
[1]

Nginx HTTP Server
Third Edition

Harness the power of Nginx to make the most of your
infrastructure and serve pages faster than ever

Clément Nedelcu

BIRMINGHAM - MUMBAI

Nginx HTTP Server
Third Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Second edition: July 2013

Third edition: November 2015

Production reference: 1101115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-033-7

www.packtpub.com

www.packtpub.com

Credits

Author
Clément Nedelcu

Reviewer
Amet Umerov

Acquisition Editor
Indrajit Das

Content Development Editor
Kirti Patil

Technical Editor
Siddhesh Patil

Copy Editor
Sonia Mathur

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Clément Nedelcu was born in France and studied in universities in the UK,
France, and China. After teaching computer science, programming, and systems
administration in several eastern Chinese universities, he worked as a technology
consultant in France. Here, he specialized in web and .NET software development as
well as Linux server administration. Since 2005, Clément has administered a major
network of websites in his spare time, which eventually led him to discover Nginx.
It made such a big difference that he started his own blog about it; you can find it at
http://cnedelcu.net.

I would like to express my gratitude to my wife, Julie; my son, Leo;
and my family and friends, who were all very supportive throughout
the writing process. I would like to extend special thanks to Gwenaël
Oberlinger (Uptobox), Martin Fjordvald, Cliff Wells, Maxim Dounin,
and all the folks at the #nginx IRC channel on Freenode.

http://cnedelcu.net

About the Reviewer

Amet Umerov works as a Linux system administrator with hosting provider from
Russia. He received his bachelor's degree from Sevastopol State University, where he
studied computer science and engineering.

Amet is experienced in using Linux, virtualization, Nginx, and other useful
technologies and tools. He believes that the simplicity and modularity of Nginx
make it the most flexible solution for organizing reverse proxies, through caching,
handling static files, and load balancing.

Amet's latest open source project is a guide to creating and managing Virtuozzo-based
containers and virtual machines.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface xi
Chapter 1: Downloading and Installing Nginx 1

Setting up the prerequisites 1
The GNU Compiler Collection 2
The PCRE library 3
The zlib library 4
OpenSSL 4

Downloading Nginx 5
Websites and resources 5
Version branches 7
Features 8
Downloading and extracting 9

Configure options 9
The easy way 9
Path options 10
Prerequisites options 12
Module options 14

Modules enabled by default 14
Modules disabled by default 15

Miscellaneous options 17
Configuration examples 18

About the prefix switch 19
Regular HTTP and HTTPS servers 19
All modules enabled 20
Mail server proxy 20

Build configuration issues 20
Make sure you installed the prerequisites 21
Directories exist and must be writable 21

Compiling and installing the program 21

Table of Contents

[ii]

Controlling the Nginx service 22
Daemons and services 23
User and group 23
Nginx command-line switches 24
Starting and stopping the daemon 24
Testing the configuration 25
Other switches 25

Adding Nginx as a system service 26
System V scripts 26
About init scripts 27
The init script for Debian-based distributions 28
The init script for Red Hat–based distributions 29
Installing the script 29

Debian-based distributions 29
Red Hat–based distributions 30

NGINX Plus 31
Summary 32

Chapter 2: Basic Nginx Configuration 33
Configuration file syntax 34

Configuration directives 34
Organization and inclusions 36
Directive blocks 38
Advanced language rules 39

Directives accept specific syntaxes 39
Diminutives in directive values 40
Variables 41
String values 41

Base module directives 41
What are base modules? 42
The Nginx process architecture 42
Core module directives 43
The Events module 49
The Configuration module 51
Necessary adjustments 51

Testing your server 52
Creating a test server 53
Performance tests 54

Httperf 55
Autobench 56
OpenWebLoad 58

Upgrading Nginx gracefully 59
Summary 60

Table of Contents

[iii]

Chapter 3: HTTP Configuration 61
The HTTP Core module 61

Structure blocks 62
Module directives 63

Socket and host configuration 64
listen 64
server_name 65
server_name_in_redirect 65
server_names_hash_max_size 66
server_names_hash_bucket_size 66
port_in_redirect 66
tcp_nodelay 66
tcp_nopush 67
sendfile 67
sendfile_max_chunk 67
send_lowat 68
reset_timedout_connection 68

Paths and documents 68
root 68
alias 69
error_page 69
if_modified_since 70
index 70
recursive_error_pages 71
try_files 71

Client requests 71
keepalive_requests 72
keepalive_timeout 72
keepalive_disable 72
send_timeout 72
client_body_in_file_only 73
client_body_in_single_buffer 73
client_body_buffer_size 73
client_body_temp_path 74
client_body_timeout 74
client_header_buffer_size 74
client_header_timeout 75
client_max_body_size 75
large_client_header_buffers 75
lingering_time 76
lingering_timeout 76
lingering_close 76
ignore_invalid_headers 76
chunked_transfer_encoding 77
max_ranges 77

MIME types 77
types 77
default_type 79

Table of Contents

[iv]

types_hash_max_size 79
types_hash_bucket_size 79

Limits and restrictions 80
limit_except 80
limit_rate 81
limit_rate_after 81
satisfy 81
internal 82

File processing and caching 82
disable_symlinks 83
directio 83
directio_alignment 83
open_file_cache 84
open_file_cache_errors 84
open_file_cache_min_uses 85
open_file_cache_valid 85
read_ahead 85

Other directives 86
log_not_found 86
log_subrequest 86
merge_slashes 86
msie_padding 87
msie_refresh 87
resolver 87
resolver_timeout 88
server_tokens 88
underscores_in_headers 89
variables_hash_max_size 89
variables_hash_bucket_size 89
post_action 89

Module variables 90
Request headers 90
Response headers 91
Nginx generated 91

The location block 94
Location modifier 94

The = modifier 95
No modifier 95
The ~ modifier 96
The ~* modifier 96
The ^~ modifier 97
The @ modifier 97

Search order and priority 97
Case 1 98
Case 2 99
Case 3 99

Summary 100

Table of Contents

[v]

Chapter 4: Module Configuration 101
The Rewrite module 101

Reminder on regular expressions 102
Purpose 102
PCRE syntax 103
Quantifiers 104
Captures 106

Internal requests 107
error_page 108
Rewrite 109
Infinite loops 110
Server Side Includes 111

Conditional structure 112
Directives 114
Common rewrite rules 117

Performing a search 117
User profile page 117
Multiple parameters 117
Wikipedia-like 118
News website article 118
Discussion board 118

SSI module 119
Module directives and variables 120
SSI commands 122

File includes 122
Working with variables 124
Conditional structure 124
Configuration 125

Additional modules 126
Website access and logging 126

Index 126
Autoindex 126
Random index 128
Log 128

Limits and restrictions 130
Auth_basic module 130
Access 131
Limit connections 131
Limit request 132
Auth_request 133

Content and encoding 133
Empty GIF 134
FLV and MP4 134
HTTP headers 135
Addition 135
Substitution 136
Gzip filter 136

Table of Contents

[vi]

Gzip static 138
Gunzip filter 139
Charset filter 139
Memcached 140
Image filter 142
XSLT 143

About your visitors 144
Browser 144
Map 145
Geo 146
GeoIP 146
UserID filter 147
Referer 148
Real IP 149

Split Clients 149
SSL and security 150

SSL 150
Setting up an SSL certificate 153
SPDY 155
Secure link 155

Other miscellaneous modules 156
Stub status 156
Degradation 157
Google-perftools 157
WebDAV 157

Third-party modules 158
Summary 159

Chapter 5: PHP and Python with Nginx 161
An introduction to FastCGI 162

Understanding the CGI mechanism 162
The Common Gateway Interface 164
Fast Common Gateway Interface 165
uWSGI and SCGI 166
The main directives 167
FastCGI caching and buffering 173

PHP with Nginx 178
Architecture 179
PHP-FPM 179
Setting up PHP and PHP-FPM 180

Downloading and extracting 180
Requirements 180
Building PHP 180
Post-install configuration 181
Running and controlling 182

Nginx configuration 183

Table of Contents

[vii]

Python and Nginx 184
Django 185
Setting up Python and Django 185

Python 185
Django 185
Starting the FastCGI process manager 186

The Nginx configuration 187
Summary 187

Chapter 6: Apache and Nginx Together 189
Nginx as reverse proxy 190

Understanding the issue 190
The reverse proxy mechanism 192
Advantages and disadvantages of the mechanism 193

The Nginx proxy module 194
Main directives 195
Caching, buffering, and temporary files 198
Limits, timeouts, and errors 201
SSL-related directives 203
Other directives 205
Variables 206

Configuring Apache and Nginx 207
Reconfiguring Apache 207

Configuration overview 207
Resetting the port number 208
Accepting local requests only 209

Configuring Nginx 210
Enabling proxy options 210
Separating the content 211

Advanced configuration 214
Improving the reverse proxy architecture 215

Forwarding the correct IP address 216
SSL issues and solutions 216
Server control panel issues 217

Summary 218
Chapter 7: From Apache to Nginx 219

Nginx versus Apache 219
Features 220

Core and functioning 220
General functionality 221

Flexibility and community 221
Performance 222

Table of Contents

[viii]

Usage 223
Conclusion 224

Porting your Apache configuration 224
Directives 224
Modules 227
Virtual hosts and configuration sections 228

Configuration sections 228
Creating a virtual host 229

.htaccess files 231
A recap on Apache .htaccess files 232
Nginx equivalence 233

Rewrite rules 235
General remarks 235

On the location 235
On the syntax 236
RewriteRule 237

WordPress 238
MediaWiki 239
vBulletin 241

Summary 242
Chapter 8: Introducing Load Balancing and Optimization 243

An introduction to load balancing 244
Understanding the concept of load balancing 244
Session affinity 246
The upstream module 246
Request distribution mechanisms 248

Using Nginx as a TCP load balancer 250
The Stream module 250
An example of MySQL load balancing 250

Thread pools and I/O mechanisms 251
Relieving worker processes 251
AIO, Sendfile, and DirectIO 253

Summary 254
Chapter 9: Case Studies 255

Deploying a WordPress site 256
Preparing your server and obtaining WordPress 256

System requirements 256
PHP configuration 257
MySQL configuration 258
Downloading and extracting WordPress 259

Nginx configuration 259
HTTP blocks 260

Table of Contents

[ix]

The server block 261
Location blocks 261

WordPress configuration 262
Securing communications with HTTPS 263

Self-signed certificates and certificate authorities 264
Obtaining your SSL certificate 265
Enabling HTTPS in your Nginx configuration 265
Setting up and testing SPDY 267

Creating your ownCloud drive 268
Getting ownCloud 268
Nginx configuration 269
Setting up a self-signed certificate 272

Summary 272
Chapter 10: Troubleshooting 273

General tips on troubleshooting 273
Checking access permissions 274
Testing your configuration 274
Have you reloaded the service? 275
Checking logs 275

Install issues 276
The 403 Forbidden custom error page 276
400 Bad request 278
Truncated or invalid FastCGI responses 278
Location block priorities 278
If block issues 279

Inefficient statements 279
Unexpected behavior 280

Summary 281
Index 283

[xi]

Preface
It is a well-known fact that the market for web servers has a long-established
leader: Apache. According to recent surveys conducted in October 2015, almost
35 percent of the World Wide Web is served by this twenty-year old open source
application. However, the same reports reveal the rise of a new competitor in the
past few years: Nginx, a lightweight HTTP server originating from Russia and
pronounced "engine x". What has caused so many server administrators to switch to
Nginx since the beginning of the 2009? Is this tiny piece of software mature enough
to run a high-traffic website?

To begin with, Nginx is not as young as one might think. Originally started in 2002,
the project was first carried out by a standalone developer, Igor Sysoev, for the
needs of an extremely high-traffic Russian website, namely Rambler, which received,
as of September 2008, over 500 million HTTP requests per day. The application is
now used to serve some of the most popular websites on the Web, such as Reddit,
Wikipedia, WordPress, Dropbox, and many more. Nginx has proved to be a very
efficient, lightweight yet powerful web server. Throughout the chapters in this book,
you will discover the numerous features of Nginx and progressively understand
why so many administrators decide to place their trust in this new HTTP server,
often at the expense of Apache.

There are several aspects in which Nginx is more efficient than its competitors.
First, and foremost, it's faster. By making use of asynchronous sockets, Nginx does
not spawn processes as many times as it receives requests. One process per core
suffices to handle thousands of connections, leading to a much lighter CPU load and
memory consumption. Secondly, its simplicity of use is remarkable. Configuration
files are much easier to read and tweak with Nginx than with other web server
solutions, such as Apache; a couple of lines are enough to set up a complete virtual
host configuration.

Preface

[xii]

Last but not least, server administrators appreciate it for its modularity. Not only
is Nginx a completely open source project released under a BSD-like license, but it
also comes with a powerful plugin system referred to as "modules". A large variety
of modules are included with the original distribution archive, and a number of
third-party ones can be downloaded online.

All in all, Nginx combines speed, efficiency, and power to provide you with the
perfect ingredients for a successful web server. It appears to be the best Apache
alternative as of today.

What this book covers
Chapter 1, Downloading and Installing Nginx, guides you through the early setup
stages of downloading and configuring your own build of the program.

Chapter 2, Basic Nginx Configuration, covers the essential aspects of the Nginx
configuration structure and syntax.

Chapter 3, HTTP Configuration, takes you through the configuration of HTTP server
components, enabling you to serve a simple static site.

Chapter 4, Module Configuration, provides an in-depth approach to the large variety of
modules available with the standard Nginx package.

Chapter 5, PHP and Python with Nginx, is a comprehensive guide to setting up
backend programs to serve dynamic content through Nginx.

Chapter 6, Apache and Nginx Together, describes how both server applications can
cooperate on the same architecture to improve existing websites and services.

Chapter 7, From Apache to Nginx, provides key information for fully switching your
server or web infrastructure from Apache to Nginx.

Chapter 8, Introducing Load Balancing and Optimization, provides useful leads for
server administrators who manage sites under heavy loads.

Chapter 9, Case Studies, offers a practical approach to several real-life examples,
including some of the most common tasks performed with Nginx.

Chapter 10, Troubleshooting, covers the most common issues encountered while setting
up Nginx or during the production stages.

Preface

[xiii]

What you need for this book
Although Nginx is available for Windows from version 0.7.52 onward, it is common
knowledge that Linux- or BSD-based distributions are preferred to host production
sites. During the various processes described in this book, we will assume that you
are hosting your website on a Linux operating system, such as Debian, Ubuntu,
CentOS, or other well-known distributions.

Who this book is for
By covering both the early setup stages and advanced topics, this book suits web
administrators who are interested in solutions to optimize their infrastructure, whether
you are looking into replacing your existing web server software or integrating a
new tool to cooperate with applications that are already up-and-running. If you, your
visitors, and your operating system have been disappointed by Apache, this book is
exactly what you need.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Or if your system does not come with the service command:"

A block of code is set as follows:

include /file/path.conf;
include sites/*.conf;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

user nginx nginx;
master_process on;
worker_processes 4;
events {
 worker_connections 1024;
 use epoll;
}

Preface

[xiv]

Any command-line input or output is written as follows:

cp /usr/local/nginx/conf/nginx.conf /home/user/backups/nginx.conf.bak

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "If these
packages are already installed on your system, you will receive a message saying
something like Nothing to do."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Downloading and
Installing Nginx

In this chapter, we will begin with the steps necessary to establish a functional
setup of Nginx. This process is crucial for the smooth functioning of your web server.
There are some required libraries and tools to install the program, some parameters
that you will have to decide upon when compiling the binaries, and there may also
be some configuration changes to perform on your system.

This chapter covers the following topics:

• Downloading and installing the prerequisites to compile the Nginx binaries
• Downloading a suitable version of the Nginx source code
• Configuring Nginx compile-time options
• Controlling the application with an init script
• Configuring the system to launch Nginx automatically on startup
• A quick overview of the possibilities offered by the Nginx Plus platform

Setting up the prerequisites
We have chosen to download the source code of the application and compile
it manually, as opposed to installing it using a package manager, such as Yum,
Aptitude, or Yast. There are two reasons for this choice. First, the package may not
be available in the enabled repositories of your Linux distribution. In addition, the
repositories that offer to download and install Nginx automatically often contain
outdated versions. More importantly, you need to configure a variety of significant
compile-time options. As a result of this choice of manual setup, your system will
require some tools and libraries for the compilation process.

Downloading and Installing Nginx

[2]

Depending on the optional modules that you select at compile time, you will perhaps
need different prerequisites. You will be guided through the process of installing the
most common ones, such as GCC, PCRE, zlib, and OpenSSL.

If your operating system offers the possibility to install the Nginx
package from a repository, and you are confident enough that the
available version will suit all of your needs with the modules included
by default, you could consider skipping this chapter altogether and
simply run one the following commands. We still recommend getting
the latest version and building it from source seeing as it contains the
latest bug fixes and security patches. For a Debian-based operating
system, run the following command:
apt-get install nginx

For Red Hat–based operating systems, use the following command:
yum install nginx

Alternatively, you can download and install prebuilt packages
from the official Nginx website at http://www.nginx.org.

The GNU Compiler Collection
Nginx is a program written in C, so you will first need to install a compiler tool,
such as the GNU Compiler Collection (GCC), on your system. GCC may already
be present on your system, but if that is not the case, you will have to install it before
going any further.

GCC is a collection of free open source compilers for various
languages: C, C++, Java, Ada, FORTRAN, and so on. It is the most
commonly used compiler suite in the Linux world, and Windows
versions are also available. It supports a vast number of processors
such as x86, AMD64, PowerPC, ARM, MIPS, and more.

First, make sure GCC isn't already installed on your system by running the
following command:

[alex@example.com ~]$ gcc

If you get the following output, it means that GCC is correctly installed on your
system and you can skip to the next section:

gcc: no input files

http://www.nginx.org
arvindkumarg
Sticky Note
Marked set by arvindkumarg

Chapter 1

[3]

If you receive the following message, you will have to proceed with the installation
of the compiler:

~bash: gcc: command not found

GCC can be installed using the default repositories of your package manager.
Depending on your distribution, the package manager will vary—yum for a Red
Hat-based distribution, apt for Debian and Ubuntu, yast for SuSE Linux, and
so on. Here is the typical way to proceed with the download and installation
of the GCC package:

[root@example.com ~]# yum groupinstall "Development Tools"

If you use apt-get to install software packages, run the following command:

[root@example.com ~]# apt-get install build-essentials

If you use another package manager with a different syntax, you will probably find
the documentation with the man utility. Either way, your package manager should
be able to download and install GCC correctly after having solved the dependencies
automatically. Note that this command not only installs GCC, it also proceeds with
downloading and installing all common requirements to build applications from
source, such as code headers and other compilation tools.

The PCRE library
The Perl Compatible Regular Expression (PCRE) library is required to compile
Nginx. The Rewrite and HTTP core modules of Nginx use PCRE for the syntax of
their regular expressions, as you will discover in later chapters. You will need to
install two packages: pcre and pcre-devel. The first package provides the compiled
version of the library, whereas the second one provides development headers
and sources to compile projects, which are required in our case. Here are example
commands that you can run in order to install both the packages.

If you are using yum, run the following command:

[root@example.com ~]# yum install pcre pcre-devel

Or you can install all of the PCRE-related packages by using the following command:

[root@example.com ~]# yum install pcre*

If you use apt-get, run the following command:

[root@example.com ~]# apt-get install libpcre3 libpcre3-dev

Downloading and Installing Nginx

[4]

If these packages are already installed on your system, you will receive a message
saying something like Nothing to do. In other words, the package manager did
not install or update any component, as both components are already present
on the system.

The zlib library
The zlib library provides developers with compression algorithms. It is required for
the use of gzip compression in various modules of Nginx. Again, you can use your
package manager to install this component, as it is part of the default repositories.
Similar to PCRE, you will need both the library and its source for installation: zlib
and zlib-devel.

If using yum, run the following command:

[root@example.com ~]# yum install zlib zlib-devel

Using apt-get, run the following command:

[root@example.com ~]# apt-get install zlib1g zlib1g-dev

These packages install quickly and have no known dependency issues.

OpenSSL
The OpenSSL project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and open source toolkit implementing the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols, as well as a full-strength
general purpose cryptography library. The project is managed by a worldwide
community of volunteers that use the Internet to communicate, plan, and develop
the OpenSSL toolkit and its related documentation. For more information, visit
http://www.openssl.org.

http://www.openssl.org

Chapter 1

[5]

The OpenSSL library will be used by Nginx to serve web pages over a secure
connection. We thus need to install the library and its development package.
The process remains the same here—you install openssl and openssl-devel:

If using yum, run the following command:

[root@example.com ~]# yum install openssl openssl-devel

If using apt-get, run the following command:

[root@example.com ~]# apt-get install openssl openssl-dev

Please be aware of the laws and regulations in your own country.
Some countries do not allow usage of a strong cryptography.
The author, publisher, and the developers of the OpenSSL and
Nginx projects will not be held liable for any violations or law
infringements on your part.

Now that you have installed all of the prerequisites, you are ready to download and
compile the Nginx source code.

Downloading Nginx
This approach to the download process will lead us to discover the various resources
at the disposal of server administrators—websites, communities, and wikis - all
relating to Nginx. We will also quickly discuss the different version branches
available, and eventually select the most appropriate one for our setup.

Websites and resources
Although Nginx is a relatively new and growing project, there are already a good
number of resources available on the World Wide Web (WWW) along with an active
community of administrators and developers.

The official website, http://nginx.org, currently serves as official documentation
reference and provides links to download the latest version of the application source
code and binaries. A wiki is also available at http://wiki.nginx.org, which offers
a wide selection of additional resources, such as installation guides for various
operating systems, tutorials related to the different modules of Nginx, and more.

http://nginx.org
http://wiki.nginx.org

Downloading and Installing Nginx

[6]

There are several ways to get help in case you should need it. If you have a
specific question, you may want to try posting on the Nginx forum: http://forum.
nginx.org. An active community of users will answer your questions in no time.
Additionally, the Nginx mailing list, which is relayed on the Nginx forum, will also
prove to be an excellent resource for any question you may have. If you need direct
assistance, there is always a group of regulars helping each other out on the IRC
channel #Nginx on irc.freenode.net.

Another interesting source of information is the blogosphere. A simple query
on your favorite search engine should return a good number of blog articles
documenting Nginx, its configuration, and its modules.

Personal websites and blogs documenting Nginx

http://forum.nginx.org
http://forum.nginx.org
irc.freenode.net

Chapter 1

[7]

It's now time to head over to the official website and get started with downloading
the source code to compile and install Nginx. Before you do so, let's take a quick look
at a summary of the available versions and features that come with them.

Version branches
Igor Sysoev, a talented Russian developer and server administrator, initiated the
project back in 2002. Between the first release in 2004 and the current version, the
market share of Nginx has been growing steadily. It now serves nearly 15 percent of
websites on the Internet, according to a October 2015 http://netcraft.com survey.
The features are plenty and render the application both powerful and flexible at the
same time.

There are currently three version branches of the project:

• Stable version: This version is usually recommended, as it is approved by
both developers and users, but is usually a little behind the mainline version
in terms of bugfixes and features.

• Mainline version: This is the latest version available for download and
comes with the newest developments and bug fixes. It was formerly known
as the development version. Although it is generally solid enough to be
installed on production servers, there is a tiny chance that you will run into
the occasional bug. Thus, if you favor stability over novelty, going for the
stable version is recommended.

• Legacy version: If, for some reason, you are interested in looking at the older
versions, you will find them in the download area at http://www.nginx.org.

A recurring question regarding mainline versions is, are they stable enough to be
used on production servers? Cliff Wells, original founder and maintainer of the
http://www.nginx.org wiki, believes so: I generally use and recommend the latest
development version. It's only bitten me once! Early adopters rarely report critical
problems. It is up to you to select the version you will be using on your server,
knowing that the instructions given in this book should be valid regardless of
the release, as the Nginx developers have decided to maintain overall backward
compatibility in new versions. You can find more information on version changes,
new additions, and bug fixes in the dedicated change log page on the official website.

http://netcraft.com
http://www.nginx.org
http://www.nginx.org

Downloading and Installing Nginx

[8]

Features
As of the stable version 1.8.0, Nginx offers an impressive variety of features, which,
contrary to what the title of this book indicates, are not all related to serving HTTP
content. Here is a list of the main features of the web branch, quoted from the official
website http://www.nginx.org:

• Serving static and index files; autoindexing; open file descriptor cache;
accelerated reverse proxying with caching; load balancing and fault tolerance.

• Accelerated support with caching of FastCGI, uwsgi, Simple Common
Gateway Interface (SCGI), and memcached servers; load balancing and
fault tolerance; modular architecture. Filters include gzipping, byte ranges,
chunked responses, XSLT, SSI, and image transformation filter. Multiple
SSI inclusions within a single page can be processed in parallel if they are
handled by proxied or FastCGI/uwsgi/SCGI servers.

• SSL and TLS SNI support.

Nginx can also be used as a mail proxy server, although this aspect is not closely
documented in the book:

• User redirection to IMAP/POP3 backend using an external HTTP
authentication server

• User authentication using an external HTTP authentication server and
connection redirection to an internal SMTP backend

• Authentication methods:
 ° POP3: USER/PASS, APOP, AUTH LOGIN/PLAIN/CRAM-MD5
 ° IMAP: LOGIN, AUTH LOGIN/PLAIN/CRAM-MD5
 ° SMTP: AUTH LOGIN/PLAIN/CRAM-MD5

• SSL support
• STARTTLS and STLS support

Nginx is compatible with most computer architectures and operating systems,
including Windows, Linux, Mac OS, FreeBSD, and Solaris. The application runs
well on 32- and 64-bit architectures.

http://www.nginx.org

Chapter 1

[9]

Downloading and extracting
Once you have made your choice about which version you will be using, head
over to http://www.nginx.org and find the URL of the file you wish to download.
Position yourself in your home directory, which will contain the source code to be
compiled, and download the file using wget:

[alex@example.com ~]$ mkdir src && cd src

[alex@example.com src]$ wget http://nginx.org/download/nginx-1.8.0.tar.gz

We will be using version 1.8.0, the latest stable version as of April, 2015. Once
downloaded, extract the archive contents in the current folder:

[alex@example.com src]$ tar zxf nginx-1.8.0.tar.gz

You have successfully downloaded and extracted Nginx. Now, the next step will
be to configure the compilation process in order to obtain a binary that perfectly
fits your operating system.

Configure options
There are usually three steps when building an application from source: the
configuration, the compilation, and the installation. The configuration step allows
you to select a number of options that will not be editable after the program is built,
as it has a direct impact on the project binaries. Consequently, it is a very important
stage that you need to follow carefully if you want to avoid surprises later, such as
the lack of a specific module or having configuration files located in a random folder.

The process consists of appending certain switches to the configure command that
comes with the source code. The three types of switches that you can activate will be
covered later, but let's first study the easiest way to proceed.

The easy way
If, for some reason, you do not want to bother with the configuration step, such as
for testing purposes or simply because you will be recompiling the application in the
future, you may simply use the configure command with no switches. Execute the
following three commands to build and install a working version of Nginx, starting
with the configure command:

[alex@example.com nginx-1.8.0]# ./configure

http://www.nginx.org

Downloading and Installing Nginx

[10]

Running this command should initiate a long procedure of verifications to ensure
that your system contains all of the necessary components. If the configuration
process fails, check the prerequisites section again, as it is the most common cause
of errors. For information about why the command failed, you may also refer to the
objs/autoconf.err file, which provides a more detailed report. The make command
will compile the application. This step should not cause any errors as long as the
configuration went fine.

[alex@example.com nginx-1.8.0]# make

[root@example.com nginx-1.8.0]# make install

This last step will copy the compiled files as well as other resources to the installation
directory, by default, /usr/local/nginx. You may need to be logged in as root
to perform this operation, depending on permissions granted to the /usr/local
directory.

Again, if you build the application without configuring it, you take the risk of
missing out on a lot of features, such as the optional modules and others that
we are about to discover.

Path options
When running the configure command, you are offered the possibility to enable
some switches that let you specify the directory or file paths for a variety of elements.
Note that the options offered by the configuration switches may change according
to the version you downloaded. The options listed below are valid with the stable
version, as of release 1.8.0. If you use another version, run the ./configure --help
command to list the available switches for your setup.

Using a switch typically consists of appending some text to the command line, for
instance, using the --conf-path switch:

[alex@example.com nginx-1.8.0]# ./configure --conf-path=/etc/nginx/nginx.
conf

Chapter 1

[11]

Here is an exhaustive list of the configuration switches for configuring paths:

Switch Usage Default Value
--prefix=… The base folder in which

Nginx will be installed.
/usr/local/nginx

Note: If you configure other
switches using relative paths, they
will connect to the base folder.
For example, specifying --conf-
path=conf/nginx.conf will
result in your configuration file
being found at /usr/local/
nginx/conf/nginx.conf.

--sbin-path=… The path where the Nginx
binary file should be
installed.

<prefix>/sbin/nginx.

--conf-path=… The path of the main
configuration file.

<prefix>/conf/nginx.conf.

--error-log-
path=…

The location of your error
log. Error logs can be
configured very accurately
in the configuration files.
This path only applies in case
you do not specify any error
logging directive in your
configuration.

<prefix>/logs/error.log.

--pid-path=… The path of the Nginx pid
file. You can specify the pid
file path in the configuration
file. If that's not the case, the
value you specify for this
switch will be used.

<prefix>/logs/nginx.pid.
Note: The pid file is a simple
text file containing the process
identifier. It is placed in a
predefined location so that other
applications can easily find the
pid of a running program.

--lock-path=… The location of the lock file.
Again, it can be specified in
the configuration file, but if it
isn't, this value will be used.

<prefix>/logs/nginx.lock.
Note: The lock file allows other
applications to determine whether
or not the program is running.
In the case of Nginx, it is used to
make sure that the process is not
started twice.

Downloading and Installing Nginx

[12]

Switch Usage Default Value
--with-perl_
modules_path=…

Defines the path to the Perl
modules. This switch must
be defined if you want to
include additional Perl
modules.

--with-perl=… Path to the Perl binary file;
used to execute Perl scripts.
This path must be set if you
want to allow execution of
Perl scripts.

--http-log-
path=…

Defines the location of the
access logs. This path is
used only if the access log
directive is unspecified in the
configuration files.

<prefix>/logs/access.log.

--http-client-
body-temp-path=…

Directory used for storing
temporary files generated by
client requests.

<prefix>/client_body_temp.

--http-proxy-
temp-path=…

Location of the temporary
files used by the proxy.

<prefix>/proxy_temp.

--http-fastcgi-
temp-path=…

--http-uwsgi-
temp-path=…

--http-scgi-
temp-path=…

Location of the temporary
files used by the HTTP
FastCGI, uWSGI, and SCGI
modules.

Respectively <prefix>/
fastcgi_temp,
<prefix>/uwsgi_temp, and
<prefix>/scgi_temp.

--builddir=… Location of the application
build.

Prerequisites options
Prerequisites come in the form of libraries and binaries. You should, by now,
have them all installed on your system. However, even though they are present
on your system, there may be occasions where the configuration script is unable
to locate them. The reasons might be diverse, for example, if they were installed
in non-standard directories.

Chapter 1

[13]

In order to solve such problems, you are given the option to specify the path of
prerequisites using the following switches (miscellaneous prerequisite-related
options have been grouped together):

Compiler options Description
--with-cc=… Specifies an alternate location for the C compiler.
--with-cpp=… Specifies an alternate location for the C preprocessor.
--with-cc-opt=… Defines additional options to be passed to the C compiler

command line.
--with-ld-opt=… Defines additional options to be passed to the C linker

command line.
--with-cpu-opt=… Specifies a different target processor architecture among

the following values: pentium, pentiumpro, pentium3,
pentium4, athlon, opteron, sparc32, sparc64, and
ppc64.

PCRE options Description
--without-pcre Disables usage of the PCRE library. This setting is not

recommended, as it will remove support for regular
expressions, consequently disabling the Rewrite module.

--with-pcre Forces usage of the PCRE library.
--with-pcre=… Allows you to specify the path of the PCRE library source

code.
--with-pcre-opt=… Additional options to build the PCRE library.
--with-pcre-jit=… Build PCRE with JIT compilation support.

MD5 options Description
--with-md5=… Specifies the path to the MD5 library sources.
--with-md5-opt=… Additional options to build the MD5 library.
--with-md5-asm Uses assembler sources for the MD5 library.

SHA1 options Description
--with-sha1=… Specifies the path to the SHA1 library sources.
--with-sha1-opt=… Additional options to build the SHA1 library.
--with-sha1-asm Uses assembler sources for the SHA1 library.
zlib options Description
--with-zlib=… Specifies the path to the zlib library sources.
--with-zlib-opt=… Additional options to build the zlib library.
--with-zlib-asm=… Uses assembler optimizations for the target architectures

pentium and pentiumpro.

Downloading and Installing Nginx

[14]

OpenSSL options Description
--with-openssl=… Specifies the path of the OpenSSL library sources.
--with-openssl-opt=… Additional options to build the OpenSSL library.

Libatomic Description
--with-libatomic=… Forces usage of the libatomic_ops library on systems

other than x86, amd64, and sparc. This library allows
Nginx to perform atomic operations directly instead of
resorting to lock files. Depending on your system, it may
result in a decrease in SEGFAULT errors and possibly higher
request serving rate.

--with-libatomic=… Specifies the path of the Libatomic library sources.

Module options
Modules, which will be detailed in Chapter 4, Module Configuration, need to be
selected before compiling the application. Some are enabled by default and some
need to be enabled manually, as you will see in the following table.

Modules enabled by default
The following switches allow you to disable modules that are enabled by default:

Modules enabled by default Description
--without-http_charset_module Disables the Charset module to

re-encode web pages.
--without-http_gzip_module Disables the Gzip compression module.
--without-http_ssi_module Disables the Server Side Include

module.
--without-http_userid_module Disables the User ID module providing

user identification via cookies.
--without-http_access_module Disables the Access module allowing

access configuration for IP address
ranges.

--without-http_auth_basic_module Disables the Basic Authentication
module.

--without-http_autoindex_module Disables the Automatic Index module.
--without-http_geo_module Disables the Geo module allowing you to

define variables depending on IP address
ranges.

Chapter 1

[15]

Modules enabled by default Description
--without-http_map_module Disables the Map module that allows you

to declare map blocks.
--without-http_referer_module Disables the Referer control module.

--without-http_rewrite_module Disables the Rewrite module.
--without-http_proxy_module Disables the Proxy module to transfer

requests to other servers.
--without-http_fastcgi_module

--without-http_uwsgi_module

--without-http_scgi_module

Disables the FastCGI, uWSGI, or SCGI
modules to interact with FastCGI, uWSGI,
or SCGI processes respectively.

--without-http_memcached_module Disables the Memcached module to
interact with the memcache daemon.

--without-http_limit_conn_module Disables the Limit Connections
module to restrict resource usage
according to defined zones.

--without-http_limit_req_module Disables the Limit Requests module
allowing you to limit the number of
requests per user.

--without-http_empty_gif_module Disables the Empty GIF module to serve
a blank GIF image from memory.

--without-http_browser_module Disables the Browser module to interpret
the User Agent string.

--without-http_upstream_ip_hash_
module

Disables the Upstream IP Hash
module providing the ip_hash directive
in upstream blocks.

--without-http_upstream_least_
conn_module

Disables the Upstream Least Conn
module providing the least_conn
directive in upstream blocks.

--without-http_split_clients_
module

Disables the Split Clients module

Modules disabled by default
The following switches allow you to enable modules that are disabled by default:

Modules disabled by default Description
--with-http_ssl_module Enables the SSL module to serve pages over

HTTPS.
--with-http_realip_module Enables the Real IP module to read the real IP

address from the request header data.

Downloading and Installing Nginx

[16]

Modules disabled by default Description
--with-http_addition_module Enables the Addition module, which lets you

append or prepend data to the response body.
--with-http_xslt_module Enables the XSLT module to apply XSL

transformations to XML documents.
Note: You will need to install the libxml2 and
libxslt libraries on your system if you wish to
compile these modules.

--with-http_image_filter_
module

Enables the Image Filter module that lets you
apply modification to images.
Note: You will need to install the libgd library on
your system if you wish to compile this module.

--with-http_geoip_module Enables the GeoIP module to achieve geographic
localization using MaxMind's GeoIP binary
database.
Note: You will need to install the libgeoip library
on your system if you wish to compile this module.

--with-http_sub_module Enables the Substitution module to replace text
in web pages.

--with-http_dav_module Enables the WebDAV module (Distributed
Authoring and Versioning via Web).

--with-http_flv_module Enables the FLV module for special handling of
.flv (Flash video) files.

--with-http_mp4_module Enables the MP4 module for special handling of
.mp4 video files.

--with-http_gzip_static_
module

Enables the Gzip Static module to send pre-
compressed files.

--with-http_random_index_
module

Enables the Random Index module to pick a
random file as the directory index.

--with-http_secure_link_
module

Enables the Secure Link module to check the
presence of a keyword in the URL.

--with-http_stub_status_
module

Enables the Stub Status module, which
generates a server statistics and information page.

--with-google_perftools_
module

Enables the Google Performance Tools
module.

--with-http_degradation_
module

Enables the Degradation module that controls
the behavior of your server depending on current
resource usage.

--with-http_perl_module Enables the Perl module, allowing you to insert
Perl code directly into your Nginx configuration
files and to make Perl calls from SSI.

Chapter 1

[17]

Modules disabled by default Description
--with-http_spdy_module Enables the SPDY module allowing clients to

communicate with Nginx over the SPDY protocol.
--with-http_gunzip_module Enables the Gunzip module, which offers to

decompress a gzip-encoded response from a
backend server before forwarding it to the client.

--with-http_auth_request_
module

Enables the Auth Request module. This module
allows you to delegate the HTTP authentication
mechanism to a backend server via a subrequest.
The status code of the response can be stored in a
variable.

Miscellaneous options
Other options are available in the configuration script, for example, regarding the
mail server proxy feature or event management. These have been enlisted as follows:

Mail server proxy options Description
--with-mail Enables mail server proxy module. Supports

POP3, IMAP4, SMTP. It is disabled by default.
--with-mail_ssl_module Enables SSL support for the mail server proxy. It is

disabled by default.
--without-mail_pop3_module Disables the POP3 module for the mail server

proxy. It is enabled by default when the mail
server proxy module is enabled.

--without-mail_imap_module Disables the IMAP4 module for the mail server
proxy. It is enabled by default when the mail
server proxy module is enabled.

--without-mail_smtp_module Disables the SMTP module for the mail server
proxy. It is enabled by default when the mail
server proxy module is enabled.

Event management: Allows you to select the event notification system
for the Nginx sequencer. For advanced users only.

--with-rtsig_module Enables the rtsig module to use rtsig as event
notification mechanism.

--with-select_module Enables the select module to use select as event
notification mechanism. By default, this module
is enabled unless a better method is found on the
system—kqueue, epoll, rtsig, or poll.

--without-select_module Disables the select module.

Downloading and Installing Nginx

[18]

Mail server proxy options Description
--with-poll_module Enables the poll module to use poll as event

notification mechanism. By default, this module
is enabled if available, unless a better method is
found on the system—kqueue, epoll, or rtsig.

--without-poll_module Disables the poll module.

User and group options Description
--user=… Default user account to start the Nginx worker

processes. This setting is used only if you do not
specify the user directive in the configuration file.

--group=… Default user group to start the Nginx worker
processes. This setting is used only if you do not
specify the group directive in the configuration
file.

Other options Description
--with-ipv6 Enables IPv6 support.
--without-http Disables the HTTP server.
--without-http-cache Disables HTTP caching features.
--add-module=PATH Adds a third-party module to the compile process

by specifying its path. This switch can be repeated
indefinitely if you wish to compile multiple
modules.

--with-debug Enables additional debugging information to be
logged.

--with-file-aio Enables support for AIO (Asynchronous IO disk
operations).

Configuration examples
Here are a few examples of configuration commands that may be used for various
cases. In these examples, the path switches have been omitted, as they are specific to
each system and leaving the default values may simply function correctly.

Be aware that these configurations do not include additional
third-party modules. Please refer to Chapter 4, Module
Configuration, for more information about installing add-ons.

Chapter 1

[19]

About the prefix switch
During the configuration, you should take particular care of the --prefix switch.
Many of the future configuration directives (that will be approached in further
chapters) will be based on the path you select at this point. While it is not a definitive
problem since absolute paths can still be employed, you should know that the prefix
cannot be changed once the binaries have been compiled.

There is also another issue that you may run into if you plan to keep up with the
times and update Nginx as new versions are released. The default prefix (if you do
not override the setting by using the --prefix switch) is /usr/local/nginx. This is
a path that does not include the version number. Consequently, when you upgrade
Nginx, if you do not specify a different prefix, the new install files will override the
previous ones, which among other problems, could potentially erase your currently
running binaries.

It is thus recommended to use a different prefix for each version you will be using.
Use the following command to specify a prefix that is specific to version 1.8.0:

./configure --prefix=/usr/local/nginx-1.8.0

Additionally, to make future changes simpler, you may create a symbolic link /usr/
local/nginx pointing to /usr/local/nginx-1.8.0. Once you upgrade, you can
update the link to make it point to /usr/local/nginx-newer.version. This will
allow the init script to always make use of the latest installed version of Nginx.

Regular HTTP and HTTPS servers
The first example describes a situation where the most important features and
modules to serve HTTP and HTTPS content are enabled, and the mail-related
options are disabled:

./configure --user=www-data --group=www-data --with-http_ssl_module
--with-http_realip_module

As you can see, the command is rather simple and most switches have been left out.
The reason for this is that the default configuration is rather efficient, and most of the
important modules are enabled. You will only need to include the http_ssl module
to serve HTTPS content, and optionally, the real IP module to retrieve your visitors'
IP addresses in case you are running Nginx as backend server.

Downloading and Installing Nginx

[20]

All modules enabled
The next situation includes all available modules, and it is up to you whether you
want to use them or not at runtime:

./configure --user=www-data --group=www-data --with-http_ssl_module
--with-http_realip_module --with-http_addition_module --with-http_xslt_
module --with-http_image_filter_module --with-http_geoip_module --with-
http_sub_module --with-http_dav_module --with-http_flv_module --with-
http_mp4_module --with-http_gzip_static_module --with-http_random_index_
module --with-http_secure_link_module --with-http_stub_status_module
--with-http_perl_module --with-http_degradation_module --with-http_spdy_
module --with-http_gunzip_module --with-http_auth_request_module

This configuration opens up a wide range of possible configuration options.
Chapter 3, HTTP Configuration, to Chapter 6, Apache and Nginx Together, provide
more detailed information on module configuration.

With this setup, all optional modules are enabled, thus requiring additional libraries
to be installed—libgeoip for the Geo IP module, libgd for the Image Filter module,
libxml2, and libxslt for the XSLT module. You may install those prerequisites
using your system package manager, for example, by running yum install
libxml2 or apt-get install libxml2.

Mail server proxy
This last build configuration is somewhat special, as it is dedicated to enabling mail
server proxy features—a darker and less documented side of Nginx. You can enable
all mail related features through the following command:

./configure --user=www-data --group=www-data --with-mail --with-mail_ssl_
module

If you wish to completely disable the HTTP serving features and only dedicate Nginx
to mail proxying, you may add the --without-http switch.

Note that in the preceding commands, the user and group used to
run the Nginx worker processes will be www-data, which implies
that this user and group must exist on your system.

Build configuration issues
In some cases, the configure command may fail—after a long list of checks, you
may receive a few error messages on your terminal. In most (if not all) cases, these
errors are related to missing prerequisites or unspecified paths.

Chapter 1

[21]

In such cases, proceed with the following verifications carefully to make sure
you have all it takes to compile the application, and optionally, consult the
objs/autoconf.err file for more details about the compilation problem. This file
is generated during the configure process and will tell you exactly which part of the
process failed.

Make sure you installed the prerequisites
There are basically four main prerequisites: GCC, PCRE, zlib, and OpenSSL. The last
three are libraries that must be installed in two packages: the library itself and its
development sources. Make sure you have installed both for each of them. Refer to
the prerequisites section at the beginning of this chapter for additional information.
Note that other prerequisites such as LibXML2 or LibXSLT may be required to
enable extra modules (for example, in the case of the HTTP XSLT module).

If you are positive that all of the prerequisites were installed correctly, perhaps
the issue comes from the fact that the configure script is unable to locate the
prerequisite files. In that case, make sure that you include the configuration switches
related to file paths, as described earlier.

For example, the following switch allows you to specify the location of the OpenSSL
library files:

./configure [...] --with-openssl=/usr/lib64

The OpenSSL library file will be looked for in the specified folder.

Directories exist and must be writable
Always remember to check the obvious; everyone makes even the simplest of
mistakes sooner or later. Make sure that the directory you placed the Nginx files in
has read and write permissions for the user running the configuration and compilation
scripts. Also ensure that all paths specified in the configure script switches are
existing, valid paths.

Compiling and installing the program
The configuration process is of utmost importance—it generates a makefile for
the application depending on the selected switches and performs a long list of
requirement checks on your system. Once the configure script is successfully
executed, you can proceed with compiling Nginx.

Downloading and Installing Nginx

[22]

Compiling the project equates to executing the make command in the project
source directory:

[alex@example.com nginx-1.8.0]$ make

A successful build should result in the appearance of a final message: make[1]:
leaving directory. This should be followed by the project source path.

Again, problems might occur at compile time. Most of these problems can originate
in missing prerequisites or the specification of invalid paths. If this occurs, run the
configure command again and triple-check the switches and all of the prerequisite
options. It may also so happen that you downloaded an overly recent version of the
prerequisites, which may not be backwards compatible. In such cases, the best option is
to visit the official website of the missing component and download an older version.

If the compilation process was successful, you are ready for the next step: installing
the application. The following command must be executed with root privileges:

[root@example.com nginx-1.8.0]# make install

The make install command executes the install section of the make file. In
other words, it performs a few simple operations, such as copying binaries and
configuration files to the specified install folder. It also creates directories to store
log and HTML files if these do not already exist. The make install step is not
generally a source of problems, unless your system encounters an exceptional error,
such as a lack of storage space or memory.

You may require root privileges to install the application in the
/usr/local/ folder, depending on the folder permissions.

Controlling the Nginx service
At this stage, you should have successfully built and installed Nginx. The default
location for the output files is /usr/local/nginx, so we will be basing future
examples on this.

Chapter 1

[23]

Daemons and services
The next step is obviously run Nginx for the first time. However, before doing so,
it's important to understand the nature of this application. There are two types of
computer applications—those that require immediate user input, thus running in
the foreground, and those that do not, thus running in the background. Nginx is of
the latter type, often referred to as daemon. Daemon names usually come with a
trailing "d" and a couple of examples can be mentioned here—httpd, the HTTP
server daemon, is the name given to Apache under several Linux distributions;
named, the name server daemon; or crond the task scheduler—although, as you will
notice, this is not the case for Nginx. When started from the command line, a daemon
immediately returns the prompt, and in most cases, does not even bother outputting
data to the terminal.

Consequently, when starting Nginx, you will not see any text appear on the screen,
and the prompt will return immediately. While this might seem startling, it is,
on the contrary, a good sign. It means the daemon was started correctly and the
configuration did not contain any errors.

User and group
It is of utmost importance to understand the process architecture of Nginx,
and particularly the user and groups under which its various processes run.
A very common source of trouble when setting up Nginx is invalid file access
permissions—due to a user or group misconfiguration, you often end up getting
403 Forbidden HTTP errors because Nginx cannot access the requested files.

There are two levels of processes with possibly different permission sets:

• The Nginx master process: This should be started as root. In most Unix-like
systems, processes started with the root account are allowed to open TCP
sockets on any port, whereas other users can only open listening sockets on a
port above 1024. If you do not start Nginx as root, standard ports such as 80
or 443 will not be accessible. Note that the user directive that allows you to
specify a different user and group for the worker processes will not be taken
into consideration for the master process.

• The Nginx worker processes: These are automatically spawned by the
master process under the account you specified in the configuration file
with the user directive (detailed in Chapter 2, Basic Nginx Configuration).
The configuration setting takes precedence over the configuration switch
you may have specified at compile time. If you did not specify any of those,
the worker processes will be started as user nobody and group nobody (or
nogroup depending on your OS).

Downloading and Installing Nginx

[24]

Nginx command-line switches
The Nginx binary accepts command-line arguments to perform various operations,
among which is controlling the background processes. To get the full list of
commands, you may invoke the help screen using the following commands:

[alex@example.com ~]$ cd /usr/local/nginx/sbin

[alex@example.com sbin]$./nginx -h

The next few sections will describe the purpose of these switches. Some allow you to
control the daemon and some let you perform various operations on the application
configuration.

Starting and stopping the daemon
You can start Nginx by running the Nginx binary without any switches. If the
daemon is already running, a message will show up indicating that a socket is
already listening on the specified port:

[emerg]: bind() to 0.0.0.0:80 failed (98: Address already in use) […]
[emerg]: still could not bind().

Beyond this point, you may control the daemon by stopping it, restarting it, or
simply reloading its configuration. Controlling is done by sending signals to the
process using the nginx -s command.

Command Description
nginx –s stop Stops the daemon immediately (using the TERM signal).
nginx –s quit Stops the daemon gracefully (using the QUIT signal).
nginx –s reopen Reopens the log files.
nginx –s reload Reloads the configuration.

Note that when starting the daemon, stopping it, or performing any of the preceding
operations, the configuration file is first parsed and verified. If the configuration is
invalid, whatever command you have submitted will fail, even when trying to stop
the daemon. In other words, in some cases you will not be able to even stop Nginx if
the configuration file is invalid.

An alternate way to terminate the process, in desperate cases only, is to use the kill
or killall commands with root privileges:

[root@example.com ~]# killall nginx

Chapter 1

[25]

Testing the configuration
As you can imagine, testing the validity of your configuration will become crucial
if you constantly tweak your server setup . The slightest mistake in any of the
configuration files can result in a loss of control over the service—you will then be
unable to stop it via regular init control commands, and obviously, it will refuse
to start again.

Consequently, the following command will be useful to you in many occasions; it
allows you to check the syntax, validity, and integrity of your configuration:

[alex@example.com ~]$ /usr/local/nginx/sbin/nginx –t

The –t switch stands for test configuration. Nginx will parse the configuration anew
and let you know whether it is valid or not. A valid configuration file does not
necessarily mean Nginx will start, though, as there might be additional problems
such as socket issues, invalid paths, or incorrect access permissions.

