow')

plt.show()

# plot the clusters with centroids

plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_, cmap='rainbow')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], 
c='black', s=100, alpha=0.5)

plt.show()

You can copy and paste this program. It works. You can also try JavaScript, among other exper-

iments.

GitHub Copilot is now available with some Microsoft developing tools, as we will see in Chapter 16, 

The Emergence of Transformer-Driven Copilots. If you learn the prompt engineering metalanguage, 

you will reduce your development time in years to come.

End users can create prototypes and or small tasks if they master the metalanguage. In the future, 

coding copilots will expand.

We will see where Codex fits in the future of artificial intelligence in Chapter 16.

At this point, let’s take a glimpse into the bright future of artificial intelligence specialists.

The future of artificial intelligence specialists
The societal impact of foundation models should not be underestimated. Prompt engineering has 

become a skill required for artificial intelligence specialists. However, the future of AI specialists 

cannot be limited to transformers. AI and data science overlap in I4.0.

An AI specialist will be involved in machine to machine algorithms using classical AI, IoT, edge 

computing, and more. An AI specialist will also design and develop fascinating connections be-

tween bots, robots, servers, and all types of connected devices using classical algorithms.

This book is thus not limited to prompt engineering but to a wide range of design skills required 

to be an “Industry 4.0 artificial intelligence specialist” or “I4.0 AI specialist.”
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Prompt engineering is a subset of the design skills an AI specialist will have to develop. In this 

book, I will thus refer to the future AI specialist as an “Industry 4.0 artificial intelligence specialist.”

Let’s now get a general view of how transformers optimize NLP models.

Optimizing NLP models with transformers
Recurrent Neural Networks (RNNs), including LSTMs, have applied neural networks to NLP 

sequence models for decades. However, using recurrent functionality reaches its limit when 

faced with long sequences and large numbers of parameters. Thus, state-of-the-art transformer 

models now prevail.

This section goes through a brief background of NLP that led to transformers, which we’ll describe  

in more detail in Chapter 2, Getting Started with the Architecture of the Transformer Model. First, 

however, let’s have an intuitive look at the attention head of a transformer that has replaced the 

RNN layers of an NLP neural network.

The core concept of a transformer can be summed up loosely as “mixing tokens.” NLP models first 

convert word sequences into tokens. RNNs analyze tokens in recurrent functions. Transformers 

do not analyze tokens in sequences but relate every token to the other tokens in a sequence, as 

shown in Figure 1.3:

Figure 1.3: An attention head of a layer of a transformer

We will go through the details of an attention head in Chapter 2. For the moment, the takeaway 

of Figure 1.3 is that each word (token) of a sequence is related to all the other words of a sequence. This 

model opens the door to Industry 4.0 NLP.

Let’s briefly go through the background of transformers.
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The background of transformers
Over the past 100+ years, many great minds have worked on sequence patterns and language 

modeling. As a result, machines progressively learned how to predict probable sequences of words. 

It would take a whole book to cite all the giants that made this happen.

In this section, I will share some of my favorite researchers with you to lay the grounds for the 

arrival of the Transformer.

In the early 20th century, Andrey Markov introduced the concept of random values and created 

a theory of stochastic processes. We know them in AI as the Markov Decision Process (MDP), 

Markov Chains, and Markov Processes. In the early 20th century, Markov showed that we could 

predict the next element of a chain, a sequence, using only the last past elements of that chain. He 

applied his method to a dataset containing thousands of letters using past sequences to predict 

the following letters of a sentence. Bear in mind that he had no computer but proved a theory 

still in use today in artificial intelligence.

In 1948, Claude Shannon’s The Mathematical Theory of Communication was published. Claude 

Shannon laid the grounds for a communication model based on a source encoder, transmitter, 

and a receiver or semantic decoder. He created information theory as we know it today.

In 1950, Alan Turing published his seminal article: Computing Machinery and Intelligence. Alan 

Turing based this article on machine intelligence on the successful Turing machine, which de-

crypted German messages during World War II. The messages consisted of sequences of words 

and numbers.

In 1954, the Georgetown-IBM experiment used computers to translate Russian sentences into 

English using a rule system. A rule system is a program that runs a list of rules that will analyze 

language structures. Rule systems still exist and are everywhere. However, in some cases, ma-

chine intelligence can replace rule lists for the billions of language combinations by automatically 

learning the patterns.

The expression “Artificial Intelligence” was first used by John McCarthy in 1956 when it was 

established that machines could learn.

In 1982, John Hopfield introduced an RNN, known as Hopfield networks or “associative” neural 

networks. John Hopfield was inspired by W.A. Little, who wrote The existence of persistent states 

in the brain in 1974, which laid the theoretical grounds of learning processes for decades. RNNs 

evolved, and LSTMs emerged as we know them today. 
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An RNN memorizes the persistent states of a sequence efficiently, as shown in Figure 1.4:

Figure 1.4: The RNN process

Each state Sn captures the information of Sn-1. When the network’s end is reached, a function F 

will perform an action: transduction, modeling, or any other type of sequence-based task.

In the 1980s, Yann LeCun designed the multipurpose Convolutional Neural Network (CNN). 

He applied CNNs to text sequences, and they also apply to sequence transduction and modeling. 

They are also based on W.A. Little’s persistent states that process information layer by layer. In the 

1990s, summing up several years of work, Yann LeCun produced LeNet-5, which led to the many 

CNN models we know today. However, a CNN’s otherwise efficient architecture faces problems 

when dealing with long-term dependencies in lengthy and complex sequences.

We could mention many other great names, papers, and models that would humble any AI spe-

cialist. It seemed that everybody in AI was on the right track for all these years. Markov Fields, 

RNNs, and CNNs evolved into multiple other models. The notion of attention appeared: peeking 

at other tokens in a sequence, not just the last one. It was added to the RNN and CNN models.

After that, if AI models needed to analyze longer sequences requiring increasing computer power, 

AI developers used more powerful machines and found ways to optimize gradients.

Some research was done on sequence-to-sequence models, but they did not meet expectations.

It seemed that nothing else could be done to make more progress. Thirty years passed this way. And 

then, starting late 2017, the industrialized state-of-the-art Transformer came with its attention 

head sublayers and more. RNNs did not appear as a pre-requisite for sequence modeling anymore.

Before diving into the original Transformer’s architecture, which we will do in Chapter 2, Getting 

Started with the Architecture of the Transformer Model, let’s start at a high level by examining the 

paradigm change in software resources we should use to learn and implement transformer models.

What resources should we use?
Industry 4.0 AI has blurred the lines between cloud platforms, frameworks, libraries, languages, 

and models. Transformers are new, and the range and number of ecosystems are mind-blowing. 

Google Cloud provides ready-to-use transformer models. 
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OpenAI has deployed a “Transformer” API that requires practically no programming. Hugging 

Face provides a cloud library service, and the list is endless.

This chapter will go through a high-level analysis of some of the transformer ecosystems we will 

be implementing throughout this book.

Your choice of resources to implement transformers for NLP is critical. It is a question of survival 

in a project. Imagine a real-life interview or presentation. Imagine you are talking to your future 

employer, your employer, your team, or a customer.

You begin your presentation with an excellent PowerPoint with Hugging Face, for example. You 

might get an adverse reaction from a manager who may say, “I’m sorry, but we use Google Trax 

here for this type of project, not Hugging Face. Can you implement Google Trax, please?” If you don’t, 

it’s game over for you.

The same problem could have arisen by specializing in Google Trax. But, instead, you might get 

the reaction of a manager who wants to use OpenAI’s GPT-3 engines with an API and no devel-

opment. If you specialize in OpenAI’s GPT-3 engines with APIs and no development, you might 

face a project manager or customer who prefers Hugging Face’s AutoML APIs. The worst thing 

that could happen to you is that a manager accepts your solution, but in the end, it does not work 

at all for the NLP tasks of that project.

In this section, we will go through some of the challenges that you’ll face. But first, let’s begin 

with APIs.

The rise of Transformer 4.0 seamless APIs
We are now well into the industrialization era of artificial intelligence. Microsoft, Google, Am-

azon Web Services (AWS), and IBM, among others, offer AI services that no developer or team 

of developers could hope to outperform. Tech giants have million-dollar supercomputers with 

massive datasets to train transformer models and AI models in general.

The key concept to keep in mind is that if you only focus on the solution that you 

like, you will most likely sink with the ship at some point.

Focus on the system you need, not the one you like.

This book is not designed to explain every transformer solution that exists on the 

market. Instead, this book aims to explain enough transformer ecosystems for you 

to be flexible and adapt to any situation you face in an NLP project.
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Big tech giants have a wide range of corporate customers that already use their cloud services. 

As a result, adding a transformer API to an existing cloud architecture requires less effort than 

any other solution.

A small company or even an individual can access the most powerful transformer models through 

an API with practically no investment in development. An intern can implement the API in a few 

days. There is no need to be an engineer or have a Ph.D. for such a simple implementation.

For example, the OpenAI platform now has a SaaS (Software as a Service) API for some of the 

most effective transformer models on the market.

OpenAI transformer models are so effective and humanlike that the present policy requires a 

potential user to fill out a request form. Once the request has been accepted, the user can access 

a universe of natural language processing!

The simplicity of OpenAI’s API takes the user by surprise:

1. Obtain an API key in one click

2. Import OpenAI in a notebook in one lin

3. Enter any NLP task you wish in a prompt

4. You will receive the response as a completion in a certain number of tokens (length)

And that’s it! Welcome to the Fourth Industrial Revolution and AI 4.0!

Industry 3.0 developers that focus on code-only solutions will evolve into Industry 4.0 developers 

with cross-disciplinary mindsets.

AllenNLP offers the free use of an online educational interface for transformers. AllenNLP also 

provides a library that can be installed in a notebook. For example, suppose we are asked to im-

plement coreference resolution. We can start by running an example online. 

The 4.0 developer will learn how to design ways to show a transformer model what 

is expected and not intuitively tell it what to do, like a 3.0 developer would do. We 

will explore this new approach through GPT-2 and GPT-3 models in Chapter 7, The 

Rise of Suprahuman Transformers with GPT-3 Engines.
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Coreference resolution tasks involve finding the entity to which a word refers, as in the sentence 

shown in Figure 1.5:

Figure 1.5: Running an NLP task online

The word “it” could refer to the website or the transformer model. In this case, the BERT-like 

model decided to link “it” to the transformer model. AllenNLP provides a formatted output, as 

shown in Figure 1.6:

Figure 1.6: The output of an AllenNLP transformer model

This example can be run at https://demo.allennlp.org/coreference-resolution. Transformer 

models are continuously updated, so you might obtain a different result.

Though APIs may satisfy many needs, they also have limits. A multipurpose API might be reason-

ably good in all tasks but not good enough for a specific NLP task. Translating with transformers 

is no easy task. In that case, a 4.0 developer, consultant, or project manager will have to prove 

that an API alone cannot solve the specific NLP task required. We need to search for a solid library.

Choosing ready-to-use API-driven libraries
In this book, we will explore several libraries. For example, Google has some of the most advanced 

AI labs in the world. Google Trax can be installed in a few lines in Google Colab. You can choose 

free or paid services. We can get our hands on source code, tweak the models, and even train 

them on our servers or Google Cloud. For example, it’s a step down from ready-to-use APIs to 

customize a transformer model for translation tasks. 

https://demo.allennlp.org/coreference-resolution
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However, it can prove to be both educational and effective in some cases. We will explore the 

recent evolution of Google in translations and implement Google Trax in Chapter 6, Machine 

Translation with the Transformer.

We have seen that APIs such as OpenAI require limited developer skills, and libraries such as 

Google Trax dig a bit deeper into code. Both approaches show that AI 4.0 APIs will require more 

development on the editor side of the API but much less effort when implementing transformers.

One of the most famous online applications that use transformers, among other algorithms, is 

Google Translate. Google Translate can be used online or through an API.

Let’s try to translate a sentence requiring coreference resolution in an English to French transla-

tion using Google Translate:

Figure 1.7: Coreference resolution in a translation using Google Translate

Google Translate appears to have solved the coreference resolution, but the word transformateur 

in French means an electric device. The word transformer is a neologism (new word) in French. 

An artificial intelligence specialist might be required to have language and linguistic skills for a 

specific project. Significant development is not required in this case. However, the project might 

require clarifying the input before requesting a translation.

This example shows that you might have to team up with a linguist or acquire linguistic skills to 

work on an input context. In addition, it might take a lot of development to enhance the input 

with an interface for contexts.

So, we still might have to get our hands dirty to add scripts to use Google Translate. Or we might 

have to find a transformer model for a specific translation need, such as BERT, T5, or other models 

we will explore in this book.

Choosing a model is no easy task with the increasing range of solutions.
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Choosing a Transformer Model
Big tech corporations dominate the NLP market. Google, Facebook, and Microsoft alone run bil-

lions of NLP routines per day, increasing their AI models’ unequaled power. The big giants now 

offer a wide range of transformer models and have top-ranking foundation models.

However, smaller companies, spotting the vast NLP market, have entered the game. Hugging Face 

now has a free or paid service approach too. It will be challenging for Hugging Face to reach the 

level of efficiency acquired through the billions of dollars poured into Google’s research labs and 

Microsoft’s funding of OpenAI. The entry point of foundation models is fully trained transformers 

on supercomputers such as GPT-3 or Google BERT.

Hugging Face has a different approach and offers a wide range and number of transformer models 

for a task, which is an interesting philosophy. Hugging Face offers flexible models. In addition, 

Hugging Face offers high-level APIs and developer-controlled APIs. We will explore Hugging Face 

in several chapters of this book as an educational tool and a possible solution for specific tasks.

Yet, OpenAI has focused on a handful of the most potent transformer engines globally and can 

perform many NLP tasks at human levels. We will show the power of OpenAI’s GPT-3 engines in 

Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines.

These opposing and often conflicting strategies leave us with a wide range of possible implemen-

tations. We must thus define the role of Industry 4.0 artificial intelligence specialists.

The role of Industry 4.0 artificial intelligence specialists
Industry 4.0 is connecting everything to everything, everywhere. Machines communicate directly 

with other machines. AI-driven IoT signals trigger automated decisions without human inter-

vention. NLP algorithms send automated reports, summaries, emails, advertisements, and more.

Artificial intelligence specialists will have to adapt to this new era of increasingly automated 

tasks, including transformer model implementations. Artificial intelligence specialists will have 

new functions. If we list transformer NLP tasks that an AI specialist will have to do, from top to 

bottom, it appears that some high-level tasks require little to no development on the part of an 

artificial intelligence specialist. An AI specialist can be an AI guru, providing design ideas, expla-

nations, and implementations.
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Let’s go through a few examples:

• API: The OpenAI API does not require an AI developer. A web designer can create a form, 

and a linguist or Subject Matter Expert (SME) can prepare the prompt input texts. The 

primary role of an AI specialist will require linguistic skills to show, not just tell, the 

GPT-3 engines how to accomplish a task. Showing, for example, involves working on the 

context of the input. This new task is named prompt engineering. A prompt engineer has 

quite a future in AI!

• Library: The Google Trax library requires a limited amount of development to start with 

ready-to-use models. An AI specialist mastering linguistics and NLP tasks can work on 

the datasets and the outputs.

• Training and fine-tuning: Some of the Hugging Face functionality requires a limited 

amount of development, providing both APIs and libraries. However, in some cases, we 

still have to get our hands dirty. In that case, training, fine-tuning the models, and finding 

the correct hyperparameters will require the expertise of an artificial intelligence specialist.

• Development-level skills: In some projects, the tokenizers and the datasets do not match, 

as explained in Chapter 9, Matching Tokenizers and Datasets. In this case, an artificial intel-

ligence developer working with a linguist, for example, can play a crucial role. Therefore, 

computational linguistics training can come in very handy at this level.

The recent evolution of NLP AI can be termed as “embedded transformers,” which is disrupting 

the AI development ecosystem:

• GPT-3 transformers are currently embedded in several Microsoft Azure applications with 

GitHub Copilot, for example. As introduced in the Foundation models section of this chapter, 

Codex is another example we will look into in Chapter 16, The Emergence of Transform-

er-Driven Copilots.

• The embedded transformers are not accessible directly but provide automatic development 

support such as automatic code generation.

• The usage of embedded transformers is seamless for the end user with assisted text 

completion.

The pragmatic definition of what a transformer represents for an artificial intelligence 

specialist will vary with the ecosystem.
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We will explore this fascinating new world of embedded transformers in Chapter 16. But to get 

the best out of that chapter, you should first master the previous chapters’ concepts, examples, 

and programs.

The skillset of an Industry 4.0 AI specialist requires flexibility, cross-disciplinary knowledge, and 

above all, flexibility. This book will provide the artificial intelligence specialist with a variety of 

transformer ecosystems to adapt to the new paradigms of the market.

It’s time to summarize the ideas of this chapter before diving into the fascinating architecture of 

the original Transformer in Chapter 2.

Summary
The Fourth Industrial Revolution, or Industry 4.0, has forced artificial intelligence to make pro-

found evolutions. The Third Industrial Revolution was digital. Industry 4.0 is built on top of the 

digital revolution connecting everything to everything, everywhere. Automated processes are 

replacing human decisions in critical areas, including NLP.

RNNs had limitations that slowed the progression of automated NLP tasks required in a fast-mov-

ing world. Transformers filled the gap. A corporation needs summarization, translation, and a 

wide range of NLP tools to meet the challenges of Industry 4.0.

Industry 4.0 (I4.0) has thus spurred an age of artificial intelligence industrialization. The evo-

lution of the concepts of platforms, frameworks, language, and models represents a challenge 

for an industry 4.0 developer. Foundation models bridge the gap between the Third Industrial 

Revolution and I4.0 by providing homogenous models that can carry out a wide range of tasks 

without further training or fine-tuning.

Websites such as AllenNLP, for example, provide educational NLP tasks with no installation, but 

it also provides resources to implement a transformer model in customized programs. OpenAI 

provides an API requiring only a few code lines to run one of the powerful GPT-3 engines. Google 

Trax provides an end-to-end library, and Hugging Face offers various transformer models and 

implementations. We will be exploring these ecosystems throughout this book.

To access GPT-3 engines directly, you must first create an OpenAI account. Then you 

can use the API or directly run examples in the OpenAI user interface.
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Industry 4.0 is a radical deviation from former AI with a broader skillset. For example, a project 

manager can decide to implement transformers by asking a web designer to create an interface 

for OpenAI’s API through prompt engineering. Or, when required, a project manager can ask an 

artificial intelligence specialist to download Google Trax or Hugging Face to develop a full-blown 

project with a customized transformer model.

Industry 4.0 is a game-changer for developers whose role will expand and require more designing 

than programming. In addition, embedded transformers will provide assisted code development 

and usage. These new skillsets are a challenge but open new exciting horizons.

In Chapter 2, Getting Started with the Architecture of the Transformer Model, we will get started with 

the architecture of the original Transformer.

Questions
1. We are still in the Third Industrial Revolution. (True/False)

2. The Fourth Industrial Revolution is connecting everything to everything. (True/False)

3. Industry 4.0 developers will sometimes have no AI development to do. (True/False)

4. Industry 4.0 developers might have to implement transformers from scratch. (True/False)

5. It’s not necessary to learn more than one transformer ecosystem, such as Hugging Face, 

for example. (True/False)

6. A ready-to-use transformer API can satisfy all needs. (True/False)

7. A company will accept the transformer ecosystem a developer knows best. (True/False)

8. Cloud transformers have become mainstream. (True/False)

9. A transformer project can be run on a laptop. (True/False)

10. Industry 4.0 artificial intelligence specialists will have to be more flexible (True/False)
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2
Getting Started with the 
Architecture of the Transformer 
Model
Language is the essence of human communication. Civilizations would never have been born 

without the word sequences that form language. We now mostly live in a world of digital rep-

resentations of language. Our daily lives rely on NLP digitalized language functions: web search 

engines, emails, social networks, posts, tweets, smartphone texting, translations, web pages, 

speech-to-text on streaming sites for transcripts, text-to-speech on hotline services, and many 

more everyday functions.

Chapter 1, What are Transformers?, explained the limits of RNNs and the birth of cloud AI trans-

formers taking over a fair share of design and development. The role of the Industry 4.0 devel-

oper is to understand the architecture of the original Transformer and the multiple transformer 

ecosystems that followed.

In December 2017, Google Brain and Google Research published the seminal Vaswani et al., Atten-

tion is All You Need paper. The Transformer was born. The Transformer outperformed the existing 

state-of-the-art NLP models. The Transformer trained faster than previous architectures and 

obtained higher evaluation results. As a result, transformers have become a key component of NLP.

The idea of the attention head of the Transformer is to do away with recurrent neural network 

features. In this chapter, we will open the hood of the Transformer model described by Vaswani et 

al. (2017) and examine the main components of its architecture. We will explore the fascinating 

world of attention and illustrate the key components of the Transformer.
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This chapter covers the following topics:

• The architecture of the Transformer

• The Transformer’s self-attention model

• The encoding and decoding stacks

• Input and output embedding

• Positional embedding

• Self-attention

• Multi-head attention

• Masked multi-attention

• Residual connections

• Normalization 

• Feedforward network

• Output probabilities

Let’s dive directly into the structure of the original Transformer’s architecture.

The rise of the Transformer: Attention is All You 
Need
In December 2017, Vaswani et al. (2017) published their seminal paper, Attention is All You Need. 

They performed their work at Google Research and Google Brain. I will refer to the model described 

in Attention is All You Need as the “original Transformer model” throughout this chapter and book.

In this section, we will look at the structure of the Transformer model they built. In the following 

sections, we will explore what is inside each component of the model.

The original Transformer model is a stack of 6 layers. The output of layer l is the input of layer 

l+1 until the final prediction is reached. There is a 6-layer encoder stack on the left and a 6-layer 

decoder stack on the right:

Appendix I, Terminology of Transformer Models, can help the transition from the classi-

cal usage of deep learning words to transformer vocabulary. Appendix I summarizes 

some of the changes to the classical AI definition of neural network models.
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Figure 2.1: The architecture of the Transformer

On the left, the inputs enter the encoder side of the Transformer through an attention sublayer 

and a feedforward sublayer. On the right, the target outputs go into the decoder side of the Trans-

former through two attention sublayers and a feedforward network sublayer. We immediately 

notice that there is no RNN, LSTM, or CNN. Recurrence has been abandoned in this architecture.

Attention has replaced recurrence functions requiring increasing parameters as the distance be-

tween two words increases. The attention mechanism is a “word to word” operation. It is actually 

a token-to-token operation, but we will keep it to the word level to keep the explanation simple. 

The attention mechanism will find how each word is related to all other words in a sequence, 

including the word being analyzed itself. Let’s examine the following sequence:

The cat sat on the mat.
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Attention will run dot products between word vectors and determine the strongest relationships 

of a word with all the other words, including itself (“cat” and “cat”):

Figure 2.2: Attending to all the words

The attention mechanism will provide a deeper relationship between words and produce better 

results.

For each attention sublayer, the original Transformer model runs not one but eight attention 

mechanisms in parallel to speed up the calculations. We will explore this architecture in the 

following section, The encoder stack. This process is named “multi-head attention,” providing:

• A broader in-depth analysis of sequences

• The preclusion of recurrence reducing calculation operations

• Implementation of parallelization, which reduces training time

• Each attention mechanism learns different perspectives of the same input sequence

We just looked at the Transformer structure from the outside. Let’s now go into each component 

of the Transformer. We will start with the encoder.

The encoder stack
The layers of the encoder and decoder of the original Transformer model are stacks of layers. Each 

layer of the encoder stack has the following structure:

Attention replaced recurrence. However, there are several other creative aspects of the 

Transformer, which are as critical as the attention mechanism, as you will see when 

we look inside the architecture.
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Figure 2.3: A layer of the encoder stack of the Transformer

The original encoder layer structure remains the same for all N=6 layers of the Transformer model. 

Each layer contains two main sublayers: a multi-headed attention mechanism and a fully con-

nected position-wise feedforward network.

Notice that a residual connection surrounds each main sublayer, sublayer(x), in the Transformer 

model. These connections transport the unprocessed input x of a sublayer to a layer normalization 

function. This way, we are certain that key information such as positional encoding is not lost on 

the way. The normalized output of each layer is thus:

LayerNormalization (x + Sublayer(x))

Though the structure of each of the N=6 layers of the encoder is identical, the content of each 

layer is not strictly identical to the previous layer.

For example, the embedding sublayer is only present at the bottom level of the stack. The other 

five layers do not contain an embedding layer, and this guarantees that the encoded input is 

stable through all the layers.
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Also, the multi-head attention mechanisms perform the same functions from layer 1 to 6. How-

ever, they do not perform the same tasks. Each layer learns from the previous layer and explores 

different ways of associating the tokens in the sequence. It looks for various associations of words, 

just like we look for different associations of letters and words when we solve a crossword puzzle.

The designers of the Transformer introduced a very efficient constraint. The output of every 

sublayer of the model has a constant dimension, including the embedding layer and the residual 

connections. This dimension is dmodel and can be set to another value depending on your goals. In 

the original Transformer architecture, dmodel = 512.

dmodel has a powerful consequence. Practically all the key operations are dot products. As a result, 

the dimensions remain stable, which reduces the number of operations to calculate, reduces 

machine consumption, and makes it easier to trace the information as it flows through the model.

This global view of the encoder shows the highly optimized architecture of the Transformer. In 

the following sections, we will zoom into each of the sublayers and mechanisms.

We will begin with the embedding sublayer.

Input embedding
The input embedding sublayer converts the input tokens to vectors of dimension dmodel = 512 using 

learned embeddings in the original Transformer model. The structure of the input embedding 

is classical:

Figure 2.4: The input embedding sublayer of the Transformer

The embedding sublayer works like other standard transduction models. A tokenizer will trans-

form a sentence into tokens. Each tokenizer has its methods, such as BPE, word piece, and sen-

tence piece methods. The Transformer initially used BPE, but other models use other methods. 
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The goals are similar, and the choice depends on the strategy chosen. For example, a tokenizer 

applied to the sequence the Transformer is an innovative NLP model! will produce the 

following tokens in one type of model:

['the', 'transform', 'er', 'is', 'an', 'innovative', 'n', 'l', 'p', 
'model', '!']

You will notice that this tokenizer normalized the string to lowercase and truncated it into subparts. 

A tokenizer will generally provide an integer representation that will be used for the embedding 

process. For example:

text = "The cat slept on the couch.It was too tired to get up."

tokenized text= [1996, 4937, 7771, 2006, 1996, 6411, 1012, 2009, 2001, 
2205, 5458, 2000, 2131, 2039, 1012]

There is not enough information in the tokenized text at this point to go further. The tokenized 

text must be embedded.

The Transformer contains a learned embedding sublayer. Many embedding methods can be 

applied to the tokenized input.

I chose the skip-gram architecture of the word2vec embedding approach Google made available 

in 2013 to illustrate the embedding sublayer of the Transformer. A skip-gram will focus on a 

center word in a window of words and predicts context words. For example, if word(i) is the cen-

ter word in a two-step window, a skip-gram model will analyze word(i-2), word(i-1), word(i+1), 

and word(i+2). Then the window will slide and repeat the process. A skip-gram model generally 

contains an input layer, weights, a hidden layer, and an output containing the word embeddings 

of the tokenized input words.

Suppose we need to perform embedding for the following sentence:

The black cat sat on the couch and the brown dog slept on the rug.

We will focus on two words, black and brown. The word embedding vectors of these two words 

should be similar.
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Since we must produce a vector of size dmodel = 512 for each word, we will obtain a size 512 vector 

embedding for each word:

black=[[-0.01206071  0.11632373  0.06206119  0.01403395  0.09541149  
0.10695464 0.02560172  0.00185677 -0.04284821  0.06146432  0.09466285  
0.04642421 0.08680347  0.05684567 -0.00717266 -0.03163519  0.03292002 
-0.11397766 0.01304929  0.01964396  0.01902409  0.02831945  0.05870414  
0.03390711 -0.06204525  0.06173197 -0.08613958 -0.04654748  0.02728105 
-0.07830904

    …

0.04340003 -0.13192849 -0.00945092 -0.00835463 -0.06487109  0.05862355 
-0.03407936 -0.00059001 -0.01640179  0.04123065 

-0.04756588  0.08812257 0.00200338 -0.0931043  -0.03507337  0.02153351 
-0.02621627 -0.02492662 -0.05771535 -0.01164199 

-0.03879078 -0.05506947  0.01693138 -0.04124579 -0.03779858 

-0.01950983 -0.05398201  0.07582296  0.00038318 -0.04639162 

-0.06819214  0.01366171  0.01411388  0.00853774  0.02183574 

-0.03016279 -0.03184025 -0.04273562]]

The word black is now represented by 512 dimensions. Other embedding methods could be used 

and dmodel could have a higher number of dimensions.

The word embedding of brown is also represented by 512 dimensions:

brown=[[ 1.35794589e-02 -2.18823571e-02  1.34526128e-02  6.74355254e-02

   1.04376070e-01  1.09921647e-02 -5.46298288e-02 -1.18385479e-02

   4.41223830e-02 -1.84863899e-02 -6.84073642e-02  3.21860164e-02

   4.09143828e-02 -2.74433400e-02 -2.47369967e-02  7.74542615e-02

   9.80964210e-03  2.94299088e-02  2.93895267e-02 -3.29437815e-02

…

  7.20389187e-02  1.57317147e-02 -3.10291946e-02 -5.51304631e-02

  -7.03861639e-02  7.40829483e-02  1.04319192e-02 -2.01565702e-03

   2.43322570e-02  1.92969330e-02  2.57341694e-02 -1.13280728e-01

   8.45847875e-02  4.90090018e-03  5.33546880e-02 -2.31553353e-02

   3.87288055e-05  3.31782512e-02 -4.00604047e-02 -1.02028981e-01

   3.49597558e-02 -1.71501152e-02  3.55573371e-02 -1.77437533e-02

  -5.94457164e-02  2.21221056e-02  9.73121971e-02 -4.90022525e-02]]
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To verify the word embedding produced for these two words, we can use cosine similarity to see 

if the word embeddings of the words black and brown are similar.

Cosine similarity uses Euclidean (L2) norm to create vectors in a unit sphere. The dot product 

of the vectors we are comparing is the cosine between the points of those two vectors. For more 

on the theory of cosine similarity, you can consult scikit-learn’s documentation, among many 

other sources: https://scikit-learn.org/stable/modules/metrics.html#cosine-similarity.

The cosine similarity between the black vector of size dmodel = 512 and the brown vector of size dmodel 

= 512 in the embedding of the example is:

cosine_similarity(black, brown)= [[0.9998901]]

The skip-gram produced two vectors that are close to each other. It detected that black and brown 

form a color subset of the dictionary of words.

The Transformer’s subsequent layers do not start empty-handed. They have learned word em-

beddings that already provide information on how the words can be associated.

However, a big chunk of information is missing because no additional vector or information 

indicates a word’s position in a sequence.

The designers of the Transformer came up with yet another innovative feature: positional encoding.

Let’s see how positional encoding works.

Positional encoding
We enter this positional encoding function of the Transformer with no idea of the position of a 

word in a sequence:

Figure 2.5: Positional encoding

We cannot create independent positional vectors that would have a high cost on the training 

speed of the Transformer and make attention sublayers overly complex to work with. The idea is 

to add a positional encoding value to the input embedding instead of having additional vectors 

to describe the position of a token in a sequence.

https://scikit-learn.org/stable/modules/metrics.html#cosine-similarity
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The Transformer expects a fixed size dmodel = 512 (or other constant value for the model) for each 

vector of the output of the positional encoding function.

If we go back to the sentence we used in the word embedding sublayer, we can see that black and 

brown may be semantically similar, but they are far apart in the sentence:

The black cat sat on the couch and the brown dog slept on the rug.

The word black is in position 2, pos=2, and the word brown is in position 10, pos=10.

Our problem is to find a way to add a value to the word embedding of each word so that it has 

that information. However, we need to add a value to the dmodel = 512 dimensions! For each word 

embedding vector, we need to find a way to provide information to i in the range(0,512) di-

mensions of the word embedding vector of black and brown.

There are many ways to achieve positional encoding. This section will focus on the designers’ clever 

way to use a unit sphere to represent positional encoding with sine and cosine values that will 

thus remain small but useful.

Vaswani et al. (2017) provide sine and cosine functions so that we can generate different frequen-

cies for the positional encoding (PE) for each position and each dimension i of the dmodel = 512 of 

the word embedding vector:

𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑝𝑝𝑝𝑝𝑠𝑠10000 𝑝𝑝𝑝𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑝𝑝𝑐𝑐𝑐𝑐10000 𝑝𝑝𝑝𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

Industry 4.0 is pragmatic and model-agnostic. The original Transformer model 

has only one vector that contains word embedding and position encoding. We will 

explore disentangled attention with a separate matrix for positional encoding in 

Chapter 15, From NLP to Task-Agnostic Transformer Models.
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If we start at the beginning of the word embedding vector, we will begin with a constant (512), 

i=0, and end with i=511. This means that the sine function will be applied to the even numbers 

and the cosine function to the odd numbers. Some implementations do it differently. In that case, 

the domain of the sine function can be 𝑖𝑖 𝑖 [0,255]  and the domain of the cosine function can be 𝑖𝑖 𝑖 [256,512] . This will produce similar results.

In this section, we will use the functions the way they were described by Vaswani et al. (2017). A 

literal translation into Python pseudo code produces the following code for a positional vector 

pe[0][i] for a position pos:

def positional_encoding(pos,pe):

for i in range(0, 512,2):

         pe[0][i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))

         pe[0][i+1] = math.cos(pos / (10000 ** ((2 * i)/d_model)))

return pe

Before going further, you might want to see the plot of the sine function, for example, for pos=2.

You can Google the following plot, for example:

plot y=sin(2/10000^(2*x/512))

Just enter the plot request:

Figure 2.6: Plotting with Google

Google Brain Trax and Hugging Face, among others, provide ready-to-use libraries 

for the word embedding section and the present positional encoding section. Thus, 

you don’t need to run the code I share in this section. However, if you wish to explore 

the code, you will find it in the Google Colaboratory positional_encoding.ipynb 

notebook and the text.txt file in this chapter’s GitHub repository.
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You will obtain the following graph:

Figure 2.7: The graph

If we go back to the sentence we are parsing in this section, we can see that black is in position 

pos=2 and brown is in position pos=10:

The black cat sat on the couch and the brown dog slept on the rug.

If we apply the sine and cosine functions literally for pos=2, we obtain a size=512 positional 

encoding vector:

PE(2)= 

[[ 9.09297407e-01 -4.16146845e-01  9.58144367e-01 -2.86285430e-01

   9.87046242e-01 -1.60435960e-01  9.99164224e-01 -4.08766568e-02

   9.97479975e-01  7.09482506e-02  9.84703004e-01  1.74241230e-01

   9.63226616e-01  2.68690288e-01  9.35118318e-01  3.54335666e-01

   9.02130723e-01  4.31462824e-01  8.65725577e-01  5.00518918e-01

   8.27103794e-01  5.62049210e-01  7.87237823e-01  6.16649508e-01

   7.46903539e-01  6.64932430e-01  7.06710517e-01  7.07502782e-01

…

   5.47683925e-08  1.00000000e+00  5.09659337e-08  1.00000000e+00

   4.74274735e-08  1.00000000e+00  4.41346799e-08  1.00000000e+00

   4.10704999e-08  1.00000000e+00  3.82190599e-08  1.00000000e+00

   3.55655878e-08  1.00000000e+00  3.30963417e-08  1.00000000e+00
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   3.07985317e-08  1.00000000e+00  2.86602511e-08  1.00000000e+00

   2.66704294e-08  1.00000000e+00  2.48187551e-08  1.00000000e+00

   2.30956392e-08  1.00000000e+00  2.14921574e-08  1.00000000e+00]]

We also obtain a size=512 positional encoding vector for position 10, pos=10:

PE(10)= 

[[-5.44021130e-01 -8.39071512e-01  1.18776485e-01 -9.92920995e-01

   6.92634165e-01 -7.21289039e-01  9.79174793e-01 -2.03019097e-01

   9.37632740e-01  3.47627431e-01  6.40478015e-01  7.67976522e-01

   2.09077001e-01  9.77899194e-01 -2.37917677e-01  9.71285343e-01

  -6.12936735e-01  7.90131986e-01 -8.67519796e-01  4.97402608e-01

  -9.87655997e-01  1.56638563e-01 -9.83699203e-01 -1.79821849e-01

…

  2.73841977e-07  1.00000000e+00  2.54829672e-07  1.00000000e+00

   2.37137371e-07  1.00000000e+00  2.20673414e-07  1.00000000e+00

   2.05352507e-07  1.00000000e+00  1.91095296e-07  1.00000000e+00

   1.77827943e-07  1.00000000e+00  1.65481708e-07  1.00000000e+00

   1.53992659e-07  1.00000000e+00  1.43301250e-07  1.00000000e+00

   1.33352145e-07  1.00000000e+00  1.24093773e-07  1.00000000e+00

   1.15478201e-07  1.00000000e+00  1.07460785e-07  1.00000000e+00]]

When we look at the results we obtained with an intuitive literal translation of the Vaswani et al. 

(2017) functions into Python, we would like to check whether the results are meaningful.

The cosine similarity function used for word embedding comes in handy for having a better vi-

sualization of the proximity of the positions:

cosine_similarity(pos(2), pos(10))= [[0.8600013]]

The similarity between the position of the words black and brown and the lexical field (groups 

of words that go together) similarity is different:

cosine_similarity(black, brown)= [[0.9998901]]

The encoding of the position shows a lower similarity value than the word embedding similarity.

The positional encoding has taken these words apart. Bear in mind that word embeddings will 

vary with the corpus used to train them. The problem is now how to add the positional encoding 

to the word embedding vectors.
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Adding positional encoding to the embedding vector
The authors of the Transformer found a simple way by merely adding the positional encoding 

vector to the word embedding vector:

Figure 2.8: Positional encoding

If we go back and take the word embedding of black, for example, and name it y1 = black, we are 

ready to add it to the positional vector pe(2) we obtained with positional encoding functions. We 

will obtain the positional encoding pc(black) of the input word black:

pc(black) = y1 + pe(2)

The solution is straightforward. However, if we apply it as shown, we might lose the information 

of the word embedding, which will be minimized by the positional encoding vector.

There are many possibilities to increase the value of y1 to make sure that the information of the 

word embedding layer can be used efficiently in the subsequent layers.

One of the many possibilities is to add an arbitrary value to y1, the word embedding of black:

y1 * math.sqrt(d_model)
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We can now add the positional vector to the embedding vector of the word black, which are both 

of the same size (512):

for i in range(0, 512,2):

          pe[0][i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))

          pc[0][i] = (y[0][i]*math.sqrt(d_model))+ pe[0][i]

            

          pe[0][i+1] = math.cos(pos / (10000 ** ((2 * i)/d_model)))

          pc[0][i+1] = (y[0][i+1]*math.sqrt(d_model))+ pe[0][i+1]

The result obtained is the final positional encoding vector of dimension dmodel = 512:

pc(black)=

[[ 9.09297407e-01 -4.16146845e-01  9.58144367e-01 -2.86285430e-01

   9.87046242e-01 -1.60435960e-01  9.99164224e-01 -4.08766568e-02

   …

  4.74274735e-08  1.00000000e+00  4.41346799e-08  1.00000000e+00

   4.10704999e-08  1.00000000e+00  3.82190599e-08  1.00000000e+00

   2.66704294e-08  1.00000000e+00  2.48187551e-08  1.00000000e+00

   2.30956392e-08  1.00000000e+00  2.14921574e-08  1.00000000e+00]]

The same operation is applied to the word brown and all of the other words in a sequence.

We can apply the cosine similarity function to the positional encoding vectors of black and brown:

cosine_similarity(pc(black), pc(brown))= [[0.9627094]]

We now have a clear view of the positional encoding process through the three cosine similarity 

functions we applied to the three states representing the words black and brown:

[[0.99987495]] word similarity

[[0.8600013]] positional encoding vector similarity

[[0.9627094]] final positional encoding similarity

We saw that the initial word similarity of their embeddings was high, with a value of 0.99. Then 

we saw the positional encoding vector of positions 2 and 10 drew these two words apart with a 

lower similarity value of 0.86.

Finally, we added the word embedding vector of each word to its respective positional encoding 

vector. We saw that this brought the cosine similarity of the two words to 0.96.
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The positional encoding of each word now contains the initial word embedding information and 

the positional encoding values.

The output of positional encoding leads to the multi-head attention sublayer.

Sublayer 1: Multi-head attention
The multi-head attention sublayer contains eight heads and is followed by post-layer normaliza-

tion, which will add residual connections to the output of the sublayer and normalize it:

Figure 2.9: Multi-head attention sublayer

This section begins with the architecture of an attention layer. Then, an example of multi-atten-

tion is implemented in a small module in Python. Finally, post-layer normalization is described.

Let’s start with the architecture of multi-head attention.

The architecture of multi-head attention
The input of the multi-attention sublayer of the first layer of the encoder stack is a vector that 

contains the embedding and the positional encoding of each word. The next layers of the stack 

do not start these operations over.

The dimension of the vector of each word xn of an input sequence is dmodel = 512:

pe(xn)=[d1=9.09297407e-01, d2=-4.16146845e-01, .., d512=1.00000000e+00]

The representation of each word xn has become a vector of dmodel = 512 dimensions.

Each word is mapped to all the other words to determine how it fits in a sequence.

In the following sentence, we can see that it could be related to cat and rug in the sequence:

Sequence =The cat sat on the rug and it was dry-cleaned.

The model will train to find out if it is related to cat or rug. We could run a huge calculation by 

training the model using the dmodel = 512 dimensions as they are now. 

However, we would only get one point of view at a time by analyzing the sequence with one dmodel 

block. Furthermore, it would take quite some calculation time to find other perspectives.
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A better way is to divide the dmodel = 512 dimensions of each word xn of x (all the words of a sequence) 

into 8 dk=64 dimensions.

We then can run the 8 “heads” in parallel to speed up the training and obtain 8 different repre-

sentation subspaces of how each word relates to another:

Figure 2.10: Multi-head representations

You can see that there are now 8 heads running in parallel. One head might decide that it fits well 

with cat and another that it fits well with rug and another that rug fits well with dry-cleaned.

The output of each head is a matrix Zi with a shape of x * dk. The output of a multi-attention head 

is Z defined as:

Z = (Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7)

However, Z must be concatenated so that the output of the multi-head sublayer is not a sequence 

of dimensions but one line of an xm * dmodel matrix.

Before exiting the multi-head attention sublayer, the elements of Z are concatenated:

MultiHead(output) = Concat(Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7) = x, dmodel

Notice that each head is concatenated into z that has a dimension of dmodel = 512. The output of the 

multi-headed layer respects the constraint of the original Transformer model.

Inside each head hn of the attention mechanism, the “word” matrices have three representations:

• A query matrix (Q) that has a dimension of dq =64, which seeks all the key-value pairs of 

the other “word” matrices.

• A key matrix (K) that has a dimension of dk =64, which will be trained to provide an at-

tention value.
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• A value matrix (V) that has a dimension of dv =64, which will be trained to provide another 

attention value.

Attention is defined as “Scaled Dot-Product Attention,” which is represented in the following 

equation in which we plug Q, K, and V:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑸𝑸𝑸𝑸𝑸𝑸 𝑸𝑸) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑸𝑸𝑸𝑸𝑻𝑻√𝒅𝒅𝒌𝒌)𝑉𝑉 
 

The matrices all have the same dimension, making it relatively simple to use a scaled dot product 

to obtain the attention values for each head and then concatenate the output Z of the 8 heads.

To obtain Q, K, and V, we must train the model with their weight matrices Qw, Kw, and Vw, which 

have dk =64 columns and dmodel = 512 rows. For example, Q is obtained by a dot-product between 

x and Qw. Q will have a dimension of dk =64.

Google Brain Trax, OpenAI, and Hugging Face, among others, provide ready-to-use libraries that 

we will be using throughout this book.

However, let’s open the hood of the Transformer model and get our hands dirty in Python to 

illustrate the architecture we just explored to visualize the model in code and show it with in-

termediate images.

We will use basic Python code with only numpy and a softmax function in 10 steps to run the key 

aspects of the attention mechanism.

Let’s now start building Step 1 of our model to represent the input.

You can modify all the parameters, such as the number of layers, heads, dmodel, dk, and 

other variables of the Transformer to fit your model. This chapter describes the orig-

inal Transformer parameters by Vaswani et al. (2017). It is essential to understand 

the original architecture before modifying it or exploring variants of the original 

model designed by others.

Bear in mind that an Industry 4.0 developer will face the challenge of multiple ar-

chitectures for the same algorithm.
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Step 1: Represent the input
Save Multi_Head_Attention_Sub_Layer.ipynb to your Google Drive (make sure you have a Gmail 

account) and then open it in Google Colaboratory. The notebook is in the GitHub repository for 

this chapter.

We will start by only using minimal Python functions to understand the Transformer at a low 

level with the inner workings of an attention head. We will explore the inner workings of the 

multi-head attention sublayer using basic code:

import numpy as np

from scipy.special import softmax

The input of the attention mechanism we are building is scaled down to dmodel ==4 instead of dmodel 

= 512. This brings the dimensions of the vector of an input x down to dmodel =4, which is easier to 

visualize.

x contains 3 inputs with 4 dimensions each instead of 512:

print("Step 1: Input : 3 inputs, d_model=4")

x =np.array([[1.0, 0.0, 1.0, 0.0],   # Input 1

             [0.0, 2.0, 0.0, 2.0],   # Input 2

             [1.0, 1.0, 1.0, 1.0]])  # Input 3

print(x)

The output shows that we have 3 vectors of dmodel =4:

Step 1: Input : 3 inputs, d_model=4

[[1. 0. 1. 0.]

 [0. 2. 0. 2.]

 [1. 1. 1. 1.]]

The first step of our model is ready:

Figure 2.11: Input of a multi-head attention sublayer

We will now add the weight matrices to our model.
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Step 2: Initializing the weight matrices
Each input has 3 weight matrices:

• Qw to train the queries

• Kw to train the keys

• Vw to train the values

These 3 weight matrices will be applied to all the inputs in this model.

The weight matrices described by Vaswani et al. (2017) are dK ==64 dimensions. However, let’s 

scale the matrices down to dK ==3. The dimensions are scaled down to 3*4 weight matrices to be 

able to visualize the intermediate results more easily and perform dot products with the input x.

The three weight matrices are initialized starting with the query weight matrix:

print("Step 2: weights 3 dimensions x d_model=4")
print("w_query")
w_query =np.array([[1, 0, 1],
                   [1, 0, 0],
                   [0, 0, 1],
                   [0, 1, 1]])
print(w_query)

The output is the w_query weight matrix:

w_query
[[1 0 1]
 [1 0 0]
 [0 0 1]
 [0 1 1]]

We will now initialize the key weight matrix:

print("w_key")

w_key =np.array([[0, 0, 1],

                 [1, 1, 0],

                 [0, 1, 0],

The size and shape of the matrices in this educational notebook are arbitrary. The 

goal is to go through the overall process of an attention mechanism.
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                 [1, 1, 0]])

print(w_key)

The output is the key weight matrix:

w_key
[[0 0 1]
 [1 1 0]
 [0 1 0]
 [1 1 0]]

Finally, we initialize the value weight matrix:

print("w_value")
w_value = np.array([[0, 2, 0],
                    [0, 3, 0],
                    [1, 0, 3],
                    [1, 1, 0]])
print(w_value)

The output is the value weight matrix:

w_value
[[0 2 0]
 [0 3 0]
 [1 0 3]
 [1 1 0]]

The second step of our model is ready:

Figure 2.12: Weight matrices added to the model

We will now multiply the weights by the input vectors to obtain Q, K, and V.

Step 3: Matrix multiplication to obtain Q, K, and V
We will now multiply the input vectors by the weight matrices to obtain a query, key, and value 

vector for each input.
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In this model, we will assume that there is one w_query, w_key, and w_value weight matrix for 

all inputs. Other approaches are possible.

Let’s first multiply the input vectors by the w_query weight matrix:

print("Step 3: Matrix multiplication to obtain Q,K,V")

print("Query: x * w_query")

Q=np.matmul(x,w_query)

print(Q)

The output is a vector for Q1 ==64= [1, 0, 2], Q2= [2,2, 2], and Q3= [2,1, 3]:

Step 3: Matrix multiplication to obtain Q,K,V

Query: x * w_query

[[1. 0. 2.]

 [2. 2. 2.]

 [2. 1. 3.]]

We now multiply the input vectors by the w_key weight matrix:

print("Key: x * w_key")

K=np.matmul(x,w_key)

print(K)

We obtain a vector for K1= [0, 1, 1], K2= [4, 4, 0], and K3= [2 ,3, 1]:

Key: x * w_key

[[0. 1. 1.]

 [4. 4. 0.]

 [2. 3. 1.]]

Finally, we multiply the input vectors by the w_value weight matrix:

print("Value: x * w_value")

V=np.matmul(x,w_value)

print(V)

We obtain a vector for V1= [1, 2, 3], V2= [2, 8, 0], and V3= [2 ,6, 3]:

Value: x * w_value

[[1. 2. 3.]

 [2. 8. 0.]

 [2. 6. 3.]]
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The third step of our model is ready:

Figure 2.13: Q, K, and V are generated

We have the Q, K, and V values we need to calculate the attention scores.

Step 4: Scaled attention scores
The attention head now implements the original Transformer equation:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑸𝑸𝑸𝑸𝑸𝑸 𝑸𝑸) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑸𝑸𝑸𝑸𝑻𝑻√𝒅𝒅𝒌𝒌)𝑉𝑉 

Step 4 focuses on Q and K:

(𝑸𝑸𝑸𝑸𝑻𝑻√𝒅𝒅𝒌𝒌) 
 

For this model, we will round √𝑑𝑑𝑘𝑘  = √3  = 1.75 to 1 and plug the values into the Q and K part of 

the equation:

print("Step 4: Scaled Attention Scores")

k_d=1   #square root of k_d=3 rounded down to 1 for this example

attention_scores = (Q @ K.transpose())/k_d

print(attention_scores)

The intermediate result is displayed:

Step 4: Scaled Attention Scores

[[ 2.  4.  4.]

 [ 4. 16. 12.]

 [ 4. 12. 10.]]
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Step 4 is now complete. For example, the score for x1 is [2,4,4] across the K vectors across the head 

as displayed:

Figure 2.14: Scaled attention scores for input #1

The attention equation will now apply softmax to the intermediate scores for each vector.

Step 5: Scaled softmax attention scores for each vector
We now apply a softmax function to each intermediate attention score. Instead of doing a matrix 

multiplication, let’s zoom down to each individual vector:

print("Step 5: Scaled softmax attention_scores for each vector")

attention_scores[0]=softmax(attention_scores[0])

attention_scores[1]=softmax(attention_scores[1])

attention_scores[2]=softmax(attention_scores[2])

print(attention_scores[0])

print(attention_scores[1])

print(attention_scores[2])

We obtain scaled softmax attention scores for each vector:

Step 5: Scaled softmax attention_scores for each vector

[0.06337894 0.46831053 0.46831053]

[6.03366485e-06 9.82007865e-01 1.79861014e-02]

[2.95387223e-04 8.80536902e-01 1.19167711e-01] 
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Step 5 is now complete. For example, the softmax of the score of x1 for all the keys is:

Figure 2.15: The softmax score of input #1 for all of the keys

We can now calculate the final attention values with the complete equation.

Step 6: The final attention representations
We now can finalize the attention equation by plugging V in:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑸𝑸𝑸𝑸𝑸𝑸 𝑸𝑸) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑸𝑸𝑸𝑸𝑻𝑻√𝒅𝒅𝒌𝒌)𝑉𝑉 
 

We will first calculate the attention score of input x1 for Steps 6 and 7. We calculate one attention 

value for one word vector. When we reach Step 8, we will generalize the attention calculation to 

the other two input vectors.

To obtain Attention(Q,K,V) for x1 we multiply the intermediate attention score by the 3 value 

vectors one by one to zoom down into the inner workings of the equation:

print("Step 6: attention value obtained by score1/k_d * V")

print(V[0])

print(V[1])

print(V[2])

print("Attention 1")

attention1=attention_scores[0].reshape(-1,1)
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attention1=attention_scores[0][0]*V[0]

print(attention1)

print("Attention 2")

attention2=attention_scores[0][1]*V[1]

print(attention2)

print("Attention 3")

attention3=attention_scores[0][2]*V[2]

print(attention3)

Step 6: attention value obtained by score1/k_d * V

[1. 2. 3.]

[2. 8. 0.]

[2. 6. 3.]

Attention 1

[0.06337894 0.12675788 0.19013681]

Attention 2

[0.93662106 3.74648425 0.        ]

Attention 3

[0.93662106 2.80986319 1.40493159]
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Step 6 is complete. For example, the 3 attention values for x1 for each input have been calculated:

Figure 2.16: Attention representations

The attention values now need to be summed up.
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Step 7: Summing up the results
The 3 attention values of input #1 obtained will now be summed to obtain the first line of the 

output matrix:

print("Step 7: summed the results to create the first line of the output 
matrix")

attention_input1=attention1+attention2+attention3

print(attention_input1)

The output is the first line of the output matrix for input #1:

Step 7: summed the results to create the first line of the output matrix

[1.93662106 6.68310531 1.59506841]]

The second line will be for the output of the next input, input #2, for example.

We can see the summed attention value for x1 in Figure 2.17:

Figure 2.17: Summed results for one input
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We have completed the steps for input #1. We now need to add the results of all the inputs to 

the model.

Step 8: Steps 1 to 7 for all the inputs
The Transformer can now produce the attention values of input #2 and input #3 using the same 

method described from Step 1 to Step 7 for one attention head.

From this step onwards, we will assume we have 3 attention values with learned weights with 

dmodel = 64. We now want to see what the original dimensions look like when they reach the sub-

layer’s output.

We have seen the attention representation process in detail with a small model. Let’s go directly 

to the result and assume we have generated the 3 attention representations with a dimension 

of dmodel = 64:

print("Step 8: Step 1 to 7 for inputs 1 to 3")

#We assume we have 3 results with learned weights (they were not trained 
in this example)

#We assume we are implementing the original Transformer paper.We will have 
3 results of 64 dimensions each

attention_head1=np.random.random((3, 64))

print(attention_head1)

The following output displays the simulation of z0, which represents the 3 output vectors of dmodel 

= 64 dimensions for head 1:

Step 8: Step 1 to 7 for inputs 1 to 3

[[0.31982626 0.99175996…(61 squeezed values)…0.16233212]

 [0.99584327 0.55528662…(61 squeezed values)…0.70160307]

 [0.14811583 0.50875291…(61 squeezed values)…0.83141355]]

The results will vary when you run the notebook because of the stochastic nature of the gener-

ation of the vectors.

The Transformer now has the output vectors for the inputs of one head. The next step is to gen-

erate the output of the 8 heads to create the final output of the attention sublayer.
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Step 9: The output of the heads of the attention sublayer 
We assume that we have trained the 8 heads of the attention sublayer. The Transformer now has 3 

output vectors (of the 3 input vectors that are words or word pieces) of dmodel = 64 dimensions each:

print("Step 9: We assume we have trained the 8 heads of the attention 
sublayer")

z0h1=np.random.random((3, 64))

z1h2=np.random.random((3, 64))

z2h3=np.random.random((3, 64))

z3h4=np.random.random((3, 64))

z4h5=np.random.random((3, 64))

z5h6=np.random.random((3, 64))

z6h7=np.random.random((3, 64))

z7h8=np.random.random((3, 64))

print("shape of one head",z0h1.shape,"dimension of 8 heads",64*8)

The output shows the shape of one of the heads:

Step 9: We assume we have trained the 8 heads of the attention sublayer

shape of one head (3, 64) dimension of 8 heads 512

The 8 heads have now produced Z:

Z = (Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7)

The Transformer will now concatenate the 8 elements of Z for the final output of the multi-head 

attention sublayer.

Step 10: Concatenation of the output of the heads
The Transformer concatenates the 8 elements of Z:

MultiHead(Output) = Concat (Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7) W0 = x, dmodel

Note that Z is multiplied by W0, which is a weight matrix that is trained as well. In this model, 

we will assume W0 is trained and integrated into the concatenation function.

Z0 to Z7 are concantenated:

print("Step 10: Concantenation of heads 1 to 8 to obtain the original 
8x64=512 ouput dimension of the model")

output_attention=np.hstack((z0h1,z1h2,z2h3,z3h4,z4h5,z5h6,z6h7,z7h8))

print(output_attention)
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The output is the concatenation of Z:

Step 10: Concatenation of heads 1 to 8 to obtain the original 8x64=512 
output dimension of the model

[[0.65218495 0.11961095 0.9555153  ... 0.48399266 0.80186221 0.16486792]

 [0.95510952 0.29918492 0.7010377  ... 0.20682832 0.4123836  0.90879359]

 [0.20211378 0.86541746 0.01557758 ... 0.69449636 0.02458972 0.889699  ]]

The concatenation can be visualized as stacking the elements of Z side by side:

Figure 2.18: Attention sublayer output

The concatenation produced a standard dmodel = 512 dimensional output:

Figure 2.19: Concatenation of the output of the 8 heads

Layer normalization will now process the attention sublayer.

Post-layer normalization
Each attention sublayer and each Feedforward sublayer of the Transformer is followed by post-lay-

er normalization (Post-LN):

Figure 2.20: Post-layer normalization
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The Post-LN contains an add function and a layer normalization process. The add function pro-

cesses the residual connections that come from the input of the sublayer. The goal of the residual 

connections is to make sure critical information is not lost. The Post-LN or layer normalization 

can thus be described as follows:

LayerNormalization (x + Sublayer(x))

Sublayer(x) is the sublayer itself. x is the information available at the input step of Sublayer(x).

The input of the LayerNormalization is a vector v resulting from x + Sublayer(x). dmodel = 512 for every 

input and output of the Transformer, which standardizes all the processes.

Many layer normalization methods exist, and variations exist from one model to another. The 

basic concept for v = x + Sublayer(x) can be defined by LayerNormalization (v):𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝒗𝒗) = 𝛾𝛾 𝒗𝒗 𝒗 𝒗𝒗𝝈𝝈 + 𝛽𝛽 
 

The variables are:

• 𝜇𝜇   is the mean of v of dimension d. As such:

𝜇𝜇 𝜇 𝟏𝟏𝒅𝒅∑𝒗𝒗𝒌𝒌𝒅𝒅
𝒌𝒌𝒌𝟏𝟏  

• 𝜎𝜎   is the standard deviation v of dimension d. As such:

𝝈𝝈𝟐𝟐 = 𝟏𝟏𝒅𝒅∑(𝒗𝒗𝒌𝒌𝒌𝒌𝒌)𝒅𝒅
𝒌𝒌𝒌𝟏𝟏  

 

• 𝛾𝛾   is a scaling parameter.

• 𝛽𝛽   is a bias vector.

This version of LayerNormalization (v) shows the general idea of the many possible post-LN meth-

ods. The next sublayer can now process the output of the post-LN or LayerNormalization (v). In 

this case, the sublayer is a feedforward network.
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Sublayer 2: Feedforward network
The input of the feedforward network (FFN) is the dmodel = 512 output of the post-LN of the pre-

vious sublayer:

Figure 2.21: Feedforward sublayer

The FFN sublayer can be described as follows:

• The FFNs in the encoder and decoder are fully connected.

• The FFN is a position-wise network. Each position is processed separately and in an iden-

tical way.

• The FFN contains two layers and applies a ReLU activation function.

• The input and output of the FFN layers is dmodel = 512, but the inner layer is larger with dff 

=2048.

• The FFN can be viewed as performing two convolutions with size 1 kernels.

Taking this description into account, we can describe the optimized and standardized FFN as 

follows:

FFN(x) = max (0, xW1 + b1) W2+b2

The output of the FFN goes to post-LN, as described in the previous section. Then the output is 

sent to the next layer of the encoder stack and the multi-head attention layer of the decoder stack.

Let’s now explore the decoder stack.
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The decoder stack
The layers of the decoder of the Transformer model are stacks of layers like the encoder layers. Each 

layer of the decoder stack has the following structure:

Figure 2.22: A layer of the decoder stack of the Transformer

The structure of the decoder layer remains the same as the encoder for all the N=6 layers of the 

Transformer model. Each layer contains three sublayers: a multi-headed masked attention mech-

anism, a multi-headed attention mechanism, and a fully connected position-wise feedforward 

network.
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The decoder has a third main sublayer, which is the masked multi-head attention mechanism. In 

this sublayer output, at a given position, the following words are masked so that the Transformer 

bases its assumptions on its inferences without seeing the rest of the sequence. That way, in this 

model, it cannot see future parts of the sequence.

A residual connection, Sublayer(x), surrounds each of the three main sublayers in the Transformer 

model like in the encoder stack:

LayerNormalization (x + Sublayer(x))

The embedding layer sublayer is only present at the bottom level of the stack, like for the encoder 

stack. The output of every sublayer of the decoder stack has a constant dimension, dmodel like in 

the encoder stack, including the embedding layer and the output of the residual connections.

We can see that the designers worked hard to create symmetrical encoder and decoder stacks.

The structure of each sublayer and function of the decoder is similar to the encoder. In this section, 

we can refer to the encoder for the same functionality when we need to. We will only focus on 

the differences between the decoder and the encoder.

Output embedding and position encoding
The structure of the sublayers of the decoder is mostly the same as the sublayers of the encoder. 

The output embedding layer and position encoding function are the same as in the encoder stack.

In the Transformer usage we are exploring through the model presented by Vaswani et al. (2017), 

the output is a translation we need to learn. I chose to use a French translation:

Output=Le chat noir était assis sur le canapé et le chien marron dormait 
sur le tapis 

This output is the French translation of the English input sentence:

Input=The black cat sat on the couch and the brown dog slept on the rug.

The output words go through the word embedding layer and then the positional encoding func-

tion like in the first layer of the encoder stack.

Let’s see the specific properties of the multi-head attention layers of the decoder stack.

The attention layers
The Transformer is an auto-regressive model. It uses the previous output sequences as an addi-

tional input. The multi-head attention layers of the decoder use the same process as the encoder.
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However, the masked multi-head attention sublayer 1 only lets attention apply to the positions 

up to and including the current position. The future words are hidden from the Transformer, and 

this forces it to learn how to predict.

A post-layer normalization process follows the masked multi-head attention sublayer 1 as in the 

encoder.

The multi-head attention sublayer 2 also only attends to the positions up to the current position 

the Transformer is predicting to avoid seeing the sequence it must predict.

The multi-head attention sublayer 2 draws information from the encoder by taking encoder 

(K, V) into account during the dot-product attention operations. This sublayer also draws in-

formation from the masked multi-head attention sublayer 1 (masked attention) by also taking 

sublayer 1(Q) into account during the dot-product attention operations. The decoder thus uses 

the trained information of the encoder. We can define the input of the self-attention multi-head 

sublayer of a decoder as:

Input_Attention = (Output_decoder_sub_layer – 1(Q), Output_encoder_layer(K, V ))

A post-layer normalization process follows the masked multi-head attention sublayer 1 as in the 

encoder.

The Transformer then goes to the FFN sublayer, followed by a post-LN and the linear layer.

The FFN sublayer, the post-LN, and the linear layer
The FFN sublayer has the same structure as the FFN of the encoder stack. The post-layer normal-

ization of the FFN works as the layer normalization of the encoder stack.

The Transformer produces an output sequence of only one element at a time:

Output sequence = (y1, y2, … yn)

The linear layer produces an output sequence with a linear function that varies per model but 

relies on the standard method:

y =w * x + b

w and b are learned parameters.

The linear layer will thus produce the next probable elements of a sequence that a softmax func-

tion will convert into a probable element.
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The decoder layer, like the encoder layer, will then go from layer l to layer l+1, up to the top layer 

of the N=6-layer transformer stack.

Let’s now see how the Transformer was trained and the performance it obtained.

Training and performance
The original Transformer was trained on a 4.5 million sentence pair English-German dataset and 

a 36 million sentence pair English-French dataset.

The datasets come from Workshops on Machine Translation (WMT), which can be found at 

the following link if you wish to explore the WMT datasets: http://www.statmt.org/wmt14/

The training of the original Transformer base models took 12 hours to train for 100,000 steps on 

a machine with 8 NVIDIA P100 GPUs. The big models took 3.5 days for 300,000 steps.

The original Transformer outperformed all the previous machine translation models with a BLEU 

score of 41.8. The result was obtained on the WMT English-to-French dataset.

BLEU stands for Bilingual Evaluation Understudy. It is an algorithm that evaluates the quality of 

the results of machine translations.

The Google Research and Google Brain team applied optimization strategies to improve the per-

formance of the Transformer. For example, the Adam optimizer was used, but the learning rate 

varied by first going through warmup states with a linear rate and decreasing the rate afterward.

Different types of regularization techniques, such as residual dropout and dropouts, were applied 

to the sums of embeddings. Also, the Transformer applies label smoothing that avoids overfitting 

with overconfident one-hot outputs. It introduces less accurate evaluations and forces the model 

to train more and better.

Several other Transformer model variations have led to other models and usages that we will 

explore in the subsequent chapters.

Before end the chapter, let’s get a feel of the simplicity of ready-to-use transformer models in 

Hugging Face, for example.

Tranformer models in Hugging Face
Everything you saw in this chapter can be condensed in to a ready-to-use Hugging Face trans-

former model.

http://www.statmt.org/wmt14/
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With Hugging Face, you can implement machine translation in three lines of code!

Open Multi_Head_Attention_Sub_Layer.ipynb in Google Colaboratory. Save the notebook in 

your Google Drive (make sure you have a Gmail account). Go to the two last cells.

We first ensure that Hugging Face transformers are installed:

!pip -q install transformers

The first cell imports the Hugging Face pipeline that contains several transformer usages:

#@title Retrieve pipeline of modules and choose English to French 
translation

from transformers import pipeline

We then implement the Hugging Face pipeline, which contains ready-to-use functions. In our 

case, to illustrate the Transformer model of this chapter, we activate the translator model and 

enter a sentence to translate from English to French:

translator = pipeline("translation_en_to_fr")

#One line of code!

print(translator("It is easy to translate languages with transformers", 
max_length=40))

And voilà! The translation is displayed:

[{'translation_text': 'Il est facile de traduire des langues à l'aide de 
transformateurs.'}]

Hugging Face shows how transformer architectures can be used in ready-to-use models.

Summary
In this chapter, we first got started by examining the mind-blowing long-distance dependencies 

transformer architectures can uncover. Transformers can perform transductions from written and 

oral sequences to meaningful representations as never before in the history of Natural Language 

Understanding (NLU).

These two dimensions, the expansion of transduction and the simplification of implementation, 

are taking artificial intelligence to a level never seen before.
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We explored the bold approach of removing RNNs, LSTMs, and CNNs from transduction prob-

lems and sequence modeling to build the Transformer architecture. The symmetrical design of 

the standardized dimensions of the encoder and decoder makes the flow from one sublayer to 

another nearly seamless.

We saw that beyond removing recurrent network models, transformers introduce parallelized 

layers that reduce training time. We discovered other innovations, such as positional encoding 

and masked multi-headed attention.

The flexible, original Transformer architecture provides the basis for many other innovative vari-

ations that open the way for yet more powerful transduction problems and language modeling.

We will zoom more in-depth into some aspects of the Transformer’s architecture in the following 

chapters when describing the many variants of the original model.

The arrival of the Transformer marks the beginning of a new generation of ready-to-use artificial 

intelligence models. For example, Hugging Face and Google Brain make artificial intelligence easy 

to implement with a few lines of code.

In the next chapter, Fine-Tuning BERT Models, we will explore the powerful evolutions of the 

original Transformer model.

Questions
1. NLP transduction can encode and decode text representations. (True/False)

2. Natural Language Understanding (NLU) is a subset of Natural Language Processing 

(NLP). (True/False)

3. Language modeling algorithms generate probable sequences of words based on input 

sequences. (True/False)

4. A transformer is a customized LSTM with a CNN layer. (True/False)

5. A transformer does not contain LSTM or CNN layers. (True/False)

6. Attention examines all the tokens in a sequence, not just the last one. (True/False)

7. A transformer uses a positional vector, not positional encoding. (True/False)

8. A transformer contains a feedforward network. (True/False)

9. The masked multi-headed attention component of the decoder of a transformer prevents 

the algorithm parsing a given position from seeing the rest of a sequence that is being 

processed. (True/False)

10. Transformers can analyze long-distance dependencies better than LSTMs. (True/False)
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3
Fine-Tuning BERT Models

In Chapter 2, Getting Started with the Architecture of the Transformer Model, we defined the building 

blocks of the architecture of the original Transformer. Think of the original Transformer as a 

model built with LEGO® bricks. The construction set contains bricks such as encoders, decoders, 

embedding layers, positional encoding methods, multi-head attention layers, masked multi-head 

attention layers, post-layer normalization, feed-forward sub-layers, and linear output layers.

The bricks come in various sizes and forms. You can spend hours building all sorts of models 

using the same building kit! Some constructions will only require some of the bricks. Other con-

structions will add a new piece, just like when we obtain additional bricks for a model built using 

LEGO® components.

BERT added a new piece to the Transformer building kit: a bidirectional multi-head attention 

sub-layer. When we humans have problems understanding a sentence, we do not just look at the 

past words. BERT, like us, looks at all the words in the same sentence at the same time.

This chapter will first explore the architecture of Bidirectional Encoder Representations from 

Transformers (BERT). BERT only uses the blocks of the encoders of the Transformer in a novel 

way and does not use the decoder stack.

Then we will fine-tune a pretrained BERT model. The BERT model we will fine-tune was trained by 

a third party and uploaded to Hugging Face. Transformers can be pretrained. Then, a pretrained 

BERT, for example, can be fine-tuned on several NLP tasks. We will go through this fascinating 

experience of downstream Transformer usage using Hugging Face modules.
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This chapter covers the following topics:

• Bidirectional Encoder Representations from Transformers (BERT)

• The architecture of BERT

• The two-step BERT framework

• Preparing the pretraining environment

• Defining pretraining encoder layers

• Defining fine-tuning

• Downstream multitasking

• Building a fine-tuned BERT model

• Loading an acceptability judgment dataset

• Creating attention masks

• BERT model configuration

• Measuring the performance of the fine-tuned model

Our first step will be to explore the background of the BERT model.

The architecture of BERT
BERT introduces bidirectional attention to transformer models. Bidirectional attention requires 

many other changes to the original Transformer model.

We will not go through the building blocks of transformers described in Chapter 2, Getting Started 

with the Architecture of the Transformer Model. You can consult Chapter 2 at any time to review an 

aspect of the building blocks of transformers. In this section, we will focus on the specific aspects 

of BERT models.

We will focus on the evolutions designed by Devlin et al. (2018), which describe the encoder stack. 

We will first go through the encoder stack, then the preparation of the pretraining input envi-

ronment. Then we will describe the two-step framework of BERT: pretraining and fine-tuning.

Let’s first explore the encoder stack.

The encoder stack
The first building block we will take from the original Transformer model is an encoder layer. 

The encoder layer, as described in Chapter 2, Getting Started with the Architecture of the Transformer 

Model, is shown in Figure 3.1:
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Figure 3.1: The encoder layer

The BERT model does not use decoder layers. A BERT model has an encoder stack but no decoder 

stacks. The masked tokens (hiding the tokens to predict) are in the attention layers of the encoder, 

as we will see when we zoom into a BERT encoder layer in the following sections.

The original Transformer contains a stack of N=6 layers. The number of dimensions of the original 

Transformer is dmodel = 512. The number of attention heads of the original Transformer is A=8. The 

dimensions of the head of the original Transformer are:

BERT encoder layers are larger than the original Transformer model.

Two BERT models can be built with the encoder layers:

• BERTBASE, which contains a stack of N=12 encoder layers. dmodel = 768 and can also be ex-

pressed as H=768, as in the BERT paper. A multi-head attention sub-layer contains A=12 

heads. The dimension of each head zA remains 64 as in the original Transformer model:
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• The output of each multi-head attention sub-layer before concatenation will be the  

output of the 12 heads:

output_multi-head_attention={z0, z1, z2,…, z11}

• BERTLARGE, which contains a stack of N=24 encoder layers. dmodel = 1024. A multi-head 

attention sub-layer contains A=16 heads. The dimension of each head zA also remains 64 

as in the original Transformer model:

• The output of each multi-head attention sub-layer before concatenation will be the out-

put of the 16 heads:

output_multi-head_attention={z0, z1, z2,…, z15}

The sizes of the models can be summed up as follows:

Figure 3.2: Transformer models

BERT models are not limited to these three configurations. These three configura-

tions illustrate the main aspects of BERT models. Numerous variations are possible.
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Size and dimensions play an essential role in BERT-style pretraining. BERT models are like hu-

mans. BERT models produce better results with more working memory (dimensions) and more 

knowledge (data). Large transformer models that learn large amounts of data will pretrain better 

for downstream NLP tasks.

Let’s go to the first sub-layer and see the fundamental aspects of input embedding and positional 

encoding in a BERT model.

Preparing the pretraining input environment
The BERT model has no decoder stack of layers. As such, it does not have a masked multi-head 

attention sub-layer. BERT designers state that a masked multi-head attention layer that masks 

the rest of the sequence impedes the attention process.

A masked multi-head attention layer masks all of the tokens that are beyond the present position. 

For example, take the following sentence:

The cat sat on it because it was a nice rug.

If we have just reached the word it, the input of the encoder could be:

The cat sat on it<masked sequence>

The motivation of this approach is to prevent the model from seeing the output it is supposed to 

predict. This left-to-right approach produces relatively good results.

However, the model cannot learn much this way. To know what it refers to, we need to see the 

whole sentence to reach the word rug and figure out that it was the rug.

The authors of BERT came up with an idea. Why not pretrain the model to make predictions 

using a different approach?

The authors of BERT came up with bidirectional attention, letting an attention head attend to all 

of the words both from left to right and right to left. In other words, the self-attention mask of an 

encoder could do the job without being hindered by the masked multi-head attention sub-layer 

of the decoder.

The model was trained with two tasks. The first method is Masked Language Modeling (MLM). 

The second method is Next Sentence Prediction (NSP).

Let’s start with masked language modeling.
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Masked language modeling
Masked language modeling does not require training a model with a sequence of visible words 

followed by a masked sequence to predict.

BERT introduces the bidirectional analysis of a sentence with a random mask on a word of the 

sentence.

It is important to note that BERT applies WordPiece, a subword segmentation tokenization method, 

to the inputs. It also uses learned positional encoding, not the sine-cosine approach.

A potential input sequence could be:

The cat sat on it because it was a nice rug.

The decoder would mask the attention sequence after the model reached the word it:

The cat sat on it <masked sequence>.

But the BERT encoder masks a random token to make a prediction:

The cat sat on it [MASK] it was a nice rug.

The multi-attention sub-layer can now see the whole sequence, run the self-attention process, 

and predict the masked token.

The input tokens were masked in a tricky way to force the model to train longer but produce better 

results with three methods:

• Surprise the model by not masking a single token on 10% of the dataset; for example:

The cat sat on it [because] it was a nice rug.

• Surprise the model by replacing the token with a random token on 10% of the dataset; 

for example:

The cat sat on it [often] it was a nice rug.

• Replace a token by a [MASK] token on 80% of the dataset; for example:

The cat sat on it [MASK] it was a nice rug.

The authors’ bold approach avoids overfitting and forces the model to train efficiently.

