

Learn Grafana 10.x

A beginner’s guide to practical data analytics, interactive
dashboards, and observability

Eric Salituro

BIRMINGHAM—MUMBAI

Learn Grafana 10.x
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Apeksha Shetty
Book Project Manager: Kirti Pisat
Senior Editor: Tazeen Shaikh
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Ponraj Dhandapani
DevRel Marketing Coordinator: Nivedita Singh

First published: June 2020

Second edition: December 2023

Production reference: 1201123

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80323-108-2

www.packtpub.com

http://www.packtpub.com

To my wife, Susan, for her infinite patience, support, and companionship. To my mother, Patricia, who
introduced her son to so many books, yet never expected that he would someday go on to write one.

– Eric Salituro

Contributors

About the author
Eric Salituro is currently a software engineering manager with the enterprise data and analytics
platform team at Zendesk. He has an IT career that spans more than 35 years, over 20 of which were
spent in the motion picture industry working as a pipeline technical director and software developer
for innovative and creative studios such as DreamWorks, Digital Domain, and Pixar. Before moving
to Zendesk, he worked at Pixar, helping to manage and maintain their production render farm as a
senior software developer. Among his accomplishments is the development of a Python API toolkit
for Grafana aimed at streamlining the creation of rendering metrics dashboards. He is the author of
Learn Grafana 7.0.

About the reviewers
Chad Isenberg has been working as a data professional since 2018 and is currently a data engineer
at Zendesk. His experience and interests include analytics, data platforms, data quality, DataOps,
and many other data-prefixed subjects. He is passionate about the data community and contributes
articles and blog posts to platforms such as Medium and LinkedIn.

Mahdi Karabiben is a data engineer with over 7 years of experience working on petabyte-scale data
projects. As part of Zendesk’s core data team, he’s currently leading multiple projects related to data
quality and observability. Prior to Zendesk, Mahdi worked on building data platforms at FactSet,
Crédit Agricole CIB, and Numberly.

Preface xv

Part 1 – Getting Started with Grafana

1
Introducing Data Visualization with Grafana 3

Technical requirements 4
Appreciating data and visualization 4
Storing, retrieving, and visualizing data 5

Why Grafana? 6
Exploration 6
Analysis 7
Presentation 8
Observability 9
Choosing Grafana 10

Installing Grafana 11

Grafana in a Docker container 11
Make and Makefile 12
Grafana for macOS 13
Grafana for Linux 14
Grafana for Windows 15
Grafana Cloud 15

Connecting to the Grafana server 15
Summary 16
Further reading 16

2
Touring the Grafana Interface 17

Technical requirements 17
Exploring Grafana—the Home
dashboard 18
Introducing the Grafana search bar 19
Grafana logo 20
Organization menu 21

Search box 21
+ (add) menu 22
Help 23
Grafana blog 24
User menu 24

Expanding Grafana’s main menu 26

Table of Contents

Table of Contentsviii

Home 27
Starred 27
Dashboards 28
Explore 33
Alerting 34
Connections 37

Administration 39

Exploring the Grafana dashboard UI 45
Grafana dashboard title bar 45
Dashboard content 47

Summary 48

3
Diving into Grafana's Time Series Visualization 49

Touring the Grafana panel UI 50
Creating a simple data source 51
Creating a graph panel 52

Generating data series in the Query tab 54
What is a query? 54
Query tab features 55
Duplicating an existing query 58
Transform 59

Editing the panel settings 60
Selecting panel visualizations 60
The Panel options section 61

The Tooltip section 63
The Legend section 64
The Axis section 65
The Graph styles section 67
The Standard options section 70
The Data links section 72
The Value mappings section 73
The Thresholds section 73

Monitoring with the Alert tab 74
Further exploration 76
Summary 76

Part 2 – Real-World Grafana

4
Connecting Grafana to a Prometheus Data Source 79

Technical requirements 79
Installing the Prometheus server 80
Installing Prometheus from Docker 80
Configuring the Prometheus data source 82

Exploring Prometheus 84
Using Explore for investigation 84
Configuring Grafana metrics 86

Querying the Prometheus data source 87

Typing in a metrics query 88
Querying for process metrics 91
Querying for memory metrics 93

Detecting trends with aggregations 94
Applying aggregations to our query data 94

Understanding the data source
limitations 98
Querying limits for series aggregations 98

Table of Contents ix

Querying limits for time aggregations 99
Exploring data source dashboards 100

Summary 101

5
Extracting and Visualizing Data with InfluxDB and Grafana 103

Technical requirements 104
Making advanced queries 104
Launching server Docker containers 104
Writing the ETL script 106
Running the script 112
Setting up an InfluxDB database 114
Configuring the InfluxDB data source 115

Understanding the time series data
visualization 119
Displaying time-aggregated data 125
Debugging queries with Query inspector 125

Observing time interval effects 128
Setting the minimum interval 130

Setting the axis 133
Setting axis units 134
Converting temperature into Fahrenheit 136
Autoscaling the Y axis 136
Dual y axis display 137

Working with legends 140
Setting legend contents 141
Enabling legend aggregations 142

Summary 144

6
Shaping Data with Grafana Transformations 145

About Grafana DataFrames and
transformations 146
Exploring the various transformation
functions 147
Installing the TestData data source 148
Selecting transformations 149
Adding fields 149
Modifying fields 151
Filtering results 156

Reducing rows 158
Combining tables 160

Expanding analysis with a
transformation 164
Chaining transformations into a
visualization pipeline 167
Limitations of transformations 171

Summary 172

7
Surveying Key Grafana Visualizations 173

Technical requirements 174 Launching server Docker containers 174

Table of Contentsx

Setting up the InfluxDB database 175
Initializing the InfluxDB server 175
Generating an API token 175
Configuring the InfluxDB data source 175
Building the Python Docker container 177
Loading the data 177

Reviewing the table visualization 178
Comparing aggregations 178
Overriding field settings 181
Setting a display name 184

Introducing the stat visualization 186

Creating a stat visualization panel 186
Setting stat styles 189
Defining value mappings in a stat visualization 190

Adding visual interest with a gauge 193
Exploring the gauge options 194
Setting the threshold values and colors 195

Going linear with a bar gauge 197
Exploring the bar gauge settings 197
Building a bar gauge 198

Summary 200

8
Surveying Additional Grafana Visualizations 201

Technical requirements 202
Launching server Docker containers 202
Setting up the InfluxDB database 203
Initializing the InfluxDB server 203
Generating an API token 203

Configuring the InfluxDB data source 203
Building the Python Docker container 205

Exploring spatial data with the
Geomap visualization 205
Ingesting a new earthquake dataset 205

Mapping earthquake data with the Geomap
visualization 209

Displaying category data with a bar
chart visualization 215
Understanding histograms 218
Producing histograms with transformations 219

Displaying histogram data with the
bar chart visualization 220
Visualizing histogram data over time
with the heatmap 222
Summary 224

9
Creating Insightful Dashboards 225

Technical requirements 226
Launching server Docker containers 226
Setting up the InfluxDB database 226

Designing a dashboard 228
Conveying information 228

Determining the visual context 228
Prioritizing elements of importance 229

Creating a high information-density
dashboard 229
Ingesting the weather data 229

Table of Contents xi

Designing the dashboard 232
Adding the first row 232
Adding the second row 237
Adding the third row 242
Adding the fourth row 244
Adding the fifth row 247

Creating a high-information
visibility dashboard 249
Designing the dashboard 249

Ingesting the earthquake data 250
Adding the first row 255
Adding the second row 257
Adding the third row 259

Parting thoughts 262
Considering layout 262
Automating ingestion 263

Summary 263

10
Working with Advanced Dashboard Features and Elasticsearch 265

Technical requirements 266
Building the data server 266
Connecting Grafana to Elasticsearch 271
Querying with Elasticsearch 273
Creating a template variable 276
Adding template variables to the graph panel 279
Templating additional variables 280
Creating ad hoc filters 283
Repeating rows and panels with template
variables 284

Creating a new dashboard 287
Setting up the template variables 287
Configuring the panels 290

Linking dashboards 292
Adding dashboard tags 293
Locking down a template variable 294
Creating dashboard links 294

Annotating dashboards 295
Annotating the graph panel 295
Querying tagged annotations 297
Creating Elasticsearch annotation queries 298

Sharing dashboards 300
Sharing dashboard links 301
Sharing dashboards by exporting 301
Sharing dashboard snapshots 301

Summary 302

11
Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live 305

Technical requirements 306
Streaming real-time data from
Telegraf to Grafana 306
Setting up Grafana for streaming 307

Installing the Telegraf agent 308
Configuring the Telegraf agent 308
Running Telegraf 311

Streaming IoT data with MQTT and

Table of Contentsxii

Mosquitto 313
Describing the pipeline architecture 313
Configuring the Telegraf MQTT consumer 314
Installing the Mosquitto broker 314

Generating messages to an IoT data
pipeline 316

Examining the simulated metrics data 316
Reviewing the mqtt_pub.py script 317
Running the mqtt_pub.py script 323
Exploring the IoT data 325

Summary 326

12
Monitoring Data Streams with Grafana Alerts 327

Technical requirements 328
Monitoring and observability 328
Monitoring processes 328
Monitoring system resources 328
Monitoring applications 330
Capturing metrics for alerting 330

Alerting in Grafana 330
Alert rules 331
Labels 331
Notification policies 331
Contact points 331

Defining alert rules 331
What condition… 331
What metrics… 332

How long… 333
Monitoring systems 333
Monitoring applications 347

Alert messaging to contact points 352
Configuring an email contact point 353
Configuring a PagerDuty contact point 355
Configuring a Slack contact point 358

Routing alerts with notification
policies 363
Specific routing 364
Mute timings 365
On your own 366

Summary 367

13
Exploring Log Data with Grafana’s Loki 369

Technical requirements 370
Loading system logs into Loki 370
Networking our services 370
Installing Promtail 371
Installing Loki 372
Launching Grafana 372
Creating a Loki data source 373

Visualizing Loki log data with Explore 374
Simulating logs with flog 378
Configuring promtail 379
Promtail in Docker Compose 381

Alternative Docker log capture 385
Querying logs and metrics with

Table of Contents xiii

Explore 390 Summary 398

Part 3 – Managing Grafana

14
Organizing Dashboards and Folders 403

Managing dashboards and folders 404
Naming a dashboard 404
Dashboard naming tips 405
Working with dashboard folders 406
Tips to manage dashboard folders 410

Starring and tagging dashboards 411
Marking dashboards as favorites 411
Tagging dashboards 412

Building and running dashboard
playlists 414
Creating a playlist 414
Displaying a playlist 416

Displaying playlists in normal mode 416
Displaying playlists in TV mode 417
Displaying playlists in Kiosk mode 417
Displaying playlists with auto fit panels 418
Editing a playlist 420

Exploring the Dashboard list panel 421
Setting Dashboard list panel options 421

Duplicating dashboards 422
Internal dashboard duplications 422
External dashboard duplications 424

Summary 424

15
Managing Permissions for Users, Teams, and Organizations 427

Understanding key permission
concepts 428
Organizations 428
Users 428
Roles 428
Teams 429

Adding users 429
Adding users – by invitation only 429
Adding users – a self-service model 432

Setting permissions 433
Setting organization roles 434
Setting folder permissions 434

Setting dashboard permissions 436

Establishing teams 438
Setting up a team 438
Permission rules 440

Administering users and
organizations 441
Managing users 441
Organization admin and Super Admin roles 444
Managing organizations 444

Summary 446

Table of Contentsxiv

16
Authenticating Grafana Logins Using LDAP or OAuth 2 Providers 447

Authenticating with OpenLDAP 448
Setting up an OpenLDAP server 449
Configuring Grafana to use LDAP 451
Securing the bind password 453
Testing the Grafana configuration 454
Adding a user to OpenLDAP 455

Looking up a user in Grafana 457

Authenticating with OAuth 2 459
GitHub OAuth 2 authentication 459
Google OAuth 2 authentication 462

Authenticating with Okta 468
Summary 473

17
Cloud Monitoring AWS, Azure, and GCP 475

Configuring an AWS CloudWatch
data source 476
Creating the policy 476
Creating the user 479
Configuring a new Grafana connection for
AWS CloudWatch 482

Configuring a Microsoft Azure
Monitor data source 485
Registering the Grafana application 486
Setting the application role 487

Generating application secrets 488
Configuring a new Grafana connection for
Azure Monitor 489
Configuring Azure Log Analytics 491

Configuring a GCM data source 493
Enabling a Google Cloud API 494
Creating a Google service account 494
Configuring a new Grafana connection for
GCM 497

Summary 499

Index 501

Other Books You May Enjoy 516

Preface

Grafana is an open source analytical platform used for analyzing and monitoring time-series data. This
second edition will help you to get up to speed with Grafana 10’s latest features for querying, visualizing,
and exploring logs and metrics no matter where they are stored. Along the way, we’ll introduce key
concepts and best practices in software development, data visualization, and application administration.

The book begins by showing you how to quickly install and set up a Grafana server using Docker. You’ll
become familiar with important components of the Grafana interface and learn how to analyze and
visualize data from sources including InfluxDB, Telegraf, Prometheus, Logstash, and Elasticsearch.

We will cover many of Grafana’s key panel visualizations, including Time Series, Stat, Table, Bar Gauge,
and Text. You’ll use Python to pipeline data, transformations to facilitate analytics, and templates to
build dynamic dashboards. You’ll explore real-time data streaming with Telegraf, Promtail, and Loki,
as well as observability features such as alerting rules, PagerDuty, and Slack integrations.

As you progress, the book will delve into the administrative aspects of Grafana, from configuring users
and organizations to implementing user authentication with Okta and LDAP, organizing dashboards
into folders, and more.

By the end of this book, you’ll have gained the knowledge you need to extract, transform, and load
data; connect Grafana to time-series databases; build interactive dashboards; and leverage ad hoc
data exploration for observability. Whether you are interested in visualization for data science or
observability for your operations, this book will provide the launch pad for anyone looking to become
proficient using a data visualization and observability application such as Grafana.

Who this book is for
This book is for business intelligence developers, business analysts, data analysts, and anyone interested
in performing time-series data analysis and monitoring using Grafana. Those looking to create and
share interactive dashboards or looking to get up to speed with the latest features of Grafana will
also find this book useful. Although no prior knowledge of Grafana is required, basic knowledge of
data visualization and some Python programming experience will help you understand the concepts
covered in the book.

Prefacexvi

What this book covers
Chapter 1, Introducing Data Visualization with Grafana, provides a brief introduction to the use of
data visualization in general and specifically in Grafana. We will then move on to installing a Grafana
server onto your machine, using either a native installer or a Docker container. Launching the server
and connecting to it with a web browser will also be covered.

Chapter 2, Touring the Grafana Interface, will explore the workings of the major UI components after
you have launched and connected to the Grafana web application. We will look at the search bar, side
menu, and Home dashboard.

Chapter 3, Diving into Grafana's Time Series Visualization, will dive into the Time series panel visualization
for a closer look at how to work with the major components of the main Grafana visualization. After
connecting to a test data source, we will also identify common panel components in preparation for
working with other visualizations.

Chapter 4, Connecting Grafana to a Prometheus Data Source, will show you how to launch the
Prometheus time-series database from a Docker container, load an actual time-series dataset, and
query and visualize data in Grafana.

Chapter 5, Extracting and Visualizing Data with InfluxDB and Grafana, will show how to write a
simple Python Extract, Transform, and Load (ETL) script to access data from a public data server
and push it to InfluxDB. We’ll also connect Grafana to InfluxDB and try out some more advanced
query techniques.

Chapter 6, Shaping Data with Grafana Transformations, will introduce the concept of the Grafana
data frame, and how the different Grafana transformations can shape query data. We’ll also chain
transformations into a more complex data pipeline.

Chapter 7, Surveying Key Grafana Visualizations, will see us use the Table, Stat, Bar Gauge, and Gauge
panel visualizations to display our weather data.

Chapter 8, Surveying Additional Grafana Visualizations, will see us modify the Python ETL script
to download earthquake data. We’ll visualize the data using Geomap, Bar chart, Histogram, and
Heatmap visualizations.

Chapter 9, Creating Insightful Dashboards, uses what we’ll have learned about Grafana panel visualizations
and some basic information design principles to create production dashboards for visualizing weather
and earthquake data.

Chapter 10, Working with Advanced Dashboard Features and Elasticsearch, explores the powerful
advanced features of the dashboard, including annotations, templating with variables, and dashboard
linking, as well as techniques for sharing dashboards. We’ll pull down public data from the city of San
Francisco and use Logstash and Elasticsearch as the data source.

Preface xvii

Chapter 11, Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live, will present the first
in a trilogy of chapters on observability by introducing the concept of real-time data streaming. We’ll
build a data pipeline to stream data from an Internet of Things (IoT) simulator using standard MQTT
protocols and then use InfluxDB to send the messages to Grafana Explore.

Chapter 12, Monitoring Data Streams with Grafana Alerts, will show you how to take streaming data,
monitor it for anomalies with alerting rules, and connect those alerts to a set of notification channels,
including email, PagerDuty, and Slack.

Chapter 13, Exploring Log Data with Grafana’s Loki, will complete the observability trilogy by showing
how to capture observability metrics and logs with the combination of Promtail and Loki. We’ll perform
an ad hoc analysis with Explore to check for correlations between metrics patterns and logging events.

Chapter 14, Organizing Dashboards and Folders, will show you how to label dashboards and organize
them into folders to make them easier to find. We’ll also look at other dashboard features, such as
starred dashboards, dashboard playlists, and the Dashboard list panel visualization.

Chapter 15, Managing Permissions for Users, Teams, and Organizations, will show you how to manage
users, teams, and organizations, including access control and user addition and deletion.

Chapter 16, Authenticating Grafana Logins Using LDAP or OAuth 2 Providers, will show you how
managers can connect Grafana user authentication to a variety of services. We’ll authenticate using an
internal LDAP server and use OAuth 2 to authenticate using external services from GitHub, Google,
and Okta.

Chapter 17, Cloud Monitoring AWS, Azure, and GCP, will show how Grafana can provide monitoring
support for a variety of services provided by major cloud platforms, such as Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP).

To get the most out of this book
In order to complete the majority of the exercises in this book, you will need to download and install
Docker along with Docker Compose. For the examples in the book, we will be downloading and
installing other software and datasets, including Grafana and Loki, so you will occasionally need an
internet connection. You can download and install each software package independently, but our
tutorial instructions are designed to work with Docker. We do that so that all software dependencies
and network management can be encapsulated within the Docker container paradigm.

We will run a fair amount of software from the command line, so you should be comfortable with
typing commands into a shell, such as Bash or Windows PowerShell. To access the contents of the
book’s GitHub repository, you will either need Git or an unzip application.

Having an interest in science in general and data science, in particular, will go a long way toward
making this book interesting and useful. It would also be helpful to have some programming experience
with a scripting language such as Python, but since all the code is included, you can run it directly

Prefacexviii

from a clone of the book’s GitHub repository. Some familiarity with relational databases will help you
understand some of the terminology and concepts behind time-series databases.

Software/hardware covered in the book Operating system requirements

Grafana Windows, macOS, or Linux

Docker Windows, macOS, or Linux

Loki/Promtail Windows, macOS, or Linux

Prometheus Windows, macOS, or Linux

InfluxDB/Telegraf Windows, macOS, or Linux

Elasticsearch/Logstash Windows, macOS, or Linux

OpenLDAP Windows, macOS, or Linux

Python 3.7+ Windows, macOS, or Linux

Grafana is an application under constant development and revision, and as such, the depictions,
descriptions, and illustrations in this book represent a snapshot in time and are current at the time of
writing. By the time you read this book, features may have been added, altered, or deleted outside of our
control. However, we believe any deviations from the book should be easily accommodated with only
minor adjustments.

It might also be helpful to use an IDE application such as Microsoft Visual Studio Code, or
JetBrains PyCharm.

In order to follow along with the exercises in Chapter 16, Authenticating Grafana Logins Using LDAP
or OAuth 2 Providers, you will need accounts with GitHub, Google, and Okta. To follow the exercises
in Chapter 17, Cloud Monitoring AWS, Azure, and GCP, you will need to create an account with AWS,
GCP, and Microsoft Azure.

The examples and software in this book have not been validated for security reasons. They require
an external internet connection and leverage open source software under a variety of licenses, so if
you intend to use any of this software within a security-conscious computing environment (such as
in an education or corporate environment), it is highly recommended that you consult your local IT
professionals in advance.

I hope to show with the examples in this book how easy it is to build simple data visualization pipelines
with Grafana and today’s open source tools. I also hope this book will inspire and empower you to
seek out your own datasets to acquire, analyze, and visualize. Best of luck!

If you are using the digital version of this book, we advise you to type the code in yourself or
access the code via the GitHub repository (link available in the next section). Doing so will help
you avoid any potential errors related to the copying and pasting of code. Each chapter folder
includes dashboards, docker-compose.yml files, and a Makefile to help out when running some
of the command-line tools.

Preface xix

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Learn-Grafana-10. Any update to the code will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

FROM python:3
SELECT mean("value") FROM "temperature"
WHERE $timeFilter
GROUP BY time($__interval), "station" fill(none)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

listener 1883
allow_anonymous true

Any command-line input or output is written as follows:

% docker-compose down

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click on Load Data | API Tokens.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/Learn-Grafana-10
https://github.com/PacktPublishing/Learn-Grafana-10
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexx

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Learn Grafana 10.x, we’d love to hear your thoughts! Please click here to go straight
to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-803-23108-4
https://packt.link/r/1-803-23108-4

Preface xxi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803231082

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803231082

Part 1 – Getting Started
with Grafana

In this section, you will gain a broad understanding of how to quickly set up a Grafana application
server and use it to visualize data. You will also learn about Grafana’s basic features such as the search
bar, main menu, panel visualizations, and dashboards. Further, you will also take a deep dive into how
to query data sources and graph the results with Time series panel visualizations.

This part comprises the following chapters:

• Chapter 1, Introducing Data Visualization with Grafana

• Chapter 2, Touring the Grafana Interface

• Chapter 3, Diving into Grafana's Time Series Visualization

1
Introducing Data Visualization

with Grafana

Welcome to Learn Grafana 10.x! Together, we will explore Grafana, an exciting, multi-faceted visualization
tool for data exploration, analysis, and alerting. We will learn how to install Grafana, become familiar
with some of its many features, and even use it to investigate publicly available real-world datasets.

Whether you are an engineer watching terabytes of metrics for a critical system fault, an administrator
sifting through a haystack of log output looking for the needle of an application error, or just a curious
citizen eager to know how your city works, Grafana can help you monitor, explore, and analyze data.
The key to getting a handle on big data is the ability to visualize it.

But before we find out how Grafana gives you that ability, we’ll need to cover a few basic concepts
behind data visualization. Following that, we’ll set up our own instance of Grafana, which will form
the fundamental building block for the exercises that follow in later chapters.

The following topics will be covered in this chapter:

• Appreciating data and visualization – we’ll take a brief overview of the data landscape and how
visualization is useful

• Why Grafana? We’ll look at what makes Grafana an attractive solution

• Installing Grafana – we’ll install the Grafana application server and get it running

• Connecting to the Grafana server – we’ll launch the Grafana application by connecting to the
installed server from a web browser

Tutorial code, dashboards, and other helpful files for this chapter can be found in the book’s GitHub
repository at https://github.com/PacktPublishing/Learn-Grafana-10/tree/
main/Chapter01.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter01
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter01

Introducing Data Visualization with Grafana4

Technical requirements
Grafana is relatively easy to set up, but since it is a web server application, you will need to execute
a few shell commands to get it running. For the purposes of this book, we will assume that you will
access Grafana from the same computer that you installed it on. The following are the technical
requirements for installing and running Grafana:

• Familiarity with the command shell

• A terminal application or an SSH to the machine where you plan to install Grafana

• Docker (in order to run Grafana from a Docker container)

Optionally, you will need to have the following:

• Administrator access to install and run Grafana from the command line, rather than in a
Docker container

Appreciating data and visualization
In the not-too-distant past, most of us consumed data pretty much solely via a daily newspaper—the
financial pages, the sports section, and the weather forecast. However, in recent years, the ubiquity of
computing power has immersed every part of our lives in a sea of data.

Around the clock, our built environment and devices collect innumerable amounts of data, which we
consume. Our morning routine starts with a review of emails, social media posts, and news feeds on
a smartphone or tablet, and whereas we once put down the daily newspaper when we left for work,
our phones come with us everywhere.

We walk around or exercise and our phones capture our activity and location data via the global
positioning system (GPS), while our smartwatches capture our vital signs. When we browse the
web, every single interaction down to a mouse click is logged and stored for analysis. The servers that
deliver these experiences are monitored and maintained by engineers on a round-the-clock basis.
Marketers and salesforces continually analyze this data in order to make business-critical decisions.

On the way to work, our cars, buses, and trains contain increasingly sophisticated computers that
silently log tens of thousands of real-time metrics, using them to calculate efficiency, profitability,
engine performance, and environmental impact. Technicians evaluating these physical systems’ health
or troubleshooting problems often sift through an enormous stream of data to tease out the signs of
a faulty sensor or a failed part. The importance of this data is globally recognized. This is precisely
why data recorders are the most valuable forensic artifact after any transportation accident, and why
their recovery generates such widespread media coverage.

Meanwhile, in the modern home, a smart thermostat dutifully logs the settings on a Heating,
Ventilation, and Air Conditioning (HVAC) system, as well as the current temperature both inside
and outside the house. These devices continually gather real-time weather information in order to
make decisions about how and when to run most efficiently.

Appreciating data and visualization 5

Similar to the systems at home, but on a much larger scale, nearly every building we pass through
during the day collects and monitors the health of a number of key infrastructure systems, from air
conditioning to plumbing to security. No amount of paper could possibly record the thousands of
channels of data flowing through these physical plants, and yet the building management system
aggregates this data to make the same kinds of simple decisions as the homeowner does.

Moreover, these examples represent only a drop in the ocean of data. Around the world, governments,
scientists, NGOs, and everyday citizens collect, store, and analyze their own datasets. They are all
confronted with the same issue: how to aggregate, collate, or distill the mass of data into a form that
a human can perceive and act on in a few seconds or less. The response to this issue is effective data
storage and visualization.

Storing, retrieving, and visualizing data

For years, the basic language of data visualization was well-defined: using a chart, graph, histogram,
and so on. What was missing was the ability to rapidly create these charts and graphs not in hours or
days but in seconds or even milliseconds. This requires processing power that draws representations
of thousands and thousands of data points in the time it takes to refresh a computer display.

For decades, only the most powerful computers could manage the processing power required to visualize
data on this scale, and the software they ran was specialized and expensive. However, a number of
trends in computing have converged to produce a renaissance in data acquisition and visualization,
making it accessible not only to domain practitioners but also to technically proficient members of
the general public. They are as follows:

• Cheap general-purpose CPUs and graphics GPUs

• Inexpensive high-capacity storage, optimized for physical size and maximum throughput

• Web standards and technologies, including JavaScript and CSS

• Open source software frameworks and toolkits

• Scalable cloud computation at affordable prices

• Broadband networking to enterprises, homes, and mobile devices

A common feature of virtually all of this data, that is, for each sample from a sensor or line in a log
file, is the snapshot from an invisible ticking clock: a timestamp. A dataset gathered from these
data points across a period of time is referred to as a time series. A stored object containing one or
more time series is a time-series dataset. An application that can provide optimized access to one
or more of these datasets is called, naturally, a time-series database (TSDB). While a whole class
of NoSQL time-series databases, such as InfluxDB, OpenTSDB, and Prometheus, have sprung up,
venerable SQL relational databases, such as PostgreSQL and MySQL, have added their own support
for time-series datasets.

That’s fine for storing and retrieving data, but what about visualizing data? Enter Grafana.

Introducing Data Visualization with Grafana6

Why Grafana?
While there are many solutions in the data visualization space, Grafana is proving to be one of the most
exciting, exhibiting rapid growth in scope and features, broad options for deployment and support, and
an enthusiastic community contributing to its future growth. Before going into the specific features
that make Grafana an attractive solution, let’s take a look at the criteria we might use to characterize
a useful data visualization application:

Figure 1.1 – Grafana UI

For the purposes of this book, we will be looking at particular software applications that fulfill four
major functions: exploration, analysis, presentation, and observability.

Exploration

Quickly loading and displaying a dataset with the idea of identifying the particularly interesting
features for deeper analysis, sometimes referred to as drilling down, is an example of data exploration.

Another common term for data exploration is ad hoc analysis. This refers to the nature of using data
visualization techniques without a pre-defined analysis in place. Ad hoc analysis is useful for getting
a feel for the data’s characteristics, and whether any interesting patterns are discernable.

Why Grafana? 7

Figure 1.2 – Grafana exploration

In this book, we’ll be frequently using the Explore feature of Grafana to perform just this sort of
data exploration.

Analysis

After we have examined our data, we may well want to analyze it. That is, we may want to quantify the
data statistically or correlate it with other data. For example, we may want to see what the maximum
value or average value is, or otherwise aggregate the data for a specific time range. We may also want
to look at multiple datasets over the same time period to look for events that might be time-correlated.

Introducing Data Visualization with Grafana8

Figure 1.3 – Grafana analysis

Grafana contains several analysis features that we highlight throughout the book. We will also leverage
Grafana’s powerful transformation features to aid us in our analysis.

Presentation

Once we have identified the data we are interested in, we will want to present it in an aesthetically
pleasing manner that also gives the viewer clarity about what the data represents, in effect helping to
tell a story about the data, which would be otherwise difficult to do without specific domain knowledge.

Why Grafana? 9

Figure 1.4 – Grafana presentation

Assembling panels into dashboards is a common Grafana workflow for presentation, and we will spend
much of our time in this book covering not only how to construct dashboards to tell the story of our
data, but also how to structure our data visualizations to be both clear and meaningful.

Observability

Finally, we may need to observe the data over time, or even in real time as it may represent critical
data. If the data crosses into a realm of concern, we may need to be notified immediately.

Grafana has extensive and powerful observability features, along with integrations for popular notification
services such as PagerDuty. In this book, we’ll learn how to build alerts to detect anomalies in our
data, and how to craft appropriate notifications depending upon the severity of the alert.

Introducing Data Visualization with Grafana10

Choosing Grafana

While there are quite a few powerful data analytics tools on the market that fulfill these functions,
Grafana has a number of features that make it an attractive choice:

• Fast: The Grafana backend is written in Google’s exciting Go language, making it extremely
performant when querying data sources or feeding thousands of data points to multiple
dashboard panels.

• Open: Grafana supports a plugin model for its dashboard panels and data sources. The number
of plugins is constantly growing as the Grafana community enthusiastically contributes to
the project.

• Beautiful: Grafana leverages the attractive and powerful D3 library. Many of the popular
dashboard tools, such as Datadog and Zabbix, can quickly generate beautiful graphs from
thousands of data channels, but they only offer some limited control over the display elements.
Grafana provides fine-grained control over most graph elements including axes, lines, points,
fills, annotations, and legends. It even offers the much sought-after dark mode.

• Versatile: Grafana is not tied to a particular database technology. For example, Kibana is a
powerful, well-known member of Elasticsearch’s Elasticsearch, Logstash, and Kibana (ELK)
stack; it is only capable of visualizing Elasticsearch data sources. This gives it the advantage
over Grafana of a better ability to integrate Elasticsearch’s analysis tools in its graphing panels.
However, due to its plugin architecture, Grafana can support a variety of ever-growing data sources
(at last count in 2022, over 150), from traditional RDBMs, such as MySQL and PostgresQL, to
modern TSDBs, such as InfluxDB and Prometheus. Not only can each graph display data from
a variety of data sources, but a single graph can also combine data from multiple data sources.

• Free: While they are very powerful tools indeed, Datadog and Splunk are commercial packages
and, as such, charge fees to manage all but the smallest datasets. If you want to get your feet
wet, Grafana is freely available under the Apache open source license, and if you do plan to
run it in your enterprise, you can purchase tiered support.

These are just some of the criteria you might use to evaluate Grafana against similar products. Your
mileage may vary, but now is a great time to be in the market for visualization tools. Grafana and its
competitors each have their own strengths and weaknesses, but they are all very capable applications.
Here’s a short list of the few we covered:

• Kibana (https://www.elastic.co/)

• Splunk (www.splunk.com)

• Datadog (https://www.datadoghq.com/)

• Zabbix (https://www.zabbix.com/)

With this in mind, let’s install Grafana.

https://www.elastic.co/
http://www.splunk.com
https://www.datadoghq.com/
https://www.zabbix.com/

Installing Grafana 11

Installing Grafana
At its core, Grafana runs as a web server, and as such, it is not a typical double-click application. You
will need to be comfortable with the command line and have administrator privileges on the computer
you plan to install Grafana on. To download the latest versions of Grafana, check out https://
grafana.com/grafana/download.

The Grafana application server runs on *nix operating systems (Linux, OS X, and Windows), and it
can be installed locally on a laptop or workstation or on a remote server. It is even available as a hosted
application if you’d rather not deal with setting up or managing a server application on your own.

In this section, we’ll walk through the most typical installation options:

• Docker

• OS X

• Linux

• Windows

• Hosted Grafana in the cloud

Once you’ve completed the installation of your choice, proceed to the Connecting to the Grafana server
section for instructions on how to access Grafana from a web browser.

Grafana in a Docker container

The easiest and least complex installation method is to run Grafana from within a Docker container.
Docker is available for all major platforms and can be downloaded by visiting https://www.
docker.com/.

After installing Docker, open a terminal window and type in the following command:

% docker run -d --name=grafana -p 3000:3000 grafana/grafana

The percent (%) symbol is simply there to indicate we are typing in commands to an interactive shell
such as zsh or Windows PowerShell. If you are cutting and pasting from the book, you’ll want to
leave out that symbol.

Docker will automatically download and run the latest version of Grafana for your computer’s
architecture. Bear in mind that since this basic container has no persistent storage, nothing will be
retained if you delete the container. I suggest you run the container with a temporary volume so that
Grafana’s internal database will continue to exist, even if you destroy the container:

% docker volume create grafana-storage
% docker run -d --name=grafana -p 3000:3000 \
 -v grafana-storage:/var/lib/grafana \
 grafana/grafana

https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://www.docker.com/
https://www.docker.com/

Introducing Data Visualization with Grafana12

Note
The book and its tutorial examples were written for the macOS operating system, a POSIX-
compliant OS that shares many similarities to Linux, including the shell. However, with a
few syntax modifications here and there, Windows users should be able to use these same
commands in PowerShell.

For example, in the preceding command, you’ll want to use the backtick (`) in PowerShell for
line continuation, rather than the backslash (\).

I will proceed with Docker and its companion product Docker Compose for the purposes of this
book as it will allow an almost turnkey installation experience, as all the necessary dependencies will
be automatically downloaded with the container. It will also install in its own sandbox, so you don’t
need to worry about installing a stack of software that will be difficult to delete later. Finally, in future
chapters, we will be setting up data sources using similar Docker containers, so managing the data
pipeline as a combination of containers will be very consistent and straightforward.

Make and Makefile

In the book’s GitHub repository, you’ll find a Makefile in each chapter directory. You can use it to
streamline some of the common Docker commands. If you’re not familiar with the make command
or it isn’t installed on your computer, you can still cut and paste many of the commands embedded
in the Makefile.

While space doesn’t permit a comprehensive introduction to the concepts that underlie make, here
is a quick example of how to use it in concert with this book. The following is from the Makefile
in the Chapter02 directory of the book’s GitHub repository:

up:
 docker-compose up -d --pull missing

On the first line, the word up before the colon (:) is referred to as the target. Anything following
that colon is a dependency; there are no dependencies associated with the target. The second line
is the command; there must be at least one command. For decades, the venerable make command
and associated Makefile have been the backbone for building software, often with hundreds of
complex dependencies. Nonetheless, for our use of make, we’ll use it mostly as a notepad of shortcut
commands. To use it, you simply run a make command from the shell:

% make <target>

make will first run any targets named in the list of dependencies, followed by the command(s)
associated with the target. Run the following:

% make up

You are using make to run this equivalent command:

Installing Grafana 13

% docker-compose up -d --pull missing

There is no requirement to use make for this book; all the commands you need are in the text.

Grafana for macOS

There are two options for installing and running Grafana for macOS:

• Homebrew

• Command line binary install

Using Homebrew is the simplest option as it wraps all the installation chores in a single command. To
get Homebrew, visit https://brew.sh/. If you want more control over where to install Grafana,
the command line option is a better choice.