Obviously, manipulating your configuration files while your server is in production
is a dangerous thing to do and should be avoided when possible. The best practice,
in this case, is to place your new configuration into a separate temporary file and run
the test on that file. Nginx makes it possible by offering the –c switch:

[alex@example.com sbin]$./nginx –t –c /home/alex/test.conf

This command will parse /home/alex/test.conf and make sure it is a valid
Nginx configuration file. When you are done, after making sure that your new
file is valid, proceed to replacing your current configuration file and reload the
server configuration:

[alex@example.com sbin]$ cp -i /home/alex/test.conf /usr/local/nginx/
conf/nginx.conf

cp: erase 'nginx.conf' ? yes

[alex@example.com sbin]$./nginx –s reload

Other switches
Another switch that might come in handy in many situations is –V. Not only does it
tell you the current Nginx build version, but more importantly, it also reminds you
about the arguments that you used during the configuration step—in other words,
the command switches that you passed to the configure script before compilation.

[alex@example.com sbin]$./nginx -V

nginx version: nginx/1.8.0 (Ubuntu)

built by gcc 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04)

Downloading and Installing Nginx

[26]

TLS SNI support enabled

configure arguments: --with-http_ssl_module

In this case, Nginx was configured with the --with-http_ssl_module switch only.

Why is this so important? Well, if you ever try to use a module that was not included
with the configure script during the precompilation process, the directive enabling
the module will result in a configuration error. Your first reaction will be to wonder
where the syntax error comes from. Your second reaction will be to wonder if you
even built the module in the first place! Running nginx –V will answer this question.

Additionally, the –g option lets you specify additional configuration directives in
case they were not included in the configuration file:

[alex@example.com sbin]$./nginx –g "timer_resolution 200ms";

Adding Nginx as a system service
In this section, we will create a script that will transform the Nginx daemon into an
actual system service. This will result mainly in two outcomes: the daemon will be
controllable using standard commands, and more importantly, it will be launched
automatically on system startup and stopped on system shutdown.

System V scripts
Most Linux-based operating systems to date use a System-V style init daemon. In other
words, their startup process is managed by a daemon called init, which functions in a
way that is inherited from the old System V Unix-based operating system.

This daemon functions on the principle of runlevels, which represent the state of the
computer. Here is a table representing the various runlevels and their signification:

Runlevel State
0 System is halted
1 Single-user mode (rescue mode)
2 Multiuser mode, without NFS support
3 Full multiuser mode
4 Not used
5 Graphical interface mode
6 System reboot

Chapter 1

[27]

You can manually initiate a runlevel transition: use the telinit 0 command to shut
down your computer or telinit 6 to reboot it.

For each runlevel transition, a set of services are executed. This is the key concept to
understand here: when your computer is stopped, its runlevel is 0. When you turn
it on, there will be a transition from runlevel 0 to the default computer startup
runlevel. The default startup runlevel is defined by your own system configuration
(in the /etc/inittab file), and the default value depends on the distribution you are
using. Debian and Ubuntu use runlevel 2, Red Hat and Fedora use runlevel 3 or 5,
CentOS and Gentoo use runlevel 3, and so on—the list is long.

So, in summary, when you start your computer running CentOS, it operates a
transition from runlevel 0 to runlevel 3. That transition consists of starting all
services that are scheduled for runlevel 3. The question that remains is how to
schedule a service to be started at a specific runlevel.

For each runlevel, there is a directory containing scripts to be executed. If you enter
these directories (rc0.d, rc1.d, to rc6.d), you will not find actual files, but rather
symbolic links referring to scripts located in the init.d directory. Service startup
scripts will indeed be placed in init.d, and links will be created by tools placing
them in the proper directories.

About init scripts
An init script, also known as a service startup script or even sysv script, is a shell
script respecting a certain standard. The script controls a daemon application by
responding to commands such as start, stop, and others, which are triggered
at two levels. First, when the computer starts, if the service is scheduled to be
started for the system runlevel, the init daemon will run the script with the start
argument. The other possibility for you is to manually execute the script by calling it
from the shell:

[root@example.com ~]# service httpd start

Downloading and Installing Nginx

[28]

Or if your system does not come with the service command:

[root@example.com ~]# /etc/init.d/httpd start

The script must accept at least the start, stop, restart, force-reload, and
status commands, as they will be used by the system to respectively start up, shut
down, restart, forcefully reload the service, or inquire its status. However, to enlarge
your field of action as a system administrator, it is often interesting to provide
further options, such as a reload argument to reload the service configuration or a
try-restart argument to stop and start the service again.

Note that since service httpd start and /etc/init.d/httpd start essentially
do the same thing, with the exception that the second command will work on all
operating systems, we will make no further mention of the service command and
will exclusively use the /etc/init.d/ method.

The init script for Debian-based distributions
We will thus create a shell script to start and stop our Nginx daemon and also to restart
and reload it. The purpose here is not to discuss Linux shell script programming, so
we will merely provide the source code of an existing init script, along with some
comments to help you understand it.

Due to differences in the format of the init scripts from one distribution to another,
we will discover two separate scripts here. The first one is meant for Debian-based
distributions such as Debian, Ubuntu, Knoppix, and so forth.

First, create a file called nginx with the text editor of your choice, and save it in the
/etc/init.d/ directory (on some systems, /etc/init.d/ is actually a symbolic link
to /etc/rc.d/init.d/). In the file you just created, insert the script provided in the
code bundle supplied with this book. Make sure that you change the paths to make
them correspond to your actual setup.

You will need root permissions to save the script into the init.d directory.

The complete init script for Debian-based distributions can
be found in the code bundle.

Chapter 1

[29]

The init script for Red Hat–based distributions
Due to the system tools, shell programming functions, and specific formatting that
it requires, the preceding script is only compatible with Debian-based distributions.
If your server is operated by a Red Hat–based distribution such as CentOS, Fedora,
and many more, you will need an entirely different script.

The complete init script for Red Hat–based distributions can
be found in the code bundle.

Installing the script
Placing the file in the init.d directory does not complete our work. There are
additional steps that will be required to enable the service. First, make the script
executable. So far, it is only a piece of text that the system refuses to run. Granting
executable permissions on the script is done with the chmod command:

[root@example.com ~]# chmod +x /etc/init.d/nginx

Note that if you created the file as the root user, you will need to be logged in as root
to change the file permissions.

At this point, you should already be able to start the service using service nginx
start or /etc/init.d/nginx start, as well as stopping, restarting, or reloading
the service.

The last step here will be to make it so the script is automatically started at the
proper runlevels. Unfortunately, doing this entirely depends on what operating
system you are using. We will cover the two most popular families—Debian,
Ubuntu, or other Debian-based distributions and Red Hat/Fedora/CentOS,
or other Red Hat–derived systems.

Debian-based distributions
For the Debian-based distribution, a simple command will enable the init script for
the system runlevel:

[root@example.com ~]# update-rc.d -f nginx defaults

This command will create links in the default system runlevel folders. For the
reboot and shutdown runlevels, the script will be executed with the stop argument;
for all other runlevels, the script will be executed with start. You can now restart
your system and see your Nginx service being launched during the boot sequence.

Downloading and Installing Nginx

[30]

Red Hat–based distributions
For the Red Hat–based systems family, the command differs, but you get an
additional tool to manage system startup. Adding the service can be done
via the following command:

[root@example.com ~]# chkconfig nginx on

Once that is done, you can then verify the runlevels for the service:

[root@example.com ~]# chkconfig --list nginx

Nginx 0:off 1:off 2:on 3:off 4:on 5:on 6:off

Another tool will be useful to you to manage system services, namely, ntsysv. It lists
all services scheduled to be executed on system startup and allows you to enable or
disable them at will.

The tool ntsysv requires root privileges to be executed.

Note that prior to using ntsysv, you must first run the chkconfig nginx on
command, otherwise Nginx will not appear in the list of services.

Chapter 1

[31]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed to you directly.

NGINX Plus
Since mid-2013, NGINX, Inc., the company behind the Nginx project, also offers a
paid subscription called NGINX Plus. The announcement came as a surprise for the
open source community, but several companies quickly jumped on the bandwagon
and reported amazing improvements in terms of performance and scalability after
using NGINX Plus.

NGINX, Inc., the high performance web company, today announced the
availability of NGINX Plus, a fully-supported version of the popular NGINX open
source software complete with advanced features and offered with professional
services. The product is developed and supported by the core engineering team at
Nginx Inc., and is available immediately on a subscription basis.

As business requirements continue to evolve rapidly, such as the shift to mobile and
the explosion of dynamic content on the Web, CIOs are continuously looking for
opportunities to increase application performance and development agility, while
reducing dependencies on their infrastructure. NGINX Plus provides a flexible,
scalable, uniformly applicable solution that was purpose built for these modern,
distributed application architectures.

Considering the pricing plans ($1,500 per year per instance) and the additional features
made available, this platform is indeed clearly aimed at large corporations looking to
integrate Nginx into their global architecture seamlessly and effortlessly. Professional
support from the Nginx team is included and discounts can be offered for multiple-
instance subscriptions. This book covers the open source version of Nginx only and
does not detail advanced functionality offered by NGINX Plus. For more information
about the paid subscription, take a look at http://www.nginx.com.

http://www.packtpub.com
http://www.nginx.com.

Downloading and Installing Nginx

[32]

Summary
This chapter covered a number of critical steps. You first made sure that your system
contained all the required components for compiling Nginx. You then proceeded
to select the proper version branch for your usage—will you be using the stable
version or a more advanced, yet potentially less stable, one? After downloading the
source and configuring the compilation process by enabling or disabling features and
modules such as SSL, GeoIP, and more, you compiled the application and installed it
on the system in the directory of your choice. You created an init script and modified
the system boot sequence to schedule for the service to be started.

From this point on, Nginx is installed on your server and automatically starts with
the system. Your web server is functional, though it does not yet answer the most
basic functionality: serving a website. The first step towards hosting a website will
be to prepare a suitable configuration file. The next chapter will cover the basic
configuration of Nginx and will teach you how to optimize performance based on
the expected audience and system resources.

[33]

Basic Nginx Configuration
In this chapter, we will establish an appropriate configuration for your web
server. For this purpose, we begin to discover the syntax that is used in the Nginx
configuration files. Then, we need to understand the various directives that will
let you prepare and optimize your web server for the different traffic patterns
and hardware setups. Finally, we will create some test pages to make sure that
everything has been done correctly and that the configuration is valid. We will only
approach the basic configuration directives here. The following chapters will explore
more advanced topics such as HTTP module configuration and usage, creating
virtual hosts, and more.

This chapter covers the following topics:

• The presentation of the configuration syntax
• An overview of basic configuration directives
• Establishing an appropriate configuration for your profile
• Serving a test website
• Testing and maintaining your web server

Basic Nginx Configuration

[34]

Configuration file syntax
A configuration file is generally a text file that is edited by the administrator and
parsed by a program. By specifying a set of values, you define the behavior of the
program. In Linux-based operating systems, a large share of the applications rely on
vast, complex configuration files, which often turn out to be a nightmare to manage.
Apache, Qmail, and Bind—all these names bring up bad memories in the mind of
a Linux system administrator. The fact is that all these applications use their own
configuration file with different syntaxes and styles. PHP works with a Windows-style
.ini file, sendmail uses the M4 macro-processor to compile the configuration files, Zabbix
pulls its configuration from a MySQL database, and so on. There is, unfortunately, no
well-established standard, and the same applies to Nginx—you will be required to
study a new syntax with its own particularities and its own vocabulary.

Why isn't there a universal standard for configuration file syntax? A possible explanation by
Randall Munroe (xkcd.com – reproduced with authorization)

On the other hand (and this is one of its advantages), configuring Nginx turns out to
be rather simple—at least in comparison to Apache or other mainstream web servers.
There are only a few mechanisms that need to be mastered—directives, blocks, and
the overall logical structure. Most of the actual configuration process will consist of
writing values for the directives.

Configuration directives
The Nginx configuration file can be described as a list of directives organized in a
logical structure. The entire behavior of the application is defined by the values that
you give to those directives.

Chapter 2

[35]

By default, Nginx makes use of one main configuration file. The path of this file
was defined in the steps described in Chapter 1, Downloading and Installing Nginx,
under the Build configuration section. If you did not edit the configuration file path
and prefix options, it should be located at /usr/local/nginx/conf/nginx.conf.
However, if you installed Nginx with a package manager, your configuration file
will likely be located in the /etc/nginx folder, and the contents of the file may
be quite different from the version that comes in the original Nginx source code
package. Now, let's take a quick peek at the first few lines of this initial setup:

The default configuration file bundled with the Nginx 1.8.0 source code package

Let's take a closer look at the first two lines:

#user nobody;
worker_processes 1;

As you can probably make out from the # character, the first line is a comment. In
other words, a piece of text that is not interpreted and has no value whatsoever. Its
sole purpose is to be read by whoever opens the file, or to temporarily disable parts
of an existing configuration section. You may use the # character at the beginning of
a line or following a directive.

The second line is an actual statement—a directive. The first bit (worker_processes)
represents a setting key to which you append one or more values. In this case, the
value is 1, indicating that Nginx should function with a single worker process (more
information about this particular directive is given in later sections).

Basic Nginx Configuration

[36]

Directives always end with a semicolon (;).

Each directive has a unique meaning and defines a particular feature of the
application. It may also have a particular syntax. For example, the worker_process
directive only accepts one numeric value, whereas the user directive lets you
specify up to two character strings—one for the user account (that the Nginx worker
processes should run as) and a second for the user group.

Nginx works in a modular way, and as such, each module comes with a specific set
of directives. The most fundamental directives are part of the Nginx Core module
and will be detailed in this chapter. As for the directives brought in by other
modules, they will be explored in the later chapters.

Organization and inclusions
In the preceding screenshot, you may have noticed a particular directive—include.

include mime.types;

As the name suggests, this directive will perform an inclusion of the specified file. In
other words, the contents of the file will be inserted at this exact location. Here is a
practical example that will help you understand this concept:

nginx.conf:

user nginx nginx;
worker_processes 4;
include other_settings.conf;

other_settings.conf:

error_log logs/error.log;
pid logs/nginx.pid;

The final result, as interpreted by Nginx, is as follows:

user nginx nginx;
worker_processes 4;
error_log logs/error.log;
pid logs/nginx.pid;

Inclusions are processed recursively. In this case, you have the possibility to use the
include directive again in the other_settings.conf file in order to include yet
another file.

Chapter 2

[37]

In the initial configuration setup, there are two files in use—nginx.conf and mime.
types. However, in the case of a more advanced configuration, there may be five or
more files, as described in the following table:

Standard name Description
nginx.conf Base configuration of the application.
mime.types A list of file extensions and their associated MIME types.
fastcgi_params Fast CGI-related configuration.
proxy.conf Proxy-related configuration.

sites.conf Configuration of the websites served by Nginx, also known as
virtual hosts. It's recommended to create separate files for each
domain.

These filenames were defined conventionally; nothing actually prevents you
from regrouping your FastCGI and proxy settings into a common file named
proxy_and_fastcgi_config.conf.

Note that the include directive supports filename globbing, that is, filenames
referenced with the * wildcard, where * may match zero, one, or more consecutive
characters:

include sites/*.conf;

This will include all the files with a name that ends with .conf in the sites folder.
This mechanism allows you to create a separate file for each of your websites and
include them all at once.

Be careful when including a file—if the specified file does not exist, the configuration
checks will fail, and Nginx will not start:

[alex@example sbin]# ./nginx -t
[emerg]: open() "/usr/local/nginx/conf/dummyfile.conf" failed (2: No
such file or directory) in /usr/local/nginx/conf/nginx.conf:48

The previous statement is not true for the inclusions with wildcards. If you insert
include dummy*.conf in your configuration file and test it (whether there is any file
matching this pattern on your system or not), the following is what should happen:

[alex@example sbin]# ./nginx –t

the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok
configuration file /usr/local/nginx/conf/nginx.conf test is successful

Basic Nginx Configuration

[38]

Directive blocks
Directives are brought in by modules—if you activate a new module, a specific set of
directives becomes available. Modules may also enable directive blocks, which allow
for a logical construction of the configuration:

events {
 worker_connections 1024;
}

The events block that you can find in the default configuration file is brought in by
the Events module. The directives that the module enables can only be used within
that block—in the preceding example, worker_connections will only make sense in
the context of the events block. On the other hand, some directives must be placed
at the root of the configuration file, because they have a global effect on the server.
The root of the configuration file is also known as the main block.

For the most part, blocks can be nested into each other, following a specific logic. The
following sequence demonstrates the structure of a simple website setup, making use
of nested blocks:

http {
 server {
 listen 80;
 server_name example.com;
 access_log /var/log/nginx/example.com.log;
 location ^~ /admin/ {
 index index.php;
 }
 }
}

The topmost directive block is the http block, in which you may declare a variety
of configuration directives as well as one or more server blocks. A server block
allows you to configure a virtual host, in other words, a website that is to be hosted
on your machine. The server block, in this example, contains some configuration
that applies to all HTTP requests with a Host header exactly matching example.com.

Within this server block, you may insert one or more location blocks. These allow
you to enable settings only when the requested URI matches the specified path.
More information is provided in the The Location block section of Chapter 3,
HTTP Configuration.

Chapter 2

[39]

Last but not least, configuration is inherited within children blocks. The access_log
directive (defined at the server block level in this example) specifies that all HTTP
requests for this server should be logged into a text file. This is still true within the
location child block, although you have the option of disabling it by reusing the
access_log directive:

[…]
 location ^~ /admin/ {
 index index.php;
 access_log off;
 }
[…]

In this case, logging will be enabled everywhere on the website except for the
/admin/ location path. The value set for the access_log directive at the server
block level is overridden by the one at the location block level.

Advanced language rules
There are a number of important observations regarding the Nginx configuration
file syntax. These will help you understand certain language rules that may seem
confusing if you have never worked with Nginx before.

Directives accept specific syntaxes
You may indeed stumble upon complex syntaxes that can be confusing at first sight,
like the following one:

rewrite ^/(.*)\.(png|jpg|gif)$ /image.php? file=$1&format=$2 last;

Syntaxes are directive-specific. While the root directive only accepts a simple
character string defining the folder containing the files that should be served for a
website, the location block and the rewrite directive support complex expressions
in order to match particular patterns. Some other directives such as listen accept up
to 17 different parameters. Syntaxes will be explained along with directives in their
respective chapters.

Later on, we will detail a module (the Rewrite module) which allows for a much
more advanced logical structure through the if, set, break, and return blocks and
directives, and the use of variables. With all these new elements, configuration files
will begin to look like programming scripts. You will find that, the more modules we
discover, the richer the syntax becomes.

Basic Nginx Configuration

[40]

Diminutives in directive values
Finally, you may use the following diminutives for specifying a file size in the
context of a directive value:

• k or K: Kilobytes
• m or M: Megabytes
• g or G: Gigabytes

As a result, the following three syntaxes are correct and equal:

client_max_body_size 2G;
client_max_body_size 2048M;
client_max_body_size 2097152k;

Note that Nginx does not allow you to insert the same directive more than once
within the same block (although there are a few exceptions, such as allow or deny);
should you do so, the configuration will be considered invalid, and Nginx will refuse
to start up or reload.

Additionally, when specifying a time value, you may use the following shortcuts:

• ms: Milliseconds
• s: Seconds
• m: Minutes
• h: Hours
• d: Days
• w: Weeks
• M: Months (30 days)
• y: Years (365 days)

This becomes especially useful in the case of directives accepting a period of time as
a value:

client_body_timeout 3m;
client_body_timeout 180s;
client_body_timeout 180;

Note that the default time unit is seconds; the last two lines in the preceding list
thus result in an identical behavior. It is also possible to combine two values with
different units:

client_body_timeout 1m30s;
client_body_timeout '1m 30s 500ms';

Chapter 2

[41]

The latter variant is enclosed in quotes since values are separated by spaces.

Variables
Modules also provide variables that can be used in the definition of directive values.
For example, the Nginx HTTP core module defines the $nginx_version variable.
Variables in Nginx always start with $—the dollar sign. When setting the log_format
directive, you may include all kinds of variables in the format string:

[…]
location ^~ /admin/ {
 access_log logs/main.log;
 log_format main '$pid - $nginx_version - $remote_addr';
}
[…]

Note that some directives do not allow you to use variables:

error_log logs/error-$nginx_version.log;

The preceding directive is valid, syntax-wise. However, it simply generates a file
named error-$nginx_version.log without parsing the variable.

String values
Character strings that you use as directive values can be written in three forms.
First, you may enter the value without quotes:

root /home/example.com/www;

However, if you want to use a particular character, such as a blank space (" "),
a semicolon (;), or curly braces ({ and }), you will need to either prefix the said
character with a backslash (\), or enclose the entire value in single or double quotes:

root '/home/example.com/my web pages';

In Nginx, it makes no difference whether you use single or double quotes. Note that
the variables inserted in strings within quotes will be expanded normally, unless you
prefix the $ character with a backslash (\).

Base module directives
In this section, we will take a closer look at the base modules. We are particularly
interested in answering two questions: what are base modules? What are the
directives that are available?

Basic Nginx Configuration

[42]

What are base modules?
The base modules offer directives that allow you to define the parameters of the basic
functionality of Nginx. They cannot be disabled at compile time, and as a result, the
directives and blocks that they offer are always available. Three base modules have
been distinguished:

• Core module: Consists of essential features and directives such as process
management and security

• Events module: Lets you configure the inner mechanisms of the networking
capabilities

• Configuration module: Enables the inclusion mechanism

These modules offer a large range of directives; we will be detailing them
individually with their syntaxes and default values.

The Nginx process architecture
Before we start detailing the basic configuration directives, it is necessary to
understand the overall process architecture, that is, the way that the Nginx daemon
works behind the scenes. Although the application comes as a simple binary file (and
a somewhat lightweight background process), the way it functions at runtime can be
relatively complex.

A unique process—the Master Process—exists in memory from the very moment that
Nginx starts. It is launched with the current user and group permissions—usually
root/root if the service is launched at boot time by an init script. The master process
itself does not process any client request; instead, it spawns the processes that do,
that is, the Worker Processes, which are affected to a customizable user and group.

From the configuration file, you can define the number of worker processes, the
maximum connections per worker process, the user and group that the worker
processes are running under, and more. The following screenshot shows an example
of a running instance of Nginx with eight worker processes running under the www-
data user account.

Chapter 2

[43]

Core module directives
The following is the list of directives made available by the core module. Most of
these directives must be placed at the root of the configuration file, and can only be
used once. However, some of them are valid in multiple contexts. If that is the case,
the following is the list of valid contexts under the directive name:

Name and context Syntax and description
daemon Accepted values: on or off

Syntax:
daemon on;

Default value: on
Enables or disables daemon mode. If you disable it, the
program will not be started in the background; it will stay in
the foreground when launched from the shell. This may come
in handy for debugging, in situations where you need to know
what causes Nginx to crash and when.

debug_points Accepted values: stop or abort
Syntax:

debug_points stop;

Default value: None
Activates debug points in Nginx. Use stop to interrupt the
application when a debug point comes about in order to attach a
debugger. Use abort to abort the debug point and create a core
dump file.
To disable this feature, simply do not use the directive.

Basic Nginx Configuration

[44]

Name and context Syntax and description
env Syntax:

env MY_VARIABLE;
env MY_VARIABLE=my_value;

Allows you to define or redefine environment variables.
error_log

Context: main,
http, server, and
location

Syntax:
error_log /file/path level;

Default value: logs/error.log error.
Where level is one of the following values: debug, info,
notice, warn, error, crit, alert, emerg (from the most
to least detailed: debug provides frequent log entries, emerg
reports only the most critical errors).
Enables error logging at different levels: Application, HTTP
server, virtual host, and virtual host directory.
By redirecting the log output to /dev/null, you can disable
error logging. Use the following directive at the root of the
configuration file:

error_log /dev/null crit;

Instead of specifying a file path, you might also select one of
the following alternatives: stderr will send log entries to the
standard error file, syslog to the system log, and memory will
store the log entries in the memory.

lock_file Syntax: File path
lock_file logs/nginx.lock;

Default value: Defined at compile time
Use a lock file for mutual exclusion. This is disabled by default,
unless you enabled it at compile time. On most operating
systems, locks are implemented using atomic operations, so this
directive is ignored anyway.

log_not_found

Context: main,
http, server, and
location

Accepted values: on or off
log_not_found on;

Default value: on
Enables or disables the logging of 404 not found HTTP errors.
If your logs get filled with 404 errors due to missing favicon.
ico or robots.txt files, you might want to turn this off.

Chapter 2

[45]

Name and context Syntax and description
master_process Accepted values: on or off

master_process on;

Default value: on
If enabled, Nginx will start multiple processes: a main process
(the master process) and worker processes. If disabled, Nginx
works with a unique process. This directive should be used for
testing purposes only, as it disables the master process—thus,
clients will not be able to connect to your server.

pcre_jit Accepted values: on or off
pcre_jit on;

Enables or disables the Just-In-Time compilation for regular
expressions (PCRE from version 8.20 and above), which may
speed up their processing significantly. For this to work, the
PCRE libraries on your system must be specifically built with
the --enable-jit configuration argument. When configuring
your Nginx build, you must also add the --with-pcre-jit
argument.

pid Syntax: File path
pid logs/nginx.pid;

Default value: Defined at compile time.
Path of the pid file for the Nginx daemon. The default value
can be configured at compile time. Make sure to enable this
directive, and set its value properly, since the pid file may be
used by the Nginx init script depending on your operating
system.

ssl_engine Syntax: Character string
ssl_engine enginename;

Default value: None
Where enginename is the name of an available hardware SSL
accelerator on your system. To check for the available hardware
SSL accelerators, run this command from the shell:

openssl engine –t

Basic Nginx Configuration

[46]

Name and context Syntax and description
thread_pool Syntax:

thread_pool name threads=number [max_
queue=number];

Default value:
thread_pool default threads=32 max_queue=65536;

Defines a thread pool reference that can be used with the
aio directive for serving larger files asynchronously. Further
details are provided in Chapter 8, Introducing Load Balancing and
Optimization.

timer_resolution Syntax: Numeric (time)
timer_resolution 100ms;

Default value: None
Controls the interval between system calls to gettimeofday()
for synchronizing the internal clock. If this value is not specified,
the clock is refreshed after each kernel event notification.

user Syntax:
user username groupname;
user username;

Default value: Defined at compile time. If still undefined, the
user and the group of the Nginx master process are used.
Allows you to define the user account, and optionally, the
user group used for starting the Nginx worker processes. For
security reasons, you should make sure to specify a user and a
group with limited privileges. For example, create a new user
and a group dedicated to Nginx, and remember to apply proper
permissions on the files that will be served.

Chapter 2

[47]

Name and context Syntax and description
worker_cpu_
affinity

Syntax:
worker_cpu_affinity 1000 0100 0010 0001;
worker_cpu_affinity 10 10 01 01;
worker_cpu_affinity;

Default value: None
This directive works in conjunction with worker_processes.
It lets you affect the worker processes to CPU cores.
There are as many series of digit blocks as worker processes;
there are as many digits in a block as your CPU has cores.
If you configure Nginx to use three worker processes, there are
three blocks of digits. For a dual-core CPU, each block has two
digits:

worker_cpu_affinity 01 01 10;

The first block (01) indicates that the first worker process should
be affected to the second core.
The second block (01) indicates that the second worker process
should be affected to the second core.
The third block (10) indicates that the third worker process
should be affected to the first core.
Note that affinity is only recommended for multi-core CPUs, not
for processors with hyper-treading or similar technologies.

worker_priority Syntax: Numeric
worker_priority 0;

Default value: 0
Defines the priority of the worker processes, from -20 (highest)
to 19 (lowest). The default value is 0. Note that the kernel
processes run at priority level -5, so it's not recommended that
you set the priority to -5 or less.

Basic Nginx Configuration

[48]

Name and context Syntax and description
worker_processes Syntax: Numeric or auto

worker_processes 4;

Default value: 1
Defines the number of worker processes. Nginx offers to
separate the treatment of requests into multiple processes. The
default value is 1, but it's recommended to increase this value
if your CPU has more than one core. Besides, if a process gets
blocked due to slow I/O operations, the incoming requests can
be delegated to the other worker processes.
Alternatively, you may use the auto value, which will let Nginx
select an appropriate value for this directive. By default, it is the
amount of CPU cores detected on the system.

worker_rlimit_
core

Syntax: Numeric (size)
worker_rlimit_core 100m;

Default value: None
Defines the size of core files per worker process.

worker_rlimit_
nofile

Syntax: Numeric
worker_rlimit_nofile 10000;

Default value: None
Defines the number of files that a worker process may use
simultaneously.

working_directory Syntax: Directory path
working_directory /usr/local/nginx/;

Default value: The prefix switch defined at compile time.
A working directory used for worker processes, it is only used
to define the location of the core files. The worker process user
account (user directive) must have write permissions on this
folder in order to be able to write core files.

worker_aio_
requests

Syntax: Numeric
worker_aio_requests 10000;

If you are using aio with the epoll connection processing
method, this directive sets the maximum number of outstanding
asynchronous I/O operations for a single worker process.

Chapter 2

[49]

The Events module
The Events module comes with directives that allow you to configure the
network mechanisms. Some of the parameters have an important impact
on the application's performance.

All the directives listed in the following table must be placed in the events block,
which is located at the root of the configuration file:

user nginx nginx;
master_process on;
worker_processes 4;
events {
 worker_connections 1024;
 use epoll;
}
[...]

These directives cannot be placed elsewhere (if you do so, the configuration test
will fail).

Directive name Syntax and description
accept_mutex Accepted values: on or off

accept_mutex on;

Default value: on
Enables or disables the use of an accept mutex (mutual exclusion) to
open the listening sockets.

accept_mutex_
delay

Syntax: Numeric (time)
accept_mutex_delay 500ms;

Default value: 500 milliseconds
Defines the amount of time that a worker process should wait for
before trying to acquire the resource again. This value is not used if
the accept_mutex directive is set to off.

debug_
connection

Syntax: IP address or CIDR block.
debug_connection 172.63.155.21;
debug_connection 172.63.155.0/24;

Default value: None
Writes detailed logs for clients matching this IP address or address
block. The debug information is stored in the file specified with the
error_log directive, enabled with the debug level.
Note: Nginx must be compiled with the --debug switch in order to
enable this feature.

Basic Nginx Configuration

[50]

Directive name Syntax and description
multi_accept Syntax: on or off

multi_accept off;

Default value: off
Defines whether or not Nginx should accept all the incoming
connections at once from the listening queue.

use Accepted values: /dev/poll, epoll, eventport, kqueue,
rtsig, or select

use kqueue;

Default value: Defined at compile time
Selects the event model among the available ones (the ones that
you enabled at compile time). Nginx automatically selects the most
appropriate one, so you should not have to modify this value.
The supported models are:

• select: The default and standard module, it is used if the OS
does not support a more efficient one (it's the only available
method under Windows). This method is not recommended
for servers that expect to be under high load.

• poll: It is automatically preferred over select, but is not
available on all systems.

• kqueue: An efficient method for the FreeBSD 4.1+, OpenBSD
2.9+, NetBSD 2.0, and MacOS X operating systems.

• epoll: An efficient method for Linux 2.6+ based operating
systems.

• rtsig: Real-time signals, available as of Linux 2.2.19, but
unsuited for high-traffic profiles, as the default system settings
allow only 1,024 queued signals.

• /dev/poll: An efficient method for the Solaris 7 11/99+,
HP/UX 11.22+, IRIX 6.5.15+, and Tru64 UNIX 5.1A+ operating
systems.

• eventport: An efficient method for Solaris 10, though a
security patch is required.

worker_
connections

Syntax: Numeric
worker_connections 1024;

Default value: None
Defines the number of connections that a worker process may treat
simultaneously.

Chapter 2

[51]

The Configuration module
The Nginx Configuration module is a simple module enabling file inclusions with
the include directive, as previously described in the Organization and inclusions
section. The directive can be inserted anywhere in the configuration file and
accepts a single parameter—a file path.

include /file/path.conf;
include sites/*.conf;

Note that if you do not specify an absolute path, the file path is relative
to the configuration directory. By default, include sites/example.
conf will include the following file: /usr/local/nginx/conf/
sites/example.conf

Necessary adjustments
Several core directives deserve to be adjusted carefully upon preparing the initial
setup of Nginx on your server. We will review several of these directives and the
possible values that you may set:

• user root root;

This directive specifies that the worker processes is started as root.
This is dangerous from the security point of view, as it grants Nginx
full permissions over your file system. You need to create a new user
account on your system and make use of it there.
Recommended value (granted that a www-data user account and group exist
on the system): user www-data www-data;

• worker_processes 1;

With this setting, only one worker process is started, which implies that all
the requests will be processed by a unique execution flow. This also implies
that the execution is delegated to only one core of your CPU. It is highly
recommended to increase this value; you should have at least one process
per CPU core. Alternatively, just set this to auto to leave it up to Nginx to
determine the optimal value. Recommended value: worker_processes auto;

Basic Nginx Configuration

[52]

• worker_priority 0;

By default, the worker processes are started with a regular priority. If
your system performs other tasks simultaneously, you might want to
grant a higher priority to the Nginx worker processes. In this case, you
should decrease the value—the smaller the value, the higher the priority.
Values range from -20 (highest priority) to 19 (lowest priority). There is
no recommended value here, as it completely depends on your situation.
However, you should not set it under -5, as it is the default priority for
kernel processes.

• log_not_found on;

This directive specifies whether Nginx should log 404 errors or not. While
these errors may, of course, provide useful information about the missing
resources, a lot of them may be generated by web browsers trying to reach
the favicon (the conventional /favicon.ico of a website), or robots trying
to access the indexing instructions (robots.txt). Set this to off if you want
to ensure that your log files don't get cluttered by Error 404 entries, but keep
in mind that this could deprive you from potentially important information
about other pages that visitors failed to reach. Note that this directive is part
of the HTTP core module. Refer to the next chapter for more information.

• worker_connections 1024;

This setting, combined with the number of worker processes, allows
you to define the total number of connections accepted by the server
simultaneously. If you enable four worker processes, each accepting 1,024
connections, your server will treat a total of 4,096 simultaneous connections.
You need to adjust this setting to match your hardware: the more RAM
and CPU power your server relies on, the more connections you can accept
concurrently. If your server is a huge monster meant to host high traffic sites,
you will want to increase this value.

Testing your server
At this point, you have configured several basic directives that affect the core
functioning of Nginx. We will perform a simple test to ensure that all is working
as expected, and that you are ready to further configure and deploy your websites.

Chapter 2

[53]

Creating a test server
In order to perform simple tests, such as connecting to the server with a web
browser, we need to set up a website for Nginx to serve. A test page comes with the
default package in the html folder (/usr/local/nginx/html/index.html) and the
original nginx.conf is configured to serve this page. The following is the section
that we are interested in for now:

http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 keepalive_timeout 65;
 server {
 listen 80;
 server_name localhost;
 location / {
 root html;
 index index.html index.htm;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
}

As you can perhaps already tell, this segment configures Nginx to serve a website:

• By opening a listening socket on port 80
• Accessible at the address: http://localhost/
• With the index page, index.html

Basic Nginx Configuration

[54]

For more details about these directives, please refer to Chapter 3, HTTP Configuration,
and go to the HTTP module configuration section. Anyhow, fire up your favorite web
browser and visit http://localhost/:

You should be greeted with a welcome message; if you aren't, then check the
configuration again, and make sure you reload Nginx in order to apply the changes.

Performance tests
Having configured the basic functioning and the architecture of your Nginx setup, you
may want to proceed with running some tests. The methodology here is experimental—
run the tests, edit the configuration, reload the server, run the tests again, edit the
configuration again, and so on. Ideally, you should avoid running the testing tool on the
same computer that is used to run Nginx, as it may give biased results.

One could question the pertinence of running performance tests at this
stage. On one hand, virtual hosts and modules are not fully configured
yet, and your website might use FastCGI applications (PHP, Python,
and so on). On the other hand, we are testing the raw performance of the
server without additional components (for example, to make sure that it
fully makes use of all the CPU cores). Besides, it's always better to come
up with a polished configuration before the server is put into production.

Chapter 2

[55]

We have retained three tools to evaluate the server performance here. All three
applications were specifically designed for load tests on web servers and have
different approaches due to their origin:

• httperf: A relatively well-known open source utility developed by HP for
Linux operating systems only

• Autobench: Perl wrapper for httperf, for improving the testing
mechanisms and generating detailed reports

• OpenWebLoad: Smaller scale open source load testing application that
supports both the Windows and Linux platforms

The principle behind each of these tools is to generate a massive amount of HTTP
requests in order to clutter the server and study the results.

Httperf
Httperf is a simple command-line tool that can be downloaded from its official
website at http://www.hpl.hp.com/research/linux/httperf/ (it might also be
available in the default repositories of your operating system). The source comes as a
tar.gz archive and needs to be compiled using the standard methods: ./configure,
make, and make install.

Once installed, you may execute the following command:

[alex@example ~]$ httperf --server 192.168.1.10 --port 80 --uri /index.
html --rate 300 --num-conn 30000 --num-call 1 --timeout 5

Replace the values in the preceding command with your own:

• --server: The website hostname that you wish to test
• --uri: The path of the file that will be downloaded
• --rate: The number of requests that should be sent every second
• --num-conn: The total number of connections
• --num-call: The number of requests that should be sent per connection
• --timeout: The number of seconds elapsed before a request is considered

as lost

http://www.hpl.hp.com/research/linux/httperf/

Basic Nginx Configuration

[56]

In this example, httperf will download http://192.168.1.10/index.html
repeatedly, 300 times per second, resulting in a total of 30000 requests.

The results indicate the response times and the number of successful requests. If the
success ratio is 100 percent, or the response time near 0 ms, increase the request rate,
and run the test again until the server shows signs of weakness. Once the results
begin to look a little less perfect, tweak the appropriate configuration directives, and
run the test again.

Autobench
Autobench is a Perl script that makes use of httperf more efficiently—it runs
continuous tests the and automatically increases request rates until your server
gets saturated. One of the interesting features of Autobench is that it generates a
.tsv report that you can open with various applications to generate graphs. You
may download the source code from the author's personal website: http://www.
xenoclast.org/autobench/. Once again, extract the files from the archive, run
make, then make install.

Although it supports testing of multiple hosts at once, we will only be using the
single host test for more simplicity. The command that we will execute resembles the
httperf one:

[alex@example ~]$ autobench --single_host --host1 192.168.1.10 --uri1
/index.html --quiet --low_rate 20 --high_rate 200 --rate_step 20
--num_call 10 --num_conn 5000 --timeout 5 --file results.tsv

http://www.xenoclast.org/autobench/
http://www.xenoclast.org/autobench/

Chapter 2

[57]

The switches can be configured as follows:

• --host1: The website host name that you wish to test
• --uri1: The path of the file that will be downloaded
• --quiet: Does not display the httperf information on the screen
• --low_rate: Connections per second at the beginning of the test
• --high_rate: Connections per second at the end of the test
• --rate_step: The number of connections by which to increase the rate after

each test
• --num_call: The number of requests that should be sent per connection
• --num_conn: Total number of connections
• --timeout: The number of seconds elapsed before a request is considered

as lost
• --file: Export results as specified (.tsv file)

Once the test terminates, you end up with a .tsv file that you can import in
applications such as Microsoft Excel. The following is a graph generated from results
on a test server (note that the report file contains up to 10 series of statistics):

Basic Nginx Configuration

[58]

As you can tell from the graph, this test server supports up to 600 requests per
second without a loss. Past this limit, some connections get dropped as Nginx cannot
handle the load. It stills gets up to over 1500 successful requests per second at step 9.

OpenWebLoad
OpenWebLoad is a free open source application. It is available for both the Linux
and Windows platforms and was developed in the first few years of the 21st century,
back in the days of Web 1.0. A different approach is offered here. Instead of throwing
loads of requests at the server and seeing how many are handled correctly, it will
simply send as many requests as possible using a variable number of connections
and report to you every second.

You may download OpenWebLoad from its official website at http://openwebload.
sourceforge.net. Extract the source from the .tar.gz archive, run ./configure,
make, and make install.

Its usage is simpler than the previous two utilities:

[alex@example ~]$ openload example.com/index.html 10

The first argument is the URL of the website that you want to test. The second one is
the number of connections that should be opened.

A new result line is produced every second. Requests are sent continuously until you
press the Enter key; following that, a result summary is displayed. Here is how to
decipher the output:

• Tps (transactions per second): A transaction corresponds to a completed
request (back and forth)

• MaTps: Average TPS over the last 20 seconds

http://openwebload.sourceforge.net
http://openwebload.sourceforge.net

Chapter 2

[59]

• Resp Time: Average response time for the elapsed second
• Err (error rate): Errors occur when the server returns a response that is not

the expected HTTP 200 OK
• Count: Total transaction count

You can fiddle with the number of simultaneous connections, and see how your server
performs in order to establish a balanced configuration for your setup. Three tests were
run here with different numbers of connections. The results speak for themselves:

Test 1 Test 2 Test 3
Simultaneous connections 1 20 1000
Transactions per second (Tps) 67.54 205.87 185.07
Average response time 14 ms 91 ms 596 ms

Too few connections result in a low Tps rate; however, the response times are
optimal. Too many connections produce a relatively high Tps, but the response
times are critically high. You thus need to find a happy medium.

Upgrading Nginx gracefully
There are many situations where you need to replace the Nginx binary, for example,
when you compile a new version and wish to put it in production, or simply after
having enabled new modules and rebuilt the application. What most administrators
would do in this situation is stop the server, copy the new binary over the old
one, and start Nginx again. While this is not considered to be a problem for most
websites, there may be some cases where the uptime is critical, and connection losses
should be avoided at all costs. Fortunately, Nginx embeds a mechanism allowing
you to switch binaries with uninterrupted uptime—zero percent request loss is
guaranteed if you follow these steps carefully:

1. Replace the old Nginx binary (by default, /usr/local/nginx/sbin/nginx)
with the new one.

2. Find the pid of the Nginx master process, for example, with ps x | grep
nginx | grep master, or by looking at the value found in the pid file.

3. Send a USR2 (12) signal to the master process—kill –USR2 1234, replacing
1234 with the pid found in step 2. This will initiate the upgrade by renaming
the old .pid file and running the new binary.

Basic Nginx Configuration

[60]

4. Send a WINCH (28) signal to the old master process—kill –WINCH 1234,
replacing 1234 with the pid found in step 2. This will engage a graceful
shutdown of the old worker processes.

5. Make sure that all the old worker processes are terminated, and then send
a QUIT signal to the old master process—kill –QUIT 1234, replacing 1234
with the pid found in step 2.

Congratulations! You have successfully upgraded Nginx and have not lost a
single connection.

Summary
This chapter provided an overview of the configuration architecture by studying
the syntax and the core module directives that have an impact on the overall server
performance. We then went through a series of adjustments in order to fit your profile,
followed by performance tests that have probably led you to fine-tune some more.

This is just the beginning though. Practically everything that we will be doing
from now on is to prepare configuration sections. The next chapter will detail
more advanced directives by further exploring the module system and the exciting
possibilities that are offered to you.

[61]

HTTP Configuration
At this stage, we have a working Nginx setup. Not only is it installed on the system
and launched automatically on startup, but it's also organized and optimized with
the help of basic directives. It's now time to go one step further into the configuration
and discover the HTTP Core module. This module constitutes the essential
component of the HTTP configuration—it allows you to set up websites to be served,
also referred to as virtual hosts.

This chapter will cover the following topics:

• An introduction to the HTTP Core module
• The http / server / location structure
• HTTP Core module directives, organized thematically
• HTTP Core module variables
• The in-depths of the location block

The HTTP Core module
The HTTP Core module is the component that contains all the fundamental blocks,
directives, and variables of the HTTP server. It's enabled by default when you
configure the build (as described in Chapter 1, Downloading and Installing Nginx), but
as it turns out, it's actually optional—you can decide not to include it in your custom
build. Doing so will completely disable all the HTTP functionalities, and all the other
HTTP modules will not be compiled. However, if you've purchased this book it's
highly likely that you are interested in the web-serving capacities of Nginx, so you
will have this enabled.

HTTP Configuration

[62]

This module is the largest of all the standard Nginx modules—it provides an
impressive amount of directives and variables. In order to understand all these
new elements and how they come into play, we first need to understand the logical
organization introduced by the three main blocks—http, server, and location.

Structure blocks
In the previous chapter, we discovered the Core module by studying the default
Nginx configuration file, which includes a sequence of directives and values with no
apparent organization. Then came the Events module, which introduced the first
block (events). This block would be the only placeholder for all of the directives
brought in by the Events module.

As it turns out, the HTTP module introduces three new logical blocks:

• http: This block is inserted at the root of the configuration file. It allows you
to start defining the directives and blocks from all the modules related to the
HTTP facet of Nginx. Although there is no real purpose in doing so, the block
can be inserted multiple times, in which case the directive values inserted in
the last block will override the previous ones.

• server: This block allows you to declare a website. In other words, a specific
website (identified by one or more hostnames, for example, www.mywebsite.
com) becomes acknowledged by Nginx and receives its own configuration.
This block can only be used within the http block.

• location: The location block lets you define a group of settings to be applied
to a particular location on a website. This block can be used within a server
block or nested within another location block.

The following diagram summarizes the final structure by providing a couple of basic
examples corresponding to actual situations:

Chapter 3

[63]

The HTTP section, defined by the http block, encompasses the entire web-related
configuration. It may contain one or more server blocks, defining the domains
and sub-domains that you are hosting. For each of these websites, you have the
possibility of defining location blocks that let you apply additional settings to a
particular request URI or request URIs matching a pattern.

Remember that the principle of setting inheritance applies here. If you define a setting
at the http block level (for example, gzip on to enable gzip compression), the setting
preserves its value in the potentially incorporated server and location blocks:

http {
 # Enable gzip compression at the http block level
 gzip on;

 server {
 server_name localhost;
 listen 80;

 # At this stage, gzip still set to on

 location /downloads/ {
 gzip off;
 # This directive only applies to documents found
 # in /downloads/
 }
 }
}

Module directives
At each of the three levels, directives can be inserted in order to affect the behavior
of the web server. The following is the list of all directives that are introduced by
the main HTTP module, grouped thematically. For each directive, an indication
regarding the context is given. Some cannot be used at certain levels. For instance,
it would make no sense to insert a server_name directive at the http block level,
since server_name is a directive directly affecting a virtual host—it should only be
inserted in the server block. For this purpose, the table indicates the possible levels
where each directive is allowed—the http block, the server block, the location
block, and additionally the if block, later introduced by the Rewrite module.

Note that this documentation is valid as of the stable version 1.8.0.
Future updates may alter the syntax of some directives or provide
new features that are not discussed here.

HTTP Configuration

[64]

Socket and host configuration
This set of directives allows you to configure your virtual hosts. In practice, this
materializes by creating server blocks that you identify either by a hostname or by
an IP address and port combination. In addition, some directives let you fine-tune
your network settings by configuring the TCP socket options.

listen
Context: server

Specifies the IP address and/or the port to be used by the listening socket that serves
the website. Sites are generally served on port 80 (the default value) via HTTP, or
443 via HTTPS.

Syntax: listen [address][:port] [additional options];

Additional options:

• default_server: Specifies this server block to be used as the default
website for any request received at the specified IP address and port

• ssl: Specifies that the website should be served over SSL
• spdy: Enables support for the SPDY protocol if the SPDY module is present
• proxy_protocol: Enables the PROXY protocol for all the connections

accepted on this port
• Other options are related to the bind and listen system calls: backlog=num,

rcvbuf=size, sndbuf=size, accept_filter=filter, deferred,
setfib=number, and bind

Examples:

listen 192.168.1.1:80;
listen 127.0.0.1;
listen 80 default;
listen [:::a8c9:1234]:80; # IPv6 addresses must be put between square
brackets
listen 443 ssl;

This directive also allows Unix sockets:

listen unix:/tmp/nginx.sock;

Chapter 3

[65]

server_name
Context: server

This assigns one or more hostnames to the server block. When Nginx receives
an HTTP request, it matches the Host header of the request against all the server
blocks. The first server block to match this hostname is selected.

Plan B: if no server block matches the desired host, Nginx selects the first server
block that matches the parameters of the listen directive (such as listen *:80
would be a catch-all for all the requests received on port 80), giving priority to the
first block that has the default option enabled on the listen directive.

Note that this directive accepts wildcards as well as regular expressions (in which
case, the hostname should start with the ~ character).

Syntax: server_name hostname1 [hostname2…];

Examples:

server_name www.website.com;
server_name www.website.com website.com;
server_name *.website.com;
server_name .website.com; # combines both *.website.com and website.
com
server_name *.website.*;
server_name ~^(www)\.example\.com$; # $1 = www

Note that you may use an empty string as the directive value in order to catch all
the requests that do not come with a Host header, but only after at least one regular
name (or "_" for a dummy hostname):

server_name website.com "";
server_name _ "";

server_name_in_redirect
Context: http, server, location

This directive applies to the case of internal redirects (for more information about
internal redirects, check the Rewrite Module section given further on in this chapter).
If set to on, Nginx uses the first hostname specified in the server_name directive. If
set to off, Nginx uses the value of the Host header from the HTTP request.

Syntax: on or off

Default value: off

HTTP Configuration

[66]

server_names_hash_max_size
Context: http

Nginx uses hash tables for various data collections in order to speed up the
processing of requests. This directive defines the maximum size of the server
names hash table. The default value fits with most configurations. If this needs to
be changed, Nginx automatically tells you so on startup, or when you reload its
configuration.

Syntax: Numeric value

Default value: 512

server_names_hash_bucket_size
Context: http

Sets the bucket size for server names hash tables. You should only change this value
if Nginx tells you to.

Syntax: Numeric value

Default value: 32 (or 64, or 128, depending on your processor cache specifications)

port_in_redirect
Context: http, server, location

In case of a redirect, this directive defines whether or not Nginx should append the
port number to the redirection URL.

Syntax: on or off

Default value: on

tcp_nodelay
Context: http, server, location

Enables or disables the TCP_NODELAY socket option for keep-alive connections only.
Quoting the Linux documentation on sockets programming:

"TCP_NODELAY is for a specific purpose; to disable the Nagle buffering
algorithm. It should only be set for applications that send frequent small bursts of
information without getting an immediate response, where timely delivery of data
is required (the canonical example is mouse movements)."