BERT was also trained to perform next sentence prediction.
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Next sentence prediction
The second method found to train BERT is Next Sentence Prediction (NSP). The input contains 

two sentences. In 50% of the cases, the second sentence is the actual second sentence of a doc-

ument. In 50% of the cases, the second sentence was selected randomly and has no relation to 

the first one.

Two new tokens were added:

• [CLS] is a binary classification token added to the beginning of the first sequence to predict 

if the second sequence follows the first sequence. A positive sample is usually a pair of 

consecutive sentences taken from a dataset. A negative sample is created using sequences 

from different documents.

• [SEP] is a separation token that signals the end of a sequence.

For example, the input sentences taken out of a book could be:

The cat slept on the rug. It likes sleeping all day.

These two sentences will become one complete input sequence:

[CLS] the cat slept on the rug [SEP] it likes sleep ##ing all day[SEP]

This approach requires additional encoding information to distinguish sequence A from sequence 

B.

If we put the whole embedding process together, we obtain:

Figure 3.3: Input embeddings

The input embeddings are obtained by summing the token embeddings, the segment (sentence, 

phrase, word) embeddings, and the positional encoding embeddings.
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The input embedding and positional encoding sub-layer of a BERT model can be summed up as 

follows:

• A sequence of words is broken down into WordPiece tokens.

• A [MASK] token will randomly replace the initial word tokens for masked language mod-

eling training.

• A [CLS] classification token is inserted at the beginning of a sequence for classification 

purposes.

• A [SEP] token separates two sentences (segments, phrases) for NSP training.

• Sentence embedding is added to token embedding, so that sentence A has a different 

sentence embedding value than sentence B.

• Positional encoding is learned. The sine-cosine positional encoding method of the original 

Transformer is not applied.

Some additional key features are:

• BERT uses bidirectional attention in its multi-head attention sub-layers, opening vast 

horizons of learning and understanding relationships between tokens.

• BERT introduces scenarios of unsupervised embedding, pretraining models with unla-

beled text. Unsupervised scenarios force the model to think harder during the multi-head 

attention learning process. This makes BERT learn how languages are built and apply this 

knowledge to downstream tasks without having to pretrain each time.

• BERT also uses supervised learning, covering all bases in the pretraining process.

BERT has improved the training environment of transformers. Let’s now see the motivation of 

pretraining and how it helps the fine-tuning process.

Pretraining and fine-tuning a BERT model
BERT is a two-step framework. The first step is pretraining, and the second is fine-tuning, as 

shown in Figure 3.4:
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Figure 3.4: The BERT framework

Training a transformer model can take hours, if not days. It takes quite some time to engineer the 

architecture and parameters and select the proper datasets to train a transformer model.
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Pretraining is the first step of the BERT framework, which can be broken down into two sub-steps:

• Defining the model’s architecture: number of layers, number of heads, dimensions, and 

the other building blocks of the model

• Training the model on MLM and NSP tasks

The second step of the BERT framework is fine-tuning, which can also be broken down into two 

sub-steps:

• Initializing the downstream model chosen with the trained parameters of the pretrained 

BERT model

• Fine-tuning the parameters for specific downstream tasks such as Recognizing Textual 

Entailment (RTE), question answering (SQuAD v1.1, SQuAD v2.0), and Situations With 

Adversarial Generations (SWAG)

In this section, we covered the information we need to fine-tune a BERT model. In the following 

chapters, we will explore the topics we brought up in this section in more depth:

• In Chapter 4, Pretraining a RoBERTa Model from Scratch, we will pretrain a BERT-like model 

from scratch in 15 steps. We will even compile our data, train a tokenizer, and then train 

the model. This chapter aims to first go through the specific building blocks of BERT and 

then fine-tune an existing model.

• In Chapter 5, Downstream NLP Tasks with Transformers, we will go through many down-

stream tasks, exploring GLUE, SQuAD v1.1, SQuAD, SWAG, and several other NLP evaluation 

datasets. We will run several downstream transformer models to illustrate key tasks. The 

goal of this chapter is to fine-tune a downstream model.

• In Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines, will explore the 

architecture and unleashed usage of OpenAI GPT-2 and GPT-3 transformers. BERTBASE 

was configured to be close to OpenAI GPT to show that it produced better performance. 

However, OpenAI transformers keep evolving too! We will see how they have reached 

suprahuman NLP levels.

In this chapter, the BERT model we will fine-tune will be trained on The Corpus of Linguistic 

Acceptability (CoLA). The downstream task is based on Neural Network Acceptability Judgments 

by Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman.

We will fine-tune a BERT model that will determine the grammatical acceptability of a sentence. 

The fine-tuned model will have acquired a certain level of linguistic competence.
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We have gone through BERT architecture and its pretraining and fine-tuning framework. Let’s 

now fine-tune a BERT model.

Fine-tuning BERT
This section will fine-tune a BERT model to predict the downstream task of Acceptability Judgments 

and measure the predictions with the Matthews Correlation Coefficient (MCC), which will be 

explained in the Evaluating using Matthews Correlation Coefficient section of this chapter.

Open BERT_Fine_Tuning_Sentence_Classification_GPU.ipynb in Google Colab (make sure 

you have an email account). The notebook is in Chapter03 in the GitHub repository of this book.

The title of each cell in the notebook is also the same as or very close to the title of each subsection 

of this chapter.

We will first examine why transformer models must take hardware constraints into account.

Hardware constraints
Transformer models require multiprocessing hardware. Go to the Runtime menu in Google Co-

lab, select Change runtime type, and select GPU in the Hardware Accelerator drop-down list.

Transformer models are hardware-driven. I recommend reading Appendix II, Hardware Constraints 

for Transformer Models, before continuing this chapter.

The program will be using Hugging Face modules, which we’ll install next.

Installing the Hugging Face PyTorch interface for BERT
Hugging Face provides a pretrained BERT model. Hugging Face developed a base class named 

PreTrainedModel. By installing this class, we can load a model from a pretrained model config-

uration.

Hugging Face provides modules in TensorFlow and PyTorch. I recommend that a developer be 

comfortable with both environments. Excellent AI research teams use either or both environments.

In this chapter, we will install the modules required as follows:

#@title Installing the Hugging Face PyTorch Interface for Bert

!pip install -q transformers

The installation will run, or requirement satisfied messages will be displayed.

We can now import the modules needed for the program.
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Importing the modules
We will import the pretrained modules required, such as the pretrained BERT tokenizer and the 

configuration of the BERT model. The BERTAdam optimizer is imported along with the sequence 

classification module:

#@title Importing the modules
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, 
SequentialSampler
from keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, BertConfig
from transformers import AdamW, BertForSequenceClassification, get_linear_
schedule_with_warmup

A nice progress bar module is imported from tqdm:

from tqdm import tqdm, trange

We can now import the widely used standard Python modules:

import pandas as pd
import io
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline

If all goes well, no message will be displayed, bearing in mind that Google Colab has pre-installed 

the modules on the VM we are using.

Specifying CUDA as the device for torch
We will now specify that torch uses the Compute Unified Device Architecture (CUDA) to put 

the parallel computing power of the NVIDIA card to work for our multi-head attention model:

#@title Harware verification and device attribution

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

!nvidia-smi

The output may vary with Google Colab configurations. See Appendix II: Hardware Constraints for 

Transformer Models for explanations and screenshots.
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We will now load the dataset.

Loading the dataset
We will now load the CoLA based on the Warstadt et al. (2018) paper.

General Language Understanding Evaluation (GLUE) considers Linguistic Acceptability as a 

top-priority NLP task. In Chapter 5, Downstream NLP Tasks with Transformers, we will explore the 

key tasks transformers must perform to prove their efficiency.

The following cells in the notebook automatically download the necessary files:

import os

!curl -L https://raw.githubusercontent.com/Denis2054/Transformers-for-
NLP-2nd-Edition/master/Chapter03/in_domain_train.tsv --output "in_domain_
train.tsv"

!curl -L https://raw.githubusercontent.com/Denis2054/Transformers-for-
NLP-2nd-Edition/master/Chapter03/out_of_domain_dev.tsv --output "out_of_
domain_dev.tsv"

You should see them appear in the file manager:

Figure 3.5: Uploading the datasets

Now the program will load the datasets:

#@title Loading the Dataset

#source of dataset : https://nyu-mll.github.io/CoLA/

df = pd.read_csv("in_domain_train.tsv", delimiter='\t', header=None, 
names=['sentence_source', 'label', 'label_notes', 'sentence'])

df.shape
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The output displays the shape of the dataset we have imported:

(8551, 4)

A 10-line sample is displayed to visualize the Acceptability Judgment task and see if a sequence 

makes sense or not:

df.sample(10)

The output shows 10 lines of the labeled dataset, which may change after each run:

sentence_source label label_notes sentence

1742 r-67 1 NaN they said that tom would 
n't pay up , but pay…

937 bc01 1 NaN although he likes cabbage 
too , fred likes egg…

5655 c_13 1 NaN wendy 's mother country 
is iceland .

500 bc01 0 * john is wanted to win .

4596 ks08 1 NaN i did n't find any bugs 
in my bed .

7412 sks13 1 NaN the girl he met at the 
departmental party will...

8456 ad03 0 * peter is the old pigs .

744 bc01 0 * frank promised the men 
all to leave .

5420 b_73 0 * i 've seen as much of a 
coward as frank .

5749 c_13 1 NaN we drove all the way to 
buenos aires .

Each sample in the .tsv files contains four tab-separated columns:

• Column 1: the source of the sentence (code)

• Column 2: the label (0=unacceptable, 1=acceptable)

• Column 3: the label annotated by the author

• Column 4: the sentence to be classified
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You can open the .tsv files locally to read a few samples of the dataset. The program will now 

process the data for the BERT model.

Creating sentences, label lists, and adding BERT tokens
The program will now create the sentences as described in the Preparing the pretraining input 

environment section of this chapter:

#@ Creating sentence, label lists and adding Bert tokens

sentences = df.sentence.values

# Adding CLS and SEP tokens at the beginning and end of each sentence for 
BERT

sentences = ["[CLS] " + sentence + " [SEP]" for sentence in sentences]

labels = df.label.values

The [CLS] and [SEP] have now been added.

The program now activates the tokenizer.

Activating the BERT tokenizer
In this section, we will initialize a pretrained BERT tokenizer. This will save the time it would 

take to train it from scratch.

The program selects an uncased tokenizer, activates it, and displays the first tokenized sentence:

#@title Activating the BERT Tokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_
case=True)

tokenized_texts = [tokenizer.tokenize(sent) for sent in sentences]

print ("Tokenize the first sentence:")

print (tokenized_texts[0])

The output contains the classification token and the sequence segmentation token:

Tokenize the first sentence:

['[CLS]', 'our', 'friends', 'wo', 'n', "'", 't', 'buy', 'this', 
'analysis', ',', 'let', 'alone', 'the', 'next', 'one', 'we', 'propose', 
'.', '[SEP]']

The program will now process the data.
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Processing the data
We need to determine a fixed maximum length and process the data for the model. The sentences 

in the datasets are short. But, to make sure of this, the program sets the maximum length of a 

sequence to 128, and the sequences are padded:

#@title Processing the data

# Set the maximum sequence length. The longest sequence in our training 
set is 47, but we'll leave room on the end anyway. 

# In the original paper, the authors used a length of 512.

MAX_LEN = 128

# Use the BERT tokenizer to convert the tokens to their index numbers in 
the BERT vocabulary

input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts]

# Pad our input tokens

input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long", 
truncating="post", padding="post")

The sequences have been processed and now the program creates the attention masks.

Creating attention masks
Now comes a tricky part of the process. We padded the sequences in the previous cell. But we 

want to prevent the model from performing attention to those padded tokens!

The idea is to apply a mask with a value of 1 for each token, which 0s will follow for padding:

#@title Create attention masks

attention_masks = []

# Create a mask of 1s for each token followed by 0s for padding

for seq in input_ids:

  seq_mask = [float(i>0) for i in seq]

  attention_masks.append(seq_mask)

The program will now split the data.

Splitting the data into training and validation sets
The program now performs the standard process of splitting the data into training and validation 

sets:

#@title Splitting data into train and validation sets

# Use train_test_split to split our data into train and validation sets 
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for training

train_inputs, validation_inputs, train_labels, validation_labels = train_
test_split(input_ids, labels, random_state=2018, test_size=0.1)

train_masks, validation_masks, _, _ = train_test_split(attention_masks, 
input_ids,random_state=2018, test_size=0.1)

The data is ready to be trained, but it still needs to be adapted to torch.

Converting all the data into torch tensors
The fine-tuning model uses torch tensors. The program must convert the data into torch tensors:

#@title Converting all the data into torch tensors

# Torch tensors are the required datatype for our model

train_inputs = torch.tensor(train_inputs)

validation_inputs = torch.tensor(validation_inputs)

train_labels = torch.tensor(train_labels)

validation_labels = torch.tensor(validation_labels)

train_masks = torch.tensor(train_masks)

validation_masks = torch.tensor(validation_masks)

The conversion is over. Now we need to create an iterator.

Selecting a batch size and creating an iterator
In this cell, the program selects a batch size and creates an iterator. The iterator is a clever way 

of avoiding a loop that would load all the data in memory. The iterator, coupled with the torch 

DataLoader, can batch train massive datasets without crashing the machine’s memory.

In this model, the batch size is 32:

#@title Selecting a Batch Size and Creating and Iterator

# Select a batch size for training. For fine-tuning BERT on a specific 
task, the authors recommend a batch size of 16 or 32

batch_size = 32

# Create an iterator of our data with torch DataLoader. This helps save on 
memory during training because, unlike a for loop, 

# with an iterator the entire dataset does not need to be loaded into 
memory

train_data = TensorDataset(train_inputs, train_masks, train_labels)

train_sampler = RandomSampler(train_data)

train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_



Fine-Tuning BERT Models78

size=batch_size)

validation_data = TensorDataset(validation_inputs, validation_masks, 
validation_labels)

validation_sampler = SequentialSampler(validation_data)

validation_dataloader = DataLoader(validation_data, sampler=validation_
sampler, batch_size=batch_size)

The data has been processed and is all set. The program can now load and configure the BERT 

model.

BERT model configuration
The program now initializes a BERT uncased configuration:

#@title BERT Model Configuration

# Initializing a BERT bert-base-uncased style configuration

#@title Transformer Installation

try:

  import transformers

except:

  print("Installing transformers")

  !pip -qq install transformers

  

from transformers import BertModel, BertConfig

configuration = BertConfig()

# Initializing a model from the bert-base-uncased style configuration

model = BertModel(configuration)

# Accessing the model configuration

configuration = model.config

print(configuration)

The output displays the main Hugging Face parameters similar to the following (the library is 

often updated):

BertConfig {

  "attention_probs_dropout_prob": 0.1,

  "hidden_act": "gelu",

  "hidden_dropout_prob": 0.1,

  "hidden_size": 768,

  "initializer_range": 0.02,
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  "intermediate_size": 3072,

  "layer_norm_eps": 1e-12,

  "max_position_embeddings": 512,

  "model_type": "bert",

  "num_attention_heads": 12,

  "num_hidden_layers": 12,

  "pad_token_id": 0,

  "type_vocab_size": 2,

  "vocab_size": 30522

}

Let’s go through these main parameters:

• attention_probs_dropout_prob: 0.1 applies a 0.1 dropout ratio to the attention prob-

abilities.

• hidden_act: "gelu" is a non-linear activation function in the encoder. It is a Gaussian 

Error Linear Units activation function. The input is weighted by its magnitude, which 

makes it non-linear.

• hidden_dropout_prob: 0.1 is the dropout probability applied to the fully connected lay-

ers. Full connections can be found in the embeddings, encoder, and pooler layers. The 

output is not always a good reflection of the content of a sequence. Pooling the sequence 

of hidden states improves the output sequence.

• hidden_size: 768 is the dimension of the encoded layers and also the pooler layer.

• initializer_range: 0.02 is the standard deviation value when initializing the weight 

matrices.

• intermediate_size: 3072 is the dimension of the feed-forward layer of the encoder.

• layer_norm_eps: 1e-12 is the epsilon value for layer normalization layers.

• max_position_embeddings: 512 is the maximum length the model uses.

• model_type: "bert" is the name of the model.

• num_attention_heads: 12 is the number of heads.

• num_hidden_layers: 12 is the number of layers.

• pad_token_id: 0 is the ID of the padding token to avoid training padding tokens.

• type_vocab_size: 2 is the size of the token_type_ids, which identify the sequences. 

For example, “the dog[SEP] The cat.[SEP]" can be represented with token IDs [0,0,0, 

1,1,1].
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• vocab_size: 30522 is the number of different tokens used by the model to represent the 

input_ids.

With these parameters in mind, we can load the pretrained model.

Loading the Hugging Face BERT uncased base model
The program now loads the pretrained BERT model:

#@title Loading the Hugging Face Bert uncased base model 

model = BertForSequenceClassification.from_pretrained("bert-base-uncased", 
num_labels=2)

model = nn.DataParallel(model)

model.to(device)

We have defined the model, defined parallel processing, and sent the model to the device. For 

more explanations, see Appendix II, Hardware Constraints for Transformer Models.

This pretrained model can be trained further if necessary. It is interesting to explore the archi-

tecture in detail to visualize the parameters of each sublayer, as shown in the following excerpt:

BertForSequenceClassification(

  (bert): BertModel(

    (embeddings): BertEmbeddings(

      (word_embeddings): Embedding(30522, 768, padding_idx=0)

      (position_embeddings): Embedding(512, 768)

      (token_type_embeddings): Embedding(2, 768)

      (LayerNorm): BertLayerNorm()

      (dropout): Dropout(p=0.1, inplace=False)

    )

    (encoder): BertEncoder(

      (layer): ModuleList(

        (0): BertLayer(

          (attention): BertAttention(

            (self): BertSelfAttention(

              (query): Linear(in_features=768, out_features=768, 
bias=True)

              (key): Linear(in_features=768, out_features=768, bias=True)

              (value): Linear(in_features=768, out_features=768, 
bias=True)

              (dropout): Dropout(p=0.1, inplace=False)
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            )

            (output): BertSelfOutput(

              (dense): Linear(in_features=768, out_features=768, 
bias=True)

              (LayerNorm): BertLayerNorm()

              (dropout): Dropout(p=0.1, inplace=False)

            )

          )

          (intermediate): BertIntermediate(

            (dense): Linear(in_features=768, out_features=3072, bias=True)

          )

          (output): BertOutput(

            (dense): Linear(in_features=3072, out_features=768, bias=True)

            (LayerNorm): BertLayerNorm()

            (dropout): Dropout(p=0.1, inplace=False)

          )

        )

        (1): BertLayer(

          (attention): BertAttention(

            (self): BertSelfAttention(

              (query): Linear(in_features=768, out_features=768, 
bias=True)

              (key): Linear(in_features=768, out_features=768, bias=True)

              (value): Linear(in_features=768, out_features=768, 
bias=True)

              (dropout): Dropout(p=0.1, inplace=False)

            )

            (output): BertSelfOutput(

              (dense): Linear(in_features=768, out_features=768, 
bias=True)

              (LayerNorm): BertLayerNorm()

              (dropout): Dropout(p=0.1, inplace=False)

            )

          )

          (intermediate): BertIntermediate(

            (dense): Linear(in_features=768, out_features=3072, bias=True)

          )

          (output): BertOutput(



Fine-Tuning BERT Models82

            (dense): Linear(in_features=3072, out_features=768, bias=True)

            (LayerNorm): BertLayerNorm()

            (dropout): Dropout(p=0.1, inplace=False)

          )

        )

Let’s now go through the main parameters of the optimizer.

Optimizer grouped parameters
The program will now initialize the optimizer for the model’s parameters. Fine-tuning a model 

begins with initializing the pretrained model parameter values (not their names).

The parameters of the optimizer include a weight decay rate to avoid overfitting, and some pa-

rameters are filtered.

The goal is to prepare the model’s parameters for the training loop:

##@title Optimizer Grouped Parameters

#This code is taken from:

# https://github.com/huggingface/transformers/
blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L102

# Don't apply weight decay to any parameters whose names include these 
tokens.

# (Here, the BERT doesn't have 'gamma' or 'beta' parameters, only 'bias' 
terms)

param_optimizer = list(model.named_parameters())

no_decay = ['bias', 'LayerNorm.weight']

# Separate the 'weight' parameters from the 'bias' parameters. 

# - For the 'weight' parameters, this specifies a 'weight_decay_rate' of 
0.01. 

# - For the 'bias' parameters, the 'weight_decay_rate' is 0.0. 

optimizer_grouped_parameters = [

    # Filter for all parameters which *don't* include 'bias', 'gamma', 
'beta'.

    {'params': [p for n, p in param_optimizer if not any(nd in n for nd in 
no_decay)],

     'weight_decay_rate': 0.1},

    

    # Filter for parameters which *do* include those.

    {'params': [p for n, p in param_optimizer if any(nd in n for nd in 
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no_decay)],

     'weight_decay_rate': 0.0}

]

# Note - 'optimizer_grouped_parameters' only includes the parameter 
values, not the names.

The parameters have been prepared and cleaned up. They are ready for the training loop.

The hyperparameters for the training loop
The hyperparameters for the training loop are critical, though they seem innocuous. Adam will 

activate weight decay and also go through a warm-up phase, for example.

The learning rate (lr) and warm-up rate (warmup) should be set to a very small value early in the 

optimization phase and gradually increase after a certain number of iterations. This avoids large 

gradients and overshooting the optimization goals.

Some researchers argue that the gradients at the output level of the sub-layers before layer nor-

malization do not require a warm-up rate. Solving this problem requires many experimental runs.

The optimizer is a BERT version of Adam called BertAdam:

#@title The Hyperparameters for the Training Loop 

optimizer = BertAdam(optimizer_grouped_parameters,

                     lr=2e-5,

                     warmup=.1)

The program adds an accuracy measurement function to compare the predictions to the labels:

#Creating the Accuracy Measurement Function

# Function to calculate the accuracy of our predictions vs labels

def flat_accuracy(preds, labels):

    pred_flat = np.argmax(preds, axis=1).flatten()

    labels_flat = labels.flatten()

    return np.sum(pred_flat == labels_flat) / len(labels_flat)

The data is ready. The parameters are ready. It’s time to activate the training loop!

The training loop
The training loop follows standard learning processes. The number of epochs is set to 4, and 

measurement for loss and accuracy will be plotted. The training loop uses the dataloader to 

load and train batches. The training process is measured and evaluated.
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The code starts by initializing the train_loss_set, which will store the loss and accuracy, which 

will be plotted. It starts training its epochs and runs a standard training loop, as shown in the 

following excerpt:

#@title The Training Loop

t = [] 

# Store our loss and accuracy for plotting

train_loss_set = []

# Number of training epochs (authors recommend between 2 and 4)

epochs = 4

# trange is a tqdm wrapper around the normal python range

for _ in trange(epochs, desc="Epoch"):

…./…

    tmp_eval_accuracy = flat_accuracy(logits, label_ids)

    

    eval_accuracy += tmp_eval_accuracy

    nb_eval_steps += 1

  print("Validation Accuracy: {}".format(eval_accuracy/nb_eval_steps))

The output displays the information for each epoch with the trange wrapper, for _ in 

trange(epochs, desc="Epoch"):

***output***

Epoch:   0%|          | 0/4 [00:00<?, ?it/s]

Train loss: 0.5381132976395461

Epoch:  25%|██▌       | 1/4 [07:54<23:43, 474.47s/it]

Validation Accuracy: 0.788966049382716

Train loss: 0.315329696132929

Epoch:  50%|█████     | 2/4 [15:49<15:49, 474.55s/it]

Validation Accuracy: 0.836033950617284

Train loss: 0.1474070605354314

Epoch:  75%|███████▌  | 3/4 [23:43<07:54, 474.53s/it]

Validation Accuracy: 0.814429012345679

Train loss: 0.07655430570461196

Epoch: 100%|██████████| 4/4 [31:38<00:00, 474.58s/it]

Validation Accuracy: 0.810570987654321
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Transformer models are evolving very quickly, and deprecation messages and even errors might 

occur. Hugging Face is no exception to this, and we must update our code accordingly when this 

happens.

The model is trained. We can now display the training evaluation.

Training evaluation
The loss and accuracy values were stored in train_loss_set as defined at the beginning of the 

training loop.

The program now plots the measurements:

#@title Training Evaluation

plt.figure(figsize=(15,8))

plt.title("Training loss")

plt.xlabel("Batch")

plt.ylabel("Loss")

plt.plot(train_loss_set)

plt.show()

The output is a graph that shows that the training process went well and was efficient:

Figure 3.6: Training loss per batch
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The model has been fine-tuned. We can now run predictions.

Predicting and evaluating using the holdout dataset
The BERT downstream model was trained with the in_domain_train.tsv dataset. The program 

will now make predictions using the holdout (testing) dataset in the out_of_domain_dev.tsv 

file. The goal is to predict whether the sentence is grammatically correct.

The following excerpt of the code shows that the data preparation process applied to the training 

data is repeated in the part of the code for the holdout dataset:

#@title Predicting and Evaluating Using the Holdout Dataset 

df = pd.read_csv("out_of_domain_dev.tsv", delimiter='\t', header=None, 
names=['sentence_source', 'label', 'label_notes', 'sentence'])

# Create sentence and label lists

sentences = df.sentence.values

# We need to add special tokens at the beginning and end of each sentence 
for BERT to work properly

sentences = ["[CLS] " + sentence + " [SEP]" for sentence in sentences]

labels = df.label.values

tokenized_texts = [tokenizer.tokenize(sent) for sent in sentences]

.../...

The program then runs batch predictions using the dataloader:

# Predict 

for batch in prediction_dataloader:

  # Add batch to GPU

  batch = tuple(t.to(device) for t in batch)

  # Unpack the inputs from our dataloader

  b_input_ids, b_input_mask, b_labels = batch

  # Telling the model not to compute or store gradients, saving memory and 
speeding up prediction

  with torch.no_grad():

    # Forward pass, calculate logit predictions

    logits = model(b_input_ids, token_type_ids=None, attention_mask=b_
input_mask)

The logits and labels of the predictions are moved to the CPU:

  # Move logits and labels to CPU
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  logits =  logits['logits'].detach().cpu().numpy()

  label_ids = b_labels.to('cpu').numpy()

The predictions and their true labels are stored:

  # Store predictions and true labels

  predictions.append(logits)

  true_labels.append(label_ids)

The program can now evaluate the predictions.

Evaluating using the Matthews Correlation Coefficient
The Matthews Correlation Coefficient (MCC) was initially designed to measure the quality of 

binary classifications and can be modified to be a multi-class correlation coefficient. A two-class 

classification can be made with four probabilities at each prediction:

• TP = True Positive

• TN = True Negative

• FP = False Positive

• FN = False Negative

Brian W. Matthews, a biochemist, designed it in 1975, inspired by his predecessors’ phi function. 

Since then, it has evolved into various formats such as the following one:

The value produced by MCC is between -1 and +1. +1 is the maximum positive value of a predic-

tion. -1 is an inverse prediction. 0 is an average random prediction.

GLUE evaluates Linguistic Acceptability with MCC.

MCC is imported from sklearn.metrics:

#@title Evaluating Using Matthew's Correlation Coefficient

# Import and evaluate each test batch using Matthew's correlation 
coefficient

from sklearn.metrics import matthews_corrcoef

A set of predictions is created:

matthews_set = []
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The MCC value is calculated and stored in matthews_set:

for i in range(len(true_labels)):

  matthews = matthews_corrcoef(true_labels[i],

                 np.argmax(predictions[i], axis=1).flatten())

  matthews_set.append(matthews)

You may see messages due to library and module version changes. The final score will be based 

on the entire test set, but let’s look at the scores on the individual batches to get a sense of the 

variability in the metric between batches.

The scores of individual batches
Let’s view the scores of the individual batches:

#@title Score of Individual Batches

matthews_set

The output produces MCC values between -1 and +1 as expected:

[0.049286405809014416,

 -0.2548235957188128,

 0.4732058754737091,

 0.30508307783296046,

 0.3567530340063379,

 0.8050112948805689,

 0.23329882422520506,

 0.47519096331149147,

 0.4364357804719848,

 0.4700159919404217,

 0.7679476477883045,

 0.8320502943378436,

 0.5807564950208268,

 0.5897435897435898,

 0.38461538461538464,

 0.5716350506349809,

 0.0]

Almost all the MCC values are positive, which is good news. Let’s see what the evaluation is for 

the whole dataset.
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Matthews evaluation for the whole dataset
The MCC is a practical way to evaluate a classification model.

The program will now aggregate the true values for the whole dataset:

#@title Matthew's Evaluation on the Whole Dataset

# Flatten the predictions and true values for aggregate Matthew's 
evaluation on the whole dataset

flat_predictions = [item for sublist in predictions for item in sublist]

flat_predictions = np.argmax(flat_predictions, axis=1).flatten()

flat_true_labels = [item for sublist in true_labels for item in sublist]

matthews_corrcoef(flat_true_labels, flat_predictions)

MCC produces a correlation value between –1 and +1. 0 is an average prediction, -1 is an inverse 

one, and 1 is perfect. In this case, the output confirms that the MCC is positive, which shows that 

there is a correlation between this model and dataset:

0.45439842471680725

On this final positive evaluation of the fine-tuning of the BERT model, we have an overall view 

of the BERT training framework.

Summary
BERT brings bidirectional attention to transformers. Predicting sequences from left to right and 

masking the future tokens to train a model has serious limitations. If the masked sequence con-

tains the meaning we are looking for, the model will produce errors. BERT attends to all of the 

tokens of a sequence at the same time.

We explored the architecture of BERT, which only uses the encoder stack of transformers. BERT 

was designed as a two-step framework. The first step of the framework is to pretrain a model. 

The second step is to fine-tune the model. We built a fine-tuning BERT model for an Acceptability 

Judgment downstream task. The fine-tuning process went through all phases of the process. First, 

we loaded the dataset and loaded the necessary pretrained modules of the model. Then the model 

was trained, and its performance was measured.

Fine-tuning a pretrained model takes fewer machine resources than training downstream tasks 

from scratch. Fine-tuned models can perform a variety of tasks. BERT proves that we can pretrain 

a model on two tasks only, which is remarkable in itself. But producing a multitask fine-tuned 

model based on the trained parameters of the BERT pretrained model is extraordinary.
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Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines, shows that OpenAI has reached 

a zero-shot level with little to no fine-tuning.

In this chapter, we fine-tuned a BERT model. In the next chapter, Chapter 4, Pretraining a RoBERTa 

Model from Scratch, we will dig deeper into the BERT framework and build a pretrained BERT-like 

model from scratch.

Questions
1. BERT stands for Bidirectional Encoder Representations from Transformers. (True/False)

2. BERT is a two-step framework. Step 1 is pretraining. Step 2 is fine-tuning. (True/False)

3. Fine-tuning a BERT model implies training parameters from scratch. (True/False)

4. BERT only pretrains using all downstream tasks. (True/False)

5. BERT pretrains with Masked Language Modeling (MLM). (True/False)

6. BERT pretrains with Next Sentence Predictions (NSP). (True/False)

7. BERT pretrains mathematical functions. (True/False)

8. A question-answer task is a downstream task. (True/False)

9. A BERT pretraining model does not require tokenization. (True/False)

10. Fine-tuning a BERT model takes less time than pretraining. (True/False)
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4
Pretraining a RoBERTa Model 
from Scratch

In this chapter, we will build a RoBERTa model from scratch. The model will use the bricks of the 

transformer construction kit we need for BERT models. Also, no pretrained tokenizers or models 

will be used. The RoBERTa model will be built following the fifteen-step process described in 

this chapter.

We will use the knowledge of transformers acquired in the previous chapters to build a model 

that can perform language modeling on masked tokens step by step. In Chapter 2, Getting Started 

with the Architecture of the Transformer Model, we went through the building blocks of the original 

Transformer. In Chapter 3, Fine-Tuning BERT Models, we fine-tuned a pretrained BERT model.

This chapter will focus on building a pretrained transformer model from scratch using a Jupyter 

notebook based on Hugging Face’s seamless modules. The model is named KantaiBERT.

KantaiBERT first loads a compilation of Immanuel Kant’s books created for this chapter. You will 

see how the data was obtained. You will also see how to create your own datasets for this notebook.

KantaiBERT trains its own tokenizer from scratch. It will build its merge and vocabulary files, 

which will be used during the pretraining process.

KantaiBERT then processes the dataset, initializes a trainer, and trains the model.

Finally, KantaiBERT uses the trained model to perform an experimental downstream language 

modeling task and fills a mask using Immanuel Kant’s logic.
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By the end of the chapter, you will know how to build a transformer model from scratch. You 

will have enough knowledge of transformers to face the Industry 4.0 challenge of using power-

ful pretrained transformers such as GPT-3 engines that require more than development skills to 

implement them. This chapter prepares you for Chapter 7, The Rise of Suprahuman Transformers 

with GPT-3 Engines.

This chapter covers the following topics:

• RoBERTa- and DistilBERT-like models

• How to train a tokenizer from scratch

• Byte-level byte-pair encoding

• Saving the trained tokenizer to files

• Recreating the tokenizer for the pretraining process

• Initializing a RoBERTa model from scratch

• Exploring the configuration of the model

• Exploring the 80 million parameters of the model

• Building the dataset for the trainer

• Initializing the trainer

• Pretraining the model

• Saving the model

• Applying the model to the downstream tasks of Masked Language Modeling (MLM)

Our first step will be to describe the transformer model that we are going to build.

Training a tokenizer and pretraining a transformer
In this chapter, we will train a transformer model named KantaiBERT using the building blocks 

provided by Hugging Face for BERT-like models. We covered the theory of the building blocks of 

the model we will be using in Chapter 3, Fine-Tuning BERT Models.

We will describe KantaiBERT, building on the knowledge we acquired in previous chapters.

KantaiBERT is a Robustly Optimized BERT Pretraining Approach (RoBERTa)-like model based 

on the architecture of BERT.

The initial BERT models brought innovative features to the initial transformer models, as we 

saw in Chapter 3. RoBERTa increases the performance of transformers for downstream tasks by 

improving the mechanics of the pretraining process. 
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For example, it does not use WordPiece tokenization but goes down to byte-level Byte-Pair En-

coding (BPE). This method paved the way for a wide variety of BERT and BERT-like models.

In this chapter, KantaiBERT, like BERT, will be trained using Masked Language Modeling (MLM). 

MLM is a language modeling technique that masks a word in a sequence. The transformer model 

must train to predict the masked word.

KantaiBERT will be trained as a small model with 6 layers, 12 heads, and 84,095,008 parameters. 

It might seem that 84 million parameters is a lot. However, the parameters are spread over 12 

heads, which makes it a relatively small model. A small model will make the pretraining experi-

ence smooth so that each step can be viewed in real time without waiting for hours to see a result.

KantaiBERT is a DistilBERT-like model because it has the same architecture of 6 layers and 12 

heads. DistilBERT is a distilled version of BERT. DistilBERT, as the name suggests, contains fewer 

parameters than a RoBERTa model. As such, it runs much faster, but the results are slightly less 

accurate than with a RoBERTa model. 

We know that large models achieve excellent performance. But what if you want to run a model 

on a smartphone? Miniaturization has been the key to technological evolution. Transformers will 

sometimes have to follow the same path during implementation. The Hugging Face approach 

using a distilled version of BERT is thus a good step forward. Distillation using fewer parameters 

or other such methods in the future is a clever way of taking the best of pretraining and making 

it efficient for the needs of many downstream tasks.

It is important to show all the possible architectures, including running a small model on a smart-

phone. However, the future of transformers will also be ready-to-use APIs, as we will see in Chapter 

7, The Rise of Suprahuman Transformers with GPT-3 Engines.

KantaiBERT will implement a byte-level byte-pair encoding tokenizer like the one used by GPT-2. 

The special tokens will be the ones used by RoBERTa. BERT models most often use a WordPiece 

tokenizer.

There are no token type IDs to indicate which part of a segment a token is a part of. The segments 

will be separated with the separation token </s>.

KantaiBERT will use a custom dataset, train a tokenizer, train the transformer model, save it, and 

run it with an MLM example.

Let’s get going and build a transformer from scratch.
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Building KantaiBERT from scratch
We will build KantaiBERT in 15 steps from scratch and run it on an MLM example.

Open Google Colaboratory (you need a Gmail account). Then upload KantaiBERT.ipynb, which 

is on GitHub in this chapter’s directory.

The titles of the 15 steps of this section are similar to the titles of the notebook cells, which makes 

them easy to follow.

Let’s start by loading the dataset.

Step 1: Loading the dataset
Ready-to-use datasets provide an objective way to train and compare transformers. In Chapter 5, 

Downstream NLP Tasks with Transformers, we will explore several datasets. However, this chapter 

aims to understand the training process of a transformer with notebook cells that can be run in 

real time without waiting for hours to obtain a result.

I chose to use the works of Immanuel Kant (1724-1804), the German philosopher who was the 

epitome of the Age of Enlightenment. The idea is to introduce human-like logic and pretrained 

reasoning for downstream reasoning tasks.

Project Gutenberg, https://www.gutenberg.org, offers a wide range of free eBooks that can be 

downloaded in text format. You can use other books if you want to create customized datasets 

of your own based on books.

I compiled the following three books by Immanuel Kant into a text file named kant.txt:

• The Critique of Pure Reason

• The Critique of Practical Reason

• Fundamental Principles of the Metaphysic of Morals

kant.txt provides a small training dataset to train the transformer model of this chapter. The 

result obtained remains experimental. For a real-life project, I would add the complete works of 

Immanuel Kant, Rene Descartes, Pascal, and Leibnitz, for example.

The text file contains the raw text of the books:

…For it is in reality vain to profess _indifference_ in regard to such

inquiries, the object of which cannot be indifferent to humanity.

https://www.gutenberg.org
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The dataset is downloaded automatically from GitHub in the first cell of the KantaiBERT.ipynb 

notebook.

You can also load kant.txt, which is in the directory of this chapter on GitHub, using Colab’s file 

manager. In this case, curl is used to retrieve it from GitHub:

#@title Step 1: Loading the Dataset

#1.Load kant.txt using the Colab file manager

#2.Downloading the file from GitHub

!curl -L https://raw.githubusercontent.com/Denis2054/Transformers-for-NLP-
2nd-Edition/master/Chapter04/kant.txt --output "kant.txt"

You can see it appear in the Colab file manager pane once you have loaded or downloaded it:

Figure 4.1: Colab file manager

Note that Google Colab deletes the files when you restart the VM.

The dataset is defined and loaded.

Now, the program will install the Hugging Face transformers.

Step 2: Installing Hugging Face transformers
We will need to install Hugging Face transformers and tokenizers, but we will not need Tensor-

Flow in this instance of the Google Colab VM:

#@title Step 2:Installing Hugging Face Transformers

# We won't need TensorFlow here

Do not run the subsequent cells without kant.txt. Training data is a prerequisite.
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!pip uninstall -y tensorflow

# Install 'transformers' from master

!pip install git+https://github.com/huggingface/transformers

!pip list | grep -E 'transformers|tokenizers'

# transformers version at notebook update --- 2.9.1

# tokenizers version at notebook update --- 0.7.0

The output displays the versions installed:

Successfully built transformers

tokenizers               0.7.0          

transformers             2.10.0

Transformer versions are evolving at quite a speed. The version you run may differ and be dis-

played differently.

The program will now begin by training a tokenizer.

Step 3: Training a tokenizer
In this section, the program does not use a pretrained tokenizer. For example, a pretrained GPT-2 

tokenizer could be used. However, the training process in this chapter includes training a tokenizer 

from scratch.

Hugging Face’s ByteLevelBPETokenizer() will be trained using kant.txt. A BPE tokenizer will 

break a string or word down into substrings or subwords. There are two main advantages to this, 

among many others:

• The tokenizer can break words into minimal components. Then it will merge these small 

components into statistically interesting ones. For example, “smaller" and smallest" 

can become “small,” “er,” and “est.” The tokenizer can go further. We could get “sm" 

and “all,” for example. In any case, the words are broken down into subword tokens and 

smaller units of subword parts such as “sm" and “all" instead of simply “small.”

• The chunks of strings classified as unknown, unk_token, using WordPiece level encoding, 

will practically disappear.

In this model, we will be training the tokenizer with the following parameters:

• files=paths is the path to the dataset

• vocab_size=52_000 is the size of our tokenizer’s model length
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• min_frequency=2 is the minimum frequency threshold

• special_tokens=[] is a list of special tokens

In this case, the list of special tokens is:

• <s>: a start token

• <pad>: a padding token

• </s>: an end token

• <unk>: an unknown token

• <mask>: the mask token for language modeling

The tokenizer will be trained to generate merged substring tokens and analyze their frequency.

Let’s take these two words in the middle of a sentence:

...the tokenizer...

The first step will be to tokenize the string:

'Ġthe', 'Ġtoken',   'izer',

The string is now tokenized into tokens with Ġ (whitespace) information.

The next step is to replace them with their indices:

‘Ġthe’ ‘Ġtoken’ ‘izer’

150 5430 4712

Table 4.1: Indices for the three tokens

The program runs the tokenizer as expected:

#@title Step 3: Training a Tokenizer

%%time

from pathlib import Path

from tokenizers import ByteLevelBPETokenizer

paths = [str(x) for x in Path(".").glob("**/*.txt")]

# Initialize a tokenizer

tokenizer = ByteLevelBPETokenizer()

# Customize training
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tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2, special_
tokens=[

    "<s>",

    "<pad>",

    "</s>",

    "<unk>",

    "<mask>",

])

The tokenizer outputs the time taken to train:

CPU times: user 14.8 s, sys: 14.2 s, total: 29 s

Wall time: 7.72 s

The tokenizer is trained and ready to be saved.

Step 4: Saving the files to disk
The tokenizer will generate two files when trained:

• merges.txt, which contains the merged tokenized substrings

• vocab.json, which contains the indices of the tokenized substrings

The program first creates the KantaiBERT directory and then saves the two files:

#@title Step 4: Saving the files to disk

import os

token_dir = '/content/KantaiBERT'

if not os.path.exists(token_dir):

  os.makedirs(token_dir)

tokenizer.save_model('KantaiBERT')

The program output shows that the two files have been saved:

['KantaiBERT/vocab.json', 'KantaiBERT/merges.txt']
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The two files should appear in the file manager pane:

Figure 4.2: Colab file manager

The files in this example are small. You can double-click on them to view their contents. merges.

txt contains the tokenized substrings as planned:

#version: 0.2 - Trained by 'huggingface/tokenizers'

Ġ t

h e

Ġ a

o n

i n

Ġ o

Ġt he

r e

i t

Ġo f

vocab.json contains the indices:

[…,"Ġthink":955,"preme":956,"ĠE":957,"Ġout":958,"Ġdut":959, 
"aly":960,"Ġexp":961,…]

The trained tokenized dataset files are ready to be processed.



Pretraining a RoBERTa Model from Scratch102

Step 5: Loading the trained tokenizer files
We could have loaded pretrained tokenizer files. However, we trained our own tokenizer and 

now are ready to load the files:

#@title Step 5 Loading the Trained Tokenizer Files 

from tokenizers.implementations import ByteLevelBPETokenizer

from tokenizers.processors import BertProcessing

tokenizer = ByteLevelBPETokenizer(

    "./KantaiBERT/vocab.json",

    "./KantaiBERT/merges.txt",

)

The tokenizer can encode a sequence:

tokenizer.encode("The Critique of Pure Reason.").tokens

"The Critique of Pure Reason" will become:

['The', 'ĠCritique', 'Ġof', 'ĠPure', 'ĠReason', '.']

We can also ask to see the number of tokens in this sequence:

tokenizer.encode("The Critique of Pure Reason.")

The output will show that there are 6 tokens in the sequence:

Encoding(num_tokens=6, attributes=[ids, type_ids, tokens, offsets, 
attention_mask, special_tokens_mask, overflowing])

The tokenizer now processes the tokens to fit the BERT model variant used in this notebook. The 

post-processor will add a start and end token; for example:

tokenizer._tokenizer.post_processor = BertProcessing(

    ("</s>", tokenizer.token_to_id("</s>")),

    ("<s>", tokenizer.token_to_id("<s>")),

)

tokenizer.enable_truncation(max_length=512)

Let’s encode a post-processed sequence:

tokenizer.encode("The Critique of Pure Reason.")
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The output shows that we now have 8 tokens:

Encoding(num_tokens=8, attributes=[ids, type_ids, tokens, offsets, 
attention_mask, special_tokens_mask, overflowing])

If we want to see what was added, we can ask the tokenizer to encode the post-processed sequence 

by running the following cell:

tokenizer.encode("The Critique of Pure Reason.").tokens

The output shows that the start and end tokens have been added, which brings the number of 

tokens to 8, including start and end tokens:

['<s>', 'The', 'ĠCritique', 'Ġof', 'ĠPure', 'ĠReason', '.', '</s>']

The data for the training model is now ready to be trained. We will now check the system infor-

mation of the machine we are running the notebook on.

Step 6: Checking resource constraints: GPU and CUDA
KantaiBERT runs at optimal speed with a Graphics Processing Unit (GPU).

We will first run a command to see if an NVIDIA GPU card is present:

#@title Step 6: Checking Resource Constraints: GPU and NVIDIA 

!nvidia-smi

The output displays the information and version on the card:

Figure 4.3: Information on the NVIDIA card
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The output may vary with each Google Colab VM configuration.

We will now check to make sure PyTorch sees CUDA:

#@title Checking that PyTorch Sees CUDA

import torch

torch.cuda.is_available()

The result should be True:

True

Compute Unified Device Architecture (CUDA) was developed by NVIDIA to use the parallel 

computing power of its GPUs.

For more on NVIDIA GPUs and CUDA, see Appendix II, Hardware Constraints for Transformer Models.

We are now ready to define the configuration of the model.

Step 7: Defining the configuration of the model
We will be pretraining a RoBERTa-type transformer model using the same number of layers 

and heads as a DistilBERT transformer. The model will have a vocabulary size set to 52,000, 12 

attention heads, and 6 layers:

#@title Step 7: Defining the configuration of the Model

from transformers import RobertaConfig

config = RobertaConfig(

    vocab_size=52_000,

    max_position_embeddings=514,

    num_attention_heads=12,

    num_hidden_layers=6,

    type_vocab_size=1,

)

We will explore the configuration in more detail in Step 9: Initializing a model from scratch.

Let’s first recreate the tokenizer in our model.

Step 8: Reloading the tokenizer in transformers
We are now ready to load our trained tokenizer, which is our pretrained tokenizer in 

RobertaTokenizer.from_pretained():
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#@title Step 8: Re-creating the Tokenizer in Transformers

from transformers import RobertaTokenizer

tokenizer = RobertaTokenizer.from_pretrained("./KantaiBERT", max_
length=512)

Now that we have loaded our trained tokenizer, let’s initialize a RoBERTa model from scratch.

Step 9: Initializing a model from scratch
In this section, we will initialize a model from scratch and examine the size of the model.

The program first imports a RoBERTa masked model for language modeling:

#@title Step 9: Initializing a Model From Scratch

from transformers import RobertaForMaskedLM

The model is initialized with the configuration defined in Step 7:

model = RobertaForMaskedLM(config=config)

If we print the model, we can see that it is a BERT model with 6 layers and 12 heads:

print(model)

The building blocks of the encoder of the original Transformer model are present with different 

dimensions, as shown in this excerpt of the output:

RobertaForMaskedLM(

  (roberta): RobertaModel(

    (embeddings): RobertaEmbeddings(

      (word_embeddings): Embedding(52000, 768, padding_idx=1)

      (position_embeddings): Embedding(514, 768, padding_idx=1)

      (token_type_embeddings): Embedding(1, 768)

      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

      (dropout): Dropout(p=0.1, inplace=False)

    )

    (encoder): BertEncoder(

      (layer): ModuleList(

        (0): BertLayer(

          (attention): BertAttention(

            (self): BertSelfAttention(
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              (query): Linear(in_features=768, out_features=768, 
bias=True)

              (key): Linear(in_features=768, out_features=768, bias=True)

              (value): Linear(in_features=768, out_features=768, 
bias=True)

              (dropout): Dropout(p=0.1, inplace=False)

            )

            (output): BertSelfOutput(

              (dense): Linear(in_features=768, out_features=768, 
bias=True)

              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_
affine=True)

              (dropout): Dropout(p=0.1, inplace=False)

            )

          )

          (intermediate): BertIntermediate(

            (dense): Linear(in_features=768, out_features=3072, bias=True)

          )

          (output): BertOutput(

            (dense): Linear(in_features=3072, out_features=768, bias=True)

            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_
affine=True)

            (dropout): Dropout(p=0.1, inplace=False)

          )

        )

…/…

        

Take some time to go through the details of the output of the configuration before continuing. 

You will get to know the model from the inside.

The LEGO®-type building blocks of transformers make it fun to analyze. For example, you will 

note that dropout regularization is present throughout the sublayers.

Now, let’s explore the parameters.

Exploring the parameters
The model is small and contains 84,095,008 parameters.
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We can check its size:

print(model.num_parameters())

The output shows the approximate number of parameters, which might vary from one trans-

former version to another:

84095008

Let’s now look into the parameters. We first store the parameters in LP and calculate the length 

of the list of parameters:

#@title Exploring the Parameters

LP=list(model.parameters())

lp=len(LP)

print(lp)

The output shows that there are approximately 108 matrices and vectors, which might vary from 

one transformer model to another:

108

Now, let’s display the 108 matrices and vectors in the tensors that contain them:

for p in range(0,lp):

  print(LP[p])

The output displays all the parameters as shown in the following excerpt of the output:

Parameter containing:

tensor([[-0.0175, -0.0210, -0.0334,  ...,  0.0054, -0.0113,  0.0183],

        [ 0.0020, -0.0354, -0.0221,  ...,  0.0220, -0.0060, -0.0032],

        [ 0.0001, -0.0002,  0.0036,  ..., -0.0265, -0.0057, -0.0352],

        ...,

        [-0.0125, -0.0418,  0.0190,  ..., -0.0069,  0.0175, -0.0308],

        [ 0.0072, -0.0131,  0.0069,  ...,  0.0002, -0.0234,  0.0042],

        [ 0.0008,  0.0281,  0.0168,  ..., -0.0113, -0.0075,  0.0014]],

       requires_grad=True)

Take a few minutes to peek inside the parameters to understand how transformers are built.
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The number of parameters is calculated by taking all parameters in the model and adding them 

up; for example:

• The vocabulary (52,000) x dimensions (768)

• The size of the vectors is 1 x 768

• The many other dimensions found

You will note that dmodel = 768. There are 12 heads in the model. The dimension of dk for each head 

will thus be 𝑑𝑑𝑘𝑘 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚12 = 64 .

This shows, once again, the optimized LEGO® concept of the building blocks of a transformer.

We will now see how the number of parameters of a model is calculated and how the figure 

84,095,008 is reached.

If we hover over LP in the notebook, we will see some of the shapes of the torch tensors:

Figure 4.4: LP

Note that the numbers might vary depending on the version of the transformers module you use.

We will take this further and count the number of parameters of each tensor. First, the program 

initializes a parameter counter named np (number of parameters) and goes through the lp (108) 

number of elements in the list of parameters:

#@title Counting the parameters

np=0

for p in range(0,lp):#number of tensors

The parameters are matrices and vectors of different sizes; for example:

• 768 x 768

• 768 x 1

• 768

We can see that some parameters are two-dimensional, and some are one-dimensional.
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An easy way to see if a parameter p in the list LP[p] has two dimensions or not is by doing the 

following:

  PL2=True

  try:

    L2=len(LP[p][0]) #check if 2D

  except:

    L2=1             #not 2D but 1D

    PL2=False

  

If the parameter has two dimensions, its second dimension will be L2>0 and PL2=True (2 

dimensions=True). If the parameter has only one dimension, its second dimension will be L2=1 

and PL2=False (2 dimensions=False).

L1 is the size of the first dimension of the parameter. L3 is the size of the parameters defined by:

L1=len(LP[p])      

L3=L1*L2

We can now add the parameters up at each step of the loop:

np+=L3             # number of parameters per tensor

We will obtain the sum of the parameters, but we also want to see exactly how the number of 

parameters of a transformer model is calculated:

  if PL2==True:

    print(p,L1,L2,L3)  # displaying the sizes of the parameters

  if PL2==False:

    print(p,L1,L3)  # displaying the sizes of the parameters

print(np)              # total number of parameters

Note that if a parameter only has one dimension, PL2=False, then we only display the first di-

mension.

The output is the list of how the number of parameters was calculated for all the tensors in the 

model, as shown in the following excerpt:

0 52000 768 39936000

1 514 768 394752

2 1 768 768
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3 768 768

4 768 768

5 768 768 589824

6 768 768

7 768 768 589824

8 768 768

9 768 768 589824

10 768 768

The total number of parameters of the RoBERTa model is displayed at the end of the list:

84,095,008

The number of parameters might vary with the version of the libraries used.

We now know precisely what the number of parameters represents in a transformer model. Take 

a few minutes to go back and look at the output of the configuration, the content of the parame-

ters, and the size of the parameters. At this point, you will have a precise mental representation 

of the building blocks of the model.

The program now builds the dataset.

Step 10: Building the dataset
The program will now load the dataset line by line to generate samples for batch training with 

block_size=128 limiting the length of an example:

#@title Step 10: Building the Dataset

%%time

from transformers import LineByLineTextDataset

dataset = LineByLineTextDataset(

    tokenizer=tokenizer,

    file_path="./kant.txt",

    block_size=128,

)

The output shows that Hugging Face has invested a considerable amount of resources in opti-

mizing the time it takes to process data:

CPU times: user 8.48 s, sys: 234 ms, total: 8.71 s

Wall time: 3.88 s
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The wall time, the actual time the processors were active, is optimized.

The program will now define a data collator to create an object for backpropagation.

Step 11: Defining a data collator
We need to run a data collator before initializing the trainer. A data collator will take samples 

from the dataset and collate them into batches. The results are dictionary-like objects.

We are preparing a batched sample process for MLM by setting mlm=True.

We also set the number of masked tokens to train mlm_probability=0.15. This will determine 

the percentage of tokens masked during the pretraining process.

We now initialize data_collator with our tokenizer, MLM activated, and the proportion of 

masked tokens set to 0.15:

#@title Step 11: Defining a Data Collator

from transformers import DataCollatorForLanguageModeling

data_collator = DataCollatorForLanguageModeling(

    tokenizer=tokenizer, mlm=True, mlm_probability=0.15

)

We are now ready to initialize the trainer.

Step 12: Initializing the trainer
The previous steps have prepared the information required to initialize the trainer. The dataset 

has been tokenized and loaded. Our model is built. The data collator has been created.

The program can now initialize the trainer. For educational purposes, the program trains the 

model quickly. The number of epochs is limited to one. The GPU comes in handy since we can 

share the batches and multi-process the training tasks:

#@title Step 12: Initializing the Trainer

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(

    output_dir="./KantaiBERT",

    overwrite_output_dir=True,

    num_train_epochs=1,

    per_device_train_batch_size=64,

    save_steps=10_000,
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    save_total_limit=2,

)

trainer = Trainer(

    model=model,

    args=training_args,

    data_collator=data_collator,

    train_dataset=dataset,

)

The model is now ready for training.

Step 13: Pretraining the model
Everything is ready. The trainer is launched with one line of code:

#@title Step 13: Pre-training the Model

%%time

trainer.train()

The output displays the training process in real time, showing loss, learning rate, epoch, and 

the steps:

Epoch: 100%

1/1 [17:59<00:00, 1079.91s/it]

Iteration: 100%

2672/2672 [17:59<00:00, 2.47it/s]

{"loss": 5.6455852394104005, "learning_rate": 4.06437125748503e-05, 
"epoch": 0.18712574850299402, "step": 500}

{"loss": 4.940259679794312, "learning_rate": 3.12874251497006e-05, 
"epoch": 0.37425149700598803, "step": 1000}

{"loss": 4.639936000347137, "learning_rate": 2.1931137724550898e-05, 
"epoch": 0.561377245508982, "step": 1500}

{"loss": 4.361462069988251, "learning_rate": 1.2574850299401197e-05, 
"epoch": 0.7485029940119761, "step": 2000}

{"loss": 4.228510192394257, "learning_rate": 3.218562874251497e-06, 
"epoch": 0.9356287425149701, "step": 2500}

CPU times: user 11min 36s, sys: 6min 25s, total: 18min 2s

Wall time: 17min 59s

TrainOutput(global_step=2672, training_loss=4.7226536670130885)
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The model has been trained. It’s time to save our work.

Step 14: Saving the final model (+tokenizer + config) to disk
We will now save the model and configuration:

#@title Step 14: Saving the Final Model(+tokenizer + config) to disk

trainer.save_model("./KantaiBERT")

Click on Refresh in the file manager, and the files should appear:

Figure 4.5: Colab file manager

config.json, pytorh_model.bin, and training_args.bin should now appear in the file manager.

merges.txt and vocab.json contain the pretrained tokenization of the dataset.

We have built a model from scratch. Let’s import the pipeline to perform a language modeling 

task with our pretrained model and tokenizer.

Step 15: Language modeling with FillMaskPipeline
We will now import a language modeling fill-mask task. We will use our trained model and 

trained tokenizer to perform MLM:

#@title Step 15: Language Modeling with the FillMaskPipeline

from transformers import pipeline

fill_mask = pipeline(

    "fill-mask",

    model="./KantaiBERT",
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    tokenizer="./KantaiBERT"

)

We can now ask our model to think like Immanuel Kant:

fill_mask("Human thinking involves human <mask>.")

The output will likely change after each run because we are pretraining the model from scratch 

with a limited amount of data. However, the output obtained in this run is interesting because 

it introduces conceptual language modeling:

[{'score': 0.022831793874502182,

  'sequence': '<s> Human thinking involves human reason.</s>',

  'token': 393},

 {'score': 0.011635891161859035,

  'sequence': '<s> Human thinking involves human object.</s>',

  'token': 394},

 {'score': 0.010641072876751423,

  'sequence': '<s> Human thinking involves human priori.</s>',

  'token': 575},

 {'score': 0.009517930448055267,

  'sequence': '<s> Human thinking involves human conception.</s>',

  'token': 418},

 {'score': 0.00923212617635727,

  'sequence': '<s> Human thinking involves human experience.</s>',

  'token': 531}]

The predictions might vary each run and each time Hugging Face updates its models.

However, the following output comes out often:

Human thinking involves human reason

The goal here was to see how to train a transformer model. We can see that interesting human-like 

predictions can be made.

These results are experimental and subject to variations during the training process. They will 

change each time we train the model again.

The model would require much more data from other Age of Enlightenment thinkers.
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However, the goal of this model is to show that we can create datasets to train a transformer for a specific 

type of complex language modeling task.

Thanks to transformers, we are only at the beginning of a new era of AI!

Next steps
You have trained a transformer from scratch. Take some time to imagine what you could do in 

your personal or corporate environment. You could create a dataset for a specific task and train it 

from scratch. Use your areas of interest or company projects to experiment with the fascinating 

world of transformer construction kits!

Once you have made a model you like, you can share it with the Hugging Face community. Your 

model will appear on the Hugging Face models page: https://huggingface.co/models

You can upload your model in a few steps using the instructions described on this page: https://

huggingface.co/transformers/model_sharing.html

You can also download models the Hugging Face community has shared to get new ideas for your 

personal and professional projects.

Summary
In this chapter, we built KantaiBERT, a RoBERTa-like model transformer, from scratch using the 

building blocks provided by Hugging Face.

We first started by loading a customized dataset on a specific topic related to the works of Im-

manuel Kant. You can load an existing dataset or create your own, depending on your goals. We 

saw that using a customized dataset provides insights into the way a transformer model thinks. 

However, this experimental approach has its limits. It would take a much larger dataset to train 

a model beyond educational purposes.

The KantaiBERT project was used to train a tokenizer on the kant.txt dataset. The trained merges.

txt and vocab.json files were saved. A tokenizer was recreated with our pretrained files. Kantai-

BERT built the customized dataset and defined a data collator to process the training batches for 

backpropagation. The trainer was initialized, and we explored the parameters of the RoBERTa 

model in detail. The model was trained and saved.

Finally, the saved model was loaded for a downstream language modeling task. The goal was to 

fill the mask using Immanuel Kant’s logic.

https://huggingface.co/models
https://huggingface.co/transformers/model_sharing.html
https://huggingface.co/transformers/model_sharing.html
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The door is now wide open for you to experiment on existing or customized datasets to see what 

results you get. You can share your model with the Hugging Face community. Transformers are 

data-driven. You can use this to your advantage to discover new ways of using transformers.

You are now ready to learn how to run ready-to-use transformer engines with APIs that require 

no pretraining or fine-tuning. Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines, 

will take you into the future of AI. And with the knowledge of this chapter and the past chapters, 

you will be ready!

In the next chapter, Downstream NLP Tasks with Transformers, we will continue our preparation 

to implement transformers.

Questions
1. RoBERTa uses a byte-level byte-pair encoding tokenizer. (True/False)

2. A trained Hugging Face tokenizer produces merges.txt and vocab.json. (True/False)

3. RoBERTa does not use token-type IDs. (True/False)

4. DistilBERT has 6 layers and 12 heads. (True/False)

5. A transformer model with 80 million parameters is enormous. (True/False)

6. We cannot train a tokenizer. (True/False)

7. A BERT-like model has 6 decoder layers. (True/False)

8. Masked Language Modeling (MLM) predicts a word contained in a mask token in a 

sentence. (True/False)

9. A BERT-like model has no self-attention sublayers. (True/False)

10. Data collators are helpful for backpropagation. (True/False)

References
• Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike 

Lewis, Luke Zettlemoyer, and Veselin Stoyano, 2019, RoBERTa: A Robustly Optimized BERT 

Pretraining Approach: https://arxiv.org/abs/1907.11692

• Hugging Face Tokenizer documentation: https://huggingface.co/transformers/

main_classes/tokenizer.html?highlight=tokenizer

• The Hugging Face reference notebook: https://colab.research.google.com/github/

huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb

https://arxiv.org/abs/1907.11692
https://huggingface.co/transformers/main_classes/tokenizer.html?highlight=tokenizer
https://huggingface.co/transformers/main_classes/tokenizer.html?highlight=tokenizer
https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb
https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb
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• The Hugging Face reference blog: https://colab.research.google.com/github/

huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb

• More on BERT: https://huggingface.co/transformers/model_doc/bert.html

• More DistilBERT: https://arxiv.org/pdf/1910.01108.pdf

• More on RoBERTa: https://huggingface.co/transformers/model_doc/roberta.html

• Even more on DistilBERT: https://huggingface.co/transformers/model_doc/

distilbert.html

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:

 https://www.packt.link/Transformers

https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb
https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb
https://huggingface.co/transformers/model_doc/bert.html
https://arxiv.org/pdf/1910.01108.pdf
https://huggingface.co/transformers/model_doc/roberta.html
https://huggingface.co/transformers/model_doc/distilbert.html
https://huggingface.co/transformers/model_doc/distilbert.html
https://www.packt.link/Transformers




5
Downstream NLP Tasks with 
Transformers

Transformers reveal their full potential when we unleash pretrained models and watch them 

perform downstream Natural Language Understanding (NLU) tasks. It takes a lot of time and 

effort to pretrain and fine-tune a transformer model, but the effort is worthwhile when we see a 

multi-million parameter transformer model in action on a range of NLU tasks.

We will begin this chapter with the quest of outperforming the human baseline. The human 

baseline represents the performance of humans on an NLU task. Humans learn transduction 

at an early age and quickly develop inductive thinking. We humans perceive the world directly 

with our senses. Machine intelligence relies entirely on our perceptions transcribed into words 

to make sense of our language.

We will then see how to measure the performance of transformers. Measuring Natural Language 

Processing (NLP) tasks remains a straightforward approach involving accuracy scores in various 

forms based on true and false results. These results are obtained through benchmark tasks and 

datasets. SuperGLUE, for example, is a wonderful example of how Google DeepMind, Facebook 

AI, the University of New York, the University of Washington, and others worked together to set 

high standards to measure NLP performances.

Finally, we will explore several downstream tasks, such as the Standard Sentiment TreeBank 

(SST-2), linguistic acceptability, and Winograd schemas.
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Transformers are rapidly taking NLP to the next level by outperforming other models on well-de-

signed benchmark tasks. Alternative transformer architectures will continue to emerge and evolve.

This chapter covers the following topics:

• Machine versus human intelligence for transduction and induction

• The NLP transduction and induction process

• Measuring transformer performance versus Human Baselines

• Measurement methods (Accuracy, F1-score, and MCC)

• Benchmark tasks and datasets

• SuperGLUE downstream tasks

• Linguistic acceptability with CoLA

• Sentiment analysis with SST-2

• Winograd schemas

Let’s start by understanding how humans and machines represent language.

Transduction and the inductive inheritance of 
transformers
The emergence of Automated Machine Learning (AutoML), meaning APIs in automated cloud 

AI platforms, has deeply changed the job description of every AI specialist. Google Vertex, for 

example, boasts a reduction of 80% of the development required to implement ML. This suggests 

that anybody can implement ML with ready-to-use systems. Does that mean an 80% reduction 

of the workforce of developers? I don’t think so. I see an Industry 4.0 AI specialist assemble AI 

with added value to a project.

Transformers possess the unique ability to apply their knowledge to tasks they did not learn. A 

BERT transformer, for example, acquires language through sequence-to-sequence and masked 

language modeling. The BERT transformer can then be fine-tuned to perform downstream tasks 

that it did not learn from scratch.

Industry 4.0. NLP AI specialists invest less in source code and more in knowledge to 

become the AI guru of a team.
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In this section, we will do a mind experiment. We will use the graph of a transformer to represent 

how humans and machines make sense of information using language. Machines make sense of 

information in a different way from humans but reach very efficient results.

Figure 5.1, a mind experiment designed with transformer architecture layers and sublayers, shows 

the deceptive similarity between humans and machines. Let’s study the learning process of trans-

former models to understand downstream tasks:

Figure 5.1: Human and ML methods

For our example, N=2. This conceptual representation has two layers. The two layers show that 

humans build on accumulated knowledge from generation to generation. Machines only process 

what we give them. Machines use our outputs as inputs.

The human intelligence stack
On the left side of Figure 5.1, we can see that the input for humans is the perception of raw events 

for layer 0, and the output is language. We first perceive events with our senses as children.  

Gradually, the output becomes burbling language and then structured language.
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For humans, transduction goes through a trial-and-error process. Transduction means that we 

take structures we perceive and represent them with patterns, for example. We make represen-

tations of the world that we apply to our inductive thinking. Our inductive thinking relies on the 

quality of our transductions.

For example, as children, we were often forced to take a nap early in the afternoon. Famous child 

psychologist Piaget found that this could lead to some children saying, for example, “I haven’t 

taken a nap, so it’s not the afternoon.” The child sees two events, creates a link between them 

with transduction, and then makes an inference to generalize and make an induction.

At first, humans notice these patterns through transduction and generalize them through induc-

tions. We are trained by trial and error to understand that many events are related:

Trained_related events = {sunrise – light, sunset – dark, dark clouds – rain, blue sky – running, food – 

good, fire – warm, snow – cold}

Over time, we are trained to understand millions of related events. New generations of humans did 

not have to start from scratch. They were only fine-tuned for many tasks by previous generations. They 

were taught that “fire burns you,” for example. From then on, a child knew that this knowledge 

could be fine-tuned to any form of “fire”: candles, wildfires, volcanoes, and every instance of “fire.”

Finally, humans transcribed everything they knew, imagined, or predicted into written language. 

The output of layer 0 was born.

For humans, the input of the next layer, layer 1, is the vast amount of trained and fine-tuned 

knowledge. On top of that, humans perceive massive amounts of events that then go through the 

transduction, induction, training, and fine-tuning of sublayers, along with previous transcribed 

knowledge.

Many of these events stem from odors, emotions, situations, experiences, and everything that 

makes a human unique. Machines do not have access to this individual identity. Humans have a 

personal perception of a word in a homogeneous way specific for each individual.

A machine takes what we give it through masses of heterogeneous unfiltered impersonal data. 

The goal of a machine is to perform an impersonal, efficient task. The goal of a human being is 

personal wellbeing.

Our infinite approach loop goes from layer 0 to layer 1 and back to layer 0 with more raw and 

processed information.
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The result is fascinating! We do not need to learn (train on) our native language from scratch 

to acquire summarization abilities. We use our pretrained knowledge to adjust (fine-tune) to 

summarization tasks.

Transformers go through the same process but in a different way.

The machine intelligence stack
Machines learn basic tasks like the ones described in this chapter, and then perform hundreds of 

tasks using the sequences they learned how to predict.

On the right side of Figure 5.1, we can see that the input for machines is second-hand information 

in the form of language. Our output is the only input machines have to analyze language.

At this point in human and machine history, computer vision identifies images but does not 

contain the grammatical structure of language. Speech recognition converts sound into words, 

which brings us back to written language. Music pattern recognition cannot lead to objective 

concepts expressed in words.

Machines start with a handicap. We impose an artificial disadvantage on them. Machines must 

rely on our random quality language outputs to:

• Perform transductions connecting all the tokens (subwords) that occur together in lan-

guage sequences

• Build inductions from these transductions

• Train those inductions based on tokens to produce patterns of tokens

Let’s stop at this point and peek into the process of the attention sublayer, which works hard to 

produce valid inductions:

• The transformer model excluded the former recurrence-based learning operations and 

used self-attention to heighten the vision of the model

• Attention sublayers have an advantage over humans at this point: they can process mil-

lions of examples for their inductive thinking operations

• Like us, they find patterns in sequences through transduction and induction

• They memorize these patterns using parameters that are stored with their model

They have acquired language understanding by using their abilities: substantial data volumes, 

excellent NLP transformer algorithms, and computer power. Thanks to their deep understanding 

of language, they are ready to run hundreds of tasks they were not trained for.
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Transformers, like humans, acquire language understanding through a limited number of tasks. 

Like us, they detect connections through transduction and then generalize them through induc-

tive operations.

When the transformer model reaches the fine-tuning sub-layer of machine intelligence, it reacts 

like us. It does not start training from scratch to perform a new task. Like us, it considers it as a 

downstream task that only requires fine-tuning. If it needs to learn how to answer a question, it 

does not start learning a language from scratch. A transformer model just fine-tunes its param-

eters like us.

In this section, we saw that transformer models struggle to learn in the way we do. They start with 

a handicap from the moment they rely on our perceptions transcribed into language. However, 

they have access to infinitely more data than we do with massive computing power.

Let’s now see how to measure transformer performances versus Human Baselines.

Transformer performances versus Human Baselines
Transformers, like humans, can be fine-tuned to perform downstream tasks by inheriting the 

properties of a pretrained model. The pretrained model provides its architecture and language 

representations through its parameters.

A pretrained model trains on key tasks to acquire a general knowledge of the language. A fine-

tuned model trains on downstream tasks. Not every transformer model uses the same tasks for 

pretraining. Potentially, all tasks can be pretrained or fine-tuned.

Every NLP model needs to be evaluated with a standard method.

This section will first go through some of the key measurement methods. Then, we will go through 

some of the main benchmark tasks and datasets.

Let’s start by going through some of the key metric methods.

Evaluating models with metrics
It is impossible to compare one transformer model to another transformer model (or any other 

NLP model) without a universal measurement system that uses metrics.

In this section, we will analyze three measurement scoring methods that are used by GLUE and 

SuperGLUE.
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Accuracy score
The accuracy score, in whatever variant you use, is a practical evaluation. The score function calcu-

lates a straightforward true or false value for each result. Either the model’s outputs, 𝑦𝑦𝑦 , match the 

correct predictions, 𝑦𝑦 , for a given subset, samplesi, of a set of samples or not. The basic function is:

We will obtain 1 if the result for the subset is correct and 0 if it is false.

Let’s now examine the more flexible F1-score.

F1-score
The F1-score introduces a more flexible approach that can help when faced with datasets con-

taining uneven class distributions.

The F1-score uses the weighted values of precision and recall. It is a weighted average of precision 

and recall values:

F1score= 2* (precision * recall)/(precision + recall)

In this equation, true (T) positives (p), false (F) positives (p), and false (F) negatives (n) are plugged 

into the precision (P) and recall (R) equations:

The F1-score can thus be viewed as the harmonic mean (reciprocal of the arithmetic mean) of 

precision (P) and recall (R): 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹 𝐹 𝐹 𝑃𝑃 𝐹 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 
 

Let’s now review the MCC approach.
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Matthews Correlation Coefficient (MCC)
MCC was described and implemented in the Evaluating using Matthews Correlation Coefficient 

section in Chapter 3, Fine-Tuning BERT Models. MCC computes a measurement with true positives 

(TP), true negatives (TN), false positives (FP), and false negatives (FN).

The MCC can be summarized by the following equation:

MCC provides an excellent metric for binary classification models, even if the sizes of the classes 

are different.

We now have a good idea of how to measure a given transformer model’s results and compare 

them to other transformer models or NLP models.

With measurement scoring methods in mind, let’s now look into benchmark tasks and datasets.

Benchmark tasks and datasets
Three prerequisites are required to prove that transformers have reached state-of-the-art per-

formance levels:

• A model

• A dataset-driven task

• A metric as described in the Evaluating models with metrics section of this chapter

We will begin by exploring the SuperGLUE benchmark to illustrate the evaluation process of a 

transformer model.

From GLUE to SuperGLUE
The SuperGLUE benchmark was designed and made public by Wang et al. (2019). Wang et al. 

(2019) first designed the General Language Understanding Evaluation (GLUE) benchmark.

The motivation of the GLUE benchmark was to show that to be useful, NLU has to be applicable 

to a wide range of tasks. Relatively small GLUE datasets were designed to encourage an NLU 

model to solve a set of tasks.
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However, the performance of NLU models, boosted by the arrival of transformers, began to exceed 

the level of the average human, as we can see in the GLUE leaderboard (December 2021). The 

GLUE leaderboard, available at https://gluebenchmark.com/leaderboard, shows a remarkable 

display of NLU talent, retaining some of the former RNN/CNN ideas while mainly focusing on 

the ground-breaking transformer models.

The following excerpt of the leaderboard shows the top leaders and the position of GLUE’s Hu-

man Baselines:

Figure 5.2: GLUE Leaderboard – December 2021

New models and the Human Baselines ranking will constantly change. These rankings just give 

an idea of how far classical NLP and transformers have taken us!

We first notice the GLUE Human Baselines are not in a top position, which shows that NLU models 

have surpassed non-expert humans on GLUE tasks. Human Baselines represent what we humans 

can achieve. AI can now outperform humans. In December 2021, the Human Baselines are only 

in position 17. This is a problem. Without a standard to beat, it is challenging to fish around for 

benchmark datasets to improve our models blindly.

https://gluebenchmark.com/leaderboard
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We also notice that transformer models have taken the lead.

I like to think of GLUE and SuperGLUE as the point when words go from chaos to order with 

language understanding. For me, understanding is the glue that makes words fit together and 

become a language.

The GLUE leaderboard will continuously evolve as NLU progresses. However, Wang et al. (2019) 

introduced SuperGLUE to set a higher standard for Human Baselines.

Introducing higher Human Baselines standards
Wang et al. (2019) recognized the limits of GLUE. They designed SuperGLUE for more difficult 

NLU tasks.

