EXPERT INSIGHT

Learn
PostgreSQL

Use, manage, and build secure and scalable
databases with PostgreSQL 16

£ 2"
Second Edition d r

Locreret pack®

Learn PostgreSQL

Second Edition

Use, manage, and build secure and scalable databases
with PostgreSQL 16

Luca Ferrari

Enrico Pirozzi

BIRMINGHAM—MUMBAI

Learn PostgreSQL

Second Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Gebin George
Acquisition Editor — Peer Reviews: Gaurav Gavas
Project Editor: Meenakshi Vijay

Content Development Editor: Elliot Dallow

Copy Editor: Safis Editing

Technical Editor: Kushal Sharma

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Presentation Designer: Rajesh Shirsath

Developer Relations Marketing Executive: Vignesh Raju

First published: October 2020
Second edition: October 2023

Production reference: 1251023
Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83763-564-1

www. packt.com

http://www.packt.com

To my beautiful wife, Emanuela; I love her like Santa loves his reindeer.
To my great son, Diego, who changed our lives on 1283788200.
To my parents, Miriam and Anselmo: my greatest fans since day one.

— Luca Ferrari

In loving memory of my father, Ilario.

— Enrico Pirozzi

Contributors

About the authors

Luca Ferrari has been passionate about computer science since the Commodore 64 era, and
today holds a master’s degree (with honors) and a Ph.D. from the University of Modena and Reggio
Emilia. He has written several research papers, technical articles, and book chapters. In 2011, he
was named an adjunct professor by Nipissing University. An avid Unix user, he is a strong advo-
cate of open-source, and in his free time, he collaborates on a few projects. He first encountered
PostgreSQL back in the days of release 7.3; he was a founder and former president of the Italian
PostgreSQL Users’ Group (ITPUG). He also talks regularly at technical conferences and events

and delivers professional training.

Enrico Pirozzi has been passionate about computer science since he was a 13-year-old. His first
computer was a Commodore 64, and today he holds a master’s degree from the University of Bo-
logna. He has participated as a speaker at national and international conferences on PostgreSQL.
He first encountered PostgreSQL back in release 7.2, he was a co-founder of the first PostgreSQL
Italian mailing list and the first Italian PostgreSQL website, and he talks regularly at technical
conferences and events and delivers professional training. Right now, he is employed as a Post-

greSQL database administrator at Zucchetti Hospitality (Zucchetti Group S.p.a).

About the reviewers

Chris Mair holds a master’s degree from the University of Trento, Italy, and has been freelance
since 2003. His portfolio consists of contributions to over 25 companies, including consultancy
work on database programming, performance optimization, and seamless migrations. Chris has
expertise in system and network programming, data processing, ML, and more. He has a particular
affinity for PostgreSQL. He has taught over 200 courses on various IT topics and is passionate

about open-source software.

Silvio Trancanella s a software engineer with around 12 years of experience in backend devel-
opment, mainly using Java Enterprise and PostgreSQL. He has always been fascinated by database

management and was immediately drawn to PostgreSQL from the very beginning of his career.
He worked for about 10 years on tourism industry software, developing and maintaining critical

services that relied on the PostgreSQL DBMS.

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://discord.gg/jYWCjF6Tku

Table of Contents

Preface XXV
Chapter 1: Introduction to PostgreSQL 1
Technical requirements ceseseetttteeiisaatatteeess s bbattteses s bbbttt et e esssbesbtateesessssssnaaates 2
PostgreSQL at a glance ceerreessneneessntesessnassssanansssassasessasanessarsassans 2

A brief history of PostgreSQL o 4
What’s new in PostgreSQL 162 o 5
PostgreSQL release policy, version numbers, and life cycle e 5

Exploring PostgreSQL terminologYceeccsseerscssnrercssaneesssnsessssnsessssansessssnsessssasessssansens .6

Installing POSEGIESQL ...ccccceersueersueessueessneessseessasecssnesssssesssassssscssssesssassssssessssssssscssssssssssssases 10
What to install e 11
Installing PostgreSQL from binary packages o 12
Using the book’s Docker images o 13
Installing PostgreSQL on GNU/Linux Debian, Ubuntu, and derivatives o 14
Installing PostgreSQL on Fedora Linux e 15
Installing PostgreSQL on FreeBSD o 16
Installing PostgreSQL from sources o 17

Installing PostgreSQL via pgenv e 18

viii

Table of Contents

Chapter 2: Getting to Know Your Cluster

Technical requirements cereneneneneas

Managing your clusterccceeeeerunnnnees

pg_ctle 22
PostgreSQL processes ¢ 28

Connecting to the cluStercocovvueeereecirinnnnees

31

The template databases o 31

The psql command-line client 33
Entering SQL statements via psql e 35
A glance at the psql commands o 38

Introducing the connection string e 39

Solving common connection problems

...... ... 40

Database “foo” does not exist « 40
Connection refused o 40
No pg_hba.conf entry e 41
Exploring the disk layout of PGDATA

...... . 42

Objects in the PGDATA directory e 43

Tablespaces o 45

Exploring configuration files and parameters

.................. 46

SUIMMATY «ecereennieereennicereannicerennnceeesssscecsessssccssannens

Verify your knowledgeccooveuuueeeiieciiscnneecencccnnnees

...... 48
........... 49

REfEIENCES .eevveeeerenneceereneeceeeneeeccessenocces

...... .49

Chapter 3: Managing Users and Connections

51

Technical requirements ceeeeneneieneas
Introduction to users and Groupscccceeeeeeeneeerecsnees
Managing roleseeeeeecesssveeeeeecissssneeeeiecssssnneeseesees

Creating new roles ¢ 53
Role passwords, connections, and availability e 54

Using arole as a group e 55

Table of Contents

ix

Removing an existing role e 57
Inspecting existing roles e 58

Managing incoming connections at the role level

The syntax of pg_hba.conf e 62

Order of rules in pg_hba.conf ¢ 64

Merging multiple rules into a single one ¢ 64
Using groups instead of single roles ¢ 65
Using files instead of single roles ¢ 66
Inspecting pg_hba.conf rules e 67

Including other files in pg_hba.conf 68

SUMMATY eeceeeeennccereenncceeennnceeeens ceeseseseeeennneceeenneccenes

Verify your knowledgeccceevuuueeeriiciiinneeenreccnnnnes

Referencesceeeeeeeeeneeecceenen ceenescecennnnones

Chapter 4: Basic Statements

...................................

. 61

..68

69
69

71

Technical requirements cerenenreenees
Using the Docker image o 72
Connecting the database e 72
Creating and managing databasescccceeeerecssneeccnnee
Creating a database ¢ 73
Managing databases o 74
Introducing schemas o 74
PostgreSQL and the public schema ¢ 74
The search_path variable ¢ 75
The correct way to start working e 75
Listing all tables ¢ 76
Making a new database from a modified template ¢ 77
Dropping tables and databases ¢ 78
Dropping tables ¢ 78
Dropping databases e 79
Making a database copy e 79

Table of Contents

Confirming the database size ¢ 80
The psql method « 80
The SQL method e 81

Behind the scenes of database creation e 81

..........................

Managing tables
The EXISTS option e 85
Managing temporary tables o 86
Managing unlogged tables ¢ 88

Creating a table ¢ 89

Understanding basic table manipulation statements

Inserting and selecting data e 90
NULL values ¢ 94
Sorting with NULL values ¢ 96

Creating a table starting from another table ¢ 97

Updating data ¢ 98
Deleting data e 99

Summary

.......................................

...

Verify your knowledge

.........

References

Chapter 5: Advanced Statements

Technical requirements

.........

Exploring the SELECT statement

Using the like clause

...

Using ilike ...

Using distinct

Using limit and offset

..........

...................

Using subqueries

Subqueries and the IN/NOT IN condition e 113

Subqueries and the EXISTS/NOT EXISTS condition e 116

Table of Contents

xi

Learning about jOinsccceeeeecsssneecssaneees
Using INNER JOIN e 119
INNER JOIN versus EXISTS/IN ¢ 120
Using LEFT JOINS e 121
Using RIGHT JOIN e 125
Using FULL OUTER JOIN e 127
Using LATERAL JOIN o 129

Aggregate functions

UNION/UNION ALL 133
EXCEPT/INTERSECT o 135

USing UPSERT ..cccuueeeeecccssssnnnneecescssssssssseesns
UPSERT — the PostgreSQL way e 137

Learning the RETURNING clause for INSERT
Returning tuples out of queries o 141
UPDATE related to multiple records e 141
MERGE o 142
Exploring UPDATE ... RETURNING e 144
Exploring DELETE ... RETURNING e 145

..

EXPloring CTES ...cceeereeessnecsneessanecssncessanenns
CTE concept e 145

CTE in PostgreSQL since version 12
CTE — use cases o 147
Query recursion e 149

Recursive CTEs o 150

SUMMATY «eceeeennnceeennncceeenneceeenns .

Verify your knowledgecccceevueeicisnneeccnnne

REfEIENCES .evuvreeeereneecreenecceraseoccerssesccssssssccesans

Chapter 6: Window Functions

130

140

146

.................................

Technical requirements cereenestieeens

Using basic statement window functions

xii

Table of Contents

Using the PARTITION BY function and WINDOW clause o 157

Introducing some useful functions ¢ 158
The ROW_NUMBER function ¢ 159
The ORDER BY clause ¢ 159
FIRST_VALUE e 160
LAST_VALUE e 161
RANK o 161
DENSE_RANK ¢ 162
The LAG and LEAD functions e 163
The CUME_DIST function ¢ 165

The NTILE function ¢ 165

Using advanced statement Window fUNCHIONScccvvvveeeriiciiiiseneeeiccisisseneeeiesssssneeerecsssnens 167
The frame clause ¢ 167

ROWS BETWEEN start_point and end_point e 168

RANGE BETWEEN start_point and end_point e 174
SUMMATY coceeeeenncereennccceennnceenens eeesseseeeettnseettttnseeetarssessratnssestassessssnnsssssasnsessesane 178
Verify your knowledge N 179
Referencesccoueeerueeennnens ceeeeeseressntesratessatesbatesbatesbatessatesntesbnaserbasesbanesranes 180
Chapter 7: Server-Side Programming 181
Technical requirements N 182
Exploring data types N 182

The concept of extensibility ¢ 182
Standard data types ¢ 182
Boolean data type ¢ 183
Numeric data type o 184
Integer types ¢ 185
Numbers with a fixed precision data type » 186
Numbers with an arbitrary precision data type o 186
Character data type 188
Chars with fixed-length data types o 188

Table of Contents

xiii

Chars with variable length with a limit data types ¢ 190

Chars with a variable length without a limit data types o 191
Date/timestamp data types o 192

Date data types » 192

Timestamp data types o 195

The NoSQL data typec.cceeeesunneees cessreeessnneeesasteeessnanene

The hstore data type 198
The JSON data type o 201
Exploring functions and languagesccceeueeerueecsneecsnneennne
Functions e 205
SQL functions « 206
Basic functions ¢ 206
SQL functions returning a set of elements « 207
SQL functions returning a table ¢ 208
Polymorphic SQL functions e 210
PL/pgSQL functions e 211
First overview e 211
Dropping functions e 213
Declaring function parameters e 213
IN/OUT parameters o 214
Function volatility categories o 216
Control structure o 219
Conditional statements e 220
IF statements ¢ 220
CASE statements o 222
Loop statements e 225
The record type ¢ 226
Exception handling statements e 228
Security definer ¢ 229

SUMMATY «eceeeennnicenenneccceenneceeenns ceeeeneeeetennncerennseceeenns

Verify your knowledge cerernnnenenenens cereenerreeessanns

Xiv Table of Contents

Referencesccceeevueeeccnnnces ceseeeeessateeesatteesntttesssattessstteessttessratsesssarassrsnaes 232
Chapter 8: Triggers and Rules 233
Technical requirements S ceresseettteeisssnaas st ese s saatt st sessssannastsessnnnns 234
Exploring rules in POStGreSQLeeeeeerecrrsrnneerreccsssnneeeeenes SO, 234

Understanding the OLD and NEW variables o 234
Rules on INSERT e 235
The ALSO option e 236
The INSTEAD OF option ¢ 237
Rules on DELETE/UPDATE e 239
Creating the new_tags table ¢ 240
Creating two tables e 241
Managing rules on INSERT, DELETE, and UPDATE events e 242
INSERT rules ¢ 243
DELETE rules o 245
UPDATE rules o 247

Managing triggers in POStZIeSQLccccceeerrneersssneessssnnensssseessssssessssansessssssassssasaess eee 249

Trigger syntax e 250

Triggers on INSERT e 252

The TG_OP variable ¢ 257

Triggers on UPDATE / DELETE e 257

Event triggers ceeeteessseeeessstetessartesesanteeessatatesaatesessaseeeeasteeessaraeesrartesesatesrarsesersarasernas 264

An example of an event trigger ¢ 265

SUMMATY .eeueerenceenccrencerenccrencces ceeeeennetnnietanstnneesanes ceeeesaneenaneenes 267
Verify your knowledge cereennneeenenees cereseeteeesssnnnaaeesesssanens cereeneerreeessaens 268
REfEIENCES uuuerenerirurisurinsueissnncssnnessanecsseecssancssencssnaee .. 269
Chapter 9: Partitioning 271
Technical requirements cerereetteiesissaaa et se s s ansas et essssaaaees 271
BasSiC CONCEPLS ..uueeeeeerreecrssnneneeereccsnnns N 271

Range partitioning e 273

Table of Contents

XV

List partitioning e 274
Hash partitioning e 275
Table inheritance ¢ 276

Dropping tables ¢ 280

Exploring declarative partitioningccceeeeeeeesssneeecssencees
List partitioning e 281
Range partitioning e 284
Partition maintenance o 288
Attaching a new partition 288
Detaching an existing partition ¢ 289
Attaching an existing table to the parent table ¢ 290

The default partitioncccceceeeeereesessnneeereccssscneeeeenens

..........

Partitioning and tablespacescccceeereccrruueneececne.

A simple case study ceeseresssnntesssantsessantsessanatsssananes

SUMMATY «eceeeennniceeennncceeenneceeenns ceeseseseerennneetennseeenane

Verify your knowledge cerennnentieneas

REFEIEIICES «evvvreeerenneecerreneccereassceressscccssssscessssscsssanens

Chapter 10: Users, Roles, and Database Security

280

Technical requirements S

Understanding rolesccccevveeeerrccssssnneeereccssssnencenens
Properties related to new objects ¢ 308
Properties related to superusers e 309
Properties related to replication ¢ 309

Properties related to RLS ¢ 309

Changing properties of existing roles: the ALTER ROLE statement ¢ 310

Renaming an existing role ¢ 310

SESSION_USER versus CURRENT_USER o 311

Per-role configuration parameters o 312
Inspecting roles e 313

Roles that inherit from other roles o 316

XVi

Table of Contents

Understanding how privileges are resolved o 319
Role inheritance overview e 323

ACLs ... onssssavsssavssonsassnnssonves onesseavessassssnsssonvessasssosnsssnnssonass

Default ACLs o 327
Knowing the default ACLs e 330

Granting and revoking permissionscceeeeecsseeecsssneeccssnneccnns
Permissions related to tables e 332
Column-based permissions e 333
Permissions related to sequences ¢ 337
Permissions related to schemas ¢ 339
ALL objects in the schema o 341
Permissions related to programming languages o 342
Permissions related to routines e 342
Permissions related to databases o 343
Other GRANT and REVOKE statements e 344
Assigning the object owner o 344

Inspecting ACLs o 345

Role passWOrd eNCIYPLionecececceeresssseescssnnesessssscssssssssssnsesessassnes

SSL CONNECLIONS .eevveeenreeereecereeceesecessscessecsssscsssscssssscssssesasssssssssnnse

Configuring the cluster for SSL ¢ 353

Connecting to the cluster via SSL e 354

SUMMATY .ceeeeeencenncennceanceanecns ceessecetetettnessstesernsssnesernesersenes

Verify your Knowledgeccccevvvvueiicisnnicsssneiccssneicsssnencssnnesessnnes

REFEIEIICES evuureeereneeieerenneeeerereseeeessssseeessescssessssssssssssssssssssesssne

Chapter 11: Transactions, MVCC, WALs, and Checkpoints

346
352

. 353

355
356
356

359

Technical requirements ceressetttteeissnnateteeesssanstatessessranranteee

Introducing tranSactionsececesveeeecssseccssneecsssssescsssescssnsescssaseses

Comparing implicit and explicit transactions e 362

Time within transactions 368

360
360

Table of Contents xvii

More about transaction identifiers — the XID wraparound problem e 369
Virtual and real transaction identifiers o 371
Multi-version concurrency control e 373
Transaction iSOlation 1EVEIScoueeereeereecssneissneinsueensnnensnecssnicssnecsssecssseesssecsssssesssscssasenss 379
READ UNCOMMITTED e 381
READ COMMITTED e 381
REPEATABLE READ e 381
SERIALIZABLE e 382

EXPlaining MVCC ...ccccccirinrneeeieccssssnneeteccssssssssetecccsssssssseesesssssssssssssssssssssssssessssssssssssssssssss 384

SAVEPOINTS ceerererererieereeiereeesesessens .. 387

Deadlockseeeernneen ceeeteeessattessattessatteesatteeesbtteesebatees bttt eeattesssratsesratessrsnae 390

How PostgreSQL handles persistency and consistency: WALSccccceceeeeeeccsssnneeeesccsssnnnes 393
WALSs e 393

WALS as a rescue method in the event of a crash ¢ 397
Checkpoints ¢ 398
Checkpoint configuration parameters e 399
checkpoint_timeout and max_wal_size « 400
Checkpoint throttling ¢ 402
Manually issuing a checkpoint ¢ 403
VACUUDM coiruiiienncrennctnncrancsanscssssesssscssssssssssossssessssssssssssssosassssssssssssosassssssssssssossssoss .. 403

Manual VACUUM e 404
Automatic VACUUM e 410

SUINIMATY .eeerieennceennceennceeenceranceeencerasceesscesssscsssscsssscsssscsssssssssssssssssssssssssssssssssssssssens e 412
Verify your knowledge .. ceesetesssntiessattess bt te s bt e b et e s R bt e e s bR st e s R b e s e s R b e e e s R a e s e s sbaesens 413
RETEIENCES cocuurrrriirnriiissniicssnntiesssntiisssnnticssntiesssssescssssteessssseesssssessssssssssssssesssssessssssssssssnans 414
Chapter 12: Extending the Database — the Extension Ecosystem 415
Technical requirements ceresestttteeiisaatttteeess bttt et e e s s bbbttt e ees s benttt et es e sssraateessnns 415
INtroducing EXtENSIONS ..ccccvveerecsseercsssericssseresssserssssssesssssssaesssssessssssssssssssessssssesesssssassasans 416

The extension ecosystem e 417

Extension components e 418

xviii Table of Contents

The control file e 419
The script file ¢ 420

Managing €XtENSIONS .cccceeveeeerrecsssssnneereecsssssssseeesssssssnanees cerenentteeesssnnnattesesnens .421
Creating an extension e 421
Viewing installed extensions e 422
Finding out available extension versions e 423
Altering an existing extension e 424

Removing an existing extension e 427

Exploring the PGXN client ceeeesseeesaeesatesatesat e s rte b aee b s s e Rt e bRt e bR s e b a s e b a s e sa s e sRaeente 428
Installing pgxnclient on Debian GNU/Linux and derivatives e 429
Installing pgxnclient on Fedora Linux and Red Hat-based distributions e 429
Installing pgxnclient on FreeBSD o 429
Installing pgxnclient from sources ¢ 429
The pgxnclient command-line interface ¢ 430

INStalliNg EXLENSIONS euuvereersssrrecsssneecssserecsssrecsssssessssssescsssssessssssessssssssssssssessssssssssssnsessanans 432

Installing the extension via pgxnclient e 432

Installing the extension manually e 433

Using the installed extension e 436

Removing an installed extension e 437
Removing an extension via pgxnclient ¢ 439
Removing a manually compiled extension e 439

Creating your own extension ceeeneetteeessaaaa et esessannaneseses .. 439

Defining an example extension e 439
Creating extension files ¢ 440
Installing the extension e 442
Creating an extension upgrade e 443

Performing an extension upgrade e 445

SUMMATY ..cereeneecereeneeeesencecesenne ceeessesserennessesannsssssanne ceeeseserransesensanesssnananne 446

Verify your knowledge ceesetesssntiessatte s bt tse bt s e s ba e s e s bbetesab et se bbbt sessnetesssstesesannes 446

REFEIEIICES .evuurreeeeneeieerenneeeererneeesersesseeessessesessne

Table of Contents

Xix

Chapter 13: Query Tuning, Indexes, and Performance Optimization

Technical requirements cereneneneneas

Execution of a statement ETTTTTTTTTTTT T e

Execution stages e 451
The optimizer o 452
Nodes that the optimizer uses ¢ 454
Sequential nodes o 454
Parallel nodes o 457
When does the optimizer choose a parallel plan? e 458
Utility nodes o 459
Node costs ¢ 460

INAEXES .eceerrrreeceereecererrseccerassoccesssssecsssssscssssssoccssssssnes

. 462

Index types o 462
Creating an index o 463
Inspecting indexes e 465
Dropping an index ¢ 468
Invalidating an index ¢ 469
Rebuilding an index 470
The EXPLAIN Statementcceceeesneesneessnscssasecsncns

EXPLAIN output formats e 473
EXPLAIN ANALYZE o 474
EXPLAIN options e 476

Examples of query tuning cernrersssnneessannesennnnene

ANALYZE and how to update StatiStiCS ...cciceeersercssneecsuressarecssnecssneessseesseessneesssessssessssessans 491

NRTTORYC o) F: V1 o N

Verify your knowledge cereereeettiesisaanaatneeas

References ... eeeeeeennsnnnnnsnnnnnns ceenescerennnnenes

XX

Table of Contents

Chapter 14: Logging and Auditing

503

Technical requirements

Introduction to logging

.........................

.............

Where to log ¢ 505
When to log ¢ 508
What to log e 512
Extracting information from logs — pgBadger

Installing pgBadger o 514

Configuring PostgreSQL logging for pgBadger usage o 515

Using pgBadger o 516
Scheduling pgBadger o 521

Implementing auditing

Installing PgAudit e 525

Configuring PostgreSQL to exploit PgAudit e 526

Configuring PgAudit e 527
Auditing by session e 528
Auditing by role ¢ 530

Summary
Verify your knowledge

References

.......................................

Chapter 15: Backup and Restore

--

...............................

Technical requirements
Introducing types of backups and restores

Exploring logical backups ...

.............................

Dumping a single database ¢ 539

Restoring a single database ¢ 543

Limiting the amount of data to backup e 547
Compression e 548

Dump formats and pg_restore e 549

Table of Contents xxi

Performing a selective restore e 552
Dumping a whole cluster e 555
Parallel backups ¢ 556

Backup automation e 558

The COPY command e 559

Exploring physical backupsceeeeceneeeccsnneecssnreccssnneecssnnecsssnneecnn cereenenttesesssnnnns 563
Performing a manual physical backup « 564
pg_verifybackup ¢ 566
Starting the cloned cluster e 567

Restoring from a physical backup ¢ 568

Basic concepts behind PITRccccoveeeereecscrcnneccecnens cereseetteeesssaaattesessssaanssesessananns 569
SUMMATY .ceeeereneceencceenccranceenecnes cereeeeenttetanetttnietancsansennensannnns cereereneenanenns 570
Verify your knowledge cesseresssnenens cessersssneressnntssssanenesans cerereesssnnenenns 570
RELEIEIICES cuuuvrenriirniiinrinneinneicnrinsnnesssnecsssecsssecssseessseessssessssessssessssesssanesssssssasssace .. 571
Chapter 16: Configuration and Monitoring 573
Technical requirements cereennneeenees ceresestttteeesssnnaattesessanrastteseesssssnssateesennaas 574
Cluster configurationceeeeesvcneecsseneces cesrersssnsenessaneensssanensannaness 574

Inspecting all the configuration parameters o 576
Finding configuration errors e 578
Nesting configuration files e 579
Configuration contexts ¢ 580
Main configuration settings ¢ 581
WAL settings o 582
Memory-related settings e 584
Process information settings ¢ 585
Networking-related settings e 585
Archive and replication settings e 586
Vacuum and autovacuum-related settings e 587
Optimizer settings e 587

Statistics collector e 587

xxii

Table of Contents

Modifying the configuration from a live system e 588

Configuration generators e 589

Monitoring the cluster

..........................

Information about running queries and sessions ¢ 593

Inspecting locks e 594
Inspecting databases ¢ 596
Inspecting tables and indexes e 597

More statistics e 599

Advanced statistics with pg_stat_statements.

.. 600

Installing the pg_stat_statements extension ¢« 600

Using pg_stat_statements e 601

Resetting data collected from pg_stat_statements ¢ 602

Tuning pg_stat_statements e 602

Summary

Verify your knowledge

...................

References

Chapter 17: Physical Replication

Technical requirements

Exploring basic replication concepts

Physical replication and WALSs ¢ 609

The wal_level directive ¢ 610

Preparing the environment setup for streaming replication e 610

Managing streaming replication

...............

. 612

Basic concepts of streaming replication e 612

Asynchronous replication environment e 614

The wal_keep_segments option e 615
The slot way e 616

The pg_basebackup command e 616
Asynchronous replication e 617

Replica monitoring e 619

Table of Contents xxiii

Synchronous replication e 620
PostgreSQL settings o 621
Cascading replication 623
Delayed replication e 626

Promoting a replica server to a primary e 626

SUMMATLY eeceeeeenncerennnccceennnceenens ceeesesecerenancerannsncsenans ceeeesecerennneeeeannsenarnnnnes 627
Verify your knowledge cerenenentneneas cerereeteeesssnanaaeenesssanens cereeneeeieeessaens 628
Referencesccoueeeueecnncens ceeteesressatesatesares bt e e b aee b a s bt s e b et e Rt s b Re bR a s ba e e banebanesen 628
Chapter 18: Logical Replication 631
Technical requirements cereneneneeees cerereetttieiiisaat et tes s aaaa et s e s s ansaa et esssnaaees 631
Understanding the basic concepts of logical replicationc..cceeesverccssnercsssnerccssnesesnns 632
Comparing logical replication and physical replicationccceeevserrcscneeicssnercsssneencsnnes 635

Exploring a logical replication setup and new logical replication features on PostgreSQL 16 .

636

Logical replication environment settings e 636
The replica role ¢ 637
Primary server — postgresql.conf e 637
Replica server — postgresql.conf 638
The pg_hba.conf file e 639

Logical replication setup e 639

Monitoring logical replication e 641
Read-only versus write-allowed o 643

DDL commands e 649

Disabling logical replication e 651

Making a logical replication using a physical replication instance ¢ 652

SUIMNIMATY tecereennieeeeeneeeeeaneeetennsccteassscesessssssessssssssssssssssssssssscssssssssssssssesssssssssssssssssssses 657

Verify your knowledge cerereetteieessnnaetsesssaaens cereeneetieeesaens ... 658

REFEIEIICES «evvvreerereneeceerannecerrsessccerssssceessssscesssssscsssssssssssssssossssssscssnsssssssssssssssssnsssssssssssssssnse 658

XXV

Table of Contents

Chapter 19: Useful Tools and Extensions 661
Technical FEQUITEMENTES ...uuueeeeerriiiiisseneeiieiiisisneetieeissssneseesiesssssssseesssssssssssssessssssssssessses 662
Exploring the pg_trgm extension . cererestttieeiisaat et teessarat et tesessenasateesesssennnas 662
Using foreign data wrappers and the postgres_fdw eXtensionceeeeneeesseeesseeccsneeens 665
Disaster recovery With pGDackrIestueeecrveeecssseecsssnneecsssneecsssnneecsssnencsssnsesessassees 667
Basic concepts e 668
Environment set up e 669
The exchange of public keys « 669
Installing pgbackrest ¢ 671
Configuring pgbackrest ¢ 672
The repository configuration e 672
Using pgbackrest with object store support e 675
The PostgreSQL server configuration e 675
The postgresql.CONT fIle ...uciievveriiirseriiisnneiisssenicssnseiesssneissssntecssssenssssssessssssssssssssessssansessns 675
The pgbacKkrest.CONfIleccuvuiiiivsiiiinsniiiisseiicsssniicsssnniecssneicsssseecsssssescssssesessanes 676
Creating and managing continuous backups e 677
Creating the stanza e 677
Checking the stanza ¢ 677
Managing base backups e 678
Managing PITR e 681
Migrating from MySQL/MariaDB to PostgreSQL using pgloadercc.cueeeo. .. 684
Summary eeeeeetttettatetttntctatietaniettnetarstansssansssarsssnnsssanssennnnns 688
Verify your KNOWIEd@E ...cccceiieivueiicssnneicsssniicsssneicsssnncssssencssssessssssesssssssesssssnsssssns ... 688
REfEIEINCES cuuerirrnrinnriiureinienneecinicsneieneessneesssneessseessseessseessssessssesssssessssssssssssasssssssssasessns 689
Other Books You May Enjoy 691
Index 697

Preface

PostgreSQL is one of the fastest-growing open-source object-relational Database Management
Systems (DBMSs) in the world. PostgreSQL provides enterprise-level features; it’s scalable, secure,
and highly efficient; it’s easy to use; and it has a very rich ecosystem that includes application
drivers and tools. In this book, you will explore PostgreSQL 16, the latest stable release, and learn
to build secure, reliable, and scalable database solutions using it. Complete with hands-on tu-
torials and a set of Docker images to follow every step-by-step example, this book will teach you

how to achieve the right database design for a reliable environment.

You will learn how to install, configure, and manage a PostgreSQL server; manage users and con-
nections; and inspect server activity for performance optimization. With question-and-answer

sections for each chapter, you will be able to check your newly acquired knowledge as you go.

The book starts by introducing the main concepts surrounding PostgreSQL and how to install
and connect to the database, and then progresses to the management of users, permissions, and
basic objects like tables. You will be taught about the Data Definition Language and the most
common and useful statements and commands, as well as all the essential relational database
concepts, like foreign keys, triggers, and functions. Later, you will explore how to configure and
tune your cluster to get the best out of your PostgreSQL service, how to create and manage indexes
for fast data retrieval, and how to make and restore backup copies of your data. Lastly, you will
learn how to create your own high-availability solution by means of replications, either physical
or logical, and you will get a look at some of the most common and useful tools and extensions

that you can apply to your cluster.

By the end of this book, you’ll be well versed in the PostgreSQL database and be able to set up your

own PostgreSQL instance and use it to build robust, data-centric solutions to real-world problems.

xxvi Preface

Who this book is for

This book is for anyone interested in learning about the PostgreSQL database from scratch or
anyone looking to build robust, scalable, and highly available database applications. All the new-
est and coolest features of PostgreSQL will be presented, along with all the concepts a database
administrator or an application developer needs to get the best out of a PostgreSQL instance.
Although prior knowledge of PostgreSQL is not required, familiarity with databases and the SQL

language is expected.

What this book covers

Chapter 1, Introduction to PostgreSQL, explains what the PostgreSQL database is, the community
and development behind this great and robust enterprise-level relational database, and how to
get help and recognize different PostgreSQL versions and dependencies. You will also learn how
to get and install PostgreSQL either through binary packages or by compiling it from sources. You

will see how to manage the cluster with your operating system tools (systemd and rc scripts).

Chapter 2, Getting to Know Your Cluster, shows you the anatomy of a PostgreSQL cluster by spec-
ifying what is on the file system, where the main configuration files are, and how they are used.
The psql command-line utility is described in order to help you connect to the database cluster

and interact with it.

Chapter 3, Managing Users and Connections, provides a complete description of how users and
connections are managed by a running instance and how you can prevent or limit users from
connecting. The concept of the “role” is described, and you will learn how to create single-user

accounts, as well as groups of related users.

Chapter 4, Basic Statements, shows how to create and destroy main database objects, such as da-
tabases, tables, and schemas. The chapter also covers basic statements, such as SELECT, INSERT,

UPDATE, and DELETE. This chapter shows how to manage the public schema on PostgreSQL 16.

Chapter 5, Advanced Statements, introduces the advanced statements PostgreSQL provides, such
as common table expressions, MERGE, UPSERTs, and queries with RETURNING rows. This chapter

will provide practical examples of when and how to use them.

Preface xxvii

Chapter 6, Window Functions, introduces a powerful set of functions that provide aggregation with-
out having to collapse the resultin a single row. In other words, thanks to window functions, you
can perform aggregation on multiple rows (windows) and still present all the tuples in the output.

Window functions allow the implementation of business intelligence and make reporting easy.

Chapter 7, Server-Side Programming, tackles the fact that while SQL is fine for doing most day-to-
day work with a database, you could end up with a particular problem that requires an imperative
approach. This chapter shows you how to implement your own code within the database, how
to write functions and procedures in different languages, and how to make them interact with

transaction boundaries.

Chapter 8, Triggers and Rules, presents both triggers and rules with practical examples, showing

advantages and drawbacks. The chapter ends with examples about event triggers.

Chapter 9, Partitioning, explores partitioning — splitting a table into smaller pieces. PostgreSQL
has supported partitioning for a long time, but with version 10 it introduced so-called “declara-
tive partitioning.” This chapter focuses on all the features related to declarative partitioning, its

tuning parameters, and how to make a table partitioning using different tablespaces.

Chapter 10, Users, Roles, and Database Security, first looks at user management: roles, groups, and
passwords. You will learn how to constrain users to access only particular databases and from
particular machines, as well as how to manage permissions associated to users and database
objects. You then will see how row-level security can harden your table contents and prevent

users from retrieving or modifying tuples that do not belong to them.

Chapter 11, Transactions, MVCC, WALs, and Checkpoints, presents fundamental concepts in Post-
greSQL: the Write-Ahead Log (WAL) and the machinery that allows the database to run con-
current transactions and consolidate data in storage. The chapter also presents the concept of
transaction isolation, ACID rules, and how the database can implement them. Then you will
discover how the WAL can speed up database work and, at the very same time, protect it against
crashes. You will understand what MVCC is and why it is important. Lastly, the chapter provides

insight into checkpoints and related tunables.

Chapter 12, Extending the Database — the Extension Ecosystem, introduces a handy way to plug new
functionalities into your cluster by using so-called “extensions.” This chapter will show you what
an extension is; how to search for, get, and install a third-party extension; and how to develop

your own.

xxviii Preface

Chapter 13, Query Tuning, Indexes, and Performance Optimization, addresses an important topic
for any database administrator: performance. Indexes are fast ways to help the database access
the most commonly used data, but they cannot be built on top of everything because of their
maintenance costs. The chapter presents the available index types, and then it explains how to
recognize tables and queries that could benefit from indexes and how to deploy them. Thanks to

tools such as explain and autoexplain, you will keep your queries under control.

Chapter 14, Logging and Auditing, tackles questions such as “What is happening in the database
cluster?” and “What happened yesterday?” Having a good logging and auditing ruleset is a key
pointin the administration of a database cluster. The chapter presents you with the main options
for logging, how to inspect logs with external utilities such as pgBadger, and how to audit your
cluster (in a way that can help you make it compliant with data regulamentation policies, e.g.,
GDPR).

Chapter 15, Backup and Restore, explains why having a backup is important, how to take one for
all or part of you cluster, and how to restore from a valid backup. The chapter presents the basic
and most common ways to back up a single database or a whole cluster, as well as how to do

archiving and point-in-time recovery.

Chapter 16, Configuration and Monitoring, presents the cluster configuration options and the Post-
greSQL catalogs used to inspect the system from the inside. Different ways to tune the configura-
tion will be presented. Thanks to special extensions, such as pg_stat_activity, youwill be able

to monitor in real time what your users are doing against the database.

Chapter 17, Physical Replication, covers built-in replication, a mechanism that allows you to keep
several instances up and in sync with a single master node, which PostgreSQL has supported
since version 9. Replication allows scalability and redundancy, as well as many other scenarios
such as testing and comparing databases. This chapter presents so-called “physical replication,”
a way to fully replicate a whole cluster over another instance that will continuously follow its
leader. Both asynchronous and synchronous replication, as well as replication slots and delayed

replication, will be presented.

Chapter 18, Logical Replication, covers logical replication, which allows very fine-grained replication
specifying which tables have to be replicated and which don’t — supported by PostgreSQL since
version 10. This, of course, allows a very new and rich scenario of data sharing across different
database instances. The chapter presents how logical replication works, how to set it up, and

how to monitor the replication.

Preface XXix

Chapter 19, Useful Tools and Useful Extensions, should be considered as an appendix to the book. In
this chapter, we will talk about some tools and extensions that allow a database administrator

to maximize work done while minimizing effort.

To get the most out of this book

For this book to be useful, basic knowledge of the Linux (or another Unix-like) operating system is
required. All the SQL examples can be run using the psql command-line program or any available
GUI tool (not presented in the book), like the PostgreSQL-specific pgAdmin4. Shell scripts will
be executed using the GNU Bash scripting language.

Software/hardware covered in the book OS requirements
PostgreSQL 16 Linux OS/Unix-like OS (e.g., FreeBSD,
OpenBSD)

The book provides a set of Docker images, so that the reader can follow and test all the code
examples. Running the Docker images is not mandatory, but it does not require you to have your
own customized PostgreSQL installation. In order to run the Docker images, you need to install

the Docker application on your operating system.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code via the GitHub repository (link available in the next section). Doing so will help you

avoid any potential errors related to the copying and pasting of code.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Learn-PostgreSQL-Second-Edition. We also have other code bundles from our rich catalog of

books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781837635641.

https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition
https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781837635641

XXX Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the

downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

Ablock of code is set as follows:

SELECT rolname, rolcanlogin,
rolconnlimit, rolpassword
FROM pg_roles

WHERE rolname = 'luca';

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are setin bold:

SELECT line_number, type,
database, user_name,
address, auth_method
FROM pg_hba_file rules;

Any command-line input or output is written as follows:

$ sudo cat $PGDATA/rejected_users.txt

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”
\/V) Warnings or important notes appear like this.

N

',@\' Tips and tricks appear like this.

7/

Preface xxxi

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Pleasevisithttp://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith alink to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts

Once you've read Learn PostgreSQL, we’d love to hear your thoughts! Please click here to go

straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1837635641
https://packt.link/r/1837635641

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?
Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837635641

2. Submit your proof of purchase

3. That’s it We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837635641

Introduction to PostgreSQL

PostgreSQLis a well-known open-source relational database, and its motto states what the project

intends to be the most advanced open-source database in the world.

The main qualities that attract masses of new users every year and keep current users enthusiastic
about PostgreSQL are its rock-solid stability, scalability, and safeness, as well as all the features

that an enterprise-level database management system must provide.

While PostgreSQL is a relational database, its ecosystem has grown over time, providing a rich
platform with extensions, tools, and languages tied together by communities spread around the

world.

PostgreSQL is an open-source project and is fully developed in the open-source world. That means
that there is no single entity in charge of the project and the result is that PostgreSQL is not a
commercial product. In other words, PostgreSQL belongs to everyone, and anyone can contrib-
ute to it. Thanks to a very permissive BSD-style license, PostgreSQL can be used in any project or

scenario, either open or closed source.

Of course, contributing to a project of that size and complexity requires experience in software
development, database concepts, and, of course, a positive attitude to open-source and collabora-
tive efforts. Being open-source in nature means that PostgreSQL will continue to live pretty much

forever without the risk of a single company going out of business and sinking with the database.

The official PostgreSQL developers are generally known as the PostgreSQL Global Development
Group (PGDG), and they are the developers that, after discussion and coordination, implement
the main features and produce new releases. The PGDG delivers a new production release once

per year, usually in the last quarter of the year.

entest

2 Introduction to PostgreSQL

At the time of writing, PostgreSQL 16 is the latest production release of this great database engine,

and as usual, efforts for the next release (PostgreSQL 17) are ongoing.

This book will focus on how you can get the best out of PostgreSQL, starting from the basics (man-
aging users, data tables, indexes, and so on) and moving toward the most exciting and complex
features (such as replicating your data to prevent disasters). We’ll take a practical approach, with
several examples, in order to let readers better understand every concept and acquire knowledge
in amore fun and quick way. At the end, you will be able to fully administer a PostgreSQL cluster
and, thanks to the resources pointed out in every chapter, you will be able to research even more

features.

This book covers PostgreSQL 16, but the concepts explained in this book can also be
applied to later versions (as well as to previous ones where the same features are
\Q/\, present). In fact, while some tools could change in future releases (e.g., adding or
removing some options), the basic concepts expressed in the book will remain pretty

much the same without any regard to the PostgreSQL version.

This chapter will introduce you to this great open-source database starting from the project his-
tory and goals; you will learn basic PostgreSQL terminology, which is very important to help you
search the documentation and understand the main error messages, in case you need to. Finally,
you will see how to install PostgreSQL in different ways so that you will get a basic knowledge of

how to install it on different platforms and in different contexts.
The following topics are covered in this chapter:

e PostgreSQL at a glance
e Exploring PostgreSQL terminology
e Installing PostgreSQL 16 or higher

Technical requirements

You can find the code for this chapter at the following GitHub repository: https://github.com/
PacktPublishing/Learn-PostgreSQL-Second-Edition.

PostgreSQL at a glance

As a relational database, PostgreSQL provides a lot of features, and it is quite difficult to “scare”

a PostgreSQL instance.

https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition
https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition

Chapter 1 3

In fact, a single instance can contain more than 4 billion individual databases, each with unlimited
total size and capacity for more than 1 billion tables, each containing 32 TB of data. Moreover, if
there’s any concern that those upper limits won’t suffice, please consider that a single table can
have 1,600 columns, each 1 GB in size, with an unlimited number of multi-column indexes (up

to 32 columns). In short, PostgreSQL can store much more data than you can possibly think of!

While PostgreSQL can handle such huge amounts of data, that does not mean that you should
use it as a dumping ground or catch-all storage: in order to perform well with certain big data-
bases, you need to understand PostgreSQL and its features, being therefore able to organize and

manage your datasets.

PostgreSQL is fully ACID-compliant (see the box below) and has a very strong foundation in
data integrity and concurrency. It ships with a procedural language, named PL/PgSQL, which
can be used to write reusable pieces of code, such as functions and procedures, and it supports
before and after triggers, views, materialized views, partitioned tables, foreign data wrappers,
multiple schemas, generated columns, and so on. All of these concepts will be explained in the

forthcoming chapters.

ACID is an acronym of properties, used to indicate that the database engine provides
atomicity, consistency, isolation, and durability. Atomicity means that a complex
database operation is processed as a single instruction even when it is made up of
different operations. Consistency means that the data within the database is always
\G/\, kept consistent and that it is not corrupted due to partially performed operations.
Isolation allows the database to handle concurrency in the “right way”—that is,
without having corrupted data from interleaved changes. Lastly, durability means
that the database engine is supposed to protect the data it contains, even in the case

of either software or hardware failures, as much as it can.

PostgreSQL can be extended with other embedded languages, such as Perl, Python, Java, and even
Bash! And if you think the database does not provide you with enough features, you can plug in
extensions to obtain different behaviors and enhancements—for instance, Geospatial Informa-
tion System (GIS), scheduled jobs, esoteric data types, and utilities in general. Such utilities and
enhancement will not be covered in this book, but thanks to the knowledge this book provides, it

will be possible to exploit the online documentation of such utilities to get the best out of them.

entest

entest

entest

4 Introduction to PostgreSQL

PostgreSQL runs on pretty much every operating system out there, including Linux, Unix, macOS
X, and Microsoft Windows, and can even run on commodity hardware such as Raspberry Piboards.

There are also several cloud computing providers that list PostgreSQL in their software catalog.

Thanks to its extensive tuning mechanism, it can be adapted very well to the hosting platform.
The community is responsible for keeping the database and documentation at a very high-quality
level, and also, the mailing lists and IRC channels are very responsive and a valuable source for

problem solutions and ideas.

In the experience of the authors, there has never been a case where PostgreSQL has not been able

to adapt to an application scenario.

The PostgreSQL project has a very rich and extensive set of mailing lists that range
\/V' from general topics to very specific details. It is a good habit to search for prob-
lems and solutions on the mailing list archives; see the web page at https://www.

postgresql.org/list/ to get a better idea.

A brief history of PostgreSQL

PostgreSQL takes its name from its ancestor: Ingres.

Ingres was a relational database developed by Professor Michael Stonebraker. In 1986, Professor
Stonebraker started a post-Ingres project to develop new, cool features in the database landscape
and named this project POSTGRES (POST-Ingres). The project aimed to develop an object-rela-
tional database, where “object” means the user would have the capability to extend the database

with their own objects, such as data types, functions, and so on.

In 1994, POSTGRES was released with version 4.2 and an MIT license, which opened up collab-
oration with other developers around the world. At that time, POSTGRES was using an internal
query language named QUEL. Two Berkeley students, Andrew Yu and Jolly Chen, replaced the
QUEL query language with the hot and cool SQL language, and the feature was so innovative
that the project changed its name to Postgre95 to emphasize the difference compared to other,

preceding versions.

Eventually, in 1996, the project gained a public server to host the code, and five developers, includ-
ing Marc G. Fournier, Tom Lane, and Bruce Momjan, started the development of the newly branded

project named PostgreSQL. Since then, the project has been kept in good shape and up to date.

entest

entest

entest

Chapter 1 5

This also means that PostgreSQL has been developed for nearly 30 years, again emphasizing the
solidity and openness of the project itself. If you are curious, it is also possible to dig into the

source code down to the initial commit in the open-source world:

$ git log 'git rev-list --max-parents=0 HEAD'

commit d31084e9d1118b25fd16580d9d8c2924b5740dff
Author: Marc G. Fournier <scrappy@hub.org>
Date: Tue Jul 9 06:22:35 1996 +0000

Postgres95 1.01 Distribution - Virgin Sources

What's new in PostgreSQL 16?

PostgreSQL 16 was released on 14" September 2023. It includes a rich set of improvements, in-

cluding the following:

e Several performance optimizations, ranging from internal memory allocation and man-
agement to a more parallelized-by-default behavior.

e Arevised setof permissions for users and groups, including new system groups to provide
specific capabilities.

e Animproved configuration mechanism, to ease the inclusion of files and match users and
hosts by means of regular expression.

e A more complete set of JSON functions.

e Animproved logical replication engine that allows decoding even on the stand-by servers.

e Asetofutility columns gained new options to fine-tune what the administrator needs to do.

As with other releases, PostgreSQL 16 also contains a set of changes aimed at making the Database
Administrator (DBA)’s life easier—for instance, removing conflicting options and obsolete SQL
terms and types. This emphasizes the fact that PostgreSQL developers do always take care of the

database and its adherence to the current SQL standards.

PostgreSQL release policy, version numbers, and life cycle

PostgreSQL developers release a new major release once per year, usually around October. A
major release is a stable version that introduces new features and possible incompatibilities with
previous versions. During its life cycle, a major release is constantly improved by means of minor

releases, which are usually bug-fixing and maintenance releases.

6 Introduction to PostgreSQL

The PostgreSQL version number identifies the major and minor release. The version number is
specified as major.minor; so, for instance, 16.0 indicates the first major release, 16, while 16.1
indicates the minor release, 1, of major release 16. In short, the greater the number, the more

recent the version you are managing.

PostgreSQL’s different major versions are incompatible, while different minor versions are com-
patible. What does such incompatibility mean? PostgreSQL stores data in binary format, and
this format could possibly change between major versions. This means that, while you are able
to upgrade PostgreSQL between minor versions on the fly, you probably will have to dump and

restore your database content between major version upgrades.

The recommendation, as for much other software, is to run the most recent version of PostgreSQL
available to you: PostgreSQL developers putin alot of effort in order to provide bug-free products,
but new features could introduce new bugs, and regardless of the very extensive testing platform
PostgreSQL has, itis software after all, and software has bugs. Despite internal bugs, new releases
also include fixes for security exploits and performance improvements, so it is a very good habit

to keep up to date with your running PostgreSQL server.

Last but not least, not all PostgreSQL versions will live forever. PostgreSQL provides support and
upgrades for five years after a new release is issued; after this length of time, a major release will
reach its End Of Life (EOL) and PostgreSQL developers will no longer maintain it. This does not
mean you cannot run an ancient version of PostgreSQL; it simply means this version will not get
any upgrades from the official project and, therefore, will be out of date. As an example, since
PostgreSQL 16 was released in 2023, it will reach its EOL in 2028. Keep in mind that running an
EOLrelease is not only a matter of not getting new upgrades, security patches, and bug fixes; you

will be on your own and you will not find help when you run into trouble.

With that in mind, we’ll now introduce the main PostgreSQL terminology, as well as further

useful-to-understand concepts.

Exploring PostgreSQL terminology

In order for you to understand how PostgreSQL works and follow the examples in the chapters of

this book, we need to introduce the terminology used within PostgreSQL and its community of users.

PostgreSQL is a service, which means it runs as a daemon on the operating system; a running
PostgreSQL daemon is called an instance. A PostgreSQL instance is often called a cluster because
a single instance can serve and handle multiple databases. Every database is an isolated space

where users and applications can store data.