Chapter 3

[67]

Syntax: on or off

Default value: on

tcp_nopush
Context: http, server, location

Enables or disables the TCP_NOPUSH (FreeBSD) or TCP_CORK (Linux) socket option.
Note that this option applies only if the sendfile directive is enabled. If tcp_nopush
is set to on, Nginx attempts to transmit all the HTTP response headers in a single
TCP packet.

Syntax: on or off

Default value: off

sendfile
Context: http, server, location

If this directive is enabled, Nginx uses the sendfile kernel call to handle file
transmission. If disabled, Nginx handles the file transfer by itself. Depending on the
physical location of the file being transmitted (such as NFS), this option may affect
the server performance.

Syntax: on or off

Default value: off

sendfile_max_chunk
Context: http, server

This directive defines the maximum size of data to be used for each call to sendfile
(read the previous section).

Syntax: Numeric value (size)

Default value: 0

HTTP Configuration

[68]

send_lowat
Context: http, server

This is an option that allows you to make use of the SO_SNDLOWAT flag for TCP
sockets under FreeBSD only. This value defines the minimum number of bytes
in the buffer for output operations.

Syntax: Numeric value (size)

Default value: 0

reset_timedout_connection
Context: http, server, location

When a client connection times out, its associated information may remain in
memory depending on its state. Enabling this directive will erase all memory
associated with the connection after it times out.

Syntax: on or off

Default value: off

Paths and documents
This section describes the directives that configure the documents that should
be served for each website, such as the document root, the site index, error pages,
and so on.

root
Context: http, server, location, if. Variables are accepted.

This directive defines the document root containing the files that you wish to serve to
your visitors.

Syntax: Directory path

Default value: html

root /home/website.com/public_html;

Chapter 3

[69]

alias
Context: location. Variables are accepted.

alias is a directive that you place in a location block only. It assigns a different
path for Nginx to retrieve documents for a specific request. As an example, consider
the following configuration:

http {
 server {
 server_name localhost;
 root /var/www/website.com/html;
 location /admin/ {
 alias /var/www/locked/;
 }
 }
}

When a request for http://localhost/ is received, files are served from the
/var/www/website.com/html/ folder. However, if Nginx receives a request for
http://localhost/admin/, the path used to retrieve the files is var/www/locked/.
Moreover, the value of the document root directive (root) is not altered. This
procedure is invisible in the eyes of dynamic scripts.

Syntax: Directory (do not forget the trailing /) or file path

error_page
Context: http, server, location, if. Variables are accepted.

This allows you to affect URIs to the HTTP response code and optionally, to
substitute the code with another.

Syntax: error_page code1 [code2…] [=replacement code] [=@block | URI]

Examples :

error_page 404 /not_found.html;
error_page 500 501 502 503 504 /server_error.html;
error_page 403 http://website.com/;
error_page 404 @notfound; # jump to a named location block
error_page 404 =200 /index.html; # in case of 404 error, redirect to
index.html with a 200 OK response code

HTTP Configuration

[70]

if_modified_since
Context: http, server, location

This defines the way Nginx handles the If-Modified-Since HTTP header. This
header is mostly used by search engine spiders (such as Google web crawling
bots). The robot indicates the date and time of the last pass. If the requested file has
not been modified since that time, the server simply returns a 304 Not Modified
response code with no body.

This directive accepts the following three values:

• off: Ignores the If-Modified-Since header.
• exact: Returns 304 Not Modified if the date and time specified in the

HTTP header are an exact match with the actual requested file modification
date. If the file modification date is anterior or ulterior, the file is served
normally (200 OK response).

• before: Returns 304 Not Modified if the date and time specified in the
HTTP header is anterior or equal to the requested file modification date.

Syntax: if_modified_since off | exact | before

Default value: exact

index
Context: http, server, location. Variables are accepted.

This defines the default page that Nginx will serve if no filename is specified in the
request (in other words, the index page). You may specify multiple filenames, and
the first file to be found will be served. If none of the specified files are found, and if
the autoindex directive is enabled (check the HTTP Autoindex module), Nginx will
attempt to generate an automatic index of the files. Otherwise, it will return a 403
Forbidden error page. Optionally, you may insert an absolute filename (such as
/page.html, based from the document root directory) but only as the last argument
of the directive.

Syntax: index file1 [file2…] [absolute_file];

Default value: index.html

index index.php index.html index.htm;
index index.php index2.php /catchall.php;

Chapter 3

[71]

recursive_error_pages
Context: http, server, location

Sometimes, an error page itself served by the error_page directive may trigger an
error; in this case, the error_page directive is used again (recursively). This directive
enables or disables recursive error pages.

Syntax: on or off

Default value: off

try_files
Context: server, location. Variables are accepted.

This attempts to serve the specified files (arguments 1 to N-1). If none of these files
exist, it jumps to the respective named location block (last argument) or serves the
specified URI.

Syntax: Multiple file paths followed by a named location block or a URI

Example:

location / {
 try_files $uri $uri.html $uri.php $uri.xml @proxy;
}
the following is a "named location block"
location @proxy {
 proxy_pass 127.0.0.1:8080;
}

In this example, Nginx tries to serve files normally. If the requested URI does not
correspond to any existing file, Nginx appends .html to the URI and tries to serve
the file again. If it fails again, it tries with .php, and then with .xml. Eventually, if all
of these possibilities fail, another location block (@proxy) handles the request.

You may also specify $uri/ in the list of values in order to test
for the existence of a directory with that name.

Client requests
This section documents the way that Nginx handles client requests. Among other
things, you are allowed to configure the keep-alive mechanism behavior and,
possibly, logging the client requests into files.

HTTP Configuration

[72]

keepalive_requests
Context: http, server, location

This specifies the maximum number of requests served over a single keep-alive
connection.

Syntax: Numeric value

Default value: 100

keepalive_timeout
Context: http, server, location

This directive defines the number of seconds the server will wait before closing a
keep-alive connection. The second (optional) parameter is transmitted as the value
of the Keep-Alive: timeout= HTTP response header. The intended effect is to let
the client browser close the connection itself after this period has elapsed. Note that
some browsers ignore this setting. Internet Explorer, for instance, automatically
closes the connection after around 60 seconds.

Syntax: keepalive_timeout time1 [time2];

Default value: 75

keepalive_timeout 75;
keepalive_timeout 75 60;

keepalive_disable
Context: http, server, location

This option allows you to disable the keepalive functionality for the browser
families of your choice.

Syntax: keepalive_disable browser1 browser2;

Default value: msie6

send_timeout
Context: http, server, location

This specifies the amount of time after which Nginx closes an inactive connection. A
connection becomes inactive the moment a client stops transmitting data.

Chapter 3

[73]

Syntax: Time value (in seconds)

Default value: 60

client_body_in_file_only
Context: http, server, location

If this directive is enabled, the body of the incoming HTTP requests will be stored
into actual files on the disk. The client body corresponds to the client HTTP request
raw data, minus the headers (in other words, the content transmitted in POST
requests). Files are stored as plain text documents.

This directive accepts three values:

• off: Does not store the request body in a file
• clean: Stores the request body in a file, and removes the file after a request

is processed
• on: Stores the request body in a file, but does not remove the file after the

request is processed (not recommended unless for debugging purposes)

Syntax: client_body_in_file_only on | clean | off

Default value: off

client_body_in_single_buffer
Context: http, server, location

This directive defines whether or not Nginx should store the request body in a single
buffer in memory.

Syntax: on or off

Default value: off

client_body_buffer_size
Context: http, server, location

The client_body_buffer_size directive specifies the size of the buffer holding
the body of client requests. If this size is exceeded, the body (or at least a part of it)
will be written to the disk. Note that if the client_body_in_file_only directive is
enabled, request bodies are always stored to a file on the disk, regardless of their size
(whether they fit in the buffer or not).

HTTP Configuration

[74]

Syntax: Size value

Default value: 8k or 16k (2 memory pages) depending on your computer architecture

client_body_temp_path
Context: http, server, location

This option allows you to define the path of the directory that will store the client
request body files. An additional option lets you separate those files into a folder
hierarchy of up to three levels.

Syntax: client_body_temp_path path [level1] [level2] [level3]

Default value: client_body_temp

client_body_temp_path /tmp/nginx_rbf;
client_body_temp_path temp 2; # Nginx will create 2-digit folders to
hold request body files
client_body_temp_path temp 1 2 4; # Nginx will create 3 levels of
folders (first level: 1 digit, second level: 2 digits, third level: 4
digits)

client_body_timeout
Context: http, server, location

This directive defines the inactivity timeout while reading a client request body. A
connection becomes inactive the moment the client stops transmitting data. If the
delay is reached, Nginx returns a 408 Request timeout HTTP error.

Syntax: Time value (in seconds)

Default value: 60

client_header_buffer_size
Context: http, server, location

This directive allows you to define the size of the buffer that Nginx allocates to
request headers. Usually, 1k is enough. However, in some cases, the headers contain
large chunks of cookie data or the request URI is lengthy. If that is the case, then
Nginx allocates one or more larger buffers (the size of larger buffers is defined by the
large_client_header_buffers directive).

Chapter 3

[75]

Syntax: Size value

Default value: 1k

client_header_timeout
Context: http, server, location

This defines the inactivity timeout while reading a client request header. A
connection becomes inactive the moment the client stops transmitting data.
If the delay is reached, Nginx returns a 408 Request timeout HTTP error.

Syntax: Time value (in seconds)

Default value: 60

client_max_body_size
Context: http, server, location

This is the maximum size of a client request body. If this size is exceeded, Nginx
returns a 413 Request entity too large HTTP error. This setting is particularly
important if you are going to allow users to upload files to your server over HTTP.

Syntax: Size value

Default value: 1m

large_client_header_buffers
Context: http, server, location

This defines the amount and size of the larger buffers to be used for storing client
requests in case the default buffer (client_header_buffer_size) is insufficient.
Each line of the header must fit in the size of a single buffer. If the request URI line
is greater than the size of a single buffer, Nginx returns the 414 Request URI too
large error. If another header line exceeds the size of a single buffer, Nginx returns a
400 Bad request error.

Syntax: large_client_header_buffers amount size

Default value: 4*8 kilobytes

HTTP Configuration

[76]

lingering_time
Context: http, server, location

This directive applies to the client requests with a request body. As soon as the
amount of uploaded data exceeds max_client_body_size, Nginx immediately
sends a 413 Request entity too large HTTP error response. However, most
browsers continue uploading data regardless of that notification. This directive
defines the amount of time Nginx should wait for after sending this error response
before it closes the connection.

Syntax: Numeric value (time)

Default value: 30 seconds

lingering_timeout
Context: http, server, location

This directive defines the amount of time that Nginx should wait between two read
operations before it closes the client connection.

Syntax: Numeric value (time)

Default value: 5 seconds

lingering_close
Context: http, server, location

The lingering_close directive controls the way Nginx closes client connections.
Set this to off to immediately close connections after all the request data has been
received. The default value (on) allows Nginx to wait and process additional data
if necessary. If set to always, Nginx will always wait to close the connection. The
amount of waiting time is defined by the lingering_timeout directive.

Syntax: on, off, or always

Default value: on

ignore_invalid_headers
Context: http, server

If this directive is disabled, Nginx returns a 400 Bad Request HTTP error in case
the request headers are malformed.

Chapter 3

[77]

Syntax: on or off

Default value: on

chunked_transfer_encoding
Context: http, server, location

This directive enables or disables chunked transfer encoding for HTTP 1.1 requests.

Syntax: on or off

Default value: on

max_ranges
Context: http, server, location

This directive defines the number of byte ranges that Nginx will accept to serve
when a client requests partial content from a file. If you do not specify a value,
there is no limit. If you set this to 0, the byte range functionality is disabled.

Syntax: Size value

MIME types
Nginx offers two particular directives that help you configure the MIME types:
types and default_type, which defines the default MIME types for documents.
This will affect the Content-Type HTTP header sent within responses. Read on.

types
Context: http, server, location

This directive allows you to establish correlations between the MIME types and file
extensions. It's actually a block accepting a particular syntax:

types {
 mimetype1 extension1;
 mimetype2 extension2 [extension3…];
 […]
}

HTTP Configuration

[78]

When Nginx serves a file, it checks the file extension in order to determine the MIME
type. The MIME type is then sent as the value of the Content-Type HTTP header
in the response. This header may affect the way in which browsers handle files. For
example, if the MIME type of the file you are requesting is application/pdf, your
browser may, for instance, attempt to render the file using a plugin associated to that
MIME type instead of merely downloading it.

Nginx includes a basic set of MIME types as a standalone file (mime.types) to be
included with the include directive:

include mime.types;

This file already covers the most important file extensions, so you will probably not
need to edit it. If the extension of the served file is not found within the listed types,
the default type is used, as defined by the default_type directive (read below).

Note that you may override the list of types by re-declaring the types block. A
useful example would be to force all the files in a folder to be downloaded instead
of being displayed:

http {
 include mime.types;
 […]
 location /downloads/ {
 # removes all MIME types
 types { }
 default_type application/octet-stream;
 }
 […]
}

Note that some browsers ignore the MIME types and may still display files if their
filename ends with a known extension such as .html or .txt.

To control the way files are handled by your visitors' browsers
in a more certain and definitive manner, you should make use of
the Content-Disposition HTTP header via the add_header
directive—detailed in the HTTP Headers module (Chapter 4,
Module Configuration).

Chapter 3

[79]

The default values, if the mime.types file is not included, are:

types {
 text/html html;
 image/gif gif;
 image/jpeg jpg;
}

default_type
Context: http, server, location

This defines the default MIME type. When Nginx serves a file, the file extension is
matched against the known types declared within the types block in order to return
the proper MIME type as the value of the Content-Type HTTP response header.
If the extension doesn't match any of the known MIME types, the value of the
default_type directive is used.

Syntax: MIME type

Default value: text/plain

types_hash_max_size
Context: http, server, location

This defines the maximum size of an entry in the MIME types hash tables.

Syntax: Numeric value.

Default value: 4k or 8k (1 line of CPU cache)

types_hash_bucket_size
Context: http, server, location

This directive sets the bucket size for the MIME types hash tables. You should only
change this value if Nginx tells you to.

Syntax: Numeric value.

Default value: 64

HTTP Configuration

[80]

Limits and restrictions
This set of directives allow you to add restrictions to be applied when a client
attempts to access a particular location or document on your server. Note that
you will find additional directives for restricting access in the next chapter.

limit_except
Context: location

This directive allows you to prevent the use of all the HTTP methods except the ones
that you explicitly allow. Within a location block, you may want to restrict the
use of some HTTP methods, for instance by forbidding clients from sending POST
requests. You need to define two elements—first, the methods that are not forbidden
(the allowed methods; all others will be forbidden), and second, the audience that is
affected by the restriction:

location /admin/ {
 limit_except GET {
 allow 192.168.1.0/24;
 deny all;
 }
}

The preceding example applies a restriction to the /admin/ location—all visitors
are only allowed to use the GET method. Visitors that have a local IP address, as
specified with the allow directive (detailed in the HTTP Access module), are not
affected by this restriction. If a visitor uses a forbidden method, Nginx will return a
403 Forbidden HTTP error. Note that the GET method implies the HEAD method
(if you allow GET, both GET and HEAD are allowed).

The syntax for this is as follows:

limit_except METHOD1 [METHOD2…] {
 allow | deny | auth_basic | auth_basic_user_file | proxy_pass |
perl;
}

The directives that you are allowed to insert within the block are documented in
their respective module section in Chapter 4, Module Configuration.

Chapter 3

[81]

limit_rate
Context: http, server, location, if

This directive allows you to limit the transfer rate of individual client connections.
The rate is expressed in bytes per second:

limit_rate 500k;

This will limit the connection transfer rates to 500 kilobytes per second. If a client
opens two connections, the client will be allowed 2 * 500 kilobytes.

Syntax: Size value

Default value: No limit

limit_rate_after
Context: http, server, location, if

This defines the amount of data transferred before the limit_rate directive
takes effect.

limit_rate 10m;

Nginx sends the first 10 megabytes at the maximum speed. Past this size, the transfer
rate is limited by the value specified with the limit_rate directive (see preceding
section). Similarly to the limit_rate directive, this setting applies only to a single
connection.

Syntax: Size value

Default: None

satisfy
Context: location

The satisfy directive defines whether clients require all access conditions to be
valid (satisfy all) or at least one (satisfy any).

location /admin/ {
 allow 192.168.1.0/24;
 deny all;
 auth_basic "Authentication required";
 auth_basic_user_file conf/htpasswd;
}

HTTP Configuration

[82]

In the preceding example, there are two conditions for clients to be able to access
the resource:

• Through the allow and deny directives (HTTP Access module), we only allow
clients that have a local IP address; all other clients are denied access.

• Through the auth_basic and auth_basic_user_file directives (HTTP
Auth Basic module), we only allow clients that provide a valid username
and password.

With satisfy all, the client must satisfy both the conditions in order to gain access
to the resource. With satisfy any, if the client satisfies either condition, they are
granted access.

Syntax: satisfy any | all

Default value: all

internal
Context: location

This directive specifies that the location block is internal. In other words,
the specified resource cannot be accessed by external requests.

server {
 […]
 server_name .website.com;
 location /admin/ {
 internal;
 }
}

With the preceding configuration, clients will not be able to browse http://website.
com/admin/. Such requests will be met with 404 Not Found errors. The only way to
access the resource is via internal redirects (check the Rewrite module section for more
information on internal redirects).

File processing and caching
It's important for your websites to be built upon solid foundations. File access and
caching is a critical aspect of web serving. In this instance, Nginx lets you perform
precise tweaking with the use of the following directives.

Chapter 3

[83]

disable_symlinks
This directive allows you to control the way Nginx handles symbolic links when they
are to be served. By default (the directive value is off), symbolic links are allowed
and Nginx follows them. You may decide to disable the following symbolic links
under different conditions by specifying one of these values:

• on: If any part of the requested URI is a symbolic link, access to it is denied,
and Nginx returns a 403 HTTP error page.

• if_not_owner: Similar to the preceding value, but access is denied only if the
link and the object it points to have different owners.

• The optional parameter from= allows you to specify a part of the URL that
will not be checked for symbolic links. For example, disable_symlinks on
from=$document_root will tell Nginx to normally follow the symbolic links
in the URI up to the $document_root folder. If a symbolic link is found in the
URI parts after that, access to the requested file will be denied.

directio
Context: http, server, location

If this directive is enabled, files with a size greater than the specified value will be
read with the Direct I/O system mechanism. This allows Nginx to read data from
the storage device and place it directly in memory with no intermediary caching
process involved.

Syntax: Size value, or off

Default value: off

directio_alignment
Context: http, server, location

This directive sets the byte alignment when using directio. Set this value to 4k if
you use XFS under Linux.

Syntax: Size value

Default value: 512

HTTP Configuration

[84]

open_file_cache
Context: http, server, location

This directive allows you to enable the cache, which stores information about open
files. It does not actually store the file contents but only information such as:

• File descriptors (file size, modification time, and so on).
• The existence of files and directories.
• File errors, such as Permission denied, File not found, and so on. Note that

this can be disabled with the open_file_cache_errors directive.

This directive accepts two arguments:

• max=X, where X is the number of entries that the cache can store. If this
number is reached, older entries will be deleted in order to leave room
for newer entries.

• inactive=Y, where Y is the number of seconds that a cache entry should be
stored. By default, Nginx will wait for 60 seconds before clearing a cache
entry. If the cache entry is accessed, the timer is reset. If the cache entry is
accessed more often than the value defined by open_file_cache_min_uses,
the cache entry will not be cleared (until Nginx runs out of space and decides
to clear out the older entries).

Syntax: open_file_cache max=X [inactive=Y] | off

Default value: off

Example:

open_file_cache max=5000 inactive=180;

open_file_cache_errors
Context: http, server, location

This directive enables or disables the caching of file errors with the open_file_cache
directive (read the preceding directive).

Syntax: on or off

Default value: off

Chapter 3

[85]

open_file_cache_min_uses
Context: http, server, location

By default, entries in the open_file_cache are cleared after a period of inactivity
(60 seconds, by default). However, if there is any activity, you can prevent Nginx
from removing the cache entry. This directive defines the number of times an entry
must be accessed in order to be eligible for protection.

open_file_cache_min_uses 3;

If the cache entry is accessed more than three times, it becomes permanently active and
is not removed until Nginx decides to clear out the older entries to clear some space.

Syntax: Numeric value

Default value: 1

open_file_cache_valid
Context: http, server, location

The open file cache mechanism is important, but the cached information quickly
becomes obsolete, especially in the case of a fast-moving filesystem. From that
perspective, information needs to be re-verified after a short period of time. This
directive specifies the number of seconds that Nginx will wait before revalidating a
cache entry.

Syntax: Time value (in seconds)

Default value: 60

read_ahead
Context: http, server, location

The read_ahead directive defines the number of bytes to be pre-read from the files.
Under Linux-based operating systems, setting this directive to a value above 0 will
enable reading ahead, but the actual value that you specify has no effect. Set this to 0
to disable pre-reading.

Syntax: Size value

Default value: 0

HTTP Configuration

[86]

Other directives
The following directives relate to various aspects of the web server—logging, URI
composition, DNS, and so on.

log_not_found
Context: http, server, location

This directive enables or disables the logging of 404 Not Found HTTP errors. If your
logs get filled with 404 errors due to missing favicon.ico or robots.txt files, you
might want to turn this off.

Syntax: on or off

Default value: on

log_subrequest
Context: http, server, location

This directive enables or disables the logging of sub-requests triggered by internal
redirects (see The Rewrite module section) or SSI requests (see the Server Side Includes
module section).

Syntax: on or off

Default value: off

merge_slashes
Context: http, server, location

Enabling this directive will have the effect of merging multiple consecutive slashes in
a URI. It turns out to be particularly useful in situations resembling the following:

server {
 […]
 server_name website.com;
 location /documents/ {
 type { }
 default_type text/plain;
 }
}

Chapter 3

[87]

By default, if the client attempts to access http://website.com//documents/ (note
the // in the middle of the URI), Nginx will return a 404 Not found HTTP error. If
you enable this directive, the two slashes will be merged into one, and the location
pattern will be matched.

Syntax: on or off

Default value: off

msie_padding
Context: http, server, location

This directive functions with the Microsoft Internet Explorer (MSIE) and Google
Chrome browser families. In the case of error pages (with error code 400 or higher),
if the length of the response body is less than 512 bytes, these browsers will display
their own error page, sometimes at the expense of a more informative page provided
by the server. If you enable this option, the body of responses with a status code of
400 or higher will be padded to 512 bytes.

Syntax: on or off

Default value: off

msie_refresh
Context: http, server, location

This is another MSIE-specific directive that takes effect in the case of HTTP
response codes 301 Moved permanently and 302 Moved temporarily. When
enabled, Nginx sends a response body containing a refresh meta tag (<meta http-
equiv="Refresh"…>) to the clients running an MSIE browser in order to redirect the
browser to the new location of the requested resource.

Syntax: on or off

Default value: off

resolver
Context: http, server, location

This directive specifies the name servers that should be employed by Nginx to
resolve hostnames to IP addresses and vice versa. DNS query results are cached
for some time, either by respecting the TTL provided by the DNS server, or by
specifying a time value to the valid argument.

HTTP Configuration

[88]

Syntax: one or more IPv4 or IPv6 addresses, valid=Time value, ipv6=on|off

Default value: None (system default)

resolver 127.0.0.1; # use local DNS
resolver 8.8.8.8 8.8.4.4 valid=1h; # use Google DNS and cache results
for 1 hour

resolver_timeout
Context: http, server, location

Timeout for a hostname resolution query.

Syntax: Time value (in seconds)

Default value: 30

server_tokens
Context: http, server, location

This directive allows you to define whether or not Nginx should inform clients of
the running version number. There are two situations where Nginx indicates its
version number:

• In the server header of HTTP responses (such as nginx/1.8.0). If you set
server_tokens to off, the server header will only indicate Nginx.

• On error pages, Nginx indicates the version number in the footer. If you set
server_tokens to off, the footer of error pages will only indicate Nginx.

If you are running an older version of Nginx and do not plan to update it, it might be
a good idea to hide your version number for security reasons.

Syntax: on or off

Default value: on

Chapter 3

[89]

underscores_in_headers
Context: http, server

This directive allows or disallows underscores in custom HTTP header names. If this
directive is set to on, the following example header is considered valid by Nginx:
test_header: value.

Syntax: on or off

Default value: off

variables_hash_max_size
Context: http

This directive defines the maximum size of the variables hash tables. If your server
configuration uses a total of more than 1024 variables, you will have to increase
this value.

Syntax: Numeric value

Default value: 1024

variables_hash_bucket_size
Context: http

This directive allows you to set the bucket size for the variables hash tables.

Syntax: Numeric value

Default value: 64 (or 32 or 128, depending on your processor cache specifications)

post_action
Context: http, server, location, if

The post_action directive defines a post-completion action, a URI that will be called
by Nginx after the request has been completed.

Syntax: URI or named location block.

Example:

location /payment/ {
 post_action /scripts/done.php;
}

HTTP Configuration

[90]

Module variables
The HTTP Core module introduces a large set of variables that you can use within
the value of directives. Be careful though, as only a handful of directives accept
variables in the definition of their value. If you insert a variable in the value of a
directive that does not accept variables, no error is reported; instead, the variable
name appears as raw text.

There are three different kinds of variables that you will come across. The first set
represents the values transmitted in the headers of the client request. The second set
corresponds to the headers of the response sent to the client. Finally, the third set
comprises variables that are completely generated by Nginx.

Request headers
Nginx lets you access client request headers under the form of variables that you will
be able to employ later on in the configuration:

Variable Description
$http_host Value of the Host HTTP header, a string indicating the hostname

that the client is trying to reach.
$http_user_agent Value of the User-Agent HTTP header, a string indicating the

web browser of the client.
$http_referer Value of the Referer HTTP header, a string indicating the URL of

the previous page from which the client comes.
$http_via Value of the Via HTTP header, which informs us about the

possible proxies used by the client.
$http_x_forwarded_
for

Value of the X-Forwarded-For HTTP header, which shows the
actual IP address of the client if the client is behind a proxy.

$http_cookie Value of the Cookie HTTP header, which contains the cookie
data sent by the client.

$http_... Additional headers sent by the client can be retrieved using
$http_ followed by the header name in lowercase and with
dashes (-) replaced by underscores (_).

Chapter 3

[91]

Response headers
In a similar fashion, you are allowed to access the HTTP headers of the response that
was sent to the client. These variables are not available at all times—they will only
carry a value after the response is sent, for instance, at the time of writing messages
in the logs.

Variable Description
$sent_http_content_
type

Value of the Content-Type HTTP header indicating the
MIME type of the resource being transmitted.

$sent_http_content_
length

Value of the Content-Length HTTP header informing the
client of the response body length.

$sent_http_location Value of the Location HTTP header, which indicates that the
location of the desired resource is different from the one
specified in the original request.

$sent_http_last_
modified

Value of the Last-Modified HTTP header corresponding to
the modification date of the requested resource.

$sent_http_connection Value of the Connection HTTP header defining whether the
connection will be kept alive or closed.

$sent_http_keep_alive Value of the Keep-Alive HTTP header that defines the
amount of time a connection will be kept alive.

$sent_http_transfer_
encoding

Value of the Transfer-Encoding HTTP header giving
information about the response body encoding method
(such as compress, gzip).

$sent_http_cache_
control

Value of the Cache-Control HTTP header, telling us whether
the client browser should cache the resource or not.

$sent_http_... Additional headers sent to the client can be retrieved using
$sent_http_ followed by the header name in lowercase
and with dashes (-) replaced by underscores (_).

Nginx generated
Apart from the HTTP headers, Nginx provides a large number of variables
concerning the request, the way it was and will be handled, as well as the
settings in use with the current configuration.

Variable Description
$arg_XXX Allows you to access the query string (GET parameters), where

XXX is the name of the parameter that you wish to utilize.
$args All the arguments of the query string combined together.

HTTP Configuration

[92]

Variable Description
$binary_remote_
addr

IP address of the client as binary data (4 bytes).

$body_bytes_sent The number of bytes sent in the body of the response (does not
include the response headers).

$bytes_sent The number of bytes sent to the client.
$connection Serial number identifying a connection.
$connection_
requests

The number of requests already served by the current
connection.

$content_length Equates to the Content-Length HTTP header.
$content_type Equates to the Content-Type HTTP header.
$cookie_XXX Allows you to access cookie data, where XXX is the name of the

parameter that you wish to utilize.
$document_root Returns the value of the root directive for the current request.
$document_uri Returns the current URI of the request. This may differ from the

original request URI if internal redirects were performed. It is
identical to the $uri variable.

$host This variable equates to the Host HTTP header of the request.
Nginx itself gives this variable a value for cases where the Host
header is not provided in the original request.

$hostname Returns the system hostname of the server computer
$https Set to on for HTTPS connections, empty otherwise.
$is_args If the $args variable is defined, $is_args equates to ?. If

$args is empty, $is_args is empty as well. You may use this
variable for constructing a URI that comes with a query string
option, such as index.phpis_argsargs. If there is any
query string argument in the request, $is_args is set to ?,
making this a valid URI.

$limit_rate Returns the per-connection transfer rate limit as defined by the
limit_rate directive. You are allowed to edit this variable by
using set (directive from The Rewrite module):

set $limit_rate 128k;

$msec Returns the current time (in seconds + milliseconds).
$nginx_version Returns the version of Nginx that you are running.
$pid Returns the Nginx process identifier.
$pipe If the current request is pipelined, this variable is set to p,

otherwise the value is ".".

Chapter 3

[93]

Variable Description
$proxy_protocol_
addr

If the proxy_protocol parameter is enabled on the listen
directive, this variable will contain the client address.

$query_string Identical to $args.
$remote_addr Returns the IP address of the client.
$remote_port Returns the port of the client socket.
$remote_user Returns the client username if they use authentication.
$realpath_root Returns the document root in the client request with symbolic

links resolved into the actual path.
$request_body Returns the body of the client request, or - if the body is empty.
$request_body_
file

If the request body was saved (see the client_body_in_
file_only directive), this variable indicates the path of the
temporary file.

$request_
completion

Returns OK if the request is completed, an empty string
otherwise.

$request_filename Returns the full filename served in the current request.
$request_length Returns the total length of the client request.
$request_method Indicates the HTTP method used in the request, such as GET or

POST.
$request_time Returns the amount of time elapsed since the first byte was read

from the client (seconds + milliseconds value).
$request_uri Corresponds to the original URI of the request, remains

unmodified throughout the process (unlike $document_
uri/$uri).

$scheme Returns either http or https depending on the request.
$server_addr Returns the IP address of the server. Beware while using this,

as each use of the variable requires a system call, which could
potentially affect the overall performance in the case of high-
traffic setups.

$server_name Indicates the value of the server_name directive that was used
while processing the request.

$server_port Indicates the port of the server socket that received the request
data.

$server_protocol Returns the protocol and version, usually HTTP/1.0 or
HTTP/1.1.

$status Returns the response status code.

HTTP Configuration

[94]

Variable Description
$tcpinfo_rtt,
$tcpinfo_rttvar,
$tcpinfo_snd_
cwnd, $tcpinfo_
rcv_space

If your operating system supports the TCP_INFO socket option,
these variables will be populated with information on the current
client TCP connection.

$time_iso8601,
$time_local

Provides the current time in ISO 8601 and local formats
respectively for use with the access_log directive.

$uri Identical to $document_uri.

The location block
We have established that Nginx offers you the possibility to fine-tune your
configuration down to three levels—at the protocol level (http block), the server
level (server block), and the requested URI level (location block). Let us now
detail the latter.

Location modifier
Nginx allows you to define location blocks by specifying a pattern that will be
matched against the requested document URI.

server {
 server_name website.com;
 location /admin/ {
 # The configuration you place here only applies to
 # http://website.com/admin/
 }
}

Instead of a simple folder name, you can indeed insert complex patterns. The syntax
of the location block is:

location [=|~|~*|^~|@] pattern { ... }

The first optional argument is a symbol called location modifier that defines the way
Nginx matches the specified pattern, and also defines the very nature of the pattern
(simple string or regular expression). The following paragraphs detail the different
modifiers and their behavior.

Chapter 3

[95]

The = modifier
The requested document URI must match the specified pattern exactly. The pattern
here is limited to a simple literal string; you cannot use a regular expression:

server {
 server_name website.com;
 location = /abcd {
 […]
 }
}

The configuration in the location block:

• Applies to http://website.com/abcd (exact match)
• May apply to http://website.com/ABCD (it is only case-sensitive if your

operating system uses a case-sensitive filesystem)
• Applies to http://website.com/abcd?param1¶m2 (regardless of the

query string arguments)
• Does not apply to http://website.com/abcd/ (trailing slash)
• Does not apply to http://website.com/abcde (extra characters after the

specified pattern)

No modifier
The requested document URI must begin with the specified pattern. You may not
use regular expressions:

server {
 server_name website.com;
 location /abcd {
 […]
 }
}

The configuration in the location block:

• Applies to http://website.com/abcd (exact match)
• May apply to http://website.com/ABCD (it is only case-sensitive if your

operating system uses a case-sensitive filesystem)
• Applies to http://website.com/abcd?param1¶m2 (regardless of the

query string arguments)

HTTP Configuration

[96]

• Applies to http://website.com/abcd/ (trailing slash)
• Applies to http://website.com/abcde (extra characters after the

specified pattern)

The ~ modifier
The requested URI must be a case-sensitive match to the specified regular expression:

server {
 server_name website.com;
 location ~ ^/abcd$ {
 […]
 }
}

The ^/abcd$ regular expression used in this example specifies that the pattern
must begin (^) with /, be followed by abc, and finish ($) with d. Consequently,
the configuration in the location block:

• Applies to http://website.com/abcd (exact match)
• Does not apply to http://website.com/ABCD (case-sensitive)
• Applies to http://website.com/abcd?param1¶m2 (regardless of the

query string arguments)
• Does not apply to http://website.com/abcd/ (trailing slash) due to the

specified regular expression
• Does not apply to http://website.com/abcde (extra characters) due to the

specified regular expression

With operating systems such as Microsoft Windows, ~ and ~* are
both case-insensitive, as the OS uses a case-insensitive filesystem.

The ~* modifier
The requested URI must be a case-insensitive match to the specified regular
expression:

server {
 server_name website.com;
 location ~* ^/abcd$ {
 […]
 }
}

Chapter 3

[97]

The regular expression used in the example is similar to the previous one.
Consequently, the configuration in the location block:

• Applies to http://website.com/abcd (exact match)
• Applies to http://website.com/ABCD (case-insensitive)
• Applies to http://website.com/abcd?param1¶m2 (regardless of the

query string arguments)
• Does not apply to http://website.com/abcd/ (trailing slash) due to the

specified regular expression
• Does not apply to http://website.com/abcde (extra characters) due to the

specified regular expression

The ^~ modifier
Similar to the no-symbol behavior, the location URI must begin with the specified
pattern. The difference is that if the pattern is matched, Nginx stops searching for
other patterns (read the following section about search order and priority).

The @ modifier
Defines a named location block. These blocks cannot be accessed by the client
but only by internal requests generated by other directives such as try_files
or error_page.

Search order and priority
Since it's possible to define multiple location blocks with different patterns, you
need to understand that when Nginx receives a request, it searches for the location
block that best matches the requested URI:

server {
 server_name website.com;
 location /files/ {
 # applies to any request starting with "/files/"
 # for example /files/doc.txt, /files/, /files/temp/
 }
 location = /files/ {
 # applies to the exact request to "/files/"
 # and as such does not apply to /files/doc.txt
 # but only /files/
 }
}

HTTP Configuration

[98]

When a client visits http://website.com/files/doc.txt, the first location block
applies. However, when they visit http://website.com/files/, the second block
applies (even though the first one matches), because it has priority over the first one
(it is an exact match).

The order you established in the configuration file (placing the /files/ block before
the = /files/ block) is irrelevant. Nginx will search for matching patterns in a
specific order:

• location blocks with the = modifier: If the specified string exactly matches
the requested URI, Nginx retains the location block.

• location blocks with no modifier: If the specified string exactly matches the
requested URI, Nginx retains the location block.

• location blocks with the ^~ modifier: If the specified string matches the
beginning of the requested URI, Nginx retains the location block.

• location blocks with ~ or ~* modifier: If the regular expression matches the
requested URI, Nginx retains the location block.

• location blocks with no modifier: If the specified string matches the
beginning of the requested URI, Nginx retains the location block.

In that context, the ^~ modifier begins to make sense, and we can envision cases
where it would be useful.

Case 1
Let's begin by a simple example:

server {
 server_name website.com;
 location /doc {
 […] # requests beginning with "/doc"
 }
 location ~* ^/document$ {
 […] # requests exactly matching "/document"
 }
}

You might wonder: when a client requests http://website.com/document, which
of these two location blocks applies? Indeed, both blocks match this request. Again,
the answer does not lie in the order in which the blocks appear in the configuration
files. In this case, the second location block will apply as the ~* modifier has
priority over the other.

Chapter 3

[99]

Case 2
We will now take a look at this second example:

server {
 server_name website.com;
 location /document {
 […] # requests beginning with "/document"
 }
 location ~* ^/document$ {
 […] # requests exactly matching "/document"
 }
}

The question remains the same—what happens when a client sends a request
to download http://website.com/document? There is a trick here. The string
specified in the first block now exactly matches the requested URI. As a result,
Nginx prefers it over the regular expression.

Case 3
Finally, let's go over a third and last scenario:

server {
 server_name website.com;
 location ^~ /doc {
 […] # requests beginning with "/doc"
 }
 location ~* ^/document$ {
 […] # requests exactly matching "/document"
 }
}

This last case makes use of the ^~ modifier. Which block applies when a client visits
http://website.com/document? The answer is: the first block. The reason being
that ^~ has priority over ~*. As a result, any request with a URI beginning with
/doc will be affected to the first block, even if the request URI matches the regular
expression defined in the second block.

HTTP Configuration

[100]

Summary
All through this chapter, we studied the key concepts of the Nginx HTTP
configuration. First, you learned about creating virtual hosts by declaring server
blocks. Then you discovered the directives and variables of the HTTP Core module
that can be inserted within those blocks, and eventually, understood the mechanisms
governing the location block.

The job is done—your server now actually serves websites. We are going to take it
one step further by exploring the modules that truly form the power of Nginx. The
next chapter will deal with advanced topics such as the Rewrite and SSI modules as
well as additional components of the HTTP server.

[101]

Module Configuration
The true power of Nginx lies within its modules. The entire application is built on
a modular system, and each module can be enabled or disabled at compile time.
Some bring up simple functionality, such as the Autoindex module that generates
a listing of the files in a directory. Others will transform your perception of a web
server (such as the Rewrite module). Developers are also invited to create their own
modules. A quick overview of the third-party module system can be found at the
end of this chapter.

This chapter covers:

• The Rewrite module, which does more than just rewriting URIs
• The SSI module, a server-side scripting language
• Additional modules enabled in the default Nginx build
• Optional modules that must be enabled at compile time
• A quick note on third-party modules

The Rewrite module
This module, in particular, brings much more functionality to Nginx than a simple
set of directives. It defines a whole new level of request processing that will be
explained throughout this section.

Module Configuration

[102]

Basically, the purpose of this module (as the name suggests) is to perform
URL rewriting. This mechanism allows you to get rid of ugly URLs containing
multiple parameters. For instance, http://example.com/article.
php?id=1234&comment=32—such URLs are particularly uninformative and
meaningless for a regular visitor. Instead, links to your website will contain useful
information that indicates the nature of the page the visitor is about to visit. The
URL given in the example becomes http://website.com/article-1234-32-US-
economy-strengthens.html. This solution is not only more interesting for your
visitors, but also for search engines—URL rewriting is a key element of Search
Engine Optimization (SEO).

The principle behind this mechanism is simple—it consists of rewriting the URI of the
client request after it is received and before serving the file. Once rewritten, the URI is
matched against the location blocks in order to find the configuration that should be
applied to the request. The technique is further detailed in the coming sections.

Reminder on regular expressions
First and foremost, this module requires a certain understanding of regular
expressions, also known as regexes or regexps. Indeed, URL rewriting is performed by
the rewrite directive, which accepts a pattern followed by the replacement URI.

It is a vast topic—entire books are dedicated to explaining the ins and outs of regular
expressions. However, the simplified approach that we are about to examine should
be more than sufficient to make the most of the mechanism.

Purpose
The first question we must answer is: what is the purpose of regular expressions?
To put it simply, the main purpose is to verify that a string of characters matches a
given pattern. The pattern is written in a particular language that allows the defining
of extremely complex and accurate rules.

String Pattern Does it
match?

Explanation

hello ^hello$ Yes The string begins with the character h (^h), followed
by e, l, l, and then finishes with o (o$).

hell ^hello$ No The string begins with the character h (^h), followed
by e, l, and l, but does not finish with o.

Hello ^hello$ Depends If the engine performing the match is case-sensitive,
the string doesn't match the pattern.

Chapter 4

[103]

This concept becomes a lot more interesting when complex patterns are employed,
such as one that validates e-mail addresses: ^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.
[A-Z]{2,4}$. Programmatically validating if an e-mail address is well-formed
would require a great deal of code, while all the work can be done with a single
regular expression in pattern matching.

PCRE syntax
The syntax that Nginx employs originates from the Perl Compatible Regular
Expression (PCRE) library, which (if you remember Chapter 2, Basic Nginx
Configuration) is a pre-requisite for making your own build, unless you disable the
modules that make use of it. It's the most commonly used form of regular expressions,
and nearly everything you learn here remains valid for other language variations.

In its simplest form, a pattern is composed of one character, for example, x. We can
match strings against this pattern. Does example match the pattern x? Yes, example
contains the character x. It can be more than one specific character—the pattern
[a-z] matches any character between a and z, or even a combination of letters and
digits: [a-z0-9]. In consequence, the pattern hell[a-z0-9] validates the following
strings: hello and hell4 but not hell or hell!.

You probably noticed that we employed the brackets [and]. They are part of what
we call metacharacters and have a special effect on the pattern. There are a total of
11 metacharacters, and all play a different role. If you want to create a pattern that
actually contains one of these characters, you need to escape the character with a
\ (backslash).

Metacharacter Description
^

Beginning
The entity after this character must be found at the beginning.
Example pattern: ^h
Matching strings: hello, h, hh (anything beginning with h)
Non-matching strings: character, ssh

$

End
The entity before this character must be found at the end.
Example pattern: e$
Matching strings: sample, e, file (anything ending with e)
Non-matching strings: extra, shell

. (dot)
Any

Matches any character.
Example pattern: hell.
Matching strings: hello, hellx, hell5, hell!
Non-matching strings: hell, helo

Module Configuration

[104]

Metacharacter Description
[]

Set
Matches any character within the specified set.
Syntax: [a-z] for a range, [abcd] for a set, and [a-z0-9] for two
ranges. Note that if you want to include the – character in a range, you
need to insert it right after [or just before].
Example pattern: hell[a-y123-]
Matching strings: hello, hell1, hell2, hell3, hell-
Non-matching strings: hellz, hell4, heloo, he-llo

[^]

Negate set
Matches any character that is not within the specified set.
Example pattern: hell[^a-np-z0-9]
Matching strings: hello, hell!
Non-matching strings: hella, hell5

|

Alternation
Matches the entity placed either before or after |.
Example pattern: hello|welcome
Matching strings: hello, welcome, helloes, awelcome
Non-matching strings: hell, ellow, owelcom

()

Grouping
Groups a set of entities, often used in conjunction with |. Also captures
the matched entities; captures are detailed further on.
Example pattern: ^(hello|hi) there$
Matching strings: hello there, hi there.
Non-matching strings: hey there, ahoy there

\

Escape
Allows you to escape special characters.
Example pattern: Hello\.
Matching strings: Hello., Hello. How are you?, Hi! Hello...
Non-matching strings: Hello, Hello! how are you?

Quantifiers
So far, you are able to express simple patterns with a limited number of characters.
Quantifiers allow you to extend the number of accepted entities:

Quantifier Description
*

0 or more times
The entity preceding * must be found 0 or more times.
Example pattern: he*llo
Matching strings: hllo, hello, heeeello
Non-matching strings: hallo, ello

Chapter 4

[105]

Quantifier Description
+

1 or more times
The entity preceding + must be found 1 or more times.
Example pattern: he+llo
Matching strings: hello, heeeello
Non-matching strings: hllo, helo

?

0 or 1 time
The entity preceding ? must be found 0 or 1 time.
Example pattern: he?llo
Matching strings: hello, hllo
Non-matching strings: heello, heeeello

{x}

x times
The entity preceding {x} must be found x times.
Example pattern: he{3}llo
Matching strings: heeello, oh heeello there!
Non-matching strings: hello, heello, heeeello

{x,}

At least x times
The entity preceding {x,} must be found at least x times.
Example pattern: he{3,}llo
Matching strings: heeello, heeeeeeello
Non-matching strings: hllo, hello, heello

{x,y}

x to y times
The entity preceding {x,y} must be found between x and y times.
Example pattern: he{2,4}llo
Matching strings: heello, heeello, heeeello
Non-matching strings: hello, heeeeello

As you probably noticed, the { and } characters in the regular expressions conflict
with the block delimiter of the Nginx configuration file syntax language. If you want
to write a regular expression pattern that includes curly brackets, you need to place
the pattern between quotes (single or double quotes):

rewrite hel{2,}o /hello.php; # invalid
rewrite "hel{2,}o" /hello.php; # valid
rewrite 'hel{2,}o' /hello.php; # valid

Module Configuration

[106]

Captures
One last feature of the regular expression mechanism is the ability to capture
sub-expressions. Whatever text is placed between the parentheses () is captured
and can be used after the matching process. The captured characters become
available under the form of variables called $N, where N is a numeric index, in
order of capture. Alternatively, you can attribute an arbitrary name to each of your
captures (see the next example). The variables generated through the captures can
be inserted within the directive values. The following are a couple of examples that
illustrate the principle:

Pattern Example of
a matching
string

Captured

^(hello|hi) (sir|mister)$ hello sir $1 = hello

$2 = sir

^(hello (sir))$ hello sir $1 = hello sir

$2 = sir

^(.*)$ nginx rocks $1 = nginx rocks

^(.{1,3})([0-9]{1,4})([?!]{1,2})$ abc1234!? $1 = abc

$2 = 1234

$3 = !?

Named captures are also supported through
the following syntax: ?<name>. Example:
^/(?<folder>[^/]+)/(?<file>.*)$

/admin/doc $folder = admin

$file = doc

When you use a regular expression in Nginx, for example, in the context of a
location block, the buffers that you capture can be employed in later directives:

server {
 server_name website.com;
 location ~* ^/(downloads|files)/(.*)$ {
 add_header Capture1 $1;
 add_header Capture2 $2;
 }
}

Chapter 4

[107]

In the preceding example, the location block will match the request URI against a
regular expression. A couple of URIs that would apply here would be /downloads/
file.txt, /files/archive.zip, or even /files/docs/report.doc. Two parts
are captured: $1 will contain either downloads or files, and $2 will contain
whatever comes after /downloads/ or /files/. Note that the add_header directive
(syntax: add_header header_name header_value, see the HTTP headers module
section) is employed here to append arbitrary headers to the client response for the
sole purpose of demonstration.

Internal requests
Nginx differentiates external and internal requests. External requests directly originate
from the client; the URI is then matched against the possible location blocks:

server {
 server_name website.com;
 location = /document.html {
 deny all; # example directive
 }
}

A client request to http://website.com/document.html would directly fall into
the location block.

As opposed to this, internal requests are triggered by Nginx via specific directives.
Among the directives offered by the default Nginx modules, there are several
directives capable of producing internal requests: error_page, index, rewrite,
try_files, add_before_body, add_after_body (from the Addition module), the
include SSI command, and more.

There are two different types of internal requests:

• Internal redirects: Nginx redirects the client requests internally. The URI
is changed, and the request may therefore match another location block
and become eligible for different settings. The most common case of internal
redirects is when using the rewrite directive, which allows you to rewrite the
request URI.

• Sub-requests: These are additional requests that are triggered internally
to generate content that is complementary to the main request. A simple
example would be with the Addition module. The add_after_body directive
allows you to specify a URI that will be processed after the original one, the
resulting content being appended to the body of the original request. The SSI
module also makes use of sub-requests to insert content with the include
SSI command.

Module Configuration

[108]

error_page
Detailed in the module directives of the Nginx HTTP Core module, error_page
allows you to define the server behavior when a specific error code occurs. The
simplest form is that of affecting a URI to an error code:

server {
 server_name website.com;
 error_page 403 /errors/forbidden.html;
 error_page 404 /errors/not_found.html;
}

When a client attempts to access a URI that triggers one of these errors (such as
loading a document or a file that does not exist on the server, resulting in a 404
error), Nginx is supposed to serve the page associated with the error code. In fact,
it does not just send the client the error page—it actually initiates a completely new
request based on the new URI.

Consequently, you can end up falling back on a different configuration, like in the
following example:

server {
 server_name website.com;
 root /var/www/vhosts/website.com/httpdocs/;
 error_page 404 /errors/404.html;
 location /errors/ {
 alias /var/www/common/errors/;
 internal;
 }
}

When a client attempts to load a document that does not exist, they will initially
receive a 404 error. We employed the error_page directive to specify that 404 errors
should create an internal redirect to /errors/404.html. As a result, a new request
is generated by Nginx with the URI /errors/404.html. This URI falls under the
location block /errors/, so the corresponding configuration applies.

Logs can prove to be particularly useful when working with redirects
and URL rewrites. Be aware that information on internal redirects will
show up in the logs only if you set the error_log directive to debug.
You can also get it to show up at the notice level, under the condition
that you specify rewrite_log on; wherever you need it.

Chapter 4

[109]

A raw but trimmed excerpt from the debug log summarizes the mechanism:

->http request line: "GET /page.html HTTP/1.1"
->http uri: "/page.html"
->test location: "/errors/"
->using configuration ""
->http filename: "/var/www/vhosts/website.com/httpdocs/page.html"
-> open() "/var/www/vhosts/website.com/httpdocs/page.html" failed (2:
No such file or directory), client: 127.0.0.1, server: website.com,
request: "GET /page.html HTTP/1.1", host:"website.com"
->http finalize request: 404, "/page.html?" 1
->http special response: 404, "/page.html?"
->internal redirect: "/errors/404.html?"
->test location: "/errors/"
->using configuration "/errors/"
->http filename: "/var/www/common/errors/404.html"
->http finalize request: 0, "/errors/404.html?" 1

Note that the use of the internal directive in the location block forbids clients
from accessing the /errors/ directory. This location can thus only be accessed
through an internal redirect.