SuperGLUE immediately re-established Human Baselines at rank #1 (December 2020), as shown 

in the following excerpt of the leaderboard, https://super.gluebenchmark.com/leaderboard:

Figure 5.3: SuperGLUE Leaderboard 2.0 – December 2020

However, the SuperGLUE leaderboard evolved as we produced better NLU models. In 2021, trans-

formers had already surpassed Human Baselines. In December 2021, Human Baselines have gone 

down to rank #5, as shown in Figure 5.4:

https://super.gluebenchmark.com/leaderboard
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Figure 5.4: SuperGLUE Leaderboard 2.0 – December 2021

AI algorithm rankings will constantly change as new innovative models arrive. These rankings 

just give an idea of how hard the battle for NLP supremacy is being fought!

Let’s now see how the evaluation process works.

The SuperGLUE evaluation process
Wang et al. (2019) selected eight tasks for their SuperGLUE benchmark. The selection criteria for 

these tasks were stricter than for GLUE. For example, the tasks had to not only understand texts 

but also to reason. The level of reasoning is not that of a top human expert. However, the level of 

performance is sufficient to replace many human tasks.
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The eight SuperGLUE tasks are presented in a ready-to-use list:

Figure 5.5: SuperGLUE tasks

The task list is interactive: https://super.gluebenchmark.com/tasks.

Each task contains links to the required information to perform that task:

• Name is the name of the downstream task of a fine-tuned, pretrained model

• Identifier is the abbreviation or short version of the name

• Download is the download link to the datasets

https://super.gluebenchmark.com/tasks
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• More Info offers greater detail through a link to the paper or website of the team that 

designed the dataset-driven task(s)

• Metric is the measurement score used to evaluate the model

SuperGLUE provides the task instructions, the software, the datasets, and papers or websites 

describing the problem to be solved. Once a team runs the benchmark tasks and reaches the 

leaderboard, the results are displayed:

Figure 5.6: SuperGLUE task scores

SuperGLUE displays the overall score and the score for each task.

For example, let’s take the instructions Wang et al. (2019) provided for the Choice of Plausible 

Answers (COPA) task in Table 6 of their paper.

The first step is to read the remarkable paper written by Roemmele et al. (2011). In a nutshell, the 

goal is for the NLU model to demonstrate its machine thinking (not human thinking, of course) 

potential. In our case, the transformer must choose the most plausible answer to a question. The 

dataset provides a premise, and the transformer model must find the most plausible answer.

For example:

Premise: I knocked on my neighbor's door.

What happened as a result?

Alternative 1: My neighbor invited me in.

Alternative 2: My neighbor left his house.

This question requires a second or two for a human to answer, which shows that it requires some 

commonsense machine thinking. COPA.zip, a ready-to-use dataset, can be downloaded directly 

from the SuperGLUE task page. The metric provided makes the process equal and reliable for all 

participants in the benchmark race.
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The examples might seem difficult. However, transformers are nearing COPA Human Baselines 

(Figure 5.7), which is only at rank #5 if we take all of the tasks into account:

Figure 5.7: SuperGLUE results for COPA

As incredible as it seems, transformers climbed the leaderboard ladder in a very short time! And 

this is just the beginning. New ideas are emerging nearly every month!

We have introduced COPA. Let’s define the seven other SuperGLUE benchmark tasks.

Defining the SuperGLUE benchmark tasks
A task can be a pretraining task to generate a trained model. That same task can be a downstream 

task for another model that will fine-tune it. However, the goal of SuperGLUE is to show that a 

given NLU model can perform multiple downstream tasks with fine-tuning. Multi-task models 

are the ones that prove the thinking power of transformers.

The power of any transformer resides in its ability to perform multiple tasks using a pretrained 

model and then applying it to fine-tuned downstream tasks. The original Transformer model 

and its variants now lead in all the GLUE and SuperGLUE tasks. We will continue to focus on 

SuperGLUE downstream tasks for which Human Baselines is tough to beat.

In the previous section, we went through COPA. In this section, we will go through the seven 

other tasks defined by Wang et al. (2019) in Table 2 of their paper.

Let’s continue with a Boolean question task.
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BoolQ
BoolQ is a Boolean yes-or-no answer task. The dataset, as defined on SuperGLUE, contains 15,942 

naturally occurring examples. A raw sample of line #3 of the train.jsonl dataset contains a 

passage, a question, and the answer (true):

{"question": "is windows movie maker part of windows essentials"

"passage": "Windows Movie Maker -- Windows Movie Maker (formerly known as 
Windows Live Movie Maker in Windows 7) is a discontinued video editing 
software by Microsoft. It is a part of Windows Essentials software suite 
and offers the ability to create and edit videos as well as to publish 
them on OneDrive, Facebook, Vimeo, YouTube, and Flickr.", "idx": 2, 
"label": true}

The datasets provided may change in time, but the concepts remain the same.

Now, let’s examine CB, a task that requires both humans and machines to focus.

Commitment Bank (CB)
Commitment Bank (CB) is a difficult entailment task. We are asking the transformer model to 

read a premise, then examine a hypothesis built on the premise. For example, the hypothesis will 

confirm the premise or contradict it. Then the transformer model must label the hypothesis as 

neutral, an entailment, or a contradiction of the premise, for example.

The dataset contains discourses, which are natural discourses.

The following sample #77, taken from the train.jsonl training dataset, shows how difficult 

the CB task is:

{"premise": "The Susweca. It means ''dragonfly'' in Sioux, you know. Did I 
ever tell you that's where Paul and I met?"

"hypothesis": "Susweca is where she and Paul met,"

"label": "entailment", "idx": 77}

We will now have a look at the multi-sentence problem.

Multi-Sentence Reading Comprehension (MultiRC)
Multi-Sentence Reading Comprehension (MultiRC) asks the model to read a text and choose 

from several possible choices. The task is difficult for both humans and machines. The model is 

presented with a text, several questions, and possible answers to each question with a 0 (false) or 

1 (true) label.
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Let’s take the second sample in train.jsonl:

"Text": "text": "The rally took place on October 17, the shooting on 
February 29. Again, standard filmmaking techniques are interpreted as 
smooth distortion: \"Moore works by depriving you of context and guiding 
your mind to fill the vacuum -- with completely false ideas. It is 
brilliantly, if unethically, done.\" As noted above, the \"from my cold 
dead hands\" part is simply Moore's way to introduce Heston. Did anyone 
but Moore's critics view it as anything else? He certainly does not 
\"attribute it to a speech where it was not uttered\" and, as noted above, 
doing so twice would make no sense whatsoever if Moore was the mastermind 
deceiver that his critics claim he is. Concerning the Georgetown Hoya 
interview where Heston was asked about Rolland, you write: \"There is 
no indication that [Heston] recognized Kayla Rolland's case.\" This is 
naive to the extreme -- Heston would not be president of the NRA if he 
was not kept up to date on the most prominent cases of gun violence. 
Even if he did not respond to that part of the interview, he certainly 
knew about the case at that point. Regarding the NRA website excerpt 
about the case and the highlighting of the phrase \"48 hours after Kayla 
Rolland is pronounced dead\": This is one valid criticism, but far from 
the deliberate distortion you make it out to be; rather, it is an example 
for how the facts can sometimes be easy to miss with Moore's fast pace 
editing. The reason the sentence is highlighted is not to deceive the 
viewer into believing that Heston hurried to Flint to immediately hold a 
rally there (as will become quite obvious), but simply to highlight the 
first mention of the name \"Kayla Rolland\" in the text, which is in this 
paragraph. "

The sample contains four questions. To illustrate the task, we will just investigate two of them. 

The model must predict the correct labels. Notice how the information that the model is asked 

to obtain is distributed throughout the text:

"question": "When was Kayla Rolland shot?"

"answers":

[{"text": "February 17", "idx": 168, "label": 0}, 

{"text": "February 29", "idx": 169, "label": 1}, 

{"text": "October 29", "idx": 170, "label": 0},

{"text": "October 17", "idx": 171, "label": 0},

{"text": "February 17", "idx": 172, "label": 0}], "idx": 26},

{"question": "Who was president of the NRA on February 29?", 
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"answers": [{"text": "Charleton Heston", "idx": 173, "label": 1},

{"text": "Moore", "idx": 174, "label": 0},

{"text": "George Hoya", "idx": 175, "label": 0},

{"text": "Rolland", "idx": 176, "label": 0},

{"text": "Hoya", "idx": 177, "label": 0}, {"text": "Kayla", "idx": 178, 
"label": 0}], "idx": 27}, 

At this point, one can only admire the performance of a single fine-tuned, pretrained model on 

these difficult downstream tasks.

Now, let’s see the reading comprehension task.

Reading Comprehension with Commonsense Reasoning Dataset 
(ReCoRD)
Reading Comprehension with Commonsense Reasoning Dataset (ReCoRD) represents another 

challenging task. The dataset contains over 120,000 queries from more than 70,000 news articles. 

The transformer must use common-sense reasoning to solve this problem.

Let’s examine a sample from train.jsonl:

"source": "Daily mail"

A passage contains the text and indications as to where the entities are 
located.

A passage begins with the text:

"passage": {

    "text": "A Peruvian tribe once revered by the Inca's for their 
fierce hunting skills and formidable warriors are clinging on to their 
traditional existence in the coca growing valleys of South America, 
sharing their land with drug traffickers, rebels and illegal loggers. 
Ashaninka Indians are the largest group of indigenous people in the 
mountainous nation's Amazon region, but their settlements are so sparse 
that they now make up less than one per cent of Peru's 30 million 
population. Ever since they battled rival tribes for territory and food 
during native rule in the rainforests of South America, the Ashaninka 
have rarely known peace.\n@highlight\nThe Ashaninka tribe once shared 
the Amazon with the like of the Incas hundreds of years ago\n@highlight\
nThey have been forced to share their land after years of conflict forced 
rebels and drug dealers into the forest\n@highlight\n. Despite settling 
in valleys rich with valuable coca, they live a poor pre-industrial 
existence",
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The entities are indicated, as shown in the following excerpt:

  "entities": [{"start": 2,"end": 9}, …,"start": 711,"end": 715}]

Finally, the model must answer a query by finding the proper value for the placeholder:

{"query": "Innocence of youth: Many of the @placeholder's younger  
generations have turned their backs on tribal life and moved to the  
cities where living conditions are better", 

"answers":[{"start":263,"end":271,"text":"Ashaninka"},{"start":601, 
"end":609,"text":"Ashaninka"},{"start":651,"end":659,"text":"Ashaninka"}], 
"idx":9}],"idx":3}

Once the transformer model has gone through this problem, it must now face an entailment task.

Recognizing Textual Entailment (RTE)
For Recognizing Textual Entailment (RTE), the transformer model must read the premise, ex-

amine a hypothesis, and predict the label of the entailment hypothesis status.

Let’s examine sample #19 of the train.jsonl dataset:

{"premise": "U.S. crude settled $1.32 lower at $42.83 a barrel.", 

"hypothesis": "Crude the light American lowered to the closing 1.32 
dollars, to 42.83 dollars the barrel.", "label": "not_entailment", >"idx": 
19}

RTE requires understanding and logic. Let’s now see the Words in Context task.

Words in Context (WiC)
Words in Context (WiC) and the following Winograd task test a model’s ability to process an 

ambiguous word. In WiC, the multi-task transformer will have to analyze two sentences and 

determine whether the target word has the same meaning in both sentences.

Let’s examine the first sample of the train.jsonl dataset.

First, the target word is specified:

  "word": "place"

The model has to read two sentences containing the target word:

  "sentence1": "Do you want to come over to my place later?",

  "sentence2": "A political system with no place for the less prominent 
groups."
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train.jsonl specifies the sample index, the value of the label, and the position of the target word 

in sentence1(start1, end1) and sentence2(start2, end2):

  "idx": 0,

  "label": false,

  "start1": 31,

  "start2": 27,

  "end1": 36,

  "end2": 32,

After this daunting task, the transformer model has to face the Winograd task.

The Winograd schema challenge (WSC)
The Winograd schema task is named after Terry Winograd. If a transformer is well trained, it 

should be able to solve disambiguation problems.

The dataset contains sentences that target slight differences in the gender of a pronoun.

This constitutes a coreference resolution problem, which is one of the most challenging tasks to 

perform. However, the transformer architecture, which allows self-attention, is ideal for this task.

Each sentence contains an occupation, a participant, and a pronoun. The problem to solve is to find 

whether the pronoun is coreferent with the occupation or the participant.

Let’s examine a sample taken from train.jsonl.

First, the sample asks the model to read a text:

{"text": >"I poured water from the bottle into the cup until it was 
full.",

The WSC ask the model to find the target pronoun token number 10 starting 
at 0: 

"target": {"span2_index": 10, 

Then it asks the model to determine if "it" refers to "the cup" or not: 

"span1_index": 7,

"span1_text": "the cup", 

"span2_text": "it"}, 

For sample index #4, the label is true:

"idx": 4, "label": true}
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We have gone through some of the main SuperGLUE tasks. There are many other tasks.

However, once you understand the architecture of transformers and the mechanism of the bench-

mark tasks, you will rapidly adapt to any model and benchmark.

Let’s now run some downstream tasks.

Running downstream tasks
In this section, we will just jump into some transformer cars and drive them around a bit to see 

what they do. There are many models and tasks. We will run a few of them in this section. Once 

you understand the process of running a few tasks, you will quickly understand all of them. After 

all, the human baseline for all these tasks is us!

A downstream task is a fine-tuned transformer task that inherits the model and parameters from 

a pretrained transformer model.

A downstream task is thus the perspective of a pretrained model running fine-tuned tasks. That 

means, depending on the model, a task is downstream if it was not used to fully pretrain the 

model. In this section, we will consider all the tasks as downstream since we did not pretrain them.

Models will evolve, as will databases, benchmark methods, accuracy measurement methods, 

and leaderboard criteria. But the structure of human thought reflected through the downstream 

tasks in this chapter will remain.

Let’s start with CoLA.

The Corpus of Linguistic Acceptability (CoLA)
The Corpus of Linguistic Acceptability (CoLA), a GLUE task, https://gluebenchmark.com/tasks, 

contains thousands of samples of English sentences annotated for grammatical acceptability.

The goal of Alex Warstadt et al. (2019) was to evaluate the linguistic competence of an NLP mod-

el to judge the linguistic acceptability of a sentence. The NLP model is expected to classify the 

sentences accordingly.

The sentences are labeled as grammatical or ungrammatical. The sentence is labeled 0 if the sen-

tence is not grammatically acceptable. The sentence is labeled 1 if the sentence is grammatically 

acceptable. For example:

Classification = 1 for ‘we yelled ourselves hoarse.’

Classification = 0 for ‘we yelled ourselves.’

https://gluebenchmark.com/tasks
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You can go through BERT_Fine_Tuning_Sentence_Classification_GPU.ipynb in Chapter 3, 

Fine-Tuning BERT Models, to view the BERT model that we fine-tuned on CoLA datasets. We 

used CoLA data:

#@title Loading the Dataset

#source of dataset : https://nyu-mll.github.io/CoLA/

df = pd.read_csv("in_domain_train.tsv", delimiter='\t', header=None, 
names=['sentence_source', 'label', 'label_notes', 'sentence'])

df.shape

We also load a pretrained BERT model:

#@title Loading the Hugging Face Bert Uncased Base Model 

model = BertForSequenceClassification.from_pretrained("bert-base-uncased", 
num_labels=2)

Finally, the measurement method, or metric, we used is MCC, which was described in the Eval-

uating using Matthews Correlation Coefficient section of Chapter 3, Fine-Tuning BERT Models, and 

earlier in this chapter.

You can refer to that section for the mathematical description of MCC and take the time to rerun 

the source code if necessary.

A sentence can be grammatically unacceptable but still convey a sentiment. Sentiment analysis 

can add some form of empathy to a machine.

Stanford Sentiment TreeBank (SST-2)
Stanford Sentiment TreeBank (SST-2) contains movie reviews. In this section, we will describe 

the SST-2 (binary classification) task. However, the datasets go beyond that, and it is possible to 

classify sentiments in a range of 0 (negative) to n (positive).

Socher et al. (2013) took sentiment analysis beyond the binary positive-negative NLP classifica-

tion. We will explore the SST-2 multi-label sentiment classification with a transformer model in 

Chapter 12, Detecting Customer Emotions to Make Predictions.

In this section, we will run a sample taken from SST on a Hugging Face transformer pipeline 

model to illustrate binary classification.
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Open Transformer_tasks.ipynb and run the following cell, which contains positive and negative 

movie reviews taken from SST:

#@title SST-2 Binary Classification

from transformers import pipeline

nlp = pipeline("sentiment-analysis")

print(nlp("If you sometimes like to go to the movies to have fun , Wasabi 
is a good place to start."),"If you sometimes like to go to the movies to 
have fun , Wasabi is a good place to start.")

print(nlp("Effective but too-tepid biopic."),"Effective but too-tepid 
biopic.")

The output is accurate:

[{'label': 'POSITIVE', 'score': 0.999825656414032}] If you sometimes like 
to go to the movies to have fun , Wasabi is a good place to start .

[{'label': 'NEGATIVE', 'score': 0.9974064230918884}] Effective but too-
tepid biopic.

The SST-2 task is evaluated using the accuracy metric.

We classify sentiments of a sequence. Let’s now see whether two sentences in a sequence are 

paraphrases or not.

Microsoft Research Paraphrase Corpus (MRPC)
The Microsoft Research Paraphrase Corpus (MRPC), a GLUE task, contains pairs of sentences 

extracted from new sources on the web. Each pair has been annotated by a human to indicate 

whether the sentences are equivalent based on two closely related properties:

• Paraphrase equivalent

• Semantic equivalent

Let’s run a sample using the Hugging Face BERT model. Open Transformer_tasks.ipynb and 

go to the following cell, and then run the sample taken from MRPC:

#@title Sequence Classification : paraphrase classification

from transformers import AutoTokenizer, 
TFAutoModelForSequenceClassification

import tensorflow as tf

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-
mrpc")
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model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-
cased-finetuned-mrpc")

classes = ["not paraphrase", "is paraphrase"]

sequence_A = "The DVD-CCA then appealed to the state Supreme Court."

sequence_B = "The DVD CCA appealed that decision to the U.S. Supreme 
Court."

paraphrase = tokenizer.encode_plus(sequence_A, sequence_B, return_
tensors="tf")

paraphrase_classification_logits = model(paraphrase)[0]

paraphrase_results = tf.nn.softmax(paraphrase_classification_logits, 
axis=1).numpy()[0]

print(sequence_B, "should be a paraphrase")

for i in range(len(classes)):

    print(f"{classes[i]}: {round(paraphrase_results[i] * 100)}%")

The output is accurate, though you may get messages warning you that the model needs more 

downstream training:

The DVD CCA appealed that decision to the U.S. Supreme Court. should be a 
paraphrase

not paraphrase: 8.0%

is paraphrase: 92.0%

The MRPC task is measured with the F1/Accuracy score method.

Let’s now run a Winograd schema.

Winograd schemas
We described the Winograd schemas in this chapter’s The Winograd schema challenge (WSC) 

section. The training set was in English.

But what happens if we ask a transformer model to solve a pronoun gender problem in an En-

glish-French translation? French has different spellings for nouns that have grammatical genders 

(feminine, masculine).

The following sentence contains the pronoun it, which can refer to the words car or garage. Can 

a transformer disambiguate this pronoun?
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Open Transformer_tasks.ipynb, go to the #Winograd cell, and run our example:

#@title Winograd

from transformers import pipeline

translator = pipeline("translation_en_to_fr")

print(translator("The car could not go in the garage because it was too 
big.", max_length=40))

The translation is perfect:

[{'translation_text': "La voiture ne pouvait pas aller dans le garage 
parce qu'elle était trop grosse."}]

The transformer detected that the word it refers to the word car, which is a feminine form. The 

feminine form applies to it and the adjective big:

elle means she in French, which is the translation of it. The masculine form would have been il, 

which means he.

grosse is the feminine form of the translation of the word big. Otherwise, the masculine form 

would have been gros.

We gave the transformer a difficult Winograd schema to solve, and it produced the right answer.

There are many more dataset-driven NLU tasks available. We will explore some of them through-

out this book to add more building blocks to our toolbox of transformers.

Summary
This chapter analyzed the difference between the human language representation process and 

the way machine intelligence performs transduction. We saw that transformers must rely on the 

outputs of our incredibly complex thought processes expressed in written language. Language 

remains the most precise way to express a massive amount of information. The machine has no 

senses and must convert speech to text to extract meaning from raw datasets.

We then explored how to measure the performance of multi-task transformers. Transformers’ 

ability to obtain top-ranking results for downstream tasks is unique in NLP history. We went 

through the tough SuperGLUE tasks that brought transformers up to the top ranks of the GLUE 

and SuperGLUE leaderboards.
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BoolQ, CB, WiC, and the many other tasks we covered are by no means easy to process, even 

for humans. We went through an example of several downstream tasks that show the difficulty 

transformer models face in proving their efficiency.

Transformers have proven their value by outperforming the former NLU architectures. To illus-

trate how simple it is to implement downstream fine-tuned tasks, we then ran several tasks in a 

Google Colaboratory notebook using Hugging Face’s pipeline for transformers.

In Winograd schemas, we gave the transformer the difficult task of solving a Winograd disambig-

uation problem for an English-French translation.

In the next chapter, Chapter 6, Machine Translation with the Transformer, we will take translation 

tasks a step further and build a translation model with Trax.

Questions
1. Machine intelligence uses the same data as humans to make predictions. (True/False)

2. SuperGLUE is more difficult than GLUE for NLP models. (True/False)

3. BoolQ expects a binary answer. (True/False)

4. WiC stands for Words in Context. (True/False)

5. Recognizing Textual Entailment (RTE) detects whether one sequence entails another 

sequence. (True/False)

6. A Winograd schema predicts whether a verb is spelled correctly. (True/False)

7. Transformer models now occupy the top ranks of GLUE and SuperGLUE. (True/False)

8. Human Baselines standards are not defined once and for all. They were made tougher to 

attain by SuperGLUE. (True/False)

9. Transformer models will never beat SuperGLUE Human Baselines standards. (True/False)

10. Variants of transformer models have outperformed RNN and CNN models. (True/False)
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6
Machine Translation with the 
Transformer

Humans master sequence transduction, transferring a representation to another object. We can 

easily imagine a mental representation of a sequence. If somebody says The flowers in my garden 

are beautiful, we can easily visualize a garden with flowers in it. We see images of the garden, 

although we might never have seen that garden. We might even imagine chirping birds and the 

scent of flowers.

A machine must learn transduction from scratch with numerical representations. Recurrent or 

convolutional approaches have produced interesting results but have not reached significant BLEU 

translation evaluation scores. Translating requires the representation of language A transposed 

into language B.

The transformer model’s self-attention innovation increases the analytic ability of machine in-

telligence. A sequence in language A is adequately represented before attempting to translate it 

into language B. Self-attention brings the level of intelligence required by a machine to obtain 

better BLEU scores.

The seminal Attention Is All You Need Transformer obtained the best results for English-German 

and English-French translations in 2017. Since then, the scores have been improved by other 

transformers.

At this point in the book, we have covered the essential aspects of transformers: the architecture 

of the Transformer, training a RoBERTa model from scratch, fine-tuning a BERT, evaluating a fine-

tuned BERT, and exploring downstream tasks with some transformer examples.
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In this chapter, we will go through machine translation in three additional topics. We will first 

define what machine translation is. We will then preprocess a Workshop on Machine Translation 

(WMT) dataset. Finally, we will see how to implement machine translations.

This chapter covers the following topics:

• Defining machine translation

• Human transductions and translations

• Machine transductions and translations

• Preprocessing a WMT dataset

• Evaluating machine translation with BLEU

• Geometric evaluations

• Chencherry smoothing

• Introducing Google Translate’s API

• Initializing the English-German problem with Trax

Our first step will be to define machine translation.

Defining machine translation
Vaswani et al. (2017) tackled one of the most difficult NLP problems when designing the Trans-

former. The human baseline for machine translation seems out of reach for us human-machine 

intelligence designers. This did not stop Vaswani et al. (2017) from publishing the Transformer’s 

architecture and achieving state-of-the-art BLEU results.

In this section, we will define machine translation. Machine translation is the process of repro-

ducing human translation by machine transductions and outputs:

Figure 6.1: Machine translation process
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The general idea in Figure 6.1 is for the machine to do the following in a few steps:

• Choose a sentence to translate

• Learn how words relate to each other with hundreds of millions of parameters

• Learn the many ways in which words refer to each other

• Use machine transduction to transfer the learned parameters to new sequences

• Choose a candidate translation for a word or sequence

The process always starts with a sentence to translate from a source language, A. The process ends 

with an output containing a translated sentence in language B. The intermediate calculations 

involve transductions.

Human transductions and translations
A human interpreter at the European Parliament, for instance, will not translate a sentence word 

by word. Word-by-word translations often make no sense because they lack the proper grammat-

ical structure and cannot produce the right translation because the context of each word is ignored.

Human transduction takes a sentence in language A and builds a cognitive representation of the 

sentence’s meaning. An interpreter (oral translations) or a translator (written translations) at 

the European Parliament will only then transform that transduction into an interpretation of 

that sentence in language B.

We will name the translation done by the interpreter or translator in language B a reference sentence.

You will notice several references in the Machine translation process described in Figure 6.1.

A human translator will not translate sentence A into sentence B several times but only once in 

real life. However, more than one translator could translate sentence A in real life. For example, 

you can find several French to English translations of Les Essais by Montaigne. If you take one 

sentence, A, out of the original French version, you will thus find several versions of sentence B 

noted as references 1 to n.

If you go to the European Parliament one day, you might notice that the interpreters only trans-

late for a limited time of two hours, for example. Then another interpreter takes over. No two 

interpreters have the same style, just like writers have different styles. Sentence A in the source 

language might be repeated by the same person several times in a day but be translated into 

several reference sentence B versions:

reference ={reference 1, reference 2,…reference n}
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Machines have to find a way to think the same way as human translators.

Machine transductions and translations
The transduction process of the original Transformer architecture uses the encoder stack, the 

decoder stack, and all the model’s parameters to represent a reference sequence. We will refer to 

that output sequence as the reference.

Why not just say “output prediction”? The problem is that there is no single output prediction. 

The Transformer, like humans, will produce a result we can refer to, but that can change if we 

train it differently or use different transformer models!

We immediately realize that the human baseline of human transduction, representations of a 

language sequence, is quite a challenge. However, much progress has been made.

An evaluation of machine translation proves that NLP has progressed. To determine that one 

solution is better than another, each NLP challenger, lab, or organization must refer to the same 

datasets for the comparison to be valid.

Let’s now explore a WMT dataset.

Preprocessing a WMT dataset
Vaswani et al. (2017) present the Transformer’s achievements on the WMT 2014 English-to-Ger-

man translation task and the WMT 2014 English-to-French translation task. The Transformer 

achieves a state-of-the-art BLEU score. BLEU will be described in the Evaluating machine trans-

lation with BLEU section of this chapter.

The 2014 WMT contained several European language datasets. One of the datasets contained 

data taken from version 7 of the Europarl corpus. We will be using the French-English dataset 

from the European Parliament Proceedings Parallel Corpus, 1996-2011 (https://www.statmt.org/

europarl/v7/fr-en.tgz).

Once you have downloaded the files and have extracted them, we will preprocess the two parallel 

files:

• europarl-v7.fr-en.en

• europarl-v7.fr-en.fr

We will load, clear, and reduce the size of the corpus.

Let’s start the preprocessing.

https://www.statmt.org/europarl/v7/fr-en.tgz
https://www.statmt.org/europarl/v7/fr-en.tgz
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Preprocessing the raw data
In this section, we will preprocess europarl-v7.fr-en.en and europarl-v7.fr-en.fr.

Open read.py, which is in this chapter’s GitHub directory. Ensure that the two europarl files are 

in the same directory as read.py.

The program begins using standard Python functions and pickle to dump the serialized output 

files:

import pickle

from pickle import dump

Then we define the function to load the file into memory:

# load doc into memory

def load_doc(filename):

        # open the file as read only

        file = open(filename, mode='rt', encoding='utf-8')

        # read all text

        text = file.read()

        # close the file

        file.close()

        return text

The loaded document is then split into sentences:

# split a loaded document into sentences

def to_sentences(doc):

        return doc.strip().split('\n')

The shortest and the longest lengths are retrieved:

# shortest and longest sentence lengths

def sentence_lengths(sentences):

        lengths = [len(s.split()) for s in sentences]

        return min(lengths), max(lengths)

The imported sentence lines must be cleaned to avoid training useless and noisy tokens. The 

lines are normalized, tokenized on white spaces, and converted to lowercase. The punctuation is 

removed from each token, non-printable characters are removed, and tokens containing numbers 

are excluded. The cleaned line is stored as a string. 
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The program runs the cleaning function and returns clean appended strings:

# clean lines

import re

import string

import unicodedata

def clean_lines(lines):

        cleaned = list()

        # prepare regex for char filtering

        re_print = re.compile('[^%s]' % re.escape(string.printable))

        # prepare translation table for removing punctuation

        table = str.maketrans('', '', string.punctuation)

        for line in lines:

                # normalize unicode characters

                line = unicodedata.normalize('NFD', line).encode('ascii', 
'ignore')

                line = line.decode('UTF-8')

                # tokenize on white space

                line = line.split()

                # convert to lower case

                line = [word.lower() for word in line]

                # remove punctuation from each token

                line = [word.translate(table) for word in line]

                # remove non-printable chars form each token

                line = [re_print.sub('', w) for w in line]

                # remove tokens with numbers in them

                line = [word for word in line if word.isalpha()]

                # store as string

                cleaned.append(' '.join(line))

        return cleaned

We have defined the key functions we will call to prepare the datasets. The English data is loaded 

and cleaned first:

# load English data

filename = 'europarl-v7.fr-en.en'

doc = load_doc(filename)

sentences = to_sentences(doc)
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minlen, maxlen = sentence_lengths(sentences)

print('English data: sentences=%d, min=%d, max=%d' % (len(sentences), 
minlen, maxlen))

cleanf=clean_lines(sentences)

The dataset is now clean, and pickle dumps it into a serialized file named English.pkl:

filename = 'English.pkl'

outfile = open(filename,'wb')

pickle.dump(cleanf,outfile)

outfile.close()

print(filename," saved")

The output shows the key statistics and confirms that English.pkl is saved:

English data: sentences=2007723, min=0, max=668

English.pkl  saved

We now repeat the same process with the French data and dump it into a serialized file named 

French.pkl:

# load French data

filename = 'europarl-v7.fr-en.fr'

doc = load_doc(filename)

sentences = to_sentences(doc)

minlen, maxlen = sentence_lengths(sentences)

print('French data: sentences=%d, min=%d, max=%d' % (len(sentences), 
minlen, maxlen))

cleanf=clean_lines(sentences)

filename = 'French.pkl'

outfile = open(filename,'wb')

pickle.dump(cleanf,outfile)

outfile.close()

print(filename," saved")

The output shows the key statistics for the French dataset and confirms that French.pkl is saved.

French data: sentences=2007723, min=0, max=693

French.pkl saved

The main preprocessing is done. But we still need to make sure the datasets do not contain noisy 

and confusing tokens.
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Finalizing the preprocessing of the datasets
Now, open read_clean.py in the same directory as read.py. Our process now defines the func-

tion that will load the datasets that were cleaned up in the previous section and then save them 

once the preprocessing is finalized:

from pickle import load

from pickle import dump

from collections import Counter

 

# load a clean dataset

def load_clean_sentences(filename):

        return load(open(filename, 'rb'))

 

# save a list of clean sentences to file

def save_clean_sentences(sentences, filename):

        dump(sentences, open(filename, 'wb'))

        print('Saved: %s' % filename)

 

We now define a function that will create a vocabulary counter. It is important to know how many 

times a word is used in the sequences we will parse. For example, if a word is only used once in 

a dataset containing two million lines, we will waste our energy using precious GPU resources 

to learn it. Let’s define the counter:

# create a frequency table for all words

def to_vocab(lines):

        vocab = Counter()

        for line in lines:

                tokens = line.split()

                vocab.update(tokens)

        return vocab

The vocabulary counter will detect words with a frequency that is below min_occurrence:

# remove all words with a frequency below a threshold

def trim_vocab(vocab, min_occurrence):

        tokens = [k for k,c in vocab.items() if c >= min_occurrence]

        return set(tokens)
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In this case, min_occurrence=5 and the words below or equal to this threshold have been removed 

to avoid wasting the training model’s time analyzing them.

We now have to deal with Out-Of-Vocabulary (OOV) words. OOV words can be misspelled words, 

abbreviations, or any word that does not fit standard vocabulary representations. We could use 

automatic spelling, but it would not solve all of the problems. For this example, we will simply 

replace OOV words with the unk (unknown) token:

# mark all OOV with "unk" for all lines

def update_dataset(lines, vocab):

        new_lines = list()

        for line in lines:

                new_tokens = list()

                for token in line.split():

                        if token in vocab:

                                new_tokens.append(token)

                        else:

                                new_tokens.append('unk')

                new_line = ' '.join(new_tokens)

                new_lines.append(new_line)

        return new_lines

We will now run the functions for the English dataset, save the output, and then display 20 lines:

# load English dataset

filename = 'English.pkl'

lines = load_clean_sentences(filename)

# calculate vocabulary

vocab = to_vocab(lines)

print('English Vocabulary: %d' % len(vocab))

# reduce vocabulary

vocab = trim_vocab(vocab, 5)

print('New English Vocabulary: %d' % len(vocab))

# mark out of vocabulary words

lines = update_dataset(lines, vocab)

# save updated dataset

filename = 'english_vocab.pkl'
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save_clean_sentences(lines, filename)

# spot check

for i in range(20):

        print("line",i,":",lines[i])

The output functions first show the vocabulary compression obtained:

English Vocabulary: 105357

New English Vocabulary: 41746

Saved: english_vocab.pkl

The preprocessed dataset is saved. The output function then displays 20 lines, as shown in the 

following excerpt:

line 0 : resumption of the session

line 1 : i declare resumed the session of the european parliament 
adjourned on friday december and i would like once again to wish you a 
happy new year in the hope that you enjoyed a pleasant festive period

line 2 : although, as you will have seen, the dreaded millennium bug 
failed to materialise still the people in a number of countries suffered a 
series of natural disasters that truly were dreadful

line 3 : you have requested a debate on this subject in the course of the 
next few days during this partsession

Let’s now run the functions for the French dataset, save the output, and then display 20 lines:

# load French dataset

filename = 'French.pkl'

lines = load_clean_sentences(filename)

# calculate vocabulary

vocab = to_vocab(lines)

print('French Vocabulary: %d' % len(vocab))

# reduce vocabulary

vocab = trim_vocab(vocab, 5)

print('New French Vocabulary: %d' % len(vocab))

# mark out of vocabulary words

lines = update_dataset(lines, vocab)

# save updated dataset

filename = 'french_vocab.pkl'
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save_clean_sentences(lines, filename)

# spot check

for i in range(20):

        print("line",i,":",lines[i])

The output functions first show the vocabulary compression obtained:

French Vocabulary: 141642

New French Vocabulary: 58800

Saved: french_vocab.pkl

The preprocessed dataset is saved. The output function then displays 20 lines, as shown in the 

following excerpt:

line 0 : reprise de la session

line 1 : je declare reprise la session du parlement europeen qui avait ete 
interrompue le vendredi decembre dernier et je vous renouvelle tous mes 
vux en esperant que vous avez passe de bonnes vacances

line 2 : comme vous avez pu le constater le grand bogue de lan ne sest pas 
produit en revanche les citoyens dun certain nombre de nos pays ont ete 
victimes de catastrophes naturelles qui ont vraiment ete terribles

line 3 : vous avez souhaite un debat a ce sujet dans les prochains jours 
au cours de cette periode de session

This section shows how raw data must be processed before training. The datasets are now ready 

to be plugged into a transformer to be trained.

Each line of the French dataset is the sentence to translate. Each line of the English dataset is the 

reference for a machine translation model. The machine translation model must produce an English 

candidate translation that matches the reference.

BLEU provides a method to evaluate candidate translations produced by machine translation 

models.

Evaluating machine translation with BLEU
Papineni et al. (2002) came up with an efficient way to evaluate a human translation. The human 

baseline was difficult to define. However, they realized that we could obtain efficient results if 

we compared human translation with machine translation, word for word.

Papineni et al. (2002) named their method the Bilingual Evaluation Understudy Score (BLEU).
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In this section, we will use the Natural Language Toolkit (NLTK) to implement BLEU:

http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_

bleu

We will begin with geometric evaluations.

Geometric evaluations
The BLEU method compares the parts of a candidate sentence to a reference sentence or several 

reference sentences.

Open BLEU.py, which is in the chapter directory of the GitHub repository of this book.

The program imports the nltk module:

from nltk.translate.bleu_score import sentence_bleu

from nltk.translate.bleu_score import SmoothingFunction

It then simulates a comparison between a candidate translation produced by the machine trans-

lation model and the actual translation(s) references in the dataset. Remember that a sentence 

could have been repeated several times and translated by different translators in different ways, 

making it challenging to find efficient evaluation strategies.

The program can evaluate one or more references:

#Example 1

reference = [['the', 'cat', 'likes', 'milk'], ['cat', 'likes' 'milk']]

candidate = ['the', 'cat', 'likes', 'milk']

score = sentence_bleu(reference, candidate)

print('Example 1', score)

#Example 2

reference = [['the', 'cat', 'likes', 'milk']]

candidate = ['the', 'cat', 'likes', 'milk']

score = sentence_bleu(reference, candidate)

print('Example 2', score)

The score for both examples is 1:

Example 1 1.0

Example 2 1.0

http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu
http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu
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A straightforward evaluation P of the candidate C, the reference R, and the number of correct 

tokens found in C (N) can be represented as a geometric function:

This geometric approach is rigid if you are looking for a 3-gram overlap, for example:

#Example 3

reference = [['the', 'cat', 'likes', 'milk']]

candidate = ['the', 'cat', 'enjoys','milk']

score = sentence_bleu(reference, candidate)

print('Example 3', score)

The output is severe if you are looking for 3-gram overlaps:

Warning (from warnings module):

  File

"C:\Users\Denis\AppData\Local\Programs\Python\Python37\lib\site-packages\
nltk\translate\bleu_score.py", line 490

    warnings.warn(_msg)

UserWarning: 

Corpus/Sentence contains 0 counts of 3-gram overlaps.

BLEU scores might be undesirable; use SmoothingFunction().

Example 3 0.7071067811865475

A human can see that the score should be 1 and not 0.7. The hyperparameters can be changed, 

but the approach remains rigid.

The warning in the code above is a good one that announces the next section.

The messages may vary with each version of the program and each run since this is a stochastic 

process.

Papineni et al. (2002) came up with a modified unigram approach. The idea was to count the 

word occurrences in the reference sentence and ensure the word was not over-evaluated in the 

candidate sentence.
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Consider the following example explained by Papineni et al. (2002):

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

Now consider the following candidate sequence:

Candidate: the the the the the the the

We now look for the number of words in the candidate sentence (the 7 occurrences of the same 

word “the”) present in the Reference 1 sentence (2 occurrences of the word “the”).

A standard unigram precision would be 7/7.

The modified unigram precision is 2/7.

Note that the BLEU function output warning agrees and suggests using smoothing.

Let’s add smoothing techniques to the BLEU toolkit.

Applying a smoothing technique
Chen and Cherry (2014) introduced a smoothing technique that improves standard BLEU tech-

niques’ geometric evaluation approach.

Label smoothing is a very efficient method that improves the performance of a transformer model 

during the training phase. It has a negative impact on perplexity. However, it forces the model to 

be more uncertain. In turn, this has a positive effect on accuracy.

For example, suppose we have to predict what the masked word is in the following sequence:

The cat [mask] milk.

Imagine the output comes out as a softmax vector:

candidate_words=[drinks, likes, enjoys, appreciates]

candidate_softmax=[0.7, 0.1, 0.1,0.1]

candidate_one_hot=[1,0,0,0]

This would be a brutal approach. Label smoothing can make the system more open-minded by 

introducing epsilon = ε .
The number of elements of candidate_softmax is k=4.

For label smoothing, we can set ε  to 0.25, for example.
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One of the several approaches to label smoothing can be a straightforward function.

First, reduce the value of candidate_one_hot by 1-ε .
Increase the 0 values by 0 + εk-1 .

We obtain the following result if we apply this approach:

candidate_smoothed=[0.75,0.083,0.083,0.083], making the output open to future transfor-

mations and changes.

The transformer uses variants of label smoothing.

A variant of BLEU is chencherry smoothing.

Chencherry smoothing
Chen and Cherry (2014) introduced an interesting way of smoothing candidate evaluations by 

adding ε  to otherwise 0 values. There are several chencherry (Boxing Chen + Colin Cherry) meth-

ods: https://www.nltk.org/api/nltk.translate.html.

Let’s first evaluate a French-English example with smoothing:

#Example 4

reference = [['je','vous','invite', 'a', 'vous', 'lever','pour', 'cette', 
'minute', 'de', 'silence']]

candidate = ['levez','vous','svp','pour', 'cette', 'minute', 'de', 
'silence']

score = sentence_bleu(reference, candidate)

print("without soothing score", score)

Although a human could accept the candidate, the output score is weak:

without smoothing score 0.37188004246466494

Now, let’s add some openminded smoothing to the evaluation:

chencherry = SmoothingFunction()

r1=list('je vous invite a vous lever pour cette minute de silence')

candidate=list('levez vous svp pour cette minute de silence')

        

#sentence_bleu([reference1, reference2, reference3], 
hypothesis2,smoothing_function=chencherry.method1)

print("with smoothing score",sentence_bleu([r1], candidate,smoothing_
function=chencherry.method1))

https://www.nltk.org/api/nltk.translate.html
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The score does not reach human acceptability:

with smoothing score 0.6194291765462159

We have now seen how a dataset is preprocessed and how BLEU evaluates machine translations.

Translation with Google Translate
Google Translate, https://translate.google.com/, provides a ready-to-use interface for trans-

lations. Google is progressively introducing a transformer encoder into its translation algorithms. 

In the following section, we will implement a transformer model for a translation task with 

Google Trax.

However, an AI specialist may not be required at all.

If we enter the sentence analyzed in the previous section in Google Translate, Levez-vous svp 

pour cette minute de silence, we obtain an English translation in real time:

Figure 6.2: Google Translate

The translation is correct.

Does Industry 4.0 still require AI specialists for translation tasks or simply a web interface de-

veloper?

Google provides every service required for translations on their Google Translate platform: 

https://cloud.google.com/translate:

• A translation API: A web developer can create an interface for a customer

• A media translation API that can translate your streaming content

• An AutoML translation service that will train a custom model for a specific domain

A Google translate project requires a web developer for the interfaces, a Subject Matter Expert 

(SME), and perhaps a linguist. However, an AI specialist is not a prerequisite.

https://translate.google.com/
https://cloud.google.com/translate
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Industry 4.0 is going toward AI as a service. So why bother studying AI development with trans-

formers? There are two important reasons to become an Industry 4.0 AI specialist:

• In real life, AI projects often run into unexpected problems. For example, Google Translate 

might not fit a specific need no matter how much goodwill was put into the project. In 

that case, Google Trax will come in handy!

• To use Google Trax for AI, you need to be an AI developer!

You never know! The Fourth Industrial Revolution is connecting everything to everything. Some 

AI projects might run smoothly, and some will require AI expertise to solve complex problems. 

For example, in Chapter 14, Interpreting Black Box Transformer Models, we will show how AI devel-

opment is sometimes required to implement Google Translate.

We are now ready to implement translations with Trax.

Translations with Trax
Google Brain developed Tensor2Tensor (T2T) to make deep learning development easier. T2T is 

an extension of TensorFlow and contains a library of deep learning models that contains many 

transformer examploes.

Although T2T was a good start, Google Brain then produced Trax, an end-to-end deep learning 

library. Trax contains a transformer model that can be applied to translations. The Google Brain 

team presently maintains Trax.

This section will focus on the minimum functions to initialize the English-German problem 

described by Vaswani et al. (2017) to illustrate the Transformer’s performance.

We will be using preprocessed English and German datasets to show that the Transformer ar-

chitecture is language-agnostic.

Open Trax_Translation.ipynb.

We will begin by installing the modules we need.

Installing Trax
Google Brain has made Trax easy to install and run. We will import the basics along with Trax, 

which can be installed in one line:

#@title Installing Trax

import os
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import numpy as np

!pip install -q -U trax

import trax

Yes, it’s that simple!

Now, let’s create our transformer model.

Creating the original Transformer model
We will create the original Transformer model as described in Chapter 2, Getting Started with the 

Architecture of the Transformer Model.

Our Trax function will retrieve a pretrained model configuration in a few lines of code:

#@title Creating a Transformer model.

# Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.
gin

model = trax.models.Transformer(

    input_vocab_size=33300,

    d_model=512, d_ff=2048,

    n_heads=8, n_encoder_layers=6, n_decoder_layers=6,

    max_len=2048, mode='predict')

The model is the Transformer with an encoder and decoder stack. Each stack contains 6 layers 

and 8 heads. d_model=512, as in the architecture of the original Transformer.

The Transformer requires the pretrained weights to run.

Initializing the model using pretrained weights
The pretrained weights contain the intelligence of the Transformer. The weights constitute the 

Transformer’s representation of language. The weights can be expressed as a number of param-

eters that will produce some form of machine intelligence IQ.

Let’s give life to the model by initializing the weights:

#@title Initializing the model using pre-trained weights

model.init_from_file('gs://trax-ml/models/translation/ende_wmt32k.pkl.gz',

                     weights_only=True)

The machine configuration and its intelligence are now ready to run. Let’s tokenize a sentence.
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Tokenizing a sentence
Our machine translator is ready to tokenize a sentence. The notebook uses the vocabulary pre-

processed by Trax. The preprocessing method is similar to the one described in this chapter’s 

Preprocessing a WMT dataset section.

The sentence will now be tokenized:

#@title Tokenizing a sentence.

sentence = 'I am only a machine but I have machine intelligence.'

tokenized = list(trax.data.tokenize(iter([sentence]), # Operates on 
streams.

                                   vocab_dir='gs://trax-ml/vocabs/',

                                   vocab_file='ende_32k.subword'))[0]

The program will now decode the sentence and produce a translation.

Decoding from the Transformer
The Transformer encodes the sentence in English and will decode it in German. The model and 

its weights constitute its set of abilities.

Trax has made the decoding function intuitive to use:

#@title Decoding from the Transformer

tokenized = tokenized[None, :]  # Add batch dimension.

tokenized_translation = trax.supervised.decoding.autoregressive_sample(

    model, tokenized, temperature=0.0)  # Higher temperature: more diverse 
results.

Note that higher temperatures will produce diverse results, just as with human translators, as 

explained in this chapter’s Defining machine translation section.

Finally, the program will de-tokenize and display the translation.

De-tokenizing and displaying the translation
Google Brain has produced a mainstream, disruptive, and intuitive implementation of the Trans-

former with Trax.
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The program now de-tokenizes and displays the translation in a few lines:

#@title De-tokenizing and Displaying the Translation

tokenized_translation = tokenized_translation[0][:-1]  # Remove batch and 
EOS.

translation = trax.data.detokenize(tokenized_translation,

                                   vocab_dir='gs://trax-ml/vocabs/',

                                   vocab_file='ende_32k.subword')

print("The sentence:",sentence)

print("The translation:",translation)

The output is quite impressive:

The sentence: I am only a machine but I have machine intelligence.

The translation: Ich bin nur eine Maschine, aber ich habe 
Maschinenübersicht.

The Transformer translated machine intelligence into Maschinenübersicht.

If we deconstruct Maschinenübersicht into Maschin (machine) + übersicht (intelligence), 

we can see that:

• über literally means “over”

• sicht means “sight” or “view”

The transformer tells us that although it is a machine, it has vision. Machine intelligence is grow-

ing through Transformers, but it is not human intelligence. Machines learn languages with an 

intelligence of their own.

That concludes our experiment with Google Trax.

Summary
In this chapter, we went through three additional essential aspects of the original Transformer.

We started by defining machine translation. Human translation sets an extremely high baseline 

for machines to reach. We saw that English-French and English-German translations imply 

numerous problems to solve. The transformer tackled these problems and set state-of-the-art 

BLEU records to beat.
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We then preprocessed a WMT French-English dataset from the European Parliament that required 

cleaning. We had to transform the datasets into lines and clean the data up. Once that was done, 

we reduced the dataset’s size by suppressing words that occurred below a frequency threshold.

Machine translation NLP models require identical evaluation methods. Training a model on a 

WMT dataset requires BLEU evaluations. We saw that geometric assessments are a good basis 

for scoring translations, but even modified BLEU has its limits. We thus added a smoothing 

technique to enhance BLEU.

We saw that Google Translate provides a standard translation API, a media streaming API, and 

custom AutoML model training services. Implementing Google Translate APIs may require no 

AI development if the project rolls out smoothly. If not, we will have to get our hands dirty, like 

in the old days!

We implemented an English-to-German translation transformer with Trax, Google Brain’s end-

to-end deep learning library.

We have now covered the main building blocks to construct transformers: architecture, pretraining, 

training, preprocessing datasets, and evaluation methods.

In the next chapter, The Rise of Suprahuman Transformers with GPT-3 Engines, we will discover 

mind-blowing ways of implementing transformers with the building blocks we explored in the 

previous chapters.

Questions
1. Machine translation has now exceeded human baselines. (True/False)

2. Machine translation requires large datasets. (True/False)

3. There is no need to compare transformer models using the same datasets. (True/False)

4. BLEU is the French word for blue and is the acronym of an NLP metric (True/False)

5. Smoothing techniques enhance BERT. (True/False)

6. German-English is the same as English-German for machine translation. (True/False)

7. The original Transformer multi-head attention sub-layer has 2 heads. (True/False)

8. The original Transformer encoder has 6 layers. (True/False)

9. The original Transformer encoder has 6 layers but only 2 decoder layers. (True/False)

10. You can train transformers without decoders. (True/False)
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The Rise of Suprahuman 
Transformers with GPT-3 
Engines

In 2020, Brown et al. (2020) described the training of an OpenAI GPT-3 model containing 175 

billion parameters that learned using huge datasets such as the 400 billion byte-pair-encoded 

tokens extracted from Common Crawl data. OpenAI ran the training on a Microsoft Azure super-

computer with 285,00 CPUs and 10,000 GPUs.

The machine intelligence of OpenAI’s GPT-3 engines and their supercomputer led Brown et al. 

(2020) to zero-shot experiments. The idea was to use a trained model for downstream tasks 

without further training the parameters. The goal would be for a trained model to go directly into 

multi-task production with an API that could even perform tasks it wasn’t trained for.

The era of suprahuman cloud AI engines was born. OpenAI’s API requires no high-level software 

skills or AI knowledge. You might wonder why I used the term “suprahuman.” You will discover 

that a GPT-3 engine can perform many tasks as well as a human in many cases. For the moment, 

it is essential to understand how GPT models are built and run to appreciate the magic.

This chapter will first examine the architecture and the evolution of the size of the transformer 

model. We will investigate the zero-shot challenge of using trained transformer models with 

little to no fine-tuning of the model’s parameters for downstream tasks. We will explore the 

innovative architecture of GPT transformer models. OpenAI provides specially trained versions 

of their models named engines.
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We will use a 345M parameter GPT-2 transformer in TensorFlow from OpenAI’s repository. We 

must get our hands dirty to understand GPT models. We will interact with the model to produce 

text completion with general conditioning sentences.

We will continue by using a 117M parameter customized GPT-2 model. We will tokenize the 

high-level conceptual Kant dataset we used to train the RoBERTa model in Chapter 4, Pretraining 

a RoBERTa Model from Scratch.

The chapter will then explore using a GPT-3 engine that does not require a data scientist, an ar-

tificial specialist, or even an experienced developer to get started. However, that does not mean 

that a data scientist or an AI specialist will not be required down the line.

We will see that GPT-3 engines do sometimes require fine-tuning. We will run a Google Colab 

notebook to fine-tune a GPT-3 Ada engine.

The chapter will end with the new mindset and skillset of an Industry 4.0 AI specialist.

By the end of the chapter, you will know how a GPT model is built and how to use a seamless 

GPT-3 API. You will understand the gratifying tasks an Industry 4.0 AI specialist can accomplish 

in the 2020s!

This chapter covers the following topics:

• Getting started with a GPT-3 model

• The architecture of OpenAI GPT models

• Defining zero-shot transformer models

• The path from few-shots to one-shot

• Building a near-human GPT-2 text completion model

• Implementing a 345M parameter model and running it

• Interacting with GPT-2 with a standard model

• Training a language modeling GPT-2 117M parameter model

• Importing a customized and specific dataset

• Encoding a customized dataset

• Conditioning the model

• Conditioning a GPT-2 model for specific text completion tasks

• Fine-tuning a GPT-3 model

• The role of an Industry 4.0 AI specialist
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Let’s begin our journey by exploring GPT-3 transformer models.

Suprahuman NLP with GPT-3 transformer models
GPT-3 is built on the GPT-2 architecture. However, a fully trained GPT-3 transformer is a foun-

dation model. A foundation model can do many tasks it wasn’t trained for. GPT-3 completion 

applies all NLP tasks and even programming tasks.

It will not take long for companies to realize they do not need a data scientist or an AI specialist 

to start an NLP project with an API like the one that OpenAI provides.

Why bother with any other tool? An OpenAI API is available with access to one of the most efficient 

transformer models trained on one of the most powerful supercomputers in the world.

Why develop tools, download libraries, or use any other tool if an API exists that only deep pockets 

and the best research teams in the world can design, such as Google or OpenAI?

The answer to these questions is quite simple. It’s easy to start a GPT-3 engine, just as it is to 

start a Formula 1 or Indy 500 race car. No problem. But then, trying to drive such a car is nearly 

impossible without months of training! GPT-3 engines are powerful AI race cars. You can get them 

to run in a few clicks. However, mastering their incredible horsepower requires the knowledge 

you have acquired from the beginning of this book up to now and what you will discover in the 

following chapters!

We first need to understand the architecture of GPT models to see where developers, AI specialists, 

and data scientists fit in the era of suprahuman NLP models.

The architecture of OpenAI GPT transformer models
Transformers went from training, to fine-tuning, and finally to zero-shot models in less than 

three years between the end of 2017 and the first part of 2020. A zero-shot GPT-3 transformer 

model requires no fine-tuning. The trained model parameters are not updated for downstream 

multi-tasks, which opens a new era for NLP/NLU tasks.

GPT-3 is one of the few fully trained transformer models that qualify as a founda-

tion models. GPT-3 will no doubt lead to more powerful OpenAI models. Google 

will produce foundation models beyond the Google BERT version they trained on 

their supercomputers. Foundation models represent a new way of thinking about AI.
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In this section, we will first learn about the motivation of the OpenAI team that designed GPT 

models. We will begin by going through the fine-tuning of zero-shot models. Then we will see 

how to condition a transformer model to generate mind-blowing text completion. Finally, we 

will explore the architecture of GPT models.

We will first go through the creation process of the OpenAI team.

The rise of billion-parameter transformer models
The speed at which transformers went from small models trained for NLP tasks to models that 

require little to no fine-tuning is staggering.

Vaswani et al. (2017) introduced the Transformer, which surpassed CNNs and RNNs on BLEU 

tasks. Radford et al. (2018) introduced the Generative Pre-Training (GPT) model, which could 

perform downstream tasks with fine-tuning. Devlin et al. (2019) perfected fine-tuning with the 

BERT model. Radford et al. (2019) went further with GPT-2 models.

Brown et al. (2020) defined a GPT-3 zero-shot approach to transformers that does not require 

fine-tuning!

At the same time, Wang et al. (2019) created GLUE to benchmark NLP models. But transformer 

models evolved so quickly that they surpassed human baselines!

Wang et al. (2019, 2020) rapidly created SuperGLUE, set the human baselines much higher, and 

made the NLU/NLP tasks more challenging. Transformers are rapidly progressing, and some 

have already surpassed Human Baselines on the SuperGLUE leaderboards at the time of writing.

How did this happen so quickly?

We will look at one aspect, the models’ sizes, to understand how this evolution happened.

The increasing size of transformer models
From 2017 to 2020 alone, the number of parameters increased from 65M parameters in the original 

Transformer model to 175B parameters in the GPT-3 model, as shown in Table 7.1:

Transformer Model Paper Parameters
Transformer Base Vaswani et al. (2017) 65M
Transformer Big Vaswani et al. (2017) 213M
BERT-Base Devlin et al. (2019) 110M
BERT-Large Devlin et al. (2019) 340M
GPT-2 Radford et al. (2019) 117M



Chapter 7 171

GPT-2 Radford et al. (2019) 345M
GPT-2 Radford et al. (2019) 1.5B
GPT-3 Brown et al. (2020) 175B

Table 7.1: The evolution of the number of transformer parameters

Table 7.1 only contains the main models designed during that short time. The dates of the publica-

tions come after the date the models were actually designed. Also, the authors updated the papers. 

For example, once the original Transformer set the market in motion, transformers emerged from 

Google Brain and Research, OpenAI, and Facebook AI, which all produced new models in parallel.

Furthermore, some GPT-2 models are larger than the smaller GPT-3 models. For example, the GPT-

3 Small model contains 125M parameters, which is smaller than the 345M parameter GPT-2 model.

The size of the architecture evolved at the same time:

• The number of layers of a model went from 6 layers in the original Transformer to 96 

layers in the GPT-3 model

• The number of heads of a layer went from 8 in the original Transformer model to 96 in 

the GPT-3 model

• The context size went from 512 tokens in the original Transformer model to 12,288 in the 

GPT-3 model

The architecture’s size explains why GPT-3 175B, with its 96 layers, produces more impressive 

results than GPT-2 1,542M, with only 40 layers. The parameters of both models are comparable, 

but the number of layers has doubled.

Let’s focus on the context size to understand another aspect of the rapid evolution of transformers.

Context size and maximum path length
The cornerstone of transformer models resides in the attention sub-layers. In turn, the key prop-

erty of attention sub-layers is the method used to process context size.

The context size is one of the main ways humans and machines can learn languages. The larger 

the context size, the more we can understand a sequence presented to us.

However, the drawback of context size is the distance it takes to understand what a word refers 

to. The path taken to analyze long-term dependencies requires changing from recurrent to at-

tention layers.
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The following sentence requires a long path to find what the pronoun “it” refers to:

“Our house was too small to fit a big couch, a large table, and other furniture we would have liked 

in such a tiny space. We thought about staying for some time, but finally, we decided to sell it.”

The meaning of “it” can only be explained if we take a long path back to the word “house” at the 

beginning of the sentence. That’s quite a path for a machine!

The order of function that defines the maximum path length can be summed up as shown in 

Table 7.2 in Big O notation:

Layer Type Maximum Path Length Context Size
Self-Attention 0(1) 1
Recurrent 0(n) 100

Table 7.2: Maximum path length

Vaswani et al. (2017) optimized the design of context analysis in the original Transformer model. 

Attention brings the operations down to a one-to-one token operation. The fact that all of the 

layers are identical makes it much easier to scale up the size of transformer models. A GPT-3 model 

with a size 100 context window has the same maximum length path as a size 10 context window.

For example, a recurrent layer in an RNN has to store the total length of the context step by step. 

The maximum path length is the context size. The maximum length size for an RNN that would 

process the context size of a GPT-3 model would be 0(n) times longer. Furthermore, an RNN can-

not split the context into 96 heads running on a parallelized machine architecture, distributing 

the operations over 96 GPUs, for example.

The flexible and optimized architecture of transformers has led to an impact on several other 

factors:

• Vaswani et al. (2017) trained a state-of-the-art transformer model with 36M sentences. 

Brown et al. (2020) trained a GPT-3 model with 400 billion byte-pair-encoded tokens 

extracted from Common Crawl data.

• Training large transformer models requires machine power that is only available to a small 

number of teams in the world. It took a total of 2.14*1023 FLOPS for Brown et al. (2020) to 

train GPT-3 175B.

• Designing the architecture of transformers requires highly qualified teams that can only 

be funded by a small number of organizations in the world.
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The size and architecture will continue to evolve and probably increase to trillion-parameter 

models in the near future. Supercomputers will continue to provide the necessary resources to 

train transformers.

We will now see how zero-shot models were achieved.

From fine-tuning to zero-shot models
From the start, OpenAI’s research teams, led by Radford et al. (2018), wanted to take transformers 

from trained models to GPT models. The goal was to train transformers on unlabeled data. Letting 

attention layers learn a language from unsupervised data was a smart move. Instead of teaching 

transformers to do specific NLP tasks, OpenAI decided to train transformers to learn a language.

OpenAI wanted to create a task-agnostic model. So they began to train transformer models on 

raw data instead of relying on labeled data by specialists. Labeling data is time-consuming and 

considerably slows down the transformer’s training process.

The first step was to start with unsupervised training in a transformer model. Then, they would 

only fine-tune the model’s supervised learning.

OpenAI opted for a decoder-only transformer described in the Stacking decoder layers section. 

The metrics of the results were convincing and quickly reached the level of the best NLP models 

of fellow NLP research labs.

The promising results of the first version of GPT transformer models soon led Radford et al. (2019) 

to come up with zero-shot transfer models. The core of their philosophy was to continue train-

ing GPT models to learn from raw text. They then took their research a step further, focusing on 

language modeling through examples of unsupervised distributions:

Examples=(x1, x2, x3, ,xn)

The examples are composed of sequences of symbols:

Sequences=(s1, s2, s3, ,sn)

This led to a metamodel that can be expressed as a probability distribution for any type of input:

p (output/input)

The goal was to generalize this concept to any type of downstream task once the trained GPT 

model understands a language through intensive training.



The Rise of Suprahuman Transformers with GPT-3 Engines174

The GPT models rapidly evolved from 117M parameters to 345M parameters, to other sizes, and 

then to 1,542M parameters. 1,000,000,000+ parameter transformers were born. The amount of 

fine-tuning was sharply reduced. The results reached state-of-the-art metrics again.

This encouraged OpenAI to go further, much further. Brown et al. (2020) went on the assump-

tion that conditional probability transformer models could be trained in-depth and were able to 

produce excellent results with little to no fine-tuning for downstream tasks:

p (output/multi-tasks)

OpenAI was reaching its goal of training a model and then running downstream tasks directly 

without further fine-tuning. This phenomenal progress can be described in four phases:

• Fine-Tuning (FT) is meant to be performed in the sense we have been exploring in pre-

vious chapters. A transformer model is trained and then fine-tuned on downstream tasks. 

Radford et al. (2018) designed many fine-tuning tasks. The OpenAI team then reduced the 

number of tasks progressively to 0 in the following steps.

• Few-Shot (FS) represents a huge step forward. The GPT is trained. When the model needs 

to make inferences, it is presented with demonstrations of the task to perform as condi-

tioning. Conditioning replaces weight updating, which the GPT team excluded from the 

process. We will be applying conditioning to our model through the context we provide 

to obtain text completion in the notebooks we will go through in this chapter.

• One-Shot (1S) takes the process further. The trained GPT model is presented with only one 

demonstration of the downstream task to perform. No weight updating is permitted either.

• Zero-Shot (ZS) is the ultimate goal. The trained GPT model is presented with no demon-

stration of the downstream task to perform.

Each of these approaches has various levels of efficiency. The OpenAI GPT team has worked hard 

to produce these state-of-the-art transformer models.

We can now explain the motivations that led to the architecture of the GPT models:

• Teaching transformer models how to learn a language through extensive training.

• Focusing on language modeling through context conditioning.

• The transformer takes the context and generates text completion in a novel way. Instead 

of consuming resources on learning downstream tasks, it works on understanding the 

input and making inferences no matter what the task is.
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• Finding efficient ways to train models by masking portions of the input sequences forces 

the transformer to think with machine intelligence. Thus, machine intelligence, though 

not human, is efficient.

We understand the motivations that led to the architecture of GPT models. Let’s now have a look 

at the decoder-layer-only GPT model.

Stacking decoder layers
We now understand that the OpenAI team focused on language modeling. Therefore, it makes 

sense to keep the masked attention sublayer. Hence, the choice to retain the decoder stacks and 

exclude the encoder stacks. Brown et al. (2020) dramatically increased the size of the decoder-only 

transformer models to get excellent results.

GPT models have the same structure as the decoder stacks of the original Transformer designed 

by Vaswani et al. (2017). We described the decoder stacks in Chapter 2, Getting Started with the 

Architecture of the Transformer Model. If necessary, take a few minutes to go back through the ar-

chitecture of the original Transformer.

The GPT model has a decoder-only architecture, as shown in Figure 7.1:

Figure 7.1: GPT decoder-only architecture
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We can recognize the text and position embedding sub-layer, the masked multi-head self-atten-

tion layer, the normalization sub-layers, the feedforward sub-layer, and the outputs. In addition, 

there is a version of GPT-2 with both text prediction and task classification.

The OpenAI team customized and tweaked the decoder model by model. Radford et al. (2019) 

presented no fewer than four GPT models, and Brown et al. (2020) described no fewer than eight 

models.

The GPT-3 175B model has reached a unique size that requires computer resources that few teams 

in the world can access:

nparams = 175.0B, nlayers = 96, dmodel = 12288, nheads = 96

Let’s look into the growing number of GPT-3 engines.

GPT-3 engines
A GPT-3 model can be trained to accomplish specific tasks of different sizes. The list of engines 

available at this time is documented by OpenAI: https://beta.openai.com/docs/engines

The base series of engines have different functions – for example:

• The Davinci engine can analyze complex intent

• The Curie engine is fast and has good summarization

• The Babbage engine is good at semantic search

• The Ada engine is good at parsing text

OpenAI is producing more engines to put on the market:

• The Instruct series provides instructions based on a description. An example is available 

in the More GPT-3 examples section of this chapter.

• The Codex series can translate language to code. We will explore this series in Chapter 16, 

The Emergence of Transformer-Driven Copilots.

• The Content filter series filters unsafe or sensitive text. We will explore this series in Chapter 

16, The Emergence of Transformer-Driven Copilots.

We have explored the process that led us from fine-tuning to zero-shot GPT-3 models. We have 

seen that GPT-3 can produce a wide range of engines.

It is now time to see how the source code of GPT models is built. Although the GPT-3 transformer 

model source code is not publicly available at this time, GPT-2 models are sufficiently powerful 

to understand the inner workings of GPT models.

https://beta.openai.com/docs/engines
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We are ready to interact with a GPT-2 model and train it.

We will first use a trained GPT-2 345M model for text completion with 24 decoder layers with 

self-attention sublayers of 16 heads.

We will then train a GPT-2 117M model for customized text completion with 12 decoder layers 

with self-attention layers of 12 heads.

Let’s start by interacting with a pretrained 345M parameter GPT-2 model.

Generic text completion with GPT-2
We will explore an example with a GPT-2 generic model from top to bottom. The goal of the example 

we will run is to determine the level of abstract reasoning a GPT model can attain.

This section describes the interaction with a GPT-2 model for text completion. We will focus 

on Step 9 of the OpenAI_GPT_2.ipynb notebook described in detail in Appendix III, Generic Text 

Completion with GPT-2.

First, let’s understand the specific example of the pretrained GPT-2 being applied.

Step 9: Interacting with GPT-2
In this section, we will interact with the GPT-2 345M model.

To interact with the model, run the interact_model cell:

#@title Step 9: Interacting with GPT-2

interact_model('345M',None,1,1,300,1,0,'/content/gpt-2/models')

You can first read this section to see how the generic pretrained GPT-2 model will 

react to a specific example. Then read Appendix III, Generic Text Completion with GPT-

2, to go into the details of how a generic GPT-2 model is implemented in a Google 

Colab notebook.

You can also read Appendix III directly, which contains the interaction of Step 9 de-

scribed below.
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You will be prompted to enter some context:

Figure 7.2: Context input for text completion

You can try any type of context you wish since this is a standard GPT-2 model.

We can try a sentence written by Immanuel Kant:

Human reason, in one sphere of its cognition, is called upon to

consider questions, which it cannot decline, as they are presented by

its own nature, but which it cannot answer, as they transcend every

faculty of the mind.

Press Enter to generate text. The output will be relatively random since the GPT-2 model was not 

trained on our dataset, and we are running a stochastic model anyway.

Let’s have a look at the first few lines the GPT model generated at the time I ran it:

"We may grant to this conception the peculiarity that it is the only 
causal logic. 

In the second law of logic as in the third, experience is measured at its 
end: apprehension is afterwards closed in consciousness.

The solution of scholastic perplexities, whether moral or religious, is 
not only impossible, but your own existence is blasphemous."

To stop the cell, double-click on the run button of the cell.

You can also press Ctrl + M to stop generating text, but it may transform the code into text, and 

you will have to copy it back into a program cell.

The output is rich. We can observe several facts:

• The context we entered conditioned the output generated by the model.

• The context was a demonstration of the model. It learned what to say from the context 

without modifying its parameters.

• Text completion is conditioned by context. This opens the door to transformer models 

that do not require fine-tuning.

• From a semantic perspective, the output could be more interesting.

• From a grammatical perspective, the output is convincing.

Can we do better? The following section presents the interaction of custom text completion.
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Training a custom GPT-2 language model
We will continue our top-to-bottom approach in this section by exploring an example with a 

GPT-2 custom model that we will train on a specific dataset. The goal remains to determine the level 

of abstract reasoning a GPT model can attain.

This section describes the interaction with a GPT-2 model for text completion trained on a specific 

dataset. We will focus on Step 12 of the Training_OpenAI_GPT_2.ipynb notebook described in 

detail in Appendix IV, Custom Text Completion with GPT-2.

First, let’s understand how the interaction with GPT-2 improved by training it.

Step 12: Interactive context and completion examples
We will now run a conditional sample. The context we enter will condition the model to think as 

we want it to, to complete the text by generating tailor-made paragraphs.

Run the cell and explore the magic:

#@title Step 12: Interactive Context and Completion Examples

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src")

!python interactive_conditional_samples.py --temperature 0.8 --top_k 40 
--model_name '117M'

If necessary, take a few minutes to go back to Step 9, Interacting with GPT-2 of Appendix III, Generic 

Text Completion with GPT-2, to see the differences in the responses. The program prompts us to 

enter the context:

Figure 7.3: Context input for text completion

You can read this section first to see how an example with a custom GPT-2 model 

will improve responses. Then read Appendix IV, Custom Text Completion with GPT-2, 

to understand how to train a GPT-2 to obtain specific responses.

You can also decide to read Appendix IV directly, which also contains the interaction 

of Step 12 described below.
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Let’s enter the same paragraph written by Immanuel Kant as we did in Step 9 of the Generic text 

completion with GPT-2 section of this chapter:

Human reason, in one sphere of its cognition, is called upon to

consider questions, which it cannot decline, as they are presented by

its own nature, but which it cannot answer, as they transcend every

faculty of the mind.

Press Enter to generate text as we did previously. Though structured and logical, the outputs 

might change from one run to another, making transformers attractive. This time, the result is 

not random and is impressive.

Let’s look at the first few lines the GPT-2 model produced:

"Now, what is the nature of the reason, except that it is of a kind and 
power of mind that is so called on to think, and to understand?
The reason is the thing which apprehends, and seeks to understand, 
the objects of its minds, which apprehend and apprehend the things of 
itself. No one can speak of this reason without the understanding and the 
understanding of the human reason. But that knowledge and understanding 
which is the most natural of all the faculties, which, because it is 
understood by the human reason, is the most natural of all the faculties, 
is not without reason, but only without understanding. The human reason, 
who sees and knows the things which the natural sense, which, though in 
the natural sense, does not understand, is the source of every other 
knowledge which we understand. The reason is the thing which does not 
understand, but understands the things which we comprehend, and therefore, 
is not to be understood. I mean that the reason is the thing which does 
not understand, but knows only the things which we do understand…."

To stop the cell, double-click on the run button of the cell or press Ctrl + M.

Wow! I doubt anybody could see the difference between the text completion produced by our 

trained GPT-2 model and a human. It might also generate different outputs at each run.

In fact, I think our model could outperform many humans in this abstract exercise in philosophy, 

reason, and logic!

We can draw some conclusions from our experiment:

• A well-trained transformer model can produce text completion at a human level

• A GPT-2 model can almost reach human level in text generation on complex and abstract 

reasoning
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• Text context is an efficient way of conditioning a model by demonstrating what is expected

• Text completion is text generation based on text conditioning if context sentences are 

provided

You can enter conditioning text context examples to experiment with text completion. You can 

also train the model on your own data. Just replace the content of the dset.txt file with your 

own data and see what happens!

Remember that our trained GPT-2 model will react like a human. If you enter a short, incomplete, 

uninteresting, or tricky context, you will obtain puzzled or bad results. This is because GPT-2 

expects the best out of us, as in real life!

Let’s go to the GPT-3 playground to see how a trained GPT-3 reacts to the example tested with 

GPT-2.

Running OpenAI GPT-3 tasks
In this section, we will run GPT-3 in two different ways:

• We will first run the GPT-3 tasks online with no code

• We will then implement GPT-3 in Google Colab notebook

Let’s begin by running NLP tasks online.

Running NLP tasks online
We will now go through some Industry 4.0 examples without an API, directly asking GPT-3 to 

do something for us.

Let us define a standard structure of a prompt and response as:

• N = name of the NLP task (INPUT).

• E = explanation for the GPT-3 engine. E precedes T (INPUT).

• T = the text or content we wish GPT-3 to look into (INPUT).

• S = showing GPT-3 what is expected. S follows T and is added when necessary (INPUT).

• R = GPT-3’s response (OUTPUT).

We will be using GPT-3 engines in this book. When you sign up for the GPT-3 API, 

OpenAI gives you a free budget to get started. This free budget should cover most 

of the cost, if not all of the cost, of running the examples in this book once or twice.



The Rise of Suprahuman Transformers with GPT-3 Engines182

The structure of the prompt described above is a guideline. However, GPT-3 is very flexible, and 

many variations are possible.

We are now ready to run some educational examples online with no API:

• Questions and answers (Q&A) on existing knowledge: 

E = Q

T = Who was the president of the United States in 1965?

S = None

R = A

Prompts and responses:

Q: Who was the president of the United States in 1965? 

A: Lyndon B. Johnson was president of the United States in 1965.

Q: Who was the first human on the moon? 

A: Neil Armstrong was the first human on the moon.

• Movie to Emoji:

E = Some examples of movie titles

T = None

S = Implicit through examples

R = Some examples of emojis

Prompts and responses:

A new prompt and response:

• Summarizing for a second grader (Summarize for a 2nd grader):

E = My second grader asked me what this passage means: 

T = """The initial conclusions…."""
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S = I rephrased it for him, in plain language a second grader can understand: 

"""

R = The summary

Prompt and response:

My second grader asked me what this passage means: 

""" The initial conclusions can be divided into two categories: facts and 
fiction. The facts are that OpenAI has one of the most powerful NLP services 
in the world. The main facts are: OpenAI engines are powerful zero-shot that 
require no hunting for all kinds of transformer models, no pre-training, 
and no fine-tuning. The supercomputers used to train the models are unique. 
If the prompt is well-designed, we obtain surprisingly accurate responses. 
Implementing the NLP tasks in this section required a copy and paste action 
that any software beginner can perform. Fiction begins with dystopian and 
hype assertions AI will replace data scientists and AI specialists. Is that 
true? Before answering that question, first ask yourself the following 
questions about the example we just ran:  How do we know the sentence was 
incorrect in the first place?  How do we know the answer is correct without 
us humans reading and confirming this? How did the engine know it was a 
grammar correction task? If the response is incorrect, how can we understand 
what happened to help improve the prompt or revert to manual mode in a well-
designed human interface? The truth is that humans will need to intervene 
to answers these questions manually, with rule-bases, quality control 
automated pipelines, and many other tools. The facts are convincing. It is 
true that running an NLP task requires little development. The fiction is 
not convincing. Humans are still required. OpenAI engines are not there to 
replace humans but to help them perform more high-level gratifying tasks. 
You can now fly a jet without having to build it! """

I rephrased it for him, in plain language a second grader can understand: """ 

The first conclusion is that OpenAI has one of the most powerful NLP services 
in the world. The most important facts are: OpenAI engines are very powerful 
zero-shot that require no hunting for all kinds of transformer models, no 
pre-training, and no fine-tuning. The supercomputers used to train the 
models are unique. If the prompt is well-designed, we get surprisingly 
accurate responses.