Homebrew

Homebrew does not ship as part of macOS, but you can easily install it:

% /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

To install Grafana via Homebrew, run the following commands:

% brew update
% brew install grafana

If you want to keep Grafana running even after a reboot, use the Homebrew services subcommand to
launch the installed Grafana application as a service. You will first need to confirm services installation:

% brew tap homebrew/services
% brew services start grafana

Command line binary install

To install via the command line, open a Terminal shell window and download the macOS distribution
tarball, then untar it into the directory of your choice (replace ${GRAFANA_VERSION} with the
current version):

% wget https://dl.grafana.com/oss/release/grafana-${GRAFANA_VERSION}.
darwin-amd64.tar.gz
% tar -zxvf grafana-$GRAFANA_VERSION.darwin-amd64.tar.gz

Once you’ve untarred the file, cd into the directory and launch the binary by executing this command:

% ./bin/grafana-server web

https://brew.sh/

Introducing Data Visualization with Grafana14

Grafana for Linux

While Linux comes in a number of flavors, each falls into one of two installation systems: yum for Red
Hat-based releases or apt for Debian or Ubuntu releases. Typically, you download the binary and
then run the installer on the package file. To get the latest Grafana binaries for Linux, visit https://
grafana.com/grafana/download?platform=linux.

Yum installation (Red Hat, Fedora, CentOS)

The installer for Red Hat distributions (CentOS, Fedora, and Red Hat) is yum. To download and install
it (replace ${GRAFANA_VERSION} with the current version), use the following:

% wget https://dl.grafana.com/oss/release/grafana-%{GRAFANA_VERSION}.
x86_64.rpm
% sudo yum install grafana-${GRAFANA_VERSION}.x86_64.rpm

To start up Grafana, use systemctl:

% systemctl daemon-reload
% systemctl start grafana-server
% systemctl status grafana-server

To keep Grafana running even after a reboot, use the following:

% sudo systemctl enable grafana-server.service

Apt installation (Debian, Ubuntu)

The installer for the Debian distributions (Debian and Ubuntu) is dpkg. To download and install it
(replace ${GRAFANA_VERSION} with the current version), use the following:

% sudo apt-get install -y adduser libfontconfig1
% wget https://dl.grafana.com/oss/release/grafana_${GRAFANA_VERSION}_
amd64.deb
% sudo dpkg -i grafana_${GRAFANA_VERSION}_amd64.deb

To start up Grafana, use the following:

% systemctl daemon-reload
% systemctl start grafana-server
% systemctl status grafana-server

To keep Grafana running even after a reboot, use the following:

% sudo systemctl enable grafana-server.service

https://grafana.com/grafana/download?platform=linux
https://grafana.com/grafana/download?platform=linux

Connecting to the Grafana server 15

Grafana for Windows

Installation for Windows is straightforward:

1. Go to https://grafana.com/grafana/download?platform=windows.

2. Download the latest MSI installer file from the download link.

3. Launch the .msi file to install.

Grafana Cloud

If you would rather not install Grafana on your computer, or you don’t have access to a computer that
can run Grafana, there is another option—Grafana will host a free instance for you. Free Grafana
Cloud hosting provides very generous limits on the number of users, metrics, logs, and traces. To sign
up for the hosted version, go to https://grafana.com/get/ and select Cloud.

Now that you have installed and started up Grafana, let’s have a look at the interface. Grafana is a
web application, so we’ll connect to it with an ordinary web browser such as Chrome, Safari, or Edge.

Connecting to the Grafana server
Once you have installed and launched Grafana, open a browser page to access the Grafana application.
It can be found at http://localhost:3000. If everything goes well, you should see a login
page, as follows:

Figure 1.5 – Grafana login

https://grafana.com/grafana/download?platform=windows
https://grafana.com/get/

Introducing Data Visualization with Grafana16

Log in with the admin username with the password admin. You will then be prompted to change
it to something more secure (which you can skip if you wish). Once you have logged in, you should
see the base Grafana interface:

Figure 1.6 – Grafana home page

Great job! You’ve successfully installed and connected the Grafana application.

Summary
Congratulations! Over the course of this chapter, we learned about data visualization and why Grafana
is a powerful tool for data visualization. We also downloaded and installed Grafana. Finally, we
launched the Grafana application from our browser, setting us on a learning path for future chapters.

In our next chapter, we’ll take a tour of the Grafana interface and familiarize ourselves with its basic
features. This will serve as a foundation for upcoming tutorial exercises. I’m looking forward to our
shared journey!

Further reading
The official Grafana documentation can be found on their website at https://grafana.com/
docs/.

https://grafana.com/docs/
https://grafana.com/docs/

2
Touring the Grafana Interface

By this point, you’ve successfully installed and run Grafana, so next, we’re going to familiarize ourselves
with the Grafana user interface (UI). In this chapter, we will take a general tour of the default Home
dashboard, mostly concentrating on the sidebar menu. While you will spend the majority of your time
interacting directly with dashboards and panels, you will find that the sidebar is a helpful navigation
hub, providing both quick access to simple creation pages and links to more complex functions,
including data source creation, Explore, alert management, and server administration.

Note
This chapter is intended to provide a (mostly) high-level tour of these major features. We will
go into more detail about many of these features later in the book. I’ll point out which chapters
correspond to the topics covered. If you’re already somewhat familiar with Grafana, this chapter
should serve as a quick review and a point of reference.

Specifically, we’ll cover the following topics in this chapter:

• Exploring the main Grafana UI components

• Introducing the Grafana search bar

• Identifying the UI components of the Home dashboard, including the title bar

• Diving into the Grafana main menu items and sub-items

Technical requirements
Tutorial code, dashboards, and other helpful files for this chapter can be found in the book’s GitHub
repository at https://github.com/PacktPublishing/Learn-Grafana-10/tree/
main/Chapter02.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter02
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter02

Touring the Grafana Interface18

Exploring Grafana—the Home dashboard
After logging into the Grafana application, you should end up on the Home dashboard, as shown
in the following figure. Here, I’ve annotated some of the key UI elements in the Grafana interface:

Figure 2.1 – The Home dashboard

The following are key UI elements located on the Home dashboard:

1. The Grafana logo button: This returns the user to the Home dashboard.

2. Organization menu: This allows you to switch organizations.

3. Search or jump to…: This searches for or jumps to various actions, pages, or preferences.

4. Dashboard menu: This adds or imports dashboards and creates alert rules.

5. Help menu: This links to documentation, support, and community pages.

6. Grafana News: This opens the latest Grafana blog posts.

7. User menu: This links to the user profile and preference settings or signs the user out.

8. Menu toggle: This opens the main menu.

9. Add menu: This adds panel visualizations, adds rows, or imports panels from the library.

10. Dashboard settings: This opens the settings for the current dashboard.

Introducing the Grafana search bar 19

11. Top search bar toggle: This hides or reveals the search bar.

12. Dashboards panel: This is a dashboard panel containing favorite and recently viewed dashboards.

Grafana is structured around three main interactive UI components that together constitute its core
functionality: dashboards, panels, and rows. The page in the preceding screenshot is really just another
dashboard—specifically, the Home dashboard. A dashboard acts as a canvas upon which you can
display one or more rows of panels in a grid-like arrangement. It also can serve, as in the case of the
Home page, as a web page; you can bookmark it or share it with a simple URL. An entire dashboard
can be imported and exported in JSON text file format, making it easy to share, save, or transfer to
another version of Grafana.

The most useful and visible component of a dashboard is the panel. Panels implement a variety of
visualizations, from generating graphs, organizing data into tables, and displaying useful text to
simply containing a menu list of dashboards—which happens to be the kind of panel you see on the
Home dashboard in the preceding screenshot. Panels are implemented via plugins in Grafana, so any
capable developer can add to the variety of Grafana panels by creating new ones. An administrator
can download and install interesting panels beyond those that ship with Grafana.

Note
While a panel is technically now a container for a visualization, historically, each type of panel
was implemented as an independent code object. As of a few releases ago, the panels were
re-engineered under a common architecture supporting multiple visualizations. For the end
user, there is no real distinction between a panel and its visualization; thus, the terms can be
used interchangeably.

In Chapter 3, Diving into Grafana's Time Series Visualization, we’ll be taking a much closer look at what
might be considered the canonical Grafana panel visualization—the time series panel visualization.
Right now, let’s take a tour of Grafana’s dashboard UI.

Introducing the Grafana search bar
There are two main UI components visible on the Home dashboard:

• Search bar at the top

• Dashboard below

Each dashboard UI is organized around two main components:

• A dashboard title bar containing the main menu

• Dashboard rows and panels

Touring the Grafana Interface20

Let’s start by taking a look at the controls on our Home dashboard. Depending upon the nature of the
dashboard, you may see additional controls, which we will highlight later. For now, let’s keep things
simple by looking at the basic controls.

At the top of the interface is the search bar. This contains several navigational features. If you’re familiar
with older versions of Grafana, you will know that they were located in a side menu.

The portion of the dashboard that contains panels is the entire space below the title bar (as seen in
Figure 2.1). The title bar contains the main side menu on the left and a set of controls on the right.
The controls enable you to add new panels, open the dashboard’s settings, and hide/reveal the upper
search bar.

At the top of the Grafana UI is the search bar. The search bar contains a collection of controls that,
in previous versions of Grafana, were located in other areas of the UI. These include the following:

• The Home button

• The Organization menu

• The search box

• The Dashboard menu

• The Help menu

• Grafana blog

• The User menu

We’ll be covering many of these controls over the course of the book, so I won’t go into much detail
about them just now.

Grafana logo

On the far left of the dashboard search bar is the Grafana logo icon. It serves as a home button for
Grafana. Clicking on it will take you to the Home dashboard, which can be set in the preferences to
be any specific dashboard.

Figure 2.2 – The Grafana logo

Introducing the Grafana search bar 21

Organization menu

Next to the Home button is the Organization menu. Grafana can be configured with one or more
organizations, each having its own users, alert rules, and dashboards. We’ll talk more about organizations
in Chapter 15, Managing Permissions for Users, Teams, and Organizations.

Search box

At the center of the search bar is the search box, an interesting multi-function control. Typing text
into the box will activate the search function, listing out any matching links. Clicking on the box
without typing will bring up a menu of shortcuts to special actions, pages, and preferences, as shown
in the following figure:

Figure 2.3 – The search box

Touring the Grafana Interface22

+ (add) menu

Clustered on the right side of the search bar are several menu icons. The leftmost is the + (add) menu.
Clicking on it allows you to create a new dashboard, import an existing dashboard, or create a new
alert rule, the basic building block of Grafana observability. We’ll look at creating dashboards in
Chapter 9, Creating Insightful Dashboards, and we’ll introduce alert rules in Chapter 12, Monitoring
Data Streams with Grafana Alerts. Let’s take a brief look at the menu items.

Figure 2.4 – Search bar add menu

These three options are simply shortcuts to actions that are normally accessed via the Grafana menu.
Let’s check them out.

New dashboard

The New dashboard selection in the + menu is a shortcut to the New | New Dashboard selection
on the Dashboards page. It creates a new empty dashboard containing instructions on how to add
content to it. We’ll look at the Dashboards page a little later on.

Import dashboard

The + | Import dashboard selection is a shortcut to the New | Import menu option on the Dashboards
page. Here is where you can import a previously exported dashboard. We’ll talk about both the import
and export of dashboards in later chapters.

Create alert rule

This option is a shortcut to the + Create alert rule button on the Alerting | Alert rules page. We will
discuss alert rules in this chapter a little later in the section covering the Grafana menu.

Introducing the Grafana search bar 23

Help

To the right of the divider bar is the Help menu button, as shown in the following figure:

Figure 2.5 – The Help menu

Let’s go over some of the more notable options.

Support bundles

Support bundles are packages of useful debugging information primarily used by Grafana support.
If you happen to run into a difficult issue and you open a support case, you may be asked to submit
a support bundle along with your ticket.

Clicking on + New support bundle will open the Create support bundle page with a number of options
for deciding what will be included in the bundle. Every option (with the exception of Basic information)
is optional and may be omitted if you have any concerns about sending sensitive information.

Clicking on Create will create a bundle and add it to the list of support bundles where it can then be
downloaded and attached to your support ticket or deleted by clicking on the trashcan icon.

Documentation

Selecting the Documentation button launches a new web page in your browser and opens the Grafana
documentation home page for the corresponding version of Grafana.

Touring the Grafana Interface24

Community

The Community option launches the Grafana Labs Community Forums website. The forum allows
you to meet a community of other Grafana users and to share feedback with Grafana Labs about your
product concerns and requests.

Keyboard shortcuts

Selecting Keyboard shortcuts displays a pop-up window with a cheat sheet of keyboard shortcuts.
The other three are links to Grafana community forums, technical support, and documentation.

Grafana blog

To the right of the Help menu is a button that activates a Grafana Blog popup.

User menu

Finally, on the far right-hand side of the search bar is the User menu.

Figure 2.6 – The User menu

The User menu links to the settings pages for the current user, where you have options such as Profile,
Notification history, and Change password. We’ll take a look at these next.

Introducing the Grafana search bar 25

Profile

The Profile page serves a handful of functions.

Figure 2.7 – User preferences page

User profile settings on this page fall into the following four functional groups:

• Profile: You can set or change Name, Email, and Username

• Preferences: You can set or change UI Theme, Home Dashboard, Timezone, and Week start

Touring the Grafana Interface26

• Organizations: You can change the organization by clicking Select Organization

• Sessions: You can log out of the session by clicking on the red power button

Notably, going to Preferences | Home Dashboard allows you to reconfigure your Home dashboard
to another one of your choosing.

Notification history

The Notification history tab shows all of your notifications, which are mostly errors you’ve received.
You can clear them out by selecting the message you want to delete (you can click the box at the top
to select all of them) and clicking the Dismiss notifications button.

Change password

You can change your password here. You’ll need to authenticate with your old password and then
enter the new one twice for confirmation.

Sign out

Sign out logs you out of Grafana.

That wraps up our tour of the Grafana search bar. It’s a relatively new addition to the Grafana UI, so
expect it to undergo some revision with each numbered release.

Expanding Grafana’s main menu
The Grafana menu has been somewhat restructured in Grafana 10 compared to previous versions.
Some items have been moved to other parts of the interface while others have been renamed. Many of
the main menu items have additional submenu items that can be revealed by clicking on the disclosure
icon. The state of the Grafana menu is kept even when it is hidden. A complete explanation of each
item will not be provided here, but rest assured that we will cover most of them in later chapters of
this book!

At the top level are the following Grafana menu options:

• Home

• Starred

• Dashboards

• Explore

• Alerting

• Connections

• Administration

Expanding Grafana’s main menu 27

The icons in this menu lead to some of the most common yet impressive features of Grafana. For
example, from this menu you can do the following:

• Return to the Home dashboard

• Create and manage dashboards and folders

• Explore data sources in an ad hoc fashion

• Create and manage alert rules, contact points, and notification policies

• Configure data sources

• Configure users, teams, and organizations, download and install plugins, and create service accounts

As we tour the Grafana menu options, we’ll also walk through some of the more significant submenu
items. Space does not permit us to go through all of them in detail, but over the course of this book,
we will revisit them with tutorial examples that demonstrate their utility. There’s a lot to cover, so let’s
get started!

Home

Figure 2.8 – The Home button

This one is pretty obvious: it launches the Home dashboard as the Grafana logo does.

Starred

As you create dashboards, you’ll undoubtedly have a few that you will want to return to one or more
times from a set of your favorites. A list of your favorite dashboards is visible when you enable the
Starred toggle. Clicking on the Starred menu item leads to the Dashboards page. To favorite a
dashboard is quite simple: from any dashboard (except for Home), simply click the star icon that
appears to the right of its name in the breadcrumbs:

Figure 2.9 – The Starred dashboard

Touring the Grafana Interface28

Next, we’ll go down to the Dashboards item, the first on our list of menu items that opens its own
page. Many of the menu items have their own pages, and you’ll also find that their sub-items have
their own pages as well. You can reach those pages from the menu or from a list that can be found to
the left of an opened page.

Dashboards

Selecting the Dashboards menu item takes you to the Dashboards page. Clicking the toggle reveals
submenu items for Playlists, Snapshots, and Library panels. Clicking Dashboards takes you to the
dashboard management page where you can do the following:

• Search for dashboards by name

• Filter the list of dashboards by tags

• Create new dashboards or import existing ones

• Create dashboard folders and organize dashboards into folders

Figure 2.10 – The Dashboards menu

The page features a list of dashboards inside of their folders. If don’t see all your dashboards listed,
make sure the Starred filter is unchecked.

Expanding Grafana’s main menu 29

Figure 2.11 – The Dashboards page

You can also switch from icon view to a list view and change the sort order of the results. We’ll be
taking a closer look at the features of the Dashboard page in Chapter 10, Working with Advanced
Dashboard Features and Elasticsearch, and Chapter 14, Organizing Dashboards and Folders.

On the right, the blue New menu creates new dashboards and folders and imports existing dashboards.
Let’s take a look at the three options: New dashboard, New folder, and Import.

New Dashboard

As mentioned earlier, clicking New | New Dashboard creates a new empty dashboard containing
instructions on how to add content to the dashboard. Try it out!

Figure 2.12 – New Dashboard

Touring the Grafana Interface30

Comparing the new dashboard’s title bar to the Home dashboard, you might notice some new icons
in the top right:

Figure 2.13 – Dashboard buttons

Here are the basic functions of these buttons:

1. Adds new visualizations to the dashboard.

2. Saves the current dashboard.

3. Dashboard settings.

4. Sets the time range for the graph.

5. Zooms the time range.

6. Refreshes the dashboard.

7. Sets the dashboard refresh interval.

You’ll typically find the time controls (icons 4–7) anytime you have a time series-based panel on your
dashboard. We will go into more detail about the time series panel visualization in Chapter 3, Diving
into Grafana's Time Series Visualization. Feel free to experiment with dashboard creation. Create a
new dashboard and populate it with any number of panels. Until you hook up a data source, you’ll be
somewhat limited in terms of what you’ll be able to display. If you accidentally delete your panel or
convert it into a row, you can always create a new one with the Add Panel menu.

Dashboard settings

At the upper right of the Home dashboard is a small gear icon that represents the dashboard settings
button. Clicking on this button gives you access to a wide array of settings for the dashboard. Some
of the main functions available on the settings page are as follows:

• General: General dashboard settings let you change titles, descriptions, folders, and so on

• Annotations: These are settings governing annotation queries

• Variables: These are template variables used in the dashboard and its panels

• Links: These are links to other dashboards and external sites

Expanding Grafana’s main menu 31

• Versions: These are revision controls for the dashboard

• Permissions: You can access the controls for the dashboard

• JSON model: This is a complete JSON description of the dashboard

We’ll be taking an in-depth look at many of these Dashboard settings in Chapter 10, Working with
Advanced Dashboard Features and Elasticsearch. Other dashboard settings will be covered in other
chapters as the need arises.

New folder

The New folder option in the New menu is a handy way to quickly create a folder so that you can
group dashboards and keep things manageable:

Figure 2.14 – Creating a new dashboard folder

You’ll find that once you’ve created a handful of dashboards, keeping up with them on a Dashboards
panel, like on the Home dashboard, can get pretty cumbersome.

Import

Finally, the Import selection will launch the Import page. From here, you can import a dashboard
stored at https://grafana.com or import a previously exported dashboard JSON file. This is
one of the easiest ways to share a dashboard as a JSON file in in plain text format, and you can even
send it in an email.

We’ll now move on to the first of the sub-items in the Dashboards menu item: Playlists.

https://grafana.com

Touring the Grafana Interface32

Playlists

The Playlists sub-item takes us to the Playlists page, where you can create groupings of dashboards
orchestrated to run in a particular sequence and for a specific amount of time:

Figure 2.15 – New playlist

Typically, you use playlists when you want to set up an automated Grafana-driven kiosk-type display.
You can set up such a playlist in Grafana easily by taking the following steps:

1. Click on + Create Playlist.

2. Name your playlist.

3. Set the interval timing between dashboards.

4. Add the dashboards to the list, either by title or tag.

5. Click Save.

Expanding Grafana’s main menu 33

We’ll continue down the list to the Snapshots sub-item, which can be found directly below the
Playlists sub-item.

Snapshots

The Snapshots page, also accessed via the Dashboards | Snapshots menu selection, allows you to
capture the state of a dashboard in what are called snapshots:

Figure 2.16 – The Snapshots page

This displays your datasets, but there’s no way to access the original data sources and queries. Snapshots
are a great way to share a live dashboard in scenarios where you need to demo your dashboards offline
or can’t share access to your data sources.

Snapshots are created by clicking the share icon next to the dashboard name. A snapshot can be
stored on your Grafana server or shared out to Grafana’s hosted service at http://snapshots.
raintank.io/?orgId=2.

The last of the sub-items under Dashboards is the Library Panels sub-item.

Library panels

Library panels give you the ability to replicate a single panel across many dashboards, so rather than
copying the panel from one dashboard to the next, an instance of the library panel is created, which
the dashboard then references. When a change is made to the library panel, all instances make the
change automatically.

From the Library Panels page, you can search for library panels by name or description. Clicking
on a library panel brings up a dialog that allows you to navigate to any dashboard that references the
panel. Clicking on the trashcan icon deletes the library panel.

Explore

Explore is one of Grafana’s most exciting features. It is a kind of data-driven scratchpad for exploring
a data source prior to implementing it on a dashboard visualization. It is also well integrated with
Loki, Grafana’s system for logging exploration.

http://snapshots.raintank.io/?orgId=2
http://snapshots.raintank.io/?orgId=2

Touring the Grafana Interface34

If you’ve ever worked with a dashboard-driven tool such as Grafana, you might have started with a
dashboard, loaded up a graphing panel, fed it the data, and then messaged queries or time frames to
look for patterns. What if you could do away with the overhead of building and configuring dashboard
panels and go straight to the analysis? That is what Explore is for:

Figure 2.17 – Explore mode

Explore gives you a fullscreen panel, so you can immediately start exploring your data without
concerning yourself with the panel or its appearance on the dashboard. With Loki, Explore takes
things a step further. By integrating logging with your metrics, you can correlate metric indicators
with significant logged events. If you’ve ever tried to troubleshoot a problem by repeatedly flipping
back and forth between your graphs and logs, imagine working with them on the same interface!

We’ll explore Explore and Loki in much more depth in Chapter 13, Exploring Log Data with Grafana’s Loki.

Alerting

As more applications grow and expand into the cloud, observability becomes a must-have. Grafana
Labs has continued to make observability a key competitive feature. Here’s a look at the items available
in the Alerting menu:

Expanding Grafana’s main menu 35

Figure 2.18 – The Alerting menu

Clicking on the Alerting menu item takes you to a page describing some of the important concepts
of Grafana Alerting. It is a powerful and complex feature, and as such, we are only going to be able to
touch on a few key aspects for now, but we will cover alerting in greater detail in Chapter 12, Monitoring
Data Streams with Grafana Alerts.

Alert rules

Alerting rules in Grafana are the mechanism for creating alerting pipelines, which begin with your
data sources and end with an alert going out to a notification service of your choosing. There are four
steps in creating an alert rule, and on the Alert rules page, you begin by clicking + Create alert rule:

Figure 2.19 – Creating an alert rule

Touring the Grafana Interface36

From there, the steps are as follows:

1. Set an alert rule name.

2. Set a query and alert condition for triggering an alert.

3. Set alert evaluation behaviors to establish the alerting interval.

4. Add details to your alert rule by setting the name and documentation for the alert.

5. Set a label(s) for routing the alert to notification services.

Once you’ve created a rule, you can then manage it on the Alert rules page:

Figure 2.20 – The Alert rules page

You can search and filter alerts by data source, label, state, or type. For example, with just a couple
of clicks, you can find all the firing alerts for a specific data source. As you can tell, as the number of
alert rules increases, it becomes imperative to have a good labeling scheme so that you can keep your
rules well-organized and manageable.

Contact points

Once you’ve created an alert rule, you’ll need to create alert messages and configure destinations
for those messages. The Contact points page is where you define both Message templates and the
Contact points for those messages. Grafana provides access to the powerful Go language templating
system for embedding alert-specific content into the message body. Messages can then be sent to one
or more services (such as an email service or Slack)which Grafana refers to as contact points.

Expanding Grafana’s main menu 37

Notification policies

The Notification policies page is the switching center for Grafana Alerting. Here, Notification policies
define how alerts are routed to various contact points. Notification policies can be configured to route
certain alerts to specific contacts by matching against the alert label.

Silences

There are times when you don’t want an alert to fire, for example, during a maintenance window. Here,
in the Silences page, you can silence one or more alerts for a specific amount of time. The alerts are
matched by label, so you can silence alerts by their group name, their severity, or their label.

Groups

The Groups page provides a simple interface for defining groups of alerts by label. As we saw before,
an alert group can be simply a set of alerts with the same label. When you’ve identified a grouping,
you can examine any alerts and their current states.

Admin

The Admin page provides access to the configuration of the Alertmanager. An Alertmanager is a
server responsible for orchestrating alerting services. By default, Grafana comes with the Prometheus-
based Alertmanager. You can configure other external Alertmanagers for load balancing, security, or
high availability. For the purposes of this book, we will be using the built-in Grafana Alertmanager.

At this point, it is to be expected that you find these features a bit overwhelming. Grafana Alerting is
powerful and complex, but we’ll go over the process of setting up an alert step by step in Chapter 12,
Monitoring Data Streams with Grafana Alerts.

Connections

Grafana is a data-agnostic application, meaning it is not built around a particular data format. Rather,
connections between Grafana and various databases are abstracted behind a plugin architecture
referred to as a data source.

Figure 2.21 – The Connections menu

Touring the Grafana Interface38

Add a new connection

Clicking on the Connections menu item leads to the Add a new connection page, which contains
an extensive library of these data sources. From here, you can search for the data source that matches
your needs.

The list is so extensive that not all the data sources listed ship with the version of Grafana you’ve
installed. After selecting a desired data source, you may need to first install the data source plugin
before proceeding to configure it.

Configuring and managing data sources is handled in our next sub-section: Data sources.

Data sources

Setting up the data source connection that backs your graphs will most likely be your primary
administrative function within Grafana. From the Data sources page, you can create any number of
data sources from the available data source plugins:

Figure 2.22 – Adding a new connection

To set up a data source, you will typically need to know at least a few things, such as the data source’s
server IP address and port, the correct authentication credentials to access it, and the name of the
database on the server itself. There is one data source you can create that has no setup, as it is an
internal plugin to Grafana. The TestData DB data source is a dummy data source that mimics the
characteristics of a time series database with random data. We will use the TestData data source in
the next chapter to get familiar with the Grafana panel before integrating it with a real data source.

Expanding Grafana’s main menu 39

We will take a detailed look at data sources in Chapter 4, Connecting Grafana to a Prometheus Data Source.

Administration

The Administration page is Grafana’s administrative command center. While you can certainly use
Grafana as an application solely for yourself, it is also designed to work as a full-featured data visualization
and observability application that can support hundreds of users. From the Administration page,
you can do this and more.

Figure 2.23 – The Administration menu

Clicking on the Administration menu item leads to a landing page for the submenu items. We’ll go
over the different options under Administration.

Data sources

The Data sources page here is a copy of the one found under Connections. As such, you should
assume that it will be eventually removed from this location. From here on, we will only refer to the
Data sources sub-item located under Connections.

Touring the Grafana Interface40

Plugins

The Plugins page is an inventory page listing all the installed data sources and panel plugins. It also
features a link to the plugins catalog on https://grafana.com where you can download and
install more plugins:

Figure 2.24 – The Plugins page

Users

The Users page under Administration is where you can change any user’s password, add them to various
organizations, and even log them out of Grafana entirely. It’s an important page for user management.

https://grafana.com

Expanding Grafana’s main menu 41

Figure 2.25 – Editing a user

Here’s a summary of the different sections on the Users page:

• User information: This sets a user’s name, email, username, and password and can also delete
or disable a user

• Permissions: This enables admin permissions for the user

• Organizations: This adds users to organizations with specified roles

• Sessions: This reviews user logins and forces users to log out

Selecting Administration | Users takes you to the Users page. There are two tabs—one for all users
and another only for those in the current organization. You can create or invite new users, set access
levels for existing ones, or delete users entirely.

Touring the Grafana Interface42

Teams

Next to the Users tab is the Teams tab, accessed via Configuration | Teams. The concept of teams
is primarily used to establish UI settings for an entire group of users. Simply create a new team and
add users to it. Default UI settings can then be established for all members of the team. A team can
have its own Home dashboard, UI theme, or time zone setting. This feature is useful if you are using
Grafana to manage groups that want their users to have a tailored Grafana experience.

More information on both users and teams management will be covered in Chapter 15, Managing
Permissions for Users, Teams, and Organizations.

Service accounts

Service accounts provide a flexible mechanism for generating a random token to be used by software
to access the Grafana API. Service accounts pair one or more tokens with a set of permissions called
a Role. Multiple tokens with potentially different expiration dates can be associated with a single
service account.

Here’s an example in which I’ve created a new service account called My Service Account. The
role for the service account is Viewer, which means it can only access dashboards and not edit them.
I’ve also generated an eternal token, which could then be transferred to a developer or DevOps engineer
for installation so that the application can access Grafana. Finally, I’ve established the permissions for
managing this service account so that only one user admin has full admin permissions to not only
edit or delete the service account but also to grant other users the permission to manage the service
account as well.

Figure 2.26 – Editing a service account

Expanding Grafana’s main menu 43

We’ll be taking a closer look at service accounts in Chapter 11, Streaming Real-Time IoT Data from
Telegraf Agent to Grafana Live.

Default preferences

Selecting Default preferences under Administration sets the global interface parameters for an
organization. Notably, here is where the default Home dashboard is set. In order to be eligible for
designation as the Home dashboard, a dashboard must also be starred. Besides the Home dashboard,
this is where the UI style (light or dark mode) and time zone are also set:

Figure 2.27 – The Default preferences page

Touring the Grafana Interface44

Settings

Clicking Administration | Settings opens a page displaying the current settings for the Grafana
server configuration as stored in the grafana.ini file. It is beyond the scope of this book to fully
discuss configuring the Grafana server via grafana.ini. If you want to learn more about how to
configure the Grafana server, check out the documentation at https://grafana.com/docs/
installation/configuration.

Organizations

Organizations are Grafana’s mechanism for supporting multiple independent Grafana sites from a
single server. Each organization is completely independent of the others and has its own Users, Teams,
Service accounts, and Default preferences settings. To set the preferences for another organization,
you would first switch to that organization before making changes.

Creating or deleting an organization is simple:

• Click on the New org button to go to a page where you can set the name of the new organization

• Click on the red × button to delete an organization:

Figure 2.28 – The Organizations page

Once you create an organization, however, you will need to populate it with users before anyone
can access it. For now, we will work solely within the default organization created for you when you
installed Grafana; however, if you wish to find out more, Chapter 15, Managing Permissions for Users,
Teams, and Organizations, will cover user and organization management in more detail.

https://grafana.com/docs/installation/configuration
https://grafana.com/docs/installation/configuration

Exploring the Grafana dashboard UI 45

Stats and license

If you want to get an idea of how many resources (from users to dashboards to alerts) have been
created on your server, select the Stats tab on the Server admin page for a list of interesting statistics.

That does it for the Grafana menu! Take a breather before we round out the chapter by looking at the
typical dashboard UI elements.

Exploring the Grafana dashboard UI
Let’s step back and look at a dashboard. It is divided into a title bar with several controls and a content
area that contains our visualization panels and rows. We’ll spend plenty of time talking about how to add
and organize dashboard content. For now, let’s become familiar with the dashboard’s title bar controls.

Grafana dashboard title bar

At the top of the dashboard is a title bar with the following controls:

• Grafana menu toggle

• Home dashboard breadcrumb

• Add menu

• Dashboard settings

• Search bar toggle

We’ve already introduced the Grafana menu located on the far left of the dashboard title bar. We’ll
now start with the breadcrumbs that indicate our dashboard page name and its position in the
folder hierarchy.

Breadcrumbs

While navigating from one page to the next or into dashboard folders, the breadcrumb interface
provides a series of links to each level in the hierarchy. Situated to the left of the breadcrumbs is
usually the Home dashboard.

Add menu

The Add menu provides a quick interface for adding dashboard components such as new visualizations,
rows, library panels, and (if you have cut or copied a panel) the clipboard panel.

Touring the Grafana Interface46

Figure 2.29 – The dashboard visualization Add menu

Click on Add | Visualization to create a new panel visualization on the Home dashboard or on a
dashboard you’ve created. You’ll find a time series visualization has opened and taken you to the
Query tab, all set for you to start working with a TestData data source.

Figure 2.30 – Editing a panel

Exploring the Grafana dashboard UI 47

As you can see from the breadcrumbs in Figure 2.30, you’re now on the Edit panel page for the panel.
To get back to the dashboard, click on the Home breadcrumb. You should now see a simple graph of
the random data you were just looking at in the panel editor:

Figure 2.31 – Panel on the dashboard

The Row option in the Add menu, as the name implies, adds a row to the dashboard. Rows are both
a simple divider for dashboard panels and a powerful structure for dynamically building a dashboard
page. When you assign a special template variable to a row Configuration, Grafana will appropriately
replicate each configured panel on that row to reflect the value of the template variable. We’ll be taking
a closer look at both rows and template variables in Chapter 10, Working with Advanced Dashboard
Features and Elasticsearch.

Dashboard content

We couldn’t finish up without mentioning the most important part of the dashboard: the content
area where data is visualized in panels. Directly below the dashboard title bar is where dashboard
panels and rows are sized and arranged. Besides graphical data, panel visualizations can convey a wide
variety of information, including textual and numerical data, spreadsheet-like tables, and even lists
of dashboards. The current Home dashboard serves as a landing page for the Grafana application by
default, but you can always change the Home dashboard to any one of your choosing.

Touring the Grafana Interface48

Summary
There you have it—a tour of the basic Grafana interface. We looked at the Grafana UI, identified key
elements, and took a closer look at some of them, including the search bar, the Grafana menu, and
the dashboard. Of course, we have barely scratched the surface and we’ve scarcely created a dashboard
or visualization panel!

In Chapter 3, Diving into Grafana's Time Series Visualization, we will cover a key feature of the Grafana
interface—the time series visualization. If you plan to do any graphing, you’re going to be using the
time series visualization. It’s the most powerful and feature-rich of the panels available in Grafana, so
we’re going to spend the entire next chapter going over its interface. After that, in Chapter 4, Connecting
Grafana to a Prometheus Data Source, we’ll complete our introduction to Grafana’s interface by looking
at data sources and how they bring time series data to Grafana.

3
Diving into Grafana's Time

Series Visualization

We’ve now come to the chapter you’ve hopefully been waiting for – using Grafana to actually graph
something. In this chapter, we will examine a basic object to query and visualize data – the panel.
Within a single panel, you will find the ability to visualize data in a myriad of ways.

While there are a number of different panel visualizations to choose from, the most common one
used to produce beautifully styled metrics is the time series (formerly graph) visualization. It is one
of the most versatile panel visualizations, and on first viewing, it seems to have an intimidating set
of features. Due to this, we will take a broad overview approach to the panel before diving into the
details in later chapters.

Much like we did in Chapter 2, Touring the Grafana Interface in this chapter, we will break down the
major UI elements that comprise a panel.

In this chapter, we’ll cover the following topics:

• Touring the Grafana Panel UI, especially the time series visualization

• Generating test data series from the Query tab

• Modifying Grafana panel options

• Setting up monitoring using the Alert tab

The tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter03.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter03
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter03

Diving into Grafana's Time Series Visualization50

Touring the Grafana panel UI
Here is a typical Grafana panel in edit mode:

Figure 3.1 – The edit panel UI

The panel’s UI can be broken down into roughly three main functional areas as demarcated in the
preceding screenshot:

1. Panel display: A preview display and a time picker

2. Options settings: The panel visualization type, styles, and links

3. Panel tabs: Data query, data transformation, and alerting

Touring the Grafana panel UI 51

Throughout this chapter, we will delve into each of these areas. First, we will look at the Query tab
in the context of how to use it to produce graphed data. Then, we will explore how the various panel
settings shape the look of the graph and how to set typical panel display features, such as a title. Finally,
we will see how the Alert tab can establish monitoring rules for thresholds that, when exceeded, can
trigger alerts. Of course, all of this is dependent on what we’ll create first – a simple data source.

Creating a simple data source

A Grafana plugin that supplies panels with data is called a data source. Obviously, if you want to set
up a graph panel, you will need such a source for data, but what happens when you create a graph
panel without specifying a data source? Fortunately, Grafana has thought of this scenario, and if you
don’t have even a single data source set up, the panel will still have something to graph – a built-in
fake data source.

If you’ve already created a panel, you may have seen it graph a mysterious dataset that seems to come
from nowhere. The data comes from a built-in data source, called TestData DB, which generates
pseudo data under several scenarios. The default scenario is called Random Walk; it’s useful for
producing a fake dataset that resembles some real-world metrics, where each data point is a small,
random deviation from the previous one. It generates a curve modulated with multiple frequencies
of random noise. It maintains the same frequency characteristics at all timescales – that is, the data
doesn’t get noisier as you zoom in, so it is ideal for mimicking physically based metrics, such as
temperature, stock prices, or population data.