Chapter 1 7

A database is accessed by allowed users, but users connected to a database cannot cross the da-
tabase boundaries and interact with data contained in another database unless they explicitly

connect to the latter database too.

A database can be organized into namespaces, called schemas. A schema is a mnemonic name that
the user can assign to organize database objects, such as tables, into a more structured collection.

Schemas cannot be nested, so they represent a flat namespace.

Database objects are represented by everything the user can create and manage within the da-
tabase—for instance, tables, functions, triggers, and data types. Every object belongs to one and

only one schema that, if not specified, is named as the user that creates the object.

In PostgreSQL versions prior to 15, every new object belongs to the default public
\/V' schema if not specified otherwise. Since PostgreSQL 15, every user is assigned a
personal schema and objects belong to such a schema unless a different schema

name is explicitly specified.

Users are defined at a cluster-wide level, which means they are not tied to a particular database in

the cluster. A user can connect with and manage any database in the cluster they are allowed to.
PostgreSQL splits users into two main categories:

e Normal users: These users are the ones who can connect to and handle databases and

objects depending on their privilege set.

e Superusers: These users can do anything with any database object.

PostgreSQL allows the configuration of as many superusers as you need, and every superuser
has the very same permissions: they can do everything with every database and object and, most
notably, can also control the life cycle of the cluster (for instance, they can terminate normal user

connections, reload the configuration, stop the whole cluster, and so on).

PostgreSQL internal data, such as users, databases, namespaces, configuration, and database run-
time status, is provided by means of catalogs: special tables and views that present information
in a SQL-interactive way. Many catalogs are trimmed depending on the user who is inspecting

them, with the exception that superusers usually see the whole set of available information.

PostgreSQL stores the user data (for example, tables) and its internal status on the local filesystem.

8 Introduction to PostgreSQL

This is an important point to keep in mind: PostgreSQL relies on the underlying filesystem to
implement persistence, and therefore tuning the filesystem is an important task in order to make
PostgreSQL perform well. In particular, PostgreSQL stores all of its content (user data and in-
ternal status) in a single filesystem directory known as PGDATA. The PGDATA directory represents
what the cluster is serving as databases, so it is possible for you to have a single installation of
PostgreSQL and make it switch to different PGDATA directories to deliver different content. As you
will see in the next sections, the PGDATA directory needs to be initialized before it can be used by
PostgreSQL; the initialization is the creation of the directory structure within PGDATA itself and

is, of course, a one-time operation.

The detailed contents of PGDATA will be explained in the next chapter, but for now, it will suffice
for you to remember that the PGDATA directory is where PostgreSQL expects to find data and
configuration files. In particular, the PGDATA directory is made up of at least the Write-Ahead
Logs (WALs) and the data storage. Without either of those two parts, the cluster is unable to

guarantee data consistency and, in some critical circumstances, even start.

WALs are a technology that many database systems use, and the basic idea of how they work is
shared with other technologies like transactional filesystems (such as ZFS, UFS with Soft Updates,
and so on). The idea is that, before applying any change to a chunk of data, an intent log will
be made persistent. In this case, if the cluster crashes, it can always rely on the already-written
intent log to understand what operations have been completed and what must be recovered
(more details on this in later chapters). Please note that with the term “crash,” we refer to any
possible disaster that can hit your cluster, including a software bug, but more likely a lack of
electrical power, hard disk failures, and so on. PostgreSQL does commit to providing you with
the best data consistency it can, and therefore, it makes a great effort to ensure that the intent

log (WAL) is as safe as possible.

Internally, PostgreSQL keeps track of the tables’ structures, indexes, functions, and all the stuff

needed to manage the cluster in its dedicated storage, the catalog.

entest

entest

entest

Chapter 1 9

The SQL standard defines a so-called information schema, a collection of tables
common to all standard database implementations, including PostgreSQL, that the
DBA can use to inspect the internal status of the database itself. For instance, the in-
formation schema defines a table that collects information about all the user-defined
tables so thatitis possible to query the information schema to see whether a specific
\E/\, table exists or not. The PostgreSQL catalog is what could be called an “information
schema on steroids”: the catalog is much more accurate and PostgreSQL-specific than
the general information schema, and the DBA can extract a lot more information
about the PostgreSQL status from the catalog. Of course, PostgreSQL does support
the information schema, but throughout the whole book, you will see references to

the catalogs because they provide much more detailed information.

When the cluster is started, PostgreSQL launches a single process called the postmaster. The aim of
the postmaster is to bootstrap the instance, spawning needed processes to manage the database
activity, and then to wait for incoming connections. A user connection, often made over a TCP/
IP connection, requires the postmaster to fork another process named the backend process, which

in turn is in charge of serving one and only one connection.

This means that every time a new connection against the cluster is opened, the cluster reacts by
launching a new backend process to serve it until the connection ends and the process is, conse-
quently, destroyed. The postmaster usually also starts some utility processes that are responsible
for keeping PostgreSQL in good shape while it is running; these processes will be discussed later,

in this and the next chapters.

To summarize, PostgreSQL provides you with executables that can be installed wherever you
want on your system and can serve a single cluster. The cluster, in turn, serves data out of a single
PGDATA directory that contains, among other stuff, the user data, the cluster’s internal status, the
catalog, and the WALs. Every time a client connects to the server, the postmaster process forks a

new backend process that is the minion in charge of serving the connection.

10 Introduction to PostgreSQL

From the concepts explained above, the following is a quick recap of the most complex terms

used in PostgreSQL:

e Cluster: the whole PostgreSQL service.

e Postmaster: the first process the cluster executes, and this process is responsible for keep-
ing track of the activities of the whole cluster. The postmaster spawns a backend process

every time a new connection is established.

e Database: an isolated data container to which users (or applications) can connect. A
cluster can handle multiple databases. A database can be made up of different objects,
including schemas (namespaces), tables, triggers, and other objects you will see as the
book progresses.

e PGDATA: the directory that, on persistent storage, is fully dedicated to PostgreSQL and
its data. PostgreSQL stores the data within such a directory.

e WALs: the intent log of database changes, used to recover data from a critical crash.

Now that we’ve discussed the basic terminology related to PostgreSQL, it is time to getitinstalled

on your machine.

Installing PostgreSQL

PostgreSQL can run on several operating systems, most notably Unix and Unix-like systems, in-
cluding Linux, as well as on Microsoft Windows 11 or higher. So far, the most supported platform
remains Linux because most PostgreSQL developers work on this platform, and so it is the one
with the most tested use cases. However, deploying on other supported platforms should not

present any problems and is not going to put your data at any risk.

This section will focus on installing PostgreSQL 16, since it is the latest stable version available
worldwide. You will learn, however, how to build your own version of PostgreSQL, and this may

also be the way for you to install other versions of PostgreSQL in the future.

Before installing PostgreSQL, you need to choose, or at least evaluate, how to install it. There are

two main ways to get PostgreSQL up and running:

e Compiling from sources

e Using binary packages

Binary packages are provided by the PostgreSQL community or the operating system, and using

them has the advantage that it can provide you with a smooth PostgreSQL installation.

Chapter 1 1

Moreover, binary packages do not require a compilation toolchain and therefore are much easier
to adopt. Lastly, a binary package adheres to the operating system conventions it has been built
for (for instance, on where to place configuration files) and upgrades can be managed by the
operating system as well. Since binary packages need to be pre-built from vendors, they may
notreflect the latest released version. For example, when the PGDG delivers a new minor update,
operating systems require some days to push out binary packages with such upgrades for all the

supported platforms.

On the other hand, installing from sources requires a compilation toolchain, as well as much more
time and CPU consumption to build PostgreSQL executables. You have full control over which
components will be available in the final product and can trim and optimize your instance for very
high performances and shrink resource consumption to a minimum. In the long term, however,

you will be responsible for maintaining the installation and upgrading it in a similar manner.

What to install

PostgreSQL is split across several components to install:

o ThePostgreSQL serveris the part that can serve your databases to applications and users

and is required to store your data.

o The PostgreSQL client is the library and client tool to connect to the database server. It
is not required if you don’t need to connect to the database on the very same machine,
while it is required on client machines.

e ThePostgreSQL contrib package is a set of well-known extensions and utilities that can
enhance your PostgreSQL experience. This additional package is developed by the PGDG

and is therefore well integrated and stable.

e The PostgreSQL docs is the documentation (e.g., man pages) related to the server and

the client.

e PostgreSQL PL/Per], PL/Python, and PL/Tcl are three components to allow the usage of
programming languages— Perl, Python, and Tcl, respectively—directly within the Post-

greSQL server.

The recommended set of components is the server, the client, and the contrib modules; these
modules will be used across the book. You are free to decide whether to install the other compo-

nents as you wish, but this book will not detail each of them.

entest

entest

12 Introduction to PostgreSQL

Installing PostgreSQL from binary packages

In order to better understand the concepts explained in this book, we recommend readers try the
code examples on their own; therefore, you will need? a PostgreSQL instance available. While the
best choice to get a full PostgreSQL instance at your fingertips is to install it on a virtual machine
or a physical computer, we have also provided a set of Docker images as containerized PostgreSQL
instances to run and experiment on. Therefore, you can choose between performing a full installa-
tion or a quick Docker setup to get a PostgreSQL machine ready. However, itis important for every
DBA to be able to install PostgreSQL on several systems, and therefore, this section aims to show

you how to perform a complete installation from scratch on a few Unix-like operating systems.

In the following sections, you will see how to install PostgreSQL on a few popular Linux and Unix

operating systems, namely the following:

e Linux Docker containers
e GNU/Linux Debian, Ubuntu, and derivatives

o FedoraLinux (this also applies to Red Hat Enterprise Linux and compatible distributions,
like Rocky Linux)

. FreeBSD

It is not possible to provide detailed instructions for every operating system out there, but the

concepts presented in the following sections should prove insightful regardless.

Before getting to the practical installation, it is worth noting that binary packages could come
in two flavors: those provided by the operating system vendor, and those provided by the PGDG.
Usually, on Linux-based systems, you should use binary packages provided by the PGDG, be-
cause they are the most authoritative source for PostgreSQL. In fact, packages provided by the
operating system vendor tend to become out of date very soon, which means they are usually a
few versions behind the latest version globally available. On the other hand, on BSD platforms
like FreeBSD, OpenBSD, and NetBSD, the operating system porters do an excellent job of keeping
the packages provided by the operating system itself very up to date, so you can safely and easily

use the operating system packages.

Animportant thing to note is that different operating systems store files in different places: usually,
all the configuration files are placed within the PGDATA itself, but packages from some operating
systems scatter the configuration files under the /etc directory. A few operating systems also
place executables in specific paths, separated by the version of PostgreSQL, while others place

all executables in the same path.

entest

Chapter 1 13

You need to investigate with the operating system package provider where each file or directory

is placed in order to be able to configure and use PostgreSQL.

Using the book’s Docker images

Docker is a container that allows you to run an isolated set of processes as if they are part of amicro

virtual machine. The PGDG provides a Docker image that you can use to run a containerized cluster.

Explaining the Docker technology is out of the scope of this book, and in order to let you experi-
ment in a quick and easy way with PostgreSQL, we have provided a set of Docker images, based
on the PostgreSQL image, customized to let you experiment with the concepts explained in this
book. You can use the above images as a starting point for your own projects, even if the above
images are not meant to be used in a production environment. The images are contained in the
docker_images directory of the book’s code repository (https://github.com/PacktPublishing/
Learn-PostgreSQL-Second-Edition/).

We separated every Docker image by means of the chapter the image refers to. There is a common
catch-allimage named standalone that can be used as a common base and will be used in the very
first chapters. Other chapters, for instance, those on replication, require their own image to be

executed.

In order to start the base standalone image, you can simply execute the shell script run-pg-docker.

sh, as follows:

$ sh run-pg-docker.sh

postgres@learn_postgresql:~$

The script will ask you for a password; it is required that your user has sudo capabilities to con-
nect the Docker network and ports. All the containers will launch a GNU Bash session with the

postgres operating system user.

The first time each container is started, it will require some time because it needs to pull the
PostgreSQL image from the network, install the needed packages, and configure the image. Ul-
timately, the system will push you to a Bash prompt; you are now logged in via the container as

the user postgres and can start interacting with the system following the examples in this book.

\/V; In each container, the PGDATA directory is set to /postgres/16/data.

https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition/
https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition/

14 Introduction to PostgreSQL

Once you leave the shell of the container, the container will stop and no more PostgreSQL-related

processes will be active.

In order to start a specific per-chapter image, you can use the same script, specifying the chapter

folder as an argument—for instance:

$ sh run-pg-docker.sh chapter_12_extensions

Every container will start with a pre-populated PostgreSQL instance, so that you can easily follow

the code examples in every chapter.

Note: there might be some differences in the output you see in the code examples
and the output you get from executing the same commands in a Docker contain-
er. For instance, automatically generated values and the tuple counting could be
\Q/’ different, as well as timestamps and dates. Moreover, every Docker container will
store data in a separate disk directory, therefore if you manipulate the contents of
the containerized PostgreSQL instance, the next time you start the container your

changes will have persisted.

Installing PostgreSQL on GNU/Linux Debian, Ubuntu, and
derivatives

The PGDG provides binary packages for Debian and its derivatives, including the Ubuntu oper-
ating system family. In order to use the PGDG repositories, it is required for you to first install the

source and signature of the repository:

$ sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_
release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list’

$ wget --quiet -0 - https://www.postgresql.org/media/keys/ACCC4CF8.asc
sudo apt-key add -

$ sudo apt-get update

This will ensure the repository sources for your operating system are up to date so that you can

install the PostgreSQL packages:

$ sudo apt-get -y install postgresql

Chapter 1 15

Debian and Ubuntu provide their own command to control the cluster, pg_ctlcluster(1). The
rationale for that is that on a Debian/Ubuntu operating system, every PostgreSQL version is
installed in its own directory with separate configuration files, so there is a way to run different
versions concurrently and manage them via the operating system. For example, configuration
files are under the /etc/postgresql/16/main directory, while the data directory is set by default
to /var/lib/postgresql/16/main.

If you want to enable PostgreSQL at boot time, you need to run the following command:

$ sudo update-rc.d postgresql enable

In order to start your cluster, you can use the service(1l) command as
follows:

$ sudo service postgresql start

You have thus installed PostgreSQL on GNU/Linux Debian, Ubuntu, and derivatives.

Installing PostgreSQL on Fedora Linux

Fedora Linux PostgreSQL packages are provided by the PostgreSQL community. In order to allow
dnf(8) to find PostgreSQL packages, you need to install the PGDG repository, and then proceed

with the installation as a distribution package:

$ sudo dnf install -y https://download.postgresql.org/pub/repos/yum/

reporpms/F-38-x86_64/pgdg-fedora-repo-latest.noarch.rpm

The list of available repositories can be obtained from the PostgreSQL official website on the

download page (see the References section).

Packages are named with the postfix of the version number. You can install the PostgreSQL pack-

ages using the following command:

$ sudo dnf install -y postgresqll6-server postgresqll6

Then you need to configure the system, specifying the PGDATA directory and enabling the option to
start the service at boot time. In order to specify the PGDATA directory, you need to use systemd(1)

to edit an overriding configuration file for the postgresql-16 service:

$ sudo systemctl edit postgresql-16

entest

entest

entest

entest

16 Introduction to PostgreSQL

The preceding command will open your default text editor with an empty file; you can, therefore,

set the PGDATA variable as follows and then save and exit the editor to apply changes:

[Service]

Environment=PGDATA=/postgres/16/data

Lastly, it is time to initialize the database directory; this can be done with a specific Fedora in-

stallation command named postgresql-16-setup, as follows:

$ sudo /usr/pgsql-16/bin/postgresql-16-setup initdb

In order to enable PostgreSQL to start at boot time and launch the server immediately, you can

execute the following commands:

$ sudo systemctl enable postgresql-16

$ sudo systemctl start postgresql-16.service

If your Fedora installation contains the service(8) command, you can also start the service

with the following:

$ sudo service postgresql-16 start

Installing PostgreSQL on FreeBSD

PostgreSQL is available on FreeBSD by means of ports and packages. Thanks to the pkg(1) com-

mand, itis very easy to install PostgreSQL. First of all, update the package list, and search for the

PostgreSQL packages that are named with the major version as the postfix:

$ pkg update

$ pkg search postgresqll6

You can then install packages by executing pkg(1) and specify the set of packages you need. Of

course, the installation must be executed as a user with administrative privileges, as follows:

$ sudo pkg install postgresqll6-server-16.0 \
postgresqll6-client-16.0 \

postgresqll6-contrib-16.0 \

postgresqll6-docs-16.0

In order to start the cluster, you need to initialize the directory to serve the database and enable
the server startup at the machine boot. The minimal parameters to set are postgresql_enable

and postgresql_data.

entest

entest

entest

Chapter 1 17

For example, to edit (as an administrative user) the /etc/rc. conf file, add the options as follows:

to enable PostgreSQL at boot time
postgresql_enable="YES"

PGDATA to use
postgresql data="/postgres/16/data"

Now you can initialize the data directory with the following command:

$ sudo /usr/local/etc/rc.d/postgresql initdb

Now that everything is in place, you can start the PostgreSQL instance with the following com-

mand:

$ sudo service postgresql start

Installing PostgreSQL from sources

Installing PostgreSQL from sources requires downloading a tarball, which is a compressed package
with all the source code files, and starting the compilation. Usually, this takes several minutes,
depending on the power of the machine and the I/O bandwidth. In order to compile PostgreSQL
from source, you will need different tools and libraries and mainly a C compiler compliant with
the C99 standard (or higher). Usually, you already have these tools on a Linux or Unix system;

otherwise, please refer to your operating system documentation on how to install these tools.

Once you have all the dependencies installed, follow the steps given here to compile and install
PostgreSQL:

1. The very first step is to download the PostgreSQL tarball related to the version you want
to install, verifying that it is correct. For instance, to download version 16.0, you can do

the following:

$ wget https://ftp.postgresql.org/pub/source/v16.0/postgresql-
16.0.tar.bz2

$ wget https://ftp.postgresql.org/pub/source/v16.0/postgresql-
16.0.tar.bz2.md5

2. Before starting the compilation, check that the downloaded tarball is intact:

$ md5sum --check postgresql-16.0.tar.bz2.md5

postgresql-16.0.tar.bz2: OK

18 Introduction to PostgreSQL

3. Once you are sure that the downloaded tarball is not corrupt, you can extract its content
and start the compilation (please consider that the extracted archive will take around 200

MB of disk space, and the compilation will take up some extra space):

$ tar xjvf postgresql-16.0.tar.bz2

$ cd postgresql-16.0

$./configure --prefix=/usr/local
$ make && sudo make install

If you want or need the systemd (1) service file, add the --with-systemd option to the

configure line.

4. Once the database has been installed, you need to create a user to run the database with,

usually named postgres, and initialize the database directory:

$ sudo useradd postgres
$ sudo mkdir -p /postgres/16/data

$ sudo chown -R postgres:postgres /postgres/16
$ /usr/local/bin/initdb -D /postgres/16/data

Installing PostgreSQL via pgenv

pgenv is a nice and small tool that allows you to download and manage several instances of dif-
ferent versions of PostgreSQL on the same machine. The idea behind pgenv is to let you explore
different PostgreSQL versions—for instance, to test your application against different major
versions. pgenv does not aim to be an enterprise-class tool to manage in-production instances;
rather, it is a tool to let developers and DBAs experiment with different versions of PostgreSQL

and keep them under control easily.

Of course, being an external tool, pgenv must be installed before it can be used. The installation,

however, is very simple, since the application is made by a single Bash script.

The fastest way to get pgenv installed is to clone the GitHub repository and set the PATH environ-

ment variable to point to the executable directory, as follows:

$ git clone https://github.com/theory/pgenv

$ export PATH=$PATH:./pgenv/bin

Now, the pgenv command is at your fingertips, and you can run the command to get a help prompt

and see the available commands.

Chapter 1 19

The idea behind pgenv is pretty simple: it is a tool to automate the “boring” stuff—thatis, down-
loading, compiling, installing, and starting/stopping a cluster. In order to let pgenv manage a
specific instance, you have to “use” it. When you use an instance, pgenv detects whether the

instance has been initialized or not, and in the latter case, it does the initialization for you.

In order to install versions 16.0 and 15.1 of PostgreSQL, you simply have to run the following

commands:

$ pgenv build 16.0

$ pgenv build 15.1

The preceding commands will download and compile the two versions of PostgreSQL, and the
time required for the operations to complete depends on the power and speed of the machine

you are running on. After that, you can decide which instance to start with the use command:

$ pgenv use 16.0

pgenv is smart enough to see whether the instance you are starting has already been initialized,

or it will initialize it (only the first time) for you.

If you need to stop and change the PostgreSQL version to use, you can issue a stop command
followed by a use command with the targeted version. For instance, to stop running the 16.0

instance and start a 15.1 instance, you can use the following:

$ pgenv stop

$ pgenv use 15.1

The pgenv tool provides a lot of other commands to get information about which PostgreSQL

versions are installed, what is executing (if any), and so on.

If you are searching for a quick way to test and run different PostgreSQL versions on the same

machine, pgenv is a good tool.

Summary
This chapter has introduced you to PostgreSQL, the project, and its main features. You have learned
about PostgreSQL terminology, as well as how to install a cluster on Unix-like operating system:s,

including in containers, as well as installing the cluster from various sources.

20 Introduction to PostgreSQL

Having installed PostgreSQL and having learned its terminology allows you to proceed to the next

chapters, where you will learn how to use, connect, and store data in a database.

References

e PostgreSQL release notes: https://www.postgresql.org/docs/16/release-16.html

Upgrading documentation: https://www.postgresql.org/docs/current/upgrading.
html

e PostgreSQL version policy: https://www.postgresql.org/support/versioning/

e PostgreSQL initdb official documentation: https://www.postgresql.org/docs/
current/app-initdb.html

e PostgreSQL pg_ctl official documentation: https://www.postgresql.org/docs/
current/app-pg-ctl.html

e pgenv GitHub repository and documentation: https://github.com/theory/pgenv

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.postgresql.org/docs/16/release-16.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/current/app-initdb.html
https://www.postgresql.org/docs/current/app-initdb.html
https://www.postgresql.org/docs/current/app-pg-ctl.html
https://www.postgresql.org/docs/current/app-pg-ctl.html
https://github.com/theory/pgenv
https://discord.gg/jYWCjF6Tku

Getting to Know Your Cluster

To be a proficient user and administrator of a PostgreSQL cluster, you first must know and under-
stand how PostgreSQL works. A database system is a very complex beast, and PostgreSQL, being
an enterprise-level Database Management System (DBMS), is in no way a simple software sys-
tem. However, thanks to very good design and implementation, once you understand the basic

concepts and terminology of PostgreSQL, things will quickly become comprehensive and clear.

This chapter will continue from the foundation of the previous chapter and introduce you to
some other PostgreSQL terminology and concepts, as well as teaching you how to interact with
the cluster. You will also be introduced to the psql client, which ships with PostgreSQL and is
the recommended way to connect to your database: You are free to use any SQL client that can
connect to PostgreSQL, and all the code and examples shown in this chapter will run out of the
box in any other client as well, but we recommend that you take some time to learn psql. Shipped
with PostgreSQL, psql is guaranteed to work in any situation and is the default way to connect
to a cluster. psql is a text-only client; if you are more comfortable using a graphical client, you

can have a look at pgAdmin4, one of the most famous PostgreSQL graphical clients.
This chapter covers the following main topics:

e Managing your cluster
e Connecting to the cluster
e Exploring the disk layout of PGDATA

e Exploring configuration files and parameters

entest

entest

entest

22 Getting to Know Your Cluster

Technical requirements

The knowledge required in this chapter is as follows:

e How toinstall binary packages on your Unix machine
e PostgreSQL basic terminology (from the previous chapter)
e Basic Unix command-line usage

e Basic SQL statements covered in this chapter, like SELECT

The chapter examples can be run on the standalone Docker image, which you can find in the
book’s GitHub repository: https://github.com/PacktPublishing/Learn-PostgreSQL-Second-
Edition. For installation and usage of the Docker images available for this book, please refer to

the instructions in Chapter 1, Introduction to PostgreSQL.

Managing your cluster

A PostgreSQL cluster is a collection of several databases that all run under the very same Post-

greSQL service or instance.

Managing a cluster means being able to start, stop, take control, and get information about the

status of a PostgreSQL instance.

From an operating system point of view, PostgreSQL is a service that can be started, stopped, and,
of course, monitored. As you saw in the previous chapter, usually when you install PostgreSQL, you
also get a set of operating system-specific tools and scripts to integrate PostgreSQL with your oper-
ating system service management. Usually, you will find system service files or other operating sys-

tem-specific tools, like pg_ct1 cluster, which is shipped with Debian GNU/Linux and its derivatives.

PostgreSQL ships with a specific tool called pg_ctl, which helpsin managing the cluster and the
related running processes. This section introduces you to the basic usage of pg_ctl and to the
processes that you can encounter in a running cluster. It does not matter which service manage-
ment system your operating system is using, pg_ctl will always be available to the PostgreSQL

administrator in order to take control of a database instance.

pg_ctl

The pg_ctl command-line utility allows you to perform different actions on a cluster, mainly
initialize, start, restart, stop, and so on. pg_ctl accepts the command to execute as the first ar-

gument, followed by other specific arguments—the main commands are as follows:

e start, stop, and restart execute the corresponding actions on the cluster.

https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition
https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition
entest

entest

Chapter 2 23

e status reports the current status (running or not) of the cluster.

e initdb (or init for short) executes the initialization of the cluster, possibly removing

any previously existing data.

e reload causes the PostgreSQL server to reload the configuration, which is useful when

you want to apply configuration changes.

e promote is used when the cluster is running as a replica server (namely a standby node)
and, from now on, must be detached from the original primary becoming independent

(replication will be explained in later chapters).

Generally speaking, pg_ct1interacts mainly with the postmaster (the first process launched within
a cluster), which in turn “redirects” commands to other existing processes. For instance, when
pg_ctl starts a server instance, it makes the postmaster process run, which in turn completes
all the startup activities, including launching other utility processes (as briefly explained in the
previous chapter). On the other hand, when pg_ct1 stops a cluster, it issues a halt command to

the postmaster, which in turn requires other active processes to exit, waiting for them to finish.

The postmaster process is just the very first PostgreSQL-related process launched
within the instance; on some systems, there is a process named “postmaster,” while

\/V' on other operating systems, there are only processes named “postgres.” The first
)
process ever launched, despite its name, is referred to as the postmaster. The name

postmaster is just that, a name used to identify a process among the others (in

particular, the first process launched within the cluster).

pg_ctl needs to know where the PGDATA is located, and this can be specified by either setting an
environment variable named PGDATA or by specifying it on the command line by means of the
-D flag.

Interacting with a cluster status (for example, to stop it) is an action that not every user must be
able to perform; usually, only an operating system administrator must be able to interact with

services including PostgreSQL.

PostgreSQL, in order to mitigate the side effects of privilege escalation, does not allow a cluster to
be run by privileged users, such as root. Therefore, PostgreSQL is run by a “normal” user, usually
named postgres on all operating systems. This unprivileged user owns the PGDATA directory and
runs the postmaster process, and, therefore, also all the processes launched by the postmaster
itself. pg_ctl must be run by the same unprivileged operating system user that is going to run

the cluster.

24 Getting to Know Your Cluster

If you are using the Docker image, PostgreSQL is already running as the main service.

This means that issuing a stop or a restart command will force you to exit from

\/V: the container due to its shutdown.

Moreover, in the Docker container, the PostgreSQL service will be already running

without any need for manual intervention.

The status command just queries the cluster to get information, so it is pretty safe as a starting

point to understand what is happening:

$ pg_ctl status

pg_ctl: server is running (PID: 1)

/usr/lib/postgresql/16/bin/postgres

The command reports back that the server is running, with a Process Identifier (PID) equal to one
(this number will be different on your machine). Moreover, the command reports the executable

file used to launch the server, in the above example, /usr/1lib/postgresql/16/bin/postgres.

If the server is not running for any reason, the pg_ctl command will report an appropriate mes-

sage to indicate that is unable to find an instance of PostgreSQL started:

$ pg_ctl status

pg_ctl: no server running

In order to report the status of the cluster, pg_ctl needs to know where the database is storing
its own data—that is, where the PGDATA is on disk. There are two ways to make pg_ct1 aware of
where the PGDATA is:

e Setting an environment variable named PGDATA, containing the path of the data directory

e Using the -D command-line flag to specify the path to the data directory

\/‘n/' Almost every PostgreSQL cluster-related command searches for the value of PGDATA

as an environmental variable or as a -D command-line option.

In the previous examples, no PGDATA has been specified, and this is because it has been assumed

the value of the PGDATA was specified by an environment variable.

Chapter 2 25

Itis quite easy to verify this—for example, in the Docker container:

$ echo $PGDATA
/postgres/16/data
$ pg_ctl status

pg_ctl: server is running (PID: 1)

/usr/lib/postgresql/16/bin/postgres

In the case that your setup does not include an PGDATA environment variable, you can always set

it manually before launching pg_ct1 or any other cluster-related command:

$ export PGDATA=/postgres/16/data
$ pg_ctl status

pg_ctl: server is running (PID: 1)

The command-line argument, specified with -D, always has precedence against any PGDATA en-
vironment variable, so if you don’t set or misconfigure the PGDATA variable but, instead, pass the

right value on the command line, everything works fine:

$ export PGDATA=/postgres/data
$ pg_ctl status -D /postgres/16/data

pg_ctl: server is running (PID: 1)
/usr/lib/postgresql/16/bin/postgres "-D" "/postgres/16/data"

The same concepts of PGDATA and the -D optional argument are true for pretty much any “low-level”
commands that act against a cluster and make clear that, with the same set of executables, you
can run multiple instances of PostgreSQL on the same machine, as long as you keep the PGDATA

directory of each one separate.

Do not use the same PGDATA directory for multiple versions of PostgreSQL. While
it could be tempting, on your own test machine, to have a single PGDATA directory
that can be used in turn by a PostgreSQL 16 and a PostgreSQL 15 instance, this will
\@/’ not work as expected and you risk losing all your data. Luckily, PostgreSQL is smart
enough to see that PGDATA has been created and used by a different version and
refuses to operate, but please be careful not to share the same PGDATA directory

with different instances.

26 Getting to Know Your Cluster

pg_ctl can be used to start and stop a cluster by means of appropriate commands. For example,
you can start an instance with the start command (assuming a PGDATA environment variable

has been set):

$ pg_ctl start

waiting for server to start....

[27765] LOG: starting PostgreSQL 16.0 on x

86_64-pc-linux-gnu, compiled by gcc (GCC) 12.1.0, 64-bit

[27765] LOG: 1listening on IPv6 address "::1", port 5432

[27765] LOG: 1listening on IPv4 address "127.0.0.1", port 5432 [27765]

LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"

[27768] LOG: database system was shut down at 2023-07-19 ©7:20:24 EST
[27765] LOG: database system is ready to accept connections

done

server started

The start, stop, and restart commands do not work on the Docker images from
this book’s repository because such containers are running PostgreSQL as the main
\G/\, process; therefore, stopping (or restarting) will cause the container to exit. Similar-
ly, there is no need to start the service because it is automatically started once the

container starts.

The pg_ctl command launches the postmaster process, which prints out a few log lines before
redirecting the logs to the appropriate log file. The server started message at the end confirms
that the server has started. During the startup, the PID of the postmaster is reported within square

brackets; in the above example, the postmaster is the operating system process number 27765.

Now, if you run pg_ct1 again to check the server, you will see that it has been started:

$ pg_ctl status
pg_ctl: server is running (PID: 27765)

/usr/pgsql-16/bin/postgres

As you can seg, the server is now running and pg_ctl shows the PID of the running postmaster

(27765), as well as the executable command line (in this case, /usr/pgsql-16/bin/postgres).

Chapter 2 27

Remember: The postmaster process is the first process ever started in the cluster.
\/‘n/' Both the backend processes and the postmaster are run starting from the postgres
executable, and the postmaster is just the root of all PostgreSQL processes, with

the main aim of keeping all the other processes under control.

Now that the cluster is running, let’s stop it. As you can imagine, stop is the command used to

instruct pg_ctl about which action to perform:

$ pg_ctl stop

waiting for server to shut down....
[27765] LOG: received fast shutdown request
[27765] LOG: aborting any active transactions

[27765] LOG: background worker "logical replication launcher™ (PID 27771)
exited with exit code 1

[27766] LOG: shutting down

[27766] LOG: checkpoint starting: shutdown immediate

[27766] LOG: checkpoint complete: wrote @ buffers (0.0%); © WAL file(s)
added, © removed, © recycled; write=0.001 s, sync=0.001 s, total=0.035

s; sync files=0, longest=0.000 s, average=0.000 s; distance=0 kB,
estimate=237 kB; 1lsn=0/1529DC8, redo 1lsn=0/1529DC8

[27765] LOG: database system is shut down

done

server stopped

During a shutdown, the system prints a few messages to inform the administrator about what
is happening, and as soon as the server stops, the message server stopped confirms that the

cluster is no longer running.

Shutting down a cluster can be much more problematic than starting it, and for that reason, it
is possible to pass extra arguments to the stop command in order to let pg_ct1 act accordingly.

There are three ways of stopping a cluster:
e The smart mode means that the PostgreSQL cluster will gently wait for all the connected
clients to disconnect and only then will it shut the cluster down.

e The fast mode will immediately disconnect every client and will shut down the server

without having to wait.

28 Getting to Know Your Cluster

e The immediate mode will abort every PostgreSQL process, including client connections,
and shut down the cluster in a dirty way, meaning that the server will need some specific

activity on the restart to clean up such dirty data (more on this in the next chapters).

In any case, once a stop command is issued, the server will not accept any new incoming connec-
tions from clients, and depending on the stop mode you have selected, existing connections will
be terminated. The default stop mode, if none is specified, is fast, which forces an immediate

disconnection of the clients but ensures data integrity.

If you want to change the stop mode, you can use the -mflag, specifying the mode name, as follows:

$ pg ctl stop -m smart

waiting for server to shut down

server stopped

In the preceding example, the pg_ctl command will wait, printing a dot every second until all the
clients disconnect from the server. In the meantime, if you try to connect to the same cluster from

another client, you will receive an error, because the server has entered the stopping procedure:

$ psql

psql: error: could not connect to server: FATAL: the database system is
shutting down

It is possible to specify just the first letter of the stop mode instead of the whole word; so, for

instance, s for smart, i for immediate, and f for fast.

PostgreSQL processes

You have already learned how the postmaster is the root of all PostgreSQL processes, but as ex-
plained in Chapter 1, Introduction to PostgreSQL, PostgreSQL will launch multiple different processes
at startup. These processes are in charge of keeping the cluster operational and in good health.
This section provides a glance at the main processes you can find in a running cluster, allowing

you to recognize each of them and their respective purposes.

If you inspect a running cluster from the operating system point of view, you will see a bunch of

processes tied to PostgreSQL:

$ pstree -p postgres
postgres(1)—T—postgres(34)

|—postgr‘es(35)
|—postgres(37)

Chapter 2 29

|—postgr‘es(38)
Lpostgres(39)

$ ps -C postgres -af
postgres 1 0 2 ? :00: postgres
postgres 34 1 © : : :00: postgres: checkpointer

postgres 35 1 © : : 100: postgres: background
writer

postgres 37 1 0 : : :00: postgres: walwriter
postgres 38 0 5 ? 100: postgres: autovacuum
launcher

postgres 39 : : :00: postgres: logical
replication launcher

Y The PID numbers reported in these examples refer to the Docker container, where
\/;ﬁ> the first PostgreSQL process has a PID equal to 1. On other machines, you will get

different PID numbers.

Asyou can see, the process with PID 1is one that spawns several other child processes and hence
is the first and main PostgreSQL process launched, and as such, is usually called postmaster. The

other processes are as follows:

e checkpointeristhe process responsible for executing the checkpoints, which are points in

time where the database ensures that all the data is actually stored persistently on the disk.

e background writer is responsible for helping to push the data out of the memory to

permanent storage.

e walwriterisresponsible for writing out the Write-Ahead Logs (WALs), the logs that are

needed to ensure data reliability even in the case of a database crash.

e logical replication launcheristhe processresponsible for handlinglogical replication.
Depending on the exact configuration of the cluster, there could be other processes active:

e Background workers: These are processes that can be customized by the user to perform
background tasks.
e WAL receiver and/or WAL sender: These are processes involved in receiving data from

or sending data to another cluster in replication scenarios.

30 Getting to Know Your Cluster

Many of the concepts and aims of the preceding process list will become clearer as you progress
through the book’s chapters, but for now, it is sufficient that you know that PostgreSQL has a

few other processes that are always active without any regard to incoming client connections.

When a client connects to your cluster, a new process is spawned: this process, named the back-
end process, is responsible for serving the client requests (meaning executing the queries and

returning the results). You can see and count connections by inspecting the process list:

$ ps -C postgres -af

UID PID PPID CMD

postgres 1 0 H ? :00: postgres

postgres 34 1 : : :00: postgres: checkpointer

postgres 35 1 : ? 100: postgres: background
writer

postgres 37 : : :00: postgres: walwriter
postgres 38 1 © 8 ? :00: postgres: autovacuum
launcher

postgres 39 : : :00: postgres: logical
replication launcher

postgres 40 1 © 04:35 2 00:00:00 postgres: postgres postgres
[local] idle

If you compare the preceding list with the previous one, you will see that there is another pro-
cess with PID 4@: this process is a backend process. In particular, this process represents a client

connection to the database named postgres.

PostgreSQL uses a process approach to concurrency instead of a multi-thread ap-
\/‘p/' proach. There are different reasons for this: most notably, theisolation and portability
that a multi-process approach offers. Moreover, on modern hardware and software,

forking a process is no longer so much of an expensive operation.

Therefore, once PostgreSQL is running, there is a tree of processes that roots at postmaster. The
aim of the latter is to spawn new processes when there is the need to handle new database con-

nections, as well as to monitor all maintenance processes to ensure that the cluster is running fine.

Chapter 2 31

Connecting to the cluster

Once PostgreSQL is running, it awaits incoming database connections to serve; as soon as a
connection comes in, PostgreSQL serves it by connecting the client to the right database. This
means that to interact with the cluster, you need to connect to it. However, you don’t connect to
the whole cluster; rather, you ask PostgreSQL to interact with one of the databases the cluster is
serving. Therefore, when you connect to the cluster, you need to connect to a specific database.

This also means that the cluster must have atleast one database from the very beginning of its life.

When you initialize the cluster with the initdb command, PostgreSQL builds the filesystem layout
of the PGDATA directory and builds two template databases, named template® and templatel.
The template databases are used as a starting point to clone other new databases, which can then
be used by normal users to connect to. In a freshly installed PostgreSQL cluster, you usually end
up with a postgres database, used to allow the database administrator user postgres to connect

to and interact with the cluster.

To connect to one of the databases, either a template or a user-defined one, you need a client to
connect with. PostgreSQL ships with psql, a command-line client that allows you to connect,

interact with, and administer databases and the cluster itself.

Other clients do exist, but they will not be discussed in this book. You are free to choose the client
you like the most, since every command, query, and example shown in the book will run with no

exception under every compatible client.

While connecting interactively to the cluster is an important task for a database administra-
tor, often, developers need their own applications to connect to the cluster. To achieve this, the
applications need a so-called connection string, a URI indicating all the required parameters to

connect to the database.

This section will explain all the preceding concepts, starting from the template databases and

then showing the basic usage of psql and the connection string.

The template databases

The templatel database is the first database created when the system is initialized, and then it
is cloned into template®. This means that the two databases are, at least initially, identical, and
the aim of template® is to act as a safe copy for rebuilding in case it is accidentally damaged or

removed.

32 Getting to Know Your Cluster

You can inspect available databases using the psql -1 command. On a freshly installed installa-

tion, you will get the following three databases:

$ psql -1 List of databases
Name | oOwner | Encoding | Collate | Ctype | ICU Locale |

Locale Provider | Access privileges

postgres | postgres | UTFS8 | it IT.UTF-8 | it_IT.UTF-8 |
libc |
template® | postgres | UTFS8 | it IT.UTF-8 | it IT.UTF-8 |
| libc | =c/postgres +

| |
| postgres=CTc/postgres
templatel | postgres | UTF8 | it IT.UTF-8 | it IT.UTF-8 |
libc | =c/postgres 4

| |
| postgres=CTc/postgres

(3 rows)

\/‘n’l In the Docker image, you will also see the forumdb database, which has been auto-

matically created for you to let you interact with other examples.

It is interesting to note that, alongside the two template databases, there’s a third database
that is created during the installation process: the postgres database. That database belongs
to the postgres user, which is, by default, the only database administrator created during the
initialization process. This database is a common space to be used for connections instead of the

template databases.

The name template indicates the real aim of these two databases: when you create a new data-
base, PostgreSQL clones a template database as a common base. This is somewhat like creating
a user home directory on Unix systems: the system clones a skeleton directory and assigns the
new copy to the user. PostgreSQL does the same—it clones templatel and assigns the newly

created database to the user that requested it.

entest

Chapter 2 33

What this also means is that whatever object you putinto templatel, you will find the very same
object in freshly created databases. This can be really useful for providing a common base data-

base and having all other databases brought to life with the same set of attributes and objects.

Nevertheless, you are not forced to use templatel as the base template; in fact, you can create
your own databases and use them as templates for other databases. However, please keep in mind
that, by default, (and most notably on a newly initialized system), the templatel databaseis the

one that is cloned for the first databases you will create.

Another difference between templatel and template®, apart from the former being the default
for new databases, is that you cannot connect to the latter. This is in order to prevent accidental

damage to template® (the safety copy).

Itisimportant to note that the cluster (and all user-defined databases) can work even without the
template databases—the templatel and template® databases are not fundamental for the other
databases to run. However, if you lose the templates, you will be required to use another database

as a template every time you perform an action that requires it, such as creating a new database.

Y, Template databases are not meant for interactive connections, and you should not
\/;n> connect to the template databases unless you need to customize them. PostgreSQL

will present as a skeleton for another database if there are active connections to it.

The psql command-line client

The psql command is the command-line interface that ships with every installation of Post-
greSQL. While you can certainly use a graphical user interface to connect and interact with the
databases, a basic knowledge of psql is mandatory in order to administer a PostgreSQL cluster. In
fact, a specific psql version is shipped with every release of PostgreSQL; therefore, it is the most
up-to-date client speaking the same language (i.e., protocol) of the cluster. Moreover, the client

is lightweight and useful even in emergency situations when a GUI is not available.
psql accepts several options to connect to a database, mainly the following:

e -d: The database name
e -U:Theusername

e -h: The host (either an IPv4 or IPv6 address or a hostname)

34 Getting to Know Your Cluster

If no option is specified, psql assumes your operating system user is trying to connect to a data-
base with the same name, and a database user with a name that matches the operating system

on a local connection. Take the following connection:

$ id
uid=999(postgres) gid=999(postgres) groups=999(postgres),101(ssl-cert)

$ psql
psql (16.0)
Type "help" for help.

postgres=#

This means that the current operating system user (postgres) has required psql to connect to
a database named postgres via the PostgreSQL user named postgres on the local machine. Ex-
plicitly, the connection could have been requested as follows:

$ psql -U postgres -d postgres

psql (16.9)

Type "help" for help.

postgres=#

The first thing to note is that once a connection has been established, the command prompt
changes: psql reports the database to which the user has been connected (postgres) and a sign
to indicate they are a superuser (#). In the case that the user is not a database administrator, a >

sign is placed at the end of the prompt.

If you need to connect to a database thatis named differently by your operating system username,

you need to specify it:
$ psql -d templatel
psql (16.0)
Type "help" for help.

templatel=#

entest

entest

Chapter 2 35

Similarly, if you need to connect to a database that does not correspond to your operating user-
name with a PostgreSQL user that is different from your operating system username, you have
to explicitly pass both parameters to psql:

$ id

uid=999(postgres) gid=999(postgres) groups=999(postgres),101(ssl-cert)

$ psql -d templatel -U luca

psql (16.0)
Type "help" for help.

templatel=>

As you can see from the preceding example, the operating system user postgres has connected
to the templatel database with the PostgreSQL user luca. Since the latter is not a system admin-

istrator, the command prompt ends with the > sign.

To quit from psql and close the connection to the database, you have to type \q or quit and press

Enter (you can also press CTRL + D to exit on any Unix and Linux machines):

$ psql -d templatel -U luca
psql (16.0)
Type "help" for help.

templatel=> \q
$

Entering SQL statements via psql

Once you are connected to a database via psql, you can issue any statement you like. Statements
must be terminated by a semicolon, indicating that the next Enter key will execute the statement.
The following is an example where the Enter key has been emphasized:

$ psql -d templatel -U luca
psql (16.9)

Type "help" for help.

templatel=> SELECT current_time; <ENTER>

current_time

36 Getting to Know Your Cluster

06:04:57.435155-05

SQL is a case-insensitive language, so you can enter statements in either uppercase,

\// lowercase, or a mix. The same rule applies to column names, which are case-insen-
(2%

sitive. If you need to have identifiers with specific cases, you need to quote them in

double quotes.

Another way to execute the statement is to issue a \g command, again followed by <ENTER>. This

is useful when connecting via a terminal emulator that has keys remapped:

templatel=> SELECT current_time \g <ENTER>

current_time

06:07:03.328744-05

(1 row)

Until you end a statement with a semicolon or \g, psql will keep the content you are typing in

the query buffer, so you can also edit multiple lines of text as follows:

templatel=> SELECT
templatel-> current_time
templatel-> ;

current_time

06:07:28.908215-05

(1 row)

Note how the psql command prompt has changed on the lines following the first one: the dif-
ference is there to remind you that you are editing a multi-line statement and psql has not (yet)

found a statement terminator (either a semicolon or the \g).

Chapter 2 37

One useful feature of the psql query buffer is the capability to edit the content of the query buf-
fer in an external editor. If you issue the \e command, your favorite editor will pop up with the
content of the last-edited query. You can then edit and refine your SQL statement as much as you
want, and once you exit the editor, psql will read what you have produced and execute it. The

editor to use is chosen with the EDITOR operating system environment variable.

Itis also possible to execute all the statements included in a file or edit a file before executing it.

As an example, assume the test. sql file has the following content:

$ cat test.sql

SELECT current_database();
SELECT current_time;
SELECT current_role;

The file has three very simple SQL statements. In order to execute the whole file at once, you can

use the \i special command followed by the name of the file:

templatel=> \i test.sql

current_database

templatel

(1 row)

current_time

06:08:43.077305-05

(1 row)

current_role

Asyou can seg, the client has executed, one after the other, every statement within the file. If you
need to edit the file withoutleaving psql, you canissue \e test.sql to open your favorite editor,

make changes, and come back to the psql connection.

entest

entest

38 Getting to Know Your Cluster

SQL is case-insensitive and space-insensitive: you can write it in all uppercase or all
\/‘n/' lowercase, with however many horizontal and vertical spaces you want. In this book,
SQL keywords will be written in uppercase and the statements will be formatted

to read cleanly.

A glance at the psql commands

Every command specific to psql starts with a backslash character (\). It is possible to get some
help with SQL statements and PostgreSQL commands via the special \h command, after which
you can specify the specific statement you want help for:

templatel=> \h SELECT
Command: SELECT

Description: retrieve rows from a table or view

Syntax:
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [,

[* | expression [[AS] output_name] [,

URL: https://www.postgresql.org/docs/16/sql-select.html

Y The displayed help is, for space reasons, concise. You can find a much more verbose
; LS description and usage examples in the online documentation. For this reason, at

the end of the help screen, there is a link reference to the online documentation.

If you need help with the psql commands, you can issue a \ ? command:

templatel=> \?

General
\copyright show PostgreSQL usage and distribution terms
\crosstabview [COLUMNS] execute query and display results in crosstab
\errverbose show most recent error message at maximum

verbosity

\g [FILE] or ; execute query (and send results to file or |pipe)

\gdesc describe result of query, without executing it

Chapter 2 39

There are also a lot of introspection commands, such as, for example, \d to list all user-defined
tables. These special commands are, under the hood, a way to execute queries against the Post-
greSQL system catalogs, which are, in turn, registries about all objects thatlive in a database. The
introspection commands will be shown later in the book and are useful as shortcuts to get an

idea of which objects are defined in the current database.

Many psql features will be detailed as you move on through the book, but it is worth spending

some time trying to get used to this very efficient and rich command-line client.

Introducing the connection string
In the previous section, you learned how to specify basic connection options, such as -d and -U

for a database and user, respectively.(psql also accepts a LibPQ connection string.

LibPQ is the underlying library that every application can use to connect to a PostgreSQL cluster

and is, for example, used in C and C++ clients, as well as non-native connectors.