The mechanism is the same for the index directive (detailed further on in the Index
module)—if no file path is provided in the client request, Nginx will attempt to serve
the specified index page by triggering an internal redirect.

Rewrite
While the previous directive, error_page, is not actually a part of the Rewrite
module, detailing its functionality provides a solid introduction to the way Nginx
handles client requests.

Similarly to how the error_page directive redirects to another location, rewriting
the URI with the rewrite directive generates an internal redirect:

server {
 server_name website.com;
 root /var/www/vhosts/website.com/httpdocs/;
 location /storage/ {
 internal;
 alias /var/www/storage/;
 }
 location /documents/ {
 rewrite ^/documents/(.*)$ /storage/$1;
 }
}

Module Configuration

[110]

A client query to http://website.com/documents/file.txt initially matches
the second location block (location /documents/). However, the block contains
a rewrite instruction that transforms the URI from /documents/file.txt to
/storage/file.txt. The URI transformation reinitializes the process—the new
URI is matched against the location blocks. This time, the first location block
(location /storage/) matches the URI (/storage/file.txt).

Again, a quick peek at the debug log details the mechanism:

->http request line: "GET /documents/file.txt HTTP/1.1"
->http uri: "/documents/file.txt"
->test location: "/storage/"
->test location: "/documents/"
->using configuration "/documents/"
->http script regex: "^/documents/(.*)$"
->"^/documents/(.*)$" matches "/documents/file.txt", client:
127.0.0.1, server: website.com, request: "GET /documents/file.txt
HTTP/1.1", host: "website.com"
->rewritten data: "/storage/file.txt", args: "", client: 127.0.0.1,
server: website.com, request: "GET /documents/file.txt HTTP/1.1",
host: "website.com"
->test location: "/storage/"
->using configuration "/storage/"
->http filename: "/var/www/storage/file.txt"
->HTTP/1.1 200 OK
->http output filter "/storage/test.txt?"

Infinite loops
With all the different syntaxes and directives, you could easily get confused.
Worse—you might get Nginx confused. This happens, for instance, when your
rewrite rules are redundant, and cause internal redirects to loop infinitely:

server {
 server_name website.com;
 location /documents/ {
 rewrite ^(.*)$ /documents/$1;
 }
}

You thought you were doing well, but this configuration actually triggers internal
redirects /documents/anything to /documents//documents/anything. Moreover,
since the location patterns are re-evaluated after an internal redirect, /documents//
documents/anything becomes /documents//documents//documents/anything.

Chapter 4

[111]

Here is the corresponding excerpt from the debug log:

->test location: "/documents/"
->using configuration "/documents/"
->rewritten data: "/documents//documents/file.txt", [...]
->test location: "/documents/"
->using configuration "/documents/"
->rewritten data: "/documents//documents//documents/file.txt" [...]
->test location: "/documents/"
->using configuration "/documents/"
->rewritten data: -
>"/documents//documents//documents//documents/file.txt" [...]
->[...]

You probably wonder if this goes on indefinitely—the answer is no. The number of
cycles is restricted to 10. You are only allowed 10 internal redirects. Anything past
this limit and Nginx will produce a 500 Internal Server Error.

Server Side Includes
A potential source of sub-requests is the Server Side Include (SSI) module. The
purpose of SSI is for the server to parse documents before sending the response to
the client in a fashion somewhat similar to PHP or other preprocessors.

Within a regular HTML file (for example), you are offered the possibility of inserting
tags corresponding to the commands interpreted by Nginx:

<html>
<head>
 <!--# include file="header.html" -->
</head>
<body>
 <!--# include file="body.html" -->
</body>
</html>

Nginx processes these two commands; in this case, it reads the contents of header.
html and body.html and inserts them into the document source, which is then sent
to the client.

Several commands are at your disposal; they are detailed in the SSI module section
in this chapter. The one we are interested in for now is the include command for
including a file into another file:

<!--# include virtual="/footer.php?id=123" -->

Module Configuration

[112]

The specified file is not just opened and read from a static location. Instead, a whole
subrequest is processed by Nginx, and the body of the response is inserted instead of
the include tag.

Conditional structure
The Rewrite module introduces a new set of directives and blocks among which is
the if conditional structure:

server {
 if ($request_method = POST) {
 […]
 }
}

This allows you to apply a configuration according to the specified condition. If the
condition is true, the configuration is applied; otherwise, it isn't.

The following table describes the various syntaxes accepted when forming a condition:

Operator Description
None The condition is true if the specified variable or data is not equal to an empty

string or a string starting with the character 0:
if ($string) {
 […]
}

=, != The condition is true if the argument preceding the = symbol is equal to
the argument following it. The following example can be read as "if the
request_method is equal to POST, then apply the configuration":
if ($request_method = POST) {
 […]
}

The != operator does the opposite: "if the request method is not equal to
GET, then apply the configuration":
if ($request_method != GET) {
 […]
}

Chapter 4

[113]

Operator Description
~, ~*, !~,
!~*

The condition is true if the argument preceding the ~ symbol matches the
regular expression pattern placed after it:
if ($request_filename ~ "\.txt$") {
 […]
}

~ is case-sensitive, ~* is case-insensitive. Use the ! symbol to negate the
matching:

if ($request_filename !~* "\.php$") {
 […]
}

Note that you can insert the capture buffers in the regular expression:
if ($uri ~ "^/search/(.*)$") {
 set $query $1;
 rewrite ^ http://google.com/search?q=$query;
}

-f, !-f Tests the existence of the specified file:
if (-f $request_filename) {
 […] # if the file exists
}

Use !-f to test the non-existence of the file:
if (!-f $request_filename) {
 […] # if the file does not exist
}

-d, !-d Similar to the –f operator, is used for testing the existence of a directory.
-e, !-e Similar to the –f operator, is used for testing the existence of a file, directory,

or symbolic link.
-x, !-x Similar to the –f operator, is used for testing whether a file exists and is

executable.

As of version 1.8, there is no else or else if-like instruction. However, other
directives allowing you to control the configuration flow sequencing are available.

You might wonder: what are the advantages of using a location block over an if
block? Indeed, in the following example, both seem to have the same effect:

if ($uri ~ /search/) {
 […]
}
location ~ /search/ {
 […]
}

Module Configuration

[114]

As a matter of fact, the main difference lies within the directives that can be
employed within either block—some can be inserted in an if block and some can't;
on the contrary, almost all the directives are authorized within a location block, as
you probably noticed in the directive listings so far. In general, it's best to only insert
the directives from the Rewrite module within an if block, as other directives were
not originally intended for such usage.

Directives
The Rewrite module provides you with a set of directives that do more than just
rewriting a URI. The following table describes these directives, along with the
context in which they can be employed:

Directive Description
rewrite

Context: server,
location, if

As discussed previously, the rewrite directive allows you to rewrite
the URI of the current request, thus resetting the treatment of the said
request.
Syntax: rewrite regexp replacement [flag];
Where regexp is the regular expression that the URI should match
in order for the replacement to apply.
Flag may take one of the following values:

• last: The current rewrite rule should be the last to be applied.
After its application, the new URI is processed by Nginx, and
a location block is searched for. However, further rewrite
instructions will be disregarded.

• break: The current rewrite rule is applied, but Nginx does not
initiate a new request for the modified URI (does not restart
the search for matching location blocks). All further rewrite
directives are ignored.

• redirect: Returns a 302 Moved temporarily HTTP
response, with the replacement URI set as the value of the
location header.

• permanent: Returns a 301 Moved permanently HTTP
response, with the replacement URI set as the value of the
location header.

• If you specify a URI beginning with http:// as the
replacement URI, Nginx will automatically use the redirect
flag.

• Note that the request URI processed by the directive is a
relative URI: It does not contain the hostname and protocol.
For a request such as http://website.com/documents/
page.html, the request URI is /documents/page.html.

Chapter 4

[115]

Directive Description
• Is decoded: The URI corresponding to a request such as

http://website.com/my%20page.html would be /my
page.html (in the encoded URI, %20 indicates a white space
character).

• Does not contain arguments: For a request such as http://
website.com/page.php?id=1&p=2, the URI would be
/page.php. When rewriting the URI, you don't need to
consider including the arguments in the replacement URI—
Nginx does it for you. If you want Nginx not to include
the arguments after the rewritten URI, you must insert a ?
character at the end of the replacement URI: rewrite ^/
search/(.*)$ /search.php?q=$1?.

• Examples:
rewrite ^/search/(.*)$ /search.php?q=$1;
rewrite ^/search/(.*)$ /search.php?q=$1?;
rewrite ^ http://website.com;
rewrite ^ http://website.com permanent;

break

Context: server,
location, if

The break directive is used to prevent further rewrite directives. Past
this point, the URI is fixed and cannot be altered.
Example:

if (-f $uri) {
 break; # break if the file exists
}
if ($uri ~ ^/search/(.*)$) {
 set $query $1;
 rewrite ^ /search.php?q=$query?;
}

This example rewrites /search/anything-like queries to /
search.php?q=anything. However, if the requested file exists
(such as /search/index.html), the break instruction prevents
Nginx from rewriting the URI.

Module Configuration

[116]

Directive Description
return

Context: server,
location, if

Interrupts the processing of the request, and returns the specified
HTTP status code or specified text.
Syntax: return code | text;
Where the code is one of the following status codes: 204, 400, 402 to
406, 408, 410, 411, 413, 416, and 500 to 504. In addition, you may
use the Nginx-specific code 444 in order to return a HTTP 200 OK
status code with no further response header or body. Alternatively,
you may also specify a raw text value that will be returned to the user
as the response body. This comes in handy when testing whether
your request URIs fall within particular location blocks.
Example:

if ($uri ~ ^/admin/) {
 return 403;
 # the instruction below is NOT executed
 # as Nginx already completed the request
 rewrite ^ http://website.com;
}

set

Context: server,
location, if

Initializes or redefines a variable. Note that some variables cannot be
redefined, for example, you are not allowed to alter $uri.
Syntax: set $variable value;
Examples:

set $var1 "some text";
if ($var1 ~ ^(.*) (.*)$) {
 set $var2 $1$2; #concatenation
 rewrite ^ http://website.com/$var2;
}

uninitialized_
variable_warn

Context: http,
server,
location, if

If set to on, Nginx will issue log messages when the configuration
employs a variable that has not yet been initialized.
Syntax: on or off

uninitialized_variable_warn on;

rewrite_log

Context: http,
server,
location, if

If set to on, Nginx will issue log messages for every operation
performed by the rewrite engine at the notice error level (see
error_log directive).
Syntax: on or off
Default value: off

rewrite_log off;

Chapter 4

[117]

Common rewrite rules
Here is a set of rewrite rules that satisfy the basic needs of the dynamic websites that
wish to beautify their page links, thanks to the URL rewriting mechanism. You will
obviously need to adjust these rules according to your particular situation, as every
website is different.

Performing a search
This rewrite rule is intended for search queries. Search keywords are included in
the URL.

Input URI http://website.com/search/some-search-keywords

Rewritten URI http://website.com/search.php?q=some-search-keywords

Rewrite rule rewrite ^/search/(.*)$ /search.php?q=$1?;

User profile page
Most dynamic websites that allow the visitors to register, offer a profile view page.
URLs of this form, containing both the user ID and the username can be employed.

Input URI http://website.com/user/31/James

Rewritten URI http://website.com/user.php?id=31&name=James

Rewrite rule rewrite ^/user/([0-9]+)/(.+)$ /user.
php?id=$1&name=$2?;

Multiple parameters
Some websites may use different syntaxes for the argument string, for example,
separating non-named arguments with slashes.

Input URI http://website.com/index.php/param1/param2/param3

Rewritten URI http://website.com/index.php?p1=param1&p2=param2&p3=p
aram3

Rewrite rule rewrite ^/index.php/(.*)/(.*)/(.*)$ /index.
php?p1=$1&p2=$2&p3=$3?;

Module Configuration

[118]

Wikipedia-like
Many websites have now adopted the URL style introduced by Wikipedia: a prefix
folder, followed by an article name.

Input URI http:// website.com/wiki/Some_keyword

Rewritten URI http://website.com/wiki/index.php?title=Some_keyword

Rewrite rule rewrite ^/wiki/(.*)$ /wiki/index.php?title=$1?;

News website article
This URL structure is often employed by news websites, as the URLs contain
indications to the articles' contents. It is formed of an article identifier, followed by
a slash, then a list of keywords. The keywords can usually be ignored and excluded
from the rewritten URI.

Input URI http://website.com/33526/us-economy-strengthens

Rewritten URI http://website.com/article.php?id=33526

Rewrite rule rewrite ^/([0-9]+)/.*$ /article.php?id=$1?;

Discussion board
Modern bulletin boards now mostly use pretty URLs. The following example shows
how to create a topic view URL with two parameters—the topic identifier and the
starting post. Once again, keywords are ignored:

Input URI http://website.com/topic-1234-50-some-keywords.html

Rewritten URI http://website.com/viewtopic.php?topic=1234&start=50

Rewrite rule rewrite ^/topic-([0-9]+)-([0-9]+)-(.*)\.html$ /
viewtopic.php?topic=$1&start=$2?;

Chapter 4

[119]

SSI module
SSI or Server Side Includes, is actually a sort of server-side programming language
interpreted by Nginx. Its name originates from the fact that the most-used functionality
of the language is the include command. Back in the 1990s, such languages were
employed in order to render web pages dynamically, from simple static .html files
with client-side scripts to complex pages with server-processed instructions. Within
the HTML source code, webmasters could now insert server-interpreted directives,
which would then lead the way to much more advanced pre-processors such as PHP
or ASP.

The most famous illustration of SSI is the quote of the day example. In order to insert
a new quote every day at the top of each page of their website, webmasters would
have to edit out the HTML source of every page of the site, updating the old quote
manually. With Server Side Includes, a single command suffices to simplify the task:

<html>
<head><title>My web page</title></head>
<body>
 <h1>Quote of the day: <!--# include file="quote.txt" -->
 </h1>
</body>
</html>

All you would have to do to update the quote is to edit the contents of the quote.
txt file. Automatically, all the pages would show the updated quote. As of today,
most of the major web servers (Apache, IIS, Lighttpd, and so on) support Server
Side Includes.

Module Configuration

[120]

Module directives and variables
Having directives inserted within the actual content of the files that Nginx serves
raises one major issue—what files should Nginx parse for the SSI commands? It
would be a waste of resources to parse binary files such as images (.gif, .jpg, and
.png) or other kinds of media, since they are unlikely to contain any SSI commands.
You need to make sure to configure Nginx correctly with the directives introduced
by this module:

Directive Description
ssi

Context: http, server,
location, if

Enables parsing files for SSI commands. Nginx only parses
the files corresponding to the MIME types selected with the
ssi_types directive.
Syntax: on or off
Default value: off

ssi on;

ssi_types

Context: http, server,
location

Defines the MIME file types that should be eligible for SSI
parsing. The text/html type is always included.
Syntax:

ssi_types type1 [type2] [type3...];
ssi_types *;

Default value: text/html
ssi_types text/plain;

ssi_silent_errors

Context: http, server,
location

Some SSI commands may generate errors; in that case, Nginx
outputs a message at the location of the command—'an error
occurred while processing the directive'. Enabling this option
silences Nginx and the message does not appear.
Syntax: on or off
Default value: off

ssi_silent_errors off;

ssi_value_length

Context: http, server,
location

SSI commands have arguments that accept a value (for
example, <!--# include file="value" -->). This
parameter defines the maximum length accepted by Nginx.
Syntax: Numeric
Default: 256 (characters)

ssi_value_length 256;

Chapter 4

[121]

Directive Description
ssi_ignore_
recycled_buffers

Context: http, server,
location

When set to on, this directive prevents Nginx from making use
of the recycled buffers.
Syntax: on or off
Default: off

ssi_min_file_chunk

Context: http, server,
location

If the size of a buffer is greater than ssi_min_file_chunk,
data is stored in a file and then sent via sendfile. In other
cases, it is transmitted directly from the memory.
Syntax: Numeric value (size)
Default: 1,024

ssi_last_modified

Context: http, server,
location

If set to off, Nginx removes the Last-modified header
from the original response during SSI processing in order to
increase the caching likeliness. The Last-modified date is
likely to change often due to dynamically generated elements
contained in the response, rendering it non-cacheable.
Syntax: on or off
Default: off

A quick note regarding possible concerns about the SSI engine resource usage—by
enabling the SSI module at the location or server block level, you enable parsing
of at least all text/html files (pretty much any page to be displayed by the client
browser). While the Nginx SSI module is efficiently optimized, you might want to
disable parsing for the files that do not require it.

Firstly, all your pages containing the SSI commands should have the .shtml
(Server HTML) extension. Then, in your configuration at the location block level,
enable the SSI engine under a specific condition. The name of the served file must
end with .shtml:

server {
 server_name website.com;
 location ~* \.shtml$ {
 ssi on;
 }
}

On one hand, all HTTP requests submitted to Nginx will go through an additional
regular expression pattern matching. On the other hand, static HTML files or files to be
processed by other interpreters (.php, for instance) will not be parsed unnecessarily.

Module Configuration

[122]

Finally, the SSI module enables two variables:

• $date_local: Returns the current time according to the current system
time zone

• $date_gmt: Returns the current GMT time, regardless of the server time zone

SSI commands
Once you have the SSI engine enabled for your web pages, you are ready to start
writing your first dynamic HTML page. Again, the principle is simple—design the
pages of your website using the regular HTML code, inside which you will insert the
SSI commands.

These commands respect a particular syntax—at first sight, they look like regular
HTML comments: <!-- A comment -->, and that is the good thing about it—if you
accidentally disable SSI parsing of your files, the SSI commands do not appear on the
client browser; they are only visible in the source code as actual HTML comments.
The full syntax is as follows:

<!--# command param1="value1" param2="value2" … -->

File includes
The main command of the Server Side Include module is, obviously, the include
command. It can be used in two different fashions.

First, you are allowed to make a simple file include:

<!--# include file="header.html" -->

This command generates an HTTP sub-request to be processed by Nginx. The body
of the response that was generated is inserted instead of the command itself.

The second possibility is to use the include virtual command:

<!--# include virtual="/sources/header.php?id=123" -->

This also sends a sub-request to the server; the difference lies in the way that
Nginx fetches the specified file (when using include file, the wait parameter is
automatically enabled). Indeed, two parameters can be inserted within the include
command tag. By default, all SSI requests are issued simultaneously, in parallel. This
can cause slowdowns and timeouts in case of heavy loads. Alternatively, you can use
the wait="yes" parameter to specify that Nginx should wait for the completion of
the request before moving on to other includes:

<!--# include virtual="header.php" wait="yes" -->

Chapter 4

[123]

If the result of your include command is empty or if it triggered an error (404,
500, and so on), Nginx inserts the corresponding error page with its HTML:
<html>[…]404 Not Found</body></html>. The message is displayed at exactly
the same place where you inserted the include command. If you wish to revise this
behavior, you have the option to create a named block. By linking the block to the
include command, the contents of the block will show at the location of the include
command tag in case an error occurs:

<html>
<head><title>SSI Example</title></head>
<body>
<center>
 <!--# block name="error_footer" -->Sorry, the footer file was not
found.<!--# endblock -->
 <h1>Welcome to nginx</h1>
 <!--# include virtual="footer.html" stub="error_footer" -->
</center>
</body>
</html>

The result as output in the client browser is shown as follows:

As you can see, the contents of the error_footer block were inserted at the location
of the include command, after the <h1> tag.

Module Configuration

[124]

Working with variables
The Nginx SSI module also offers the option of working with variables. Displaying
a variable (in other words, inserting the variable value into the final HTML source
code) can be done with the echo command:

<!--# echo var="variable_name" -->

The command accepts the following three parameters:

• var: The name of the variable that you want to display, for example,
REMOTE_ADDR to display the IP address of the client.

• default: A string to be displayed in case the variable is empty. If you don't
specify this parameter, the output is (none).

• encoding: Encoding method for the string. The accepted values are none (no
particular encoding), url (encode text like a URL—a blank space becomes
%20, and so on), and entity (uses HTML entities: & becomes &).

You may also affect your own variables with the set command:

<!--# set var="my_variable" value="your value here" -->

The value parameter is itself parsed by the engine; as a result, you are allowed to
make use of the existing variables:

<!--# echo var="MY_VARIABLE" -->
<!--# set var="MY_VARIABLE" value="hello" -->
<!--# echo var="MY_VARIABLE" -->
<!--# set var="MY_VARIABLE" value="$MY_VARIABLE there" -->
<!--# echo var="MY_VARIABLE" -->

The following is the output that Nginx displays for each of the three echo commands
from the preceding example:

(none)
hello
hello there

Conditional structure
The following set of commands allow you to include text or other directives
depending on a condition. The conditional structure can be established with
the following syntax:

<!--# if expr="expression1" -->
[…]
<!--# elif expr="expression2" -->

Chapter 4

[125]

[…]
<!--# else -->
[…]
<!--# endif -->

The expression can be formulated in three different ways:

• Inspecting a variable: <!--# if expr="$variable" -->. Similar to the if
block in the Rewrite module, the condition is true if the variable is not empty.

• Comparing two strings: <!--# if expr="$variable = hello" -->. The
condition is true if the first string is equal to the second string. Use != instead
of = to revert the condition (the condition is true if the first string is not equal
to the second string).

• Matching a regular expression pattern: <!--# if expr="$variable = /
pattern/" -->. Note that the pattern must be enclosed within / characters,
otherwise it is considered to be a simple string (for example, <!--# if
expr="$MY_VARIABLE = /^/documents//" -->). Similar to the comparison,
use != to negate the condition. The captures in regular expressions
are supported.

The content that you insert within a condition block can contain regular HTML code
or additional SSI directives with one exception—you cannot nest if blocks.

Configuration
Last and probably the least (for once) of the SSI commands offered by Nginx is the
config command. It allows you to configure two simple parameters.

First, the message that appears when the SSI engine faces an error related to
malformed tags or invalid expressions. By default, Nginx displays [an error
occurred while processing the directive]. If you want it to display
something else, enter the following:

<!--# config errmsg="Something terrible happened" -->

Additionally, you can configure the format of the dates that are returned by the
$date_local and $date_gmt variables using the timefmt parameter:

<!--# config timefmt="%A, %d-%b-%Y %H:%M:%S %Z" -->

The string that you specify here is passed as the format string of the strftime C
function. For more information about the arguments that can be used in the format
string, please refer to the documentation of the strftime C language function at
http://www.opengroup.org/onlinepubs/009695399/functions/strftime.html.

http://www.opengroup.org/onlinepubs/009695399/functions/strftime.html

Module Configuration

[126]

Additional modules
The first half of this chapter covered two of the most important Nginx modules: the
Rewrite module and the SSI module. There are a lot more modules that will greatly
enrich the functionality of the web server; they are regrouped here, thematically.

Among the modules described in this section, some are included in the default
Nginx build, but some are not. This implies that unless you specifically configured
your Nginx build to include these modules (as described in Chapter 1, Downloading
and Installing Nginx), they will not be available to you. But remember that rebuilding
Nginx to include additional modules is a relatively quick and easy process.

Website access and logging
The following set of modules allows you to configure the way visitors access your
website and the way your server logs requests.

Index
The Index module provides a simple directive named index, which lets you define
the page that Nginx will serve by default if no filename is specified in the client
request (in other words, it defines the website index page). You may specify multiple
filenames; the first file to be found will be served. If none of the specified files are
found, Nginx will either attempt to generate an automatic index of the files (if the
autoindex directive is enabled—check the HTTP Autoindex module), or return a
403 Forbidden error page.

Optionally, you may insert an absolute filename (such as /page.html), but only as
the last argument of the directive.

Syntax: index file1 [file2…] [absolute_file];

Default value: index.html

index index.php index.html index.htm;
index index.php index2.php /catchall.php;

This directive is valid in the following contexts: http, server, and location.

Autoindex
If Nginx cannot provide an index page for the requested directory, the default
behavior is to return a 403 Forbidden HTTP error page. With the following set
of directives, you enable an automatic listing of the files that are present in the
requested directory:

Chapter 4

[127]

Three columns of information appear for each file—the filename, the file date and
time, and the file size in bytes.

Directive Description
autoindex

Context: http, server,
location

Enables or disables the automatic directory listing for
directories missing an index page.
Syntax: on or off

autoindex_exact_
size

Context: http, server,
location

If set to on, this directive ensures that the listing displays the
file sizes in bytes. Otherwise, another unit is employed, such as
KB, MB, or GB.
Syntax: on or off
Default value: on

autoindex_localtime

Context: http, server,
location

By default, this directive is set to off, so the date and time
of files in the listing appears as the GMT time. Set it to on to
make use of the local server time.
Syntax: on or off
Default value: off

autoindex_format

Context: http, server,
location

Nginx offers to serve the directory index in different formats:
HTML, XML, JSON, or JSONP (by default, HTML is used).
Syntax: autoindex_format html | xml | json |
jsonp;

If you set the directive value to jsonp, Nginx inserts the value
of the callback query argument as JSONP callback. For
example, your script should call the following URI: /folder/
?callback=MyCallbackName.

Module Configuration

[128]

Random index
This module enables a simple directive, random_index, which can be used within a
location block for Nginx to return an index page selected randomly among the files
of the specified directory.

This module is not included in the default Nginx build.

Syntax: on or off

Log
This module controls the behavior of Nginx regarding the access logs. It is a key
module for system administrators, as it allows analyzing the runtime behavior of
web applications. It is composed of three essential directives:

Directive Description
access_log

Context: http, server,
location, if (in
location), limit_
except

This parameter defines the access log file path, the format
of entries in the access log by selecting a template name, or
disables access logging.
Syntax: access_log path [format [buffer=size]] |
off;

Some remarks concerning the directive syntax are as follows:
• Use access_log off to disable access logging at the

current level
• The format argument corresponds to a template declared

with the log_format directive, described next
• If the format argument is not specified, the default format

is employed (combined)
• You may use variables in the file path

Chapter 4

[129]

Directive Description
log_format

Context: http, server,
location

Defines a template to be utilized by the access_log directive,
describing the contents that should be included in an entry of
the access log.
Syntax: log_format template_name format_string;
The default template is called combined, and matches the
following example:

log_format combined '$remote_addr - $remote_user
[$time_local] '"$request" $status
$body_bytes_sent '"$http_referer"
"$http_user_agent"';
Other example
log_format simple '$remote_addr $request';

open_log_file_
cache

Context: http, server,
location

Configures the cache for log file descriptors. Please refer to the
open_file_cache directive of the HTTP Core module for
additional information.
Syntax: open_log_file_cache max=N [inactive=time]
[min_uses=N] [valid=time] | off;

The arguments are similar to the open_file_cache and other
related directives; the difference is that this applies to access log
files only.

The Log module also enables several new variables, though they are only accessible
when writing log entries:

• $connection: The connection number
• $pipe: The variable is set to "p" if the request was pipelined
• $time_local: Local time (at the time of writing the log entry)
• $msec: Local time (at the time of writing the log entry) to the microsecond
• $request_time: Total length of the request processing, in milliseconds
• $status: Response status code
• $bytes_sent: Total number of bytes sent to the client
• $body_bytes_sent: Number of bytes sent to the client for the response body
• $apache_bytes_sent: Similar to $body_bytes, which corresponds to the %B

parameter of Apache's mod_log_config
• $request_length: Length of the request body

Module Configuration

[130]

Limits and restrictions
The following modules allow you to regulate access to the documents of your
websites—require users to authenticate, match a set of rules, or simply restrict
the access to certain visitors.

Auth_basic module
The auth_basic module enables the basic authentication functionality. With the
two directives that it brings forth, you can make it such that a specific location of
your website (or your server) is restricted to users who authenticate with a username
and password:

location /admin/ {
 auth_basic "Admin control panel"; # variables are supported
 auth_basic_user_file access/password_file;
}

The first directive, auth_basic, can be set to either off or a text message, usually
referred to as authentication challenge or authentication realm. This message is displayed
by the web browsers in a username/password box when a client attempts to access
the protected resource.

The second one, auth_basic_user_file, defines the path of the password file relative
to the directory of the configuration file. A password file is formed of lines respecting
the following syntax: username:[{SCHEME}]password[:comment]. Where:

• username: a plain text user name
• {SCHEME}: optionally, the password hashing method. There are currently

three supported schemes: {PLAIN} for plain text passwords, {SHA} for SHA-1
hashing, and {SSHA} for salted SHA-1 hashing.

• password: the password
• comment: a plain text comment for your own use

If you fail to specify a scheme, the password will need to be encrypted with the
crypt(3) function, for example with the help of the htpasswd command-line utility
from the Apache packages.

If you aren't too keen on installing Apache on your system just
for the sake of the htpasswd tool, you may resort to online tools,
as there are plenty of them available. Fire up your favorite search
engine and type online htpasswd.

Chapter 4

[131]

Access
Two important directives are brought up by this module: allow and deny. They let
you allow or deny access to a resource for a specific IP address or IP address range.

Both directives have the same syntax: allow IP | CIDR | unix: | all, where
IP is an IP address, CIDR is an IP address range (CIDR syntax), unix: represents all
UNIX domain sockets, and all specifies that the directive applies to all clients:

location {
 allow 127.0.0.1; # allow local IP address
 allow unix:; # allow UNIX domain sockets
 deny all; # deny all other IP addresses
}

Note that rules are processed from top-down—if your first instruction is deny all,
all possible allow exceptions that you place afterwards will have no effect. The
opposite is also true—if you start with allow all, all possible deny directives that
you place afterwards will have no effect, as you already allowed all the IP addresses.

Limit connections
The mechanism induced by this module is a little more complex than the regular
ones. It allows you to define the maximum number of simultaneous connections to
the server for a specific zone.

The first step is to define the zone using the limit_conn_zone directive:

• Directive syntax: limit_conn_zone $variable zone=name:size;
• $variable is the variable that will be used to differentiate one client from

another, typically $binary_remote_addr—the IP address of the client in the
binary format (this is more efficient than ASCII)

• name is an arbitrary name given to the zone
• size is the maximum size you allocate to the table storing session states

The following example defines the zones based on the client IP addresses:

limit_conn_zone $binary_remote_addr zone=myzone:10m;

Now that you have defined a zone, you may limit the connections using limit_conn:

limit_conn zone_name connection_limit;

Module Configuration

[132]

When applied to the previous example, it becomes:

location /downloads/ {
 limit_conn myzone 1;
}

As a result, requests that share the same $binary_remote_addr are subject to the
connection limit (one simultaneous connection). If the limit is reached, all additional
concurrent requests will be answered with a 503 Service unavailable HTTP
response. This response code can be overridden if you specify another code via the
limit_conn_status directive. If you wish to log client requests that are affected by
the limits you have set, enable the limit_conn_log_level directive, and specify the
log level (info | notice | warn | error).

Limit request
In a similar fashion, the Limit request module allows you to limit the number of
requests for a defined zone.

Defining the zone is done via the limit_req_zone directive; its syntax differs from
the Limit zone equivalent directive:

limit_req_zone $variable zone=name:max_memory_size rate=rate;

The directive parameters are identical except for the trailing rate: expressed in
requests per second (r/s) or requests per minute (r/m). It defines a request rate that
will be applied to clients where the zone is enabled. To apply a zone to a location,
use the limit_req directive:

limit_req zone=name burst=burst [nodelay];

The burst parameter defines the maximum possible bursts of requests—when the
amount of requests received from a client exceeds the limit defined in the zone,
the responses are delayed in a manner that respects the rate that you defined. To a
certain extent, only a maximum of burst requests will be accepted simultaneously.
Past this limit, Nginx returns a 503 Service Unavailable HTTP error response.
This response code can be overridden if you specify another code via the limit_
req_status directive.

limit_req_zone $binary_remote_addr zone=myzone:10m rate=2r/s;
[…]
location /downloads/ {
 limit_req zone=myzone burst=10;
 limit_req_status 404; # returns a 403 error if limit is exceeded
}

Chapter 4

[133]

If you wish to log client requests that are affected by the limits you have set, enable
the limit_req_log_level directive, and specify the log level (info | notice |
warn | error).

Auth_request
The auth_request module was implemented in the recent versions of Nginx, and
allows you to allow or deny access to a resource based on the result of a sub-request.
Nginx calls the URI that you specify via the auth_request directive: if the sub-
request returns a 2XX response code (that is, HTTP/200 OK), access is allowed. If the
sub-request returns a 401 or 403 status code, access is denied, and Nginx forwards
the response code to the client. Should the backend return any other response code,
Nginx will consider it to be an error and deny access to the resource.

location /downloads/ {
 # if the script below returns a 200 status code,
 # the download is authorized
 auth_request /authorization.php;
}

Additionally, the module offers a second directive called auth_request_set,
allowing you to set a variable after the sub-request is executed. You can insert
variables that originate from the sub-request upstream ($upstream_http_*) such as
$upstream_http_server or other HTTP headers from the server response.

location /downloads/ {
 # requests authorization from PHP script
 auth_request /authorization.php;
 # assuming authorization is granted, get filename from
 # sub-request response header and redirect
 auth_request_set $filename "${upstream_http_x_filename}.zip";
 rewrite ^ /documents/$filename;
}

Content and encoding
The following set of modules provides functionalities having an effect on the
contents served to the client, either by modifying the way the response is encoded,
by affecting the headers, or by generating a response from scratch.

Module Configuration

[134]

Empty GIF
The purpose of this module is to provide a directive that serves a 1 x 1 transparent
GIF image from the memory. Such files are sometimes used by web designers to
tweak the appearance of their website. With this directive, you get an empty GIF
straight from the memory instead of reading and processing an actual GIF file from
the storage space.

To utilize this feature, simply insert the empty_gif directive in the location of
your choice:

location = /empty.gif {
 empty_gif;
}

FLV and MP4
FLV and MP4 are separate modules enabling a simple functionality that becomes
useful when serving Flash (FLV) or MP4 video files. It parses a special argument of
the request, start, which indicates the offset of the section that the client wishes
to download or pseudo-stream. The video file must thus be accessed with the
following URI: video.flv?start=XXX. This parameter is prepared automatically by
mainstream video players such as JWPlayer.

This module is not included in the default Nginx build.

To utilize this feature, simply insert the flv or mp4 directive in the location of
your choice:

location ~* \.flv {
 flv;
}
location ~* \.mp4 {
 mp4;
}

Be aware that in case Nginx fails to seek the requested position within the video file,
the request will result in a 500 Internal Server Error HTTP response. JWPlayer
sometimes misinterprets this error, and simply displays a Video not found error message.

Chapter 4

[135]

HTTP headers
Two directives are introduced by this module that affect the header of the response
sent to the client.

First, add_header Name value [always] lets you add a new line in the response
headers, respecting the following syntax: Name: value. The line is added only for
responses with the following codes: 200, 201, 204, 301, 302, and 304. You may insert
variables in the value argument. If you specify always at the end of the directive
value, the header will always be added regardless of the response code.

Additionally, the expires directive allows you to control the value of the Expires and
Cache-Control HTTP header sent to the client, affecting the requests of the codes listed
previously. It accepts a single value among the following:

• off: Does not modify either of the headers
• A time value: The expiration date of the file is set to the current time +, the time

you specify. For example, expires 24h will return an expiry date set to 24
hours from now

• epoch: The expiration date of the file is set to January 1, 1970. The Cache-
Control header is set to no-cache

• max: The expiration date of the file is set to December 31, 2037. The Cache-
Control header is set to 10 years

Addition
The Addition module allows you (through simple directives) to add content before
or after the body of the HTTP response.

This module is not included in the default Nginx build.

The two main directives are:

add_before_body file_uri;
add_after_body file_uri;

As stated previously, Nginx triggers a sub-request for fetching the specified URI.
Additionally, you can define the type of files to which the content is appended in
case your location block pattern is not specific enough (default: text/html):

addition_types mime_type1 [mime_type2…];
addition_types *;

Module Configuration

[136]

Substitution
Along the same lines as that of the preceding module, the Substitution module
allows you to search and replace text directly from the response body:

sub_filter searched_text replacement_text;

This module is not included in the default Nginx build.

Two additional directives provide more flexibility:

• sub_filter_once (on or off, default on): Only replaces the text once, and
stops after the first occurrence.

• sub_filter_types (default text/html): Affects the additional MIME types
that are eligible for text replacement. The * wildcard is allowed.

Gzip filter
This module allows you to compress the response body with the Gzip algorithm before
sending it to the client. To enable Gzip compression, use the gzip directive (on or off)
at the http, server, location, and even the if level (though that is not recommended).
The following directives will help you further configure the filter options:

Directive Description
gzip_buffers

Context: http,
server, location

Defines the number and size of buffers to be used for storing the
compressed response.
Syntax: gzip_buffers amount size;
Default: gzip_buffers 4 4k (or 8k depending on the OS).

gzip_comp_level

Context: http,
server, location

Defines the compression level of the algorithm. The specified value
ranges from 1 (low compression, faster for the CPU) to 9 (high
compression, slower).
Syntax: Numeric value.
Default: 1

gzip_disable

Context: http,
server, location

Disables Gzip compression for the requests where the User-Agent
HTTP header matches the specified regular expression.
Syntax: Regular expression
Default: None

Chapter 4

[137]

Directive Description
gzip_http_
version

Context: http,
server, location

Enables Gzip compression for the specified protocol version.
Syntax: 1.0 or 1.1
Default: 1.1

gzip_min_length

Context: http,
server, location

If the response body length is inferior to the specified value, it is
not compressed.
Syntax: Numeric value (size)
Default: 0

gzip_proxied

Context: http,
server, location

Enables or disables Gzip compression for the body of responses
received from a proxy (see reverse-proxying mechanisms in later
chapters).
The directive accepts the following parameters; some can be
combined:

• off/any: Disables or enables compression for all requests
• expired: Enables compression if the Expires header

prevents caching
• no-cache/no-store/private: Enables compression

if the Cache-Control header is set to no-cache, no-store, or
private

• no_last_modified: Enables compression in case the Last-
Modified header is not set

• no_etag: Enables compression in case the ETag header is
not set

• auth: Enables compression in case an Authorization header
is set

gzip_types

Context: http,
server, location

Enables compression for types other than the default text/html
MIME type.
Syntax:

gzip_types mime_type1 [mime_type2…];
gzip_types *;

Default: text/html (cannot be disabled)
gzip_vary

Context: http,
server, location

Adds the Vary: Accept-Encoding HTTP header to the response.
Syntax: on or off
Default: off

Module Configuration

[138]

Directive Description
gzip_window

Context: http,
server, location

Sets the size of the window buffer (windowBits argument) for
Gzipping operations. This directive value is used for calls to
functions from the Zlib library.
Syntax: Numeric value (size)
Default: MAX_WBITS constant from the Zlib library

gzip_hash

Context: http,
server, location

Sets the amount of memory that should be allocated for the
internal compression state (memLevel argument). This directive
value is used for calls to functions from the Zlib library.
Syntax: Numeric value (size)
Default: MAX_MEM_LEVEL constant from the Zlib prerequisite
library

postpone_
gzipping

Context: http,
server, location

Defines a minimum data threshold to be reached before starting
the Gzip compression.
Syntax: Size (numeric value)
Default: 0

gzip_no_buffer

Context: http,
server, location

By default, Nginx waits until at least one buffer (defined by gzip_
buffers) is filled with data before sending the response to the
client. Enabling this directive disables buffering.
Syntax: on or off
Default: off

Gzip static
This module adds a simple functionality to the Gzip filter mechanism—when its
gzip_static directive (on, off, or always) is enabled, Nginx will automatically
look for a .gz file corresponding to the requested document before serving it. This
allows Nginx to send pre-compressed documents instead of compressing documents
on the fly at each request. Specifying always will force Nginx to serve the gzip
version regardless of whether the client accepts gzip encoding.

This module is not included in the default Nginx build.

If a client requests /documents/page.html, Nginx checks for the existence of a
/documents/page.html.gz file. If the .gz file is found, it is served to the client. Note
that Nginx does not generate .gz files itself, even after serving the requested files.

Chapter 4

[139]

Gunzip filter
With the Gunzip filter module, you can decompress a gzip-compressed response
sent from the backend in order to serve it raw to the client. For example, in cases
where the client browser is not able to process the gzipped files (Microsoft Internet
Explorer 6), simply insert gunzip on; in a location block to employ this module.
You can also set the buffer amount and size with gunzip_buffers amount size;
where amount is the amount of buffers to allocate, and size is the size of each
allocated buffer.

Charset filter
With the Charset filter module, you can control the character set of the response
body more accurately. Not only are you able to specify the value of the charset
argument of the Content-Type HTTP header (such as Content-Type: text/html;
charset=utf-8), but Nginx can also re-encode the data to a specified encoding
method automatically.

Directive Description
charset

Context: http,
server, location,
if

This directive adds the specified encoding to the Content-Type
header of the response. If the specified encoding differs from the
source_charset one, Nginx re-encodes the document.
Syntax: charset encoding | off;
Default: off
Example: charset utf-8;

source_charset

Context: http,
server, location,
if

Defines the initial encoding of the response; if the value specified in
the charset directive differs, Nginx re-encodes the document.
Syntax: source_charset encoding;

override_
charset

Context: http,
server, location,
if

When Nginx receives a response from the proxy or FastCGI
gateway, this directive defines whether or not the character
encoding should be checked and potentially overridden.
Syntax: on or off
Default: off

charset_types

Context: http,
server, location

Defines the MIME types that are eligible for re-encoding.
Syntax:
charset_types mime_type1 [mime_type2…];
charset_types * ;

Default: text/html, text/xml, text/plain, text/vnd.
wap.wml, application/x-javascript, application/
rss+xml

Module Configuration

[140]

Directive Description
charset_map

Context: http
Lets you define character re-encoding tables. Each line of the table
contains two hexadecimal codes to be exchanged. You will find re-
encoding tables for the koi8-r character set in the default Nginx
configuration folder (koi-win and koi-utf).
Syntax: charset_map src_encoding dest_encoding { … }

Memcached
Memcached is a daemon application that can be connected to via sockets. Its main
purpose, as the name suggests, is to provide an efficient distributed key/value
memory caching system. The Nginx Memcached module provides directives allowing
you to configure access to the Memcached daemon.

Directive Description
memcached_pass

Context: location, if
Defines the hostname and port of the Memcached
daemon.
Syntax: memcached_pass hostname:port;
Example: memcached_pass localhost:11211;

memcached_bind

Context: http, server, location
Forces Nginx to use the specified local IP address
for connecting to the Memcached server. This can
come in handy if your server has multiple network
cards connected to different networks.
Syntax: memcached_bind IP_address;
Example: memcached_bind 192.168.1.2;

memcached_connect_timeout

Context: http, server, location
Defines the connection timeout in milliseconds
(default: 60,000). Example: memcached_connect_
timeout 5000;

memcached_send_timeout

Context: http, server, location
Defines the data writing operations timeout
in milliseconds (default: 60,000). Example:
memcached_send_timeout 5,000;

memcached_read_timeout

Context: http, server, location
Defines the data reading operations timeout
in milliseconds (default: 60,000). Example:
memcached_read_timeout 5,000;

memcached_buffer_size

Context: http, server, location
Defines the size of the read and write buffer in
bytes (default: page size). Example: memcached_
buffer_size 8k;

Chapter 4

[141]

Directive Description
memcached_next_upstream

Context: http, server, location
When the memcached_pass directive is connected
to an upstream block (refer to the section on
upstream module), this directive defines the
conditions that should be matched in order to skip
to the next upstream server.
Syntax: Values selected among error timeout,
invalid_response, not_found, or off
Default: error timeout
Example: memcached_next_upstream off;

memcached_gzip_flag

Context: http, server, location
Checks for the presence of the specified flag in the
memcached server response. If the flag is present,
Nginx sets the Content-encoding header to
gzip to indicate that it will be serving gzipped
content.
Syntax: numeric flag
Default: (none)
Example: memcached_gzip_flag 1;

Additionally, you will need to define the $memcached_key variable, which defines
the key of the element that you are placing or fetching from the cache. You may, for
instance, use set $memcached_key $uri or set $memcached_key $uri?$args.

Note that the Nginx Memcached module is only able to retrieve data from the cache;
it does not store the results of requests. Storing data in the cache should be done
by a server-side script. You just need to make sure to employ the same key-naming
scheme in both your server-side scripts and the Nginx configuration. As an example,
we could decide to use memcached to retrieve data from the cache before passing the
request to a proxy if the requested URI is not found (see Chapter 7, From Apache to
Nginx, for more details about the Proxy module):

server {
 server_name example.com;
 […]
 location / {
 set $memcached_key $uri;
 memcached_pass 127.0.0.1:11211;
 error_page 404 @notcached;
 }
 location @notcached {
 internal;

Module Configuration

[142]

 # if the file is not found, forward request to proxy
 proxy_pass 127.0.0.1:8080;
 }
}

Image filter
This module provides image processing functionalities through the GD Graphics
Library (also known as gdlib).

This module is not included in the default Nginx build.

Make sure to employ the following directives on a location block that filters image
files only, such as location ~* \.(png|jpg|gif)$ { … }.

Directive Description
image_filter

Context: location
Lets you apply a transformation on the image before sending it
to the client. There are five options available:

• test: Makes sure that the requested document is an
image file, returns a 415 Unsupported media type
HTTP error if the test fails.

• size: Composes a simple JSON response indicating
information about the image such as the size and
type (for example, { "img": { "width":50,
"height":50, "type":"png"}}). If the file is
invalid, a simple {} is returned.

• resize width height: Resizes the image to the
specified dimensions.

• crop width height: Selects a portion of the image of
the specified dimensions.

• rotate 90 | 180 | 270: Rotates the image by the
specified angle (in degrees).

Example: image_filter resize 200 100;
image_filter_
buffer

Context: http, server,
location

Defines the maximum file size for the images to be processed.
Default: image_filter_buffer 1m;

Chapter 4

[143]

Directive Description
image_filter_jpeg_
quality

Context: http, server,
location

Defines the quality of the output JPEG images.
Default: image_filter_jpeg_quality 75;

image_filter_
transparency

Context: http, server,
location

By default, PNG and GIF images keep their existing
transparency during the operations that you perform by using
the Image Filter module. If you set this directive to off, all
existing transparency will be lost, but the image quality will be
improved.
Syntax: on or off
Default: on

image_filter_
sharpen

Context: http, server,
location

Sharpens the image by the specified percentage (value may
exceed 100).
Syntax: Numeric value
Default: 0

image_filter_
interlace

Context: http, server,
location

Enables interlacing of the output image. If the output image is a
JPG file, the image is generated in the progressive JPEG format.
Syntax: on or off
Default: off

Please note that when it comes to JPG images, Nginx automatically strips off the
metadata (such as EXIF) if it occupies more than five percent of the total space
of the file.

XSLT
The Nginx XSLT module allows you to apply an XSLT transform on an XML file or
response received from a backend server (proxy, FastCGI, and so on) before serving
the client.

This module is not included in the default Nginx build

Directive Description
xml_entities

Context: http,
server, location

Specifies the DTD file containing symbolic element definitions.
Syntax: File path
Example: xml_entities xml/entities.dtd;

Module Configuration

[144]

Directive Description
xslt_stylesheet

Context: location
Specifies the XSLT template file path with its parameters. Variables
may be inserted in the parameters.
Syntax: xslt_stylesheet template [param1] [param2…];
Example: xslt_stylesheet xml/sch.xslt param=value;

xslt_types

Context: http,
server, location

Defines the additional MIME types, other than text/xml, to which
the transforms may apply.
Syntax: MIME type
Example:

xslt_types text/xml text/plain;
xslt_types *;

xslt_paramxslt_
string_param

Context: http,
server, location

Both the directives allow defining parameters for XSLT stylesheets.
The difference lies in the way the specified value is interpreted: the
XPath expressions in the value are processed using xslt_param,
while xslt_string_param is used for plain character strings.
Syntax: xslt_param key value;

About your visitors
The following set of modules provides extra functionality that helps you find out
more information about the visitors by parsing client request headers for browser
name and version, assigning an identifier to requests presenting similarities, and
so on.

Browser
The Browser module parses the User-Agent HTTP header of the client request
in order to establish values for the variables that can be employed later in the
configuration. The three variables produced are:

• $modern_browser: If the client browser is identified as being a modern web
browser, the variable takes the value defined by the modern_browser_value
directive.

• $ancient_browser: If the client browser is identified as being an old web
browser, the variable takes the value defined by ancient_browser_value.

• $msie: This variable is set to 1 if the client is using a Microsoft IE browser.

Chapter 4

[145]

To help Nginx recognize the web browsers and for telling the old from the modern,
you need to insert multiple occurrences of the ancient_browser and modern_browser
directives:

modern_browser opera 10.0;

With this example, if the User-Agent HTTP header contains Opera 10.0, the client
browser is considered modern.

Map
Just like the Browser module, the Map module allows you to create maps of values
depending on a variable:

map $uri $variable {
 /page.html 0;
 /contact.html 1;
 /index.html 2;
 default 0;
}
rewrite ^ /index.php?page=$variable;

Note that the map directive can only be inserted within the http block. Following this
example, $variable may have three different values. If $uri was set to /page.html,
$variable is now defined as 0; if $uri was set to /contact.html, $variable is
now 1; if $uri was set to /index.html, $variable now equals 2. For all other cases
(default), $variable is set to 0. The last instruction rewrites the URL accordingly.
Apart from default, the map directive accepts another special keyword: hostnames.
It allows you to match the hostnames using wildcards such as *.domain.com.

Two additional directives allow you to tweak the way Nginx manages the
mechanism in memory:

• map_hash_max_size: Sets the maximum size of the hash table holding a map
• map_hash_bucket_size: Sets the maximum size of an entry in the map

Regular expressions may also be used in patterns if you prefix them with ~ (case
sensitive) or ~* (case insensitive):

map $http_referer $ref {
 ~google "Google";
 ~* yahoo "Yahoo";
 \~bing "Bing"; # not a regular expression due to the \ before the
tilde
 default $http_referer; # variables may be used
 }

Module Configuration

[146]

Geo
The purpose of this module is to provide a functionality that is quite similar to
the map directive—affecting a variable based on the client data (in this case, the IP
address). The syntax is slightly different in that you are allowed to specify IPv4 and
IPv6 address ranges (in CIDR format):

geo $variable {
 default unknown;
 127.0.0.1 local;
 123.12.3.0/24 uk;
 92.43.0.0/16 fr;
}

Note that the preceding block is being presented to you just for the sake of the
example and does not actually detect U.K. and French visitors; you'll have to use the
GeoIP module if you wish to achieve proper geographical location detection. In this
block, you may insert a number of directives that are specific to this module:

• delete: Allows you to remove the specified subnetwork from the mapping.
• default: The default value given to $variable in case the user's IP address

does not match any of the specified IP ranges.
• include: Allows you to include an external file.
• proxy: Defines a subnet of trusted addresses. If the user IP address is among

the trusted ones, the value of the X-Forwarded-For header is used as an IP
address instead of the socket IP address.