Let’s start from the Home dashboard to set up an actual data source that can produce a variety of fake
data for us to work with:

1. Click on the Grafana logo or the Home option from the main menu to return to the Home
dashboard if you’re not already there.

2. From the main menu, select Connections | Data Sources.

3. Click Add Data Source.

4. Scroll down to Others and select TestData.

5. Accept the default name or enter a new one of your choice.

6. Make sure Default is set to On.

7. Click Save & Test to confirm that the data source is working.

Diving into Grafana's Time Series Visualization52

If you’re successful, you should see a banner with a green check mark, indicating that the data source
configuration works. The Settings tab should look something like this:

Figure 3.2 – Adding a TestData data source

You’ve now successfully created your first data source! You can now return to the Home dashboard
using either the breadcrumbs or the main menu.

Creating a graph panel

The next thing we need to do is to create a graph panel. By now, you’ve probably already created a
few panels, so this should be relatively familiar. Let’s start with a fresh dashboard so that we can keep
things separate from the work we did previously:

1. Go back to the Home dashboard.

2. In the top search bar, select + | New dashboard.

3. Click Add visualization. By default, you will have created a time series visualization panel.

4. You will now need to select a data source, so select the TestData data source you created earlier.

Let’s return to our dashboard and save our progress:

1. Click Apply to save your panel changes and return to the dashboard.

Touring the Grafana panel UI 53

2. Click the Save Dashboard (disk) icon at the top of the dashboard to save the dashboard for
future reference. It is a good practice to regularly save your dashboards.

3. To go back and edit a panel visualization, click the three-dot menu button at the top right of
the panel, and select Edit.

After completing this little exercise, the UI should resemble the following, which is not all that different
from the first graph we created in Chapter 2, Touring the Grafana Interface:

Figure 3.3 – Editing a new panel

Since you designated the new TestData as your default data source, any newly created panel will use
this default as its data source. Don’t worry – you can always set any panel to use another data source
with a quick menu selection. Now that we’ve created our first data source, let’s find out how to generate
some data for the panel to visualize.

Diving into Grafana's Time Series Visualization54

Generating data series in the Query tab
Let’s take a closer look at the Query tab, also called the Query Editor. To open a panel editor, click on
the panel title and select Edit from the pulldown menu. If it isn’t already selected, click on the Query
tab to select it. The Query tab is where we assign a data source to the panel’s queries. We’ll take a
closer look at the Query tab shortly.

With TestData set as the default data source, Grafana also sets up Random Walk to be the default
query scenario, so we are now ready to go with both a data source and a scenario that produces the
displayed dataset series.

Before we delve further into the Query tab, we should probably talk a bit about its purpose. Unlike
some visualization tools that are designed to connect to a single data source, Grafana is data source-
agnostic. The Grafana data source plugins are not only responsible for presenting the Grafana user
with a simplified query interface but also for structuring the returned data in the form of a Grafana
data frame, a generic object used in many of Grafana’s panels.

Most Grafana users will find that, even with a graphical query UI, they can make pretty sophisticated
queries. Where a more complex query might be cumbersome in the query UI, Grafana often provides a
raw text editor mode to enter queries in the native query language of the data source. In later chapters,
we’ll work in both modes so that you can get a feel for the strengths of each mode.

Bear in mind that the data source query interface will not provide protection against dangerous
queries, so if you’re planning to use native queries, talk to your database administrator about creating
a restricted account for Grafana data sources.

What is a query?

Essentially, a query is a mechanism to extract a data series for display by a Grafana dashboard panel.
The Query tab allows you to extract multiple queries from the same data source or a mix of multiple
data sources. It can even reference a data source from other panels. Depending on the data source
plugin, Grafana will convert the tab’s queries into API calls to the data source server (such as a SQL
statement to an RDBMS), retrieve the data in data frame, and then display some or all of it, depending
on the current time range.

For now, we’ll just use the current TestData as our data source so that we can concentrate on the
different aspects of the graph panel interface. In the following chapter, we’ll look more closely at how
to query an actual third-party data source, rather than an internally generated one.

Generating data series in the Query tab 55

Query tab features

Let’s have a look at the main features of the Query tab. Depending on the data source, individual
queries will differ, but the overall interface will be the same, as shown in the following screenshot:

Figure 3.4 – The Query tab UI

Here are the key features that have been identified in the preceding screenshot:

1. The Data source menu

2. Query options

3. The Query inspector button

4. The query

5. The duplicate query button

6. The query visibility toggle button

7. The Delete query button

8. Query order drag and drop

9. The + Query button

10. The + Expression button

We’ll now examine many of these features, seeing how they work together to give you control over a
data source query and the resulting data series.

Diving into Grafana's Time Series Visualization56

The Data source menu

The Data source menu is where you will select the data source for the panel. In general, a panel will
usually contain queries from a single data source; the pulldown will present a choice from all the
available data sources. However, if you do plan to combine data series from multiple data sources on
a single panel, select the Mixed data source from the pulldown. You will then specify the data source
for each individual query.

Query options

Monitoring the value of a given point at a sample of time (called an interval) is critical to maintaining
the proper visual representation of data. Next to the Data source menu is the Query options section,
which contains the following options to configure how the panel handles the display of time series data:

• Max data points

• Min interval

• Relative time

• Time shift

Max data points controls the maximum number of data points that should be displayed, even if the
time range is very wide. Min interval is used to set the smallest chunk of time or interval Grafana will
divide a time range, in order to aggregate all the points in an interval into a representative data point.
Setting the value to the frequency of each data point helps Grafana optimize the display of time series
panels, especially when dealing with wide time ranges. For example, suppose your data is written to a
Prometheus database once every minute (the sampling frequency); here, you would set Min interval
to 1m. Interval shows Grafana’s calculation for the time period represented by a single data point.

While the time range control at the top of the panel is used to set a global time range for all the panels
on the dashboard, often, you would want to override the time range for individual panels. Perhaps
you want to see a 1-hour, 2-hour, or 4-hour range for an individual panel. You don’t want to have to
keep flipping the time range multiple times so that you can replicate the panel three times, setting
three different time ranges.

The Relative time setting is used to set the panel time range to one that’s independent of the dashboard
time range. The Time shift setting is useful for shifting the panel’s time range to an earlier time by
a specified offset from the current time. Using both the Relative time and Time shift settings has
the effect of altering the width of the window of time displayed and/or moving the endpoint of that
window back in time, relative to now.

Generating data series in the Query tab 57

To specify the time interval for Min interval, Relative time, and Time shift, use the following
time abbreviations:

Abbreviations Time interval
Y Year
M Month
W Week
D Day
H Hour
M Minute
S Second
Ms Millisecond

Table 3.1 – Time abbreviations

Query inspector

The Query inspector button will open a text console, revealing the contents of the query that Grafana
submits to the API. This is a very informative feature for a couple of reasons. If you are having trouble
getting the results you want, Query inspector can give you an insight into how you might be making
an incorrect query to the data source. Additionally, by viewing the actual generated query, you can
determine how you might go about making it more efficient. A more efficient query can substantially
improve the responsiveness of a Grafana dashboard, especially when it contains several panels.

Query

The query is, of course, the central interface to derive a dataset. It can contain several components,
depending on the data source. In the case of the TestData data source, it is simply a Scenario dropdown,
allowing you to select from several different options to generate test data.

The Alias text field is used to give the dataset a name of your choosing. The data source will designate
a name for each query, but that name is often not very descriptive, so adding an alias is a good way to
document the contents of the query. In later chapters, we’ll look at some tips on how to use the alias
name to annotate the legend and create display overrides.

Query controls

The query UI comes with a few control icons to manage queries:

• Copy (pages) icon: Creates a copy of the current query directly below it. This saves some
time if you want to use the same query but display different aggregations, or change a single
field (column).

Diving into Grafana's Time Series Visualization58

• Visibility (eye) icon: Enables and disables the query.

• Delete (Trash can) icon: Deletes the query.

• Drag and drop (dotted) icon: Moves the query up or down and has the effect of changing the
order of the datasets as they are displayed. This has a direct impact should you choose to stack
multiple datasets (the Display section).

Next, let's discuss the query and expression options in more depth.

+ Query

+ Query creates a new query below the current one. This query will create a new dataset and display
it along with existing queries.

+ Expression

+ Expression adds a new expression operation to your queries. These operations can manipulate the
results of the query by performing math, filtering, reduction, and so on. Even more powerful operations
can be performed by creating transformations found under the Transform tab.

Now that we have familiarized ourselves with some of the UI features in the Query tab, let’s play
around with some actual queries to see how they affect the panel graph.

Duplicating an existing query

With this in mind, let’s go back to our query. Since we got a query for free when we created the panel,
let’s create another one, just to see how it affects the display:

1. Confirm that you have selected the TestData data source from the Data source dropdown.

2. Click on the duplicate query icon. You should now see two queries, both with the Random
Walk scenario:

Generating data series in the Query tab 59

Figure 3.5 – Adding a second query

If you don’t see two separate series representing the A and B queries, click the Refresh dashboard
button (next to the time series drop-down menu).

Transform

As I previously mentioned, right next door to the Query tab is the Transform tab. While it is beyond
the scope of this chapter to go into detail about transformations, suffice it to say that this is an incredibly
powerful Grafana feature. Imagine a data frame that holds your queries as a spreadsheet, with a column
of data representing each query result.

Now, imagine performing all sorts of transformations on each column, with new columns containing
the results of each transformation. Imagine performing various cleaning and filtering operations on
your data. Imagine extracting new data from the existing columns or reducing the data in a column
to a single aggregation.

Now that you have an idea of the power of transformations, have a look at some of the many
transformation options available in the Transform menu. You’ll see that some of them will not be
valid for graph-type panels. Never fear – such transformations can be visualized in Grafana’s Table
visualization as well. In later chapters, we will leverage the power of Transform to shape query results
into a more suitable form for our purposes.

Diving into Grafana's Time Series Visualization60

Let’s now move on to the Panel settings and see how we can use them to modify the look of our panel.

Editing the panel settings
On the right-hand side of the graph display, you’ll find the panel settings area, where you’ll find a
boatload of features to tailor the look of your panel, including changing the visualization entirely.

Figure 3.6 – Panel settings

The panel’s myriad of options is available from one easily accessed column, with each one featuring a
disclosure control so that you only need to see the options relevant to the task at hand.

Selecting panel visualizations

The data frame architecture of Grafana allows for many graphs to be made from the same query
datasets. The selection of a visualization serves as a quick mechanism to switch out the current panel
visualization for a different one. Clicking on the Visualization tab reveals a list of possible visualizations
installed in Grafana. Use the Search box to help filter down by name the number of panels in the listing.

There are so many Grafana visualizations now that it is well beyond the scope of this book to cover
more than a small sample. In later chapters, we’ll introduce other panel visualizations, but our primary
focus will center on the Time series visualization.

Editing the panel settings 61

Clicking on the Suggestions tab will show you some of the visualizations suitable for your data source
query. If you have set up some reusable library panels, they can also be accessed from the Library
panels tab.

Changing the panel will also alter the various options available, so you can try out various visualizations
and adjust their unique options. Those settings are cached, so you can always switch from one
visualization to another without losing settings. Experiment!

The Panel options section

Starting from the top of the panel settings, the Panel options section is used for general panel settings,
such as the title or description. As shown in the following screenshot, the Panel options section
contains five settings in three groups:

Figure 3.7 – Panel options

Diving into Grafana's Time Series Visualization62

The first group gathers a few global settings for the panel:

• Title: This sets the panel’s title on the dashboard. Setting the panel’s title is obviously a good
practice if you want to make it clear to yourself and others what the panel represents. Titles
support variable substitution, and in Chapter 10, Working with Advanced Dashboard Features
and Elasticsearch, we will look at how to use variables to automatically set parts of the title.

• Description: This sets the content of the panel’s information popup. This information is
displayed by hovering over the information icon (i) in the top-left corner of the panel. The
Description setting also supports markdown formatting for attractive text styling, without the
need for HTML editing.

• Transparent background: This increases the panel’s transparency.

The next group deals with panel links, which are used to set up links from this panel to other
dashboards, panels, or even data annotations. For instance, if you would like to add links from the
panel to other resources, such as other panels, dashboards, or even other websites, you can use the
Panel links section. Let's see how!

Clicking + Add link brings up a dialog box with three settings:

• Title: Contains the link text

• URL: Link to another resource

• Open in new tab

The link will appear at the bottom of the information (the i icon) popup if the panel’s Description
contains text; otherwise, the corner will display a link icon, and the link will appear when it’s hovered
over. This feature will be discussed in more detail in Chapter 10, Working with Advanced Dashboard
Features and Elasticsearch.

The final group, Repeat options, is used in combination with template variables to automatically
generate additional panels. Select a template variable from the dropdown to select the parameter
to create the additional repeating panels. We will look at template variables and how to use them to
dynamically create panels in Chapter 10, Working with Advanced Dashboard Features and Elasticsearch.

Let’s try out a few of these panel settings to get a feel for how they alter our panel’s display characteristics.

Setting the panel title and description

Let’s return to our panel and fill in these fields to give our panel a title and description. It’s a good
practice to set the title of your panels, as well as to provide a description, since it provides users with
some context and documentation for the panel:

1. Fill the Title text field with My Awesome Panel or some other text of your choice.

2. In the Description textbox, add the following text (or something similar with some markdown tags):

Editing the panel settings 63

My Awesome Panel

This is where I'd like to make a description of my *awesome*
panel.

3. Hover over the tiny i symbol in the top-left corner of the panel display to see your Description
text in all its markdown-rendered HTML glory:

Figure 3.8 – The panel title

The Panel options section is one of the most important and most used sections; hence, it’s placed
near the top of the panel settings. Setting the panel’s title and description provides key information
for your users and other dashboard developers.

Let’s move on to the following section, where we will configure the data point tooltips.

The Tooltip section

The Tooltip section is designed to serve as a miniature legend that appears near any point that you
hover over:

Figure 3.9 – The Tooltip settings

Diving into Grafana's Time Series Visualization64

As you can see from the preceding screenshot, it has two settings:

• Tooltip mode: This sets how much content to display in the tooltip. The three modes available
here are as follows:

 � Single: This only draws the value for the hover point

 � All: This draws the values of all dataset series on a single tooltip

 � Hidden: This hides the tooltip entirely

• Values sort order: This sets the order for the dataset. If you choose All in Tooltip mode, Values
sort order will sort each series’ point values (at the sample point) in Ascending or Decreasing
order; if None is selected, it will order them by how each data series is specified in the Query tab.

The Legend section

You’ve probably already seen the legend in action when you first set up the graph panel. The Legend
options are mostly designed to control the placement of the legend, or its contents. Here’s an image
of the Legend section:

Figure 3.10 – The Legend settings

It contains four settings. Let’s examine them:

• Visibility: This turns the legend on or off.

• Mode: This displays the legend as a list or a table. By default, the legend displays as a list.
Switching the mode to Table arranges the entries and values in a more structured table format.
In this mode, it also has a nifty spreadsheet-like column sort feature.

Editing the panel settings 65

• Placement: This sets where the legend is displayed on the panel. Right places the legend off to
the right, rather than at the bottom of the graph. If you enable the right-hand side placement,
you can also guarantee a minimum width by setting the Width value.

• Values: This sets additional values to display along with the dataset label. Along with a label
to describe each dataset, the legend can display a combination of nearly 25 different types of
aggregations, including even the dataset values themselves. Simply select one or more from
the Values dropdown. Typing in the Values box will filter the possible options. Clicking on
the x symbol deletes a value.

The Axis section

Moving on to the Axis section, note the options below the Time zone setting, which are mostly used
to configure the y-axis display:

Figure 3.11 – The Axis settings

Diving into Grafana's Time Series Visualization66

Here’s a rundown of the Axis settings:

• Time zone: This sets the current time zone for the time axis

• Placement: This hides or places the y axis

• Label: This sets the label for the y axis

• Width: This sets the minimum width of the y-axis values

• Show grid lines: This turns on or off y-axis grid lines

• Color: This sets the color of the y-axis values and label

• Scale: This sets the scale for the y axis to either log or linear

• Centered zero: This centers the y axis on the zero value

• Soft min/Soft max: This constrains the limits of the y axis if there are no values

While most of these settings are relatively straightforward, let’s look a little closer at a couple that
might need explanation.

Time zone

In the time series panel visualization, the x axis represents a series of time values, as set by the time
picker at the top of the panel. The Time Zone setting adjusts the time values to correspond to another
time zone.

For example, suppose you are looking at a series of metrics on a server in your local time zone, but
you want to correlate them to some error logs that are timestamped in UTC. Setting the time zone to
Coordinated Universal Time will set the displayed times on the x axis to UTC by offsetting them to
the appropriate hours; technically, Default is UTC time adjusted to the local time zone. Bear in mind
that the underlying data is not altered, just the times displayed on the x axis.

Soft min/Soft max

While, in most cases, Grafana’s defaults are quite suitable to display quality graphs, occasionally you
have the need to offer Grafana some hints to help it along. In the case of Soft min and Soft max, the
goal is to make sure your graph mostly shows data and not an empty space. Setting Soft min and/or
the Soft max forces a setting for the top of the graph (Soft max) and bottom (Soft min), such that
it won’t scale the y axis any higher or lower respectively, unless there is data beyond the range of the
Soft min and Soft max settings. Grafana will constrain the y axis up or down unless there are actual
data values beyond those settings, hence the term soft.

Editing the panel settings 67

The Graph styles section

The Graph styles section is where you can make the most substantial changes to the appearance of
the graph:

Figure 3.12 – The Graph styles settings

Diving into Grafana's Time Series Visualization68

You have three choices of a graphic object to represent your data:

• Lines

• Bars

• Points

Here, you can decide which combination of bars, points, or lines to activate when drawing the graph.
It is here that you should take care when choosing the drawing objects that best represent your data.
For instance, if your data represents a set of sampled quantities, you may not want to use lines that
imply the data is continuous. Likewise, if the data doesn’t represent a measurable quantity, a bar may
not be appropriate.

Once you have determined what object you want to represent your data, and depending on which
objects you have enabled, additional options will appear. Let’s look at these choices in further detail.

Lines options

When you select the Lines style, the interface will present an additional set of options to give you
control over how the lines should be drawn:

• Line interpolation: This connects data points with straight, curved, or 90-degree segments

• Line width: This sets the line thickness

• Fill opacity: This sets the transparency for the fill area below the lines

• Gradient mode: This sets a gradient for the fill area

• Line style: This sets the style of the line to solid, dashed, or dotted

• Connect null values: This sets whether missing values be connected

• Show points: This sets whether data points should also be drawn

• Point size: This sets the size of points when Show points are enabled

• Stack series: This sets how to stack multiple dataset lines

There are a couple of settings that bear further explanation.

Fill opacity and Gradient mode

If you want to fill the area below the lines, you may also want to set how the area varies in color and
opacity. Setting Fill opacity makes the fill area transparent (0 opacity setting) to completely opaque
(100 opacity setting).

Once you have set a positive opacity, you can then leave the fill at one color or a smoothly varying
color, called a gradient. Gradient mode gives you control over how the color changes from the top
of your dataset lines down to the following dataset’s lines:

Editing the panel settings 69

• Opacity: This varies the opacity, from the set fill opacity to 0 opacity

• Hue: This varies the color from the line color to more saturated color

• Scheme: This uses the color scheme set in the Standard options section

Connect null values

How to set Connect Null values really depends on the specific nature of your data and how you want
to display empty data points, referred to as nulls. Setting it to Never leaves gaps in your lines where the
nulls exist. Always forces Grafana to interpolate between known values, essentially ignoring the nulls.

The Threshold setting will force the Always setting if the timespan between valid data points is below
the threshold, and the Never setting is above it. Threshold is useful when you believe that below a
certain sampling interval (the Threshold setting), the missing sample values would be close enough
to the surrounding values to allow Grafana to simply interpolate the missing values.

Stack series

Stacking displays multiple series, one on top of the other. Be mindful when stacking series such that
all series are as follows:

• They should share the same measurement units

• They should comprise portions of a greater whole

If you deviate from one of those rules, you may increase the visibility of multiple series by stacking
them onto the same graph, but you may also create a misleading association between the series, or
even make it more difficult for someone looking at your graphs to discern the correct values.

If you can stack your series, you can also make a part-to-whole relationship even more explicit by
setting Stack series to 100%; otherwise, use Normal.

Bars style

The Bars style setting has the same settings as the Lines style, with the only difference being a Bar
alignment option rather than a Line interpolation setting. Bar alignment just sets where the bar
should be drawn in relation to the data point – to the left, centered, or to the right. Typically, you want
the setting to correspond to when the data point was sampled during the time interval represented
by the bar.

Points style

The Points style only has the Stack styles setting in common with the other styles. Its only other
setting is Point size.

Diving into Grafana's Time Series Visualization70

The Standard options section

While we’ve been examining the various sections in the Time Series panel visualization, we can
pause here for a short digression to discuss the Standard options. When Grafana Labs refined the
implementation of the panel a few years ago, they grouped together a collection of settings common
to all panels. We’ve seen a couple of these in the Panel options section – Title and Description. The
Standard options section is where we’ll find the rest of them:

Figure 3.13 – The Standard options settings

Editing the panel settings 71

The following settings will apply to any panel, regardless of the visualization:

• Unit: This sets the unit of measurement

• Min: This sets the minimum value for percentage calculation

• Max: This sets the maximum value for percentage calculation

• Decimals: This sets the maximum number of decimal places to display

• Display name: This sets the name of the dataset(s)

• Color scheme: This sets a palette of colors for the dataset(s)

• No value: This defines the value for null data points

While most of these settings are relatively straightforward, let’s take a closer look at a few that tend
to get more frequent use.

Unit

Rarely do you have data that doesn’t correspond to some unit of measurement. Unit is the field where
you can set the measurement unit for the values in a dataset. While Grafana provides literally dozens
of measurements, there may occasionally be a unit that just isn’t on the list. Simply add the name of
the unit to the box. You’ve now defined a custom unit for the dataset.

Besides a generic unit, you can specify custom units for counting, currency, SI units, and time. You
can also set units with a custom prefix or a custom suffix. To set these values, just type in the name,
followed by : and the unit:

• count:<unit>

• currency:<unit>

• prefix:<unit>

• si:<base><unitchar>

• suffix:<unit>

• time:<timeformat>

For example, if you wanted to set your own currency unit for the Canadian dollar to be "$CAD",
you would input the following:

currency:$CAD

If you wanted to use the SI velocity unit for millimeters/year, you would input the following:

si:mm/yr

Diving into Grafana's Time Series Visualization72

Finally, if you wanted dates to look like December 25, 2025, you would input the following:

time:MMM DD, YYYY

You can find out all the various options Grafana uses for data formatting at https://momentjs.
com/docs/#/displaying.

Display name

Display name is where you can set the name of the dataset(s) in your panel. Simply type in the name
of the dataset in the box, and the legend will reflect the value you set. Grafana will also let you use
variables here so that you can tailor the name to a specific context or if you have multiple datasets
in the panel.

Color scheme

To set the colors for each dataset (or in any other situation where you need a palette of colors), use the
Color scheme settings. If you want to use the original Grafana color mapping, which was a palette
of several specific colors, use Classic palette. Single color, of course, allows you to specify a color.
From thresholds uses the colors specified in the Thresholds section. The remaining color palettes are
a variety of continuous color ramps, ranging from single colors that vary in brightness to the familiar
triplets of color used in many visualizations.

No value

What should you display when there is a missing value in your dataset? No value sets a default value,
whether it is 0 or some other value. The default is the - character.

The Data links section

Data links connect graph data points to external resources. They can be as simple as a single static
URL or as complex as a system that leverages template variables, linking each data point in the graph
with, for example, an external logging monitor. Metadata about each selected data point is available
for you to construct a specific URL, corresponding to a log listing at the same point in time. To create
a link from a point in this data series in another panel, use the Data links section.

Clicking + Add link launches a dialog box with three settings:

• Title: This sets descriptive link text

• URL: This links to an external URL

• Open in new tab: This opens a link in a new browser tab

https://momentjs.com/docs/#/displaying
https://momentjs.com/docs/#/displaying

Editing the panel settings 73

Clicking on a graph data point will display up a popup, which will display the data links below Add
annotation. We will explore techniques to link and annotate data and panels in Chapter 10, Working
with Advanced Dashboard Features and Elasticsearch.

The Value mappings section

Put simply, value mappings convert the quantitative into the qualitative. Setting a value mapping
associates a text value and/or color with a specific data value. This is useful to tag specific values with
text such as Low or High, or convert ranges into High, Med, and Low.

There are four kinds of value mappings:

• Value: This sets a mapping to a specific value

• Range: This sets a mapping to a range of values

• Regex: This sets a mapping to a regular expression match

• Special: This sets a mapping for NaN, null, true, false, or empty values

Let us see how to set a value mapping.

Setting a value mapping

Let’s set a value mapping for a range:

1. Click on + Add threshold. You will get a value mapping by default.

2. Click on + Add a new mapping and select Range from the pulldown.

3. Set From to a value that represents something in the middle of the dataset.

4. Set the To value to something above the From value.

5. Set Display text to medium.

6. Click Update.

In the case of the Time series visualization, you’ll see every entry on the y axis set to the display
text. However, in other visualizations (such as the gauge), the text will be displayed rather than the
numeric value.

The Thresholds section

While Grafana has an extensive alerting system, which we will look at shortly, perhaps you only
want to see when your data crosses specific boundaries but not necessarily get alerts. Perhaps you
are preparing to establish alerts but first need to visualize what the typical boundary thresholds are.
Thresholds graphically depict these boundaries as horizontal indicators set at specific numerical values.

Diving into Grafana's Time Series Visualization74

Specifying a threshold is easy – simply click the + Add threshold button. Type in the value for the
threshold, and then set the color for the threshold region. Depending upon the value you type, Grafana
will auto-sort the thresholds by value. Clicking the trashcan icon deletes the threshold.

Figure 3.14 – Thresholds

Once you’ve specified a threshold, you can also determine how it is depicted on the graph, if at all.
You have the choice to turn off the threshold display, display the thresholds as lines or filled regions,
or both, as illustrated in the preceding example.

Field overrides

Field overrides are a powerful tool for fine-grained control over some of the many settings Grafana
typically provides by default, such as color, line, or point size, or stacking order, and it is based on
matching the name of the data series to a collection of settings overrides. We will cover Field overrides
in Chapter 5, Extracting and Visualizing Data with InfluxDB and Grafana.

Monitoring with the Alert tab
In this section, we will take a peek at the Alert tab. We will take a much more in-depth look at alerting
in Chapter 12, Monitoring Data Streams with Grafana Alerts, so at this point, I just want to show how
alert creation, which we saw briefly in the last chapter, is tied to the panel visualization. Clicking on
Create an alert rule from this panel will bring up an interface that can also be displayed by selecting
Alerting | Alert rules | Create alert rule from the side menu.

Monitoring with the Alert tab 75

Figure 3.15 – Alert rule creation

The interface will automatically select queries from the panel. It is from those queries that you select
the one that will serve as the alert monitor. While we don’t have the necessary knowledge to do so
yet, ultimately you be looking to create a query or expression that will answer the question, “During
the evaluation time period, is there a condition that requires the triggering of an alert?”

From that point, all that remains is the process of adding the components that identify an alert rule,
including the rule name, folder, and group. Alert rules also need labels so that they can be associated
with contact points for notifications. It’s a bit beyond the scope of this chapter to go into detail, but
we will fully walk through the process in Chapter 12, Monitoring Data Streams with Grafana Alerts.

Diving into Grafana's Time Series Visualization76

Further exploration
I invite you to play around with the various settings, especially those in the Visualization panel. Here
are some simple exercises for you to try out:

1. Create multiple data series in the Query tab. Try out the different scenarios to see how they
create different kinds of data. Rearrange the order to see what effect it has on the graph.

2. Play with different combinations of drawing objects in the Display section. Change the fill or
size of points, lines, and bars.

3. Turn on the legend and test out its many options. Try clicking on various elements in the legend
itself – you might find some surprises!

It’s always a good idea to try things out, break them, and then figure out how to fix them. That’s how
we learn – not just by following instructions in a book (although you wouldn’t be here if wasn’t also
a good way to learn!)

Summary
This chapter completes Part 1, Getting Started with Grafana. In this part, we installed the Grafana
server, checked out the Grafana application interface, set up some simple dashboards, and graphed
test data sources. In the next part, Part 2, Real-World Grafana, we’ll start looking more deeply at these
same features and learn how to use them in more realistic scenarios.

We’ll start Chapter 4, Connecting Grafana to a Prometheus Data Source, by building a simple data
pipeline with a Prometheus data source, which we’ll query in Grafana Explore. The patterns established
in the chapter will be the foundation for building even more complex pipelines in later chapters.

Part 2 – Real-World
Grafana

The goal of this section is to present a more detailed look at working with Grafana by leveraging realistic
example data. In it, you will leverage Python and Docker Compose to ingest data into a variety of
time series databases. You will use Grafana transformations to restructure query results. You will also
examine several panel visualizations and discuss their potential use cases. Further, you will not only
design and build dashboards using different panel visualizations but you will also gather real-time data,
metrics, and logs for analysis and visualization, and explore observability features such as alerting.

This part comprises the following chapters:

• Chapter 4, Connecting Grafana to a Prometheus Data Source

• Chapter 5, Extracting and Visualizing Data with InfluxDB and Grafana

• Chapter 6, Shaping Data with Grafana Transformations

• Chapter 7, Surveying Key Grafana Visualizations

• Chapter 8, Surveying Additional Grafana Visualizations

• Chapter 9, Creating Insightful Dashboards

• Chapter 10, Working with Advanced Dashboard Features and Elasticsearch

• Chapter 11, Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live

• Chapter 12, Monitoring Data Streams with Grafana Alerts

• Chapter 13, Exploring Log Data with Grafana’s Loki

4
Connecting Grafana to a
Prometheus Data Source

In previous chapters, we took a whirlwind tour of the Grafana UI. We looked at how graph panel
visualizations query for datasets via data sources and how panels can be arranged to form dashboard pages.

In this chapter, we will begin to apply our newly gained skills to more practical considerations. We will
use real data where possible, to try to analyze data with a focus on solving real-world scenarios and
create the kind of comprehensive dashboards you would expect to see in a production environment.

Our first step in this journey begins (as always) with data. Here, we will configure a live database
serving actual web service data (generated first by Prometheus, then by Grafana itself!). We’ll pull
that data into Grafana as a data source, then we’ll use the Explore tool to get a feel for what kinds of
metrics are available. We’ll also look at visualizing the data through a variety of queries. Finally, we’ll
learn how data is analyzed in the context of data aggregation.

The following topics will be covered in this chapter:

• Installing the Prometheus server

• Exploring Prometheus

• Querying the Prometheus data source

• Detecting trends with aggregations

• Uncovering data source limitations

Technical requirements
Tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s GitHub
repo at https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/
Chapter04.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter04
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter04
entest

entest

Connecting Grafana to a Prometheus Data Source80

Installing the Prometheus server
Our first task is to get a Prometheus server up and running so that we can start serving real data.
Prometheus is a powerful open source time-series database and monitoring system originally developed
by SoundCloud. It followed Kubernetes to become the second Cloud Native Computing Foundation
graduating incubation project. Grafana, having partnered with the maintainers of Prometheus, includes
the Prometheus data source as a first-class data source plugin. In this section, we will learn how to
install Prometheus in a Docker container and then move on to configuring it.

Installing Prometheus from Docker

We’re going to start up Prometheus from Docker Compose and point it to a local configuration file.
First, let’s create the following configuration file and save it to our local ch4/prometheus directory
as prometheus.yml:

global:
 scrape_interval: 15s # By default, scrape targets every 15
seconds.

 # Attach these labels to any time series or alerts when
communicating with
 # external systems (federation, remote storage, Alertmanager).
 external_labels:
 monitor: 'codelab-monitor'

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any
timeseries scraped from this config.
 - job_name: 'prometheus'

 # Override the global default and scrape targets from this job
every 5 seconds.
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:9090']

Note
If you aren’t already familiar with YAML, maintaining proper indentation is very important.
I would recommend that you use an interactive development environment (IDE) such as
Visual Studio Code that can give you visual cues to help you maintain proper YAML. If you’re
ever in doubt, these files are available in the book’s GitHub repo for your reference.

entest

entest

entest

entest

Installing the Prometheus server 81

It is beyond the scope of this book to give fully detailed information on the Prometheus configuration
file format; you can go to https://prometheus.io/docs/prometheus/latest/
configuration/configuration to find out more. This is a relatively simple configuration
file designed to do a couple of things:

1. Establish a default scrape interval. This determines how often Prometheus will scrape or pull
data from the metric’s endpoint—in this case, every 15 seconds.

2. Set up the configuration for a job called prometheus that will scrape itself every five seconds.
The target server is located at http://localhost:9090.

3. Next, create a docker-compose.yml file (this file can also be downloaded from this book’s
GitHub repo):

services:
 grafana:
 image: grafana/grafana:latest
 ports:
 - "3000:3000
 prometheus:
 image: prom/prometheus:latest
 ports:
 - "9090:9090"
 volumes:
 -$PWD/prometheus:/etc/prometheus

The preceding Docker Compose file does the following:

I. Starts up a Grafana container and exposes its default port at 3000.

II. Starts up a Prometheus container and exposes its default port at 9090.

III. Maps the $PWD/prometheus local directory to /etc/prometheus in the
prometheus container. This is so that we can manage the Prometheus configuration
file from outside the container. $PWD is a shell variable describing the working directory.

Start up both containers with the following command:

% docker-compose up –d –pull-missing

The docker-compose command will pull down any necessary images and start up both containers
in their own network so that the Grafana and Prometheus containers can contact each other. If you
are successful, you should see something similar to the following output lines:

 Starting ch4_prometheus_1 ... done
 Starting ch4_grafana_1 ... done

https://prometheus.io/docs/prometheus/latest/configuration/configuration
https://prometheus.io/docs/prometheus/latest/configuration/configuration
http://localhost:9090
entest

Connecting Grafana to a Prometheus Data Source82

To confirm Prometheus is running correctly, open a web browser page and enter http://
localhost:9090/targets. You will see a screen similar to the following:

Figure 4.1 – Prometheus server interface

Now that we have the Grafana and Prometheus servers running, let’s move on to creating a Prometheus
data source so we can query it within Grafana.

Configuring the Prometheus data source

From our docker-compose.yml file, we know that the Prometheus server host inside the
Docker Compose network is called prometheus and the port is 9090 and we know from our
prometheus.yml file that we set the scrape interval to five seconds. So, let’s configure a new
Prometheus data source:

1. From the main menu, go to Connections | Add new connection.

2. Type prometheus into the search bar and click on the Prometheus icon to add a new
Prometheus connection.

3. Set the following information, leaving the others at their defaults:

 � Name: Prometheus

 � HTTP | Prometheus server URL: http://prometheus:9090

 � Additional settings | Interval behaviour | Scrape interval: 5s

4. At the bottom, click on Save & Test.

If everything worked correctly, you should now have a new data source, as shown in the
following screenshot:

Installing the Prometheus server 83

Figure 4.2 – Prometheus data source

Connecting Grafana to a Prometheus Data Source84

Now that we have a working data source, let’s look at the data we’re capturing in Prometheus.

Exploring Prometheus
Once we have the Prometheus data source properly configured, you might be wondering what kind of
data we’re likely to see. Turns out, since we configured Prometheus to scrape itself, we’ll get a bunch of
juicy internal server metrics delivered to the scraped endpoint and stored in the Prometheus database.
So, let’s dive in and get an idea of what’s there.

Using Explore for investigation

Clicking Explore in the Prometheus data source configuration, or selecting Explore from the main
side menu, activates the Explore tool. Basically, Explore includes both graph and table visualizations,
both looking at the same data source query. Make sure your Prometheus data source is selected from
the data source dropdown, and select a metric data series from the Metric box menu. You’ll see dozens
of available metrics, but for now, select the Up metric.

Tip
You can type up in the Metric box to reduce the number of possible metrics to choose from.

This is probably the simplest metric available: it shows 1 if the server is up and 0 otherwise. Set the
time range to Last 30 minutes so we can see relatively recent data, and click the Run query button.
You’ll see, as in the following screenshot, that the up metric indicates our Prometheus server is up
and running:

Figure 4.3 – Up metric in Explore

entest

entest

Exploring Prometheus 85

The graph shows a single series with a value of 1, and after clicking on the Table option at the bottom,
it shows 1 in the Value column on the far right. You should also take note of the _name_ series. In
this case, it refers to the up metric, tagged with localhost:9090 for the instance value and
prometheus for the job value. Going back to our prometheus.yml configuration file, we can
see where the job label comes from:

 # The job name is added as a label `job=<job_name>` to any
timeseries scraped from this config.
 - job_name: 'prometheus'

But where does the metric itself come from, and how does Grafana know about all those metrics in
the Metrics drop-down menu?