A connection string in LibPQ is a URI made up of several parts:

postgresql://username@host:port/database

Here, we have the following:

e postgresqlis afixed string that specifies the protocol the URI refers to.

e username is the PostgreSQL username to use when connecting to the database.

e hostis the hostname (or IP address) to connect to.

e portisthe TCP/IP port the server is listening on (by default, 5432).

e database is the name of the database to which you want to connect.
The username, port, and database parts can be omitted if they are set to their default (the user-
name is the same as the operating system username).
The following connections are all equivalent:

$ psql -d templatel -U luca -h localhost

$ psql postgresql://luca@localhost/templatel

$ psql postgresql://luca@localhost:5432/templatel

entest

entest

40 Getting to Know Your Cluster

Solving common connection problems

There are a few common problems when dealing with database connections, and this section

explains them in order to ease your task of getting connected to your cluster.

Please note that the solutions provided here are just for testing purposes and not for production
usage. All of the security settings will be explained in later chapters, so the aim of the following

subsection is just to help you get your test environment usable.

Database “foo” does not exist

This means either you misspelled the name of the database in the connection string or you are

trying to connect without specifying the database name.

For instance, the following connection fails when executed by an operating system user named
lucabecause, by default, it is assuming that the user lucais trying to connect to a database with

the same name (meaning luca) since none has been explicitly set:

$ psql

psql: error: could not connect to server: FATAL: database "luca" does not
exist

The solution is to provide an existing database name via the -d option or to create a database

with the same name as the user.

Connection refused

This usually means there is a network connection problem, so either the host you are trying to

connect to is not reachable or the cluster is not listening on the network.

As an example, imagine PostgreSQL is running on a machine named venkman and we are trying

to connect from another host on the same network:

$ psql -h venkman -U luca templatel

psql: error: could not connect to server: could not connect to server:
Connection refused

Is the server running on host "venkman" (192.168.222.123) and
accepting
TCP/IP connections on port 5432°?

In this case, the database cluster is running on the remote host but is not accepting connections
from the outside. Usually, you have to fix the server configuration or connect to the remote ma-

chine (via SSH, for instance) and open a local connection from there.

Chapter 2 41

In order to quickly solve the problem, you have to edit the postgresql. conf file (usually located
under the PGDATA directory) and ensure the listen_address option has an asterisk (or the name

of your external network card) so that the server will listen on any available network address:

listen_addresses = '*'

After arestart of the service, by means of the restart command issued to pg_ctl, the client will
be able to connect. Please note that enabling the server to listen on any available network address
mightnotbe the optimal solution and can expose the server to risks in a production environment.
Later in the book, you will learn how to specifically configure the connection properties for your

server.

No pg_hba.conf entry

This error means the server is up and running and able to accept your request, but the PostgreSQL

built-in Host-Based Access (HBA) control does not permit you to enter.

This error should never happen in the Docker container used for this chapter, because

\// its configuration is already allowing trusted connections. However, other PostgreSQL
K A%

installations will be stricter; therefore, knowing about this type of error message can

help you to quickly figure out where the configuration problem is.

As an example, the following connection is refused:

$ psql -h localhost -U luca templatel

psql: error: could not connect to server: FATAL: no pg_hba.conf entry for
host "127.0.0.1", user "luca", database "templatel", SSL off

The reason for this is that, inspecting the pg_hba. conf file, there is no rule to let the user luca
in on the localhost interface. So, for instance, adding a single line such as the following to the

pg_hba. conf file can fix the problem:

host all luca 127.0.0.1/32 trust

You need to reload the configuration in order to apply changes. The format of every line in the
pg_hba. conf file will be discussed later, but for now, please assume that the preceding line instru-

ments the cluster to accept any connection incoming from localhost by means of the user luca.

42 Getting to Know Your Cluster

Exploring the disk layout of PGDATA

In the previous sections, you have seen how to install PostgreSQL and connect to it, but we have
not looked at the storage part of a cluster. Since the aim of PostgreSQL, as well as the aim of
any relational database, is to permanently store data, the cluster needs some sort of permanent
storage. In particular, PostgreSQL exploits the underlying filesystem to store its own data.(All of
the PostgreSQL-related stuff is contained in a directory known as PGDATA.

The PGDATA directory acts as the disk container that stores all the data of the cluster, including

the users’ data and cluster configuration.

The following is an example of the content of PGDATA for a running PostgreSQL 16 cluster:

$ 1s -1 /postgres/16/data
base

global
pg_commit_ts
pg_dynshmem
pg_hba.conf
pg_ident.conf
pg_logical
pg_multixact
pg_notify
pg_replslot
pg_serial
pg_snapshots
pg_stat
pg_stat_tmp

pg_subtrans

pg_tblspc

pg_twophase
PG_VERSION

pg_wal

pg_xact
postgresqgl.auto.conf
postgresql.conf
postmaster.opts

postmaster.pid

entest

entest

entest

Chapter 2 43

The PGDATA directory is structured in several files and subdirectories. The main files are as follows:

e postgresql.confisthe main configuration file, used by default when the service is started.

e postgresql.auto.conf is the automatically included configuration file used to store

dynamically changed settings via SQL instructions.

e pg_hba.confisthe HBA file that provides the configuration regarding available database

connections.

e PG_VERSIONis atextfile that contains the major version number (useful when inspecting

the directory to understand which version of the cluster has managed the PGDATA directory).

e postmaster.pid is the PID of the postmaster process, the first launched process in the

cluster.

The main directories available in PGDATA are as follows:

baseis adirectory that contains all the users’ data, including databases, tables, and other

objects.
e globalis adirectory containing cluster-wide objects.
e pg_walis the directory containing the WAL files.

e pg_stat and pg_stat_tmp are, respectively, the storage of permanent and temporary

statistical information about the status and health of the cluster.

Of course, all files and directories in PGDATA are important for the cluster to work properly, but
so far, the preceding is the “core” list of objects that are fundamental in PGDATA itself. Other files

and directories will be discussed in later chapters.

Objects in the PGDATA directory

PostgreSQL does not name objects on disk, such as tables, in a mnemonic or human-readable
way; instead, every file is named after a numeric identifier. You can see this by having a look, for

instance, at the base subdirectory:

$ 1s -1 /postgres/l6/data/base
1
16386

4
)

44 Getting to Know Your Cluster

As you can see from the preceding code, the base directory contains four objects, named 1,4, 5,
and 16386. Please note that these numbers could be different on your machine. In particular, each

of the preceding is a directory that contains other files, as shown here:

$ 1s -1 /postgres/l16/data/base/16386 | head
112

113

1247

1247 fsm

1247 _vm

1249
1249 fsm
1249 _vm
1255
1255 fsm

Asyou can see, each file is named with a numeric identifier. Internally, PostgreSQL holds a specific
catalog that allows the database to match a mnemonic name to a numericidentifier, and vice versa.
The integer identifier is named 0ID (or, Object Identifier); this name is a historical term that today

corresponds to the so-called filenode. The two terms will be used interchangeably in this section.

There is a specific utility that allows you to inspect a PGDATA directory and extract mnemonic
names: oid2name. For example, if you executed the oid2name utility, you’d get a list of all available

databases similar to the following one:

$ oid2name
All databases:

0id Database Name Tablespace

forumdb pg_default
postgres pg _default
template® pg default

templatel pg_default

As you can see, the 0id numbers in the oid2name output reflect the same directory names listed

in the base directory; every subdirectory has a name corresponding to the database.

entest

entest

Chapter 2 45

You can even go further and inspect a single file going into the database directory, specifying the

database where you are going to search for an object name with the -d flag:

$ cd /postgres/16/data/base/1
$ oid2name -d templatel -f 3395

From database "templatel":

Filenode Table Name

3395 pg init_privs_o_c_o_index

As you can see from the preceding example, the 3395 file in the /postgres/16/data/base/1
directory corresponds to the table named pg_init_privs_o_c_o_index. Therefore, when Post-
greSQL needs to interact with a table like this, it will seek the disk to the /postgres/16/data/
base/1/3395 file.

From the preceding example, it should be clear that every SQL table is stored as a file with a
numeric name. However, PostgreSQL does not allow a single file to be greater than 1 GB in size,
so what happens if a table grows beyond that limit? PostgreSQL “attaches” another file with a
numeric extension that indicates the next chunk of 1 GB of data. In other words, if your table is
stored in the 123 file, the second gigabyte will be stored in the 123.1 file, and if another gigabyte
of storage is needed, another file, 123. 2, will be created. Therefore, the filenode refers to the very

first file related to a specific table, but more than one file can be stored on disk.

Tablespaces

PostgreSQL pretends to find all its data within the PGDATA directory, but that does not mean that
your cluster is “jailed” in this directory. In fact, PostgreSQL allows “escaping” the PGDATA directory
by means of tablespaces. A tablespace is a directory that can be outside the PGDATA directory and
can also belong to different storage. Tablespaces are mapped into the PGDATA directory by means
of symbolic links stored in the pg_tblspc subdirectory. In this way, the PostgreSQL processes do
not have to look outside PGDATA, but are still able to access “external” storage. A tablespace can
be used to achieve different aims, such as enlarging the storage data or providing different stor-
age performances for specific objects. For instance, you can create a tablespace on a slow disk to
contain infrequently accessed objects and tables, keeping fast storage within another tablespace

for frequently accessed objects.

You don’t have to make links by yourself: PostgreSQL provides the TABLESPACE feature to manage
this and the cluster will create and manage the appropriate links under the pg_tblspc subdirectory.

entest

entest

entest

entest

entest

entest

entest

46 Getting to Know Your Cluster

For instance, the following is a PGDATA directory that has three different tablespaces:

$ 1s -1 /postgres/l16/data/pg_tblspc/
Irwxrwxrwx 1 postgres postgres 22 Jan 19 13:08 16384 -> /data/tablespaces/
ts_a

Irwxrwxrwx 1 postgres postgres 22 Jan 19 13:08 16385 -> /data/tablespaces/
ts b
Irwxrwxrwx 1 postgres postgres 22 Jan 19 13:08 16386 -> /data/tablespaces/
ts_c

As you can see from the preceding example, there are three tablespaces that are attached to the

/data storage. You can inspect them with oid2name and the -s flag:

$ oid2name -s
All tablespaces:

0id Tablespace Name

pg_default

pg_global

ts_a
ts_b

ts_c

Asyou can see, the numeric identifiers of the symbolic links are mapped to the mnemonic names
of the tablespaces. From the preceding example, you can observe that there are also two partic-

ular tablespaces:

e pg_default is the default tablespace corresponding to “none,” the default storage to be
used for every object when nothing is explicitly specified. In other words, every object

stored directly under the PGDATA directory is attached to the pg_default tablespace.

e pg_globalisthe tablespace used for system-wide objects.

By default, both of the preceding tablespaces refer directly to the PGDATA directory, meaning any

cluster without a custom tablespace is totally contained within the PGDATA directory.

Exploring configuration files and parameters

The main configuration file for PostgreSQL is postgresql. conf, a text-based file that drives the

cluster when it starts.

Chapter 2 47

Usually, when changing the configuration of the cluster, you must edit the postgresql. conf file
to write the new settings and, depending on the context of the settings you have edited, to issue

a cluster SIGHUP signal (that is, reload the configuration) or restart it.

Every configuration parameter is associated with a context, and depending on the context, you

can apply changes with or without a cluster restart. Available contexts are as follows:

e internal: A group of parameters that are set at compile time and therefore cannot be
changed at runtime.

e postmaster: All the parameters that require the cluster to be restarted (that s, to kill the
postmaster process and start it again) to activate them.

e sighup: All the configuration parameters that can be applied with a SIGHUP signal sent to
the postmaster process, which is equivalent to issuing a reload signal in the operating
system service manager.

e backend and superuser-backend: All the parameters that can be set at runtime but will

be applied to the next normal or administrative connection.

e user and superuser: A group of settings that can be changed at runtime and are imme-

diately active for normal and administrative connection.

The configuration parameters will be explained later in the book, but the following is an example

of a minimal configuration file with some different settings:

$ cat /postgres/16/data/postgresql.conf

shared_buffers = 512MB
maintenance_work_mem = 128MB
checkpoint_completion_target = 0.7
wal buffers = 16MB

work_mem = 32MB

min_wal_size = 1GB

max_wal size = 2GB

The postgresqgl.auto. conf file has the very same syntax as the main postgresql. conf file but
is automatically overwritten by PostgreSQL when the configuration is changed at runtime di-
rectly within the system, by means of specific administrative statements such as ALTER SYSTEM.
The postgresql.auto. conf file is always loaded at the very last moment, therefore overwriting
other settings. In a fresh installation, this file is empty, meaning it will not overwrite any other

custom setting.

48 Getting to Know Your Cluster

You are not tied to having a single configuration file, and, in fact, there are specific directives that
can be used to include other configuration files. The configuration of the cluster will be detailed

in a later chapter.

The PostgreSQL HBA file (pg_hba. conf) is another text file that contains the connection allowance:
it lists the databases, users, and networks that are allowed to connect to your cluster. The HBA
method can be thought of as a firewall embedded into PostgreSQL. As an example, the following

is an excerpt from a pg_hba. conf file:

hosts all luca 192.168.222.1/32 md5

hostssl all enrico 192.168.222.1/32 md5

In short, the preceding lines mean that the user luca can connect to any database in the cluster
with the machine with the IPv4 address 192.168.222.1, while the user enrico can connect to
any database from the same machine but only on an SSL-encrypted connection. All the available
pg_hba.conf rules will be detailed in a later chapter, but for now, itis sufficient to know that this

file acts as a “list of firewall rules” for incoming connections.

Summary

PostgreSQL can handle several databases within a single cluster, served out of disk storage con-
tained in a single directory named PGDATA. The cluster runs many different processes; one, in
particular, is named postmaster and is in charge of spawning other processes, one per client

connection, and keeping track of the status of maintenance processes.

The configuration of the cluster is managed via text-based configuration files, the main one being
postgresql.conf. Itis possible to filter incoming user connections by means of rules placed in

the pg_hba. conf text file.

You can interact with the cluster status by means of the pg_ct1 tool or, depending on your oper-

ating system, by other provided programs, such as service or systemctl.

This chapter has presented you with the relevant information so that you are able not only to
install PostgreSQL but also to start and stop it regularly, integrate it with your operating system,

and connect to the cluster.

In the following chapter, you will learn how to manage users and connections.

Chapter 2 49

Verify your knowledge

What is the pg_ctl command?

pg_ctlisacommand shipped with PostgreSQL that allows you to start, restart, stop, and
do other actions on the cluster. It is often used as the way to manage the whole cluster.

See the pg_ctl section for more details.
What is a template database?

A template database is a database that can be used as a base to clone another (new) da-
tabase that will initially include the same objects. See the The template databases section

for more details.
What is the psql command?

psql is the official client application to connect to a PostgreSQL database. It is a com-
mand - line application that can be used to enter SQL statements and get results out of
the cluster. Itis shipped with every version of PostgreSQL. See the The psql command-line

client section for more details.
What s a connection string?

A connection string is a URI that specifies all the properties required to connect to a da-
tabase, often including the username, the host, the database, and so on. See the The con-

nection string scction for more details.
What are the psql special commands?

The special commands are all the short commands that begin with a backslash symbol,
like, for example, \d. They are informative commands valid only within the psql client.

See the A glance at the psql commands section for more details.

References

PostgreSQL PGDATA disk layout: https://www.postgresql.org/docs/current/storage-
file-layout.html

PostgreSQL initdb official documentation: https://www.postgresql.org/docs/
current/app-initdb.html

https://www.postgresql.org/docs/current/storage-file-layout.html
https://www.postgresql.org/docs/current/storage-file-layout.html
https://www.postgresql.org/docs/current/app-initdb.html
https://www.postgresql.org/docs/current/app-initdb.html

50 Getting to Know Your Cluster

e PostgreSQL pg_ctl official documentation: https://www.postgresql.org/docs/
current/app-pg-ctl.html

e The pgAdmin4 graphical client for PostgreSQL: https://www.pgadmin.org/

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.postgresql.org/docs/current/app-pg-ctl.html
https://www.postgresql.org/docs/current/app-pg-ctl.html
https://www.pgadmin.org/
https://discord.gg/jYWCjF6Tku

Managing Users and
Connections

PostgreSQL is a complex system that includes(users, databases, and data. In order to be able to
interact with a database in the cluster, you need to have atleast one user. By default, when install-
ing a new cluster, a single administrator user (named postgres) is created. While it is possible to
handle all the connections, applications, and databases with that single administrative user, it is
much better for security and privilege isolation to create different users with different properties

and privileges, as well as login credentials, for every specific task.

PostgreSQL provides a very rich user-management structure, and single users can be grouped
into a variety of different groups at the same time. Moreover, groups can be nested within other
groups so that you can have a very accurate representation of your account model. Thanks to
this accurate representation, and thanks to the fact that every user and group can be assigned
different properties and privileges, it is possible to apply fine-grained permissions to each user

in the database, depending on the specific task and activity involved.

This chapter introduces you to the concepts behind users and groups and their relationships.
The chapter will focus mainly on the login properties of roles (either users or groups) and how

PostgreSQL can prevent specific users from connecting to specific databases.
This chapter covers the following main topics:

e Introduction to users and groups
¢ Managingroles

e Managing incoming connections at the role level

entest

entest

entest

52 Managing Users and Connections

Technical requirements

The chapter examples can be run on the standalone Docker image that you can find in the book’s
GitHub repository: https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition.
For installation and usage instructions of the Docker images for this book, please refer to Chapter

1, Introduction to PostgreSQL.

Introduction to users and groups

PostgreSQL distinguishes between users and groups of users: the former represents someone, either
a person or an application, that could connect to the cluster and perform activities; the latter
represents a collection of users that share some common properties, most commonly permissions

on cluster objects.

In order to connect interactively or via an application to a PostgreSQL database, you need to have
login credentials. In particular, a database user, a user who is allowed to connect to that specific

database, must exist.

Database users are somewhat similar to operating system users: they have a username and an
(encrypted) password and are known to the PostgreSQL cluster. Similarly to operating system

users, database users can be grouped into user groups in order to make their management easier.

In SQL, and therefore also in PostgreSQL, the concepts of both a single user account and a group

of accounts are encompassed by the concept of a role.

Arole can be a single account, a group of accounts, or even both depending on how you design it;
however, in order to make management easier, a role should express one and only one concept

at a time: that is, it should be either a single user or a single group, but not both.

Y, While a role can be used simultaneously as a group or a single user, we strongly
\/;ﬂ> encourage you to keep the two concepts of user and group separate—it will simplify

the management of your infrastructure.

Every role must have a unique name or identifier, usually called a username.

A role represents a collection of database permissions and connection properties. The two el-
ements are orthogonal. You can set up a role simply as a container for other roles, configuring
the contained roles to hold the assigned permissions, or you can have a role that holds all the

permissions for contained roles, or mix and match these two approaches.

https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition

Chapter 3 53

It is important to understand that a role is defined at the cluster level, while permissions are
defined at the database level. This means that the same role can have different privileges and
properties depending on the database it is using (for instance, being allowed to connect to one

database and not to another).

\// Since a role is defined at the cluster level, it must have a unique name within the
(2%

entire cluster.

Managing roles

Roles can be managed by means of three main SQL statements: CREATE ROLE to create a role from
scratch, ALTER ROLE to change some role properties (for example, the login password), and DROP

ROLE to remove an existing role.

PostgreSQL ships with operating system tools to manage roles: createuser and
\/‘p/' dropuser. Both these commands open a connection to the cluster and perform the
SQL commands mentioned above; therefore, the usage of these tools will not be

explained in this chapter.

In order to use the SQL statements to create new roles and then manage them, it is necessary to
connect to a database in the cluster. The superuser role postgres can be used to that aim, atleast
initially, since such a role is created when the database cluster is initialized. Using the postgres

role and a template database is the most common way to create your initial roles.

Arole is identified by a string that represents the role name, or better, the account name of that
role. This name must be unique across the system, meaning that you cannot have two different
roles with identical names. Names must consist of letters, digits, and some symbols, such as

underscores.

Creating new roles

In order to create a new role, either a single user account or a group container, you need to use the
CREATE ROLE statement. The statement has the following short synopsis and has a mandatory

parameter, which is the role’s username:

CREATE ROLE name [[WITH] option [...]]

54 Managing Users and Connections

The options that you can specify in the statement range from the account password, the ability
to log in interactively, and the superuser privileges. Please remember that, unlike other systems,
in PostgreSQL, you can have as many superusers as you want, and everyone has the same live-

or-die rights on the cluster.

Almost every option of the CREATE ROLE statement has a positive form that adds the ability to the
role, and a negative form (with a NO prefix) that excludes the ability from the role. As an example,
the SUPERUSER option adds the ability to act as a cluster superuser, while the NOSUPERUSER option

removes it from the role.

In this chapter, we will focus on the login abilities, which is a restricted set of options that allows
arole to log in to the cluster. Other options will be discussed in Chapter 10, Users, Roles, and Da-

tabase Security, since they are more related to the security features of the role.

What if you forgot an option at the CREATE ROLE time? And what if you changed
your mind and wanted to remove an option from an existing role? Thereis an ALTER
\E/, ROLE statement that allows you (as a cluster superuser) to modify an existing role
without having to drop and recreate it. The statement will be shown in Chapter 10,

Users, Roles, and Database Security, along with some other interesting options for roles.

Role passwords, connections, and availability

Every connection to PostgreSQL must be made to a specific database, no matter the user thatis
opening the connection. Connecting to a database in the cluster means that the role must au-
thenticate itself, and therefore, there must be an authentication mechanism, the username and

password being the most classical ones.

When a user attempts to connect to a database, PostgreSQL checks the login credentials and a

few other properties of the user to ensure that it is allowed to log in and has valid credentials.
The main options that allow you to manipulate and manage the login attempts are as follows:

e PASSWORD or ENCRYPTED PASSWORD are equivalent options and allow you to set the login
password for the role. Both options exist for backward compatibility with older PostgreSQL
versions, but nowadays, the cluster always stores role passwords in an encrypted form, so
the use of ENCRYPTED PASSWORD does not add any value to the PASSWORD option.

e PASSWORD NULL explicitly forces a null (not empty) password, preventing the user from
logging in with any password. This option can be used to deny password-based authen-

tication.

Chapter 3 55

e CONNECTION LIMIT <n> allows the user to open no more than <n> simultaneous con-
nections to the cluster, without any regard to a specific database. This is often useful to

prevent a user from wasting resources on the cluster.
e VALID UNTIL allows you to specify an instant (in the future) when the role will expire.
Setting the password for a specific role does not mean that that role will be able to connect to the

cluster: in order to be allowed to interactively log in, the role must also have the LOGIN option. In

other words, the following statement will not allow the user to log in:

postgres=# CREATE ROLE luca

WITH PASSWORD 'xxx';

The default option is NOLOGIN (which prevents interactive login). Therefore, in order to define

interactive users, remember to add the LOGIN option when creating the role:

templatel=# CREATE ROLE luca
WITH LOGIN PASSWORD 'xxx';

Multiple options can be written in any order, so the preceding code represents the same statement,

butin a form thatis less human readable:

postgres=# CREATE ROLE luca

WITH PASSWORD ‘xxx' LOGIN;

The VALID UNTIL option allows you to define a date or even a timestamp (that is, an instant) in
the future when the role password will expire and will no longer be allowed to log in to the cluster.

This can be useful for marking a set of users as dismissable in the future.
Of course, this option only makes sense for interactive roles, that is, those who have the LOGIN ca-
pability. As an example, the following role will be prevented from logging in after Christmas 2030:

postgres=# CREATE ROLE luca
WITH LOGIN PASSWORD 'xxx'

VALID UNTIL '2030-12-25 23:59:59';

Using a role as a group
A group is a role that contains other roles. It’s that simple!
Usually, when you want to create a group, all you need to do is create a role without the LOGIN

option and then add all the members one after the other to the containing role. Adding a role to

a containing role makes the latter a group.

56 Managing Users and Connections

In order to create a role as a member of a specific group, the IN ROLE option can be used. This
option accepts the name of the group (which, in turn, is another role) to which the newly created
role will become a member. As an example, in the following code block, you can see the creation

of the book_authors group and the addition of the role members luca and enrico:

postgres=# CREATE ROLE book_authors
WITH NOLOGIN;

CREATE ROLE

postgres=# CREATE ROLE luca
WITH LOGIN PASSWORD 'xxx'
IN ROLE book_authors;

CREATE ROLE
postgres=# CREATE ROLE enrico
WITH LOGIN PASSWORD 'xxx'
IN ROLE book_ authors;
CREATE ROLE

\/V; The IN GROUP clause of CREATE ROLE is an obsolete synonym for the IN ROLE clause.

Itis also possible to add members to a group using the special GRANT statement. The GRANT state-
ment is the general SQL statement that allows fine privilege tuning (more on this in Chapter 10,
Users, Roles, and Database Security); PostgreSQL extends the SQL syntax allowing the granting of a
role to another role. When you grant a role to another, the latter becomes a member of the former.
In other words, assuming that all roles already exist without any particular association, the fol-

lowing adds the role enrico to the book_authors group:

postgres=# GRANT book_authors TO enrico;

Every group can have one or more admin members, which are allowed to add new members to
the group. The ADMIN option allows a user to specify the member that will be associated as an
administrator of the newly created group. For instance, in the following code block, you can see
the creation of the new group called book_reviewers with luca as administrator; this means
that the user luca, even if he is not a cluster superuser, will be able to add new members to the

book_reviewers group:

entest

Chapter 3 57

postgres=# CREATE ROLE book_reviewers

WITH NOLOGIN
ADMIN luca;
CREATE ROLE

Clearly, the ADMIN option can be used in CREATE ROLE only if the administrator role already exist;
in the example, the luca role must have been created before the group, as he is going to be the

administrator.

The GRANT statement can solve the problem—the WITH ADMIN OPTION clause allows the mem-

bership of a role with administrative privileges.

As an example, the following piece of code shows how to make the user enrico also an admin-
istrator of the book_reviewers group. Please note that you must spell out WITH ADMIN OPTION

in its entirety, as shown here:

postgres=# GRANT book_reviewers

TO enrico
WITH ADMIN OPTION;
GRANT ROLE

What happens if a group role has the LOGIN option? The group will still be a role container, but it
can act also as a single user account with the ability to log in. While this is possible, it is a more

common practice to deny group roles access to log in to prevent confusion.

Removing an existing role
In order to remove an existing role, you need to use the DROP ROLE statement. The statement has
a very simple synopsis:

DROP ROLE [IF EXIST] name [, ...]

You need to specify only the role name you want to delete, or, if you need to delete multiple roles,

you can specify them as a comma-separated list.

In order to be deleted, the role must exist; therefore, if you try to remove a nonexistent role, you

will receive an error:

postgres=# DROP ROLE this_role_does_not_exist;

ERROR: role "this role_does not_exist" does not exist

58 Managing Users and Connections

As you can see, PostgreSQL warns you that it cannot delete a role if the role does not exist.

You cannot break PostgreSQL! PostgreSQL will protect itself from your mistakes and
\/V' it does a very good job of keeping your data safe! The preceding example about the
deletion of a nonexistent role is an example of how PostgreSQL protects itself from

your mistakes in order to ensure a service that is always stable.

The DROP ROLE statement supports the IF EXIST clause, which stops PostgreSQL from complain-

ing about the deletion of a role that is missing:

postgres=# DROP ROLE IF EXIST this_role_does_not_exist;

NOTICE: role "this_role_does_not_exist" does not exist, skipping

DROP ROLE

Asyou can see, this time PostgreSQL does not raise an error; instead, it displays a notice about the
factthat the role does not exist. However, it executes the statement, doing nothing, but reporting
success instead of failure. Why could this be useful? Imagine that you have an automated task
that is in charge of deleting several roles: if the DROP ROLE reports a failure, your task could be
interrupted, while with IF EXIST, you will rest assured that PostgreSQL will not cause an abort

due to a missing role.

Y There are several statements that support the IF EXIST clause, as you will see in later
\/L’; chapters. Theideais to avoid reporting an error when you are not interested in catch-

ing it, and you should use, whenever possible, this clause in automating programs.

What happens if you drop a group? Member roles will stay in place, but of course, the association
with the group will be lost (since the group has been deleted). In other words, deleting a group

does not cascade to its members.

Inspecting existing roles

Now that you know how to create and delete roles, how can you inspect existing roles, including
yours? There are different ways to get information about existing roles, and all rely on the Post-

greSQL catalogs, the only source of introspection into the cluster.

Chapter 3 59

In order to get information about what role you are running, use the special keyword CURRENT_
ROLE: you can queryitviaa SELECT statement (such statements will be presented in later chapters,

so for now, just blindly use it as shown here):

postgres=# SELECT current_role;

current_role

postgres
(1 row)

If you connect to the database with another user, you will see different results:

$ psgql -U luca postgres
psql (16.9)
Type "help" for help.

postgres=> SELECT current_role;

current_role

Knowing your own role is important, but getting information about existing roles and their prop-
erties can be even more illuminating. psql provides the special \du (describe users) command to

list all the available roles within the system:

$ psql -U postgres
psql (16.0)
Type "help" for help.

postgres=# \du

List of roles

Role name Attributes

60 Managing Users and Connections

book_authors | Cannot login

enrico

forum

forum_admins | Cannot login

forum_emails No inheritance, Cannot login
forum_stats No inheritance, Cannot login
luca 1 connection

postgres Superuser, Create role, Create DB, Replication, Bypass RLS

The Attributes column shows the options and properties of the role, many of which will be
discussed in Chapter 10, Users, Roles, and Database Security. With regard to the login properties, if
aroleis prevented from connecting interactively to the cluster, a Cannot login message will be

displayed in the book_authors line, like in the preceding example.

\/V; The psql special command \drg will show you all the groups a role is member of.

You can get information about a specific role by directly querying the pg_roles catalog, a catalog
that contains information about all PostgreSQL roles. For example, to get the basic connection

information for the luca role, you can execute the following query:

postgres=# SELECT rolname, rolcanlogin,
rolconnlimit, rolpassword
FROM pg_roles
WHERE rolname = 'luca’;

-[RECORD 1 J--4-----=---

rolname

rolcanlogin

rolconnlimit

rolpassword

Asyou can see, the password is not displayed for security reasons, even if the cluster superuser is
asking for it. It is not possible to get the password in plain text: as we’ve already seen, the pass-

words are always stored encrypted.

Chapter 3 61

The special catalog pg_authid represents the backbone for the pg_roles information, and can be

queried with the very same statement, but reports the user password (as encrypted text).

The following code shows the result of querying pg_authid for the very same user as in the fourth

listing; note how the rolpassword field contains some more useful information this time:

postgres=# SELECT rolname, rolcanlogin, rolconnlimit, rolpassword

FROM pg_authid WHERE rolname = ‘luca‘;
= RECORD i Jj==dt===c=co=o—cm—o=c=ccc—ccoocomcoooo==
rolname
rolcanlogin
rolconnlimit
rolpassword | SCRAM-SHA-256$4096:EC42FTTKy6bi/hfslsadSw=

The password is represented as a hash and the initial part specifies the encryption algorithm
used, which nowadays defaults to SCRAM-SHA-256. It is worth noting that, while pg_roles can

be queried by either superusers and normal users, pg_authid can be queried only by superusers.

Managing incoming connections at the role level

When a new connection is established to a cluster, PostgreSQL validates the incoming request
at the role level. The fact that the role has the LOGIN property is not enough for it to open a new
connection to any database within the cluster. This is because PostgreSQL checks the incoming
connection request against a kind of firewall table, formerly known as host-based access, that
is defined within the pg_hba. conf file.

If the table states that the role can open the connection to the specified database, the connection

is granted (assuming it has the LOGIN property); otherwise, it is rejected.

Every time you modify the pg_hba. conf file, you need to instruct the cluster to reload the new
rules via a HUP signal or by means of a reload command in pg_ctl.
Therefore, the usual workflow when dealing with pg_hba. conf is similar to the following:

$ $EDITOR $PGDATA/pg_hba.conf

. modify the file as you wish ...

$ sudo -u postgres pg_ctl reload -D $PGDATA

server signaled

62 Managing Users and Connections

In the previous code example $EDITOR is used to launch the preferred editor, if it
hasbeen set. You can set your EDITOR environment variable in many shells by typing

export EDITOR=/bin/vim (or the path to your preferred editor).

\E/, In the Docker images provided for this book, the PGDATA variable is already set. More-
over, the interactive shell is already launched with the user postgres. Therefore, in
order to reload the cluster configuration, you needn’t worry about EDITOR, PGDATA,
nor sudo and can simply write pg_ctl reload at the shell prompt.

It is worth noting that a superuser role can instrument the cluster to reload the configuration
by means of an SQL statement. Calling the special function pg_reload_conf() will perform the

same action as issuing a reload to pg_ctl:

postgres=# SELECT pg_reload_conf();

pg_reload_conf

The syntax of pg_hba.conf

The pg_hba. conf file contains the firewall for incoming connections. Every line within the file

has the following structure:

<connection-type> <database> <role> <remote-machine> <auth-method>

Every part of the line has the following meaning:

e connection-type is the type of connection supported by PostgreSQL and is either local
(meaning via operating system sockets), host (TCP/IP connection, either encrypted or not),
or hostss1 (TCP/IP encrypted only connection), or nohostssl (TCP/IP non-encrypted

connections).

e database is the name of a specific database that the line refers to or the special keyword
all, which means every available database. The special replication keyword is used to
handle a special type of connection used to replicate the data to another cluster, and it
will be explained in later chapters.

e roleisthespecificrole (either a username or a group) that the line refers to or the special

keyword all, which means all available roles (and groups).

Chapter 3 63

e remote-machineisthe hostname, IP address, or subnet from which the connection is ex-
pected. The special keyword all matches with any remote machine that the connection is
established from, while the special keywords samehost and samenet match any hostname
or subnet the cluster is attached to.

e auth-method dictates how the connection must be handled; more generally, it deals with
how the login credentials have to be checked. The main methods are scram-sha-256, md5
(the method used in older versions), reject to always refuse the connection, and trust

to always accept the connection without any regard to supplied credentials.

\/u' You cannot name a database or a user with one of the special keywords, e.g.,

replication.

In order to better understand how the system works, the following is an excerpt of a possible

pg_hba. conf file:

host all luca carmensita scram-sha-256
hostssl all test 192.168.222.1/32 scram-sha-256
host digikamdb pgwatch2 192.168.222.4/32 trust
host digikamdb enrico carmensita reject

The firstline indicates that the user luca can connect to every database within the cluster (via the
all clause) via a TCP/IP connection (via the host clause) coming from a host named carmensita,

but he must provide a valid username/password to verify the SCRAM authentication method.

The second line states that the user test can connect to every database in the system over an
SSL-encrypted connection (see the hostssl clause), but only from a machine that has the IPv4
address of 192.168.222.1; again, the credentials must pass the SCRAM authentication method.

The third line states that access to the digikamdb database is granted only to the pgwatch2 user
over anonencrypted connection from the host 192.168.222. 4; this time, access is granted (trust)

without any credential being required.

Finally, the last line rejects any incoming connection from the host named carmensita, opened
by the user enrico against digikamdb; in other words, enricois not able to connect to digikamdb

from the carmensita host.

64 Managing Users and Connections

The authentication method trust should never be used; it allows any role to con-
nect to the database if the Host-Based-Access (HBA) has a rule that matches the
\G/\/ incoming connection. This is the method thatis used when the cluster is initialized
in order to enable the freshly created superuser to connect to the cluster. You can

always use this trick as a last resort if you get yourself locked out of your own cluster.

Order of rules in pg_hba.conf

The order by which the rules are listed in the pg_hba. con¥ file matters. The first rule that satisfies
the logic is applied, and the others are skipped. In order to better understand this, imagine that
we want to allow luca to connect to any database in the cluster except forumdb. The following

does not make this happen:

host all luca all scram-sha-256

host forumdb luca all reject
Why does the preceding code not work?

Imagine that the user luca tries to open a connection to the forumdb database: the machine from
which the connection is attempted is matched against the all keyword with the line containing

luca, and then the database name is matched against the all keyword for the database field.

Since both the remote machine and the database name are subsets of all, the connection is passed
through the SCRAM-256 authentication method; if the user succeeds in the authentication, the
connection is opened. The reject line is therefore skipped because the first line matches. On the

other hand, exchanging the order of the rules as shown in the following code does work:
host forumdb luca all reject

host all luca all scram-sha-256

In this way, when luca tries to connect to a database, he gets rejected if the database is forumdb;

otherwise, he can connect (if he passes the required authentication method).

Merging multiple rules into a single one

One line declares at least one rule, but it is possible to merge multiple lines into a single one. In
fact, therole, database, and remote-machine fields allow the definition of multiple matches, each

one separated by a , (comma).

Chapter 3 65

As an example, suppose we want to give access to the luca and enrico roles (from the same net-
work that the cluster is running into) to the forumdb and learnpgdb databases so that pg_hba.
conf looks like the following:

host forumdb luca samenet scram-sha-256
host forumdb enrico samenet scram-sha-256
host learnpgdb luca samenet scram-sha-256

host learnpgdb enrico samenet scram-sha-256
Since the database and the role fields can list more than one item, the preceding code can be
compressed into the following one:
host forumdb,learnpgdb luca samenet scram-sha-256
host forumdb,learnpgdb enrico samenet scram-sha-256
We can shrink the rules one step further since the machine from which the database connection
can be established is literally the same for both rules, and therefore the final code is as follows:
host forumdb,learnpgdb luca, enrico samenet scram-sha-256
It should now be clear to you that if more rules have the same authentication method and connec-

tion protocol, then itis possible to collapse them into an aggregation. This can help you manage

the host-based access configuration.

Using groups instead of single roles
The role field in every pg_hba. conf rule can be substituted by the name of a group (remember
that a group is itself a role); however, in order to make the rule valid for every member of the

group, you have to prefix the group name with a + (plus) sign.

To better understand this, consider the example of the book_authors group, which includes the

luca member. The following rule will not allow the luca role to access the database:
host forumdb book_authors all scram-sha-256
Even if the user is a member of the book_authors role, it will be denied the ability to log in to

the database; the cluster host-based access policy requires the book_authors role to be exactly

matched by a rule, and in the following command, the luca role does not match any rule:

$ psql -U luca forumdb

psql: error: could not connect to server:

FATAL: no pg_hba.conf entry for host "192.168.222.1", user "luca",
database "forumdb", SSL off

66 Managing Users and Connections

On the other hand, if we clearly state that we want to use the book_authors role as a group name,

and therefore allow all of its members, the connection can be established by any role that is a

member of the group, including luca. Therefore, we change the rule to the following:

host forumdb +book_authors all scram-sha-256

This, in turn (bearing in mind the plus sign), makes the connection possible, as shown here:

$ psql -U luca forumdb

forumdb=>

The pg_hba. conf rules, when applied to a group name (that is, with the + preceding the role

name) include all the direct and indirect members.

What if we want to allow every group member except one to access the database? Remembering
that the rule engine stops at the first match, it is possible to place a reject rule before the group
acceptance rule. For example, to allow every member of the book_authors group to access the

database while preventing the single luca role from connecting, you can use the following:

host forumdb luca all reject

host forumdb +book_authors all scram-sha-256

The first line will prevent the luca role from connecting, even if the following one allows every
member of the book_authors (including luca) to connect: the first match wins and so luca is

locked out of the database.

Using files instead of single roles

The role field of arule can also be specified as a text file, either line- or comma-separated. This is
handy when you deal with long usernames or group names, or with lists produced automatically

from batch processes.

If you specify the role field with an “at” sign prefix (@), the name is interpreted as a line-separated
text file (as a relative name to the PGDATA directory). For instance, in order to reject connections
to all the users and groups listed in the rejected_users.txt file, while allowing connections to
all the usernames and groups specified in the allowed_users.txt file, the pg_hba. conf file has

to look like the following snippet:

host forumdb @rejected_users.txt all reject

host forumdb @allowed_users.txt all scram-sha-256

Chapter 3 67

The following is the content of the rejected_users.txt file, followed by the allowed_users.
txt file:

$ sudo cat $PGDATA/rejected_users.txt

luca

enrico

$ sudo cat $PGDATA/allowed_users.txt

+book_authors, postgres

As you can see, it is possible to specify the file contents as either a line-separated list or a com-
ma-separated list of usernames. It is also possible to specify which roles to use as a group by

placing a + sign in front of the role name.

Inspecting pg_hba.conf rules

The pg_hba. conf file contains the rules applied to the incoming connections, but since this file
could be changed manually without making the cluster reload it, how can you be sure of which
rules are applied at the moment? PostgreSQL provides a special catalognamed pg_hba_file_rules

that shows which rules have been applied to the cluster.

You can query the catalogs as a normal table and get information about every line of the pg_hba.
conf file that has been understood and applied to the current running cluster. As an example, in

a fresh PostgreSQL installation, you will probably see an output like the following:

postgres=# SELECT line_number, type,
database, user_name,
address, auth_method
FROM pg_hba_file rules;

line_number | type | database | user_name | address auth_method

| 127.0.0.1 | trust
| gsil | trust
{replication | | trust
{replication | 127.0.0.1 | trust

{replication | 22il | trust

68 Managing Users and Connections

100 | host | {all} | {all} | all

sha-256

(7 rows)

As you can see, the pg_hba_file_rules reports all the same information you can find in pg_hba.

conf, with the line number indicator that tells you from which line a specificrule has been loaded.

Including other files in pg_hba.conf

Itis possible to include other HBA configuration files into the main pg_hba. conf file. PostgreSQL

provides three main directives:

e include_fileincludes a specific file in pg_hba. conf

e include_if_exist includes a specific file but only if it exist; if it does not exist (or was

removed), no error will occur

e include_dir includes all files specified in the given directory

Thanks to this directive, it is possible to define a set of small configuration files that will be included

literally in the HBA configuration as if the administrator had edited the pg_hba. conf file directly.

In order to understand where a specific rule comes from, the pg_hba_file_rules catalogincludes
a file_name column that reports from which file (and at which line, thanks to 1ine_number) a

rule has been parsed.

Summary

PostgreSQL allows you to define single users and groups of users, both represented by the SQL
concept of roles. When a database connection attempt is made, PostgreSQL processes the con-
nection information through the host-based access control so that it can immediately establish
or reject the connection, depending on firewall-like rules. If the connection can be established,

the credentials for the role are checked, and at last, the user is granted access.

Users and groups can be fine-tuned in terms of their granted permissions and connection limita-

tions so that you can decide how many resources a single role can consume.

In this chapter, you have seen how to create and manage roles, as well as how to allow single
roles to connect to the cluster and to specific databases. In Chapter 10, Users, Roles, and Database
Security, you will see how to deal with the security properties of users and groups, but before you

proceed further, you need to know how PostgreSQL objects can be created and managed.

Chapter 3 69

In the following chapter, you will learn how to interact with the PostgreSQL database using SQL

statements.

Verify your knowledge

What is the aim of the pg_hba. conf file?

The pg_hba. conf file configures Host-Based-Access (HBA), a set of rules that define how
a specific role (either a user or a group) can establish a connection to a specific database
from a specific host or source, via a defined protocol. See the Managing incoming connec-

tions at the role level section for more details.
How can you inspect the currently loaded HBA rules?

The special catalog pg_hba_file_rules provides details about loaded rules. See the In-

specting pg_hba.conf rules section for more details.
Does the order of rules within pg_hba. conf matter?

Yes, the rules are evaluated from top to bottom, and the first matching rule causes the end

of the evaluation. See the Order of rules in pg_hba.conf section for more details.
Where can you find information about roles?

The special catalogs pg_roles and pg_authid provide information about roles. See the

Inspecting existing roles section for more details.
How can you add a role to a group or remove it from a group (i.e., another role)?

The GRANT statement can add a role to another one, while the REVOKE statement can remove

the association. See the Using a role as a group section for more details.

References

CREATE ROLE statement official documentation: https://www.postgresql.org/docs/
current/sql-createrole.html

DROP ROLE statement official documentation: https://www.postgresql.org/docs/
current/sql-droprole.html

PostgreSQL pg_roles catalog details: https://www.postgresql.org/docs/current/
view-pg-roles.html

https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-droprole.html
https://www.postgresql.org/docs/current/sql-droprole.html
https://www.postgresql.org/docs/current/view-pg-roles.html
https://www.postgresql.org/docs/current/view-pg-roles.html

70 Managing Users and Connections

e PostgreSQL pg_authid catalog details: https://www.postgresql.org/docs/current/
catalog-pg-authid.html

e PostgreSQL host-based access rule details: https://www.postgresql.org/docs/current/
auth-pg-hba-conf.html

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.postgresql.org/docs/current/catalog-pg-authid.html
https://www.postgresql.org/docs/current/catalog-pg-authid.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://discord.gg/jYWCjF6Tku

Basic Statements

In this chapter, we will discuss basic SQL commands for PostgreSQL; these are Data Definition
Language (DDL) commands and Data Manipulation Language (DML) commands. In basic
terms, DDL commands are used to manage databases and tables, and DML commands are used
to insert, delete, update, and select data inside databases. In this chapter, we will also dive into
the psql environment. As you learned in Chapter 2, Getting to know your cluster, psql can be de-
scribed as PostgreSQL’s shell environment; it is the gate we have to go through in order to start
writing commands natively in PostgreSQL. We have to remember that psql is always present in
any PostgreSQL installation we work with, and it is worth learning since it is such a powerful

environment in which to manage our data and our databases.

Basic statements and psql are therefore the foundations on which we will build our knowledge
of PostgreSQL. Therefore, reading and understanding this chapter is essential to understanding

some of the more complex topics we cover later.
Let’s start with a list of what we’re going to learn in this chapter:

e Setting up our development environment
e Creating and managing databases
e Managing tables

e Understanding basic table manipulation statements

72 Basic Statements

Technical requirements

At this point in the book, we have learned how to install PostgreSQL and how to configure users,
butif you haven’t read the previous chapters, you can easily start following the next steps using

a Docker image as described below.

Using the Docker image

If you want to follow the next steps without installing and configuring PostgreSQL, you can do
so easily using the Docker image in the GitHub repository (details on how to setit up are covered
in Chapter 1, Introduction to PostgreSQL). So, let’s start the standalone container as described in

Chapter 1, Introduction to PostgreSQL, and then execute the following:

$ sudo docker exec -it standalone_learn_postgresql_1 /bin/bash

After executing this instruction, we will be inside the standalone_learn_postgresql_1 container

in aroot shell:

root@learn_postgresql:/#

Connecting the database

Even if we didn’t use a Docker container but used a native PostgreSQL installation as described
in Chapter 1, Introduction to PostgreSQL, we would reach the same result as above, using the same

statement executed as a postgres user:

root@learn_postgresql:/# su - postgres

postgres@learn_postgresql:~$ psql

postgres=#

Now let’s switch on the expanded mode using the \x command:

postgres=# \x

Expanded display is on.

Then let’s list all the databases that are present in the cluster:

postgres=# \1
List of databases
-[RECORD 1]----- e e T

Name | forumdb

Chapter 4 73

forum
UTF8
en_US.utf8

Owner
Encoding
Collate

ICU Locale

Locale Provider libc

|
|
|
Ctype | en_US.utf8
|
|
|

Access privileges

For space reasons, we have reported only the forumdb database imported from the Docker script,
but there are also the template®, templatel, and postgres databases as we saw in Chapter 2,

Getting to know your cluster. Finally, let’s connect to the forumdb database:

postgres=# \c forumdb

You are now connected to database "forumdb" as user "postgres".

Now that we have finished setting up our development environment, we can move on to creating

databasesinit.

Creating and managing databases

In this section, we will start by creating our first database, then we will learn how to delete a data-
base and, finally, how to create a new database from an existing one. We will also analyze the point
of view of the DBA. We will see what happens behind the scenes when we create a new database

and learn some basic functions useful to the DBA to get an idea of the real size of the databases.

Let’s see how to create a database from scratch and what happens behind the scenes when a

database is created.

Creating a database

To create a database named databasename from scratch, you will need to execute this simple

statement:

CREATE DATABASE databasename;

\// SQL is a case-insensitive language, so we can write all the commands with uppercase
(2%

or lowercase letters.

74 Basic Statements

Now, let’s see what happens behind the scenes when we create a new database. PostgreSQL

performs the following steps:

1. Makes a physical copy of the template database, templatel

2. Assigns the database name to the database just copied

The templatel database is a database that is created by the initdb process during the initializa-
tion of the PostgreSQL cluster.

Managing databases

We’ve just seen how to create databases. In this section, we will see how to manage databases,
how to list all the databases present on a cluster, how to create a database starting from an ex-
isting database, how to drop a database, and what happens internally, behind the scenes, when

we create and drop a database.

Introducing schemas

As reported in Chapter 1, Introduction to PostgreSQL: “a database can be organized into namespaces,
called schemas. A schema is a mnemonic name that the user can assign to organize database objects, such

as tables, into a more structured collection. Schemas cannot be nested, so they represent a flat namespace.”
Referring again to Chapter 1, Introduction to PostgreSQL, we’ve learned that there are two kinds of

users, normal users and superusers:

e Superusers can do everything across databases and schemas.

e Normal users can do operations depending on their privilege set.

PostgreSQL and the public schema

Starting from PostgreSQL 15, PostgreSQL has changed the way to manage the public schema. In
this section, we will see how it works. Before PostgreSQL 15, any user was able to perform any
DDL operation on the public schema. PostgreSQL 15 introduces the concept of removing global

privileges from the public schema.
Starting from PostgreSQL 15:

e Anormal user will not be able to execute DDL on the public schema.
¢ Anormal user will not be able to perform DML on the public schema unless they receive

permission from a superuser.