• proxy_recursive: If enabled, this will look for the value of the
X-Forwarded-For header even if the client IP address is not trusted.

• ranges: If you insert this directive as the first line of your geo block, it allows
you to specify IP ranges instead of CIDR masks. The following syntax is thus
permitted: 127.0.0.1-127.0.0.255 LOCAL;

GeoIP
Although the name suggests some similarities with the previous one, this optional
module provides accurate geographical information about your visitors by making
use of the MaxMind (http://www.maxmind.com) GeoIP binary databases. You need
to download the database files from the MaxMind website and place them in your
Nginx directory.

http://www.maxmind.com

Chapter 4

[147]

This module is not included in the default Nginx build.

All you have to do then is specify the database path with one of the following
directives:

geoip_country country.dat; # country information db
geoip_city city.dat; # city information db
geoip_org geoiporg.dat; # ISP/organization db

The first directive enables several variables: $geoip_country_code (two-letter
country code), $geoip_country_code3 (three-letter country code), and $geoip_
country_name (full country name). The second directive includes the same
variables, but provides additional information: $geoip_region, $geoip_city,
$geoip_postal_code, $geoip_city_continent_code, $geoip_latitude, $geoip_
longitude, $geoip_dma_code, $geoip_area_code, and $geoip_region_name.
The third directive offers information about the organization or ISP that owns the
specified IP address by filling up the $geoip_org variable.

If you need the variables to be encoded in UTF-8, simply add
the utf8 keyword at the end of the geoip_ directives.

UserID filter
This module assigns an identifier to the clients by issuing cookies. The identifier can
be accessed from the variables $uid_got and $uid_set further in the configuration.

Directive Description
userid

Context: http, server,
location

Enables or disables issuing and logging of cookies.
The directive accepts four possible values:

• on: Enables v2 cookies and logs them
• v1: Enables v1 cookies and logs them
• log: Does not send cookie data, but logs the

incoming cookies
• off: Does not send cookie data

Default value: userid off;

Module Configuration

[148]

Directive Description
userid_service

Context: http, server,
location

Defines the IP address of the server issuing the cookie.
Syntax: userid_service ip;
Default: IP address of the server

userid_name

Context: http, server,
location

Defines the name assigned to the cookie.
Syntax: userid_name name;
Default value: The user identifier

userid_domain

Context: http, server,
location

Defines the domain assigned to the cookie.
Syntax: userid_domain domain;
Default value: None (the domain part is not sent)

userid_path

Context: http, server,
location

Defines the path part of the cookie.
Syntax: userid_path path;
Default value: /

userid_expires

Context: http, server,
location

Defines the cookie expiration date.
Syntax: userid_expires date | max;
Default value: No expiration date

userid_p3p

Context: http, server,
location

Assigns a value to the P3P header sent with the cookie.
Syntax: userid_p3p data;
Default value: None

Referer
A simple directive is introduced by this module: valid_referers. Its purpose is to
check the Referer HTTP header from the client request, and possibly, to deny access
based on the value. If the referer is considered invalid, $invalid_referer is set to 1.
In the list of valid referers, you may employ three kinds of values:

• None: The absence of a referer is considered to be a valid referer
• Blocked: A masked referer (such as XXXXX) is also considered valid
• A server name: The specified server name is considered to be a valid referer

Following the definition of the $invalid_referer variable, you may, for example,
return an error code if the referer was found invalid:

valid_referers none blocked *.website.com *.google.com;
if ($invalid_referer) {
 return 403;
}

Chapter 4

[149]

Be aware that spoofing the Referer HTTP header is a very simple process, so
checking the referer of client requests should not be used as a security measure.

Two more directives are offered by this module: referer_hash_bucket_size and
referer_hash_max_size, which allow you to define the bucket size and maximum
size of the valid referers hash tables respectively.

Real IP
This module provides one simple feature—it replaces the client IP address by
the one specified in the X-Real-IP HTTP header for clients that visit your website
behind a proxy, or for retrieving IP addresses from the proper header if Nginx is
used as a backend server (it essentially has the same effect as Apache's mod_rpaf; see
Chapter 7, From Apache to Nginx, for more details). To enable this feature, you need to
insert the real_ip_header directive that defines the HTTP header to be exploited—
either X-Real-IP or X-Forwarded-For. The second step is to define the trusted IP
addresses, in other words, the clients that are allowed to make use of those headers.
This can be done thanks to the set_real_ip_from directive, which accepts both IP
addresses and CIDR address ranges:

real_ip_header X-Forwarded-For;
set_real_ip_from 192.168.0.0/16;
set_real_ip_from 127.0.0.1;
set_real_ip_from unix:; # trusts all UNIX-domain sockets

This module is not included in the default Nginx build.

Split Clients
The Split Clients module provides a resource-efficient way to split the visitor base
into subgroups based on the percentages that you specify. To distribute the visitors
into one group or another, Nginx hashes a value that you provide (such as the
visitor's IP address, cookie data, query arguments, and so on), and decides which
group the visitor should be affected to. The following example configuration divides
the visitors into three groups based on their IP address. If a visitor is affected to the
first 50 percent, the value of $variable will be set to group1:

split_clients "$remote_addr" $variable {
 50% "group1";
 30% "group2";
 20% "group3";
}

Module Configuration

[150]

location ~ \.php$ {
 set $args "${query_string}&group=${variable}";
}

SSL and security
Nginx provides secure HTTP functionalities through the SSL module, but also offers
an extra module called Secure Link that helps you protect your website and visitors in
a totally different way.

SSL
The SSL module enables HTTPS support, HTTP over SSL/TLS in particular. It gives
you the option to serve secure websites by providing a certificate, a certificate key,
and other parameters defined with the following directives:

This module is not included in the default Nginx build.

Directive Description
ssl

Context: http, server
Enables HTTPS for the specified server. This directive is
the equivalent of listen 443 ssl or listen port
ssl more generally.
Syntax: on or off
Default: ssl off;

ssl_certificate

Context: http, server
Sets the path of the PEM certificate.
Syntax: File path

ssl_certificate_key

Context: http, server
Sets the path of the PEM secret key file.
Syntax: File path

ssl_client_certificate

Context: http, server
Sets the path of the client PEM certificate.
Syntax: File path

ssl_crl

Context: http, server
Orders Nginx to load a CRL (Certificate Revocation
List) file, which allows checking the revocation status of
certificates.

ssl_dhparam

Context: http, server
Sets the path of the Diffie-Hellman parameters file.
Syntax: File path.

Chapter 4

[151]

Directive Description
ssl_protocols

Context: http, server
Specifies the protocol that should be employed.
Syntax: ssl_protocols [SSLv2] [SSLv3]
[TLSv1] [TLSv1.1] [TLSv1.2];

Default: ssl_protocols TLSv1 TLSv1.1
TLSv1.2;

ssl_ciphers

Context: http, server
Specifies the ciphers that should be employed. The
list of available ciphers can be obtained by running
the following command from the shell: openssl
ciphers.
Syntax: ssl_ciphers cipher1[:cipher2…];
Default: ssl_ciphers ALL:!ADH:RC4+RSA:+HIGH:
+MEDIUM:+LOW:+SSLv2:+EXP;

ssl_prefer_server_
ciphers

Context: http, server

Specifies whether server ciphers should be preferred
over client ciphers.
Syntax: on or off
Default: off

ssl_verify_client

Context: http, server
Enables verifying certificates to be transmitted by the
client and sets the result in the $ssl_client_verify.
The optional_no_ca value verifies the certificate if
there is one, but does not require it to be signed by a
trusted CA certificate.
Syntax: on | off | optional | optional_no_ca
Default: off

ssl_verify_depth

Context: http, server
Specifies the verification depth of the client certificate
chain.
Syntax: Numeric value
Default: 1

ssl_session_cache

Context: http, server
Configures the cache for SSL sessions.
Syntax: off, none, builtin:size or
shared:name:size

Default: off (disables SSL sessions)
ssl_session_timeout

Context: http, server
When the SSL sessions are enabled, this directive
defines the timeout for using session data.
Syntax: Time value
Default: 5 minutes

Module Configuration

[152]

Directive Description
ssl_password_phrase

Context: http, server
Specifies a file containing the passphrases for secret
keys. Each passphrase is specified on a separate line;
they are tried one after the other when loading a
certificate key.
Syntax: file name
Default: (none)

ssl_buffer_size

Context: http, server
Specifies the buffer size when serving requests over SSL.
Syntax: Size value
Default: 16k

ssl_session_tickets

Context: http, server
Enables TLS session tickets, allowing the client to
reconnect faster by skipping re-negotiation.
Syntax: on or off
Default: on

ssl_session_ticket_key

Context: http, server
Sets the path of the key file used to encrypt and decrypt
the TLS session tickets. By default, a random value is
generated.
Syntax: file name
Default: (none)

ssl_trusted_certificate

Context: http, server
Sets the path of a trusted certificate file (PEM format)
used to validate the authenticity of client certificates as
well as the stapling of OCSP responses. More about SSL
stapling can be found later on in the chapter.
Syntax: file name
Default: (none)

Additionally, the following variables are made available:

• $ssl_cipher: Indicates the cipher used for the current request
• $ssl_client_serial: Indicates the serial number of the client certificate
• $ssl_client_s_dn and $ssl_client_i_dn: Indicates the value of the

Subject and Issuer DN of the client certificate
• $ssl_protocol: Indicates the protocol in use for the current request
• $ssl_client_cert and $ssl_client_raw_cert: Returns the client

certificate data, which is raw data for the second variable
• $ssl_client_verify: Set to SUCCESS if the client certificate was

successfully verified
• $ssl_session_id: Allows you to retrieve the ID of an SSL session

Chapter 4

[153]

Setting up an SSL certificate
Although the SSL module offers a lot of possibilities, in most cases only a couple of
directives are actually useful for setting up a secure website. This guide will help you
to configure Nginx to use an SSL certificate for your website (in the example, your
website is identified by secure.website.com). Before doing so, ensure that you
already have the following elements at your disposal:

• A .key file generated with the following command: openssl genrsa -out
secure.website.com.key 1024 (other encryption levels work too).

• A .csr file generated with the following command: openssl req -new
-key secure.website.com.key -out secure.website.com.csr.

• Your website certificate file, as issued by the Certificate Authority, for
example, secure.website.com.crt. (Note: In order to obtain a certificate
from the CA, you will need to provide your .csr file.)

• The CA certificate file as issued by the CA (for example, gd_bundle.crt if
you purchased your certificate from http://www.GoDaddy.com).

The first step is to merge your website certificate and the CA certificate together with
the following command:

cat secure.website.com.crt gd_bundle.crt > combined.crt

You are then ready to configure Nginx for serving secure content:

server {
 listen 443;
 server_name secure.website.com;
 ssl on;
 ssl_certificate /path/to/combined.crt;
 ssl_certificate_key /path/to/secure.website.com.key;
 […]
}

http://www.GoDaddy.com

Module Configuration

[154]

SSL Stapling
SSL Stapling, also called Online Certificate Status Protocol (OCSP) Stapling, is a
technique that allows clients to easily connect and resume sessions to an SSL/TLS
server without having to contact the Certificate Authority, thus reducing the SSL
negotiation time. In normal OCSP transactions, the client normally contacts the
Certificate Authority so as to check the revocation status of the server's certificate.
In the case of high traffic websites, this can cause a huge stress on the CA servers.
An intermediary solution was designed—Stapling. The OCSP record is obtained
periodically from the CA by your server itself, and is stapled to exchanges with the
client. The OCSP record is cached by your server for a period of up to 48 hours in
order to limit communications with the CA.

Enabling SSL Stapling should thus speed up the communication between your
visitors and your server. Achieving this in Nginx is relatively simple: all you really
need is to insert three directives in your server block, and obtain a full trusted
certificate chain file (containing both the root and intermediate certificates) from
your CA.

• ssl_stapling on: enables SSL Stapling within the server block
• ssl_stapling_verify on: enables verification of OCSP responses

by the server
• ssl_trusted_certificate filename: where filename is the path of your

full trusted certificate file (extension should be .pem).

Two optional directives also exist, which allow you to modify the behavior of
this module:

• ssl_stapling_file filename: where filename is the path of a cached
OCSP record, overriding the record provided by the OCSP responder
specified in the certificate file.

• ssl_stapling_responder url: where url is the URL of your CA's OCSP
responder, overriding the URL specified in the certificate file.

If you are having issues connecting to the OCSP responder, make sure your Nginx
configuration contains a valid DNS resolver (using the resolver directive).

Chapter 4

[155]

SPDY
The SPDY module offers support for the SPDY protocol (the SPDY module is
not included by default). You can enable SPDY on your server by appending the
keyword spdy at the end of your listen directive.

server {
 listen 443 ssl spdy;
 […]
}

Due to the nature of SPDY, it can only be enabled over SSL. Two directives and two
variables are brought in by this module:

• spdy_chunk_size: sets the size of the SPDY chunks
• spdy_headers_comp: sets the compression level for headers (0 to disable, 1 to

9 from lowest/fastest to highest/slowest compression)
• $spdy: this variable contains the SPDY protocol version if SPDY is used, an

empty string otherwise
• $spdy_request_priority: this variable indicates the request priority if

SPDY is used, an empty string otherwise

SPDY is a protocol developed by Google, aiming to improve web
latency and security. Although its utility was demonstrated (albeit
not always significantly), Google decided to abandon the project
after the HTTP/2 standard was ratified. As a result, SPDY support
will be officially withdrawn during the first half of 2016.

Secure link
Totally independent from the SSL module, Secure link provides basic protection by
checking the presence of a specific hash in the URL before allowing the user to access
a resource:

location /downloads/ {
secure_link_md5 "secret";
secure_link $arg_hash,$arg_expires;
 if ($secure_link = "") {
 return 403;
 }
}

Module Configuration

[156]

With such a configuration, documents in the /downloads/ folder must be accessed
via a URL containing a query string parameter hash=XXX (note the $arg_hash in the
example), where XXX is the MD5 hash of the secret you defined through the secure_
link_md5 directive. The second argument of the secure_link directive is a UNIX
timestamp defining the expiration date. The $secure_link variable is empty if the
URI does not contain the proper hash or if the date has expired. Otherwise, it is
set to 1.

This module is not included in the default Nginx build.

Other miscellaneous modules
The remaining three modules are optional (all three need to be enabled at compile
time), and provide additional advanced functionality.

Stub status
The Stub status module was designed to provide information about the current state
of the server, such as the amount of active connections, the total handled requests,
and more. To activate it, place the stub_status directive in a location block. All
requests matching the location block will produce the status page:

location = /nginx_status {
 stub_status on;
 allow 127.0.0.1; # you may want to protect the information
 deny all;
}

This module is not included in the default Nginx build.

An example result produced by Nginx:

Active connections: 1
server accepts handled requests
 10 10 23
Reading: 0 Writing: 1 Waiting: 0

It's interesting to note that there are several server monitoring solutions, such as
Monitorix, that offer Nginx support through the Stub status page by calling it at
regular intervals and parsing the statistics.

Chapter 4

[157]

Degradation
The HTTP Degradation module configures your server to return an error page when
your server runs low on memory. It works by defining a memory amount that is to
be considered low, and then specifies the locations for which you wish to enable the
degradation check:

degradation sbrk=500m; # to be inserted at the http block level
degrade 204; # in a location block, specify the error code (204 or
444) to return in case the server condition has degraded

Google-perftools
This module interfaces the Google Performance Tools profiling mechanism for the
Nginx worker processes. The tool generates a report based on the performance
analysis of the executable code. More information can be discovered from the official
website of the project http://code.google.com/p/google-perftools/.

This module is not included in the default Nginx build.

In order to enable this feature, you need to specify the path of the report file that will
be generated using the google_perftools_profiles directive:

google_perftools_profiles logs/profiles;

WebDAV
WebDAV is an extension of the well-known HTTP protocol. While HTTP was
designed for visitors to download resources from a website (in other words, reading
data), WebDAV extends the functionality of web servers by adding write operations
such as creating files and folders, moving and copying files, and more. The Nginx
WebDAV module implements a small subset of the WebDAV protocol:

This module is not included in the default Nginx build.

Directive Description
dav_methods

Context: http, server,
location

Selects the DAV methods you want to enable.
Syntax: dav_methods [off | [PUT] [DELETE]
[MKCOL] [COPY] [MOVE]];

Default: off

http://code.google.com/p/google-perftools/

Module Configuration

[158]

Directive Description
dav_access

Context: http, server,
location

Defines access permissions at the current level.
Syntax: dav_access [user:r|w|rw] [group:r|w|rw]
[all:r|w|rw];

Default: dav_access user:rw;
create_full_put_
path

Context: http, server,
location

This directive defines the behavior when a client requests
creation of a file in a directory that does not exist. If set to on,
the directory path is created. If set to off, the file creation fails.
Syntax: on or off
Default: off

min_delete_depth

Context: http, server,
location

This directive defines a minimum URI depth for deleting files
or directories when processing the DELETE command.
Syntax: Numeric value
Default: 0

Third-party modules
The Nginx community has been growing larger over the past few years, and
many additional modules have been written by third-party developers. These
can be downloaded from the official wiki website http://wiki.nginx.org/
nginx3rdPartyModules.

The currently available modules offer a wide range of new possibilities, among
which are the following:

• An Access Key module to protect your documents in a fashion similar to
Secure link, by Mykola Grechukh

• A Fancy Indexes module that improves the automatic directory listings
generated by Nginx, by Adrian Perez de Castro

• The Headers More module, which improves flexibility with HTTP headers,
by Yichun Zhang (agentzh)

• Many more features for various parts of the web server

Chapter 4

[159]

To integrate a third-party module into your Nginx build, you need to follow these
three simple steps:

1. Download the .tar.gz archive associated with the module that you wish
to download.

2. Extract the archive with the following command: tar xzf module.tar.gz.
3. Configure your Nginx build with the following command:

./configure --add-module=/module/source/path […]

Once you have finished building and installing the application, the module is
available just like a regular Nginx module with its directives and variables.

If you are interested in writing Nginx modules yourself, Evan Miller published an
excellent walkthrough: Emiller's Guide to Nginx Module Development. The complete
guide may be consulted from his personal website at http://www.evanmiller.org/.

Summary
All throughout this chapter, we have discovered modules that help you in improving
or fine-tuning the configuration of your web server. Nginx fiercely stands up to other
concurrent web servers in terms of functionality, and its approach towards virtual
hosts and the way they are configured will probably convince many administrators
to make the switch.

Three additional modules were left out though. The FastCGI module will be
approached in the next chapter, as it will allow us to configure a gateway to
applications such as PHP or Python. The second one, the proxy module, which
lets us design complex setups, will be described in Chapter 7, From Apache to Nginx.
Finally, The upstream module will be detailed in Chapter 8, Introducing Load Balancing
and Optimization.

http://www.evanmiller.org/

[161]

PHP and Python with Nginx
The first decade of the twenty-first century has been the decade of server-side
technologies. Over the past fifteen years or so, an overwhelming majority of websites
have migrated from simple static HTML content to highly and fully dynamic pages,
taking the Web to an entirely new level in terms of interaction with visitors. Software
solutions, including open source ones, emerged quickly and some became mature
enough to process high-traffic websites. In this chapter, we will study the ability
of Nginx to interact with these applications. We have selected two applications for
different reasons. The first one is, obviously, PHP, W3Techs, a website specializing in
web technology surveys, reveals that as of June 2015, PHP empowers over 80 percent
of the websites designed with a server-side language. The second language in our
selection is Python due to the way it is installed and configured to work with Nginx.
The mechanism, as we will discover soon, effortlessly applies to other applications
such as Perl or Ruby on Rails.

This chapter covers the following topics:

• Discovering the CGI and FastCGI technologies
• The Nginx FastCGI and similar modules
• Setting up PHP and PHP-FPM
• Setting up Python and Django
• Configuring Nginx to work with PHP and Python

PHP and Python with Nginx

[162]

An introduction to FastCGI
Before we begin, you should know that, as the name suggests, FastCGI is actually
a variation of CGI. Therefore, explaining CGI first is in order. The improvements
introduced by FastCGI are detailed in the following sections.

Understanding the CGI mechanism
The original purpose of a web server was merely to respond to requests from clients by
serving the files located on a storage device. The client sends a request to download a
file, the server processes the request and sends the appropriate response: 200 OK if the
file can be served normally, 404 if the file was not found, and other variants.

Chapter 5

[163]

This mechanism has been in use since the beginning of the World Wide Web.
However, as stated before, static websites are being progressively abandoned at the
expense of dynamic ones that contain scripts which are processed by applications
such as PHP and Python among others. The web-serving mechanism thus evolved
into the following:

When a client attempts to visit a dynamic page, the web server receives the request
and forwards it to a third-party application. The application processes the script
independently and returns the produced response to the web server, which then
forwards the response back to the client.

In order for the web server to communicate with that application, the CGI protocol
was invented in the early 1990s.

PHP and Python with Nginx

[164]

The Common Gateway Interface
As stated in RFC 3875 (CGI protocol v1.1), designed by the Internet Society (ISOC):

The Common Gateway Interface (CGI) allows an HTTP server and a CGI script to
share responsibility for responding to client requests. […] The server is responsible
for managing connection, data transfer, transport, and network issues related to the
client request, whereas the CGI script handles the application issues such as data
access and document processing.

CGI is the protocol that describes the way information is exchanged between the
web server (Nginx) and the gateway application (PHP, Python, and so on). In
practice, when the web server receives a request that should be forwarded to the
gateway application, it simply executes the command corresponding to the desired
application, for example, /usr/bin/php. Details about the client request (such as
the User Agent and other request information) are passed either as command-line
arguments or in environment variables, while actual data from POST or PUT requests
is transmitted via the standard input. The invoked application then writes the
contents of the processed document to the standard output, which is recaptured by
the web server.

While this technology seems simple and efficient enough at first, it comes with a few
major drawbacks:

• A unique process is spawned for each request. Memory and other context
information are lost from one request to another.

• Starting up a process can be resource-consuming for the system. Massive
amounts of simultaneous requests (each spawning a process) could quickly
clutter a server.

• Designing an architecture where the web server and the gateway application
would be located on different computers seems difficult, if not impossible.

Chapter 5

[165]

Fast Common Gateway Interface
The issues mentioned in the Common Gateway Interface (CGI) section render
the CGI protocol relatively inefficient for servers that are subject to heavy loads. In
the mid-90s, the will to find solutions led Open Market to develop an evolution of
CGI: Fast Common Gateway Interface (FastCGI). It has become a major standard
over the past fifteen years, and most web servers now offer the functionality, even
proprietary server software such as Microsoft IIS.

Although the purpose remains the same, FastCGI offers significant improvements
over CGI with the establishment of the following principles:

• Instead of spawning a new process for each request, FastCGI employs
persistent processes that come with the ability to handle multiple requests.

• The web server and the gateway application communicate with the use of
sockets such as TCP or POSIX Local IPC sockets. Consequently, the web
server and backend processes may be located on two different computers on
a network.

• The web server forwards the client request to the gateway and receives the
response within a single connection. Additional requests may also follow
without needing to create additional connections. Note that on most web
servers, including Nginx and Apache, the implementation of FastCGI does
not (or at least not fully) support multiplexing.

• Since FastCGI is a socket-based protocol, it can be implemented on any
platform with any programming language.

Throughout this chapter, we will be setting up PHP and Python via FastCGI.
Additionally, you will find the mechanism to be relatively similar in the case
of other applications such as Perl or Ruby on Rails.

Designing a FastCGI-powered architecture is actually not as complex as you might
imagine. As long as you have the web server and the backend application running,
the only difficulty that remains is to establish the connection between both parties.
The first step in that perspective is to configure the way Nginx will communicate
with the FastCGI application. FastCGI's compatibility with Nginx is introduced by
the FastCGI module, which is included in the default Nginx builds (including the
ones that are installed via software repositories). This section details the directives
that are made available by the module.

PHP and Python with Nginx

[166]

uWSGI and SCGI
Before reading the rest of the chapter, you should know that Nginx offers two other
CGI-derived module implementations:

• The uWSGI module allows Nginx to communicate with applications through
the uwsgi protocol, which is derived from Web Server Gateway Interface
(WSGI). The most commonly used (if not unique) server implementing
the uwsgi protocol is the unoriginally-named uWSGI server. Its latest
documentation can be found at http://uwsgi-docs.readthedocs.org.
This module will prove useful to Python adepts considering that the uWSGI
project was designed mainly for Python applications.

• SCGI, which stands for Simple Common Gateway Interface, is a variant of the
CGI protocol, much like FastCGI. Younger than FastCGI since its specification
was first published in 2006, SCGI was designed to be easier to implement and
as its name suggests: simple. It is not related to a particular programming
language. SCGI interfaces and modules can be found in a variety of software
projects such as Apache, IIS, Java, Cherokee, and a lot more.

There are no major differences in the way Nginx handles the FastCGI, uwsgi, and
SCGI protocols: each of these have their respective module containing similarly named
directives. The following table lists a couple of directives from the FastCGI module,
which are detailed in the following sections, and their uWSGI and SCGI equivalents:

FastCGI module uWSGI equivalent SCGI equivalent
fastcgi_pass uwsgi_pass scgi_pass

fastcgi_cache uwsgi_cache scgi_cache

fastcgi_temp_path uwsgi_temp_path scgi_temp_path

Directive names and syntaxes are identical. In addition, the Nginx development
team has been maintaining all three modules in parallel. New directives or directive
updates are always applied to all of them. As such, the following sections will
document Nginx's implementation of the FastCGI protocol (since it is the most
widely used), but they also apply to uWSGI and SCGI.

http://uwsgi-docs.readthedocs.org

Chapter 5

[167]

The main directives
The FastCGI, uWSGI, and SCGI modules are included in the default Nginx build.
You do not need to enable them manually at compile time. The directives listed
in the following table allow you to configure the way Nginx passes requests to the
FastCGI/uWSGI/SCGI application. Note that you will find the fastcgi_params,
uwsgi_params, and scgi_params files, which define the directive values that are
valid for most situations, in the Nginx configuration folder:

Directive Description
fastcgi_pass

Context: location, if
This directive specifies that the request should be passed to
the FastCGI server by indicating its location:

• For TCP sockets, the syntax is: fastcgi_pass
hostname:port;

• For Unix domain sockets, the syntax is: fastcgi_
pass unix:/path/to/fastcgi.socket;

• You may also refer to upstream blocks (read the
following sections for more information): fastcgi_
pass myblock;

Examples:
fastcgi_pass localhost:9000;
fastcgi_pass 127.0.0.1:9000;
fastcgi_pass unix:/tmp/fastcgi.socket;
Using an upstream block
upstream fastcgi {
 server 127.0.0.1:9000;
 server 127.0.0.1:9001;
}
location ~* \.php$ {
 fastcgi_pass fastcgi;
}

PHP and Python with Nginx

[168]

Directive Description
fastcgi_param

Context: http, server,
location

This directive allows you to configure the request passed
to FastCGI. Two parameters are strictly required for all
FastCGI requests: SCRIPT_FILENAME and QUERY_STRING.
Example:
fastcgi_param SCRIPT_FILENAME /home/website.
com/www$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;

As for POST requests, additional parameters are
required: REQUEST_METHOD, CONTENT_TYPE, and
CONTENT_LENGTH:

fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

The fastcgi_params file that you will find in the Nginx
configuration folder already includes all of the necessary
parameter definitions (except for the SCRIPT_FILENAME),
which you need to specify for each of your FastCGI
configurations.
If the parameter name begins with HTTP_, it will override
the potentially existing HTTP headers of the client request.
You may optionally specify the if_not_empty keyword,
forcing Nginx to transmit the parameter only if the specified
value is not empty.
Syntax: fastcgi_param PARAM value [if_not_
empty];

fastcgi_bind

Context: http, server,
location

This directive binds the socket to a local IP address, allowing
you to specify the network interface you want to use for
FastCGI communications.
Syntax: fastcgi_bind IP_address;

fastcgi_pass_header

Context: http, server,
location

This directive specifies the additional headers that should be
passed to the FastCGI server.
Syntax: fastcgi_pass_header headername;
Example:

fastcgi_pass_header Authorization;

Chapter 5

[169]

Directive Description
fastcgi_hide_header

Context: http, server,
location

This directive specifies the headers that should be hidden
from the FastCGI server (headers that Nginx does not
forward).
Syntax: fastcgi_hide_header headername;
Example:
fastcgi_hide_header X-Forwarded-For;

fastcgi_index

Context: http, server,
location

The FastCGI server does not support automatic directory
indexes. If the requested URI ends with a /, Nginx appends
the value fastcgi_index.
Syntax: fastcgi_index filename;
Example:
fastcgi_index index.php;

fastcgi_ignore_
client_abort

Context: http, server,
location

This directive lets you define what happens if the client
aborts their request to the web server. If the directive is
turned on, Nginx ignores the abort request and finishes
processing the request. If it's turned off, Nginx does not
ignore the abort request. It interrupts the request treatment
and aborts all related communication with the FastCGI
server.
Syntax: on or off
Default: off

fastcgi_intercept_
errors

Context: http, server,
location

This directive defines whether or not Nginx should process
the errors returned by the gateway or directly return error
pages to the client. (Note: Error processing is done via the
error_page directive of Nginx.)
Syntax: on or off
Default: off

fastcgi_read_timeout

Context: http, server,
location

This directive defines the timeout for the response from the
FastCGI application. If Nginx does not receive the response
within this period, the 504 Gateway Timeout HTTP error
is returned.
Syntax: Numerical value (in seconds)
Default: 60 seconds

PHP and Python with Nginx

[170]

Directive Description
fastcgi_connect_
timeout

Context: http, server,
location

This directive defines the backend server connection
timeout. This is different from the read/send timeout.
If Nginx is already connected to the backend server, the
fastcgi_connect_timeout is not applicable.
Syntax: Time value (in seconds)
Default: 60 seconds

fastcgi_send_timeout

Context: http, server,
location

This is the timeout for sending data to the backend server.
The timeout isn't applied to the entire response delay but
between two write operations.
Syntax: Time value (in seconds)
Default value: 60 seconds

fastcgi_split_path_
info

Context: location

A directive particularly useful for URLs of the following
form: http://website.com/page.php/param1/
param2/.
The directive splits the path information according to the
specified regular expression:
fastcgi_split_path_info ^(.+\.php)(.*)$;

This affects two variables:
• $fastcgi_script_name: The filename of

the actual script to be executed (in the example:
page.php)

• $fastcgi_path_info: The part of the URL that
is after the script name (in the example: /param1/
param2/)

These can be employed in further parameter definitions:
fastcgi_param SCRIPT_FILENAME /home/website.
com/www$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

Syntax: A regular expression
fastcgi_store

Context: http, server,
location

This directive enables a simple cache store where responses
from the FastCGI application are stored as files on the
storage device. When the same URI is requested again, the
document is directly served from the cache store instead of
forwarding the request to the FastCGI application.
This directive enables or disables the cache store.
Syntax: on or off

http://website.com/page.php/param1/param2/
http://website.com/page.php/param1/param2/

Chapter 5

[171]

Directive Description
fastcgi_store_access

Context: http, server,
location

This directive defines the access permissions applied to the
files created in the context of the cache store.
Syntax: fastcgi_store_access [user:r|w|rw]
[group:r|w|rw] [all:r|w|rw];

Default: fastcgi_store_access user:rw;
fastcgi_temp_path

Context: http, server,
location

This directive sets the path of temporary and cache store
files.
Syntax: The file path
Example:
fastcgi_temp_path /tmp/nginx_fastcgi;

fastcgi_max_temp_
file_size

Context: http, server,
location

Set this directive to 0 to disable the use of temporary files for
FastCGI requests or to specify a maximum file size.
Default value: 1 GB
Syntax: Size value
Example: fastcgi_max_temp_file_size 5m;

fastcgi_temp_file_
write_size

Context: http, server,
location

This directive sets the write buffer size when saving
temporary files to the storage device.
Syntax: Size value
Default value: 8k or 16k

fastcgi_send_lowat

Context: http, server,
location

This option allows you to make use of the SO_SNDLOWAT
flag for TCP sockets under FreeBSD only. This value defines
the minimum number of bytes in the buffer for output
operations.
Syntax: Numerical value (size)
Default value: 0

fastcgi_pass_
request_body

fastcgi_pass_
request_headers

Context: http, server,
location

This directive defines whether or not the request body and
extra request headers should be passed on to the backend
server.
Syntax: on or off;
Default: on

PHP and Python with Nginx

[172]

Directive Description
fastcgi_ignore_
headers

Context: http, server,
location

This directive prevents Nginx from processing one or more
of the following headers from the backend server response:

• X-Accel-Redirect

• X-Accel-Expires

• Expires

• Cache-Control

• X-Accel-Limit-Rate

• X-Accel-Buffering

• X-Accel-Charset

Syntax: fastcgi_ignore_headers header1
[header2…];

fastcgi_next_
upstream

Context: http, server,
location

When fastcgi_pass is connected to an upstream block,
this directive defines the cases where requests should be
abandoned and re-sent to the next upstream server of the
block. The directive accepts a combination of values among
the following:

• error: An error occurs while communicating or
attempting to communicate with the server

• timeout: A timeout occurs during transfers or
connection attempts

• invalid_header: The backend server returns an
empty or invalid response

• http_500, http_502, http_503, http_504,
http_404: In case such HTTP errors occur, Nginx
switches to the next upstream

• off: Forbids the use of the next upstream server

Examples:
fastcgi_next_upstream error timeout http_504;
fastcgi_next_upstream timeout invalid_header;

fastcgi_next_
upstream_timeout

Context: http, server,
location

Defines the timeout to be used in conjunction with
fastcgi_next_upstream. Setting this directive to 0
disables it.
Syntax: Time value (in seconds)

fastcgi_next_
upstream_tries

Context: http, server,
location

Defines the maximum number of upstream servers to be
tried before returning an error message. This is to be used in
conjunction with fastcgi_next_upstream.
Syntax: Numerical value (default: 0)

Chapter 5

[173]

Directive Description
fastcgi_catch_stderr

Context: http, server,
location

This directive allows you to intercept some of the error
messages sent to stderr (the Standard Error stream) and
store them in the Nginx error log.
Syntax: fastcgi_catch_stderr filter;
Example: fastcgi_catch_stderr "PHP Fatal
error:";

fastcgi_keep_conn

Context: http, server,
location

When set to on, Nginx will conserve the connection to the
FastCGI server, thus reducing the overhead.
Syntax: on or off (default: off).
Note that there is no equivalent directive in the uWSGI and
SCGI modules.

fastcgi_force_ranges

Context: http, server,
location

When set to on, Nginx will enable byte-range support on
responses from the FastCGI backend.
Syntax: on or off (default: off).

fastcgi_limit_rate

Context: http, server,
location

Allows you to limit the rate at which Nginx downloads the
response from the FastCGI backend.
Syntax: Numerical value (bytes per second)

FastCGI caching and buffering
Once you have correctly configured Nginx to work with your FastCGI application,
you may optionally make use of the following directives, which will help you
improve the overall server performance by setting up a cache system. Additionally,
FastCGI buffering allows you to buffer the responses from the FastCGI backend
instead of synchronously forwarding them to the client.

Directive Description
fastcgi_cache

Context: http, server,
location

This directive defines a cache zone. The identifier given to
the zone is to be reused in further directives.
Syntax: fastcgi_cache zonename;
Example: fastcgi_cache cache1;

PHP and Python with Nginx

[174]

Directive Description
fastcgi_cache_key

Context: http, server,
location

This directive defines the cache key. In other words, it is
what differentiates one cache entry from another. If the
cache key is set to $uri, as a result, all requests with a
similar $uri will correspond to the same cache entry. It's
not enough for most dynamic websites; you also need to
include the query string arguments in the cache key so that
/index.php and /index.php?page=contact do not
point to the same cache entry.
Syntax: fastcgi_cache_key key;
Example: fastcgi_cache "$scheme$host$request_
uri $cookie_user";

fastcgi_cache_methods

Context: http, server,
location

This directive defines the HTTP methods eligible for
caching. GET and HEAD are included by default and cannot
be disabled. You may, for example, enable the caching of
POST requests.
Syntax: fastcgi_cache_methods METHOD;
Example: fastcgi_cache_methods POST;

fastcgi_cache_min_
uses

Context: http, server,
location

This directive defines the minimum number of hits
before a request becomes eligible for caching. By default,
the response of a request is cached after one hit (further
requests with the same cache key will receive the cached
response).
Syntax: Numerical value
Example: fastcgi_cache_min_uses 1;

Chapter 5

[175]

Directive Description
fastcgi_cache_path

Context: http, server,
location

This directive indicates the directory for storing the cached
files as well as other parameters.
Syntax: fastcgi_cache_path path
[levels=numbers] keys_zone=name:size
[inactive=time] [max_size=size] [loader_
files=number] [loader_sleep=time] [loader_
threshold=time];

The additional parameters are:
• levels: Indicates the depth of subdirectories (1:2

indicates that subfolders will be created down to
two levels)

• keys_zone: Selects the zone that you previously
declared with the fastcgi_cache directive, and
indicates the size to be occupied in memory

• inactive: If a cached response is not used within
the specified time frame, it's removed from the
cache (default: 10 minutes)

• max_size: Defines the maximum size of the entire
cache

• loader_files, loaded_sleep, and loader_
threshold: Configures the cache loader: the
amount of files it processes in one read cycle
(loader_files, default: 100 files), the pause time
between read cycles (loader_sleep, default: 50
ms), and the maximum duration of a read cycle
(loader_threshold, default: 200 ms)

Example: fastcgi_cache_path /tmp/nginx_cache
levels=1:2 zone=zone1:10m inactive=10m max_
size=200M;

fastcgi_cache_use_
stale

Context: http, server,
location

This directive defines whether or not Nginx should serve
stale cached data in certain circumstances (with regard to
the gateway). If you use fastcgi_cache_use_stale
timeout, and if the gateway times out, then Nginx will
serve cached data.
Syntax: fastcgi_cache_use_stale [updating]
[error] [timeout] [invalid_header]
[http_500];

Example: fastcgi_cache_use_stale error
timeout;

PHP and Python with Nginx

[176]

Directive Description
fastcgi_cache_valid

Context: http, server,
location

This directive allows you to customize the caching time for
different kinds of response code. You may cache responses
associated to the 404 error codes for 1 minute, and in
the opposite cache, 200 OK responses for 10 minutes
or more. This directive can be inserted more than once,
demonstrated as follows:

fastcgi_cache_valid 404 1m;
fastcgi_cache_valid 500 502 504 5m;
fastcgi_cache_valid 200 10;

Syntax: fastcgi_cache_valid code1 [code2…]
time;

fastcgi_no_cache

Context: http, server,
location

You may want to disable caching for requests that meet
certain conditions. The directive accepts a series of
variables. If at least one of these variables has a value (not
an empty string and not 0), this request will not be stored
in cache.
Syntax: fastcgi_no_cache $variable1
[$variable2] […];

Example: fastcgi_no_cache $args_nocaching;
fastcgi_cache_bypass

Context: http, server,
location

This directive functions in a similar manner to fastcgi_
no_cache, except that it tells Nginx whether or not
the request should be loaded from cache, if it can be (as
opposed to deciding whether to store the request result in
cache).
Syntax: fastcgi_cache_bypass $variable1
[$variable2] […];

Example: fastcgi_cache_bypass $cookie_bypass_
cache;

fastcgi_cache_lock,
fastcgi_cache_lock_
timeout, fastcgi_
cache_lock_age

Context: http, server,
location

If set to on, fastcgi_cache_lock prevents repopulating
the existing cache elements for the duration specified by
fastcgi_cache_lock_age (fastcgi_cache_lock_
timeout achieves the same result, except the response
isn't cached).
Example:
fastcgi_cache_lock on;
fastcgi_cache_lock_timeout 10s;

Chapter 5

[177]

Directive Description
fastcgi_cache_
revalidate

Context: http, server,
location

When enabled, Nginx revalidates the expired cache items
when instructed to do so by the If-modified-since
and If-none-match headers.
Syntax: fastcgi_cache_revalidate on | off;
Default: off

fastcgi_buffering,
fastcgi_request_
buffering

Context: http, server,
location

Enables or disables the buffering of responses (or client
requests, in the case of fastcgi_request_buffers)
sent by a FastCGI backend. When disabled, Nginx
forwards responses to the client synchronously. When
enabled, responses are stored in buffers until the backend
finishes sending the entire content and then sent to the
client.
Syntax: fastcgi_buffering on | off;
Default: on

fastcgi_buffers

Context: http, server,
location

This directive sets the amount and size of buffers that will
be used for reading the response data from the FastCGI
application.
Syntax: fastcgi_buffers amount size;
Default: 8 buffers, 4 k or 8 k each, depending on the
platform
Example:
fastcgi_buffers 8 4k;

fastcgi_buffer_size

Context: http, server,
location

This directive sets the size of the buffer for reading the
beginning of the response from the FastCGI application,
which usually contains simple header data.
The default value corresponds to the size of 1 buffer as
defined by the previous directive (fastcgi_buffers).
Syntax: Size value
Example:
fastcgi_buffer_size 4k;

PHP and Python with Nginx

[178]

The following is a full Nginx FastCGI cache configuration example making use of
most of the cache-related directives described in the preceding table:

fastcgi_cache phpcache;
fastcgi_cache_key "$scheme$host$request_uri"; # $request_uri includes
the request arguments (such as /page.php?arg=value)
fastcgi_cache_min_uses 2; # after 2 hits, a request receives a cached
response
fastcgi_cache_path /tmp/cache levels=1:2 keys_zone=phpcache:10m
inactive=30m max_size=500M;
fastcgi_cache_use_stale updating timeout;
fastcgi_cache_valid 404 1m;
fastcgi_cache_valid 500 502 504 5m;

Since these directives are valid for pretty much any virtual host configuration, you
may want to save these in a separate file (fastcgi_cache) that you can include at the
appropriate place:

server {
 server_name website.com;
 location ~* \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME /home/website.com/www$fastcgi_
script_name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params;
 include fastcgi_cache;
 }
}

PHP with Nginx
We are now going to configure PHP to work together with Nginx via FastCGI. Why
FastCGI in particular, as opposed to the other two alternatives SCGI and uWSGI?
The answer came with the release of PHP version 5.3.3. As of this version, all releases
come with an integrated FastCGI process manager allowing you to easily connect
applications implementing the FastCGI protocol. The only requirement is that your
PHP build should have been configured with the --enable-fpm argument. If you
are unsure whether your current setup includes the necessary components, worry
not: a section of this chapter is dedicated to building PHP with everything we need.
Alternatively, the php-fpm or php5-fpm packages can be found in most repositories.

Chapter 5

[179]

Architecture
Before starting the setup process, it's important to understand the way PHP interacts
with Nginx. We have established that FastCGI is a communication protocol running
through sockets, which implies that there is a client and a server. The client is
obviously Nginx. As for the server, well, the answer is actually more complicated
than just "PHP".

By default, PHP supports the FastCGI protocol. The PHP binary processes scripts
and is able to interact with Nginx via sockets. However, we are going to use an
additional component to improve the overall process management: the FastCGI
Process Manager, also known as PHP-FPM.

PHP-FPM takes FastCGI support to an entirely new level. Its numerous features are
detailed in the next section.

PHP-FPM
The process manager, as its name suggests, is a script that manages the PHP
processes. It awaits and receives instructions from Nginx, and runs the requested
PHP scripts under the environment that you configure. In practice, PHP-FPM
introduces a number of possibilities such as:

• Automatically daemonizing PHP (turning it into a background process)
• Executing scripts in a chrooted environment
• Improved logging, IP address restrictions, pool separation, and much more

PHP and Python with Nginx

[180]

Setting up PHP and PHP-FPM
In this section, we will detail the process of downloading and compiling a recent
version of PHP. You will need to go through this particular step if you are currently
running an earlier version of PHP (<5.3.3).

Downloading and extracting
At the time of writing, the latest stable version of PHP is 5.6.10. Download the tar
ball via the following command:

[user@local ~]$ wget http://php.net/get/php-5.6.10.tar.gz/from/www.php.
net/mirror

Once downloaded, extract the PHP archive with the tar command:

[user@local ~]$ tar xzf php-5.6.10.tar.gz

Requirements
There are two main requirements for building PHP with PHP-FPM: the libevent
and libxml development libraries. If these are not already installed on your system,
you will need to install them with your system's package manager.

For Red Hat-based systems and other systems using Yum as the package manager,
use the following command:

[root@local ~]# yum install libevent-devel libxml2-devel

For Ubuntu, Debian, and other systems that use apt-get or aptitude, the command
is as follows:

[root@local ~]# aptitude install libxml2-dev libevent-dev

Building PHP
Once you have installed all the dependencies, you may start building PHP. Similar
to other applications and libraries that were previously installed, you will basically
need three commands: configure, make, and make install. Be aware that this will
install a new instance of the application. If you already have PHP set up on your
system, the new instance will not override it. Instead, it will be installed in a different
location that is revealed to you during the make install command execution.

Chapter 5

[181]

The first step (configure) is critical here, as you will need to enable the PHP-FPM
options in order for PHP to include the required functionality. There is a great
variety of configuration arguments that you can pass to the configure command;
some are necessary to enable important features such as database interaction, regular
expressions, file compression support, web server integration, and so on. All the
possible configuration options are listed when you run this command:

[user@local php-5.6.10]$./configure --help

A minimal command may also be used, but be aware that a great deal of features
will be missing. If you wish to include other components, additional dependencies
may be needed, which are not documented here. In all cases, the --enable-fpm
switch should be included:

[user@local php-5.6.10]$./configure --enable-fpm […]

The next step is to build the application and install it at the same time:

[user@local php-5.6.10]$ make && make install

This process may take a while, depending on your system specifications. Take good
note of (some of) the information given to you during the build process. If you did
not specify the location of the compiled binaries and configuration files, they will be
revealed to you at the end of this step.

Post-install configuration
Begin by configuring your newly installed PHP, for example, copying the php.ini of
your previous setup over to the new one:

Due to the way Nginx forwards the script file and request
information to PHP, a security breach might be caused by the use
of the cgi.fix_pathinfo=1 configuration option. It is highly
recommended that you set this option to 0 in your php.ini file.
For more information about this particular security issue, please
consult the following article:
http://cnedelcu.blogspot.com/2010/05/nginx-php-
via-fastcgi-important.html

http://cnedelcu.blogspot.com/2010/05/nginx-php-via-fastcgi-important.html
http://cnedelcu.blogspot.com/2010/05/nginx-php-via-fastcgi-important.html

PHP and Python with Nginx

[182]

The next step is to configure PHP-FPM. Open up the php-fpm.conf file, which is
located in /usr/local/php/etc/ by default. We cannot detail all the aspects of the
PHP-FPM configuration here (they are largely documented in the configuration file
itself anyway), but there are important configuration directives that you shouldn't miss:

• Edit the user(s) and group(s) used by the worker processes and, optionally,
the UNIX sockets

• The address(es) and port(s) on which PHP-FPM will be listening
• The number of simultaneous requests that will be served
• The IP address(es) allowed to connect to PHP-FPM

Running and controlling
Once you have made the appropriate changes to the PHP-FPM configuration file,
you may start it with the following command (the file paths may vary depending on
your build configuration):

[user@local ~]# /usr/local/php/sbin/php-fpm -c /usr/local/php/etc/php.ini
--pid /var/run/php-fpm.pid --fpm-config=/usr/local/php/etc/php-fpm.conf
-D

The preceding command includes several important arguments:

• -c /usr/local/php/etc/php.ini sets the path of the PHP configuration file
• --pid /var/run/php-fpm.pid sets the path of the PID file, which can be

useful for controlling the process via an init script
• --fpm-config=/usr/local/php/etc/php-fpm.conf forces PHP-FPM to

use the specified configuration file
• -D daemonizes PHP-FPM (ensures it runs in the background)

Other command-line arguments can be obtained by running php-fpm –h:

PHP-FPM can be stopped via the kill or killall commands.
Alternatively, you may use an init script to start and stop the process,
provided the version of PHP you installed came with one.

Chapter 5

[183]

Nginx configuration
If you have managed to configure and start PHP-FPM correctly, you are ready to
tweak your Nginx configuration file to establish the connection between both parties.
The following server block is a simple, valid template on which you can base your
own website configuration:

server {
 server_name .website.com; # server name, accepting www
 listen 80; # listen on port 80
 root /home/website/www; # our root document path
 index index.php; # default request filename: index.php

 location ~* \.php$ { # for requests ending with .php
 # specify the listening address and port that you configured
previously
 fastcgi_pass 127.0.0.1:9000;
 # the document path to be passed to PHP-FPM
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_
name;
 # the script filename to be passed to PHP-FPM
 fastcgi_param PATH_INFO $fastcgi_script_name;
 # include other FastCGI related configuration settings
 include fastcgi_params;
 }
}

After saving the configuration file, reload Nginx using one of the following
commands:

/usr/local/nginx/sbin/nginx -s reload

Or:

service nginx reload

Create a simple script at the root of your website to make sure that PHP is being
interpreted correctly:

[user@local ~]# echo "<?php phpinfo(); ?>" >/home/website/www/index.php

PHP and Python with Nginx

[184]

Fire up your favorite web browser and load http://localhost/ (or your website
URL). You will see something similar to the following screenshot, which is the PHP
server information page:

Note that you may run into the occasional 403 Forbidden HTTP error if the file and
directory access permissions are not properly configured. If that is the case, make
sure that you specified the correct user and group in the php-fpm.conf file, and that
the directory and files are readable by PHP.

Python and Nginx
Python is a popular object-oriented programming language available on many
platforms, from Unix-based systems to Windows. It is also available for Java and the
Microsoft .NET platform. If you are interested in configuring Python to work with
Nginx, it's likely that you already have a clear idea of what Python does. We are
going to use Python as a server-side web programming language, with the help of
the Django framework.

Chapter 5

[185]

Django
Django is an open source web development framework for Python that aims to make
web development simple and easy, as claimed by its slogan:

The Web framework for perfectionists with deadlines.