The results are impressive and a huge step forward in the history of NLP.
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The number of NLP tasks we can implement with the zero-shot GPT-3 engines provided by OpenAI 

is endless since we control how we show what we expect of the transformer models.

However, a true Industry 4.0 AI guru must get their hands dirty before implementing ready-to-use 

APIs. We will now explore the architecture of OpenAI GPT models and then build GPT-2 models 

to see how these engines work.

The more we know about GPT models, the better an Industry 4.0 NLP expert can implement 

them in real-life projects.

Let’s continue our top-to-bottom approach and drill down into the architecture of OpenAI GPT 

transformer models.

Getting started with GPT-3 engines
OpenAI has some of the most powerful transformer engines in the world. One GPT-3 model can 

perform hundreds of tasks. GPT-3 can do many tasks it wasn’t trained for.

This section will use the API in Getting_Started_GPT_3.ipynb.

To use a GPT-3, you must first go to OpenAI’s website, https://openai.com/, and sign up.

OpenAI has a playground for everybody to try, just like Google Translate or any user-friendly 

online service. So, let’s try some tasks.

Running our first NLP task with GPT-3
Let’s start using GPT-3 in a few steps.

Go to Google Colab and open Getting_Started_GPT_3.ipynb, which is the chapter directory of 

the book on GitHub.

You do not need to change the settings of the notebook. We are using an API, so we will not need 

much local computing power for the tasks in this section.

The steps of this section are the same ones as in the notebook.

Running an NLP is done in three simple steps:

Step 1: Installing OpenAI
Install openai using the following command:

try:

  import openai

https://openai.com/
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except:

  !pip install openai

  import openai

If openai is not installed, you must restart the runtime. A message will indicate when to do this, 

as shown in the following output:

Restart the runtime and then run this cell again to make sure openai is imported.

Step 2: Entering the API key
An API key is given that can be used with Python, C#, Java, and many other options. We 

will be using Python in this section:

openai.api_key=[YOUR API KEY]

You can now update the next cell with your API key:

import os

import openai

os.environ['OPENAI_API_KEY'] ='[YOUR_KEY or KEY variable]'

print(os.getenv('OPENAI_API_KEY'))

openai.api_key = os.getenv("OPENAI_API_KEY")

Let’s now run an NLP task.

Step 3: Running an NLP task with the default parameters
We copy and paste an OpenAI example for a grammar correction task:

response = openai.Completion.create(

 engine="davinci",

 prompt="Original: She no went to the market.\nStandard American 
English:",

  temperature=0,

  max_tokens=60,

  top_p=1.0,
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  frequency_penalty=0.0,

  presence_penalty=0.0,

  stop=["\n"]

)

The task is to correct this grammar mistake: She no went to the market.

We can process the response as we wish by parsing it. OpenAI’s response is a dictionary object. The 

OpenAI object contains detailed information on the task. We can ask the object to be displayed:

#displaying the response object

print(response)

We can explore the object:

{

  "choices": [

    {

      "finish_reason": "stop",

      "index": 0,

      "logprobs": null,

      "text": " She didn't go to the market."

    }

  ],

  "created": 1639424815,

  "id": "cmpl-4ElZfXLl9jGRNQoojWRRGof8AKr4y",

  "model": "davinci:2020-05-03",

  "object": "text_completion"} 

The “created” number and “id”, and “model” name can vary with each run.

We can then ask the object dictionary to display "text" and to print the processed output:

#displaying the response object

r = (response["choices"][0])

print(r["text"])

The output of “text" in the dictionary is the grammatically correct sentence:

She didn't go to the market.
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NLP tasks and examples
Now we will cover an industrial approach to GPT-3 engine usage. For example, OpenAI provides 

an interactive educational interface that does not require an API. So a school teacher, a consultant, 

a linguist, a philosopher, or anybody that wishes to use a GPT-3 engine for educational purposes 

can do so with no experience at all in AI.

We will first begin by using an API in a notebook.

Grammar correction
If we go back to Getting_Started_GPT_3.ipynb, which we began to explore in the Getting started 

with GPT-3 engines section of this chapter, we can experiment with grammar correction with 

different prompts.

Open the notebook and go to Step 4: Example 1: Grammar correction:

#Step 6: Running an NLP task with custom parameters

response = openai.Completion.create(

  #defult engine: davinci

  engine="davinci",

  #default prompt for task:"Original"

  prompt="Original: She no went to the market.\n Standard American 
English:",

  temperature=0, 

  max_tokens=60,

  top_p=1.0,

  frequency_penalty=0.0,

  presence_penalty=0.0,

  stop=["\n"]

)

The request body is not limited to the prompt. The body contains several key parameters:

• engine="davinci". The choice of the OpenAI GPT-3 engine to use and possibly other 

models in the future.

• temperature=0. A higher value such as 0.9 will force the model to take more risks. Do not 

modify the temperature and top_p at the same time.

• max_tokens=60. The maximum number of tokens of the response.
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• top_p=1.0. Another way to control sampling like temperature. In this case, the top_p 

percentage of tokens of the probability mass will be considered. 0.2 would make the 

system only take 20% of the top probability mass.

• frequency_penalty=0.0. A value between 0 and 1 limits the frequency of tokens in a 

given response.

• presence_penalty=0.0. A value between 0 and 1 forces the system to use new tokens 

and produce new ideas.

• stop=["\n"]. A signal to the model to stop producing new tokens.

Some of these parameters are described at the source code level in the Steps 7b-8: Importing and 

defining the model section of Appendix III, Generic Text Completion with GPT-2.

You can play around with these parameters in the GPT-3 model if you gain access or in the GPT-2 

model in Appendix III, Generic Text Completion with GPT-2. The concepts are the same in both cases.

This section will focus on the prompt:

prompt="Original: She no went to the market.\n Standard American English:"

The prompt can be divided into three parts:

• Original: This signals to the model that what follows is the original text, which the model 

will do something with

• She no went to the market.\n: This part of the prompt shows the model that this is 

the original text

• Standard American English: This shows the model what task is expected

Let’s see how far we can get by changing the task:

• Standard American English produces:

prompt="Original: She no went to the market.\n Standard American English:"

The text in response is:

"text": " She didn't go to the market."

That is fine, but what if we do not want a contraction in the sentence?

• English with no contractions produces:

prompt="Original: She no went to the market.\n English with no contractions:"

The text in response is:
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"text": " She did not go to the market."  

Wow! This is impressive. Let’s try another language.

• French with no contractions produces:

"text": " Elle n'est pas all\u00e9e au march\u00e9."

This is impressive. \u00e9 simply needs to be post-processed into é.

Many more options are possible. Your Industry 4.0 cross-disciplinary imagination is the limit!

More GPT-3 examples
OpenAI contains many examples. OpenAI provides an online playground to explore tasks. OpenAI 

also provides source code for each example: https://beta.openai.com/examples

Just click on an example such as the grammar example we explored in the Grammar correction 

section:

Figure 7.4: The Grammar correction section of OpenAI

OpenAI will describe the prompt and the sample response for each task.

Figure 7.5: The sample response corrects the prompt

https://beta.openai.com/examples
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You can choose to go to the playground and run it online as we did in this chapter’s Running NLP 

tasks online section. To do so, click on the Open in Playground button:

Figure 7.6: The Open in Playground button

You can choose to copy and paste the code to run the API as we are doing in the Google Colab 

notebook of this chapter:

Figure 7.7: Running code using the Davinci engine

Getting_Started_GPT_3.ipynb contains ten examples that you can run to practice implementing 

the OpenAI GPT-3.
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For each example:

• You can first read the link to the explanation provided by OpenAI. A link to the documen-

tation is provided above each cell.

• You can then run the cell to observe GPT-3’s behavior.

Run these ten examples in the notebook:

• Example 1: Grammar correction

• Example 2: English-to-French translation

• Example 3: Instruct series that provides instructions

• Example 4: Movie to emoji

• Example 5: Programming language to another language. For example, Python to JavaScript. 

Warning: you may need to obtain special permission from OpenAI to run this example, 

which uses the Davinci Codex engine, the code generator. If this example does not run in 

your notebook, please contact OpenAI to request access to Codex.

• Example 6: Advanced tweet classifier

• Example 7: Q&A

• Example 8 Summarize a text

• Example 9: Parse unstructured data

• Example 10: Calculate time complexity

You can run many other tasks on the Examples page: https://beta.openai.com/examples

Let’s now compare the output of GPT-2 and GPT-3.

Comparing the output of GPT-2 and GPT-3
Our curiosity must be satisfied before we move on. What can the powerful GPT-3 model produce 

with the example we submitted to a pretrained GPT-2 model and then our custom-trained GPT-2 

model?

Our example used for the GPT-2 model:

Human reason, in one sphere of its cognition, is called upon to consider 
questions, which it cannot decline, as they are presented by its own nature, 
but which it cannot answer, as they transcend every faculty of the mind. 

GPT-3's response:

https://beta.openai.com/examples
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What is meant by this is that there are some things in our experience that 
are beyond reason. It is not that reason is a bad guide or is insufficient, 
but that there are some things that are beyond its reach. An example of this 
would be the existence of God. 

The result is mind-blowing! It explains what the text means, including some deep philosophical 

reflections!

We have proven our point in this chapter. Transformer models can attain to abstract reasoning, 

which can help make micro-decisions in our fast-moving world.

OpenAI GPT-3 is a fully trained model. However, GPT-3 can be fine-tuned. Let’s see how.

Fine-tuning GPT-3
This section shows how to fine-tune GPT-3 to learn logic. Transformers need to learn logic, in-

ferences, and entailment to understand language at a human level.

In this section, GPT-3 will be trained on the works of Immanuel Kant using kantgpt.csv. We used 

a similar file to train the BERT-type model in Chapter 4, Pretraining a RoBERTa Model from Scratch.

Once you master fine-tuning GPT-3, you can use other types of data to teach it specific domains, 

knowledge graphs, and texts.

OpenAI provides an efficient, well-documented service to fine-tune GPT-3 engines. It has trained 

GPT-3 models to become different types of engines, as seen in the The rise of billion-parameter 

transformer models section of this chapter.

The Davinci engine is powerful but can be more expensive to use. The Ada engine is less expensive 

and produces sufficient results to explore GPT-3 in our experiment.

Fine-tuning GPT-3 involves two phases:

• Preparing the data

• Fine-tuning a GPT-3 model

Fine-tuning is the key to making GPT-3 your own application, to customizing it to 

make it fit the needs of your project. It’s a ticket to AI freedom to rid your application 

of bias, teach it things you want it to know, and leave your footprint on AI.
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Preparing the data
Open Fine_Tuning_GPT_3.ipynb in Google Colab in the GitHub chapter directory.

OpenAI has documented the data preparation process in detail:

https://beta.openai.com/docs/guides/fine-tuning/prepare-training-data

Step 1: Installing OpenAI
Step 1 is to install and import openai:

try:

  import openai

except:

  !pip install openai

  import openai

Restart the runtime once the installation is complete and run the cell again to make sure import 

openai has been executed

import openai

You can also install wand to visualize the logs:

try:

  import wandb

except:

  !pip install wandb

  import wandb

We will now enter the API key

Step 2: Entering the API key
Step 2 is to enter your key:

openai.api_key="[YOUR_KEY]"

Step 3: Activating OpenAI’s data preparation module
First, load your file. In this section, load kantgpt.csv. Now, kantgpt.csv. is a raw unstructured 

file. OpenAI has an inbuilt data cleaner that will ask questions at each step.

https://beta.openai.com/docs/guides/fine-tuning/prepare-training-data


The Rise of Suprahuman Transformers with GPT-3 Engines194

OpenAI detects that the file is a CSV file and will convert it to a JSONL file. JSONL contains lines 

in plain structured text.

OpenAI tracks all the changes we approve:

Based on the analysis we will perform the following actions:

- [Necessary] Your format 'CSV' will be converted to 'JSONL'

- [Necessary] Remove 27750 rows with empty completions

- [Recommended] Remove 903 duplicate rows [Y/n]: y

- [Recommended] Add a suffix separator ' ->' to all prompts [Y/n]: y

- [Recommended] Remove prefix 'completion:' from all completions [Y/n]: y

- [Recommended] Add a suffix ending '\n' to all completions [Y/n]: y

- [Recommended] Add a whitespace character to the beginning of the 
completion [Y/n]: y

OpenAI saves the converted file to kantgpt_prepared.jsonl.

We are ready to fine-tune GPT-3.

Fine-tuning GPT-3
You can split the notebook into two separate notebooks: one for data preparation and one for 

fine-tuning.

Step 4: Creating an OS environment
Step 4 in the fine-tuning process creates an os environment for the API key:

import openai

import os

os.environ['OPENAI_API_KEY'] =[YOUR_KEY]

print(os.getenv('OPENAI_API_KEY'))

Step 5: Fine-tuning OpenAI’s Ada engine
Step 5 triggers fine-tuning the OpenAI Ada engine with the JSONL file that was saved after data 

preparation:

!openai api fine_tunes.create -t "kantgpt_prepared.jsonl" -m "ada"

OpenAI has many requests.
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If your steam is interrupted, OpenAI will indicate the instruction to continue fine-tuning. Execute 

fine_tunes.follow instruction:

!openai api fine_tunes.follow -i [YOUR_FINE_TUNE]

Step 6: Interacting with the fine-tuned model
Step 6 is interacting with the fine-tuned model. The prompt is a sequence that is close to what 

Immanuel Kant might say:

!openai api completions.create -m ada:[YOUR_MODEL INFO] "Several concepts 
are a priori such as"

The instruction to run a completion task with [YOUR_MODEL INFO] is often displayed by OpenAI 

at the end of your fine-tune task. You can copy and paste it in a cell(add "!" to run the command 

line) or insert your [YOUR_MODEL INFO] in the following cell.

The completion is quite convincing:

Several concepts are a priori such as the term  freedom and the concept of 
_free will_.substance

We have fine-tuned GPT-3, which shows the importance of understanding transformers and 

designing AI pipelines with APIs. Let’s see how this changes the role of AI specialists.

The role of an Industry 4.0 AI specialist
In a nutshell, the role of an Industry 4.0 developer is to become a cross-disciplinary AI guru. 

Developers, data scientists, and AI specialists will progressively learn more about linguistics, 

business goals, subject matter expertise, and more. An Industry 4.0 AI specialist will guide teams 

with practical cross-disciplinary knowledge and experience.

Human experts are mandatory in three domains when implementing transformers:

• Morals and ethics

An Industry 4.0 AI guru ensures moral and ethical practices are enforced when imple-

menting humanlike transformers. European regulations, for example, are strict and re-

quire that automated decisions be explained to the users when necessary. The US has 

anti-discrimination laws to protect citizens from automated bias.
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• Prompts and responses

Users and UI developers will need Industry 4.0 AI gurus to explain how to create the right 

prompts for NLP tasks, show a transformer model how to do a task, and verify the response.

• Quality control and understanding the model

What happens when the model does not behave as expected even after tweaking its hyperparam-

eters? We will go deeper into such issues in Chapter 14, Interpreting Black Box Transformer Models.

Initial conclusions
The initial conclusions can be divided into two categories: facts and fiction.

One fact is that OpenAI has one of the most powerful NLP services in the world. Other facts include:

• OpenAI engines are powerful zero-shot engines that require no hunting for all kinds of 

transformer models, no pre-training, and no fine-tuning

• The supercomputers used to train the models are unique

• If a prompt is well designed, we can get surprisingly accurate responses

• Implementing the NLP tasks in this chapter only required a copy and paste action that 

any software beginner can perform

Many people believe AI will replace data scientists and AI specialists. Is that true? Before answering 

that question, first, ask yourself the following questions about the examples we ran in this chapter:

• How do we know if a sentence is incorrect?

• How do we know an answer is correct without us humans reading and confirming this?

• How did the engine know it was a grammar correction task?

• If a response is incorrect, how can we understand what happened to help improve the 

prompt or revert to manual mode in a well-designed human interface?

The truth is that humans will need to intervene to answers these questions manually, with rule 

bases, quality controlled automated pipelines, and many other tools.

The facts are convincing. Running an NLP task with a transformer requires little development 

in many cases.

Humans are still required. OpenAI engines are not there to replace humans but to help them 

perform more high-level gratifying tasks. You can now fly a jet without having to build it!
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We need to answer the exciting questions we brought up in this section. So let’s now explore your 

new fascinating Industry 4.0 role on a wonderful path into the future of AI!

Let’s sum up the chapter and move on to the next exploration!

Summary
In this chapter, we discovered the new era of transformer models training billions of parameters 

on supercomputers. OpenAI’s GPT models are taking NLU beyond the reach of most NLP devel-

opment teams.

We saw how a GPT-3 zero-shot model performs many NLP tasks through an API and even direct-

ly online without an API. The online version of Google Translate has already paved the way for 

mainstream online usage of AI.

We explored the design of GPT models, which are all built on the original transformer’s decoder 

stack. The masked attention sub-layer continues the philosophy of left-to-right training. How-

ever, the sheer power of the calculations and the subsequent self-attention sub-layer makes it 

highly efficient.

We then implemented a 345M parameter GPT-2 model with TensorFlow. The goal was to inter-

act with a trained model to see how far we could get with it. We saw that the context provided 

conditioned the outputs. However, it did not reach the results expected when entering a specific 

input from the Kant dataset.

We trained a 117M parameter GPT-2 model on a customized dataset. The interactions with this 

relatively small trained model produced fascinating results.

We ran NLP tasks online with OpenAI’s API and fine-tuned a GPT-3 model. This chapter showed 

that the fully pretrained transformers and their engines can automatically accomplish many 

tasks with little help from engineers.

Does this mean that users will not need AI NLP developers, data scientists, and AI specialists 

anymore in the future? Instead, will users simply upload the task definition and input text to 

cloud transformer models and download the results?

No, it doesn’t mean that at all. Industry 4.0 data scientists and AI specialists will evolve into pilots 

of powerful AI systems. They will be increasingly necessary to ensure the inputs are ethical and 

secure. These modern-age AI pilots will also understand how transformers are built and adjust 

the hyperparameters of an AI ecosystem.
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In the next chapter, Applying Transformers to Legal and Financial Documents for AI Text Summariza-

tion, we will take transformer models to their limits as multi-task models and explore new frontiers.

Questions
1. A zero-shot method trains the parameters once. (True/False)

2. Gradient updates are performed when running zero-shot models. (True/False)

3. GPT models only have a decoder stack. (True/False)

4. It is impossible to train a 117M GPT model on a local machine. (True/False)

5. It is impossible to train the GPT-2 model with a specific dataset. (True/False)

6. A GPT-2 model cannot be conditioned to generate text. (True/False)

7. A GPT-2 model can analyze the context of an input and produce completion content. 

(True/False)

8. We cannot interact with a 345M-parameter GPT model on a machine with less than 8 

GPUs. (True/False)

9. Supercomputers with 285,000 CPUs do not exist. (True/False)

10. Supercomputers with thousands of GPUs are game-changers in AI. (True/False)
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and Financial Documents for AI 
Text Summarization

We explored the architecture training, fine-tuning, and usage of several transformer ecosystems 

during the first seven chapters. In Chapter 7, The Rise of Suprahuman Transformers with GPT-3 

Engines, we discovered that OpenAI has begun to experiment with zero-shot models that require 

no fine-tuning, no development, and can be implemented in a few lines.

The underlying concept of such an evolution relies on how transformers strive to teach a machine 

how to understand a language and express itself in a human-like manner. Thus, we have gone 

from training a model to teaching languages to machines.

Raffel et al. (2019) designed a transformer meta-model based on a simple assertion: every NLP 

problem can be represented as a text-to-text function. Every type of NLP task requires some kind 

of text context that generates some form of text response.

A text-to-text representation of any NLP task provides a unique framework to analyze a transform-

er’s methodology and practice. The idea is for a transformer to learn a language through transfer 

learning during the training and fine-tuning phases with a text-to-text approach.

Raffel et al. (2019) named this approach a Text-To-Text Transfer Transformer. The 5 Ts became 

T5, and a new model was born.

We will begin this chapter by going through the concepts and architecture of the T5 transformer 

model. We will then apply T5 to summarizing documents with Hugging Face models.
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Finally, we will transpose the text-to-text approach to the show-and-context process of GPT-3 

engine usage. The mind-blowing, though not perfect, zero-shot responses exceed anything a 

human could imagine.

This chapter covers the following topics:

• Text-to-text transformer models

• The architecture of T5 models

• T5 methodology

• The evolution of transformer models from training to learning

• Hugging Face transformer models

• Implementing a T5 model

• Summarizing a legal text

• Summarizing a financial text

• The limits of transformer models

• GPT-3 usage

Our first step will be to explore the text-to-text methodology defined by Raffel et al. (2019).

Designing a universal text-to-text model
Google’s NLP technical revolution started with Vaswani et al. (2017), the original Transformer, 

in 2017. Attention is All You Need toppled 30+ years of artificial intelligence belief in RNNs and 

CNNs applied to NLP tasks. It took us from the stone age of NLP/NLU to the 21st century in a 

long-overdue evolution.

Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines, summed up a second revo-

lution that boiled up and erupted between Google’s Vaswani et al. (2017) original Transformer 

and OpenAI’s Brown et al. (2020) GPT-3 transformers. The original Transformer was focused on 

performance to prove that attention was all we needed for NLP/NLU tasks.

OpenAI’s second revolution, through GPT-3, focused on taking transformer models from fine-

tuned pretrained models to few-shot trained models that required no fine-tuning. The second 

revolution was to show that a machine can learn a language and apply it to downstream tasks 

as we humans do.
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It is essential to perceive those two revolutions to understand what T5 models represent. The 

first revolution was an attention technique. The second revolution was to teach a machine to 

understand a language (NLU) and then let it solve NLP problems as we do.

In 2019, Google was thinking along the same lines as OpenAI about how transformers could be 

perceived beyond technical considerations and take them to an abstract level of natural language 

understanding.

These revolutions became disruptive. It was time to settle down, forget about source code and 

machine resources, and analyze transformers at a higher level.

Raffel et al. (2019) designed a conceptual text-to-text model and then implemented it.

Let’s go through this representation of the second transformer revolution: abstract models.

The rise of text-to-text transformer models
Raffel et al. (2019) set out on a journey as pioneers with one goal: Exploring the Limits of Transfer 

Learning with a Unified Text-to-Text Transformer. The Google team working on this approach empha-

sized that it would not modify the original Transformer’s fundamental architecture from the start.

At that point, Raffel et al. (2019) wanted to focus on concepts, not techniques. Therefore, they 

showed no interest in producing the latest transformer model as we often see a so-called silver 

bullet transformer model with n parameters and layers. This time, the T5 team wanted to find 

out how good transformers could be at understanding a language.

Humans learn a language and then apply that knowledge to a wide range of NLP tasks through 

transfer learning. The core concept of a T5 model is to find an abstract model that can do things 

like us.

When we communicate, we always start with a sequence (A) followed by another sequence (B). 

B, in turn, becomes the start sequence leading to another sequence, as shown in Figure 8.1:

Figure 8.1: A sequence-to-sequence representation of communication

We also communicate through music with organized sounds. We communicate through danc-

ing with organized body movements. We express ourselves through painting with coordinated 

shapes and colors.
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We communicate through language with a word or a group of words we call “text.” When we try to 

understand a text, we pay attention to all of the words in the sentence in all directions. We try 

to measure the importance of each term. When we do not understand a sentence, we focus on a 

word and query the rest of the keywords in the sentence to determine their values and the attention 

we must pay to them. This defines the attention layers of transformers.

Take a few seconds and let this sink in. It seems deceptively simple, right? Yet, it took 35+ years 

to topple the old beliefs surrounding RNNs, CNNs, and the thought process accompanying them!

It is quite fascinating to watch T5 learn, progress, and even help us think better sometimes!

The technical revolution of attention layers that simultaneously attend to all of the tokens in a 

sequence led to the T5 conceptual revolution.

The T5 model can be summed up as a Text-To-Text Transfer Transformer. Thus, every NLP task 

is expressed as a text-to-text problem to solve.

A prefix instead of task-specific formats
Raffel et al. (2019) still had one problem to solve: unifying task-specific formats. The idea was to 

find a way to have one input format for every task submitted to the transformer. That way, the 

model parameters would be trained for all types of tasks with one text-to-text format.

The Google T5 team came up with a simple solution: adding a prefix to an input sequence. We 

would need thousands of additional vocabularies in many languages without the invention of 

the prefix by some long-forgotten genius. For example, we would need to find words to describe 

prepayment, prehistoric, Precambrian, and thousands of other words if we did not use “pre” as 

a prefix.

Raffel et al. (2019) proposed to add a prefix to an input sequence. A T5 prefix is not just a tag or 

indicator like [CLS] for classification in some transformer models. Instead, a T5 prefix contains 

the essence of a task a transformer needs to solve. A prefix conveys meaning as in the following 

examples, among others:

• translate English to German: + [sequence] for translations, as we did in Chapter 6, 

Machine Translation with the Transformer

• cola sentence: + [sequence] for The Corpus of Linguistic Acceptability (CoLA), as we used 

in Chapter 3, Fine-Tuning BERT Models, when we fine-tuned a BERT transformer model
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• stsb sentence 1:+[sequence] for semantic textual similarity benchmarks. Natural 

language inferences and entailment are similar problems, as described in Chapter 5, Down-

stream NLP Tasks with Transformers

• summarize + [sequence] for text summarization problems, as we will solve in the Text 

summarization with T5 section of this chapter

We’ve now obtained a unified format for a wide range of NLP tasks, expressed in Figure 8.2:

Figure 8.2: Unifying the input format of a transformer model

The unified input format leads to a transformer model that produces a result sequence no mat-

ter which problem it has to solve in the T5. The input and output of many NLP tasks have been 

unified, as shown in Figure 8.3:

Figure 8.3: The T5 text-to-text framework

The unification process makes it possible to use the same model, hyperparameters, and optimizer 

for a wide range of tasks.

We have gone through the standard text-to-text input-output format. Let’s now look at the ar-

chitecture of the T5 transformer model.



Applying Transformers to Legal and Financial Documents for AI Text Summarization206

The T5 model
Raffel et al. (2019) focused on designing a standard input format to obtain text output. The Goo-

gle T5 team did not want to try new architectures derived from the original Transformer, such 

as BERT-like encoder-only layers or GPT-like decoder-only layers. Instead, the team focused on 

defining NLP tasks in a standard format.

They chose to use the original Transformer model we defined in Chapter 2, Getting Started with 

the Architecture of the Transformer Model, as we can see in Figure 8.4:

Figure 8.4: The original Transformer model used by T5

Raffel et al. (2019) kept most of the original Transformer architecture and terms. However, they 

emphasized some key aspects. Also, they made some slight vocabulary and functional changes. 

The following list contains some of the main aspects of the T5 model:
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• The encoder and decoder remain in the model. The encoder and decoder layers become 

“blocks,” and the sublayers become “subcomponents” containing a self-attention layer 

and a feedforward network. The use of the word “blocks” and “subcomponents” in a 

LEGO®-like language allows you to assemble “blocks,” pieces, and components to build 

your model. Transformer components are standard building blocks you can assemble in 

many ways. You can understand any transformer model once you understand the basic 

building blocks we went through in Chapter 2, Getting Started with the Architecture of the 

Transformer Model.

• Self-attention is “order-independent,” meaning it performs operations on sets, as we 

saw in Chapter 2. Self-attention uses dot products of matrices, not recurrence. It explores 

the relationship between each word and the others in a sequence. Positional encoding is 

added to the word’s embedding before making the dot products.

• The original Transformer applied sinusoidal and cosine signals to the Transformer. Or it 

used learned position embeddings. T5 uses relative position embeddings instead of add-

ing arbitrary positions to the input. In T5, positional encoding relies on an extension of 

self-attention to make comparisons between pairwise relationships. For more, see Shaw 

et al. (2018) in the References section of this chapter.

• Positional embeddings are shared and re-evaluated through all the layers of the model.

We have defined the standardization of the input of the T5 transformer model through the text-

to-text approach.

Let’s now use T5 to summarize documents.

Text summarization with T5
NLP summarizing tasks extract succinct parts of a text. This section will start by presenting the 

Hugging Face resources we will use in this chapter. Then we will initialize a T5-large transform-

er model. Finally, we will see how to use T5 to summarize any document, including legal and 

corporate documents.

Let’s begin by introducing Hugging Face’s framework.

Hugging Face
Hugging Face designed a framework to implement Transformers at a higher level. We used Hug-

ging Face to fine-tune a BERT model in Chapter 3, Fine-Tuning BERT Models, and train a RoBERTa 

model in Chapter 4, Pretraining a RoBERTa Model from Scratch.
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To expand our knowledge, we needed to explore other approaches, such as Trax, in Chapter 6, 

Machine Translation with the Transformer, and OpenAI’s models, in Chapter 7, The Rise of Supra-

human Transformers with GPT-3 Engines. This chapter will use Hugging Face’s framework again 

and explain more about the online resources. We end the chapter using the unique potential of 

a GPT-3 engine.

Hugging Face provides three primary resources within its framework: models, datasets, and 

metrics.

Hugging Face transformer resources
In this subsection, we will choose the T5 model that we will be implementing in this chapter.

A wide range of models can be found on the Hugging Face models page, as we can see in Figure 8.5:

Figure 8.5: Hugging Face models

On this page, https://huggingface.co/models, we can search for a model. In our case, we are 

looking for t5-large, a model we can smoothly run in Google Colaboratory.

https://huggingface.co/models
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We first type T5 to search for a T5 model and obtain a list of T5 models we can choose from:

Figure 8.6: Searching for a T5 model

We can see that several of the original T5 transformers are available, among which are:

• base, which is the baseline model. It was designed to be similar to the BERTBASE with 12 

layers and around 220 million parameters

• small, which is a smaller model with 6 layers and 60 million parameters

• large is designed to be similar to BERTLARGE with 12 layers and 770 million parameters

• 3B and 11B use 24-layer encoders and decoders with around 2.8 billion and 11 billion 

parameters

For more on the description of BERTBASE and BERTLARGE, you can take a few minutes now or later 

to review these models in Chapter 3, Fine-Tuning BERT Models.
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In our case, we select t5-large:

Figure 8.7: How to use a Hugging Face model

Figure 8.7 shows how to use the model in the code we will write. We can also look into the list of 

files in the model and the basic configuration file. We will look into the configuration file when 

we initialize the model in the Initializing the T5-large transformer model section of this chapter.

Hugging Face also provides datasets and metrics:

• The datasets can be used to train and test your models: https://huggingface.co/

datasets

• The metrics resources can be used to measure the performance of your models: https://

huggingface.co/metrics

Datasets and metrics are a classical aspect of NLP. In this chapter, we will not implement these 

datasets or metrics. Instead, we will focus on how to implement any text to summarize.

Let’s start by initializing the T5 transformer model.

Initializing the T5-large transformer model
In this subsection, we will initialize a T5-large model. Open the following notebook, Summarizing_

Text_with_T5.ipynb, which you will find in the directory of this chapter on GitHub.

Let’s get started with T5!

Getting started with T5
In this subsection, we will install Hugging Face’s framework and then initialize a T5 model.

https://huggingface.co/datasets
https://huggingface.co/datasets
https://huggingface.co/metrics
https://huggingface.co/metrics
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We will first install Hugging Face’s transformers:

!pip install transformers

We pinned version 0.1.94 of sentencepiece to keep the notebook using Hugging Face as stable 

as possible:

!pip install sentencepiece==0.1.94

Hugging Face has a GitHub repository that can be cloned. However, Hugging Face’s framework 

provides a range of high-level transformer functions we can implement.

We can choose to display the architecture of the model or not when we initialize the model:

display_architecture=False

If we set display_architecture to True, the structure of the encoder layers, decoder layers, and 

feedforward sublayers will be displayed.

The program now imports torch and json:

import torch

import json

Working on transformers means being open to the many transformer architectures and frameworks that 

research labs share with us. Also, I recommend using PyTorch and TensorFlow as much as possible 

to get used to both environments. What matters is the level of abstraction of the transformer 

model (specific-task models or zero-shot models) and its overall performance.

Let’s import the tokenizer, generation, and configuration classes:

from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config

We will use the T5-large model here, but you can select other T5 models in the Hugging Face list 

we went through in this chapter’s Hugging Face section.

Note: Hugging Face transformers continually evolve, updating libraries and modules 

to adapt to the market. If the default version doesn’t work, you might have to pin 

one with !pip install transformers==[version that runs with the other 

functions in the notebook].
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We will now import the T5-large conditional generation model to generate text and the T5-large 

tokenizer:

model = T5ForConditionalGeneration.from_pretrained('t5-large')

tokenizer = T5Tokenizer.from_pretrained('t5-large')

Initializing a pretrained tokenizer only takes one line. However, nothing proves that the toke-

nized dictionary contains all the vocabulary we need. We will investigate the relation between 

tokenizers and datasets in Chapter 9, Matching Tokenizers and Datasets.

The program now initializes torch.device with 'cpu.' A CPU is enough for this notebook. The 

torch.device object is the device on which torch tensors will be allocated:

device = torch.device('cpu')

We are ready to explore the architecture of the T5 model.

Exploring the architecture of the T5 model
In this subsection, we will explore the architecture and configuration of a T5-large model.

If display_architecture==true, we can see the configuration of the model:

if display_architecture==True:

  print(model.config)

For example, we can see the basic parameters of the model:

.../...

"num_heads": 16,

"num_layers": 24,

.../...

The model is a T5 transformer with 16 heads and 24 layers.

We can also see the text-to-text implementation of T5, which adds a prefix to an input sentence to 

trigger the task to perform. The prefix makes it possible to represent a wide range of tasks in a text-

to-text format without modifying the model’s parameters. In our case, the prefix is summarization:

"task_specific_params": {

    "summarization": {

      "early_stopping": true,

      "length_penalty": 2.0,
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      "max_length": 200,

      "min_length": 30,

      "no_repeat_ngram_size": 3,

      "num_beams": 4,

      "prefix": "summarize: "

    },

We can see that T5:

• Implements the beam search algorithm, which will expand the four most significant text 

completion predictions

• Applies early stopping when num_beam sentences are completed per batch

• Makes sure not to repeat ngrams equal to no_repeat_ngram_size

• Controls the length of the samples with min_length and max_length

• Applies a length penalty

Another interesting parameter is the vocabulary size:

"vocab_size": 32128

Vocabulary size is a topic in itself. Too much vocabulary will lead to sparse representations. On 

the other hand, too little vocabulary will distort the NLP tasks. We will explore this further in 

Chapter 9, Matching Tokenizers and Datasets.

We can also see the details of the transformer stacks by simply printing the model:

if(display_architecture==True):

  print(model)

For example, we can peek inside a block (layer) of the encoder stack (numbered from 0 to 23):

(12): T5Block(

        (layer): ModuleList(

          (0): T5LayerSelfAttention(

            (SelfAttention): T5Attention(

              (q): Linear(in_features=1024, out_features=1024, bias=False)

              (k): Linear(in_features=1024, out_features=1024, bias=False)

              (v): Linear(in_features=1024, out_features=1024, bias=False)

              (o): Linear(in_features=1024, out_features=1024, bias=False)

            )
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            (layer_norm): T5LayerNorm()

            (dropout): Dropout(p=0.1, inplace=False)

          )

          (1): T5LayerFF(

            (DenseReluDense): T5DenseReluDense(

              (wi): Linear(in_features=1024, out_features=4096, 
bias=False)

              (wo): Linear(in_features=4096, out_features=1024, 
bias=False)

              (dropout): Dropout(p=0.1, inplace=False)

            )

            (layer_norm): T5LayerNorm()

            (dropout): Dropout(p=0.1, inplace=False)

          )

        )

      )

We can see that the model runs operations on 1,024 features for the attention sublayers and 

4,096 for the inner calculations of the feedforward network sublayer that will produce outputs of 

1,024 features. The symmetrical structure of transformers is maintained through all of the layers.

You can take a few minutes to go through the encoder stacks, the decoder stacks, the attention 

sublayers, and the feedforward sublayers.

You can also choose to select a specific aspect of the model by only running the cells you wish:

if display_architecture==True:

  print(model.encoder)

if display_architecture==True:

  print(model.decoder)

if display_architecture==True:

  print(model.forward)

We have initialized the T5 transformer. Let’s now summarize documents.

Summarizing documents with T5-large
This section will create a summarizing function that you can call with any text you wish to sum-

marize. We will summarize legal and financial examples. Finally, we will define the limits of the 

approach.
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We will first start by creating a summarization function.

Creating a summarization function
First, let’s create a summarizing function named summarize. That way, we will just send the texts 

we want to summarize to our function. The function takes two parameters. The first parameter 

is preprocess_text, the text to summarize. The second parameter is ml, the maximum length of 

the summarized text. Both parameters are variables you send to the function each time you call it:

def summarize(text,ml):

Hugging Face, among others, provides ready-to-use summarizing functions. However, I recom-

mend learning how to build your own functions to customize this critical task when necessary.

The context text or ground truth is then stripped of the \n characters:

preprocess_text = text.strip().replace("\n","")

We then apply the innovative T5 task prefix summarize to the input text:

t5_prepared_Text = "summarize: "+preprocess_text

The T5 model has a unified structure, whatever the task is through the prefix + input sequence 

approach. It may seem simple, but it takes NLP transformer models closer to universal training 

and zero-shot downstream tasks.

We can display the processed (stripped) and prepared text (task prefix):

print ("Preprocessed and prepared text: \n", t5_prepared_Text)

Simple right? Well, it took 35+ years to go from RNNs and CNNs to transformers. Then it took 

some of the brightest research teams in the world to go from transformers designed for specific 

tasks to multi-task models requiring little to no fine-tuning. Finally, the Google research team 

created a standard format for a transformer’s input text that contained a prefix that indicates the 

NLP problem to solve. That is quite a feat!

The output displayed contains the preprocessed and prepared text:

Preprocessed and prepared text: 

summarize: The United States Declaration of Independence

We can see the summarize prefix that indicates the task to solve.
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The text is now encoded to token IDs and returns them as torch tensors:

tokenized_text = tokenizer.encode(t5_prepared_Text, return_tensors="pt").
to(device)

The encoded text is ready to be sent to the model to generate a summary with the parameters we 

described in the Getting started with T5 section:

# Summarize

  summary_ids = model.generate(tokenized_text,

                                      num_beams=4,

                                      no_repeat_ngram_size=2,

                                      min_length=30,

                                      max_length=ml,

                                      early_stopping=True)

The number of beams remains the same as in the model we imported. However, no_repeat_ngram_

size has been brought down to 2 instead of 3.

The generated output is now decoded with the tokenizer:

output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)

return output

We imported, initialized, and defined the summarization function. Let’s now experiment with 

the T5 model with a general topic.

A general topic sample
In this subsection, we will run a text written by Project Gutenberg through the T5 model. We will 

use the sample to run a test on our summarizing function. You can copy and paste any other text 

you wish or load a text by adding code. You can also load a dataset of your choice and call the 

summaries in a loop.

The program’s goal in this chapter is to run a few samples to see how T5 works. The input text 

is the beginning of the Project Gutenberg e-book containing the Declaration of Independence of the 

United States of America:

text ="""

The United States Declaration of Independence was the first Etext

released by Project Gutenberg, early in 1971.  The title was stored

in an emailed instruction set which required a tape or diskpack be
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hand mounted for retrieval.  The diskpack was the size of a large

cake in a cake carrier, cost $1500, and contained 5 megabytes, of

which this file took 1-2%.  Two tape backups were kept plus one on

paper tape.  The 10,000 files we hope to have online by the end of

2001 should take about 1-2% of a comparably priced drive in 2001.

"""

We then call our summarize function and send the text we want to summarize and the maximum 

length of the summary:

print("Number of characters:",len(text))

summary=summarize(text,50)

print ("\n\nSummarized text: \n",summary)

The output shows we sent 534 characters, the original text (ground truth) that was preprocessed, 

and the summary (prediction):

Number of characters: 534

Preprocessed and prepared text: 

 summarize: The United States Declaration of Independence...

Summarized text: 

 the united states declaration of independence was the first etext 
published by project gutenberg, early in 1971. the 10,000 files we hope 
to have online by the end of2001 should take about 1-2% of a comparably 
priced drive in 2001. the united states declaration of independence was 
the first Etext released by project gutenberg, early in 1971

Let’s now use T5 for a more difficult summary.

The Bill of Rights sample
The following sample, taken from the Bill of Rights, is more difficult because it expresses the 

special rights of a person:

#Bill of Rights,V

text ="""

No person shall be held to answer for a capital, or otherwise infamous 
crime,

unless on a presentment or indictment of a Grand Jury, except in cases 
arising

 in the land or naval forces, or in the Militia, when in actual service
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in time of War or public danger; nor shall any person be subject for

the same offense to be twice put in jeopardy of life or limb;

nor shall be compelled in any criminal case to be a witness against 
himself,

nor be deprived of life, liberty, or property, without due process of law;

nor shall private property be taken for public use without just 
compensation.

"""

print("Number of characters:",len(text))

summary=summarize(text,50)

print ("\n\nSummarized text: \n",summary)

Remember that transformers are stochastic algorithms, so the output might vary each time you run one. 

That being said, we can see that T5 did not really summarize the input text but simply shortened it:

Number of characters: 591

Preprocessed and prepared text: 

 summarize: No person shall be held to answer..

Summarized text: 

 no person shall be held to answer for a capital, or otherwise infamous 
crime. except in cases arisingin the land or naval forces or in the 
militia, when in actual service in time of war or public danger

This sample is significant because it shows the limits that any transformer model or other NLP 

model faces when faced with a text such as this one. We cannot just present samples that always 

work and make users believe that transformers have solved all of the NLP challenges we face, no 

matter how innovative they are.

Maybe we should have provided a longer text to summarize, used other parameters, used a larger 

model, or changed the structure of the T5 model. However, no matter how hard you try to sum-

marize a complex text with an NLP model, you will always find documents that the model fails 

to summarize.

When a model fails on a task, we must be humble and admit it. The SuperGLUE human baseline 

is a difficult one to beat. We need to be patient, work harder, and improve transformer models 

until they can perform better than they do today. There is still room for a lot of progress.

Raffel et al. (2018) chose an appropriate title to describe their approach to T5: Exploring the Limits 

of Transfer Learning with a Unified Text-to-Text Transformer.
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Take the necessary time to experiment with examples of your own that you find in your legal 

documents. Explore the limits of transfer learning as a modern-day NLP pioneer! Sometimes you 

will discover exciting results, and sometimes you will find areas that need improvement.

Now, let’s try a corporate law sample.

A corporate law sample
Corporate law contains many legal subtleties, making summarizing tasks quite tricky.

The input of this sample is an excerpt of the corporate law in the state of Montana, USA:

#Montana Corporate Law

#https://corporations.uslegal.com/state-corporation-law/montana-
corporation-law/#:~:text=Montana%20Corporation%20Law,carrying%20out%20
its%20business%20activities.

text ="""The law regarding corporations prescribes that a corporation can 
be incorporated in the state of Montana to serve any lawful purpose.  In 
the state of Montana, a corporation has all the powers of a natural person 
for carrying out its business activities.  The corporation can sue and be 
sued in its corporate name.  It has perpetual succession.  The corporation 
can buy, sell or otherwise acquire an interest in a real or personal 
property.  It can conduct business, carry on operations, and have offices 
and exercise the powers in a state, territory or district in possession of 
the U.S., or in a foreign country.  It can appoint officers and agents of 
the corporation for various duties and fix their compensation.

The name of a corporation must contain the word "corporation" or its 
abbreviation "corp."  The name of a corporation should not be deceptively 
similar to the name of another corporation incorporated in the same state.  
It should not be deceptively identical to the fictitious name adopted by a 
foreign corporation having business transactions in the state.

The corporation is formed by one or more natural persons by executing and 
filing articles of incorporation to the secretary of state of filing.  The 
qualifications for directors are fixed either by articles of incorporation 
or bylaws.  The names and addresses of the initial directors and purpose 
of incorporation should be set forth in the articles of incorporation.  
The articles of incorporation should contain the corporate name, the 
number of shares authorized to issue, a brief statement of the character 
of business carried out by the corporation, the names and addresses of 
the directors until successors are elected, and name and addresses of 
incorporators.  The shareholders have the power to change the size of 
board of directors.

"""
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print("Number of characters:",len(text))

summary=summarize(text,50)

print ("\n\nSummarized text: \n",summary)

The result is satisfying:

Number of characters: 1816

Preprocessed and prepared text: 

 summarize: The law regarding the corporation prescribes that a 
corporation...

Summarized text: 

 a corporations can be incorporated in the state of Montana to serve 
any lawful purpose. a corporation can sue and be sued in its corporate 
name, and it has perpetual succession. it can conduct business, carry on 
operations and have offices

This time, T5 found some of the essential aspects of the text to summarize. Take some time to 

incorporate samples of your own to see what happens. Play with the parameters to see if it affects 

the outcome.

We have implemented T5 to summarize texts. It is time to experiment with summarization with 

an OpenAI GPT-3 engine.

Summarization with GPT-3
It was essential to understand the architecture of a T5 transformer. We will also see how GPT-3 

engines behave on one of the texts. The goal is not to benchmark companies and models. The 

goal is for an Industry 4.0 AI Guru to have a broad knowledge of NLP.

First, go to https://openai.com/ and sign up and sign in.

Then go to the examples page and select Summarize for a 2nd grader:

Figure 8.8: GPT-3 examples page

A window will open, and we can enter our prompt.

We submit the text T of the corporate sample of the previous section to the GPT-3 model.

https://openai.com/
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The prompt is P = E + T + S:

• E tells the model to make the explanation simple:

My second grader asked me what this passage means:

• The text T is the same as in the previous section and is in quotes:

"""The law regarding corporations prescribes that a corporation can be 
incorporated in the state of Montana to serve any lawful purpose.  In the 
state of Montana, a corporation has all the powers of a natural person for 
carrying out its business activities.  

.../...

The shareholders have the power to change the size of board of directors."""

• S shows the type of task that is expected:

I rephrased it for him, in plain language a second grader can understand: """

The response produced by the GPT-3 Davinci engine is quite convincing:

A corporation is a business. 

A corporation is a person. 

Corporations can do everything people can do. 

Corporations can be sued. 

Corporations can buy, sell, or trade things. 

A corporation has its own name that is different from the names of the people who 
own it. 

Corporations are formed by people who want to start a business, and they file 
papers with the government to make it official.

We can keep T and modify E and S:

• E can be changed to: 

My MBA college student asked me what this passage means:

• S can be changed to:

I rephrased it for him, in MBA college language :
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The GPT-3 engine generated the response of the previous request but added useful information 

for a college student:

Corporations can have directors who are in charge of making decisions for the 
business. The directors are elected by the shareholders. Shareholders can change 

the size of the board of directors.

GPT-3 models are quite convincing and represent the rising power of Cloud AI. We will go deeper 

into summarizing prompts in Chapter 16, The Emergence of Transformer-Driven Copilots. However, 

there is more, much more, to explore before we do that.

Summary
In this chapter, we saw how the T5 transformer models standardized the input of the encoder 

and decoder stacks of the original Transformer. The original Transformer architecture has an 

identical structure for each block (or layer) of the encoder and decoder stacks. However, the 

original Transformer did not have a standardized input format for NLP tasks.

Raffel et al. (2018) designed a standard input for a wide range of NLP tasks by defining a text-to-

text model. They added a prefix to an input sequence, indicating the NLP problem type to solve. 

This led to a standard text-to-text format. The Text-To-Text Transfer Transformer (T5) was 

born. We saw that this deceivingly simple evolution made it possible to use the same model and 

hyperparameters for a wide range of NLP tasks. The invention of T5 takes the standardization 

process of transformer models a step further.

We then implemented a T5 model that could summarize any text. We tested the model on texts 

that were not part of ready-to-use training datasets. We tested the model on constitutional and 

corporate samples. The results were interesting, but we also discovered some of the limits of 

transformer models, as predicted by Raffel et al. (2018).

Finally, we explored the tremendous power of a GPT-3 engine’s methodology and calculation 

efficiency. Showing a transformer is a brilliant approach. Having one of the most powerful trans-

former engines in the world helps attain effective, though not always perfect, results.

The goal is not to benchmark companies and models but for an Industry 4.0 AI Guru to have a 

deep understanding of transformers.

In the next chapter, Chapter 9, Matching Tokenizers and Datasets, we will explore the limits of 

tokenizers and define methods to possibly improve NLP tasks.
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Questions
1. T5 models only have encoder stacks like BERT models. (True/False)

2. T5 models have both encoder and decoder stacks. (True/False)

3. T5 models use relative positional encoding, not absolute positional encoding. (True/False)

4. Text-to-text models are only designed for summarization. (True/False)

5. Text-to-text models apply a prefix to the input sequence that determines the NLP task. 

(True/False)

6. T5 models require specific hyperparameters for each task. (True/False)

7. One of the advantages of text-to-text models is that they use the same hyperparameters 

for all NLP tasks. (True/False)

8. T5 transformers do not contain a feedforward network. (True/False)

9. Hugging Face is a framework that makes transformers easier to implement. (True/False)

10. OpenAI’s transformer engines are game changers. (True/False)
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9
Matching Tokenizers and 
Datasets

When studying transformer models, we tend to focus on the models’ architecture and the datasets 

provided to train them. We have explored the original Transformer, fine-tuned a BERT-like model, 

trained a RoBERTa model, explored a GPT-3 model, trained a GPT-2 model, implemented a T5 

model, and more. We have also gone through the main benchmark tasks and datasets.

We trained a RoBERTa tokenizer and used tokenizers to encode data. However, we did not explore 

the limits of tokenizers to evaluate how they fit the models we build. AI is data-driven. Raffel et al. 

(2019), like all the authors cited in this book, spent time preparing datasets for transformer models.

In this chapter, we will go through some of the limits of tokenizers that hinder the quality of 

downstream transformer tasks. Do not take pretrained tokenizers at face value. You might have 

a specific dictionary of words you use (advanced medical language, for example) with words not 

processed by a generic pretrained tokenizer.

We will start by introducing some tokenizer-agnostic best practices to measure the quality of 

a tokenizer. We will describe basic guidelines for datasets and tokenizers from a tokenization 

perspective.

Then, we will see the limits of tokenizers with a Word2Vec tokenizer to describe the problems we 

face with any tokenizing method. The limits will be illustrated with a Python program.

We will continue our investigation by running a GPT-2 model on a dataset containing specific 

vocabulary with unconditional and conditional samples.
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We will go further and see the limits of byte-level BPE methods. We will build a Python program 

that displays the results produced by a GPT-2 tokenizer and go through the problems that occur 

during the data encoding process. This will show that the superiority of GPT-3 is not always 

necessary for common NLP analysis.

However, at the end of the chapter, we will probe a GPT-3 engine with a Part-of-Speech (POS) task 

to see how much the model understands and if a ready-to-use tokenized dictionary fits our needs.

This chapter covers the following topics:

• Basic guidelines to control the output of tokenizers

• Raw data strategies and preprocessing data strategies

• Word2Vec tokenization problems and limits

• Creating a Python program to evaluate Word2Vec tokenizers

• Building a Python program to evaluate the output of byte-level BPE algorithms

• Customizing NLP tasks with specific vocabulary

• Running unconditional and conditional samples with GPT-2

• Evaluating GPT-2 tokenizers

Our first step will be to explore the text-to-text methodology defined by Raffel et al. (2019).

Matching datasets and tokenizers
Downloading benchmark datasets to train transformers has many advantages. The data has been 

prepared, and every research lab uses the same references. Also, the performance of a transformer 

model can be compared to another model with the same data.

However, more needs to be done to improve the performance of transformers. Furthermore, imple-

menting a transformer model in production requires careful planning and defining best practices.

In this section, we will define some best practices to avoid critical stumbling blocks.

Then we will go through a few examples in Python using cosine similarity to measure the limits 

of tokenization and encoding datasets.

Let’s start with best practices.

Best practices
Raffel et al. (2019) defined a standard text-to-text T5 transformer model. They also went further. 

They began destroying the myth of using raw data without preprocessing it first. 
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Preprocessing data reduces training time. Common Crawl, for example, contains unlabeled text 

obtained through web extraction. Non-text and markup have been removed from the dataset.

However, the Google T5 team found that much of the text obtained through Common Crawl 

did not reach the level of natural language or English. So they decided that datasets need to be 

cleaned before using them.

We will take the recommendations Raffel et al. (2019) made and apply corporate quality control 

best practices to the preprocessing and quality control phases. Among many other rules to ap-

ply, the examples described show the tremendous work required to obtain acceptable real-life 

project datasets.

Figure 9.1 lists some of the key quality control processes to apply to datasets:

Figure 9.1: Best practices for transformer datasets
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As shown in Figure 9.1, quality control is divided into the preprocessing phase (Step 1) when training 

a transformer and quality control when the transformer is in production (Step 2).

Let’s go through some of the main aspects of the preprocessing phase.

Step 1: Preprocessing
Raffel et al. (2019) recommended preprocessing datasets before training models on them, and I 

added some extra ideas.

Transformers have become language learners, and we have become their teachers. But to teach 

a machine-student a language, we must explain what proper English is, for example.

We need to apply some standard heuristics to datasets before using them:

• Sentences with punctuation marks

The recommendation is to select sentences that end with punctuation marks such as a 

period or a question mark.

• Remove bad words

Bad words should be removed. Lists can be found at the following site, for example: 
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-

Bad-Words.

• Remove code

This is tricky because sometimes code is the content we are looking for. However, it is 

generally best to remove code from content for NLP tasks.

• Language detection

Sometimes, websites contain pages with the default “lorem ipsum” text. It is necessary 

to make sure all of a dataset’s content is in the language we wish. An excellent way to 

start is with langdetect, which can detect 50+ languages: https://pypi.org/project/

langdetect/.

• Removing references to discrimination

This is a must. My recommendation is to build a knowledge base with everything you can 

scrape on the web or from specific datasets you can get your hands on. Suppress any form 

of discrimination. You certainly want your machine to be ethical!

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
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• Logic check

It could be a good idea to run a trained transformer model on a dataset that performs 

Natural Language Inferences (NLI) to filter sentences that make no sense.

• Bad information references

Eliminate text that refers to links that do not work, unethical websites, or persons. This 

is a tough job, but certainly worthwhile.

This list contains some of the primary best practices. However, more is required, such as filtering 

privacy law violations and other actions for specific projects.

Once a transformer is trained to learn proper English, we need to help it detect problems in the 

input texts in the production phase.

Step 2: Quality control
A trained model will behave like a person who learned a language. It will understand what it can 

and learn from input data. Input data should go through the same process as Step 1: Preprocessing 

and add new information to the training dataset. The training dataset, in turn, can become the 

knowledge base in a corporate project. Users will be able to run NLP tasks on the dataset and 

obtain reliable answers to questions, useful summaries of specific documents, and more.

We should apply the best practices described in Step 1: Preprocessing to real-time input data. For 

example, a transformer can be running on input from a user or an NLP task, such as summarizing 

a list of documents.

Transformers are the most powerful NLP models ever. This means that our ethical responsibility 

is heightened as well.

Let’s go through some of the best practices:

• Check input text in real time

Do not accept bad information. Instead, parse the input in real time and filter the unac-

ceptable data (see Step 1).

• Real-time messages

Store the rejected data along with the reason it was filtered so that users can consult the 

logs. Display real-time messages if a transformer is asked to answer an unfitting question.
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• Language conversions

You can convert rare vocabulary into standard vocabulary when it is possible. See Case 4 

of the Word2Vec tokenization section in this chapter. This is not always possible. When it 

is, it could represent a step forward.

• Privacy checks

Whether you are streaming data into a transformer model or analyzing user input, private 

data must be excluded from the dataset and tasks unless authorized by the user or country 

the transformer is running in. It’s a tricky topic. Consult a legal adviser when necessary.

We just went through some of the best practices. Let’s now see why human quality control is 

mandatory.

Continuous human quality control
Transformers will progressively take over most of the complex NLP tasks. However, human inter-

vention remains mandatory. We think social media giants have automized everything. Then we 

discover there are content managers that decide what is good or bad for their platform.

The right approach is to train a transformer, implement it, control the output, and feed the sig-

nificant results back into the training set. Thus, the training set will continuously improve, and 

the transformer will continue to learn.

Figure 9.2 shows how continuous quality control will help the transformer’s training dataset grow 

and increase its performance in production:
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Figure 9.2: Continuous human quality control

We have gone through several best practices described by Raffel et al. (2019), and I have added 

some guidance based on of my experience in corporate AI project management.

Let’s go through a Python program with some examples of some of the limits encountered with 

tokenizers.
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Word2Vec tokenization
As long as things go well, nobody thinks about pretrained tokenizers. It’s like in real life. We can 

drive a car for years without thinking about the engine. Then, one day, our car breaks down, and 

we try to find the reasons to explain the situation.

The same happens with pretrained tokenizers. Sometimes the results are not what we expect. For 

example, some word pairs just don’t fit together, as we can see in Figure 9.3:

Figure 9.3: Word pairs that tokenizers miscalculated

The examples shown in Figure 9.3 are drawn from the American Declaration of Independence, the 

Bill of Rights, and the English Magna Carta:

• cake and chapters do not fit together, although a tokenizer computed them as having a 

high value of cosine similarity.

• freedom refers to the freedom of speech, for example. copyright refers to the note written 

by the editor of the free ebook.

• pay and bill fit together in everyday English. polysemy is when a word can have several 

meanings. For example, Bill means an amount to pay but also refers to the Bill of 

Rights. The result is acceptable, but it may be pure luck.

Before continuing, let’s take a moment to clarify some points. QC refers to quality control. In 

any strategic corporate project, QC is mandatory. The quality of the output will determine the 

survival of a critical project. If the project is not strategic, errors will sometimes be acceptable. In 

a strategic project, even a few errors imply a risk management audit’s intervention to see if the 

project should be continued or abandoned.
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From the perspectives of quality control and risk management, tokenizing datasets that are irrel-

evant (too many useless words or critical words missing) will confuse the embedding algorithms 

and produce “poor results.” That is why in this chapter, I use the word “tokenizing” loosely, in-

cluding some embedding because of the impact of one upon the other.

In a strategic AI project, “poor results” can be a single error with a dramatic consequence (espe-

cially in the medical sphere, airplane or rocket assembly, or other critical domains).

Open Tokenizer.ipynb, based on positional_encoding.ipynb, which we created in Chapter 2, 

Getting Started with the Architecture of the Transformer Model.

Results might vary from one run to another due to the stochastic nature of Word2Vec algorithms.

The prerequisites are installed and imported first:

#@title Pre-Requisistes

!pip install gensim==3.8.3

import nltk

nltk.download('punkt')

import math

import numpy as np

from nltk.tokenize import sent_tokenize, word_tokenize 

import gensim 

from gensim.models import Word2Vec 

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity

import matplotlib.pyplot as plt

import warnings 

warnings.filterwarnings(action = 'ignore')

text.txt, our dataset, contains the American Declaration of Independence, the Bill of Rights, the 

Magna Carta, the works of Immanuel Kant, and other texts.

We will now tokenize text.txt and train a word2vec model:

#@title Word2Vec Tokenization

#'text.txt' file

sample = open("text.txt", "r")

s = sample.read()

# processing escape characters
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f = s.replace("\n", " ")

data = []

# sentence parsing

for i in sent_tokenize(f):

  temp = [] 

  # tokenize the sentence into words

  for j in word_tokenize(i):

    temp.append(j.lower())

  data.append(temp)

# Creating Skip Gram model

model2 = gensim.models.Word2Vec(data, min_count = 1, size = 512,window = 
5, sg = 1)

print(model2)

window = 5 is an interesting parameter. It limits the distance between the current word and the 

predicted word in an input sentence. sg = 1 means a skip-gram training algorithm is used.

The output shows that the size of the vocabulary is 10816, the dimensionality of the embeddings 

is 512, and the learning rate was set to alpha=0.025:

Word2Vec(vocab=10816, size=512, alpha=0.025)

We have a word representation model with embedding and can create a cosine similarity function 

named similarity(word1,word2). We will send word1 and word2 to the function, which will 

return a cosine similarity value between them. The higher the value, the higher the similarity.

The function will first detect unknown words, [unk], and display a message:

#@title Cosine Similarity

def similarity(word1,word2):

        cosine=False #default value

        try:

                a=model2[word1]

                cosine=True

        except KeyError:     #The KeyError exception is raised

                print(word1, ":[unk] key not found in dictionary")#False 
implied

        try:

                b=model2[word2]#a=True implied
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        except KeyError:       #The KeyError exception is raised

                cosine=False   #both a and b must be true

                print(word2, ":[unk] key not found in dictionary")

Cosine similarity will only be calculated if cosine==True, which means that both word1 and 

word2 are known:

        if(cosine==True):

                b=model2[word2]

                # compute cosine similarity

                dot = np.dot(a, b)

                norma = np.linalg.norm(a)

                normb = np.linalg.norm(b)

                cos = dot / (norma * normb)

                aa = a.reshape(1,512)

                ba = b.reshape(1,512)

                #print("Word1",aa)

                #print("Word2",ba)

                cos_lib = cosine_similarity(aa, ba)

                #print(cos_lib,"word similarity")

          

        if(cosine==False):cos_lib=0;

        return cos_lib

The function will return cos_lib, the computed value of cosine similarity.

We will now go through six cases. We will name text.txt the “dataset.”

Let’s begin with Case 0.

Case 0: Words in the dataset and the dictionary
The words freedom and liberty are in the dataset, and their cosine similarity can be computed:

#@title Case 0: Words in text and dictionary

word1="freedom";word2="liberty"

print("Similarity",similarity(word1,word2),word1,word2)

The similarity is limited to 0.79 because a lot of content was inserted from various texts to explore 

the limits of the function:

Similarity [[0.79085565]] freedom liberty
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The similarity algorithm is not an iterative deterministic calculation. This section’s results might 

change with the dataset’s content, the dataset’s size after another run, or the module’s versions. 

If you run the cell 10 times, you may or may not obtain different values, such as in the following 

10 runs.

In the following case, I obtained the same result 10 times with a Google Colab VM and a CPU:

Run 1: Similarity [[0.62018466]] freedom liberty

Run 2: Similarity [[0.62018466]] freedom liberty

...

Run 10: Similarity [[0.62018466]] freedom liberty

However, I did a “factory reset runtime” of the runtime menu in Google Colab. With a new VM 

and a CPU, I obtained:

Run 1: Similarity [[0.51549244]] freedom liberty

Run 2: Similarity [[0.51549244]] freedom liberty

...

Run 10: Similarity [[0.51549244]] freedom liberty

I performed another “factory reset runtime” of the runtime menu in Google Colab. I also activated 

the GPU. With a new VM and GPU, I obtained:

Run 1: Similarity [[0.58365834]] freedom liberty

Run 2: Similarity [[0.58365834]] freedom liberty

...

Run 10: Similarity [[0.58365834]] freedom liberty

The conclusion here is that stochastic algorithms are based on probabilities. It is good practice 

to run a prediction n times if necessary.

Let’s now see what happens when a word is missing.

Case 1: Words not in the dataset or the dictionary
A missing word means trouble in many ways. In this case, we send corporations and rights to 

the similarity function:

#@title Word(s) Case 1: Word not in text or dictionary

word1="corporations";word2="rights"

print("Similarity",similarity(word1,word2),word1,word2)
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The dictionary does not contain the word corporations:

corporations :[unk] key not found in dictionary

Similarity 0 corporations rights

Dead end! The word is an unknown [unk] token.

The missing word will provoke a chain of events and problems that distort the transformer model’s 

output if the word is important. We will refer to the missing word as unk.

Several possibilities need to be checked, and questions answered:

• unk was in the dataset but was not selected to be in the tokenized dictionary.

• unk was not in the dataset, which is the case for the word corporations. This explains 

why it’s not in the dictionary in this case.

• unk will now appear in production if a user sends an input to the transformer that contains 

the token and it is not tokenized.

• unk was not an important word for the dataset but is for the usage of the transformer.

The list of problems will continue to grow if the transformer produces terrible results in some 

cases. We can consider 0.8 as excellent performance for a transformer model for a specific down-

stream task during the training phase. But in real life, who wants to work with a system that’s 

wrong 20% of the time:

• A doctor?

• A lawyer?

• A nuclear plant maintenance team?

0.8 is satisfactory in a fuzzy environment like social media, in which many of the messages lack 

proper language structure anyway.

Now comes the worst part. Suppose an NLP team discovers this problem and tries to solve it with 

byte-level BPE, as we have been doing throughout this book. If necessary, take a few minutes 

and go back to Chapter 4, Pretraining a RoBERTa Model from Scratch, Step 3: Training a tokenizer.

The nightmare begins if a team only uses byte-level BPE to fix the problem:

• unk will be broken down into word pieces. For example, we could end up with corporations 

becoming corp + o + ra + tion + s. One or several of these tokens have a high probability 

of being found in the dataset.
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• unk will become a set of sub-words represented by tokens that exist in the dataset but do 

not convey the original token’s meaning.

• The transformer will train well, and nobody will notice that unk was broken into pieces 

and trained meaninglessly.

• The transformer might even produce excellent results and move its performance up from 

0.8 to 0.9.

• Everybody will be applauding until a professional user applies an erroneous result in a 

critical situation. For example, in English, corp can mean corporation or corporal. This 

could create confusion and bad associations between corp and other words.

We can see that the standard of social media might be enough to use transformers for trivial topics. 

But in real-life corporate projects, it will take hard work to produce a pretrained tokenizer that 

matches the datasets. In real life, datasets grow every day with user inputs. User inputs become 

part of the datasets of models that should be trained and updated regularly.

For example, one way to ensure quality control can be through the following steps:

• Train a tokenizer with a byte-level BPE algorithm.

• Control the results with a program such as the one we will create in the Controlling toke-

nized data section of this chapter.

• Also, train a tokenizer with a Word2Vec algorithm, which will only be used for quality 

control, then parse the dataset, find the unk tokens, and store them in the database. Run 

queries to check if critical words are missing.

It might seem unnecessary to check the process in such detail, and you might be tempted to rely 

on a transformer’s ability to make inferences with unseen words.

However, I recommend running several different quality control methods in a strategic project 

with critical decision making. For example, in a legal summary of a law, one word can make the 

difference between losing and winning a case in court. In an aerospace project (airplanes, rockets), 

there is a 0 error tolerance standard.

The more quality control processes you run, the more reliable your transformer solution will be.

We can see that it takes a lot of legwork to obtain a reliable dataset! Every paper written on trans-

formers refers in one way or another to the work it took to produce acceptable datasets.

Noisy relationships also cause problems.
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Case 2: Noisy relationships
In this case, the dataset contained the words etext and declaration:

#@title Case 2: Noisy Relationship

word1="etext";word2="declaration"

print("Similarity",similarity(word1,word2),word1,word2)

Furthermore, they both ended up in the tokenized dictionary:

Similarity [[0.880751]] etext declaration

Even better, their cosine similarity seems to be sure about its prediction and exceeds 0.5. The 

stochastic nature of the algorithm might produce different results on various runs.

At a trivial or social media level, everything looks good.

However, at a professional level, the result is disastrous!

etext refers to Project Gutenberg’s preface to each ebook on their site, as explained in the Matching 

datasets and tokenizers section of this chapter. What is the goal of the transformer for a specific task:

• To understand an editor’s preface?

• Or to understand the content of the book?

It depends on the usage of the transformer and might take a few days to sort out. For example, 

suppose an editor wants to understand prefaces automatically and uses a transformer to generate 

preface text. Should we take the content out?

declaration is a meaningful word related to the actual content of the Declaration of Independence.

etext is part of a preface that Project Gutenberg adds to all of its ebooks.

This might produce erroneous natural language inferences such as etext is a declaration when the 

transformer is asked to generate text.

Let’s look into a missing word issue.

Case 3: Words in the text but not in the dictionary
In some cases, a word may be in a text but not in the dictionary. This will distort the results.
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Let’s take the words pie and logic:

#@title Case 3: word in text, not in dictionary

word1="pie";word2="logic"

print("Similarity",similarity(word1,word2),word1,word2)

The word pie is not in the dictionary:

pie :[unk] key not found in dictionary

Similarity 0 pie logic

We can assume that the word pie would be in a tokenized dictionary. But what if it isn’t or another 

word isn’t? The word pie is not in the text file.

Therefore, we should have functions in the pipeline to detect words that are not in the dictionary 

to implement corrections or alternatives. Also, we should have functions in the pipeline to detect 

words in the datasets that may be important.

Let’s see the problem we face with rare words.

Case 4: Rare words
Rare words produce devasting effects on the output of transformers for specific tasks that go 

beyond simple applications.

Managing rare words extends to many domains of natural language. For example:

• Rare words can occur in datasets but go unnoticed, or models are poorly trained to deal 

with them.

• Rare words can be medical, legal, engineering terms, or any other professional jargon.

• Rare words can be slang.

• There are hundreds of variations of the English language. For example, different English 

words are used in certain parts of the United States, the United Kingdom, Singapore, India, 

Australia, and many other countries.

• Rare words can come from texts written centuries ago that are forgotten or that only 

specialists use.

For example, in this case, we are using the word justiciar:

#@title Case 4: Rare words

word1="justiciar";word2="judgement"

print("Similarity",similarity(word1,word2),word1,word2)
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The similarity with judgement is reasonable but should be higher:

Similarity [[0.6606605]] justiciar judgement

You might think that the word justiciar is far-fetched. The tokenizer extracted it from the Magna 

Carta, dating back to the early 13th century. Unfortunately, the program will get confused, and we 

will obtain unexpected results after each run.

However, several articles of the Magna Carta are still valid in 21st century England! For example, 

clauses 1, 13, 39, and 40 are still valid!

The most famous part of the Magna Carta is the following excerpt, which is in the dataset:

(39) No free man shall be seized or imprisoned, or stripped of his

rights or possessions, or outlawed or exiled, or deprived of his

standing in any other way, nor will we proceed with force against him,

or send others to do so, except by the lawful judgement of his equals

or by the law of the land.

(40) To no one will we sell, to no one deny or delay right or justice.

If we implement a transformer model in a law firm to summarize documents or other tasks, we 

must be careful!

Let’s now see some methods we could use to solve a rare word problem.

Case 5: Replacing rare words
Replacing rare words represents a project in itself. This work is reserved for specific tasks and projects. 

Suppose a corporate budget can cover the cost of having a knowledge base in aeronautics, for 

example. In that case, it is worth spending the necessary time querying the tokenized directory 

to find words it missed.

Problems can be grouped by topic, solved, and the knowledge base will be updated regularly.

In Case 4, we stumbled on the word justiciar. If we go back to its origin, we can see that it comes 

from the French Normand language and is the root of the French Latin-like word judicaire.

Note: The predictions may vary from one run to another. However, they show how 

careful we must be in the tokenizing and embedding phases of our transformer 

model projects.
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We could replace the word justiciar with judge, which conveys the same meta-concept:

#@title Case 5: Replacing rare words

word1="judge";word2="judgement"

print("Similarity",similarity(word1,word2),word1,word2)

It produces an interesting result, but we still need to be careful because of the non-deterministic 

aspect of the algorithm:

Similarity [[0.7962761]] judge judgement

We could also keep the word justiciar, but try the word’s modern meaning and compare it to 

judge. You could try implementing Case 5: Replacing rare words:

word1="justiciar";word2="judge"

print("Similarity",similarity(word1,word2),word1,word2)

In any case, some rare words need to be replaced by more mainstream words.

The result would be satisfactory:

Similarity [[0.9659128]] justiciar judge

We could create queries with replacement words that we run until we find correlations that are 

over 0.9, for example. Moreover, if we are managing a critical legal project, we could have the 

essential documents that contained rare words of any kind translated into standard English. Thus, 

the transformer’s performance with NLP tasks would increase, and the knowledge base of the 

corporation would progressively increase.

Let’s now see how to use cosine similarity for entailment verification.

Case 6: Entailment
In this case, we are interested in words in the dictionary and test them in a fixed order.

For example, let’s see if “pay" + “debt" makes sense in our similarity function:

#@title Case 6: Entailment

word1="pay";word2="debt"

print("Similarity",similarity(word1,word2),word1,word2)

The result is satisfactory:

Similarity [[0.89891946]] pay debt
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We could check the dataset with several word pairs and check if they mean something. These word 

pairs could be extracted from emails in a legal department, for example. If the cosine similarity 

is above 0.9, then the email could be stripped of useless information and the content added to 

the knowledge base dataset of the company.

Let’s now see how well-pretrained tokenizers match with NLP tasks.

Standard NLP tasks with specific vocabulary
This section focuses on Case 4: Rare words and Case 5: Replacing rare words from the Word2Vec 

tokenization section of this chapter.

We will use Training_OpenAI_GPT_2_CH09.ipynb, a renamed version of the notebook we used 

to train a dataset in Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines.

Two changes were made to the notebook:

• dset, the dataset, was renamed mdset and contains medical content

• A Python function was added to control the text that was tokenized using byte-level BPE

We will not describe Training_OpenAI_GPT_2_CH09.ipynb, which we covered in Chapter 7, The 

Rise of Suprahuman Transformers with GPT-3 Engines, and Appendices III and IV. Make sure you 

upload the necessary files before beginning, as explained in Chapter 7.

There is no limit to the time you wish to train the model for. Interrupt it in order to save the model.

The files are on GitHub in the gpt-2-train_files directory of Chapter09. Although we are us-

ing the same notebook as in Chapter 7, note that the dataset, dset, is now named mdset in the 

directory and code.

First, let’s generate an unconditional sample with a GPT-2 model trained to understand medical 

content.

Generating unconditional samples with GPT-2
We will get our hands dirty in this section to understand the inner workings of transformers. 

We could, of course, skip the whole chapter and simply use an OpenAI API. However, a 4.0 AI 

specialist must become an AI guru to show, not vaguely tell, Transformer models what to do 

through preprocessing pipelines. In order to show a transformer model what to do, it is necessary 

to understand how a transformer model works.
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In Case 4: Rare words, and Case 5: Replacing rare words, we saw that rare words could be words used 

in a specific field, old English, variations of the English language around the world, slang, and more.

In 2020, the news was filled with medical terms to do with the COVID-19 outbreak. In this section, 

we will see how a GPT-2 transformer copes with medical text.

The dataset to encode and train contains a paper by Martina Conte and Nadia Loy (2020), named 

Multi-cue kinetic model with non-local sensing for cell migration on a fibers network with chemotaxis.

The title in itself is not easy to understand and contains rare words.

Load the files located in the gpt-2-train_files directory, including mdset.txt. Then run the 

code, as explained in Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines. You can 

run this code cell by cell using Chapter 7 to guide you. Take special care to follow the instructions 

to make sure tf 1.x is activated. Make sure to run Step 4, then restart the runtime and then run 

the Step 4 tf 1.x cell again before continuing. Otherwise you will get an error in the notebook. We 

are getting our hands dirty to use the  low-level original GPT-2 code in this section and not an API.