Let’s use an example to better explain how this new feature works. We will work as if we were

on a PostgreSQL version <=14.x.

Chapter 4 75

The following are the steps that we will execute (some instructions will be explained later in
this book):

1. Wewill create a normal user called myuser.

2. Wewill connect to the database as the user myuser.

3. Asmyuser, we will try to create a new table called mytable.

Below, you will find the execution of what is written above:

forumdb=# create user myuser with password 'SuperSecret' login;
CREATE ROLE

forumdb=# set role to myuser;

SET

forumdb=> create table mytable(id integer);

ERROR: permission denied for schema public
LINE 1: create table mytable(id integer);

As we can see, a normal user cannot create a table (DDL) on a public schema.

The search_path variable

PostgreSQL has many system variables. One of them is called search_path. The search_path
variable contains the sequence of schemas that PostgreSQL uses to find tables; the search_path
defaultvalueis $user, public. This means thatfirstit will search all the tables in the schema that

have that name in the user table and then it will search the public schema.

For example, if we have a user called forum, and we want to show all the records that are present
in a table called cities, first PostgreSQL will search the cities table in the forum schema, and
if the cities table cannot be found in the forum schema, PostgreSQL will search for the cities

table in the public schema.

The correct way to start working

Let’s start from scratch and execute the following steps:

1. Asasuperuser, let’s create a new database called myforumdb and connect to it.
2. Asasuperuser, let’s create a new user called myforum.

3. As a superuser, let’s create a new schema called myforum with authorization for the

myforum user.

76 Basic Statements

4. Let’s connect to the database as the myforum user:

postgres=# create database myforumdb;
CREATE DATABASE
postgres=# \c myforumdb

You are now connected to database "myforumdb" as user "postgres".
myforumdb=# create user myforum with password 'SuperSecret' login;
CREATE ROLE

myforumdb=# create schema myforum authorization myforum;

CREATE SCHEMA

Now let’s try to connect to the myforumdb database as the myforum user:

postgres@learn_postgresql:/$ psql -U myforum myforumdb
myforumdb=>

Let’s try to create a new table called mytable as we have done before:

myforumdb=> create table mytable(id integer);

CREATE TABLE

Now it works! It works because the mytable table has been created inside the myforum schema

as we have explained above.

\/‘n/' The forumdb database provided with the container is already set up to be used using

the forum user, which refers to the forum schema.

Listing all tables

Let’s now connect to the forumdb database as the forum user:

postgres@learn_postgresql:/$ psql -U forum forumdb

forumdb=>

To list all the tables present in the forumdb database, we have to use the psql \dt command. The

\dt command makes a list of all the tables present in the forumdb database:

forumdb=> \dt

List of relations

Chapter 4 77

categories

j_posts_tags | table
posts table
tags table

table

Making a new database from a modified template
Now that we’ve learned how to list all tables in a database, let’s ensure that any changes made
to the templatel database will be seen by all the databases that will be created later. We will
perform these steps:

1. Connectto the templatel database.

2. Create a table called dummytable inside the templatel database.

3. Create anew database called dummydb.

Let’s start making the database using the following steps:

1. Connectto the templatel database:

postgres@learn_postgresql:/$ psql templatel
templatel=#

2. As superuser, create a table called dummytable. For now, we don’t need to worry about
the exact syntax for creating tables; this will be explained in more detail later on:
templatel=# create table dummytable (dummyfield integer not null
primary key);
CREATE TABLE

3. Usethe \dt command to show alist of tables that are present in the templatel database:

templatel=# \dt
List of relations
Schema | Name | Type Owner

———————— e S

public | dummytable | table | postgres
(1 row)

78 Basic Statements

4. So,we have successfully added a new table to the templatel database. Now let’s try to cre-

ate anew database called dummydb and make a list of all the tables in the dummydb database:

templatel=# create database dummydb;

CREATE DATABASE
templatel=# \c dummydb
You are now connected to database "dummydb" as user "postgres".

The dummydb database contains the following tables:

dummydb=# \dt
List of relations
Schema | Name Owner

———————— B e e B T

public | dummytable | table | postgres
(1 row)

As expected, in the dummydb database, we can see the table created previously in the templatel

database.

\/u' Itisimportant to remember that any changes made to the templatel database will

be present in all databases created after this change.

Now we will delete the dummydb database and the dummy table in the templatel database.

Dropping tables and databases

In the next section, you will learn how to delete tables and databases. The commands we are

going to learn are the following:

e DROP TABLE: This is used to drop a table in the database.

e DROP DATABASE: This is used to drop a database in the cluster.

Dropping tables
In PostgreSQL, the command needed to drop a table is simply DROP TABLE tablename. To do
this, we have to connect to the database to which the table belongs, and then run the DROP TABLE

tablename command.

Chapter 4 79

For example, if we want to drop the dummytable table from the templatel database, we have to

take the following steps.

We connect to the templatel database using the following command:

dummydb=# \c templatel

You are now connected to database "templatel" as user "postgres".

And we can drop the table using the following command:

templatel=# drop table dummytable;

DROP TABLE

Dropping databases

In PostgreSQL, the command needed to drop a table is simply DROP DATABASE databasename;for

example, if we want to drop the dummydb database, we have to execute the following command:

templatel=# drop database dummydb ;

DROP DATABASE

With this, everything has now been returned to how it was at the beginning of the chapter.

Making a database copy

The following steps show you how to make a new database out of a template database:

1. Make a copy of the forumdb database on the same PostgreSQL cluster by performing the

following command:

templatel=# create database forumdb2 template forumdb;

CREATE DATABASE

By using this command, you are simply telling PostgreSQL to create a new database called

forumdb2 using the forumdb database as a template.

2. Connect to the forumdb2 database as the forum user:

postgres@learn_postgresql:/$ psql -U forum forumdb2

forumdb2=>

3. Listall the tables in the forumdb2 database:

forumdb2=> \dt

List of relations

80 Basic Statements

categories

j_posts_tags | table

posts table
tags table

users table

You can see that the same tables that are present in the forumdb database are now present in

this database.

Confirming the database size

We are now going to address the question of how one can determine the real size of a database.
There are two methods you can use to do this: psql and SQL. Let’s compare the two in the fol-

lowing sections.

The psql method
We can check the database size using the psql method, using the following steps:
1. First, let’s connect to forumdb and return to expanded mode:

postgres@learn_postgresql:/$ psql -U forum forumdb
forumdb=> \x
Expanded display is on.

2. Then, execute the following command:

forumdb=# \1+ forumdb

List of databases

Name forumdb

Owner forum

Encoding UTF8
Collate en_US.utf8
Ctype en_US.utf8
ICU Locale

Locale Provider libc

Chapter 4 81

Access privileges |
Size | 7685 kB

Tablespace | pg_default

Description |

In the Size field, you can now see the real size of the database at that moment.

The SQL method

When using the method outlined above, you may find that you cannot connect to your database
through the psql command. This happens when we only have web access to the database; for
example, if we only have pgadmin4 server-side installation access. If this happens, the SQL method
is an alternative approach that will allow you to find the same information. To use this method,

complete the following steps:

1. Execute the following command:

forumdb=> select pg database_size('forumdb');
-[RECORD 1 J----4--===---

pg_database_size | 7869231

The pg_database_size(name) function returns the disk space used by the database called

forumdb. This means that the result is the number of bytes used by the database.

2. Ifyouwanted a more readable resultin “human” terms, you could use the pg_size_pretty

function and write the following:

forumdb=> select pg_size_pretty(pg_database_size('forumdb'));
-[RECORD 1]--#--------

pg_size_pretty | 7685 kB

As you can see, both methods give the same result.

Behind the scenes of database creation

We have just learned what commands are used to create a new database, but what happens

behind the scenes when a database is created?

In this section, we will see the relationships that exist between what we perform at the SQL level
and what happens physically in the filesystem; note that the oid numbers we see below are re-

lated to the Docker image created. The numerical values of your Docker image could be different.

82 Basic Statements

To understand this, we need to introduce the pg_database system table:

1. Go back to the expanded mode and execute the following:

forumdb=> select * from pg_database where datname='forumdb’;

[N RECORDIIN S =mm s
oid 16386
datname forumdb
datdba 16385
encoding 6
datlocprovider
datistemplate

datallowconn t
datconnlimit -1
datfrozenxid 717
datminmxid 1
dattablespace 1663
datcollate en_US.utf8
datctype en_US.utf8
daticulocale

datcollversion 2.31
datacl

This query gives us all the information about the forumdb database. The first field is an
Object Identifier (OID), which is a number that uniquely identifies the database called
forumdb.

2. Exitthe psql environment and go to the $PGDATA directory (as shown in previous chapters).

In a Linux Debian environment, we have to execute the following:

cd /var/lib/postgresql/16/main/

For the Docker image, the path is as follows:

cd /postgres/l16/data

If we don’t know what the value of $PGDATA is, we can execute the following as a superuser:

forumdb=# show data_directory;

data_directory

Chapter 4 83

/postgres/16/data

(1 row)

3. Usethe 1s command to see what is inside the main or data (Docker image) directory:

postgres@learn_postgresql:~/data$ 1ls -1
total 128
8 postgres postgres 4096 Jan 3 09:49 base
2 postgres postgres 4096 Jan 3 09:49 global

As you can see, the first directory is called base. It contains all the databases that are in

the cluster.

4. Goinside the base directory in order to see the contents:

postgres@learn_postgresql:~/data$ cd base

postgres@learn_postgresql:~/data/base$

5. Listall files that are present in the directory:

postgres@learn_postgresql:~/data/base$ 1s -1
total 40
2 postgres postgres 4096 Jan 3 09:45 1

2 postgres postgres 12288 Jan 3 09:14 16386

As you can see, there is a directory called 16386; its name is exactly the same as the OID in the

pg_database catalog.

Y, When PostgreSQL creates a new database, it copies the directory relative to the
\n/ templatel database and then gives it a new name. In PostgreSQL, databases are

directories.

In this section, we have learned how to manage databases. In the next section, we will learn how

to manage tables.

84 Basic Statements

Managing tables

In this section, we will learn how to manage tables in a database.
PostgreSQL has three types of tables:

e Temporary tables: Very fast tables, visible only to the user who created them
e Unlogged tables: Very fast tables to be used as support tables common to all users

e Logged tables: Regular tables
We will now use the following steps to create a user table from scratch:

1. Let’s connect to forumdb as the forum user:

postgres@learn_postgresql:~$ psql -U forum forumdb

forumdb=>

2. Execute the following command:

forumdb=> CREATE TABLE myusers (
pk int GENERATED ALWAYS AS IDENTITY
username text NOT NULL
gecos text
email text NOT NULL
PRIMARY KEY(pk)
UNIQUE (username)
)
CREATE TABLE

The CREATE TABLE command creates a new table. The GENERATED AS IDENTITY command

automatically assigns a unique value to a column.

3. Observe what was created on the database using the \d command:

forumdb=> \d myusers
Table "forum.myusers"
Column Type | Collation | Nullable | Default

it R e T

| not null | generated always as
identity

username | text | not null |

Chapter 4 85

gecos | text | |

email | text | not null |

Indexes:
"myusers_pkey" PRIMARY KEY, btree (pk)
"myusers_username_key" UNIQUE CONSTRAINT, btree (username)

Something to note is that PostgreSQL has created a unique index. Later in this book, we
will analyze indexes in more detail and address what they are, what kinds of indexes exist,
and how to use them. For now, we will simply say that a unique index is an index that

does not allow the insertion of duplicate values for the field where the index was created.

\/V> In PostgreSQL, primary keys are implemented using unique indexes.

4. Use the following command to drop a table:

forumdb=> drop table myusers ;

DROP TABLE

The preceding command simply drops the table users. The CREATE TABLE command, as

we’ve seen before, has some useful options:

e IF NOT EXISTS
e TEMP

. UNLOGGED

We’ll cover each of these in the following subsections.

The EXISTS option

The EXISTS option can be used in conjunction with entity create or drop commands to check
whether the object already exists. An example of its use may be combined with the CREATE TABLE
or CREATE DATABASE command. We can also use this option when we create or drop sequences,

indices, roles, and schemas.

The use caseis very simple — the create or drop command is executed if the EXISTS clause s true;
for example, if we want to create a table named users, if the table exists, we have to execute this

SQL statement:

forumdb=> create table if not exists users (

86 Basic Statements

pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL

,gecos text

,email text NOT NULL

,PRIMARY KEY(pk)

,UNIQUE (username)
)s
NOTICE: relation "users" already exists, skipping
CREATE TABLE

The command described above will only create the users table if it does not exist already; other-
wise, the command will be skipped. The DROP command works similarly; the DROP TABLE com-
mand is used to drop tables. The if exists option also exists for the DROP table command,;

for example, if we want to drop the myusers table if it exists, we have to execute the following:

forumdb=> drop table if exists myusers;

NOTICE: table "myusers" does not exist, skipping

DROP TABLE

You can see that the command is skipped because the table does not exist. This option can be useful

because if the table does not exist, PostgreSQL does not block any other subsequent instructions.

Managing temporary tables

Later in this book, we will explore sessions, transactions, and concurrency in more depth. For
now, you simply need to know that a session is a set of transactions, each session is isolated, and
that a transaction is isolated from everything else. In other words, anything that happens inside
the transaction cannot be seen from outside the transaction until the transaction ends. Due to
this, we might need to create a data structure that is visible only within the transaction that is

running. In order to do this, we have to use the temp option.

We will now explore two possibilities. The first possibility is that we could have a table visible
only in the session where it was created. The second is that we might have a table visible in the

same transaction where it was created.

The following is an example of the first possibility where there is a table visible within the session:

forumdb=> create temp table if not exists temp_users (

pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL

Chapter 4 87

,gecos text
,email text NOT NULL
,PRIMARY KEY(pk)

,UNIQUE (username)
)
CREATE TABLE

The preceding command will create the temp_users table, which will only be visible within the

session where the table was created.

If instead we wanted to have a table visible only within our transaction, then we would have to

add the on commit drop options. To do this, we would have to do the following:

1. Start a new transaction.
2. Create the temp_users table.

3. Commit or roll back the transaction started in Step 1.
Let’s start with Step I:

1. Startthe transaction with the following code:

forumdb=> begin work;

BEGIN

forumdb=*>

The * symbol means that we are inside a transaction block.

2. Create a table visible only inside the transaction:

forumdb=*> create temp table if not exists temp_users_transaction (
pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL
,gecos text
,email text NOT NULL
,PRIMARY KEY(pk)
,UNIQUE (username)
) on commit drop;
CREATE TABLE

Now check that the tableis presentinside the transaction and not outside the transaction:

forumdb=*> \d temp_users_transaction

88 Basic Statements

Table "pg temp_3.temp_users_transaction”
Column Type | Collation | Nullable | Default

integer | | not null | generated always as
identity

username | text | not null |

gecos | text | |
email | text | not null |
Indexes:
"temp_users_transaction_pkey" PRIMARY KEY, btree (pk)
"temp_users_transaction_username_key" UNIQUE CONSTRAINT, btree
(username)

3. Youcan seethe structure of the temp_users_transactiontable, so now commit the trans-

action:

forumdb=*> commit work;
COMMIT

If you re-execute the DESCRIBE command \d temp_users_transaction, PostgreSQL re-

sponds in this way:

forumdb=> \d temp_users_transaction

Did not find any relation named "temp_users_transaction".

This happens because the on commit drop option drops the table once the transaction is completed.

Managing unlogged tables
We will now address the topic of unlogged tables. For now, we will simply note that unlogged
tables are much faster than classic tables (also known as logged tables) but are not crash-safe.

This means that the consistency of the data is not guaranteed in the event of a crash.

The following snippet shows how to create an unlogged table:

forumdb=> create unlogged table if not exists unlogged_users (
pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL

,gecos text
,email text NOT NULL

Chapter 4 89

,PRIMARY KEY(pk)
,UNIQUE (username)

g
CREATE TABLE

Unlogged tables are a fast alternative to permanent and temporary tables. This per-

\// formance increase comes at the expense of losing data in the event of a server crash.
(2%
If the server crashes after the reboot, the table will be empty. This is something you

may be able to afford under certain circumstances.

Creating a table

We will now explore what happens behind the scenes when a new table is created. Also, for tables,
PostgreSQL assigns an objectidentifier called an OID. We have already seen oid2name in Chapter
2, Getting to know your cluster. Now we will see something similar. An OID is simply a number that
internally identifies an object inside a PostgreSQL cluster. Let’s now see the relationship between

the tables created at the SQL level and what happens behind the scenes in the filesystem:

1. To do this, we will use the OIDs and a system table called pg_class, which collects in-

formation about all the tables that are present in the database. So, let’s run this query:

forumdb=> select oid,relname from pg class where relname='users';

oid | relname
_______ P
16389 | users
(1 row)

Here, the oid field is the object identifier field, and relname represents the relation name

of the object. As seen here, the forumdb database is stored in the 16389 directory.

2. Now, let’s see where the users table is stored. To do this, go to the 16386 directory using

the following code:

postgres@learn_postgresql:~$ cd /var/lib/postgresql/16/main/
base/16386

Or if you are using the Docker image, execute:

postgres@learn_postgresql:~$ cd /postgres/16/data/base/16386

920 Basic Statements

3. Once here, execute the following command:

postgres@learn_postgresql:~/data/base/16386% 1s -1 | grep 16389

1 postgres postgres @ Jan 3 09:13 16389

As you can seg, in the directory 16386, there is a file called 16389. In PostgreSQL, each table is
stored in one or more files. If the table size is less than 1 GB, then the table will be stored in a sin-
gle file. If the table has a size greater than 1 GB, then the table will be stored in two files and the
second file will be called 16389. 1. If the users table has a size greater than 2 GB, then the table
will be stored in three files, called 16389, 16389. 1, and 16389. 2; the same thing happens for the

users_username_key index.

\/‘/' In PostgreSQL, each table or index is stored in one or more files. When a table or

index exceeds 1 GB, it is divided into gigabyte-sized segments.

In this section, we’ve learned how to manage tables, and we’ve seen what happens internally. In

the next section, we will learn how to manipulate data inside tables.

Understanding basic table manipulation statements

Now that you have learned how to create tables, you need to understand how to insert, view,
modify, and delete data in the tables. This will help you update any incorrect entries, or update
existing entries, as needed. There are a variety of commands that can be used for this, which we

will look at now.

Inserting and selecting data

In this section, we will learn how to insert data into tables. To insert data into tables, you need

to use the INSERT command. The INSERT command inserts new rows into a table.

It is possible to insert one or more rows specified by value expressions, or zero or more rows

resulting from a query. We will now go through some use cases as follows:

1. Toinsert a new user in the users table, execute the following command:

forumdb=> insert into users (username,gecos,email) values

('myusername', 'mygecos', 'myemail');
INSERT @0 1

Chapter 4 91

This result shows that PostgreSQL has inserted one record into the users table. The first
number is the 0ID of the row that has been inserted; newer versions of PostgreSQL by

default have tables created without OIDs on the rows, so you just get a @ returned.

2. Now, if we want to see the record that we have just entered into the users table, we have

to perform the select command:

forumdb=> select * from users;

pk | username | gecos

mmm oo Hmmmmmm 4mmmmmmme -
1 | myusername | mygecos | myemail
(1 row)

The select command is executed in order to retrieve rows from a table. With this SQL
statement, PostgreSQL returns all the data presentin all the fields of the table. The value

* specifies all the fields present. This can also be expressed as follows:

forumdb=> select pk,username,gecos,email from users;
pk | username | gecos | email

T TP Hmmmmmm - Hmmmmmmm e

1 | myusername | mygecos | myemail

(1 row)

3. Let’s now insert another user into the users table; for example, insert the user 'scotty'

with all their own fields:

forumdb=> insert into users (username,gecos,email) values
('scotty', 'scotty gecos', 'scotty email');
INSERT © 1

4. If we wantto perform the same search as before, ordering data by the username field, we

have to execute the following:

forumdb=> select pk,username,gecos,email from users order by
username;

pk | username | gecos
B En T R T Fommmm e

| myusername | mygecos | myemail

2 | scotty | scotty gecos | scotty email

(2 rows)

92 Basic Statements

\/‘/' The SQL language, without the ORDER BY option, does not return the data

in an orderly manner.

In PostgreSQL, this could also be written as follows:

forumdb=> select pk,username,gecos,email from users order by 2;

pk | username | gecos

mmmedmmemmceeeoa- 4mmmmmm—emmooa- 4mmmemmmeemoee-
1 | myusername | mygecos | myemail

2 | scotty | scotty gecos | scotty email

(2 rows)

\/V> PostgreSQL also accepts field positions on a query as sorting options.

5. Let’s now see how to insert multiple records using a single-row statement. For example,
the following statement will insert three records in the categories table:
forumdb=> insert into categories (title,description) values ('C
Language', 'Languages'), ('Python Language', 'Languages');
INSERT © 2

Thisis a slight variation of the INSERT command. Our categories table will now contain

the following values:

forumdb=> select * from categories;

description

Database Database related discussions

Unix Unix and Linux discussions

Programming Languages | All about programming languages

C Language Languages
Python Language Languages
(5 rows)

Chapter 4 93

6. Now, if we want to select only the tuples where the description is equal to Database

related discussions, use the where condition:

forumdb=> select * from categories where description ='Database
related discussions';

pk | title description

____+ __________ + ______________________________
1 | Database | Database related discussions
(1 row)

7. Thewhere condition filters on one or more fields of the table. For example, if we wanted
to search for all topics with title as orange and description as fruits, we would have

to write the following:

forumdb=> select * from categories where description = 'Languages’
and title='C Language';
pk | title | description
e mmeemmee oo mmmmmmem oo
4 | C Language | Languages
(1 row)

8. Now if, for example, we want to select all the tuples that both have a description field

equal to Languages and are sorted by title in reverse order, execute the following:

forumdb=> select * from categories where description ='Languages'
order by title desc;

title | description

e e e m e
5 | Python Language | Languages
4 | C Language | Languages

(2 rows)

Or we could also write this:

forumdb=> select * from categories where description ='Languages'
order by 2 desc;

title | description

5 | Python Language Languages

4 | C Language Languages

(2 rows)

94 Basic Statements

\/‘/' The ASC and DESC options sort the query in ascending or descending order; if nothing
is specified, ASC is the default.

NULL values

In this section, we will talk about NULL values. In the SQL language, the value NULL is defined as

follows:

Null (or NULL) is a special marker used in Structured Query Language to indicate that
a datavalue does not existin the database. Introduced by the creator of the relational
\E/\/ database model, E. F. Codd, SQL NULL serves to fulfill the requirement that all true
Relational Database Management Systems (RDBMSs) support a representation

of missing information.

Now let’s check out how NULL is used in PostgreSQL:

1. Let’s start by inserting a tuple in this way:

forumdb=> insert into categories (title) values ('A new

discussion');
INSERT @0 1

2. Let’s see now which tuples are present in the categories table:

forumdb=> select * from categories;

description

Database Database related discussions

Unix Unix and Linux discussions

Programming Languages | All about programming languages

C Language Languages
Python Language Languages
A new discussion

(6 rows)

Chapter 4 95

3.

So now, if we want to select all the tuples in which the description is not present, we use

the following:

forumdb=> select * from categories where description ='"';

pk | title | description

———cctcco==== o= ======

(CHTS)

As you can see, PostgreSQL does not return any tuples. This is because the last insert has
entered a NULL value in the description field.
In order to see the NULL values presentin the table, let’s execute the following command:

forumdb=> \pset null NULL
Null display is "NULL".

This tells psql to show NULL values that are present in the table as NULL, as shown here:

forumdb=> select * from categories;

description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
C Language Languages

Python Language Languages

A new discussion NULL

(6 rows)

As you can see, the description value associated with the title A new discussionisnot

an empty string; it is a NULL value.

Now, if we want to see all records that have NULL values in the description field, we have

to use the IS NULL operator:

forumdb=> select title,description from categories where description
is null;
| description

__________________ Fmmmm e

A new discussion | NULL
(1 row)

96 Basic Statements

The preceding query looks for all tuples for which there is no value in the description field.

7. Now, we will search for all tuples for which thereis a value in the description field using

the following query:

forumdb=> select title,description from categories where description

is not null;

description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
C Language Languages

Python Language Languages

(5 rows)

\/‘n,. To perform searches on NULL fields, we have to use the operators IS NULL / IS NOT
NULL. An empty string is different from a NULL value.

Sorting with NULL values

Now let’s see what happens when ordering a table where there are NULL values present:

1. Let’srepeatthe sorting query that we performed previously:

forumdb=> select * from categories order by description ;

title description

Programming Languages | All about programming languages
Database Database related discussions

C Language Languages

Python Language Languages

Unix Unix and Linux discussions

A new discussion NULL

(6 rows)

Chapter 4 97

As you can see, all description values are sorted and NULL values are positioned at the

end of the result set. The same thing can be achieved by running the following:

forumdb=> select * from categories order by description NULLS last;

description

Programming Languages | All about programming languages

DEVELERS Database related discussions
C Language Languages

Python Language Languages

Unix Unix and Linux discussions

A new discussion NULL

2.

forumdb=> select * from categories order by description NULLS first;

description

A new discussion

Programming Languages | All about programming languages
Database Database related discussions

C Language Languages

Python Language Languages

Unix Unix and Linux discussions

If not specified, the following are the default actions for ORDER BY type queries:

\E/‘ ORDER BY NULLS LAST is the default for ASC (which is also the default) and NULLS
FIRST is the default for DESC.

Creating a table starting from another table

We will now examine how to create a new table using data from another table. To do this, you

need to create a temporary table with the data present in the categories table as follows:

forumdb=> create temp table temp_categories as select * from categories;

SELECT 6

98 Basic Statements

This command creates a table called temp_data with the same data structure and data as the

table called categories:

forumdb=> select * from temp_categories ;

description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
C Language Languages

Python Language Languages

A new discussion NULL

Updating data

Now let’s try updating some data:

1. If you wanted to change the Unix value to the Linux value, you would need to run the

following statement:

forumdb=> update temp_categories set title='Linux' where pk = 2;
UPDATE 1

This statement will modify the Unix value to the Linux valuein the title field for all rows

of the temp_categories table that have pk=2, as seen here:

forumdb=> select * from temp_categories where pk=2;
pk | title | description
e o m e e e e
2 | Linux | Unix and Linux discussions
(1 row)

2. Ifyouwanted to change the title value of all the lines for which the description value

is Languages, you would need to run the following statement:

forumdb=> update temp_categories set title = 'no title' where
description = 'Languages';

UPDATE 2

Chapter 4 99

UPDATE 2 means that only two rows have been modified, as shown here:

forumdb=> select * from temp_categories order by description;

description

Programming Languages | All about programming languages
Database Database related discussions
no title Languages

no title Languages

Linux Unix and Linux discussions

A new discussion NULL

You must be careful when using the UPDATE command. If you work in auto-commit mode, there

is no chance of turning back after the update is complete. Auto-commit is the defaultin psql.

Deleting data
In this section, we will see how to delete data from a table. The command needed to delete data
is delete. Let’s get started:

1. If we want to delete all records in the temp_categories table that have pk=5, we have to

perform the following command:

forumdb=> delete from temp_categories where pk=5;
DELETE 1

The preceding statement deletes all the records that have pk=5.DELETE 1 means thatone
record has been deleted. As you can see here, the row with the value of pk=5 is no longer

presentin temp_categories:

forumdb=> select * from temp_categories where pk=5;

pk | title | description

2. Now,if we want to delete all rows that have a description value equal to NULL, we have

to execute this statement:

forumdb=> delete from temp_categories where description is null;

DELETE 1

100

Basic Statements

3.

5.

The preceding statement used a DELETE command combined with the IS NULL operator.

If you want to delete all records from a table, you have to execute the following:

forumdb=> delete from temp_categories ;

DELETE 4

\ n/j Be very careful when you use this command — all records present in the
\/ table will be deleted!

Now the temp_categories table is empty, as shown here:

forumdb=> select * from temp_categories;

pk | title | description

If we want to reload all the data from the categories table to the temp_categories table,

we have to execute this statement:

forumdb=> insert into temp_categories select * from categories;
INSERT © 6

The preceding statement takes all values from the categories table and puts them in the

temp_categories table, as you can see here:

forumdb=> select * from temp_categories order by description;
pk | | description

e e el o mm e e oo
Programming Languages | All about programming languages
Database Database related discussions
C Language Languages
Python Language Languages

Unix and Linux discussions

NULL

Unix

A new discussion

(6 rows)

Another way to delete data is by using the TRUNCATE command. When we want to delete
all the data from a table without providing a where condition, we can use the TRUNCATE

command:

Chapter 4 101

forumdb=> truncate table temp_categories ;

TRUNCATE TABLE

The TRUNCATE command deletes all datain a table. As you can see here, the temp_categories

table is now empty:

forumdb=> select * from temp_categories;
pk | title | description

———cctoco==== o= ======

(CHTS)

Here is some key information about the TRUNCATE command:

e TRUNCATE deletes all the records in a table similar to the DELETE command.
e Inthe TRUNCATE command, it is not possible to use where conditions.

e The TRUNCATE command deletes records much faster than the DELETE command.

Summary

This chapter introduced you to the basic SQL/PostgreSQL statements and some basic SQL com-
mands. You learned how to create and delete databases, how to create and delete tables, what
types of tables exist, which basic statements to use to insert, modify, and delete data, and the

first of many basic queries you can use to query the database.

In the next chapter, you will learn how to write more complex queries that relate to multiple

tables in different ways.

Verify your knowledge

e On PostgreSQL 15 and PostgreSQL, is it possible to make DDL as a normal user?

No it’s not possible. See the PostgreSQL and the public schema section for more details.
e Whatis the psql command to list all the databases with their sizes?

See the Confirming the database size section for more details.

e Ifthe tableis defined as the following:

create table mytable (id integer,city name varchar(60));

102

Basic Statements

The question is, does the following query show all records for which the city_name field
is null?

select * from mytable where city name = K

No it doesn’t. The correct query is:
select * from mytable where city_name is null;

See the NULL values section for more details.

Can we create a new database, taking an existing one as a starting point?

Yes, we can. We can use the TEMPLATE option.

See the Making a new database from a modified template section for more details.

Is the following query is the best way to delete all records in the table called mytable?
delete from mytable;

No, itisn’t. The best way to delete all the records in a table is using the TRUNCATE statement.

See the Deleting data section for more details.

References

The CREATE DATABASE official documentation: https://www.PostgreSQL.org/docs/

current/sql-createdatabase.html

The CREATE TABLE official documentation: https://www.PostgreSQL.org/docs/current/
sql-createtable.html

The SELECT official documentation: https://www.PostgreSQL.org/docs/current/sql-
select.html

The INSERT official documentation: https://www.PostgreSQL.org/docs/current/sql-
insert.html

The DELETE official documentation: https://www.PostgreSQL.org/docs/current/sql-
delete.html

The UPDATE official documentation: https://www.PostgreSQL.org/docs/current/sql-
update.html

The TRUNCATE official documentation: https://www.PostgreSQL.org/docs/current/
sql-truncate.html

https://www.PostgreSQL.org/docs/current/sql-createdatabase.html
https://www.PostgreSQL.org/docs/current/sql-createdatabase.html
https://www.PostgreSQL.org/docs/current/sql-createtable.html
https://www.PostgreSQL.org/docs/current/sql-createtable.html
https://www.PostgreSQL.org/docs/current/sql-select.html
https://www.PostgreSQL.org/docs/current/sql-select.html
https://www.PostgreSQL.org/docs/current/sql-insert.html
https://www.PostgreSQL.org/docs/current/sql-insert.html
https://www.PostgreSQL.org/docs/current/sql-delete.html
https://www.PostgreSQL.org/docs/current/sql-delete.html
https://www.PostgreSQL.org/docs/current/sql-update.html
https://www.PostgreSQL.org/docs/current/sql-update.html
https://www.PostgreSQL.org/docs/current/sql-truncate.html
https://www.PostgreSQL.org/docs/current/sql-truncate.html

Chapter 4 103

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://discord.gg/jYWCjF6Tku

Advanced Statements

In the previous chapter, we started taking our first steps with PostgreSQL. In this chapter, we
will analyze the SQL language more deeply and write more complex queries. We will talk about
SELECT/INSERT/UPDATE again, but this time, we will use the more advanced options surrounding

them. We will then cover joins, common table expressions (CTEs), and merge in depth.
The topics we will talk about will be the following:

e Exploring the SELECT statement
e Using UPSERT and MERGE

e Exploring CTEs

Technical requirements

Before starting, remember to start the Docker container named chapter_05, as shown below:

$ bash run-pg-docker.sh chapter_o05

postgres@learn_postgresql:~$ psql -U forum forumdb

Exploring the SELECT statement

As we saw in the previous chapter, we can use the SELECT statement to filter our datasets using
the equality condition. In the same way, we can filter records using > or < conditions, such as in

the following example:

forumdb=> select * from categories where pk > 2;

pk | | description

N i

106 Advanced Statements

3 | Programming Languages | All about programming languages

(1 row)

The preceding query returns all records that have pk > 2.

Another condition that we can use with the SELECT statement is the 1ike condition. Let’s take

alook at this next.

Using the like clause

Suppose we wanted to find all records that have a title field value starting with the string Prog.

To do this, we would have to use the 1ike condition:

forumdb=> \x

Expanded display is on.

forumdb=> select * from categories where title like 'Progk%';
-[RECORD 1]

pk | 3

title | Programming Languages

description | All about programming languages

As shown, the preceding query returns all records that have a title beginning with the string Prog.
In a similar vein, if we wanted to find all records with titles ending with the word Languages, we

would have to write the following:

forumdb=> select * from categories where title like '%Languages';
-[RECORD 1]

pk | 3

title | Programming Languages

description | All about programming languages

The two kinds of searches can also be combined. For example, if we wanted to search all records

that contain the partial string discuss, we would write the following:

forumdb=> \x
Expanded display is off

forumdb=> select * from categories where description like '%discuss%’;

pk | title description

e e

Chapter 5 107

| Database | Database related discussions

1
2

| Unix | Unix and Linux discussions

(2 rows)

The query given here will return all records whose description contains the string discuss.

Now let’s try to run the following query and see what happens:

forumdb=> select * from categories where title like 'progk';

(@ rows)

As we can see, the search does not return any results. This happens because 1ike searches are

case-sensitive.

Now let’s introduce the upper (text) function. The upper function, given an input string, returns

the same string with all characters in uppercase, as here:

forumdb=> select upper('prog');

Y In PostgreSQL, itis possible to call functions without writing FROM. PostgreSQL does
\/;D> notneed dummy tables to perform the SELECT function. If we were in Oracle DB, the

same query would have to be written this way: select upper('prog"') from DUAL;.

Returning to our preceding example, if we wanted to perform a like case-insensitive search, we

would have to write this statement:

forumdb=> select * from categories where upper(description) like
"%DISCUSS%' ;

pk | title description
____+ __________ + ______________________________

| Database | Database related discussions

1
2

| Unix | Unix and Linux discussions

(2 rows)

We have now covered all of the functions that can be performed using the 1ike operator.

108 Advanced Statements

Using ilike
In PostgreSQL, itis possible to perform a case-insensitive 1ike query by using the ilike operator.

In this situation, our query would become the following:

forumdb=> select * from categories where description ilike '%DISCUSS%';

pk | title | description

____+ __________ + ______________________________
1 | Database | Database related discussions
2 | Unix | Unix and Linux discussions

(2 rows)

This is the PostgreSQL way of solving the case-insensitive 1ike query issue that we encountered

previously.

Using distinct

We will now discuss another kind of query: the distinct query. Firstly, however, we need to
introduce another very useful function for the DBA called the coalesce function. The coalesce
function, given two or more parameters, returns the first value that is not NULL.

For example, let’s use the coalesce function for the test value:

forumdb=> select coalesce(NULL, 'test");

coalesce

In the preceding query, the coalesce function returns test because the first argument is NULL

and the second argument is not NULL.

Now, let’s insert a new category:

forumdb=> insert into categories (title) values ('New Category');
INSERT @ 1

And then let’s perform the following query:

forumdb=# \pset null (NULL)

Null display is "(NULL)".

Chapter 5 109

forumdb=> select pk,title,description from categories;

description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
New Category

(4 rows)

In the example above, the field description has a NULL value for the title New Category.

Now let’s try to use the coalesce function to show the value No Descriptioninstead of NULL.

forumdb=> select pk,title,coalesce(description, 'No description') from
categories;

coalesce

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
New Category No description

(4 rows)

In the preceding code, the coalesce function transforms any NULL value into the string No
description. Another thing that isn’t very user-friendly about the coalesce function is that
the name of the field that is given when a function is called is not the name we would want for
our query. In this case, the second field of the resultset is called coalesce, which is not the name

we would prefer; this is because if we are working in a team, a human-readable name is preferred.

In PostgreSQL, an alias can be assigned to any field in a query. For example, we can assign an alias

to the coalesce field as follows:

forumdb=> select pk,title,coalesce(description, 'No description') as
description from categories;

pk | description

e e e e mecceeoo - m o oo e memmeo

| Database Database related discussions

|
| Unix and Linux discussions
|

| Programming Languages | All about programming languages

110 Advanced Statements

4 | New Category | No description

(4 rows)

Now the resultset has the description field instead of the coalesce field.

nn

If we want to use an alias with spaces or capital letters, we have to quote the alias using "", as

in the following example:

forumdb=> select pk,title,coalesce(description, 'No description') as
"Description" from categories;

Description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
New Category No description

(4 rows)

The resultset doesn’t have an alias of Description (uppercase) but does have an alias of

description (lowercase), which doesn’t seem right. Now let’s insert another record like this:

forumdb=> insert into categories (title,description) values
('Database’, 'PostgresSQL');
INSERT © 1

And let’s perform this query:

forumdb=> select title from categories order by title;

Database

Database

New Category
Programming Languages
Unix

(5 rows)

As we can see in the query above, there are 2 records with the same value, Database; if we want

to show all the distinct values, we have to use the DISTINCT clause:

forumdb=> select distinct title from categories order by title;

title

Chapter 5 m

Database
New Category
Programming Languages

Unix

(4 rows)

In the preceding query, we have used the select distinct statement. The select distinct
statement is used to return only distinct (different) values. Internally, the distinct statement
involves a data sort for large tables, which means that if a query uses the distinct statement,

the query may become slower as the number of records increases.

Using limit and offset

The 1imit clauseis the PostgreSQL way to limit the number of rows returned by a query, whereas

the offset clause is used to skip a specific number of rows returned by the query.

limit and offset are used to return a portion of data from a resultset generated by a query; the
limit clause is used to limit the number of records in output and the offset clause is used to

provide PostgreSQL with the position in the resultset from which to start returning data.
They can be used independently or together.

Now let’s test 1imit and offset using the following queries:

forumdb=> select * from categories order by pk limit 1;

pk | title description

____+ __________ + ______________________________
1 | Database | Database related discussions
(1 row)

The preceding query returns only the first record that we have inserted; this is because the pk

field is an integer type with a default value generated always as the identity.

If we want to see the first two records that were inserted, we have to perform the following query:

forumdb=> select * from categories order by pk limit 2;
pk | title | description
____+ __________ + ______________________________

| Database | Database related discussions

1
p

| Unix | Unix and Linux discussions

(2 rows)

112 Advanced Statements

If we only want the second record that was inserted, we have to perform the following query:

forumdb=> select * from categories order by pk offset 1 limit 1;

pk | title | description

____+ _______ + ____________________________
2 | Unix | Unix and Linux discussions
(1 row)

offset and 1limit are very useful when we want to return data in a paged way.

Another valuable function of 1imit is that it can create a new table from an existing table. For
example, if we want to create a table called new_categories starting from the categories table,

we have to execute the following statement:

forumdb=> create table new_categories as select * from categories limit 0;
SELECT ©

This statement will copy into the new_categories table only the data structure of the table cat-

egories.

The SELECT @ clause means that no data has been copied into the new_categories table; only

the data structure has been replicated, as we can see here:

forumdb=> \d new_categories
Table "forum.new_categories"”
Column Type | Collation | Nullable | Default

to-mmm - e to-mm - - e

| integer |
| text |

description | text |

Using subqueries

In this section, we will talk about subqueries. Subqueries can be described as nested queries —we
can nest a query inside another query using parentheses. Subqueries can return a single value
or a recordset, just like regular queries. We will start by introducing subqueries using the IN/

NOT IN operator.

Chapter 5 13

Subqueries and the IN/NOT IN condition

Let’s start with the IN operator; we can use the IN operator inside a where clause instead of using
multiple OR conditions. For example, if you wanted to search for all categories that have the value

pk=1 or the value pk=2, you would have to perform the following statement:

forumdb=> select * from categories where pk=1 or pk=2;

pk | title | description

____+ __________ + ______________________________
1 | Database | Database related discussions

2 | Unix | Unix and Linux discussions

(2 rows)

Another way to reach the same outcome is the following:

forumdb=> select * from categories where pk in (1,2);
pk | title description
e e e e e

1 | Database | Database related discussions

2 | Unix | Unix and Linux discussions

(2 rows)

An operator similar to the IN operator but with reverse functionality is the NOT IN operator. For
example, if we wanted to search for all categories that do not have pk=1 or pk=2, we would have

to execute the following:

forumdb=> select * from categories where pk not in (1,2);

pk | | description

e e mememeoo o o e e
3 | Programming Languages | All about programming languages
4 | New Category | (NULL)
5 | Database | PostgresqL

(3 rows)

Now, we can insert some data into users and the posts table:

forumdb=> insert into users (username,email) values ('luca_ferrari', 'luca@
pgtraining.com'), ('enrico_pirozzi', 'enrico@pgtraining.com");

INSERT @ 2

114 Advanced Statements

forumdb=> insert into posts (title,content,author,category) values
('Indexing PostgreSQL', 'Btree in PostgreSQL is....',1,1);
INSERT © 1

forumdb=> insert into posts (title,content,author,category) values

('Indexing Mysql', 'Btree in Mysql is....',1,1);

INSERT 0 1

forumdb=> insert into posts (title,content,author,category) values
types in C++','Data type in C++ are ..' ,2,3);

INSERT 0 1

The records present in the posts table are now as follows:

forumdb=> \x

Expanded display is on.

forumdb=> select pk,title,content,author,category from posts;
-[RECORD 1]

pk
title Indexing PostgreSQL

I

|
content | Btree in PostgreSQL is....

author [

|

1
category | 1
-[RECORD 2]
pk
title Indexing Mysql

author

I
|
content | Btree in Mysql is....
| 1
| 1

category
-[RECORD 3]

pk | 3

title | Data types in C++
content | Data type in C++ are ..
author | 2

category | 3

Suppose we now want to search for all posts that belong to the Database category. To do this, we

can use several methods.

Chapter 5 115

The following method uses subqueries:

forumdb=> select pk,title,content,author,category from posts where
category in (select pk from categories where title ='Database');
-[RECORD 1]

pk | 1

title | Indexing PostgresSQL

content | Btree in PostgreSQL is....

author | 1

category | 1

-[RECORD 2]

pk | 2

title | Indexing Mysql
content | Btree in Mysql is....
author | 1

category | 1

The subquery is represented by the following:

forumdb=> \x
Expanded display is off.

forumdb=> select pk from categories where title ='Database';
pk

This statement extracts the values pk=1 and pk=5 from the category table and the external query
searches the records in the posts table that have pk=1 or pk=5. Similarly, if you wanted to search
for all post values that do not belong to the Database category, you would have to perform the

following statement:

forumdb=> \x

Expanded display is on.

forumdb=> select pk,title,content,author,category from posts where

category not in (select pk from categories where title ='Database');

116 Advanced Statements

-[RECORD 1]
pk N
title | Data types in C++

content | Data type in C++ are ..
author | 2
category | 3

Subqueries and the EXISTS/NOT EXISTS condition

The EXISTS statement is used when we want to check whether a subquery returns (TRUE), and
the NOT EXISTS statement is used when we want to check whether a subquery does not return
(FALSE). For example, if we wanted to write the same conditions written previously using the
EXISTS/NOT EXISTS condition, we’d have to perform the following:

forumdb=> select pk,title,content,author,category from posts where exists
(select 1 from categories where title ='Database' and posts.category=pk);
-[RECORD 1]

pk

title Indexing PostgreSQL

I

I
content | Btree in PostgreSQL is....

author |

I

1
category 1
-[RECORD 2]
pk
title Indexing Mysql

author 1
1

I
|
content | Btree in Mysql is....
I
|

category

The preceding query returns the same results as the query written with the IN condition.

Similarly, if we wanted to search for all post values that do not belong to the Database category

using the NOT EXISTS condition, we’d have to write the following:

forumdb=> select pk,title,content,author,category from posts where not
exists (select 1 from categories where title ='Database' and posts.
category=pk);

-[RECORD 1]

pk N

title | Data types in C++

Chapter 5 117

content | Data type in C++ are ..

author | 2
category | 3

Both queries written with the IN condition and with the EXISTS condition are called semi-join

queries, and we will be looking at joins in the next section.

Learning about joins

Let’s address what a join is, how many types of joins exist, and what they are used for. We can

think of a join as a combination of rows from two or more tables.

For example, the following query returns all the combinations from the rows of the category

table and the rows of the posts table:

forumdb=> select c.pk,c.title,p.pk,p.category,p.title from categories

c,posts p;

| category
Database Indexing PostgreSQL
Unix Indexing PostgreSQL
Programming Languages Indexing PostgreSQL
New Category Indexing PostgreSQL
Database Indexing PostgreSQL
Database Indexing Mysql
Unix Indexing Mysql
Programming Languages Indexing Mysql
New Category Indexing Mysql
Database Indexing Mysql
Database Data types in C++
Unix Data types in C++
Programming Languages Data types in C++

New Category Data types in C++

1
2
3
4
)
1
2
3
4
)
1
2
3
4
)

W W W W wWwNNNNNDRR R R R
W W W W WR R R R R R R R BB

Database Data types in C++

118 Advanced Statements

This query makes a Cartesian product between the category table and the posts table. It can

also be called a cross join:

Figure 5.1: A cross join

The same query can also be written in the following way:

forumdb=> select c.pk,c.title,p.pk,p.category,p.title from categories c
CROSS JOIN posts p;
| category

Database Indexing PostgreSQL
Unix Indexing PostgreSQL
Programming Languages Indexing PostgreSQL
New Category Indexing PostgreSQL
Database Indexing PostgreSQL
Database Indexing Mysql
Unix Indexing Mysql
Programming Languages Indexing Mysql
New Category Indexing Mysql
Database Indexing Mysql
Database Data types in C++
Unix Data types in C++
Programming Languages Data types in C++

New Category Data types in C++

1
2
3
4
)
1
2
3
4
)
1
2
3
4
)

W W W W wWwNNNNNDR R R R R
W W W W WwWwR P R R R R R R R BB

Database Data types in C++

Chapter 5 119

Using INNER JOIN

Now suppose that starting with all the possible combinations that exist between the rows of the
category table and the rows of the posts table, we want to filter all the rows that have the same
value as the category field (category.pk = posts.category). We want to have a result like the

one described in the following diagram:

Table A Table B

Figure 5.2: An inner join

\/;l’/> The INNER JOIN keyword selects records that have matching values in both tables.

To achieve this, we need to run the following code:

forumdb=> select c.pk,c.title,p.pk,p.category,p.title from categories
c,posts p where c.pk=p.category;
pk | category |
e o
1 | Database 1 | Indexing PostgreSQL
1 | Database 1 | Indexing Mysql
3 | Programming Languages 3 | Data types in C++

(3 rows)

forumdb=> select c.pk,c.title,p.pk,p.category,p.title from categories c
inner join posts p on c.pk=p.category;
pk | | pk | category |

e LT T T s SR ommmmm oo

1 | Database 1 | Indexing PostgreSQL

120 Advanced Statements

1 | Database 1 | Indexing Mysql

3 | Programming Languages | 3 | Data types in C++

(3 rows)

INNER JOIN versus EXISTS/IN

If we wanted to search for all posts that belong to the Database category using the INNER JOIN

condition, we would have to rewrite the query in this way:

forumdb=> \x

Expanded display is on.

forumdb=> select c.pk,c.title,p.pk,p.category,p.title from categories c
inner join posts p on c.pk=p.category where c.title='Database’;

-[RECORD 1]

pk | 1

title | Database

pk | 1

category | 1

title | Indexing PostgresSQL
-[RECORD 2]

pk | 1

title | Database

pk | 2

category | 1

title | Indexing Mysql

\/‘/' Using the INNER JOIN condition, we can rewrite all queries that can be written using
the IN or EXISTS condition.

It is preferable to use JOIN conditions whenever possible instead of IN or EXISTS conditions, be-

cause they perform better in terms of execution speed, as we will see in the following chapters.