More information is available on the project website at
http://www.djangoproject.com.

Among other interesting features such as a dynamic administrative interface, a
caching framework, and unit tests, Django comes with a FastCGI process manager.
It's going to make things much simpler for us from the perspective of running
Python scripts through Nginx.

Setting up Python and Django
We will now install Python and Django on your Linux operating system, along with
their prerequisites. The process is relatively smooth, and mostly consists of running a
couple of commands that rarely cause trouble.

Python
Python should be available in your package manager repositories. To install it
on Red Hat-based systems and other systems using yum as the package manager,
use the following command:

yum install python python-devel

For Ubuntu, Debian, and other systems that use apt or aptitude, use:

aptitude install python python-dev

The package manager will resolve dependencies by itself.

Django
In order to install Django, we will use a different approach (although you could skip
this entirely and just install it from your usual repositories). We will be downloading
the framework with PIP, a tool which simplifies the installation of Python packages.
Therefore, the first step is to install PIP; for Red Hat-based systems and other systems
using Yum as the package manager, use: yum install python-pip

http://www.djangoproject.com

PHP and Python with Nginx

[186]

For Ubuntu, Debian, and other systems that use Apt or Aptitude, use:

apt-get install python-pip

The package manager will resolve the dependencies by itself. Once PIP is installed,
run the following command to download and install Django 1.8.2, the latest stable
version to date:

[root@website.com ~]# pip install Django==1.8.2

[…]

[root@website.com ~]# pip install -e django-trunk/

Finally, there is one last component required for running the Python FastCGI manager:
the flup library. This provides the actual FastCGI protocol implementation. For Red
Hat-based systems and other systems using Yum as the package manager (the EPEL
repositories must be enabled, otherwise you will need to build from source), use:

yum install python-flup

For Ubuntu, Debian, and other systems that use apt or aptitude, use:

aptitude install python-flup

Starting the FastCGI process manager
The process of beginning to build a website with the Django framework is as simple
as running the following command:

[root@website.com ~]# django-admin startproject mysite

Once that part is done, you will find a manage.py Python script that comes with
the default project template. Open the newly created mysite directory containing
manage.py, and run the following command:

[root@website.com mysite]# python manage.py runfcgi method=prefork
host=127.0.0.1 port=9000 pidfile=/var/run/django.pid

If everything was configured correctly, and the dependencies are properly installed,
running this command should produce no output, which is often a good sign. The
FastCGI process manager is now running in the background waiting for connections.
You can verify that the application is running with the ps command (for example,
by executing ps aux | grep python). If you don't see any running process, try
changing the preceding command slightly by selecting a different port. All we need
to do now is set up the virtual host in the Nginx configuration file.

Chapter 5

[187]

The Nginx configuration
The Nginx configuration is similar to the PHP one:

server {
 server_name .website.com;
 listen 80;
 # Insert the path of your Python project public files below
 root /home/website/www;
 index index.html;

 location / {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_
name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params;
 }
}

Summary
Whether you use PHP, Python, or any other CGI application, you should now have
a clear idea of how to get your dynamic scripts running with Nginx. There are all
sorts of implementations on the Web for mainstream programming languages and
the FastCGI protocol. Due to its efficiency, it is rapidly replacing server-integrated
solutions such as Apache's mod_php and mod_wsgi, among others.

If you are unsure about connecting Nginx directly to those server applications
because you already have a well-functioning system architecture in place (for
example, Apache with mod_php), you may want to consider the option offered
in the next chapter, Apache and Nginx Together.

[189]

Apache and Nginx Together
If you are reading this book, chances are you have already had to deal with the
Apache web server, considering it is still a major player in the market. In fact, a
lot of the administrators interested in Nginx are people who have encountered
issues with the former: slowdowns, complexity in configuring, lack of responsivity
at times, and a variety of other problems. Consequently, the first idea that comes
to mind is to replace Apache with another web server such as Nginx. However,
there is an alternative that is not often considered, as it sounds a little far-fetched at
first—running both Nginx and Apache at the same time. When you look into it, this
solution offers many advantages, especially for administrators looking for a quick
and efficient solution to the aforementioned issues.

This chapter covers the following topics:

• An introduction to the reverse proxy mechanism
• The advantages and disadvantages of such an architecture
• Discovering the proxy module of Nginx
• Configuring Nginx to work with Apache
• Reconfiguring Apache to work as a backend server
• Additional tweaks and notes

Apache and Nginx Together

[190]

Nginx as reverse proxy
First, bear in mind that the reverse proxy mechanism that we are going to describe in
this chapter should not be considered as a long-term solution. It should be employed
as a temporary architecture in problematic cases such as the following:

• When you already have Apache installed with complex configuration files
that can hardly be ported to Nginx, or if you do not have the time or the will
to completely switch to Nginx

• When your system operates a frontend system management panel such as
Parallels Plesk, cPanel, or other solutions that automatically generate Apache
configuration files

• When a functionality that your project or architecture requires is available
with Apache but not with Nginx

In any other case, a complete switch to Nginx would be a better choice. Chapter 7,
From Apache to Nginx provides a streamlined description of the process.

Understanding the issue
The reverse proxy mechanism mainly addresses one issue—the overall serving
speed of Apache. Due to the massive number of modules and other components
that Apache loads in the memory (for each HTTP request that it receives), your
server may rapidly get cluttered when it receives massive influxes of requests at the
same time. One could say that Apache focuses on functionality at the expense of
optimization and processing speeds. In practice, this results in an excessive memory
and CPU overhead. Oppositely, Nginx has proven to be both lightweight and
stable while serving a larger amount of requests (using less RAM and CPU time in
comparison to Apache).

What do we make of that? Before answering this question, it would be interesting
to analyze the type of content that will be delivered by your server. Let us visit a
regular web page that millions of people load every day: http://www.yahoo.com.
While it's not fully representative of the World Wide Web, our analysis will be valid
for a large number of websites, and the Yahoo! homepage is the perfect illustration of
the problem that we face.

http://www.yahoo.com

Chapter 6

[191]

When a regular user visits http://www.yahoo.com, the web browser actually
needs to download a great amount of data. Here are the different files that the
browser downloads:

Media type File/Request
count

Total size Total
Gzipped Size

HTML source code 1 157.6 KB 52.5 KB
JavaScript (.js) code files and libraries 6 382.1 KB 112.3 KB
Cascading Style Sheet (.css) files 3 256.8 KB 42.8 KB
Flash animations (.swf) 2 61.4 KB 61.4 KB
Images linked from CSS files (.png, .gif) 18 43.0 KB 43.0 KB
Regular images (.gif, .jpg) 11 73.3 KB 73.3 KB
TOTAL 41 974.2 KB 385.3 KB

These figures reflect a snapshot taken at the time of writing
these lines, as visited by a US-based visitor. Results may
differ slightly according to your geographical location, date
of visit, and other criteria.

The amount of data that your browser needs to download is relatively low. After all,
the 385.3 KB (make that 400-450 KB including cookie data and other overheads) can
be transferred in less than a second with the fast Internet connections that are now
being offered in many countries.

A much bigger problem, in our case, is the number of requests that the server will
have to handle. For all first-time visitors, and for any web browser that does not use
cached data to load this page, a minimum of 41 HTTP requests will be processed
by the web server. Thankfully, a great number of people will have most of the files
cached, but keep in mind that the content changes often, be it news feeds or general
website changes. Besides, cached data expires after a while, and people clear their
cache every now and then.

Can your web server process 41 HTTP requests in less than a second? Can it process
41,000 (1,000 page views/second)? Can it process 410,000? If so, you probably have
the infrastructure to support such a load. Either way, you are better off with Nginx:
as you have noticed, 40 out of the 41 requests are for static content—image files, CSS,
JavaScript code files, and so on. Given the speed at which Nginx serves those files,
we could design an architecture that lets Nginx serve static files and leave Apache to
handle the dynamic content.

http://www.yahoo.com

Apache and Nginx Together

[192]

The reverse proxy mechanism
Somewhat like the FastCGI architecture described in the previous chapter, we are
going to be running Nginx as a frontend server. In other words, it will be in direct
communication with the outside world, whereas Apache will be running as a
backend server and will only exchange data with Nginx:

There are now two web servers running and processing the requests:

• Nginx positioned as a frontend server (in other words, as reverse proxy),
receives all the requests coming from the outside world. It filters them, either
serving static files directly to the client or forwarding the dynamic content
requests to Apache.

• Apache runs as a backend server, and it only communicates with Nginx.
It may be hosted on the same computer as the frontend, in which case,
the listening port must be edited to leave port 80 available to Nginx.
Alternatively, you can employ multiple backend servers on different
machines and share the load.

To communicate and interact with each other, neither process will be using FastCGI.
Instead, as the name suggests, Nginx acts as a simple proxy server — it receives
HTTP requests from the client (acting as HTTP server), and forwards them to the
backend server (acting as HTTP client). There is thus no new protocol or software
involved. The mechanism is handled by the proxy module of Nginx, as detailed later
in this chapter.

Chapter 6

[193]

Advantages and disadvantages of the
mechanism
The main purpose of setting up Nginx as a frontend server and giving Apache a
simple backend role is to improve the serving speed. As we established, a great
number of requests coming from the clients are for static files, and static files are
served much faster by Nginx. The overall performance sharply improves both on the
client side and server side.

As a side note, Apache has experienced quite a number of security issues in the past,
pushing forward new releases. You are forced to keep your system up to date in
order to make sure you have a completely secure web server. It is reasonable to say
that the more popular a web server is, the more likely it is that bugs and security
issues will be discovered. Oppositely, the stable versions of Nginx have always been
relatively secure, and the authors have rarely had to release any critical security fixes.

Eventually, if you adopt this solution, you will find it particularly easy to set
up as you have almost no modification to make when it comes to the Apache
configuration. All it requires is a simple port change, but even that isn't necessary if
you set up Nginx and Apache on different servers. Your setup works as it is, which
is particularly useful if you've already spent hours configuring Apache to work with
the server-side preprocessors, such as PHP, Python, or others.

On the other hand, you are still deporting the requests for dynamic content to
Apache, which is slower than a combination of Nginx and FastCGI most of the time.
As we have already stated before, the optimal solution would be to completely
switch to Nginx and leave out Apache.

Besides, since Nginx is installed as the frontend, it implies that it receives raw
requests from users. This means that the request URI comes in its original form,
leading to confusion for Nginx, as it will not be able to differentiate between static
and dynamic content. You have two choices to solve this issue. You can either port
your rewrite rules to Nginx, or redirect any request that results in a 404 error to the
Apache backend.

To illustrate this problem, a request URI such as /articles/43515-us-economy-
strengthens.html most likely does not correspond to any file on your system — it's
meant to be rewritten and turned into a request such as /article.php?id=43515
or similar. The first solution is to include the rewrite rules directly into your Nginx
configuration. The alternative solution is to check for the existence of such a file, and
if it doesn't exist, systematically redirect the request to Apache.

Apache and Nginx Together

[194]

Last but not least, and this will be further discussed in the last section of this
chapter, there may be some issues with the control panel software such as Parallels
Plesk, cPanel, and others. These panels are very useful for administrators, as they
automate some of the most bothersome tasks like adding virtual hosts to the Apache
configuration, creating e-mail accounts, configuring the DNS daemon, and many
more. The two main issues are as follows:

• These control panels allow you to apply changes to the web server
configuration, and based on your changes they automatically generate
valid configuration files for the server. Unfortunately, so far these control
panels offer compatibility only with Apache; they do not generate Nginx
configuration files. So any change that you make will have no effect.

• Whether you completely replace Apache with Nginx or go for the reverse
proxy mechanism, Nginx usually ends up running on port 80 (and 443 for
HTTPS). The control panel software generating the configuration files is
unaware of this fact, and might be stubborn. When generating configuration
files, it will systematically reset the Apache port to 80, creating conflicts
with Nginx.

Both these issues will be discussed again later in the chapter.

The Nginx proxy module
Similarly to the previous chapter, the first step towards establishing the new
architecture will be to discover the appropriate module. The default Nginx build
comes with the proxy module, which allows forwarding of HTTP requests from the
client to a backend server. We will be configuring multiple aspects of the module:

• Basic address and port information of the backend server
• Caching, buffering, and temporary file options
• Limits, timeout, and error behavior
• Other miscellaneous options

All these options are available via directives, which we will learn to configure
throughout this section.

Chapter 6

[195]

Main directives
The first set of directives will allow you to establish the basic configuration, such
as the location of the backend server, information to be passed, and how it should
be passed.

Directive Description
proxy_pass

Context: location, if
Specifies that the request should be forwarded to the backend
server by indicating its location:
For regular HTTP forwarding, the syntax is proxy_pass
http://hostname:port;

For Unix domain sockets, the syntax is: proxy_pass http://
unix:/path/to/file.socket;

You may also refer to upstream blocks: proxy_pass http://
myblock;

Instead of http://, you can use https:// for secure traffic.
Additional URI parts as well as the use of variables are allowed.
Examples:
proxy_pass http://localhost:8080;

proxy_pass http://127.0.0.1:8080;

proxy_pass http://unix:/tmp/nginx.sock;

proxy_pass https://192.168.0.1;

proxy_pass http://localhost:8080/uri/;

proxy_pass http://unix:/tmp/nginx.sock:/uri/;

proxy_pass http://$server_name:8080;

Using an upstream block
upstream backend {
 server 127.0.0.1:8080;
 server 127.0.0.1:8081;
}
location ~* \.php$
{
 proxy_pass http://backend;
}

Apache and Nginx Together

[196]

Directive Description
proxy_method

Context: http, server,
location

Allows overriding the HTTP method of the request to be
forwarded to the backend server. If you specify POST, for
example, all requests forwarded to the backend server will be
POST requests.
Syntax: proxy_method method;
Example: proxy_method POST;

proxy_hide_header

Context: http, server,
location

By default, as Nginx prepares the response received from the
backend server to be forwarded back to the client, it ignores
some of the headers, such as Date, Server, X-Pad, and
X-Accel-*. With this directive, you can specify an additional
header line to be hidden from the client. You may insert this
directive multiple times with one header name for each.
Syntax: proxy_hide_header header_name;
Example: proxy_hide_header Cache-Control;

proxy_pass_header

Context: http, server,
location

Related to the preceding directive, this directive forces some of
the ignored headers to be passed on to the client.
Syntax: proxy_pass_header headername;
Example: proxy_pass_header Date;

proxy_pass_
request_body

proxy_pass_
request_headers

Context: http, server,
location

Defines whether or not the request body and extra request
headers should be passed on to the backend server.
Syntax: on or off;
Default: on

Chapter 6

[197]

Directive Description
proxy_redirect

Context: http, server,
location

Allows you to rewrite the URL appearing in the Location HTTP
header on redirections triggered by the backend server.
Syntax: off, default, or the URL of your choice
off: Redirections are forwarded as it is.
default: The value of the proxy_pass directive is used as the
hostname, and the current path of the document is appended.
Note that the proxy_redirect directive must be inserted
after the proxy_pass directive as the configuration is parsed
sequentially.
URL: Replace a part of the URL with another.
Additionally, you may use variables in the rewritten URL.
Examples:
proxy_redirect off;

proxy_redirect default;

proxy_redirect http://localhost:8080/ http://
example.com/;

proxy_redirect http://localhost:8080/wiki/ /w/;

proxy_redirect http://localhost:8080/
http://$host/;

proxy_next_
upstream

Context: http, server,
location

When proxy_pass is connected to an upstream block, this
directive defines the cases where the requests should be
abandoned and resent to the next upstream server of the block.
The directive accepts a combination of values among the
following:
error: An error occurred while communicating or attempting
to communicate with the server
timeout: A timeout occurs during transfers or connection
attempts
invalid_header: The backend server returned an empty or
invalid response
http_500, http_502, http_503, http_504, http_404:
In case such HTTP errors occur, Nginx switches to the next
upstream server
off: Forbids the use of the next upstream server
Examples:
proxy_next_upstream error timeout http_504;

proxy_next_upstream timeout invalid_header;

Apache and Nginx Together

[198]

Directive Description
proxy_next_
upstream_timeout

Context: http, server,
location

Defines the timeout to be used in conjunction with proxy_
next_upstream. Setting this directive to 0 disables it.
Syntax: Time value (in seconds)

proxy_next_
upstream_tries

Context: http, server,
location

Defines the maximum number of upstream servers to be tried
before returning an error message; to be used in conjunction
with proxy_next_upstream.
Syntax: Numeric value (default: 0)

Caching, buffering, and temporary files
Ideally, as much as possible, you should reduce the number of requests being
forwarded to the backend server. The following directive will help you build a
caching system as well as control the buffering options and the way Nginx handles
the temporary files:

Directive Description
proxy_buffer_size

Context: http, server,
location

Sets the size of the buffer for reading the beginning of the
response from the backend server, which usually contains
simple header data.
The default value corresponds to the size of 1 buffer, as
defined by the directive given previously (proxy_buffers).
Syntax: Numeric value (size)
Example:
proxy_buffer_size 4k;

proxy_buffering,
proxy_request_
buffering

Context: http, server,
location

Defines whether or not the response from the backend
server should be buffered (or client requests, in the case of
proxy_request_buffering). If set to on, Nginx will store
the response data in memory using the memory space offered
by the buffers. If the buffers are full, the response data will
be stored as a temporary file. If the directive is set to off, the
response is directly forwarded to the client.
Syntax: on or off
Default: on

Chapter 6

[199]

Directive Description
proxy_buffers

Context: http, server,
location

Sets the amount and size of buffers that will be used for
reading the response data from the backend server.
Syntax: proxy_buffers amount size;
Default: 8 buffers, 4 k or 8 k each depending on platform
Example: fastcgi_buffers 8 4k;

proxy_busy_buffers_
size

Context: http, server,
location

When the backend-received data accumulated in the buffers
exceeds the specified value, the buffers are flushed and data is
sent to the client.
Syntax: Numeric value (size)
Default: 2 * proxy_buffer_size

proxy_cache

Context: http, server,
location

Defines a cache zone. The identifier given to the zone is to be
reused in further directives.
Syntax: proxy_cache zonename;
Example: proxy_cache cache1;

proxy_cache_key

Context: http, server,
location

This directive defines the cache key; in other words, it
differentiates one cache entry from another. If the cache key is
set to $uri, as a result all requests with this $uri will work as
a single cache entry. But that's not enough for most dynamic
websites. You also need to include the query string arguments
in the cache key so that /index.php and /index.
php?page=contact do not point to the same cache entry.
Syntax: proxy_cache_key key;
Example: proxy_cache_key "$scheme$host$request_
uri $cookie_user";

Apache and Nginx Together

[200]

Directive Description
proxy_cache_path

Context: http
Indicates the directory for storing the cached files as well as
the other parameters.
Syntax: proxy_cache_path path [use_temp_
path=on|off] [levels=numbers keys_
zone=name:size inactive=time max_size=size];

The additional parameters are:
use_temp_path: set this flag to on if you want to use the
path defined via the proxy_temp_path directive.
levels: Indicates the depth level of the subdirectories
(usually 1:2 is enough)
keys_zone: Lets you make use of the zone that you
previously declared with the proxy_cache directive, and
indicates the size that it will occupy in memory
inactive: If a cached response is not used within the
specified time frame, it is removed from the cache
max_size: Defines the maximum size of the entire cache
Example: proxy_cache_path /tmp/nginx_cache
levels=1:2 zone=zone1:10m inactive=10m max_
size=200M;

proxy_cache_methods

Context: http, server,
location

Defines the HTTP methods eligible for caching. GET and HEAD
are included by default, and cannot be disabled.
Syntax: proxy_cache_methods METHOD;
Example: proxy_cache_methods OPTIONS;

proxy_cache_min_
uses

Context: http, server,
location

Defines the minimum amount of hits before a request is
eligible for caching. By default, the response of a request is
cached after one hit (subsequent requests with the same cache
key will receive the cached response).
Syntax: Numeric value
Example: proxy_cache_min_uses 1;

proxy_cache_valid

Context: http, server,
location

This directive allows you to customize the caching time
for different kinds of response codes. You may cache the
responses associated with the 404 error codes for 1 minute,
and on the opposite cache, 200 OK responses for 10 minutes
or more. This directive can be inserted more than once:
proxy_cache_valid 404 1m;
proxy_cache_valid 500 502 504 5m;

proxy_cache_valid 200 10;

Syntax: proxy_cache_valid code1 [code2…] time;

Chapter 6

[201]

Directive Description
proxy_cache_use_
stale

Context: http, server,
location

Defines whether or not Nginx should serve stale cached
data in certain circumstances (with regard to the gateway).
If you use proxy_cache_use_stale timeout, and if the
gateway times out, then Nginx will serve cached data.
Syntax: proxy_cache_use_stale [updating] [error]
[timeout] [invalid_header] [http_500];

Example: proxy_cache_use_stale error timeout;
proxy_max_temp_
file_size

Context: http, server,
location

Set this directive to 0 to disable the use of temporary files
for requests eligible for proxy forwarding, or to specify a
maximum file size.
Syntax: Size value
Default value: 1 GB
Example: proxy_max_temp_file_size 5m;

proxy_temp_file_
write_size

Context: http, server,
location

Sets the write buffer size when saving temporary files to the
storage device.
Syntax: Size value
Default value: 2 * proxy_buffer_size

proxy_temp_path

Context: http, server,
location

Sets the path of the temporary and cache store files.
Syntax: proxy_temp_path path [level1 [level2…]]
Examples:
proxy_temp_path /tmp/nginx_proxy;

proxy_temp_path /tmp/cache 1 2;

Limits, timeouts, and errors
The following directives will help you define the timeout behavior as well as various
limitations regarding communication with the backend server:

Directive Description
proxy_connect_
timeout

Context: http, server,
location

Defines the backend server connection timeout. This is
different from the read/send timeout. If Nginx is already
connected to the backend server, the proxy_connect_
timeout is not applicable.
Syntax: Time value (in seconds)
Example: proxy_connect_timeout 15;

Apache and Nginx Together

[202]

Directive Description
proxy_read_timeout

Context: http, server,
location

The timeout for reading the data from the backend server.
This timeout isn't applied to the entire response delay, but
between two read operations instead.
Syntax: Time value (in seconds)
Default value: 60
Example: proxy_read_timeout 60;

proxy_send_timeout

Context: http, server,
location

This timeout is for sending data to the backend server. The
timeout isn't applied to the entire response delay, but between
two write operations instead.
Syntax: Time value (in seconds)
Default value: 60
Example: proxy_send_timeout 60;

proxy_ignore_
client_abort

Context: http, server,
location

If set to on, Nginx will continue processing the proxy request,
even if the client aborts its request. In the other case (off),
when the client aborts its request, Nginx also aborts its
request to the backend server.
Default value: off

proxy_intercept_
errors

Context: http, server,
location

By default, Nginx returns all error pages (HTTP status code
400 and higher) sent by the backend server directly to the
client. If you set this directive to on, the error code is parsed
and can be matched against the values specified in the
error_page directive.
Default value: off

proxy_send_lowat

Context: http, server,
location

An option allowing you to make use of the SO_SNDLOWAT
flag for TCP sockets under the BSD-based operating systems
only. This value defines the minimum number of bytes in the
buffer for output operations.
Syntax: Numeric value (size)
Default value: 0

proxy_limit_rate

Context: http, server,
location

Allows you to limit the rate at which Nginx downloads the
response from the backend proxy.
Syntax: Numeric value (bytes per second)

Chapter 6

[203]

SSL-related directives
If you are going to be working with SSL backend servers, the following directives
will be useful to you:

Directive Description
proxy_ssl_certificate

Context: http, server,
location

Sets the path of a PEM file that contains a certificate of
authentication to an SSL backend.
Syntax: file path
Default value: none

proxy_ssl_certificate_
key

Context: http, server,
location

Sets the path of the secret key file (PEM format) for
authentication to an SSL backend.
Syntax: file path
Default value: none

proxy_ssl_ciphers

Context: http, server,
location

Sets the ciphers for SSL communication with the
backend server. Run the following shell command to get
the list of the available ciphers on your server: openssl
ciphers.
Syntax: cipher names
Default value: DEFAULT

proxy_ssl_crl

Context: http, server,
location

Sets the path of the CRL (Certificate Revocation List)
file in the PEM format allowing Nginx to verify the
revocation state of the backend server's SSL certificate.
Syntax: file path
Default value: -

proxy_ssl_name

Context: http, server,
location

Use this directive to override the server name when
verifying the revocation state of the backend server's SSL
certificate.
Syntax: character string
Default value: equal to $proxy_host

proxy_ssl_password_file

Context: http, server,
location

Sets the path of a file containing passphrases (one per
line) which are tried in turn when loading the certificate
key.
Syntax: file path
Default value: -

Apache and Nginx Together

[204]

Directive Description
proxy_ssl_server_name

Context: http, server,
location

If you set this directive to on (as it is off by default),
your server name will be communicated to the backend
server as per the SNI protocol (Server Name Indication).
Syntax: on or off
Default value: off

proxy_ssl_session_reuse

Context: http, server,
location

This directive instructs Nginx to reuse the existing
SSL sessions when communicating with the backend
(thus reducing overhead). The official documentation
recommends disabling this if the following errors start to
show up in server logs: SSL3_GET_FINISHED:digest
check failed.
Syntax: on or off
Default value: on

proxy_ssl_protocols

Context: http, server,
location

Sets the protocols to be used when communicating with
SSL backends.
Syntax: proxy_ssl_protocols [SSLv2] [SSLv3]
[TLSv1] [TLSv1.1] [TLSv1.2];

Default value: TLSv1 TLSv1.1 TLSv1.2
proxy_ssl_trusted_
certificate

Context: http, server,
location

Sets the path of your trusted CA certificates (in the PEM
format).
Syntax: file path
Default value: -

proxy_ssl_verify

Context: http, server,
location

If set to on, Nginx will verify the certificate of the SSL
backend server.
Syntax: on or off
Default value: off

proxy_ssl_verify_depth

Context: http, server,
location

If the proxy_ssl_verify directive is set to on, this sets
the certificate chain verification depth.
Syntax: Numeric value
Default value: 1

Chapter 6

[205]

Other directives
Finally, the last set of directives available in the proxy module is uncategorized, and
is as follows:

Directive Description
proxy_headers_hash_max_
size

Context: http, server,
location

Sets the maximum size for the proxy header's hash
tables.
Syntax: Numeric value
Default value: 512

proxy_headers_hash_
bucket_size

Context: http, server,
location

Sets the bucket size for the proxy header's hash tables.
Syntax: Numeric value
Default value: 64

proxy_force_ranges

Context: http, server,
location

When set to on, Nginx will enable byte-range support on
the responses from the backend proxy.
Syntax: on or off
Default value: off

proxy_ignore_headers

Context: http, server,
location

Prevents Nginx from processing one of the following
four headers from the backend server response:
X-Accel-Redirect, X-Accel-Expires, Expires,
and Cache-Control.
Syntax: proxy_ignore_headers header1
[header2…];

proxy_set_body

Context: http, server,
location

Allows you to set a static request body for debugging
purposes. Variables may be used in the directive value.
Syntax: String value (any value)
Example: proxy_set_body test;

proxy_set_header

Context: http, server,
location

This directive allows you to redefine the header values to
be transferred to the backend server. It can be declared
multiple times.
Syntax: proxy_set_header Header Value;
Example: proxy_set_header Host $host;

Apache and Nginx Together

[206]

Directive Description
proxy_store

Context: http, server,
location

Specifies whether or not the backend server response
should be stored as a file. Stored response files can be
reused for serving other requests.
Possible values: on, off, or a path relative to the
document root (or alias). You may also set this to on and
define the proxy_temp_path directive.
Examples:
proxy_store on;

proxy_temp_path /temp/store;

proxy_store_access

Context: http, server,
location

This directive defines file access permissions for the
stored response files.
Syntax: proxy_store_access [user:[r|w|rw]]
[group:[r|w|rw]] [all:[r|w|rw]];
Example: proxy_store_access user:rw
group:rw all:r;

proxy_http_version

Context: http, server,
location

Sets the HTTP version to be used for communicating
with the proxy backend. HTTP 1.0 is the default value,
but if you are going to enable keepalive connections,
you might want to set this directive to 1.1.
Syntax: proxy_http_version 1.0 | 1.1;

proxy_cookie_domain

proxy_cookie_path

Context: http, server,
location

Applies an on-the-fly modification to the domain or path
attributes of a cookie (case insensitive).
Syntaxes: proxy_cookie_domain off | domain
replacement;

proxy_cookie_path off | domain
replacement ;

Variables
The proxy module offers several variables that can be inserted in various locations,
for example, in the proxy_set_header directive or in the logging-related directives
such as log_format. The available variables are:

• $proxy_host: Contains the hostname of the backend server used for the
current request.

• $proxy_port: Contains the port of the backend server used for the
current request.

Chapter 6

[207]

• $proxy_add_x_forwarded_for: This variable contains the value of the
X-Forwarded-For request header, followed by the remote address of the
client. Both values are separated by a comma. If the X-Forwarded-For
request header is unavailable, the variable only contains the client
remote address.

• $proxy_internal_body_length: Length of the request body (set with the
proxy_set_body directive or 0).

Configuring Apache and Nginx
After having reviewed the proxy module, which allows us to establish our reverse
proxy configuration architecture, it's now time to put all these principles into
practice. There are basically two main parts involved in the configuration, one
relating to Apache and the other to Nginx. The order in which you decide to apply
those modifications does not make any difference whatsoever.

Note that while we have chosen to describe the process specifically for Apache, this
method can be applied to any other HTTP server. The only point that differs is the
exact configuration sections and directives that you will need to edit. Otherwise,
the principle of reverse proxy can be applied regardless of the server software you
are using.

Reconfiguring Apache
There are two main aspects of your Apache configuration that will need to be edited
in order to allow both Apache and Nginx to work together and at the same time. But
let us first clarify where we are coming from and where we are going.

Configuration overview
At this point, you probably have the following architecture set up on your server:

• A web server application running on port 80, such as Apache
• A dynamic server-side script processing application such as PHP,

communicating with your web server via CGI, FastCGI, or as a
server module

Apache and Nginx Together

[208]

The new configuration we are going towards will resemble the following:

• Nginx running on port 80
• Apache (or another web server) running on a different port, accepting

requests coming from the local sockets only
• The script processing application configuration (PHP, Python, or the like)

will remain unchanged

As you can tell, only two main configuration changes will be applied to Apache
(or any other web server that you might be running). The first is changing the
listening port number in order to avoid conflicts with Nginx. Secondly, (although
this is optional) you may want to disallow the requests coming from outside, and
allow only those requests that are forwarded by Nginx. Both configuration steps are
detailed in the following sections.

Resetting the port number
Depending on how your web server was set up (manual build or automatic
configuration from server panel managers such as cPanel or Plesk), you may find
yourself with a lot of configuration files to edit. The main configuration file is often
found in /etc/httpd/conf/ or /etc/apache2/, and there might be more depending
on how your configuration is structured. Some server panel managers create extra
configuration files for each virtual host.

There are three main elements which you need to replace in your Apache configuration:

• The Listen directive is set to listen on port 80 by default. You will have to
replace that port by another such as 8080. This directive is usually found in
the main configuration file, but in some setups, the directive appears in a
separate file called ports.conf.

• You must make sure that the following configuration directive is present
in the main configuration file: NameVirtualHost A.B.C.D:8080, where
A.B.C.D is the IP address of the main network interface used for server
communications.

• The port you just selected needs to be reported in all your virtual host
configuration sections.

Chapter 6

[209]

The virtual host sections must be transformed from the following template:

<VirtualHost A.B.C.D:80>
 ServerName example.com
 ServerAlias www.example.com
 […]
</VirtualHost>

to the following:

<VirtualHost A.B.C.D:8080>
 ServerName example.com:8080
 ServerAlias www.example.com
 […]
</VirtualHost>

In this example, A.B.C.D is the IP address of the virtual host and example.com is the
virtual host's name. The port must be edited in the first two lines.

Accepting local requests only
There are many ways by which you can restrict Apache to accept local requests only
and deny access to the outside world. But first, why would you want to do that? As
an extra layer positioned between the client and Apache, Nginx provides a certain
comfort in terms of security. Visitors no longer have direct access to Apache, which
decreases the potential risk—no one would be able to exploit the possible new
vulnerabilities. Generally speaking, the principle of least privilege should apply.

The first method consists of changing the listening network interface in the main
configuration file. The Listen directive of Apache lets you specify not only a port,
but also an IP address. However, by default, no IP address is selected, which results
in communications coming in from all interfaces. All you have to do is replace the
Listen 8080 directive by Listen 127.0.0.1:8080; Apache will then only listen on
the local IP address. If you do not host Apache on the same server, you will need to
specify the IP address of the network interface that can communicate with the server
hosting Nginx.

An alternative would be to establish per-virtual-host restrictions, as follows:

<VirtualHost A.B.C.D:8080>
 ServerName example.com:8080
 ServerAlias www.example.com
 […]
 order deny,allow
 allow from 127.0.0.1

Apache and Nginx Together

[210]

 allow from 192.168.0.1
 deny all
</VirtualHost>

Using the allow and deny Apache directives, you are able to restrict the allowed IP
addresses accessing your virtual hosts. This allows for a finer configuration, which
can be useful in case some of your websites cannot be fully served by Nginx.

Once all your changes are done, don't forget to reload the server using service
httpd reload or /etc/init.d/httpd reload to make sure that the new
configuration is applied.

Configuring Nginx
There are only a couple of simple steps to establish a working configuration of
Nginx, although it can be tweaked more accurately, as seen in the next section.

Enabling proxy options
The first step is to enable proxying of requests in your location blocks. Since the
proxy_pass directive cannot be placed at the http or server level, you need to
include it in every single place that you want it to be forwarded. Usually, a location
/ { fallback block suffices since it encompasses all requests, except those that match
the location blocks containing a break statement.

The following is a simple example using a single static backend hosted on the
same server:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 proxy_pass http://127.0.0.1:8080;
 }
}

In the following example, we make use of an upstream block allowing us to specify
multiple servers:

upstream apache {
 server 192.168.0.1:80;
 server 192.168.0.2:80;
 server 192.168.0.3:80 weight=2;
 server 192.168.0.4:80 backup;

Chapter 6

[211]

}
server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 proxy_pass http://apache;
 }
}

So far, with such a configuration, all requests are proxied by your backend server(s).
We are now going to separate the content into two categories:

• Dynamic files: Files that require processing before being sent to the client,
such as PHP, Perl, and Ruby scripts, will be served by Apache

• Static files: All other content that does not require additional processing,
such as images, CSS files, static HTML files, and media, will be served
directly by Nginx

Therefore, we somehow need to separate the dynamic from the static content to be
provided by either server.

Separating the content
In order to establish this separation, we can simply use two different location blocks,
one that will match the dynamic file extensions, and another one encompassing all
the other files. This example passes requests for .php files to the proxy:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location ~* \.php.$ {
 # Proxy all requests with an URI ending with .php*
 # (includes PHP, PHP3, PHP4, PHP5…)
 proxy_pass http://127.0.0.1:8080;
 }
 location / {
 # Your other options here for static content
 # for example cache control, alias…
 expires 30d;
 }
}

Apache and Nginx Together

[212]

This method, although simple, will cause trouble with websites using URL
rewriting. Most Web 2.0 websites now use links that hide file extensions such
as http://example.com/articles/us-economy-strengthens/; some even
append artificial extensions such as .html: http://example.com/us-economy-
strengthens.html.

If you find yourself in this situation, you will want to employ one of the
following solutions:

• The cleaner method is to convert your Apache rewrite rules for Nginx
(with Apache, rewrite rules are usually found in the .htaccess file at the
root of the website), in order for Nginx to know the actual file extension of
the request and proxy it to Apache correctly.

• If you do not wish to port your Apache rewrite rules, you can use the
try_files directive to try serving the requested URI, and redirect the
request to Apache in case the URI doesn't match any file accessible to Nginx.
Or simply let Apache handle the 404 responses via the error_page directive.

The more appropriate method is with try_files: we attempt to serve the requested
URI directly, or a corresponding folder, by appending a /, and if all fails we forward
the request to Apache:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
location / {
 # Try serving requested file, or forward to Apache
 try_files $uri $uri/ @proxy;

 # Insert configuration for static files here
 expires 30d;
 […]
 }
location @proxy {
 # Forwards requests to Apache
 proxy_pass http://127.0.0.1:8080;
 }
}

http://example.com/articles/us-economy-strengthens/
http://example.com/us-economy-strengthens.html
http://example.com/us-economy-strengthens.html

Chapter 6

[213]

The following is an implementation of this mechanism, using the error_page
directive:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 # Your static files are served here
 expires 30d;
 […]
 # For 404 errors, submit the query to the @proxy
 # named location block
 error_page 404 @proxy;
 }
location @proxy {
 # Forwards requests to Apache
 proxy_pass http://127.0.0.1:8080;
 }
}

Alternatively, making use of the if directive from the Rewrite module:

server {
 server_name .example.com;
 root /home/example.com/www;
 […]
 location / {
 # If the requested file extension ends with .php,
 # forward the query to Apache
 if ($request_filename ~* \.php.$) {
 break; # prevents further rewrites
 proxy_pass http://127.0.0.1:8080;
 }
 # If the requested file does not exist,
 # forward the query to Apache
 if (!-f $request_filename) {
 break; # prevents further rewrites
 proxy_pass http://127.0.0.1:8080;
 }
 # Your static files are served here
 expires 30d;
 }
}

Apache and Nginx Together

[214]

There is no major performance difference between either of the solutions, as they
will transfer the same number of requests to the backend server. For optimal
performance, you should work on porting your Apache rewrite rules to Nginx.

Advanced configuration
For now, we have only made use of one directive offered by the proxy module.
There are many more features that we can employ to optimize our design. The table
that follows lists a handful of settings that are valid for most of your reverse proxy
configurations, although they need to be verified individually. Since they can be
employed multiple times, you can also place them in a separate configuration file
that you will include in your location blocks.

Start by creating a proxy.conf text file that you place in the Nginx configuration
directory. Insert the directives described in the following table into that file. Then,
for each location of your if blocks that forwards requests to a backend server or an
upstream block, insert the following line after the proxy_pass directive:

include proxy.conf;

Suggested values for some of the settings:

Setting Description
proxy_set_header Host
$host;

The Host HTTP header in the request forwarded to
the backend server defaults to the proxy hostname,
as specified in the configuration file. This setting lets
Nginx use the original Host from the client request
instead.

proxy_set_header X-Real-
IP $remote_addr;

Since the backend server receives a request from Nginx,
the IP address it communicates with is not that of the
client. Use this setting to forward the actual client IP
address into a new header, X-Real-IP.

proxy_set_header
X-Forwarded-For $proxy_
add_x_forwarded_for;

Similar to the preceding header, except that if the client
already uses a proxy on his/her own end, the actual
IP address of the client should be contained in the
X-Forwarded-For request header. Using $proxy_
add_x_forwarded_for ensures that both the IP
address of the communicating socket and possibly the
original IP address of the client (behind a proxy) get
forwarded to the backend server.

Chapter 6

[215]

Setting Description
client_max_body_size
10m;

Limits the maximum size of the request body to 10
megabytes. Actually, this setting is referenced here to
make sure that you adjust the value to the same level
as your backend server. Otherwise, a request that is
correctly received and processed by Nginx may not be
successfully forwarded to the backend.

client_body_buffer_size
128k;

Defines the minimum size of the memory buffer that
will hold a request body. Past this size, the content
is saved in a temporary file. Adjust this according to
the expected size of requests that your visitors will be
sending, similarly to client_max_body_size.

proxy_connect_timeout
15;

If you are working with a backend server on a local
network, make sure to keep this value reasonably low
(15 seconds here, but it depends on the average load).
The maximum value for this directive is 75 seconds
anyway.

proxy_send_timeout 15; Make sure you define a timeout for the write operations
(the timeout between two write operations during a
communication to the backend server).

proxy_read_timeout 15; Similar to the previous directive, except that this is for
read operations.

Many other directives may be configured here. However, the default values are
appropriate for most setups.

Improving the reverse proxy architecture
There are a few more additional steps that you may be interested in if you want to
perfect your reverse proxy architecture. Three main issues are discussed here: the
issue of IP addresses and how to ensure that the backend server retrieves the correct
one, how to handle HTTPS requests with such a setup, and finally, a quick word
about server control panels (cPanel, Plesk, and others).

Apache and Nginx Together

[216]

Forwarding the correct IP address
Nowadays, a good portion of websites make use of the visitor's IP address for all
kinds of reasons:

• Storing the IP address of a visitor posting a comment on a blog or a
discussion forum

• Geo-targeted advertising or other services
• Limiting services to specific IP address ranges

Therefore, it is important for those websites to ensure that the web server correctly
receives the IP address of the visitor.

As explained before, since Apache, or more generally the backend server, uses the IP
address of the socket it communicates with, the IP that will appear in our design will
always be the IP of the server hosting Nginx. In the previous section, we discovered
a possible solution already—inserting the proxy_set_header X-Real-IP $remote_
addr; directive in the configuration in order to forward the client IP address in the
X-Real-IP header.

Unfortunately that is not enough, as some web applications are not configured to
make use of the X-Real-IP header. The client remote address needs to be replaced
somehow by that value. When it comes to Apache, a module was written to do just
that: mod_rpaf. Details of how to install and configure it are not discussed here; you
may find more documentation over at the official website: http://stderr.net/
apache/rpaf/.

Alternatively, you could edit the source code of your backend application to take
this particular header into consideration. In PHP, the following piece of code would
retrieve the correct IP address:

$ip_address = $_SERVER["X_REAL_IP"];

SSL issues and solutions
If your website is going to serve secure web pages, you need to somehow allow the
visitors to connect to your infrastructure via SSL (Secure Sockets Layer) on port
443. Two solutions are possible at this point: either you do not make use of Nginx at
all and keep your Apache SSL configuration unmodified, or you configure Nginx to
accept communications on port 443.

http://stderr.net/apache/rpaf/
http://stderr.net/apache/rpaf/

Chapter 6

[217]

The first solution is clearly the simplest—do not change the port of your virtual
hosts as configured in Apache. Your website should still be fully accessible from
the outside, unless your backend server is hosted on another computer on the
local network.

The alternative is to configure Nginx to accept secure connections via the SSL
module, as described in Chapter 5, PHP and Python with Nginx. Once your server
block is correctly configured, you can establish a proxied configuration to forward
secure requests to your Apache server. Note that if your backend server is hosted
on the same machine, you will need to edit the configuration in order to avoid port
conflicts between the frontend and the backend.

Server control panel issues
A lot of server administrators rely on control panel software to simplify many
aspects of their work: managing hosted domains, e-mail accounts, network settings,
and much more. Advanced software solutions such as Parallels Plesk or cPanel
are able to generate configuration files for many server applications (web, e-mail,
database, and so on) on the fly. Unfortunately, most of them only support Apache
as a unique web server application; Nginx is often left behind.

If you followed the steps of the reverse proxy configuration process, you must've
noticed that at some point, the Apache configuration files had to be manually edited.
We replaced the listening port, and edited or inserted some configuration directives.
Obviously, when the control panel software generates configuration files, it is unaware
of the manual changes that we've made. Therefore, it erases our modifications. When
you restart Apache, you are greeted with error messages and conflicts.

At this point, there is no other solution than to apply the changes again after each
configuration rebuild. With the growing popularity of Nginx, developers will
hopefully implement full Nginx support in their software, or at least allow those
configuration settings to be edited that are required to use Nginx as a reverse proxy.

Facing the growing popularity of Nginx, web control panel
developers are indeed starting to take steps towards full or
partial support of Nginx. As of version 11, Parallels Plesk now
offers support for Nginx as a frontend server.

Apache and Nginx Together

[218]

Summary
Configuring Nginx as a reverse proxy for our architecture introduces a lot of
advantages in terms of loading speeds and server load as well as overall reliability,
since you can use multiple backends. However, a few obstacles might stand in your
way, especially if you are running control panel software solutions to manage your
services. Moreover, you do not get to make the most of Nginx as you are not using it
for all your requests.

If you are seeking to find an even more efficient solution, you may want to look into
completely replacing Apache with Nginx. The next chapter will detail this process,
step by step, from virtual hosts to rewrite rules and FastCGI.

[219]

From Apache to Nginx
Every experienced system administrator will tell you the same story. When your
web infrastructure works fine and client requests are served at a good speed, the last
thing you want to do is modify the architecture that you have spent days, weeks,
or even months putting together. In reality, as your website grows more popular,
problems pertaining to scalability tend to occur inevitably (and these problems
are not as well documented as the mainstream ones), regardless of the effort that
you originally put into your initial server configuration. Eventually, you have to
start looking for solutions. In that context, there are multiple reasons why you
would want to completely adopt Nginx at the expense of your previous web server
application. Whether you have decided that Nginx could be more efficient as a
unique server rather than working as a reverse proxy, or simply because you want to
get rid of Apache once and for all, this chapter will guide you through the complete
process of replacing the latter with the former.

This chapter covers the following topics:

• A quick comparison between Apache and Nginx
• A detailed guide to porting your Apache configuration
• Porting your Apache rewrite rules to Nginx
• Rewrite rules walkthrough for a few popular web applications

Nginx versus Apache
This section will provide answers to the main questions about Nginx—how does it
stand apart from the other servers? How does it compare to Apache? Whether you
were using Apache before or considered it as a replacement for your current web
server, why would you decide to adopt Nginx at the expense of the web server that
empowers almost forty percent of websites worldwide?

From Apache to Nginx

[220]

Features
With the reverse proxy configuration that was elaborated on in the previous chapter,
the presence or absence of specific features wasn't much of a problem. This is because
Nginx would simply have to differentiate between static and dynamic content, and
consequently, serve the static file requests and forward the dynamic file requests to a
backend server.

However, when you start considering Nginx as a possible full replacement for
your current web server, you better make sure that you know what's in the box. If
your projected architecture requires specific components, the first thing you would
usually do is check the application features. The following table lists a few of the
major features, and describes how Nginx performs in comparison to Apache.

Core and functioning
The features of Nginx and Apache are shown in the following table:

Features Nginx Apache
HTTP request
management (how
the web server
processes client
requests)

Event-driven architecture: In
this architecture, requests are
accepted using asynchronous
sockets, and aren't processed
in separate threads to reduce
memory and CPU overhead.

Synchronous sockets, threads,
and processes: In this, each
request is in a separate thread or
process and uses synchronous
sockets.

Programming
language (language
that the web server
is written in)

C: The C language is notably
low-level and offers more
accurate memory management.

C and C++: Although Apache
was written in C, many modules
were designed with C++.

Portability
(operating systems
that are currently
supported)

Multiplatform: Nginx runs
under Windows, GNU/Linux,
Unix, BSD, Mac OS X, and
Solaris.

Multiplatform: Apache runs
under Windows, GNU/Linux,
Unix, BSD, Mac OS X, Solaris,
Novell NetWare, OS/2, TPF,
OpenVMS, eCS, AIX, z/OS,
HP-UX, and more.

Year of birth 2002: While Nginx is younger
than Apache, it was intended
for a more modern era.

1994: Apache is one of the
numerous open source projects
initiated in the 90s that
contributed to making the World
Wide Web what it is today.

Chapter 7

[221]

General functionality
This section mainly focuses on the differences between Apache and Nginx rather than
listing all sorts of features that have already been covered in the previous chapters:

Feature Nginx Apache
HTTPS support: This
specifies whether the web
server can deliver secure
web pages.

Supported as a module: If
you require HTTPS support,
you need to make sure that
you compile Nginx with the
proper module.

Supported as a module:
Apache comes with HTTPS
support via a module
included by default.

Virtual hosting: This
specifies whether the web
server can host multiple
websites on the same
computer.

Supported natively:
Nginx natively supports
virtual hosting, but is not
configured by default to
accept per-virtual-host
configuration files (more
details are provided further
on in this chapter).

Supported natively: Apache
natively supports virtual
hosting and offers the
possibility to include one
configuration file per folder
(.htaccess).

CGI Support: This specifies
whether the web server
supports CGI-based
protocols.

FastCGI, uWSGI, SCGI:
Nginx supports FastCGI,
uWSGI, and SCGI (as well
as HTTP proxying) via
modules that are included
by default at compile time.

CGI, FastCGI: Most CGI
protocols are exploitable via
modules that can be loaded
into Apache.

Module system: This
specifies how the web
server handles the modules.

Static module system:
Modules are built-in; they
must be included at compile
time.

Dynamic module system:
Modules can be loaded and
unloaded dynamically from
configuration files.

Generally speaking, Apache has a lot to offer, notably a much larger number of
modules available. Most of its functionality is modularized, including its core engine.
At this time, the official Apache module website references over 500 modules for
various version branches, compared to a little more than 100 for Nginx.

Flexibility and community
This is another criterion for establishing an honest comparison between two
applications of the likes of Nginx and Apache. In today's information technology
industry, you cannot simply look at the raw functionality of a server application
without considering questions such as:

• Where am I going to get help if I get stuck?

From Apache to Nginx

[222]

• Am I going to find documentation about specific features offered by
either server?

• Are there going to be more modules in the future?
• Is the project still active and being updated by its developers?
• Has the security of either server been tested by a large enough number

of administrators?

These questions generally get answered when the server gets popular enough.
In the case of Apache, saying that it is a mainstream application would be an
understatement. Documentation is easily found, developers have released
hundreds of modules over the years, and it has received regular updates
over the past twenty years.

What about Nginx? Where does it stand on those matters? That is definitely a
sensitive issue. To begin with, there are some solid websites, centralizing information
such as the official documentation reference at http://www.Nginx.org. If you have
a problem with Apache, a simple search engine query suffices for finding multiple
articles, answering the exact question you have been asking yourself. If you have
an overly specific problem with Nginx though, you will likely have to resort to
newsgroups, mailing lists, or web forums.

On the updates and security side though, Nginx is frequently updated by its author
Igor Sysoev and his team. Those updates rarely need to include critical security
fixes, as the server has been built on a solid and reliable foundation from the start.
Although it doesn't serve as many websites as Apache does, Nginx still empowers
some of the most popular online platforms such as Netflix, SourceForge, WordPress,
ImageShack, and many more. This contributes in conferring it an undeniable
legitimacy in the domain of high-performance web servers.