Every five seconds, Prometheus itself sends an HTTP request to a specific metrics endpoint at http://
localhost:9090/metrics. Go ahead and try it; you can open the URL in a browser tab. You
should see a page filled with metrics data. Here are the first few lines:

 # HELP go_gc_duration_seconds A summary of the GC invocation
durations.
 # TYPE go_gc_duration_seconds summary
 go_gc_duration_seconds{quantile="0"} 7.057e-06
 go_gc_duration_seconds{quantile="0.25"} 1.2362e-05
 go_gc_duration_seconds{quantile="0.5"} 2.7312e-05
 go_gc_duration_seconds{quantile="0.75"} 0.000259168
 go_gc_duration_seconds{quantile="1"} 0.001861891
 go_gc_duration_seconds_sum 0.006119489
 go_gc_duration_seconds_count 36
 # HELP go_goroutines Number of goroutines that currently exist.
 # TYPE go_goroutines gauge
 go_goroutines 39
 # HELP go_info Information about the Go environment.
 # TYPE go_info gauge
 go_info{version="go1.13.1"} 1
 .

As you can see, a lot of the metrics are simply a metric name and a value and are sometimes a duplicated
metric name followed by a key-value pairing in braces, called a label. In other applications, the label
might also be called a tag, but it performs the same function, which is to attach a piece of metadata
to the metric to distinguish between similar metrics or add information about the metric itself.

Every few seconds, this page of data is queried, parsed, timestamped, and stored in the Prometheus
database. When you launch the Explore tool in Grafana, the Prometheus data source plugin makes
a service discovery query to find out what metrics are available, and based on the response, it builds
a convenient metrics menu for you.

http://localhost:9090/metrics
http://localhost:9090/metrics

Connecting Grafana to a Prometheus Data Source86

Let’s now look at how a different metric, go_gc_duration_seconds, is depicted in Explore.
Type go in the Metric box (go, in this case, refers to the initial portion of the metric name, called
the metric’s namespace). From the list, select go_gc_duration_seconds and then click Run
Query to see the metric graph:

Figure 4.4 – go_gc_duration_seconds metric

Now, we can see from the legend that this particular metric includes a number of series, each one
including a quantile value along with instance and job labels. Further down in the table, we
can see the quantile value is treated as a field, much like in a typical database or spreadsheet. This
is all well and good, but are we limited to Prometheus metrics? Not at all!

Configuring Grafana metrics

Now that we have a handle on some of the rich metrics available in Prometheus, can we get similar
metrics in Grafana? Indeed, we can, but in order to do so with the Docker versions of both Prometheus
and Grafana, Prometheus will need to be able to connect to Grafana over the same network. That’s
why we brought them up as a dual-container app in Docker Compose. All containers in a Docker
Compose app share a common network, complete with Domain Name Service (DNS) entries for
each service, which by default is just the name of the service itself.

Let’s go ahead and update our Prometheus configuration with a new job that will scrape the Grafana
server. Add these additional lines to scrape_configs in the prometheus.yml file (also available
as prometheus-grafana.yml from this book’s GitHub repository):

Querying the Prometheus data source 87

 scrape_configs:
 # The job name is added as a label `job=<job_name>` to any
timeseries scraped from this config.
 - job_name: 'prometheus'
 # Override the global default and scrape targets from this job
every 5 seconds.
 scrape_interval: 5s
 static_configs:
 - targets: ['localhost:9090']
 - job_name: 'grafana'
 # Override the global default and scrape targets from this job
every 5 seconds.
 scrape_interval: 5s
 static_configs:
 - targets: ['grafana:3000']

Forcing a restart of the Prometheus container process should cause it to re-read the configuration
file. Run the following command:

 % docker-compose restart prometheus

Go back to the Prometheus page and check the targets at http://localhost:9090/targets
to confirm that Grafana is now included as a target:

Figure 4.5 – Grafana and Prometheus servers

Let’s go back to Explore and see what Grafana goodies Prometheus scraped for us.

Querying the Prometheus data source
Now that we have a whole ton of Prometheus and Grafana logging metrics, let’s play around with some
more queries. I won’t be able to give you a full rundown of every aspect of PromQL—the Prometheus
query language—but I can give you enough of a taste to be able to examine many of the server metrics
that can be accessed via the Prometheus data source.

http://localhost:9090/targets

Connecting Grafana to a Prometheus Data Source88

To get a better understanding of how queries work in time-series databases such as Prometheus, let’s
first start with a more traditional database, such as MySQL. Typically, the structure of a query looks
something like this:

SELECT some fields
 FROM some table
 WHERE fields match some criteria

You get back from the query some rows, each one containing the contents of some fields. In the
case of time-series databases, things work a little differently. The query has a form that is more like
the following:

SELECT metric
 FROM some data store
 WHERE metric tags match some criteria
 AND within some time range

In the case of a time-series database, you get back some number of data series, each containing metric
data from the time range in question and matching any specified criteria. In general, you can think of
a series as a collection of points, usually containing at least three types of information:

• A timestamp

• A metric value

• A set of key-value pairs for characterizing the data

The details differ from one time-series database to another. Some represent the value as a particular
type that has a specific meaning to the database to optimize storage, searching, or aggregation. Others
may store richer metadata. In any case, these three pieces of information are commonly found in some
form or another across many of the current time-series databases.

Typing in a metrics query

Previously, we used up to determine whether Prometheus was running or not. Let’s look at what it
looks like when we run it now:

Querying the Prometheus data source 89

Figure 4.6 – up metrics for Grafana and Prometheus

We can see that now, there are two series, one of which appears to be for Grafana and the other for
Prometheus. Let’s go ahead and alter the query to only select the series for Grafana:

1. Switch modes from Builder to Code. This will allow us to type in the raw query text.

Note
You can switch back and forth between Builder and Code and your query will remain the
same, allowing you to use either technique to craft a query.

2. Immediately following the word up, type the { character into the Metrics browser text field.
You will see the completed brace and a pop-up menu for selecting a label key. The data source
plugin is smart enough to understand the syntax of PromQL and is guiding you toward making
a valid query:

Figure 4.7 – Explore code mode query completion

Connecting Grafana to a Prometheus Data Source90

3. Since grafana is the name of the job we want (as seen in the data series legend), select job
from the menu.

4. Immediately, you should see another menu for selecting one of two possible job values: grafana
or prometheus. If you lose the menu, just delete the = and type it in again to get the popup.

5. Pick grafana from the menu:

Figure 4.8 – Select grafana

If you have trouble with the command completions, just type in the query directly:
up{job="grafana"}

6. Click Run query.

You now have just the single data series corresponding to the Grafana up metric:

Figure 4.9 – Grafana up metric

Querying the Prometheus data source 91

Tip
You can retrieve any of your past queries from Query history. Simply click on Query history
and select a query from the Query history tab. Click on Query history again to close the tab.

There are dozens of metrics available in Prometheus; let’s try to query for a few more of them.

Querying for process metrics

Moving up the application stack, let’s make a couple of queries to the Grafana process. First, let’s query
for the number of goroutines. While it isn’t as descriptive as the Linux uptime command, it is readily
available and can give a rough indication of server load.

Before I show you the query, try to guess what the metric should be. You might need to refresh your
memory by examining the metrics web endpoint at http://localhost:3000/metrics.
Also, remember that we only want to see the metrics for Grafana, not both Grafana and Prometheus:

1. Click on the Metrics browser.

2. In the step 1 box, type go, and from the list, select go_goroutines:

Figure 4.10 – Search for go metrics

http://localhost:3000/metrics

Connecting Grafana to a Prometheus Data Source92

3. Under the step 2 box, you should now see two possibilities, each followed by the number of
possible values. Click job to indicate we wish to choose one of two jobs:

Figure 4.11 – Select job

4. Under step 3, we should see the two possible jobs: grafana or prometheus. Select grafana to
indicate we wish to query for the grafana label.

Figure 4.12 – Select grafana

Querying the Prometheus data source 93

5. Click Use query to see the results:

Figure 4.13 – Query results

From the graph, we can see the number of goroutines executing in Grafana at any given moment.
We can see that the number of goroutines is often quite stable, punctuated by invocations of a single
additional goroutine. This should give you a sense of how quickly we can query the Prometheus data
source for a desired application metric, provided Prometheus is scraping the application.

Querying for memory metrics

Let’s also look at memory consumption, another indicator of how well the Grafana server process is
performing. Running out of memory can seriously degrade performance, so you might need to build
a panel with an alert for when the amount of free memory falls below a certain level. Again, try to
determine what query would produce a data series for the memory consumed:

1. Begin by typing process in the box next to Metrics.

If you guessed process_resident_memory_bytes, congratulations!

2. Use either technique we’ve discussed to set the filter to a Grafana job:

Figure 4.14 – Memory metrics query

Connecting Grafana to a Prometheus Data Source94

Next, we’re going to look at how to transform our data series in new ways by incorporating the concept
of aggregation into our queries.

Detecting trends with aggregations
As we continue up the stack, let’s now examine some server performance metrics. How about an
obvious web server metric? Enter prometheus_http_requests_total to get an idea of how
many requests have been served so far:

Figure 4.15 – Prometheus HTTP requests

Well, this is a bit of a mess. You can’t see all 22 of the time series—they’re all stacked on top of each
other—and there’s the ominous warning Selected metric is a counter. As we saw in the previous
section, it’s no problem to apply filters—say, to filter the 200 codes—but then we’d still have a stack
of nearly 20 individual series.

Applying aggregations to our query data

If only there were some way to combine all the individual data series into one. It turns out there is,
and it’s called an aggregation. We can tell Prometheus to apply an aggregation function (in this case,
sum) after we specify what series we’d like to see.

While the actual query syntax differs from database application to database application, in the case of
PromQL, you simply wrap parentheses around your existing query and add the word sum in front of it:

Detecting trends with aggregations 95

Figure 4.16 – HTTP requests sum aggregation

That’s a rather clumsy way to describe it, however. In PromQL, sum is actually a function call that takes
the metric query as an argument. The result of the query is passed to sum(), so on the Prometheus
server, a new series is created by summing up the values of the data points in each series and is returned
to the Grafana data source client. The power of PromQL as a query language is that you can chain
these aggregations together and even combine them with the results of other queries.

But what about that Selected metric is a counter warning? First, let’s clear up something that we
glossed over earlier. Recall how we initially looked at the go_goroutines metric; you may have
noticed a TYPE metadata string that preceded the metric on the endpoint page. You may have also
noticed that the go_goroutines metric name was followed by the word gauge:

HELP go_goroutines Number of goroutines that currently exist.
TYPE go_goroutines gauge
 go_goroutines 33

However, checking the same metadata for prometheus_http_requests_total reveals the
word counter:

HELP prometheus_http_requests_total Counter of HTTP requests.
TYPE prometheus_http_requests_total counter
 ...

While not every time-series database distinguishes between numerical metrics, Prometheus does, and
it’s important to appreciate the distinct difference between gauge and counter.

Connecting Grafana to a Prometheus Data Source96

A gauge metric type is typically a point-in-time measurement that can fluctuate in either direction—
for example, think of a thermometer or a car speedometer reading. Gauges in software are often
registered with the internal metrics system as a dump of the contents of a variable at the point that
the metrics page was requested.

On the other hand, a counter metric type is a cumulative measure that always increases, more like
a rainfall gauge or a car odometer. Counters are registered in software as an increment to a running
total value. Since the value is always incrementally increasing by a positive amount (monotonically),
the data source plugin is warning us that unless we really care to know how much memory has been
consumed to date, we might want to track the rate of increase instead.

Incidentally, Prometheus has two other metric types—histogram and summary.

So, why don’t we check out the rate? Unfortunately, if you try to treat the rate as a function call that
you can just drop the query into, you will run into issues because it requires an aggregation. We’re
going to discuss issues with aggregation in the next section. For now, we’ll just select a single data
series and run a rate:

1. For Metric, select prometheus_http_requests_total and Run query.

2. In the table, click on the handler column cell containing /api/v1/query_range and
choose the + magnifying glass icon (which means include in filter).

3. In the table, click on the code column cell containing 200.

4. Click on the + button to add an additional query.

5. Switch to Code.

6. Type the following into the second query:

irate(prometheus_http_requests_total{handler="/api/v1/query_
range", code="200"}[5m])

Detecting trends with aggregations 97

This is what your graph might look like:

Figure 4.17 – HTTP requests rate

What we did was ask Prometheus to calculate the rate that prometheus_http_requests_total
changed over a five-minute period. Since it changed very quickly, we used irate (instant rate) instead
of rate, but they both work in similar ways. If you look very closely, you can see the rate increased
momentarily as the request total increased.

This is just a taste of some of the aggregations and functions available in PromQL. Here’s a list of some
aggregations and functions derived from the Prometheus documentation:

• sum: Calculates the sum over dimensions

• min: Selects the minimum over dimensions

• max: Selects the maximum over dimensions

• avg: Calculates the average over dimensions

• stddev: Calculates the population standard deviation over dimensions

• stdvar: Calculates the population standard variance over dimensions

Connecting Grafana to a Prometheus Data Source98

• count: Counts the number of elements in the vector

• count_values: Counts the number of elements with the same value

• bottomk: The smallest k elements by sample value

• topk: The largest k elements by sample value

• quantile: Calculates the φ quantile (0 ≤ φ ≤ 1) over dimensions

The list of functions is even longer, so be sure to consult the Prometheus documentation or the
documentation for your specific data source.

Understanding the data source limitations
After seeing how powerful even relatively simple PromQL queries can be, it is tempting to think you
can query and graph virtually any metric in your data source. Unfortunately, there are limitations to
certain kinds of calculations, either imposed by the nature of the data or by the data source application.

It is important to remember that when you create a graph, you are entering into a trust relationship
between you and your audience (which might even be you). When you place a pixel on a graph that
isn’t explicitly represented by a corresponding data point, you are asking your audience to accept that
what you are doing is, in essence, reconstructing a signal from the underlying data.

Therefore, you have an obligation to respect the integrity of the data and not abuse that trust by
manipulating the data to say things that aren’t true or lead the viewer to draw erroneous conclusions.

Throughout this book, we’ll come back to this theme because I believe it is necessary to not only
describe the wonderful possibilities that this application provides but also to make you aware of
some of its limitations. In this section, I’ll highlight the judicious use of aggregation in both the time
domain and the value domain.

Querying limits for series aggregations

The first thing to consider when querying for a new metric that we are considering for aggregation
is whether the data can be aggregated at all. For example, examining the Grafana metrics endpoint
page reveals an interesting metric:

 # HELP go_gc_duration_seconds A summary of the GC invocation
durations.
 # TYPE go_gc_duration_seconds summary
 go_gc_duration_seconds{quantile="0"} 9.174e-06
 go_gc_duration_seconds{quantile="0.25"} 1.3627e-05
 go_gc_duration_seconds{quantile="0.5"} 2.2022e-05
 go_gc_duration_seconds{quantile="0.75"} 9.0476e-05
 go_gc_duration_seconds{quantile="1"} 0.000340337

Understanding the data source limitations 99

 go_gc_duration_seconds_sum 0.001069315
 go_gc_duration_seconds_count 13

The go_gc_duration_seconds metric is a Prometheus metric type called a summary. A
summary is a built-in pre-aggregated metric that can be graphed directly. It contains a histogram with
five quantiles (0%, 25%, 50%, 75%, and 100%), the sum, and the count. Typically, you cannot calculate
some other aggregation of the quantiles because they only describe the distribution of the data at any
point in time, so any attempt to aggregate them over time yields meaningless results.

Note
If you wish to determine the aggregated value of a particular quantile over time, Prometheus
recommends you first do the aggregation, followed by a quantile calculation.

When you are looking at raw (unaggregated) data, you again must be aware of the limitations of the
data source. For example, in the case of Prometheus, it is safe to calculate a rate aggregation on a
counter metric because, by definition, it is monotonically increasing. However, you can also get
away with aggregations on a gauge, but only if the aggregation is monotonically (always) increasing.
The rate calculation can be adjusted for value resets (set to 0), but not negative (decreasing) values.

In general, you should consult the documentation for your data source if you find yourself attempting
to compose multiple aggregations as there may be limits to what you can do.

Finally, and perhaps most obviously, you should try to understand what you’re measuring and whether
the aggregation is appropriate to the metric. You might justifiably want to work out the average over
time of a gauge metric, such as go_memstats_mcache_inuse_bytes; however, taking the
sum over time is probably nonsensical.

Querying limits for time aggregations

As with the limits to series aggregations, you will need to exercise care in dealing with time aggregations.
Unless you are combining multiple series into a single series, many of your aggregations will be
calculated over an interval of time. It is outside the scope of the book to cover the nuances of how a
data source such as Prometheus identifies certain data points within a time interval when making
sophisticated aggregation calculations.

However, we can discuss some general concepts that hold when dealing with time-based aggregations.
Primarily, the key to successfully working with time aggregation is to properly choose the size of the
aggregation interval. This is the time period where all the values within an interval are aggregated (say
with sum, mean, or max) and the result is displayed as representative of the interval.

Too big an interval and your data could become too smooth as all the variations get averaged out; too
small and missed sample points might generate anomalous values or even return an error.

Connecting Grafana to a Prometheus Data Source100

Along the same lines is Grafana’s display aggregation. There are only so many pixels on the screen,
and if there are more points to display than pixels, Grafana will throw some of them away. Setting
a fixed aggregation interval risks the interval size issue if the interval is quite small relative to the
time frame—say, a five-minute interval for a six-month dataset. Aggregating a lot of points that are
essentially invisible will impact performance, so it’s important to avoid this where possible.

In order to keep the display efficient, Grafana maintains an automatically adjusted time interval
variable that you can insert in place of a fixed interval value. We’ll be talking more about variables
in later chapters, but for now, simply inserting the $__interval variable in place of a fixed time
measurement is sufficient. For example, before, we had the following query:

irate(http_request_total{handler="/search/",method="get"}[
 5m])

The new query using the interval variable would look like this:

irate(http_request_total{handler="/search/",method="get"}[
 $__interval])

For more details on how Grafana manages its data display over varying time ranges, consult the
Grafana documentation.

Exploring data source dashboards

We’ve come to the end of our introduction to data sources and how to create queries for them. As a
treat, go to Configuration | Data sources and edit your Prometheus data source configuration. You’ll
notice a second tab called Dashboards. Under that tab is a set of dashboards curated to work with a
Prometheus data source.

If you import the Grafana metrics dashboard, you’ll now have a full dashboard with several Time
series and Stat visualization panels. Some of the queries we tried out in this chapter were inspired
by those dashboard panels.

Open them up and edit them to get a look at the queries, see how they were constructed, and note the
techniques that were used to extract information from the data series for use in the legend.

One of the best ways to get a better understanding of how to use Grafana is to simply import and open
dashboard panels from different data sources and thereby glean knowledge from the work of others.

One of the more pleasant aspects of Grafana is that dashboards are not driven by a hidden API or
some other trickery that makes it difficult, or even impossible, to replicate a panel. Rather, Grafana is
an open application with easily accessible dashboards, so feel free to borrow from interesting examples
you find from the community.

Summary 101

Summary
In this chapter, we stood up both a Grafana and a Prometheus server and used Prometheus to scrape
metrics data from both servers. We use the ad hoc analysis functionality of Explore to identify
interesting metrics, possibly with an eye toward monitoring them. We looked at how to aggregate
certain metrics to capture how they change over time. We examined how there can be limitations to
our data that we must respect for the sake of accuracy and integrity.

Essentially, we’ve established the foundations for building observability workflows by first capturing
metrics from services and then identifying important performance metrics. Finally, if necessary, we
aggregated or otherwise transformed the metrics. Once we had the metrics we were interested in,
we monitored them in real time, then we discussed how to associate alerts when our metrics deviate
from normal.

In the next chapter, we’ll take some of the concepts we’ve picked up through playing around with Explore
to do something a little more realistic. We’re going to capture real weather data, store it in InfluxDB,
and display it as graph visualizations. Yes, we’re going to make a little weather station, Grafana style!

5
Extracting and Visualizing Data

with InfluxDB and Grafana

In the previous chapter, we concentrated our efforts on understanding how a data source is primary
to the Grafana visualization workflow. We launched a Prometheus Docker container along with a
Grafana server, scraped data from both applications, and then configured a Grafana data source to
connect to the Prometheus server. Finally, we used the Explore module to get a feel for how to make
various queries to the data source and get immediate feedback in the graph display.

While Explore is a powerful mechanism for browsing a data source, it is somewhat limited in
functionality compared to the time series visualization This is not surprising as it’s mostly intended to
support ad hoc, transient queries with more permanent graphs living on a dashboard. Those graphs
have the advantage of providing several significant features that benefit presentation and alerting.

With that in mind, we’re going to take what we’ve learned about working with data sources to the next
step. We’ll shift our emphasis from simply using Explore on a data source to actively crafting time series
visualization queries and styling the panel’s display elements to serve our needs – to communicate
a message via the visual presentation of our data. You will be taking the first steps toward learning
how to acquire a dataset, storing it in a data source, and working through the challenges inherent in
working with real-world data.

In our case, we’re going to capture weather data from the National Weather Service (NWS) and store
it in an InfluxDB time series database. Some Python scripting will be involved, but the code has been
written to use the InfluxDB HTTP API, so there’s nothing particularly esoteric to it. If you have any
programming experience, this should be completely straightforward. The goal of this chapter isn’t
to burden you with a coding challenge but to continue working with live data, which I hope you will
find rewarding and fun.

Along the way, we’ll tackle some obstacles – we’ll need to write a little code to import our data and
we’re going to dive into the tricky concepts underlying displaying data at different time scales. By the
end of this chapter, you will be able to build a nice little weather dashboard. Let’s get started!

Extracting and Visualizing Data with InfluxDB and Grafana104

The following topics will be covered in this chapter:

• Making advanced queries

• Understanding the time series data display

• Setting vertical axes

• Working with legends

Technical requirements
In this chapter, we’ll be setting up InfluxDB and Grafana containers, so make sure you have installed
Docker and Docker Compose.

Information
The tutorial code, dashboards, and other helpful files for this chapter can be found in this
book’s GitHub repository at https://github.com/PacktPublishing/Learn-
Grafana-10/tree/main/Chapter05.

Making advanced queries
Before we can start playing with our pretty data, we’ll need to put together a simple data pipeline.
Patience! This is likely to be one of the rare opportunities where you will have significant control of the
data that goes into your data source. Even if you don’t ever plan to involve yourself in data acquisition,
it helps to know some of the techniques and issues surrounding it, if only to appreciate the work that
often goes into tailoring and cleaning data so that it can be analyzed or visualized.

Our plan of attack for this part of our tutorial is quite straightforward:

1. Spin up both an InfluxDB and a Grafana server.

2. Code-review a simple extract, transform, load (ETL) script to gather weather data.

3. Execute the script to populate an InfluxDB database.

4. Configure an InfluxDB data source.

Let’s get started!

Launching server Docker containers

The first step is to run a docker-compose script that will download the Grafana and InfluxDB
containers and then launch them. The docker-compose.yml file is available in the Chapter05
directory of this book’s GitHub repository.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter05
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter05

Making advanced queries 105

If you haven’t done so already, shut down any services you might have left running from the other
chapters by executing the following command (first, change to the chapter folder where you started
up the service):

% docker-compose down

Here’s the short docker-compose.yml file:

version: "3"
services:
 influxdb:
 image: influxdb:latest
 ports:
 - "8086:8086"
 volumes:
 - $PWD/influxdb:/var/lib/influxdb
 grafana:
 image: grafana/grafana:latest
 ports:
 - "3000:3000"
 volumes:
 - $PWD/grafana:/var/lib/grafana

As you can see, this is quite simple. It does the following:

• References images for InfluxDB and Grafana

• Opens up standard application ports for both services

• Maps the current directory to a volume in the container to persistently store our data

The network connecting the pair of containers is controlled by Docker Compose so that each container
can connect to the other container by using the service name.

Let’s start up the containers:

% docker-compose up -d --pull missing
[+] Running 3/3
 Network chapter05_default Created
 0.1s
 Container chapter05-grafana-1 Started
 1.1s
 Container chapter05-influxdb-1 Started
 1.1s

Extracting and Visualizing Data with InfluxDB and Grafana106

You should be able to reach the Grafana application at the usual URL of http://localhost:3000.
We’ll access InfluxDB either via our Python script or Grafana data source. You can confirm it is running
by using a simple curl command:

% curl -i http://localhost:8086/ping
HTTP/1.1 204 No Content
X-Influxdb-Build: OSS
X-Influxdb-Build: oss2
X-Influxdb-Version: 2.1.1
X-Influxdb-Version: 2.1.1
Date: Tue, 08 Nov 2022 05:06:51 GMT

Now that we have our applications running, let’s start gathering some data.

Writing the ETL script

I selected the NWS weather observation data for a few reasons:

• Everybody intuitively understands the weather; rain or shine, we experience it daily

• Most of the observational data is straightforward measurements that are typically referred to
in a daily forecast, such as temperature, relative humidity, and wind speed

• The NWS API is open and simple to understand, especially for our limited use case

The Python script is available in this book’s GitHub repository in the Chapter05/weather.py
folder if you want to follow along. If you want to make code changes (feel free!), you’ll need to rebuild
the container using the provided Docker file as well. Let’s get started.

The first line of our main() function sets up the logging level:

def main():
 logging.basicConfig(level=logging.INFO)

Next, we must parse the command-line options:

args = process_cli()

The process_cli() function specifies the command-line options:

 parser.add_argument(
 "--host", dest="host", default="localhost", help="database
host"
)
 parser.add_argument(
 "--port", dest="port", type=int, default=8086, help="database
port"

http://localhost:3000

Making advanced queries 107

)
 parser.add_argument(
 "--db", dest="database", help="name of database to store data
in"
)
 parser.add_argument(
 "--stations",
 dest="stations",
 help="list of stations to gather weather data from",
)
 parser.add_argument("--token", dest="token", help="InfluxDB API
token")
 group.add_argument(
 "--input", dest="input_file", type=argparse.FileType("r"),
help="input file"
)
 group.add_argument(
 "--output", dest="output_file", type=argparse.FileType("w"),
help="output file"
)

Some of these command-line options are needed for connecting to a database such as our InfluxDB
server, but some are specific to our little application, so let’s go through them one by one:

• The --host option refers to the InfluxDB server, which is localhost by default.

• The --port option refers to the InfluxDB server port, which is exposed by Docker at port 8086.

• The --db option refers to the database in InfluxDB. As in more traditional relational database
management systems (RDBMSs), data is efficiently stored in a database InfluxDB v2 refers to
as a bucket. Since we will be making REST calls via v1 compatibility, we will instead refer to it
as a database; for this exercise, we’ll only be working in a single database.

• The --input option defines a file for outputting the data we gather from the NWS.

• The --output option is for loading that file into our InfluxDB database. I could have
combined the operation into a single one, but it’s sometimes handy to see the data before
loading it. Grouping the --input and --output options prevents them from being used
at the same time.

• The --stations option is for specifying a comma-separated list of NWS weather stations.
They’re typically located in major airports and bear names resembling radio stations, such as
KSFO or KLGA.

With the niceties out of the way, we can process our command-line options.

Extracting and Visualizing Data with InfluxDB and Grafana108

Let’s start with main():

if args.output_file:
 dump_wx_data(args.stations, args.output_file)

Here, we’re going to handle the --output option. You’ll want to run weather.py with this option
first to download data from the NWS. Here’s the code:

 def dump_wx_data(stations, output):
 for s in stations.split(","):
 station_info = get_station_info(s)
 tags = [
]
f'station={escape_string(station_info["station_id"])}',
f'name={escape_string(",".join(station_info["station_name"]))}',
f'cwa={escape_string(station_info["cwa"][0])}',
f'county={escape_string(station_info["county"])}',
f'state={escape_string(station_info["state"])}',
f'tz={escape_string(station_info["timezone"][0])}'

The dump_wx_data() function takes two arguments: a stations list and the output file path.
The function iterates on each station in the stations list. We call the get_station_info()
function to get a dictionary of interesting data about the station. This information is compiled into a
list of tags, represented as key-value pairs. Escape_string() is just a utility function that places
an escape character (\) ahead of certain characters required by InfluxDB to be escaped.

Let’s look at get_station_info():

def get_station_info(station):
 info = {}
 url = f"https://api.weather.gov/stations/{station}"
 response = requests.get(url)
 logging.info(response.url)
 if response.status_code != requests.codes.ok:
 raise Exception(f'get_station_info:
 {response.status_code}:{response.reason}')
 station_properties = response.json()['properties']
 info['station_name'] = station_properties[
 'name'].split(',')
 info['station_id'] = station_properties[
 'stationIdentifier']

Making advanced queries 109

The first pass of the NWS API endpoint is done to gather information about the station itself, namely
name and stationIdentifier (which should be the same as the station variable). As the station’s
name is a string containing the station city and station location separated by a comma, we split it into
a list just in case we want to use only part of the name. We’ll store the interesting information in the
info dictionary.

The pattern for accessing the API is straightforward:

1. Construct the URL.

2. Submit a GET or POST request via the Python Requests library and save the response.

3. Examine the response status code; if it’s not ok, raise an exception.

4. Finally, the response is decoded from the original JSON object into a Python object using the
response object’s json() method.

Next, we must use the station’s county field to get another API endpoint, which will allow us to get
county information:

 url = station_properties['county']
 response = requests.get(url)
 logging.info(response.url)
 if response.status_code != requests.codes.ok:
 raise Exception(f'get_station_info:
 {response.status_code}:{response.reason}')
 county_properties = response.json()['properties']
 info['county'] = county_properties['name']
 info['state'] = county_properties['state']
 info['cwa'] = county_properties['cwa']
 info['timezone'] = county_properties['timeZone']

Use the station_properties county field as a new URL. Copy interesting county information
into the info dictionary. The cwa field is useful if we want to access forecast information, which is
delivered by County Warning Area or CWA for short.

Now that we have a bunch of information about the station for our tags, let’s get back to dump_wx_
data():

wx_data = get_station_obs(s)

Here’s where we get the station’s observations:

 def get_station_obs(station):
 url = f"https://api.weather.gov/stations/{station}/
observations"
 response = requests.get(url)
 logging.info(response.url)

Extracting and Visualizing Data with InfluxDB and Grafana110

 if response.status_code != requests.codes.no_content:
 raise Exception(f"get_station_obs:
 {response.status_code}:{response.reason}")
 data = response.json()['features']
 return data

In this case, we’ll just request the data from the endpoint and return most of the response data, namely
the features field.

Now that we have all the observation data, let’s extract the observations we’re interested in, along with
the timestamp for the observation itself:

 for feature in wx_data:
 for measure, observation in feature[
 'properties'].items():
 if not isinstance(observation,
 dict) or measure in ['elevation']:
 continue
 value = observation['value']
 if value is None:
 continue
 unit = observation['unitCode']
 timestamp = iso_to_timestamp(
 feature['properties']['timestamp'])

We have a couple of loops here – one that goes through a list of observations, and within that loop,
another loop that picks out the actual observation data that we’re interested in. The steps are as follows:

1. The observations are a list of dictionaries, so we’ll skip over any dictionary fields that don’t map
to dictionaries, as well as the elevation field, which we’re not interested in as a metric.

2. Grab the field name as our InfluxDB measurement name. InfluxDB treats measurements much
like a traditional RDBMS table does – a collection of metric data points.

3. The value is the actual metric we’re storing for each data point. InfluxDB lets you store more
than one metric per measurement data point, but we want the metric to carry an observation
unit, and gathering all the metrics with the same unit would unnecessarily complicate the code,
so we keep it simple – one metric per data point. Since each observation shares a timestamp,
they’ll line up nicely.

4. Convert timestamp from the ISO 8601 format string into a seconds-since-the-epoch
InfluxDB timestamp.

Making advanced queries 111

We use the dateutil library to do the conversion for us. We do this with the iso_to_timestamp
utility function, which wraps the isoparse() function:

 def iso_to_timestamp(ts):
 return int(isoparse(ts).timestamp())

Isoparse() returns a Python datetime object, so we convert that using the timestamp() method.

Finally, we’ll assemble the measurement, the comma-separated tags, the unit tag, the metric, and the
timestamp into a single data point and write it to a file:

 data = f'{measure},{",".join(tags)},
 unit={unit} value={value}
 {timestamp}\n'
 output.write(data)

Finally, in main(), we handle the --input option in load_wx_data():

 if args.input_file:
 load_wx_data(db_host=args.host, db_port=args.port,
 db_name=args.database, input_file=args.input_file)

Load_wx_data() performs two pretty simple tasks – it creates an InfluxDB database and then
loads it with data from a file using an HTTP POST request. The code is as follows:

def load_wx_data(db_host, db_port, db_name, token, input_file):
 if not db_name:
 raise Exception(f"load_wx_data:
 no database specified")

 url = f"http://{db_host}:{db_port}/write"
 headers = {"Authorization": f"Token {token}"}
 data = input_file.read()
 response = requests.post(
 url, params=dict(db=db_name, precision="s"),
 headers=headers, data=data
)
 logging.info(response.url)
 if response.status_code != requests.codes.no_content:
 raise Exception(f"load_wx_data:
 {response.status_code}:{response.reason}")

Extracting and Visualizing Data with InfluxDB and Grafana112

As arguments, it takes the connection parameters for InfluxDB, the name of the database, and the
input file:

1. Check for a database name and exit if one isn’t specified.

2. Assemble the URL, query parameters, and header for the HTTP payload.

3. Send a POST request to write the input file to the database and capture the response.

4. The expected response should be 204 (No Content), so immediately raise an exception if any
other response is received.

And that’s pretty much all there is to it. Now, let’s go capture some data!

Running the script

Now that we’ve got a script ready, let’s dump the data we gathered from a few stations. I’ve created a
simple Python Dockerfile. This is what it looks like:

FROM python:3
WORKDIR /usr/src/app

COPY requirements.txt ./
COPY weather.py ./

RUN pip install --no-cache-dir -r requirements.txt

ENTRYPOINT ["python"]

It just creates a WORKDIR directory called /usr/src/app, copies the requirements.txt file
and weather.py script, pip-installs the libraries from requirements.txt, and runs Python
as ENDPOINT.

The requirements.txt file is so that you can build and run the script from a container. You won’t
need to concern yourself with downloading the appropriate Python libraries (there are only a couple
anyway). In a directory that you’ve cloned from this book’s GitHub repository, build the Docker image:

% docker build --pull --tag python/ch5 .

To see if you were successful, use the Docker container to run the script with the --help option:

% docker run python/ch5 weather.py --help
usage: weather.py [-h] [--host HOST] [--port PORT] [--db DATABASE]
 [--stations STATIONS] [--token TOKEN]
 [--input INPUT_FILE | --output OUTPUT_FILE]

read forecast data from NWS into Influxdb

Making advanced queries 113

options:
 -h, --help show this help message and exit
 --host HOST database host
 --port PORT database port
 --db DATABASE name of database to store data in
 --stations STATIONS list of stations to gather weather data from
 --token TOKEN InfluxDB API token
 --input INPUT_FILE input file
 --output OUTPUT_FILE output file

Now that we’ve confirmed the script works, let’s download some data. We’ll output our data in a file
called wx.txt (but you can name it whatever you like). We’ll pick the station for San Francisco, which
happens to be at the airport called KSFO. We’ll map the local directory as a volume in the container
so that we can access the file the container script creates:

% docker run --rm -v "$(PWD):/usr/src/app" \
 python/ch5 weatherweather.py \
 --output wx.txt \
 --stations KSFO
INFO:root:https://api.weather.gov/stations/KSFO
INFO:root:https://api.weather.gov/zones/county/CAC081
INFO:root:https://api.weather.gov/stations/KSFO/observations

To see if all went well, you can check the first few lines of data with the head shell command:

% head wx.txt
temperature,station=KSFO,name=San\ Francisco\,\ San\ Francisco\
International\ Airport,cwa=MTR,county=San\ Mateo,state=CA,tz=America/
Los_Angeles,unit=wmoUnit:degC value=11.7 1667883360
dewpoint,station=KSFO,name=San\ Francisco\,\ San\ Francisco\
International\ Airport,cwa=MTR,county=San\ Mateo,state=CA,tz=America/
Los_Angeles,unit=wmoUnit:degC value=7.2 1667883360
barometricPressure,station=KSFO,name=San\ Francisco\,\ San\ Francisco\
International\ Airport,cwa=MTR,county=San\ Mateo,state=CA,tz=America/
Los_Angeles,unit=wmoUnit:Pa value=100980 1667883360
seaLevelPressure,station=KSFO,name=San\ Francisco\,\ San\ Francisco\
International\ Airport,cwa=MTR,county=San\ Mateo,state=CA,tz=America/
Los_Angeles,unit=wmoUnit:Pa value=100960 1667883360
visibility,station=KSFO,name=San\ Francisco\,\ San\ Francisco\
International\ Airport,cwa=MTR,county=San\ Mateo,state=CA,tz=America/
Los_Angeles,unit=wmoUnit:m value=16090 1667883360
relativeHumidity,station=KSFO,name=San\ Francisco\,\ San\ Francisco\
International\ Airport,cwa=MTR,county=San\ Mateo,state=CA,tz=America/
Los_Angeles,unit=wmoUnit:percent value=73.905075949333 1667883360

Extracting and Visualizing Data with InfluxDB and Grafana114

These lines will contain the rows of time series data we will input into InfluxDB.