Chapter 5

Using LEFT JOINS

We will now explore what a left join is. As an example, we can perform the following query:

forumdb=> select c.*,p.category,p.title from categories c left join posts
p on c.pk=p.category;

-[RECORD 1]

pk 1

title Database

description | Database related discussions
category 1

title Indexing PostgreSQL

-[RECORD 2

pk

title Database

description Database

category 1

title Indexing

-[RECORD 3

pk

title Programming Languages
description | All about programming languages
category E}

title Data types in C++

-[RECORD 4

pk

title

description | Unix and Linux discussions
category (NULL)

title (NULL)

-[RECORD 5

pk

title Database

description | PostgreSQL

category (NULL)

title

122 Advanced Statements

pk 4

title New Category
category (NULL)

(NULL)

|

|
description | (NULL)

|

|

title

This query returns all records of the categories table and returns the matched records from the
posts table. As we can see, if the second table (the posts table, in this example) has no matches,
the resultis NULL.

Y The left join keyword returns all records from the left table (tablel), and all
\/L’; the records from the right table (table2). The result is NULL from the right side if

there is no match.

This diagram gives us an idea of how a left join works:

Table A Table B

Figure 5.3: A left join

Suppose now that we want to search for all categories that do not have posts — we could write

the following:

forumdb=> \x
Expanded display is off.

forumdb=> select * from categories c where c.pk not in (select category
from posts);

description

e L P P e e

2 | Unix | Unix and Linux discussions
4 | New Category | (NULL)
5 | Database | PostgresqQL

(3 rows)

Chapter 5 123

This query, written using the NOT IN condition, looks for all records in the categories table for
which the pk value does not match in the category field of the posts table. As we have already
seen, another way to write the same query would be to use the NOT EXISTS condition:

forumdb=> select * from categories c where not exists (select 1 from posts
where category=c.pk);

title | description

____+ ______________ + ____________________________
2 | Unix | Unix and Linux discussions
4 | New Category | (NULL)

5 | Database | PostgresqQL

(3 rows)

If we now wanted to use a left join in order to achieve the same purpose, we would start by writing

the following left join query:

forumdb=> \x
Expanded display is on.

forumdb=> select c.*,p.category from categories c left join posts p on
p.category=c.pk;

-[RECORD 1]

pk | 1

title | Database

description | Database related discussions
category [

-[RECORD 2]

pk I

title | Database

description | Database related discussions
category [

-[RECORD 3]

pk I

title | Programming Languages

description | All about programming languages
category | 3

-[RECORD 4]

pk | 2

124 Advanced Statements

title Unix

description Unix and Linux discussions
category (NULL)

-[RECORD 5

pk

title Database

description PostgreSQL

category

-[RECORD 6

pk

title New Category
description (NULL)
category (NULL)

From the result, it is immediately clear that all the values we are looking for are those for which

the value of p. category is NULL.

So, we rewrite the query in the following way:

forumdb=> \Xx

Expanded display is off.

forumdb=> select c.* from categories c left join posts p on p.category=c.
pk where p.category is null;

| description

ey T e

| Unix and Linux discussions
4 | New Category | (NULL)
5 | Database | PostgresqL

(3 rows)

As shown here, we get the same result we had using the NOT EXISTS or NOT IN condition.

\/‘n/' Using the left join condition, we can rewrite some queries that can be written
using the IN or EXISTS condition.

Chapter 5 125

As mentioned earlier, it is preferable to use JOIN conditions whenever possible instead of IN or
EXISTS conditions, because they perform better in terms of execution speed, as we will see in

the following chapters.

Using RIGHT JOIN

The right join is the twin of the left join, so we would have the same result if we wrote table A
left join table B, or table B right join table A.For example, we can obtain the same

results if we write:

select c.*,p.category from categories c left join posts p on p.category=c.

pk;

or if we write:

select c.*,p.category,p.title from posts p right join categories c on
c.pk=p.category;

as we can see here:

forumdb=> \x
Expanded display is on.

forumdb=> select c.*,p.category,p.title from posts p right join categories
c on c.pk=p.category;

-[RECORD 1]
pk

title

1

Database

1
Indexing PostgreSQL

|

I
description | Database related discussions
category |
title |
-[RECORD 2
pk
title Database
description | Database
category 1
title Indexing
-[RECORD 3

pk

I
title | Programming Languages
|

description | All about programming languages

126 Advanced Statements

category | 3

title | Data types in C++
-[RECORD 4

pk

title

description | Unix and Linux discussions
category (NULL)

title

-[RECORD 5

pk

title Database
description | PostgreSQL
category (NULL)

title

-[RECORD 6

pk

title New Category
description (NULL)

category (NULL)

title (NULL)

Y The RIGHT JOIN keyword returns all records from the right table (table2) and all
\/L’; records from the left table (tablel) that match the right table (table2). The resultis

NULL from the left side when there is no match.

This diagram illustrates how RIGHT JOIN works:

Table A Table B

Figure 5.4: Aright join

Chapter 5 127

Using FULL OUTER JOIN

In SQL, FULL OUTER JOINis the combination of what we would have if we put together the right

join and the left join. We will check it out using the following steps:

1.

Let’s create a new temporary table and insert some data:

forumdb=> create temp table new_posts as select * from posts;
SELECT 3

forumdb=> insert into new_posts (pk,title,content,author,category)

values (6,"'A new Book','A new book not present in
categories....',1,NULL);

INSERT 0 1

Now, the current situation is as follows:

forumdb=> \x
Expanded display is off.
forumdb=> select pk,title,category from new_posts ;

| category

| Indexing PostgresQL
| Indexing Mysql
| Data types in C++

| A new Book

forumdb=> select c.pk,c.title,p.pk,p.title from categories c inner
join new_posts p on p.category=c.pk;

pk |

____+ _______________________

1 | Database | Indexing PostgresQL

1 | Database | Indexing Mysql
3 | Programming Languages | Data types in C++

(3 rows)

This query returns all the records that have posts (in the table new_post) and categories.

128

Advanced Statements

4. If we wanted to have the left and right joins between the new_posts and category tables,

we’d have to use the full outer join and write the following:

forumdb=> select c.pk,c.title,p.pk,p.title from categories c full

outer join new_posts p on p.category=c.pk;

DEVELER

Database

Programming Languages
(NULL)

Unix (NULL)
(NULL)

(NULL)

Database

New Category

Indexing PostgreSQL

Indexing Mysql
Data types in C++
A new Book

(NULL)

(NULL)

(NULL)

(7 rows)

This diagram illustrates how the full outer join works:

Table A Table B

Figure 5.5: A full outer join

One question we need to consider is, What is the difference between a full join and a cross join, which

we saw at the beginning of this section on joins?

Well, a full outer join is different from a cross join because a cross join makes a Cartesian product

from all the records present in the tables.

For example, in a cross join with the same data as the preceding full join, we would get the fol-

lowing result:

forumdb=> select c.pk,c.title,p.pk,p.title from categories c cross join
new_posts p;

Chapter 5 129

DEVELERS Indexing PostgreSQL

Unix Indexing PostgreSQL
Programming Languages Indexing PostgreSQL
New Category Indexing PostgreSQL
Database Indexing PostgreSQL
Database Indexing Mysql
Unix Indexing Mysql
Programming Languages Indexing Mysql
New Category Indexing Mysql
Database Indexing Mysql
Database Data types in
Unix Data types in
Programming Languages Data types in
New Category Data types in
Database Data types in
Database A new Book
Unix new Book
Programming Languages new Book

New Category new Book

OO W W W W WNNNNNRRLPRPR PR

1
2
3
4
)
1
2
3
4
)
1
2
3
4
)
1
2
3
4
)

Database new Book

Using LATERAL JOIN

A lateral join is a type of join in SQL that allows you to join a table with a subquery, where the
subquery is run for each row of the main table. The subquery is executed before joining the rows
and the result is used to join the rows. With this join mode, you can use information from one

table to filter or process data from another table.

Let’s add a field called 1likes to the table posts and insert some data on this field:

forumdb=> alter table posts add likes integer default ©;

ALTER TABLE

forumdb=> update posts set likes = 3 where title like 'Indexing%';
UPDATE 2

The current situation is:

forumdb=> select title,likes from posts order by likes ;

title | likes

130 Advanced Statements

_____________________ == === ==

Data types in C++ | 0

Indexing PostgreSQL | 3

Indexing Mysql | 3

(3 rows)

Now let’s suppose that we want to search for all users that have posts with likes greater than 2;

a query that solves this problem is:

forumdb=> select u.* from users u where exists (select 1 from posts p
where u.pk=p.author and likes > 2) ;
username | gecos |
e t----m - dommm e
1 | luca_ferrari | | luca@pgtraining.com
(1 row)

Let’s suppose now that we want the value of the likes field too. A simple way to solve this prob-
lem is using the lateral join:
forumdb=> select u.username,q.* from users u join lateral (select author,
title,likes from posts p where u.pk=p.author and likes > 2) as q on true;

username | author |

luca_ferrari Indexing PostgreSQL

luca_ferrari Indexing Mysql

(2 rows)

This query is very similar to the EXISTS query, except the fact that, in the main query, we can

have all the values that are in the subquery and we can use them in the main part of the query.

Aggregate functions

Aggregate functions perform a calculation on a set of rows and return a single row. PostgreSQL

provides all the standard SQL aggregate functions:

e AVG(): This function returns the average value.

e COUNT(): This function returns the number of values.
e MAX(): This function returns the maximum value.

e MIN(): This function returns the minimum value.

e SUM(): This function returns the sum of values.

Chapter 5 131

Aggregate functions are used in conjunction with the group by clause. A group by clause splits a
resultsetinto groups of rows and aggregate functions perform calculations on them. For example,
if we wanted to count how many records there are for each category, PostgreSQL first groups the

data and then counts it. The following diagram illustrates the process:

Figure 5.6: Group by aggregation

This diagram illustrates that PostgreSQL, before grouping the data, sorts it internally. Therefore,
we must remember that a grouping operation always implies an ordering operation; this will

become more clear when we discuss performance later on.

Now that we have understood the theory, let’s address how to actually calculate how many re-

cords there are for each category:

forumdb=> select category,count(*) from posts group by category;

category | count

(2 rows)

The preceding query counts how many records there are for each category in the posts table.

Another way to write the same query is as follows:

forumdb=> select category,count(*) from posts group by 1;

category | count

132 Advanced Statements

(2 rows)

\/u' In PostgreSQL, we can write the group by condition using the name of the fields or

their position in the query.

Another condition that we can use is the having condition. Suppose that we want to count how

many records there are for each category that have a count greater than 2. To do this, we would

have to add the having condition after the group by condition, thus writing the following:
forumdb=> select category,count(*) from posts group by category having
count(*) > 1;

category | count

forumdb=> select category,count(*) from posts group by 1 having count(*) >
1;

category | count

Now let’s see how the aggregation functions work if we add aliases. Let’s resume the first query
and write the following:
forumdb=> select category,count(*) as category count from posts group by
category;

category | category count

Chapter 5 133

As seen here, we can use an alias on aggregate functions.

However, what do we do if we want to use an alias inside a query that has a having condition

too? To answer this question, let’s try the following statement:

forumdb=> select category,count(*) as category_count from posts group by
category having category count > 1;

ERROR: column "category count” does not exist

As we can see, we can’t use an alias on a having condition. The correct way to write the preceding

query is as follows:

forumdb=> select category,count(*) as category_ count from posts group by
category having count(*) > 1;

category | category count

In the next chapter, we will discuss aggregates in more detail.

UNION/UNION ALL

The UNION operator is used to combine the resultset of two or more SELECT statements. We can

use the UNION statement only if the following rules are respected:

e Each SELECT statement within UNION must have the same number of columns.
e The columns must have similar data types.

e The columnsin each SELECT statement must be in the same order.
Let’s explore an example.

First, we need to insert some data:

forumdb=> insert into tags (tag) values ('Database'), ('Operating
Systems');

INSERT @ 2

The situation on the table tags is:

forumdb=> select tag from tags;

134 Advanced Statements

Database

Operating Systems

(2 rows)

and on the table categories is:

forumdb=> select title from categories;

Database

Unix

Programming Languages
New Category

DEVELER

(5 rows)

Suppose now that we want to have a resultset that is a union of tags and categories; in other

words, we want to reach this result:

Operating Systems
Database

New Category
Programming Languages

Unix

To achieve this, we have to use the UNION operator:

forumdb=> select tag as datalist from tags UNION select title as datalist
from categories;

datalist

New Category
Operating Systems
Programming Languages
Database

Unix

(5 rows)

Chapter 5 135

The UNION operator combines the values of the two tables and removes duplicates. If we don’t
want duplicates to be removed and instead have them remain in the resultset, we have to use
the UNION ALL operator:

forumdb=> select tag as datalist from tags UNION ALL select title as
datalist from categories order by 1;

datalist

Database

Database

Database

New Category
Operating Systems
Programming Languages
Unix

(7 rows)

EXCEPT/INTERSECT

The EXCEPT want to operator returns rows by comparing the resultsets of two or more queries.
The EXCEPT operator returns distinct rows from the first (left) query that is not in the output of
the second (right) query. Similar to the UNION operator, the EXCEPT operator can also compare

queries that have the same number and the same datatype of fields.

For example, say we have the following:

forumdb=> select tag from tags;

Database
Operating Systems

(2 rows)

forumdb=> select title from categories;

Database

136 Advanced Statements

Unix

Programming Languages

New Category
Database

(5 rows)

And we want to reach this result:

New Category
Programming Languages

Unix

We would need to order all records that are present in the categories table but that are not present

in the tags table by the title field. To do this, we would use the following query:

forumdb=> select title as datalist from categories except select tag as
datalist from tags order by 1;

datalist

New Category
Programming Languages
Unix

(3 rows)

The INTERSECT operator performs the reverse operation. It searches for all the records present in

the first table that are also present in the second table:

forumdb=> select title as datalist from categories intersect select tag as
datalist from tags order by 1;

datalist

Database
(1 row)

In this section, we have taken a detailed look at the instructions needed to search data in tables
using various statements and joins. In the next section, we will see how to modify the datain the

tables in more advanced ways.

Chapter 5 137

Using UPSERT

In this section, we will look at the PostgreSQL way to make an UPSERT statement. There is no

UPSERT statement in SQL, but the same effect can be achieved using an INSERT SQL statement.

UPSERT — the PostgreSQL way

In PostgreSQL, the UPSERT statement does not exist as in other DBMSes. An UPSERT statement
is used when we want to insert a new record on top of the existing record or update an existing

record. To do this in PostgreSQL, we can use the ON CONFLICT keyword:

INSERT INTO table name(column_list) VALUES(value_list)
ON CONFLICT target action;

Here, ON CONFLICT means that the target action is executed when the record already exists (mean-

ing when a record with the same primary key exists). The target action could be this:

DO NOTHING

Alternatively, it could be the following:

DO UPDATE SET { column_name = { expression | DEFAULT } |

(column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...]
) |

(column_name [, ...]) = (sub-SELECT)

YILoeed
[WHERE condition]

Now, let’s look at an example to better understand how UPSERT works:

1. For example, start with the j_posts_tags table:

forumdb=> \d j _posts_tags
Table "forum.j_posts_tags"
Column Type | Collation | Nullable | Default

————————— s e e L e

tag_pk | integer |

post_pk | integer | | not null |
Foreign-key constraints:

"j_posts_tags_post_pk_fkey" FOREIGN KEY (post_pk) REFERENCES
posts(pk)

138 Advanced Statements

"j_posts_tags_tag_pk_fkey" FOREIGN KEY (tag_pk) REFERENCES

tags(pk)

2. First, let’s add a primary key to the j_posts_add table:

forumdb=> alter table j_posts_tags add constraint j_posts_tags_pkey
primary key (tag_pk,post_pk);
ALTER TABLE

ALTER TABLE

forumdb=> \d j_posts_tags
Table "forum.j_posts_tags"
Column Type | Collation | Nullable | Default
————————— bt e EE T R
| not null |
| not null |
Indexes:
"j_posts_tags_pkey" PRIMARY KEY, btree (tag_pk, post_pk)
Foreign-key constraints:
"j_posts_tags_post_pk_fkey" FOREIGN KEY (post_pk) REFERENCES
posts(pk)
"j_posts_tags_tag_pk_fkey" FOREIGN KEY (tag_pk) REFERENCES
tags (pk)

3. Next, let’s insert some records in the j_posts_tags table:

forumdb=> insert into j_posts_tags (post_pk ,tag pk) values
(3,2),(1,1),(2,1);
INSERT © 3

forumdb=> select * from j_posts_tags ;

tag_pk | post_pk

Chapter 5 139

4. Nowlet’s try toinsert another record with the same primary key. If we perform a standard
insert statement, as follows, we can see that PostgreSQL returns an error because we are

trying to insert a record that already exists:

forumdb=>insert into j_posts_tags (post_pk ,tag pk) values (2,1);

ERROR: duplicate key value violates unique constraint "j posts_
tags_pkey"

DETAIL: Key (tag_pk, post_pk)=(1, 2) already exists.

5. Let’snow try using the ON CONFLICT DO NOTHING option:

forumdb=> insert into j_posts_tags (post_pk ,tag_pk) values (2,1) ON
CONFLICT DO NOTHING;

INSERT 0 ©

forumdb=> select * from j_posts_tags ;

tag_pk | post_pk

(3 rows)

In this case, PostgreSQL doesn’t return an error; instead, it simply does nothing.

6. Now let’s try the DO UPDATE set option. This option realizes the UPSERT statement, as

in the following example:

forumdb=> insert into j_posts_tags (post_pk ,tag_pk) values (2,1) ON
CONFLICT (tag_pk,post _pk) DO UPDATE set tag pk=excluded.tag pk+1;
INSERT © 1

forumdb=> select * from j_posts_tags ;

tag_pk | post_pk

(3 rows)

140 Advanced Statements

The fields inside the ON CONFLICT condition must have a unique or exclusion constraint. The

previous statement simply replaces the following statement:

INSERT INTO j_posts _tags (post_pk ,tag pk) values (2,1)

It gets replaced with this statement:

UPDATE set tag_pk=tag_pk+1 where tag pk=1 and post_pk=2

Learning the RETURNING clause for INSERT

In PostgreSQL, we can add the RETURNING keyword to the insert statement. The RETURNING key-
word in PostgreSQL provides an opportunity to return the values of any columns from an insert
or update statement after the insert or update was run. For example, if we want to return all the

fields of the record that we have just inserted, we have to perform a query as follows:

forumdb=> insert into j_posts_tags (tag_pk,post_pk) values(1,3) returning
5

tag_pk | post_pk

INSERT @ 1

The * means that we want to return all the fields of the record that we have just inserted; if we

want to return only some fields, we have to specify what fields the query has to return:

forumdb=> insert into j_posts_tags (tag_pk,post_pk) values(1,2) returning
tag_pk;

INSERT @ 1

This feature will show itself to be particularly useful at the end of the chapter when we talk about
CTEs.

Chapter 5 141

Returning tuples out of queries

In previous chapters, we have looked at simple update queries, such as the following:

forumdb=> update posts set title = 'A view of Data types in C++' where pk
= 3;

UPDATE 1

Now we will look at something more complicated. What if we want to update some records in

the posts table that are related in some way?

UPDATE related to multiple records

Let’s start with the following scenario:

1. Consider the categories table:

forumdb=> SELECT * FROM categories;

pk | | description

e e o o m e
Database | Database related discussions
Unix | Unix and Linux discussions
Programming Languages | All about programming languages
New Category |
Database | PostgresQL

2. Let’s consider a new table of categories from which we want to update the existing

categories table.

forumdb=> create temp table t_categories as select * from categories
limit 0;
SELECT ©

forumdb=> insert into t_categories (pk,title,description) values
(4, "Machine Learning', 'Machine Learning discussions'), (5, 'Software
engineering', 'Software engineering discussions');

INSERT © 2

forumdb=> select * from t_categories ;

pk | | description

———cflcco——o—— oo ——o—co= o= dbeco——oo——oo oo oo— oo oo o ==

142 Advanced Statements

4 | Machine Learning | Machine Learning discussions

5 | Software engineering | Software engineering discussions

(2 rows)

Let’s suppose we want to pick up the values from the table t_categories and use them to update

the values of the table categories; here is the resultset we want to reach:

description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
Machine Learning Machine Learning discussions

Software engineering Software engineering discussions

The query we have to execute is:

forumdb=>update categories c set title=t.title,description=t.description
from t_categories t where c.pk=t.pk;
UPDATE 2

forumdb=> select * from categories;

description

Database Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
Machine Learning Machine Learning discussions

Software engineering Software engineering discussions

(5 rows)

In this query, PostgreSQL is able to update the fields title and description of the categories
table using the data from the table t_categories that have a match on the pk field; when we talk

about the merge statement, we’ll see another way to reach the same goal.

MERGE

Starting from PostgreSQL 15, we can achieve the same goal we achieved in the previous section
by using the MERGE statement; it is preferable to use the MERGE statement as it is present in SQL
2003 ANSI.

Chapter 5 143

Now, let’s start from the previous values of table categories:

forumdb=> select * from categories;

description

DEVELER Database related discussions
Unix Unix and Linux discussions
Programming Languages | All about programming languages
Machine Learning Machine Learning discussions
Software engineering Software engineering discussions

(5 rows)

Then let’s create another dataset with some changes that we want to apply to the categories table:

forumdb=> create temp table new_data as select * from categories limit ©;
SELECT ©

forumdb=> insert into new_data (pk,title,description) values (1, 'Database
Discussions', 'Database discussions'), (2, 'Unix/Linux discussion', 'Unix and
Linux discussions');

INSERT © 2

forumdb=> select * from new_data;
pk | | description
e e R
| Database Discussions | Database discussions

| Unix/Linux discussion | Unix and Linux discussions

Database Discussions Database discussions

Unix/Linux discussion Unix and Linux discussions

Machine Learning Machine Learning discussions

I I
I I
| Programming Languages | All about programming languages
I I
I I

Software engineering Software engineering discussions

144 Advanced Statements

The query that we have to perform to reach this goal is:

forumdb=> merge into categories c
using new_data n on c.pk=n.pk
when matched then
update set title=n.title,description=n.description

when not matched then

insert (pk,title,description)

OVERRIDING SYSTEM VALUE values (n.pk,n.title,n.description);
MERGE 2

forumdb=> select * from categories order by 1;

description

Database Discussions Database discussions
Unix/Linux discussion Unix and Linux discussions
Programming Languages | All about programming languages
Machine Learning Machine Learning discussions

Software engineering Software engineering discussions

(5 rows)

The query above checks if there is a match between the value of the field PK of the new_data table
and the value of the field of the categories table. If there is a match, the UPDATE will be executed,;
otherwise, the INSERT will be executed. The OVERRIDING SYSTEM VALUE clause is used because,
in the INSERT statement, we have also specified the insertion of the values of the PK field taken
from the new_data table, and since the PK field in the categories table is defined as GENERATED
ALWAYS, without the OVERRIDING SYSTEM VALUE clause, PostgreSQL will generate an error.

Exploring UPDATE ... RETURNING

As with the INSERT statement, the update statement also has the possibility of adding the
RETURNING keyword. The update statement works in the same way as the INSERT statement:

forumdb=> update categories set title='A.I' where pk=4 returning
pk,title,description;
pk | title | description

e e

4 | A.I | Machine Learning discussions
(1 row)

Chapter 5 145

UPDATE 1

Exploring DELETE ... RETURNING

As we’ve seen, the update statement, like the INSERT statement, has the possibility to add the

RETURNING keyword; this feature is also available for the delete statement:

forumdb=> delete from t_categories where pk=4 returning

pk,title,description;
description
e e e e e
4 | Machine Learning | Machine Learning discussions
(1 row)
DELETE 1

In the next section, we’ll talk about CTEs, an advanced method to return and modify data.

Exploring CTEs
In this section, we are going to talk about CTEs. This section will be split into three parts. Firstly,

we will talk about the concept of CTEs; secondly, we will discuss how CTEs are implemented

starting from PostgreSQL 12; and finally, we will explore some examples of how to use CTEs.

CTE concept
A CTE, or a common table expression, is a temporary result taken from a SQL statement. This
statement can contain SELECT, INSERT, UPDATE, or DELETE instructions. The lifetime of a CTE is

equal to the lifetime of the query. Here is an example of a CTE definition:
WITH cte_name (column_list) AS (

CTE_query_definition

)

statement;

If, for example, we wanted to create a temporary dataset with all the posts written by the author

enrico_pirozzi, we would have to write this:

forumdb=> with posts_author_1 as
(select p.* from posts p

inner join users u on p.author=u.pk

where username='enrico_pirozzi')

select pk,title from posts_author_1;

146 Advanced Statements

3 | A view of Data types in C++
(1 row)

We could also write the same thing using an inline view:

forumdb=> select pk,title from

(select p.* from posts p inner join users u on p.author=u.pk where
u.username="'enrico_pirozzi') posts_author_1;

pk |

e e e e e e
3 | A view of Data types in C++

(1 row)

As we can see, the result is the same. The difference is that in the first example, the CTE creates

a temporary resultset, whereas the second query, the inline view, does not.

CTE in PostgreSQL since version 12

Starting from PostgreSQL version 12, things have changed, and two new options have been in-
troduced for the execution of a CTE, namely MATERIALIZED and NOT MATERIALIZED. If we want to

perform a CTE that materializes a temporary resultset, we have to add the materialized keyword:

forumdb=> with posts_author_1 as materialized
(select p.* from posts p

inner join users u on p.author=u.pk

where username='enrico_pirozzi')

select pk,title from posts_author_1;

____+ ______________________________
3 | A view of Data types in C++
(1 row)

The query written here materializes a temporary resultset, as happened automatically in previous
versions of PostgreSQL. If we write the query with the NOT MATERIALIZE option, PostgreSQL will

not materialize any temporary resultset:

forumdb=> with posts_author_1 as not materialized

(select p.* from posts p

inner join users u on p.author=u.pk

Chapter 5 147

where username='enrico_pirozzi')

select pk,title from posts_author_1;

———odi————————c-c=-———o=————c=-——=o=—=—=—=======

3 | A view of Data types in C++
(1 row)

If we don’t specify any option, the default is NOT MATERIALIZED, and this could be a problem if
we are migrating a database from a minor version to PostgreSQL 12. This is because the behavior

of the query planner could change, and the performance could change too.

Y From version 12, we have to insert the MATERIALIZED option if we want to have
\/L’; our queries display the same performance behavior that we had with the previous

versions.

CTE — use cases

Let’s now present some examples of the use of CTEs:
1. Firstly, we will create two new tables:

e t_posts, with all the records present in the post table

e delete_posts, with the same data structure as the posts table

forumdb=> create temp table t_posts as select * from posts;
SELECT 3

forumdb=> create table delete_posts as select * from posts limit O;
SELECT ©

The starting values for the t_posts and delete_posts tables are as follows:

forumdb=> select pk,title,category from t_posts ;

| category

1 | Indexing PostgreSQL
2 | Indexing Mysql

3 | A view of Data types in C++

(3 rows)

148

Advanced Statements

2.

3.

forumdb=> select pk,title,category from delete_posts ;

pk | title | category

N i

(CRES)

Now suppose that we want to delete some records from the posts table, and we want all
the records that we have deleted from the t_posts table to be inserted into the delete_

posts table. To reach this goal, we have to use CTEs as follows:

forumdb=> with del posts as (
delete from t_posts

where category in (select pk from categories where title
='Database Discussions')

returning *)
insert into delete_posts select * from del posts;
INSERT © 2

The query here deletes all the records from the t_posts table that have their category as
'Database' and, in the same transaction, inserts all the records deleted in the delete_posts

table, as we can see here:

forumdb=> select pk,title,category from t_posts ;
pk | | category
C e e e el fommmmmmme
3 | A view of Data types in C++ | 3
(1 row)

forumdb=> select pk,title,category from delete_posts ;

| category

1 | Indexing PostgreSQL
2 | Indexing Mysql

(2 rows)

Now let’s try another example by returning to the starting scenario:

forumdb=> drop table if exists t_posts;

DROP TABLE

Chapter 5 149

forumdb=> create temp table t_posts as select * from posts;

SELECT 3

4. As we have done before, let’s create a new table named inserted_post with the same

data structure as the posts table:

forumdb=> create table inserted_posts as select * from posts limit
0;
SELECT ©

5. Suppose now that we want to perform a SQL query that moves, in the same transaction,
all the records that are present in the t_posts table to the inserted_posts table. This

query will be as follows:

forumdb=> with ins_posts as (insert into inserted_posts select *
from t_posts returning pk) delete from t_posts where pk in (select
pk from ins_posts);

DELETE 3

As we can see from the results, the query has achieved our goal:

forumdb=> select pk,title,category from t_posts ;
pk | title | category
____+ _______ + __________

(CRITS)

forumdb=> select pk,title,category from inserted posts ;
pk | | category
____+ ______________________________ + __________

1 | Indexing PostgreSQL 1

|
2 | Indexing Mysql |
|

3 | A view of Data types in C++
(3 rows)

Query recursion

In PostgreSQL, it is possible to create recursive queries. Recursive queries are used in graph da-
tabases and in many common use cases, such as querying tables that represent website menus.

Recursive CTEs make it possible to have recursive queries in PostgreSQL.

150 Advanced Statements

Recursive CTEs

A recursive CTE is a special construct that allows an auxiliary statement to reference itself and,
therefore, join itself onto previously computed results. This is particularly useful when we need
to join a table an unknown number of times, typically to “explode” a flat tree structure. The
traditional solution would involve some kind of iteration, probably by means of a cursor that
iterates one tuple at a time over the whole resultset. However, with recursive CTEs, we can use
amuch cleaner and simpler approach. A recursive CTE is made by an auxiliary statement that is

built on top of the following:

e Anon-recursive statement, which works as a bootstrap statement and is executed when

the auxiliary term is first evaluated

e Arecursive statement, which can either reference the bootstrap statement or itself

These two parts are joined together by means of a UNION predicate. For example, let’s insert a new

record in the tag table and then see inside:

forumdb=> insert into tags (tag,parent) values ('PostgreSQL',1);

INSERT @ 1

forumdb=> select * from tags order by pk;

1 | Database
2 | Operating Systems |
3 | PostgreSQL |

(3 rows)

Now we would like to “explode” the flat tree structure and follow the relation between parent

and child using the parent field of the tags table. So, we want the result to be something like this:

| Database
| Operating Systems
| Database -> PostgreSQL

To reach this goal, we have to perform the following:

forumdb=> WITH RECURSIVE tags_tree AS (

-- non recursive statement

Chapter 5 151

SELECT tag, pk, 1 AS level

FROM tags WHERE parent IS NULL

UNION

-- recursive statement

SELECT tt.tag|| ' -> ' || ct.tag, ct.pk
, tt.level + 1

FROM tags ct

JOIN tags_tree tt ON tt.pk = ct.parent
)

SELECT level,tag FROM tags_tree

order by level;

Database

Operating Systems

Database -> PostgreSQL

\/‘n’l When we use CTEs, it is important to avoid infinite loops. These can happen if the

recursion does not end properly.

Thus, we have learned how to use CTEs to tinker with tables.

Summary

Hopefully, this chapter was full of interesting ideas for the developer and the DBA. In this chap-
ter, we talked about complex queries; we then saw the SELECT statement and the use of the LIKE,
ILIKE,DISTINCT,OFFSET, LIMIT, IN,and NOT IN clauses. We then started talking about aggregates
through the GROUP BY and HAVING clauses, and we introduced some aggregate functions, such as
SUM(), COUNT (), AVG(), MIN(), and MAX() .

We then talked in depth about subqueries and joins. Another very interesting set of topics covered
in this chapter was the UNION, EXCEPT, and INTERSECT queries. Finally, by looking at the advanced
options for the INSERT, DELETE, UPDATE, and MERGE instructions, and by covering CTEs, we gave
you an idea of the power of the SQL language owned by PostgreSQL.

152

Advanced Statements

As for the concept of aggregates, in the next chapter, we will see a new way to make aggregates

using window functions. Through the use of window functions, we will see that we are able to

create all the aggregates and aggregation functions described in this chapter, but we will also

see that we have the option to create new ones.

Verify your knowledge

If we run this query and data on the table called mytable is not changed, do we always

get the same result?

select * from mytable
No, we don’t, because the ordering of the data could be different.
See the section Exploring the SELECT statement for more details.
Is it possible to have only 3 records as result of a query?
Yes, it’s possible using the LIMIT clause.
See the section Using limit and offset for more details.

If we have 2 tables: table A with 3 records with a field id as the primary key, and table B
with 2 records with a field id as the primary key, what kind of join do we have to use to
match all the records that have the same ID on table A and table B?

We have to use an inner join query:
select tableA.id from tableA inner join tableB using(id)
See the section Using INNER JOIN for more details.

If we have 2 tables: table A with 3 records with a field id as the primary key, and table B
with 2 records with a field id as the primary key, using the NOT EXISTS clause, how can

we write a query that shows all the records that are in table A and not in table B?

select * from tableA where not exists (select 1 from tableB where
tableA.id=tableB.id)

See the section Subqueries and the EXISTS/NOT EXISTS condition for more details.
Do PostgreSQL 11 and PostgreSQL 16 have the same way of using CTEs?

No they don’t. PostgreSQL 11 always materializes data. PostgreSQL 16, if not specified,

materializes data only if the CTE is called twice or more inside the query.

Chapter 5 153

See the section Subqueries and the EXISTS/NOT EXISTS condition and Exploring CTE for

more details.

References

e Subquery expressions official documentation: https://www.postgresql.org/docs/

current/functions-subquery.html

e Joins official documentation: https://www.postgresql.org/docs/current/tutorial-

join.html

e CTEs official documentation: https://www.postgresql.org/docs/current/queries-
with.html

e MERGE official documentation: https://www.postgresql.org/docs/current/sql-merge.
html

e MERGE ANSI2003 SQL: https://www.w3resource.com/sql/sql-syntax.php

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.postgresql.org/docs/current/functions-subquery.html
https://www.postgresql.org/docs/current/functions-subquery.html
https://www.postgresql.org/docs/current/tutorial-join.html
https://www.postgresql.org/docs/current/tutorial-join.html
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/sql-merge.html
https://www.postgresql.org/docs/current/sql-merge.html
https://www.w3resource.com/sql/sql-syntax.php
https://discord.gg/jYWCjF6Tku

Window Functions

In the previous chapter, we talked about aggregates. In this chapter, we are going to further discuss
another way to make aggregates: window functions. The official documentation (https://www.

postgresql.org/docs/current/tutorial-window.html) describes window functions as follows:

A window function performs a calculation across a set of table rows that are
somehow related to the current row. This is comparable to the type of calcula-
tion that can be done with an aggregate function. However, window functions
do not cause rows to become grouped into a single output row as non-window
aggregate calls would. Instead, the rows retain their separate identities. Behind
the scenes, the window function is able to access more than just the current

row of the query result

In this chapter, we will talk about window functions, what they are, and how we can use them

to improve the performance of our queries.
The following topics will be covered in this chapter:

e Using basic statement window functions

e Using advanced statement window functions

Technical requirements

Before starting, remember to start the Docker container named chapter_06 as shown below:

$ bash run-pg-docker.sh chapter_06

https://www.postgresql.org/docs/current/tutorial-window.html
https://www.postgresql.org/docs/current/tutorial-window.html

156 Window Functions

Using basic statement window functions

As we saw in the previous chapter, aggregation functions behave in the following way:

Figure 6.1: Standard group by aggregation

The datais first sorted and then aggregated; the data is then flattened through aggregation. This
is what happens when we execute the following statement, after connecting as the forum user

to forumdb database:

forumdb=> select category,count(*) from posts group by category order by
category;

category | count

(2 rows)

Alternatively, we can decide to use window functions by executing the following statement:

forumdb=> select category, count(*) over (partition by category) from
posts order by category;

category | count

__________ B

Chapter 6 157

1
1
3

(3 rows)

Window functions create aggregates without flattening the data into a single row. However, they
replicate it for all the rows to which the grouping functions refer. The behavior of PostgreSQL is

depicted in the following diagram:

Figure 6.2: Window function aggregation

This is the reason that the distinct keyword has to be added to the preceding query if we want
to obtain the same result that we get with a classic GROUP BY query.

Using the PARTITION BY function and WINDOW clause

Let’s now run some basic queries using the window functions. Suppose that we want to use two
over clauses. For example, if on one column we want to count the rows relating to the category, and

on another column the total count of the columns, then we have to run the following statement:

forumdb=> select category, count(*) over (partition by category),count(*)
over () from posts order by category;

category | count | count

__________ +_______+_______
1] 2 3

158 Window Functions

1
3

(3 rows)

Or if we want to remove all duplicate rows, we will have to run the following:

forumdb=> select distinct category, count(*) over (partition by
category),count(*) over ()

from posts
order by category;

category | count | count

In the preceding query, the first window function aggregates the data using the category field,
while the second one aggregates the data of the whole table.

Using the window functions, itis possible to aggregate the data in different fields in the same query.

As we’ve seen here, we can define the window frame directly at the query level, but we can also

define an alias for the window frame. For example, the preceding query becomes the following:

forumdb=> select distinct category, count(*) over wl ,count(*) over W2
from posts

WINDOW wl as (partition by category),W2 as ()

order by category;

category | count | count

(2 rows)

The use of aliases is called the WINDOW clause. The WINDOW clause is very useful when we have

many aggregates.

Introducing some useful functions

Window functions can use all the aggregation functions that we explored in the previous chapter.

In addition to these, window functions introduce new aggregation functions.

Chapter 6 159

Before we examine some of those, let’s introduce a unique function — generate_series. generate_

series simply generates a numerical series, for example:

forumdb=> select * from generate_series(1,5);

generate_series

In the following examples, we will use this function for various use cases.

The ROW_NUMBER function

Now let’s look at the ROW_NUMBER () function. The ROW_NUMBER () function assigns a progressive
number for each row within the partition:
forumdb=> select category, row_number() over w from posts WINDOW w as
(partition by category) order by category;

category | row_number

(3 rows)

In the preceding query, we’ve used the PARTITION BY clause to divide the window into subsets
based on the values in the category column. As can be seen, we have two category values: 1 and
3. This means that we have two windows and inside each window, the ROW_NUMBER () function

assigns numbers as we defined before.

The ORDER BY clause

The ORDER BY clause sorts the values inside the window. We can also use the NULLS FIRST or NULLS
LAST option to have the null values at the beginning or at the end of the sorting. For example, we
can perform a window function query without an ORDER BY clause, as we can see in the following

snippet, but we have to pay attention to what kind of function we are using, and what our goal is.

160 Window Functions

If we use aggregation functions that do not depend on the sort order, such as the COUNT function,
we can avoid sorting the data; otherwise, it is good practice to sort the data inside the partition

in order to avoid the risk of having different results every time the query is launched:

forumdb=> select category,row_number() over w,title

from posts WINDOW w as (partition by category order by title) order by
category;

category | row_number |

__________ +____________+______________________________
1 | Indexing Mysql
2 | Indexing PostgreSQL
1

| A view of Data types in C++

As we can see, inside the partition, the data is sorted on the title field.

FIRST_VALUE
The FIRST_VALUE function returns the first value within the partition, for example:

forumdb=> \x

Expanded display is on.

forumdb=> select category,row_number() over w,title,first_value(title)
over w

from posts WINDOW w as (partition by category order by category) order by
category;

-[RECORD 1]

category | 1

row_number | 1

title | Indexing PostgresSQL

first value | Indexing PostgreSQL

-[RECORD 2]

category |

row_number |

title | Indexing Mysql

first value | Indexing PostgreSQL
-[RECORD 3]
category | 3

row_number | 1

Chapter 6 161

title | A view of Data types in C++

first value | A view of Data types in C++

LAST_VALUE
The LAST_VALUE function returns the last value within the partition, for example:

forumdb=> select category,row_number() over w,title,last value(title) over
W

from posts WINDOW w as (partition by category order by category) order by
category;

-[RECORD 1]

category | 1

row_number | 1

title | Indexing PostgreSQL
last_value | Indexing Mysql

-[RECORD 2]

category | 1

row_number | 2

title | Indexing Mysql

last_value | Indexing Mysql

-[RECORD 3]

category | 3

row_number | 1

title | A view of Data types in C++

last_value | A view of Data types in C++

Itisimportant to always use the Order by clause when we use the first_value() or last_value()

function to avoid incorrect results, as mentioned previously.

RANK

The RANK function ranks the current row within its partition with gaps. If we don’t specify a
PARTITION BY clause, the function doesn’t know how to correlate the current tuple, so the func-

tion correlates to itself, as seen here:

forumdb=> select pk,title,author,rank() over () from posts ;

| author | rank

| Indexing PostgresSQL

| Indexing Mysql

162 Window Functions

7 | A view of Data types in C++ |

(3 rows)

If we add the order by clause, the function ranks in the assigned order, for example, the author
with id 1 starts from record 1, and the author with id 2 starts from record 3, as we can see in

the following example:

forumdb=> select pk,title,author,rank() over (order by author) from posts

3

5 | Indexing PostgreSQL
6 | Indexing Mysql
7 | A view of Data types in C++

(3 rows)

If we add the PARTITION BY clause, the working mechanism is the same; the only difference is
that the ranking is calculated within the partition and not on the whole table as in the previous

example:

forumdb=> select pk,title,author,rank() over (partition by author order by
author) from posts ;

Indexing PostgreSQL
Indexing Mysql
| A view of Data types in C++

(3 rows)

DENSE_RANK

The DENSE_RANK function is similar to the RANK function. The difference is that the DENSE_RANK

function ranks the current row within its partition without gaps:

forumdb=> select pk,title,author,dense_rank() over (order by author) from
posts order by category;

| author | dense_rank

Indexing PostgreSQL

Indexing Mysql

Chapter 6 163

7 | A view of Data types in C++ | 2 |

(3 rows)

The LAG and LEAD functions

In this section, we will show how the LAG and LEAD functions work. First of all, we are going to

set up our environment and generate a sequence of numbers as we did previously:

forumdb=> select x from generate_series(1,5) as x;

This is our starting point for this example. The official documentation (https: //www.postgresql.

org/docs/current/functions-window.html) defines the LAG function as follows:

The LAG function returns a value evaluated at the row that is offset rows be-
fore the current row within the partition; if there is no such row, it instead
returns the default (which must be of the same type as the value). Both the
offset and the default are evaluated with respect to the current row. If omitted,

offset defaults to 1 and default to null.

Now, let’s write the following statement:

forumdb=> select x,lag(x) over w from (select generate_series(1,5) as x) V
WINDOW w as (order by x) ;

https://www.postgresql.org/docs/current/functions-window.html
https://www.postgresql.org/docs/current/functions-window.html

164 Window Functions

As we can see, the lag function returns a result set with an offset value equal to 1. If we introduce
an offset parameter, the lag function will return a result set with an offset equal to the number

that we have passed as input, as can be seen in the next example:

forumdb=> select x,lag(x,2) over w from (select generate_series(1,5) as x)
V WINDOW w as (order by x) ;

The lead function is the opposite of the 1ag function, as described in the official documentation:

“The LEAD function returns the value evaluated at the row thatis offset rows after the current row
within the partition; if there is no such row, it instead returns the default (which must be of the
same type as the mentioned value). Both the offset and default are evaluated with respect to the

current row. If omitted, the offset defaults to 1 and the default becomes null.”

Here are a couple of examples where we can see how it works. In the first example, we will use

the lead function without any parameters:

forumdb=# select x,lead(x) over w from (select generate_series(1,5) as x)
V WINDOW w as (order by x) ;

(5 rows)

As we can see in the lead function, the offset starts from the bottom.

Chapter 6 165

Let’s now see an example of using the lead function with an offset parameter:

forumdb=> select x,lead(x,2) over w from (select generate_series(1,5) as
V WINDOW w as (order by x) ;

The CUME_DIST function
The CUME_DIST function calculates the cumulative distribution of a value within a partition. The

function is described in the official documentation as follows:

“The CUME_DIST function computes the fraction of partition rows that are less than or equal to

the current row and its peers.”

Let’s look at an example:

forumdb=> select x,cume_dist() over w from (select generate_series(1,5) as
x) V WINDOW w as (order by x) ;

X | cume_dist

As the function is mathematically defined, the cume_dist function can never have a value greater

than the current value of the field.

The NTILE function

The PostgreSQL NTILE function groups the rows sorted in the partition. Starting from 1, up to

the parameter value passed to the NTILE function, each group is assigned a number of buckets.

166 Window Functions

The parameter passed to the NTILE function determines how many records we want the bucket

to be composed of.

Now, let’s see an example of how it works by trying to split our result set into two buckets:

forumdb=> select x,ntile(2) over w from (select generate_series(1,6) as x)
V WINDOW w as (order by x) ;

forumdb=> select x,ntile(3) over w from (select generate_series(1,6) as Xx)
V WINDOW w as (order by x) ;

TheNTILE() function accepts an integer and tries to divide the window into a number of balanced

buckets, specifying to which bucket each row belongs.

In this section, we have introduced some features that allow you to do some basic data mining. For
example, lag and lead could be used to compare different lines of a table, and therefore compare

the salaries of different employees, or compare collections from different days.

In the next section, we will go into even more detail and explore some more advanced features

of window functions.

Chapter 6 167

Using advanced statement window functions

In this section, we will discuss advanced window functions in detail, and we will explore some

techniques that may be useful for carrying out more detailed data analysis.

Let’s start with a query that we saw at the start of this chapter:

forumdb=> select distinct category, count(*) over (partition by category)

from posts order by category;

category | count

Here, below, there is another way to write the same aggregate that we described before:

forumdb=> select distinct category, count(*) over wl
from posts WINDOW wl as (partition by category RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW)

order by category;

category | count

(2 rows)

What does RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROWmean? They are the default
conditions, known as the frame clause. This means that the data is partitioned, first by category,
and then within the partition, and the count is calculated by resetting the count every time the

frame is changed.

The frame clause
In this section, we’ll talk about the frame clause, which allows us to manage partitions in a dif-

ferent way. The frame clause has two forms:

e Rowsbetween start_point and end_point

e Rangebetween start_point and end_point

168 Window Functions

It only makes sense to use the frame clause if the order by clause is also present. We will use the
ROWS BETWEEN clause when we are going to consider a specific set of records relative to the current
row. We will use the RANGE BETWEEN clause when we are going to consider a range of valuesin a

specific column relative to the value in the current row.

ROWS BETWEEN start_point and end_point

Now we will look at some simple examples to try to better explain the frame_set clauses. These
are typically used to do in-depth data analysis and data mining, among other tasks. Let’s start

with some examples, beginning here:

forumdb=> select x from (select generate_series(1,5) as x) V WINDOW w as
(order by x) ;

Suppose that we want to have an incremental sum row by row. The goal that we want to reach

is as follows:

sum(x)
1
3
6
10
15

NP |WIN|F|®

This can be achieved using the following query:

forumdb=> select x, sum(x) over (order by x) from generate_series(1,5) as

Chapter 6 169

4| 1e
5 |

15

(5 rows)

The same query can be written in this way:

forumdb=> SELECT x, SUM(x) OVER w
FROM (select generate_series(1,5) as x) V
WINDOW w AS (ORDER BY x ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT

Now, let’s imagine that the query was executed in successive steps, one for each row of the table.

In the following diagrams, we will simulate the internal behavior of PostgreSQL, to better under-
stand how the clause ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW works:

1. First, PostgreSQL uses the order_by_clause condition to order the data inside the window,

as shown by the blue arrow in the following diagram:

STEP 1
X sum(x)
)) _ UNBOUNDED PRECEDING
<:| CURRENT ROW

2

3

4

5

1

ORDER BY

Figure 6.3: The order by clause

170

Window Functions

3.

As we can see, on the right of the image, we have two further pointers: a green one for
the UNBOUNDED PRECEDING clause and an orange pointer for the CURRENT ROW
clause. The result is 1, so in the first step both point to the first row. Now, let’s see what

happens in the next steps.

In this step, the UNBOUNDED PRECEDING pointer still points to the first row, whereas
the CURRENT ROW pointer now points to the second row, and the result of the sum is
1+2=3:

STEP 2

X sum(x)

UNBOUNDED PRECEDING
)) R

2 3 (=== CURRENTROW

|

ORDER BY

Figure 6.4: The unbounded preceding and current row (1)

Next, the UNBOUNDED PRECEDING pointer still points to the first row, whereas the
CURRENT ROW pointer points to the third row, and the result of the sum is 1+2+3 = 6:

Chapter 6 171

" —— STEP 3

1 . @@mmm UNBOUNDED PRECEDING
2 3

> 6 <—y CURRENT ROW

4

5

1

ORDER BY
Figure 6.5: The unbounded preceding and current row (2)

4. In the fourth step, the UNBOUNDED PRECEDING pointer still points to the first row,
whereas the CURRENT ROW pointer now points to the fourth row, and the result of the

sumis 1+2+3+4 =10:

" - STEP 4
1 1 - UNBOUNDED PRECEDING
2 3
3 6

b 10 mmm CURRENT ROW

i

ORDER BY

Figure 6.6: The unbounded preceding and current row (3)

172 Window Functions

5. Andin the fifth and final step, we have the desired result:

STEP 5

X sum(x)

- UNBOUNDED PRECEDING
1 1
2 3
3 6
A 10
5 15 <:| CURRENT ROW

1

ORDER BY
Figure 6.7: The unbounded preceding and current row (4)
That is how a frameset clause works!