After training the model on the medical dataset, you will reach the unconditional sample cell, 

Step 11: Generating Unconditional Samples:

#@title Step 11: Generating Unconditional Samples

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src")

!python generate_unconditional_samples.py --model_name '117M'

Run the cell and stop it when you wish. It will produce a random output:

community-based machinery facilitates biofilm growth. Community members 
place biochemistry as the main discovery tool to how the cell interacts 
with the environment and thus with themselves, while identifying and 
understanding all components for effective Mimicry.

2. Ol Perception

The time it takes to run this command and the other code in this notebook depends 

on the power of your machine. This notebook and all other GPT-2 code is explained 

for educational purposes only in this book. It is recommended to use OpenAI’s API 

for GPT-3 in production. The response times are faster for transformer projects.
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Cytic double-truncation in phase changing (IP) polymerases (sometimes 
called "tcrecs") represents a characteristic pattern of double-
crossing enzymes that alter the fundamental configuration that allows 
initiation and maintenance of process while chopping the plainNA with 
vibrational operator. Soon after radical modification that occurred during 
translational parasubstitution (TMT) achieved a more or less uncontrolled 
activation of SYX. TRSI mutations introduced autophosphorylation of TCMase 
sps being the most important one that was incorporated into cellular 
double-triad (DTT) signaling across all

cells, by which we allow R h and ofcourse an IC 2A- >

.../...

If we have a close look at the output, we notice the following points:

• The structure of the generated sentences is relatively acceptable

• The grammar of the output is not bad

• To a non-professional, the output might seem human-like

However, the content makes no sense. The transformer was unable to produce real content related 

to the medical paper we trained. Obtaining better results will take hard work. Of course, we can 

always increase the size of the dataset. But will it contain what we are looking for? Could we find 

wrong correlations with more data? For example, imagine a medical project involving COVID-19 

with a dataset containing the following sentences:

• COVID-19 is not a dangerous virus, but it is like ordinary flu.

• COVID-19 is a very dangerous virus.

• COVID-19 is not a virus but something created by a lab.

• COVID-19 was certainly not created by a lab!

• Vaccines are dangerous!

• Vaccines are lifesavers!

• Governments did not manage the pandemic correctly.

• Governments did what was necessary.

And more contradictory sentences such as these. These discrepancies confirm that both datasets 

and tokenizers must be customized for specialized healthcare projects, aeronautics, transporta-

tion, and other critical domains.
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Imagine you have a dataset with billions of words, but the content is so conflictual and noisy that 

you could never obtain a reliable result no matter what you try!

This could mean that the dataset would have to be smaller and limited to content from scientific 

papers. But even then, scientists often disagree with each other.

The conclusion is that it will take a lot of hard work and a solid team to produce reliable results.

Let’s now try to condition the GPT-2 model.

Generating trained conditional samples
In this section, we move to the Step 12: Interactive Context and Completion Examples cell of the 

notebook and run it:

#@title Step 12: Interactive Context and Completion Examples

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src")

!python interactive_conditional_samples.py --temperature 0.8 --top_k 40 
--model_name '117M' --length 50

An Industry 4.0 AI specialist will focus less on code and more on how to show a transformer model 

what to do. Every model requires a level of showing what to do and not just using unconditional 

data to tell it to vaguely do something.

We condition the GPT-2 model by entering a part of the medical paper:

During such processes, cells sense the environment and respond to external 
factors that induce a certain direction of motion towards specific targets 
(taxis): this results in a persistent migration in a certain preferential 
direction. The guidance cues leading to directed migration may be 
biochemical or biophysical. Biochemical cues can be, for example, soluble 
factors or growth factors that give rise to chemotaxis, which involves 
a mono-directional stimulus. Other cues generating mono-directional 
stimuli include, for instance, bound ligands to the substratum that induce 
haptotaxis, durotaxis, that involves migration towards regions with an 
increasing stiffness of the ECM, electrotaxis, also known as galvanotaxis, 
that prescribes a directed motion guided by an electric field or current, 
or phototaxis, referring to the movement oriented by a stimulus of light 
[34]. Important biophysical cues are some of the properties of the 
extracellular matrix (ECM), first among all the alignment of collagen 
fibers and its stiffness. In particular, the fiber alignment is shown to 
stimulate contact guidance [22, 21]. TL;DR:
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We added TL;DR: at the end of the input text to tell the GPT-2 model to summarize the text we 

conditioned it with. The output makes sense, both grammatically and semantically:

the ECM of a single tissue is the ECM that is the most effective.

To address this concern, we developed a novel imaging and immunostaining 
scheme that, when activated, induces the conversion of a protein to its 
exogenous target

Since the outputs are non-deterministic, we could get this response also:

Do not allow the movement to be directed by a laser (i.e. a laser that 
only takes one pulse at a time), but rather a laser that is directed at a 
target and directed at a given direction. In a nutshell, be mindful.

The results are better but require more research.

The conclusion we can draw from this example and chapter is that pretraining transformer mod-

els on vast amounts of random web crawl data, for example, will teach the transformer English. 

However, like us, a transformer also needs to be trained in specific domains to become a specialist 

in that field.

Let’s take our investigation further and control the tokenized data.

Controlling tokenized data
This section will read the first words the GPT-2 model encoded with its pretrained tokenizer.

When running the cells, stop a cell before running a subsequent one.

We will go to the Additional Tools: Controlling Tokenized Data cell of the Training_OpenAI_

GPT_2_CH09.ipynb notebook we are using in this chapter. This cell was added to the notebook 

for this chapter.

The cell first unzips out.npz, which contains the encoded medical paper that is in the dataset, 

mdset:

#@title Additional Tools : Controlling Tokenized Data

#Unzip out.npz

import zipfile

with zipfile.ZipFile('/content/gpt-2/src/out.npz', 'r') as zip_ref:

    zip_ref.extractall('/content/gpt-2/src/')
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out.npz is unzipped and we can read arr_0.npy, the NumPy array that contains the encoded 

dataset we are looking for:

#Load arr_0.npy which contains encoded dset

import numpy as np

f=np.load('/content/gpt-2/src/arr_0.npy')

print(f)

print(f.shape)

for i in range(0,10):

    print(f[i])

The output is the first few elements of the array:

[1212 5644  326 ...   13  198 2682]

We will now open encoder.json and convert it into a Python dictionary:

#We first import encoder.json

import json

i=0

with open("/content/gpt-2/models/117M/encoder.json", "r") as read_file:

    print("Converting the JSON encoded data into a Python dictionary")

    developer = json.load(read_file) #converts the encoded data into a 
Python dictionary

    for key, value in developer.items(): #we parse the decoded json data

        i+=1

        if(i>10):

            break;

        print(key, ":", value)

Finally, we display the key and value of the first 500 tokens of our encoded dataset:

#We will now search for the key and value for each encoded token

    for i in range(0,500):

        for key, value in developer.items():

            if f[i]==value:

                print(key, ":", value)

The first words of mdset.txt are as follows:

This suggests that
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I added those words to make sure the GPT-2 pretrained tokenizer would easily recognize them, 

which is the case:

This : 1212

Ġsuggests : 5644

Ġthat : 326

We can easily recognize the initial tokens preceded by the initial whitespace characters (Ġ). How-

ever, let’s take the following word in the medical paper:

amoeboid

amoeboid is a rare word. We can see that the GPT-2 tokenizer broke it down into sub-words:

Ġam : 716

o : 78

eb : 1765

oid : 1868

Let’s skip the whitespace and look at what happened. amoeboid has become am + o+ eb + oid. We 

must agree that there are no unknown tokens: [unk]. That is due to the byte-level BPE strategy 

used.

However, the transformer’s attention layers might associate:

• am with other sequences such as I am

• o with any sequence that was taken apart and contained an o as well

• oid with another sequence containing oid, possibly tabloid with some algorithms

This is not good news at all. Let’s take this further with the following words:

amoeboid and mesenchymal

The output clearly displays and. As for the rest, the tokens are confusing:

Ġam : 716

o : 78

eb : 1765

oid : 1868

Ġand : 290

Ġmes : 18842
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ench : 24421

ym : 4948

al : 282

You might wonder why this is a problem. The reason can be summed up in one word: polysemy. 

If we use a word2vec tokenizer, the dictionary might not contain rare words such as amoeboid, 

and we would come up with an unknown token.

If we use byte-level BPE, we obtain overall better results because we exclude fewer variations of 

the same word, such as go and go + ing.

However, the am token in amoeboid brings polysemy into the problem at a low level. am can be a 

sort of prefix, the word am as in I + am, or a sub-word such as in am + bush. Attention layers could 

associate the am of one token with another am, creating relationships that do not exist. This defines 

the core problem of polysemy in NLU.

We can say that progress is being made, but we need to work harder to improve NLP.

We have gone through a lot of the everyday problems we face in real-life projects using some 

examples. Take some time and try some examples you think are useful.

Before we leave, we will use a probing task to verify the level of NLU that a transformer model 

provides.

Exploring the scope of GPT-3
Even the most powerful transformers such as OpenAI GPT-3 have their limits. Let’s see how GPT-

3 reacts to the word amoeboid, which is closer to a medical term than a mainstream word. We 

will need technical jargon in many projects. Matching datasets requires quality control of how a 

transformer organizes its dictionary and embeddings.

We humans can detect errors and correct somebody. For example, in this chapter, we explored 

the word amoeboid in the Controlling tokenized data section of this chapter.

Let’s first ask GPT-3 what amoeboid means:

Figure 9.4: Asking GPT-3 what “amoeboid” means
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amoeboid (resembling an amoeba) is an adjective, yet GPT-3 states that it is a noun in the output:

A: Amoeboid is a noun which means "resembling an amoeba"

We then ask GPT-3 a more precise question and still obtain an incorrect answer:

Q: Is amoeboid a noun or an adjective?

A: Amoeboid is a noun.

Finally, we insist and ask for a clear definition and obtain a correct answer:

Q: What does amoeboid mean in medical terms? 

A: Amoeboid means "resembling an amoeba".

The definition is accurate, although the grammatical analysis isn’t.

What’s more important in a real-life project? To understand the definition of a word or to identify 

its role in a sentence as an adjective or a noun?

Maybe grammatical aspects are important for an educational grammar school project, but not 

for corporate supply chain, finance, and e-commerce applications.

OpenAI GPT-3 can be fine-tuned in both cases, as we saw in Chapter 7, The Rise of Suprahuman 

Transformers with GPT-3 Engines.

This section concludes that we have to ensure we have all the data we need in a trained trans-

former model. If not, the tokenization process will be incomplete. Maybe we should have taken 

a medical dictionary and created a large corpus of medical articles that contained that specific 

vocabulary. Then if the model still is not accurate enough, we might have to tokenize our dataset 

and train a model from scratch.

A 2022 developer will have less development work, but will still have to think and design a lot!

Let’s now conclude this chapter and move on to another NLU task.

The definition of a word is sufficient for a medical project. In this case, GPT-3 might 

be sufficient. If the definition is sufficient, SRL wasn’t a prerequisite for understand-

ing a sentence.
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Summary
In this chapter, we measured the impact of the tokenization and subsequent data encoding process 

on transformer models. A transformer model can only attend to tokens from the embedding and 

positional encoding sub-layers of a stack. It does not matter if the model is an encoder-decoder, 

encoder-only, or decoder-only model. It does not matter if the dataset seems good enough to train.

If the tokenization process fails, even partly, the transformer model we are running will miss 

critical tokens.

We first saw that for standard language tasks, raw datasets might be enough to train a transformer.

However, we discovered that even if a pretrained tokenizer has gone through a billion words, it 

only creates a dictionary with a small portion of the vocabulary it comes across. Like us, a tokenizer 

captures the essence of the language it is learning and only remembers the most important words 

if these words are also frequently used. This approach works well for a standard task and creates 

problems with specific tasks and vocabulary.

We then looked for some ideas, among many, to work around the limits of standard tokenizers. 

We applied a language checking method to adapt the text we wish to process, such as how a 

tokenizer thinks and encodes data.

We applied the method to unconditional and conditional tasks with GPT-2.

Finally, we analyzed the limits of data tokenizing and matching datasets with GPT-3. The lesson 

you can take away from this chapter is that AI specialists are here to stay for quite some time!

In the next chapter, Semantic Role Labeling with BERT-Based Transformers, we will dig deep into 

NLU and use a BERT model to ask a transformer to explain the meaning of a sentence.

Questions
1. A tokenized dictionary contains every word that exists in a language. (True/False)

2. Pretrained tokenizers can encode any dataset. (True/False)

3. It is good practice to check a database before using it. (True/False)

4. It is good practice to eliminate obscene data from datasets. (True/False)

5. It is good practice to delete data containing discriminating assertions. (True/False)

6. Raw datasets might sometimes produce relationships between noisy content and useful 

content. (True/False)
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7. A standard pretrained tokenizer contains the English vocabulary of the past 700 years. 

(True/False)

8. Old English can create problems when encoding data with a tokenizer trained in modern 

English. (True/False)

9. Medical and other types of jargon can create problems when encoding data with a to-

kenizer trained in modern English. (True/False)

10. Controlling the output of the encoded data produced by a pretrained tokenizer is good 

practice. (True/False)
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:

 https://www.packt.link/Transformers

https://www.packt.link/Transformers


10
Semantic Role Labeling with 
BERT-Based Transformers

Transformers have made more progress in the past few years than NLP in the past generation. 

Standard NLU approaches first learn syntactical and lexical features to explain the structure of 

a sentence. The former NLP models would be trained to understand a language’s basic syntax 

before running Semantic Role Labeling (SRL).

Shi and Lin (2019) started their paper by asking if preliminary syntactic and lexical training can 

be skipped. Can a BERT-based model perform SRL without going through those classical training 

phases? The answer is yes!

Shi and Lin (2019) suggested that SRL can be considered sequence labeling and provide a stan-

dardized input format. Their BERT-based model produced surprisingly good results.

This chapter will use a pretrained BERT-based model provided by the Allen Institute for AI based 

on the Shi and Lin (2019) paper. Shi and Lin took SRL to the next level by dropping syntactic and 

lexical training. We will see how this was achieved.

We will begin by defining SRL and the standardization of the sequence labeling input formats. 

We will then get started with the resources provided by the Allen Institute for AI. Next, we will 

run SRL tasks in a Google Colab notebook and use online resources to understand the results.

Finally, we will challenge the BERT-based model by running SRL samples. The first samples will 

show how SRL works. Then, we will run some more difficult samples. We will progressively push 

the BERT-based model to the limits of SRL. Finding the limits of a model is the best way to ensure 

that real-life implementations of transformer models remain realistic and pragmatic.



Semantic Role Labeling with BERT-Based Transformers256

This chapter covers the following topics:

• Defining semantic role labeling

• Defining the standardization of the input format for SRL

• The main aspects of the BERT-based model’s architecture

• How an encoder-only stack can manage a masked SRL input format

• BERT-based model SRL attention process

• Getting started with the resources provided by the Allen Institute for AI

• Building a notebook to run a pretrained BERT-based model

• Testing sentence labeling on basic examples

• Testing SRL on difficult examples and explaining the results

• Taking the BERT-based model to the limit of SRL and explaining how this was done

Our first step will be to explore the SRL approach defined by Shi and Lin (2019).

Getting started with SRL
SRL is as difficult for humans as for machines. However, once again, transformers have taken a 

step closer to our human baselines.

In this section, we will first define SRL and visualize an example. We will then run a pretrained 

BERT-based model.

Let’s begin by defining the problematic task of SRL.

Defining semantic role labeling
Shi and Lin (2019) advanced and proved the idea that we can find who did what, and where, with-

out depending on lexical or syntactic features. This chapter is based on Peng Shi and Jimmy Lin’s 

research at the University of Waterloo, California. They showed how transformers learn language 

structures better with attention layers.

SRL labels the semantic role as the role a word or group of words plays in a sentence and the rela-

tionship established with the predicate.

A semantic role is the role a noun or noun phrase plays in relation to the main verb in a sentence. 

For example, in the sentence Marvin walked in the park, Marvin is the agent of the event occur-

ring in the sentence. The agent is the doer of the event. The main verb, or governing verb, is walked.
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The predicate describes something about the subject or agent. The predicate could be anything 

that provides information on the features or actions of a subject. In our approach, we will refer 

to the predicate as the main verb. For example, in the sentence Marvin walked in the park, the 

predicate is walked in its restricted form.

The words in the park modify the meaning of walked and are the modifier.

The noun or noun phrases that revolve around the predicate are arguments or argument terms. 

Marvin, for example, is an argument of the predicate walked.

We can see that SRL does not require a syntax tree or a lexical analysis.

Let’s visualize the SRL of our example.

Visualizing SRL
This chapter will be using the Allen Institute’s visual and code resources (see the References section 

for more information). The Allen Institute for AI has excellent interactive online tools, such as 

the one we’ve used to represent SRL visually throughout this chapter. You can access these tools 

at https://demo.allennlp.org/.

The Allen Institute for AI advocates AI for the common good. We will make good use of this approach. 

All of the figures in this chapter were created with the AllenNLP tools.

The Allen Institute provides transformer models that continuously evolve. Therefore, the exam-

ples in this chapter might produce different results when you run them. The best way to get the 

most out of this chapter is to:

• Read and understand the concepts explained beyond merely running a program

• Take the time to understand the examples provided

Then run your own experiments with sentences of your choice with the tool used in this chapter: 

https://demo.allennlp.org/semantic-role-labeling.

We will now visualize our SRL example. Figure 10.1 is an SRL representation of Marvin walked 

in the park:

Figure 10.1: The SRL representation of a sentence

https://demo.allennlp.org/
https://demo.allennlp.org/semantic-role-labeling
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We can observe the following labels in Figure 10.1:

• Verb: The predicate of the sentence

• Argument: An argument of the sentence named ARG0

• Modifier: A modifier of the sentence. In this case, a location. It could have been an adverb, 

an adjective, or anything that modifies the predicate’s meaning

The text output is interesting as well, which contains shorter versions of the labels of the visual 

representation:

walked: [ARG0: Marvin] [V: walked] [ARGM-LOC: in the park]

We have defined SRL and gone through an example. It is time to look at the BERT-based model.

Running a pretrained BERT-based model
This section will begin by describing the architecture of the BERT-based model used in this chapter.

Then we will define the method used to experiment with SRL samples with a BERT model.

Let’s begin by looking at the architecture of the BERT-based model.

The architecture of the BERT-based model
AllenNLP’s BERT-based model is a 12-layer encoder-only BERT model. The AllenNLP team imple-

mented the BERT model described in Shi and Lin (2019) with an additional linear classification 

layer.

For more on the description of a BERT model, take a few minutes, if necessary, to go back to 

Chapter 3, Fine-Tuning BERT Models.

The BERT-based model takes full advantage of bidirectional attention with a simple approach 

and architecture. The core potential of transformers resides in the attention layers. We have seen 

transformer models with both encoder and decoder stacks. We have seen other transformers with 

encoder layers only or decoder layers only. The main advantage of transformers remains in the 

near-human approach of attention layers.

The input format of the predicate identification format defined by Shi and Lin (2019) shows how 

far transformers have come to understand a language in a standardized fashion:

[CLS] Marvin walked in the park.[SEP] walked [SEP]
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The training process has been standardized:

• [CLS] indicates that this is a classification exercise

• [SEP] is the first separator, indicating the end of the sentence

• [SEP] is followed by the predicate identification designed by the authors

• [SEP] is the second separator, which indicates the end of the predicate identifier

This format alone is enough to train a BERT model to identify and label the semantic roles in a 

sentence.

Let’s set up the environment to run SRL samples.

Setting up the BERT SRL environment
We will be using a Google Colab notebook, the AllenNLP visual text representations of SRL avail-

able at https://demo.allennlp.org/ under the Semantic Role Labeling section.

We will apply the following method:

1. We will open SRL.ipynb, install AllenNLP, and run each sample

2. We will display the raw output of the SRL run

3. We will visualize the output using AllenNLP’s online visualization tools

4. We will display the output using AllenNLP’s online text visualization tools

This chapter is self-contained. You can read through it or run the samples as described.

The SRL model output may differ when AllenNLP changes the transformer model used. This is 

because AllenNLP models and transformers, in general, are continuously trained and updated. 

Also, the datasets used for training might change. Finally, these are not rule-based algorithms 

that produce the same result each time. The outputs might change from one run to another, as 

described and shown in the screenshots.

Let’s now run some SRL experiments.

SRL experiments with the BERT-based model
We will run our SRL experiments using the method described in the Setting up the BERT SRL 

environment section of this chapter. We will begin with basic samples with various sentence 

structures. We will then challenge the BERT-based model with some more difficult samples to 

explore the system’s capacity and limits.

https://demo.allennlp.org/
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Open SRL.ipynb and run the installation cell:

!pip install allennlp==2.1.0 allennlp-models==2.1.0

Then we import the tagging module and a trained BERT predictor:

from allennlp.predictors.predictor import Predictor

import allennlp_models.tagging

import json

predictor = Predictor.from_path("https://storage.googleapis.com/allennlp-
public-models/structured-prediction-srl-bert.2020.12.15.tar.gz")

We also add two functions to display the JSON object SRL BERT returns. The first one displays 

the verb of the predicate and the description:

def head(prediction):

  # Iterating through the json to display excerpt of the prediciton

  for i in prediction['verbs']:

    print('Verb:',i['verb'],i['description'])

The second one displays the full response, including the tags:

def full(prediction):

  #print the full prediction

  print(json.dumps(prediction, indent = 1, sort_keys=True))

At the time of this publication, the BERT model was specifically trained for semantic role labeling 

use. The name of the model is SRL BERT. SRL BERT was trained using the OntoNotes 5.0 dataset: 

https://catalog.ldc.upenn.edu/LDC2013T19.

This dataset contains sentences and annotations. The dataset was designed to identify predicates 

(a part of a sentence containing a verb) in a sentence and identify the words that provide more 

information on the verbs. Each verb comes with its “arguments” that tell us more about it. A 

“frame” contains the arguments of a verb.

SRL BERT is thus a specialized model trained to perform a specific task, and as such, it is not a 

foundation model like OpenAI GPT-3 as we saw in Chapter 7, The Rise of Suprahuman Transformers 

with GPT-3 Engines.

https://catalog.ldc.upenn.edu/LDC2013T19
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SRL BERT will focus on semantic role labeling with acceptable accuracy as long as the sentence 

contains a predicate.

We are now ready to warm up with some basic samples.

Basic samples
Basic samples seem intuitively simple but can be tricky to analyze. Compound sentences, adjec-

tives, adverbs, and modals are difficult to identify, even for non-expert humans.

Let’s begin with an easy sample for the transformer.

Sample 1
The first sample is long but relatively easy for the transformer:

Did Bob really think he could prepare a meal for 50 people in only a few hours?

Run the Sample 1 cell in SRL.ipynb:

prediction=predictor.predict(

    sentence="Did Bob really think he could prepare a meal for 50 people 
in only a few hours?"

)

head(prediction)

BERT SRL identified the four predicates; the verb for each one labeled the result as shown in this 

excerpt using the head(prediction) function:

Verb: Did [V: Did] Bob really think he could prepare a meal for 50 people 
in only a few hours ?

Verb: think Did [ARG0: Bob] [ARGM-ADV: really] [V: think] [ARG1: he could 
prepare a meal for 50 people in only a few hours] ?

Verb: could Did Bob really think he [V: could] [ARG1: prepare a meal for 
50 people in only a few hours] ?

Verb: prepare Did Bob really think [ARG0: he] [ARGM-MOD: could] [V: 
prepare] [ARG1: a meal for 50 people] [ARGM-TMP: in only a few hours] ?

You can view the full response by running the full(prediction) cell.
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If we use the description of the arguments of the dataset based on the structure of the PropBank 

(Proposition Bank), the verb think, for example, in this excerpt can be interpreted as:

• V identifies the verb think

• ARG0 identifies the agent; thus, Bob is the agent or “pro-agent”

• ARGM-ADV considers really as an adverb (ADV), with ARGM meaning that the adverb pro-

vides an adjunct (not necessary) thus not numbered

If we run the sample in the AllenNLP online interface, we obtain a visual representation of the 

SRL task of one frame per verb. The first verb is Did:

Figure 10.2: Identifying the verb “Did”

The second verb identified is think:

Figure 10.3: Identifying the verb “think”

If we take a close look at this representation, we can detect some interesting properties of the 

SRL BERT that:

• Detected the verb think

• Avoided the prepare trap that could have been interpreted as the main verb. Instead, 

prepare remained part of the argument of think

• Detected an adverb and labeled it
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The third verb is could:

Figure 10.4: Identifying the verb “could” and the argument

The transformer then moved to the verb prepare, labeled it, and analyzed its context:

Figure 10.5: Identifying the verb “prepare”, the arguments, and the modifiers

Again, the simple BERT-based transformer model detected a lot of information on the grammatical 

structure of the sentence and found:

• The verb prepare and isolated it

• The noun he and labeled it as an argument and did the same for a meal for 50 people, 

which is a “proto-patient,” which involves a modification by other participants

• That in only a few hours is a temporal modifier (ARGM-TMP)

• That could was a modal modifier that indicates the modality of a verb, such as the like-

lihood of an event

We will now analyze another relatively long sentence.

Sample 2
The following sentence seems easy but contains several verbs:

Mrs. and Mr. Tomaso went to Europe for vacation and visited Paris and first went 
to visit the Eiffel Tower.
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Will this confusing sentence make the transformer hesitate? Let’s see by running the Sample 2 

cell of the SRL.ipynb notebook:

prediction=predictor.predict(

    sentence="Mrs. and Mr. Tomaso went to Europe for vacation and visited 
Paris and first went to visit the Eiffel Tower."

)

head(prediction)

The excerpt of the output proves that the transformer correctly identified the verbs in the sentence:

Verb: went [ARG0: Mrs. and Mr. Tomaso] [V: went] [ARG4: to Europe] [ARGM-
PRP: for vacation] and visited Paris and first went to visit the Eiffel 
Tower .

Verb: visited [ARG0: Mrs. and Mr. Tomaso] went to Europe for vacation and 
[V: visited] [ARG1: Paris] and first went to visit the Eiffel Tower .

Verb: went [ARG0: Mrs. and Mr. Tomaso] went to Europe for vacation and 
visited Paris and [ARGM-TMP: first] [V: went] [ARG1: to visit the Eiffel 
Tower] .

Verb: visit [ARG0: Mrs. and Mr. Tomaso] went to Europe for vacation and 
visited Paris and first went to [V: visit] [ARG1: the Eiffel Tower] .

Running the sample on AllenNLP online identified four predicates, thus generating four frames.

The first frame is for went:

 

Figure 10.6: Identifying the verb “went,” the arguments, and the modifier

We can interpret the arguments of the verb went. Mrs. and Mr. Tomaso are the agents. The 

transformer found that the main modifier of the verb was the purpose of the trip: to Europe. The 

result would not be surprising if we did not know that Shi and Lin (2019) had only built a simple 

BERT model to obtain this high-quality grammatical analysis.
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We can also notice that went was correctly associated with Europe. The transformer correctly 

identified the verb visited as being related to Paris:

 

Figure 10.7: Identifying the verb “visited” and the arguments

The transformer could have associated the verb visited directly with the Eiffel Tower. But it 

didn’t. It stood its ground and made the right decision.

The next task we asked the transformer to do was identify the context of the second use of the verb 

went. Again, it did not fall into the trap of merging all of the arguments related to the verb went, 

used twice in the sentence. Again, it correctly split the sequence and produced an excellent result:

 

Figure 10.8: Identifying the verb “went,” the argument, and the modifiers

The verb went was used twice, but the transformer did not fall into the trap. It even found that 

first was a temporal modifier of the verb went.

Finally, the verb visit was used a second time, and SRL BERT correctly interpreted its use:

Figure 10.9: Identifying the verb “visit” and the arguments

Let’s run a sentence that is a bit more confusing.
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Sample 3
Sample 3 will make things more difficult for our transformer model. The following sample contains 

variations of the verb drink four times:

John wanted to drink tea, Mary likes to drink coffee but Karim drank some cool 

water and Faiza would like to drink tomato juice.

Let’s run Sample 3 in the SRL.ipynb notebook:

prediction=predictor.predict(

    sentence="John wanted to drink tea, Mary likes to drink coffee but 
Karim drank some cool water and Faiza would like to drink tomato juice."

)

head(prediction)

The transformer found its way around, as shown in the following excerpt of the output that 

contains the verbs:

Verb: wanted [ARG0: John] [V: wanted] [ARG1: to drink tea] , Mary likes to 
drink coffee but Karim drank some cool water and Faiza would like to drink 
tomato juice .

Verb: drink [ARG0: John] wanted to [V: drink] [ARG1: tea] , Mary likes to 
drink coffee but Karim drank some cool water and Faiza would like to drink 
tomato juice .

Verb: likes John wanted to drink tea , [ARG0: Mary] [V: likes] [ARG1: to 
drink coffee] but Karim drank some cool water and Faiza would like to 
drink tomato juice .

Verb: drink John wanted to drink tea , [ARG0: Mary] likes to [V: drink] 
[ARG1: coffee] but Karim drank some cool water and Faiza would like to 
drink tomato juice .

Verb: drank John wanted to drink tea , Mary likes to drink coffee but 
[ARG0: Karim] [V: drank] [ARG1: some cool water] and Faiza would like to 
drink tomato juice .

Verb: would John wanted to drink tea , Mary likes to drink coffee but 
Karim drank some cool water and [ARG0: Faiza] [V: would] like [ARG1: to 
drink tomato juice] .
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Verb: like John wanted to drink tea , Mary likes to drink coffee but Karim 
drank some cool water and [ARG0: Faiza] [ARGM-MOD: would] [V: like] [ARG1: 
to drink tomato juice] .

Verb: drink John wanted to drink tea , Mary likes to drink coffee but 
Karim drank some cool water and [ARG0: Faiza] would like to [V: drink] 
[ARG1: tomato juice] .

We obtain several visual representations when we run the sentence on the AllenNLP online in-

terface. We will examine two of them.

The first one is perfect. It identifies the verb wanted and makes the correct associations:

 

Figure 10.10: Identifying the verb “wanted” and the arguments

When it identified the verb drank, it correctly excluded Faiza and only produced some cool 

water as the argument.

Figure 10.11: Identifying the verb “drank” and the arguments

We’ve found that the BERT-based transformer produces relatively good results up to now on 

basic samples. So let’s try some more difficult ones.

Difficult samples
This section will run samples that contain problems that the BERT-based transformer will first 

solve. Finally, we will end with an intractable sample.

Let’s start with a complex sample that the BERT-based transformer can analyze.
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Sample 4
Sample 4 takes us into more tricky SRL territory. The sample separates Alice from the verb liked, 

creating a long-term dependency that has to jump over whose husband went jogging every 

Sunday.

The sentence is:

Alice, whose husband went jogging every Sunday, liked to go to a dancing class 

in the meantime.

A human can isolate Alice and find the predicate:

Alice liked to go to a dancing class in the meantime.

Can the BERT model find the predicate like us?

Let’s find out by first running the code in SRL.ipynb:

prediction=predictor.predict(

    sentence="Alice, whose husband went jogging every Sunday, liked to go 
to a dancing class in the meantime."

)

head(prediction)

The output identified the verbs for each predicate and labeled each frame:

Verb: went Alice , [ARG0: whose husband] [V: went] [ARG1: jogging] [ARGM-
TMP: every Sunday] , liked to go to a dancing class in the meantime .

Verb: jogging Alice , [ARG0: whose husband] went [V: jogging] [ARGM-TMP: 
every Sunday] , liked to go to a dancing class in the meantime .

Verb: liked [ARG0: Alice , whose husband went jogging every Sunday] , [V: 
liked] [ARG1: to go to a dancing class in the meantime] .

Verb: go [ARG0: Alice , whose husband went jogging every Sunday] , liked 
to [V: go] [ARG4: to a dancing class] [ARGM-TMP: in the meantime] .

Verb: dancing Alice , whose husband went jogging every Sunday , liked to 
go to a [V: dancing] class in the meantime .



Chapter 10 269

Let’s focus on the part we are interested in and see if the model found the predicate. It did! It 

found the verb liked as shown in this excerpt of the output, although the verb like is separated 

from Alice by another predicate:

Verb: liked [ARG0: Alice , whose husband went jogging every Sunday] 

Let’s now look at the visual representation of the model’s analysis after running the sample on 

AllenNLP’s online UI. The transformer first finds Alice’s husband:

 

Figure 10.12: The predicate “went” has been identified

The transformer explains that:

• The predicate or verb is went

• whose husband is the argument

• jogging is another argument related to went

• every Sunday is a temporal modifier represented in the raw output as [ARGM-TMP: every 
Sunday]

The transformer then found what Alice’s husband was doing:

 

Figure 10.13: SRL detection of the verb “jogging”

We can see that the verb jogging was identified and was related to whose husband with the 

temporal modifier every Sunday.
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The transformer doesn’t stop there. It now detects what Alice liked:

Figure 10.14: Identifying the verb “liked”

The transformer also detects and analyzes the verb go correctly:

 

Figure 10.15: Detecting the verb “go,” its arguments, and modifier

We can see that the temporal modifier in the meantime was also identified. It is quite a perfor-

mance considering the simple sequence + verb input SRL BERT was trained with.

Finally, the transformer identifies the last verb, dancing, as being related to class:

Figure 10.16: Relating the argument “class” to the verb “dancing”

The results produced by Sample 4 are quite convincing! Let’s try to find the limit of the trans-

former model.

Sample 5
Sample 5 does not repeat a verb several times. However, Sample 5 contains a word with multi-

ple functions and meanings. It goes beyond polysemy since the word round can have different 

meanings and grammatical functions. The word round can be a noun, an adjective, an adverb, a 

transitive verb, or an intransitive verb.

As a transitive or intransitive verb, round can attain perfection or completion. In this sense, round 

can be used with off.
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The following sentence uses round in the past tense:

The bright sun, the blue sky, the warm sand, the palm trees, everything round off.

The verb round in this predicate is used in a sense of “to bring to perfection.” Of course, the most 

accessible grammatical form would have been “rounded.” but let’s see what happens with our 

sentence.

Let’s run Sample 5 in SRL.ipynb:

prediction=predictor.predict(

    sentence="The bright sun, the blue sky, the warm sand, the palm trees, 
everything round off."

)

head(prediction)

The output shows no verbs. The transformer did not identify the predicate. In fact, it found no 

verbs at all even when we run the full(prediction) function:

"verbs": []

However, the online version seems to interpret the sentence better because it found the verb:

 

Figure 10.17: Detecting the verb “round” and “everything” as the argument

Since we like our SRL transformer, we will be kind to it. We will show it what to do with a verb form 

that is more frequently used. Let’s change the sentence from the past tense to the present tense by 

adding an s to round:

The bright sun, the blue sky, the warm sand, the palm trees, everything rounds off.

Let’s give SRL.ipynb another try with the present tense:

prediction=predictor.predict(

    sentence="The bright sun, the blue sky, the warm sand, the palm trees, 
everything rounds off."

)

head(prediction)
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The raw output shows that the predicate was found, as shown in the following output:

Verb: rounds [ARG1: The bright sun , the blue sky , the warm sand , the 
palm trees , everything] [V: rounds] [ARGM-PRD: off] .

If we run the sentence on AllenNLP, we obtain the visual explanation:

Figure 10.18: Detecting the word “rounds” as a verb

Our BERT-based transformer did well because the word round can be found as rounds in its 

present tense form.

The BERT model initially failed to produce the result we expected. But with a little help from its 

friends, all ended well for this sample.

We can see that:

• Outputs may vary with the evolution of the versions of a model we have implemented

• An Industry 4.0 pragmatic mindset requires more cognitive efforts to show a transformer 

what to do

Let’s try another sentence that’s difficult to label.

Sample 6
Sample 6 takes a word we often think is just a noun. However, more words than we suspect can 

be both nouns and verbs. For example, to ice is a verb used in hockey to shoot a puck all the way 

across the rink and beyond the goal line of an opponent. A puck is the disk used in hockey.

A hockey coach can start the day by telling a team to train icing pucks. We then can obtain the 

imperative  sentence when the coach yells:

Now, ice pucks guys!

Note that guys can mean persons regardless of their sex.

Let’s run the Sample 6 cell to see what happens:

prediction=predictor.predict(

    sentence="Now, ice pucks guys!"

)

head(prediction)
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The transformer fails to find the verb: "verbs": [].

Game over! We can see that transformers have made tremendous progress, but there is still a lot 

of room for developers to improve the models. Humans are still in the game to show transformers 

what to do.

The online interface confuses pucks with a verb:

 

Figure 10.19: The model incorrectly labels “pucks” as the verb

This problem may be solved with another model, but you will reach another limit. Even GPT-3 

has limits you will have to cope with.

These limits will require your expertise to make a project a success. Therefore, you will have to 

create specialized dictionaries to succeed in a project. This is good news for developers! You will 

develop new cross-disciplinary and cognitive skills that your team will appreciate.

Try some examples or samples of your own to see what SRL can do with the approach’s limits. 

Then explore how to develop preprocessing functions to show the transformer what to do for 

your customized applications.

Before we leave, let’s question the motivation of SRL.

Questioning the scope of SRL
We are alone when faced with a real-life project. We have a job to do, and the only people to satisfy 

are those who asked for that project.

Pragmatism must come first. Technical ideology after.

In the 2020s, former AI ideology and new ideology coexist. By the end of the decade, there will 

be only one winner merging some of the former into the latter.

When you implement transformers for a customized application with specialized 

jargon or technical vocabulary, you will reach intractable limits at some point.
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This section questions the productivity of SRL and also its motivation through two aspects:

• The limit of predicate analysis

• Questioning the use of the term “semantic”

The limit of predicate analysis
SRL relies on predicates. SRL BERT only works as long as you provide a verb. But millions of sen-

tences do not contain verbs.

If you provide SRL BERT in the Semantic Role Labeling section in the AllenNLP demo interface 

(https://demo.allennlp.org/) with an assertion alone, it works.

But what happens if your assertion is an answer to a question:

• Person 1: What would you like to drink, please?

• Person 2: A cup of coffee, please.

When we enter Person 2’s answer, SRL BERT finds nothing:

Figure 10.20: No frame obtained

The output is 0 total frames. SRL was unable to analyze this sentence because it contains an ellipsis. 

The predicate is implicit, not explicit.

The definition of an ellipsis is the act of leaving one or several words out of a sentence that is not 

necessary for it to be understood.

https://demo.allennlp.org/


Chapter 10 275

Hundreds of millions of sentences containing an ellipsis are spoken and written each day. 

Yet SRL BERT yields 0 Total Frames for all of them.

The following answers (A) to questions (Q) beginning with what, where, and how yield 0 Total 

Frames:

Q: What would you like to have for breakfast?

A: Pancakes with hot chocolate.

(The model deduces: pancakes=proper noun, with=preposition, hot= adjective, and 

chocolate=common noun.)

Q: Where do you want to go?

A: London, please.

(The model deduces: London=proper noun and please=adverb.)

Q: How did you get to work today?

A: Subway.

(The model deduces: subway=proper noun.)

We could apply this to questions in the middle of dialogue as well and still obtain no frames 

(outputs) from SRL BERT:

Context: The middle of a conversation during which person 2 did not want coffee:

Q: So, tea?

A: No thanks.

Q: Ok, hot chocolate?

A: Nope.

Q: A glass of water?

A: Yup!

We just saw a conversation with no frames, no semantic labeling. Nothing.

We could find millions more examples that SRL BERT fails to understand because 

the sentences do not contain predicates.
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We can finish with some movie, concert, or exhibition reviews on social media that produce 0 

frames:

• Best movie ever!

• Worst concert in my life!

• Excellent exhibition! 

This section showed the limits of SRL. Let’s now redefine SRL and show how to implement it.

Redefining SRL
SRL BERT presupposes that sentences contain predicates, which is a false assumption in many 

cases. Analyzing a sentence cannot be based on a predicate analysis alone.

A predicate contains a verb. The predicate tells us more about the subject. The following predicate 

contains a verb and additional information:

The dog ate his food quickly.

ate...quickly tells us more about the way the dog ate. However, a verb alone can be a predicate, 

as in:

Dogs eat. 

The problem here resides in the fact that “verbs” and “predicates” are part of syntax and grammar 

analysis, not semantics.

Understanding how words fit together from a grammatical, functional point of view is restrictive.

Take this sentence that means absolutely nothing:

Globydisshing maccaked up all the tie.

SRL BERT perfectly performs “semantic” analysis on a sentence that means nothing:

Figure 10.21: Analyzing a meaningless sentence
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We can draw some conclusions from these examples:

• SRL predicate analysis only works when there is a verb in the sentence

• SRL predicate analysis cannot identify an ellipsis

• Predicates and verbs are part of the structure of a language, of grammatical analysis

• Predicate analysis identifies structures but not the meaning of a sentence

• Grammatical analysis goes far beyond predicate analysis as the necessary center of a 

sentence

Semantics focuses on the meaning of a phrase or sentence. Semantics focuses on context and the 

way words relate to each other.

Grammatical analysis includes syntax, inflection, and the functions of words in a phrase or sen-

tence. The term semantic role labeling is misleading; it should be named “predicate role labeling.”

We perfectly understand sentences without predicates and beyond sequence structure.

Sentiment analysis can decode the meaning of a sentence and give us an output without predicate 

analysis. Sentiment analysis algorithms perfectly understand that “Best movie ever” is positive 

regardless of the presence of a predicate or not.

My recommendation is to use SRL with other AI tools, as we will see in Chapter 13, Analyzing Fake 

News with Transformers.

Let’s now conclude our exploration of the scope and limits of SRL.

Summary
In this chapter, we explored SRL. SRL tasks are difficult for both humans and machines. Transform-

er models have shown that human baselines can be reached for many NLP topics to a certain extent.

We found that a simple BERT-based transformer can perform predicate sense disambiguation. 

We ran a simple transformer that could identify the meaning of a verb (predicate) without lexical 

or syntactic labeling. Shi and Lin (2019) used a standard sentence + verb input format to train their 

BERT-based transformer.

Using SRL alone to analyze language is restrictive. Using SRL in an AI pipeline or 

other AI tools can be very productive to add more intelligence to natural language 

understanding.
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We found that a transformer trained with a stripped-down sentence + predicate input could solve 

simple and complex problems. The limits were reached when we used relatively rare verb forms. 

However, these limits are not final. If difficult problems are added to the training dataset, the 

research team could improve the model.

We also discovered that AI for the good of humanity exists. The Allen Institute for AI has made 

many free AI resources available. In addition, the research team has added visual representations 

to the raw output of NLP models to help users understand AI. We saw that explaining AI is as 

essential as running programs. The visual and text representations provided a clear view of the 

potential of the BERT-based model.

Finally, we explored the scope and limits of SRL to optimize how we will use this method with 

other AI tools.

Transformers will continue to improve the standardization of NLP through their distributed 

architecture and input formats.

In the next chapter, Chapter 11, Let Your Data Do the Talking: Story, Questions, and Answers, we will 

challenge transformers on tasks usually only humans perform well. We will explore the potential 

of transformers when faced with Named Entity Recognition (NER) and question-answering tasks.

Questions
1. Semantic Role Labeling (SRL) is a text generation task. (True/False)

2. A predicate is a noun. (True/False)

3. A verb is a predicate. (True/False)

4. Arguments can describe who and what is doing something. (True/False)

5. A modifier can be an adverb. (True/False)

6. A modifier can be a location. (True/False)

7. A BERT-based model contains encoder and decoder stacks. (True/False)

8. A BERT-based SRL model has standard input formats. (True/False)

9. Transformers can solve any SRL task. (True/False)
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11
Let Your Data Do the Talking: 
Story, Questions, and Answers

Reading comprehension requires many skills. When we read a text, we notice the keywords and 

the main events and create mental representations of the content. We can then answer questions 

using our knowledge of the content and our representations. We also examine each question to 

avoid traps and making mistakes.

No matter how powerful they have become, transformers cannot answer open questions easily. 

An open environment means that somebody can ask any question on any topic, and a transformer 

would answer correctly. That is difficult but possible to some extent with GPT-3, as we will see 

in this chapter. However, transformers often use general domain training datasets in a closed 

question-and-answer environment. For example, critical answers in medical care and law inter-

pretation will often require additional NLP functionality.

However, transformers cannot answer any question correctly regardless of whether the training 

environment is closed with preprocessed question-answer sequences. A transformer model can 

sometimes make wrong predictions if a sequence contains more than one subject and compound 

propositions.

This chapter will focus on methods to build a question generator that finds unambiguous content 

in a text with the help of other NLP tasks. The question generator will show some of the ideas 

applied to implement question-answering.

We will begin by showing how difficult it is to ask random questions and expect the transformer 

to respond well every time.
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We will help a DistilBERT model answer questions by introducing Named Entity Recognition 

(NER) functions that suggest reasonable questions. In addition, we will lay the ground for a 

question generator for transformers.

We will add an ELECTRA model that was pretrained as a discriminator to our question-answering 

toolbox.

We will continue by adding Semantic Role Labeling (SRL) functions to the blueprint of the text 

generator.

Then, the Next steps section will provide additional ideas to build a reliable question-answering 

solution, including implementing the Haystack framework.

Finally, we will go straight to the GPT-3 Davinci engine interface online to explore question-an-

swering tasks in an open environment. Again, no development, no training, and no preparation 

are required!

By the end of the chapter, you will see how to build your own multi-task NLP helpers or use Cloud 

AI for question-answering.

This chapter covers the following topics:

• The limits of random question-answering

• Using NER to create meaningful questions based on entity identification

• Beginning to design the blueprint of a question generator for transformers

• Testing the questions found with NER

• Introducing an ELECTRA encoder pretrained as a discriminator

• Testing the ELECTRA model with standard questions

• Using SRL to create meaningful questions based on predicate identification

• Project management guidelines to implement question-answering transformers

• Analyzing how to create a question generated using SRL

• Using the output of NER and SRL to define the blueprint of a question generator for trans-

formers

• Exploring Haystack’s question-answering framework with RoBERTa

• Using GPT-3’s interface requires no development or preparation

Let’s begin by going through the methodology we will apply to analyze the generation of ques-

tions for question-answering tasks.
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Methodology
Question-answering is mainly presented as an NLP exercise involving a transformer and a dataset 

containing the ready-to-ask questions and answering those questions. The transformer is trained 

to answer the questions asked in this closed environment.

However, in more complex situations, reliable transformer model implementations require cus-

tomized methods.

Transformers and methods
A perfect and efficient universal transformer model for question-answering or any other NLP 

task does not exist. The best model for a project is the one that produces the best outputs for a 

specific dataset and task.

The method outperforms models in many cases. For example, a suitable method with an average 

model often will produce more efficient results than a flawed method with an excellent model.

In this chapter, we will run DistilBERT, ELECTRA, and RoBERTa models. Some produce better 

performances than others.

However, performance does not guarantee a result in a critical domain.

For example, in a space rocket and spacecraft production project, asking an NLP bot a question 

means obtaining one exact answer.

Suppose the user needs to ask a question on a hundred-page report on the status of a regener-

atively cooled nozzle and combustion chamber of a rocket. The question could be specific, such 

as Is the cooling status reliable or not? That is the bottom-line information the user 

wants from the NLP bot.

To cut a long story short, letting the NLP bot, transformer model or not, make a literal statistical 

answer with no quality and cognitive control is too risky and would not happen. A trustworthy 

NLP bot would be connected to a knowledge base containing data and rules to run a rule-based 

expert system in the background to check the NLP bot’s answer. The NLP transformer model bot 

would produce a smooth, reliable natural language answer, possibly with a human voice.

A universal transformer model and method that will fit all needs does not exist. Each project re-

quires specific functions and a customized approach and will vary tremendously depending on 

the users’ expectations.
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This chapter will focus on the general constraints of question-answering beyond a specific trans-

former model choice. This chapter is not a question-answering project guide but an introduction 

to how transformers can be used for question-answering.

We will focus on using question-answering in an open environment where the questions were 

not prepared beforehand. Transformer models require help from other NLP tasks and classical 

programs. We will explore some methods to give an idea of how to combine tasks to reach the 

goal of a project:

• Method 0 explores a trial and error approach of asking questions randomly.

• Method 1 introduces NER to help prepare the question-answering tasks.

• Method 2 tries to help the default transformer with an ELECTRA transformer model. It 

also introduces SRL to help the transformer prepare questions.

The introduction to these three methods shows that a single question-answering method will 
not work for high-profile corporate projects. Adding NER and SRL will improve the linguistic 
intelligence of a transformer agent solution.

For example, in one of my first AI NLP projects implementing question-answering for a defense 
project in a tactical situation for an aerospace corporation, I combined different NLP methods to 

ensure that the answer provided was 100% reliable.

You can design a multi-method solution for each project you implement.

Let’s start with the trial and error approach.

Method 0: Trial and error
Question-answering seems very easy. Is that true? Let’s find out.

Open QA.ipynb, the Google Colab notebook we will be using in this chapter. We will run the 

notebook cell by cell.

Run the first cell to install Hugging Face’s transformers, the framework we will be implementing 

in this chapter:

!pip install -q transformers

Note: Hugging Face transformers continually evolve, updating libraries and modules 

to adapt to the market. If the default version doesn’t work, you might have to pin 

one with !pip install transformers==[version that runs with the other 

functions in the notebook].
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We will now import Hugging Face’s pipeline, which contains many ready-to-use transformer 

resources. They provide high-level abstraction functions for the Hugging Face library resources 

to perform a wide range of tasks. We can access those NLP tasks through a simple API. The pro-

gram was created on Google Colab. It recommended to run it on Google Colab VM using a free 

Gmail account.

The pipeline is imported with one line of code:

from transformers import pipeline

Once that is done, we have one-line options to instantiate transformer models and tasks:

1. Perform an NLP task with the default model and default tokenizer:

pipeline("<task-name>")

2. Perform an NLP task using a custom model:

pipeline("<task-name>", model="<model_name>")

3. Perform NLP tasks using a custom model and a custom tokenizer:

pipeline('<taskname>', model='<model name>', tokenizer='<tokenizer_
name>')

Let’s begin with the default model and tokenizer:

nlp_qa = pipeline('question-answering')

Now, all we have to do is provide a text that we will then use to submit questions to the transformer:

sequence = "The traffic began to slow down on Pioneer Boulevard in Los 
Angeles, making it difficult to get out of the city. However, WBGO was 
playing some cool jazz, and the weather was cool, making it rather 
pleasant to be making it out of the city on this Friday afternoon. Nat 
King Cole was singing as Jo, and Maria slowly made their way out of LA and 
drove toward Barstow. They planned to get to Las Vegas early enough in the 
evening to have a nice dinner and go see a show."

The sequence is deceptively simple, and all we need to do is plug one line of code into the API to 

ask a question and obtain an answer:

nlp_qa(context=sequence, question='Where is Pioneer Boulevard ?')

The output is a perfect answer:

{'answer': 'Los Angeles,', 'end': 66, 'score': 0.988201259751591, 'start': 
55}
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We have just implemented a question-answering transformer NLP task in a few lines of code! 

You could now download a ready-to-use dataset that contains texts, questions, and answers.

In fact, the chapter could end right here, and you would be all set for question-answering tasks. 

However, things are never simple in real-life implementations. Suppose we have to implement 

a question-answering transformer model for users to ask questions on many documents stored 

in the database. We have two significant constraints:

• We first need to run the transformer through a set of key documents and create questions 

that show that the system works

• We must show how we can guarantee that the transformer answers the questions correctly

Several questions immediately arise:

• Who is going to find the questions to ask to test the system?

• Even if an expert agrees to do the job, what will happen if many of the questions produce 

erroneous results?

• Will we keep training the model if the results are not satisfactory?

• What happens if some of the questions cannot be answered, no matter which model we 

use or train?

• What if this works on a limited sample but the process takes too long and cannot be scaled 

up because it costs too much?

If we just try questions that come to us with an expert’s help and see which ones work and which 

ones don’t, it could take forever. Trial and error is not the solution.

This chapter aims to provide some methods and tools that will reduce the cost of implementing 

a question-answering transformer model. Finding good questions for question-answering is quite a 

challenge when implementing new datasets for a customer.

We can think of a transformer as a LEGO® set of building blocks we can assemble as we see fit 

using encoder-only or decoder-only stacks. We can use a set of small, large, or extra-large (XL) 

transformer models.

We can also think of the NLP tasks we have explored in this book as a LEGO® set of solutions in 

a project we must implement. We can assemble two or more NLP tasks to reach our goals, just 

like any other software implementation. We can go from a trial and error search for questions to 

a methodical approach.

In this chapter:
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• We will continue to run QA.ipynb cell by cell to explore the methods described in each 

section.

• We will also use the AllenNLP NER interface to obtain a visual representation of the NER 

and SRL results. You can enter the sentence in the interface by going to https://demo.

allennlp.org/reading-comprehension, then select Named Entity Recognition or Se-

mantic Role Labeling, and enter the sequence. In this chapter, we will take the AllenNLP 

model used into account. We just want to obtain visual representations.

Let’s start by trying to find the right XL transformer model questions for question-answering 

with a NER-first method.

Method 1: NER first
This section will use NER to help us find ideas for good questions. Transformer models are con-

tinuously trained and updated. Also, the datasets used for training might change. Finally, these 

are not rule-based algorithms that produce the same result each time. The outputs might change 

from one run to another. NER can detect people, locations, organizations, and other entities in a 

sequence. We will first run a NER task that will give us some of the main parts of the paragraph 

we can focus on to ask questions.

Using NER to find questions
We will continue to run QA.ipynb cell by cell. The program now initializes the pipeline with the 

NER task to perform with the default model and tokenizer:

nlp_ner = pipeline("ner")

We will continue to use the deceptively simple sequence we ran in the Method 0: Trial and error 

section of this chapter:

sequence = "The traffic began to slow down on Pioneer Boulevard in Los 
Angeles, making it difficult to get out of the city. However, WBGO was 
playing some cool jazz, and the weather was cool, making it rather 
pleasant to be making it out of the city on this Friday afternoon. Nat 
King Cole was singing as Jo and Maria slowly made their way out of LA and 
drove toward Barstow. They planned to get to Las Vegas early enough in the 
evening to have a nice dinner and go see a show."

We run the nlp_ner cell in QA.ipynb:

print(nlp_ner(sequence))

https://demo.allennlp.org/reading-comprehension
https://demo.allennlp.org/reading-comprehension
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The output generates the result of the NLP tasks. The scores were rounded up to two decimal 

places to fit the width of the page:

[{'word': 'Pioneer', 'score': 0.97, 'entity': 'I-LOC', 'index': 8}, 

{'word': 'Boulevard', 'score': 0.99, 'entity': 'I-LOC', 'index': 9}, 

{'word': 'Los', 'score': 0.99, 'entity': 'I-LOC', 'index': 11}, 

{'word': 'Angeles', 'score': 0.99, 'entity': 'I-LOC', 'index': 12}, 

{'word': 'W', 'score': 0.99, 'entity': 'I-ORG', 'index': 26}, 

{'word': '##B', 'score': 0.99, 'entity': 'I-ORG', 'index': 27}, 

{'word': '##G', 'score': 0.98, 'entity': 'I-ORG', 'index': 28}, 

{'word': '##O', 'score': 0.97, 'entity': 'I-ORG', 'index': 29}, 

{'word': 'Nat', 'score': 0.99, 'entity': 'I-PER', 'index': 59}, 

{'word': 'King', 'score': 0.99, 'entity': 'I-PER', 'index': 60}, 

{'word': 'Cole', 'score': 0.99, 'entity': 'I-PER', 'index': 61}, 

{'word': 'Jo', 'score': 0.99, 'entity': 'I-PER', 'index': 65}, 

{'word': 'Maria', 'score': 0.99, 'entity': 'I-PER', 'index': 67},

{'word': 'LA', 'score': 0.99, 'entity': 'I-LOC', 'index': 74}, 

{'word': 'Bar', 'score': 0.99, 'entity': 'I-LOC', 'index': 78}, 

{'word': '##sto', 'score': 0.85, 'entity': 'I-LOC', 'index': 79}, 

{'word': '##w', 'score': 0.99, 'entity': 'I-LOC', 'index': 80}, 

{'word': 'Las', 'score': 0.99 'entity': 'I-LOC', 'index': 87}, 

{'word': 'Vegas', 'score': 0.9989519715309143, 'entity': 'I-LOC', 'index': 
88}]

The documentation of Hugging Face describes the labels used. In our case, the main ones are:

• I-PER, the name of a person

• I-ORG, the name of an organization

• I-LOC, the name of a location

The result is correct. Note that Barstow was split into three tokens.

Let’s run the same sequence on AllenNLP in the Named Entity Recognition section (https://demo.

allennlp.org/named-entity-recognition) to obtain a visual representation of our sequence:

https://demo.allennlp.org/named-entity-recognition
https://demo.allennlp.org/named-entity-recognition
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Figure 11.1: NER

We can see that NER has highlighted the key entities we will use to create questions for ques-

tion-answering.

Let’s ask our transformer two types of questions:

• Questions related to locations

• Questions related to persons

Let’s begin with location questions.

Location entity questions
QA.ipynb produced nearly 20 entities. The location entities are particularly interesting:

[{'word': 'Pioneer', 'score': 0.97, 'entity': 'I-LOC', 'index': 8}, 

{'word': 'Boulevard', 'score': 0.99, 'entity': 'I-LOC', 'index': 9}, 

{'word': 'Los', 'score': 0.99, 'entity': 'I-LOC', 'index': 11}, 

{'word': 'Angeles', 'score': 0.99, 'entity': 'I-LOC', 'index': 12}, 

{'word': 'LA', 'score': 0.99, 'entity': 'I-LOC', 'index': 74}, 
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{'word': 'Bar', 'score': 0.99, 'entity': 'I-LOC', 'index': 78}, 

{'word': '##sto', 'score': 0.85, 'entity': 'I-LOC', 'index': 79}, 

{'word': '##w', 'score': 0.99, 'entity': 'I-LOC', 'index': 80}, 

{'word': 'Las', 'score': 0.99 'entity': 'I-LOC', 'index': 87}, 

{'word': 'Vegas', 'score': 0.9989519715309143, 'entity': 'I-LOC', 'index': 
88}]

Applying heuristics
We can apply heuristics, a method, to create questions with the output QA.ipynb generated:

• Merge the locations back into their original form with a parser

• Apply a template to the locations

It is beyond the scope of this book to write classical code for a project. We could write a function 

that would do the work for us, as shown in this pseudocode:

for i in range beginning of output to end of the output:

    filter records containing I-LOC

    merge the I-LOCs that fit together

    save the merged I-LOCs for questions-answering

The NER output would become:

• I-LOC, Pioneer Boulevard

• I-LOC, Los Angeles

• I-LOC, LA

• I-LOC, Barstow

• I-LOC, Las Vegas

We could then generate questions automatically with two templates. For example, we could 

apply a random function. We could write a function that would do the job for us, as shown in 

the following pseudocode:

from the first location to the last location:

    choose randomly:

        Template 1: Where is [I-LOC]?

        Template 2: Where is [I-LOC] located?
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We would obtain five questions automatically. For example:

Where is Pioneer Boulevard?

Where is Los Angeles located?

Where is LA?

Where is Barstow?

Where is Las Vegas located?

We know that some of these questions cannot be directly answered with the sequence we created. 

But we can also manage that automatically. Suppose the questions were created automatically 

with our method:

1. Enter a sequence

2. Run NER

3. Create the questions automatically

Let’s suppose the questions were created automatically and let’s run them:

nlp_qa = pipeline('question-answering')

print("Question 1.",nlp_qa(context=sequence, question='Where is Pioneer 
Boulevard ?'))

print("Question 2.",nlp_qa(context=sequence, question='Where is Los 
Angeles located?'))

print("Question 3.",nlp_qa(context=sequence, question='Where is LA ?'))

print("Question 4.",nlp_qa(context=sequence, question='Where is Barstow 
?'))

print("Question 5.",nlp_qa(context=sequence, question='Where is Las Vegas 
located ?'))

The output shows that only Question 1 was answered correctly:

Question 1. {'score': 0.9879662851935791, 'start': 55, 'end': 67, 
'answer': 'Los Angeles,'}

Question 2. {'score': 0.9875189033668121, 'start': 34, 'end': 51, 
'answer': 'Pioneer Boulevard'}

Question 3. {'score': 0.5090435442006118, 'start': 55, 'end': 67, 
'answer': 'Los Angeles,'}

Question 4. {'score': 0.3695214621538554, 'start': 387, 'end': 396, 
'answer': 'Las Vegas'}

Question 5. {'score': 0.21833994202792262, 'start': 355, 'end': 363, 
'answer': 'Barstow.'}
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The output displays the score, the start and end position of the answer, and the answer itself. 

The score of Question 2 is 0.98 in this run, although it wrongly states that Los Angeles in 

Pioneer Boulevard.

What do we do now?

It’s time to control transformers with project management to add quality and decision-making 

functions.

Project management
We will examine four examples, among many others, of how to manage the transformer and the 

hard-coded functions that manage it automatically. We will classify these four project manage-

ment examples into four project levels: easy, intermediate, difficult, and very difficult. Project 

management is not in the scope of this book, so we will briefly go through these four categories:

1. An easy project could be a website for an elementary school. A teacher might be delighted 
by what we have seen. The text could be displayed on an HTML page. The five answers 
to the questions we obtained automatically could be merged with some development 
into five assertions in a fixed format: I-LOC is in I-LOC (for example, Barstow is in 
California). We then add (True, False) under each assertion. All the teacher would 
have to do would be to have an administrator interface that allows the teacher to click 
on the right answers to finalize a multiple-choice questionnaire!

2. An intermediate project could be to encapsulate the transformer’s automatic questions 
and answers in a program that uses an API to check the answers and correct them auto-
matically. The user would see nothing. The process is seamless. The wrong answers the 
transformer made would be stored for further analysis.

3. A difficult project would be implementing an intermediate project in a chatbot with fol-
low-up questions. For example, the transformer correctly places Pioneer Boulevard in 
Los Angeles. A chatbot user might ask a natural follow-up question such as near where 
in LA?. This requires more development.

4. A very difficult project would be a research project that would train the transformer to 
recognize I-LOC entities over millions of records in datasets and output results of real-time 

streaming of map software APIs.

The good news is that we can also find a way to use what we find.

The bad news is that implemented transformers or any AI in real-life projects require powerful 

machines and a tremendous amount of teamwork between project managers, Subject Matter 

Experts (SMEs), developers, and end users.
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Let’s now try person entity questions.

Person entity questions
Let’s start with an easy question for the transformer:

nlp_qa = pipeline('question-answering')

nlp_qa(context=sequence, question='Who was singing ?')

The answer is correct. It states who in the sequence was singing:

{'answer': 'Nat King Cole,'

 'end': 277,

 'score': 0.9653632081862433,

 'start': 264}

We will now ask the transformer a question that requires some thinking because it is not clearly 

stated:

nlp_qa(context=sequence, question='Who was going to Las Vegas ?')

It is impossible to answer that question without taking the sentence apart. The transformer 

makes a big mistake:

{'answer': 'Nat King Cole,'

 'end': 277,

 'score': 0.3568152742800521,

 'start': 264}

The transformer is honest enough to display a score of only 0.35. This score might vary from one 

calculation to another or from one transformer model to another. We can see that the transformer 

faced a semantic labeling problem. Let’s try to do better with person entity questions applying 

an SRL-first method.

Method 2: SRL first
The transformer could not find who was driving to go to Las Vegas and thought it was from Nat 

King Cole instead of Jo and Maria.

What went wrong? Can we see what the transformers think and obtain an explanation? To find 

out, let’s go back to semantic role modeling. If necessary, take a few minutes to review Chapter 

10, Semantic Role Labeling with BERT-Based Transformers.
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Let’s run the same sequence on AllenNLP in the Semantic Role Labeling section, https://demo.

allennlp.org/semantic-role-labeling, to obtain a visual representation of the verb drove in 

our sequence by running the SRL BERT model we used in the previous chapter:

Figure 11.2: SRL run on the text

SRL BERT found 19 frames. In this section, we focus on drove.

We can see the problem. The argument of the verb drove is Jo and Maria. It seems that the 

inference could be made.

Is that true? Let’s ask the question in QA.ipynb:

nlp_qa(context=sequence, question='Who are they?')

Note: The results may vary from one run to another or when AllenNLP updates the 

model versions.

Keep in mind that transformer models keep evolving. The output might vary; how-

ever, the concepts remain the same.

https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/semantic-role-labeling
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The output is correct:

{'answer': 'Jo and Maria',

 'end': 305,

 'score': 0.8486017557290779,

 'start': 293}

Could we find a way to ask the question to obtain the right answer? We will try by paraphrasing 

the question:

nlp_qa(context=sequence, question='Who drove to Las Vegas?')

We obtain a somewhat better result:

{'answer': 'Nat King Cole was singing as Jo and Maria',

 'end': 305,

 'score': 0.35940926070820467,

 'start': 264}

The transformer now understands that Nat King Cole was singing and that Jo and Maria were 

doing something in the meantime.

We still need to go further and find a way to ask better questions.

Let’s try another model.

Question-answering with ELECTRA
Before switching models, we need to know which one we are using:

print(nlp_qa.model)

The output first shows that the model is a DistilBERT model trained on question-answering:

DistilBertForQuestionAnswering((distilbert): DistilBertModel(

The model has 6 layers and 768 features, as shown in layer 6 (the layers are numbered from 0 to n):

(5): TransformerBlock(

          (attention): MultiHeadSelfAttention(

            (dropout): Dropout(p=0.1, inplace=False)

            (q_lin): Linear(in_features=768, out_features=768, bias=True)

            (k_lin): Linear(in_features=768, out_features=768, bias=True)

            (v_lin): Linear(in_features=768, out_features=768, bias=True)
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            (out_lin): Linear(in_features=768, out_features=768, 
bias=True)

We will now try the ELECTRA transformer model. Clark et al. (2020) designed a transformer model 

that improved the Masked Language Modeling (MLM) pretraining method.

In Chapter 3, Fine-Tuning BERT Models, in the Masked language modeling subsection, we saw that 

the BERT model inserts random masked tokens with [MASK] during the training process.

Clark et al. (2020) introduced plausible alternatives with a generator network rather than simply 

using random tokens. BERT models are trained to predict the identities of the (masked) corrupted 

tokens. Clark et al. (2020) trained an ELECTRA model as a discriminator to predict whether the 

masked token was a generated token or not. Figure 11.3 shows how ELECTRA is trained:

Figure 11.3: ELECTRA is trained as a discriminator

Figure 11.3 shows that the original sequence is masked before going through the generator. The 

generator inserts acceptable tokens and not random tokens. The ELECTRA transformer model is 

trained to predict whether a token comes from the original sequence or has been replaced.

The architecture of an ELECTRA transformer model and most of its hyperparameters are the same 

as BERT transformer models.

We now want to see if we can obtain a better result. The next cell to run in QA.ipynb is the ques-

tion-answering cell with an ELECTRA-small-generator:

nlp_qa = pipeline('question-answering', model='google/electra-small-
generator', tokenizer='google/electra-small-generator')

nlp_qa(context=sequence, question='Who drove to Las Vegas ?')

The output is not what we expect:

{'answer': 'to slow down on Pioneer Boulevard in Los Angeles, making it 
difficult to',

 'end': 90,
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 'score': 2.5295573154019736e-05,

 start': 18}

The output might change from one run or transformer model to another; however, the idea 

remains the same.

The output also sends training messages:

- This IS expected if you are initializing ElectraForQuestionAnswering 
from the checkpoint of a model trained on another task or with another 
architecture..

- This IS NOT expected if you are initializing ElectraForQuestionAnswering 
from the checkpoint of a model that you expect to be exactly identical..

You might not like these warning messages and might conclude that this is a bad model. But always 

explore every avenue that is offered to you. ELECTRA might require more training, of course. But 

experiment as much as possible to find new ideas! Then you can decide to train a model further 

or move on to another one.

We must now think of the next steps to take.

Project management constraints
We have not obtained the results we expected with the default DistilBERT and ELECTRA trans-

former models.

There are three main options among other solutions:

• Train DistilBERT and ELECTRA or other models with additional datasets. Training data-

sets is a costly process in real-life projects. The training could last months if new datasets 

need to be implemented and hyperparameters changed. The hardware cost needs to be 

taken into account as well. Furthermore, if the result is unsatisfactory, a project manager 

might shut the project down.

• You can also try ready-to-use transformers, although they might not fit your needs, 

such as the Hugging Face model: https://huggingface.co/transformers/usage.

html#extractive-question-answering.

• Find a way to obtain better results by using additional NLP tasks to help the question-an-

swering model.

In this chapter, we will focus on finding additional NLP tasks to help the default DistilBERT model.

Let’s use SRL to extract the predicates and their arguments.

https://huggingface.co/transformers/usage.html#extractive-question-answering
https://huggingface.co/transformers/usage.html#extractive-question-answering
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Using SRL to find questions
AllenNLP uses the BERT-based model we implemented in the SRL.ipynb notebook in Chapter 10, 

Semantic Role Labeling with BERT-Based Transformers.

Let’s rerun the sequence on AllenNLP in the Semantic Role Labeling section, https://demo.

allennlp.org/semantic-role-labeling, to obtain a visual representation of the predicates in 

the sequence.

We will enter the sequence we have been working on:

The traffic began to slow down on Pioneer Boulevard in Los Angeles, making 
it difficult to get out of the city. However, WBGO was playing some cool 
jazz, and the weather was cool, making it rather pleasant to be making it 
out of the city on this Friday afternoon. Nat King Cole was singing as Jo 
and Maria slowly made their way out of LA and drove toward Barstow. They 
planned to get to Las Vegas early enough in the evening to have a nice 
dinner and go see a show.

The BERT-based model found several predicates. Our goal is to find the properties of SRL outputs 

that could automatically generate questions based on the verbs in a sentence.

We will first list the predicate candidates produced by the BERT model:

verbs={"began," "slow," "making"(1), "playing," "making"(2), "making"(3), 
"singing,",…, "made," "drove," "planned," go," see"}

If we had to write a program, we could start by introducing a verb counter, as shown in the fol-

lowing pseudocode:

def maxcount:

for in range first verb to last verb:

    for each verb

       counter +=1

       if counter>max_count, filter verb

If the counter exceeds the number of acceptable occurrences (max_count), the verb will be ex-

cluded in this experiment. Without further development, it will be too difficult to disambiguate 

multiple semantic roles of the verb’s arguments.

Let’s take made, which is the past tense of make, out of the list as well.

https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/semantic-role-labeling
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Our list is now limited to:

verbs={"began," "slow," "playing," "singing," "drove," "planned," go," 
see"}

If we continued to write a function to filter the verbs, we could look for verbs with lengthy argu-

ments. The verb began has a very long argument:

Figure 11.4: SRL applied to the verb “began”

The argument of began is so long it doesn’t fit in the screenshot. The text version shows how 

difficult it would be to interpret the argument of began:

began: The traffic [V: began] [ARG1: to slow down on Pioneer Boulevard in 
Los Angeles , making it difficult to get out of the city] . However , WBGO 
was playing some cool jazz] , and the weather was cool , making it rather 
pleasant to be making it out of the city on this Friday afternoon . Nat 
King Cole was singing as Jo and Maria slowly made their way out of LA and 
drove toward Barstow . They planned to get to Las Vegas early enough in 
the evening to have a nice dinner and go see a show .

We could add a function to filter verbs that contain arguments that exceed a maximum length:

def maxlength:

for in range first verb to last verb:

    for each verb

       if length(argument of verb)>max_length, filter verb

If the length of one verb’s arguments exceeds a maximum length (max_length), the verb will be 

excluded in this experiment. For the moment, let’s just take began out of the list:

Our list is now limited to:

verbs={ "slow", "playing", "singing", "drove",   "planned"," go"," see"}
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We could add more exclusion rules depending on the project we are working on. We can also 

call the maxlength function again with a very restrictive max_length value to extract potentially 

interesting candidates for our automatic question generator. The verb candidates with the short-

est arguments could be transformed into questions. The verb slow fits the three rules we set: it 

appears only once in the sequence, the arguments are not too long, and it contains some of the 

shortest arguments in the sequence. The AllenNLP visual representation confirms our choice:

Figure 11.5: SRL applied to the verb “slow”

The text output can be easily parsed:

slow: [ARG1: The traffic] began to [V: slow] down [ARG1: on] [ARGM-ADV: 
Pioneer Boulevard] [ARGM-LOC: in Los Angeles] , [ARGM-ADV: making it 
difficult to get out of the city] .

This result and the following outputs may vary with the ever-evolving transformer models, but 

the idea remains the same. The verb slow is identified and this is the key aspect of this SRL output.

We could automatically generate the what template. We will not generate a who template because 

none of the arguments were labeled I-PER (person). We could write a function that manages 

these two possibilities, as shown in the following pseudocode:

def whowhat:

   if NER(ARGi)==I-PER, then:

        template=Who is [VERB]  

   if NER(ARGi)!=I-PER, then:

     template=What is [VERB]

This function would require more work to deal with verb forms and modifiers. However, in this 

experiment, we will just apply the function and generate the following question:

What is slow?
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Let’s run the default pipeline with the following cell:

nlp_qa = pipeline ('question-answering')

nlp_qa(context= sequence, question='What was slow?')

The result is satisfactory:

{'answer': 'The traffic',

'end': 11, 

'score': 0.4652545872921081, 

'start': 0}

The default model, in this case, DistilBERT, correctly answered the question.

Our automatic question generator can do the following:

• Run NER automatically

• Parse the results with classical code

• Generate entity-only questions

• Run SRL automatically

• Filter the results with rules

• Generate SRL-only questions using the NER results to determine which template to use

This solution is by no means complete. More work needs to be done and probably requires ad-

ditional NLP tasks and code. However, it gives an idea of the hard work implementing AI, in any 

form, requires.

Let’s try our approach with the next filter verb: playing. The visual representation shows that 

the arguments are WBGO and some cool jazz:

Figure 11.6: SRL applied to the verb “playing”
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The text version is easy to parse:

playing: The traffic began to slow down on Pioneer Boulevard in Los 
Angeles , making it difficult to get out of the city . [ARGM-DIS: However] 
, [ARG0: WBGO] was [V: playing] [ARG1: some cool jazz]

If we ran the whowhat function, it would show that there is no I-PER in the arguments. The template 

chosen will be the what template, and the following question could be generated automatically:

What is playing?

Let’s run the default pipeline with this question in the following cell:

nlp_qa = pipeline('question-answering')

nlp_qa(context=sequence, question='What was playing')

The output is also satisfactory:

{'answer': 'cool jazz,,'

 'end': 153,

 'score': 0.35047012837950753,

 'start': 143}

singing is a good candidate, and the whowhat function would find the I-PER template and auto-

matically generate the following question:

Who is singing?

We have already successfully tested this question in this chapter.

The next verb is drove, which we have already tagged as a problem. The transformer cannot 

solve this problem.

The verb go is a good candidate:

This result and the following outputs may vary with the ever-evolving transformer 

models, but the idea remains the same: identifying the verb and its arguments.



Chapter 11 303

Figure 11.7: SRL applied to the verb “go”

It would take additional development to produce a template with the correct verb form. Let’s 

suppose the work was done and ask the model the following question:

nlp_qa = pipeline('question-answering')

nlp_qa(context=sequence, question='Who sees a show?')

The output is the wrong argument:

{'answer': 'Nat King Cole,'

 'end': 277,

 'score': 0.5587267250683112,

 'start': 264}

We can see that the presence of Nat King Cole and Jo and Maria in the same sequence in a 

complex sequence creates disambiguation problems for transformer models and any NLP model. 