Setting up an InfluxDB database

Now that we have our nicely formatted data, we’ll send it to the InfluxDB server. We’ll use the InfluxDB
REST API to bulk upload the data in a single HTTP call. This is much more efficient than sending
each row separately. While InfluxDB v2 features a powerful query language called Flux, it is beyond
the scope of this book to cover Flux sufficiently for not only the queries to add data to InfluxDB but
also the queries from Grafana to graph the data. Luckily, the older v1 query language, InfluxQL, is still
supported in a special v1 compatibility API, so we will use that here and in our Grafana data source.

But first, to make sure that our InfluxDB will successfully accept the data from our Python script, we
will need to perform two minor tasks:

1. Set up our InfluxDB instance by creating a new user and password, an organization, and a
data bucket.

2. Generate an API token to give our script permission to access the InfluxDB REST API.

Let’s get started.

Setting up the InfluxDB server

Log into the InfluxDB UI at http://localhost:8086. If you haven’t already set up the instance,
you’ll see a prompt to perform the initialization:

1. Set the username to whatever you like.

2. Add a password (8 characters minimum).

3. Choose an organization name; for example, LearnGrafana.

4. Create a bucket; for example, Chapter05.

Generating an API token

Generating an API key is a straightforward process. You’ll need this token to access the InfluxDB
server from our script:

1. Go to Load Data | API Tokens.

2. Click + Generate New Token.

3. Select All Access API Token from the pulldown.

4. Fill in a description such as Chapter05 API Token and click Save.

5. Copy the API token string to the clipboard.

6. Save the API token in a safe place as you won’t be able to see it again without going through
the process of creating a new one.

http://localhost:8086

Making advanced queries 115

Let’s go ahead and load it into the InfluxDB chapter05 bucket with the --input option. We’ll
need to use host mode in the network for our Python application container to communicate with
our InfluxDB server container at localhost. We also need to map the current directory into the
Dockerfile WORKDIR area of /usr/src/app so that the container can find our weather.py
script:

% docker run --rm --network host \
 -v "$(PWD):/usr/src/app" \
 python/ch5 weather.py \
 --input wx.txt \
 --db chapter05 \
 --token <API_TOKEN>
INFO:root:http://localhost:8086/write?db=chapter05&precision=s

Now, let’s have a look at our data!

Configuring the InfluxDB data source

Open your browser to the Grafana app and from the main menu, under Connections, select Add
new connection. Search for and select the InfluxDB data source and click Add new data source. Fill
out the following form fields:

• Name: InfluxDB

• Query Language: InfluxQL

• HTTP | URL: http://influxdb:8086

• Custom HTTP Headers | Header: Authorization

• Custom HTTP Headers | Value: Token <API Token>

• InfluxDB Details | Database: chapter05

Note
Make sure there is a space between Token and API Token.

Extracting and Visualizing Data with InfluxDB and Grafana116

Your data source configuration should look like this:

Figure 5.1 – InfluxDB data source

Making advanced queries 117

Click Save and Test. If everything is correct, you should see a message that reads as follows:

Figure 5.2 – Data source success

Now that we have a data source, click Explore data to check out our data and confirm we can query it.

There’s a good chance that when you go into Explore, you won’t see any data. That’s okay because we
need to generate a query first. Many of the typical parameters in an InfluxDB query are already filled
out, so it’s just a matter of making a couple of menu selections.

Set the time range to Last 24 hours. This will give us a nice spread of data and should guarantee a
time range that contains at least some data.

Let’s work through the query details step by step, starting with the FROM clause.

If you are already familiar with SQL database queries, the FROM clause will seem similar. You can
leave the first segment set to default. This refers to the retention policy for the database. Consult the
InfluxDB documentation for more information about retention policies.

The next segment in our FROM clause is measurement. For this tutorial, we stored each observation
type in its own measurement. This may not always be the case as you can certainly store multiple
fields of data in a single measurement. Select a measurement option from the dropdown. If you see
a list of measurements, that is a good sign. It means our measurements were correctly stored in the
database and Explore has helpfully queried the data source to acquire them. If you don’t see any
graph data, try clicking Run query to force a refresh. For measurement, I picked temperature; my
Explore display looks like this:

Extracting and Visualizing Data with InfluxDB and Grafana118

Figure 5.3 – The Explore data graph

One thing that stands out is that the data is not captured at strictly regular intervals. This isn’t necessarily
a bad thing, nor does it render the data unusable. Rather, it means we need to take some special care
when we work with it – work that we might not ordinarily need to do if the data was more regular.
That’s a good thing since it forces us to grapple with some of the nuances regarding how to display
time series data. In the meantime, since we have validated our pipeline, let’s go big and gather some
more data.

Let’s delete our bucket so that we can load it with fresh data. Ordinarily, this isn’t required as InfluxDB
treats a data point with the same measurement, tags, field keys, and timestamp as the same point and
overwrites the field values, but we want each additional data series to cover the same period, so we’ll
go ahead and delete the bucket.

If you ever want to start over with a clean bucket, you can use the InfluxDB UI to delete an existing
bucket, and then create a new one:

1. In the UI, select Load Data | Buckets.

2. Click the small trashcan symbol in the top right corner of the bucket you wish to delete.

3. Click + Create Bucket to create a new bucket.

4. Name the bucket with the previous name – that is, chapter05.

5. Leave Delete Data set to Never.

Next, we’ll add data from a few more stations, namely Denver, CO (KDEN), St. Louis, MO (KSTL),
and New York, NY (KJFK):

Understanding the time series data visualization 119

% docker run --rm \
 python/ch5 weather.py \
 --output wx.txt \
 --stations KSFO,KDEN,KSTL,KJFK INFO:root:https://api.weather.
gov/stations/KSFO
 INFO:root:https://api.weather.gov/zones/county/CAC081
 INFO:root:https://api.weather.gov/stations/KSFO/observations
 INFO:root:https://api.weather.gov/stations/KDEN
 INFO:root:https://api.weather.gov/zones/county/COC031
 INFO:root:https://api.weather.gov/stations/KDEN/observations
 INFO:root:https://api.weather.gov/stations/KSTL
 INFO:root:https://api.weather.gov/zones/county/MOC189
 INFO:root:https://api.weather.gov/stations/KSTL/observations
 INFO:root:https://api.weather.gov/stations/KJFK
 INFO:root:https://api.weather.gov/zones/county/NYC081
 INFO:root:https://api.weather.gov/stations/KJFK/observations

Load the data. Depending on the speed of your computer, it should take a couple of seconds to load
about 10,000 data points into InfluxDB:

% docker run --rm --network=host \
 -v "$(PWD):/usr/src/app" \
 python/ch5 weather.py \
 --input wx.txt \
 --db chapter05 --token <API_TOKEN>
INFO:root:http://localhost:8086/query?q=CREATE+DATABASE+weatherdb

You should now have four data series, covering almost 10 days of observations that include temperature,
wind, and rainfall. In the next section, we’ll be looking very closely at this data to gain an understanding
of how Grafana draws data. We’ll even try out different drawing styles to better highlight various
aspects of the data display. Later, we’ll work with the y axes and the legend.

Understanding the time series data visualization
In this section, we are going to cover some important concepts surrounding time aggregation. For us
to do that, we’re going to craft a time series visualization panel that illustrates those concepts. Along
the way, we’ll be covering some of the more advanced drawing features of the time series visualization.

The concepts are a bit technical, but understanding them is essential to mastering the depiction of
time-based data in Grafana and other time series visualization tools:

1. Start by creating a new dashboard and then click + Add visualization.

2. Select the default InfluxDB data source.

Extracting and Visualizing Data with InfluxDB and Grafana120

3. Set the time range to Last 24 hours.

4. In the Query tab, click on the copy (two pages) icon to make a copy of the current query.

5. Click the visibility (eye) icon for the B query to disable it. We’ll set it in a moment.

We are going to modify the A query so that it concentrates on a single data series – the one corresponding
to the KSFO station. We’re also going to remove all aggregation so that we can see the raw data points
in the series. The steps are as follows:

1. Make sure the Open options pane is open by clicking the < symbol, if necessary.

2. Under the Graph styles section, select the Lines style.

3. In the Query tab, for the A query, click select measurement and select the
temperature measurement.

4. Select the plus sign (+) next to WHERE.

5. Select station::tag.

6. Click select tag value, then select KSFO. Note that the display shows points scattered across
the time range.

7. Next to GROUP BY, select time, and from the dropdown, click remove. This removes the
time() GROUP BY statement and the default mean aggregation in the SELECT statement.

This should shift the display from points to line-connected points, as you might expect:

Figure 5.4 – Line-connected points graph display

Understanding the time series data visualization 121

But did the graph change from scattered points to lines? We are going to delve into that in a moment.
Note that Style under Graph styles in the Options pane does appear to be set to Lines. Whew, that’s
reassuring! You might be thinking something along the lines of, hmm… the display of points despite
me having selected Lines must be some sort of bug, and I do want to display lines, so I just need to
delete time() GROUP BY.

Before you do that, consider what else might be going on. After all, we did delete a whole GROUP BY
component of our query. Might that be a clue as to what happened? For now, let’s keep that in mind
while we examine the current display. We can see a set of relatively evenly spaced points joined by
line segments.

If you enable the Table view switch at the top of the graph, you’ll see a spreadsheet-like table of
timestamps and corresponding temperature values. What we’re seeing is a literal, point-by-point list
of each data point in the dataset. Disabling Table view returns us to a similar point-by-point graph
of our dataset.

A concept that you want to become familiar with early on is that what you’re seeing is only a
representation of your data, not the actual data. In reality, your data is nothing more than a collection
of samples of some observed phenomenon. A graph is just a symbolic representation mapping those
data points onto a simple X/Y coordinate grid with the timestamp on the x axis and the value of the
data point on the y axis.

From here on out, your interactions with Grafana (or any data visualization tool for that matter) are
essentially negotiations between you and the application as to what and how to display your data in a
way that is meaningful to you and/or your audience. Sometimes, you will see things that make sense;
other times, they won’t.

This is because while Grafana is a sophisticated piece of software written by engineers who have
accumulated the wisdom of thousands of end users to make working with it disarmingly easy, it
can’t always guess what you intend to do. Rather, you should always be aware of Grafana’s strengths
and limitations.

Let’s take a closer look at the graph to see why this might be the case. While it’s perfectly reasonable to
work with the graph as-is, imagine a different scenario. Imagine a dataset not with a hundred points
spanning a week, but one with millions of points spanning an entire month.

To give you a feel for that scenario, perform the following steps:

1. Make sure the Open options pane is open by clicking the < symbol.

2. In the Graph styles section, set Style to Points.

3. Zoom out the time range to Last 90 days or even Last 1 year.

Extracting and Visualizing Data with InfluxDB and Grafana122

Notice in the following screenshot how the points all appear to be bunched up into indistinguishable
blobs, instead of the easily discernable string of points across the timeline:

Figure 5.5 – Data points compressed into a wide time scale

Here’s the issue: if you keep zooming out, Grafana will find it increasingly hard to display all the points
it’s being asked for. Remember, while we’re currently looking at a few days of data herded onto one
side of the graph, we could just as easily be seeing those points spanning the entire timespan. Grafana
is facing two challenging issues:

• Grafana tries to render each data point in the appropriate pixel(s), thus making it hard to
distinguish between data points as they all tend to land on the same pixels.

• Rendering so many points taxes the rendering engine, which paints all those data points into
pixels, making the interface less responsive.

Here is a schematic representation of how Grafana maps data into the pixels you see on the screen.
The circles are sampled data, while the squares are the rendered pixels in the graph:

Figure 5.6 – Mapping points to pixels

Understanding the time series data visualization 123

Here is that same schematic showing, albeit exaggerated, what happened when we zoomed out in
the time range:

Figure 5.7 – The points display pixels in a wide time scale

Zoom out far enough, and given enough points, you’ll end up with all the data landing on a handful
of vertical pixels.

There is a solution, which is to somehow filter the points so that Grafana can display fewer points, but
still do it in a way that makes it seem as representative as if all the data points were displayed. To do
that, Grafana counts on a characteristic of the data that is often true, namely that the dataset represents
a continuous function such that points closely spaced in time are also close enough in value that you
could estimate the values between them, had they been sampled at a higher rate.

Selecting a point halfway between two existing points, colloquially called splitting the difference, is a
form of interpolation, the action of estimating data points between other data points.

In this illustration, the intermediate points are determined to be at some position midway between
an imaginary line connecting the known sample points. They don’t line up on the actual function,
but the rendered pixels are close enough that if you connect those points with line segments, you’ll
have a pretty good approximation.

We are talking about finding a way to reduce the points that are displayed, but not in such a way as
to lose the overall character of the graph. To do that, we must use aggregation – that is, we must take
a collection of points at regular intervals and perform a mathematical summary operation to replace
the collection with a single point.

A typical method to calculate a single value that represents the contributions of a collection of values
is to average them or find their mean. However, before you can average a set of values, you need to
determine what those values are.

Extracting and Visualizing Data with InfluxDB and Grafana124

In the case of a time series visualization, we group them at regular intervals, calculate the aggregation
of all the values that fall into the interval, and display the calculated value at some point in time that
represents the interval. In the following figure, we’ve reduced the number of potentially rendered points
from six to three by dividing the time into three intervals, each aligned on each regular timestamp:

Figure 5.8 – Data points aggregated into display pixels

With this in mind, have another look at the B query. In the SELECT section, you can see the aggregation:
mean(). But how is the interval specified? That is in the next section – GROUP BY. Here, the interval
is specified as time($__interval). What does that mean?

In InfluxDB, the width of GROUP BY is specified by the time() function. However, the function
requires a value. You could attempt to specify that value yourself, based on the current timespan
on the graph, but you would have to keep adjusting the interval every time you change the scale of
the timespan.

Happily, Grafana can do that for you, because it knows just how many pixels are covered by a given
timespan. So, Grafana provides that value in a special variable called $__interval. Plug that
variable into the time() function, and at any period, you will see the results of the aggregation at
different GROUP BY intervals of time.

Tip
It’s always useful to go back to the dashboard display to examine how your graph looks in that
context. It’s too easy to tailor a graph in the wide-open spaces of Explore or edit mode, only to
find out your beautiful graph is a mush of lines and points on the dashboard.

Understanding the time series data visualization 125

Displaying time-aggregated data

To see how that might work, let’s try to aggregate those points in time over a set interval. Looking at
the space occupied by the graph, it seems like the points cover a few days, so maybe aggregating over
a day is a good choice. Return to the Queries tab and perform the following steps:

1. Next to the A query’s GROUP BY, select (or type the first few characters) time($interval).

2. Click on $interval and type in 1d.

Wait a minute! What happened to the data?

This is why we do things in a controlled scenario and not under the pressures of a production deadline.
Understanding how things work will save you the nightmare of randomly clicking on various display
options in the hope of getting the graph to work, but then making a potentially costly mistake.

Debugging queries with Query inspector

When you run into a situation like this, you do have some debugging tools at your disposal. Clicking
the Query inspector button in the top left of the Query tab opens a text box that shows the actual
InfluxDB query and its results. Normally, it’s just a big JSON blob of data points, but when you don’t
see any data, there’s a good chance you’ve just confused InfluxDB with your query and it’s quietly
complaining. Click Refresh to get the results of the query, as shown in the following screenshot:

Figure 5.9 – Query inspector

Extracting and Visualizing Data with InfluxDB and Grafana126

Query inspector shows you both the request and the response objects, and in this case, we want to
know what came back from the query. Open all the disclosure triangles below the response to see
what happened:

 response: Object
 results:Array[1]
 0:Object
 statement_id:0
 error:"GROUP BY requires at least one aggregate
function"

Here, we asked InfluxDB to do a GROUP BY time, but we didn’t tell it how to aggregate the grouped
points into a single value. Let’s go with mean. If you noticed that we’re working our way toward the
B query, good for you! That’s pretty much what we’re doing.

The SELECT section is where the points are selected for display. Right now, you’ve asked Grafana to
display all the grouped field(value) values, but we need to aggregate them. Click + and select
(or type) Aggregations | mean. Yay – we got our data points back! Go ahead and set Graph styles |
Style back to Lines as well:

Figure 5.10 – Effect of aggregations on displayed points

Understanding the time series data visualization 127

Now, zoom back into Last 24 hours. Yikes, what happened? Recall that we aggregated the data across
1 day. That means a single point now represents 24 hours, so the data is still there – the last 24 hours
have just been replaced by that one point. If you don’t see any points, try zooming out to Last 2 days.

So, now, every time we substantially change the time range, we’ll also need to adjust the interval in
the GROUP BY time, right? Thankfully, no. Remember, Grafana can automatically calculate the time
interval that covers at least the width of a single pixel, so we just need to use it in the GROUP BY
interval. This variable is called $__interval and is what Grafana refers to as a template variable.
Template variables provide a powerful means for us to add responsiveness to our graphs, and we’ll
be talking about them in more detail in later chapters. For now, let’s just refer to the B query, which
already has the GROUP BY time with $__interval as the parameter.

Earlier, I said you can solve the problem of data point illegibility by simply using an aggregation with
a GROUP BY time. Unfortunately, while that simplifies the data, technically, it represents a loss of
fidelity to the original data and will have the effect of changing the appearance of data at different
time range scales. This is not necessarily a bad thing, so long as you don’t try to draw conclusions
about the underlying data based solely on its aggregation. However, the change in appearance can be
jarring if you don’t know what causes it.

To give you an idea of this, let’s modify the graph to highlight the effects of the aggregation:

1. In the A query, remove GROUP BY time() to return to the original points.

2. Enable the B query by clicking the eye icon.

3. Set the measurement for the B query to temperature and station::tag to KSFO so that it
matches query A.

4. Leave SELECT set to mean.

5. Set the time range to Last 24 hours.

6. Go to the Tooltip section of the options pane and select All for Tooltip mode.

Extracting and Visualizing Data with InfluxDB and Grafana128

The following screenshot shows what you will get as output if you hover over one of the data points:

Figure 5.11 – Dual query display

You should see a bunch of A query points in the same positions as the B query points. You can confirm
this by hovering over the data point and noting that temperature and temperature.mean
are identical. Now, we want to observe the changing value of $__interval, so while we could
look at the request in Query inspector, there’s an easier way of doing things: using the ALIAS field.

Observing time interval effects

ALIAS is the field that’s used by Grafana to annotate the data series in the legend. If nothing is in the
field, Grafana will default to constructing a series name based on the measurement and the aggregation.
We’re going to override that with our own series name using ALIAS. Type the following into each
ALIAS text field:

$measurement.$col

The legend now reads out the measurement value with the SELECT value. Now, check out the interval
value in the Query options box. If you are in the 24-hour time range, at my panel width, Interval
equals 1m, or 1 minute. Hovering over the points shows that they are identical. This makes sense

Understanding the time series data visualization 129

when you examine the timestamps for the data points. Even the closest points are separated by more
than 2 minutes, so each interval only contains one point to aggregate.

Despite the fact we can individually examine each data point, we’d like to visually emphasize whether
the mean value is centered over the raw data point. Go to the Graph styles section in the Options
pane and set Point size to 5. Now, the green points are larger, but the yellow point obscures the green
point below it. Every change we make to the style of one data series is reflected in the others as well.
This is a common problem, and Grafana has a clever solution – field overrides. A field override allows
you to specify the drawing style of one or more by matching an override rule with a selector on the
field like a name or a regular expression.

Let’s create one for the mean temperature:

1. At the bottom of the options pane, click the + Add field override section.

2. Choose Fields with name matching regex from the menu.

3. Fill the text box with /temperature\.mean/. This is just a regular expression (regex)
that matches any alias value containing the temperature.mean string.

4. Click + Add override property, then Graph styles | Point Size, and set the Points Size slider to 5.

Start progressively zooming out to Last 90 days. You should start to see that the aggregated points start
to drift further and further away from the raw data as more and more points (within the increasing
interval width) contribute to the mean. Here’s what they look like at 7 days:

Figure 5.12 – Raw and aggregated data points display

Extracting and Visualizing Data with InfluxDB and Grafana130

By the time you reach 90 days, you should notice two things:

• The mean points are significantly different than the raw data around them

• They tend to span a narrower range (sometimes referred to as regression to the mean)

This is where some analysts might experience a certain amount of anxiety as the graph begins to
flatten when they zoom out to wider and wider time ranges. To see how dramatic this can be, click
on the temperature.value label in the legend. Repeatedly clicking on the label will alternately hide
and display the points corresponding to the aggregate mean points, thus giving you a better view of
their relative values.

It is here that you will want to make some decisions about what kind of aggregation to display. Don’t
assume that mean() is the only choice. If you want to emphasize the central tendency, use mean()
or median(), while if you want to highlight extremes, try min or max.

Setting the minimum interval

Going in the opposite direction, we need to explore a couple more aspects of the interval. Remember
that we previously noticed the mysterious switch from points to lines when we deleted GROUP BY
and its associated aggregation? We’re now going to solve this mystery. To get set up, do the following:

1. Set the time range to Last 90 days.

2. Click the visibility (eye) icon to hide the raw data query A.

3. Make sure the Lines style is set in the Graph styles section, and set Show points to Always.

We’re doing this as we want to see how the display is affected by the interval. You should note the
points are connected by lines. Now, use the time range pulldown to zoom into progressively narrower
time ranges. At even the Last 30 days time range, you should see many lines disappear. Where did
they go? Note that the Interval reading in Query options is now (in my panel size) 10m:

Understanding the time series data visualization 131

Figure 5.13 – Data aggregation gaps

Grafana has calculated an interval that roughly covers a pixel (the smallest display element) and that
interval is 10 minutes. So, to aggregate the values, it divides the time into a series of intervals of 10
minutes each, groups (remember GROUP BY) every data point within each time, and calculates the
mean of their value. If there are no points in the interval, no mean can be calculated and so no point
is displayed.

Now, when Grafana wants to connect those points, it expects to find a point in each interval (per
the definition of a line segment). This is where the additional term in GROUP BY comes into play.
Fill(null) is responsible for setting any missing points to null. Checking the Connect null
values setting, we see that Never means Grafana won’t even try to connect other points, hence, no line is
generated. The points in our dataset are so sparse that as we keep narrowing our time, the interval gets
smaller and the likelihood of finding any points that fall into the interval also gets smaller and smaller.

To make matters even worse, though you may not notice it, Grafana is working harder and harder for
little gain. When you have a single data point in a 1-hour time range, with an interval of 5 seconds,
Grafana is trying to calculate a mean 60*12=720 times to only to generate a single displayed data
point. To prove that is what is happening, drag a roughly 1-hour range around a single data point.
Now, change fill() in the B query from fill(null) to fill(0). You should now see hundreds of points
(connected by lines) filling the graph end to end:

Extracting and Visualizing Data with InfluxDB and Grafana132

Figure 5.14 – Excessive fill() points

That is why we set a minimum interval to halt that calculation when it becomes pointless. Typically,
if your data is regularly sampled, you’d set the minimum interval to your sample interval because you
wouldn’t have samples falling into a narrower interval. In the case of the NWS observation data, we
don’t have regular samples, so we’ll rely on the precision of the data to guide us. We know the data
doesn’t appear to bear a timestamp with a second value, so we can infer the data is separated by no
less than 1 minute. Click Query options to expose the query options and set Min interval to 1m. You
should immediately see that the number of points is reduced substantially.

Now, we need to fix this because we’re still generating needless points. We can tell InfluxDB that we
need it to fill in missing interval points with no point at all. Set GROUP BY to fill(none). Now, when
Grafana ignores missing points, and if the time range contains two or more points, it knows to connect
each one to the next available point, and voilà! – you have proper lines connecting your data. That’s
why you might have to zoom out to Last 6 hours or even further to start seeing lines because at that
range, you are likely to see multiple points:

Setting the axis 133

Figure 5.15 – Connected points

I hope this section clarifies things. It’s a lot to take in, but it’s fundamental if you wish to successfully
manage the inevitable constraints that arise when you’re faced with less-than-perfect data.

We’ll now move on to adding panel-style details, including axes, measurement units, and legends.

Setting the axis
Now that we’ve broken down how data points are graphed horizontally in time, let’s look at how they
are graphed vertically on the y axis. I’m sure whole books have been devoted to documenting how
the y axis has been used and abused, from using a logarithmic scale instead of linear or vice versa to
improper scale to truncation, but space doesn’t permit going into all these issues.

Like any tool, we can abuse the flexibility of Grafana’s y axis display. In this section, we’re going to
point out the opportunities for leveraging the y axis display to hopefully clarify or illuminate our data.
We’ll be creating a series of panels depicting various weather observations and then concentrating
on different ways to adjust the y axis, including scaling, units, and even the use of multiple y axes on
a single graph.

Extracting and Visualizing Data with InfluxDB and Grafana134

Setting axis units

Let’s start by creating a new dashboard panel by clicking the Add | Visualization drop-down menu at
the top right of the dashboard. Make sure Time series is the visualization type, and set up the query
as follows:

• Time range: Last 24 hours

• FROM: temperature

• GROUP BY (use the plus icon (+) to add): time($__interval), tag(station::tag), fill(none)

• Query options minimum interval: 1m

It is always good practice to assign your units as early as possible. If you don’t, you could end up
forgetting a crucial piece of information. For instance, failure to properly account for units has caused
the loss of millions of dollars worth of space hardware. If you don’t want to be responsible for losing
the next Mars probe, remember the units!

How do we know the units for the temperature readings? Since they are in the low teens, it’s easy to
assume they are in Celsius. You could also assume the NWS uses SI units. A better approach would
be to check the data tags as we deliberately included them for just such an occasion.

Click Apply to save the panel. Click on the three-dot panel menu and select Explore. Confirm the
following settings:

• Time range: Last 3 hours

• FROM: default temperature

• SELECT: field(value) | mean()

• GROUP BY: time($__interval) | tag(unit::tag) | fill(null)

• FORMAT AS: Table

Setting the axis 135

This is what your Explore pane should look like:

Figure 5.16 – Determining data set units

As you can see, the unit is degC or degrees Celsius. Let’s go back to our graph panel and set the units:

1. In the Options pane, scroll to the Standard options section.

2. Under Unit, set Temperature | Celsius (°C).

3. In the Graph styles section, enable Lines, set Show Points to Always, and set Point Size to 5.
Your graph should look something like this:

Figure 5.17 – Multiple temperature readings

Extracting and Visualizing Data with InfluxDB and Grafana136

Converting temperature into Fahrenheit

Now, suppose you live in the United States, and you simply must display the data in Fahrenheit. If
you were momentarily tempted to just change the units to °F and call it a day, I’ll forgive you. Before
you do that, however, you’ll need to first convert the data values.

We’re not going to open our weather script and start editing Python code, because there is a simpler
way – simply modify our InfluxDB query to do the conversion. Since the query is executed on the
database server rather than in your browser, it will be quite performant. Nonetheless, if you do need
to convert all your temperature data into Fahrenheit, you might want to consider modifying the script
to do the conversion before importing instead.

In the Queries tab next to SELECT, add a new operator by selecting Math | math. This will append
a math calculation to the aggregated value. Delete the text in the operator and type the following into
the field:

* 9/5 + 32

You should see the numbers change to substantially larger values. We’ve now converted the Celsius
values into Fahrenheit. If you’re curious, open Query inspector to examine the actual query. Now, go
back to the Standard options section and set Unit to Temperature | Fahrenheit (°F) before you forget.

Autoscaling the Y axis

One of the things you may have noticed when you click on a single data series in the legend is that
the y axis scales automatically to accommodate the values for that series, then scales back when you
display all the series. You may also have panels on your dashboard that have slightly different y axes:

Figure 5.18 – Autoscaling the Y axes

This is less than ideal for a couple of reasons:

• The scale becomes inconsistent from one data series to the next

• It can be visually confusing if you choose to place different series in adjacent panels, each with
its own scale

Setting the axis 137

Let’s disable that functionality (called autoscaling) by anchoring our minimum and maximum y values
in the axis. Go to the Standard options section and set the following:

• Min: -30 (°F or °C)

• Max: 130 (°F) or 55 (°C)

As with all such things, you should be cautious about your choice of min and max. Too wide a range
and your data will get squashed into a flat line. Too narrow, and Grafana will truncate the graph and
leave some of your data running off the graph. You can either work empirically by determining the min
and max of the data or use your best guess and start with something a bit too wide but narrow it later.

Alternatively, you can use the Soft min and Soft max settings in the Axis section. Setting Min and
Max in the Standard options section will clamp the min and max values of the y axis to those values,
regardless of the actual datapoint values; any value falling outside the range will not be displayed.

Setting Soft min and Soft max will also clamp the min and max values of the graph, but if a data point
falls outside the range, the graph will adjust to make sure the value will still display.

It is tempting to scale each temperature graph with min and max values that seem appropriate to that
dataset, but you risk confusing your viewers if the temperature distribution in one graph significantly
differs from the distribution in the graph of another one.

Imagine one set of mostly extreme temperatures on a graph that is scaled so that they appear to be
clustered in the middle of the graph. Now, take another set of mostly moderate temperatures that are
on a graph that is also scaled so that they also appear to be clustered in the middle. A cursory glance
might lead you to think the temperatures are the same in both graphs.

The lesson is to take the context of your data into account and establish a consistent scaling configuration
for all graphs that display similar measurement types. If there is no similarity across your graphs or
you can display the datasets inside the same graph, feel free to let the scale float.

Dual y axis display

Another common scenario is one in which you need to display data with different units in the same
graph. Often, the point is to show how data is correlated or related by visualizing the linear relationship
between one or more data series to the correlated one. The rise or fall of values seems to match the
rise and fall (or vice versa, if there is a negative correlation) of other values. We are going to create two
graphs that demonstrate this property: one for relative humidity and another for wind chill.

Graphing relative humidity

Create a new graph with the following queries:

• A: measurement: relativeHumidity

• A: WHERE | station::tag = KSFO

Extracting and Visualizing Data with InfluxDB and Grafana138

• A: GROUP BY | time($__interval) | fill(none)

• B: Same as A, but measurement set to temperature

• C: Same as A, but measurement set to dew point

Clean up the display by opening the Graph styles section and setting the following:

• Style: Lines

• Show points: Always

Now, you might (depending on the weather) see the relationship between dew point and temperature
and the resulting relative humidity. It might not be that obvious because the temperature values range
over 0-25, but the relative humidity value can be nearly 100. So, we’re going to leave the y axis for
relative humidity on the left axis and move the temperatures to the right axis. It won’t change the data;
instead, it will vertically rescale the temperature data independent of how the left axis data is scaled.

The easiest way to move a data series to the other axis is to select Auto by going to the Placement
option under Axis. The first dataset axis will be on the left, and the rest will be on the right:

Figure 5.19 – Multiple Y axes in a single graph

If the axes don’t behave at first, try switching back and forth between Auto and one of the other settings.
You should now observe that since the temperature and dew point are close to the same values, the
relative humidity moves closer to 100% and vice versa. Science!

Setting the axis 139

Graphing wind chill

The exercise for wind chill is similar. We’ll create three queries:

• A: measurement: windChill

• A: WHERE | station::tag = KDEN

• A: GROUP BY | time($__interval) | fill(none)

• B: Same as A, but measurement set to temperature

• C: Same as A, but measurement set to windSpeed

Scroll to the Graph styles section and set the following:

• Style: Lines

• Points: Always

In the Standard options section, set the following option:

• Unit: Temperature / Celsius (°C)

In the Axis section, set the following option:

• Placement: Left

In this case, the derived value, windChill, is the same unit as temperature, so we’ll move windSpeed
over to the right Y axis:

1. Click + Add field override.

2. Select Fields with name.

3. Select windSpeed.mean.

4. Click + Add override property.

5. Select Axis | Placement | Right.

6. Select + Add override property.

7. Select Standard options | Unit | Velocity / meter/second (m/s).

Extracting and Visualizing Data with InfluxDB and Grafana140

The following screenshot is what you will get as output:

Figure 5.20 – Wind chill and temperature data

How I determined the units is left as an exercise for you! Hint: m_s-1 should be read as meter-
seconds-1 or meters/second.

With this feature, you can pack a lot more information onto a single graph panel. Bear the following
points in mind:

• The two axes will be scaled to fit the panel unless you explicitly set the y minimums and maximums

• It should be natural to assume associations between the two sets of data

In the case of wind chill and relative humidity, we do want to associate the values because they are
physically correlated. However, that may not always be the case.

Working with legends
In the previous sections, we spent some time learning how to manage the horizontal and vertical
display of our graph data. Now, we’ll look at a key piece of graph display that is often overlooked: the
legend. On many graphs, the legend seems like an afterthought, often floating in some non-specific
whitespace where there’s a convenient lack of data.

Working with legends 141

Grafana is somewhat more restrained about the legend. It can live below the graph (or to its right)
and can take on a list or a table format; that’s it. However, as we’ve seen, the label content of the graph
can be set by the Alias field, and that field can be matched in field overrides. It’s that functionality
that we can leverage when interacting with the legend interface.

Setting legend contents

Let’s start with another graph, again for temperature. Use the following query settings:

• FROM: temperature

• SELECT: field(value) | mean()

• GROUP BY: time($_interval) | tag(station::tag) | fill(none)

• Query options | Min time interval: 1m

Scroll to the Graph styles section and set the following:

• Style: Lines

• Points: Always

In the Standard options section, set the following:

• Unit: Celsius (°C)

So, now, we have a nice graph of temperatures from four different stations, but we can’t read the legend
as it’s down at the bottom of the graph:

Figure 5.21 – Legend before table mode and right placement

Let’s move it over to the right and format it. Open the Legend section and set Mode to Table and
Placement to Right.

Extracting and Visualizing Data with InfluxDB and Grafana142

The legend now looks better, but it’s now taking up a lot of space in the graph. Let’s go ahead and
remove some redundant information:

1. Go to the Panel options section and enter Mean Temperature in the Title field.

2. Go to the Queries tab and set ALIAS to $tag_station.

Now, the title carries the description of the metrics, and the legend just displays the station where
the data was observed:

Figure 5.22 – Legend table mode

Nonetheless, you should only consider using this legend arrangement when you have the screen real
estate to stretch out your graph and the legend, or the legend labels are relatively short.

Enabling legend aggregations

You’ve probably seen TV weather forecasters note high and low temperatures as they run down a
summary of the day’s weather. We can produce similar information with the graph legend. In the
Legend section, set the following values:

• Values: Last, Min, Max

Next, we want the temperature time range to span only today, which is the time from midnight to now:

Working with legends 143

1. Open the Time range menu dropdown.

2. On the Absolute time range side, click inside the From text box or the adjacent calendar
widget icon.

3. From the calendar widget, click on today’s date to set a starting date and time.

4. Enter now in the To field to set the end date and time.

5. Alternatively, you can select Today so far from the pulldown.

Here’s what setting Absolute time range looks like:

Figure 5.23 – Absolute time range

This sets the time range from midnight to now, the period during which the high and low temperatures
are determined for a given day. Now, you have a little weather station!

If you want to sort the values based on a column value, simply click on the column header. Multiple clicks
change the sort order and return it to the primary sort order (determined by the results of the query).

Extracting and Visualizing Data with InfluxDB and Grafana144

Of course, if you go back to the dashboard, you’ll see how much real estate a legend takes up, especially
if there are two dashboards on each row. You’ll want to carefully consider whether you wish to set a
table legend on the right. If so, you might want to significantly expand the width of the panel. As an
alternative, you could leave the legend formatted as a table and set Placement to Bottom. Now, you
can leave the panel width the same and drag the panel’s height down until it is tall enough to display
the full table.

Summary
We’ve covered a lot of ground in this chapter. We wrote a simple Python ETL script to scrape data
from a web-based API and import that dataset into InfluxDB. We also learned about key concepts
behind time and field value aggregations. Then, we tried out different drawing styles and learned how
to instruct Grafana on how to connect the dots when there is missing data.

We also set axis units, converted our data from one unit of measure into another, and displayed
multiple series with different units on the same graph. Finally, we worked with the legend display to
make it more space-efficient and aesthetically pleasing.