Let’s look at some more examples of how the frame clause works using different options. If for
each row of the table we wanted to find the sum of the current row with the preceding row, we

would start with the following:

X
1
2
3
4
5
We want to end up with the following result:
X sum(x)
1 1

v | W
O [N | W

Chapter 6 173

The query that we have to perform is described in the following example:

forumdb=> SELECT x, SUM(x) OVER w
FROM (select generate_series(1,5) as x) V
WINDOW w AS (ORDER BY x RANGE BETWEEN 1 PRECEDING AND CURRENT ROW);

The preceding query works similarly to what we saw before. The only difference is that now the
calculation range is between the first row and the current row of the partition, as written in the
statement BETWEEN 1 PRECEDING AND CURRENT ROW.In this example, only two lines are used to
calculate the sum. The same mechanism can be used to perform an incremental sum, as we can

see in the following example:

forumdb=> SELECT x, SUM(x) OVER w
FROM (select generate_series(1,5) as x) V
WINDOW w AS (ORDER by x ROWS UNBOUNDED PRECEDING);

Now the only difference is that the calculation range is by ROWS UNBOUNDED PRECEDING and not
BETWEEN 1 PRECEDING AND CURRENT ROW.

Let’s look at another example where window functions simplify our work. Always starting from
the series that we’ve seen before, we know that the total sum is 1+2+3+4+5 = 15. So now suppose

that we want to do a reverse sum starting from the max value of the table, that s, 5.

174 Window Functions

In this example, we want the result to be as follows:

X sum(x)
1 15
2 14
3 12
4 9
5 5

The query that makes this possible is the following:

forumdb=> SELECT x, SUM(x) OVER w
FROM (select generate_series(1,5) as x) V
WINDOW w AS (ORDER BY X ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING);

What makes this possible is the UNBOUNDED FOLLOWING clause, which works the opposite
way to UNBOUNDED PRECEDING. This happens because of the following:

e Inthe firstrow, all values are added: 1+2+3+4+5 = 15.

e Inthe second row, these values are added: 2+3+4+5 = 14.

e In the third row, these values are added: 3+4+5 =12.

RANGE BETWEEN start_point and end_point

As discussed earlier, when we use RANGE BETWEEN, we will consider a RANGE of values with respect
to the value in the current row. The difference when it comes to the ROWS clause is that if the field
that we use for ORDER BY does not contain unique values for each row, then RANGE will combine

all the rows it comes across with non-unique values, rather than processing them one at a time.

Chapter 6 175

In contrast, ROWS will include all of the rows in the non-unique bunch but process each of them

separately:

1. Firstof all, let’s create a simple dataset with duplicate data:

forumdb=> select generate_series(1,8) % 4 as x order by 1;

(8 rows)

2. Now let’s do some tests to observe the differences between the ROWS and RANGE clauses.

Let’s start with the ROWS clause:

forumdb=> SELECT X, row_number() OVER w, SUM(x) OVER w FROM (select
generate_series(1,8) % 4 as x) V
WINDOW w AS (ORDER BY x ROWS BETWEEN 1 PRECEDING AND CURRENT ROW);

| row_number | sum

0 N O U1 A W N PR
A 1 A W N PR OO

0
0
1
1
2
P
3
3
8

~

The preceding query works exactly as we’ve seen before; it sums the previous row with

the current row.

176 Window Functions

3. Let’s now see what happens if we use the RANGE clause instead of the ROWS clause:

forumdb=> SELECT x, row_number() OVER w, SUM(x) OVER w
FROM (select generate_series(1,8) % 4 as x) V
WINDOW w AS (ORDER BY x RANGE BETWEEN 1 PRECEDING AND CURRENT ROW);

| row_number | sum

0 1

0 2

1 3

1 4

2 5

2 6

3 7

3 8

(8
Let’s take this result:

X row_number sum
0 1 0
0 2 0
1 3 2
1 4 2
2 5 6
2 6 6
3 7 10
3 8 10

Now let’s look at the result from the frame point of view:

X row_number sum Frame Number
0 1 0 1
0 2 0 1
1 3 2 2
1 4 2 2
2 5 6 3

Chapter 6 177

2 6 6 3
3 7 10 4
3 8 10 4

As we can see, there are four frames in the last table, so internally, PostgreSQL works in this way:
first, PostgreSQL splits the window function into frames using the order by clause and then

aggregates the data among the frames; for example:

e The sum of row number 3 is the result of the sum of row number 1 + row number 2 + row
number 3 + row number 4: 0+0+1+1=2.
e The sum of row number 4 is the result of the sum of row number 1 + row number 2 + row

number 3 + row number 4: 0+0+1+1=2.

e The sum of row number 5 is the result of the sum of row number 3 + row number 4 + row

number 5 + row number 6: 1+1+2+2=6.

e The sum of row number 6 is the result of the sum of row number 3 + row number 4 + row

number 5 + row number 6: 1+1+2+2=6.

In the preceding example, we have considered a partition ordered in an ascending way. In the
next example, the partition is sorted in a descending way and we will see the difference between
ROWS and RANGE in this scenario.

This is the query for the RANGE clause:

forumdb=> SELECT x,row_number() OVER w, dense_rank() OVER w,sum(x) OVER w
FROM (select generate_series(1,8) % 4 as x) V
WINDOW w AS (ORDER BY x desc RANGE BETWEEN 1 PRECEDING AND CURRENT ROW);

| row_number | dense_rank

0 N O U1 A W N B
A A W W NN PR R

3
3
p
2
1
1
9
(%]
8

~

178 Window Functions

And this is the query for the ROWS clause. As we can see, things work exactly as in the previous

example without the ORDER BY DESC option:

forumdb=> SELECT X,row_number() OVER w, dense_rank() OVER w,sum(x) OVER w
FROM (select generate_series(1,8) % 4 as x) V
WINDOW w AS (ORDER BY x desc ROWS BETWEEN 1 PRECEDING AND CURRENT ROW);

| row_number | dense_ rank

0 N OV A W N R
A A W W NN PR R
® B N W A U1 OO W

3
3
p
2
1
1
9
9
8

~

In this example, using the sum function, we can better understand the difference between the
RANGE and ROWS options. As we can see, the RANGE option aggregates data by frame (RANGE) while
the ROWS option aggregates data by rows. The main difference between the ROWS clause and the
RANGE clause is that ROWS operates on individual rows, while RANGE operates on groups. That

concludes our chapter on window functions.

Summary

In this chapter, we explored how to use window functions. We have seen that by using window
functions, we can create more complex aggregates compared to those made with the GROUP BY
statement, which we saw in Chapter 5, Advanced Statements. We learned how to use the ROW_NUMBER
(), FIRST_VALUE (), LAST_VALUE (),RANK DENSE_RANK(),LAG (),LEAD (),CUME_DIST (),and
NTILE () functions. We have also seen the difference between creating aggregates with the ROWS
BETWEEN and RANGE BETWEEN clauses. You can use what you have learned in this chapter in data

mining operations to make your work much easier.

For more information on window functions, you can consult the official documentation: https://

www.postgresql.org/docs/current/functions-window.html.

https://www.postgresql.org/docs/current/functions-window.html
https://www.postgresql.org/docs/current/functions-window.html

Chapter 6 179

In the next chapter, we will talk about server-side programming. We will look at how to create

functions to be used on the server side and, if necessary, where to use window functions.

Verify your knowledge

e Consider these two queries:

1. select category,count(*) from posts group by category order by category;

2. select category, count(*) over (partition by category) from posts order by category;
Which of the two queries has a greater number of records?
The second query has a greater number of records.
See the Using basic statement window functions section for more details.
e Consider these two queries:

1. select category,count(*) from posts group by category order by category;

2. select distinct category, count(*) over (partition by category) from posts order

by category;
Which of the 2 queries has a greater number of records?
The two queries have the same number of records.
See the Using basic statement window functions section for more details.
e Which of these two queries is semantically correct?

1. select category,row_number() over w,title from posts WINDOW w as (partition
by category order by title) order by category;
2. select category,row_number() over wititle from posts WINDOW w as (partition

by category) order by category;

The first one is semantically correct because the row_number () function depends on order

by.

See the The row number function section for more details.

180 Window Functions

e Can we have the first value within a partition ?

Yes, we can, using the first_value() function. See the FIRST_VALUE section for more

details.
e Can we do an incremental sum row by row in a table?
Yes, we can, using the clause BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

See the Using advanced statement window functions section for more details.

References

e PostgreSQL window functions official documentation: https://www.postgresql.org/
docs/current/functions-window.html

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.postgresql.org/docs/current/functions-window.html
https://www.postgresql.org/docs/current/functions-window.html
https://discord.gg/jYWCjF6Tku

Server-Side Programming

In previous chapters, we learned how to execute SQL queries. We started by writing simple que-
ries, then moved on to writing more complex queries; we learned how to use aggregates in the
traditional way, and in Chapter 5, Advanced Statements, we talked about window functions, which
are another way to write aggregates. In this chapter, we will add server-side programming to this
list of skills. Server-side programming can be useful in many cases as it moves the programming
logic from the client side to the database side. For example, we could use it to take a function that
has been written many times at different points of the application program and move it inside
the server so that it is written only once, meaning that in case of modification, we only have to
modify one function. In this chapter, we will also look at how PostgreSQL can manage different
server-side programming languages, and we will see that server-side programming can be very
useful if you need to process a large amount of data that has been extracted from tables. We will
address the fact that all the functions we will write can be called in any SQL statement. We will
also see that in some cases, for certain types of functions, it is also possible to create indices on

the functions.

Another feature of server-side programming is the chance to define customized data. In this

chapter, we will look at some examples of this.
In simple terms, this chapter will discuss the following:

e Exploring data types
e Exploring functions and languages

e The NoSQL data type

182 Server-Side Programming

Technical requirements

Before starting, remember to start the Docker container named chapter_07, as shown below:

$ bash run-pg-docker.sh chapter_o07

postgres@learn_postgresql:~$ psql -U forum forumdb

Exploring data types

Asusers, we have already had the opportunity to experience the power and versatility of server-side

functions —for example, in Chapter 5, Advanced Statements, we used a query similar to the following:

forumdb=> select * from categories where upper(title) like 'A%';
pk | title | description

B I

4 | A.I | Machine Learning discussions
(1 row)

In this piece of code, the upper function is a server-side function; this function turns all the char-
acters of a string into uppercase. In this chapter, we will acquire the knowledge to be able to write

functions such as the upper function that we called in the preceding query.

In this section, we’ll talk about data types. We will briefly mention the standard types managed

by PostgreSQL and how to create new ones.

The concept of extensibility

What is extensibility? Extensibility is PostgreSQL’s ability to extend its functionality and its data
types. Extensibility is an extremely useful PostgreSQL feature because it enables us to have data
types, functions, and functional indexes that are not present in the base system. In this chapter,

we will cover extension at the data type level, as well as the addition of new functions.

Standard data types

In previous chapters, even if not explicitly obvious, we already used standard data types. This was
when we learned how to use Data Definition Language (DDL) commands. However, we will now

be looking more deeply into this topic. The following is a short list of the most used data types:

e Boolean type
e Numeric types

e Character types

Chapter 7 183

e Date/time

e NoSQL data types: hstore, xml, json, and jsonb

For each data type, we will show an example operation followed by a brief explanation. For fur-
ther information on the standard data types supported by PostgreSQL, please refer to the official

documentation at https://www.postgresql.org/docs/current/extend-type-system.html.

Boolean data type

First, we will introduce the Boolean data type. PostgreSQL supports Boolean data types. The Bool-
ean type (identified by BOOLEAN or BOOL), like all data types supported by PostgreSQL, can assume
the NULL value. Therefore, a Boolean data type can take the NULL, FALSE, and TRUE values. The data

type input function for the Boolean type accepts the following representations for the TRUE state:

| State | true | yes | on | 1 |

For the false state, we have the following:

| State | false | no | off | 0 |

Let’s look at some examples, starting with the users table:

1. Let’s first display the contents of the users table:

forumdb=> select * from users;
username

R e e e

1 | luca_ferrari | | luca@pgtraining.com

2 | enrico_pirozzi | | enrico@pgtraiing.com
3 | newuser | | newuser@pgtraining.com

(3 rows)

2. Nowlet’s add a Boolean data type to the users table:

forumdb=> alter table users add user_on_line boolean;
ALTER TABLE

3. Let’s update some values:

forumdb=> update users set user_on_line = true where pk=1;

UPDATE 1

https://www.postgresql.org/docs/current/extend-type-system.html

184 Server-Side Programming
4. Now, if we want to search for all the records that have the user_on_1line field set to true,
we have to perform the following:
forumdb=> \x
Expanded display is on.
forumdb=> select * from users where user_on_line = true;
-[RECORD 1]+
pk | 1
username | luca_ferrari
gecos |
email | luca@pgtraining.com
user_on_line | t
5. If we want the search for all the records that have the user_on_1line field set to NULL, as

we saw in Chapter 4, Basic Statements, we have to perform the following:

forumdb=> select * from users where user_on_line is NULL;
-[RECORD 1]+
pk 2
username enrico_pirozzi

email enrico@pgtraiing.com

|
|
gecos |
|
user_on_line |
-[RECORD 2]+
pk
username

email newuser@pgtraining.com

|
|
gecos |
|
|

user_on_line

Thus, we have explored the Boolean data type.

Numeric data type

PostgreSQL supports several types of numeric data types; the most used ones are as follows:

integer or int4 (4-byte integer number).
bigint or int8 (8-byte integer number).

real (4-byte variable precision, inexact with 6-decimal-digit precision).

Chapter 7 185

e double precision (8-byte variable precision, inexact with 15-decimal-digit precision).
e numeric (precision, scale), where the precision of a numeric is the total count of signif-
icant digits in the whole number, and the scale of a numericis the count of decimal digits

in the fractional part. For example, 5.827 has a precision of 4 and a scale of 3.

Now, we will look at some brief examples of each type in the upcoming sections.

Integer types

As we can see here, if we cast anumber to an integer type such as integer or bigint, PostgreSQL

will make a truncated value of the input number:

forumdb=> \x

Expanded display is off.

forumdb=> select 1.123456789::integer as my_field;
my_ field

forumdb=> select 1.123456789::int4 as my_field;
my_field

forumdb=> select 1.123456789::bigint as my_field;

forumdb=> select 1.123456789::int8 as my_field;

186 Server-Side Programming

Numbers with a fixed precision data type

In the following example, we’ll see the same query that we have seen previously, but this time,

we’ll make a cast to real and to double precision:

forumdb=> select 1.123456789::real as my_field;
my field

1.1234568
(1 row)

forumdb=> select 1.123456789::double precision as my_ field;
my field

1.123456789
(1 row)

As can be seen here, in the first query, the result was cut to the sixth digit; this happened because

the real type has at least 6-decimal-digit precision.

Now suppose we want to perform the sum of the value 0.1 10 times. The correct result would be

the number 1. Instead, if we execute:

forumdb=> select sum(@.1::real) from generate_series(1,10);

1.0000001
(1 row)

We get the value 1.0000001. This happens due to the intrinsic rounding error in the real data
type, soitis notrecommended to use the real data type in fields representing money. The correct

way to make this sum is using the numeric data type.

Numbers with an arbitrary precision data type

In this last section about numeric data types, we’ll make the same query that we saw earlier, but

we’ll make a cast to arbitrary precision:

forumdb=> select 1.123456789::numeric(10,1) as my field;
my_field

Chapter 7 187

1.1
(1 row)

forumdb=> select 1.123456789::numeric(10,5) as my_field;
my field

1.12346
(1 row)

forumdb=> select 1.123456789::numeric(10,9) as my_ field;
my field

1.123456789
(1 row)

As we can see from the examples shown here, we decide how many digits the scale should be.

But what about if we perform something like the following?

forumdb=> select 1.123456789::numeric(10,11) as my_field;
ERROR: numeric field overflow

DETAIL: A field with precision 10, scale 11 must round to an absolute
value less than 107-1.

Theresultis an error. This is because the data type was defined as a numeric type with a precision
value equal to 10, so we can’t have a scale parameter equal to or greater than the precision value.
Similarly, the next example will also produce an error:

forumdb=> select 1.123456789::numeric(10,10) as my_ field;

ERROR: numeric field overflow

DETAIL: A field with precision 10, scale 10 must round to an absolute
value less than 1.

In the preceding example, the query generates an error because the scale was 10, meaning we

should have 10 digits, but we have 11 digits in total:

Digits 1 2 3 4 5 6 7 8 9 10 11
1 . 1 2 3 4 5 6 7 8 9

188 Server-Side Programming

However, if in our number we don’t have the first digit, the query will work:

forumdb=> select 0.123456789: :numeric(10,10) as my_field;

0.1234567890
(1 row)

Now let’s go back to the example of the previous paragraph, which provided an incorrect sum,

and let’s repeat it using the numeric type:

forumdb=> select sum(@.1::numeric(2,2)) from generate_series(1,10);

As we can see, now the value of the sum is correct; so, the correct way to represent money is using

anumeric data type.

Thus, we have learned all about the various numeric data types.

Character data type

The most used character data types in PostgreSQL are the following:

e character(n)/char(n) (fixed-length, blank-padded)
e character varying(n)/varchar(n) (variable length with a limit)

e varchar/text (variable unlimited length)
Now, we will look at some examples to see how PostgreSQL manages these kinds of data types.
Chars with fixed-length data types
We will check out how they work using the following example:

1. Let’s start by creating a new test table:

forumdb=> create table new_tags (

pk integer not null primary key,
tag char(10)

)5

CREATE TABLE

Chapter 7 189

In the previous code, we created a new table named new_tags with a char(10) field name

tag.

2. Now, let’s add some records and see how PostgreSQL behaves:

forumdb=> insert into new_tags values (1, 'first tag');

INSERT © 1
forumdb=> insert into new_tags values (2, 'tag');
INSERT 0 1

In order to continue with our analysis, we must introduce two new functions:

e length(p): This counts the number of characters, where p is an input parameter

and a string

e octet_length(p): This counts the number of bytes, where p is an input parameter

and a string

3. Let’s execute the following query:

forumdb=> \x

Expanded display is on.
forumdb=> select pk,tag,length(tag),octet_length(tag),char_
length(tag) from new_tags;
-[RECORD 1]+

pk | 1

tag | first tag
length)
octet_length | 10
char_length | 9

-[RECORD 2]+

pk | 2

tag | tag
length | 3
octet_length | 10
char_length | 3

As we can see, the overall length of the space occupied internally by the field is always 10; this is
true even if the number of characters entered is different. This happens because we have defined
the field as char(10), with a fixed length of 10, so even if we insert a string with a shorter length,
the difference between 10 and the number of real characters of the string will be filled with blank

characters.

190 Server-Side Programming

Chars with variable length with a limit data types

In this section, we are going to repeat the same example that we used in the previous section, but

this time, we’ll use the varchar(10) data type for the tag field:

1. Let’srecreate the new_tags table:

forumdb=> drop table if exists new_tags;

DROP TABLE

forumdb=> create table new_tags (
pk integer not null primary key,
tag varchar(10)

)

CREATE TABLE

2. Then, let’sinsert some data:

forumdb=> insert into new_tags values (1, 'first tag');
INSERT © 1

forumdb=> insert into new_tags values (2, 'tag');
INSERT © 1

3. Now), if we repeat the same query as before, we obtain the following:

forumdb=> \x
Expanded display is off.
forumdb=> select pk,tag,length(tag),octet_length(tag) from new_tags

| length | octet_length

1 | first tag |
2 | tag

(2 rows)

As we can see, this time, the real internal size and the number of characters in the string

are the same.

Chapter 7 191

4. Now,let’s try to insert a string longer than 10 characters and see what happens:

forumdb=> insert into new_tags values (3, 'this sentence has more
than 10 characters');

ERROR: value too long for type character varying(10)

PostgreSQL answers correctly with an error because the input string exceeds the dimension of
the field.

Chars with a variable length without a limit data types

In this section, we will again use the same example as before, but this time, we’ll use a text data
type for the tag field.

Let’s recreate the new_tags table and re-insert the same data that we inserted previously:

forumdb=> drop table if exists new_tags;
DROP TABLE

forumdb=> create table new_tags (
pk integer not null primary key,
tag text

)

CREATE TABLE

forumdb=> insert into new_tags values (1, 'first tag'), (2, 'tag'), (3, 'this
sentence has more than 10 characters');

INSERT @ 3

This time, PostgreSQL correctly inserts all three records. This is because the text data typeis a

char data type with unlimited length, as we can see in the following query:

forumdb=> select pk,substring(tag from @ for 20),length(tag),octet_
length(tag) from new_tags ;
pk | substring | length | octet_length

R T T T +

1 | first tag |
2 | tag |
|

3 | this sentence has m

(3 rows)

192 Server-Side Programming

In the preceding example, we can see that the text data type behaves exactly like the varchar(n)
data type we saw earlier. The only difference between text and varchar(n) is that the text type
has no size limit. It is important to note that in the preceding query, we used the substring func-
tion. The substring function takes a piece of the string starting from the from parameter for n
characters; for example, if we write substring(tag from @ for 20),it means that we want the

first 20 characters of the tag string as output.

With this, we have covered all the char data types.

Date/timestamp data types

In this section, we will talk about how to store dates and times in PostgreSQL. PostgreSQL supports
both dates and times and the combination of date and time (timestamp). PostgreSQL manages
hours both with time zone settings and without time zone settings, as described in the official

documentation (https://www.postgresql.org/docs/current/datatype-datetime.html).

\/‘/' PostgreSQL supports the full set of SQL date and time types. Dates are counted

according to the Gregorian calendar.

Date data types

Managing dates often becomes a puzzle for developers. This is because dates are represented
differently depending on the country for which we have to store the data — for example, the
American way is month/day/year, whereas the European format is day/month/year. PostgreSQL

helps us by providing the necessary tools to best solve this problem, as seen here:

1. The first thing we have to do is to see how PostgreSQL internally stores dates. To do this,

we have to perform the following query:

forumdb=> \x

Expanded display is on.

forumdb=> select * from pg settings where name ='DateStyle';

= RECORD 1 J-=-ammmmmm o mm oo o e e e e e e e e e e e e

name | DateStyle
setting | Iso, MDYy
[..]

sourcefile

https://www.postgresql.org/docs/current/datatype-datetime.html

Chapter 7 193

sourceline |

pending_restart | f

First of all, let’s take a look at the pg_settings view. Using the pg_settings view, we
can view the parameters set in the postgresql. conf configuration file. In the preceding
result, we can see that the configuration for displaying the date is MDY (month/day/year).
If we want to change this parameter globally, we have to edit the postgresql. conf file.

2. Ona Debian or Debian-based server, we can edit the file as follows:

root@pgdev:/# vim /etc/postgresql/16/main/postgresql.conf

3. Then, we have to modify the following section:

#Locale and Formatting

datestyle = 'iso, mdy'

4. After changing this parameter, in the query on pg_settings, the context parameter is

'user'; we just need to do a reload of the server. In this case, a restart is not necessary:

root@pgdev:/# service postgresql reload

[ok] Reloading postgresql configuration (via systemctl):
postgresql.service.

For further information about the pg_settings view, we suggest visiting https://www.

postgresql.org/docs/current/view-pg-settings.html.

5. We have learned what the internal parameters for date display are, so now, let’s look at
how to insert, update, and display dates. If we know the value of the date-style parameter,

the PostgreSQL way of converting a string into a date is as follows:

forumdb=> \x
Expanded display is off.
forumdb=> select '12-31-2020'::date;

2020-12-31
(1 row)

This way is simple but not particularly user-friendly. The best way to manage dates is by

using some functions that PostgreSQL provides for us.

https://www.postgresql.org/docs/current/view-pg-settings.html
https://www.postgresql.org/docs/current/view-pg-settings.html

194 Server-Side Programming

6. Thefirstfunction thatwe’ll talk aboutis the to_date() function. The to_date() function

converts a given string into a date. The syntax of the to_date() function is as follows:

forumdb=> select to_date('31/12/2020', 'dd/mm/yyyy"') ;
to_date

2020-12-31
(1 row)

The to_date() function accepts two string parameters. The first parameter contains the
value that we want to convert into a date. The second parameter is the pattern of the date.

The to_date() function returns a date value.

7. Now, let’s go back to the posts table and execute this query:

forumdb=> \x

Expanded display is on.

forumdb=> select pk,title,created_on from posts;
-[RECORD 1]

pk | 5

title | Indexing PostgreSQL
created_on | 2023-01-23 15:21:55.747463+00
-[RECORD 2]

pk | 6

title | Indexing Mysql

created_on | 2023-01-23 15:22:02.38953+00
-[RECORD 3]

pk | 7

title | A view of Data types in C++
created_on | 2023-01-23 15:26:21.367814+00

How is it possible that we have date/time combinations (timestamps) if nobody has
ever entered these values into the table? It is possible because the posts table has been

created as follows:

forumdb=> \d posts;
Table "public.posts"

Column

Chapter 7 195

| integer

| text

created_on | timestamp with time zone| | CURRENT_TIMESTAMP

As we can see, the created_on field has CURRENT_TIMESTAMP as the default value, which
means that if no value has been inserted, the current timestamp of the server will be in-
serted. Suppose now that we want to display the date in a different format — for example,

in the European format, created_on: ©3-01-2020.

8. To reach this goal, we have to use another built-in function, the to_char function:

forumdb=> select pk,title,to_char(created_on, 'dd-mm-yyyy') as
created_on

from posts;

-[RECORD 1]

pk | 5

title | Indexing PostgresQL
created_on | 23-01-2023

-[RECORD 2]

pk | 6

title | Indexing Mysql
created on | 23-01-2023

-[RECORD 3]

pk | 7

title | A view of Data types in C++
created_on | 23-01-2023

As shown here, the to_char () function is the inverse of the to_date() function.

Timestamp data types

PostgreSQL can manage dates and times with a time zone and without a time zone. We can store
both date and time using the timestamp data type. In PostgreSQL, there is a data type called
timestamp with time zone to display date and time with a time zone, and a data type called

timestamp without time zone to store date and time without a time zone.

Let’s now go through some examples. First of all, let’s create a new table:

forumdb=> create table new_posts as select pk,title,created_on::timestamp

with time zone as created_on_t, created_on::timestamp without time zone as

196 Server-Side Programming

create_on_nt from posts;

SELECT 3

We have just created a new table called new_posts with the following structure:

forumdb=# \d new_posts;
Table "public.new_posts"”

Column

integer
text
created_on_t | timestamp with time zone

create_on_nt | timestamp without time zone

This table now has the same values for the create_on_t (timestamp with time zone) field and

for the created_on_nt (timestamp without time zone) field, as we can see here:

forumdb=> select * from new_posts ;

-[RECORD 1]+

pk I

title | Indexing PostgresQL

created_on_t | 2023-01-23 15:21:55.747463+00
| 2023-01-23 15:21:55.747463

)

create_on_nt

-[RECORD 2]+

pk I

title | Indexing Mysql

created_on_t | 2023-01-23 15:22:02.38953+00

create_on_nt | 2023-01-23 15:22:02.38953

-[RECORD 3]+

pk I

title | A view of Data types in C++

created on_t | 2023-01-23 15:26:21.367814+00
I

create_on_nt 2023-01-23 15:26:21.367814

Now, let’s introduce a PostgreSQL environment variable called the timezone variable. This vari-

able tells us the current value of the time zone:

forumdb=> show timezone;
-[RECORD 1]

TimeZone | Etc/UTC

Chapter 7 197

In this server, the time zone is set to UTC; if we want to modify this value only on this session, we

have to perform the following query:

forumdb=> set timezone='CET';

SET

Now, the time zone is set to CET:

forumdb=> show timezone;
-[RECORD 1]-
TimeZone | CET

Now, if we execute the query that we performed previously again, we will see that the field with

the time zone has changed its value:

forumdb=> select * from new_posts ;
-[RECORD 1]+

pk | 5

title | Indexing PostgreSQL

created on_t | 2023-01-23 16:21:55.747463+01
create_on_nt | 2023-01-23 15:21:55.747463

-[RECORD 2]+

pk |

title | Indexing Mysql

created on_t | 2023-01-23 16:22:02.38953+01
create_on_nt | 2023-01-23 15:22:02.38953

-[RECORD 3]+

pk
title

created_on_t

A view of Data types in C++
2023-01-23 16:26:21.367814+01
2023-01-23 15:26:21.367814

create_on_nt

This shows the difference between a timestamp with a time zone and a timestamp without a time
zone. For further information on the topic of date and time, please refer to the official documen-

tation at https://www.postgresql.org/docs/current/datatype-datetime.html.

The NoSQL data type

In this section, we will approach the NoSQL data types that are present in PostgreSQL. Since this
book is not specifically focused on NoSQL, we will just take a quick look.

https://www.postgresql.org/docs/current/datatype-datetime.html

198 Server-Side Programming

PostgreSQL handles the following NoSQL data types:

° hstore
. xml

e Jjson/jsonb

We will now talk about hstore and json.

The hstore data type

hstore was the first NoSQL data type that was implemented in PostgreSQL. This data type is
used for storing key-value pairs in a single value. Before working with the hstore data type, we

need to enable the hstore extension on our server:

forumdb=> create extension hstore ;

CREATE EXTENSION

Let’s look at how we can use the hstore data type with an example. Suppose that we want to

show all posts with their usernames and their categories:

forumdb=> select p.pk,p.title,u.username,c.title as category
from posts p

inner join users u on p.author=u.pk

left join categories c on p.category=c.pk

order by 1;

-[RECORD 1]

pk | 5

title | Indexing PostgreSQL

username | luca_ferrari
category | Database

-[RECORD 2]

pk | 6

title | Indexing Mysql

username | luca_ferrari

category | Database

-[RECORD 3]

pk | 7

title | A view of Data types in C++
username | enrico_pirozzi

category | Programming Languages

Chapter 7 199

Suppose now that the table’s posts, users, and categories are huge tables and we would like to
store all the information about usernames and categories in a single field stored inside the posts
table. If we could do this, we would no longer need to join three huge tables. In this case, hstore

can help us:

forumdb=> select p.pk,p.title,hstore(ARRAY['username’,u.
username, 'category',c.title]) as options

from posts p
inner join users u on p.author=u.pk

left join categories c on p.category=c.pk

order by 1;

-[RECORD 1]

pk | 5

title | Indexing PostgreSQL

options | "category"=>"Database", "username"=>"luca_ferrari"

-[RECORD

pk I

title | Indexing Mysql

options | "category"=>"Database", "username"=>"luca_ferrari"

-[RECORD

pk I

title | A view of Data types in C++

options | "category"=>"Programming Languages", "username"=>"enrico_
pirozzi"

The preceding query first puts in an array the values of the username and category fields, and
then transforms them into hstore. Now, if we want to store the data in a new table called posts_

options, we have to perform something like the following:

forumdb=> create table posts_options as

select p.pk,p.title,hstore(ARRAY['username’,u.username, 'category’,c.
title]) as options

from posts p

inner join users u on p.author=u.pk

left join categories c on p.category=c.pk

order by 1;
SELECT 3

200 Server-Side Programming

We now have a new table with the following structure:

forumdb=> \d posts_options

Table "forum.posts options"

Column Type | Collation | Nullable | Default
Fo-mm oo R - B
| integer |
| text |

options | hstore |

Next, suppose that we want to search for all the records that have category = 'Database'. We

would have to execute the following:

forumdb=> select * from posts_options where options->'category'
="'Database"’;

-[RECORD 1]

pk | 5

title | Indexing PostgreSQL

options | "category"=>"Database", "username"=>"luca_ferrari"
-[RECORD 2]

pk | 6

title | Indexing Mysql

options | "category"=>"Database", "username"=>"luca_ferrari"

Since hstore, as well as the json/jsonb data types, is not a structured data type, we can insert
any other key value without defining it first — for example, we can do this:
forumdb=> insert into posts_options (pk,title,options) values (7,'my last
post', '"enabled"=>"false"') ;
INSERT 0 1

The result of the selection on the whole table will be the following:

forumdb=> select * from posts_options;
-[RECORD 1]

pk | 5

title | Indexing PostgreSQL

options | "category"=>"Database", "username"=>"luca_ferrari"
-[RECORD 2]
| 6

Chapter 7 201

title | Indexing Mysql

options | "category"=>"Database", "username"=>"luca_ferrari"

-[RECORD

pk I

title | A view of Data types in C++

options | "category"=>"Programming Languages", "username"=>"enrico_
pirozzi"

-[RECORD 4]

pk | 7

title | my last post

options | "enabled"=>"false"

As we said at the beginning of this section, NoSQL is not the subject of this book, but it is worth
briefly going over it. For further information about the hstore data type, please refer to the official

documentation at https://www.postgresql.org/docs/current/hstore.html.

The JSON data type

In this section, we’ll take a brief look at the JSON data type. JSON stands for JavaScript Object
Notation. JSON is an open standard format, and it is formed of key-value pairs. PostgreSQL sup-
ports the JSON data type natively. It provides many functions and operators used for manipulating
JSON data. PostgreSQL, in addition to the json data type, also supports the jsonb data type. The
difference between these two data types is that the firstis internally represented as text, whereas
the second is internally represented in a binary and indexable manner. Let’s look at how we can

use the json/jsonb data types with an example.

Suppose that we want to show all the posts and tags that we have in our forumdb database. Work-

ing in a classic relational SQL way, we should write something like the following:

forumdb=> \x

Expanded display is off.

forumdb=> select p.pk,p.title,t.tag
from posts p

left join j_posts_tags jpt on p.pk=jpt.post_pk

left join tags t on jpt.tag_pk=t.pk

order by 1;

https://www.postgresql.org/docs/current/hstore.html

202

Server-Side Programming

Indexing PostgreSQL
Indexing PostgreSQL

Indexing Mysql

|
|
| Indexing Mysql
|
|

A view of Data types in C++

(5 rows)

Operating Systems
Database
Database
Operating Systems
Database

Suppose now that we want to have a result like the following:

pk title tag

5 Indexing PostgreSQL Operating Systems,Database
6 Indexing PostgreSQL Database,Operating Systems
7 Aview of Data typesin C++ | Database

In a relational way, we have to aggregate data using the first two fields and perform something

like the following:

forumdb=> \x

Expanded display is on.

forumdb=> select p.pk,p.title,string agg(t.tag,',') as tag

from posts p

left join j_posts_tags jpt on p.pk=jpt.post_pk

left join tags t on jpt.tag_pk=t.pk
group by 1,2

order by 1;

-[RECORD 1]

pk | 5

title | Indexing PostgreSQL

tag | Operating Systems,Database
-[RECORD 2]

pk 3

title | Indexing Mysql

tag | Database,Operating Systems
-[RECORD 3]
pk | 7

Chapter 7 203

title | A view of Data types in C++

tag | Database

Now, imagine that we want to generate a simple JSON structure; we would execute the following
query:
forumdb=> select row_to_json(q) as json_data from (
select p.pk,p.title,string agg(t.tag,',') as tag
from posts p
left join j _posts_tags jpt on p.pk=jpt.post_pk
left join tags t on jpt.tag_pk=t.pk
group by 1,2 order by 1) Q;
-[RECORD 1]
json_data | {"pk":5,"title":"Indexing PostgreSQL","tag":"Operating
Systems,Database"}
-[RECORD 2]
json_data | {"pk":6,"title":"Indexing Mysql","tag":"Database,Operating
Systems"}
-[RECORD 3]
json_data | {"pk":7,"title":"A view of Data types in
C++","tag":"Database"}

As we can see, with a simple query, it is possible to switch from a classic SQL representation to a
NoSQL representation. Now, let’s create a new table called post_json. This table will have only

one jsonb field, called jsondata:

forumdb=> create table post_json (jsondata jsonb);
CREATE TABLE
forumdb=> \d post_json
Table "forum.post_json"
Column | Type | Collation | Nullable | Default
—————————— B et e A T

jsondata | jsonb | |

Now, let’s insert some data into the post_json table:

forumdb=> insert into post_json(jsondata)

select row_to_json(q) as json_data from (

select p.pk,p.title,string agg(t.tag,',') as tag

from posts p

204 Server-Side Programming

left join j_posts_tags jpt on p.pk=jpt.post_pk

left join tags t on jpt.tag pk=t.pk
group by 1,2 order by 1) Q;
INSERT @ 3

Now, the post_json table has the following records:

forumdb=> select jsonb_pretty(jsondata) from post_json;
-[RECORD 1]+
jsonb_pretty | {
| ekt s,
| "tag": "Operating Systems,Database",
| "title": "Indexing PostgresQL"
I
-[RECORD 2]+

jsonb_pretty |

"tag": "Database,Operating Systems",

I
| "title": "Indexing Mysql"
I

-[RECORD 3]+
jsonb_pretty |

+

+

"tag": "Database", +
"+

|
| "title": "A view of Data types in C++'
|

If we wanted to search for all data thathas tag = "Database", we could use the@> jsonb operator.
This operator checks whether the left JSON value contains the right JSON path/value entries at

the top level; the following query makes this search possible:

forumdb=> select jsonb_pretty(jsondata) from post_json where jsondata @>
'{"tag":"Database"}"';

-[RECORD 1]+

jsonb_pretty | {
| "pk": 7)

"Database”,

Chapter 7 205

"title": "A view of Data types in C++"+

What we have just written is just a small taste of what can be done through the NoSQL data model.
JSON is widely used when working with large tables and when a data structure is needed that
minimizes the number of joins to be done during the research phase. A detailed discussion of the
NoSQL world is beyond the scope of this book, but we wanted to describe briefly how powerful
PostgreSQL is in the approach to unstructured data as well. For more information, please look at
the official documentation at https://www.postgresql.org/docs/current/functions-json.
html.

After understanding what data types are and which data types can be used in PostgreSQL, in the

next section, we will see how to use data types within functions.

Exploring functions and languages
PostgreSQLis capable of executing server-side code. There are many ways to provide PostgreSQL
with the code to be executed. For example, the user can create functions in different programming

languages. The main languages supported by PostgreSQL are as follows:

. SQL
e PL/pgSQL
e C

These listed languages are the built-in languages; there are also other languages that PostgreSQL
can manage, but before using them, we need to install them on our system. Some of these other

supported languages are as follows:

e PL/Python

e PL/Perl
e PL/tcl
e PLfJava

In this section, we’ll talk about SQL and PL/pgSQL functions.

Functions

The command structure with which a function is defined is as follows:

CREATE FUNCTION function_name(pl type, p2 type,p3 type, , pn type)

RETURNS type AS

https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-json.html

206 Server-Side Programming

BEGIN

-- function logic

END;
LANGUAGE language name

The following steps always apply to any type of function we want to create:

1. Specify the name of the function after the CREATE FUNCTION keywords.

Make a list of parameters separated by commas.

Specify the return data type after the RETURNS keyword.

For the PL/pgSQL language, put some code between the BEGIN and END blocks.

A R

For the PL/pgSQL language, the function has to end with the END keyword followed by

a semicolon.

6. Define the language in which the function was written — for example, sql or plpgsql,

plperl, plpython, and so on.

This is the basic scheme to which we will refer later in the chapter; this scheme may have small

variations in some specific cases.

SQL functions

SQL functions are the easiest way to write functions in PostgreSQL, and we can use any SQL

command inside them.

Basic functions

This section will show how to take your first steps into the SQL functions world. For example, the

following function carries out a sum between two numbers:

forumdb=> CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS
integer AS $%

SELECT x + y;

$$ LANGUAGE SQL;

CREATE FUNCTION

forumdb=> select my_sum(1,2);

Chapter 7 207

3

(1 row)

As we can see in the preceding example, the code function is placed between $$; we can consider
$$ aslabels. The function can be called using the SELECT statement without using any FROM clauses.
The arguments of a SQL function can be referenced in the function body using either numbers (the

old way) or their names (the new way). For example, we could write the same function in this way:

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS $$
SELECT $1 + $2;

$$ LANGUAGE SQL;

In the preceding function, we can see the old way to reference the parameter inside the function.
In the old way, the parameters were referenced positionally, so the value $1 corresponds to the
first parameter of the function, $2 to the second, and so on. In the code of the SQL functions, we

can use all the SQL commands, including those seen in previous chapters.

SQL functions returning a set of elements

In this section, we will look at how to make a SQL function thatreturns a result set of a data type.
For example, suppose that we want to write a function that takes p_title as a parameter and
deletes all the records that have title=p_title, as well as returning all the keys of the deleted

records. The following function would make this possible:

forumdb=> CREATE OR REPLACE FUNCTION delete_posts(p_title text) returns
setof integer as $$%

delete from posts where title=p title returning pk;

$$
LANGUAGE SQL;
CREATE FUNCTION

This is the situation before we called the delete_posts function:

forumdb=> select pk,title from posts order by pk;
pk |
____+ ______________________________

5 | Indexing PostgreSQL

6 | Indexing Mysql

7 | A view of Data types in C++

(3 rows)

208 Server-Side Programming

Now, suppose that we want to delete the record that has the field title equal to A view of Data
types in C++. The table posts has the pk field as the primary key, and for the record A view
of Data types in C++,the value of pk is equal to 7; so first of all, let’s delete the records from
the j_posts_tags table for which the value post_pk=7. This is because there is a foreign key that
links the posts and j_posts_tags tables:

forumdb=> delete from j_posts_tags where post_pk = 7;

DELETE 1

Now let’s call the delete_posts functionusing A view of Data types in C++asthe parameter.

This is the situation after we called the delete_posts function:

forumdb=> select delete_posts('A view of Data types in C++');

delete_posts

forumdb=> select pk,title from posts order by pk;
pk |

e e
5 | Indexing PostgreSQL

6 | Indexing Mysql

(2 rows)

In this function, we’ve introduced a new kind of data type — the setof data type. The setof direc-
tive simply defines a result set of a data type. For example, the delete_posts function is defined
to return a set of integers, so its result will be an integer dataset. We can use the setof directive

with any type of data.

SQL functions returning a table

In the previous section, we saw how to write a function that returns a result set of a single data
type; however, itis possible that there will be cases where we need our function to return a result
set of multiple fields. For example, let’s consider the same function as before, but this time, we

want the pk, title pair to be returned as a result, so our function becomes the following:

forumdb=> create or replace function delete_posts_table (p_title text)
returns table (ret_key integer,ret_title text) AS $$

delete from posts where title=p_title returning pk,title;
$$

Chapter 7 209

language SQL;

CREATE FUNCTION

The only difference between this and the previous function is that now the function returns a
table type; inside the table type, we have to specify the name and the type of the fields. As we

have seen before, this is the situation before calling the function:

forumdb=> select pk,title from posts order by pk;

Indexing PostgreSQL
Indexing Mysql

(2 rows)

Let’s now insert a new record:

forumdb=> insert into posts(title,author,category) values ('My new
post',1,1);
INSERT © 1

Now let’s call the delete_posts_table function. The correct way to call the function is:

forumdb=> select * from delete posts_table('My new post');
ret_key | ret_title
_________ e e
9 | My new post
(1 row)
)

This is the situation after calling the function:

forumdb=> select pk,title from posts order by pk;
pk |
____+ _____________________

| Indexing PostgreSQL

5
6 | Indexing Mysql

(2 rows)

The functions that return a table can be treated as real tables, in the sense that we can use them

with the in, exists, join, and so on options.

210 Server-Side Programming

Polymorphic SQL functions

In this section, we will briefly talk about polymorphic SQL functions.

Polymorphic functions are useful for DBAs when we need to write a function that has to work
with different types of data. To better understand polymorphic functions, let’s start with an ex-
ample. Suppose we want to recreate something that looks like the Oracle NVL function —in other
words, we want to create a function that accepts two parameters and replaces the first parameter
with the second one if the first parameter is NULL. The problem is that we want to write a single

function that is valid for all types of data (integer, real, text, and so on).

The following function makes this possible:

forumdb=> create or replace function nvl (anyelement,anyelement) returns
anyelement as $$%

select coalesce($1,%$2);
3

language SQL;

CREATE FUNCTION

This is how to call it:

forumdb=> select nvl(NULL::int,1);

forumdb=> select nvl(''::text,'n'::text);

forumdb=> select nvl('a'::text, 'n'::text);

Chapter 7 211

For further information, see the official documentation at https://www.postgresql.org/docs/

current/extend-type-system.html.

PL/pgSQL functions

In this section, we’ll talk about the PL/pgSQL language. The PL/pgSQL language is the default
built-in procedural language for PostgreSQL. As described in the official documentation, the design

goals with PL/pgSQL were to create a loadable procedural language that can do the following:
e Can be used to create functions and trigger procedures (we’ll talk about triggers in the
next chapter).
e Addnew control structures.

e Addnew data types to the SQL language.
It is very similar to Oracle PL/SQL and supports the following:

e Variable declarations
e Expressions
e Control structures as conditional structures or loop structures

. Cursors

First overview

As we saw at the beginning of the SQL functions section, the prototype for writing functions in

PostgreSQL is as follows:

CREATE FUNCTION function_name(pl type, p2 type,p3 type, , pn type)

RETURNS type AS

BEGIN

-- function logic
END;

LANGUAGE language name

Now, suppose that we want to recreate the my_sum function using the PL/pgSQL language:

forumdb=> CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS
integer AS

$BODY$

DECLARE

ret integer;
BEGIN

https://www.postgresql.org/docs/current/extend-type-system.html
https://www.postgresql.org/docs/current/extend-type-system.html

212 Server-Side Programming

ret := x +y;

return ret;
END;
$BODY$
language 'plpgsql';
CREATE FUNCTION

forumdb=> select my sum(2,3);

The preceding query provides the same results as the query seen at the beginning of the chapter.

Now, let’s examine it in more detail:

1. Thefollowingis the function header; here, you define the name of the function, the input

parameters, and the return value:

CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS

integer AS

2. The following is a label indicating the beginning of the code. We can put any string in
between the $$ characters; the important thing is that the same label is present at the

end of the function:

3. Inthefollowing section, we can define our variables;itis important that each declaration

or statement ends with a semicolon:

DECLARE

ret integer;

4. With the BEGIN statement, we tell PostgreSQL that we want to start to write our logic:

BEGIN

ret := x +y;

return ret;

Chapter 7 213

\/‘/' Caution: Do not write a semicolon after BEGIN —it’s not correct and it will

generate a syntax error.

5. Between the BEGIN statement and the END statement, we can put our own code:

END;

6. The END instruction indicates that our code has ended:

$BODY$

7. This label closes the first label and at last, the language statement specifies PostgreSQL,

in which the function is written:

language 'plpgsql’;

Dropping functions

To drop a function, we have to execute the DROP FUNCTION command followed by the name of

the function and its parameters. For example, to drop the my_sum function, we have to execute:

forumdb=> DROP FUNCTION my_sum(integer,integer);

DROP FUNCTION

Declaring function parameters

After learning about how to write a simple PL/pgSQL function, let’s go into a little more detail
about the single aspects seen in the preceding section. Let’s start with the declaration of the
parameters. In the next two examples, we’ll see how to define, in two different ways, the my_sum

function that we have seen before.

The first example is as follows:

forumdb=> CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS
integer AS

$BODY$

DECLARE

x alias for $1;

y alias for $2;

214 Server-Side Programming

ret integer;

BEGIN

ret := x + y;
return ret;

END;

$BODY$

language 'plpgsql';
CREATE FUNCTION

The second example is as follows:

forumdb=> CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS
integer AS
$BODY$
DECLARE
ret integer;
BEGIN
ret := $1 + $2;
return ret;
END;
$BODY$
language 'plpgsql’;
CREATE FUNCTION

In the first example, we used alias; the syntax of alias is, in general, the following:

newname ALIAS FOR oldname;

In our specific case, we used the positional variable $1 as the o1dname value. In the second example,

we used the positional approach exactly as we did in the case of SQL functions.

IN/OUT parameters

In the preceding example, we used the RETURNS clause in the first row of the function definition;
however, there is another way to reach the same goal. In PL/pgSQL, we can define all parameters
as input parameters, output parameters, or input/output parameters. For example, say we write

the following:

forumdb=> CREATE OR REPLACE FUNCTION my sum_3 params(IN x integer,IN y
integer, OUT z integer) AS

$BODY$

Chapter 7 215

BEGIN
Z 1= X+y;
END;

$BODY$
language 'plpgsql';
CREATE FUNCTION

We have defined a new function called my_sum_3_params, which accepts two input parameters
(x and y) and has an output of parameter z. As there are two input parameters, the function will

be called with only two parameters, exactly as in the last function:

forumdb=> select my_sum_3 params(2,3);

my_sum_3_params

With this kind of parameter definition, we can have functions that have multiple variables as a
result. For example, if we want a function that, given two integer values, computes their sum and

their product, we can write something like this:

forumdb=> CREATE OR REPLACE FUNCTION my sum_mul(IN x integer,IN y
integer,0UT w integer, OUT z integer) AS

$BODY$

BEGIN

Z 1= X+y;

w = x*y;

$BODY$
language 'plpgsql';
CREATE FUNCTION

The strange thing is that if we invoke the function as we did before, we will have the following

result:

forumdb=> select my_sum_mul(2,3);

my_sum_mul

216 Server-Side Programming

This result seems to be a little bit strange because the result is not a scalar value but a record,
which is a custom type. To cause the output to be separated as columns, we have to use the

following syntax:

forumdb=> select * from my_sum_mul(2,3);

We can use the result of the function exactly as if it were a result of a table and write, for example,

the following:

forumdb=> select * from my_sum_mul(2,3) where w=6;

We can define the parameters as follows:

e IN: Input parameters (if omitted, this is the default option)
e OUT: Output parameters

e INOUT: Input/output parameters

Function volatility categories

In PostgreSQL, each function can be defined as VOLATILE, STABLE, or IMMUTABLE. If we do not specify
anything, the default value is VOLATILE. The difference between these three possible definitions
is well described in the official documentation (https://www.postgresql.org/docs/current/
xfunc-volatility.html):

https://www.postgresql.org/docs/current/xfunc-volatility.html
https://www.postgresql.org/docs/current/xfunc-volatility.html

Chapter 7

217

A VOLATILE function can do everything, including modifying the database. It can
return different results on successive calls with the same arguments. The optimizer
makes no assumptions about the behavior of such functions. A query using a volatile
function will re-evaluate the function at every row where its value is needed. If a
function is marked as VOLATILE, it can return different results if we call it multiple

times using the same input parameters.