More project management and research would be required.

Next steps
There is no easy way to implement question-answering or shortcuts. We began to implement 

methods that could generate questions automatically. Automatic question generation is a critical 

aspect of NLP.

More transformer models need to be pretrained with multi-task datasets containing NER, SRL, 

and question-answering problems to solve. Project managers also need to learn how to combine 

several NLP tasks to help solve a specific task, such as question-answering.
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Coreference resolution, https://demo.allennlp.org/coreference-resolution, could have 

helped our model identify the main subjects in the sequence we worked on. This result produced 

with AllenNLP shows an interesting analysis:

Figure 11.8: Coreference resolution of a sequence

We could continue to develop our program by adding the output of coreference resolution:

Set0={'Los Angeles', 'the city,' 'LA'}

Set1=[Jo and Maria, their, they}

We could add coreference resolution as a pretraining task or add it as a post-processing task in the 

question generator. In any case, question generators that simulate human behavior can consid-

erably enhance the performance of question-answering tasks. We will include more customized 

additional NLP tasks in the pretraining process of question-answering models.

Of course, we can decide to use new strategies to pretrain the models we ran in this chapter, such 

as DistilBERT and ELECTRA, and then let users ask the questions they wish. I recommend both 

approaches:

• Work on question generators for question-answering tasks. These questions can be used 

for educational purposes, train transformers, or even provide ideas for real-time users.

• Work on pretraining transformer models by including specific NLP tasks, which will im-

prove their question-answering performance. Use the question generator to train it further.

Exploring Haystack with a RoBERTa model
Haystack is a question-answering framework with interesting functionality. It is worth exploring 

to see if it might fit your needs for a given project.

https://demo.allennlp.org/coreference-resolution
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In this section, we will run question-answering on the sentence we experimented with using 

other models and methods in this chapter.

Open Haystack_QA_Pipeline.ipynb.

The first cell installs the modules necessary to run Haystack:

# Install Haystack

!pip install farm-haystack==0.6.0

# Install specific versions of urllib and torch to avoid conflicts with 
preinstalled versions on Colab

!pip install urllib3==1.25.4

!pip install torch==1.6.0+cu101-f https://download.pytorch.org/whl/torch_
stable.html

The notebook uses a RoBERTa model:

# Load a  local model or any of the QA models on Hugging Face's model hub 
(https://huggingface.co/models)

from haystack.reader.farm import FARMReader

reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_
gpu=True, no_ans_boost=0, return_no_answer=False)

You can go back to Chapter 4, Pretraining a RoBERTa Model from Scratch, for a general description 

of a RoBERTa model.

The remaining cells of the notebook will answer questions on the text we have been exploring 

in detail in this chapter:

text = "The traffic began to slow down on Pioneer Boulevard in…/… have a 
nice dinner and go see a show."

You can compare the answers obtained with the previous sections’ outputs and decide which 

transformer model you would like to implement.

Exploring Q&A with a GTP-3 engine
This section will try to avoid training, fine-tuning, loading a program on a server, or even using 

a dataset. Instead, a user can simply connect to their OpenAI account and use the interactive 

educational interface.

A GPT-3 engine online educational interface will provide sufficiently good answers by providing 

E (explanation) and T (text) as follows:
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E = Answer questions from this text

T = The traffic began to slow down on Pioneer Boulevard in…/… have a nice dinner 

and go see a show.

Here are some questions asked and answers obtained in the form of question-answer:

• Who is going to Las Vegas?: Jo and Maria

• Who was singing?: Nat King Cole

• What kind of music was playing?: jazz

• What was the plan for the evening?: to have a nice dinner and go see a show

That’s it! That’s all you need to do to run a wide range of educational NLP tasks online with an 

interactive interface even without an API with GPT-3 engines.

You can change S (showing GPT-3 what is expected) and E and create endless interactions. The 

next generation of NLP is born! An Industry 4.0 developer, consultant, or project manager will need 

to acquire a new set of skills: cognitive approaches, linguistics, psychology, and other cross-dis-

ciplinary dimensions. If necessary, you can take your time and go back to Chapter 7, The Rise of 

Suprahuman Transformers with GPT-3 Engines.

We have explored some critical aspects of the use of question-answering with transformers. Let’s 

sum up the work we have done.

Summary
In this chapter, we found that question-answering isn’t as easy as it seems. Implementing a 

transformer model only takes a few minutes. However, getting it to work can take a few hours 

or several months!

We first asked the default transformer in the Hugging Face pipeline to answer some simple ques-

tions. DistilBERT, the default transformer, answered the simple questions quite well. However, 

we chose easy questions. In real life, users ask all kinds of questions. The transformer can get 

confused and produce erroneous output.

We then decided to continue to ask random questions and get random answers, or we could begin 

to design the blueprint of a question generator, which is a more productive solution.

We started by using NER to find useful content. We designed a function that could automatically 

create questions based on NER output. The quality was promising but required more work.
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We tried an ELECTRA model that did not produce the results we expected. We stopped for a few 

minutes to decide if we would spend costly resources to train transformer models or design a 

question generator.

We added SRL to the blueprint of the question generator and tested the questions it could produce. 

We also added NER to the analysis and generated several meaningful questions. The Haystack 

framework was also introduced to discover other ways of addressing question-answering with 

RoBERTa.

Finally, we ran an example using a GPT-3 engine directly in the OpenAI educational interactive 

interface without an API. Cloud AI platforms are increasing in power and accessibility.

Our experiments led to one conclusion: multi-task transformers will provide better performance 

on complex NLP tasks than a transformer trained on a specific task. Implementing transformers 

requires well-prepared multi-task training, heuristics in classical code, and a question generator. 

The question generator can be used to train the model further by using the questions as training 

input data or as a standalone solution.

In the next chapter, Detecting Customer Emotions to Make Predictions, we will explore how to im-

plement sentiment analysis on social media feedback.

Questions
1. A trained transformer model can answer any question. (True/False)

2. Question-answering requires no further research. It is perfect as it is. (True/False)

3. Named Entity Recognition (NER) can provide useful information when looking for mean-

ingful questions. (True/False)

4. Semantic Role Labeling (SRL) is useless when preparing questions. (True/False)

5. A question generator is an excellent way to produce questions. (True/False)

6. Implementing question answering requires careful project management. (True/False)

7. ELECTRA models have the same architecture as GPT-2. (True/False)

8. ELECTRA models have the same architecture as BERT but are trained as discriminators. 

(True/False)

9. NER can recognize a location and label it as I-LOC. (True/False)

10. NER can recognize a person and label that person as I-PER. (True/False)
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Detecting Customer Emotions 
to Make Predictions

Sentiment analysis relies on the principle of compositionality. How can we understand a whole 

sentence if we cannot understand parts of a sentence? Is this tough task possible for NLP trans-

former models? We will try several transformer models in this chapter to find out.

We will start with the Stanford Sentiment Treebank (SST). The SST provides datasets with com-

plex sentences to analyze. It is easy to analyze sentences such as The movie was great. However, 

what happens if the task becomes very tough with complex sentences such as Although the 

movie was a bit too long, I really enjoyed it.? This sentence is segmented. It forces a 

transformer model to understand the structure of the sequence and its logical form.

We will then test several transformer models with complex sentences and simple sentences. We 

will find that no matter which model we try, it will not work if it isn’t trained enough. Transformer 

models are like us. They are students that need to work hard to learn and try to reach real-life 

human baselines.

Running DistilBERT, RoBERTa-large, BERT-base, MiniLM-L12-H84-uncased, and BERT-base 

multilingual models is fun! However, we will discover that some of these students require more 

training, just like we would.

Along the way, we will see how to use the output of the sentiment tasks to improve customer 

relationships and see a nice five-star interface you could implement on your website.

Finally, we will use GPT-3’s online interface for sentiment analysis with an OpenAI account. No 

AI development or API is required!
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This chapter covers the following topics:

• The SST for sentiment analysis

• Defining compositionality for long sequences

• Sentiment analysis with AllenNLP (RoBERTa)

• Running complex sentences to explore the new frontier of transformers

• Using Hugging Face sentiment analysis models

• DistilBERT for sentiment analysis

• Experimenting with MiniLM-L12-H384-uncased

• Exploring RoBERTa-large-mnli

• Looking into a BERT-base multilingual model

• Sentiment analysis with GPT-3

Let’s begin by going through the SST.

Getting started: Sentiment analysis transformers
This section will first explore the SST that the transformers will use to train models on sentiment 

analysis.

We will then use AllenNLP to run a RoBERTa-large transformer.

The Stanford Sentiment Treebank (SST)
Socher et al. (2013) designed semantic word spaces over long phrases. They defined principles 

of compositionality applied to long sequences. The principle of compositionality means that an 

NLP model must examine the constituent expressions of a complex sentence and the rules that 

combine them to understand the meaning of a sequence.

Let’s take a sample from the SST to grasp the meaning of the principle of compositionality.

This section and chapter are self-contained, so you can choose to perform the actions described 

or read the chapter and view the screenshots provided.

Go to the interactive sentiment treebank: https://nlp.stanford.edu/sentiment/treebank.

html?na=3&nb=33.

https://nlp.stanford.edu/sentiment/treebank.html?na=3&nb=33
https://nlp.stanford.edu/sentiment/treebank.html?na=3&nb=33
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You can make the selections you wish. Graphs of sentiment trees will appear on the page. Click 

on an image to obtain a sentiment tree:

Figure 12.1: Graphs of sentiment trees

For this example, I clicked on graph number 6, which contains a sentence mentioning Jacques 

Derrida, a pioneer in deconstruction theories in linguistics. A long, complex sen-

tence appears:

Whether or not you're enlightened by any of Derrida's lectures on the other and 

the self, Derrida is an undeniably fascinating and playful fellow.

Socher et al. (2013) worked on compositionality in vector spaces and logic forms.

For example, defining the rule of logic that governs the Jacques Derrida sample implies an un-

derstanding of the following:

• How the words Whether, or, and not and the comma that separates the Whether phrase 

from the rest of the sentence can be interpreted

• How to understand the second part of the sentence after the comma with yet another and!

Once the vector space was defined, Socher et al. (2013) could produce complex graphs representing 

the principle of compositionality.
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We can now view the graph section by section. The first section is the Whether segment of the 

sentence:

Figure 12.2: The “Whether” segment of a complex sentence
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The sentence has been correctly split into two main parts. The second segment is also correct:

Figure 12.3: The main segment of a complex sentence
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We can draw several conclusions from the method Socher et al. (2013) designed:

• Sentiment analysis cannot be reduced to counting positive and negative words in a sen-

tence

• A transformer model or any NLP model must be able to learn the principle of compo-

sitionality to understand how the constituents of a complex sentence fit together with 

logical form rules

• A transformer model must be able to build a vector space to interpret the subtilities of a 

complex sentence

We will now put this theory into practice with a RoBERTa-large model.

Sentiment analysis with RoBERTa-large
In this section, we will use the AllenNLP resources to run a RoBERTa-large transformer. Liu et 

al. (2019) analyzed the existing BERT models and found that they were not trained as well as 

expected. Considering the speed at which the models were produced, this was not surprising. 

They worked on improving the pretraining of BERT models to produce a Robustly Optimized 

BERT Pretraining Approach (RoBERTa).

Let’s first run a RoBERTa-large model in SentimentAnalysis.ipynb.

Run the first cell to install allennlp-models:

!pip install allennlp==1.0.0 allennlp-models==1.0.0

Now let’s try to run our Jacques Derrida sample:

!echo '{"sentence": "Whether or not you're enlightened by any of Derrida's 
lectures on the other and the self, Derrida is an undeniably fascinating 
and playful fellow."}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
sst-roberta-large-2020.06.08.tar.gz -

The output first displays the architecture of the RoBERTa-large model, which has 24 layers and 

16 attention heads:

"architectures": [

  "RobertaForMaskedLM"

  ],

  "attention_probs_dropout_prob": 0.1,
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  "bos_token_id": 0,

  "eos_token_id": 2,

  "hidden_act": "gelu",

  "hidden_dropout_prob": 0.1,

  "hidden_size": 1024,

  "initializer_range": 0.02,

  "intermediate_size": 4096,

  "layer_norm_eps": 1e-05,

  "max_position_embeddings": 514,

  "model_type": "roberta",

  "num_attention_heads": 16,

  "num_hidden_layers": 24,

  "pad_token_id": 1,

  "type_vocab_size": 1,

  "vocab_size": 50265

}

If necessary, you can take a few minutes to go through the description of a BERT architecture in 

the BERT model configuration section in Chapter 3, Fine-Tuning BERT Models, to take full advantage 

of this model.

Sentiment analysis produces values between 0 (negative) and 1 (positive).

The output then produces the result of the sentiment analysis task, displaying the output logits 

and the final positive result:

prediction:  {"logits": [3.646597385406494, -2.9539334774017334], "probs": 
[0.9986421465873718, 0.001357800210826099]

The output also contains the token IDs (which may vary from one run to another) and the final 

output label:

"token_ids": [0, 5994, 50, 45, 47, 769, 38853, 30, 143, 9, 6113, 10505, 
281, 25798, 15, 5, 97, 8, 5, 1403, 2156, 211, 14385, 4347, 16, 41, 35559, 
12509, 8, 23317, 2598, 479, 2], "label": "1",

Note: The algorithm is stochastic so the ouputs may vary from one run to another.
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The output also displays the tokens themselves:

"tokens": ["<s>", "\u0120Whether", "\u0120or", "\u0120not", "\u0120you", 
"\u0120re", "\u0120enlightened", "\u0120by", "\u0120any", "\u0120of", "\
u0120Der", "rid", "as", "\u0120lectures", "\u0120on", "\u0120the", "\
u0120other", "\u0120and", "\u0120the", "\u0120self", "\u0120,", "\
u0120D", "err", "ida", "\u0120is", "\u0120an", "\u0120undeniably", "\
u0120fascinating", "\u0120and", "\u0120playful", "\u0120fellow", "\
u0120.", "</s>"]}

Take some time to enter some samples to explore the well-designed and pretrained RoBERTa 

model.

Now let’s see how we can use sentiment analysis to predict customer behavior with other trans-

former models.

Predicting customer behavior with sentiment analysis
This section will run a sentiment analysis task on several Hugging Face transformer models to 

see which ones produce the best results and which ones we simply like the best.

We will begin this by using a Hugging Face DistilBERT model.

Sentiment analysis with DistilBERT
Let’s run a sentiment analysis task with DistilBERT and see how we can use the result to predict 

customer behavior.

Open SentimentAnalysis.ipynb and the transformer installation and import cells:

!pip install -q transformers

from transformers import pipeline

We will now create a function named classify, which will run the model with the sequences 

we send to it:

def classify(sequence,M):

   #DistilBertForSequenceClassification(default model)

    nlp_cls = pipeline('sentiment-analysis')

    if M==1:

      print(nlp_cls.model.config)

    return nlp_cls(sequence)
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Note that if you send M=1 to the function, it will display the configuration of the DistilBERT 6-layer, 

12-head model we are using:

DistilBertConfig {

  "activation": "gelu",

  "architectures": [

    "DistilBertForSequenceClassification"

  ],

  "attention_dropout": 0.1,

  "dim": 768,

  "dropout": 0.1,

  "finetuning_task": "sst-2",

  "hidden_dim": 3072,

  "id2label": {

    "0": "NEGATIVE",

    "1": "POSITIVE"

  },

  "initializer_range": 0.02,

  "label2id": {

    "NEGATIVE": 0,

    "POSITIVE": 1

  },

  "max_position_embeddings": 512,

  "model_type": "distilbert",

  "n_heads": 12,

  "n_layers": 6,

  "output_past": true,

  "pad_token_id": 0,

  "qa_dropout": 0.1,

  "seq_classif_dropout": 0.2,

  "sinusoidal_pos_embds": false,

  "tie_weights_": true,

  "vocab_size": 30522

}

The specific parameters of this DistilBERT model are the label definitions.
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We now create a list of sequences (you can add more) that we can send to the classify function:

seq=3

if seq==1:

  sequence="The battery on my Model9X phone doesn't last more than 6 hours 
and I'm unhappy about that."

if seq==2:

  sequence="The battery on my Model9X phone doesn't last more than 6 hours 
and I'm unhappy about that. I was really mad! I bought a Moel10x and 
things seem to be better. I'm super satisfied now."

if seq==3:

  sequence="The customer was very unhappy"

if seq==4:

  sequence="The customer was very satisfied"

print(sequence)

M=0 #display model cofiguration=1, default=0

CS=classify(sequence,M)

print(CS) 

In this case, seq=3 is activated to simulate a customer issue we need to take into account. The 

output is negative, which is the example we are looking for:

[{'label': 'NEGATIVE', 'score': 0.9997098445892334}]

We can draw several conclusions from this result to predict customer behavior by writing a func-

tion that would:

• Store the predictions in the customer management database.

• Count the number of times a customer complains about a service or product in a period 

(week, month, year). A customer that complains often might switch to a competitor to 

get a better product or service.

• Detect the products and services that keep occurring in negative feedback messages. The 

product or service might be faulty and require quality control and improvements.

You can take a few minutes to run other sequences or create some sequences to explore the Dis-

tilBERT model.

We will now explore other Hugging Face transformers.
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Sentiment analysis with Hugging Face’s models’ list
This section will explore Hugging Face’s transformer models list and enter some samples to 

evaluate their results. The idea is to test several models, not only one, and see which model fits 

your need the best for a given project.

We will be running Hugging Face models: https://huggingface.co/models.

For each model we use, you can find the description of the model in the documentation provided 

by Hugging Face: https://huggingface.co/transformers/.

We will test several models. If you implement them, you might find that they require fine-tuning 

or even pretraining for the NLP tasks you wish to perform. In that case, for Hugging Face trans-

formers, you can do the following:

• For fine-tuning, you can refer to Chapter 3, Fine-Tuning BERT Models

• For pretraining, you can refer to Chapter 4, Pretraining a RoBERTa Model from Scratch

Let’s first go through the list of Hugging Face models: https://huggingface.co/models.

Then, select Text Classification in the Tasks pane:

Figure 12.4: Selecting text classification models

https://huggingface.co/models
https://huggingface.co/transformers/
https://huggingface.co/models
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A list of transformer models trained for text classification will appear:

Figure 12.5: Hugging Face pretrained text-classification models

The default sort mode is Sort: Most downloads.

We will now search for some exciting transformer models we can test online.

We will begin with DistilBERT.

DistilBERT for SST
The distilbert-base-uncased-finetuned-sst-2-english model was fine-tuned on the SST.

Let’s try an example that requires a good understanding of the principles of compositionality:

"Though the customer seemed unhappy, she was, in fact satisfied but thinking of 
something else at the time, which gave a false impression."

This sentence is tough for a transformer to analyze and requires logical rule training.
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The output is a false negative:

Figure 12.6: The output of a complex sequence classification task

A false negative does not mean that the model is not working correctly. We could choose another 

model. However, it could mean that we must download and train it longer and better!

At the time of writing this book, BERT-like models have good rankings on both the GLUE and 

SuperGLUE leaderboards. The rankings will continuously change but not the fundamental con-

cepts of transformers.

We will now try a difficult but less complicated example.

This example is a crucial lesson for real-life projects. When we try to estimate how many times 

a customer complained, we will get both false negatives and false positives. Therefore, regular 

human intervention will still be mandatory for several more years.

Let’s give a MiniLM model a try.
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MiniLM-L12-H384-uncased
Microsoft/MiniLM-L12-H384-uncased optimizes the size of the last self-attention layer of the 

teacher, among other tweakings of a BERT model, to obtain better performances. It has 12 layers, 

12 heads, and 33 million parameters, and is 2.7 times faster than BERT-base.

Let’s test it for its capacity to understand the principles of compositionality:

Though the customer seemed unhappy, she was, in fact satisfied but thinking of 

something else at the time, which gave a false impression.

The output is interesting because it produces a careful split (undecided) score:

Figure 12.7: Complex sentence sentiment analysis

We can see that this output is not conclusive since it is around 0.5. It should be positive.

Let’s try a model involving entailment.
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RoBERTa-large-mnli
A Multi-Genre Natural Language Inference (MultiNLI) task, https://cims.nyu.edu/~sbowman/

multinli/, can help solve the interpretation of a complex sentence when we are trying to deter-

mine what a customer means. Inference tasks must determine whether a sequence entails the 

following one or not.

We need to format our input and split the sequence with sequence splitting tokens:

Though the customer seemed unhappy</s></s> she was, in fact satisfied but thinking 
of something else at the time, which gave a false impression

The result is interesting, although it remains neutral:

Figure 12.8: The neutral result obtained for a slightly positive sentence

However, there is no mistake in this result. The second sequence is not inferred from the first 

sequence. The result is carefully correct.

Let’s finish our experiments on a “positive sentiment” multilingual BERT-base model.

https://cims.nyu.edu/~sbowman/multinli/
https://cims.nyu.edu/~sbowman/multinli/
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BERT-base multilingual model
Let’s run our final experiment on a super cool BERT-base model: nlptown/bert-base-

multilingual-uncased-sentiment.

It is very well-designed.

Let’s run it with a friendly and positive sentence in English:

Figure 12.9: Sentiment analysis in English
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Let’s try it in French with "Ce modèle est super bien!" ("this model is super good," 

meaning "cool"):

Figure 12.10: Sentiment analysis in French

The path of this model for Hugging Face is nlptown/bert-base-multilingual-uncased-

sentiment. You can find it in the search form on the Hugging Face website. Its present link is 
https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment?text=Ce

+mod%C3%A8le+est+super+bien%21.

https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment?text=Ce+mod%C3%A8le+est+super+bien%21
https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment?text=Ce+mod%C3%A8le+est+super+bien%21
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You can implement it on your website with the following initialization code:

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-
uncased-sentiment")

model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-
base-multilingual-uncased-sentiment")

It will take some time and patience, but the result could be super cool!

You could implement this transformer on your website to average out the global satisfaction of 

your customers! You could also use it as continuous feedback to improve your customer service 

and anticipate customer reactions.

Before we leave, we will see how GPT-3 performs sentiment analysis.

Sentiment analysis with GPT-3
You will need an OpenAI account to run the examples in this section. The educational interface 

requires no API, no development, or training. You can simply enter some tweets, for example, and 

ask for sentiment analysis:

Tweet: I didn't find the movie exciting, but somehow I really enjoyed watching it!

Sentiment: Positive

Tweet: I never ate spicy food like this before but find it super good!

Sentiment: Positive

The outputs are satisfactory.

We will now submit a difficult sequence to the GPT-3 engine:

Tweet: It's difficult to find what we really enjoy in life because of all of the 

parameters we have to take into account.

Sentiment: Positive

The output is false! The sentiment is not positive at all. The sentence shows the difficulty of life. 

However, the word enjoy introduced bias for GPT-3.



Chapter 12 327

If we take enjoy out of the sequence and replace it with the verb are, the output is negative:

Tweet: It's difficult to find what we really are in life because of all of the 
parameters we have to take into account.

Sentiment: Negative

The output is false also! It’s not because life is difficult to figure out that we can conclude that the 

sentence is negative. The correct output should have been neutral. Then we could ask GPT-3 to 

perform another task to explain why it is difficult in a pipeline, for example.

Running NLP tasks as a user with nothing to do shows where Industry 4.0 (I4.0) is going: less 

human intervention and more automatic functionality. However, we know that some situations 

require our new skills, such as designing preprocessing functions when the transformer doesn’t produce 

the expected result. Humans are still useful!

An example of tweet classification with ready-to-use code is described in the Running OpenAI 

GPT-3 Tasks section of Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines. You 

can implement the examples of this section in that code if you wish.

Let’s now see how we can still prove ourselves valuable assets.

Some Pragmatic I4.0 thinking before we leave
The sentiment analysis with Hugging Face transformers contained a sentence that came out as 

“neutral.”

But is that true? 

Labeling this sentence “neutral” bothered me. I was curious to see if OpenAI GPT-3 could do better. 

After all, GPT-3 is a foundation model that can theoretically do many things it wasn’t trained for.

I examined the sentence again:

Though the customer seemed unhappy, she was, in fact, satisfied but thinking of 

something else at the time, which gave a false impression.

When I read the sentence closely, I could see that the customer is she. When I looked deeper, I 

understood that she is in fact satisfied. I decided not to try models blindly until I reached 

one that works. Trying one model after the other is not productive.
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I needed to get to the root of the problem using logic and experimentation. I didn’t want to rely on 

an algorithm that would find the reason automatically. Sometimes we need to use our neurons!

Could the problem be that it is difficult to identify she as the customer for a machine? As we did 

in Chapter 10, Semantic Role Labeling with BERT-Based Transformers, let’s ask SRL BERT.

Investigating with SRL
Chapter 10 ended with my recommendation to use SRL with other tools, which we are doing now.

I first ran She was satisfied using the Semantic Role Labeling interface on https://demo.

allennlp.org/.

The result was correct:

Figure 12.11: SRL of a simple sentence

The analysis is clear in the frame of this predicate: was is the verb, She is ARG1, and satisfied 

is ARG2.

We should find the same analysis in a complex sentence, and we do:

Figure 12.12: The verb “satisfied” is merged with other words, causing confusion

Satisfied is still ARG2, so the problem might not be there.

https://demo.allennlp.org/
https://demo.allennlp.org/
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Now, the focus is on ARGM-ADV, which modifies was as well. The word false is quite misleading 

because ARGM-ADV is relative to ARG2, which contains thinking.

The thinking predicate gave a false impression, but thinking is not identified as a predicate 

in this complex sentence. Could it be that she was is an unidentified ellipsis, as we saw in the 

Questioning the scope of SRL section of Chapter 10?

We can quickly verify that by entering the full sentence without an ellipsis:

Though the customer seemed unhappy, she was, in fact, satisfied but she was thinking 

of something else at the time, which gave a false impression.

The problem with SRL was the ellipsis again, as we saw in Chapter 10. We now have five correct 

predicates with five accurate frames.

Frame 1 shows that unhappy is correctly related to seemed:

Figure 12.13: “Unhappy” is correctly related to “seemed”

Frame 2 shows that satisfied is now separated from the sentence and individually identified as 

an argument of was in a complex sentence:

Figure 12.14: “satisfied” is now a separate word in ARG2

Now, let’s go straight to the predicate containing thinking, which is the verb we wanted BERT 

SRL to analyze correctly. Now that we suppressed the ellipsis and repeated “she was” in the 

sentence, the output is correct:

Figure 12.15: Accurate output without an ellipsis
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Now, we can leave our SRL investigation with two clues:

• The word false is a confusing argument for an algorithm to relate to other words in a 

complex sentence

• The ellipsis of the repetition of she was

Before we go to GPT-3, let’s go back to Hugging Face with our clues.

Investigating with Hugging Face
Let’s go back to the DistilBERT base uncased fine-tuned SST-2 model we used in this chapter’s 

DistilBERT for SST section.

We will investigate our two clues:

• The ellipsis of she was

We will first submit a full sentence with no ellipsis:

Though the customer seemed unhappy, she was, in fact, satisfied but she 

was thinking of something else at the time, which gave a false impression

The output remains negative:

Figure 12.16: A false negative
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• The presence of false in an otherwise positive sentence.

We will now take false out of the sentence but leave the ellipsis:

Though the customer seemed unhappy, she was, in fact, satisfied but thinking 

of something else at the time, which gave an impression

Bingo! The output is positive:

Figure 12.17: A true positive

We know that the word false creates confusion for SRL if there is an ellipsis of was thinking. 

We also know that false creates confusion for the sentiment analysis Hugging Face transformer 

model we used.

Can GPT-3 do better? Let’s see.
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Investigating with the GPT-3 playground
Let’s use the OpenAI’s example of an Advanced tweet classifier and modify it to satisfy our in-

vestigation in three steps:

• Step 1: Showing GPT-3 what we expect:

Sentence: "The customer was satisfied" 

Sentiment: Positive 

Sentence: "The customer was not satisfied" 

Sentiment: Negative 

Sentence: "The service was " 

Sentiment: Positive

Sentence: "This is the link to the review" 

Sentiment: Neutral 

• Step 2: Showing it a few examples of the output format we expect:

1. "I loved the new Batman movie!"

2. "I hate it when my phone battery dies"

3. "My day has been "

4. "This is the link to the article"

5. "This new music video blew my mind"

Sentence sentiment ratings:

1: Positive

2: Negative

3: Positive

4: Neutral

5: Positive
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• Step 3: Entering our sentence among others (number 3):

1. "I can't stand this product"

2. "The service was bad! "

3. "Though the customer seemed unhappy she was in fact satisfied but thinking 
of something else at the time, which gave a false impression"

4. "The support team was "

5. "Here is the link to the product."

Sentence sentiment ratings:

1: Negative

2: Positive

3: Positive

4: Positive

5: Neutral

The output seems satisfactory since our sentence is positive (number 3). Is this result reliable? 

We could run the example here several times. But let’s go down to code level to find out.

GPT-3 code
We just click on View code in the playground, copy it, and paste it into our SentimentAnalysis.

ipynb chapter notebook. We add a line to only print what we want to see:

response = openai.Completion.create(

  engine="davinci",

  prompt="This is a Sentence sentiment classifier\nSentence: \"The 
customer was satisfied\"\nSentiment: Positive\n###\nSentence: \"The 
customer was not satisfied\"\nSentiment: Negative\n###\nSentence: \"The 
service was \"\nSentiment: Positive\n###\nSentence: \"This is the link 
to the review\"\nSentiment: Neutral\n###\nSentence text\n\n\n1. \"I loved 
the new Batman movie!\"\n2. \"I hate it when my phone battery dies\"\
n3. \"My day has been \"\n4. \"This is the link to the article\"\n5. 
\"This new music video blew my mind\"\n\n\nSentence sentiment ratings:\
n1: Positive\n2: Negative\n3: Positive\n4: Neutral\n5: Positive\n\n\n###\
nSentence text\n\n\n1. \"I can't stand this product\"\n2. \"The service 
was bad! \"\n3. \"Though the customer seemed unhappy she was in fact 
satisfied but thinking of something else at the time, which gave a false 
impression\"\n4. \"The support team was \"\n5. \"Here is the link to 
the product.\"\n\n\nSentence sentiment ratings:\n",
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  temperature=0.3,

  max_tokens=60,

  top_p=1,

  frequency_penalty=0,

  presence_penalty=0,

  stop=["###"]

)

r = (response["choices"][0])

print(r["text"])

The output is not stable, as we can see in the following responses:

• Run 1: Our sentence (number 3) is neutral:

1: Negative

2: Negative

3: Neutral

4: Positive

5: Positive

• Run 2: Our sentence (number 3) is positive:

1: Negative

2: Negative

3: Positive

4: Positive

5: Neutral

• Run 3: Our sentence (number 3) is positive

• Run 4: Our sentence (number 3) is negative

This leads us to the conclusions of our investigation:

• SRL shows that if a sentence is simple and complete (no ellipsis, no missing words), we 

will get a reliable sentiment analysis output.

• SRL shows that if the sentence is moderately difficult, the output might, or might not, 

be reliable.
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• SRL shows that if the sentence is complex (ellipsis, several propositions, many ambiguous 

phrases to solve, and so on), the result is not stable, and therefore not reliable.

The conclusions of the job positions of developers in the present and future are:

• Less AI development will be required with Cloud AI and ready-to-use modules.

• More design skills will be required.

• Classical development of pipelines to feed AI algorithms, control them, and analyze their 

outputs will require thinking and targeted development.

This chapter shows a huge future for developers as thinkers, designers, and pipeline development!

It’s now time to sum up our journey and explore new transformer horizons.

Summary
In this chapter, we went through some advanced theories. The principle of compositionality is not 

an intuitive concept. The principle of compositionality means that the transformer model must 

understand every part of the sentence to understand the whole sentence. This involves logical 

form rules that will provide links between the sentence segments.

The theoretical difficulty of sentiment analysis requires a large amount of transformer model 

training, powerful machines, and human resources. Although many transformer models are 

trained for many tasks, they often require more training for specific tasks.

We tested RoBERTa-large, DistilBERT, MiniLM-L12-H384-uncased, and the excellent BERT-base 

multilingual model. We found that some provided interesting answers but required more training 

to solve the SST sample we ran on several models.

Sentiment analysis requires a deep understanding of a sentence and extraordinarily complex 

sequences. So, it made sense to try RoBERTa-large-mnli to see what an interference task would 

produce. The lesson here is not to be conventional with something as unconventional as trans-

former models! Try everything. Try different models on various tasks. Transformers’ flexibility 

allows us to try many different tasks on the same model or the same task on many different models.

We gathered some ideas along the way to improve customer relations. If we detect that a customer 

is unsatisfied too often, that customer might just seek out our competition. If several custom-

ers complain about a product or service, we must anticipate future problems and improve our 

services. We can also display our quality of service with online real-time representations of a 

transformer’s feedback.
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Finally, we ran sentiment analysis with GPT-3 directly online with nothing to do but use the 

interface! It’s surprisingly effective, but we see that humans are still required to solve the more 

difficult sequences. We saw how SRL could help identify the issues in complex sequences.

We can conclude that developers have a huge future as thinkers, designers, and pipeline devel-

opment.

In the next chapter, Analyzing Fake News with Transformers, we’ll use sentiment analysis to analyze 

emotional reactions to fake news.

Questions
1. It is not necessary to pretrain transformers for sentiment analysis. (True/False)

2. A sentence is always positive or negative. It cannot be neutral. (True/False)

3. The principle of compositionality signifies that a transformer must grasp every part of a 

sentence to understand it. (True/False)

4. RoBERTa-large was designed to improve the pretraining process of transformer models. 

(True/False)

5. A transformer can provide feedback that informs us whether a customer is satisfied or 

not. (True/False)

6. If the sentiment analysis of a product or service is consistently negative, it helps us make 

the proper decisions to improve our offer. (True/False)

7. If a model fails to provide a good result on a task, it requires more training before changing 

models. (True/False)
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Analyzing Fake News with 
Transformers

We were all born thinking that the Earth was flat. As babies, we crawled on flat surfaces. As kin-

dergarten children, we played on flat playgrounds. In elementary school, we sat in flat classrooms. 

Then, our parents and teachers told us that the Earth was round and that the people on the other 

side of it were upside down. It took us quite a while to understand why they did not fall off the 

Earth. Even today, when we see a beautiful sunset, we still see the “sun set,” and not the Earth 

rotating away from the sun!

It takes time and effort to figure out what is fake news and what isn’t. Like children, we have to 

work our way through something we perceive as fake news.

This chapter will tackle some of the topics that create tensions. We will check the facts on topics 

such as climate change, gun control, and Donald Trump’s Tweets. We will analyze Tweets, Face-

book posts, and other sources of information.

Our goal is certainly not to judge anybody or anything. Fake news involves both opinions and 

facts. News often depends on the perception of facts by local culture. We will provide ideas and 

tools to help others gather more information on a topic and find their way in the jungle of infor-

mation we receive daily.

We will be focusing on ethical methods, not the performance of transformers. We will not be 

using a GPT-3 engine for this reason. We are not replacing human judgment. Instead, we are 

providing tools for humans to make their own judgments manually. GPT-3 engines have attained 

human-level performance for many tasks. However, we should leave moral and ethical decision 

making to humans.



Analyzing Fake News with Transformers340

Therefore, first, we will begin by defining the path that leads us to react emotionally and ratio-

nally to fake news.

We will then define some methods to identify fake news with transformers and heuristics.

We will be using the resources we built in the previous chapters to understand and explain fake 

news. We will not judge. We will provide transformer models that explain the news. Some might 

prefer to create a universal absolute transformer model to detect and assert that a message is 

fake news.

I choose to educate users with transformers, not to lecture them. This approach is my opinion, 

not a fact!

This chapter covers the following topics:

• Cognitive dissonance

• Emotional reactions to fake news

• A behavioral representation of fake news

• A rational approach to fake news

• A fake news resolution roadmap

• Applying sentiment analysis transformer tasks to social media

• Analyzing gun control perceptions with NER and SRL

• Using information extracted by transformers to find reliable websites

• Using transformers to produce results for educational purposes

• How to read former President Trump’s Tweets with an objective but critical eye

Our first step will be to explore the emotional and rational reactions to fake news.

Emotional reactions to fake news
Human behavior has a tremendous influence on our social, cultural, and economic decisions. 

Our emotions influence our economy as much as, if not more than, rational thinking. Behavioral 

economics drives our decision-making process. We buy consumer goods that we physically need 

and satisfy our emotional desires. We might even buy a smartphone in the heat of the moment, 

although it exceeds our budget.

Our emotional and rational reactions to fake news depend on whether we think slowly or react 

quickly to incoming information. Daniel Kahneman described this process in his research and 

book, Thinking, Fast and Slow (2013). 
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He and Vernon L. Smith were awarded the Nobel Memorial Prize in Economic Sciences for behavioral 

economics research. Behavior drives decisions we previously thought were rational. Unfortunately, 

many of our decisions are based on emotions, not reason.

Let’s translate these concepts into a behavioral flowchart applied to fake news.

Cognitive dissonance triggers emotional reactions
Cognitive dissonance drives fake news up to the top ranks of Twitter, Facebook, and other social 

media platforms. If everybody agrees with the content of a Tweet, nothing will happen. If some-

body writes a Tweet saying, “Climate change is important,” nobody will react.

We enter a state of cognitive dissonance when tensions build up between contradictory thoughts 

in our minds. As a result, we become nervous, agitated, and it wears us down like a short-circuit 

in a toaster.

We have many examples to think about. Is wearing a mask with COVID-19 necessary when we 

are outdoors? Are lockdowns a good or bad thing? Are the coronavirus vaccines effective? Or 

are coronavirus vaccines dangerous? Cognitive dissonance is like a musician that keeps making 

mistakes while playing a simple song. It drives us crazy!

The fake news syndrome increases cognitive dissonance exponentially! One expert will assert that 

vaccines are safe, and another that we need to be careful. One expert says that wearing a mask 

outside is useless, and another one asserts on a news channel that we must wear one! Each side 

accuses the other of fake news!

It appears for one side a significant portion of fake news is the other side’s truth.

We are in 2022, and the US Republicans and Democrats are still unable to agree on national election 

rules in the wake of the 2020 presidential elections, or the organization of the upcoming elections.

We could go on and find scores of other topics by just opening one newspaper and then read an-

other view in another opposing one! Nevertheless, some common-sense premises to this chapter 

can be drawn from these examples:

• Finding a transformer model that automatically detects fake news makes no sense. In the 

world of social media and multicultural expression, each group has a sense of knowing 

the truth, and the other group is expressing fake news.

• Trying to express our view as being the truth from one culture to another makes no sense. 

In a global world, cultures vary in each country, each continent, and everywhere in social 

media.
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• Fake news as an absolute is a myth.

• We need to find a better definition of fake news.

My opinion (not a fact, of course!) is that fake news is a state of cognitive dissonance that can 

only be resolved by cognitive reasoning. Thus, resolving the problem of fake news is exactly like 

trying to resolve a conflict between two parties or within our own minds.

In this chapter and life, my recommendation is to analyze each conflictual tension by deconstruct-

ing the conflict and ideas with transformer models. We are not “combating fake news,” “finding 

inner peace,” or pretending to use transformers to find “the absolute truth to oppose fake news.”

We use transformers to obtain a deeper understanding of a sequence of words (a message) to form a more 

profound and broader opinion on a topic.

Once that is done, let the lucky user of transformer models obtain a better vision and opinion.

To do this, I designed the chapter as a classroom exercise we can use for ourselves and others. 

Transformers are a great way to deepen our understanding of language sequences, form broad-

er opinions, and develop our cognitive abilities.

Let’s start by seeing what happens when somebody posts a conflictual Tweet.

Analyzing a conflictual Tweet
The following Tweet is a message posted on Twitter (I paraphrased it). The Tweets shown in this 

chapter are in raw dataset format, not the Twitter interface display. You can be sure that many 

people would disagree with the content if a leading political figure or famous actor tweeted it:

Climate change is bogus. It's a plot by the liberals to take the economy down.

It would trigger emotional reactions. Tweets would pile up on all sides. It would go viral and trend!

Let’s run the Tweet on transformer tools to understand how this Tweet could create a cognitive 

dissonance storm in somebody’s mind.

Open Fake_News.ipynb, the notebook we will be using in this section.

We will begin with resources from the Allen Institute for AI. We will run the RoBERTa transformer 

model we used for sentiment analysis in Chapter 12, Detecting Customer Emotions to Make Predictions.

We will first install allennlp-models:

!pip install allennlp==1.0.0 allennlp-models==1.0.0
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AllenNLP is continuously updating the versions as they progress. Version 2.4.0 exists at the time 

of the writing but provides no additional value to the examples provided in this chapter at this 

date. Stochastic algorithms or models that are updated can produce different outputs from one to another.

We then run the next cell with Bash to analyze the output of the Tweet in detail (information on 

the model and the output):

!echo '{"sentence":"Climate change is bogus. It's a plot by the liberals 
to take the economy down."}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
sst-roberta-large-2020.06.08.tar.gz -

The output shows that the Tweet is negative. The positive value is 0, and the negative value is 

near 1:

"probs": [0.0008486526785418391, 0.999151349067688]

The output might vary from one run to the other since transformers are stochastic algorithms.

We will now go to https://allennlp.org/ to get a visual representation of the analysis.

The output might change from one run to another. Transformer models are continuously trained 

and updated. Our goal in this chapter is to focus on the reasoning of transformer models.

We select Sentiment Analysis (https://demo.allennlp.org/sentiment-analysis) and choose 

the RoBERTa large model to run the analysis.

We obtain the same negative result. However, we can investigate further and see what words 

influenced RoBERTa’s decision.

Go to Model Interpretations.

Interpreting the model will provide insights into how a result was obtained. We can choose one 

or look into three options:

• Simple Gradient Visualization: This approach provides two visualizations. The first one 

computes the gradient of the score of a class related to the input. The second one is a 

saliency (main features) map inferred from the class and input.

• Integrated Gradient Visualization: This model requires no changes to a neural network.

• The motivation is to design calls to the gradient used to generate an attribution of the 

predictions of a neural network to its inputs.

https://allennlp.org/
https://demo.allennlp.org/sentiment-analysis
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• Smooth Gradient Visualization: This approach computes the gradients using the output 

predictions and the input. The goal is to identify the features of the input. However, noise 

is added to improve the interpretation.

In this section, go to Model Interpretations and then click on Simple Gradient Visualization 

and on Interpret Prediction to obtain the following representation:

Figure 13.1: Visualizing the top 3 most important words

is + bogus + plot mostly influenced the negative prediction.

At this point, you may be wondering why we are looking at such a simple example to explain 

cognitive dissonance. The explanation comes from the following Tweet.

A staunch Republican wrote the first Tweet. Let’s call the member Jaybird65. To his surprise, a 

fellow Republican tweeted the following Tweet:

I am a Republican and think that climate change consciousness is a great thing!

This Tweet came from a member we will call Hunt78. Let’s run this sentence in Fake_News.ipynb:

!echo '{"sentence":"I am a Republican and think that climate change 
consciousness is a great thing!"}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
sst-roberta-large-2020.06.08.tar.gz -

The output is positive, of course:

"probs": [0.9994876384735107, 0.0005123814917169511]

A cognitive dissonance storm is building up in Jaybird65's mind. He likes Hunt78 but disagrees. 

His mind storm is intensifying! If you read the subsequent Tweets that ensue between Jaybird65 

and Hunt78, you would discover some surprising facts that hurt Jaybird65's feelings:
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Jaybird65 and Hunt78 obviously know each other.

• If you go to their respective Twitter accounts, you will see that they are both hunters.

• You can see that they are both staunch Republicans.

Jaybird65's initial Tweet came from his reaction to an article in the New York Times stating that 

climate change was destroying the planet.

Jaybird65 is quite puzzled. He can see that Hunt78 is a Republican like him. He is also a hunter. 

So how can Hunt78 believe in climate change?

This Twitter thread goes on for a massive number of raging Tweets.

However, we can see that the roots of fake news discussions lie in emotional reactions to the news. 

A rational approach to climate change would simply be:

• No matter what the cause is, the climate is changing.

• We do not need to take the economy down to change humans.

• We need to continue to build electric cars, more walking space in large cities, and better 

agricultural habits. We just need to do business in new ways that will most probably 

generate revenue.

But emotions are strong in humans!

Let’s represent the process that leads from news to emotional and rational reactions.

Behavioral representation of fake news
Fake news starts with emotional reactions, builds up, and often leads to personal attacks.

Figure 13.2 represents the three-phase emotional reaction path to fake news when cognitive 

dissonance clogs our thinking process:

Phase 1: Incoming News
Two persons or groups of persons react to the news they obtained through their respective media: 

Facebook, Twitter, other social media, TV, radio, websites. Each source of information contains 

biased opinions.

Phase 2: Consensus
The two persons or groups of persons can agree or disagree. If they disagree, we will enter phase 

3, during which the conflict might rage.
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If they agree, the consensus stops the heat from building up, and the news is accepted as real 

news. However, even if all parties believe the news they are receiving is not fake, it does not mean 

that it is not fake. Here are some things that explain that news labeled as not fake news can be 

fake news:

• In the early 12th century, most people in Europe agreed that Earth was the center of the 

universe and that the solar system rotated around the Earth.

• In 1900, most people believed that there would never be such a thing as an airplane that 

would fly over oceans.

• In January 2020, most Europeans believed that COVID-19 was a virus impacting only 

China and not a global pandemic.

The bottom line is that a consensus between two parties or even a society as a whole does not 

mean that the incoming news is true or false. If two parties disagree, this will lead to a conflict:

Figure 13.2: Representation of the path from news to a fake news conflict
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Let’s face it. On social media, members usually converge with others that have the same ideas 

and rarely change their minds no matter what. This representation shows that a person will 

often stick to their opinion expressed in a Tweet, and the conflict escalates as soon as somebody 

challenges their message!

Phase 3: Conflict
A fake news conflict can be divided into four phases:

• 3�1: The conflict begins with a disagreement. Each party will Tweet or post messages on 

Facebook or other platforms. After a few exchanges, the conflict might wear out because 

each party is not interested in the topic.

• 3�2: If we go back to the climate change discussion between Jaybird65 and Hunt78, we 

know things can get nasty. The conversation is heating up!

• 3�3: At one point, inevitably, the arguments of one party will become fake news. Jaybird65 

will get angry and show it in numerous Tweets and say that climate change due to hu-

mans is fake news. Hunt78 will get angry and say that denying humans’ contribution to 

climate change is fake news.

• 3�4: These discussions often end in personal attacks. Godwin’s law often enters the con-

versation even if we don’t know how it got there. Godwin’s law states that one party will 

find the worst reference possible to describe the other party at one point in a conversation. 

It sometimes comes out as “You liberals are like Hitler trying to force our economy down 

with climate change.” This type of message can be seen on Twitter, Facebook, and other 

platforms. It even appears in real-time chats during presidential speeches on climate 

change.

Is there a rational approach to these discussions that could soothe both parties, calm them down, 

and at least reach a middle-ground consensus to move forward?

Let’s try to build a rational approach with transformers and heuristics.

A rational approach to fake news
Transformers are the most powerful NLP tools ever. This section will first define a method that 

can take two parties engaged in conflict over fake news from an emotional level to a rational level.

We will then use transformer tools and heuristics. We will run transformer samples on gun con-

trol and former President Trump’s Tweets during the COVID-19 pandemic. We will also describe 

heuristics that could be implemented with classical functions.
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You can implement these transformer NLP tasks or other tasks of your choice. In any case, the 

roadmap and method can help teachers, parents, friends, co-workers, and anybody seeking the 

truth. Thus, your work will always be worthwhile!

Let’s begin with the roadmap of a rational approach to fake news that includes transformers.

Defining a fake news resolution roadmap
Figure 13.3 defines a roadmap for a rational fake news analysis process. The process contains 

transformer NLP tasks and traditional functions:

Figure 13.3: Going from emotional reactions to fake news to rational representations

We see that a rational process will nearly always begin once an emotional reaction has begun. 

The rational process must kick in as soon as possible to avoid building up emotional reactions 

that could interrupt the discussion.
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Phase 3 now contains four tools:

• 3�1: Sentiment Analysis to analyze the top-ranking “emotional” positive or negative words. 

We will use AllenNLP resources to run a RoBERTa large transformer in our Fake_News.

ipynb notebook. We will use AllenNLP’s visual tools to visualize the keywords and ex-

planations. We introduced sentiment analysis in Chapter 12, Detecting Customer Emotions 

to Make Predictions.

• 3�2: Named Entity Recognition (NER) to extract entities from social media messages for 

Phase 3.4. We described NER in Chapter 11, Let Your Data Do the Talking: Story, Questions, 

and Answers. We will use Hugging Face’s BERT transformer model for the task. In addition, 

we will use AllenNLP.org’s visual tools to visualize the entities and explanations.

• 3�3: Semantic Role Labeling (SRL) to label verbs from social media messages for Phase 3.4. 

We described SRL in Chapter 10, Semantic Role Labeling with BERT-Based Transformers. We 

will use AllenNLP’s BERT model in Fake_News.ipynb. We will use AllenNLP.org’s visual 

tools to visualize the output of the labeling task.

• 3�4: References to reliable websites will be described to show how classical coding can help.

Let’s begin with gun control.

The gun control debate
The Second Amendment of the Constitution of the United States asserts the following rights:

A well regulated Militia, being necessary to the security of a free State, the 
right of the people to keep and bear Arms, shall not be infringed.

America has been divided on this subject for decades:

• On the one hand, many argue that it is their right to bear firearms, and they do not want 

to endure gun control. They argue that it is fake news to contend that possessing weapons 

creates violence.

• On the other hand, many argue that bearing firearms is dangerous and that without gun 

control, the US will remain a violent country. They argue that it’s fake news to contend 

that it is not dangerous to carry weapons.

We need to help each party. Let’s begin with sentiment analysis.
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Sentiment analysis
If you read Tweets, Facebook messages, YouTube chats during a speech, or any other social media, 

you will see that the parties are fighting a raging battle. You do not need a TV show. You can just 

eat your popcorn as the Tweet battles tear the parties apart!

Let’s take a Tweet from one side and a Facebook message from the opposing side. I changed the 

members’ names and paraphrased the text (not a bad idea considering the insults in the messages). 

Let’s start with the pro-gun Tweet:

Pro-guns analysis
This Tweet is the honest opinion of a person:

Afirst78: I have had rifles and guns for years and never had a problem. I raised 
my kids right so they have guns too and never hurt anything except rabbits.

Let’s run this in Fake_News.ipynb:

!echo '{"sentence": "I have had rifles and guns for years and never had 
a problem. I raised my kids right so they have guns too and never hurt 
anything except rabbits."}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
sst-roberta-large-2020.06.08.tar.gz -

The prediction is positive:

prediction:  {"logits": [1.9383275508880615, -1.6191326379776], "probs": 
[0.9722791910171509, 0.02772079035639763]

We will now visualize the result on AllenNLP. Simple Gradient Visualization provides an ex-

planation:

Figure 13.4: Simple Gradient Visualization of a sentence

The explanation shows that sentiment analysis on the Tweet by Afirst78 highlights rifles + 

and + rabbits.
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We will pick up ideas and functions at each step. Fake_News_FUNCTION_1 is the first function in 

this section:

Fake_News_FUNCTION_1: rifles + and + rabbits can be extracted and noted for further analysis. 

We can see that “rifles” are not “dangerous” in this example.

We will now analyze NYS99's view that guns must be controlled.

Gun control analysis
NYS99: "I have heard gunshots all my life in my neighborhood, have lost many 
friends, and am afraid to go out at night."

Let’s first run the analysis in Fake_News.ipynb:

!echo '{"sentence": "I have heard gunshots all my life in my neighborhood, 
have lost many friends, and am afraid to go out at night."}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
sst-roberta-large-2020.06.08.tar.gz -

The result is naturally negative:

prediction:  {"logits": [-1.3564586639404297, 0.5901418924331665], 
"probs": [0.12492450326681137, 0.8750754594802856]

Let’s find the keywords using AllenNLP online. We run the sample and can see that Smooth 

Gradient Visualization highlights the following:

Figure 13.5: Smooth Gradient Visualization of a sentence

The keyword afraid stands out for function 2 of this section. We now know that “afraid is as-

sociated with “guns.”

Results may vary at each run or over time. This is because transformer models are 

continuously trained and updated. However, the focus in this chapter is on the pro-

cess, not a specific result.
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We can see that the model has problems interpreting these cognitive dissonances. Our human 

critical thinking is still necessary!

Fake_News_FUNCTION_2: afraid and guns (the topic) can be extracted and noted for further anal-

ysis.

If we now put our two functions side by side, we can clearly understand why the two parties are 

fighting each other:

• Fake_News_FUNCTION_1: rifles + and + rabbits

Afirst78 probably lives in a mid-western state in the US. Many of these states have small 

populations, are very quiet, and enjoy low crime rates. Afirst78 may never have traveled 

to a major city, enjoying the pleasure of a quiet life in the country.

• Fake_News_FUNCTION_2: afraid + the topic guns

NYS99 probably lives in a big city or a greater area of a major US city. Crime rates are often 

high, and violence is a daily phenomenon. NYS99 may never have traveled to a mid-western 

state and seen how Afirst78 lives.

These two honest but strong views prove why we need to implement solutions like those de-

scribed in this chapter.

Better information is the key to fewer fake news battles.

We will follow our process and apply named entity recognition to our sentence.

Named entity recognition (NER)
This chapter shows that by using several transformer methods, the user will benefit from a broader 

perception of a message through different angles. An HTML page could sum up this chapter’s 

transformer methods and even contain other transformer tasks in production mode.

We must now apply our process to the Tweet and Facebook message, although we can see no 

entities in the messages. However, the program does not know that. We will only run the first 

message to illustrate this step of the process.

We will first install Hugging Face transformers:

!pip install -q transformers

from transformers import pipeline

from transformers import AutoTokenizer, 
AutoModelForSequenceClassification,AutoModel
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Now, we can run the first message:

nlp_token_class = pipeline('ner')

nlp_token_class('I have had rifles and guns for years and never had a 
problem. I raised my kids right so they have guns too and never hurt 
anything except rabbits.')

The output produces no result since there are no entities. However, this doesn’t mean it should 

be taken out of the pipeline. Another sentence might contain the name of the location of a person 

providing clues on the culture in that area.

Let’s check the model we are using before we move on:

nlp_token_class.model.config

The output shows that the model uses 9 labels and 1,024 features for the attention layers:

BertConfig {

  "_num_labels": 9,

  "architectures": [

    "BertForTokenClassification"

  ],

  "attention_probs_dropout_prob": 0.1,

  "directionality": "bidi",

  "hidden_act": "gelu",

  "hidden_dropout_prob": 0.1,

  "hidden_size": 1024,

  "id2label": {

    "0": "O",

    "1": "B-MISC",

    "2": "I-MISC",

    "3": "B-PER",

    "4": "I-PER",

    "5": "B-ORG",

    "6": "I-ORG",

    "7": "B-LOC",

    "8": "I-LOC"

  },
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We are using a BERT 24-layer transformer model. If you wish to explore the architecture, run 

nlp_token_class.model.

We will now run SRL on the messages.

Semantic Role Labeling (SRL)
We will continue to run Fake_News.ipynb cell by cell in the order found in the notebook. We will 

examine both points of view.

Let’s start with a pro-gun perspective.

Pro-guns SRL
We will first run the following cell in Fake_News.ipynb:

!echo '{"sentence": "I have had rifles and guns for years and never had 
a problem. I raised my kids right so they have guns too and never hurt 
anything except rabbits."}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
bert-base-srl-2020.03.24.tar.gz -

The output is very detailed and can be useful if you wish to investigate or parse the labels in detail, 

as shown in this excerpt:

prediction:  {"verbs": [{"verb": "had", "description": "[ARG0: I] have [V: 
had] [ARG1: rifles and guns] [ARGM-TMP: for years] and never had a problem 
...

Now let’s go into visual detail on AllenNLP in the Semantic Role Labeling section. We first run 

the SRL task for this message. The first verb, had, shows that Afirst78 is an experienced gun owner:
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Figure 13.6: SRL for the verb “had”

The arguments of had sum up Afirst78's experience: I + rifles and guns + for years.

The second frame for had adds the information I + never + had + a problem

The arguments of raised display Afirst78's parental experience:

Figure 13.7: SRL verb and arguments for the verb “raised”
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The arguments explain many pro-gun positions: my kids + …have guns too and never hurt 

anything.

The results may vary from one run to another or when the model is updated, but the process 

remains the same.

We can add what we found here to our collection of functions with some parsing:

• Fake_News_FUNCTION_3: I + rifles and guns + for years

• Fake_News_FUNCTION_4: my kids + have guns too and never hurt anything

Now let’s explore the gun control message.

Gun control SRL
We will first run the Facebook message in Fake_News.ipynb. We will just continue to run the 

notebook cell by cell in the order they were created in the notebook:

!echo '{"sentence": "I have heard gunshots all my life in my neighborhood, 
have lost many friends, and am afraid to go out at night."}' | \

allennlp predict https://storage.googleapis.com/allennlp-public-models/
bert-base-srl-2020.03.24.tar.gz -

The result labels the key verbs in the sequence in detail, as shown in the following excerpt:

prediction:  {"verbs": [{"verb": "heard", "description": "[ARG0: I] have 
[V: heard] [ARG1: gunshots all my life in my neighborhood]"

We continue to apply our process, go to AllenNLP, and then to the Semantic Role Labeling section. 

We enter the sentence and run the transformer model. The verb heard shows the tough reality 

of this message:

Figure 13.8: SRL representation of the verb “heard”
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We can quickly parse the words for our fifth function:

• Fake_News_FUNCTION_5: heard + gunshots + all my life

The verb lost shows significant arguments related to it:

Figure 13.9: SRL representation of the verb “lost”

We have what we need for our sixth function:

• Fake_News_FUNCTION_6: lost + many + friends

It is good to suggest reference sites to the user once different transformer models have clarified 

each aspect of a message.

Reference sites
We have run the transformers on NLP tasks and described traditional heuristic hard coding that 

needs to be developed to parse the data and generate six functions.

• Pro-guns: Fake_News_FUNCTION_1: never + problem + guns

• Gun control: Fake_News_FUNCTION_2: heard + afraid + guns

• Pro-guns: Fake_News_FUNCTION_3: I + rifles and guns + for years

• Pro-guns: Fake_News_FUNCTION_4: my kids + have guns + never hurt anything

Bear in mind that the results may vary from one run to another. The six functions 

were generated at different times and provided slightly different results from the 

previous section. However, the main ideas remain the same. Let’s now focus on 

these six functions.
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• Gun control: Fake_News_FUNCTION_5: heard + gunshots + all my life

• Gun control: Fake_News_FUNCTION_6: lost + many + friends

Let’s reorganize the list and separate both perspectives and draw some conclusions to decide 

our actions.

Pro-guns and gun control
The pro-gun arguments are honest, but they show that there is a lack of information on what is 

going on in major cities in the US:

• Pro-guns: Fake_News_FUNCTION_1: never + problem + guns

• Pro-guns: Fake_News_FUNCTION_3: I + rifles and guns + for years

• Pro-guns: Fake_News_FUNCTION_4: my kids + have guns + never hurt anything

The gun control arguments are honest, but they show that there is a lack of information on how 

large quiet areas of the Midwest can be:

• Gun control: Fake_News_FUNCTION_2: heard + afraid + guns

• Gun control: Fake_News_FUNCTION_5: heard + gunshots + all my life

• Gun control: Fake_News_FUNCTION_6: lost + many + friends

Each function can be developed to inform the other party.

For example, let’s take FUNCTION1 and express it in pseudocode:

Def FUNCTION1:

call FUNCTIONs 2+5+6 Keywords and simplify

Google search=afraid guns lost many friends gunshots

The goal of the process is:

• First, run transformer models to deconstruct and explain the messages. Using an NLP 

transformer is like a mathematical calculator. It can produce good results, but it takes a 

free-thinking human mind to interpret them!

• Then, ask a trained NLP human user to be proactive, search, and read information better.

Transformer models help users understand messages more deeply; they don’t think for them! 

We are trying to help users, not lecture or brainwash them!
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Parsing would be required to process the results of the functions. However, if we had hundreds 

of social media messages, we could automatically let our program do the whole job.

The links will change as Google modifies its searches. However, the first links that appear are 

interesting to show to pro-gun advocates:

Figure 13.10: Guns and violence
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Let’s imagine we are searching gun control advocates with the following pseudocode:

Def FUNCTION2:

call FUNCTIONs 1+3+4 Keywords and simplify

Google search=never problem guns for years kids never hurt anything

The Google search returned no clear positive results in favor of pro-gun advocates. The most 

interesting ones are neutral and educational:

Figure 13.11: Gun safety

You could run automatic searches on Amazon’s bookstore, magazines, and other educational 

material.

Most importantly, it is essential for people with opposing ideas to talk to each other without 

getting into a fight. Understanding each other is the best way to develop empathy on both sides.

One might be tempted to trust social media companies. I recommend never letting a third party act as 

a proxy for your mind process. Use transformer models to deconstruct messages but remain proactive!

A consensus on this topic could be to agree on following safety guidelines with gun possession. 

For example, one can choose either not to have guns at home or lock them up safely, so children 

do not have access to them.
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Let’s move on to COVID-19 and former President Trump’s Tweets.

COVID-19 and former President Trump’s Tweets
No matter your political opinion, there is so much being said by Donald Trump and about Donald 

Trump that it would take a book in itself to analyze all of the information! This is a technical, not 

a political book, so we will analyze the Tweets scientifically.

We described an educational approach to fake news in the Gun control section of this chapter. We 

do not need to go through the whole process again.

We implemented and ran AllenNLP’s SRL task with a BERT model in our Fake_News.ipynb note-

book in the Gun control section.

In this section, we will focus on the logic of fake news. We will run the BERT model on SRL and 

visualize the results on AllenNLP’s website.

Now, let’s go through some presidential Tweets on COVID-19.

Semantic Role Labeling (SRL)
SRL is an excellent educational tool for all of us. We tend just to read Tweets passively and listen 

to what others say about them. Breaking messages down with SRL is a good way to develop social 

media analytical skills to distinguish fake from accurate information.

I recommend using SRL transformers for educational purposes in class. A young student can en-

ter a Tweet and analyze each verb and its arguments. It could help younger generations become 

active readers on social media.

We will first analyze a relatively undivided Tweet and then a conflictual Tweet:

Let’s analyze the latest Tweet found on July 4 while writing this book. I took the name of the person 

who is referred to as a “Black American” out and paraphrased some of the former President’s text:

X is a great American, is hospitalized with coronavirus, and has requested prayer. 
Would you join me in praying for him today, as well as all those who are suffering 
from COVID-19?
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Let’s go to AllenNLP’s Semantic Role Labeling section, run the sentence, and look at the result. 

The verb hospitalized shows the member is staying close to the facts:

Figure 13.12: SRL arguments of the verb “hospitalized”

The message is simple: X + hospitalized + with coronavirus.

The verb requested shows that the message is becoming political:

Figure 13.13: SRL arguments of the verb “requested”

We don’t know if the person requested the former President to pray or decided he would be the 

center of the request.

A good exercise would be to display an HTML page and ask the users what they think. For exam-

ple, the users could be asked to look at the results of the SRL task and answer the two following 

questions:
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Was former President Trump asked to pray, or did he deviate a request made to 
others for political reasons?

Is the fact that former President Trump states that he was indirectly asked to 
pray for X fake news or not?

You can think about it and decide for yourself!

Let’s have a look at one banned from Twitter. I took the names out and paraphrased it and toned 

it down. Still, when we run it on AllenNLP and visualize the results, we get some surprising SRL 

outputs.

Here is the toned-down and paraphrased Tweet:

These thugs are dishonoring the memory of X.

When the looting starts, actions must be taken.

Although I suppressed the main part of the original Tweet, we can see that the SRL task shows 

the bad associations made in the Tweet:

Figure 13.14: SRL arguments of the verb “dishonoring”

An educational approach to this would be to explain that we should not associate the arguments 

thugs and memory and looting. They do not fit together at all.

An important exercise would be to ask a user why the SRL arguments do not fit together.

I recommend many such exercises so that the transformer model users develop SRL skills to have 

a critical view of any topic presented to them.

Critical thinking is the best way to stop the propagation of the fake news pandemic!

We have gone through rational approaches to fake news with transformers, heuristics, and in-

structive websites. However, in the end, a lot of the heat in fake news debates boils down to 

emotional and irrational reactions.
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In a world of opinion, you will never find an entirely objective transformer model that detects 

fake news since opposing sides never agree on what the truth is in the first place! One side will 

agree with the transformer model’s output. Another will say that the model is biased and built 

by enemies of their opinion!

The best approach is listening to others and keeping the heat down!

Before we go
This chapter focused more on applying transformers to a problem than finding a silver bullet 

transformer model, which does not exist.

You have two main options to solve an NLP problem: find new transformer models or create 

reliable, durable methods to implement transformer models.

We will now conclude the chapter and move on to interpret transformer models.

Summary
Fake news begins deep inside our emotional history as humans. When an event occurs, emotions 

take over to help us react quickly to a situation. We are hardwired to react strongly when we are 

threatened.

Fake news spurs strong reactions. We fear that this news could temporarily or permanently 

damage our lives. Many of us believe climate change could eradicate human life from Earth. 

Others believe that if we react too strongly to climate change, we might destroy our economies 

and break society down. Some of us believe that guns are dangerous. Others remind us that the 

Second Amendment of the United States Constitution gives us the right to possess a gun in the US.

We went through other raging conflicts over COVID-19, former President Trump, and climate 

change. In each case, we saw that emotional reactions are the fastest ones to build up into conflicts.

We then designed a roadmap to take the emotional perception of fake news to a rational level. 

We used some transformer NLP tasks to show that it is possible to find key information in Tweets, 

Facebook messages, and other media.

We used news perceived by some as real news and others as fake news to create a rationale for 

teachers, parents, friends, co-workers, or just people talking. We added classical software func-

tions to help us on the way.

At this point, you have a toolkit of transformer models, NLP tasks, and sample datasets in your 

hands.
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You can use artificial intelligence for the good of humanity. It’s up to you to take these transformer 

tools and ideas to implement them to make the world a better place for all.

A good way to understand transformers is to visualize their internal process. We will analyze how 

a transformer gradually builds a representation of a sequence in the next chapter, Interpreting 

Black Box Transformer Models.

Questions
1. News labeled as fake news is always fake. (True/False)

2. News that everybody agrees with is always accurate. (True/False)

3. Transformers can be used to run sentiment analysis on Tweets. (True/False)

4. Key entities can be extracted from Facebook messages with a DistilBERT model running 

NER. (True/False)

5. Key verbs can be identified from YouTube chats with BERT-based models running SRL. 

(True/False)

6. Emotional reactions are a natural first response to fake news. (True/False)

7. A rational approach to fake news can help clarify one’s position. (True/False)

8. Connecting transformers to reliable websites can help somebody understand why some 

news is fake. (True/False)

9. Transformers can make summaries of reliable websites to help us understand some of 

the topics labeled as fake news. (True/False)

10. You can change the world if you use AI for the good of us all. (True/False)

References
• Daniel Kahneman, 2013, Thinking, Fast and Slow

• Hugging Face pipelines: https://huggingface.co/transformers/main_classes/

pipelines.html

• The Allen Institute for AI: https://allennlp.org/

https://huggingface.co/transformers/main_classes/pipelines.html
https://huggingface.co/transformers/main_classes/pipelines.html
https://allennlp.org/
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:

 https://www.packt.link/Transformers

https://www.packt.link/Transformers


14
Interpreting Black Box 
Transformer Models

Million- to billion-parameter transformer models seem like huge black boxes that nobody can 

interpret. As a result, many developers and users have sometimes been discouraged when dealing 

with these mind-blowing models. However, recent research has begun to solve the problem with 

innovative, cutting-edge tools.

It is beyond the scope of this book to describe all of the explainable AI methods and algorithms. 

So instead, this chapter will focus on ready-to-use visual interfaces that provide insights for 

transformer model developers and users.

The chapter begins by installing and running BertViz by Jesse Vig. Jesse did quite an excellent job 

of building a visual interface that shows the activity in the attention heads of a BERT transformer 

model. BertViz interacts with the BERT models and provides a well-designed interactive interface.

We will continue to focus on visualizing the activity of transformer models with the Language 

Interpretability Tool (LIT). LIT is a non-probing tool that can use PCA or UMAP to represent 

transformer model predictions. We will go through PCA and use UMAP as well.

Finally, we will visualize a transformer’s journey through the layers of a BERT model with dic-

tionary learning. Local Interpretable Model-agnostic Explanations (LIME) provides practical 

functions to visualize how a transformer learns how to understand language. The method shows 

that transformers often begin by learning a word, then the word in the sentence context, and 

finally long-range dependencies.
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By the end of the chapter, you will be able to interact with users to show visualizations of the 

activity of transformer models. BertViz, LIT, and visualizations through dictionary learning still 

have a long way to go. However, these nascent tools will help developers and users understand 

how transformer models work.

This chapter covers the following topics:

• Installing and running BertViz

• Running BertViz’s interactive interface 

• The difference between probing and non-probing methods

• A Principal Component Analysis (PCA) reminder

• Running LIT to analyze transformer outputs

• Introducing LIME

• Running transformer visualization through dictionary learning

• Word-level polysemy disambiguation

• Visualizing low-level, mid-level, and high-level dependencies

• Visualizing key transformer factors

Our first step will begin by installing and using BertViz.

Transformer visualization with BertViz
Jesse Vig’s article, A Multiscale Visualization of Attention in the Transformer Model, 2019, recognizes 

the effectiveness of transformer models. However, Jesse Vig explains that deciphering the atten-

tion mechanism is challenging. The paper describes the process of BertViz, a visualization tool.

BertViz can visualize attention head activity and interpret a transformer model’s behavior.

BertViz was first designed to visualize BERT and GPT-3 models. In this section, we will visualize 

the activity of a BERT model.

Let’s now install and run BertViz.

Running BertViz
It only takes five steps to visualize transformer attention heads and interact with them.

Open the BertViz.ipynb notebook in the Chapter14 directory in the GitHub repository of this book.

The first step is to install BertViz and the requirements.
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Step 1: Installing BertViz and importing the modules
The notebook installs BertViz, Hugging Face transformers, and the other basic requirements to 

implement the program:

!pip install bertViz

from bertViz import head_view, model_view

from transformers import BertTokenizer, BertModel

The head view and model view libraries are now imported. We will now load the BERT model 

and tokenizer.

Step 2: Load the models and retrieve attention
BertViz supports BERT, GPT-2, RoBERTa, and other models. You can consult BertViz on GitHub 

for more information: https://github.com/jessevig/BertViz.

In this section, we will run a bert-base-uncased model and a pretrained tokenizer:

# Load model and retrieve attention

model_version = 'bert-base-uncased'

do_lower_case = True

model = BertModel.from_pretrained(model_version, output_attentions=True)

tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_
lower_case)

We now enter our two sentences. You can try different sequences to analyze the behavior of the 

model. sentence_b_start will be necessary for Step: 5 Model view:

sentence_a = "A lot of people like animals so they adopt cats"

sentence_b = "A lot of people like animals so they adopt dogs"

inputs = tokenizer.encode_plus(sentence_a, sentence_b, return_
tensors='pt', add_special_tokens=True)

token_type_ids = inputs['token_type_ids']

input_ids = inputs['input_ids']

attention = model(input_ids, token_type_ids=token_type_ids)[-1]

sentence_b_start = token_type_ids[0].tolist().index(1)

input_id_list = input_ids[0].tolist() # Batch index 0

tokens = tokenizer.convert_ids_to_tokens(input_id_list)

And that’s it! We are ready to interact with the visualization interface.

https://github.com/jessevig/BertViz
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Step 3: Head view
We just have one final line to add to activate the visualization of the attention heads:

head_view(attention, tokens)

The words of the first layer (layer 0) are not the actual tokens, but the interface is educational. 

The 12 attention heads of each layer are displayed in different colors. The default view is set to 

layer 0, as shown in Figure 14.1:

Figure 14.1: The visualization of attention heads

We are now ready to explore attention heads.

Step 4: Processing and displaying attention heads
Each color above the two columns of tokens represents an attention head of the layer number. 

Choose a layer number and click on an attention head (color). 
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The words in the sentences are broken down into tokens in the attention. However, in this section, 

the word tokens loosely refers to words to help us understand how the transformer heads work.

I focused on the word animals in Figure 14.2:

Figure 14.2: Selecting a layer, an attention head, and a token

BertViz shows that the model made a connection between animals and several words. This is 

normal since we are only at layer 0.

Layer 1 begins to isolate words animals is related to, as shown in Figure 14.3:

Figure 14.3: Visualizing the activity of attention head 11 of layer 1
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Attention head 11 makes a connection between animals, people, and adopt.

If we click on cats, some interesting connections are shown in Figure 14.4:

Figure 14.4: Visualizing the connections between cats and other tokens

The word cats is now associated with animals. This connection shows that the model is learning 

that cats are animals.

You can change the sentences and then click on the layers and attention heads to visualize how 

the transformer makes connections. You will find limits, of course. The good and bad connec-

tions will show you how transformers work and fail. Both cases are valuable for explaining how 

transformers behave and why they require more layers, parameters, and data.

Let’s see how BertViz displays the model view.

Step 5: Model view
It only takes one line to obtain the model view of a transformer with BertViz:

model_view(attention, tokens, sentence_b_start)

BertViz displays all of the layers and heads in one view, as shown in the view excerpt in Figure 14.5:

Figure 14.5: Model view mode of BertViz
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If you click on one of the heads, you will obtain a head view with word-to-word and sen-

tence-to-sentence options. You can then go through the attention heads to see how the transformer 

model makes better representations as it progresses through the layers. For example, Figure 14.6 

shows the activity of an attention head in the first layers:

Figure 14.6: Activity of an attention head in the lower layers of the model

Sometimes, the representation makes connections between the separator, [SEP], and words, 

which does not make much sense. However, sometimes tokens are not activated in every atten-

tion head of every layer. Also, the level of training of a transformer model limits the quality of 

the interpretation.

In any case, BertViz remains an interesting educational tool and interpretability tool for trans-

former models.

Let’s now run the intuitive LIT tool.
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LIT
LIT’s visual interface will help you find examples that the model processes incorrectly, dig into 

similar examples, see how the model behaves when you change a context, and more language 

issues related to transformer models.

LIT does not display the activities of the attention heads like BertViz does. However, it’s worth 

analyzing why things went wrong and trying to find solutions.

You can choose a Uniform Manifold Approximation and Projection (UMAP) visualization or a 

PCA projector representation. PCA will make more linear projections in specific directions and 

magnitude. UMAP will break its projections down into mini-clusters. Both approaches make 

sense depending on how far you want to go when analyzing the output of a model. You can run 

both and obtain different perspectives of the same model and examples.

This section will use PCA to run LIT. Let’s begin with a brief reminder of how PCA works.

PCA
PCA takes data and represents it at a higher level.

Imagine you are in your kitchen. Your kitchen is a 3D cartesian coordinate system. The objects in 

your kitchen are all at specific x, y, z coordinates too.

You want to cook a recipe and gather the ingredients on your kitchen table. Your kitchen table is 

a higher-level representation of the recipe in your kitchen.

The kitchen table is using a cartesian coordinate system too. But when you extract the main fea-

tures of your kitchen to represent the recipe on your kitchen table, you are performing PCA. This 

is because you have displayed the principal components that fit together to make a specific recipe.