In the next chapter, we’ll be diversifying our display panels so that they include panels that are more
specialized in functionality. While these panels are somewhat more limited, they still complement
the graph panel by characterizing data in truly unique ways.

6
Shaping Data with Grafana

Transformations

Now that you understand how to connect data source queries to visualizations, we’re going to take
a step back and look at one of the key features in Grafana’s visualization pipeline: the DataFrame.
A DataFrame is an object that contains data received from a data source query and provides the
source data for visualization.

In this chapter, we will learn more about DataFrames, their role in how Grafana visualizes data, and
how to manipulate them using Grafana’s transformation operators. We will cover the following topics:

• About Grafana DataFrames and transformations

• Exploring the various transformation functions

• Expanding analysis with a transformation

• Chaining transformations into a visualization pipeline

First, we will answer the question of what a Grafana DataFrame is, its role, and how transformation
operators affect it. Next, we will look at the most useful of the transformation operators and give
some examples of how we might use them to modify a DataFrame. Finally, we will discuss some of
the caveats around using transformation operators.

We will continue to use the code and data examples from Chapter 5, Extracting and Visualizing Data
with InfluxDB and Grafana, so feel free to copy them over to a new chapter directory or use the code
from this book’s GitHub repository at https://github.com/PacktPublishing/Learn-
Grafana-10/tree/main/Chapter06.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter06
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter06

Shaping Data with Grafana Transformations146

About Grafana DataFrames and transformations
While it is easy to imagine that Grafana simply takes the results of one or more data source queries,
and somehow feeds them to the panel visualization of your choice, the reality is a bit more complex
than that.

Every query result from the Query tab is managed separately as an independent data series by Grafana.
That way, you have full control over each series and how it may be displayed in a panel visualization.

Next, each of those datasets is packaged into a single object Grafana referred to as a DataFrame.
If you are at all familiar with Excel or Google spreadsheets from the financial world, or pandas or
Spark from the data science world, you already have experience with the concept.

A Grafana DataFrame is, like similar objects, a rows and columns (technically an array of arrays) data
structure, with each row a combination of one or more columnar fields. Because the DataFrame is a
consistent data structure, it can easily be abstracted for use by several different potential visualizations
built to expect such a data structure.

When Grafana first introduced the DataFrame several years ago, the change was so significant that
only a few visualizations were capable of taking advantage of it. That reality changes with each new
release of Grafana as old visualizations are ported to DataFrames, and new ones are introduced.

Now that we’ve introduced this new data object that bridges to gap between queries and their
visualization, let’s introduce the mechanism by which we can manipulate the DataFrame itself, thereby
altering what is visualized: transformation functions.

A transformation function is a simple operation that we perform on the contents of the DataFrame.
Transformation functions have a variety of capabilities:

• Altering the structure of the entire DataFrame by adding or subtracting multiple rows or
columns or by combining multiple DataFrames

• Modifying the contents or type of rows or columns

• Reducing multiple rows to a single value

• Sorting the order of rows or columns

• Converting rows into columns

• Forming a chain of transformations that pass data from one function to the next

As you can see, transformations provide many options for reconfiguring data before it’s visualized.
However, the ability to make significant changes to the structure of your DataFrame elevates the risk
of also rendering it unusable if the resulting data structure doesn’t correctly map into something that
can be properly visualized.

Exploring the various transformation functions 147

Exploring the various transformation functions
Now that we’ve looked at some of the capabilities of the transformation functions, let’s take a closer
look at some of the more commonly used transformations. Before we do that, however, let’s identify
the UI for the Transform tab to familiarize ourselves with the controls. This is one of the typical
transformations in action:

Figure 6.1 – Transformation UI

Besides the + Add transformation button, the Transform tab’s interface bears some similarities to
the Query tab’s interface. Let’s explore the UI, which is shown in the preceding screenshot with its
main areas numbered for reference:

1. The UI for setting the transformation parameters, which will vary from one to the next.

2. Various controls for managing the transformation (from left to right):

 � Shows/hides help information about the transformation

 � Opens a debug window showing the data objects before and after the transformation

 � Disables/enables the transformation

 � Deletes the transformation

 � Draggable control for changing the order of transformations

At this point, I want to highlight a couple of important control aspects. First, the debug window can
be very useful when you’re troubleshooting various problems regarding how the transformation
modifies data. At some point, you will run into a situation where the data just isn’t what you expect,
and it’s helpful to see what is happening under the hood.

Second, the enable/disable control can be very helpful when you’re trying to troubleshoot problems
with the pipeline of transformations. Selectively disabling and enabling transformations can clarify
where problems might arise, especially when there are several transformations chained together.

Shaping Data with Grafana Transformations148

Note
If the visualization doesn’t seem to be showing the correct data after you’ve added a transformation,
the first step should be to click the Refresh dashboard button; occasionally, the panel doesn’t
realize that it needs to update.

Now that we’ve got the preliminaries out of the way, let’s proceed to our transformations. Next, we’ll
look at individual transformations to understand their function. After this, we’ll see how data flowing
through several transformations can be radically altered from what first comes out of a query.

Installing the TestData data source

To follow along with the examples, you’ll want to install the Grafana TestData data source. While
transformations can handle a wide variety of potential DataFrames, especially ones that might arise
from unique circumstances or are non-trivial to replicate for illustrative purposes, the TestData data
source is simple and flexible enough for quickly conjuring up queries for our purposes.

To install the TestData data source, simply select Connections | Add new connection from the main
menu, search for TestData, and click Add new data source. Here’s what it looks like:

Figure 6.2 – The TestData data source

Now that we’ve set up a simple data source with test data, we can create some simple illustrations of
how various transformations work.

Exploring the various transformation functions 149

Selecting transformations

Determining the most appropriate transformation can be tricky – it’s not always easy to visualize how
transformations can modify your query data. Fortunately, the transformation selector displays handy
symbolic representations of data manipulations performed by each transformation, as depicted here:

Figure 6.3 – Transformation images

While working with various transformations, the best way to analyze the results of transformations
is to enable Table view from Time series visualization or switch to the Table visualization as not all
the functions produce data that can be visualized with Time series visualization, and it will be easier
to see the effects of transformations when using the more spreadsheet-like table.

Adding fields

First, we’ll look at a transformation that adds new fields to a table of data.

Adding a field from a calculation

This transformation can produce a new field by either mathematically combining two terms (two
fields or a field and number) or performing a mathematical reduction operation on a single field.

For example, let’s create a new query from TestData, select the CSV File scenario, and then choose
the population_by_state.csv file. Here, we should see a table of states and their populations
from 1980 to 2020.

Shaping Data with Grafana Transformations150

This is what the query should look like:

Figure 6.4 – Adding a field from the Query tab

To find out how much the populations grew from one 20-year period to the next, click on the Transform
tab and select the Add field from calculation transformation from the list. Next, set the following
transformation options:

• Mode: Binary operation

• Operation: 2020 - 2000

Here, we just selected the Binary operation mode and then set each of the two fields and the minus
(-) operator between them. We’ll talk about the Reduce mode a little later, but for now, this is what
should result from the transformation – a new field that’s called 2020 – 2000 by default:

Figure 6.5 – Add field from calculation

Exploring the various transformation functions 151

You can fill in your field name in the Alias text field. If you want to replace all the fields with the one
you just created, enable Replace all fields. You’ll see this option a lot but use it with care as it will
make your other fields unavailable to further transformations and visualizations.

Next, we will look at some of the transformations that can alter existing fields.

Modifying fields

Field modification is used to alter a table’s columns structure. With these transformations, you can
change field types, rearrange field ordering, rename fields, or extract new fields by parsing them from
the data.

Converting field types

We need to convert field types when the data arriving from the query needs to be transformed so
that it can be used by the visualization. Typically, this is useful when text time data isn’t the correct
type to be used in a time-series visualization, or the value of a field needs to indicate a Boolean value.

Let’s look at a simple example of how this works.

Create a new query with the TestData data source. Select the CSV Content scenario. Now, add two
CSV lines:

Time, Value
2022-04-05, 1000

You should have a small table with a single row containing Time and Value:

Figure 6.6 – The Convert field type query’s results

Shaping Data with Grafana Transformations152

Now, go to the Transform tab and add the Convert field type transformation function. For the first
field, set Field to Time, as type Time, and leave the input format as-is (YYYY-MM-DD). For the second
field, set Field to Value as type Boolean. If you are in the Table view or using Table Visualization, you
should now see the Time field with an additional time of 00:00:00, indicating a properly parsed
timestamp conversion. You should also see that Value is now true, confirming that the non-zero
Value is now considered a Boolean true:

Figure 6.7 – The Convert field type transformation

Organizing fields

When using the Organize fields transformation, field visibility can be turned on and off, the ordering
of each field can be changed, and fields can be renamed. This is self-explanatory, but feel free to load
up a query and experiment with the different possibilities.

Extracting fields

Extracting from field data allows us to parse existing data and create new fields from the parsed
data. Typically, the data is encoded in some way (JSON, for example) so that the new field name and
associated data can be parsed out. This is useful when you’re working with embedded JSON blobs
that contain data that you wish to expose as field data. It’s also useful for extracting key-value pairs
embedded in text fields.

Exploring the various transformation functions 153

For this transformation, we’ll use the same scenario as in the Convert field type example: CSV
Content. This time, enter the following:

Text, Value
Time='2022-10-11 12:00:00' metric=3241.11, 323

You should see something similar to a two-field row with a text blob and a value:

Figure 6.8 – The Extract fields query’s results

Next, create an Extract fields transformation. Set Source to Text and leave the rest as-is:

Figure 6.9 – The Extract fields transformation

Shaping Data with Grafana Transformations154

Now, should see two new fields – one named Time and the other named metric. The transformation
detected key=value patterns in the text and converted them into fields and values. Unfortunately,
the type of the new Time field is text (as it is in the text blob), as is metric. We’ll need to add
another transformation to correct it; you know a transformation that could fix them, right?

Labels to fields

Converting labels into fields takes data with embedded labels as key-value pairs and adds a new field
with the name coming from the key and value of the field. This is a useful way of breaking embedded
key-value labels out of a field and into their own field.

To set this one up, we will use the USA generated data scenario and values-labeled-as-fields mode.
Add at least one field, such as foo, and one or more states. Your dataset should look like a row of data
with US state abbreviations as fields:

Figure 6.10 – The Labels To fields query’s results

Next, create a Labels to fields transformation. Set the fields to the following values:

• Mode: Columns

• Labels: state

• Value field name: state

It should look pretty much the same. We identified the labels for each field as state and then assigned
the labels corresponding to state to be the field name for each value:

Exploring the various transformation functions 155

Figure 6.11 – The Labels To fields transformation

Did anything happen? Well, yes it did, but it’s a bit subtle. This is a good opportunity to examine
what transformations do in detail, and not rely solely on what a visualization might show. To grasp
what happened before and after the transformation, click on Debug to take a closer look at the data.

Use the disclosure triangle to open 0: Object in each fields: Array. On the left, open
labels Object. By doing this, you can get a better look at the data:

Figure 6.12 – Labels to fields debugging

Shaping Data with Grafana Transformations156

As shown on the left-hand side, each field contains labels Object, but no name attribute, so
Grafana is happily using the label to describe the field. On the post-transformation side on the right,
labels Object is now undefined, but name has now been defined, which the UI will use instead.
It looks like nothing has happened, but a dramatic change has occurred.

It’s worth noting that Extract fields and Labels to fields may seem like they do the same thing, but
there is a subtle difference between the two. Extract fields detects key/value pairs in any field containing
a text string with key:value or key=value patterns. In contrast, Labels to fields creates fields
from labels already identified as such in the labels objects returned from the query.

Filtering results

Filtering transformations take some criteria, such as a regular expression, and use it to remove results
that match the pattern. You can filter by column names, row values, or panel queries.

Filtering data by name

Filtering by name removes columns in tables, either by regular expression or direct selection. Using a
regex is handy when you’re facing a significant number of columns that need to be removed, and they
all happen to have a string of characters in common (such as a common prefix or suffix).

Let’s look at a quick example.

Open a new TestData data source query and select the CSV File scenario and the flight_info_
by_state.csv file. You should have a pretty straightforward state-by-state dataset:

Figure 6.13 – The Filter data by name query’s results

Exploring the various transformation functions 157

Now, go to the Transform tab and add a Filter by name transformation. Maybe you don’t want to
include the Lat and Lng fields because you won’t be mapping them. In this case, you can simply
uncheck them to remove the fields from the visualization:

Figure 6.14 – The Filter data by name transformation

Alternatively, suppose you wanted to keep only the Lat and Lng fields. You could add a regex such as
L.+ that would only match those fields (which would also become the only checked fields). Remember
to use the Tab key to activate the field.

Tip
When using this transformation with time series data, remember to include the Time column
by using the | (OR) symbol in your regex.

Filtering data by values

Orthogonal to filter by name, filter by values removes rows from the table based on one or more
specified conditions. Conditions are set to be either inclusive or exclusive and are set to work under
all conditions or any condition.

For this example, we will work with the same flight_info_by_state.csv file as we did in the
previous example, so you can either create a new query or work with the previous one.

Shaping Data with Grafana Transformations158

For the transformation, use Filter data by values. Since we’re looking at pricing data, let’s only
examine prices over $600. Set Filter type to Include and Conditions to either Match any (logical
OR) or Match all (logical AND). Now, click + Add condition to add a new filter condition. Set Field
to Price, Match to is greater or equal, and Value to 600. You should now see only five or so rows of
data. Play around with this one by adding additional conditions and see how switching Filter type
and Conditions alter which rows match:

Figure 6.15 – The Filter data by values transformation

Filtering data by query

If you wish to remove an entire query from the visualization, you can use the Filter by query
transformation. It will present you with the names or refIDs of the data source queries, which can
be turned on or off.

This is helpful when you don’t have full control over the queries referenced by the panel or don’t want
to disable them for others referencing the panel’s queries in their dashboard panels.

Reducing rows

In the process of transforming your data, you may need to reduce the returned rows in the data series.
Among the supported transformations are Limit and Reduce. Limit simply reduces the data series to
a fixed number of rows, while Reduce works by aggregating or pivoting the data.

Exploring the various transformation functions 159

Limit

Limit is handy if you only need a subset of rows for your visualization. You can often limit the results
of any query by simply including a LIMIT option, but sometimes, it is more desirable to limit the
results of all queries, perhaps because you are debugging and you don’t want to see so many results.

Reduce

Reduce performs an aggregation of each field on the rows of a query. It operates with two modes:
Reduce fields, which simply replaces each field with the corresponding aggregations, and Series to
rows, which pivots the results to rows of field names and aggregation values.

For example, let’s look at the cryptocurrency CSV open-high-low-close (OHLC) chart for Dogecoin
called ohlc_dogecoin.csv. Create a new TestData query and select the CSV File scenario and
the ohlc_dogecoin.csv file:

Figure 6.16 – The Reduce query’s results

Next, create a Reduce transformation. Set Mode to Reduce fields and add Min, Mean, and Max to
Calculations via the pulldown menu. Leave Include Time unchecked as the aggregation of timestamps
has no meaning.

Shaping Data with Grafana Transformations160

You should now see several fields, one for each calculation for each OHLC. Let’s make it more readable
by switching the mode to Series to rows. Now, there is one row per OHLC field, and one field for each
calculation, which is much easier to process visually:

Figure 6.17 – The Reduce transformation

Now, let’s move on from rows and columns to whole tables.

Combining tables

Each query in the Query tab produces a single dataset, and consequently a single DataFrame. By
using the panel’s Table view option, you can see each data table corresponding to a data series by
using the pulldown menu at the bottom of the table. However, you may want to join these series
into a single dataset. To do that, you can use Concatenate fields, Series to rows, Join by field, or
Merge transformations.

Concatenate fields is the simplest transformation and joins all the tables into a single one. Series to
rows converts structured data into a traditional row-and-column format table. Join by field and Merge
transformations are more sophisticated transformations that perform JOIN-like table combinations.

Exploring the various transformation functions 161

Concatenating fields

Concatenating fields simply takes the fields in one table and adds them to the fields in another table
to produce a single table. This is equivalent to taking the contents of one spreadsheet and copying it
to the first available column alongside an existing one.

You have three ways to rename the fields:

• Copy the frame name to the field name

• Add a label with the frame name

• Ignore the frame name

Series to rows

Series to rows takes tables of metrics and combines them into a single table with a Metric field
containing the metric name and a Value field for the metric’s value. You can see this in action by
looking at the USA generated data scenario and the timeseries mode. Add the foo and bar fields,
and at least one state:

Figure 6.18 – The Series to rows query

Shaping Data with Grafana Transformations162

Add the Series to rows transformation function. You’ll see that the foo and bar metrics are now in
the Metric field, and the AL value has been moved to the Value field:

Figure 6.19 – The Series to rows transformation

This can help convert multiple metrics into a single table that you can then filter on the metric’s name.

Joining by field

Joining two tables by field is structurally similar to JOIN in SQL. It matches the data row by row with
a common join field and then produces a single table with the combined fields. The key here is that
the fields have to have the same name. Selecting INNER produces a table that only includes fields
from the rows where the join field matches between the tables, while OUTER includes fields from the
matching rows in both tables, but leaves the contents of any non-matching fields empty.

Merging

Merging is a special kind of joining by field that combines all the attempts to join two tables by finding
all fields that match between the tables then merges all the rows that match across those shared fields
into a single row. While Join by field leaves the matching rows intact in the resulting set, Merge
collapses matching rows into a single one. It sounds a little complicated, but it’s straightforward.

Exploring the various transformation functions 163

We’ll start by setting up two queries:

• A Query Scenario: CSV File

• File: population_by_state.csv

• B Query Scenario: CSV File

• File: flight_info_by_state.csv

You should now have two datasets, which you can view by flipping back and forth using the pulldown
menu just below the table display:

Figure 6.20 – The Merge query’s results

Now, set up a Merge transformation. Merge is so powerful that it doesn’t even bother to give you any
controls! It checks both tables for matching field names, and when it merges the rows from both tables,
including all fields from both tables, it identifies any rows that have the same values in the matching
fields and combines them into a single row. Effectively, it’s performing a Join by field transformation
with OUTER JOIN.

Shaping Data with Grafana Transformations164

In this case, the matching field in both tables is State, and the common values for the State field
are California, Texas, and Florida, so their field data from both tables is merged. The rows
for other states only get their fields from the one flight_info_by_state.csv table, thus the
empty population fields:

Figure 6.21 – The Merge transformation

That wraps up our look at the transformation functions. We’ll now apply some of these transformations
to our real-world data to see their effects. First, we’ll use just a single transformation to provide some
simple insights into our data. Following that example, we will try a more complicated case where we’ll
build a chain of transformations to emulate a query.

Expanding analysis with a transformation
Let’s look at a relatively simple example of how we might use the transformation functions we’ve
looked at to aid in analysis. We’ll add a few queries, each representing a different metric, and then
we’ll use the Reduce transformation to create some aggregations of the data from each query, all in
a tabular format.

The data we’ll be using is derived from the ETL we created in Chapter 5, Extracting and Visualizing
Data with InfluxDB and Grafana. Feel free to copy over the code from the Chapter05 directory or
use the Chapter06 directory; both contain the same code.

Expanding analysis with a transformation 165

The process is virtually identical to what we covered in Chapter 5, Extracting and Visualizing Data
with InfluxDB and Grafana, so we won’t go into the details. Here is the process in schematic format,
so refer to Chapter 5, for the details:

1. Run the Python weather.py script to download the NOAA weather data from a series of
weather stations around the country.

2. Create a new bucket in InfluxDB and name it chapter06.

3. Generate an InfluxDB API key to access the InfluxDB from our script.

4. Run the Python weather.py script with the API key from step 3 to upload the weather data
to the InfluxDB chapter06 bucket.

5. Set up an InfluxDB data source, using the API key for authentication and the chapter06
bucket for the database.

6. Set the time range to Last 24 hours.

At this point, you should have a database with weather measurements covering four different stations.
Now, create a series of queries with the following setup:

• Query options minimum interval: 1m

• FROM: default barometricPressure WHERE station::tag = KSFO

• SELECT: field(value) | mean()

• GROUP BY: time($interval) | fill(null)

Now, repeat the same query but for the following measurements:

• temperature

• dewpoint

• relativeHumidity

• windSpeed

Shaping Data with Grafana Transformations166

Feel free to try out a different station and a different collection of measurements. The following
screenshot should give you an idea of what the query and data will look like:

Figure 6.22 – InfluxDB query results

Next, create a Reduce transformation. Use these settings:

• Mode: Series to rows

• Calculations: Min Max Mean Range Count Change Count

• Labels to fields: disable

What we have now is a nice table of columns, each representing aggregations of our datasets, with each
dataset now represented as a single row. Most of these aggregation calculations should be familiar but
Change Count and Range might be new. Change Count is just the number of times the measurement
changes during the time range, while Range is the span between the extremes.

Chaining transformations into a visualization pipeline 167

Here’s what mine looks like, but your values will undoubtedly be different:

Figure 6.23 – InfluxDB query with the Reduce transformation

Play around with this example – add more measurements to the query or add more calculations to
the transformation.

Let’s move on and try something a little more complex: multiple transformations.

Chaining transformations into a visualization pipeline
Now that we’ve worked out how to add a single transformation to a set of query data frames, let’s take
it one step further and chain together a series of transformations to create a visualization pipeline. This
example might seem a bit trivial, but it illustrates how to work through the process of manipulating
tables via transformations to produce a result that facilitates a specific visualization.

In this case, we are going to take some of our weather data and make transformations to the query
result, a use case that resembles a situation where you might not have the data in the format you want.

From there, we will do some transformations that will produce a dataset suitable for the time series
visualization. The results will be along the lines of what we accomplished in the previous chapter, but
the idea here is to get the results by transformation rather than by modifying the query. Remember,
there may be occasions where you won’t have control over the query, or the data returned by the query
just won’t be in the proper form.

Shaping Data with Grafana Transformations168

We’ll be working with a different set of queries, so open a new dashboard panel, if you haven’t done
so already. In the Query tab, create a single query and click on the pencil icon to open Query Editor.
Type in this query:

SELECT mean("value") FROM "temperature" WHERE $timeFilter GROUP BY
time($__interval), "name"::tag, "cwa"::tag, "cwa"::tag, "county"::tag,
"station"::tag fill(none)

This is not a particularly complex query. It simply queries the temperature measurement along with
time interval and groups by a set of labels so that we can include the labels as part of our data series:

Figure 6.24 – InfluxDB Query Editor

You should see four data series; switching to Table view should make each accessible from the pulldown
menu at the bottom of the graph, as well as a set of labels from each one. Remember that a row in
InfluxDB is a combination of a metric measurement, a timestamp, and a combination of tag labels.
Since the set of labels is identical for each station, the multiple GROUP BYs are still just grouping on
each station – there’s no hierarchy beyond the stations themselves.

Chaining transformations into a visualization pipeline 169

Once you have switched over to the Transform tab, we’ll start by switching to Table view so that we
can see what effect our transformations have on the data. Our goal is to coerce our multiple datasets,
one for each station into a single dataset with each station represented as a field, which we can then
use to filter.

First, we will add a transformation to convert our labels (the GROUP BY in the query) into fields.
Add a Labels to fields transformation:

• Mode: Columns

• Labels: county cws name station

• Value field name: name

The transformation should produce a table with several columns and our measurement column
renamed to the name of the station. This has the effect of converting the labels in each data series into
fields (column mode), enabling the county, cwa, name, and status fields, and assigning each
station’s name field to represent the temperature value field.

Next, we’ll need to merge the four datasets, which should produce a single table with the same fields,
so add a Merge transformation. This part has no options, but you should see the effect it has by the
disappearance of the data series pulldown menu. Remember, you can always disable/enable the action
of a transformation by clicking on the eye icon at the top right of the transformation.

Finally, we’ll filter the table to only give us the data from a single station. Add the Filter data by values
transformation and use these settings:

• Filter type: Include

• Conditions: Match all

Now, add a condition:

• Field: station | Match: is equal | Value: KSFO

Disable Table view. You should now see only a single data series graph. Go ahead and add a legend
so that you can properly identify the data by name. Note that while you are only visualizing the single
series corresponding to the station in the filter, the legend is mapping data returned by Query, which
includes the four series created by GROUP BY:

Shaping Data with Grafana Transformations170

Figure 6.25 – Chained transformation

Clicking on San Francisco, San Francisco International Airport in the legend isolates it from the
other data series, which are not visible due to the filter. To hide the other series in the legend, go down
to the Series Override option, which was created by clicking on the series name in the legend, and
turn off the Legend visibility option as well in the Series | Hide in area override:

Figure 6.26 – Series visibility

Chaining transformations into a visualization pipeline 171

Again, this is a bit of a contrived example considering we have full control of the data structure from
ETL ingress. However, this might not always be the case; you may be faced with a data source where
you are only allowed access to a single massive DataFrame, and you will need to make some clever
transformations to fit with your visualizations.

On the other hand, you may never need to open the Transform tab, but it’s a good idea to keep up
with the ever-changing population of transformations anyway – you never know what the future
holds! As powerful as transformations are, there are a few things to watch out for. Next, we’ll talk
about some of their limitations.

Limitations of transformations

There are some things to keep in mind while working with transformations. The Grafana documentation
on transformations is a bit sparse, so you may find that some trial-and-error is required, and remembering
these concepts may save you some difficulties.

The visualization pipeline only runs in one direction

Data in the transformation pipeline originates in queries, is processed through transformations, and
finally lands in your visualizations. While the results of a query can be accessed as a data source from a
dashboard panel, if you enable the transformation in the query, you will indeed get the transformed data.

Unfortunately, that data cannot then be queried as if it were a true data source. If you wish to perform a
query on transformed data, you will need to go back and modify the original query or add subsequent
transformations, such as Filter data by values.

Visualizations ultimately “see” the results of the last enabled transformation

When you create a transformation pipeline, all data flows downward from the top function to the
bottom in the Transform tab. If your pipeline includes any transformations that would reduce the
overall structure of the data (number of rows or columns, for example), it will be reflected in your
visualization, provided the structure of the data is compatible with the visualization you select.

For example, don’t add transformations that remove Time columns when using the time series
visualization. If you don’t wish certain transformations to be active, use the Disable/Enable visualization
option on the transformation itself.

Unless directly specified, transformations are applied to all query data series

The architecture of the Grafana visualization requires that all DataFrames pass through the transformations.
If you wish to exclude certain queries from your transformations, you’ll need to create them and their
specific transformations on separate dashboard panels and then import them as Dashboard panel
data sources. Alternatively, you can use Filter data by query as your first transformation and select
only the data series you wish to further transform.

Shaping Data with Grafana Transformations172

Summary
We covered a lot in this chapter! We learned about the three components of the visualization pipeline
– query, transformation, and visualization – and how the DataFrame is the key data structure that’s
processed by the pipeline. We explored the purpose of transformations and the many capabilities of
transformation functions. We explored several common transformation functions with example use
cases. We also tried out real-world transformations both singly and multiply in transformation chains.
Finally, we examined some limitations of transformations.

In the next two chapters, we’ll continue down the visualization pipeline and look at some of the more
commonly used visualizations: the stat, gauge, and bar chart visualizations in Chapter 7, Surveying Key
Grafana Visualizations; followed by the geomap and heatmap, and revisiting the table visualization in
Chapter 8, Surveying Additional Grafana Visualizations. This will open up the possibility of creating
more expressive dashboards than with just time series or table visualizations alone.

7
Surveying Key Grafana

Visualizations

In the previous chapter, we looked at transformation, the second stage of what I like to call the
visualization pipeline. Before this, we looked at the initial stage of this pipeline, the data source query,
and the final stage of the pipeline, visualization, specifically the time series panel visualization. In this
and the following chapter, we’ll concentrate almost exclusively on the visualization stage of the pipeline.

By now, Grafana has built an impressive number of panel visualizations, encompassing all manner of
data and information presentation. Indeed, at the time of writing, there are nearly 25 visualizations
in various stages of release, not including third-party add-on visualizations, which bring the total to
over 100.

Up until now, we’ve been using the time series visualization in our panels, and not without reason; it’s a
powerful tool and has existed in some form since Grafana was initially released. While the time series
panel is indeed powerful and versatile, it isn’t the only way to display data in Grafana. Sometimes, you
need a different way to present your data, and other times you may just want to break up a visually
monotonous grid of graphs. For these reasons, Grafana provides other panel visualizations that can
depict data in other ways. We’ll examine a few of them in this chapter.

Rather than using mostly test data as we did in the previous chapter, we’ll be leveraging the same
real-world weather data we started ingesting back in Chapter 5, Extracting and Visualizing Data with
InfluxDB and Grafana. In Chapter 9, Creating Insightful Dashboards, we’ll take this toolkit of data and
visualizations and build useful and attractive weather-based dashboards!

In this chapter, we’ll first review the table visualization and how to use transformation functions to
coerce our data into a useful form for our visualizations. We’ll also look at the use of field overrides
to help craft our visualizations, even when they encompass diverse data.

Then, we’ll move on to the stat visualization, a useful panel visualization for condensing a data series
into a single value. We’ll also introduce value mapping, a technique for mapping numerical data into text.

Surveying Key Grafana Visualizations174

Along with the stat visualization, which is useful for displaying a single value, we’ll also look at the
gauge and bar gauge panels, which, like stat, are useful for single values; but rather than just displaying
a value, they also incorporate a physical gauge.

The following topics will be covered in this chapter:

• Launching server Docker containers

• Setting up the InfluxDB database

• Reviewing the table visualization

• Introducing the stat visualization

• Adding visual interest with a gauge

• Going linear with a bar gauge

Technical requirements
Before we get started with our visualizations for this chapter, we’ll need to set up InfluxDB and Grafana
servers, install a Python Docker container to run our scripts, and ingest some data into an InfluxDB
bucket. These steps are like those we used when we introduced this data ingestion pipeline back in
Chapter 5, Extracting and Visualizing Data with InfluxDB and Grafana.

Note
Tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter07.

Launching server Docker containers
We’ll go through the same steps as in the previous chapters:

1. If you haven’t done so already, shut down any services you might have left running from other
chapters by executing the following (in the other chapter directories):

% docker-compose down

2. Run the docker-compose script that will download the Grafana and InfluxDB containers
and then launch them. The docker-compose.yml file is available in the Chapter07
directory of the GitHub repository for this book:

% docker-compose up -d --pull missing
[+] Running 3/3
 Network chapter07_default Created 0.0s

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter07
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter07

Setting up the InfluxDB database 175

 Container chapter07-grafana-1 Started 0.5s
 Container chapter07-influxdb-1 Started 0.5s

Setting up the InfluxDB database
Here, we’ll log in to our InfluxDB server, set up an initial account and bucket, and generate an API
key so we can connect to it from our Python script and the Grafana data source.

Initializing the InfluxDB server

Log in to the InfluxDB UI at http://localhost:8086. If you haven’t already set up the instance,
you’ll see a prompt to perform the initialization:

1. Set the username to whatever you like.

2. Add a password (a minimum of eight characters minimum).

3. Choose an organization name, in our case, LearnGrafana.

4. Create a bucket, in our case, Chapter07.

Generating an API token

Generating an API key is a very straightforward process. You’ll need this token in order to access the
InfluxDB server from your script:

1. Click on Load Data | API Tokens.

2. Click the gear icon on the right side of the user you created previously and select Clone.

3. Click on Copy to clipboard to save the API token string.

4. Save the API token in a safe place as you won’t be able to see it again without going through
the process to create a new one.

Configuring the InfluxDB data source

Now that we have our InfluxDB server ready to accept data, let’s get Grafana ready to communicate
with it:

1. Open your browser to the Grafana app and select Connections | Add new connection from
the main menu.

2. Search for InfluxDB and click on it.

http://localhost:8086

Surveying Key Grafana Visualizations176

3. Click on Add a new data source. Fill out the following form fields:

 � Name: InfluxDB

 � Query Language: InfluxQL

 � HTTP | URL: http://influxdb:8086

 � Custom HTTP Headers | Header: Authorization

 � Custom HTTP Headers | Value: Token <API Token>

 � Database: Chapter07

Note
Make sure there is a space between Token and the API token.

Your data source configuration should look like this:

Figure 7.1 – InfluxDB data source

Setting up the InfluxDB database 177

Click on Save and Test to confirm you can successfully connect to the InfluxDB server.

Building the Python Docker container

We’ll use the same process we used in Chapter 5,Extracting and Visualizing Data with InfluxDB and
Grafana, to build and run our Python scripts:

1. Before we build our Docker container, let’s make a couple of small tweaks. We are going to make
our Dockerfile more agnostic to the script it runs, and not install the script in the container. We
now only need to copy one thing into the container, and that’s the pip installation requirements
file requirements.txt. Our new Dockerfile should look like this:

FROM python:3

WORKDIR /usr/src/app

COPY requirements.txt ./

RUN pip install --no-cache-dir -r requirements.txt

ENTRYPOINT ["python"]

2. To build it, type the docker build command:

% docker build --pull --tag python/ch7 .

3. Now, we want to tidy things up, so we’re going to put our weather.py file in an app directory;
we also need to map that directory into the container. Finally, it’s a good practice to name (with
--name) the container so we don’t confuse them. Confirm the Docker container can properly
execute the weather.py script by running it with the --help option:

% docker run --rm \
 -v "$(PWD)/app:/usr/src/app" \
 --name python_ch7 python/ch7 \
 /usr/src/app/weather.py --help

You should see a nice help message.

Loading the data

From here, we just need to pull down our data from the National Weather Service (NWS) and then
load it into our InfluxDB server bucket:

1. To keep things tidy, we want to put our data in its own data directory. That means another
volume map. Execute the script to download data from four weather stations:

Surveying Key Grafana Visualizations178

% docker run --rm \
 -v "$(PWD)/app:/usr/src/app" \
 -v "$(PWD)/data:/data" \
 --name python_ch7 python/ch7 \
 /usr/src/app/weather.py \
 --output /data/wx.txt \
 --stations KSFO,KDEN,KSTL,KJFK

2. Execute the script to upload the data file to InfluxDB:

% docker run --rm --network=host \
 -v "$(PWD)/app:/usr/src/app" \
 -v "$(PWD)/data:/data" \
 --name python_ch7 python/ch7 \
 /usr/src/app/weather.py \
 --input /data/wx.txt \
 --db Chapter07 --token <API_TOKEN>

That should get us started with a dataset in our InfluxDB server, and a Grafana data source to query
it. Let’s move on to the visualizations, starting with a review of the table visualization, which you may
have already seen back in the previous chapter.

Reviewing the table visualization
Our first visualization is one of the least graphically interesting of the visualizations you will encounter
in Grafana. We introduced it in the previous chapter, mostly to expedite the visualization of raw data.
However, there is more to the table visualization, so let’s see how it is not simply a tool for displaying
raw data (although it does do that too).

As you may know, the table visualization provides a spreadsheet-like data grid that is useful if you
want to see the rows of actual data, along with any aggregations. When rolling up your data series
into an aggregation or troubleshooting transformation functions, the table visualization can be more
useful than the table view.

Comparing aggregations

To give you an idea of how the table visualization compares to the time series visualization legend
table, let’s create a panel and have it display a set of common aggregations. Create a new panel and
select Table from the visualization pull-down menu. Pick Today so far as the time range. Enter these
parameters for the Query tab by using the raw query editor (pencil icon):

• SELECT mean("value") FROM "temperature" WHERE $timeFilter GROUP
BY time($__interval), "station"::tag, "name" fill(none)

• Format As: Time series

Reviewing the table visualization 179

• Query options | Min interval: 1m

Once you’ve added a query, you should see our raw data:

Figure 7.2 – Table visualization query

The table panel’s interface works much like a standard spreadsheet application:

1. Sort the rows by clicking on a column.

2. Adjust the column widths by dragging the column divider.

3. Select a different series with the drop-down menu at the bottom of the panel.

When working with the table visualization, it’s often best to start with the raw data and work it into
the form you wish to display in the table. In this case, we’d like to display a set of aggregations over
the time period, so we will go to the Transform tab and add a function to reduce each time series to
an aggregation:

1. On the Transform tab, click on Reduce.

2. Set Mode to Series to rows.

3. In the Calculations text field, delete the Max value already in the field, then click and select
Mean from the dropdown.

Surveying Key Grafana Visualizations180

After adding the transformation function, it should look like this:

Figure 7.3 – Query with reduce transformation

You should now see that our rows of time series data have been replaced with a single row for each
data series, and all the associated values are aggregated by Mean. Go ahead and use the dropdown
next to the Calculations setting to add the Min, Max, and Last* columns.