A STABLE function cannot modify the database and is guaranteed to return the same
results given the same arguments for all rows within a single statement. This cate-
gory allows the optimizer to optimize multiple calls of the function to a single call.
In particular, it is safe to use an expression containing such a function in an index
scan condition. If a function is marked as STABLE, the function will return the same

result given the same parameters within the same transaction.

An IMMUTABLE function cannot modify the database and is guaranteed to return the
same results given the same arguments forever. This category allows the optimizer

to pre-evaluate the function when a query calls it with constant arguments.

In the following pages of this chapter, we will only be focusing on examples of volatile functions;

however, here we will briefly look at one example of a stable function and one example of an

immutable function:

1. Let’s start with a stable function — for example, the now() function is a stable function.

The now() function returns the current date and time that we have at the beginning of

the transaction, as we can see here:

forumdb=> begin ;

BEGIN

forumdb=*> select now();

218

Server-Side Programming

2023-03-17 13:25:25.37224+00
(1 row)

forumdb=*> select now();

2023-03-17 13:25:25.37224+00
(1 row)

forumdb=*> commit;
COMMIT

forumdb=> begin ;
BEGIN

forumdb=*> select now();

2023-03-17 13:27:02.012632+00
(1 row)

forumdb=*> commit ;
COMMIT

Note: In PostgreSQL 16, when psql shows us a prompt like *>, it means that we are inside

a transaction block.

Now, let’s look at an immutable function — for example, the lower (string_expression)
function. The lower function accepts a string and converts it into a lowercase format. As
we can seg, if the input parameters are the same, the lower function always returns the

same result, even if it is performed in different transactions:

forumdb=> begin;
BEGIN

forumdb=*> select now();

Chapter 7 219

2023-03-17 13:33:39.586388+00
(1 row)

forumdb=*> select lower('MICKY MOUSE');

micky mouse

(1 row)

forumdb=*> commit;
COMMIT

forumdb=> begin;
BEGIN

forumdb=*> select now();

2023-03-17 13:34:56.491773+00
(1 row)

forumdb=*> select lower('MICKY MOUSE');

micky mouse
(1 row)

forumdb=*> commit;
COMMIT

Control structure

PL/pgSQL has the ability to manage control structures such as the following:

e Conditional statements

220 Server-Side Programming

e Loop statements

e Exception handler statements

Conditional statements

The PL/pgSQL language can manage IF-type conditional statements and CASE-type conditional

statements.

IF statements

In PL/pgSQL, the syntax of an IF statement is as follows:

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN

statements

]

1
[ELSE

statements]
END IF;

For example, say we want to write a function that, when given the two input values, x and y,

returns the following:

o first parameter is greater than second parameterif x > y
o second parameter is greater than first parameterif x < y

e the 2 parameters are equalsif x =y

We have to write the following function:

forumdb=> CREATE OR REPLACE FUNCTION my check(x integer default @, y
integer default ©) RETURNS text AS

$BODY$
BEGIN
IF x > y THEN

return 'first parameter is greater than second parameter';

Chapter 7 221

ELSIF x < y THEN
return 'second parameter is greater than first parameter';
ELSE

return 'the 2 parameters are equals';

END IF;
END;

$BODY$

language ‘plpgsql’;
CREATE FUNCTION

In this example, we have seen the IF constructin its largest form: IF [...] THEN[...] ELSIF
[...] ELSE[...] ENDIF;

However, shorter forms also exist, as follows:

e IF [...] THEN[...] ELSE[...] ENDIF;
e IF [...] THEN[...] ENDIF;

Some examples of the results provided by the previously defined function are as follows:

forumdb=> select my check(1,2);

second parameter is higher than first parameter
(1 row)

forumdb=> select my_check(2,1);
my_check

first parameter is higher than second parameter
(1 row)

forumdb=> select my check(1,1);

my_check

the 2 parameters are equals
(1 row)

222 Server-Side Programming

CASE statements

In PL/pgSQL, it is also possible to use the CASE statement. The CASE statement can have the fol-

lowing two syntaxes.

The following is a simple CASE statement:

CASE search-expression

WHEN expression [, expression [...]] THEN
statements

[WHEN expression [, expression [...]] THEN
statements

1

[ELSE

statements]
END CASE;

The following is a searched CASE statement:

CASE

WHEN boolean-expression THEN
statements

[WHEN boolean-expression THEN
statements

]

[ELSE

statements]
END CASE;

Now, we will perform the following operations:

e We will use the first one, the simple CASE syntax, if we have to make a choice from a list

of values.

e We will use the second one when we have to choose from a range of values.

Let’s start with the first syntax:

forumdb=> CREATE OR REPLACE FUNCTION my check_value(x integer default 0)
RETURNS text AS

$BODY$
BEGIN

Chapter 7 223

CASE x
WHEN 1 THEN return ‘value
WHEN 2 THEN return 'value

ELSE return 'value >= 3 ';

END CASE;
END;
$BODY$
language ‘plpgsql’;
CREATE FUNCTION

The preceding my_check_value function returns the following:
e value = 1ifx=1
e value = 2ifx=2
e value >= 3ifx>=3

We can see this to be true here:

forumdb=> select my_check_value(1);

my_check_value

forumdb=> select my_check_value(2);

my_check_value

forumdb=> select my_check_value(3);

my_check_value

value >= 3
(1 row)

Now, let’s see an example of the searched CASE syntax:

forumdb=> CREATE OR REPLACE FUNCTION my check_ case(x integer default o, y

integer default ©) RETURNS text AS

Server-Side Programming

$BODY$
BEGIN
CASE
WHEN x > y THEN return 'first parameter is higher than second
parameter';
WHEN x < y THEN return ‘second parameter is higher than first
parameter';
ELSE return 'the 2 parameters are equals';
END CASE;
END;
$BODY$
language 'plpgsql’;
CREATE FUNCTION

Themy check_case function returns the same data asthemy_check function that we wrote before:

forumdb=> select my_check_case(2,1);

my_check_case

first parameter is higher than second parameter

(1 row)

forumdb=> select my_check_case(1,2);

my_check_case

second parameter is higher than first parameter
(1 row)

forumdb=> select my check case(1,1);

my_check_case

the 2 parameters are equals
(1 row)

forumdb=> select my_check_case();

my_check_case

Chapter 7 225

the 2 parameters are equals

(1 row)

Loop statements

PL/pgSQL can handle loops in many ways. We will look at some examples of how to make a loop
next. For further details, we suggest referring to the official documentation at https://www.
postgresql.org/docs/current/plpgsql.html. What makes PL/pgSQL particularly useful is the
fact that it allows us to process data from queries through procedural language. We are going to

see now how this is possible.

Suppose that we want to build a PL/pgSQL function that, when given an integer as a parameter,
returns a result set of a composite data type. The composite data type that we want it to return

is as follows:

ID pk field Integer data type
TITLE Title field text data type
RECORD_DATA Title field + content field hstore data type

The right way to build a composite data type is as follows:

forumdb=> create type my_ret_type as (

id integer,

title text,
record_data hstore
)

CREATE TYPE

The preceding statement creates a new data type, a composite data type, which is composed of
an integer data type + a text data type + an hstore data type. Now, if we want to write a func-

tion thatreturns aresult set of the my_ret_type data type, our first attempt might be as follows:

forumdb=> CREATE OR REPLACE FUNCTION my_first_fun (p_id integer) returns
setof my_ret_type as

$$
DECLARE

rw posts%ROWTYPE; -- declare a rowtype;

ret my_ret_type;
BEGIN

https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/plpgsql.html

226 Server-Side Programming

for rw in select * from posts where pk=p_id loop

ret.id := rw.pk;
ret.title := rw.title;
ret.record_data := hstore(ARRAY['title',rw.title, 'Title and Content'
,format('%s %s',rw.title,rw.content)]);
return next ret;
end loop;
return;
END;
$$
language ‘plpgsql’;
CREATE FUNCTION

As we can see, many things are concentrated in these few lines of PL/pgSQL code:

1. rw posts%ROWTYPE: With this statement, the rw variable is defined as a container of a
single row of the posts table.

2. for rw in select * from posts where pk=p_id loop: With this statement, we cycle
within the result of the selection, assigning the value returned by the select command

each time to the rw variable. The next three steps assign the values to the ret variable.

3. return next ret;:This statement returns the value of the ret variable and goes to the

next record of the for cycle.
4. end loop;: This statement tells PostgreSQL that the for cycle ends here.

5. return;: This is the return instruction of the function.

An important thing to remember is that the PL/pgSQL language is inside the Post-
greSQL transaction system. This means that the functions are executed atomically
\@// and that the function returns the results not at the execution of the RETURN NEXT
command but at the execution of the RETURN command placed at the end of the
function. This may mean that for very large datasets, the PL/pgSQL functions can

take a long time before returning results.

The record type
In an example that we used previously, we introduced the %ROWTYPE data type. In the PL/pgSQL
language, it is possible to generalize this concept. There is a data type called record that gener-

alizes the concept of %4ROWTYPE.

Chapter 7 227

For example, we can rewrite my_first_fun in the following way:

forumdb=> CREATE OR REPLACE FUNCTION my_second_fun (p_id integer) returns
setof my_ret_type as

$$
DECLARE

rw record; -- declare a record variable

ret my_ret_type;
BEGIN

for rw in select * from posts where pk=p_id loop

ret.id := rw.pk;
ret.title := rw.title;
ret.record_data := hstore(ARRAY['title',rw.title
,'Title and Content',format('%s %s',rw.title,rw.
content)]);
return next ret;
end loop;
return;
END;
$$
language ‘plpgsql’;
CREATE FUNCTION

The only difference between my_first_fun and my_second_fun is in this definition:

rw record;

This time, the rw variable is defined as a record data type. This means that the rw variable is
an object that can be associated with any records of any table. The result of the two functions,

my_first_funandmy_second_fun,is the same:

forumdb=> \x

Expanded display is on.

forumdb=> select * from my_ first_fun(5);
-[RECORD 1]

id | 5
title | Indexing PostgreSQL

record_data | "title"=>"Indexing PostgreSQL", "Title and
Content"=>"Indexing PostgreSQL Btree in PostgreSQL is...."

228 Server-Side Programming

Exception handling statements

PL/pgSQL can also handle exceptions. The BEGIN. . . END block of a function allows the EXCEPTION
option, which works as a catch for exceptions. For example, if we write a function to divide two

numbers, we could have a problem with a division by 0:

forumdb=> CREATE OR REPLACE FUNCTION my_first_except (x real, y real)
returns real as

3

DECLARE

ret real;

BEGIN

ret := x / y;
return ret;

END;

$$

language ‘'plpgsql’;
CREATE FUNCTION

This function works well if y <> 0, as we can see here:

forumdb=> \x
Expanded display is off.
forumdb=> select my_ first_except(4,2);

my_first_except

However, if y assumes a O value, we have a problem:

forumdb=> select my first_except(4,0);
ERROR: division by zero

CONTEXT: PL/pgSQL function my first_except(real,real) line 5 at
assignment

To solve this problem, we have to handle the exception. To do this, we have to rewrite our function

in the following way:

forumdb=> CREATE OR REPLACE FUNCTION my_second_except (x real, y real)

returns real as

Chapter 7 229

$%
DECLARE

ret real;
BEGIN

ret := x / y;

return ret;
EXCEPTION
WHEN division_by zero THEN

RAISE INFO 'DIVISION BY ZERO';
RAISE INFO 'Error % %', SQLSTATE, SQLERRM;
RETURN ©;

END;

$$

language ‘plpgsql’ ;

CREATE FUNCTION

The SQLSTATE and SQLERRM variables contain the status and message associated with the gener-

ated error. Now, if we execute the second function, we no longer get an error from PostgreSQL:

forumdb=> select my_second_except(4,0);
INFO: DIVISION BY ZERO
INFO: Error 22012 division by zero

my_second_except

The list of errors that PostgreSQL can manage is available at https: //www.postgresql.org/docs/

current/errcodes-appendix.html.

Security definer

This option allows the user to invoke a function as if they were its owner. It can be useful in all

cases where we want to display data to which the average user does not have access.

For example, in PostgreSQL, there is a system view called pg_stat_activity, which allows us to

view what PostgreSQL is currently doing.

As user forum, let’s execute this statement:

postgres@learn_postgresql:~$ psql -U forum forumdb

https://www.postgresql.org/docs/current/errcodes-appendix.html
https://www.postgresql.org/docs/current/errcodes-appendix.html

230 Server-Side Programming

forumdb=>

forumdb=> select pid,query from pg stat_activity

P

_____ +__
74 | <insufficient privilege>
75 | <insufficient privilege>
217 | select pid,query from pg_stat activity ;
[--1]

As we can see above, there are some <insufficient privilege> results. Here are the steps to

solve this problem:

e Let’s connect to the database as user postgres:

postgres@learn_postgresql:~$ psql forumdb
forumdb=#

e Now let’s execute the functionmy_stat_activity() written here:

forumdb=# create function forum.my_ stat_activity()
returns table (pid integer,query text)
as $%
select pid, query from pg stat_activity;
$$ language 'sql’
security definer;

e Let’s give the execute permission to the forum user on the function my_stat_activity.

We will see this feature in Chapter 10, Granting and Revoking Permissions:

forumdb=# grant execute on function forum.my stat activity TO forum;

e Let’s connect again to the database as user forum:

postgres@learn_postgresql:~$ psql -U forum forumdb
forumdb=>

e Now let’s execute the query written below:

forumdb=> select * from my_stat_activity();

Chapter 7 231

yZ
75 |

271 | select * from my stat activity();
[.-]

We no longer have the problem we had before. This is because the security definer allows
the forum.my_stat_activity() function to be executed with the permissions of the user who

created it, and in this case, the user who created it is the postgres user.

Summary

In this chapter, we introduced the world of server-side programming. The topic is so vast that
there are specific books dedicated just to it. We have tried to give you a better understanding of
the main concepts of server-side programming. We talked about the main data types managed
by PostgreSQL, then we saw how it is possible to create new ones using composite data types.
We also mentioned SQL functions and polymorphic functions, and finally, we provided some

information about the PL/pgSQL language.

In the next chapter, we will use these concepts to introduce event management in PostgreSQL.
We will talk about event management through the use of triggers and the functions associated

with them.

Verify your knowledge

e Isitpossible to extend Is it possible to extend features and data types in postgresql?
Yes it is, we can extend PostgreSQL in terms of data types and in terms of functions.
See the The concept of extensibility section for more details.

e Does PostgreSQL support only relational databases?
No, PostgreSQL supports NoSQL databases too.
See the The NoSql data type section for more details.

e Does PostgreSQL support SQL functions?
Yes it does, we can write any kind of SQL function.

See the SQL functions section for more details.

232 Server-Side Programming
e Does PostgreSQL have a default built-in procedural language ?
Yes PostgreSQL has a default built-in procedural language called PL/pgSQL.
See the PL/pgSQL functions section for more details.
e Asauser without administrative privileges, can we read a table that requires administra-
tive permissions in order to be read?
Yes we can; as an administrator user let’s create a function that reads the table, let’s define
the function using the security definer clause, and let’s give the execution permissions of
the function to the non-administrator user.
See the Security definer section for more details.
References

PostgreSQL — data types official documentation: https://www.postgresql.org/docs/
current/datatype.html

PostgreSQL —SQL functions official documentation: https: //www.postgresql.org/docs/
current/xfunc-sql.html

PostgreSQL — PL/pgSQL official documentation: https://www.postgresql.org/docs/
current/plpgsql.html

PostgreSQL 11 Server Side Programming Quick Start Guide: https://subscription.
packtpub.com/book/data/9781789342222/1

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.postgresql.org/docs/current/datatype.html
https://www.postgresql.org/docs/current/datatype.html
https://www.postgresql.org/docs/current/xfunc-sql.html
https://www.postgresql.org/docs/current/xfunc-sql.html
https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/plpgsql.html
https://subscription.packtpub.com/book/data/9781789342222/1
https://subscription.packtpub.com/book/data/9781789342222/1
https://discord.gg/jYWCjF6Tku

Triggers and Rules

In the previous chapter, we talked about server-side programming. In this chapter, we will use the
concepts introduced in the previous chapter to manage the programming of events in PostgreSQL.
The first thing we need to address is what an event in PostgreSQL actually is. In PostgreSQL,
possible events are given by the SELECT/INSERT/UPDATE, and DELETE statements. There are also
events related to data definition language (DDL) operations; however we will talk about those

events in Chapter 17, Event Triggers.
In PostgreSQL, there are two ways to handle events:

e Rules

o Triggers

In this chapter, we will explore both of these ways and address when it is more appropriate to use
one rather than the other. As a starting point, we can generally say that rules are usually simple
event handlers, while triggers are more complex event handlers. Triggers and rules are often used
to update accumulators and to modify or delete records that belong to different tables than the
one in which we modify records. They are very powerful tools that allow us to perform operations
in tables other than the one in which we modify the data. Triggers and rules will also be used in
the next chapter when we talk about partitioning. This is because, in PostgreSQL, there is still a

partitioning model based on triggers and rules.
In this chapter, we will talk about the following:

e Exploring rules in PostgreSQL
e Managing triggers in PostgreSQL

e Eventtriggers

234 Triggers and Rules

Technical requirements
Before starting, remember to start the Docker container named chapter_e8, as shown below:

$ bash run-pg-docker.sh chapter_08

postgres@learn_postgresql:~$ psql -U forum forumdb

Exploring rules in PostgreSQL

As mentioned earlier, rules are simple event handlers. At the user level, it is possible to manage

all the events that perform write operations, which are as follows:

e INSERT
. DELETE
. UPDATE

The fundamental concept behind rules is to modify the flow of an event. If we are given an event,

what we can do when certain conditions occur is as follows:

e Do nothing and then undo the action of that event.
e Trigger another event instead of the default one.
e Trigger another event in conjunction with the default.

So, given a write operation, for example, an INSERT operation, we can perform one of these three

actions:

e Cancel the operation.
e Perform another operation instead of the INSERT.

e Execute the INSERT and, in the same transaction, perform another operation.

Understanding the OLD and NEW variables

Before we start working with rules and then with triggers, we need to understand the concept

of the OLD and NEW variables.

The OLD and NEW variables represent the state of the row in the table before or after the event. OLD
and NEW values are cursors that represent the whole record. To better understand this, consider an
UPDATE operation; in this case, the OLD variable contains the value of the record already present
in the table, while the NEW variable contains the value that the record of the table will have after
the UPDATE operation.

Chapter 8 235

For example, we can consider the tags table with the following records:

forumdb=> select * from tags;

pk |
____+ ___________________ + ________

1 | Operating Systems |

2 | Linux
3 | Ubuntu
[..]

Suppose we want to modify the tag with pk=3, from Ubuntu to Fedora, with this UPDATE operation:

forumdb=> update tags set tag='Fedora' where pk=3;

UPDATE 1

The OLD variable will have these values:

pk tag parent

3 Ubuntu 1

The NEW variable will have these values:

pk tag parent

3 Fedora 1

Itis quite logical that, for certain operations, both the OLD variable and the NEW variable may exist,

but for other operations, only one of them may exist. Here, we can see this expressed in more detail:

Operation/Variable NEW OLD
INSERT present absent
DELETE absent present
UPDATE present present

Now that everything is clearer, we can start working with rules.

Rules on INSERT

Let’s start by introducing the rules syntax:

CREATE [OR REPLACE] RULE name AS ON event
TO table [WHERE condition]

236 Triggers and Rules

DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...)

As we can see, the rule definition is extremely simple. There are three options that we have when

we decide to use a rule:

e TheALSO option
e The INSTEAD option

e The INSTEAD NOTHING option

The ALSO option

Suppose that, from the tags table, we want to copy all records with the field tag value starting
with the letter a in the a_tag table:

1. Firstof all, let’s create a new table called 0_tags:

forumdb=> create table O_tags (

pk integer not null primary key,
tag text,
parent integer);

CREATE TABLE

2. Then let’s create the new rule as follows:

forumdb=> create or replace rule r_tagsl

as on INSERT to tags

where NEW.tag ilike '0%' DO ALSO

insert into O_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);
CREATE RULE

In the rule we have just defined, we simply told PostgreSQL that every time a record is
inserted with a tag value that starts with the letter “O,” as well as being inserted into the

tags table, it must also be inserted into the 0_tags table.

3. Now we perform the following query:

forumdb=> insert into tags (tag) values ('OpenBSD');

INSERT 0 1

Chapter 8 237

4. Then we check the records in the tags table and the 0_tags records. We will find, in the
tags table, the following:

forumdb=> select * from tags;

Operating Systems
Linux

Ubuntu

OpenBSD

(4 rows)

In the 0_tags table, we will see the following:

forumdb=> select * from O_tags;

____+ _________ + ________
5 | OpenBSD |
(1 row)

The record is present in both tables. A question worth asking is whether the rules are executed
before the event or after the event. For example, is the newly created rule executed before INSERT

or after INSERT? The answer is that rules in PostgreSQL are always executed before the event.

The INSTEAD OF option

Suppose now that we want to move all records with the field tag starting with the letter F or f

in the F_tags table:

1. First, let’s create a new table called F_tags:

forumdb=> create table F_tags (
pk integer not null primary key ,
tag text,

parent integer);

CREATE TABLE

2. Then let’s create the new rule:

forumdb=> create or replace rule r_tags2

as on INSERT to tags

238

Triggers and Rules

5.

where NEW.tag ilike 'f%'

DO INSTEAD insert into f_tags(pk,tag,parent)values (NEW.pk,NEW.
tag,NEW.parent);

This time, in the rule, we simply told PostgreSQL that every time a record is inserted with
a tag value that starts with the letter f, or the capital letter F, it must be moved into the

f_tags table.

Now let’s perform this query:

forumdb=> insert into tags (tag) values ('Fedora Linux');
INSERT © ©

Already from the answer, INSERT @ @, we can guess that nothing has been inserted into
the tags table.

Now, we will perform this statement:

forumdb=> select * from tags;

| Operating Systems
| Linux

| Ubuntu

| OpenBSD

(4 rows)

As we can see in the preceding snippet, the value Fedora Linux does not appear in the

tags table, and in the f_tags table, we will have the following:

forumdb=> select * from f_tags ;
| parent

———ccteco—o—— oo = dbmmmo = o=

6 | Fedora Linux |
(1 row)

The rule that we defined made sure that the record was not inserted into the tags table

but was inserted into the f_tags table.

As thelast example of the INSERT rule, suppose we want nothing to be inserted every time

arecord is inserted with the tag field that starts with the letter R or r.

Chapter 8 239

As we did before, let’s perform the rule:

forumdb=> create or replace rule r_tags3

as on INSERT to tags

where NEW.tag ilike 'r%'

DO INSTEAD NOTHING;
CREATE RULE

7. This time, we’ve said to PostgreSQL that every time the tags table receives a record with
the field tag that starts with the letter r or R, this record should not be considered. Let’s

try what we’ve said:

forumdb=> insert into tags (tag) values ('Red Hat Linux');
INSERT © ©

8. Evennow, we have INSERT @ 0 as the answer from the server, and we can check that the

record has not been inserted in any table:

forumdb=> select pk,tag,parent, 'tags' as tablename
from tags

union all

select pk,tag,parent,'f_tags' as tablename

from f_tags

order by tablename, tag;

| parent | tablename

Fedora Linux
Linux

OpenBSD
Operating Systems
Ubuntu

(5 rows)

As we can see, the record does not appear in any table. In the preceding query, we used UNION
ALL. This includes the results of the two queries. The important thing is that the field types must

be compatible with each other.

Rules on DELETE/UPDATE

In the previous section, we looked at how to use rules on INSERT events. In this section, we will

see how to use rules on DELETE and UPDATE events.

240 Triggers and Rules

We will now look at a complete example of how to use the rules, starting from the concepts

described above.
The goal we want to reach is described in the following steps:
1. Create a table called new_tags equal to the tags table; this table will help us to have a

clean environment where we can do our tests.

2. Create two tables: a table called new_a_tags for a copy of all records with the tags that
start with the letter a, and a table called new_b_tags for a copy of all records with the tags
that start with the letter b.

3. Create all the INSERT/DELETE/UPDATE rules that make everything work.
Let’s begin.

Creating the new_tags table

The first step is to create a new new_tags table. We will create this table based on the existing

tags table:

forumdb=> create table new_tags as select * from tags limit ©;

SELECT @

forumdb=# \d new_tags
Table "public.new_tags"

Type | Collation | Nullable | Default
dommmmm - R Rt - Fommm oo
| integer |
| text |

parent | integer |

The preceding statement copies the structure of the fields of the tags table into the new_tags
table, but it does not copy the constraints or any indices. Now we have to create the primary key

constraint on the new table:

forumdb=> alter table new_tags alter pk set not null ;

ALTER TABLE

forumdb=> alter table new_tags add constraint new_tags_pk primary key
(pk);

ALTER TABLE

forumdb=# \d new_tags

Chapter 8 241

Table "public.new_tags"
Column | Type | Collation | Nullable | Default

T dommmmm e e R

| integer | | not null |

| text | | |
parent | integer | |
Indexes:
"new_tags_pk" PRIMARY KEY, btree (pk)

With this, step 1is complete.

Creating two tables

Similar to what we just did, let’s create new_a_tags and new_b_tags tables. For the new_a_tags

table, we will have the following:

forumdb=> create table new_a_tags as select * from tags limit ©;
SELECT ©
forumdb=> alter table new_a_tags alter pk set not null ;
ALTER TABLE
forumdb=> alter table new_a_tags add constraint new_a_tags_pk primary key
(pk);
ALTER TABLE

forumdb=> \d new_a_tags

Table "forum.new_a_tags"
Column | Type | Collation | Nullable | Default

parent
Indexes:
"new_a_tags_pk" PRIMARY KEY, btree (pk)

In the same way, we will create the new_b_tags table:

forumdb=> create table new_b_tags as select * from tags limit ©;
SELECT ©

forumdb=> alter table new_b_tags alter pk set not null ;
ALTER TABLE

242 Triggers and Rules

forumdb=> alter table new_b_tags add constraint new_b_tags_pk primary key
(pk);

ALTER TABLE

forumdb=> \d new_b_tags

Table "forum.new_ b tags"
Column | Type | Collation | Nullable | Default

Fommm oo Fomm oo R B
| integer | | not null |
| text | | |
parent | integer | |
Indexes:
"new_b_tags_pk" PRIMARY KEY, btree (pk)

Step 2 is now complete, and we have everything we need to start our complete example.

Managing rules on INSERT, DELETE, and UPDATE events

The goal we want to achieve is shown in the following figure:

new tags
pk_integer
tag text
parent integer
COPY HERE ALL COPY HERE ALL
TAGS STARTING WITH 'b’ TAGS STARTING WITH ‘a’

new_b_tags new_a_tags
pk integer pk integer
tag text tag text
parent integer parent integer

Figure 8.1: Managing rules

We want all tags starting with the letter a to be stored in the new_tags table and also copied to

the new_a_tags table, and we want the same for tags that begin with the letter b.

Chapter 8 243

We have to manage rules for INSERT, DELETE, and UPDATE events in the following ways:

e INSERTrules mustrecognize all tags starting with the letters a or b and copy those records

into their respective tables —new_a_tags and new_b_tags.

e DELETE rules must recognize all the tags starting with the letters a or b and delete those

records in the respective tables — new_a_tags and new_b_tags.

e UPDATE rules must recognize all the tags that begin with the letters a or b, and if a record
changes its tag, the rule must check whether the record should be copied or deleted in

the new_a_tags and new_b_tags tables.

INSERT rules

Let’s start by creating two INSERT rules:

forumdb=# create or replace rule r_new_tags _insert_a as on INSERT to new_

tags where NEW.tag like 'a%' DO ALSO insert into new_a_tags(pk,tag,parent)
values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

forumdb=# create or replace rule r_new_tags_insert_b as on INSERT to new_
tags where NEW.tag like 'b%' DO ALSO insert into new_b_tags(pk,tag,parent)
values (NEW.pk,NEW.tag,NEW.parent);

CREATE RULE

As we can see, the new_tags table now has two new rules:

forumdb=# \d new_tags
Table "forum.new_tags"
| Collation | Nullable | Default

integer		not null
text	I	
integer		
Indexes:
"new_tags_pk" PRIMARY KEY, btree (pk)
Rules:
r_new_tags_insert_a AS
ON INSERT TO new_tags
WHERE new.tag ~~ 'a%'::text DO INSERT INTO new_a_tags (pk, tag,

parent)

244 Triggers and Rules

VALUES (new.pk, new.tag, new.parent)

r_new_tags_insert_b AS
ON INSERT TO new_tags

WHERE new.tag ~~ 'b%'::text DO INSERT INTO new_b_tags (pk, tag,
parent)

VALUES (new.pk, new.tag, new.parent)

To check whether the rules work, let’s insert some data:

forumdb=> insert into new_tags values(1, 'linux',NULL);
INSERT © 1

forumdb=> insert into new_tags values(2, 'alpine linux',1);
INSERT 0 1

forumdb=> insert into new_tags values(3, 'bsd unix',NULL);
INSERT 0 1

Then let’s check the parent table:

forumdb=> select * from new_tags ;
| parent
e e P
I
2 | alpine linux |
3 | bsd unix |

(3 rows)

Now let’s see whatis in the table_a child table:

forumdb=> select * from new_a_tags ;
pk |

e P
2 | alpine linux | 1

(1 row)

And what’s in the table_b child table:

forumdb=> select * from new_b_tags ;

Chapter 8 245

We can see that the two rules work.

DELETE rules

Now let’s create the DELETE rules. We need rules that, if a record is deleted from the new_tags
table and it begins with the letter a or b, its copy in the new_a_tags and new_b_tags table must

also be deleted. For all the records that start with the letter a, we need this rule:

forumdb=> create or replace rule r_new_tags_delete_a as on delete to new_
tags where OLD.tag like 'a%' DO ALSO delete from new_a_tags where pk=0LD.
pk;

CREATE RULE

Similarly, we need this rule for records beginning with the letter b:

forumdb=> create or replace rule r_new_tags_delete b as on delete to new_
tags where OLD.tag like 'b%' DO ALSO delete from new_b_tags where pk=0OLD.
pk;

CREATE RULE

The current situation of the new_tags table is as follows:

forumdb=> \d new_tags
Table "forum.new_tags"
Column | Type | Collation | Nullable | Default

integer |
text |
parent | integer |
Indexes:
"new_tags_pk" PRIMARY KEY, btree (pk)
Rules:
r_new_tags_delete_a AS
ON DELETE TO new_tags
WHERE old.tag ~~ 'a%'::text DO DELETE FROM new_a_tags
WHERE new_a_tags.pk = old.pk

r_new_tags_delete b AS
ON DELETE TO new_tags

Triggers and Rules

WHERE old.tag ~~ 'b%'::text DO DELETE FROM new_b_tags
WHERE new_b_tags.pk = old.pk

r_new_tags_insert_a AS

ON INSERT TO new_tags

WHERE new.tag ~~ 'a%'::text DO INSERT INTO new_a_tags (pk, tag,
parent)

VALUES (new.pk, new.tag, new.parent)
r_new_tags_insert_b AS
ON INSERT TO new_tags

WHERE new.tag ~~ 'b%'::text DO INSERT INTO new_b_tags (pk, tag,
parent)

VALUES (new.pk, new.tag, new.parent)

Let’s test whether the two new rules work:

forumdb=> delete from new_tags where tag ‘alpine linux';
DELETE 1

forumdb=> delete from new_tags where tag = 'bsd unix';
DELETE 1

forumdb=> select * from new_tags ;

pk | tag | parent

c——odbe s o= dhem—com o=

forumdb=> select * from new_a_tags ;

pk | tag | parent

forumdb=> select * from new_b_tags ;

pk | tag | parent

e e

(@ rows)

We can see from this that the new rules work.

Chapter 8 247

UPDATE rules

Now we need to introduce a rule that checks whether a tag is updated with a word that starts
with a or b. The simple way to do this is to first create a function that conducts this check and

then create a rule based on that function. Let’s start by creating the function:

forumdb=> create or replace function move_record (p_pk integer, p_tag
text, p_parent integer,p_old_pk integer,p_old_tag text) returns void

language plpgsql as
3
BEGIN
if left(lower(p_tag),1) in ('a','b') THEN
delete from new_tags where pk = p_old_pk;
insert into new_tags values(p_pk,p_tag,p_parent);
end if;
END;
$$;
CREATE FUNCTION

This function takes five parameters as input; the first three parameters are the NEW values that
arrive from the update, and the last two parameters are the OLD values of the record that are
present in the record. The function checks if the record in the table starts with the letter a or b,

and it deletes the old record and inserts the new record.

So, finally, the rule is as follows:

forumdb=> create or replace rule r_new_tags update_a as on UPDATE to new_
tags DO ALSO select move_record(NEW.pk,NEW.tag,NEW.parent,OLD.pk,OLD.tag);
CREATE RULE

The rule calls the function if there is an update. Let’s see if this rule works:

forumdb=> update new_tags set tag='alpine linux' where tag='linux';

move_record

UPDATE ©

forumdb=> select * from new_a_tags ;

Triggers and Rules

1 | alpine linux |
(1 row)

forumdb=> select * from new_tags ;
pk |

e e P
1 | alpine linux |

(1 row)

Now let’s see what happens if a record changes its tag from alpine linux tobsd unix:

forumdb=> update new_tags set tag='bsd unix' where tag='alpine linux';

move_record

UPDATE ©

forumdb=> select * from new_tags ;

1 | bsd unix |

(1 row)

forumdb=> select * from new_a_tags ;
pk | tag | parent
____+ _____ + ________

(9 rows)

forumdb=> select * from new_b_tags ;
| parent

i e,

Chapter 8 249

The rule works! In this short exercise, we have tried to introduce an example of complete rule

management. It is a didactic example, and there are many other ways to achieve the same goal.

In the next section, we will explore another way to manage events in PostgreSQL: triggers.

Managing triggers in PostgreSQL

In the previous section, we talked about rules. In this section, we will talk about triggers, what they
are, and how to use them. We need to start by understanding what triggers are; if we understand
what rules are, this should be simple. In the previous section, we defined rules as simple event
handlers; now we can define triggers as complex event handlers. For triggers, as for rules, there
are NEW and OLD records, which assume the same meaning for triggers as they did for rules. For
triggers, the manageable events are INSERT/DELETE/UPDATE and TRUNCATE. Another difference
between rules and triggers is that with triggers, it is possible to handle INSERT/UPDATE/DELETE
and TRUNCATE events before they happen or after they have happened. With triggers, we can also
use the INSTEAD OF option, but only on views.

So, we can manage the following events:

e BEFORE INSERT/UPDATE/DELETE/TRUNCATE
e AFTER INSERT/UPDATE/DELETE/TRUNCATE
e INSTEAD OF INSERT/UPDATE/DELETE

With rules, itis possible to have only the NEW record for INSERT operations, the NEW and OLD record
for UPDATE operations, and the OLD record for DELETE operations. The first two listitems can also
be used on foreign tables as well as real tables, and the third list item can only be used on views.
For further information, see https://www.postgresql.org/docs/current/sql-createtrigger.
html.

We will now take the first steps to use triggers, and we will find out how to obtain the same
results that are achieved when using rules. With triggers, we can do everything we can do with

rules and much more.
Before continuing, we need to keep two things in mind:

e If triggers and rules are simultaneously present on the same event in a table, the rules

always fire before the triggers.

https://www.postgresql.org/docs/current/sql-createtrigger.html
https://www.postgresql.org/docs/current/sql-createtrigger.html

250 Triggers and Rules

e If there are multiple triggers on the same event of a table (for example, BEFORE INSERT),

they are executed in alphabetical order.

There is another category of triggers, called event triggers, which will be covered in the Event

triggers section.

Trigger syntax

As described in the official document, the syntax for defining a trigger is as follows:

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event

[OR ... 11}

ON table_name

[FROM referenced_table name]

[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY
DEFERRED]]

[REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [

o1
[FOR [EACH] { ROW | STATEMENT }]

[WHEN (condition)]
EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

where event can be one of:

INSERT

UPDATE [OF column_name [, ...]]
DELETE

TRUNCATE

We will only look at the most used aspects of this syntax; for further information, see https://
www.PostgresSQL.org/docs/current/sql-createtrigger.html. The key points behind the ex-
ecution of a trigger are as follows:

e The event that we want to handle, for example, INSERT, DELETE, or UPDATE.

¢ When we want the TRIGGER execution to start (for example, BEFORE INSERT).

e The trigger calls a function to perform some action.

https://www.PostgreSQL.org/docs/current/sql-createtrigger.html
https://www.PostgreSQL.org/docs/current/sql-createtrigger.html

Chapter 8 251

The function invoked by the trigger must be defined in a particular way, as shown in the proto-
type here:

CREATE OR REPLACE FUNCTION function_name RETURNS trigger as
3
DECLARE

BEGIN

RETURN
END;
3
LANGUAGE 'plpgsql’;

The functions that are called by the triggers are functions that have no input parameters and must
return a TRIGGER type; these functions take the parameters from the NEW/OLD records. Starting
with this prototype of the preceding function, a possible TRIGGER definition of the BEFORE INSERT

event can be described as follows:

CREATE TRIGGER trigger_name BEFORE INSERT on table_name FOR EACH ROW
EXECUTE PROCEDURE function_name.

There is also this syntax:

CREATE TRIGGER trigger_name BEFORE INSERT on table_name FOR EACH STATEMENT
EXECUTE PROCEDURE function_name.

The difference between FOR EACH ROW and FOR EACH STATEMENT is that:

e Atrigger defined with FOR EACH ROW is executed for each row involved in the operation
(for example, for each row inserted, updated, or deleted) that satisfies the condition of
the trigger.

e Atrigger defined with FOR EACH STATEMENT is executed only once for each SQL state-

ment that satisfies the trigger’s condition, no matter how many rows are involved in the

operation.

In the next section, we will try to implement what we wrote with the rules, this time applying

triggers.

252 Triggers and Rules

Triggers on INSERT

In this section, we will see how to make our first triggers:

1. Let’sgobackto therule that we wrote in the ALSO option section; we wrote a rule like this:

create or replace rule r_tagsl
as on INSERT to tags
where NEW.tag like 'a%' DO ALSO

insert into new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);

2. Now let’s see how we can achieve the same goal using a trigger. First, let’s go back to the

initial situation:

forumdb=> drop table if exists new_tags cascade;

forumdb=> create table new_tags as select * from tags limit ©O;

forumdb=> truncate table new_a_tags;

3. Now we can create the function, which will then be called by the trigger:

forumdb=> CREATE OR REPLACE FUNCTION f_ tags() RETURNS trigger as
$$
BEGIN

IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN

insert into new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);

END IF;

RETURN NEW;

END;

$$

LANGUAGE 'plpgsql’;
CREATE FUNCTION

Let’s take a deeper look at what the code means:

e The statement lower(substring (NEW.tag from 1 for 1)) takes the first char-

acter of a string and converts it into lowercase.

e TheRETURN NEW statement passes the new record from the table to the INSERT in
the new_tags table.

Chapter 8 253

4. Now let’s define the trigger on the BEFORE INSERT event of the t_tags table:

forumdb=> CREATE TRIGGER t_tags BEFORE INSERT on new_tags FOR EACH
ROW EXECUTE PROCEDURE f_tags();

CREATE TRIGGER

5. So,whenavalueisinserted into the new_tags table, before executing the INSERT, the trig-
ger is executed and returns the NEW record to the default action (INSERT on the new_tags

table). Now let’s check that it works:

forumdb=> insert into new_tags (pk,tag,parent) values (1, 'bsd
unix',NULL);
INSERT © 1

forumdb=> insert into new_tags (pk,tag,parent) values (2, 'alpine
linux',1);
INSERT @0 1

forumdb=> select * from new_tags ;

pk |
____+ ______________ + ________

1
2 | alpine linux |

(2 rows)

forumdb=> select * from new_a_tags ;
pk |
e mmeemme—o fommmmm oo
2 | alpine linux | 1
(1 row)

As we can see here, it works!

6. We will proceed from here, step by step, to better understand the difference between
working with rules and working with triggers. The goal we want to achieve with triggers

is to receive the same result as what we can achieve with the following rule:

create or replace rule r_tags2
as on INSERT to tags

254 Triggers and Rules

where NEW.tag ilike 'b%’

DO INSTEAD insert into new_b_tags(pk,tag,parent)values (NEW.pk,NEW.
tag,NEW.parent);

7. For now, let’s use the same procedure we used in the rules by creating a new function,

which will then be fired from the trigger:

forumdb=> CREATE OR REPLACE FUNCTION f2_tags() RETURNS trigger as

$$
BEGIN

IF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN

insert into new_b_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);

RETURN NULL;
END IF;
RETURN NEW;
END;
$$
LANGUAGE ‘'plpgsql’;
CREATE FUNCTION

forumdb=> CREATE TRIGGER t2_tags BEFORE INSERT on new_tags FOR EACH
ROW EXECUTE PROCEDURE f2_tags();

CREATE TRIGGER

8. Thelower statement, (substring(NEW.tag from 1 for 1)) = 'b',is practicallyiden-
tical to what we first saw in relation to rules. The difference is the RETURN NULL, which
means thatif the NEW. tag value starts with b, then a NULL value is returned to the default
action and the INSERT on the new_tags table will not insert any value. If, instead, the IF
condition is not satisfied, then the function returns NEW and the record is inserted into

the new_tags table.

Let’s see if it works:

forumdb=> truncate new_tags;
TRUNCATE TABLE

forumdb=> truncate new_a_tags;
TRUNCATE TABLE

forumdb=> truncate new_b_tags;

Chapter 8

255

TRUNCATE TABLE

forumdb=> insert into new_tags (pk,tag,parent) values (1, 'bsd
unix',NULL);
INSERT © ©

As we can see, the IF condition works, and the result, INSERT @ 0, means that no record

has been inserted into the new_tags table. This happened because the trigger works on

the BEFORE INSERT event and the IF condition moved the record to the new_b_tags table.

9. We will now look at how to write the whole procedure using a single trigger. First, let’s

go back to the initial conditions of our environment. As before, we delete the data in the

tables and, using the CASCADE option, we delete the selected trigger and all the triggers

associated with it:

forumdb=> TRUNCATE new_tags;

TRUNCATE TABLE

forumdb=> TRUNCATE new_a_tags;

TRUNCATE TABLE

forumdb=> TRUNCATE new_b_tags;

TRUNCATE TABLE

forumdb=> DROP TRIGGER t_tags ON new_tags CASCADE;
DROP TRIGGER

forumdb=> DROP TRIGGER t2_tags ON new_tags CASCADE;
DROP TRIGGER

10. In this last step, we will combine what we have written in the functions f_tags () and

f2_tags() into a single function, f3_tags (), which will be fired from the t3_tags trigger
on the event BEFORE INSERT:

forumdb=> CREATE OR REPLACE FUNCTION f3_tags() RETURNS trigger as

$$
BEGIN
IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN

insert into new_a_tags(pk,tag,parent)values (NEW.pk,NEW.
tag,NEW.parent);

RETURN NEW;
ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN

256 Triggers and Rules

insert into new_b_tags(pk,tag,parent)values (NEW.pk,NEW.
tag,NEW.parent);

RETURN NULL;
ELSE
RETURN NEW;
END IF;
END;
$$
LANGUAGE 'plpgsql’;
CREATE FUNCTION

forumdb=> CREATE TRIGGER t3_tags BEFORE INSERT on new_tags FOR EACH
ROW EXECUTE PROCEDURE f3_tags();

CREATE TRIGGER

This function contains the logic of the two functions previously seen. This way, we can
solve the problem more elegantly by using a single function and a single trigger. Let’s

see if it works:

forumdb=> insert into new_tags (pk,tag,parent) values (1, 'operating
systems' ,NULL);

INSERT 0 1

forumdb=> insert into new_tags (pk,tag,parent) values (2, 'alpine
linux',1);

INSERT © 1

forumdb=> insert into new_tags (pk,tag,parent) values (3, 'bsd
unix',1);

INSERT © ©

forumdb=> select * from new_tags ;.
pk |
____+ ___________________ + ________

1 | operating systems |

2 | alpine linux |

(2 rows)

forumdb=> select * from new_a_tags ;

Chapter 8 257

2 | alpine linux |

(1 row)

forumdb=> select * from new_b_tags ;

As can be seen, the function works.

The TG_OP variable

As shown in the official documentation at https://www.PostgreSQL.org/docs/current/
plpgsql-trigger.html, control of the triggers in PostgreSQL is allowed using special variables,
two of which we have already seen (the NEW variable and the OLD variable). There is another special
variable called TG_OP, which tells us from which event the trigger is fired. The possible values of
the TG_OP variable are INSERT, DELETE, UPDATE, and TRUNCATE.

Triggers on UPDATE / DELETE

Now, let’s go back to the example we used in Figure 8.1. The goal we want to achieve is to create
a single function that is able to handle the INSERT, DELETE, and UPDATE events, First, let’s return

to the initial conditions in our environment:

forumdb=> truncate new_tags;
TRUNCATE TABLE

forumdb=> truncate new_a_tags;
TRUNCATE TABLE

forumdb=> truncate new_b_tags;
TRUNCATE TABLE

forumdb=> drop trigger t3_tags on new_tags cascade;
DROP TRIGGER

Now, as before, we will proceed step by step. The first step is to write the section of code that will
be performed during the INSERT event. Then, we will see how to extend the function to manage
the DELETE and UPDATE events.

https://www.PostgreSQL.org/docs/current/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/current/plpgsql-trigger.html

258 Triggers and Rules

The function that will handle all three events will be the fcopy_tags() function; this function
will be invoked by the tcopy_tags trigger. The fcopy_tags () function using the TG_OP variable
will be able to discriminate between the INSERT, UPDATE, and DELETE events.

Let’s start by writing the fcopy_tags() function to handle the INSERT event:

forumdb=> CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as
$$
BEGIN
IF TG _OP = '"INSERT' THEN
IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN

insert into new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);

ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN

insert into new_b_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.

parent);

END IF;

RETURN NEW;
END IF;
END;
3
LANGUAGE 'plpgsql’;
CREATE FUNCTION

forumdb=> CREATE TRIGGER tcopy tags_ins BEFORE INSERT on new_tags FOR EACH
ROW EXECUTE PROCEDURE fcopy tags();

CREATE TRIGGER

Now let’s see if, for the INSERT event, this code works:

forumdb=> insert into new_tags (pk,tag,parent) values (1, 'operating
systems',NULL);

INSERT 0 1

forumdb=> insert into new_tags (pk,tag,parent) values (2, 'alpine
linux',1);

INSERT 0 1

forumdb=> insert into new_tags (pk,tag,parent) values (3, 'bsd unix',1);
INSERT @0 1

forumdb=> select * from new_a_tags ;

Chapter 8 259

2 | alpine linux |

(1 row)

forumdb=> select * from new_b_tags ;
pk |
e emmmmmeeeo fommmm e
3 | bsd unix | 1
(1 row)

forumdb=> select * from new_tags ;
pk | | parent
e e e mmmmme e
1 | operating systems |

2 | alpine linux |

3 | bsd unix |

(3 rows)

Itis clear that it works!
Next, let’s handle the DELETE event. The things we need to do are the following:

e Add some lines of code to the function to manage the DELETE operation.

e Add anew trigger that is able to handle the DELETE event.