Performance
While features and community-related matters are important in general, the aspect
that can make all the difference is performance. Administrators naturally tend to
favor the server that will provide optimal comfort for the end user, characterized by
minimal page load times and maximum download speeds.

http://www.Nginx.org

Chapter 7

[223]

Chapter 2, Basic Nginx Configuration, provided the first approach to HTTP server
performance testing. The same tests can be applied to Apache in order to establish
direct performance comparisons. In fact, many admin bloggers and technicians have
already done so, and the general trend is unquestionably in favor of Nginx on all
aspects such as the following:

• The RPS (requests per second) rate is generally much higher with Nginx,
sometimes twice more than Apache. In other words, Nginx is able to serve
twice as many pages as Apache in the same amount of time.

• Response times are lower in Nginx. As the request count grows, Apache
becomes slower and slower in serving pages.

• Apache tends to use slightly more bandwidth than Nginx for serving
the same requests. This can be interpreted in two ways — either Apache
generates more traffic overhead, or it is able to transfer the data at a faster
rate by better occupying the available bandwidth (it's still not clear as to
which of these assumptions is the most valid).

In conclusion, in terms of performance, Nginx wins hands down. It's clearly the main
reason why so many have switched to the lightweight Russian web server.

Usage
The reason why Nginx is so far ahead of Apache in terms of performance is because
it's precisely the reason it was written for. Originally, Igor Sysoev created Nginx
to empower an extremely high-traffic Russian website (http://www.rambler.ru),
which received hundreds of millions of requests every day. This was probably not
part of the original plans of the Apache designers when they initiated the project
back in the early 90s.

More generally, it is said that Nginx was designed to address the C10k problem.
This expression designates a common observation according to which the current
state of computer technology and network scalability allows a computer (from
the mainstream industry) to maintain only up to 10,000 simultaneous network
connections due to operating system and software limitations. While that number
isn't representative anymore due to the progress of technology, at the time, the issue
was considered very serious, and it triggered the development of major web servers
such as Lighttpd, Cherokee, and last but not least: Nginx.

http://www.rambler.ru

From Apache to Nginx

[224]

Conclusion
There is one famous quote going around the Nginx community that summarizes the
situation pretty accurately:

"Apache is like Microsoft Word, it has a million options but you only need six.
Nginx does those six things, and it does five of them 50 times faster than Apache."
– Chris Lea, https://ChrisLea.com

Other notable testimonies helped build the reputation of Nginx over time:

"I currently have Nginx doing reverse proxy of over tens of millions of HTTP
requests per day (that's a few hundred per second) on a single server. At peak
load, it uses about 15 MB RAM and 10 percent of my CPU on my particular
configuration (FreeBSD 6). Under the same kind of load, Apache falls over (after
using 1,000 or so processes and god knows how much RAM), Pound falls over
(too many threads, and using 400 MB+ of RAM for all the thread stacks), and
Lighty leaks more than 20 MB per hour (and uses more CPU, but not significantly
more)." – Bob Ippolito, http://www.MochiMedia.com

If you are in the market of high-scale projects with limited resources at your disposal,
Nginx comes in as a great solution. Apache is a good option to get your projects started
when your knowledge of web servers and hosting is limited, but as soon as you meet
success, you, your server, and your visitors may eventually find it inconsistent.

Porting your Apache configuration
That's it. You've had enough of Apache. You have finally decided to make a
complete switch to Nginx. There are quite a few steps ahead of you now, the first
of which is to adapt your previous configuration in a way that ensures that your
existing websites work 1:1 after the switch.

Directives
This section will summarize some of the common Apache configuration directives,
and attempt to provide equivalent replacement solutions from Nginx. The following
list gives the order of the default Apache configuration file:

http://www.MochiMedia.com

Chapter 7

[225]

Apache directive Nginx equivalent
ServerTokens: Apache allows
you to configure the information
transmitted in the request headers
regarding the server OS and the
software name and versions.

server_tokens: In Nginx, you may enable or
disable the transmission of server information by
using the server_tokens directive from the main
HTTP module.

ServerRoot: This lets you define
the root folder of the server, which
contains the configuration and the
logs folder.

The --prefix build-time option: With Nginx,
this option is defined at compile time with the
--prefix switch of the configure script, or at
execution time with the -p command line option.

PidFile: This defines the path of
the application PID file.

pid: The exact equivalent directive is pid.

TimeOut: This directive defines
three elements:

• The maximum execution
time of a GET request.

• The maximum allowed delay
between two TCP packets in
POST and PUT requests.

• The maximum allowed delay
between two TCP ACK
packets.

Multiple directives: There are multiple directives
allowing a similar behavior:
send_timeout: This defines the maximum
allowed delay between two read operations
by the client.
client_body_timeout: This defines the timeout
for reading the client request body.
client_header_timeout: This defines the
timeout for reading the client request headers.

KeepAlive,
MaxKeepAliveRequests,
KeepAliveTimeout: These three
directives control the keep-alive
behavior of Apache.

keepalive_timeout, keepalive_requests:
These two directives are the direct equivalents
of the Apache ones, except that if you want to
completely disable the keepalives, set keepalive_
timeout or keepalive_requests to 0.

Listen: This defines the interface
and port on which Apache will
listen for connections.

listen: In Nginx, this directive is only defined at
the virtual host level (server block).

LoadModule: With this directive,
Apache offers the possibility to load
the modules dynamically.

--with_****_module: Nginx cannot load
modules dynamically; these need to be included
at compile time. Once incorporated in Nginx, they
cannot be disabled.

Include: A file inclusion directive
that supports wildcards.

include: The include directive of Nginx is
identical.

User, Group: Allows you to define
the user and group under which the
daemon will be running.

user: The user directive of Nginx lets you specify
both the user and the group.

From Apache to Nginx

[226]

Apache directive Nginx equivalent
ServerAdmin,
ServerSignature: This lets you
specify the e-mail address of the
server administrator as well as a
signature message to be displayed
on error and diagnostic pages.

No equivalent
As of version 1.8, there is no equivalent in Nginx.
Error pages do not show the e-mail address of the
server administrator or other information. Use the
error_page directive to customize your site's
error pages.

UseCanonicalName: This
defines how Apache constructs
self-referential URLs.

No direct equivalent
Although there is no direct equivalent for this
Apache directive, the construction of self-referential
URLs can be defined via module-specific settings
(proxy, FastCGI, and so on).

DocumentRoot: This defines the
root folder from which Apache will
serve files. The directive can be used
at the server and virtual host levels.

root: The root directive can be inserted to define
the document root at all levels: http, server,
location, and if blocks.

DirectoryIndex,
IndexOptions, IndexIgnore:
Defines the directory index and file
listing options.

index, autoindex, random_index, fancyindex
(third party):
Nginx also offers a good variety of options for
managing indexes.

AccessFileName: Defines the
filename of .htaccess files that
are included dynamically on page
execution.

No equivalent
Nginx, as of version 1.8, has no such feature as
.htaccess files. Read further sections for more
information.

TypesConfig, DefaultType:
Defines the MIME type options.

types, default_type: Equivalent directives exist
in Nginx, although with a different syntax.

HostNameLookups: This allows
looking up of hostnames for client
IP addresses for logging or access
control purposes.

No equivalent
As of Nginx 1.8, there is no equivalent functionality.

ErrorLog, LogLevel,
LogFormat, CustomLog: Logging
activation and format settings.

access_log, log_format: Nginx also allows a
large variety of options, but they are combined in
fewer directives.

Alias, AliasMatch,
ScriptAlias: Directory aliasing
options.

alias: The alias equivalent directive is offered
by Nginx, but nothing for the other two.

Chapter 7

[227]

Modules
As we learned in Chapter 1, Downloading and Installing Nginx, modules in Nginx
cannot be loaded dynamically, and must be included at compile time. Additionally,
they cannot be disabled at runtime, since they are completely compiled and
integrated in the main binary. Consequently, you should carefully consider your
choice of modules when you build Nginx.

If you are worried about the impact of the modules you selected on
performance, you should be aware that the only noticeable differences
will come from the filter modules. This name is given to the modules
that apply a filter to the content of requests and/or responses, and
therefore, they are always activated. Examples of filter modules:
Addition, Charset, Gzip, SSI, and more. In the case of non-filter
modules (such as Autoindex, FastCGI, Stub Status, and others), if none
of their directives are used, the module handler is never executed.

The following table lists some modules that Apache and Nginx have in common.
Note that there might be equivalent modules, but they do not necessarily provide
exactly the same functionality, and directives are likely to be different in all cases.
You should check the documentation of these modules in their respective chapters:

Apache Module Nginx Module Status Configure switch
mod_auth_basic auth_basic Included by default --without-http_auth_

basic_module

mod_autoindex autoindex Included by default --without-http_
autoindex_module

mod_charset_
lite

charset Included by default --without-http_
charset_module

mod_dav Dav Optional --with-http_dav_
module

mod_deflate gzip Included by default --without-http_gzip_
module

mod_expires headers Included by default Cannot be disabled
mod_fcgid fastcgi Included by default --without-http_

fastcgi_module

mod_headers Headers Included by default Cannot be disabled
mod_include Ssi Included by default --without-http_ssi_

module

mod_log_config Log Included by default Cannot be disabled
mod_proxy proxy Included by default --without-http_proxy_

module

From Apache to Nginx

[228]

Apache Module Nginx Module Status Configure switch
mod_rewrite rewrite Included by default --without-http_

rewrite_module

mod_ssl Ssl Optional --with-http_ssl_
module

mod_status stub_status Optional --with-http_stub_
status_module

mod_substitute Sub Optional --with-http_sub_
module

mod_uid userid Included by default --without-http_
userid_module

Virtual hosts and configuration sections
Just as Nginx allows you to define the configuration settings at various levels (http,
server, location, if), Apache also has its own sections. The section list is described
as follows along with a configuration example.

Configuration sections
The following table provides a translation of the Apache sections into Nginx
configuration blocks. Some Apache sections have no direct Nginx equivalent, but
in most cases, identical behavior can be reproduced with a slightly different syntax:

Apache section Nginx section Description
(default) http The settings placed at the root of the Apache

configuration files correspond to the settings
placed at the root of the Nginx configuration file
and also to those placed in the http block (as
opposed to other blocks such as mail or imap
used for the mail server proxying functionality).

<VirtualHost> server Apache settings placed in the <VirtualHost>
sections should be placed in the server blocks
of the Nginx configuration file.

<Location>
<LocationMatch>

location The behavior of the <Location> and
<LocationMatch> (regular expression) can be
reproduced with the Nginx location block.

None if Nginx offers a dynamic conditional structure
with the if block. There is no exact equivalent
in Apache. The closest equivalent is the
RewriteCond directive from the Rewrite
module.

Chapter 7

[229]

Apache section Nginx section Description
<Directory>
<DirectoryMatch>
<Files>
<FilesMatch>

None Apache allows you to apply settings to specific
locations of the local filesystem, while Nginx only
offers per-URI settings.

<IfDefine> None Applies a set of directives on startup if the
specified condition is true. This feature is not
available on Nginx.

<IfModule> None Applies a set of directives on startup if the
specified module is loaded. Since Nginx does not
support dynamic module loading, this feature is
not available.

<Proxy>
<ProxyMatch>

None Applies a set of directives to proxied resources
by specifying a wildcard URI or a regular
expression. This section has no equivalent in
Nginx.

Creating a virtual host
In Apache, virtual hosts are optional. You are allowed to define server settings at the
root of the configuration file:

Listen 80
ServerName example.com
ServerAlias www.example.com
DocumentRoot "/home/example.com/www"
[…]

However, this behavior is useful only if you are going to host one website on the
server, or if you want to define the default settings for incoming requests that do not
match other virtual host access rules.

In Nginx, however, all the websites that you will be hosting must be placed in
a server block which allows the creation of a virtual host, equivalent to the
<VirtualHost> section in Apache. The following table describes the translation
of an Apache <VirtualHost> section to an Nginx server block:

Apache virtual host Nginx virtual host equivalent
<VirtualHost 12.34.56.78:80> server {

ServerName example.com:80
ServerAlias www.example.com

listen 12.34.56.78:80;
server_name example.com www.
example.com;

UseCanonicalName Off # No equivalent

http://www.example.com

From Apache to Nginx

[230]

Apache virtual host Nginx virtual host equivalent
SuexecUserGroup user group # No equivalent
ServerAdmin "admin@example.
com"

No equivalent

DocumentRoot /home/example.
com/www

root /home/example.com/www;

CustomLog /home/example.com/
logs/access_log cust

access_log/home/example.com/logs/
access_log cust;

Note that the cust format must be declared
beforehand with log_format.

ErrorLog /home/example.com/
logs/error_log

error_log /home/example.com/logs/
error_log;

<Location /documents/>
 Options +Indexes
</Location>

location /documents/ {
 autoindex on;
}

<IfModule mod_ssl.c>
SSLEngine off
</IfModule>

there is no equivalent for
IfModule.
ssl off;

<Directory /home/example.com/
www>
 <IfModule mod_fcgid.c>
 <Files ~ (\.php)>
 SetHandler fcgid-script
 FCGIWrapper /usr/bin/php-
cgi .php
 Options +ExecCGI
 allow from all
 </Files>
 </IfModule>
 Options -Includes -ExecCGI
</Directory>

There is no equivalent to the Directory
section. The location block only applies
per-URI settings. The location block applies
settings for all requests relative to the virtual
host root folder. We use it to apply settings to
the .php files.
location ~ \.php {
 # Insert your FCGI settings
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME
/home/example.com/ www$fastcgi_
script_name;
 fastcgi_param PATH_INFO
$fastcgi_script_name;
 include fastcgi_params; # Your
additional FastCGI settings
}

Other directives have no direct equivalent or
are not necessary with Nginx.

</VirtualHost> }

Chapter 7

[231]

This translation guide is valid for regular virtual hosts, serving non-secure web
pages. There are a few differences when creating a secure virtual host using SSL. The
following table focuses on the SSL-related directives, although directives from the
previous table can still be used:

Apache virtual host Nginx virtual host
<VirtualHost 12.34.56.78:443> server {

ServerName example.com:443
ServerAlias www.example.com

listen 12.34.56.78:443;
server_name example.com www.
example.com;

SSLEngine on
SSLVerifyClient none
SSLCertificateFile /home/
example.com/cert/certchL9435

ssl on;
ssl_verify_client off;
ssl_certificate /home/example.
com/cert/cert.pem;
ssl_certificate_key /home/
example.com/cert/cert.key;

<Directory /home/example.com/
www>
SSLRequireSSL
</Directory>

There is no equivalent required with
Nginx.

</VirtualHost> }

.htaccess files
This section approaches the tricky problem of .htaccess files and the underlying
theme of shared hosting. There is indeed no such mechanism in Nginx which, among
other reasons, renders shared hosting difficult to achieve.

From Apache to Nginx

[232]

A recap on Apache .htaccess files
The .htaccess files are small independent configuration files that webmasters are
allowed to place in every single folder of their website. Upon receiving a request
for accessing a particular folder, Apache checks for the presence of such a file and
applies it to the request context. This allows the webmasters to apply separate
settings at multiple levels. Take a look at the following screenshot:

In the case of a client request for /downloads/protected/finances.xls, all three
.htaccess files would be applied in the following order:

1. /home/example.com/www/.htaccess

2. /home/example.com/www/downloads/.htaccess

3. /home/example.com/www/downloads/protected/.htaccess

The settings precedence is given to the last .htaccess file read — if the same setting
is defined in /www/.htaccess and /www/downloads/.htaccess, the latter file has
priority over the former.

Chapter 7

[233]

Nginx equivalence
Unfortunately, there is no such mechanism in Nginx. We can, however, find
replacement solutions by making the most of the directives that we have at
our disposal.

There are three major uses of the .htaccess files in Apache:

• Creating access and authentication rules for specific directories
• Defining rewrite rules at the top level (usually not folder-specific)
• Setting flags for modules such as mod_php, mod_perl, or mod_python

When it comes to the latter, the use of flags is only achievable when
the pre-processors are set up as Apache modules. If your server
runs PHP through CGI or FastCGI, flags will not be recognized,
and generate a 500 Internal Server Error. In our case,
connecting Nginx to such applications can only be done via FastCGI
or HTTP; consequently, flags are not allowed.

Depending on the way you declare your virtual hosts, there are two solutions for
implementing an .htaccess-like behavior or at least something remotely similar.

The first solution, if you are going to list all the virtual hosts from a unique
configuration file, is to insert an include directive in the server block that refers
to an extra configuration file located in the /www/ folder. Do not forget that this
configuration file should be hidden and not downloadable by clients:

server {
 listen 80;
 server_name .example.com;
 root /home/example.com/www;
 […]
 # Include extra configuration files
 location / {
 include /home/example.com/www/.ngconf*;
 }
 # Deny access if someone tries to download the file
 location ~ \.ngconf {
 return 404;
 }
}

From Apache to Nginx

[234]

This will include any file with a name starting with .ngconf from the /www/ folder
of the virtual host. Note the * in the include directive. If you specify a filename
without a wildcard, Nginx will consider the configuration to be invalid in case the
file is missing. If you use the wildcard, the absence of such a file does not generate
any error.

The .ngconf file would then include directives related to the virtual host itself:

autoindex off; # Disable directory listing
location /downloads/ {
 autoindex on; # Allow directory listing in /downloads/
}
[…]

This solution seems relatively secure for web-hosting providers, as this only allows
the webmasters to define location-related settings (preventing important changes
such as using a different port, different host name, and more). However, be aware
that if a webmaster creates invalid .ngconf files, Nginx will refuse to reload until
the issue is fixed. This could be solved by testing the configuration files with the
nginx –t command in a shell script.

Alternatively, you could decide to place virtual host declarations within separate
files located in the root folder of each virtual host. In this case, you would only
need the following directive in the main Nginx configuration file:

include /home/*/www/.ngconf;

The .ngconf file then needs to contain the complete virtual host declaration,
including the port and server name. This solution should only be considered for
the servers that you manage entirely by yourself; you should never allow external
webmasters to have so much control over your server.

That being said, there is still one major difference between Apache and Nginx:

• Apache applies the settings from the .htaccess files every time a client
request is processed

• Nginx applies settings from the .ngconf files only when you reload the
configuration (such as service nginx reload)

At this moment, there is no workaround for this last issue; Nginx does not allow
on-the-fly configuration changes.

Chapter 7

[235]

Administrators of web servers primarily running PHP scripts might
be interested in the htscanner of the PECL package. This extension
offers the possibility to process .htaccess-like files containing
PHP settings. For more details, please refer to the official page of the
package: http://pecl.php.net/package/htscanner

Rewrite rules
The most common source of worry during an HTTP server switch are the rewrite
rules. Unfortunately, Nginx is not directly compatible with the Apache rewrite rules
in two regards:

• Usually, rewrite rules are placed within the .htaccess files, as discussed in
the previous section. Nginx offers no such mechanism, so rewrite rules will
have to be placed in a different location.

• The syntax of the rewrite instructions and conditions is quite different, and
will need to be adapted. Thankfully, the regular expression syntax itself does
not change.

This section will approach some of the issues encountered when porting rules
to Nginx, and then will provide some prewritten rules for a couple of major
web applications.

General remarks
Before studying some practical examples, let us begin with a couple of important
remarks regarding the rewrite rules in Nginx.

On the location
With all that has been said and written about Nginx, we can safely say that it's not
the most appropriate web server for web hosting companies that practise shared
hosting. The lack of .htaccess files renders it practically impossible to host websites
that have their own server settings, among which are the rewrite rules. While a
replacement solution has been offered in the previous section, it's not optimal as it
requires a configuration reload after each change, and to crown it all, reloading is
only possible if the entire configuration contains no error.

http://pecl.php.net/package/htscanner

From Apache to Nginx

[236]

The consequence of this first issue is that you will have to relocate the rewrite rules.
They will have to be placed directly in the server or location blocks of your virtual
host, regardless of which file contains the virtual host configuration. With Apache,
rewrite rules will be located somewhere such as /home/example.com/www/.htaccess;
while with Nginx, you will need to incorporate them into the virtual host configuration
file (for example, /usr/local/nginx/conf/nginx.conf).

On the syntax
There are two major Apache directives that are important when it comes to
porting the rewrite rules to Nginx. Other directives either have no equivalent,
are not supported on purpose, or their behavior is already incorporated into
the equivalent Nginx directives:

• RewriteCond: This allows you to define the conditions that should be
matched for the request URI to be rewritten

• RewriteRule: This performs the actual request URI rewrite by specifying a
regular expression pattern, the rewritten URI, and a set of flags

The first of those directives, RewriteCond, is equivalent to Nginx's if. It is used for
verifying conditions before applying a rewrite rule. The following example ensures
that the requested file does not exist (!-f flag) before rewriting the URI:

RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule . /index.php [L]

The Nginx equivalent, using if and rewrite, would be as follows:

if (!-f $request_filename) {
 rewrite . /index.php last;
}

It gets a little more complicated when you want to rewrite under multiple conditions.
The Nginx if statement allows only one condition, and does not allow imbrications
of the if blocks. Difficulty arises when trying to reproduce a behavior like the
following one:

RewriteCond %{REQUEST_FILENAME} !-f # File must not exist
RewriteCond %{REQUEST_FILENAME} !-d # Directory must not exist
RewriteRule . /index.php [L] # Rewrites URL

Chapter 7

[237]

There is a simple logical workaround for this particular issue — we will be using
multiple if blocks, in which we affect a variable. After the two initial if blocks, a
third comes in to check if the variable was affected by the first two:

set $check "";
If the specified file does not exist, set $check to "A"
if (!-f $request_filename) {
 set $check "A";
}
If the specified directory does not exist, set $check to $check+B
if (!-d $request_filename) {
 set $check "${check}B";
}
If $check was affected in both if blocks, perform the rewrite
if ($check = "AB") {
 rewrite . /index.php last
}

Note that for those two particular rewrite conditions (-f to test file existence
and -d to test folder existence), Nginx already offers a solution that combines
both the tests: -e. So, a quicker solution would have been the following:

if (!-e $request_filename) {
 rewrite . /index.php last;
}

In addition to testing for file and folder existence, -e also checks if the specified
filename corresponds to an existing symbolic link.

For more information on the rewrite module in general, please refer to Chapter 4,
Module Configuration.

RewriteRule
The RewriteRule Apache directive is the direct equivalent to rewrite in Nginx.
However, there is a subtle difference: URIs in Nginx begin with the / character.
Nevertheless, the translation remains simple:

RewriteRule ^downloads/(.*)$ download.php?url=$1 [QSA]

The preceding Apache rule is transformed into the following:

rewrite ^/downloads/(.*)$ /download.php?url=$1;

From Apache to Nginx

[238]

Note that the [QSA] flag tells Apache to append the query arguments to the rewritten
URL. However, Nginx does that by default. To prevent Nginx from appending the
query arguments, insert a trailing ? to the substitution URL:

rewrite ^/downloads/(.*)$ /download.php?url=$1?;

The RewriteRule Apache directive allows additional flags; these can be matched
against the ones offered by Nginx, described in Chapter 4, Module Configuration.
The following sections walk you through some examples of Nginx rules in famous
web applications.

WordPress
WordPress is probably a familiar name to you. As of July 2015, the immensely
popular open source blogging application was being used by over 60 million
websites worldwide. Powered by PHP and MySQL, it's compatible with Nginx out
of the box. Well, this statement would be entirely true if it weren't for rewrite rules.

The web application comes with a .htaccess file that will be placed at the root of
the website:

BEGIN WordPress
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php [L]
</IfModule>
END WordPress

This first example is relatively easy to understand and to translate to Nginx. In fact,
most of the rewriting process consists of three steps:

1. Checking if the requested URI corresponds to an existing file, in which case,
it is served normally (the request URI is not rewritten).

2. Checking if the requested URI corresponds to a folder, in which case, it is
served normally (the request URI is not rewritten).

3. Rewrite to index.php, WordPress will then analyze the original URI by itself
from within the PHP script (by checking the $_SERVER["REQUEST_URI"]
variable).

Chapter 7

[239]

Since there are not a lot of complex rules to take care of, and the URI is analyzed by
the PHP script itself, the translation to Nginx is rather easy. Here is a full example of
an Nginx virtual host, stripped of all unrelated directives for the sake of simplicity:

server {
 listen 80;
 server_name blog.example.com;
 root /home/example.com/blog/www;
 index index.php;
 location / {
 # If requested URI does not match any existing file,
 # directory or symbolic link, rewrite the URL to index.php
 try_files $uri $uri/ index.php;
 }
 # All PHP requests are passed on to PHP-FPM via FastCGI
 # For more information, consult chapter 5
 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME /home/example.com/blog/
www$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params; # include extra FCGI params
 }
}

MediaWiki
As its name suggests, MediaWiki is the web engine that empowers the famous
Wikipedia online open encyclopedia. It is currently an open source software, and
anyone can download and install it on their local server. The application can also
be used as a CMS (Content Management Software), and large companies such as
Novell have found it to be a reliable solution. Contrary to WordPress, MediaWiki
does not come with a prewritten .htaccess file for prettying up URLs. Instead,
the official MediaWiki website offers a wide variety of methods, which are all
documented in the form of wiki articles. Webmasters can implement solutions
that go as far as modifying the main Apache configuration file. However, there are
simpler solutions that require no such thing. No particular Apache solution has been
retained here, as three simple Nginx rewrite rules suffice to do the trick:

• The first one redirects the default requests (for example, / as a request URI)
to /wiki/Main_Page

From Apache to Nginx

[240]

• The second one rewrites all the URIs of the /wiki/abcd form into the actual
URL /w/index.php?title=abcd, without forgetting to append the rest of
the parameters to the request URL

• The third one ensures that the requests to /wiki get redirected to the home
page /w/index.php

The following is a full virtual host configuration example, including the rewrite rules:

server {
 listen 80;
 server_name wiki.example.com;
 root /home/example.com/wiki/www;
 location / {
 index index.php;
 # Permanent redirection to main page
 rewrite ^/$ /wiki/Main_Page permanent;
 }
 # Rewrite /wiki/anything URIs to /w/index.php?title=anything
 rewrite ^/wiki/([^?]*)(?:\?(.*))? /w/index.php?title=$1&$2;
 # Rewrite /wiki to /w/index.php
 rewrite ^/wiki /w/index.php;
 # Your usual FastCGI configuration here
 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME /home/example.com/wiki/
www$fastcgi_script_name;
 include fastcgi_params;
 }
}

Chapter 7

[241]

vBulletin
Discussion forums started blooming at the beginning of the twenty-first century
and a lot of popular web applications have appeared such as vBulletin, phpBB,
or Invision Board. Most of these forum software platforms have jumped on the
bandwagon, and now boast full SEO-friendly URL support. Unfortunately, rewrite
rules often come in the form of .htaccess files. Indeed, the vBulletin developers
have chosen to provide rewrite rules for Apache 2 and IIS, unsurprisingly forgetting
Nginx. Let's teach them a lesson. The following table describes a solution for
converting their Apache rewrite rules to Nginx:

Apache rule Nginx rule
RewriteEngine on # Not necessary.
RewriteCond %{REQUEST_FILENAME}
-s [OR]
RewriteCond %{REQUEST_FILENAME}
-l [OR]
RewriteCond %{REQUEST_FILENAME}
-d
RewriteRule ^.*$ - [NC,L]

Do not rewrite if the requested URI
corresponds to an existing file, folder, or
link on the system.

if (-e $request_filename) {
 break;
 }

RewriteRule ^threads/.*
showthread.php [QSA]

rewrite ^/threads/.*$ /
showthread.php last;

RewriteRule ^forums/.*
forumdisplay.php [QSA]

rewrite ^/forums/.*$ /
forumdisplay.php last;

RewriteRule ^members/.* member.
php [QSA]

rewrite ^/members/.*$ /members.
php last;

RewriteRule ^blogs/.* blog.php
[QSA]

rewrite ^/blogs/.*$ /blog.php
last;

ReWriteRule ^entries/.* entry.php
[QSA]

rewrite ^/entries/.*$ /entry.
php last;

RewriteCond %{REQUEST_FILENAME}
-s [OR]
RewriteCond %{REQUEST_FILENAME}
-l [OR]
RewriteCond %{REQUEST_FILENAME}
-d
RewriteRule ^.*$ - [NC,L]

For some reason, the same set of rules
appears twice in the .htaccess file
provided by vBulletin. You do not need to
insert the Nginx equivalent a second time.

RewriteRule ^(?:(.*?)(?:/|$))
(.*|$)$ $1.php?r=$2 [QSA]

rewrite ^/(?:(.*?)(?:/|$))
(.*|$)$ /$1.php?r=$2 last;

From Apache to Nginx

[242]

Summary
Switching from Apache to Nginx may seem complex at first. There are many steps
involved in the process, and you may face unsolvable problems if you are not
confident and well-prepared. You need to be aware of the current limitations of
Nginx: no on-the-fly configuration changes, and thus no .htaccess files or any such
similar feature. Nginx does not have as many modules as Apache does, at least not
yet. Last but not least, you have to convert all your rewrite rules for your websites to
be functional under Nginx. So yes, it does take quite a bit of work. But this is a small
price to pay to get a server that will ensure long-term stability and scalability. You
and your visitors will not regret it, as it generally comes with improved loading and
response speeds.

[243]

Introducing Load Balancing
and Optimization

As much as Nginx will help your servers hold the load, there are always limits to
what a single machine can process: an aging hard drive or limited bandwidth will
eventually induce a bottleneck, resulting in longer request serving times, which in
turn leads to disappointment for your visitors.

As your websites grow more popular and your single machine begins to suffer, you
will be tempted to simply get a bigger and more expensive server. But this will not
be a cost-efficient approach in the long run. Moreover, the more strain a server is
exposed to, the more likely it is to suffer from hardware failure.

In this chapter, we will investigate two concepts, the first of which is load balancing:
the art of distributing load across several servers and managing this distribution
efficiently. The second concept is the subject of thread pools—a new mechanism
relieving servers under heavy load (more specifically, load induced by blocking
operations) by serving requests in a slightly different manner.

This chapter covers the following topics:

• An introduction to load-balanced architectures
• Common concepts and issues of load balancing
• Dealing with the session affinity problem
• A demonstration of load balancing with MySQL
• Optimizing your setup with the help of thread pools

Introducing Load Balancing and Optimization

[244]

An introduction to load balancing
All of the most visited websites in the world are built over carefully planned server
architectures: fast page loads and download speeds are significant requirements for
long-term traffic growth. The concept of load balancing has the potential to solve
problems pertaining to scalability, availability, and performance. After a rapid
description of the concept, we will elaborate on how Nginx offers to implement such
an architecture.

Understanding the concept of load balancing
To put it simply, the concept of load balancing consists of distributing the workload
(CPU load, hard disk load, or other forms) across several servers in a manner that is
completely transparent to your visitors.

In the case of a single server architecture, client requests are received and processed
by one machine. A machine has a limited capacity of operation. For example,
suppose a web server is able to respond to 1,000 HTTP requests per second. If the
server were to receive more than 1,000 requests per second, the 1,001st client request
received in that second would not be served in a timely manner. And from then on,
the page's serving time would begin to increase, resulting in a degraded experience
for your visitors.

Chapter 8

[245]

Distributing the load across several servers increases the overall request serving
capacity: with two servers at your disposal, you could theoretically allow 2,000
HTTP requests to be served per second. With three servers, you could serve 3,000
requests, and so on.

There are several techniques available for achieving load balancing, the simplest of
which is DNS load balancing. When a person wishes to visit your website, their web
browser will resolve your domain name (example.com) into an IP address (1.2.3.4).
To achieve DNS load balancing, simply associate multiple IP addresses with your
domain. Upon visiting your website, the operating system of your visitors will select
one of these IP addresses by following a simple round-robin algorithm, thus ensuring
that on a global scale, all your servers receive more or less the same amount of traffic.

Albeit simple to implement, this load balancing method cannot always be applied to
high traffic websites, because it eludes several major issues such as the following:

• What if the IP address selected by a visitor's operating system points to a
server that is temporarily unavailable?

• What if your architecture is made up of several types of servers, some of
which are capable of handling more requests than the others?

• What if a visitor connects to a particular server and logs in to their user
account, only to get switched to another server ten minutes later, and thus
losing their session data?

The last of these issues is also known as the session affinity problem, and is further
detailed in the following section.

Introducing Load Balancing and Optimization

[246]

Session affinity
Session affinity is an expression that designates the persistent assignment of a client
to a particular server in a load-balanced infrastructure. We use the word session to
describe a set of requests performed by a client on a server. When a visitor browses
a website, they often visit more than one page: they log in to their account, they
add a product to their shopping cart, they check out, and so on. Until they close
their web browser (or a tab thereof), all of their subsequent page views are part of a
session, which is most of the time stateful: the server conserves the data related to the
operations performed during the visit. In our example, that server would remember
the contents of the shopping cart and the login credentials.

If, at some point during the session, the visitor were to switch servers and connect to
server B, they would lose any session information contained on server A. The visitor
would then lose the contents of their shopping cart as well as their login credentials
(they would get logged out).

For that reason, it is of utmost importance to maintain session affinity: in other
words, to ensure that a visitor remains assigned to a particular server at all times.
The DNS load balancing method does not ensure session affinity, but fortunately,
Nginx will help you achieve it.

The upstream module
The implementation of load balancing in Nginx is particularly clever as it allows
you to distribute the load at several levels of your infrastructure. It isn't limited to
proxying HTTP requests across backend servers: it also offers to distribute requests
across FastCGI backends (FastCGI, uWSGI, SCGI, and the like), or even to distribute
queries to Memcached servers. Any directive that ends with _pass, such as proxy_
pass, fastcgi_pass, or memcached_pass, accepts a reference to a group of servers.

Chapter 8

[247]

The first step is to declare this group of servers with the help of the upstream block,
which must be placed within the http block. Within the upstream block, declare one
or more servers with the server directive:

http {
 upstream MyUpstream {
 server 10.0.0.201;
 server 10.0.0.202;
 server 10.0.0.203;
 }
[…]
}

Now that your server group is declared, you can reference it in your virtual host
configuration. For example, you could distribute the incoming HTTP requests across
the server group by simply proxying them:

server {
 server_name example.com;
 listen 80;
 root /home/example.com/www;
 # Proxy all requests to the MyUpstream server group
 proxy_pass http://MyUpstream;
 […]
}

Introducing Load Balancing and Optimization

[248]

In this most basic state of configuration, requests are distributed across the three
servers of the MyUpstream group according to a simple round-robin algorithm
without maintaining session affinity.

Request distribution mechanisms
Nginx offers several ways to solve the problems that we mentioned earlier. The first
and simplest of them is the weight flag, which can be enabled in the definition of
your server group:

upstream MyUpstream {
 server 10.0.0.201 weight=3;
 server 10.0.0.202 weight=2;
 server 10.0.0.203;
}

By default, servers have a weight of 1, unless you specify otherwise. Such a
configuration enables you to give more importance to particular servers: the higher
their weight, the more requests they will receive from Nginx. In this example, for
every 6 HTTP requests received, Nginx will systematically distribute:

• 3 requests to the 10.0.0.201 server (weight=3)
• 2 requests to the 10.0.0.202 server (weight=2)
• 1 request to the 10.0.0.203 server (weight=1)

For every 12 requests, Nginx will distribute:

• 6 requests to the 10.0.0.201 server (weight=3)
• 4 requests to the 10.0.0.202 server (weight=2)
• 2 requests to the 10.0.0.203 server (weight=1)

Nginx also includes a mechanism that will verify the state of the servers in a group:
if a server doesn't respond in time, the request will be re-sent to the next server in
the group. There are several flags that can be assigned to the servers in an upstream
block that will allow you to better control this mechanism:

• fail_timeout=N where N is the number of seconds before a request is
considered to have failed

• max_fails=N where N is the number of attempts that should be performed
on a server before Nginx gives up and switches to the next server. By default,
Nginx only tries once

Chapter 8

[249]

• backup marks the server as a backup server, instructing Nginx to only use it
if another server fails (it is not used otherwise)

• down marks the server as permanently unavailable, instructing Nginx not to
use it anymore

Finally, Nginx offers plenty of options to achieve session affinity. They come under
the form of directives that should be inserted within the upstream block. The
simplest of them is ip_hash. This directive instructs Nginx to calculate a hash from
the first three bytes of the client's IPv4 address (or the full IPv6 address), and based
on that hash, keep the client assigned to a particular server. As long as the client's IP
address remains the same, Nginx will always forward requests to the same server in
the upstream group:

upstream {
 server 10.0.0.201 weight=3;
 server 10.0.0.202 weight=2;
 server 10.0.0.203;
 ip_hash;
}

Some administrators may deem this method too unreliable, considering the fact that
the majority of Internet Service Providers across the globe still provide dynamic
IP addresses renewed on a 24-hour basis. So, why not use your own distribution
key? Instead of the client's IP address, you could separate the requests based on
the criteria of your choice, thanks to the hash directive. Since the directive allows
variables, you could decide to separate the requests based on a cookie value:

upstream {
 server 10.0.0.201;
 server 10.0.0.202;
 hash $cookie_username;
}

Based on the data contained in the username cookie, your visitors will be assigned to
the first or the second server in the upstream group.

Introducing Load Balancing and Optimization

[250]

Using Nginx as a TCP load balancer
Until recently, the open source version of Nginx would only allow load balancing in
the context of HTTP requests. In the meantime, the commercial subscription NGINX+
took the concept one step further: using Nginx as a TCP load balancer. This would
pave the way to much broader possibilities: you could then set up Nginx to distribute
load across any form of networked servers—database servers, e-mail servers— literally
everything that communicates via TCP. In May 2015, the authors decided that TCP
load balancing should be part of the open-source version; as of Nginx 1.9.0 the Stream
module is included in the source code readily available on Nginx.org.

The Stream module
The way TCP load balancing works in Nginx is remarkably similar to HTTP load
balancing. However, since the module that brings forth the new set of directives is
not included in the default build, you will need to run the configure command with
the following flag before building the program: --with-stream.

The Stream module offers a new block called stream which must be placed at the root
of the configuration file (outside of the http block). In this block, you must declare
two sets of directives:

• server declares a TCP server listening on a particular port and optionally a
network interface, with or without SSL

• upstream defines a server group in a similar manner, as seen previously

In your server blocks, the requests will be sent to the server group with the
proxy_pass directive.

An example of MySQL load balancing
If you already understand how HTTP load balancing works in Nginx, the following
example will look spectacularly simple to you. We will configure Nginx to receive
MySQL connections, and balance them across two backend servers, as follows:

stream {
 upstream MyGroup {
 # use IP address-based distribution
 hash $remote_addr;
 server 10.0.0.201 weight=2;
 server 10.0.0.202;
 server 10.0.0.203 backup; # use as backup only
}

Chapter 8

[251]

 server {
 # listen on the default MySQL port
 listen 3306;
 proxy_pass MyGroup; # forward requests to upstream
 }
}

That's all there is to it. All directives and options offered by the upstream module are
still there. But keep in mind that you won't be able to use HTTP-based variables (such
as cookies) to achieve session affinity. The Stream module comes with a lot more
options and flags, but they are not detailed here as this falls outside the scope of an
HTTP server; additional documentation can be found at http://www.nginx.org.

Thread pools and I/O mechanisms
Before making important financial decisions, such as investing in an additional
server or two, you should look to optimize your current setup to make the most
of your existing infrastructure.

Relieving worker processes
In the case of websites that require heavy I/O operations, such as file uploads
or downloads, the asynchronous architecture of Nginx can present a certain
disadvantage: while the master process is able to absorb the incoming connections
asynchronously, the worker processes can be blocked for relatively long periods
of time by certain tasks (the most common one being reading data from hard disk
drives or network drives).

http://www.nginx.org

Introducing Load Balancing and Optimization

[252]

Consider a simplified configuration with two worker processes; each HTTP request
received by Nginx gets assigned to either process. Within a process, operations are
performed sequentially: receiving and parsing the request, reading the requested
file from its storage location, and finally preparing and sending the response to the
client. If, for some reason, you were to serve files stored on a network drive with a
latency of about 100 ms, both your worker processes would be spending most of
their time waiting for the files. As a result, your server would only be able to serve
18 to 20 requests per second.

This isn't a problem that occurs just for network drives: even regular hard disk drives
can take a certain amount of time to fetch a file if it isn't in the cache; 10 milliseconds
isn't insignificant when you multiply it by 1,000.

Chapter 8

[253]

The solution that has been made available as of Nginx 1.7.11 is called thread pools.
The basic principle behind this solution is that instead of reading files synchronously
within the worker process, Nginx delegates the operation to a thread. This
immediately liberates the worker process, which can then move on to the next
request in the queue. Whenever the thread finishes performing the operation, the
worker process finalizes and sends the response to the client. It is a pretty simple
concept to understand, and thankfully, it's just as simple to configure.

AIO, Sendfile, and DirectIO
In order to enable support for thread pools, Nginx must be built with the --with-
threads parameter; this functionality doesn't come by default. The first step of the
configuration is to define a thread pool with the thread_pool directive at the root of
your configuration file.

Syntax: thread_pool name threads=N [max_queue=Q];

Where name is the name you wish to give to the thread pool, N is the number of
threads that should be spawned, and Q the maximum number of operations allowed
in the queue. By default, a thread pool exists with the name default, coming with
32 threads and a maximum queue of 65,536 operations.

In location blocks that require it, simply insert the aio directive and specify the
thread pool name:

thread_pool MyPool threads=64;
[…]
location /downloads/ {
 aio threads=MyPool;
}

Alternatively, insert aio threads without a pool name if you want to use the default
thread pool. It is also possible to use both sendfile and aio in the same location:

location /downloads/ {
 aio threads;
 directio 8k;
 sendfile on;
}

If the file requested by the client is over 8k (the value specified with the directio
directive), aio will be used. Otherwise, the file will be sent via sendfile.

Introducing Load Balancing and Optimization

[254]

Summary
Before adapting your infrastructure to increasingly high traffic, you should always
look for solutions offered by your current set of tools. If traffic causes your server to
become unresponsive because of blocking operations such as slow disk reads, you
should give thread pools a try. If this turns out to be insufficient, load balancing is
the next best thing. Thankfully, as we have discovered in this chapter, implementing
a load-balanced architecture is made particularly easy by Nginx; you can even use it
to distribute the load of other server applications such as MySQL, e-mail, and more.

Now that we have seen a basic yet comprehensive approach of the most advanced
mechanisms offered by Nginx, we will continue by exploring four real-life case studies.

[255]

Case Studies
The chapters you have read so far have explored the many facets of Nginx: from
static web page serving to advanced features such as load balancing. You have
learned how to set up Nginx on your server and to configure it to fit the needs of
your websites. You've also discovered the numerous advanced modules, which
bring forth complex functionality.

We will now make use of the knowledge acquired so far by studying a couple of
real-life examples. First, we will set up a complete WordPress site from scratch,
approaching all the aspects of configuration including optimization and caching. We
will then enable HTTPS support as well as SPDY, and discover how to handle clients
who visit your website from a mobile device.

The last part of the chapter will be dedicated to setting up ownCloud—an open
source solution allowing you to store documents on your server and retrieve them
from a variety of platforms. We will also secure access to your OwnCloud drive by
setting up a self-signed certificate.

This chapter covers the following topics:

• An in-depth guide to setting up a WordPress site
• Obtaining and setting up an SSL certificate to enable HTTPS support
• Enabling and testing SPDY on your server
• The basic handling of mobile clients
• Creating a secure cloud drive with ownCloud

Case Studies

[256]

Deploying a WordPress site
As stated in Chapter 7, From Apache to Nginx, WordPress is currently the most
popular content management system on the entire Web. According to a recent
survey by http://www.builtwith.com, its market share has reached the
50 percent bar, leaving its competitors far behind: Joomla only captures 9 percent
of the market, followed by Drupal with just a little over 2 percent. For a lot of web
server administrators, setting up WordPress sites or blogs has become a common
task, whether it is for personal or professional use.

Preparing your server and obtaining
WordPress
In this section, we will get your server ready for downloading and installing the
WordPress application. There will be a few configuration files to go through to
make sure that WordPress runs smoothly.

System requirements
The first step you need for setting up a WordPress site on a fresh new server is
to make sure you have the necessary components installed and up-to-date: it is
recommended that you run at least PHP 5.4 and MySQL Server 5. If you haven't
done so yet, running the following commands will provide a basic working
environment with minimal PHP extensions. Use the following command under a
Debian-based Linux operating system:

apt-get install mysql-server php5-fpm php5-mysql php5-gd php5-dev

If your server runs a Red Hat-based OS, run the following command:

yum install mysql-server php-fpm php-mysql php-gd php-dev

If you have an older version installed on your system, it is recommended that you
upgrade it to the latest available version using the apt-get update && apt-get
upgrade or yum upgrade commands.

http://www.builtwith.com

Chapter 9

[257]

PHP configuration
After making sure that your server components meet the minimum requirements,
you should edit some of the settings if you want WordPress to run smoothly. There
are two main aspects of the PHP configuration which you should look into. First, the
default PHP configuration file (php.ini) contains the following directives that you
will probably want to update:

• cgi.fix_pathinfo: set this value to 0 for security reasons, as we explained
in Chapter 5, PHP and Python with Nginx.

• post_max_size: by default, the maximum size of the POST request body is 8
megabytes. Increase the value if necessary; keep in mind that file uploads are
usually performed via the POST requests.

• upload_max_filesize: set to 2 megabytes by default, this will need to be
increased if you want to allow the uploading of large files.

• date.timezone: you will get a warning if you leave this blank. Refer to
http://php.net/manual/en/timezones.php to find out the proper value
in your situation.

The second aspect of the configuration is the PHP-FPM side. The main php-fpm.conf
file does not require immediate changes. However, if you haven't done so yet, you
will need to create a configuration pool: a set of configuration directives that apply to
a particular website or application. This allows you to run the PHP processes under
a specific user account, and optionally, configure a specific network interface for
communicating with Nginx.

Create a new pool by declaring its name between brackets:

[wordpress]

Append the following configuration directives:

; Specify user account and group for the pool
; We assume that you created a "wordpress" user and group
user=wordpress
group=wordpress
; Network interface and listening port
; Use 127.0.0.1 if Nginx runs on the same machine
listen=127.0.0.1:9000
; Only allow connections from local computer
; Change this value if Nginx runs on a different machine
allowed_clients=127.0.0.1

http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

Case Studies

[258]

Optionally, you may enable chrooting: specify a root directory for the PHP processes
of this pool. For example, if you set the chroot to /home/wordpress/www, your
PHP scripts will only be able to read the files and directories within the specified
path (any attempt to read or write a file or directory outside of /home/wordpress/
www will systematically fail). It is highly recommended that you enable this feature.
Should a security breach be discovered in the WordPress code, attackers would only
be able to exploit files within the reach of your PHP process; the rest of your server
would not be compromised.

chroot=/home/wordpress/www;

Other configuration directives are documented at length in the default pool file
supplied with PHP-FPM; their default values are suitable in most cases.

When it comes to PHP, there is one last bit of configuration that should be
performed: enabling Zend OpCache. This PHP extension offers an opcode caching
mechanism that improves script processing times dramatically. This being totally
transparent to programmers and visitors, all you have to do is enable it in your
php.ini configuration file. If you run PHP 5.4, you will have to download and
install it with the following command:

pecl install zendopcache

Once the command ends, you will be given the full path of the extension. If you run
PHP 5.5 or above, the extension is already available in the default extension folder.
To enable Zend OpCache, simply add the extension=path directive, where path is
the full path of the extension file (or a path relative to the default extension folder),
similar to this:

extension=/usr/local/php/lib/php/extensions/no-debug-non-zts-20121212/
opcache.so

MySQL configuration
At the time of installing the MySQL server, you were asked to set up the
administrator (root) credentials. Since these credentials allow full access to the SQL
server including permissions on all databases, you should never use them in any of
your PHP applications. The best practice is to create a separate MySQL user, and to
assign permissions on the database that will be used by your application. Log in to
your local MySQL server with the following command:

mysql –u root -p

Create a new SQL database:

mysql> CREATE DATABASE wordpress;

Chapter 9

[259]

Create a SQL user and grant all permissions to the wordpress database (don't forget
to specify a complex enough password):

mysql> GRANT ALL PRIVILEGES ON wordpress.* TO 'wordpress'@'localhost'
IDENTIFIED BY 'password';

Now, exit and try logging in to the server using the newly created account:

mysql> exit

mysql –u wordpress –p

mysql> SHOW DATABASES;

You should see the wordpress database that you just created.

Downloading and extracting WordPress
The last step is to download the latest version of WordPress, and extract it at the
location specified earlier; in our example: /home/wordpress/www. The latest version
can always be found at https://wordpress.org/latest.tar.gz:

/home/wordpress/www# wget https://wordpress.org/latest.tar.gz

/home/wordpress/www# tar xzf latest.tar.gz

/home/wordpress/www# mv ./wordpress/* ./ && rm –r ./wordpress

Make sure that the user and group is properly set, and give write permissions over
the application files to the wordpress user:

/home/wordpress/www# chown –R wordpress ./

/home/wordpress/www# chgrp –R wordpress ./

/home/wordpress/www# chmod –R 0644 ./

Nginx configuration
Before you can begin setting up WordPress via the user-friendly web installer, you
will need to finalize your Nginx server configuration. We will go down to every last
detail, and suggest a configuration that would be appropriate for relatively low-end
server hardware: eight-core Intel C2750 (Avoton) with 8 GB of RAM and a regular
HDD. Directive values should be adjusted depending on your own hardware.

https://wordpress.org/latest.tar.gz
https://wordpress.org/latest.tar.gz

Case Studies

[260]

HTTP blocks
We will be going down the blocks starting at the top level: the HTTP blocks,
encompassing the directives that affect the entire server. This implies that the
directives placed here will affect all the websites served by this instance of Nginx.
Open your Nginx main configuration file (nginx.conf), and insert or update the
following directives:

Sets the user and group under which the worker processes
will run. The following values are valid assuming your server
will only be hosting one website.
user wordpress wordpress;
worker_processes 8; # 1 process per core
pid /var/run/nginx.pid;

events {
 # Edit this value depending on your server hardware
 worker_connections 768;
}

http {
 # Core settings affecting I/O
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;

 # Default Nginx values
 keepalive_timeout 65;
 types_hash_max_size 2048;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 # Set access and error log paths
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 # Enable gzipping of files matching the given mime types
 gzip on;
 gzip_disable "msie6"; # Disable gzipping for I.E. 6 users
 gzip_types text/plain text/css application/json application/x-
javascript text/xml application/xml application/xml+rss text/
javascript;

 # Include virtual host configuration files;
 # Edit path accordingly
 include /etc/nginx/sites-enabled/*;
}

Chapter 9

[261]

The server block
The following step will require you to create a new file in the directory specified
previously. For example, create a file called wordpress.conf in the /etc/nginx/
sites-enabled/ folder. Define your virtual host configuration by inserting or
updating the following directives:

server {
 # Listen on all network interfaces on port 80
 listen 80;

 # Specify the host name(s) that will match the site
 # The following value allows both www. and no subdomain
 server_name .example.com;

 # Set the path of your WordPress files
 root /home/wordpress/www;

 # Automatically load index.php
 index index.php;

 # Saves client request body into files, cleaning up afterwards
 client_body_in_file_only clean;
 client_body_buffer_size 32K;

 # Allow uploaded files up to 300 megabytes
 client_max_body_size 300M;

 # Automatically close connections if no data is
 # transmitted to the client for a period of 10 seconds
 send_timeout 10s;

 # The rest of the configuration (location blocks)
 # is found below
 […]
}

Location blocks
Finally, set up your location blocks: directives that apply to specific locations on
your site:

 # The following applies to static files:
 # images, CSS, javascript
 location ~* ^.+\.(jpg|jpeg|png|gif|ico|css|js)$ {

Case Studies

[262]

 access_log off; # Disable logging
 # Allow client browsers to cache files
 # for a long period of time
 expires 180d;
 }

The following applies to every request
location / {
 # Try serving the requested URI:
 # - If the file does not exist, append /
 # - If the directory does not exist,
 # redirect to /index.php forwarding the request URI
 # and other request arguments
 try_files $uri $uri/ /index.php?q=$uri&$args;
}

 # The following applies to every PHP file
 location ~ \.php$ {
 # Ensure file really exists
 if (!-e $request_filename) {
 return 404;
 }
 # Pass the request to your PHP-FPM backend
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 include fastcgi_params;
 }

WordPress configuration
Once your Nginx configuration is finalized and saved, make sure that you reload the
Nginx configuration, either via the service Nginx reload or the /usr/local/nginx/
sbin/nginx –s reload (or your usual Nginx binary location).