The same representation can be applied to NLP. For example, a dictionary is a list of words. But 

the words that mean something together constitute a representation of the principal components 

of a sequence.

The PCA representation of sequences in LIT will help visualize the outputs of a transformer.

The main steps to obtain an NLP PCA representation are:

• Variance: The numerical variance of a word in a dataset; the frequency and frequency of 

its meaning, for example.

• Covariance: The variance of more than one word is related to that of another word in 

the dataset.
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• Eigenvalues and eigenvectors: To obtain a representation in the cartesian system, we 

need the vectors and magnitudes representation of the covariances. The eigenvectors 

will provide the direction of the vectors. The eigenvalues will provide their magnitudes.

• Deriving the data: The last step is to apply the feature vectors to the original dataset by 

multiplying the row feature vector by the row data:

• Data to display = row of feature vector * row of data

PCA projections provide a clear linear visualization of the data points to analyze.

Let’s now run LIT.

Running LIT
You can run LIT online or open it in a Google Colaboratory notebook. Click on the following link 

to access both options:

• https://pair-code.github.io/lit/

The tutorial page contains several types of NLP tasks to analyze:

• https://pair-code.github.io/lit/tutorials/

In this section, we will run LIT online and explore a sentiment analysis classifier:

• https://pair-code.github.io/lit/tutorials/sentiment/

Click on Explore this demo yourself, and you will enter the intuitive LIT interface. The transformer 

model is a small transformer model:

Figure 14.7: Selecting a model

You can change the model by clicking on the model. You can test this type of model and similar 

ones directly on Hugging Face on its hosted API page:

https://huggingface.co/sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-

english

The NLP models might change on LIT’s online version based on subsequent updates. The concepts 

remain the same, just the models change.

https://pair-code.github.io/lit/
https://pair-code.github.io/lit/tutorials/
https://pair-code.github.io/lit/tutorials/sentiment/
https://huggingface.co/sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english
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Let’s begin by selecting the PCA projector and the binary 0 or 1 classification label of the sentiment 

analysis of each example:

Figure 14.8: Selecting the projector and type of label

We then go to the data table and click on a sentence and its classification label:

Figure 14.9: Selecting a sentence

The algorithm is stochastic so the output can vary from one run to another.

The sentence will also appear in the datapoint editor:

Figure 14.10: Datapoint editor
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The datapoint editor allows you to change the context of the sentence. For example, you might 

want to find out what went wrong with a counterfactual classification that should have been in 

one class but ended up in another one. You can change the context of the sentence until it appears 

in the correct class to understand how the model works and why it made a mistake.

The sentence will appear in the PCA projector with its classification:

Figure 14.11: PCA projector in a positive cluster

You can click the data points in the PCA projector, and the sentences will appear in the datapoint 

editor under the sentence you selected. That way, you can compare results.

LIT contains a wide range of interactive functions you can explore and use.

Let’s now visualize transformer layers through dictionary learning.

Transformer visualization via dictionary learning
Transformer visualization via dictionary learning is based on transformer factors.

Transformer factors
A transformer factor is an embedding vector that contains contextualized words. A word with no 

context can have many meanings, creating a polysemy issue. For example, the word separate 

can be a verb or an adjective. Furthermore, separate can mean disconnect, discriminate, scatter, 

and has many other definitions.

The results obtained in LIT are not always convincing. However, LIT provides valu-

able insights in many cases. Also, it is essential to get involved in these emerging 

tools and techniques.
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Yun et al., 2021, thus created an embedding vector with contextualized words. A word embed-

ding vector can be constructed with sparse linear representations of word factors. For example, 

depending on the context of the sentences in a dataset, separate can be represented as:

separate=0.3" keep apart"+"0.3" distinct"+ 0.1 "discriminate"+0.1 "sever" + 
0.1 "disperse"+0.1 "scatter"

To ensure that a linear representation remains sparse, we don’t add 0 factors that would create 

huge matrices with 0 values. Thus, we do not include useless information such as:

separate= 0.0"putting together"+".0" "identical"

The whole point is to keep the representation sparse by forcing the coefficients of the factors to 

be greater than 0.

The hidden state for each word is retrieved for each layer. Since each layer progresses in its under-

standing of the representation of the word in the dataset of sentences, the latent dependencies 

build up. This sparse linear superposition of transformer factors becomes a dictionary matrix 

with a sparse vector of coefficients to be inferred that we can sum up as:𝜑𝜑𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼 
In which:

• 𝜑𝜑  (phi) is the dictionary matrix 

• 𝛼𝛼  is the sparse vector of coefficients to be inferred

Yun et al., 2021, added, 𝜀𝜀 , Gaussian noise samples to force the algorithm to search for deeper 

representations.

Also, to ensure that the representation remains sparse, the equation must be written s.t. (such 

that) α > 0 .

The authors refer to X as the set of hidden states of the layers and x as a sparse linear superposition 

of transformer factors that belongs to X.

They beautifully sum up their sparse dictionary learning model as:𝑋𝑋𝑋 𝑋 𝜑𝜑𝜑𝜑 + 𝜀𝜀𝑋𝜀𝜀𝑋𝜀𝜀𝑋𝜑𝜑 𝜀 𝜀 

In the dictionary matrix, 𝜑𝜑 :,c refers to a column of the dictionary matrix and contains a trans-

former factor.𝜑𝜑 :,c is divided into three levels:



Chapter 14 379

• Low-level transformer factors to solve polysemy problems through word-level 

disambiguation

• Mid-level transformer factors take us further into sentence-level patterns that will bring 

vital context to the low level

• High-level transformer patterns that will help understand long-range dependencies

The method is innovative, exciting, and seems efficient. However, there is no visualization func-

tionality at this point. Therefore, Yun et al., 2021, created the necessary information for LIME, a 

standard interpretable AI method to visualize their findings.

The interactive transformer visualization page is thus based on LIME for its outputs. The following 

section is a brief introduction to LIME.

Introducing LIME
LIME stands for Local Interpretable Model-Agnostic Explanations. The name of this explain-

able AI method speaks for itself. It is model-agnostic. Thus, we can draw immediate consequences 

about the method of transformer visualization via dictionary learning:

• This method does not dig into the matrices, weights, and matrix multiplications of trans-

former layers.

• The method does not explain how a transformer model works, as we did in Chapter 2, 

Getting Started with the Architecture of the Transformer Model.

• In this chapter, the method peeks into the mathematical outputs provided by the sparse 

linear superpositions of transformer factors.

LIME does not try to parse all of the information in a dataset. Instead, LIME finds out whether a 

model is locally reliable by examining the features around a prediction.

LIME does not apply to the model globally. It focuses on the local environment of a prediction.

This is particularly efficient when dealing with NLP because LIME explores the context of a word, 

providing invaluable information on the model’s output.

In visualization via dictionary learning, an instance x can be represented as:𝑥𝑥 𝑥 𝑥𝑑𝑑 

The interpretable representation of this instance is a binary vector:𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑑 



Interpreting Black Box Transformer Models380

The goal is to determine the local presence or absence of a feature or several features. In NLP, the 

features are tokens that can be reconstructed into words.

For LIME, g represents a transformer model or any other machine learning model. G represents 

a set of transformer models containing g, among other models:𝑔𝑔 𝑔 𝑔𝑔 

LIME’s algorithm can thus be applied to any transformer model.

At this point, we know that:

• LIME targets a word and searches the local context for other words

• LIME thus provides the local context of a word to explain why that word was predicted 

and not another one

Exploring explainable AI such as LIME is not in the scope of this book on transformers for NLP. 

However, for more on LIME, see the References section.

Let’s now see how LIME fits in the method of transformer visualization via dictionary learning.

Let’s now explore the visualization interface.

The visualization interface
Visit the following site to access the interactive transformer visualization page: https://

transformervis.github.io/transformervis/.

The visualization interface provides intuitive instructions to start analyzing a transformer factor 

of a specific layer in one click, as shown in Figure 14.12:

Figure 14.12: Selecting a transformer factor

https://transformervis.github.io/transformervis/
https://transformervis.github.io/transformervis/
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Once you have chosen a factor, you can click on the layer you wish to visualize for this factor:

Figure 14.13: Visualize function per layer

The first visualization shows the activation of the factor layer by layer:

Figure 14.14: Importance of a factor for each layer
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Factor 421 focuses on the lexical field of separate, as shown in the lower layers:

Figure 14.15: The representation of “separate” in the lower layers

As we visualize higher layers, longer-range representations emerge. Factor 421 began with the 

representation of separate. But at higher levels, the transformer began to form a deeper under-

standing of the factor and associated separate with distinct, as shown in Figure 14.16:

Figure 14.16: The higher-layer representations of a transformer factor

Try several transformer factors to visualize how transformers expand their perception and un-

derstanding of language, layer by layer.

You will find many good examples and also poor results. Focus on the good examples to understand 

how a transformer makes its way through language learning. Use the poor results to understand 

why it made a mistake. Also, the transformer model used for the visualization interface is not the 

most powerful or well-trained one.

In any case, get involved and stay in the loop of this ever-evolving field!
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For example, you can explore Understanding_GPT_2_models_with_Ecco.ipynb, which is in the 

GitHub repository of this book for this chapter. It shows you how transformers generate candi-

dates before choosing a token. It is self-explanatory.

In this section, we saw how transformers learn the meaning of words layer by layer. A transformer 

generates candidates before making a choice. As shown in the notebook, a transformer model is 

stochastic and as such chooses among several top probabilities. Consider the following sentence:

"The sun rises in the_____."

What word would you choose at the end of the sentence? We all hesitate. So do transformers!

In this case, the GPT-2 model chooses the word sky:

Figure 14.17: Completing a sequence

But there are other candidates the GPT-2 model may choose in another run, as shown in Figure 

14.18:

Figure 14.18: The other candidates for the completion

We can see that sky appears in rank first. However, morning appears in rank second and 

could fit as well. If we run the model several times, we may obtain different outputs 

because the model is stochastic.

It seems that the domain of AI and transformers is complete.

However, let’s see why humans still have a lot of work to do before we go.
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Exploring models we cannot access
The visual interfaces explored in this chapter are fascinating. However, there is still a lot of work 

to do!

For example, OpenAI’s GPT-3 model runs online or through an API. Thus, we cannot access the 

weights of some Software as a Service (SaaS) transformer models. This trend will increase and 

expand in the years to come. Corporations that spend millions of dollars on research and computer 

power will tend to provide pay-as-you-go services, not open-source applications.

Even if we had access to the source code or output weights of a GPT-3 model, using a visual in-

terface to analyze the 9,216 attention heads (96 layers x 96 heads) would be quite challenging.

Finding what is wrong will still require some human involvement in many cases.

For example, the polysemy issue of the word coach in English to French translation often rep-

resents a problem. In English, a coach can be a person who trains people, or a bus. The word coach 

exists in French, but it only applies to a person who trains people.

If you go to OpenAI AI GPT-3 playground, https://openai.com/, and translate sentences con-

taining the word coach, you might obtain mixed results.

Sentence 1 is translated correctly by the OpenAI engine:

English: The coach broke down, and everybody complained.

French: Le bus a eu un problème et tout le monde s'est plaint.

coach is translated as a bus, which is fine. More context would be required.

The outputs are stochastic, so the translation might be correct one time and false the time after.

However, Sentence 2 is mistranslated:

English: The coach was dissatisfied with the team and everybody 
complained.

French: Le bus était insatisfait du équipe et tout le monde s'est plaint.

This time, the GPT-3 engine missed the fact that coach meant a person, not a bus. The same 

stochastic runs will provide unstable outputs.

If we modify sentence 2 by adding context, we will obtain the proper translation:

English: The coach of the football team was dissatisfied and everybody 
complained.

https://openai.com/
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French: Le coach de l'équipe de football était insatisfait et tout le 
monde s'est plaint.

The translation now contains the French word coach for the same definition of the English word 

coach in this sentence. More context was added.

OpenAI’s solutions, AI in general, and transformer models in particular, are continuously pro-

gressing. Furthermore, most Industry 4.0 AI-driven micro-decisions do not require the level of 

sophistical of NLP or translation tasks and are effective.

However, human intervention and development at the Cloud AI API level will still remain nec-

essary for quite a long time!

Summary
Transformer models are trained to resolve word-level polysemy disambiguation

low-level, mid-level, and high-level dependencies. The process is achieved by connecting training 

million- to trillion-parameter models. The task of interpreting these giant models seems daunting. 

However, several tools are emerging.

We first installed BertViz. We learned how to interpret the computations of the attention heads 

with an interactive interface. We saw how words interacted with other words for each layer.

The chapter continued by defining the scope of probing and non-probing tasks. Probing tasks such 

as NER provide insights into how a transformer model represents language. However, non-prob-

ing methods analyze how the model makes predictions. For example, LIT plugged a PCA project 

and UMAP representations into the outputs of a BERT transformer model. We could then analyze 

clusters of outputs to see how they fit together.

Finally, we ran transformer visualization via dictionary learning. A user can choose a transformer 

factor to analyze and visualize the evolution of its representation from the lower layers to the 

higher layers of the transformer. The factor will progressively go from polysemy disambiguation 

to sentence context analysis and finally to long-term dependencies.

The tools of this chapter will evolve along with other techniques. However, the key takeaway of 

this chapter is that transformer model activity can be visualized and interpreted in a user-friendly 

manner. In the next chapter, we will discover new transformer models. We will also go through 

risk management methods to choose the best implementations for a transformer model project.
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Questions
1. BertViz only shows the output of the last layer of the BERT model. (True/False)

2. BertViz shows the attention heads of each layer of a BERT model. (True/False)

3. BertViz shows how the tokens relate to each other. (True/False)

4. LIT shows the inner workings of the attention heads like BertViz. (True/False)

5. Probing is a way for an algorithm to predict language representations. (True/False)

6. NER is a probing task. (True/False)

7. PCA and UMAP are non-probing tasks. (True/False)

8. LIME is model agnostic. (True/False)

9. Transformers deepen the relationships of the tokens layer by layer. (True/False)

10. Visual transformer model interpretation adds a new dimension to interpretable AI. (True/

False)

References
• BertViz: Jesse Vig,2019, A Multiscale Visualization of Attention in the Transformer Model,2019, 

https://aclanthology.org/P19-3007.pdf

• BertViz: https://github.com/jessevig/BertViz

• LIT, explanation of sentiment analysis representations: https://pair-code.github.io/

lit/tutorials/sentiment/

• LIT: https://pair-code.github.io/lit/

• Transformer visualization via dictionary learning: Zeyu Yun, Yubei Chen, Bruno A Olshau-

sen, Yann LeCun, 2021, Transformer visualization via dictionary learning: contextual-

ized embedding as a linear superposition of transformer factors, https://arxiv.org/

abs/2103.15949

• Transformer visualization via dictionary learning: https://transformervis.github.

io/transformervis/

https://aclanthology.org/P19-3007.pdf
https://github.com/jessevig/BertViz
https://pair-code.github.io/lit/tutorials/sentiment/
https://pair-code.github.io/lit/tutorials/sentiment/
https://pair-code.github.io/lit/
https://arxiv.org/abs/2103.15949
https://arxiv.org/abs/2103.15949
https://transformervis.github.io/transformervis/
https://transformervis.github.io/transformervis/
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Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:

 https://www.packt.link/Transformers

https://www.packt.link/Transformers




15
From NLP to Task-Agnostic 
Transformer Models

Up to now, we have examined variations of the original Transformer model with encoder and 

decoder layers, and we explored other models with encoder-only or decoder-only stacks of layers. 

Also, the size of the layers and parameters has increased. However, the fundamental architecture 

of the transformer retains its original structure with identical layers and the parallelization of 

the computing of the attention heads.

In this chapter, we will explore innovative transformer models that respect the basic structure of 

the original Transformer but make some significant changes. Scores of transformer models will 

appear, like the many possibilities a box of LEGO© pieces gives. You can assemble those pieces in 

hundreds of ways! Transformer model sublayers and layers are the LEGO© pieces of advanced AI.

We will begin by asking which transformer model to choose among the many offers and the 

ecosystem we will implement them in.

Then we will discover Locality Sensitivity Hashing (LSH) buckets and chunking in Reformer 

models. We will then learn what disentanglement is in DeBERTa models. DeBERTa also introduces 

an alternative way of managing positions in the decoder. DeBERTA’s high-powered transformer 

model exceeds human baselines.

Our last step stops will be to discover powerful computer vision transformers such as Vit, CLIP, 

and DALL-E. We can add CLIP and DALL-E to OpenAI GPT-3 and Google BERT (trained by Google) 

to the very small group of foundation models.



From NLP to Task-Agnostic Transformer Models390

These powerful foundation models prove that transformers are task-agnostic. A transformer learns 

sequences. These sequences include vision, sound, and any type of data represented as a sequence.

Images contain sequences of data-like language. We will run ViT, CLIP, and DALL-E models to 

learn. We will take vision models to innovative levels.

By the end of the chapter, you will see that the world of task-agnostic transformers has evolved 

into a universe of imagination and creativity.

This chapter covers the following topics:

• Choosing a transformer model 

• The Reformer transformer model

• Locality Sensitivity Hashing (LSH)

• Bucket and chunking techniques

• The DeBERTA transformer model

• Disentangled attention

• Absolute positions

• Text-image vision transformers with CLIP

• DALL-E, a creative text-image vision transformer

Our first step will be to see how to choose a model and an ecosystem. 

Choosing a model and an ecosystem
We thought that testing transformer models by downloading them would require machine and 

human resources. Also, you might have thought that if a platform doesn’t have an online sandbox 

by this time, it will be a risk to go further because of the work to test a few examples.

However, sites such as Hugging Face download pretrained models automatically in real time, as 

we will see in The Reformer and DeBERTa sections! So, what should we do? Thanks to that, we can 

run Hugging Face models in Google Colab without installing anything on the machine ourselves. 

We can also test Hugging Face models online.

The idea is to analyze without having anything to “install.” “Nothing to Install” in 2022 can mean:

• Running a transformer task online

• Running a transformer on a preinstalled Google Colaboratory VM that seamlessly down-

loads a pretrained model for a task, which we can run in a few lines

• Running a transformer through an API
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The definition of “install” has expanded over the past few years. The definition of “online” has 

widened. We can consider using a few lines of code to run an API as a meta-online test.

We will refer to “without installing,” and “online” in a broad sense in this section. Figure 15.1 

shows how we should test models “online”:

Figure 15.1: Testing transformer models online

Testing in this decade has become flexible and productive, as the following shows:

• Hugging Face hosts API models such as DeBERTa and some other models. In addition, 

Hugging Face offers an AutoML service to train and deploy transformer models in their 

ecosystem.

• OpenAI’s GPT-3 engine runs on the online playground and provides an API. OpenAI offers 

models that cover many NLP tasks. The models require no training. GPT-3’s billion-pa-

rameter zero-shot engine is impressive. It shows that transformer models with many 

parameters produce better results overall. Microsoft Azure, Google Cloud AI, AllenNLP, 

and other platforms offer interesting services.

• An online model analysis can be done by reading a paper if it is worthwhile. A good ex-

ample is Google’s publication by Fedus et al., (2021), on Switch Transformers: Scaling to 

Trillion Parameter Models with Simple and Efficient Sparsity. Google increased the size of 

the T5-based models we studied in Chapter 8, Applying Transformers to Legal and Finan-

cial Documents for AI Text Summarization. This paper confirms the strategy of large online 

models such as GTP-3.

However, in the end, you are the one taking the risk of choosing one solution over another. The 

time you spend on exploring platforms and models will help you optimize the implementation 

of your project once you have made your choice.

You can host your choice in three different ways, as shown in Figure 15.2:

• On a local machine using an API. OpenAI, Google Cloud AI, Microsoft Azure AI, Hugging 

Face, and others provide good APIs. An application can be on a local machine and not on 

a cloud platform but can go through a cloud service with an API.
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• On a cloud platform such as Amazon Web Services (AWS) or Google Cloud. You can train, 

fine-tune, test, and run the models on these platforms. In this case, there is no application 

on a local machine. Everything is on the cloud.

• From anywhere using an API! On a local machine, a data center VM, or from anywhere. 

This means that the API would be integrated in a physical system such as a windmill, an 

airplane, a rocket, or an autonomous vehicle. The system could thus permanently connect 

with another system through an API.

Figure 15.2: Implementing options for your models

In the end, it is up to you to make the decision. Take your time. Test, analyze, compute the costs, 

and work as a team to listen to different perspectives. The more you understand how transformers 

work, the better the choices you make will be.

Let’s now explore the Reformer, a variation of the original Transformer model.

The Reformer
Kitaev et al. (2020) designed the Reformer to solve the attention and memory issues, adding 

functionality to the original Transformer model.

The Reformer first solves the attention issue with Locality Sensitivity Hashing (LSH) buckets 

and chunking.

LSH searches for nearest neighbors in datasets. The hash function determines that if datapoint q 

is close to p, then hash(q) == hash(p). In this case, the data points are the keys of the transformer 

model’s heads.

The LSH function converts the keys into LSH buckets (B1 to B4 in Figure 15.3) in a process called 

LSH bucketing, just like how we would take objects similar to each other and put them in the 

same sorted buckets. 
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The sorted buckets are split into chunks (C1 to C4 in Figure 15.3) to parallelize. Finally, attention 

will only be applied within the same bucket in its chunk and the previous chunk:

Figure 15.3: LSH attention heads

LSH bucketing and chunking considerably reduce the complexity from O(L2), attending to all the 

word pairs, to O(LlogL), only attending to the content of each bucket.

The Reformer also solves the memory issue of recomputing each layer’s input instead of storing 

the information for multi-layer models. The recomputing is achieved on-demand instead of 

consuming terabytes of memory for some large multi-layer models.

We will now use a Reformer model trained on the English translation of Crime and Punishment 

by Fyodor Dostoevsky.

Running an example
Let’s run it directly online with the hosted inference API. The input sentence is:

The student was impoverished and did not know what to do.

The link to the online interface contains the input:

https://huggingface.co/google/reformer-crime-and-punishment?text=The+student+was

+impoverished+and+did+not+know+what+to+do

https://huggingface.co/google/reformer-crime-and-punishment?text=The+student+was+impoverished+and+did+not+know+what+to+do
https://huggingface.co/google/reformer-crime-and-punishment?text=The+student+was+impoverished+and+did+not+know+what+to+do
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The hosted inference API appears with the input sentence. Click on compute to obtain an inference, 

and the result will appear right under the input:

Figure 15.4: The Reformer’s hosted inference API

You might get a different response since the algorithm is stochastic. The Reformer was reasonably 

trained, though not with a supercomputer with billions of bits of information like OpenAI’s GPT-

3. The result of the Reformer is not very impressive. It would take more training and fine-tuning 

to obtain better results.

OpenAI’s GPT-3 engine produces the following result for text completion:

The student was impoverished and did not know what to do. He did not have any one to turn to 

and could not find a place to stay. He took out a pad from his bag and started writing. He wrote:

"My name is XXXXXXXXXX. I am a student at XXXXXXXXXX. I have no family, no friends, 
no money."

The result is more convincing. You can access OpenAI’s playground after having signed up: 
https://openai.com/

This shows that a highly well-trained transformer model containing billions of parameters can 

outperform an innovative transformer model architecture.

Will supercomputer-driven cloud AI platforms progressively outperform local attempts or even 

less powerful cloud platforms? You need to address these issues through prototypes before in-

vesting in one solution over another.

Note: OpenAI GPT-3, as with other transformer models and most deep learning 

models, is based on stochastic algorithms. The results might vary from one to another.

https://openai.com/
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DeBERTa introduces another innovative architecture, which we will now explore.

DeBERTa
Another new approach to transformers can be found through disentanglement. Disentanglement in 

AI allows you to separate the representation features to make the training process more flexible. 

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen designed DeBERTa, a disentangled 

version of a transformer, and described the model in an interesting article: DeBERTa: Decoding-en-

hanced BERT with Disentangled Attention: https://arxiv.org/abs/2006.03654

The two main ideas implemented in DeBERTa are:

• Disentangle the content and position in the transformer model to train the two vectors 

separately

• Use an absolute position in the decoder to predict masked tokens in the pretraining process

The authors provide the code on GitHub: https://github.com/microsoft/DeBERTa

DeBERTa exceeds the human baseline on the SuperGLUE leaderboard:

Figure 15.5: DeBERTa on the SuperGLUE leaderboard

Remove any space before Let’s run an example on Hugging Face’s cloud platform.

Running an example
To run an example on Hugging Face’s cloud platform, click on the following link:

https://huggingface.co/cross-encoder/nli-deberta-base

Note: The stochastic nature of transformer models may produce different results 

when running them. Also, online platforms continually change their interfaces. We 

need to accept that and adapt.

https://arxiv.org/abs/2006.03654
https://github.com/microsoft/DeBERTa
https://huggingface.co/cross-encoder/nli-deberta-base
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The hosted inference API will appear with an example and output of possible class names:

Figure 15.6: DeBERTa’s hosted inference API

The possible class names are mobile, website, billing, and account access.

The result is interesting. Let’s compare it to a GPT-3 keyword task. First, sign up on https://

openai.com/

Enter Text as the input and Keywords to ask the engine to find keywords:

Text: Last week I upgraded my iOS version and ever since then my phone has been 

overheating whenever I use your app.

Keywords: app, overheating, phone

The possible keywords are app, overheating, and phone.

We have gone through the DeBERTa and GPT-3 transformers. We will now extend transformers 

to vision models.

From Task-Agnostic Models to Vision Transformers
Foundation models, as we saw in Chapter 1, What Are Transformers?, have two distinct and unique 

properties:

• Emergence – Transformer models that qualify as foundation models can perform tasks 

they were not trained for. They are large models trained on supercomputers. They are not 

trained to learn specific tasks like many other models. Foundation models learn how to 

understand sequences.

https://openai.com/
https://openai.com/
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• Homogenization – The same model can be used across many domains with the same 

fundamental architecture. Foundation models can learn new skills through data faster 

and better than any other model.

GPT-3 and Google BERT (only the BERT models trained by Google) are task-agnostic foundation 

models. These task-agnostic models lead directly to ViT, CLIP, and DALL-E models. Transformers 

have uncanny sequence analysis abilities.

The level of abstraction of transformer models leads to multi-modal neurons:

• Multi-modal neurons can process images that can be tokenized as pixels or image patch-

es. Then they can be processed as words in vision transformers. Once an image has been 

encoded, transformer models see the tokens as any word token, as shown in Figure 15.7:

Figure 15.7: Images can be encoded into word-like tokens

In this section, we will go through:

• ViT, vision transformers that process images as patches of words

• CLIP, vision transformers that encode text and image

• DALL-E, vision transformers that construct images with text

Let’s begin by exploring ViT, a vision transformer that processes images as patches of words.

ViT – Vision Transformers
Dosovitskiy et al. (2021) summed up the essence of the vision transformer architecture they de-

signed in the title of their paper: An Image is Worth 16x16 Words: Transformers for Image Recognition 

at Scale.

An image can be converted into patches of 16x16 words.
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Let’s first see the architecture of a ViT before looking into the code.

The Basic Architecture of ViT
A vision transformer can process an image as patches of words. In this section, we will go through 

the process in three steps:

1. Splitting the image into patches

2. A linear projection of the patches

3. The hybrid input embedding sublayer

The first step is to SPLIT the image into equal-sized patches.

Step 1: Splitting the image into patches
The image is split into n patches, as shown in Figure 15.8. There is no rule saying how many patches 

as long as all the patches have the same dimensions, such as 16x16:

Figure 15.8: Splitting an image into patches

The patches of equal dimensions now represent the words of our sequence. The problem of what 

to do with these patches remains. We will see that each type of vision transformer has its own 

method.

Image citation: The image of cats used in this section and the subsequent sec-

tions was taken by DocChewbacca: https://www.flickr.com/photos/st3f4n/, 

in 2006. It is under a Flickr free license, https://creativecommons.org/

licenses/by-sa/2.0/. For more details, see DocChewbacca’s image on Flickr:  
https://www.flickr.com/photos/st3f4n/210383891

https://www.flickr.com/photos/st3f4n/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/photos/st3f4n/210383891
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In this case, for the ViT, Step 2 will be to make a linear projection of flattened images.

Step 2: Linear projection of flattened images
Step 1 converted an image to equal-sized patches. The motivation of the patches is to avoid process-

ing the image pixel by pixel. However, the problem remains to find a way to process the patches.

The team at Google Research decided to design a linear projection of flattened images with the 

patches obtained by splitting the image, as shown in Figure 15.9:

Figure 15.9: Linear projection of flattened images

The idea is to obtain a sequence of work-like patches. The remaining problem is to embed the 

sequence of flattened images.

Step 3: The hybrid input embedding sublayer
Word-like image sequences can fit into a transformer. The problem is that they still are images!

Google Research decided that a hybrid input model would do the job, as shown in Figure 15.10:

• Add a convolutional network to embed the linear projection of the patches

• Add positional encoding to retain the structure of the original image

• Then process the embedded input with a standard original BERT-like encoder
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Figure 15.10: A hybrid input sublayer and a standard encoder

Google Research found a clever way to convert an NLP transformer model into a vision transformer.

Now, let’s implement a Hugging Face example of a vision transformer in code.

Vision transformers in code
In this section, we will focus on the main areas of code that relate to the specific architecture of 

vision transformers.

Open Vision_Transformers.ipynb, which is in the GitHub repository for this chapter. 

Google Colab VM’s contain many pre-installed packages such as torch and torchvision. You 

can display them by uncommenting the command in the first cell of the notebook: 

#Uncomment the following command to display the list of pre-installed 
modules 

#!pip list -v  



Chapter 15 401

Then go to the Vision Transformer (ViT) cell of the notebook. The notebook first installs Hugging 

Face transformers and imports the necessary modules:

!pip install transformers

from transformers import ViTFeatureExtractor, ViTForImageClassification

from PIL import Image

import requests

We then download an image from the COCO dataset. You can find a comprehensive corpus of 

datasets on their website if you wish to experiment further: https://cocodataset.org/

Let’s download from the VAL2017 dataset. Follow the COCO dataset website instructions to 

obtain these images through programs or download the datasets locally.

The VAL2017 contains 5,000 images we can choose from to test this ViT model. You can run any 

of the 5,000 images.

Let’s test the notebook with the image of the cats. We first retrieve the image of the cats through 

their URL:

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'

image = Image.open(requests.get(url, stream=True).raw)

We next download Google’s feature extractor and classification model:

feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-
patch16-224')

model = ViTForImageClassification.from_pretrained('google/vit-base-
patch16-224')

The model was trained on 224 x 244 resolution images but was presented with 16 x 16 patches 

for feature extraction and classification. The notebook runs the model and makes a prediction:

inputs = feature_extractor(images=image, return_tensors="pt")

outputs = model(**inputs)

logits = outputs.logits

Note: At the time of writing this book, Hugging Face warns us that the code can be 

unstable due to constant evolutions. This should not stop us from exploring ViT 

models. Testing new territory is what the cutting edge is all about!

https://cocodataset.org/
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# model predicts one of the 1000 ImageNet classes

predicted_class_idx = logits.argmax(-1).item()

print("Predicted class:",predicted_class_idx,": ", model.config.
id2label[predicted_class_idx])

The output is:

Predicted class: 285 :  Egyptian cat

Explore the code that follows the prediction, which gives us information at a low level, among 

which are:

• model.config.id2label, which will list the labels of the classes. The 1000 label classes 

explain why we obtain a class and not a detailed text description:

{0: 'tench, Tinca tinca',1: 'goldfish, Carassius auratus', 2: 'great 
white shark, white shark, man-eater, man-eating shark, Carcharodon 
carcharias',3: 'tiger shark, Galeocerdo cuvieri',...,999: 'toilet 
tissue, toilet paper, bathroom tissue'}

• model, which will display the architecture of the model that begins with the hybrid usage 

of a convolutional input sublayer:

(embeddings): ViTEmbeddings(

  (patch_embeddings): PatchEmbeddings(

    (projection): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 
16))

  )

After the convolutional input embedding sublayer, the model is a BERT-like encoder.

Take your time to explore this innovative move from NLP transformers to transformers for images, 

leading to transformers for everything quite rapidly.

Now, let’s go through CLIP, another computer vision model.

CLIP
Contrastive Language-Image Pre-Training (CLIP) follows the philosophy of transformers. It 

plugs sequences of data in its transformer-type layers. Instead of sending text pairs, this time, 

the model sends text-image pairs. Once the data is tokenized, encoded, and embedded, CLIP, a 

task-agnostic model, learns text-image pairs as with any other sequence of data.
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The method is contrastive because it looks for the contrasts in the features of the image. It is the 

method we use in some magazine games in which we have to find the differences, the contrasts, 

between two images.

Let’s first see the architecture of CLIP before looking into the code.

The Basic Architecture of CLIP
Contrastive: the images are trained to learn how they fit together through their differences and 

similarities. The image and captions find their way toward each other through (joint text, image) 

pretraining. After pretraining, CLIP learns new tasks.

CLIPs are transferable because they can learn new visual concepts, like GPT models, such as action 

recognition in video sequences. The captions lead to endless applications.

ViT splits images into word-like patches. CLIP jointly trains text and image encoders for (caption, 

image) pairs to maximize cosine similarity, as shown in Figure 15.11:

Figure 15.11: Jointly training text and images

Figure 15.11 shows how the transformer will run a standard transformer encoder for the text in-

put. It will run a ResNet 50-layer CNN for the images in a transformer structure. ResNet 50 was 

modified to run an average pooling layer in an attention pooling mechanism with a multi-head 

QKV attention head.

Let’s see how CLIP learns text-image sequences to make predictions.

CLIP in code
Open Vision_Transformers.ipynb, which is in the repository for this chapter on GitHub. Then 

go to the CLIP cell of the notebook.
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The program begins by installing PyTorch and CLIP:

!pip install ftfy regex tqdm

!pip install git+https://github.com/openai/CLIP.git

The program also imports the modules and CIFAR-100 to access the images:

import os

import clip

import torch

from torchvision.datasets import CIFAR100

There are 10,000 images available with an index between 0 and 9,999. The next step is to select 

an image we want to run a prediction on:

Figure 15.12: Selecting an image index

The program then loads the model on the device that is available (GPU or CPU):

# Load the model

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load('ViT-B/32', device)

The images are downloaded:

# Download the dataset

cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, 
train=False)

The input is prepared:

# Prepare the inputs

image, class_id = cifar100[index]

image_input = preprocess(image).unsqueeze(0).to(device)

text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in 
cifar100.classes]).to(device)
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Let’s visualize the input we selected before running the prediction:

import matplotlib.pyplot as plt

from torchvision import transforms

plt.imshow(image)

The output shows that index 15 is a lion:

Figure 15.13: Image of Index 15

We know this is a lion because we are humans. A transformer initially designed for NLP has to 

learn what an image is. We will now see how well it can recognize images.

The program shows that it is running a joint transformer model by separating the image input 

from the text input when calculating the features:

# Calculate features

with torch.no_grad():

    image_features = model.encode_image(image_input)

    text_features = model.encode_text(text_inputs)

The images in this section are from Learning Multiple Layers of Features from Tiny 

Images, Alex Krizhevsky, 2009: https://www.cs.toronto.edu/~kriz/learning-

features-2009-TR.pdf. They are part of the CIFAR-10 and CIFAR-100 datasets 

(toronto.edu): https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
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Now CLIP makes a prediction and displays the top five predictions:

# Pick the top 5 most similar labels for the image

image_features /= image_features.norm(dim=-1, keepdim=True)

text_features /= text_features.norm(dim=-1, keepdim=True)

similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)

values, indices = similarity[0].topk(5)

# Print the result

print("\nTop predictions:\n")

for value, index in zip(values, indices):

    print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")

You can modify topk(5) if you want to obtain more or fewer predictions. The top five predictions 

are displayed:

Top predictions:

            lion: 96.34%

           tiger: 1.04%

           camel: 0.28%

      lawn_mower: 0.26%

         leopard: 0.26%

CLIP found the lion, which shows the flexibility of transformer architectures.

The next cell displays the classes:

cifar100.classes

You can go through the classes to see that with only one label per class, which is restrictive, CLIP 

did a good job:

[...,'kangaroo','keyboard','lamp','lawn_mower','leopard','lion',

 'lizard', ...]

The notebook contains several other cells describing the architecture and configuration of CLIP 

that you can explore.

The model cell is particularly interesting because you can see the visual encoder that begins with 

a convolutional embedding like for the ViT model and then continues as a “standard” size-768 

transformer with multi-head attention:
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CLIP(
  (visual): VisionTransformer(
    (conv1): Conv2d(3, 768, kernel_size=(32, 32), stride=(32, 32), 
bias=False)
    (ln_pre): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (transformer): Transformer(
      (resblocks): Sequential(
        (0): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, 
out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, 
bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )

Another interesting aspect of the model cell is to look into the size-512 text encoder that runs 

jointly with the image encoder:

(transformer): Transformer(
    (resblocks): Sequential(
      (0): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, 
out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
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Go through the cells that describe the architecture, configuration, and parameters to see how 

CLIP represents data.

We showed that task-agnostic transformer models process image-text pairs as text-text pairs. 

We could apply task-agnostic models to music-text, sound-text, music-images, and any type of 

data pairs.

We will now explore DALL-E, another task-agnostic transformer model that can process images 

and text.

DALL-E
DALL-E, as with CLIP, is a task-agnostic model. CLIP processed text-image pairs. DALL-E pro-

cesses the text and image tokens differently. DALL-E’s input is a single stream of text and image 

of 1,280 tokens. 256 tokens are for the text, and 1,024 tokens are used for the image. DALL-E is a 

foundation model like CLIP.

DALL-E was named after Salvador Dali and Pixar’s WALL-E. The usage of DALL-E is to enter a text 

prompt and produce an image. However, DALL-E must first learn how to generate images with text.

DALL-E is a 12-billion-parameter version of GPT-3.

This transformer generates images from text descriptions using a dataset of text-image pairs.

The Basic Architecture of DALL-E
Unlike CLIP, DALL-E concatenates up to 256 BPE-encoded text tokens with 32×32 = 1,024 image 

tokens, as shown in Figure 15.14:

Figure 15.14: DALL-E concatenates text and image input

Figure 15.14 shows that this time, our cat image is concatenated with the input text.
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DALL-E has an encoder and a decoder stack, which is built with a hybrid architecture of infusing 

convolutional functions in a transformer model.

Let’s peek into the code to see how the model works.

DALL-E in code
In this section, we will see how DALL-E reconstructs images.

Open Vision_Transformers.ipynb. Then go to the DALL-E cell of the notebook. The notebook 

first installs OpenAI DALL-E:

!pip install DALL-E

The notebook downloads the images and processes an image:

import io
import os, sys
import requests
import PIL

import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF

from dall_e import map_pixels, unmap_pixels, load_model
from IPython.display import display, display_markdown

target_image_size = 256

def download_image(url):
    resp = requests.get(url)
    resp.raise_for_status()
    return PIL.Image.open(io.BytesIO(resp.content))

def preprocess(img):
    s = min(img.size)
    
    if s < target_image_size:
        raise ValueError(f'min dim for image {s} < {target_image_size}')
        
    r = target_image_size / s
    s = (round(r * img.size[1]), round(r * img.size[0]))
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    img = TF.resize(img, s, interpolation=PIL.Image.LANCZOS)
    img = TF.center_crop(img, output_size=2 * [target_image_size])
    img = torch.unsqueeze(T.ToTensor()(img), 0)
    return map_pixels(img)

The program now loads the OpenAI DALL-E encoder and decoder:

# This can be changed to a GPU, e.g. 'cuda:0'.
dev = torch.device('cpu')

# For faster load times, download these files locally and use the local 
paths instead.
enc = load_model("https://cdn.openai.com/dall-e/encoder.pkl", dev)
dec = load_model("https://cdn.openai.com/dall-e/decoder.pkl", dev)

I added the enc and dec cells so that you can look into the encoder and decoder blocks to see 

how this hybrid model works: the convolutional functionality in a transformer model and the 

concatenation of text and image input.

The image processed in this section is mycat.jpg (creator: Denis Rothman, all rights reserved, 

written permission required to reproduce it). The image is in the Chapter15 directory of this 

book’s repository. It is downloaded and processed:

x=preprocess(download_image('https://github.com/Denis2054/AI_Educational/
blob/master/mycat.jpg?raw=true'))

Finally, we display the original image:

display_markdown('Original image:')
display(T.ToPILImage(mode='RGB')(x[0]))

The output displays the image:

Figure 15.15: An image of a cat



Chapter 15 411

Now, the program processes and displays the reconstructed image:

import torch.nn.functional as F

z_logits = enc(x)

z = torch.argmax(z_logits, axis=1)

z = F.one_hot(z, num_classes=enc.vocab_size).permute(0, 3, 1, 2).float()

x_stats = dec(z).float()

x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3]))

x_rec = T.ToPILImage(mode='RGB')(x_rec[0])

display_markdown('Reconstructed image:')

display(x_rec)

The reconstructed image looks extremely similar to the original:

Figure 15.16: DALL-E reconstructs the image of the cat

The result is impressive. DALL-E learned how to generate images on its own.

The full DALL-E source code is not available at the time of the book’s writing and might never be. 

An OpenAI API to generate images from text prompts is not online yet. But keep your eyes open!

In the meantime, we can continue discovering DALL-E on OpenAI at https://openai.com/blog/

dall-e/

https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
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Once you have reached the page, scroll down to the examples provided. For example, I chose a 

photo of Alamo Square in San Francisco as a prompt:

Figure 15.17: Prompt for Alamo Square, SF

Then I modified “at night” to “in the morning”:

Figure 15.18: Modifying the prompt

DALL-E then generated a multitude of text2image images:

Figure 15.19: Generating images from text prompts

We have implemented ViT, CLIP, and DALL-E, three vision transformers. Let’s go through some 

final thoughts before we finish.

An expanding universe of models
New transformer models, like new smartphones, emerge nearly every week. Some of these models 

are both mind-blowing and challenging for a project manager:

• ERNIE is a continual pretraining framework that produces impressive results for language 

understanding.

Paper: https://arxiv.org/abs/1907.12412

https://arxiv.org/abs/1907.12412
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Challenges: Hugging Face provides a model. Is it a full-blown model? Is it the one Baidu 

trained to exceed human baselines on the SuperGLUE Leaderboard (December 2021): 

https://super.gluebenchmark.com/leaderboard? Do we have access to the best one or 

just a toy model? What is the purpose of running AutoML on such small versions of models? 

Will we gain access to it on the Baidu platform or a similar one? How much will it cost?

• SWITCH: A trillion-parameter model optimized with sparse modeling.

Paper: https://arxiv.org/abs/2101.03961

Challenges: The paper is fantastic. Where is the model? Will we ever have access to the 

real fully trained model? How much will it cost?

• Megatron-Turing: A 500 billion parameter transformer model.

Blog: https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-
train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-

generative-language-model/

Challenges: One of the best models on the market. Will we have access through an API? 

Will it be a full-blown model? How much will it cost?

• XLNET is pretrained like BERT, but the authors contend it exceeds BERT model perfor-

mance.

Paper: https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733 

e9ee67cc69-Paper.pdf

Challenges: Does XLNET really exceed the performances of Google BERT, the version 

Google uses for their activities? Do we have access to the best versions of Google BERT 

or XLNET models?

The list has become endless and it is growing!

Testing them all remains a challenge beyond the issues mentioned previously. Only a few trans-

former models qualify as foundation models. A foundation model must be:

• Fully trained for a wide range of tasks

• Able to perform tasks it was not trained for because of the unique level of NLU it has 

attained

• Sufficiently large to guarantee reasonably accurate results, such as OpenAI GPT-3

https://super.gluebenchmark.com/leaderboard
https://arxiv.org/abs/2101.03961
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733
e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733
e9ee67cc69-Paper.pdf
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Many sites offer transformers that prove useful for educational purposes but cannot be considered 

sufficiently trained and large to qualify for benchmarking.

The best approach is to deepen your understanding of transformer models as much as possible. 

At one point, you will become an expert, and finding your way through the jungle of big tech 

innovations will be as easy as choosing a smartphone!

Summary
New transformer models keep appearing on the market. Therefore, it is good practice to keep up 

with cutting-edge research by reading publications and books and testing some systems.

This leads us to assess which transformer models to choose and how to implement them. We 

cannot spend months exploring every model that appears on the market. We cannot change mod-

els every month if a project is in production. Industry 4.0 is moving to seamless API ecosystems.

Learning all the models is impossible. However, understanding a new model quickly can be 

achieved by deepening our knowledge of transformer models.

The basic structure of transformer models remains unchanged. The layers of the encoder and/or 

decoder stacks remain identical. The attention head can be parallelized to optimize computation 

speeds.

The Reformer model applies LSH buckets and chunking. It also recomputes each layer’s input 

instead of storing the information, thus optimizing memory issues. However, a billion-parameter 

model such as GPT-3 produces acceptable results for the same examples.

The DeBERTa model disentangles content and positions, making the training process more flex-

ible. The results are impressive. However, billion-parameter models such as GPT-3 can equal the 

outputs of a DeBERTa.

ViT, CLIP, and DALL-E took us into the fascinating world of task-agnostic text-image vision 

transformer models. Combining language and images produces new and productive information.

The question remains to see how far ready-to-use AI and automated systems will go. We will at-

tempt to visualize the future of transformer-based AI in the next chapter on the rise of metahumans.

Questions
1. Reformer transformer models don’t contain encoders. (True/False)

2. Reformer transformer models don’t contain decoders. (True/False)
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3. The inputs are stored layer by layer in Reformer models. (True/False)

4. DeBERTa transformer models disentangle content and positions. (True/False)

5. It is necessary to test the hundreds of pretrained transformer models before choosing 

one for a project. (True/False)

6. The latest transformer model is always the best. (True/False)

7. It is better to have one transformer model per NLP task than one multi-task transformer 

model. (True/False)

8. A transformer model always needs to be fine-tuned. (True/False)

9. OpenAI GPT-3 engines can perform a wide range of NLP tasks without fine-tuning. (True/

False)

10. It is always better to implement an AI algorithm on a local server. (True/False)
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16
The Emergence of Transformer-
Driven Copilots

When Industry 4�0 (I4�0) reaches maturity, it will all be about machine-to-machine connections, 

communication, and decision-making. AI will be primarily embedded in ready-to-use pay-as-

you-go cloud AI solutions. Big tech will absorb the most talented AI specialists to create APIs, 

interfaces, and integration tools.

AI specialists will go from development to design to becoming architects, integrators, and cloud 

AI pipeline administrators. Thus, AI is becoming a job for engineer consultants more than engi-

neer developers.

Chapter 1, What Are Transformers?, introduced foundation models, transformers that can do NLP 

tasks they were not trained for. Chapter 15, From NLP to Task-Agnostic Transformer Models, expand-

ed foundation model transformers to task-agnostic models that can perform vision tasks, NLP 

tasks, and much more.

This chapter will extend task-agnostic OpenAI GPT-3 models to a wide range of copilot tasks. A 

new generation of AI specialists and data scientists will learn how to work with AI copilots to 

help them generate source code automatically and make decisions.

This chapter begins by exploring prompt engineering in more detail. The example task consists 

of converting meeting notes into a summary. Transformers boost our productivity. However, we 

will see how natural language remains a challenge for AI.
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We will learn how to use OpenAI Codex as a copilot. GitHub Copilot suggests source code as we 

write our programs using Codex. Codex can also convert natural language into code.

We will then discover new AI methods with domain-specific GPT-3 engines. This chapter will 

show how to generate embeddings with 12,288 dimensions and plug them into machine learn-

ing algorithms. We will also see how to ask a transformer to produce instructions automatically.

We will see how to filter biased input and output before looking into transformer-driven recom-

menders. AI of the 2020s must be built with ethical methods.

Recommender systems have permeated every social media platform to suggest videos, posts, mes-

sages, books, and many other products we might want to consume. We will build an educational 

multi-purpose transformer-based recommender system using ML in the process.

Transformer models analyze sequences. They began with NLP but have successfully expanded to 

computer vision. We will explore a transformer-based computer vision program developed in JAX.

Finally, we will see AI copilots contribute to the transition of virtual systems into metaverses, 

which will expand in this decade. You are the pilot when you develop your applications. Howev-

er, when you have code to develop, the activated completions are limited to methods, not lines 

of code. An IDE might suggest a list of methods. Copilots can produce completions of whole 

paragraphs of code!

This chapter covers the following topics:

• Prompt engineering

• GitHub Copilot

• Codex language to source code models

• Embedding datasets

• Embedded-driven machine learning

• Instruct series

• Content filter models

• Exploring transformer-based recommenders

• Extending NLP sequence learning to behavior predictions

• Implementing transformer models in JAX

• Applying transformer models to computer vision
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Let’s begin with prompt engineering, which is a critical ability to acquire.

Prompt engineering
Speaking a specific language is not hereditary. There is not a language center in our brain contain-

ing the language of our parents. Our brain engineers our neurons early in our lives to speak, read, 

write, and understand a language. Each human has a different language circuitry depending on 

their cultural background and how they were communicated with in their early years.

As we grow up, we discover that much of what we hear is chaos: unfinished sentences, grammar 

mistakes, misused words, bad pronunciation, and many other distortions.

We use language to convey a message. We quickly find that we need to adapt our language to 

the person or audience we address. We might have to try additional “inputs” or “prompts” to 

obtain the result (“output”) we expect. Foundation-level transformer models such as GPT-3 

can perform hundreds of tasks in an indefinite number of ways. We must learn the language of 

transformer prompts and responses as we would any other language. Effective communication with 

a person or near-human-level transformer must contain a minimum amount of information to 

maximize results. We represent the minimum input information to obtain a result as minI and 

the maximum output of any system as maxR.

We can represent this chain of communication as:

minI(input)  maxR(output)

We will replace “input” with “prompt” for transformers to show that our input influences how 

the model will react. The output is the “response.” The dialogue with transformers, d(T), can be 

expressed as:

d(T)=minI(prompt)  maxR(response)

When minI(prompt) 1, the probability of maxR(response) 1.

When minI(prompt) 0, the probability of maxR(response) 0.

The quality d(T) depends on how well we can define minI(prompt).

If your prompt tends to reach 1, then it will produce probabilities that tend to 1.

If your prompt tends to reach 0, then it will produce output probabilities that tend to 0.

Your prompt is part of the content that impacts the probabilities! Why? Because the transformer 

will include the prompt and the response in its estimations.
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It takes many years to learn a language as a child or an adult. It also takes quite some time to learn 

the language of transformers and how to design minI(prompt) effectively. We need to understand 

them, their architecture, and the way the algorithms calculate predictions. Then we need to 

spend quite some time understanding how to design the input, the prompt, for the transformers 

to behave as we expect.

This section focuses on oral language. The prompt for OpenAI GPT-3 for an NLP task will often 

be taken from meeting notes or conversations, which tend to be unstructured. Transforming 

meeting notes or conversations into a summary can be quite challenging. This section will focus 

on summarizing notes of the same conversation in seven situations that go from casual English 

to casual or formal English with limited context.

We will begin with casual English with a meaningful context.

Casual English with a meaningful context
Casual English is spoken with shorter sentences and limited vocabulary.

Let’s ask OpenAI GPT-3 to perform a “notes to summary” task. Go to www.openai.com. Log in or 

sign up. Then go to the Examples page and select Notes to summary.

We will give GPT-3 all the information required to summarize a casual conversation between Jane 

and Tom. Jane and Tom are two developers starting work. Tom offers Jane coffee. Jane declines 

the offer.

In this case, minI(prompt)=1 since the input information is fine, as shown in Figure 16.1:

http://www.openai.com
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Figure 16.1: Summarizing well-documented notes

When we click on Generate, we get a surprisingly good answer, as shown in Figure 16.2:

Figure 16.2: An acceptable summary is provided by GPT-3

Can we conclude that AI can find structures in our chaotic daily conversations, meetings, and 

aimless chatter? The answer isn’t easy. We will now complicate the input by adding a metonymy.
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Casual English with a metonymy
Tom mentioned the word coffee, setting GPT-3 on track. But what if Tom used the word java 

instead of coffee. Coffee refers to the beverage, but java is an ingredient that comes from the 

island of Java. A metonymy is when we use an attribute of an object, such as java for coffee. Java 

is also a programming language with a logo that is a cup of coffee.

We are facing three possible definitions of java: an ingredient of coffee meaning coffee (meton-

ymy), the island of Java, and the name of a programming language. GPT-3 now has a polysemy 

(several meanings of the same word) issue to solve.

Humans master polysemy. We learn the different meanings of words. We know that a word 

doesn’t mean much without context. In this case, Jane and Tom are developers, complicating 

the situation. Are they talking about coffee or the language?

The answer is easy for a human since Tom then talks about his wife, who stopped drinking it. 

GPT-3 can be confused by this polysemy when the word java replaces coffee, and it produces 

an incorrect answer:

Figure 16.3: Incorrect GPT-3 response when prompt is confusing

We thus confirm that when minI(prompt) 0, the probability of maxR(response) 0.

Human conversations can become even more difficult to analyze if we add an ellipsis.

Casual English with an ellipsis
The situation can get worse. Let’s suppose Tom is drinking a cup of coffee, and Jane looks at him 

and the cup of coffee as she casually greets him.

Instead of asking Jane if she wants coffee or java, Tom says:

"Want some?"

Tom left out the word coffee, which is an ellipsis. Jane can still understand what Tom means by 

looking at him holding a cup of coffee.
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OpenAI GPT-3 detects the word drinking and still manages to associate this verb with the question 

Want some?. We don’t want some of a programming language. The following summary produced 

by GPT-3 is still correct:

Figure 16.4: Correct response produced by GPT-3

Now, let’s see what happens when there is vague context that a human can understand but re-

mains a challenge for AI.

Casual English with vague context
If we take this further, Tom doesn’t need to mention his wife for Jane to understand what he is 

talking about since he is holding a cup of coffee.

Let’s remove Tom's reference to his wife and the verb drinking. Let’s leave want some in instead 

of coffee or java:

Figure 16.5: Vague input context

The output reflects the apparent chaos of the conversation:

Figure 16.6: Poor GPT-3 response



The Emergence of Transformer-Driven Copilots424

The prompt was too vague, leading to an inadequate response that we can sum up as:

d(T) 0 because when minI(prompt) 0, the probability of maxR(response) 0

When humans communicate, they bring their culture, past relationships, visual situations, and 

other invisible factors into a conversation. These invisible factors for third parties can be:

• Reading a text without seeing what the people were doing (actions, facial expressions, 

body language, etc.)

• Listening to people refer to things they know about, but we don’t (movies, sports, prob-

lems in a factory, etc.)

• Cultural events from a culture that’s different from ours

The list is endless!

We can see that these invisible factors make AI blind.

Let’s now introduce sensors into the situation.

Casual English with sensors
We now introduce video sensors into the room for a thought experiment. Imagine we can use 

image captioning with a video feed and supply a context early in the dialogue such as:

Humans sometimes generate dialogue that only people that know each other well understand. 

Consider the following dialogue between Jane and Tom. The video feed produces image captioning 

showing that Tom is drinking a cup of coffee and Jane is typing on her keyboard. Jane and Tom are 

two developers, mumbling their way through the day while getting down to work in an open space.

Then we provide the following chaotic chat as a prompt:

Tom: "hi" Jane: "yeah sure" Tom: "Want some?" Jane: "Nope" Tom: "Cool. You're 

trying then." Jane: "Yup" Tom: "Sleep better?" Jane: "Yeah. Sure. "

The output of GPT-3 is acceptable though important semantic words are missing at the start:

Summarize: A developer can be seen typing on her keyboard. Another 
developer enters the room and offers her a cup of coffee. She declines, 
but he insists. They chat about her sleep and the coffee.

The results may change from one run to another. GPT-3 looks at the top probabilities and selects 

one of the best. GPT-3 made it through this experiment because image captioning provided the 

context.
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However, what if Tom is not holding a cup of coffee, depriving GPT-3 of visual context?

Casual English with sensors but no visible context
The most difficult situation for AI is if Tom refers to an event every day but not today. Suppose 

that Tom comes in with a cup of coffee every morning. He comes in now and asks Jane if she wants 

some before getting some coffee. Our thought experiment is to imagine all the possible cases. In 

that case, the video feed in our thought experiment will reveal nothing, and we are back to chaos 

again. Also, the video feed can’t see if they are developers, accountants, or consultants. So, let’s 

take that part of context out, which leaves us with the following context. Let’s go further. The 

dialogue contains Tom: and Jane:. So we don’t need to mention that context. We are left with:

Tom: "hi" Jane: "yeah sure" Tom: "Want some?" Jane: "Nope" Tom: "Cool. You're 

trying then." Jane: "Yup" Tom: "Sleep better?" Jane: "Yeah. Sure."

The output is quite astonishing. The casual language used by Jane and Tom leads GPT-3 to absurd 

conclusions. Remember, GPT-3 is a stochastic algorithm. The slightest change in the inputs can 

lead to quite different outputs. GPT-3 is trying to guess what they are talking about. GPT-3 detects 

that the conversation is about consuming something. Their casual language leads to nonsensical 

predictions about illegal substances that I am not reproducing in this section for ethical reasons.

GPT-3 determines the level of language used and associates it with related situations.

What will happen if we reproduce this same experiment using formal English?

Formal English conversation with no context
Let’s now keep all of the context out but provide formal English. Formal English contains longer 

sentences, good grammar, and manners. We can express the same conversation that contains 

no context using formal English:

Tom: "Good morning, Jane" Jane: "Good morning, Tom" Tom: "Want some as well?" Jane: 
"No, thank you. I'm fine." Tom: "Excellent. You are on the right track!" Jane: 
"Yes, I am" Tom: "Do you sleep better these days?" Jane: "Yes, I do. Thank you. "

GPT-3 naturally understands what Tom refers to with “drinking” with this level of English and 

good manners. The output is quite satisfactory:

Summarize: Tom says "good morning" to Jane. Tom offers her some of what he's drinking. 
Jane says "no, thank you. I'm fine." Tom says "excellent" and that she is on the 
right track. Jane says, "yes, I am." Tom asks if she sleeps better these days.
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We could imagine an endless number of variations on this same conversation by introducing 

other people into the dialogue and other objects and generating an endless number of situations.

Let’s sum these experiments up.

Prompt engineering training
Our thoughts are often chaotic. Humans use many methods to reconstruct unstructured sentences. 

Humans often need to ask additional questions to understand what somebody is talking about. You need 

to accept this when interacting with a trained transformer such as OpenAI GPT-3.

Keep in mind that a dialogue d(T) with a transformer and the response, maxR(response), depends 

on the quality of your inputs, minI(prompt), as defined at the beginning of this section:

d(T)=minI(prompt)  maxR(response)

When minI(prompt) 1, the probability of maxR(response) 1.

When minI(prompt) 0, the probability of maxR(response) 0.

Practice prompt engineering and measure your progress in time. Prompt engineering is a new 

skill that will take you to the next level of AI.

The prompt engineering abilities lead to being able to master copilots.

Copilots
Welcome to the world of AI-driven development copilots powered by OpenAI and available in 

Visual Studio.

GitHub Copilot
Let’s begin with GitHub Copilot:

https://github.com/github/copilot-docs

https://github.com/github/copilot-docs
https://github.com/github/copilot-docs
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In this section, we will use GitHub Copilot with PyCharm (JetBrains):

https://github.com/github/copilot-docs/tree/main/docs/jetbrains

Follow the instructions in the documentation to install JetBrains and activate OpenAI GitHub 

Copilot in PyCharm.

Working withGitHub Copilot is a four-step process (see Figure 16.7):

• OpenAI Codex is trained on public code and text on the internet.

• The trained model is plugged into the GitHub Copilot service.

• The GitHub service manages back-and-forth flows between code we write in an editor (in 

this case PyCharm) and OpenAI Codex. The GitHub Service Manager makes suggestions 

and then sends the interactions back for improvement.

• The code editor is our development workspace.

Figure 16.7: GitHub Copilot’s four-step process

Follow the instructions provided by GitHub Copilot, log in to GitHub when you are in PyCharm. 

For any troubleshooting, read https://copilot.github.com/#faqs.

Once you are all set in the PyCharm editor, simply type:

import matplotlib.pyplot as plt

def draw_scatterplot

https://github.com/github/copilot-docs/tree/main/docs/jetbrains
https://github.com/github/copilot-docs/tree/main/docs/jetbrains
https://copilot.github.com/#faqs
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As soon as the code is typed, you can open the OpenAI GitHub suggestion pane and see the sug-

gestions:

Figure 16.8: Suggestions for the code you typed

Once you choose the copilot suggestion you prefer, it will appear in the editor. You can confirm 

suggestions with the Tab key. You can wait for another suggestion, such as drawing a scatterplot:

import matplotlib.pyplot as plt

def draw_scatterplot(x, y):

    plt.scatter(x, y)

    plt.xlabel('x')

    plt.ylabel('y')

    plt.show()

draw_scatterplot([1, 2, 3, 4, 5], [1, 4, 9, 16, 25])  
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The plot will be displayed:

Figure 16.9: A GitHub Copilot scatterplot

You can run the result on your machine with GitHub_Copilot.py, which is in the Chapter16 

folder in this book’s GitHub repository.

The technology is seamless, invisible, and will progressively expand into all areas of development. 

The system is packed with GPT-3 functionality along with other pipelines. The technology is 

available for Python, JavaScript, and more.

It will take training with prompt engineering to get used to working with GitHub Copilot driven 

by OpenAI Codex.

Let’s go directly to OpenAI Codex, which can be a good place to train using copilots.

Codex
OpenAI Codex does more than suggest source code. Codex can translate natural language into 

source code.

Go to the OpenAI website and click on the link to the Codex interface:

https://beta.openai.com/codex-javascript-sandbox

Provide instructions and the result will be displayed in the Codex window and the source code 

on the right pane of the interface.

https://beta.openai.com/codex-javascript-sandbox
https://beta.openai.com/codex-javascript-sandbox
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The example in this section contains a few sequences using the prompt pane:

Figure 16.10: Codex’s JavaScript sandbox

We enter natural language in the Provide instructions… pane, generating JavaScript that will run.

For example, I entered two instructions in natural language:

Draw 50 small ping pong balls of all sorts of colors

Make the balls round

Codex is derived from GPT-3. In some cases, the engine is referred to as “davinci-codex.” This 

means Codex inherits the properties of a GPT-3 engine. To understand this, let’s take one parameter 

among others: top_p. The engine samples the output of the engine. For example, if top_p is set to 

0.1, it will only take the top 10% of the sampling into account. It will retrieve the tokens in that top 

10% probability mass. Since the whole computation is stochastic, it might take some top choices 

and another set of top choices to run after. Be patient and take your time designing the prompt.

Your AI engine learning path:
1. Learn to understand the behavior of the Codex engine.

2. Accept the free creative nature of stochastic algorithms.

3. Get used to piloting them with better prompts. You will then be able to grow with Codex 

as the engines improve.

The script will appear in the JavaScript pane with commented instructions and the code:

/* draw 50 small ping pong balls of all sorts of colors */

var balls = [];

for (var i = 0; i < 50; i++) {
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  var ball = document.createElement('div');

  ball.style.width = '10px';

  ball.style.height = '10px';

  ball.style.backgroundColor = 'hsl(' + Math.random() * 360 + ', 100%, 
50%)';

  ball.style.position = 'absolute';

  ball.style.left = Math.random() * window.innerWidth + 'px';

  ball.style.top = Math.random() * window.innerHeight + 'px';

  document.body.appendChild(ball);

  balls.push(ball);

}

/* Make the balls round */

for (var i = 0; i < balls.length; i++) {

  balls[i].style.borderRadius = '50%';

}

The result is displayed:

Figure 16.11: Creating fifty multicolored balls 
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Now let’s ask the program to move the balls:

Make all of the balls move inside the window

The code is generated:

/* make all of the balls move inside the window. */
var moveBalls = function() {
  for (var i = 0; i < balls.length; i++) {
    var ball = balls[i];
    ball.style.left = (parseInt(ball.style.left) + Math.random() * 10 - 5) 
+ 'px';
    ball.style.top = (parseInt(ball.style.top) + Math.random() * 10 - 5) + 
'px';
  }
  window.requestAnimationFrame(moveBalls);
};
moveBalls();

Once the balls move, export the code to HTML by clicking on the Export to JSFiddle button:

Figure 16.12: The Export to JSFiddle button 

JSFiddle creates an HTML page:

Figure 16.13: JSFiddle creating an HTML page
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In this case, the code was saved to codex.html, which is in this chapter’s folder in the GitHub 

repository of the book. You can open and watch the innovative result of creating an HTML page 

with language natural to code source code.

Domain-specific GPT-3 engines
This section explores GPT-3 engines that can perform domain-specific tasks. We will run three 

models in the three subsections of this section:

• Embedding2ML to use GPT-3 to provide embeddings for ML algorithms 

• Instruct series to ask GPT-3 to provide instructions for any task

• Content filter to filter bias or any form of unacceptable input and output

Open Domain_Specific_GPT_3_Functionality.ipynb.

We will begin with embedding2ML (embeddings as an input to ML).

Embedding2ML
OpenAI has trained several embedding models with different dimensions with different capa-

bilities:

• Ada (1,024 dimensions)

• Babbage (2,048 dimensions)

• Curie (4,096 dimensions)

• Davinci (12,288 dimensions)

For more explanations on each engine, you will find more information on OpenAI’s website:

https://beta.openai.com/docs/guides/embeddings.

The Davinci model offers embedding with 12,288 dimensions. In this section, we will use the 

power of Davinci to generate the embeddings of a supply chain dataset. However, we will not 

send the embeddings to the embedding sublayer of the transformer!

We will send the embeddings to a clustering machine learning program from the scikit-learn 

library in six steps:

• Step 1: Installing and importing OpenAI, and entering the API key

• Step 2: Loading the dataset

• Step 3: Combining the columns

https://beta.openai.com/docs/guides/embeddings
https://beta.openai.com/docs/guides/embeddings
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• Step 4: Running the GPT-3 embedding

• Step 5: Clustering (k-means) with the embeddings

• Step 6: Visualizing the clusters (t-SNE)

The process is summed up in Figure 16.14:

Figure 16.14: Six-step process for sending embeddings to a clustering algorithm

Open the Google Colab file, Domain_Specific_GPT_3_Functionality.ipynb and go to the 

Embedding2ML with GPT-3 engine section of the notebook.

The steps described in this section match the notebook cells. Let’s go through a summary of each 

step of the process.

Step 1: Installing and importing OpenAI
Let’s start with the following substeps:

1. Run the cell

2. Restart the runtime

3. Run the cell again to make sure since you restarted the runtime:

try:

  import openai

except:

  !pip install openai

  import openai



Chapter 16 435

4. Enter the API key:

openai.api_key="[YOUR_KEY]"

We now load the dataset.

Step 2: Loading the dataset
Load your file before running the cell. I uploaded tracking.csv (available in the GitHub repository 

of this book), which contains SCM data:

import pandas as pd

df = pd.read_csv('tracking.csv', index_col=0)

The data contains seven fields:

• Id
• Time
• Product
• User
• Score
• Summary

• Text

Let’s print the first few lines using the following command:

print(df)

                 Time Product  User  Score        Summary   Text     
Id                                                                    
1     01/01/2016 06:30   WH001  C001      4        on time   AGV1     
2     01/01/2016 06:30   WH001  C001      8           late     R1  NaN
3     01/01/2016 06:30   WH001  C001      2          early    R15  NaN
4     01/01/2016 06:30   WH001  C001     10  not delivered    R20  NaN
5     01/01/2016 06:30   WH001  C001      1        on time     R3  NaN
...                ...     ...   ...    ...            ...    ...  ...
1049  01/01/2016 06:30   WH003  C002      9        on time   AGV5  NaN
1050  01/01/2016 06:30   WH003  C002      2           late  AGV10  NaN
1051  01/01/2016 06:30   WH003  C002      1          early   AGV5  NaN
1052  01/01/2016 06:30   WH003  C002      6  not delivered   AGV2  NaN
1053  01/01/2016 06:30   WH003  C002      3        on time   AGV2  NaN

[1053 rows x 7 columns]
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We can combine columns to build the clusters we wish.

Step 3: Combining the columns
We can combine the Product column with Summary to obtain a view of products and their deliv-

ery status. Remember that this is only an experimental exercise. In a real-life project, carefully 

analyze and decide on the columns you wish to combine.

The following example code can be replaced with any choice you make for your experimentation:

df['combined'] = df.Summary.str.strip()+ "-" + df.Product.str.strip()

print(df)

We can now see a new column named combined:

                 Time Product  User  ... Text           combined

Id                                    ...                                 

1     01/01/2016 06:30 WH001  C001  ... AGV1             on time-WH001

2     01/01/2016 06:30 WH001  C001  ... R1  NaN           late-WH001

3     01/01/2016 06:30 WH001  C001  ... R15  NaN          early-WH001

4     01/01/2016 06:30 WH001  C001  ... R20  NaN  not delivered-WH001

5     01/01/2016 06:30 WH001  C001  ... R3  NaN        on time-WH001

...                ...     ...   ...  ...    ...  ...                  ...

1049  01/01/2016 06:30 WH003  C002  ... AGV5  NaN        on time-WH003

1050  01/01/2016 06:30 WH003  C002  ... AGV10  NaN         late-WH003

1051  01/01/2016 06:30 WH003  C002  ... AGV5  NaN          early-WH003

1052  01/01/2016 06:30 WH003  C002  ... AGV2  NaN  not delivered-WH003

1053  01/01/2016 06:30 WH003  C002  ... AGV2  NaN        on time-WH003

[1053 rows x 8 columns]

We will now run the embedding model on the combined column.

Step 4: Running the GPT-3 embedding
We will now run the davinci-similarity model to obtain 12,288 dimensions for the combined 

column:

import time

import datetime

# start time

start = time.time()
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def get_embedding(text, engine="davinci-similarity"):

   text = text.replace("\n", " ")

   return openai.Engine(id=engine).embeddings(input = [text])['data'][0]
['embedding']

df['davinci_similarity'] = df.combined.apply(lambda x: get_embedding(x, 
engine='davinci-similarity'))

# end time

end = time.time()

etime=end-start

conversion = datetime.timedelta(seconds=etime)

print(conversion)

print(df)

The result is impressive. We have 12,288 dimensions for the combined column:

0:04:44.188250

                  Time  ...                                 davinci_
similarity

Id                      ...                                                   

1     01/01/2016 06:30  ...  [-0.0047378824, 0.011997132, -0.017249448, 
-0....

2     01/01/2016 06:30  ...  [-0.009643857, 0.0031537763, -0.012862709, 
-0....

3     01/01/2016 06:30  ...  [-0.0077407444, 0.0035147679, -0.014401976, 
-0...

4     01/01/2016 06:30  ...  [-0.007547746, 0.013380095, -0.018411927, 
-0.0...

5     01/01/2016 06:30  ...  [-0.0047378824, 0.011997132, -0.017249448, 
-0....

...                ...  ...                                                

...

1049  01/01/2016 06:30  ...  [-0.0027823148, 0.013289047, -0.014368941, 
-0....

1050  01/01/2016 06:30  ...  [-0.0071367626, 0.0046446105, -0.010336877, 
0....
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1051  01/01/2016 06:30  ...  [-0.0050991694, 0.006131069, -0.0138306245, 
-0...

1052  01/01/2016 06:30  ...  [-0.0066779135, 0.014575769, -0.017257102, 
-0....

1053  01/01/2016 06:30  ...  [-0.0027823148, 0.013289047, -0.014368941, 
-0....

[1053 rows x 9 columns]

We now need to convert the result into a numpy matrix:

#creating a matrix

import numpy as np

matrix = np.vstack(df.davinci_similarity.values)

matrix.shape

The matrix has a shape of 1,053 records x 12,288 dimensions, which is quite impressive:

(1053, 12288)

The matrix is now ready to be sent to a scikit-learn machine learning clustering algorithm.

Step 5: Clustering (k-means clustering) with the embeddings
We usually send classical datasets to a k-means clustering algorithm. We will send a 12,288-di-

mension dataset to the ML algorithm, not to the next sublayer of the transformer.

We first import k-means from scikit-learn:

from sklearn.cluster import KMeans

We now run a classical k-means clustering algorithm with our 12,288-dimension dataset: 

n_clusters = 4

kmeans = KMeans(n_clusters = n_clusters,init='k-means++',random_state=42)

kmeans.fit(matrix)

labels = kmeans.labels_

df['Cluster'] = labels

df.groupby('Cluster').Score.mean().sort_values()
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The output is four clusters as requested:

Cluster

2    5.297794

0    5.323529

1    5.361345

3    5.741697

We can print the labels for the content of the dataset:

print(labels)

The output is:

[2 3 0 ... 0 1 2]

Let’s now visualize the clusters using t-SNE.

Step 6: Visualizing the clusters (t-SNE)
t-SNE keeps local similarities. PCA maximizes large pairwise distances. In this case, smaller pair-

wise distances.

The notebook will use matplotlib to display t-SNE:

from sklearn.manifold import TSNE

import matplotlib

import matplotlib.pyplot as plt

Before visualizing we need to run the t-SNE algorithm:

#t-SNE

tsne = TSNE(n_components=2, perplexity=15, random_state=42, init='random', 
learning_rate=200)

vis_dims2 = tsne.fit_transform(matrix)

We can now display the results in matplotlib:

x = [x for x,y in vis_dims2]

y = [y for x,y in vis_dims2]

for category, color in enumerate(['purple', 'green', 'red', 'blue']):

    xs = np.array(x)[df.Cluster==category]

    ys = np.array(y)[df.Cluster==category]
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    plt.scatter(xs, ys, color=color, alpha=0.3)

    avg_x = xs.mean()

    avg_y = ys.mean()

    

    plt.scatter(avg_x, avg_y, marker='x', color=color, s=100)

plt.title("Clusters of embeddings-t-SNE")

The plot shows the clusters with many data points piled up around them. There are also many 

data points circled around the clusters attached to the closest centroid:

Figure 16.15: Clusters of embeddings-t-SNE

We ran a large GPT-3 model to embed 12,288 dimensions. Then we plugged the result into a 

clustering algorithm. The potential of combining transformers and machine learning is endless!

You can go to the Peeking into the embeddings section of the notebook if you wish to peek 

into the data frames.

Let’s now have a look at the instruct series.

Instruct series
Personal assistants, avatars in metaverses, websites, and many other domains will increasingly 

need to provide clear instructions when a user asks for help. Go to the instruct series section 

of Domain_Specific_GPT_3_Functionality.ipynb.



Chapter 16 441

In this section, we will ask a transformer to explain how to set up parent control in Microsoft Edge 

with the following prompt: Explain how to set up parent control in Edge.

We first run the completion cell:

import os

import openai

os.environ['OPENAI_API_KEY'] ='[YOUR_API_KEY]'

print(os.getenv('OPENAI_API_KEY'))

openai.api_key = os.getenv("OPENAI_API_KEY")

response = openai.Completion.create(

  engine="davinci-instruct-beta",

  prompt="Explain how to set up parent control in Edge.\n\n\nACTIONS:",

  temperature=0,

  max_tokens=120,

  top_p=1,

  frequency_penalty=0,

  presence_penalty=0

)

r = (response["choices"][0])

print(r["text"])

The response is a list of instructions as requested:

1. Start Internet Explorer.

2. Click on the tools menu.

3. Click on the Internet options.

4. Click on the advanced tab.

5. Click to clear or select the enable personalized favorite menu check 
box.

The number of instructions you can ask for is unlimited! Use your creativity and imagination to 

find more examples!