The function becomes as follows:

forumdb=> CREATE OR REPLACE FUNCTION fcopy_ tags() RETURNS trigger as
$$
BEGIN
IF TG_OP = 'INSERT' THEN
IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN

insert into new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);

ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
insert into new_b_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.

parent);
END IF;
RETURN NEW;

260 Triggers and Rules

END IF;
IF TG_OP = 'DELETE' THEN
IF lower(substring(OLD.tag from 1 for 1)) = 'a' THEN
DELETE FROM new_a_tags WHERE pk = OLD.pk;
ELSIF lower(substring(OLD.tag from 1 for 1)) = 'b' THEN
DELETE FROM new_b_tags WHERE pk = OLD.pk;

END IF;

RETURN OLD;
END IF;
END;
3
LANGUAGE ‘'plpgsql’;
CREATE FUNCTION

This piece of code was added:

IF TG_OP = 'DELETE' THEN
IF lower(substring(OLD.tag from 1 for 1)) = 'a' THEN
DELETE FROM new_a_tags WHERE pk = OLD.pk;
ELSIF lower(substring(OLD.tag from 1 for 1)) = 'b' THEN
DELETE FROM new_b_tags WHERE pk = OLD.pk;
END IF;
RETURN OLD;
END IF;

This piece of code deletes the datain the a_tags and b_tags tables if the record to be deleted begins

with the letter a or b. Now we have to create a new trigger that s able to handle DELETE events:
forumdb=> CREATE TRIGGER tcopy_ tags_del

AFTER DELETE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();
CREATE TRIGGER

The trigger is executed AFTER DELETE; in this case, it would have made no difference if we created
the TRIGGER BEFORE or AFTER INSERT functions. Let’s see if this trigger on the DELETE event works:

forumdb=> delete from new_tags where pk=2;
DELETE 1

forumdb=> delete from new_tags where pk=3;
DELETE 1

Chapter 8 261

forumdb=> select * from new_a_tags ;
pk | tag | parent
____+ _____ + ________

(@ rows)

forumdb=> select * from new_b_tags ;

pk | tag | parent

forumdb=> select * from new_tags ;
| parent
e e e PR
1 | operating systems |
(1 row)

As we can see, the TRIGGER works.

For the last step, we need to manage the UPDATE event. Let’s write the function and the triggers

as a full version from scratch. Again, let’s bring our environment back to the initial conditions:

forumdb=> truncate new_tags ;
TRUNCATE TABLE

forumdb=> truncate new_a_tags ;
TRUNCATE TABLE

forumdb=> truncate new_b_tags ;
TRUNCATE TABLE

forumdb=> insert into new_tags (pk,tag,parent) values (1, 'operating
systems',NULL), (2, "alpine linux',1),(3,"'bsd unix',1);
INSERT © 3

Now we can write the complete code for the UPDATE event:

forumdb=> CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as

$$
BEGIN

IF TG_OP = 'INSERT' THEN
IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN

Triggers and Rules

insert into new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.

parent);
ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
insert into new_b_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.
parent);
END IF;
RETURN NEW;
END IF;
IF TG_OP = 'DELETE' THEN
IF lower(substring(OLD.tag from 1 for 1)) = 'a' THEN
DELETE FROM new_a_tags WHERE pk = OLD.pk;
ELSIF lower(substring(OLD.tag from 1 for 1)) = 'b' THEN
DELETE FROM new_b_tags WHERE pk = OLD.pk;
END IF;
RETURN OLD;
END IF;
IF TG_OP = 'UPDATE' THEN
IF (lower(substring(OLD.tag from 1 for 1)) in('a','b"')) THEN
DELETE FROM new_a_tags WHERE pk=OLD.pk;
DELETE FROM new_b_tags WHERE pk=OLD.pk;
DELETE FROM new_tags WHERE pk = OLD.pk;
INSERT into new_tags(pk,tag,parent) values (NEW.pk,NEW.tag,NEW.
parent);
END IF;
RETURN NEW;
END IF;
END;
$$
LANGUAGE 'plpgsql’;
CREATE FUNCTION

forumdb=> CREATE TRIGGER tcopy_ tags_upd
AFTER UPDATE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy tags();
CREATE TRIGGER

Chapter 8 263

In this case, the trigger must be defined with AFTER UPDATE and not with BEFORE UPDATE because
in the UPDATE section, we have the instruction DELETE FROM new_tags WHERE pk = OLD.pk;if
the trigger had been defined with BEFORE UPDATE, we would have had an error because we would

have attempted to delete a record reserved for UPDATE.

Let’s see if the complete function works:

forumdb=> select * from new_tags;
pk | | parent
e e e e mm e m
1 | operating systems |

2 | alpine linux |

3 | bsd unix |

(3 rows)

forumdb=> select * from new_a_tags;
pk | | parent
e emm e fommmemom
2 | alpine linux | 1
(1 row)

forumdb=> select * from new_b_tags;
____+ __________ + ________

3 | bsd unix | 1
(1 row)

forumdb=> update new_tags set tag='apple dos' where pk=3;
UPDATE 1

forumdb=> select * from new_a_tags;
| parent

———odic——o=——o======= deco=====

264 Triggers and Rules

2 | alpine linux |

3 | apple dos |

(2 rows)

forumdb=> select * from new_tags;

1 | operating systems
2 | alpine linux
3 | apple dos

(3 rows)

As this shows, the trigger approach works. In this section, we have seen how to modify events
that are Data Manipulation Level (DML) through the use of rules and triggers. In the next sec-
tion, we will see how it is also possible to intercept and modify events related to DDL operations,

using event triggers.

Event triggers

Rules and triggers act as DML statements, which means they are triggered by something that
changes the data but not the data layout or the table properties. PostgreSQL provides so-called
event triggers, which are particular triggers that fire on DDL statements. The purpose of the event
trigger, therefore, is to manage and react to events that will change the data structure rather
than the data content. Triggers can be used in many ways to enforce specific policies across your

databases.

Once fired, an event trigger receives an event and a command tag, both of which are useful for in-
trospection and providing information about what fired the trigger. In particular, the command tag
contains a description of the command (for example, CREATE or ALTER), while the event contains

the category that fired the trigger —in particular, the following:

e ddl_command_start and dd1_command_end indicate, respectively, the beginning and the

completion of the DDL command.
e sql_drop indicates that a DROP command is near completion.

e table_rewrite indicates that a full table rewrite is about to begin.

Chapter 8 265

Aswith DML triggers, there are particular commands to create, delete, and modify an event trigger:

e CREATE EVENT TRIGGER to add a new event trigger
e DROP EVENT TRIGGER to delete an existing trigger

e ALTER EVENT TRIGGER to modify an existing trigger

Here is the synopsis for the creation of a new event trigger:

CREATE EVENT TRIGGER name
ON event
[WHEN filter_variable IN (filter_value [, ...]) [AND ...]]
EXECUTE { FUNCTION | PROCEDURE } function_name()

Similar to their DML counterpart triggers, event triggers are associated with a mnemonic name
and a function to execute once they are fired. However, unlike ordinary triggers, event triggers do
not specify which table they are attached to; in fact, event triggers are not related to any particular

table but, rather, to DDL commands.

Event triggers must be created by the database administrator and have a database scope, meaning

they live and act in the database they have been defined in.

There are a couple of special functions that can help developers perform introspection within an
event trigger to understand the exact event that fired the trigger. The most important functions

are as follows:

e pg_event_trigger_commands (), which returns a tuple for every command that was ex-

ecuted during the DDL statement.

e pg_event_trigger_dropped_objects(), which reports a tuple for every dropped object

within the same DDL statement.

Along with the preceding utility functions, it is important to carefully read the event trigger doc-
umentation to understand when a command will fire an event trigger or not. Explaining event
triggers in further detail is out of the scope of this section; instead, we will look at a practical
example in the following section. For more information about event triggers, please refer to the

official documentation or the Packt book PostgreSQL 11 Server-Side Programming.

An example of an event trigger

In order to better understand how event triggers work, let’s build a simple example of a trigger

that prevents any ALTER TABLE-like commands in a database.

266 Triggers and Rules

The first step is to define a function that will be executed once the trigger has been fired; such a
function needs to inspect the DDL statement properties to understand whether it has been invoked
by means of an ALTER TABLE command. The introspection is done using the pg_event_trigger_
dd1_commands () special function, which returns a tuple for every DDL statement executed within
the same command. Such tuples contain a field named command_tag, which reports the command
group (uppercase), and object_type, which reports the object type (lowercase) that the DDL
statement has been executed against. The function must return a trigger type, specifically an

event trigger type; therefore, the function can be defined as follows:

forumdb=> CREATE OR REPLACE FUNCTION
f_avoid_alter_table()
RETURNS EVENT_TRIGGER
AS
$code$
DECLARE
event_tuple record;
BEGIN
FOR event_tuple IN SELECT * FROM pg_event_trigger ddl_
commands() LOOP
IF event_tuple.command_tag = 'ALTER TABLE' AND event_tuple.object_
type = 'table' THEN
RAISE EXCEPTION 'Cannot execute an ALTER TABLE!';
END IF;
END LOOP;
END
$code$
LANGUAGE plpgsql;
CREATE FUNCTION

Asyou can see, if the function discovers that the executed command has an ALTER TABLE tag and

a table object type, it raises an exception, causing the whole statement to fail.

Once the function is in place, it is possible to attach it to an event trigger, but because event trig-
gers handle DDL statements, only superusers can create an event trigger; so first, let’s connect

to the forum database as a superuser:

forumdb=> \q

postgres@learn_postgresql:~$ psql forumdb

Chapter 8 267

psql (15.2 (Debian 15.2-1.pgdgl10+1))
Type "help" for help.

forumdb=#

And then let’s execute:

forumdb=# CREATE EVENT TRIGGER tr_avoid alter table ON ddl_command end
EXECUTE FUNCTION forum.f_avoid_alter_table();

CREATE EVENT TRIGGER

Remember that we have connected as a postgres user to the database forumdb, so we have to

specify the schema in which the postgres user can find the f_avoid_alter_table() function.

At this point, the trigger is active, and the function will be fired for every DDL command once the

system approaches the end of a command.

Itis now possible to test the trigger and see whether a user is allowed to execute ALTER TABLE:

forumdb=> ALTER TABLE tags ADD COLUMN thumbs up int DEFAULT ©;
ERROR: Cannot execute an ALTER TABLE!

CONTEXT: PL/pgSQL function f_avoid_alter_table() line 9 at RAISE

As we can see, an exception is raised as soon as the ALTER TABLE command is executed, and we
have this behavior for not only the non-superuser user (as we’ve just seen) but also the superuser;
this is because the event trigger we wrote intercepts the alter table command and modifies its

behavior:

forumdb=# ALTER TABLE forum.tags ADD COLUMN thumbs_up int DEFAULT O;
ERROR: Cannot execute an ALTER TABLE!

CONTEXT: PL/pgSQL function forum.f_avoid_alter_table() line 9 at RAISE

While event triggers can be used, as in the preceding example, to prevent users from executing
particular commands, a better strategy is to avoid inappropriate command executions by means
of permissions whenever possible. Event triggers are complex and are used to provide support

for things such as logical replication, auditing, and other infrastructures.

Summary

In this chapter, we covered the topic of triggers and rules. We explored rules and triggers using
some identical examples. We established that rules are simple event handlers and triggers are

complex event handlers.

268 Triggers and Rules

We introduced the concept of trigger variables:

o NEW
e OLD
e TG_OP

Aswell as data manipulation-based triggers, we briefly introduced the PostgreSQL event triggers
that allow developers and database administrators to have more control over firing and executing

functions.

We have come to understand that triggers are extremely complex event handlers. In this chapter,
we started to show the power of the tools made available to the PostgreSQL DBA; in the next chap-

ter, we will talk about partitioning, and we will utilize the topics covered in this chapter to do so.

Verify your knowledge

e Whatis the NEW record?

The NEW record is the record that is going to be processed before an INSERT statement or

an UPDATE statement, for example:

insert into mytable(id,city_name) values (1, 'New York")

NEW.id = 1

NEW.city name = 'New York'

See the section Exploring rules in PostgreSQL for more details.
e Can we execute an INSERT on two tables in a single transaction using rules?

Yes, we can; we can make it using the ALSO clause. See the section Exploring rules in Post-

greSQL for more details.
e Can we make all the things we do with rules using triggers?

Yes, we can; by using triggers, we can make all the things we do with rules and more. See

the section Managing triggers in PostgreSQL for more details.

e Can we know if a trigger has been fired from an INSERT event, from an update EVENT, or

from a DELETE event?

Chapter 8 269

Yes, we can, using the TG_OP variable. See the section Managing triggers in PostgreSQL for

more details.
e Can we write an audit procedure that informs us when a DDL has been executed?

Yes, we can, using event triggers. See the section Event triggers for more details.

References
e PostgreSQL rules on the INSERT, UPDATE, and DELETE official documentation: https://
www.PostgreSQL.org/docs/current/rules-update.html
e PostgreSQL trigger functions official documentation: https://www.PostgreSQL.org/
docs/current/plpgsql-trigger.html

e PostgreSQLALTER TRIGGER official documentation: https://www.PostgreSQL.org/docs/
current/sql-altertrigger.html

e PostgreSQLDROP TRIGGER official documentation: https://www.PostgreSQL.org/docs/
current/sql-droptrigger.html

e PostgreSQL EVENT TRIGGER official documentation: https://www.postgresql.org/docs/
current/functions-event-triggers.html

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://discord.gg/jYWCjF6Tku

https://www.PostgreSQL.org/docs/current/rules-update.html
https://www.PostgreSQL.org/docs/current/rules-update.html
https://www.PostgreSQL.org/docs/current/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/current/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/current/sql-altertrigger.html
https://www.PostgreSQL.org/docs/current/sql-altertrigger.html
https://www.PostgreSQL.org/docs/current/sql-droptrigger.html
https://www.PostgreSQL.org/docs/current/sql-droptrigger.html
https://www.postgresql.org/docs/current/functions-event-triggers.html
https://www.postgresql.org/docs/current/functions-event-triggers.html
https://discord.gg/jYWCjF6Tku

Partitioning

In the previous chapter, we talked about rules and triggers. In this chapter, we will talk about
partitioning. Partitioning is a technique that allows us to split a huge table into smaller tables to
make queries more efficient. In this chapter, we will see how we can partition data, and, in some
cases, how we can use the rules and triggers seen in the previous chapter to make partitioning
possible. We will start by introducing the basic concepts of partitioning, and then we will see the

possibilities PostgreSQL offers to implement partitioning.
This chapter will cover the following topics:

e Basic concepts
e Partitioning using table inheritance

e Declarative partitioning

Technical requirements

The chapter examples can be run on the chapter_09 Docker image that you can find in the book’s
GitHub repository: https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition.
For installation and usage instructions for the Docker images for this book, please refer to Chapter

1, Introduction to PostgreSQL.

Basic concepts

First of all, let’s try to understand why we have to partition data. We should start by saying that
a common constant of all databases is that their sizelalways grows. It is, therefore, possible that a

database, after a few months of growth, can reach a size of gigabytes, terabytes, or even petabytes.

https://github.com/PacktPublishing/Learn-PostgreSQL-Second-Edition
entest

272 Partitioning

Another thing we must always keep in mind is that not all tables grow at the same rate or to the

same level; some tables are bigger than others and some indexes too are bigger than other indexes.

We also need to know that there is a part of our server’s RAM, shared among all the PostgreSQL
processes, thatis used to manage the data presentin tables. This part of the server’s RAM is called

shared_buffers.
The way PostgreSQL works is as follows:

1. Datais taken from hard disks.

2. Datais placed in shared buffers.

3. Datais processed in shared buffers.
4

Data is downloaded to disks.

Typically, in a dedicated server only for PostgreSQL, the size of shared_buffersis about one-third
or one-quarter of the total server RAM. A useful link to set some PostgreSQL configuration param-

eters (including a recommended size for shared_buffers) is https://pgtune.leopard.in.ua.

When a table grows excessively compared to the shared_buffers size, there is a possibility that
performance will decrease. In this case, partitioning data can help us. Partitioning data means
splitting a very large table into smaller tables in a way that is transparent to the client program.
The client program will think that the server still has only a single table, but having smaller tables
also means having smaller indexes that have higher chances of staying in memory, which in turn
increases data performance; moreover, having smaller tables means that the vacuum processes
works on smaller tables, which minimizes the execution time of the vacuum processes. Finally,
when running a vacuum full, the disk space used by the table is doubled, therefore having many
small tables instead of one large one significantly reduces any impact from this issue. Data par-

titioning can be done in two ways:

e Using table inheritance (the only possible way for PostgreSQL < 10)

e Using declarative partitioning (the best way starting from version 10)

After figuring out when it is recommended to partition data, let’s see what types of table parti-

tioning are possible. PostgreSQL supports three types of declarative partitioning:

¢ Range partitioning
e Listpartitioning

e Hash partitioning

We will now describe these three methods in detail.

https://pgtune.leopard.in.ua
entest

entest

entest

entest

entest

entest

entest

Chapter 9 273

Before starting, remember to start the Docker container named chapter9, as shown below:

$ bash run-pg-docker.sh chapter_09

postgres@learn_postgresql:~$ psql -U forum forumdb

Range partitioning
Range partitioning is where the table is divided into “intervals.” The intervals must not overlap
and the range is defined through the use of a field or a set of fields. For further information, see

https://www.postgresql.org/docs/current/ddl-partitioning.html.

Let’s look at an example of the definition of range partitioning. Suppose we have this table:

field date field_value
2023-03-01 1
2023-03-02 10
2023-04-01 12
2023-04-15 1

Table 9.1: The table before range partitioning

Now consider that we want to split this table into two tables. The first table (TABLE A) will con-
tain all the records with a field_date value between 2023-03-01and 2023-03-31, and the second
table (TABLE B) will contain all the records with a field_date value between 2023-04-01 and
2023-04-30. So, our goal is to have two tables as follows:

field date field_value
2023-03-01 1
2023-03-02 10

Table 9.2: Table A

field date field_value
2023-04-01 12
2023-04-15 1

Table 9.3: Table B

What we have seen is an example of partitioning by range. This is useful when we have large tables

in which the data can be divided by time range, for example, turnover, audit tables, or log tables.

https://www.postgresql.org/docs/current/ddl-partitioning.html

274 Partitioning

List partitioning
In list partitioning, the table will be partitioned using a list of values.

Let’s look at an example of the definition of list partitioning. Suppose we have this table:

field_state field_city
United States Washington
United States San Francisco
Italy Rome
Japan Tokyo

Table 9.4: The table before list partitioning

Suppose now that we want to split this table into # tables, with one table for each state. The first
table (TABLE A) will contain all the records with a field_state value equal to United States,
the second table (TABLE B) will contain all records with a field_state value equal to Italy, and
the third table (TABLE C) will contain records with a field_state value equal to Japan. So, our

goal is to have three tables as follows:

field_state field_city
United States Washington
United States San Francisco

Table 9.5: Table A

field_state field_city

Italy Rome

Table 9.6: Table B

field_state field_city
Japan Tokyo

Table 9.7: Table C

This is an example of partitioning by list. This is useful when we have large tables where the
data can be divided by a single field, such as a city or state field in a telephone directory, or in a

customer list.

Chapter 9 275

Hash partitioning

Using hash partitioning, the table will be partitioned using hash values to split data into different
tables.

Let’s look at an example of hash partitioning. Suppose we have this table:

field date field_value
2023-03-01 1
2023-03-02 1
2023-04-01 2
2023-04-15 2

Table 9.8: The table before hash partitioning

Suppose now that we have a hash function that transforms a date into a hash value; for example,
let’s consider del mod operator (%):

e hash(1)=1

e hash(1)=1

e hash(2)=0

e hash(2)=0

So, after the partitioning process, we will have two tables:

field date field_value
2023-03-01 1
2023-03-02 1

Table 9.9: Table A

field date field_value
2023-04-01 2
2023-04-15 2

Table 9.10: Table B
This is an example of partitioning by hash.

In the following sections we will see how PostgreSQL implements list, range, and hash partitioning,

but before that, let’s spend some time talking about table inheritance.

276 Partitioning

For further information about partitioning see https://www.postgresql.org/docs/current/

ddl-partitioning.html.

Table inheritance

Another topic that we must look at is the inheritance of tables. PostgreSQL employs the concept
of inheritance from databases to objects. The concept is very simple and can be summarized as
follows: suppose we have two tables, TABLE A and TABLE B. If we define TABLE A as a parent
table and TABLE B as the child table, this means that all the records in TABLE B will be accessible
from TABLE A.

Let’s now try to give an example of what we have just described:
1. Let’s define two tables.

The first table, the parent table, is defined as follows:

forumdb=> create table table_a (

pk integer not null primary key,
tag text,

parent integer);

CREATE TABLE

And the second table, the child table, is defined as follows:

forumdb=> create table table b () inherits (table_a);
CREATE TABLE

forumdb=> alter table table b add constraint table b pk primary
key(pk);
ALTER TABLE

2. Thechild tableinherits all the fields from the parent table. The parent table is as seen here:

forumdb=> \d table a;
Table "forum.table_a"

Column | Type | Collation | Nullable | Default

———————— B e e bt ST T

pk | integer | | not null |

https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.postgresql.org/docs/current/ddl-partitioning.html

Chapter 9 277

tag | text

parent | integer |

Indexes:
"table_a_pkey" PRIMARY KEY, btree (pk)
Number of child tables: 1 (Use \d+ to list them.)

And for more details, let’s use the \d+ command:

forumdb=> \d+ table_a;
Table "forum.table a"

Column | Type | Collation | Nullable | Default
Compression | Stats target | Description

| integer | | not null |

| text | extended |

parent | integer | | plain

Indexes:
"table_a_pkey" PRIMARY KEY, btree (pk)
Child tables: table b

Access method: heap

In this last table, we can see that table_bis a child table of table_a.

3. Let’s do the same for the table called table_b:

forumdb=> \d table b;

Table "forum.table b"

278 Partitioning

Column | Type | Collation | Nullable | Default

to-mmmm--- et et do-mmmmm - -

| integer | | not null |
| text

parent | integer |

Indexes:

“"table_b_pk" PRIMARY KEY, btree (pk)

Inherits: table_a

Here, we can see that table_b is a child table of table_a.

4. Nowlet’s see how these two tables behave if we insert, modify, or delete data. For example,
let’s make some inserts as follows:
forumdb=> insert into table_a (pk,tag,parent) values (1, 'Operating
Systems',0);
INSERT © 1

forumdb=> insert into table_b (pk,tag,parent) values (2, 'Linux',0);
INSERT © 1

5. Let’s see how our data reacts if we execute the select command:

forumdb=> select * from table_ b ;

pk | tag | parent

We can see that table_b has one record.

6. Now we execute the following command:

forumdb=> select * from table_a ;

pk | tag | parent

Chapter 9 279

B B

1 | Operating Systems |

2 | Linux |

(2 rows)

It seems that table_ahastwo records. This happens because this table inherits the other
table’s attributes. If we execute a SELECT command on a parent table, we will see all the

records that belong to the parent table and all the records that belong to the child table.

7. If we want to see all the records that belong to table_a only, we have to use the ONLY

clause, as seen here:

forumdb=> select * from only table_a ;

pk | tag | parent

____+ ___________________ + ________
1 | Operating Systems |)
(1 row)

8. Let’ssee whathappens if we UPDATE some records, for example, if we execute the following:

forumdb=> update table_a set tag='BSD Unix' where pk=2;
UPDATE 1

We performed an update operation on table_a, but this update was physically done on

table_b by means of the inheritance of the tables, as we can see here:

forumdb=> select * from table_b;

pk | tag | parent

____+ __________ + ________
2 | BSD Unix | 0
(1 row)

9. The same happens if we use a delete statement as follows:

forumdb=> delete from table_a where pk=2;

DELETE 1

280 Partitioning

Here, again, the delete operation performed on table_a has its effect on table_b; as we

can see here, table_a will have these records:

forumdb=> select * from table_a;

pk | tag | parent

____+ ___________________ + ________
1 | Operating Systems | 2]
(1 row)

And table_b will now have no records:

forumdb=> select * from table_b;

pk | tag | parent

R B e S

(CHTS)

In PostgreSQL, inheritance propagates the operations performed on the parent table to the child
tables.

Dropping tables

To conclude the topic of inheritance, we need to address how to delete tables. If we want to delete

a child table, for example, to drop table_b, we have to run the following statement:

forumdb=> drop table table_b;

DROP TABLE

If we want to drop a parent table and all its linked child tables, we have to run the following:

forumdb=> drop table table_a cascade;

While inheritance has been used and still can be used to implement table partitioning, since
version 10 declarative partitioning has become the preferred method. We cover declarative par-

titioning in the next section.

Exploring declarative partitioning

In this section, we will talk about declarative partitioning. It has been available in PostgreSQL
since version 10, but its performance has increased in newer versions. We will now look at an

example of partitioning by range and an example of partitioning by list.

Chapter 9 281

List partitioning
In the first example of declarative partitioning, we will use the same example that we looked at
when we introduced partitioning using inheritance. We will see that things become much simpler

using the declarative partitioning method:

1. Now let’s create our parent table:

forumdb=> CREATE TABLE part_tags (
pk SERIAL NOT NULL ,

level INTEGER NOT NULL DEFAULT @0,
tag VARCHAR (255) NOT NULL,
primary key (pk,level)

)
PARTITION BY LIST (level);

As we can see from the preceding example, we have to define what kind of partitioning
we want to apply. In this case, itis LIST PARTITIONING. Another important thing to note
is that the field used to partition the data must be part of the primary key.

2. Next, let’s define the child tables:

forumdb=> CREATE TABLE part_tags_level © PARTITION OF part_tags FOR
VALUES IN (0);

CREATE TABLE part_tags_level_1 PARTITION OF part_tags FOR VALUES IN
(1);

CREATE TABLE part_tags_level 2 PARTITION OF part_tags FOR VALUES IN
(2);

CREATE TABLE part_tags_level 3 PARTITION OF part_tags FOR VALUES IN
(3);

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

With these SQL statements, we are defining the fact that all records with a level value
equal to @ will be stored in the part_tags_level_o table, all the records with a level value

equal to 1 will be stored in the part_tags_level_1 table, and so on.

entest

282 Partitioning

3. Now), let’s define the indexes for the parent table. These indexes will automatically be

propagated to child tables. We can do this using the following simple statement:

forumdb=> CREATE INDEX on part_tags (tag);

CREATE INDEX

4. Asshown here, our partition procedure is finished.

For the parent tables, we have the following:

forumdb=> \d part_tags;
Partitioned table "forum.part_tags"
Column | | Collation | Nullable |
Default

| integer | not null |
nextval('part_tags_pk_seq'::regclass)
level | integer | | not null | o
tag | character varying(255) | | not null |

Partition key: LIST (level)

Indexes:
"part_tags_pkey" PRIMARY KEY, btree (pk, level)
"part_tags_tag_idx" btree (tag)

Number of partitions: 4 (Use \d+ to list them.)

For the child tables, we have the following:

forumdb=> \d part_tags_level 0;
Table "forum.part_tags level 0"
Column | | Collation | Nullable |
Default

| integer | not null |
nextval('part_tags_pk_seq'::regclass)

level | integer | | not null | @

tag | character varying(255) | | not null |

Chapter 9 283

Partition of: part_tags FOR VALUES IN (©)
Indexes:

"part_tags_level O pkey" PRIMARY KEY, btree (pk, level)
"part_tags_level @ tag idx" btree (tag)

5. Let’s now perform some INSERT operations:

forumdb=> insert into part_tags (tag,level) values ('Operating
System',0);

INSERT © 1

forumdb=> insert into part_tags (tag,level) values ('Linux',1);
INSERT 0 1

forumdb=> insert into part_tags (tag,level) values ('BSD Unix',1);
INSERT © 1

forumdb=> insert into part_tags (tag,level) values ('DOS',1);
INSERT © 1

forumdb=> insert into part_tags (tag,level) values ('Windows',2);
INSERT © 1

6. Finally, let’s check whether everything is okay:

forumdb=> select * from part_tags;
pk | level | tag

Operating System
Linux

BSD Unix

DOS

Windows

forumdb=> select * from part_tags level 0;

pk | level | tag

e P s P s

1 | 0 | operating System

284 Partitioning

(1 row)

forumdb=> select * from part_tags_level 1;

pk | level | tag

(3 rows)
forumdb=> select * from part_tags_level 2;

pk | level | tag

Thus, we have successfully created partitions using lists.

Range partitioning
After having seen how it is possible to partition by list in a very simple way, let’s look at how to
partition by range:

1. Asbefore, let’s DROP the existing part_tags table and its child table:

forumdb=> DROP TABLE IF EXISTS part_tags cascade;
DROP TABLE

2. Suppose that we want to have a table exactly the same as the previous one, but now we
want the part_tags table to have an ins_date field where we will store the day on which
the tag was added. What we want to do is partition by range on the ins_date field in order
to put all the records entered in January 2023, February 2023, March 2023, and April 2023
into different tables. Here, we have all the statements that make this possible; they are

very similar to the statements that we saw in the previous section:

forumdb=> CREATE TABLE part_tags (
pk serial NOT NULL,

ins_date date not null default now()::date,
tag VARCHAR (255) NOT NULL,

Chapter 9 285

level INTEGER NOT NULL DEFAULT o,
primary key (pk,ins_date)

)

PARTITION BY RANGE (ins_date);

CREATE TABLE

forumdb=> CREATE TABLE part_tags_date_©1 2023 PARTITION OF part_tags
FOR VALUES FROM ('2023-01-01') TO ('2023-01-31');

CREATE TABLE

forumdb=> CREATE TABLE part_tags date_©2 2023 PARTITION OF part_tags
FOR VALUES FROM ('2023-02-01') TO ('2023-02-28');

CREATE TABLE

forumdb=> CREATE TABLE part_tags_date_©3 2023 PARTITION OF part_tags
FOR VALUES FROM ('2023-03-01') TO ('2023-03-31');

CREATE TABLE

forumdb=> CREATE TABLE part_tags date_04 2023 PARTITION OF part_tags
FOR VALUES FROM ('2023-04-01') TO ('2023-04-30');
CREATE TABLE

forumdb=> CREATE INDEX on part_tags(tag);
CREATE INDEX

As we can see, the only two differences are PARTITION BY RANGE and FOR VALUES FROM
. TO ...

3. In this example, as in the previous example on list partitioning, we have obtained the
parent table and all the child tables without complexity, and as we can see in the fol-
lowing snippet, the CREATE INDEX statement has been propagated to the child tables

automatically:

forumdb=> \d part_tags;

Partitioned table "forum.part_tags"

Column | Type | Collation | Nullable |
Default

286 Partitioning

| integer
nextval('part_tags pk seq'::regclass)
ins_date | date |
now(): :date
tag | character varying(255) |

level | integer

Partition key: RANGE (ins_date)

Indexes:
"part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
"part_tags_tag_idx" btree (tag)

Number of partitions: 4 (Use \d+ to list them.)

forumdb=> \d part_tags_date_01_2023;
Table "forum.part_tags date_01 2023"
Column | | Collation | Nullable |
Default

| not null
nextval('part_tags_pk_seq'::regclass)
ins_date | date | | not null
now()::date
tag | character varying(255) | | not null

level | integer | | not null | o
Partition of: part_tags FOR VALUES FROM ('2023-01-01') TO ('2023-01-
31')

Indexes:
"part_tags_date_ 01 2023 pkey" PRIMARY KEY, btree (pk, ins_date)
"part_tags_date_01 2023 tag idx" btree (tag)

Chapter 9 287

4. Aswedid earlier, let’s do some INSERT operations:

forumdb=> insert into part_tags (tag,ins_date,level) values
('Operating Systems', '2023-01-01',0);

INSERT © 1

forumdb=> insert into part_tags (tag,ins_date,level) values
('Linux','2023-02-01',1);

INSERT © 1

forumdb=> insert into part_tags (tag,ins_date,level) values

Unix', '2023-03-01',1);

INSERT © 1

forumdb=> insert into part_tags (tag,ins_date,level) values ('Rocky
Linux Distro', '2023-04-01',2);

INSERT © 1

5. Andlet’s now check whether everything is okay:

forumdb=> select * from part_tags;

pk | ins_date

e
1 | 2023-01-01 | Operating Systems
2 | 2023-02-01 | Linux
3 | 2023-03-01 | BSD Unix
4 | 2023-04-01 | Rocky Linux Distro

(4 rows)

forumdb=> select * from part_tags _date_ 01 2023;
pk | ins_date tag | level

____+ _______________________________ + _______
1 | 2023-01-01 | Operating Systems | 0

(1 row)

forumdb=> select * from part_tags_date_02_2023;

pk | ins_date tag | level

288 Partitioning

2 | 2023-02-01 | Linux
(1 row)

forumdb=> select * from part_tags_date_03 2023;

pk | ins_date tag | level

e e fommm o
3 | 2023-03-01 | BSD Unix | 1

(1 row)

forumdb=> select * from part_tags_date_ 04 2023;
pk | ins_date

____+ ________________________________ + _______
4 | 2023-04-01 | Rocky Linux Distro | 2
(1 row)

As we can see, all the data has been partitioned correctly.

Partition maintenance

In the previous two sections, we saw what declarative partitioning is and how to create partitioned
tables when we start our work from scratch. In this section, we’ll examine how to attach or detach

partitions when the partitioned table already exists. We will look at how to do the following:
e Attaching a new partition

e Detaching an existing partition

e Attaching an existing table to the parent table

Attaching a new partition
If we want to attach a new partition to the parent table, we have to execute the following:
forumdb=> CREATE TABLE part_tags_date_05 2023 PARTITION OF part_tags FOR

VALUES FROM ('2023-05-01') TO ('2023-05-30');
CREATE TABLE

As we can see here, a new partition called part_tags_date_05_2023 hasbeen added to the part_
tags parent table:

forumdb=> \d+ part_tags;

Partitioned table "forum.part_tags"

Chapter 9 289

.] | Description

| integer

ins_date | date

tag | character varying(255) | [...

level | integer | ...

Partition key: RANGE (ins_date)
Indexes:
"part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
"part_tags_tag idx" btree (tag)
Partitions: part_tags_date_01 2023 FOR VALUES FROM ('2023-01-01')
('2023-01-31"),
part_tags_date 02 2023 FOR VALUES FROM ('2023-02-01')
('2023-02-28"),
part_tags _date_©3 2023 FOR VALUES FROM ('2023-03-01")
('2023-03-31"),
part_tags_date 04 2023 FOR VALUES FROM ('2023-04-01')
('2023-04-30"),
part_tags_date @5 2023 FOR VALUES FROM ('2023-05-01')
('2023-05-30")

Detaching an existing partition

If we want to detach an existing partition from the parent table, we have to execute the following:

forumdb=> ALTER TABLE part_tags DETACH PARTITION part_tags_date_05_2023 ;
ALTER TABLE

As we can see here, the partition called part_tags_date_05_2023 has been detached from the
part_tags parent table:

forumdb=> \d+ part_tags;

Partitioned table "forum.part_tags"

Column | Type | [...1 | Description

290 Partitioning

| integer

ins_date | date

tag | character varying(255) | [...

level | integer | ...

Partition key: RANGE (ins_date)
Indexes:
"part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
"part_tags_tag_idx" btree (tag)
Partitions: part_tags _date_©1 2023 FOR VALUES FROM ('2023-01-01') TO
('2023-01-31"),
part_tags_date_©02 2023 FOR VALUES FROM ('2023-02-01') TO
('2023-02-28"),
part_tags_date ©3_2023 FOR VALUES FROM ('2023-03-01') TO
('2023-03-31"),
part _tags_date 04 2023 FOR VALUES FROM ('2023-04-01') TO
('2023-04-30")

Attaching an existing table to the parent table

To practice this we need a table called part_tags_already_exists present in our database and
containing all the tags with an entry date prior to 2022-12-31. If you are using the Docker image,
you can find this inside the forumdb database. Otherwise, make sure to create the table with the

following structure:

forumdb=> \d part_tags_already_exists
Table "forum.part_tags_already exists"
| Collation | Nullable | Default

__________ mm e e e e e e e a - e e e e

pk | integer | not null

ins_date | date | not null

Chapter 9 291

tag | character varying(255) | | not null

level | integer | not null

Indexes:
"part_tags_already_exists_pkey" PRIMARY KEY, btree (pk, ins_date)
"part_tags_already_exists_tag_idx" btree (tag)

If we want to attach this table containing all the tags with a date entered prior to 2022-12-31 to

the parent table, we have to run this statement:

forumdb=> ALTER TABLE part_tags ATTACH PARTITION part_tags_already_exists
FOR VALUES FROM ('1970-01-01') TO ('2022-12-31");

ALTER TABLE

In this way, the part_tags_already_exists table becomes a child table for the parent table,
part_tags.

The default partition

In this section, we will see what happens if we insert data into a partitioned table where
the child partition does not exist, and how to resolve the inconvenience this causes. To
simulate this problem, suppose we want to insert a date corresponding to 2023-05-01 on
the table called part_tags. We would get this result:

forumdb=> insert into part_tags (tag,ins_date,level) values ('Ubuntu
Linux', '2023-85-01"',2);

ERROR: no partition of relation "part_tags" found for row

DETAIL: Partition key of the failing row contains (ins_date) = (2023-05-
01).

This happens because PostgreSQL does not have a correspondence between the date of

2023-05-01 and those present on the mapping of the child tables.

To eliminate this drawback, it is necessary to use a default partition where all the values

that are not reflected in the mapping of the child tables will be inserted.

292 Partitioning

To do this let’s execute the following statement:

forumdb=> CREATE TABLE part_tags_default PARTITION OF part_tags default;

CREATE TABLE

Now let’s try to repeat the previous entry:

forumdb=> insert into part_tags (tag,ins_date,level) values ('Ubuntu
Linux', '2023-05-01"',2);
INSERT © 1

At this point, the data has been inserted in the default partition and is visible from the

part_tags parent table, as we can see here:

forumdb=> select * from part_tags;

2023-01-01 | Operating Systems
2023-02-01 Linux

2023-03-01 BSD Unix
2023-04-01 | Rocky Linux Distro
2023-05-01 | Ubuntu Linux

(5 rows)

forumdb=> select from part_tags_default ;

pk | ins_date tag | level

. TR ftomom——cooomo=c focoeo-
6 | 2023-05-01 | Ubuntu Linux | 2
(1 row)

Partitioning and tablespaces

Now suppose we want to use the tablespaces seen in Chapter 2 together with the parti-
tioning procedure we have just seen. Using this technique, we will be able to place child
tables on different tablespaces and, therefore, on different directories that could be

mounted on different volumes.

Chapter 9 293

This way of working can increase read/write performance. In the following example, we
will limit ourselves to creating two tablespaces on local directories. However, it is not
difficult, using the mount command, to map these two directories on different volumes.
If you are using the Docker images provided with this chapter, the two directories we

will use are already available.

If you aren’t using the Docker images, you will first need to create two directories, /data/
tablespaces/ts_b and /data/tablespaces/ts_b, where the postgres system user is able

to read and write data.

Now let’s connect to the forumdb database as the postgres user and create two tablespaces

called ts_a and ts_b:

postgres@learn_postgresql:~$ psql -U postgres forumdb

forumdb=# create tablespace ts_a location '/data/tablespaces/ts_a’;
CREATE TABLESPACE
forumdb=# create tablespace ts_b location '/data/tablespaces/ts b';
CREATE TABLESPACE

Let’s assign ownership to the postgres user:

forumdb=# alter tablespace ts_a owner to forum ;
ALTER TABLESPACE
forumdb=# alter tablespace ts_b owner to forum ;
ALTER TABLESPACE

Now let’s reconnect to the forumdb database as the forum user:

forumdb=# \q
postgres@learn_postgresql:~$ psql -U forum forumdb

As in the previous case, let’s recreate the parent table:

forumdb=> CREATE TABLE tablespace_part_tags (
pk serial NOT NULL,
ins_date date not null default now()::date,

tag VARCHAR (255) NOT NULL,
level INTEGER NOT NULL DEFAULT @,

294 Partitioning

primary key (pk,ins_date)

)
PARTITION BY RANGE (ins_date);

CREATE TABLE

Now let’s create two child tables and one default table. The first child table will be created on

tablespace ts_a and the second on tablespace ts_b:

forumdb=> CREATE TABLE tablespace_part_tags_date_ 2022 PARTITION OF
tablespace part_tags FOR VALUES FROM ('2021-01-01') TO ('2022-12-31')
TABLESPACE ts_a;

CREATE TABLE

forumdb=> CREATE TABLE tablespace_part_tags_date 2023 PARTITION OF
tablespace_part_tags FOR VALUES FROM ('2023-01-01') TO ('2023-12-31")
TABLESPACE ts_b;

CREATE TABLE

forumdb=> CREATE TABLE tablespace_part_tags_date_default PARTITION OF
tablespace part_tags default;

CREATE TABLE

Now, let’s insert some data:

forumdb=> insert into tablespace_part_tags (tag,ins_date,level) values
('Operating Systems', '2022-01-01',0), ('Linux','2022-02-01',1),('BSD
Unix', '2023-03-01"',1), ('Rocky Linux Distro', '2018-04-01',2);

INSERT 0 4

Then, let’s see where the records have been stored:

forumdb=> select * from tablespace_part_tags;

pk | ins_date

e e
2022-01-01 | Operating Systems
2022-02-01 Linux

2023-03-01 BSD Unix
2018-04-01 | Rocky Linux Distro
(4 rows)

forumdb=> select * from tablespace_part_tags_date 2022 ;

pk | ins_date tag | level

Chapter 9 295

s EEE R oo o
1 | 2022-01-01 | Operating Systems | 0
2 | 2022-02-01 | Linux | 1

(2 rows)

forumdb=> select * from tablespace_part_tags date 2023 ;
pk | ins_date | tag | level

e et Lt

3 | 2023-03-01 | BSD Unix | 1
(1 row)

forumdb=>select * from tablespace_part_tags_date default;
pk | ins_date | tag

B T Fom e e
4 | 2018-04-01 | Rocky Linux Distro | 2
(1 row)

As we have seen in this exercise, the data has been split into different tablespaces, and as a result

we have doubled the speed. This is a very effective technique.

A simple case study

In this last section, we will not use the forumdb database. The database we will use instead
is called world_temperatures, for which the public data has been imported from the public

CSV present at https://www.meteoblue.com/it/tempo/archive/export.

The db-world-temperatures database backup can be found on the packtpub GitHub in the
chapter 9directory,in the file called backup-db-world-temperatures.sql.gz. lf you're using
the Docker image, you will already have everything available; otherwise, to import the

database, run PostgreSQL on your server:

$ gunzip < backup-db-world-temperatures.sql.gz | psql

If you are using the Docker image, just execute the following:

postgres@learn_postgresql:~$ psql -U postgres world temperatures

https://www.meteoblue.com/it/tempo/archive/export

296 Partitioning

Now, you will have the db-world-temperatures database ready to use. Inside the database,
you will find an unpartitioned table named basilea and a partitioned table named basilea_
partitioned; both tables contain temperature information for the city of Basel from 1950 to
2022 sampled at regular hourly intervals. Now, let’s see the differences in behavior between
searching a partitioned table and a non-partitioned table. Before continuing with the exercise,
if you are not already familiar with the behavior of the EXPLAIN statement, check out Chapter 13,
The EXPLAIN Statement.

Let’s start by using the non-partitioned table and write a query that returns as a result the average

temperature of the 5 coldest years for the period starting from 1950:

world_temperatures=# select extract (year from insert_time) as year,
avg(temperature) avg _temp from basilea group by 1 order by 2 1limit 5;

year | avg_temp

8.8073832344034608
8.9077977708904110
9.3459840948315118
9.3705488990867580
9.3749401615437158

world_temperatures=# select extract (year from insert_time) as year,
avg(temperature) avg temp from basilea group by 1 order by 2 desc limit

12.7320820592465753
12.5638742964611872
12.3662106902322404
12.0601722329908676
11.9246379973744292

Chapter 9 297

Let’s take the last one as an example and see how it’s done internally:

world_temperatures=# explain analyze select extract (year from insert_

time) as year, avg(temperature) avg temp from basilea group by 1 order by
2 desc limit 5;
QUERY PLAN

Limit (cost=98293.21..98293.23 rows=5 width=64) (actual
time=380.284..380.286 rows=5 loops=1)
-> Sort (cost=98293.21..99892.99 rows=639912 width=64) (actual
time=380.282..380.283 rows=5 loops=1)
Sort Key: (avg(temperature)) DESC
Sort Method: top-N heapsort Memory: 25kB
-> HashAggregate (cost=68067.20..87664.51 rows=639912 width=64)
(actual time=380.121..380.253 rows=73 loops=1)
Group Key: EXTRACT(year FROM insert_time)
Planned Partitions: 32 Batches: 1 Memory Usage: 817kB
-> Seq Scan on basilea (cost=0.00..12074.90 rows=639912
width=40) (actual time=0.030..189.680 rows=639912 loops=1)
Planning Time: ©0.170 ms
Execution Time: 380.480 ms
(10 rows)

As we can see, PostgreSQL performs a sequential scan on the whole table. Now consider the

partitioned table, basilea_partitioned:

world temperatures=# \d+ basilea_partitioned
Partitioned
table "public.basilea partitioned"

Column |

b +

| integer

insert_time | timestamp with time

Partitioning

temperature | numeric(8,6)

Partition key: RANGE (insert_time)
Indexes:

"basilea_partitioned_pkey" PRIMARY KEY, btree (id, insert_time)
Partitions: basilea_partitioned_1950 FOR VALUES FROM ('1949-12-31
23:00:00400') TO ('1950-12-31 23:00:00+00"'),

basilea_partitioned_1951 FOR VALUES FROM ('1950-12-31
23:00:00400') TO ('1951-12-31 23:00:00+00"'),
Loocoo]
basilea_partitioned_2023 FOR VALUES FROM ('2022-12-31
23:00:00400') TO ('2023-12-31 23:00:00+00"'),
basilea_partitioned_default DEFAULT

The table is partitioned by year from 1950 to 2022 and there is also a default table (as explained

in the Default Partition section).

The data is divided equally between all the child tables, and if we tried to execute the same query

we would get the following:

world_temperatures=# explain analyze select extract (year from insert_time) as
year, avg(temperature) avg temp from basilea partitioned group by 1 order by
2 desc limit 5;

QUERY PLAN

Limit (cost=13183.59..13183.61 rows=5 width=64) (actual
time=169.996..174.092 rows=5 loops=1)
-> Sort (cost=13183.59..13184.09 rows=200 width=64) (actual

time=169.995..174.090 rows=5 loops=1)

Sort Key: (avg(basilea_partitioned.temperature)) DESC

Sort Method: top-N heapsort Memory: 25kB

-> Finalize GroupAggregate (cost=13127.60..13180.27 rows=200
width=64) (actual time=169.812..174.060 rows=73 loops=1)

Group Key: (EXTRACT(year FROM basilea_partitioned.insert_time))

Chapter 9

-> Gather Merge (cost=13127.60..13174.27 rows=400
width=64) (actual time=169.802..173.941 rows=132 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Sort (cost=12127.58..12128.08 rows=200 width=64)
(actual time=140.386..140.401 rows=44 loops=3)
Sort Key: (EXTRACT(year FROM basilea_
partitioned.insert time))
Sort Method: quicksort Memory: 30kB
Worker ©: Sort Method: quicksort Memory: 29kB
Worker 1: Sort Method: quicksort Memory: 29kB
-> Partial HashAggregate
(cost=12116.93..12119.93 rows=200 width=64) (actual time=140.330..140.363
rows=44 loops=3)
Group Key: (EXTRACT(year FROM basilea_
partitioned.insert time))
Batches: 1 Memory Usage: 64kB
Worker ©: Batches: 1 Memory Usage: 48kB
Worker 1: Batches: 1 Memory Usage: 64kB
-> Parallel Append (cost=0.00..10780.64
rows=267259 width=40) (actual time=0.010..79.251 rows=213304 loops=3)

-> Parallel Seq Scan on basilea_
partitioned_ 1952 basilea_partitioned_3 (cost=0.00..129.59 rows=5167
width=40) (actual time=0.010..3.176 rows=8784 loops=1)

[cooo]

-> Parallel Seq Scan on basilea_
partitioned_2018 basilea_partitioned_69 (cost=0.00..128.41 rows=5153
width=40) (actual time=0.004..2.671 rows=8760 loops=1)

-> Parallel Seq Scan on basilea_
partitioned_2021 basilea_partitioned_72 (cost=0.00..128.41 rows=5153
width=40) (actual time=0.003..2.651 rows=8760 loops=1)

-> Parallel Seq Scan on basilea_
partitioned_default basilea_partitioned_75 (cost=0.00..21.10 rows=888
width=40) (actual time=0.000..0.000 rows=0 loops=1)

-> Parallel Seq Scan on basilea_
partitioned_2023 basilea_partitioned_74 (cost=0.00..1.01 rows=1 width=40)
(actual time=0.008..0.009 rows=1 loops=1)

Planning Time: 0.698 ms

Partitioning

Execution Time: 174.250 ms

(97 rows)

As we can see, PostgreSQL first performs a parallel sequential scan and then a parallel append to

merge all the data that has been taken from the child tables.

Now let’s try to perform the same operation, but filtering for the years ranging from 2021 to 2022.

On the non-partitioned table we will have the following:

world temperatures=# explain analyze select extract (year from insert_
time) as year, avg(temperature) avg _temp from basilea where insert_time
>='2021-01-01"' and insert_time < '2023-01-01' group by 1 order by 2 desc
limit 5;

QUERY PLAN

Limit (cost=11498.05..11498.06 rows=5 width=64) (actual
time=24.532..28.875 rows=2 loops=1)

-> Sort (cost=11498.05..11544.43 rows=18554 width=64) (actual
time=24.529..