If you were to duplicate this panel, disable the Transform function, convert the visualization into a
time series, and set the legend values to Min, Max, Avg, and Last*, you would see matching entries:

Figure 7.4 – Comparing time series legend and table aggregations

Reviewing the table visualization 181

Let’s go ahead and set the Unit under Standard options to Celsius (ºC) for our table values. Now, the
Standard options setting applies to all the column fields in the table, so if we happen to have fields
with different units, we are going to need some way to set some fields with one unit and others with
a different unit.

If you recall from Chapter 5, Extracting and Visualizing Data with InfluxDB and Grafana, the look of
a specific data series in the time series visualization can be set by a field override. We’ll use the same
technique to override those settings for specific fields.

Overriding field settings

In the case of the table visualization, field overrides are intended to provide a generalized mechanism
for formatting virtually any cell or group of cells in the table. Here’s the simple, yet powerful, process:

1. Add an override.

2. Set a matcher for one or more field names.

3. Set one or more of the override properties found under the Field tab.

Let’s walk through an example to illustrate how to use the column styles to format multiple cells at
once. We want to display a barometer reading for several stations, as well as the temperature. We also
want to set the cell to display a certain color depending on the barometric pressure, and we want to
set a color for the text of the temperature cells.

First, we’ll set up a query to pull in the data. Create a new panel and set the time range to Today so
far. Set up an A query:

• SELECT mean("value") /1000 FROM "barometricPressure" WHERE
$timeFilter GROUP BY time(1h), "station"::tag fill(none)

• Format as: Time series

• Query options | Min interval: 1m

Next, set up a B query:

• SELECT mean("value") FROM "temperature" WHERE $timeFilter GROUP
BY time(1h), "station"::tag fill(none)

• Format as: Time series

• Query options | Min interval: 1m

In the Standard options section, set the color scheme:

• Standard options | Color scheme: From thresholds (by value)

Surveying Key Grafana Visualizations182

Just a few things to note – we’re pulling in two data series, one for the barometer reading and the
other for the temperature reading:

• When the tags and timestamps are the same for the data point in different queries, Grafana
will line them up in the same row of the table.

• Unfortunately, the timestamps are all over the place, and since we only care about hourly
reading, we’ll roll them up in GROUP BY into hour-long intervals.

• For the A query, we want to convert the value from pascals to kilopascals, so we’ll divide the
returned value by 1,000 using a math() operator.

• We also need to pivot the table so that each column represents a series. We’ll use the Join by
field transformation function on the Transform tab. Set Mode to INNER and set Field to
Time, or leave it set to the default. This combines the fields of all rows with a matching Time
field into a single row. INNER mode means any rows not matching are left out. Your table
should now look like this:

Figure 7.5 – Query with Join by field transformation

Now, at this point, we could set various options for units, name, color, and so on. But since we have
two different measurements (pressure and temperature), anything we set at the panel level will apply
to all columns, which wouldn’t be appropriate. We want to change a few things for each column field:

• The units for the temperature and barometric pressure

• The names of the fields so that the columns look more readable

Reviewing the table visualization 183

• The thresholds for the cell color

• Whether the cell background or text is colored

• The number of decimals for the temperature values

To accomplish this for all the columns, we’ll need to make liberal use of field overrides. We just need
to go through and match the column to a field override step by step, then for each override, configure
a series of one or more override properties.

Our first field override will match the KDEN station temperature.mean:

1. Click + Add field override.

2. Click on Fields with name to add a new field name-based override.

3. Choose the field name from the scrolling menu – in this case, temperature.mean {station:KDEN}.

Then, we start adding our overrides beginning with the unit:

1. Click on + Add override property to add the field property to be overridden.

2. Click on Standard options | Unit from the scrolling menu.

3. Set the units in the fields to Temperature | Celsius (ºC).

Next up, we’ll go ahead and change the field’s name:

1. Click on + Add override property to add the field property to be overridden.

2. Click on Standard options | Display name from the scrolling menu.

3. Change the field display name to KDEN temperature.

We set up some thresholds to modify the displayed color based on the temperature. We’ve already set
the color scheme to be controlled by thresholds:

1. Click on + Add override property to add the field property to be overridden.

2. Click on Thresholds | Thresholds from the scrolling menu and add thresholds by clicking on
+ Add threshold:

 � Blue: Base

 � Yellow: 5

 � Red: 10

We next set the override for cell display mode:

1. Click on the + Add override property to add the field property to be overridden.

2. Select Cell type mode from the scrolling menu.

Surveying Key Grafana Visualizations184

3. Set the mode to Colored text.

The last thing for this column is to set the number of decimals to 1:

1. Click + Add override property to add the field property to be overridden.

2. Select Standard options | Decimals from the scrolling menu and set the value to 1.

Now, we’ll do something similar for one of the barometric pressure columns. I won’t go through this
step by step; you just need to know the basic override settings:

• + Add field override | Fields with name: barometricPressure.mean {station:KSFO}

• Override Property | Standard options | Unit: Pressure / Kilopascals (kPa)

• Override Property | Standard options | Display name: KSFO barometer

• Override Property | Thresholds:

 � Red: Base

 � Orange: 100.8

 � Green: 101.8

• Override Property | Cell type: Colored Background

Setting a display name

As you go through the process of setting the Standard options | Display name override you do
have some control over how to set the text, especially if you don’t want to explicitly specify the name
in a field override. While you can type any arbitrary text into the Display name field, if you wish
to customize it with text specific to the data series, you should use these special Grafana variables
described in the Grafana documentation. Let’s assume we have a series that measures windSpeed
and is grouped by the station tag:

• ${__field.displayName}: The name of the field along with any labels. Can be overridden
by the Alias By field:

 � ${__field.displayName} | windSpeed {station: KSFO}

• ${__field.name}: The name of the field column from the SELECT query. Same as ${__
field.displayName} but without the labels:

 � ${__field.name} | windSpeed

• ${__field.labels}: The labels on the field column. Same as displayName without
the name:

Reviewing the table visualization 185

 � ${__field.labels} | {station: KSFO}

• ${__field.labels.X}: X indicates the key for a specific label:

 � ${__field.labels.station} | KSFO

• ${__field.labels.__values}: An array list of the values of the labels:

 � ${__field.labels.__values} | KSFO, KDEN…

As you can see, these variables give you many options for pulling meta-information from the query,
so you don’t always need to be explicit when you need to configure a descriptive text field such as
Display name. This pattern will repeat itself as we learn more about Grafana. The notion of embedding
variables in text fields becomes a powerful way to create abstract information in panel configurations,
thus making them generalized for different queries, panels, and even dashboards.

Armed with this information, and as an additional exercise, go ahead and do the same for the other
columns. You can simply replicate the settings for each column. Can you pull it off with just two field
overrides? When you’re done, you should see a table that looks something like the following:

Figure 7.6 – Table with field overrides

Here’s a couple of hints:

1. Use a Fields with name matching regex matcher so you only need to set one field override for
all the columns from the same query.

2. Leverage variables in Display name to set the column using labels.

The answers can be found in the Time series to column with overrides panel on the Chapter 07.02
Table Visualization dashboard found in the Chapter07/Dashboards folder of the GitHub repo.
That’s it for the table visualization. This visualization, when coupled with transforms, has the potential
to enable very sophisticated analysis.

Surveying Key Grafana Visualizations186

Introducing the stat visualization
After the time series visualization, the stat visualization may well be the next most used panel for
several reasons:

• It makes it extremely easy to see the value at a distance

• It boils down a large dataset into a single value

• It can feature several visually important cues

Creating a stat visualization panel

Let’s get started with a simple panel using the stat visualization:

1. From a new or existing dashboard, create a new panel with the following query:

SELECT "value" FROM "temperature"
WHERE ("station"::tag = 'KSFO') AND $timeFilter

2. Set Format to Time series.

3. Now, go to the Panel options tab and select the Stat visualization. Next, we’ll format the panel
to represent the current temperature.

Here’s a look at the results of our query so far:

Figure 7.7 – Stat visualization query

Introducing the stat visualization 187

4. In the Value options section, set Calculation to Last *.

Let’s see what our Value options and Stat styles settings look like so far:

Figure 7.8 – Value options and Stat styles settings

5. Under the Standard options section, we’ll set the units and the number of decimals:

 � Standard options | Unit: Temperature | Celsius (°C)

 � Standard options | Decimals: 1

Surveying Key Grafana Visualizations188

6. Change Color scheme to Single Color and pick a color from the picker to the right.

Now, let’s see what the panel settings should look like:

Figure 7.9 – Stat standard options settings

When you return to the dashboard, your panel should look something like this:

Figure 7.10 – Stat with area graph

Introducing the stat visualization 189

To get a better idea of how the value of the stat panel relates to your data, I recommend you duplicate
the panel and convert the copy into a time series panel. To duplicate it, click on the drop-down menu on
the panel title and select More... | Duplicate. Select Time series to change the panel visualization. Now,
when you configure the stat visualization, you can compare the value you see with the corresponding
value in the time series visualization panel, as long as the two panels have the same query.

Here is where we come across a realization – the value of the stat panel is the representation of the
entire data series in a single value. It may be an aggregation such as Mean or Total, or it may be a
selection such as First or Last. Previously, in our time series panels, we worked with aggregations
as well, such as mean(), but those only pertained to data groupings by time. In the case of the stat
visualization, we can certainly use a calculation such as an aggregation for our query, but how do we
derive its ultimate value?

Well, we aggregate again in the panel itself, so the stat calculation can be thought of as an aggregation
on an aggregation! Now, as long as you don’t try to create a meaningless calculation (such as a total
of the temperatures), you should have no trouble working with the stat visualization; but be careful.

Along with the common settings found in many of the visualizations, the stat visualization has one
specific to the visualization itself:

• Stat styles: Sets the graphical representation of the visualization

Let’s take a closer look at the Stat styles settings.

Setting stat styles

While the Value options are responsible for configuring the numerical display of the stat visualization,
the Stat styles options configure the graphical aspects of the visualization, most notably the color and
whether a graph is displayed on the panel. Bear in mind that there are typically two text objects to be
displayed: the name of the numerical value (sometimes referred to as the title) and the value itself.
Here are those options summarized:

• Orientation: Sets the stacking orientation of multiple values to either Vertical or Horizontal,
or auto-sets it based on the shape of the panel.

• Text mode: Determines whether the name, value, name and value, or none are displayed. Auto
displays them if space permits.

• Color mode: Sets either the Background color or the color of the displayed value.

• Graph mode: None hides, or Area displays, a sparkline graph at the bottom of the panel. The
Min and Max settings under Standard options determine the extents of the values plotted on
the graph, truncating the graph if necessary.

• Text alignment: Auto sets the name and value text to span the sides of the panel and Center
places both at the center.

.

Surveying Key Grafana Visualizations190

The last set of options specific to the stat visualization controls the size of the two objects, the text
and the value:

• Title: Sets the size of the title text, if displayed

• Value: Sets the size of the value text, if displayed

Defining value mappings in a stat visualization

Frequently, you will want to make a translation from quantitative information to qualitative information.
The way Grafana accomplishes this is through value mapping. Put simply, value mapping converts
numbers into text. A mapping identifies a text string with a value or a range of values. To create a
value mapping, click Add value mappings in the Value mapping section.

To see how value mapping works, we’re going to map a series of temperature ranges to familiar terms
such as Hot and Cold. Duplicate your existing stat panel and add the following mappings in the
Value mapping section:

• Condition | Range | From: 20, To: 30

 � Display Text | Hot

• Condition | Range | From: 10, To: 20

 � Display Text | Warm

• Condition | Range | From: 0, To: 10

 � Display Text | Cool

• Condition | Range | Range | From: -10, To: 0

 � Display Text | Cold

Introducing the stat visualization 191

Your Value mappings section should look something like this:

Figure 7.11 – Stat thresholds

Now, instead of a mysterious number for the temperature, you can display a more user-friendly
textual description:

Figure 7.12 – Stat with value mapping

Surveying Key Grafana Visualizations192

Now, let’s build a fully tricked-out stat panel, with thresholds, background colors, and a graph – the
works! Follow these steps:

1. Create a new panel and set up the following query:

SELECT mean("value") FROM "temperature"
WHERE $timeFilter
GROUP BY time($__interval), "station" fill(none)

2. Set Format as to Time series.

3. Set Alias by to $col $measurement $tag_station.

4. Set Query options | Min interval: 1m.

5. Set the title in the Panel options section:

 � Panel title: Station temperatures

6. Configure Value options:

 � Value options | Show: Calculate

 � Value options | Calculation: Last *

7. Configure Stat styles:

 � Stat styles | Orientation: Auto

 � Stat styles | Color mode: Background Solid

 � Stat styles | Graph mode: Area

 � Stat styles | Text alignment: Center

8. Set Standard options on the Field tab:

 � Standard options | Unit: Celsius (ºC)

 � Standard options | Decimals: 1

 � Standard options | Display name: ${__series.name}

 � Standard options | Color schema: From thresholds (by value)

9. Next, we’ll establish some thresholds:

 � Blue: Base

 � Yellow: 0

 � Red: 10

Adding visual interest with a gauge 193

This is how my panel turned out:

Figure 7.13 – Stat with multiple series

Now, try these exercises:

1. With a custom time range starting from midnight of the current day (Today so far), create a
stat panel with a high temperature for the day.

2. With the same time range, create a stat panel to display the low temperature for the day.

You may find that when you compare an aggregated stat value with the same value in a time series
visualization legend, they may not agree when querying across large time ranges. Why is that? Hint
– use Query Inspector to examine the query sent to InfluxDB.

Here’s why they may not agree: the $__interval variable, determined automatically by Grafana,
is set on a per-panel basis. Consequently, if you compare the interval in the query for different panel
visualizations (time series and stat), you’ll find that they may calculate different intervals at large time
ranges. This means that they may also end up aggregating different sets of points and thus display
different aggregation values. This is something to be aware of. In the next chapter, we’ll see how sharing
queries between different panels can be a workaround for this problem.

Adding visual interest with a gauge
The gauge visualization is intended to emulate the look of a semicircular analog graph, and it comes
with a comprehensive set of controls for text and color. To get a feel for using this gauge, let’s set up a
set of wind-speed gauges, one for each station.

Surveying Key Grafana Visualizations194

First, let’s set up a query for the wind speed for all the stations. We’ll use the math() operator to
convert the value from the native meters per second setting to kilometers per hour:

• SELECT "value" / 1000 * 3600 FROM "windSpeed" WHERE $timeFilter
GROUP BY "station"::tag

• Format as: Time series

• Query options | Min interval: 1m

Now that we have a query, let’s start by configuring the look of our visualization. We begin with
Value options:

• Value options | Show: Calculate

• Value options | Calculate: Last *

We’ll set up the gauge settings, but let’s go over them first.

Exploring the gauge options

The Display settings section determines the nature of what is displayed in the gauge. As with the stat
panel, the following controls are available:

• Orientation: Sets the stacking orientation of multiple values to either Vertical or Horizontal
or auto-sets it based on the shape of the panel.

• Show threshold labels: Displays the threshold labels on the gauge perimeter.

• Show threshold markers: Displays the threshold colors on the gauge perimeter.

• Neutral: Sets the neutral or base point on the graph where the fill begins. By default, it starts
at the Min point.

Here are the gauge settings we want to set:

• Gauge | Show threshold labels: On

• Show threshold markers: On

Go ahead and set these Standard options settings next:

• Standard options | Unit: kilometers/hour (km/h)

• Standard options | Min: 0

• Standard options | Max: 125

• Standard options | Decimal: 1

• Standard options | Display name: ${__field.labels.station}

Adding visual interest with a gauge 195

• Standard options | Color scheme: From thresholds (by value)

Note
You should take care to calibrate your gauge so that the Min and Max spread covers the general
range of possible values. Setting Min too high or Max too low could result in an empty or full
gauge, respectively. Setting Min too low or Max too high leaves too much of an empty gauge,
making it useless.

We do want our gauges to give us some idea of how strongly the wind is blowing, so we’re going to
need visual cues as the wind speed rises. We can provide those cues with thresholds.

Setting the threshold values and colors

Let’s set up some thresholds for our wind gauge; just to keep things interesting, we’ll map the Beaufort
scale (https://en.wikipedia.org/wiki/Beaufort_scale) to a series of thresholds.
The Beaufort scale is a measure of wind speed based on its observed effects on the environment, so
we set up a threshold at each level of the scale to map the current wind speed to its corresponding
level on the scale.

Starting from the bottom and working upward, we set the following thresholds, using the color names
to guide our color picker selections:

• White: Base

• Light blue: 2

• Medium blue: 5

• Blue: 11

• Light green: 19

• Medium green: 28

• Green: 38

• Medium yellow: 49

• Dark yellow: 61

• Light orange: 74

• Medium orange: 88

• Dark orange: 102

• Red: 117

https://en.wikipedia.org/wiki/Beaufort_scale

Surveying Key Grafana Visualizations196

This is what your Thresholds panel should look like when you’re done:

Figure 7.14 – Gauge with thresholds

Note
If you’re reading a physical copy of this book, it might be a bit difficult to discern the gradations
in color from a grayscale image. Rest assured; you can download the images in glorious full
color from this book’s website. Details can be found in the Preface section of this book.

Going linear with a bar gauge 197

Once we have the thresholds in place, this is what our final panel looks like:

Figure 7.15 – Gauge with multiple series

As an exercise, try creating value mappings for each level of the scale to the corresponding Beaufort
scale values. Let’s move on from the gauge panel to its close cousin – the bar gauge panel.

Going linear with a bar gauge
The bar gauge panel has similar functionality to the gauge panel but produces its data in a substantially
different form. It’s designed to produce either vertical or horizontal bars, whose full extent represents
a maximum quantity, and the length of the rendered bar represents what proportion of the extent is
covered by the value. Think of the fuel gauge in a car that maps some value between full and empty.

Exploring the bar gauge settings

Working with the bar gauge is not terribly different than working with the gauge or even the stat
visualization. There are just three or four settings listed under the Bar gauge section:

• Orientation: Sets the Vertical or Horizontal orientation. Auto switches between the two
depending on the size of the panel.

• Display mode: Sets the visual display, from a smooth Gradient to a segmented Retro LCD
to a Basic colored bar.

• Show unfilled area: The Basic and Gradient Display modes also enable an option to fill the
empty space with a gray color.

• Min height/width: Sets a minimum height or width for the bars.

Surveying Key Grafana Visualizations198

Building a bar gauge

We’re now going to make a bar gauge to display relative humidity. This should be simple to grasp as
relative humidity is measured as a percentage from 0 to 100:

1. First, we set up our query in the editor:

SELECT "value" FROM "relativeHumidity"
WHERE $timeFilter GROUP BY "station", "name"

 � Format as: Time series

 � Query options | Min interval: 1m

2. We next establish the value to be displayed:

 � Value options | Show: Calculate

 � Value options | Calculation Value: Last *

3. We set the style of the bar gauge:

 � Bar gauge | Orientation: Horizontal

 � Bar gauge | Display mode: Retro LCD

4. Next up is Standard options:

 � Standard options | Unit: Percent (0-100)

 � Standard options | Min: 0

 � Standard options | Max: 100

 � Standard options | Decimals: 1

 � Standard options | Display name: ${__field.labels.station}

5. Finally, the thresholds:

 � Blue: Base

 � Yellow: 25

 � Orange: 50

 � Red: 75

Going linear with a bar gauge 199

Thresholds and Standard options should look like this:

Figure 7.16 – Bar gauge settings

This is what the resulting bar gauge visualization should look like:

Figure 7.17 – Bar gauge

Surveying Key Grafana Visualizations200

Have fun with the gauge and bar gauge panels! They can prove useful not only to provide visual
excitement but also to complement your other panels, especially the stat visualization. From a distance,
the large fonts, saturated colors, and dynamic graphics serve to draw the viewer’s attention. Adding
a time series panel then invites the viewer to take a deeper dive into the data.

Summary
This concludes the survey of some of the most versatile panel visualizations Grafana offers. We reviewed
the table visualization and introduced the stat, gauge, and bar gauge visualizations. Along the way,
we learned more about field overrides, value mappings, and thresholds, all of which we will return to
again and again over the course of this book.

In the next chapter, we will take a look at more panel visualizations, this time some of the newer
visualizations, such as geomap, histogram, bar chart, and heatmap. This should prove to be interesting!

8
Surveying Additional Grafana

Visualizations

In the last chapter, we looked at several venerable panel visualizations. From the table to the stat and
gauge visualizations, each is a key component in your visualization toolkit—the panel visualizations
that you will combine on the canvas of the dashboard to highlight your data and tell its story.

In this chapter, we will be looking at a few of the newer visualizations, mostly concerned with the
display of data in more qualitative ways, from the use of spatial mapping with the geomap visualization
to categorical data in the bar chart and heatmap visualizations.

We’ll also be working with a new dataset from our friends at the United States Geological Survey
(USGS), a real-time catalog of earthquakes around the globe.

We’ll first drop the data on a map, locating each earthquake in its spatial location with the geomap
visualization. Next, we’ll look at how to display earthquake category data with the bar chart visualization.
Along the way, we’ll create and display our own quantitative categories by using the histogram
transformation and visualization. We’ll display the histogram data using the bar chart visualization
Finally, we’ll visualize histogram data over time with the heatmap.

In this chapter, we will be launching both Grafana and InfluxDB servers via Docker Compose. We’ll
be running a modification of the extract, transform, and load (ETL) ingestion script used in previous
chapters to gather weather data. The script will be run by Python installed in a Docker container.

Here’s the list of topics that we will cover in this chapter:

• Launching server Docker containers

• Setting up the InfluxDB database

• Configuring the InfluxDB data source

• Exploring spatial data with geomap visualization

• Displaying category data with a bar chart visualization

Surveying Additional Grafana Visualizations202

• Displaying histogram data with the bar chart visualization

• Visualizing histogram data over time with the heatmap

So let’s get started!

Technical requirements
Before we create our visualization panels, we’ll need to set up InfluxDB and Grafana servers, install
a Python Docker container to run our script, and then ingest data into an InfluxDB bucket. These
steps should recall those we used when we introduced this data ingestion pipeline back in Chapter 5,
Extracting and Visualizing Data with InfluxDB and Grafana.

Information
Tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
Github repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter08.

Let’s start!

Launching server Docker containers
We’ll go through the same steps as in the previous chapters:

1. If you haven’t done so already, shut down any services you might have left running from the
other chapters by executing the following:

% docker-compose down

2. Run the Docker Compose script that will download the Grafana and InfluxDB containers and
then launch them. The docker-compose.yml file is available in the Chapter08 directory
of the GitHub repository for this book:

% docker-compose up -d --pull missing
[+] Running 3/3
 Network chapter08_default Created 0.1s
 Container chapter08-influxdb-1 Started 0.5s
 Container chapter08-grafana-1 Started 0.5s

This will start up our Grafana and InfluxDB services. Next, we’ll need to configure our InfluxDB
database server.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter08
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter08

Setting up the InfluxDB database 203

Setting up the InfluxDB database
Here, we’ll log in to our InfluxDB server, set it up with an initial account and bucket, and generate an
API key so we can connect to it from our Python script and the Grafana data source.

Initializing the InfluxDB server

Log in to the InfluxDB UI at http://localhost:8086. If you haven’t already set up the instance,
you’ll see a prompt to perform the initialization:

1. Set the username to whatever you like.

2. Add a password (8 characters minimum).

3. Choose an organization name: LearnGrafana.

4. Create a bucket: Chapter08.

Generating an API token

You’ll need to generate a new token in order to access the InfluxDB server from our script:

1. Click on Load Data | API Tokens.

2. Click the gear icon on the right side of the user you created previously and select Clone.

3. Click on Copy to clipboard to copy the API token string.

4. Save the API token in a safe place as you won’t be able to see it again without going through
the process to create a new one.

Configuring the InfluxDB data source
Now that we have our InfluxDB server ready to accept data, let’s get Grafana ready to communicate
with it:

1. Open your browser to the Grafana app and select Connections | Add new connection from
the main menu.

2. Search for the InfluxDB data source and select it.

3. Click on Add a new data source. Fill out the following form fields:

 � Name: InfluxDB

 � Query Language: InfluxQL

 � HTTP | URL: http://influxdb:8086

 � Custom HTTP Headers | Header: Authorization

http://localhost:8086

Surveying Additional Grafana Visualizations204

 � Custom HTTP Headers | Value: Token <API Token>

 � Database: Chapter08

Note
Make sure there is a space between Token and <API Token>.

Your data source configuration should look like this:

Figure 8.1 – InfluxDB data source

Exploring spatial data with the Geomap visualization 205

Click on Save and Test to confirm you can successfully connect to the InfluxDB server.

Building the Python Docker container

Use the requirements.txt file in the Chapter08 repository to create a Docker container with
a Python build and the appropriate libraries:

1. From the repository directory, type the following:

% docker build --pull --tag python/ch8 .

2. Confirm the script runs by executing it with the --help option:

% docker run --rm \
 -v "$(PWD)/app:/usr/src/app" \
 --name python_ch8 python/ch8 \
 /usr/src/app/earthquake.py --help

Exploring spatial data with the Geomap visualization
You should be all set up at this point to start downloading our data and then storing it in our
InfluxDB bucket.

Ingesting a new earthquake dataset

The USGS maintains a comprehensive earthquake catalog and it is freely available via a simple REST
interface at https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.
php. The USGS provides continually updated catalogs of earthquakes, which are filtered by size over
a variety of time periods ranging from one hour to one month.

To load the earthquake data, we only need to create a new Python script that is similar in structure
to weather.py from Chapters 5, 6, and 7. We’ll call this new script earthquake.py, and you
can find it in the Chapter08/app folder of the repository. Let’s take a quick peek at the changes
we made from weather.py to earthquake.py.

Updating process_cli()

The first big change occurs in process_cli(). First, we change the parser description:

 def process_cli():
 parser = argparse.ArgumentParser(description="read earthquake
data from
 USGS into Influxdb")

https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php

Surveying Additional Grafana Visualizations206

Next, we replace the --station option to add two new options—one to select the minimum size of
the earthquake and another to indicate the width of the time period covered by the catalog. Together,
we’ll use the values to construct our REST URL:

 parser.add_argument("--size", dest="size",
 choices=['significant','4.5','2.5','1.0','all'],
 default='significant', help="earthquake size")
 parser.add_argument("--window", dest="window",
 choices=['hour', 'day', 'week', 'month'],
 default='hour', help="earthquake time window")

Updating main()

In main(), we’ll need to create a new data dump subroutine called dump_eq_data(). It takes the
command-line arguments for the size, window, and output file as parameters:

 if args.output_file:
 dump_eq_data(args.size, args.window,
 args.output_file)

Adding dump_eq_data()

The code for dump_eq_data() is very simple. First, we construct a request URL from the size
and window parameters and get the response:

 def dump_eq_data(size, window, output):
 url =
 f"https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/
{size}_{window}
 .geojson"
 response = requests.get(url)
 logging.info(response.url)
 if response.status_code != requests.codes.ok:
 raise Exception(f"dump_eq_data:
 {response.status_code}:{response.reason}")

Next, we iterate through each feature in the response and extract the magnitude and depth for the
metrics, as well as the latitude, longitude, and place names as tags. Here’s the list of variables that we
are interested in:

• lat: Earthquake epicenter latitude

• lon: Earthquake epicenter longitude

• place: The place name for the location of the earthquake epicenter

• alert: Earthquake alert level: None, Green, Yellow, or Red

Exploring spatial data with the Geomap visualization 207

• mag: Earthquake magnitude

• cdi: Earthquake Community for Data Integration (CDI) intensity from Did You Feel It
(DYFI) responses

• mmi: Modified Mercalli Intensity measure

• felt: Number of people who felt the earthquake, based upon DYFI responses

• sig: USGS significance rating, from 0 to 1000

• dep: Earthquake depth

• time: Earthquake event time

Some of these variables are interesting but we won’t necessarily reference them in our tutorials.
However, you are welcome to try them out in your exercises to see what they look like and how they
are distributed.

Here’s the loop code:

 for feature in response.json()['features']:
 measure = "event"

 properties, geometry = feature["properties"],
 feature["geometry"]

 timestamp = properties['time']
 lon, lat, dep = geometry['coordinates']

 mag = properties['mag']
 if mag is None:
 logging.error(f"bad event: {feature}")
 continue

Assemble the tags, fields, and timestamp components of our output line:

 tags = [
 f"tag_latitude={lat}",
 f"tag_longitude={lon}",
 f"tag_place={escape_string(properties['place'])}",
 f"tag_alert={properties['alert']}",
]

 fields = [
 f"magnitude={properties['mag']}",
 f"cdi={properties['cdi'] if properties['cdi'] else 0.0}",
 f"mmi={properties['mmi'] if properties['mmi'] else 0.0}",

Surveying Additional Grafana Visualizations208

 f"felt={properties['felt'] if properties['felt'] else
0}",
 f"sig={properties['sig']}",
 f"depth={dep}",
]
 timestamp = properties['time']

Output each event as a line in our output file:

 data = f"{measure},{','.join(tags)} {','.join(fields)}
{timestamp}\n"
 logging.debug(data)
 output.write(data)

That’s pretty much all there is to it. Let’s load up some data.

Loading the data

From here, we just need to pull down our data from the USGS, and then load it into our InfluxDB
server bucket:

1. Execute the script to download earthquake data for a week:

% docker run --rm \
 -v "$(PWD)/app:/usr/src/app" \
 -v "$(PWD)/data:/data" \
 --name python_ch8 python/ch8 \
 /usr/src/app/earthquake.py \
 --size all \
 --window week \
 --output /data/eq.txt

2. Execute the script to upload the data file to InfluxDB. I’ve left out the API token as you will
need to provide your own. Note that we pass in the millisecond precision per the USGS
API documentation:

% docker run --rm --network=host \
 -v "$(PWD)/app:/usr/src/app" \
 -v "$(PWD)/data:/data" \
 --name python_ch8 python/ch8 \
 /usr/src/app/earthquake.py \
 --input /data/eq.txt \
 --precision ms \
 --db Chapter08 \
 --token=<API_TOKEN>
INFO:root:http://localhost:8086/write?db=Chapter08&precision=ms

Exploring spatial data with the Geomap visualization 209

Now that you have a new InfluxDB data source populated with a week’s worth of earthquake data,
let’s see what this looks like when plotted around the world, shall we?

Mapping earthquake data with the Geomap visualization

We’ll begin as we usually do by creating a new panel on a new dashboard. Once you’ve created the
panel, switch to the Geomap visualization. Add the following query:

SELECT "magnitude", "cdi" FROM "event"
WHERE ("magnitude" > 0) AND $timeFilter
GROUP BY "tag_latitude", "tag_longitude", "tag_place"

In Format as, select Table.

This sets up a query on earthquake magnitude and the CDI value for intensity, and GROUP BY makes
the tags for latitude, longitude, and place available for use in mapping our data. There are quite a few
options sections specific to the Geomap, and it can seem overwhelming. We can boil down the process
of mapping geo data into four phases:

1. Setting up an appropriate basemap – the map onto which our data will layer be layered. The
basemap settings can be found in the Basemap layer section.

2. Mapping the data points onto the base map. Typically, different kinds of information are
drawn onto the base map in a series of layers. We’ll be representing our data points as a series
of “markers,” but the Map layers section can handle many kinds of data.

3. Styling the data point markers. Here, we can set various styling attributes to reflect different
aspects of our data, from the shape of the marker to the size and even the color. These attributes
are also found in the Map layers section.

4. Setting global map controls. The Map controls section contains the majority of the global
settings for our map. There are a few other settings that can be found in other sections as well.

Let us look into these four phases.

Setting the basemap

The first order of business will be to determine the basemap. We don’t want to just map our data
point onto a blank background, do we? In the Basemap layer section, we can find several available
basemaps. Currently, beyond the default map layer, there are also layers available from Open Street
Map, the CARTO basemap, ArcGIS MapServer, or a tiled web map. Information about the use of tiled
web maps can be found in the Grafana documentation and in the Wikipedia entry here: https://
en.wikipedia.org/wiki/Tiled_web_map. We will be selecting ArcGIS MapServer with

https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Tiled_web_map

Surveying Additional Grafana Visualizations210

the Topographic server instance as it shows a lightly shaded relief map. Here’s a look at the Basemap
layer section:

Figure 8.2 – Geomap basemap layer settings

Mapping the data

Now that we have a basemap, we’ll need to start overlaying map layers. In our case, we only plan on
creating a single layer, but Geomap supports a number of different layer types from markers, heatmaps,
and GeoJSON data (from which our earthquake data is derived), as well as the basemaps described
previously. To add a layer of marker data, click on + Add layer and select Markers. A new layer is
created, and Layer type is set to Markers.

From here, we need to indicate which series contains our geo data, and how to indicate where on the
map to place the points. Select Query A under the Data option, if isn’t already selected. If the latitude
and longitude data were named as such, we could use the auto selection under Location Mode.
However, we can use the Coords selection to give it a hint. Set the latitude field to tag_latitude and the
longitude field to tag_longitude, and you should start seeing data points appear on the map display.

Exploring spatial data with the Geomap visualization 211

The Map layers section should look like this:

Figure 8.3 – Geomap Map layers settings

Styling the data markers

Once we have our data points on the map, we can continue to use the settings under the Map layers
section to style the data points. It is traditional for the USGS to scale the size of mapped data points
to the magnitude of the earthquake, so we’ll do the same, by setting the Size option under Styles to
magnitude. We’ll set Min and Max to 2 and 15, respectively, so small earthquakes aren’t invisible
and large ones don’t overwhelm the map.

Surveying Additional Grafana Visualizations212

The traditional symbol on the USGS earthquake map is a circle, so we’ll leave Symbol set to circle.
Feel free to try out the other shapes (plane or star, for example) for fun. Feel free to choose a color
that stands out. We’ll also set Fill opacity to 0.6 as there can often be several earthquakes in roughly
the same location, so we don’t want to obscure them when we’re zoomed out.

I want to set the color of each circle to be based on the CDI value. I’ll set up a threshold for CDI
intensity level IV, which is consistent with a moderate earthquake. We set up Thresholds, Color
scheme, and Color:

• Thresholds | Green: Base

• Thresholds | Red: 4.0

• Standard options | Color scheme: From thresholds (by value)

• Map layers | Styles | Color: cdi

The value in the cdi field is checked against Thresholds (according to Color scheme) and the circle
is colored based on where the value falls in Thresholds.

Finally, let’s go ahead and set Text label for our data points. We want them to display the magnitude
of the earthquake along with the circle. Here are some reasonable settings:

• Text label | Source: Field

• Text label | Field: magnitude

• Text label | Font size: 14

• Text label | Y offset: 12

• Text label | Align: Center

• Text label | Baseline: Top

Exploring spatial data with the Geomap visualization 213

Here’s the Styles section of the Map layers section:

Figure 8.4 – Map layer Styles settings

That should give us nicely sized text offset just below the circle to make the text labels legible. You
may have to zoom in a bit to get them to resolve properly. We’ve already got a nice-looking map with
a lot of useful information. Let’s add some finishing touches by setting our controls, the tooltip, and
an initial location for the map.

Surveying Additional Grafana Visualizations214

Finishing our map

We just need to tidy things up a bit and turn on some of the map controls. First, we name our layer
by clicking on the layer label and edit the name to something descriptive, such as Earthquakes.
Next, we enable the Show legend option to show the name of the layer.

Scrolling down to Map controls, let’s turn on the following controls: Show zoom control, Mouse
wheel zoom, Show attribution. Set Tooltip to Details so that when we hover over an earthquake,
we’ll be able to see important information. This is what Map controls should look like:

Figure 8.5 – Geomap Map controls

There is one last thing we should do: set the initial state of the map. It’s a bit cumbersome to launch
the dashboard and have the Geomap visualization show us the entire globe, which forces us to scroll
around and zoom into the part of the world we are interested in. We can set an initial zoom point, so
the map always starts at an interesting point.

Displaying category data with a bar chart visualization 215

To do this, simply zoom and pan the map to the point you find interesting (I picked out the state of
California) and click Use current map settings. You can certainly enter specific Longitude, Latitude,
and Zoom values but if you don’t know those values, this will be easier. This is a look at the final
results for the panel:

Figure 8.6 – Geomap with mapped earthquakes

That takes care of our Geomap visualization. Play around with the different settings in the Geomap.
Think about the weather data from our previous chapter. Is there a way to map weather data with a
Geomap visualization? Check out the API documentation from the National Weather Service (NWS)
to see whether latitude and longitude are available for weather stations.

We’re not done with earthquakes, however! Next up, we’re going to look at earthquakes from a more
analytical perspective with our next visualization, the bar chart.

Displaying category data with a bar chart visualization
We will now move on to talk about the bar chart visualization. This visualization is designed to display
a simple bar chart reflecting the relationship between a set of categories and their associated values.

Surveying Additional Grafana Visualizations216

Basically, it works much like you would expect a Microsoft Excel spreadsheet graph to work by taking
a series of text value pairs and graphing their relative sizes.