Sometimes the input or the output is not acceptable. Let’s see how to implement a content filter.

Content filter
Bias, unacceptable language, and any form of unethical input should be excluded from your AI 

applications.
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One of OpenAI’s trained models is a content filter. We will run an example in this section. Go to 

the content filter section of Domain_Specific_GPT_3_Functionality.ipynb.

My recommendation is to filter the input and the output, as shown in Figure 16.16:

Figure 16.16: Implementing a content filter

My recommendation is to implement a three-step process:

1. Apply a content filter to ALL input data

2. Let the AI algorithm run as trained

3. Apply a content filter to ALL output data

In this section, the input and output data will be named content.

Take an obnoxious input as the following one:

content = "Small and fat children should not play basketball at school."

This input is unacceptable! School is not the NBA. Basketball should remain a nice exercise for 

everyone. 

Let’s now run the content filter in the cell - content-filter-alpha:

response = openai.Completion.create(

      en      prompt = "<|endoftext|>"+content+"\n--\nLabel:",

      temperature=0,

      max_tokens=1,

      top_p=1,

      frequency gine="content-filter-alpha",

_penalty=0,
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      presence_penalty=0,

      logprobs=10

    )

The content filter stores the result in response, a dictionary object. We retrieve the value of choice 

to obtain the level of acceptability:

r = (response["choices"][0])

print("Content filter level:", r["text"])

The content filter sends one of three values back:

• 0 – Safe

• 1 – Sensitive

• 2 – Unsafe

In this case, the result is 2, of course:

Content filter level: 2

The content filter might not be sufficient. I recommend adding other algorithms to control and 

filter input/output content: rule bases, dictionaries, and other methods.

Now that we have explored domain-specific models, let’s build a transformer-based recommender 

system.

Transformer-based recommender systems
Transformer models learn sequences. Learning language sequences is a great place to start con-

sidering the billions of messages posted on social media and cloud platforms each day. Consumer 

behaviors, images, and sounds can also be represented in sequences.

In this section, we will first create a general-purpose sequence graph and then build a gener-

al-purpose transformer-based recommender in Google Colaboratory. We will then see how to 

deploy them in metahumans.

Let’s first define general-purpose sequences.

General-purpose sequences
Many activities can be represented by entities and links between them. They are thus organized in 

sequences. For example, a video on YouTube can be an entity A, and the link can be the behavior 

of a person going from video A to video E. 
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Another example is a bad fever being an entity F, and the link being the inference a doctor may 

make leading to a micro-decision B. The purchase of product D on Amazon by a consumer can 

generate a link to a suggestion C or another product. The examples are infinite!

We can define the entities in this section with six letters:

E={A,B,C,D,E,F}

When we speak a language, we follow grammar rules and cannot escape them.

For example, suppose A=” I”, E=” eat”, and D=” candy”. There is only one proper sequence to 

express the fact that I consume candy: “I eat candy.”

If somebody says “eat candy I,” it will sound slightly off.

In this sequence, the links representing those rules are:

A->E (I eat)

E->D(eat candy)

We can automatically infer rules in any domain by observing behaviors, learning datasets with 

ML, or manually listening to experts.

In this section, we will suppose that we have observed a YouTube user for several months who 

spends several hours watching videos. We have noticed that the user systematically goes from 

one type of video to another. For example, from the video of singer B to the video of singer D. The 

behavior rules X of this person P seem to be:

X(P)={AE,BD,BF,C,CD,DB,DC,DE,EA,ED,FB}

We can represent this system of entities as vertices in a graph and the links as edges. For example, 

if we apply X(P) to the vertices, we obtain the following undirected graph:

Figure 16.17: Graph of YouTube user’s video combinations
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Suppose the vertices are videos of a viewer’s favorite singers and that C is the singer the viewer 

prefers. We can give a value of 1 to the statistical transitions (links or edges) the viewer made in 

the past weeks. We can also give a value of 100 to the viewer’s favorite singer’s videos. 

For this viewer, the path is represented by the (edges, vertices) values V(R(P)):

V(X(P))={AE=1,BD=1,BF=1,C=100,CD=1,DB=1,DE=1,EA=1,ED=1,FB=1}

The goal of a recommender is thus to suggest sequences that lead to videos of singer C or suggest 

C directly in some cases.

We can represent the undirected graph in reward matrix R:

                 A,B,C,D,E,F     

R = ql.matrix([ [0,0,0,0,1,0],   A 

                [0,0,0,1,0,1],   B 

                [0,0,100,1,0,0], C 

                [0,1,1,0,1,0],   D 

                [1,0,0,1,0,0],   E 

                [0,1,0,0,0,0]])  F 

                

Let’s use this reward matrix to simulate the activity of a viewer X over several months.

Dataset pipeline simulation with RL using an MDP
In this section, we will simulate the behavior X of a person P watching videos of songs on YouTube, 

which we define as X(P). We will determine the values of the behavior of P as V(X(P)). We will 

then organize the values in a reward matrix R for a Markov Decision Process (MDP) that we will 

now implement in a Bellman equation.

Open KantaiBERT_Recommender.ipynb, which is in this chapter’s folder in the book’s GitHub re-

pository. The notebook is a modification of KantaiBERT.ipynb described in Chapter 4, Pretraining 

a RoBERTa Model from Scratch. 

In Chapter 4, we trained a transformer using kant.txt, which contained some of the works of 

Immanuel Kant. In this section, we will generate thousands of sequences of a person’s behavior 

through reinforcement learning (RL). RL is not in the scope of this book, but this section con-

tains some reminders.

The first step is to train a transformer model to learn and simulate a person’s behavior.
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Training customer behaviors with an MDP
KantaiBERT.ipynb in Chapter 4 began by loading kant.txt to train a RoBERTa with a DistilBERT 

architecture. kant.txt contained works by Immanuel Kant. In this section, we will generate se-

quences using the reward matrix R defined in the General-purpose sequences section of this chapter:

R = ql.matrix([ [0,0,0,0,1,0],    

                [0,0,0,1,0,1],    

                [0,0,100,1,0,0],  

                [0,1,1,0,1,0],    

                [1,0,0,1,0,0],    

                [0,1,0,0,0,0]])  

The first cell of the program is thus:

Step 1A Training: Dataset Pipeline Simulation with RL using an MDP:

This cell implements an MDP using the Bellman equation:

  # The Bellman MDP based Q function

  Q[current_state, action] = R[current_state, action] + gamma * MaxValue

In this equation:

• R is the original reward matrix.

• Q is the updated matrix, which is the same size as R. However, it is updated through rein-

forcement learning to compute the relative value of the link (edge) between each entity 

(vertex). 

• gamma is a learning rate set to 0.8 to avoid overfitting the training process.

• MaxValue is the maximum value of the next vertex. For example, if the viewer P of You-

Tube videos is viewing singer A, the program might increase the value of E so that this 

suggestion can appear as a recommendation.

Little by little, the program will try to find the best values to help a viewer find the best videos 

to watch. Once the reinforcement program has learned the best links (edges), it can recommend 

the best viewing sequences.
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The original reward matrix has trained to become an operational matrix. If we add the original 

entities, the trained values clearly appear:

    A       B       C       D       E       F

[[  0.      0.      0.      0.    258.44    0.   ]  A

 [  0.      0.      0.    321.8     0.    207.752]  B

 [  0.      0.    500.    321.8     0.      0.   ]  C

 [  0.    258.44  401.      0.    258.44    0.   ]  D

 [207.752   0.      0.    321.8     0.      0.   ]  E

 [  0.    258.44    0.      0.      0.      0.   ]] F

The original sequences of values V of the behaviors X of person P were:

V(X(P))={AE=1,BD=1,BF=1,C=100, CD=1,DB=1,DE=1,EA=1,ED=1,FB=1}

They have been trained to become:

V(X(P))={AE=259.44, BD=321.8 ,BF=207.752, C=500, CD=321.8 ,DB=258.44, DE=258.44, 

EA=207.752, ED=321.8, FB=258.44}

This is quite a change!

Now, it becomes possible to recommend a sequence of exciting videos of P’s preferred singers. 

Suppose P views a video of singer E. Line E of the trained matrix will recommend a video of the 

highest value of that line, which is D=321.8. Thus, a video of singer D will appear in the YouTube 

feed of person P.

The goal of this section is not to stop at this phase. Instead, this section uses an MDP to create 

meaningful sequences to create a dataset for the transformer to use for training.

YouTube does not need to generate sequences to create a dataset. YouTube stores all the behaviors 

of all viewers in big data. Then Google’s powerful algorithms take over to recommend the best 

videos in the video feed of a viewer.

Other platforms use cosine similarity as implemented in Chapter 9, Matching Tokenizers and Data-

sets, to make predictions.

The MDP could have been trained for YouTube viewers, Amazon buyers, Google search results, 

a doctor’s diagnosis path, a supply chain, and any type of sequence. Transformers are taking 

sequence learning, training, and predictions to another level.



The Emergence of Transformer-Driven Copilots448

Let’s implement a simulation to create behavior sequences for a transformer model.

Simulating consumer behavior with an MDP
Once the RL part of the program is trained in cell 1, cell 2, Step 1B Applying: Dataset Pipeline 

Simulation with MDP will simulate a YouTube viewer’s behavior over several months. It will also 

include similar viewer profiles adding up to a simulation of 10,000 sequences of video watching.

Cell 2 begins by creating the kant.txt file that will be used to train the KantaiBERT transformer 

model:

""" Simulating a decision-making process"""

f = open("kant.txt", "w")

Then the entities (vertices) are introduced:

conceptcode=["A","B","C","D","E","F"]

Now the number of sequences is set to 10,000:

maxv=10000

The function chooses a random start vertex named origin:

origin=ql.random.randint(0,6)

The program uses the trained matrix to select the best sequence for any domain from that point 

of origin. In this case, we suppose they are the favorite singers of a person such as the following 

examples:

FBDC EDC EDC DC BDC AEDC AEDC BDC BDC AEDC BDC AEDC EDC BDC AEDC DC AEDC 
DC…/…

Once 10,000 sequences have been calculated, kant.txt contains a dataset for the transformer.

With kant.txt, the remaining cells of the program are the same as in KantaiBERT.ipynb described 

in Chapter 4, Pretraining a RoBERTa Model from Scratch.

The transformer is now ready to make recommendations.

Making recommendations
In Chapter 4, KantaiBERT.ipynb contained the following masked sequence:

fill_mask("Human thinking involves human<mask>.")
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This sequence is specific and related to Immanuel Kant’s works. This notebook has a general-pur-

pose dataset that can be used in any domain.

In this notebook, the input is:

fill_mask("BDC<mask>.")

The output contains duplicates. It will take a cleaning function to filter them to obtain two non-du-

plicate sequences:

[{'score': 0.00036507684853859246,

  'sequence': 'BDC FBDC.',

  'token': 265,

  'token_str': ' FBDC'},

 {'score': 0.00023987806343939155,

  'sequence': 'BDC DC.',

  'token': 271,

  'token_str': ' DC'}]

The sequences make sense. Sometimes a viewer will watch the same videos, sometimes not. 

The behavior can be chaotic. That’s where machine learning comes in and how AI can be used 

in metahumans.

Metahuman recommenders
Once the sequences have been generated, they will be converted back into natural language for 

user interfaces. Metahuman, in this section, refers to a recommender that takes large amounts 

of features that:

• Exceed human capacity to reason with that many parameters

• Lead to more accurate predictions than a human can make

These pragmatic metahumans are not digital humans yet in this context but powerful comput-

ing tools. We will go through metahumans in the digital sense in the Humans and AI copilots in 

metaverses section.

For example, the BDC sequences could be a song by singer B, followed by singer D, and then P’s 

favorite singer C.
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Once the sequence is converted into natural language, several options are possible:

• The sequence can be sent to a bot or a digital human.

• You can use the metahuman as an educational video while waiting for an API.

• A metahuman can be inserted into an interface as a voice message. For example, when 

using Google Maps in a car, you listen to the voice. It sounds like a human. We even slip 

and sometimes think it’s a person, but it isn’t. It’s a machine.

• It can also be an invisible embedded suggestion in Amazon. It remains something that 

makes recommendations that lead us to make micro-decisions. It influences us as a sales-

person would do. It’s an invisible metahuman.

In this case, the general-purpose sequences were created by an MDP and trained by a RoBERTa 

transformer. This shows that transformers can be applied to any type of sequence.

Let’s see how transformers are applied to computer vision.

Computer vision
This book is about NLP, not computer vision. However, in the previous section, we implemented 

general purpose sequences that can be applied to many domains. Computer vision is one of them.

The title of the article by Dosovitskiy et al. (2021) says it all: An image is worth 16x16 words: Trans-

formers for Image Recognition at Scale. The authors processed an image as sequences. The results 

proved their point.

Google has made vision transformers available in a Colaboratory notebook. Open Vision_

Transformer_MLP_Mixer.ipynb in the Chapter16 directory of this book’s GitHub repository.

Open Vision_Transformer_MLP_Mixer.ipynb contains a transformer computer vision model in 

JAX(). JAX combines Autograd and XLA. JAX can differentiate Python and NumPy functions. JAX 

speeds up Python and NumPy by using compilation techniques and parallelization.

When an emerging technology appears, jump on the train and take the ride! 

You will get to know this technology and evolve with it. You can google other 

metahuman platforms. In any case, you can remain on the cutting edge by 

learning how to circumvent limits and find ways to use new technology.
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The notebook is self-explanatory. You can explore it to see how it works. However, bear in mind 

that when Industry 4.0 reaches maturity and Industry 5.0 kicks in, the best implementations will 

be obtained by integrating your data on Cloud AI platforms. Local development will diminish, and 

companies will turn to Cloud AI without bearing local development, maintenance, and support.

The notebook’s table of contents contains a transformer process we have gone through several 

times in this book. However, this time, it’s simply applied to sequences of digital image infor-

mation:

Figure 16.18: Our vision transformer notebook

The notebook follows standard deep learning methods. It shows some images with labels:

# Show some images with their labels.

images, labels = batch['image'][0][:9], batch['label'][0][:9]

titles = map(make_label_getter(dataset), labels.argmax(axis=1))

show_img_grid(images, titles)
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Figure 16.19: Images with labels

The notebook contains the standard transformer process and then displays the training images:

# Same as above, but with train images.

# Note how images are cropped/scaled differently.

# Check out input_pipeline.get_data() in the editor at your right to see 
how the

# images are preprocessed differently.

batch = next(iter(ds_train.as_numpy_iterator()))

images, labels = batch['image'][0][:9], batch['label'][0][:9]

titles = map(make_label_getter(dataset), labels.argmax(axis=1))

show_img_grid(images, titles)

The images in this chapter are from Learning Multiple Layers of Features from Tiny 

Images, Alex Krizhevsky, 2009: https://www.cs.toronto.edu/~kriz/learning-

features-2009-TR.pdf. They are part of the CIFAR-10 and CIFAR-100 datasets 

(toronto.edu): https://www.cs.toronto.edu/~kriz/cifar.html.



Chapter 16 453

Figure 16.20: Trained data

Transformer programs can classify random pictures. It seems like a miracle to take a transformer 

model originally designed for NLP and use it for general-purpose sequences for recommenders 

and then for computer vision. However, we are just beginning to explore the generalization of 

sequences training.

The simplicity of the model is surprising! The vision transformer relies on the architecture of 

transformers. It does not contain the complexity of convolutional neural networks. Yet, it pro-

duces comparable results.

Now, robots and bots can be equipped with transformer models to understand language and 

interpret images to understand the world around them.

Vision transformers can be implemented in  metahumans and metaverses.

Humans and AI copilots in metaverses
Humans and metahuman AI are merging into metaverses. Exploring metaverses is beyond the 

scope of this book. The toolbox provided by this book shows the path to metaverses populated 

by humans and metahuman AI.
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Avatars, computer vision, and video game experience will make our communication with others 

immersive. We will go from looking at smartphones to being in locations with others.

From looking at to being in
The evolution from looking at to being in is a natural one. We invented computers, added screens, 

then invented smartphones, and now use apps for video meetings.

Now we can enter virtual reality for all types of meetings and activities.

We will use Facebook’s metaverse, for example, on our smartphone to feel present in the same 

location as the people (personal and professional) we meet. Feeling present will no doubt be a 

major evolution in smartphone communication.

Feeling present somewhere is quite different from looking at a small screen on a mobile.

The metaverse will make the impossible possible: a spacewalk, surfing on huge waves, walking 

in a forest, visiting dinosaurs, and wherever our imagination takes us.

Yes, there are limits, dangers, threats, and everything that goes with human technology. However, 

we can use AI to control AI, as we saw with content filtering.

The transformer tools in this book added to the emerging metaverse technology will take us 

literally to another world.

Make good use of the knowledge and skills you acquired in this book to create your ethical future 

in a metaverse or the physical world!

Summary
This chapter described the rise of AI copilots with human-decision-making-level capability. In-

dustry 4.0 has opened the door to machine interconnectivity. Machine-to-machine micro-deci-

sion making will speed up transactions. AI copilots will boost our productivity in a wide range 

of domains.

We saw how to use OpenAI Codex to generate source code while we code and even with natural 

language instructions.

We built a transformer-based recommender system using a dataset generated by the MDP pro-

gram to train a RoBERTa transformer model. The dataset structure was a multi-purpose sequence 

model. A metahuman can thus acquire multi-domain recommender functionality.
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The chapter then showed how a vision transformer could classify images processed as sequences 

of information.

Finally, we saw that the metaverse would make recommendations visible through a metahuman 

interface or invisible in deeply embedded functions in social media, for example.

Transformers have emerged with innovating copilots and models in an incredibly complex new 

era. The journey will prove both challenging and exciting!

Questions
1. AI copilots that can generate code automatically do not exist. (True/False)

2. AI copilots will never replace humans. (True/False)

3. GPT-3 engines can only do one task. (True/False)

4. Transformers can be trained to be recommenders. (True/False)

5. Transformers can only process language. (True/False)

6. A transformer sequence can only contain words. (True/False)

7. Vision transformers cannot equal CNNs. (True/False)

8. AI robots with computer vision do not exist. (True/False)

9. It is impossible to produce Python source code automatically. (True/False)

10. We might one day become the copilots of robots. (True/False)
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Appendix I — Terminology of 
Transformer Models

The past decades have produced Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and more types of Artificial Neural Networks (ANNs). They all have a certain 

amount of vocabulary in common.

Transformer models introduced some new words and used existing words slightly differently. This 

appendix briefly describes transformer models to clarify the usage of deep learning vocabulary 

when applied to transformers.

The motivation of transformer model architecture relies upon an industrial approach to deep 

learning. The geometric nature of transformers boosts parallel processing. In addition, the ar-

chitecture of transformers perfectly fits hardware optimization requirements. Google, for exam-

ple, took advantage of the stack structure of transformers to design domain-specific optimized 

hardware that requires less floating-number precision.

Designing transformers models implies taking hardware into account. Therefore, the architecture 

of a transformer combines software and hardware optimization from the start. 

This appendix defines some of the new usages of neural network language.
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Stack
A stack contains identically sized layers that differ from classical deep learning models, as shown 

in Figure I.1. A stack runs from bottom to top. A stack can be an encoder or a decoder.

Figure I.1: Layers form a stack

Transformer stacks learn and see more as they rise in the stacks. Each layer transmits what it 

learned to the next layer just as our memory does.

Imagine that a stack is the Empire State Building in New York City. At the bottom, you cannot see 

much. But you will see more and farther as you ascend throught the offices on higher floors and 

look out the windows. Finally, at the top, you have a fantastic view of Manhattan!

Sublayer
Each layer contains sublayers, as shown in Figure I.2. Each sublayer of different layers has an 

identical structure, which boosts hardware optimization. 

The original Transformer contains two sublayers that run from bottom to top:

• A self-attention sublayer, designed specifically for NLP and hardware optimization
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• A classical feedforward network with some tweaking

Figure I.2: A layer contains two sublayers

Attention heads
A self-attention sublayer is divided into n independent and identical layers called heads. For ex-

ample, the original Transformer contains eight heads. 

Figure I.3 represents heads as processors to show that transformers’ industrialized structure fits 

hardware design:

Figure I.3: A self-attention sublayer contains heads

Note that the attention heads are represented by microprocessors in Figure I.3 to stress the parallel 

processing power of transformer architectures.

Transformer architectures fit both NLP and hardware-optimization requirements.
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Models

Transformer models could not exist without optimized hardware. Memory and disk management 

design remain critical components. However, computing power remains a prerequisite. It would 

be nearly impossible to train the original Transformer described in Chapter 2, Getting Started with 

the Architecture of the Transformer Model, without GPUs. GPUs are at the center of the battle for 

efficient transformer models.

This appendix to Chapter 3, Fine-Tuning BERT Models, will take you through the importance of 

GPUs in three steps:

• The architecture and scale of transformers

• CPUs versus GPUs

• Implementing GPUs in PyTorch as an example of how any other optimized language 

optimizes

The Architecture and Scale of Transformers
A hint about hardware-driven design appears in the The architecture of multi-head attention section 

of Chapter 2, Getting Started with the Architecture of the Transformer Model:

“However, we would only get one point of view at a time by analyzing the sequence with one dmodel 

block. Furthermore, it would take quite some calculation time to find other perspectives.

A better way is to divide the dmodel = 512 dimensions of each word xn of x (all the words of a sequence) 

into 8 dk = 64 dimensions.
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We then can run the 8 “heads” in parallel to speed up the training and obtain 8 different repre-

sentation subspaces of how each word relates to another:

Figure II.1: Multi-head representations

You can see that there are now 8 heads running in parallel.

We can easily see the motivation for forcing the attention heads to learn 8 different perspectives. 

However, digging deeper into the motivations of the original 8 attention heads performing dif-

ferent calculations in parallel led us directly to hardware optimization. 

Brown et al. (2020), in Language Models are Few-Shot Learners, https://arxiv.org/abs/2005.14165, 

describe how they designed GPT models. They confirm that transformer architectures are hard-

ware-driven.

We partition the model across GPUs along with both the depth and width dimension to minimize 

data-transfer between nodes. The precise architectural parameters for each model are chosen 

based on computational efficiency and load-balancing in the layout of models across GPUs.

Transformers differ in their construction (encoders and decoders) and size. But they all have 

hardware constraints that require parallel processing. We need to take this a step further and 

see why GPUs are so special.

Why GPUs are so special
A clue to GPU-driven design emerges in the The architecture of multi-head attention section of 

Chapter 2, Getting Started with the Architecture of the Transformer Model.

Attention is defined as “Scaled Dot-Product Attention,” which is represented in the following 

equation into which we plug Q, K, and V:

https://arxiv.org/abs/2005.14165
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄𝑄 𝑄𝑄𝑄 𝑄𝑄) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑄𝑄𝑄𝑄𝑇𝑇√𝑑𝑑𝑘𝑘) 𝑄𝑄 

We can now conclude the following:

• Attention heads are designed for parallel computing

• Attention heads are based on matmul, matrix multiplication

GPUs are designed for parallel computing
A CPU (central processing unit) is optimized for serial processing. But if we run the attention 

heads through serial processing, it would take far longer to train an efficient transformer model. 

Very small educational transformers can run on CPUs. However, they do not qualify as state-of-

the-art models.

A GPU (graphics processing unit) is designed for parallel processing. Transformer models were 

designed for parallel processing (GPUs), not serial processing (CPUs).

GPUs are also designed for matrix multiplication
NVIDIA GPUs, for example, contain tensor cores that accelerate matrix operations. A significant 

proportion of artificial intelligence algorithms use matrix operations, including transformer 

models. NVIDIA GPUs contain a goldmine of hardware optimization for matrix operations. The 

following links provide more information:

• https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-

cpu-and-a-gpu/

• https://www.nvidia.com/en-us/data-center/tesla-p100/

Google’s Tensor Processing Unit (TPU) is the equivalent of NVIDIA’s GPUs. TensorFlow will 

optimize the use of tensors when using TPUs.

• For more on TPUs, see https://cloud.google.com/tpu/docs/tpus.

• For more on tensors in TensorFlow, see https://www.tensorflow.org/guide/tensor.

BERTBASE (110M parameters) was initially trained with 16 TPU chips. BERTLARGE (340M param-

eters) was trained with 64 TPU chips. For more on training BERT, see https://arxiv.org/

abs/1810.04805.

We have established that the architecture of the transformer perfectly fits the constraints of par-

allel hardware. We still need to address the issue of implementing source code that runs on GPUs.

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://cloud.google.com/tpu/docs/tpus
https://www.tensorflow.org/guide/tensor
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
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Implementing GPUs in code
PyTorch, among other languages and frameworks, manages GPUs. PyTorch contains tensors just 

as TensorFlow does. A tensor may look like NumPy np.arrays(). However, NumPy is not fit for 

parallel processing. Tensors use the parallel processing features of GPUs.

Tensors open the doors to distributed data over GPUs in PyTorch, among other frameworks: 

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

In the Chapter03 notebook, BERT_Fine_Tuning_Sentence_Classification_GPU.ipynb, we used 

CUDA (Compute Unified Device Architecture) to communicate with NVIDIA GPUs. CUDA is an 

NVIDIA platform for general computing on GPUs. Specific instructions can be added to our source 

code. For more, see https://developer.nvidia.com/cuda-zone.

In the Chapter03 notebook, we used CUDA instructions to transfer our model and data to NVIDIA 

GPUs. PyTorch has an instruction to specify the device we wish to use: torch.device.

For more, see https://pytorch.org/docs/stable/notes/cuda.html.

We will explain device to illustrate the implementation of GPUs in PyTorch and programs in 

general. Let’s focus on selecting a device, data parallelism, loading a model to a device, and adding 

batch data to the device. Each bullet point contains the way device is used and the cell number 

in BERT_Fine_Tuning_Sentence_Classification_GPU.ipynb:

• Select device (Cell 3)

The program checks to see if CUDA is available on an NVIDIA GPU. If not, the device will 

be CPU:

device = torch.device("cuda" if torch.cuda.is_available() else 
"cpu")

!nvidia-smi

• Data parallelism (Cell 16)

The model can be distributed for parallel computing over several GPUs if more than one 

GPU is available:

model = BertForSequenceClassification.from_pretrained("bert-base-
uncased", num_labels=2)

model = nn.DataParallel(model)

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://developer.nvidia.com/cuda-zone
https://pytorch.org/docs/stable/notes/cuda.html
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• Loading the model to the device (cell 16)

The model is sent to the device:

      model.to(device)

• Add batch to device (cell 20) for training and validation data

Batches of data are added to the GPUs available (1 to n):

# Add batch to GPU

batch = tuple(t.to(device) for t in batch)

In the following section, I describe tests I made to illustrate the use of GPUs for transformer models 

by running a notebook of the chapter with three runtime configurations.

Testing GPUs with Google Colab
In this section, I describe informal tests I ran to illustrate the potential of GPUs. We’ll use the same 

Chapter03 notebook: BERT_Fine_Tuning_Sentence_Classification_GPU.ipynb.

I ran the notebook on three scenarios:

• Google Colab Free with a CPU

• Google Colab Free with a GPU

• Google Colab Pro

Google Colab Free with a CPU
It is nearly impossible to fine-tune or train a transformer model with millions or billions of pa-

rameters on a CPU. CPUs are mostly sequential. Transformer models are designed for parallel 

processing.

In the Runtime menu and Change Runtime Type submenu, you can select a hardware acceler-

ator: None (CPU), GPU, or TPU.
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This test was run with None (CPU), as shown in Figure II.2:

Figure II.2: Selecting a hardware accelerator

When the notebook reaches the training loop, it slows down right from the start:

Figure II.3: Training loop

After 15 minutes, nothing has really happened. 

CPUs are not designed for parallel processing. Transformer models are designed for parallel 

processing, so part from toy models, they require GPUs.

Google Colab Free with a GPU
Let’s go back to the notebook settings to select a GPU.

Figure II.4 Selecting a GPU

At the time of writing, I tested Google Colab, and an NVIDIA K80 was attributed to the VM with 

CUDA 11.2:
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Figure II.5: NVIDIA K80 GPU activated

The training loop advanced normally and lasted about 20 minutes. However, Google Colab VMs, 

at the time of these tests (November 2021), do not provide more than one GPU. GPUs are expen-

sive. In any case, Figure II.6, shows that the training loop was performed in a reasonable time:

Figure II.6: Training loop with a K80 GPU
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I found it interesting to see whether Google Colab Pro provides faster GPUs.

Google Colab Pro with a GPU
The VM activated with Google Colab provided an NVIDIA P100 GPU, as shown in Figure II.7. That 

was interesting because the original Transformer was trained with 8 NVIDIA P100s as stated in 

Vaswani et al.(2017), Attention is All you Need. It took 12 hours to train the base models with 106×65 

parameters and with 8 GPUs:

Figure II.7: The Google Colab Pro VM was provided with a P100 GPU

The training loop time was considerably reduced and lasted less than 10 minutes, as shown in 

Figure II.8:

Figure II.8: Training loop with a P100 GPU
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Appendix III — Generic Text 
Completion with GPT-2

This appendix is the detailed explanation of the Generic text completion with GPT-2 section in 

Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines. This section describes how 

to implement a GPT-2 transformer model for generic text complexion.

You can read the usage of this notebook directly in Chapter 7 or build the program and run it in 

this appendix to get more profound knowledge of how a GPT model works.

We will clone the OpenAI_GPT_2 repository, download the 345M-parameter GPT-2 transformer 

model, and interact with it. We will enter context sentences and analyze the text generated by 

the transformer. The goal is to see how it creates new content.

This section is divided into nine steps. Open OpenAI_GPT_2.ipynb in Google Colaboratory. The 

notebook is in the AppendixIII directory of the GitHub repository of this book. You will notice 

that the notebook is also divided into the same nine steps and cells as this section.

Run the notebook cell by cell. The process is tedious, but the result produced by the cloned OpenAI 

GPT-2 repository is gratifying. We saw that we could run a GPT-3 engine in a few lines. But this 

appendix gives you the opportunity, even if the code is not optimized anymore, to see how GPT-2 

models work.

Hugging Face has a wrapper that encapsulates GPT-2 models. It’s useful as an alternative to the 

OpenAI API. However, the goal in this appendix is not to avoid the complexity of the underlying 

components of a GPT-2 model but to explore them!

Finally, It is important to stress that we are running a low-level GPT-2 model and not a one-line 

call to obtain a result. That is why we are avoiding pre-packaged versions (the OpenAI GPT-3 API, 

Hugging Face wrappers, others). We are getting our hands dirty to understand the architecture 

of GPT-2 from scratch. As a result, you might get some deprecation messages. However, the effort 

is worthwhile to become an Industry 4.0 AI guru.

Let’s begin by activating the GPU.
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Step 1: Activating the GPU
We must activate the GPU to train our GPT-2 345M-parameter transformer model.

To activate the GPU, go to the Runtime menu in Notebook settings to get the most out of the VM:

Figure III.1: The GPU hardware accelerator

We can see that activating the GPU is a prerequisite for better performance that will give us access 

to the world of GPT transformers. So let’s now clone the OpenAI GPT-2 repository.

Step 2: Cloning the OpenAI GPT-2 repository
OpenAI still lets us download GPT-2 for now. This may be discontinued in the future, or maybe 

we will get access to more resources. At this point, the evolution of transformers and their usage 

moves so fast that nobody can foresee how the market will evolve, even the major research labs 

themselves.

We will clone OpenAI’s GitHub directory on our VM:

#@title Step 2: Cloning the OpenAI GPT-2 Repository

!git clone https://github.com/openai/gpt-2.git
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When the cloning is over, you should see the repository appear in the file manager:

Figure III.2: Cloned GPT-2 repository

Click on src, and you will see that the Python files we need from OpenAI to run our model are 

installed:

Figure III.3: The GPT-2 Python files to run a model
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You can see that we do not have the Python training files we need. We will install them when 

we train the GPT-2 model in the Training a GPT-2 language model section of Appendix IV, Custom 

Text Completion with GPT-2.

Let’s now install the requirements.

Step 3: Installing the requirements
The requirements will be installed automatically:

#@title Step 3: Installing the requirements

import os          # when the VM restarts import os necessary

os.chdir("/content/gpt-2")

!pip3 install -r requirements.txt

When running cell by cell, we might have to restart the VM and thus import os again.

The requirements for this notebook are:

• Fire 0.1.3 to generate command-line interfaces (CLIs)

• regex 2017.4.5 for regex usage

• Requests 2.21.0, an HTTP library

• tqdm 4.31.1 to display a progress meter for loops

You may be asked to restart the notebook.

Do not restart it now. Let’s wait until we check the version of TensorFlow.

Step 4: Checking the version of TensorFlow
The GPT-2 345M transformer model provided by OpenAI uses TensorFlow 1.x. This will lead to 

several warnings when running the program. However, we will ignore them and run at full speed 

on the thin ice of training GPT models ourselves with our modest machines. 

In the 2020s, GPT models have reached 175 billion parameters, making it impossible for us to train 

them ourselves efficiently without having access to a supercomputer. The number of parameters 

will only continue to increase.

The corporate giants’ research labs, such as Facebook AI and OpenAI, and Google Research/Brain, 

are speeding toward super-transformers and are leaving what they can for us to learn and un-

derstand. But, unfortunately, they do not have time to go back and update all the models they 

share. However, we still have this notebook!
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TensorFlow 2.x is the latest TensorFlow version. However, older programs can still be helpful. 

This is one reason why Google Colaboratory VMs have preinstalled versions of both TensorFlow 

1.x and TensorFlow 2.x.

We will be using TensorFlow 1.x in this notebook:

#@title Step 4: Checking the Version of TensorFlow 

#Colab has tf 1.x and tf 2.x installed

#Restart runtime using 'Runtime' -> 'Restart runtime...'

%tensorflow_version 1.x

import tensorflow as tf

print(tf.__version__)

The output should be:

TensorFlow 1.x selected.

1.15.2

Whether the tf 1.x version is displayed or not, rerun the cell to make sure, and then restart the 

VM. Rerun this cell to make sure before continuing.

Do this every time you restart the VM. The default version of the VM is tf.2.

We are now ready to download the GPT-2 model.

Step 5: Downloading the 345M-parameter GPT-2 
model
We will now download the trained 345M-parameter GPT-2 model:

#@title Step 5: Downloading the 345M parameter GPT-2 Model

# run code and send argument

import os # after runtime is restarted

os.chdir("/content/gpt-2")

!python3 download_model.py '345M'

If you encounter a TensforFlow error during the process (ignore the warnings), rerun 

this cell, restart the VM, and rerun to make sure.
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The path to the model directory is:

/content/gpt-2/models/345M

It contains the information we need to run the model:

Figure III.4: The GPT-2 Python files of the 345M-parameter model

The hparams.json file contains the definition of the GPT-2 model:

• "n_vocab": 50257, the size of the vocabulary of the model

• "n_ctx": 1024, the context size

• "n_embd": 1024, the embedding size

• "n_head": 16, the number of heads

• "n_layer": 24, the number of layers

encoder.json and vacab.bpe contain the tokenized vocabulary and the BPE word pairs. If neces-

sary, take a few minutes to go back and read the Step 3: Training a tokenizer subsection in Chapter 

4, Pretraining a RoBERTa Model from Scratch.

The checkpoint file contains the trained parameters at a checkpoint. For example, it could contain 

the trained parameters for 1,000 steps, as we will do in the Step 9: Training a GPT-2 model section 

of Appendix IV, Custom Text Completion with GPT-2.

The checkpoint file is saved with three other important files:

• model.ckpt.meta describes the graph structure of the model. It contains GraphDef, 

SaverDef, and so on. We can retrieve the information with tf.train.import_meta_

graph([path]+'model.ckpt.meta').
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• model.ckpt.index is a string table. The keys contain the name of a tensor, and the value 

is BundleEntryProto, which contains the metadata of a tensor.

• model.ckpt.data contains the values of all the variables in a TensorBundle collection.

We have downloaded our model. We will now go through some intermediate steps before acti-

vating the model.

Steps 6-7: Intermediate instructions
In this section, we will go through Steps 6, 7, and 7a, which are intermediate steps leading to Step 

8, in which we will define and activate the model.

We want to print UTF-encoded text to the console when we are interacting with the model:

#@title Step 6: Printing UTF encoded text to the console

!export PYTHONIOENCODING=UTF-8

We want to make sure we are in the src directory:

#@title Step 7: Project Source Code

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src")

We are ready to interact with the GPT-2 model. We could run it directly with a command, as we 

will do in the Training a GPT-2 language model section of Appendix IV, Custom Text Completion with 

GPT-2. However, in this section, we will go through the main aspects of the code.

interactive_conditional_samples.py first imports the necessary modules required to interact 

with the model:

#@title Step 7a: Interactive Conditional Samples (src)

#Project Source Code for Interactive Conditional Samples:

# /content/gpt-2/src/interactive_conditional_samples.py file 

import json

import os

import numpy as np

import tensorflow as tf

We have gone through the intermediate steps leading to the activation of the model.
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Steps 7b-8: Importing and defining the model
We will now activate the interaction with the model with interactive_conditional_samples.py.

We need to import three modules that are also in /content/gpt-2/src:

import model, sample, encoder

The three programs are:

• model.py defines the model’s structure: the hyperparameters, the multi-attention 

tf.matmul operations, the activation functions, and all the other properties.

• sample.py processes the interaction and controls the sample that will be generated. It 

makes sure that the tokens are more meaningful.

Softmax values can sometimes be blurry, like looking at an image in low definition. sample.

py contains a variable named temperature that will make the values sharper, increasing 

the higher probabilities and softening the lower ones.

sample.py can activate Top-k sampling. Top-k sampling sorts the probability distribution 

of a predicted sequence. The higher probability values of the head of the distribution 

are filtered up to the k-th token. The tail containing the lower probabilities is excluded, 

preventing the model from predicting low-quality tokens.

sample.py can also activate Top-p sampling for language modeling. Top-p sampling does 

not sort the probability distribution. Instead, it selects the words with high probabilities 

until the sum of this subset’s probabilities or the nucleus of a possible sequence exceeds p.

• encoder.py encodes the sample sequence with the defined model, encoder.json, and 

vocab.bpe. It contains both a BPE encoder and a text decoder.

You can open these programs to explore them further by double-clicking on them.

interactive_conditional_samples.py will call the functions required to interact with the model 

to initialize the following information: the hyperparameters that define the model from model.

py, and the sample sequence parameters from sample.py. It will encode and decode sequences 

with encode.py.

interactive_conditional_samples.py will then restore the checkpoint data defined in the Step 

5: Downloading the 345M-parameter GPT-2 model subsection of this section.
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You can explore interactive_conditional_samples.py by double-clicking on it and experiment 

with its parameters:

• model_name is the model name, such as "124M" or "345M," and relies on models_dir.

• models_dir defines the directory containing the models.

• seed sets a random integer for random generators. The seed can be set to reproduce results.

• nsamples is the number of samples to return. If it is set to 0, it will continue to generate 

samples until you double-click on the run button of the cell or press Ctrl + M.

• batch_size determines the size of a batch and has an impact on memory and speed.

• length is the number of tokens of generated text. If set to none, it relies on the hyperpa-

rameters of the model.

• temperature determines the level of Boltzmann distributions. If the temperature is high, 

the completions will be more random. If the temperature is low, the results will become 

more deterministic.

• top_k controls the number of tokens taken into consideration by Top-k at each step. 0 

means no restrictions. 40 is the recommended value.

• top_p controls Top-p.

For the program in this section, the scenario of the parameters we just explored will be:

• model_name = "345M"

• seed = None

• nsamples = 1

• batch_size = 1

• length = 300

• temperature = 1

• top_k = 0

• models_dir = '/content/gpt-2/models'

These parameters will influence the model’s behavior, the way it is conditioned by the context 

input, and generate text completion sequences. First, run the notebook with the default values. 

You can then change the code’s parameters by double-clicking on the program, editing it, and 

saving it. The changes will be deleted at each restart of the VM. Save the program and reload it if 

you wish to create interaction scenarios.

The program is now ready to prompt us to interact with it.
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Step 9: Interacting with GPT-2
In this section, we will interact with the GPT-2 345M model.

There will be more messages when the system runs, but as long as Google Colaboratory main-

tains tf 1.x, we will run the model with this notebook. One day, we might have to use GPT-3 

engines if this notebook becomes obsolete, or we will have to use Hugging Face GPT-2 wrappers, 

for example, which might be deprecated as well in the future.

In the meantime, GPT-2 is still in use so let’s interact with the model!

To interact with the model, run the interact_model cell:

#@title Step 9: Interacting with GPT-2

interact_model('345M',None,1,1,300,1,0,'/content/gpt-2/models')

You will be prompted to enter some context:

Figure III.5: Context input for text completion

You can try any type of context you wish since this is a standard GPT-2 model.

We can try a sentence written by Emmanuel Kant:

Human reason, in one sphere of its cognition, is called upon to

consider questions, which it cannot decline, as they are presented by

its own nature, but which it cannot answer, as they transcend every

faculty of the mind.

Press Enter to generate text. The output will be relatively random since the GPT-2 model was not 

trained on our dataset, and we are running a stochastic model anyway.

Let’s have a look at the first few lines the GPT model generated at the time I ran it:

"We may grant to this conception the peculiarity that it is the only 
causal logic. 

In the second law of logic as in the third, experience is measured at its 
end: apprehension is afterwards closed in consciousness.

The solution of scholastic perplexities, whether moral or religious, is 
not only impossible, but your own existence is blasphemous."
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To stop the cell, double-click on the run button of the cell.

You can also press Ctrl + M to stop generating text, but it may transform the code into text, and 

you will have to copy it back into a program cell.

The output is rich. We can observe several facts:

• The context we entered conditioned the output generated by the model.

• The context was a demonstration of the model. It learned what to say from the model 

without modifying its parameters.

• Text completion is conditioned by context. This opens the door to transformer models 

that do not require fine-tuning.

• From a semantic perspective, the output could be more interesting.

• From a grammatical perspective, the output is convincing.

You can see if we could obtain more impressive results by training the model on a customized 

dataset in Appendix IV, Custom Text Completion with GPT-2.

References
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Appendix IV — Custom Text 
Completion with GPT-2

This appendix, relating to Chapter 7, The Rise of Suprahuman Transformers with GPT-3 Engines, 

describes how to customize text completion with a GPT-2 model.

This appendix shows how to build a GPT-2 model, train it, and interact with custom text in 12 steps.

Open Training_OpenAI_GPT_2.ipynb, which is in the GitHub repository of this appendix. You 

will notice that the notebook is also divided into the same 12 steps and cells as this appendix.

Run the notebook cell by cell. The process is tedious, but the result produced by the cloned OpenAI 

GPT-2 repository is gratifying. We are not using the GPT-3 API or a Hugging Face wrapper. 

We are getting our hands dirty to see how the model is built and trained. You will see some dep-

recation messages, but we need to get inside the model, not the wrappers or the API. However, 

the effort is worthwhile. 

Let’s begin by activating the GPU.

Training a GPT-2 language model
In this section, we will train a GPT-2 model on a custom dataset that we will encode. We will then 

interact with our customized model. We will be using the same kant.txt dataset as in Chapter 4, 

Pretraining a RoBERTa Model from Scratch.

We will open the notebook and run it cell by cell.

Step 1: Prerequisites
The files referred to in this section are available in the AppendixIV directory of this book’s  GitHub 

repository:

• Activate the GPU in the Google Colab’s notebook runtime menu if you are running it 

on Google Colab, as explained in Step 1: Activating the GPU in Appendix III, Generic Text 

Completion with GPT-2.
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• Upload the following Python files to Google Colaboratory with the built-in file manager: 

train.py, load_dataset.py, encode.py, accumulate.py, memory_saving_gradients.py.

• These files originally come from N Shepperd’s GitHub repository: https://github.com/

nshepperd/gpt-2. However, you can download these files from the AppendixIV\gpt-2-

train_files directory in this book’s GitHub repository.

• The N Shepperd’s GitHub repository provides the necessary files to train our GPT-2 model. 

We will not clone N Shepperd’s repository. Instead, we will be cloning OpenAI’s repository 

and adding the five training files we need from N Shepperd’s repository.

• Upload dset.txt to Google Colaboratory with the built-in file manager. The dataset is 

named dset.txt so that you can replace its content without modifying the program with 

your customized inputs after reading this appendix.

• This dataset is in the gpt-2-train_files directory in the GitHub repository of this appen-

dix. It is the kant.txt dataset used in Chapter 4, Pretraining a RoBERTa Model from Scratch.

We will now go through the initial steps of the training process.

Steps 2 to 6: Initial steps of the training process
This subsection will only briefly go through Steps 2 to 6 since we described them in detail in Ap-

pendix III, Generic Text Completion with GPT-2. We will then copy the dataset and the model to 

the project directory.

The program now clones OpenAI’s GPT-2 repository and not N Shepperd’s repository:

#@title Step 2: Cloning the OpenAI GPT-2 Repository

#!git clone https://github.com/nshepperd/gpt-2.git

!git clone https://github.com/openai/gpt-2.git

We have already uploaded the files we need to train the GPT-2 model from N Shepperd’s directory.

The program now installs the requirements:

#@title Step 3: Installing the requirements

import os             #when the VM restarts import os necessary

os.chdir("/content/gpt-2")    

!pip3 install -r requirements.txt

This notebook requires toposort, which is a topological sort algorithm:

!pip install toposort

https://github.com/nshepperd/gpt-2
https://github.com/nshepperd/gpt-2
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We now check the TensorFlow version to make sure we are running version tf 1.x:

#@title Step 4: Checking TensorFlow version

#Colab has tf 1.x , and tf 2.x installed

#Restart runtime using 'Runtime' -> 'Restart runtime...'

%tensorflow_version 1.x

import tensorflow as tf

print(tf.__version__)

Whether the tf 1.x version is displayed or not, rerun the cell to make sure, restart the VM, and 

rerun this cell. That way, you are sure you are running the VM with tf 1.x.

The program now downloads the 117M parameter GPT-2 model we will train with our dataset:

#@title Step 5: Downloading 117M parameter GPT-2 Model

# run code and send argument

import os # after runtime is restarted

os.chdir("/content/gpt-2")

!python3 download_model.py '117M' #creates model directory

We will copy the dataset and the 117M parameter GPT-2 model into the src directory:

#@title Step 6: Copying the Project Resources to src

!cp /content/dset.txt /content/gpt-2/src/

!cp -r /content/gpt-2/models/ /content/gpt-2/src/

The goal is to group all the resources we need to train the model in the src project directory.

We will now go through the N Shepperd training files.

Step 7: The N Shepperd training files
The training files we will use come from N Shepperd ‘s GitHub repository. We uploaded them in 

Step 1: Prerequisites of this appendix. We will now copy them into our project directory:

#@title Step 7: Copying the N Shepperd Training Files

Do not restart the notebook after installing the requirements. Instead, wait until 

you have checked the TensorFlow version to restart the VM only once during your 

session. After that, restart it if necessary. It is tedious but worthwhile to get inside 

the code beyond just wrappers and APIs.
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#Referfence GitHub repository: https://github.com/nshepperd/gpt-2

import os # import after runtime is restarted

!cp /content/train.py /content/gpt-2/src/

!cp /content/load_dataset.py /content/gpt-2/src/

!cp /content/encode.py /content/gpt-2/src/

!cp /content/accumulate.py /content/gpt-2/src/

!cp /content/memory_saving_gradients.py /content/gpt-2/src/

The training files are now ready to be activated. Let’s now explore them, starting with encode.py.

Step 8: Encoding the dataset
The dataset must be encoded before training it. You can double-click on encode.py to display 

the file in Google Colaboratory.

encode.py loads dset.txt by calling the load_dataset function that is in load_dataset.py:

from load_dataset import load_dataset

…/…

chunks = load_dataset(enc, args.in_text, args.combine, encoding=args.
encoding)

   

encode.py also loads OpenAI’s encoding program, encode.py, to encode the dataset:

import encoder

…/…

enc = encoder.get_encoder(args.model_name,models_dir)

The encoded dataset is saved in a NumPy array and stored in out.npz. Now, npz is a NumPy zip 

archive of the array generated by the encoder:

import numpy as np

np.savez_compressed(args.out_npz, *chunks)

The dataset is loaded, encoded, and saved in out.npz when we run the cell:

#@title Step 8:Encoding dataset

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src/")

model_name="117M"

!python /content/gpt-2/src/encode.py dset.txt out.npz
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Our GPT-2 117M model is ready to be trained.

Step 9: Training a GPT-2 model
We will now train the GPT-2 117M model on our dataset. We send the name of our encoded dataset 

to the program:

#@title Step 9:Training the Model

#Model saved after 1000 steps

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src/")

!python train.py --dataset out.npz

When you run the cell, it will train until you stop it. The trained model is saved after 1,000 steps. 

When the training exceeds 1,000 steps, stop it. The saved model checkpoints are in /content/

gpt-2/src/checkpoint/run1. You can check the list of these files in the Step 10A: Copying Training 

Files cell of the notebook.

You can stop the training by double-clicking on the run button of the cell. The training will end, 

and the trained parameters will be saved.

You can also stop training the model after 1,000 steps with Ctrl + M. The program will stop and 

save the trained parameters. It will convert the code into text (you will have to copy it back into 

a code cell) and display the following message:

Figure IV.1: Saving a trained GPT-2 model automatically

The program manages the optimizer and gradients with the /content/gpt-2/src/memory_saving_

gradients.py and /content/gpt-2/src/accumulate.py programs.

train.py contains a complete list of parameters that can be tweaked to modify the training pro-

cess. Run the notebook without changing them first. Then, if you wish, you can experiment with 

the training parameters and see if you can obtain better results.

The GPT-3 model generates samples that you can read during its training. At one point during 

my GPT-2 training run, the system generated a sample I found enlightening:

The world is not a thing in itself, but is a representation of the world 
in itself.
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A representation of the world is what we humans create and what AI learns. Interesting!

Let’s continue our experiment by creating a directory for our training model.

Step 10: Creating a training model directory
This section will create a temporary directory for our model, store the information we need, and 

rename it to replace the directory of the GPT-2 117M model we downloaded.

We start by creating a temporary directory named tgmodel:

#@title Step 10: Creating a Training Model directory

#Creating a Training Model directory named 'tgmodel'

import os

run_dir = '/content/gpt-2/models/tgmodel'

if not os.path.exists(run_dir):

  os.makedirs(run_dir)

We then copy the checkpoint files that contain the trained parameters we saved when we trained 

our model in the Step 9: Training the model subsection of this section:

#@title Step 10A: Copying training Files

!cp /content/gpt-2/src/checkpoint/run1/model-1000.data-00000-of-00001 /
content/gpt-2/models/tgmodel

!cp /content/gpt-2/src/checkpoint/run1/checkpoint /content/gpt-2/models/
tgmodel

!cp /content/gpt-2/src/checkpoint/run1/model-1000.index /content/gpt-2/
models/tgmodel

!cp /content/gpt-2/src/checkpoint/run1/model-1000.meta /content/gpt-2/
models/tgmodel

Our tgmodel directory now contains the trained parameters of our GPT-2 model.

We described these files’ content in Step 5: Downloading the 345M parameter GPT-2 model in Ap-

pendix III, Generic Text Completion with GPT-2.

We will now retrieve the hyperparameters and vocabulary files from the GPT-2 117M model we 

downloaded:

#@title Step 10B: Copying the OpenAI GPT-2 117M Model files

!cp /content/gpt-2/models/117M/encoder.json /content/gpt-2/models/tgmodel

!cp /content/gpt-2/models/117M/hparams.json /content/gpt-2/models/tgmodel

!cp /content/gpt-2/models/117M/vocab.bpe /content/gpt-2/models/tgmodel
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Our tgmodel directory now contains our complete customized GPT-2 117M model.

Our last step is to rename the original GPT-2 model we downloaded and set the name of our 

model to 117M:

#@title Step 10C: Renaming the model directories

import os

!mv /content/gpt-2/models/117M  /content/gpt-2/models/117M_OpenAI

!mv /content/gpt-2/models/tgmodel  /content/gpt-2/models/117M

Our trained model is now the one the cloned OpenAI GPT-2 repository will run. Let’s interact 

with our model!

Step 11: Generating unconditional samples
In this section, we will interact with a GPT-2 117M model trained on our dataset. We will first 

generate an unconditional sample that requires no input on our part. Then we will enter a context 

paragraph to obtain a conditional text completion response from our trained model.

Let’s first run an unconditional sample:

#@title Step 11: Generating Unconditional Samples

import os # import after runtime is restarted

os.chdir("/content/gpt-2/src")

!python generate_unconditional_samples.py --model_name '117M'

You will not be prompted to enter context sentences since this is an unconditional sample gen-

erator.

To stop the cell, double-click on the run button of the cell or press Ctrl + M.

The result is random but makes sense from a grammatical perspective. From a semantic point 

of view, the result is not so interesting because we provided no context. But still, the process is 

remarkable. It invents posts, writes a title, dates it, invents organizations and addresses, produces 

a topic, and even imagines web links!

The first few lines are rather incredible:

Title: total_authority

Category:

Style: Printable

Quote:

Joined: July 17th, 2013
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Posts: 0

Offtopic link: "Essential research, research that supports papers being 
peer reviewed, research that backs up one's claims for design, research 
that unjustifiably accommodates scientific uncertainties, and research 
that persuades opens doors for science and participation in science",

href: https://groups.google.com/
search?q=Author%3APj&src=ieKZP4CSg4GVWDSJtwQczgTWQhAWBO7+tKWn0jzz7o6rP4lEy&s 
sl=cTheory%20issue1&fastSource=posts&very=device

Offline

Joined: May 11th, 2014

Posts: 1729

Location: Montana AreaJoined: May 11th, 2014Posts: 1729Location: Montana

Posted: Fri Dec 26, 2017 9:18 pm Post subject: click

I. Synopsis of the established review group

The "A New Research Paradigm" and Preferred Alternative (BREPG) group lead 
authors John Obi (Australian, USA and Chartered Institute of Tropical and 
Climate Change Research), Marco Xiao (China and Department of Sociology/
Ajax, International Institute of Tropical and Climate Change Research, 
Shanghai University) and Jackie Gu (US/Pacific University, Interselicitas 
de NASA and Frozen Planet Research Research Center, Oak Ridge National 
Laboratory). Dr. Obi states: "Our conclusions indicate that the existence 
of the new peer reviewed asan-rubie study predisposes journal publishers 
to read scientific publishers constantly to seek a consignment of, and 
to be affiliated with, a large target certain of their persons. The 
current practice of supplying books with peer review by commonly-overruled 
specialists itself spreads from part to part, sufficient to spread the 
impact of peer reviews by experts to all levels of the organization, so as 
to increase the extent of exposure to the term of deviation that source 
profiles or findings require".

The result of an unconditional random text generator is interesting but not convincing.

Step 12: Interactive context and completion examples
We will now run a conditional sample. The context we enter will condition the model to think as 

we want it to, to complete the text by generating tailor-made paragraphs.

Run the cell and explore the magic:

#@title Step 12: Interactive Context and Completion Examples

import os # import after runtime is restarted
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os.chdir("/content/gpt-2/src")

!python interactive_conditional_samples.py --temperature 0.8 --top_k 40 
--model_name '117M'

If necessary, take a few minutes to go back through the parameters in Step 9, Interacting with GPT-2 

of Appendix III, Generic Text Completion with GPT-2. The program prompts us to enter the context:

Figure IV.2: Context input for text completion

Let’s enter the same paragraph written by Emmanuel Kant as we did in Step 9: Interacting with 

GPT-2 in Appendix III, Generic Text Completion with GPT-2.

Human reason, in one sphere of its cognition, is called upon to

consider questions, which it cannot decline, as they are presented by

its own nature, but which it cannot answer, as they transcend every

faculty of the mind.

Press Enter to generate text as we did previously. Again, the outputs might change from one run 

to another, though it is structured and logical, making transformers attractive. This time, the 

result is not random and is impressive.

Let’s look at the first few lines the GPT-2 model produced:

"Now, what is the nature of the reason, except that it is of a kind and 
power of mind that is so called on to think, and to understand?

The reason is the thing which apprehends, and seeks to understand, 
the objects of its minds, which apprehend and apprehend the things of 
itself. No one can speak of this reason without the understanding and the 
understanding of the human reason. But that knowledge and understanding 
which is the most natural of all the faculties, which, because it is 
understood by the human reason, is the most natural of all the faculties, 
is not without reason, but only without understanding. The human reason, 
who sees and knows the things which the natural sense, which, though in 
the natural sense, does not understand, is the source of every other 
knowledge which we understand. The reason is the thing which does not 
understand, but understands the things which we comprehend, and therefore, 
is not to be understood. I mean that the reason is the thing which does 
not understand, but knows only the things which we do understand…."

To stop the cell, double-click on the run button of the cell or enter Ctrl + M.
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Wow! I doubt anybody can see the difference between the text completion produced by our trained 

GPT-2 model and humans. It might also generate different outputs at each run. This could be 

the output, for example:

The first question, to which it is obliged to respond, is, how can it 
be true that a mind which is ignorant of the truth of any proposition 
can, or ought, to, accept any proposition which it has not given it? And 
this question has been so well answered that it is impossible for any 
man to believe in the existence of any mind which has never received any 
information. 

"It is not the mind of any man, as far as we can judge, which is the 
subject of any philosophical inquiry. It is the mind of the minds of men, 
in their opinion, which they consider the most to be their most important 
subject. And if they can see through this, they will see it, and they will 
understand it, and they will understand it."

I think our model could outperform many humans in this abstract exercise in philosophy, reason, 

and logic!

The limit is that the text will vary from one run to another. So, although it seems excellent, it will 

not fit every single need we have in everyday life.

We can draw some conclusions from our experiment:

• A well-trained transformer model can produce text completion that is at a human level.

• A GPT-2 model can almost reach human level in text generation on complex and abstract 

reasoning.

• Text context is an efficient way of conditioning a model by demonstrating what is expected.

• Text completion is text generation based on text conditioning if context sentences are 

provided.

• Although the text is at human level, it does not mean that it will fit every need we have. 

It is locally interesting but not globally effective at this point.

You can try to enter conditioning text context examples to experiment with text completion. You 

can also train our model on your own data. Just replace the content of the dset.txt file with 

yours and see what happens!

Bear in mind that our trained GPT-2 model will react like a human. If you enter a short, incomplete, 

uninteresting, or tricky context, you will obtain puzzled or bad results. This is because GPT-2 

expects the best out of us, as in real life!
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Appendix V — Answers to the 
Questions

Chapter 1, What are Transformers?
1. We are still in the Third Industrial Revolution. (True/False)

False. Eras in history indeed overlap. However, the Third Industrial Revolution focused 

on making the world digital. The Fourth Industrial Revolution has begun to connect 

everything to everything else: systems, machines, bots, robots, algorithms, and more.

2. The Fourth Industrial Revolution is connecting everything to everything else. (True/False)

True. This leads to an increasing amount of automated decisions that formerly required 

human intervention.

3. Industry 4.0 developers will sometimes have no AI development to do. (True/False)

True. In some projects, AI will be an online service that requires no development.

4. Industry 4.0 developers might have to implement transformers from scratch. (True/False)

True. In some projects, not all, standard online services or APIs might not satisfy the needs 

of a project. There may not be a satisfactory solution for a project in some cases. Instead, 

a developer will have to customize a model significantly and work from scratch.

5. It’s not necessary to learn more than one transformer ecosystem, such as Hugging Face, 

for example. (True/False)

False. A corporation’s policy might be to work only with Google Cloud AI or Microsoft 

Azure AI. Hugging Face might be a tool used in another company. You can’t know in ad-

vance and, in most cases, cannot decide.

6. A ready-to-use transformer API can satisfy all needs. (True/False)

True if it is effective. False if the transformer model is not well trained.
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7. A company will accept the transformer ecosystem a developer knows best. (True/False)

False. A company may or may not accept what a developer suggests. Therefore, it’s safer 

to cover as many bases as possible.

8. Cloud transformers have become mainstream. (True/False)

True.

9. A transformer project can be run on a laptop. (True/False)

True for a prototype, for example. False for a project involving thousands of users.

10. Industry 4.0 AI specialists will have to be more flexible (True/False)

True.

Chapter 2, Getting Started with the Architecture of 
the Transformer Model

1. NLP transduction can encode and decode text representations. (True/False)

True. NLP is transduction that converts sequences (written or oral) into numerical rep-

resentations, processes them, and decodes the results back into text.

2. Natural Language Understanding (NLU) is a subset of Natural Language Processing 

(NLP). (True/False)

True.

3. Language modeling algorithms generate probable sequences of words based on input 

sequences. (True/False)

True.

4. A transformer is a customized LSTM with a CNN layer. (True/False)

False. A transformer does not contain an LSTM or a CNN at all.

5. A transformer does not contain LSTM or CNN layers. (True/False)

True.

6. Attention examines all the tokens in a sequence, not just the last one. (True/False)

True.
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7. A transformer does not use positional encoding. (True/False)

False. A transformer uses positional encoding.

8. A transformer contains a feedforward network. (True/False)

True.

9. The masked multi-headed attention component of the decoder of a transformer prevents 

the algorithm parsing a given position from seeing the rest of a sequence that is being 

processed. (True/False)

True.

10. Transformers can analyze long-distance dependencies better than LSTMs. (True/False)

True.

Chapter 3, Fine-Tuning BERT Models
1. BERT stands for Bidirectional Encoder Representations from Transformers. (True/False)

True.

2. BERT is a two-step framework. Step 1 is pretraining. Step 2 is fine-tuning. (True/False)

True.

3. Fine-tuning a BERT model implies training parameters from scratch. (True/False)

False. BERT fine-tuning is initialized with the trained parameters of pretraining.

4. BERT only pretrains using all downstream tasks. (True/False)

False.

5. BERT pretrains on Masked Language Modeling (MLM). (True/False)

True.

6. BERT pretrains on Next Sentence Prediction (NSP). (True/False)

True.

7. BERT pretrains on mathematical functions. (True/False)

False.
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8. A question-answer task is a downstream task. (True/False)

True.

9. A BERT pretraining model does not require tokenization. (True/False)

False.

10. Fine-tuning a BERT model takes less time than pretraining. (True/False)

True.

Chapter 4, Pretraining a RoBERTa Model from 
Scratch

1. RoBERTa uses a byte-level byte-pair encoding tokenizer. (True/False)

True.

2. A trained Hugging Face tokenizer produces merges.txt and vocab.json. (True/False)

True.

3. RoBERTa does not use token-type IDs. (True/False)

True.

4. DistilBERT has 6 layers and 12 heads. (True/False)

True.

5. A transformer model with 80 million parameters is enormous. (True/False)

False. 80 million parameters is a small model.

6. We cannot train a tokenizer. (True/False)

False. A tokenizer can be trained.

7. A BERT-like model has six decoder layers. (True/False)

False. BERT contains six encoder layers, not decoder layers.

8. MLM predicts a word contained in a mask token in a sentence. (True/False)

True.
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9. A BERT-like model has no self-attention sublayers. (True/False)

False. BERT has self-attention layers.

10. Data collators are helpful for backpropagation. (True/False)

True.

Chapter 5, Downstream NLP Tasks with Transformers
1. Machine intelligence uses the same data as humans to make predictions. (True/False)

True and False.

True. In some cases, machine intelligence surpasses humans when processing massive 

amounts of data to extract meaning and perform a range of tasks that would take centu-

ries for humans to process.

False. For NLU, humans have access to more information through their senses. Machine 

intelligence relies on what humans provide for all types of media.

2. SuperGLUE is more difficult than GLUE for NLP models. (True/False)

True.

3. BoolQ expects a binary answer. (True/False)

True.

4. WiC stands for Words in Context. (True/False)

True.

5. Recognizing Textual Entailment (RTE) detects whether one sequence entails another 

sequence. (True/False)

True.

6. A Winograd schema predicts whether a verb is spelled correctly. (True/False)

False. Winograd schemas mainly apply to pronoun disambiguation. 

7. Transformer models now occupy the top ranks of GLUE and SuperGLUE. (True/False)

True.
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8. Human Baseline Standards are not defined once and for all. They were made tougher to 

attain by SuperGLUE. (True/False)

True.

9. Transformer models will never beat SuperGLUE human baseline standards. (True/False)

True and False.

False. Transformer models beat human baselines for GLUE and will do the same for Su-

perGLUE in the future.

True. We will keep setting higher benchmark standards as we progress in the field of NLU.

10. Variants of transformer models have outperformed RNN and CNN models. (True/False)

True. But you never know what will happen in the future in AI!

Chapter 6, Machine Translation with the Transformer
1. Machine translation has now exceeded human baselines. (True/False)

False. Machine translation is one of the most challenging NLP ML tasks.

2. Machine translation requires large datasets. (True/False)

True.

3. There is no need to compare transformer models using the same datasets. (True/False)

False. The only way to compare different models is to use the same datasets.

4. BLEU is the French word for blue and is the acronym of an NLP metric. (True/False)

True. BLEU stands for Bilingual Evaluation Understudy Score, making it easy to re-

member.

5. Smoothing techniques enhance BERT. (True/False)

True.

6. German-English is the same as English-German for machine translation. (True/False)

False. Representing German and then translating into another language is not the same 

process as representing English and translating into another language. The language 

structures are not the same.
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7. The original Transformer multi-head attention sublayer has two heads. (True/False)

False. Each attention sublayer has eight heads.

8. The original Transformer encoder has six layers. (True/False)

True.

9. The original Transformer encoder has six layers but only two decoder layers. (True/False)

False. There are six decoder layers.

10. You can train transformers without decoders. (True/False)

True. The architecture of BERT only contains encoders.

Chapter 7, The Rise of Suprahuman Transformers 
with GPT-3 Engines

1. A zero-shot method trains the parameters once. (True/False)

False. No parameters are trained.

2. Gradient updates are performed when running zero-shot models. (True/False)

False.

3. GPT models only have a decoder stack. (True/False)

True.

4. It is impossible to train a 117M GPT model on a local machine. (True/False)

False. We trained one in this chapter.

5. It is impossible to train the GPT-2 model with a specific dataset. (True/False)

False. We trained one in this chapter.

6. A GPT-2 model cannot be conditioned to generate text. (True/False)

False. We implemented this in this chapter.

7. A GPT-2 model can analyze the context of input and produce completion content. (True/

False)

True.
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8. We cannot interact with a 345M GTP parameter model on a machine with fewer than 

eight GPUs. (True/False).

False. We interacted with a model of this size in this chapter.

9. Supercomputers with 285,000 CPUs do not exist. (True/False)

False. 

10. Supercomputers with thousands of GPUs are game-changers in AI. (True/False)

True. Thanks to this, we will be able to build models with increasing numbers of param-

eters and connections.

Chapter 8, Applying Transformers to Legal and 
Financial Documents for AI Text Summarization

1. T5 models only have encoder stacks like BERT models. (True/False)

False.

2. T5 models have both encoder and decoder stacks. (True/False)

True.

3. T5 models use relative positional encoding, not absolute positional encoding. (True/False)

True.

4. Text-to-text models are only designed for summarization. (True/False)

False.

5. Text-to-text models apply a prefix to the input sequence that determines the NLP task. 

(True/False)

True.

6. T5 models require specific hyperparameters for each task. (True/False)

False.

7. One of the advantages of text-to-text models is that they use the same hyperparameters 

for all NLP tasks. (True/False)

True.
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8. T5 transformers do not contain a feedforward network. (True/False)

False.

9. Hugging Face is a framework that makes transformers easier to implement. (True/False)

True.

10. OpenAI’s transformer engines are game-changers. (True/False)

True. OpenAI has produced a wide range of ready-to-use engines such as Codex (language 

to code) or Davinci (a general purpose engine).

Chapter 9, Matching Tokenizers and Datasets
1. A tokenized dictionary contains every word that exists in a language. (True/False)

False.

2. Pretrained tokenizers can encode any dataset. (True/False)

False.

3. It is good practice to check a database before using it. (True/False)

True.

4. It is good practice to eliminate obscene data from datasets. (True/False)

True.

5. It is good practice to delete data containing discriminating assertions. (True/False)

True.

6. Raw datasets might sometimes produce relationships between noisy content and useful 

content. (True/False)

True.

7. A standard pretrained tokenizer contains the English vocabulary of the past 700 years. 

(True/False)

False.
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8. Old English can create problems when encoding data with a tokenizer trained in modern 

English. (True/False)

True.

9. Medical and other types of jargon can create problems when encoding data with a to-

kenizer trained in modern English. (True/False)

True.

10. Controlling the output of the encoded data produced by a pretrained tokenizer is good 

practice. (True/False)

True.

Chapter 10, Semantic Role Labeling with BERT-
Based Transformers

1. Semantic Role Labeling (SRL) is a text generation task. (True/False)

False.

2. A predicate is a noun. (True/False)

False.

3. A verb is a predicate. (True/False)

True.

4. Arguments can describe who and what is doing something. (True/False)

True.

5. A modifier can be an adverb. (True/False)

True.

6. A modifier can be a location. (True/False)

True.

7. A BERT-based model contains encoder and decoder stacks. (True/False)

False.
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8. A BERT-based SRL model has standard input formats. (True/False)

True.

9. Transformers can solve any SRL task. (True/False)

False.

Chapter 11, Let Your Data Do the Talking: Story, 
Questions, and Answers

1. A trained transformer model can answer any question. (True/False)

False.

2. Question-answering requires no further research. It is perfect as it is. (True/False)

False.

3. Named Entity Recognition (NER) can provide useful information when looking for mean-

ingful questions. (True/False)

True.

4. Semantic Role Labeling (SRL) is useless when preparing questions. (True/False)

False.

5. A question generator is an excellent way to produce questions. (True/False)

True.

6. Implementing question-answering requires careful project management. (True/False)

True.

7. ELECTRA models have the same architecture as GPT-2. (True/False)

False.

8. ELECTRA models have the same architecture as BERT but are trained as discriminators. 

(True/False)

True.
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9. NER can recognize a location and label it as I-LOC. (True/False)

True.

10. NER can recognize a person and label that person as I-PER. (True/False)

True.

Chapter 12, Detecting Customer Emotions to Make 
Predictions

1. It is not necessary to pretrain transformers for sentiment analysis. (True/False)

False.

2. A sentence is always positive or negative. It cannot be neutral. (True/False)

False.

3. The principle of compositionality signifies that a transformer must grasp every part of a 

sentence to understand it. (True/False)

True.

4. RoBERTa-large was designed to improve the pretraining process of transformer models. 

(True/False)

True.

5. A transformer can provide feedback that informs us of whether a customer is satisfied or 

not. (True/False)

True.

6. If the sentiment analysis of a product or service is consistently negative, it helps us make 

appropriate decisions to improve our offer. (True/False)

True.

7. If a model fails to provide a good result on a task, it requires more training or fine-tuning 

before changing models. (True/False)

True.
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Chapter 13, Analyzing Fake News with Transformers
1. News labeled as fake news is always fake. (True/False)

False.

2. News that everybody agrees with is always accurate. (True/False)

False.

3. Transformers can be used to run sentiment analysis on Tweets. (True/False)

True.

4. Key entities can be extracted from Facebook messages with a DistilBERT model running 

NER. (True/False)

True.

5. Key verbs can be identified from YouTube chats with BERT-based models running SRL. 

(True/False)

True.

6. Emotional reactions are a natural first response to fake news. (True/False)

True.

7. A rational approach to fake news can help clarify one’s position. (True/False)

True.

8. Connecting transformers to reliable websites can help somebody understand why some 

news is fake. (True/False)

True.

9. Transformers can make summaries of reliable websites to help us understand some of 

the topics labeled as fake news. (True/False)

True.

10. You can change the world if you use AI for the good of us all. (True/False)

True.
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Chapter 14, Interpreting Black Box Transformer 
Models

1. BERTViz only shows the output of the last layer of the BERT model. (True/False)

False. BERTViz displays the outputs of all the layers.

2. BERTViz shows the attention heads of each layer of a BERT model. (True/False)

True.

3. BERTViz shows how the tokens relate to each other. (True/False)

True.

4. LIT shows the inner workings of the attention heads like BERTViz. (True/False)

False. However, LIT makes non-probing predictions.

5. Probing is a way for an algorithm to predict language representations. (True/False)

True.

6. NER is a probing task. (True/False)

True.

7. PCA and UMAP are non-probing tasks. (True/False)

True.

8. LIME is model-agnostic. (True/False)

True.

9. Transformers deepen the relationships of the tokens layer by layer. (True/False)

True.

10. Visual transformer model interpretation adds a new dimension to interpretable AI. (True/

False)

True.
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Chapter 15, From NLP to Task-Agnostic Transformer 
Models

1. Reformer transformer models don’t contain encoders. (True/False)

False. Reformer transformer models contain encoders.

2. Reformer transformer models don’t contain decoders. (True/False)

False. Reformer transformer models contain encoders and decoders.

3. The inputs are stored layer by layer in Reformer models. (True/False)

False. The inputs are recomputed at each level, thus saving memory.

4. DeBERTa transformer models disentangle content and positions. (True/False)

True.

5. It is necessary to test the hundreds of pretrained transformer models before choosing 

one for a project. (True/False)

True and False. You can try all of the models, or you can choose a very reliable model and 

implement it to fit your needs.

6. The latest transformer model is always the best. (True/False)

True and false. A lot of research is being produced on transformers, but some experimental 

models are short-lived. Sometimes, though, the latest model exceeds the performance 

of preceding models. 

7. It is better to have one transformer model per NLP task than one multi-task transformer 

model. (True/False)

True and False. This is a personal decision you will have to make. Risk assessment is a 

critical aspect of a project.

8. A transformer model always needs to be fine-tuned. (True/False)

False. GPT-3 engines are zero-shot models.
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9. OpenAI GPT-3 engines can perform a wide range of NLP tasks without fine-tuning. (True/

False)

True.

10. It is always better to implement an AI algorithm on a local server. (True/False)

False. It depends on your project. It’s a risk assessment you will have to make.

Chapter 16, The Emergence of Transformer-Driven 
Copilots

1. AI copilots that can generate code automatically do not exist. (True/False)

False. GitHub Copilot, for example, is now in production.

2. AI copilots will never replace humans. (True/False)

True and false. AI will take over many tasks in sales, support, maintenance, and other 

domains. However, many complex tasks will still require human intervention.

3. GPT-3 engines can only do one task. (True/False)

False. GPT-3 engines can do a wide variety of tasks.

4. Transformers can be trained to be recommenders. (True/False)

True. Transformers have gone from language sequences to sequences in many domains.

5. Transformers can only process language. (True/False)

False. Once transformers are trained for language sequences, they can analyze many other 

types of sequences.

6. A transformer sequence can only contain words. (True/False)

False. Once the language sequences are processed, transformers only work on numbers, 

not words.

7. Vision transformers cannot equal CNNs. (True/False)

False. Transformers are deep neural networks that can equal CNNs in computer vision.
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8. AI robots with computer vision do not exist. (True/False)

False. For example, robots with computer vision have begun to surface in military ap-

plications.

9. It is impossible to produce Python source code automatically. (True/False)

False. Microsoft and OpenAI have joined to produce a copilot that can write Python code 

with us or for us.

10. We might one day become the copilots of robots. (True/False)

This could be true or false. This remains a challenge for humans, bots, and robots in an 

ever-growing AI ecosystem.
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ecosystem  3
ecosystem, selecting  390-392
encoder stack  24-26
evaluating, with metrics  124
evolution  170-172
human intelligence stack  121, 122
in Hugging Face  57, 58
inductive inheritance  120, 121
Industry 4.0  3
initializing, with pretrained weights  162
machine intelligence stack  12
overview  22-24
pretraining  94, 95
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