If all goes well, you should be able to run the web-based WordPress installer by
visiting http://example.com/wp-admin/install.php (replacing example.com
with your own domain name). You will be prompted for:

• The name of the database you created earlier, in our example: wordpress
• The SQL user name you created earlier, in our example: wordpress
• The password associated with the user

http://example.com/wp-admin/install.php
http://example.com/wp-admin/install.php

Chapter 9

[263]

• The database host: 127.0.0.1 if your MySQL server is hosted on the
same server

• A prefix for all the SQL tables created by WordPress

Once the installer completes, you can begin configuring and preparing your
WordPress site. In order to enable pretty URLs, you should check the Settings >
Permalinks section. Several URL schemes, such as http://example.com/post-name/
or http://example.com/year/month/post-name/, are offered.

Securing communications with HTTPS
Implementing HTTPS support is becoming an increasingly important requirement
in the modern Web. Visitors no longer trust online stores that don't secure
communications, and all of the major actors of the industry are slowly eradicating
plain-text transmissions. Facebook, Google, and Twitter all default to HTTPS now.
Google has even announced that their search engine will promote websites that offer
HTTPS support. There isn't any reason left to skip this part, and Nginx makes it
particularly easy. We will thus expand on the example in the previous section, and
enable HTTPS support on our WordPress site; please note however that the guide
remains valid regardless of the application you are securing.

http://example.com/post-name/
http://example.com/year/month/post-name/
http://example.com/year/month/post-name/

Case Studies

[264]

Self-signed certificates and certificate
authorities
In order to enable HTTPS, we have to obtain an SSL certificate which will contain
information pertaining to the domain name that we wish to secure. There are two
types of certificates that you may set up for your website:

• Self-signed certificates: you can generate a certificate all by yourself on your
own server

• Certificates signed by a trusted certificate authority offer an additional level
of security: a third party ascertains the authenticity of your server as visitors
connect to your website

For testing environments or websites that are meant for a restricted amount of
visitors, self-signed certificates can be an option; however, bear in mind that web
browsers will display a warning message when visitors browse your site.

In the case of our WordPress example site, the best option is to set up a certificate
that is signed by a third party (self-signed certificates are covered further on in this
chapter) seeing as we intend it to be visited by as many people as possible.

In order to obtain a trusted certificate, you must rely on paid services, which can be
found online rather easily. Pricing may vary depending on the number of domains
you wish to secure: for a single domain (without any subdomains) 70 US dollars per
year is considered a fair price.

Chapter 9

[265]

Obtaining your SSL certificate
After purchasing the plan of your choice, there are a few steps to perform before
you can enable HTTPS in your Nginx configuration. The first of these is to generate
a private encryption key that must be kept as safe as possible (any attacker that gets
hold of this key would theoretically be able to impersonate your server). This key
will be generated with a program called openssl, which must be installed on your
system. Install it with the following command:

apt-get install openssl

Alternatively, for Red Hat-based operating systems, use the following command:

yum install openssl

Run the following command to generate your 2048-bit RSA private key, replacing
example.com with your actual domain name:

openssl genrsa –out example.com.key 2048

A file called example.com.key is now present in the current directory. Before you move
the file to a secure location, you must generate a Certificate Signing Request file which
will be transmitted to the certificate authority. The following command will take care
of it:

openssl req -new -key example.com.key -out example.com.csr

As you execute this command, you will be prompted to enter details about your
company or organization; the most important part is Common Name (for example,
server FQDN or YOUR name): this is where you should enter your actual domain
name, in our case, example.com. Once this is done, you are left with a .csr file
containing the information required by the Certificate Authority to generate your
certificate. Log in to your account on the Certificate Authority website, and upload
the .csr file (or its contents). Your certificate signing request will be verified and
processed by the certificate authority, and the certificate files will be provided to you
immediately or after a short period of time, depending on the Certificate Authority
you selected.

Enabling HTTPS in your Nginx configuration
At this point, you should have received two files from your Certificate Authority:
your site's certificate file (.crt), and an additional certificate file containing
information relative to the Certificate Authority itself. These two files must
be concatenated into one by using the following command:

cat your_site_certificate.crt certificate_authority.crt > example.com.
crt

Case Studies

[266]

The order is important: your site's certificate first, followed by your CA's certificate.
Now that this is done, two files are required to finalize your Nginx configuration:

• Your private key file generated during the first step (example.com.key)
• The certificate file that we just generated (example.com.crt)

Store them in a secure location, but keep in mind Nginx must have the read
permission in order to function properly. We will now edit the Nginx configuration
to enable HTTPS.

Open the existing server block for your domain, and append the following directives
below the listen 80; line:

Listen on port 443 using SSL and make it the default server
listen 443 default_server ssl;

Specify the path of your .crt and .key files
ssl_certificate /etc/ssl/private/example.com.crt;
ssl_certificate_key /etc/ssl/private/example.com.key;

Enable session caching, increase session timeout
ssl_session_cache shared:SSL:20m;
ssl_session_timeout 60m;

Disable SSL in favor of TLS (safer)
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

Save your configuration and reload Nginx. At this point, you are able to browse your
site via HTTPS (while HTTP is still enabled). However, we must inform WordPress
that the site URL has changed. Open your WordPress site control panel; go to
Settings > General, and update the site address:

Chapter 9

[267]

Furthermore, if your custom theme includes elements linked statically, you will
want to update the URLs by replacing http with https (or better still, removing the
protocol altogether, since modern web browsers are clever enough to use the correct
one automatically).

Setting up and testing SPDY
As detailed in Chapter 4, Module Configuration, the SPDY protocol was designed
by Google in order to improve the page loading time for visitors through various
techniques (data compression, multiplexing of requests, and so forth). SPDY can be
enabled quite simply by making sure that the module exists in your Nginx build, and
appending a flag to your listen configuration directive.

If you are unsure whether you included the SPDY module in your Nginx build, run
the nginx –V command to find out. If you did not include it, you should rebuild
Nginx with the --with-http_spdy_module command-line argument. Once SPDY is
available, open up your server block configuration and update the listen directive:

listen 443 default_server ssl spdy;

Reload Nginx, and visit your website again from a web browser that supports
SPDY (Google Chrome or Firefox, among others). You may or may not notice an
improvement in speed; if you want to make sure that SPDY is correctly enabled,
you can use a browser extension that will provide indications. In Google Chrome,
you can download an extension called HTTP/2 and SPDY indicator, available on the
Chrome Web Store free of charge. The following screenshot displays what you will
see if everything has been set up correctly:

However, be aware that the SPDY support will progressively be dropped over
time in favor of HTTP 2, which will encompass all the improvements brought
forth by SPDY.

Case Studies

[268]

Creating your ownCloud drive
By now, everyone must have heard of Dropbox and similar services that allow you
to store files online and retrieve them easily from all sorts of devices, including
mobile phones and tablets. While Dropbox is well known for being easy to use and
safe enough to store important files, it comes with a price and a limited storage size.
The servers that your files are stored on don't belong to you, and recent events have
shown that third parties (that is, government agencies) are sometimes allowed to go
through your documents if they can provide valid justification. Parallel to Dropbox
and other commercial services, a free open source platform was developed: ownCloud.
In this chapter, we will set up ownCloud on your Nginx-powered server, and secure
communications with the help of a self-signed certificate.

Getting ownCloud
Before installing ownCloud on your server, you should follow the steps that we
covered in the previous section:

1. Make sure your server runs PHP 5.4 or greater, as well as at least version 5 of
MySQL server.

2. Update your PHP configuration file accordingly, taking particular care of the
directives regarding the maximum file upload size.

3. Create a PHP-FPM pool dedicated to ownCloud.
4. Set up a SQL database and user.

Once all the preceding steps have been covered, you are ready to begin downloading
and extracting ownCloud. Head over to http://www.ownCloud.org and obtain the
URL of the latest version; then, run the following commands:

• /home/owncloud/www# wget https://download.owncloud.org/
community/owncloud-8.1.1.zip

• /home/owncloud/www# unzip owncloud-8.1.1.zip

• /home/owncloud/www# mv ./owncloud/{.[!.],}* ./ && rm –r ./
owncloud

Make sure that the user and group are properly set, and give write permissions over
the application files to the owncloud user:

• /home/owncloud/www# chown –R owncloud ./

• /home/owncloud/www# chgrp –R owncloud ./

• /home/owncloud/www# chmod –R 0644 ./

http://www.ownCloud.org

Chapter 9

[269]

Nginx configuration
You are ready to configure Nginx to host your ownCloud drive. This time, the
configuration appears slightly more complex due to the nature of the application
and its multiple access mechanisms. Initially, we will be accessing our ownCloud
instance via HTTP; the final section is dedicated to implementing a self-signed SSL
certificate allowing us to browse our cloud drive over HTTPS.

Begin by creating a new configuration file in the virtual host configuration folder—in
our example, /etc/nginx/sites-enabled/. Insert the following set of directives (or
obtain the default Nginx configuration supplied with ownCloud, and edit it to suit
your needs):

server {
 # For now, we won't be enabling HTTPS
 listen 80;

 # Insert your host name and document root here
 server_name cloud.example.com;
 root /home/owncloud/www;

 # Set the maximum allowed file upload size
 client_max_body_size 42G;

 # Disable gzip to avoid the removal of the ETag header
 gzip off;

 # Rewrite rules for DAV access
 rewrite ^/caldav(.*)$ /remote.php/caldav$1 redirect;
 rewrite ^/carddav(.*)$ /remote.php/carddav$1 redirect;
 rewrite ^/webdav(.*)$ /remote.php/webdav$1 redirect;

 # Set index and error pages
 index index.php;
 error_page 403 /core/templates/403.php;
 error_page 404 /core/templates/404.php;

 # Deny access to the following files and folders
 location ~ ^/(?:\.htaccess|data|config|db_structure\.xml|README){
 deny all;
 }

 location / {
 # OwnCloud rewrite rules

Case Studies

[270]

 rewrite ^/.well-known/host-meta /public.php?service=host-meta
last;
 rewrite ^/.well-known/host-meta.json /public.php?service=host-
meta-json last;
 rewrite ^/.well-known/carddav /remote.php/carddav/ redirect;
 rewrite ^/.well-known/caldav /remote.php/caldav/ redirect;
 rewrite ^(/core/doc/[^\/]+/)$ $1/index.html;

 # Attempt to serve requested URI
 # or redirect request to index.php
 try_files $uri $uri/ /index.php;
 }

 # The following applies to URIs ending with .php
 location ~ \.php(?:$|/) {
 # Prepare URI path info
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 # Load default FastCGI parameters
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 # Important: set HTTPS to off for the time being
 fastcgi_param HTTPS off;
 fastcgi_buffers 64 4K;
 fastcgi_pass 127.0.0.1:9000;
 }

 # Allows visitors to cache static files
 location ~* \.(?:jpg|jpeg|gif|bmp|ico|png|css|js|swf)$ {
 expires 30d;
 access_log off;
 }
}

Chapter 9

[271]

After saving your configuration and reloading Nginx, open your web browser and
load the main ownCloud page—in our example, http://cloud.example.com. You
should now see a setup page inviting you to create an administrator account and
define storage settings.

Proceed with the installation of ownCloud. After the initial setup screen, you will
be prompted to enter the SQL database information and credentials. Past this point,
you should be able to enjoy your online drive straight away, but remember that the
communication between you and the server isn't secure yet. Proceed to the next step
to begin setting up a self-signed certificate.

http://cloud.example.com

Case Studies

[272]

Setting up a self-signed certificate
Since our ownCloud drive is meant for personal use, and for the sake of example, we
will resort to a self-signed certificate: the procedure is relatively hassle-free, and it
doesn't cost a thing. Run the following commands to generate your certificate:

openssl genrsa -out owncloud.key 2048

openssl req -new -key owncloud.key -out owncloud.csr

openssl x509 -req -days 1000 -in owncloud.csr -signkey owncloud.key
-out owncloud.crt

Now that you have the required files at your disposal, open your virtual host
configuration file (containing your server block), and make the following changes:

• Replace listen 80 with listen 443 ssl
• Insert ssl_certificate /etc/cert/owncloud.crt; (use your actual

certificate file path) after the listen directive
• Insert ssl_certificate_key /root/cert/owncloud.key; (use your actual

private key file) after the above directive
• Replace fastcgi_param HTTPS off; with fastcgi_param HTTPS on;

Save your configuration file and reload Nginx. You are now able to browse your
ownCloud drive over HTTPS, but since the certificate is self-signed, you will see a
warning screen before you can access the application.

Summary
As you may have noticed in the cases we studied in this chapter, the process of
setting up a web application can sometimes be long and complex. But when it
comes to the part that concerns Nginx, configuration is usually pretty simple and
straightforward: a couple of directives in a server block, reloading the server, and
you're done.

Unfortunately, in some cases, while your initial configuration seems to do the
trick, you realize over time that your visitors run into a variety of problems, or are
presented with unexpected error pages. The next chapter will prepare you to face
such issues by exploring several leads should you ever need to troubleshoot your
web server.

[273]

Troubleshooting
Even if you read every single word of this book with the utmost attention, you
are unfortunately not sheltered from all kinds of issues, ranging from simple
configuration errors to the occasional unexpected behavior of one module or another.
In this chapter, we attempt to provide solutions for some of the common problems
encountered by administrators who are just getting started with Nginx.

The appendix covers the following topics:

• A basic guide containing general tips on Nginx troubleshooting
• How to solve some of the most common install issues
• Dealing with 403 Forbidden and 400 Bad Request HTTP errors
• Why your configuration does not appear to apply correctly
• A few words about the if block behavior

General tips on troubleshooting
Before we begin, whenever you run into some kind of problem with Nginx, you
should make sure to follow the recommendations given in the following sections,
as they are generally a good source of solutions.

Troubleshooting

[274]

Checking access permissions
A lot of errors that Nginx administrators are faced with are caused by invalid access
permissions. On two separate occasions, you are offered to specify a user and a
group for the Nginx worker processes to run:

• When configuring the build with the configure command, you are allowed
to specify a user and a group that will be used by default (refer to Chapter 1,
Downloading and Installing Nginx).

• In the configuration file, the user directive allows you to specify a user and a
group. This directive overrides any value you may have defined during the
configure step.

If Nginx is supposed to access files that do not have the correct permissions—in other
words, which cannot be read (and by extension cannot be written, for directories
that hold temporary files, for example) by the specified user and group—Nginx will
not be able to serve the files correctly. Additionally, should your web application
encounter an error related to file or directory access permissions, the user and group
under which your FastCGI or other backend runs should also be investigated.

Testing your configuration
A common mistake is often made by administrators showing a little too much
self-confidence: after having modified the configuration file (often without a backup),
they reload Nginx to apply the new configuration. If the configuration file contains
syntax or semantic errors, the application will refuse to reload. Even worse, if Nginx
is stopped (for example, after a complete server reboot), it will refuse to start at all. In
all such cases, remember to follow these recommendations:

• Always keep a backup of your working configuration files in case something
goes wrong

• Before reloading or restarting Nginx, test your configuration with a simple
command—nginx -t—to test your current configuration files, or run nginx
-t -c /path/to/config/file.conf

• Reload your server instead of restarting it—by preferring service nginx
reload over service nginx restart (nginx -s reload instead of nginx
-s stop && nginx), as it will keep the existing connections alive, and thus
won't interrupt ongoing file downloads

Chapter 10

[275]

Have you reloaded the service?
You would be surprised to learn how often this happens: the most complicated
situations have the simplest solutions. Before tearing your hair out, before rushing
to the forums or asking IRC for help, start with the most simple of verifications.

You just spent two hours creating your virtual host configuration. You've saved
the files properly, and fired up your web browser to check the results. But did
you remember that one additional step? Nginx, unlike Apache, does not support
on-the-fly configuration changes in .htaccess files or similar. So take a moment to
make sure you did reload Nginx with service nginx reload, /etc/init.d/nginx
reload or /usr/local/nginx/sbin/nginx -s reload without forgetting to test
your configuration beforehand!

Checking logs
There is usually no need to look for the answer to your problems on the Internet.
Chances are that the answer is already given to you by Nginx in the log files. There
are two variations of log files you may want to check. First, check the access logs.
These contain information about the requests themselves: the request method and
URI, the HTTP response code issued by Nginx, and more depending on the log
format you defined.

More importantly, the error log is a goldmine of information for troubleshooting.
Depending on the level you defined (see the error_log and debug_connection
directives for more details), Nginx will provide details on its inner functioning. For
example, you will be able to see the request URI translated to an actual file system
path. This can be a great help for debugging the rewrite rules. The error log should
be located in the /logs/ directory of your Nginx setup, which, by default, is /usr/
local/nginx/logs or /var/log/nginx.

Troubleshooting

[276]

Install issues
There are typically four sources of errors when attempting to install Nginx or to run
it for the first time:

• Some of the prerequisites are missing or an invalid path to the source
was specified. More details about prerequisites can be found in Chapter 1,
Downloading and Installing Nginx.

• After having installed Nginx correctly, you cannot use the SSL-related
directives to host a secure website. Have you made sure to include the SSL
module correctly during the configure step? More details in Chapter 1,
Downloading and Installing Nginx.

• Nginx refuses to start and outputs a message similar to [emerg] bind()
to 0.0.0.0:80 failed (98: Address already in use). This error
signifies that another application is utilizing the network port 80. This could
either mean that another web server such as Apache is already running on
the machine, or that you don't have the proper permissions to open a server
socket on this port. This can happen if you are running Nginx from an
underprivileged system account.

• Nginx refuses to start and outputs a message similar to [emerg] 3629#0:
open() "/path/to/logs/access.log" failed (2: No such file or
directory). In this case, one of the files that Nginx tries to open, such as log
files, cannot be accessed. This could be caused by invalid access permissions
or by an invalid directory path (for example, when specifying log files to be
stored in a directory that does not exist on the system).

The 403 Forbidden custom error page
If you decide to use the allow and deny directives to respectively allow or
deny access to a resource on your server, clients who are being denied access will
usually fall back on a 403 Forbidden error page. You carefully set up a custom,
user-friendly 403 error page for your clients to understand why they are denied
access. Unfortunately, you cannot get that custom page to work, and clients still
get the default Nginx 403 error page. You have provided the following code for
doing do:

server {
 […]
 allow 192.168.0.0/16;
 deny all;
 error_page 403 /error403.html;
}

Chapter 10

[277]

The problem is simple: Nginx also denies access to your custom 403 error page! In
such a case, you need to override the access rules in a location block specifically
matching your page. You can use the following code to allow access to your custom
403 error page only:

server {
 […]
 location / {
 error_page 403 /error403.html;
 allow 192.168.0.0/16;
 deny all;
 }
 location = /error403.html {
 allow all;
 }
}

If you are going to have more than just one error page, you could specify a location
block matching all the error page filenames:

server {
 […]
 location / {
 error_page 403 /error403.html;
 error_page 404 /error404.html;
 allow 192.168.0.0/16;
 deny all;
 }
 location ~ "^/error[0-9]{3}\.html$" {
 allow all;
 }
}

All your visitors are now allowed to view your custom error pages.

Troubleshooting

[278]

400 Bad request
Occasionally, you may run into a recurring issue with some of your websites:
Nginx returns 400 Bad Request error pages to random visitors, and this only stops
happening when visitors clear their cache and cookies. The error is caused by an
overly large header field sent by the client. Most of the time, this occurs when cookie
data exceeds a certain size. In order to prevent further trouble, you may simply
increase the value of the large_client_header_buffers directive in order to allow
larger cookie data size:

large_client_header_buffers 4 16k;

Truncated or invalid FastCGI responses
When setting up an Nginx frontend for a website that heavily relies on AJAX
(Asynchronous JavaScript and XML) along with a FastCGI backend such as PHP,
you may run into different sorts of problems. If your server returns truncated AJAX
responses, invalid JSON values, or even empty responses, you may want to check
your configuration for the following elements:

• Have you set up a writable directory for the temporary FastCGI files? Make
sure you do so via the fastcgi_temp_path directive.

• If fastcgi_buffering is set to off, all FastCGI responses are forwarded
to the client synchronously, in chunks of a certain size (determined by
fastcgi_buffer_size).

• In some cases, increasing the size and number of buffers allocated to storing
FastCGI responses prevents the responses from getting truncated. For
example, use fastcgi_buffers 256 8k; for 256 buffers of 8 kilobytes each.

Location block priorities
A problem that occurs frequently when using multiple location blocks in the same
server block is that the configuration does not apply as you thought it would.

As an example, say you want to define a behavior to be applied to all the image files
that are requested by the clients:

location ~* \.(gif|jpg|jpeg|png)$ {
 # matches any request for GIF/JPG/JPEG/PNG files
 proxy_pass http://imageserver; # proxy pass to backend
}

Chapter 10

[279]

Later on, you decide to enable the automatic indexing of the /images/ directory.
Therefore, you decide to create a new location block matching all the requests
starting with /images/:

location ^~ /images/ {
 # matches any request that starts with /images/
 autoindex on;
}

With this configuration, when a client requests for downloading the /images/
square.gif file, Nginx applies the second location's block only. Why not the first
one? That is because location blocks are processed in a specific order. For more
information about location block priorities, refer to The Location block section in
Chapter 3, HTTP Configuration.

If block issues
In some situations, if not most, you should avoid using if blocks. There are two
main issues that occur if you do so, regardless of the Nginx build you are using.

Inefficient statements
There are some cases where if is used inappropriately, in a way that risks saturating
your storage device with useless checks:

location / {
 # Redirect to index.php if the requested file is not found
 if (!-e $request_filename) {
 rewrite ^ index.php last;
 }
}

With such a configuration as the preceding one, every single request received by
Nginx will trigger a complete verification of the directory tree for the requested
filename, thus requiring multiple storage disk access system calls. If you test /usr/
local/nginx/html/hello.html, Nginx will check /, /usr, /usr/local, /usr/
local/nginx, and so on. In any case, you should avoid resorting to such a statement
by filtering the file type beforehand (for instance, by making such a check only if the
requested file matches specific extensions):

location / {
 # Filter file extension first
 if ($request_filename !~ "\.(gif|jpg|jpeg|png)" {
 break;

Troubleshooting

[280]

 }
 if (!-f $request_filename) {
 rewrite ^ index.php last;
 }
}

Unexpected behavior
The if block should ideally be employed for simple situations, as its behavior might
be surprising in some cases. Apart from the fact that the if statements cannot be
nested, the following situations may present issues:

Two consecutive statements with the same condition:
location / {
 if ($uri = "/test.html") {
 add_header X-Test-1 1;
 expires 7;
 }
 if ($uri = "/test.html") {
 add_header X-Test-1 1;
 }
}

In this case, the first if block is ignored, and only the second one is processed.
However, if you insert a Rewrite module directive in the first block, such as rewrite,
break, or return, the block will be processed, and the second one will be ignored.

There are many other cases where the use of if causes problems:

• Having try_files and the if statements in the same location block is not
recommended as the try_files directive will, in most cases, be ignored.

• Some directives are theoretically allowed within the if block, but can create
serious issues—for instance, proxy_pass and fastcgi_pass. You should
keep those within the location blocks.

• You should avoid using the if blocks within a location block that captures
regular expression patterns from within its modifier.

These issues originate from the fact that, while the Nginx configuration is written in
what appears to be a declarative language, directives from the Rewrite module such
as if, rewrite, return, or break make it look like event-based programming. In
general, you should try to avoid using directives from other modules within the if
blocks as much as possible.

Chapter 10

[281]

Summary
Most of the problems you run into occur during the early configuration stages while
you test your server before production. These problems are usually easier to deal
with, because you are mentally prepared for the challenge and, more importantly,
because Nginx points out syntax or configuration errors on start-up. It is, on the
other hand, much more difficult to identify the cause of malfunctions while your
websites are actually in their production stages. But once again, Nginx saves the day:
if you properly configure the log files (both access and error logs), and make a habit
of reading them regularly, you will find that problem solving is made easy.

This concludes our journey with Nginx, during which we have been through a large
number of subjects: from basic mechanisms of the HTTP server to web application
deployment and troubleshooting. If you are interested in becoming a true Nginx
expert, we recommend further reading: Mastering Nginx, by Dimitri Aivaliotis, and
NGINX High Performance, by Rahul Sharma. You could even develop your own Nginx
modules: Nginx Module Extension (by Usama Dar) is an excellent book that will help
you get started.

[283]

Index
Symbols
.htaccess files

about 231
implementing 232
usage 233, 234

A
access module

allow 131
deny 131

Addition module 135
Apache

configuration 207
local requests, accepting 209, 210
port number, resetting 208, 209
reconfiguring 207

Apache configuration
.htaccess files 231
configuration settings, defining 228, 229
directives 224-226
modules 227, 228
porting 224
virtual host, creating 229-231

Apache, versus Nginx
about 219
community 221, 222
conclusion 224
features 220
flexibility 221, 222
functioning 220
general functionality 221
performance 222, 223
usage 223

Auth_basic module 130

auth_request module 133
Autobench

about 56-58
URL 56

Autoindex module
about 126, 127
directives 127

B
base module

about 42
adjustments 51, 52
configuration module 42
core module, directives 43-48
core modules 42
directives 41
event modules 42
Nginx process, architecture 42

blogosphere 6
Browser module 144, 145

C
captures 106, 107
Charset filter module

about 139, 140
directives 139

client requests
chunked_transfer_encoding 77
client_body_buffer_size 73, 74
client_body_in_file_only 73
client_body_in_single_buffer 73
client_body_temp_path 74
client_body_timeout 74
client_header_buffer_size 74
client_header_timeout 75

[284]

ignore_invalid_headers 76
keepalive_disable 72
keepalive_requests 72
keepalive_timeout 72
large_client_header_buffers 75
lingering_close 76
lingering_time 76
lingering_timeout 76
max_ranges 77
send_timeout 72, 73

command-line switches 24
Common Gateway Interface (CGI) 164
config command 125
configuration examples

HTTP server 19
HTTPS server 19
mail server proxy 20
multiple modules enabled 20
prefix switch 19

configuration issues
prerequisites, installing 21
writable directories, configuring 21

configuration module 51
configure options

about 9
configuration issues 21
configuration switches, for paths 11, 12
configure command, using 9, 10
event management 17
examples 18
mail server proxy options 17
miscellaneous options 17
module options 14
Nginx, compiling 21, 22
Nginx, installing 22
other options 18
path options, using 10, 12
prerequisites options 12-14
user and group options 18

Content Management Software (CMS) 239
contents

Addition module 135
Charset filter module 139, 140
Empty GIF module 134
FLV module 134
Gunzip filter module 139
Gzip filter module 136-138

Gzip static module 138
HTTP headers module 135
Image filter module 142, 143
Memcached module 140, 141
MP4 module 134
Substitution module 136
XSLT module 143, 144

core modules
directives 43-48

D
daemon

about 23
starting 24
stopping 24

Debian-based distributions
init scripts 28
init scripts, installing 29

Degradation module 157
directives, proxy module

about 38, 39, 195
proxy_buffering 198
proxy_buffers 199
proxy_buffer_size 198
proxy_busy_buffers_size 199
proxy_cache 199
proxy_cache_key 199
proxy_cache_methods 200
proxy_cache_min_uses 200
proxy_cache_path 200
proxy_cache_use_stale 201
proxy_cache_valid 200
proxy_connect_timeout 201
proxy_cookie_domain 206
proxy_cookie_path 206
proxy_force_ranges 205
proxy_headers_hash_bucket_size 205
proxy_headers_hash_max_size 205
proxy_hide_header 196
proxy_http_version 206
proxy_ignore_client_abort 202
proxy_ignore_headers 205
proxy_intercept_errors 202
proxy_limit_rate 202
proxy_max_temp_file_size 201
proxy_method 196

[285]

proxy_next_upstream 197
proxy_next_upstream_timeout 198
proxy_next_upstream_tries 198
proxy_pass 195
proxy_pass_header 196
proxy_pass_request_body 196
proxy_pass_request_headers 196
proxy_read_timeout 202
proxy_redirect 197
proxy_request_buffering 198
proxy_send_lowat 202
proxy_send_timeout 202
proxy_set_body 205
proxy_set_header 205
proxy_store 206
proxy_store_access 206
proxy_temp_file_write_size 201
proxy_temp_path 201

directives, Rewrite module
break 115
return 116
rewrite 114
rewrite_log 116
set 116
uninitialized_variable_warn 116

Django
about 185, 186
and Python, setting up 185
FastCGI process manager, starting 186
Nginx configuration 187

documents
alias 69
error_page 69
if_modified_since 70
index 70
recursive_error_pages 71
root 68
try_files 71

dynamic files 211

E
echo command 124
Empty GIF module 134
events module

about 49
directives 49, 50

F
Fast Common Gateway

Interface (FastCGI)
about 162, 165
caching and buffering 173-178
Common Gateway Interface (CGI) 164
directives 167-173
mechanism 162, 163
uWSGI and SCGI 166

file processing and caching
directio 83
directio_alignment 83
disable_symlinks 83
open_file_cache 84
open_file_cache_errors 84
open_file_cache_min_uses 85
open_file_cache_valid 85
read_ahead 85

file syntax configuration
about 34
directive blocks 38
directives 34, 35
inclusions 36, 37
language rules, advanced 39
organization 36, 37

FLV module 134

G
GeoIP module 146
Geo module

about 146
directives 146

GNU Compiler Collection (GCC) 2, 3
Google-perftools module

about 157
URL 157

Gunzip filter module 139
Gzip filter module

about 136-138
directives 136-138

Gzip static module 138

H
HTTP Core module

about 61

[286]

structure blocks 62, 63
HTTP Core module, structure blocks

http 62
location 62
server 62

Httperf
about 55, 56
URL 55

HTTP headers module 135
HTTPS

certificate authorities 264
communications, securing with 263
enabling, in Nginx configuration 265-267
self-signed certificates, setting up 264
SPDY, setting up 267
SPDY, testing 267
SSL certificate, obtaining 265

I
If block issues

about 279
inefficient statements 279
unexpected behavior 280

Image filter module
about 142, 143
directives 142, 143

include command 122, 123
Index module 126
init scripts

about 27, 28
for Debian-based distributions 28
for Red Hat-based distributions 29
installing 29
installing, for Debian-based

distributions 29
installing, for Red Hat-based

distributions 30
internal requests

about 107
error_page 108, 109
infinite loops 110
internal redirects 107
rewrite 109, 110
Server Side Include (SSI) module 111
sub-requests 107

I/O mechanisms 251

L
language rules, file syntax configuration

directive values, in diminutives 40, 41
string values 41
syntaxes, accepted by directives 39
variables 41

limit connections module 131, 132
Limit request module 132, 133
limits and restrictions

internal 82
limit_except 80
limit_rate 81
limit_rate_after 81
satisfy 81

load balancing
about 244
concept 244, 245
implementing 245
request distribution mechanisms 248, 249
session affinity 246
upstream module 246-248

location block
about 94
location modifier 94
priority 97-99
search order 97-99

location modifier
^~ modifier 97
@ modifier 97
= modifier 95
~ modifier 96
~* modifier 96, 97
about 94
no modifier 95, 96

Log module
about 128, 129
directives 128, 129
variables, enabling 129

M
Map module 145
MaxMind

URL 146
MediaWiki

about 239
rewrite rules 240

[287]

Memcached module
about 140, 141
directives 140, 141

metacharacters
about 103
using 103, 104

MIME types
default_type directive 79
type directive 77, 78
types_hash_bucket_size 79
types_hash_max_size 79

miscellaneous modules
about 156
Degradation module 157
Google-perftools module 157
Stub status 156
WebDAV module 157

mod_rpaf module
URL 216

module directives
about 63
client requests 71
documents 68
file processing and caching 82
limits and restrictions 80
MIME types 77
other directives 86
socket and host configuration 64

module directives, other directives
log_not_found 86
log_subrequest 86
merge_slashes 86, 87
msie_padding 87
msie_refresh 87
post_action 89
resolve 87
resolver_timeout 88
server_tokens 88
underscores_in_headers 89
variables_hash_bucket_size 89
variables_hash_max_size 89

modules
about 14, 126
disabled by default 15, 16
enabled by default 14, 15
for contents 133
for security 150

for visitors 144
for visitors restrictions 130
for website access and logging 126
miscellaneous modules 156
Split Clients module 149
third-party modules 158

module variables
about 90
Nginx generated 91-94
request headers 90
response headers 91

MP4 module 134
MySQL load balancing

example 250

N
Nginx

advanced configuration 214, 215
and Python 184
configuration, file syntax 34
configuring 207-210
content, separating 211-214
downloading 5, 9
extracting 9
features 8
master process 23
official website 5, 6
proxy options, enabling 210, 211
resources 5, 6
URL 2, 5, 6, 7, 222
used, as TCP load balancer 250
version branches 7
worker processes 23

Nginx, as system service
adding 26
init scripts 27, 28
System V scripts 26, 27

Nginx configuration, for WordPress site
about 259
HTTP block 260
location blocks 261
server block 261

NGINX Plus
about 31
URL 31

nginx -s command 24

[288]

Nginx service
command-line switches 24
configuration, testing 25
controlling 22
daemon 23
daemon, starting 24
daemon, stopping 24
other switches 25, 26
user and group 23

Nginx, versus Apache
about 219
community 221, 222
conclusion 224
features 220
flexibility 221, 222
functioning 220
general functionality 221
performance 222, 223
usage 223

O
Online Certificate Status Protocol (OCSP)

Stapling 154
OpenSSL

about 4, 5
URL 4

OpenWebLoad
about 58, 59
URL 58

ownCloud drive
creating 268
downloading 268
Nginx configuration 269, 271
self-signed certificate, setting up 272
URL 268

P
paths. See documents
PECL package

about 235
URL 235

performance tests
about 54
Autobench 56-58
Httperf 55, 56
OpenWebLoad 58, 59

Perl Compatible Regular Expression (PCRE)
library 3, 4, 103, 104

PHP and PHP-FPM
downloading 180
extracting 180
PHP, building 180, 181
post-install configuration 181, 182
requisites 180
running and controlling 182
setting up 180

PHP with Nginx
about 178, 179
Nginx configuration 183, 184
PHP-FPM 179

prerequisites, Nginx
GNU Compiler Collection (GCC) 2, 3
OpenSSL 4, 5
Perl Compatible Regular Expression (PCRE)

library 3, 4
setting up 1, 2
zlib library 4

processes
Nginx master process 23
Nginx worker processes 23

proxy module
about 194
buffering 198-201
caching 198-201
errors 201, 202
limits 201, 202
main directives 195-198
other directives 205, 206
SSL related directives 203, 204
temporary files 198-201
timeouts 201, 202
variables 206, 207

Python
about 185
and Django, setting up 185
and Nginx 184

Q
quantifiers 104, 105

R
Random index module 128

[289]

Real IP module 149
Red Hat-based distributions

init scripts 29
init scripts, installing 30

Referer module 148
regular expressions

about 102
captures 106, 107
PCRE syntax 103, 104
purpose 102, 103
quantifiers 104, 105

request headers 90
response headers 91
reverse proxy

advantages 193
architecture, improving 215
disadvantages 193
IP address, forwarding 216
issue 190, 191
mechanism 192
server control panel issues 217
SSL issues 216, 217
SSL solutions 216, 217
usage 190

Rewrite module
about 101, 102
conditional structure 112, 113
directives 114-116
internal requests 107
regular expressions 102
rewrite rules 117

Rewrite module, rewrite rules
about 117
discussion board 118
multiple parameters 117
news website article 118
searching 117
user profile page 117
Wikipedia-like 118

rewrite rules
about 235
general remarks 235
location 235
MediaWiki 239, 240
RewriteRule Apache directive 237
syntax 236, 237

vBulletin 241
WordPress 238

S
Search Engine Optimization (SEO) 102
Secure link module 155
Secure Sockets Layer (SSL) 216
security

Secure link module 155
SPDY module 155
SSL module 150-152

server
Nginx, upgrading 59
performance tests 54
testing 52
test server, creating 53

Server Side Include (SSI) module 111
session affinity 246
Simple Common Gateway

Interface (SCGI) 8, 166
socket and host configuration

listen 64
port_in_redirect 66
reset_timedout_connection 68
sendfile 67
sendfile_max_chunk 67
send_lowat 68
server_name 65
server_name_in_redirect 65
server_names_hash_bucket_size 66
server_names_hash_max_size 66
tcp_nodelay 66
tcp_nopush 67

SPDY module 155
Split Clients module 149
SSI commands

about 122
conditional structure 124, 125
config command 125
echo command 124
include command 122, 123
with variables 124

SSI module
about 119
directives 120, 121
variables 120, 121

[290]

SSL certificate
setting up 153
SSL stapling 154

SSL module
about 150-152
directives 150-152

SSL related directives, proxy module
proxy_ssl_certificate 203
proxy_ssl_certificate_key 203
proxy_ssl_ciphers 203
proxy_ssl_crl 203
proxy_ssl_name 203
proxy_ssl_password_file 203
proxy_ssl_protocols 204
proxy_ssl_server_name 204
proxy_ssl_session_reuse 204
proxy_ssl_trusted_certificate 204
proxy_ssl_verify 204
proxy_ssl_verify_depth 204

SSL Stapling 154
static files 211
Stream module 250
strftime C language function

URL 125
Stub status module 156
Substitution module 136
System V scripts 26, 27

T
TCP load balancer

MySQL load balancing, example 250
Nginx, using 250
Stream module 250

third-party modules
about 158
URL 158

thread pools
about 251
AIO 253
DirectIO 253
Sendfile 253
worker processes, relieving 251, 252

troubleshooting
400 bad requests 278
403 forbidden custom error page 276, 277
access permissions, checking 274

configuration, testing 274
if block issues 279
inefficient statements 279
install, issues 276
location block priorities 278
logs, checking 275
service, reloaded 275
tips 273
truncated or invalid FastCGI responses 278
unexpected behavior 280

U
upstream module 246-248
UserID filter module

about 147, 148
directives 147, 148

uWSGI module 166

V
variables, proxy module

$proxy_add_x_forwarded_for 207
$proxy_host 206
$proxy_internal_body_length 207
$proxy_port 206

vBulletin
rewrite rules, converting 241

version branches, Nginx
legacy version 7
mainline version 7
stable version 7

visitor restrictions
access module 131
Auth_basic module 130
auth_request module 133
limit connections module 131, 132
Limit request module 132, 133

visitors
Browser module 144, 145
GeoIP module 146
Geo module 146
Map module 145
Real IP module 149
Referer module 148
UserID filter module 147, 148

[291]

W
web-based WordPress installer

URL 262
WebDAV module

about 157
directives 157, 158

Web Server Gateway Interface (WSGI) 166
website access

Autoindex module 126, 127
Index module 126
Log module 128, 129
Random index module 128

weight flag 248
WordPress

about 238
rewrite rules 239

WordPress site
communications, securing with HTTPS 263
deploying 256
MySQL, configuring 258

Nginx, configuring 259
PHP configuration 257, 258
server, preparing 256
system requisites 256
WordPress configuration 262, 263
WordPress, downloading 259
WordPress, extracting 259
WordPress, obtaining 256

World Wide Web (WWW) 5

X
XSLT module

about 143, 144
directives 144

Z
zlib library 4

Thank you for buying
Nginx HTTP Server

Third Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Nginx
ISBN: 978-1-84951-744-7 Paperback: 322 pages

An in-depth guide to configuring NGINX for
any situation, including numerous examples and
reference tables describing each directive

1. An in-depth configuration guide to help you
understand how to best configure NGINX for
any situation.

2. Includes useful code samples to help you
integrate NGINX into your application
architecture.

3. Full of example configuration snippets,
best-practice descriptions, and reference
tables for each directive.

Nginx Essentials
ISBN: 978-1-78528-953-8 Paperback: 150 pages

Excel in Nginx quickly by learning to use its most
essential features in real-life applications

1. Learn how to set up, configure, and operate an
Nginx installation for day-to-day use.

2. Explore the vast features of Nginx to manage
it like a pro, and use them successfully to run
your website.

3. Example-based guide to get the best out of
Nginx to reduce resource usage footprint.

Please check www.PacktPub.com for information on our titles

NGINX High Performance
ISBN: 978-1-78528-183-9 Paperback: 168 pages

Optimize NGINX for high-performance, scalable web
applications

1. Configure Nginx for best performance, with
configuration examples and explanations.

2. Step–by-step tutorials for performance testing
using open source software.

3. Tune the TCP stack to make the most of the
available infrastructure.

Nginx Module Extension
ISBN: 978-1-78216-304-6 Paperback: 128 pages

Customize and regulate the robust Nginx web server,
and write your own Nginx modules efficiently

1. Install Nginx from its source on multiple
platforms.

2. Become acquainted with core Nginx modules
and their configuration options.

3. Explore optional and third party module
extensions along with configuration directives.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Downloading and
Installing Nginx
	Setting up the prerequisites
	The GNU Compiler Collection
	The PCRE library
	The zlib library
	OpenSSL

	Downloading Nginx
	Websites and resources
	Version branches
	Features
	Downloading and extracting

	Configure options
	The easy way
	Path options
	Prerequisites options
	Module options
	Modules enabled by default
	Modules disabled by default

	Miscellaneous options
	Configuration examples
	About the prefix switch
	Regular HTTP and HTTPS servers
	All modules enabled
	Mail server proxy

	Build configuration issues
	Make sure you installed the prerequisites
	Directories exist and must be writable

	Compiling and installing the program

	Controlling the Nginx service
	Daemons and services
	User and group
	Nginx command-line switches
	Starting and stopping the daemon
	Testing the configuration
	Other switches

	Adding Nginx as a system service
	System V scripts
	About init scripts
	The init script for Debian-based distributions
	The init script for Red Hat–based distributions
	Installing the script
	Debian-based distributions
	Red Hat–based distributions

	NGINX Plus
	Summary

	Chapter 2: Basic Nginx Configuration
	Configuration file syntax
	Configuration directives
	Organization and inclusions
	Directive blocks
	Advanced language rules
	Directives accept specific syntaxes
	Diminutives in directive values
	Variables
	String values

	Base module directives
	What are base modules?
	The Nginx process architecture
	Core module directives
	The Events module
	The Configuration module
	Necessary adjustments

	Testing your server
	Creating a test server
	Performance tests
	Httperf
	Autobench
	OpenWebLoad

	Upgrading Nginx gracefully

	Summary

	Chapter 3: HTTP Configuration
	The HTTP Core module
	Structure blocks

	Module directives
	Socket and host configuration
	listen
	server_name
	server_name_in_redirect
	server_names_hash_max_size
	server_names_hash_bucket_size
	port_in_redirect
	tcp_nodelay
	tcp_nopush
	sendfile
	sendfile_max_chunk
	send_lowat
	reset_timedout_connection

	Paths and documents
	root
	alias
	error_page
	if_modified_since
	index
	recursive_error_pages
	try_files

	Client requests
	keepalive_requests
	keepalive_timeout
	keepalive_disable
	send_timeout
	client_body_in_file_only
	client_body_in_single_buffer
	client_body_buffer_size
	client_body_temp_path
	client_body_timeout
	client_header_buffer_size
	client_header_timeout
	client_max_body_size
	large_client_header_buffers
	lingering_time
	lingering_timeout
	lingering_close
	ignore_invalid_headers
	chunked_transfer_encoding
	max_ranges

	MIME types
	types
	default_type
	types_hash_max_size
	types_hash_bucket_size

	Limits and restrictions
	limit_except
	limit_rate
	limit_rate_after
	satisfy
	internal

	File processing and caching
	disable_symlinks
	directio
	directio_alignment
	open_file_cache
	open_file_cache_errors
	open_file_cache_min_uses
	open_file_cache_valid
	read_ahead

	Other directives
	log_not_found
	log_subrequest
	merge_slashes
	msie_padding
	msie_refresh
	resolver
	resolver_timeout
	server_tokens
	underscores_in_headers
	variables_hash_max_size
	variables_hash_bucket_size
	post_action

	Module variables
	Request headers
	Response headers
	Nginx generated

	The location block
	Location modifier
	The = modifier
	No modifier
	The ~ modifier
	The ~* modifier
	The ^~ modifier
	The @ modifier

	Search order and priority
	Case 1
	Case 2
	Case 3

	Summary

	Chapter 4: Module Configuration
	The Rewrite module
	Reminder on regular expressions
	Purpose
	PCRE syntax
	Quantifiers
	Captures

	Internal requests
	error_page
	Rewrite
	Infinite loops
	Server Side Includes

	Conditional structure
	Directives
	Common rewrite rules
	Performing a search
	User profile page
	Multiple parameters
	Wikipedia-like
	News website article
	Discussion board

	SSI module
	Module directives and variables
	SSI commands
	File includes
	Working with variables
	Conditional structure
	Configuration

	Additional modules
	Website access and logging
	Index
	Autoindex
	Random index
	Log

	Limits and restrictions
	Auth_basic module
	Access
	Limit connections
	Limit request
	Auth_request

	Content and encoding
	Empty GIF
	FLV and MP4
	HTTP headers
	Addition
	Substitution
	Gzip filter
	Gzip static
	Gunzip filter
	Charset filter
	Memcached
	Image filter
	XSLT

	About your visitors
	Browser
	Map
	Geo
	GeoIP
	UserID filter
	Referer
	Real IP

	Split Clients
	SSL and security
	SSL
	Setting up an SSL certificate
	SPDY
	Secure link

	Other miscellaneous modules
	Stub status
	Degradation
	Google-perftools
	WebDAV

	Third-party modules

	Summary

	Chapter 5: PHP and Python with Nginx
	An introduction to FastCGI
	Understanding the CGI mechanism
	The Common Gateway Interface
	Fast Common Gateway Interface
	uWSGI and SCGI
	The main directives
	FastCGI caching and buffering

	PHP with Nginx
	Architecture
	PHP-FPM
	Setting up PHP and PHP-FPM
	Downloading and extracting
	Requirements
	Building PHP
	Post-install configuration
	Running and controlling

	Nginx configuration

	Python and Nginx
	Django
	Setting up Python and Django
	Python
	Django
	Starting the FastCGI process manager

	The Nginx configuration

	Summary

	Chapter 6: Apache and Nginx Together
	Nginx as reverse proxy
	Understanding the issue
	The reverse proxy mechanism
	Advantages and disadvantages of the mechanism

	The Nginx proxy module
	Main directives
	Caching, buffering, and temporary files
	Limits, timeouts, and errors
	SSL-related directives
	Other directives
	Variables

	Configuring Apache and Nginx
	Reconfiguring Apache
	Configuration overview
	Resetting the port number
	Accepting local requests only

	Configuring Nginx
	Enabling proxy options
	Separating the content

	Advanced configuration

	Improving the reverse proxy architecture
	Forwarding the correct IP address
	SSL issues and solutions
	Server control panel issues

	Summary

	Chapter 7: From Apache to Nginx
	Nginx versus Apache
	Features
	Core and functioning
	General functionality

	Flexibility and community
	Performance
	Usage
	Conclusion

	Porting your Apache configuration
	Directives
	Modules
	Virtual hosts and configuration sections
	Configuration sections
	Creating a virtual host

	.htaccess files
	A recap on Apache .htaccess files
	Nginx equivalence

	Rewrite rules
	General remarks
	On the location
	On the syntax
	RewriteRule

	WordPress
	MediaWiki
	vBulletin

	Summary

	Chapter 8: Introducing Load Balancing and Optimization
	An introduction to load balancing
	Understanding the concept of load balancing
	Session affinity
	The upstream module
	Request distribution mechanisms

	Using Nginx as a TCP load balancer
	The Stream module
	An example of MySQL load balancing

	Thread pools and I/O mechanisms
	Relieving worker processes
	AIO, Sendfile, and DirectIO

	Summary

	Chapter 9: Case Studies
	Deploying a WordPress site
	Preparing your server and obtaining WordPress
	System requirements
	PHP configuration
	MySQL configuration
	Downloading and extracting WordPress

	Nginx configuration
	HTTP blocks
	The server block
	Location blocks

	WordPress configuration

	Securing communications with HTTPS
	Self-signed certificates and certificate authorities
	Obtaining your SSL certificate
	Enabling HTTPS in your Nginx configuration
	Setting up and testing SPDY

	Creating your ownCloud drive
	Getting ownCloud
	Nginx configuration
	Setting up a self-signed certificate

	Summary

	Chapter 10: Troubleshooting
	General tips on troubleshooting
	Checking access permissions
	Testing your configuration
	Have you reloaded the service?
	Checking logs

	Install issues
	The 403 Forbidden custom error page
	400 Bad request
	Truncated or invalid FastCGI responses
	Location block priorities
	If block issues
	Inefficient statements
	Unexpected behavior

	Summary

	Index