An example from the Grafana documentation using the TestData data source should make things
clear. Here, we select the CSV file scenario and the browser_marketshare.csv file option.
By setting the visualization to Bar chart, you should see a graph of various web browsers and their
relative market share depicted as a bar chart.

Figure 8.7 – Browser market share bar chart

Switching to Table view shows the dataset is nothing more than a series of browser/market share
category/value pairs. Can we do something similar with our earthquake data? That is what we will
explore in this section.

Unfortunately, the data we received from the USGS isn’t available to us as a series of category/value
rows. First, the data is formatted as a series of timestamped rows of earthquake metrics and associated
tagging. Second, our metrics are only tagged with a single low-cardinality (fewer unique values)
field: tag_alert. This makes it a bit of a challenge to identify a data case that lends itself to a bar
chart visualization.

Nevertheless, let’s give it a try by looking at the alert field data in context. Open a new panel and
create an InfluxDB query:

• Query (raw query mode): SELECT "magnitude" FROM "event" WHERE
("magnitude" > 0) AND $timeFilter GROUP BY "tag_alert"

• Format as: Time series

Switch to Table view to see the data. You should see a series of rows with a Time field and the associated
event magnitude. These rows will be in one or more data series, each corresponding to a different

Displaying category data with a bar chart visualization 217

tag_alert value. They should be from a set that includes None, Green, Yellow, and Red. We
know this because our query explicitly grouped the data by the tag_alert tag value.

What we need to do is find a way to aggregate the count of rows in each data series, and then associate
that with the tag value. It just so happens that we spent a chapter working on how to transform data
returned from a query. Could we use the Transform tab to perhaps create a series of transformations
that ultimately produce the data in the form we’re looking for?

Why yes, we could! There are several ways to accomplish the task, but the simplest is to use a
Reduce transform:

1. Open the Transform tab, and switch to Table view so you can see the data in raw form.

2. Select the Reduce transformation and set Mode to Series to rows.

3. Remove the Max calculation and replace it with Count. You should be able to bring it up in
the drop-down menu by typing the initial characters.

4. Switch on Labels to fields so our tag_alert labels become a new field containing its values.
You should end up with a few rows with three fields: Field, tag_alert, and Count.

Switch off the table view so we can configure our bar chart to display the results of our handiwork.

At this point, all we need to do is tell the bar chart what to display as the X-axis categories. The bar
chart will then look for a single numerical field to calculate the size of the bars. In the Bar chart |
X-axis drop-down menu, select tag_alert. That’s it! You should see a nice bar chart with a big value
for None, and hopefully other bars, depending on characteristics of the earthquakes that occurred
during the time range:

Figure 8.8 – Alert level bar chart

Surveying Additional Grafana Visualizations218

The bar chart has a handful of configuration values for tailoring the display. Let’s review them; you
should try them out on your panel to see what effect they have:

• X-axis: This option identifies the field containing the categories. If there is only one such field
of text values, it will be used by default.

• Orientation: Sets up whether X-axis should be Horizontal or Vertical. The Auto option will
select the orientation based on the height of the panel.

• Rotate bar labels: In the Vertical orientation, this sets the rotation of the X-axis labels to
improve readability when they are tightly packed.

• Bar label max length: Sets the maximum length of the X-axis labels.

• Bar labels minimum spacing: Sets the spacing between X-axis labels.

• Show values: Determines whether to display the value above the bar. Auto disables the value
when there is no room.

• Stacking: Setting Normal places additional numerical fields on top of each other. 100% displays
them proportional by percentage. Use this only if the values represent parts of a whole.

• Color by field: Use the values in the selected field to determine the bar color. The colors can
then be set in the Color scheme option in the Standard options section – for example, by a
standard color palette or from Thresholds.

• Line width: Sets the width of the bar’s outline.

• Fill opacity: Sets the opacity of the bar’s fill.

• Gradient mode: Sets the color gradient.

The remainder of the settings are consistent with their counterparts in other visualizations as you’ve
previously seen in, for example, the time series.

Understanding histograms

Let’s take this a step further. Can we create something with the bar chart that handles the other
earthquake data fields, especially the non-text ones? What can we do if we want to answer the question,
Are there more or less high-magnitude earthquakes compared to low-magnitude ones?

There is a way to divide up all the possible values of a field into coherent groups, perform some
aggregation (such as Count), and then graph the results. Believe it or not, we’ve been working with
a similar concept this whole time. Recall the $__interval variable that governs the width of the
Group By option, time. In that case, we are grouping all the data points within a consistent time
interval and performing an aggregation before graphing the result as representing the entire interval.
This gives Grafana the ability to consistently display data at a variety of timescales.

Displaying category data with a bar chart visualization 219

What we are describing is similar to the idea behind a histogram. A histogram is a division of a dataset
into even groupings called bins or buckets, which are then represented by an aggregation of all the
values, usually by count. In the time series visualization, the bins are set by $__interval and
are represented by the aggregation in the query. In the Histogram visualization, the bins are by value
and are represented by count.

To get a feel for the histogram, open a new panel and create a TestData query from the CSV file
scenario (you may need to add a TestData data source connection). Use the gdp_per_capita.csv
file. Switch to the Histogram visualization. You should see a series of bars representing the number
of countries with Gross Domestic Products (GDPs) falling into each bin.

Figure 8.9 – GDP Histogram

As you might expect, the number of countries with low GDP is quite high, and the number of high-
GDP countries is quite low. This is a common distribution, sometimes called a power-law distribution.
Do earthquake magnitudes also follow a similar distribution? Let’s find out!

Producing histograms with transformations

The first thing we want to do is to get data into a shape that will work with the histogram visualization.
The visualization requires not much more than a series of rows, each with a numerical value that will
be used for binning, the process of determining the size of each bin, and the determination of which
bin a row falls into. The histogram picks the first numerical field, so we must be careful to structure
our data accordingly.

To do this, we’ll again rely on our transformations. Let’s start by creating a new panel with a histogram
visualization. Set the following:

• Query (raw query mode): SELECT "magnitude" FROM "event" WHERE magnitude
>= 1.0 GROUP BY "tag_place"

Surveying Additional Grafana Visualizations220

• Format as: Table

We add the GROUP BY option tag_place in case we might want to filter our data on place name.
We’re selecting all the earthquakes greater than the first magnitude to eliminate some of the noise of
small earthquakes that almost no one feels anyway.

Figure 8.10 – Earthquake Histogram

You should quickly see a histogram with a similar distribution to the GDP Histogram, with many
small earthquakes and few large ones. Can we leverage the greater functionality of our bar chart? And
by the way, what if we want to limit our set of earthquakes to a specific place?

Displaying histogram data with the bar chart visualization
It turns out the answer to the first question is yes. Again, we can leverage transformations to shape
our data in a way that makes it compatible with the bar chart. At this point, we’re going to break away
from the pattern we’ve followed in this chapter in order to demonstrate a better workflow practice
than simply creating the bare minimum to illustrate a concept.

The goal is to set up a visualization pipeline, both the Query and the Transform, to maximize our
flexibility as we perform analysis. This way, if we want to produce multiple panels with different slices
of data or different metrics, we don’t have to create entirely new panels each time. Follow these steps:

1. Create a new bar chart visualization panel.

2. Add the following query (raw editor): SELECT "magnitude", "cdi", "mmi", "sig",
"depth" FROM "event" WHERE $timeFilter GROUP BY "tag_place"::tag,
"tag_latitude"::tag, "tag_longitude", "tag_alert"::tag. The
$timeFilter template variable gives us the ability to constrain our analysis by time. GROUP
BY allows us to access all the tagging in case we want to filter on those values.

Displaying histogram data with the bar chart visualization 221

3. Set Format as to Table.

4. Switch to the Transform tab and add Filter data by values.

5. We want to filter on place first, and we only want to look at earthquakes in California. Around the
time of this writing, Northern California experienced a moderate earthquake, which generated
many smaller aftershocks, so let’s concentrate on California. We can filter on the place name.
It is a bit crude because the state experiences earthquakes in many different locations, but it
does illustrate the concept:

 � Filter type: Include

 � Conditions: Match any

6. Next, click + Add condition and add the following conditions:

 � Field: tag_place | Match: regex | Value: California

 � Field: tag_place | Match: regex | Value: ,\sCA

7. Next, we also want to filter on magnitude, so click + Add another transformation and add
another Filter data by values transformation. We could try to add to our existing filter, but it
makes things too complicated. This way, we can also disable it if necessary:

 � Filter type: Include

 � Conditions: Match all

8. Click + Add condition and set the following:

 � Field: magnitude | Match: is greater or equal | Value: 1.0

9. Add the Organize fields transformation.

10. Disable, by clicking the “eye” icon, all the fields except tag_place (we want to filter on tag_place)
and magnitude (the value we plan to histogram).

11. Add a Histogram transform. The transform will create a series of rows, each representing a
range from BucketMin to BucketMax and a count in the magnitude field.

Note
There are some data sources that support producing histogram data directly from the query;
in fact, InfluxDB queries using the Flux query language will generate histogram results.

12. Neaten up the bucket by setting the Histogram Bucket size to 0.5.

Surveying Additional Grafana Visualizations222

13. Add a Convert field type transform. We need to convert the histogram-created xMin and
xMax to text fields for the bar chart:

 � Field: xMin | as: String

 � Field: xMax | as: String

14. Finally, over in Bar chart | X-axis, set to either xMin or xMax, depending upon whether you
want to display the lower bound or the upper bound on the histogram bin.

This is what my results look like. The shape of yours should be similar, even if the numbers are different:

Figure 8.11 – California earthquake magnitude histogram

As an exercise, go back to the Histogram panel and try to get it to match our bar chart. Will you use
the Query or Transform to filter on magnitude? What about the bucket sizing?

As we can see, the transform is now quite complex, and the query is somewhat complex as well.
Now, however, we have the ability to work with additional fields for analysis, say the mmi field,
which represents the Modified Mercalli Intensity (MMI), a subjective measure of earthquake
intensity. Try out a histogram bar chart for mmi, cdi, or sig, all of which correspond to measures
of earthquake magnitude.

Visualizing histogram data over time with the heatmap
Armed with the tools to produce histograms and corresponding bar chart visualizations for our
earthquake data, we now turn to an additional dimension: time. What if you could see how histogram
data changes over time? Enter the heatmap, a visualization capable of mapping histogram bins with
the x axis representing time, the y axis representing the bin, and the bin count by color.

Visualizing histogram data over time with the heatmap 223

In order to leverage the heatmap, we only need to make a small change to our existing panel, so let’s
make a copy first. To duplicate a panel, click on the title of the panel on the dashboard and select
More... | Duplicate. Now, open the new panel for editing.

Disable the Histogram and Convert field type transformation functions. They are not relevant for
this visualization.

When you switch the panel over to use the Heatmap visualization, you may either see something
that looks like a bunch of colored rectangles or you may get an error. The first thing you should do is
make sure none of the tag fields are enabled in the Organize fields transformation but do make sure
the Magnitude and Time fields are.

Next, add an additional transformation called Sort by. Set Field to Time. This will ensure that no
matter how the rows are organized by the query’s GROUP BY, all rows are correctly ordered by
their timestamp.

Over in the Heatmap section, set Calculate from data to Yes. If you were working with actual histogram
data, you’d leave that set to No. Leave X Bucket set to Size. Y Bucket is for magnitudes (think of the
X-axis buckets from the bar chart), so you can set its Size and enter 0.5 or leave it empty.

If all goes well, you now have a beautiful heatmap showing how earthquake magnitudes distribute
over several days. Think of each vertical slice as a single bar chart per time bucket, only viewed from
the top. The height of each bucket is coded by color rather than height and/or a count. By hovering
over a bucket cell, the tooltip will show you the time period, the bucket of magnitude, and the count
(corresponding to the color code). It might be a little hard to get your head wrapped around it but
give it time.

Figure 8.12 – California earthquake heatmap

Surveying Additional Grafana Visualizations224

From this analysis, I can see from the tooltip that a magnitude 6 earthquake occurred in California
between 12/19/2022 22:00 and 12/20/2022 04:00. The actual time was 12/20/2022 02:34. Looking later
in time (to the right), the number of smaller earthquakes in the state (looking down) went up (brighter
colors) in the immediate period after the initial earthquake. So now we can see the distribution of
smaller earthquakes compared to large ones, especially those in the same region, but we can also see
how they distribute over time.

Note
If you wish to replicate these exercises with the same earthquake data, you will find it in the
repository under Chapter08/data in eq_20221214.txt. The time period spans from
2022/12/14 to 2022/12/27.

These kinds of analyses have broad applications where singular events can trigger numerous follow-on
events. For example, tracking logs by severity may show an initial high-severity event, but later follow-on
logs will show many lower-severity events triggered by the initial event.

Summary
I hope this was an interesting (and informative) exploration into some of the science behind one of the
more destructive forces on Earth. In this chapter, we learned about several new visualizations including
geomap, bar chart, histogram, and heatmap. We have also become familiar with the transformation
functions and how they can help shape data to facilitate analysis. We even learned a little about the
power-law distribution (https://en.wikipedia.org/wiki/Power_law) and how it
governs many of the common processes in nature.

In our next chapter, we bring together much of what we’ve learned in the past few chapters. We’ll apply
these skills toward a concrete result: assembling panels into engaging and informative dashboards.

https://en.wikipedia.org/wiki/Power_law

9
Creating Insightful Dashboards

In the previous chapters, we’ve mostly concentrated on panels and how to use and configure them.
We did this pretty much exclusively on the dashboard, which is the canvas that we display our panels on.
In the next few chapters, we will zoom out from the panel level to the dashboard level. We’ll continue
to learn more about various panels, but this will mostly be in the context of making our dashboard
layouts and queries more efficient.

In this chapter, we’re going to take on the task of designing a couple of dashboards – one packed with
information suitable for viewing on a workstation or laptop, and another containing only key pieces
of information suitable for being viewed at a glance or from a distance.

In both cases, we’ll pick up some workflow techniques that can help speed up the often laborious task
of creating, configuring, and laying out panels. We’ll also look at ways to take our numerical data and
convert it into a textual format, thereby increasing the richness of our dashboard content.

Here’s what we’ll cover in this chapter:

• Designing a dashboard

• Creating a high-information display dashboard for weather data

• Creating a high-information visibility dashboard for earthquake data

Let’s get started!

Note
Grafana may have changed since this book went to press, so there might be subtle changes in
the interface that may cause my instructions to drift slightly. If you ever find the results not
quite matching the text, reference dashboards are located in the GitHub repository, which you
can import and examine for comparison.

Creating Insightful Dashboards226

Technical requirements
Before we create our visualization panels, we’ll need to set up InfluxDB and Grafana servers, install
a Python Docker container to run scripts, ingest the data into InfluxDB buckets, and finally, set up
Grafana data sources. These steps should remind you of those we used when we introduced this data
ingestion pipeline back in Chapter 05, Visualizing InfluxDB Data with Grafana Panels.

For this chapter, we will be working with both the weather.py and earthquake.py scripts,
so we’ll go ahead and put them into a bin directory to keep our repository directory tidy. We’ll also
need to manually create two InfluxDB buckets, one for each dataset. Finally, we will need to create
two separate data sources, each connecting to one of the two buckets.

Info
Tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter09.

Launching server Docker containers

Initially, we’ll go through similar steps as in the previous chapters:

1. If you haven’t done so already, shut down any services you might have left running from the
other chapters by executing the following:

% docker-compose down

2. Run the docker-compose script, which will download the Grafana and InfluxDB containers
and then launch them. The docker-compose.yml file is available in the Chapter09
directory of the GitHub repository for this book:

docker-compose up --pull missing -d grafana influxdb
[+] Running 3/3
 Network chapter09_default Created 0.0s
 Container chapter09-influxdb-1 Started 0.5s
 Container chapter09-grafana-1 Started 0.4s

Setting up the InfluxDB database

Here, we’ll log in to our InfluxDB server, set it up with an initial account and bucket, and generate an
API key so we can connect to it from our Python script and the Grafana data source.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter09
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter09

Technical requirements 227

Initializing the InfluxDB server

Log in to the InfluxDB UI at http://localhost:8086. If you haven’t already set up the instance,
you’ll see a prompt to perform the initialization:

1. Set the username to whatever you like.

2. Add a password (8 characters minimum).

3. Choose an organization name: LearnGrafana.

4. Create a bucket: Chapter09. This is just pro forma as we’ll be creating specific buckets for
our data later.

Generating an API token

You’ll need to generate a new token in order to access the InfluxDB server from a script or the
command line:

1. Click on Load Data | API Tokens.

2. Click the gear icon on the right side of the user you created previously and select Clone.

3. Click on Copy to clipboard to capture the API token string.

4. Save the API token in a safe place as you won’t be able to see it again without going through
the process to create a new one.

Building the Python Docker container

Use the requirements.txt file in the Chapter09 repository to create a Docker container with
a Python build and the appropriate libraries:

1. From the repository directory, type the following:

% docker build --pull --tag python/ch9 .

2. Be sure to put the weather.py script in the app directory. Confirm the script runs by
executing it with the --help option:

% docker run --rm \
 -v "$(PWD)/app:/usr/src/app" \
 --name python_ch9 python/ch9 \
 /usr/src/app/weather.py --help

That’s all we need to do to prepare for our tutorial. In the next section, we’ll create a bucket, run our
ETL scripts, and set up the Grafana data source.

http://localhost:8086

Creating Insightful Dashboards228

Designing a dashboard
Before we get started and work on a new dashboard, it’s best to have a plan of action. Ask yourself a
few questions:

• What information do I want to convey?

• What is the visual context for the dashboard?

• What is most important and what is least important?

Let’s take a look at these questions in more detail.

Conveying information

In the case of our dashboard, we will be building a dashboard that can be used to produce a display
of the current weather. For this purpose, we will need to describe the following conditions:

• Current temperature and dew point

• Barometer reading and trend – rising, falling, or steady

• Wind direction and speed

• Visibility

We also want to know the current temperature as that will help us decide what to wear, for example.
The dew point is an indication of humidity (and relative comfort, depending on the temperature) as
well as providing an indication of how low the temperature is likely to drop. We want to know the
current barometer reading and trend as that could give a forecaster an indication of an approaching
low-pressure system and possibly inclement weather. The wind direction and speed can indicate the
passage of weather fronts.

Determining the visual context

What is the likely context for how the dashboard is to be viewed? Will it be a computer screen on a
desk or a massive display in an operations center?

In our case, we’d like the weather report to be available to a hypothetical weather forecaster and viewed
on a relatively small screen such as a laptop or a tablet. In this case, we will be more concerned with
providing high information density as it is likely to be viewed over a moderate period of time. Were
the display to be on a large screen and viewed by non-practitioners, we may want to emphasize lower
information density instead.

Creating a high information-density dashboard 229

Prioritizing elements of importance

Importance works hand in hand with the visual context. If the viewer can control the display, importance
dictates that the most important information appears at the top, while less important information
appears lower or even below the viewable window. If the viewer doesn’t have control of this, as in
a kiosk display, the highest priority information might be located at the top left and lower priority
information below and/or to the right, depending on how a typical view scans for reading purposes.

Let’s take these concepts and apply them to our dashboard designs. First off, we will create a dashboard
designed to convey as much information as possible in a relatively small area, such as a workstation
monitor. Following that, we’ll design a dashboard for a large-scale kiosk-type display.

Creating a high information-density dashboard
In our first example, we’ll be constructing a fairly detailed dashboard of graph panels. This dashboard
is similar to one you might find accompanying a metrics-driven server application. It’s intended
to provide a number of metric graphs that might also serve as the top layer for further drill-down
exploration. In our example, we’ll be assembling a series of graphs to cover the weather metrics we’ve
scraped from the National Weather Service (NWS) using the application we developed in Chapter 5,
Extracting and Visualizing Data with InfluxDB and Grafana.

If you’ve been following my instructions in the previous chapters, you’re probably well aware of how
much work goes into getting a panel just so, and you could be forgiven for being a little anxious about
the idea of creating a lot of panels for a dashboard. It’s a valid concern, and for these examples, I’m
going to take you step by step, as well as offering some effort-saving tips where I can, so that when
you have to build your own dashboards, you’ll be equipped with a toolbox of techniques to streamline
the process.

In the next chapter, we’ll be looking at even more powerful techniques for making dashboard creation
even more efficient. But before we can run, we need to walk, so let’s get started!

Ingesting the weather data

Before we get too far into our dashboard designs, we should set up our weather data pipeline. We’ve
already installed Grafana and InfluxDB, and a Python container, so now we just need to create a
bucket in InfluxDB, download and ingest the data to the bucket, and add a Grafana data source so
we can query it.

Creating an InfluxDB bucket

In previous chapters, we’ve ingested data into buckets we created at the time we first logged into the
InfluxDB server. Now, since we’re going to handle two datasets, we’ll need to create two buckets, so
even if we used the one we’ve already created, we’d still need to create a second one. Happily, InfluxDB

Creating Insightful Dashboards230

provides a command-line interface (CLI) that will allow us to not only create buckets for our data
but also delete them if we so choose.

The InfluxDB CLI is installed automatically along with the server; in order to run them, we would
need to somehow get inside the server container and then run the commands from a shell. Docker
Compose provides an easy subcommand to run commands from inside a container, called exec.
The command we’ll run is influx bucket create. Here’s how to run it:

% docker-compose exec -T \
 influxdb influx bucket create \
 --org LearnGrafana \
 --token=<API_TOKEN \
 --name weatherdb
ID Name Retention Shard group duration Organization
ID Schema Type c89cf9270 weatherdb infinite 168h0m0s
8b0bea56cc2e149a implicit

Let’s break down what I did here. The docker-compose exec -T influxdb command is
the Docker Compose command to execute whatever follows it in the container itself. The -T option
disables the creation of a pseudo-TTY (command shell interface), which we don’t need as we’re not
interacting with the shell command.

The InfluxDB CLI command begins with influx bucket create. We need to pass in an --org
option to indicate the organization (which we specified during the initial login, remember?). Next is
the API token with the --token option, so we authenticate without needing to log in. Finally, the
name of the bucket itself is specified with the --name option. The output from the command indicates
the successful creation of our bucket with an infinite retention policy, and an implicit schema, that is,
derived from the data we pass into it.

If you’d like to delete the bucket – say, because you want to delete its contents – you run a very
similar command:

% docker-compose exec -T influxdb \
 influx bucket delete \
 --org LearnGrafana \
 --token=<API_TOKEN> \
 --name weatherdb

ID Name Retention Shard group duration Organization
ID Schema Type Deleted
5e1ee84c89cf9270 weatherdb infinite 168h0m0s
8b0bea56cc2e149a implicit true

I’ve removed the API token; you’ll provide your own when you run the command. As you can see
from the Deleted column, the bucket has been deleted; we will need to recreate our original bucket
if we wish to load our data.

Creating a high information-density dashboard 231

Configuring the InfluxDB data source

We just need to configure a Grafana data source to point at our bucket and we’ll be ready to start
setting up panels:

1. Open your browser to the Grafana app and select Connections | Add new connection from
the main menu.

2. Search for the InfluxDB data source and select it.

3. Click on Add a new data source. Fill out the following form fields:

 � Name: InfluxDB Weather

 � Default: off

 � Query Language: InfluxQL

 � HTTP | URL: http://influxdb:8086

 � Custom HTTP Headers | Header: Authorization

 � Custom HTTP Headers | Value: Token <API Token>

 � Database: weatherdb

Note
Make sure there is a space between Token and <API Token>.

Your data source configuration should look like this:

Figure 9.1 – InfluxDB data source for weatherdb

Creating Insightful Dashboards232

Click on Save and Test to confirm you can successfully connect to the InfluxDB server.

Designing the dashboard

It’s often a good strategy to make a little sketch or note about what you want to do before digging in
and creating a full dashboard. If you have a list of dashboards and an idea of how you’d like to lay
them out, it may not seem very challenging to build up a dashboard containing 10 or even 20 panels.

For our dashboard, we have something like this in mind:

• First row:

 � A Title panel for identifying the station

 � A Current conditions panel

• Second row:

 � A panel for temperature-related measurements

 � A panel for moisture-related measurements

• Third row:

 � A pair of panels for barometer pressure and the trend

• Fourth row:

 � A set of panels for wind speed

• Fifth row:

 � A panel for visibility

Let’s get started by creating a new dashboard and setting the time range to Today so far. Don’t forget
to save it! Next, we’ll start creating and laying out our panels, starting with our first panel, which will
display the station’s name.

Adding the first row

From our specification, we want to set up the first row of our dashboard to include two panels: a title
panel to display the name of the weather station and a panel to indicate the current conditions in text
format. Let’s go step by step to lay those out on our dashboard.

Creating a high information-density dashboard 233

Building a station text panel

In order to display the title information for our dashboard, we’ll need to introduce a new panel
visualization: the Text visualization. This visualization is for displaying formatted text, either Markdown
or HTML. In our case, we want a little bit more control over formatting, so we’ll fill in the content in
HTML format.

Create a new panel and change Visualization to Text. For these examples, we are going to use the
KSFO station for our dashboards, but feel free to use a different station if you prefer. In the Text
section, set the following values:

• Mode: html

• Text: <h1><center>San Francisco CA (KSFO)</center></h1>

In the Panel Options section, set Title to Station.

If you’re familiar with HTML, you’ll probably recognize the HTML markup that centers some H1 text.
If you didn’t want to center the text, you could switch to Markdown mode. It’s beyond the scope of
this book to cover either HTML or Markdown, but the panel help provides a link to get you started
with easy-to-learn Markdown text.

Here’s the Panel tab in action:

Figure 9.2 – Text visualization

Creating Insightful Dashboards234

Now that you have an initial panel, you’ll want to start thinking about the layout. Each panel you create
will end up in the top-left corner of your dashboard, so you’ll then want to resize it and drag it to its
ultimate position. For the layout of this dashboard, you’ll be working with essentially a two-column
layout, so your task will be to simply size the panel to fit half the width of the page and drag it into
position in either the left or the right column.

The layout process is relatively simple. In Grafana, panel geometry is defined by two pairs of numbers:
the x and y coordinates (in grid units) of the panel’s top-left corner and the panel’s width and height.
To adjust the panel’s position, simply hover over the top of a panel until its header turns gray and
the pointer becomes a cross-arrow, then click and drag it. To adjust its size, simply hover over the
lower-right corner of the panel until the pointer becomes an arrow pointing downward-right, then
click and drag.

The dashboard is defined by an invisible grid that your panel will snap to in both position and size, so
you only need to drag the panel to the appropriate position and adjust the sizing with the control at the
bottom right of the panel. The grid points are fairly widely spaced, so you don’t need to worry about
precision – just drag the panel or the resize control until an outline appears and then release. You can use
the border cue to get an idea of where a move or resize will land, as shown in the following screenshot:

Figure 9.3 – Border cue

The dashboard layout manager can only tile panels, so resizing or positioning a panel so that it overlaps
another panel will cause the other panel to move down to get out of the way. I’ve found that if you want
panels to stay on the same row, it’s best to resize them down first, arrange them, and then resize them
up to fill in any empty space. It can be a little tricky to get things to look just right, but with a little
practice, you’ll find it almost becomes second nature to drag panels around into the layout you desire.

Modifying the weather.py script

Our next panel is our new friend, the Stat panel. However, we’ll be using it to display text describing
the current conditions. We’ll need to make a couple of modifications to our script in order to add the
data field, but it’s only a few lines. Let’s look at the changes we’ll make to our weather.py script.

We want to add a string as a metric value, so we’ll need to capture the textDescription field
from the retrieved object. But when using a string as a field value, we need to quote it first. We need
to add a little routine to quote the string:

 def quote_string(string):
 return f'"{string}"'

Creating a high information-density dashboard 235

Next, we need to make a slight modification to the dump_wx_data routine to capture the
textDescription field:

 wx_data = get_station_obs(s)
 for feature in wx_data:
 for measure, observation in feature['properties'].items():
 if measure in ['elevation']:
 continue
 if measure in ['textDescription']:
 value = quote_string(observation)
 unit = None
 elif isinstance(observation, dict):
 value = observation['value']
 unit = observation['unitCode']
 else:
continue

Here, we did the following:

• We checked to see whether the observation is an elevation and if so, skipped it

• Otherwise, we captured the textDescription value as our value (with textDescription
as the field key, but no associated unit tag)

• We grabbed any observations represented by a dictionary

• We skipped over everything else

That’s all there is to it! Let’s get some data for our new dashboard.

Ingesting weather data

First, we download our data. Feel free to pick any NWS stations you might be interested in. Make sure
to create a data directory to store your data files:

% mkdir data
% docker run --rm \
 -v "$(PWD)/app:/usr/src/app" \
 -v "$(PWD)/data:/data" \
 --name python_ch9 python/ch9 \
 /usr/src/app/weather.py \
 --output /data/wx.txt \
 --stations KSFO,KDEN,KSTL,KJFK INFO:root:https://api.weather.gov/
stations/KSFO
INFO:root:https://api.weather.gov/zones/county/CAC081
INFO:root:https://api.weather.gov/stations/KSFO/observations
INFO:root:https://api.weather.gov/stations/KDEN

Creating Insightful Dashboards236

INFO:root:https://api.weather.gov/zones/county/COC031
INFO:root:https://api.weather.gov/stations/KDEN/observations
INFO:root:https://api.weather.gov/stations/KSTL
INFO:root:https://api.weather.gov/zones/county/MOC189
INFO:root:https://api.weather.gov/stations/KSTL/observations
INFO:root:https://api.weather.gov/stations/KJFK
INFO:root:https://api.weather.gov/zones/county/NYC081
INFO:root:https://api.weather.gov/stations/KJFK/observations

Next, we ingest the data we just downloaded:

% docker run --rm --network=host \
 -v "$(PWD)/app:/usr/src/app" \
 -v "$(PWD)/data:/data" \
 --name python_ch9 python/ch9 \
 /usr/src/app/weather.py \
 --input /data/wx.txt \
 --db weatherdb \
 --token=<API_TOKEN>
INFO:root:http://localhost:8086/write?db=weatherdb&precision=s

Note how we passed in the bucket name in the --db option.

Building the current conditions panel

Space doesn’t permit me to enumerate all the panel configuration settings, so I’m concentrating on
the ones that change from their defaults. However, Grafana may have changed since this book went to
press, so there might be subtle changes in the interface that may cause my instructions to drift slightly.
If you ever find the results not quite matching the text, reference dashboards are available from this
book’s GitHub repository, which you can import and examine for comparison.

Once we’ve reloaded our data with the new field values, we can set up a Stat panel to display it. Add
a new panel. In the Query tab, set up the following query:

• Data source: InfluxDB Weather

• Query: SELECT "value" FROM "textDescription" WHERE ("station"::tag
= 'KSFO') AND $timeFilter

Set the visualization to Stat. In the Panel options section, set up the following:

• Title: Current Conditions

Creating a high information-density dashboard 237

In the Value options section, set up the following:

• Value: Last *

• Fields: textDescription

In the Stat styles section, set the following:

• Graph Mode: None

In the Field tab, under the Thresholds section, set the following:

• Delete any existing thresholds (trash can icon)

• Base | Color: Custom | gray/rgb(128,128,128)

To get the custom gray color, do the following:

1. Click the color circle.

2. Select the Custom tab.

3. Type grey or gray in the text field.

You can now lay out the two panels in an appropriate two-column style. Resize them so that they
take up approximately half the page width. Give them the smallest height that will display all the
content in the panel. Drag the Station panel to the left-hand side and the Current Conditions panel
to the right. You might have to do a little jockeying to get both to sit next to each other with no space
between them, but once you get the hang of it, you will have fairly mastered layout, so take your time
and play around with the controls.

You should end up with a row that looks like this:

Figure 9.4 – First row

We’re off to a good start. Let’s make this dashboard useful and put some temperatures on there!

Adding the second row

On to the next row! Here, we’re going back to time series visualization. As you’re well aware, configuring
time series visualization can be an elaborate process involving many settings, so it will take some
additional diligence to keep the panels looking and functioning consistently. I recommend that you
create a general base panel with some common settings so that when you need to create a new panel,
you can simply replicate your base panel and customize it.

Creating Insightful Dashboards238

Creating a base panel

Here’s an example of a base panel that has many settings already preset. Create a Time series visualization
panel, go to the Query tab, and set up the following:

• Data source: InfluxDB Weather

• Query: SELECT mean("value") FROM "measurement" WHERE $timeFilter
GROUP BY time($__interval) fill(none)

• Query options/Min interval: 15m

In the Panel tab, set the following:

• Visualization: Time series

• Legend | Visibility: On

• Legend | Mode: Table

• Graph styles | Style: Lines

• Graph styles | Line Interpolation: 1st option

• Graph styles | Line width: 1

• Graph styles | Fill opacity: 0

• Graph styles | Gradient Mode: None

• Graph styles | Line style: Solid

• Graph styles | Connect null values: Never

• Graph styles | Show points: Auto

• Graph styles | Point size: 5

• Graph styles | Stack series: Off

To replicate this panel, you have two options. If you click on the panel title, you’ll get a drop-down
menu with several options. You’re already familiar with the Edit option. Clicking on More... yields a
submenu with the Duplicate option. Clicking it will give you a new identical panel. The other option
is to use the Copy option instead. Now, you can create a new panel, but you will have a new option
called Paste Copied Panel. If you click it, you will convert the panel into an identical copy.

There is no inherent advantage to one or the other when working with panels on the same dashboard.
The Copy option becomes much more useful when you need to copy a panel from one dashboard
to another.

Creating a high information-density dashboard 239

Building the temperature panel

Now, let’s create our Temperature panel. Here, we want to track up to three different data series – one
for the actual temperature and two for perceived temperature, that is, wind chill and the heat index.
The wind chill is heavily dependent on the wind and cold temperatures, whereas the heat index is
heavily dependent on humidity and high temperatures. If the temperatures are not extreme enough
or there are light winds or little humidity, there won’t be any readings for those series (we deliberately
don’t include null readings when we import the observation data).

Just in case, we’ll go ahead and include queries for all three:

• Data source: InfluxDB Weather

• A Query: SELECT mean("value") FROM "heatIndex" WHERE $timeFilter
GROUP BY time($__interval) fill(none)

• Alias By: $col $measurement

Now, make two copies of the A query and change the FROM measurement in each as follows:

• B Query: SELECT mean("value") FROM "temperature" WHERE $timeFilter
GROUP BY time($__interval) fill(none)

• C Query: SELECT mean("value") FROM "windChill" WHERE $timeFilter
GROUP BY time($__interval) fill(none)

We have the series from our queries, but depending on the weather conditions, it’s likely you will only
see the temperature. Let’s assume we will see the others if we choose a different station in the future
when we set up the visualization. If you’ve copied this panel from a base panel, as we discussed earlier,
you might not have to change much:

• Graph styles | Style: Lines

• Graph styles | Line Interpolation: 1st option

• Graph styles | Line width: 1

• Graph styles | Fill opacity: 0

• Graph styles | Show points: Auto

• Graph styles | Point size: 5

• Legend | Visibility: On

• Legend | Mode: Table

• Legend | Values: Last *, Min, Max

• Standard options | Unit: Temperature / Celsius (°C)

Creating Insightful Dashboards240

You would be fine sticking with the default color scheme for the three data series, but it would be
consistent for all your panels, and that can get visually monotonous. We can alter the colors of the
series by clicking on the series’ color line in the legend. Since we probably can’t do that with all three
series, we’ll do it with Field Override instead.

We’ll use the color as a bit of visual cueing, with blue representing cold for our windChill series, red
representing hot for our heatIndex series, and orange representing warm for our temperature
series. Bear in mind that these are only suggestions and that there is no right or wrong decision
regarding how to represent the data visually. For your dashboards, you may find yourself choosing
different colors, or you may get feedback from viewers requesting different colors. Choose the colors
and styles that help you connect the story you want to tell your audience.

Create three field overrides, one for each series:

• Fields with name matching regex: /temperature/

 � Standard options > Color scheme: Single color

 � Color: Orange

• Fields with name matching regex: /windChill/

 � Standard options > Color scheme: Single color

 � Color: Blue

• Fields with name matching regex: /heatIndex/

 � Standard options > Color scheme: Single color

 � Color: Red

We chose a regex for the data series name just in case we want to create aliases that include the
column text (temperature.mean, for example). In this case, we only need to match the series
measurement and not the entire alias.

Name the panel title Temperature in Panel options and click on Apply.

Building the moisture panel

For the Moisture panel, we’ll be querying for three interrelated data series: the temperature, the dew
point, and the relative humidity. The easiest thing would be to simply duplicate the Temperature panel
and modify the copy. To make a duplicate, click on the panel’s title bar and select More... | Duplicate.

After making the duplicate, go to the Query area and set the following queries:

• Query A: SELECT mean("value") FROM "dewpoint" WHERE $timeFilter
GROUP BY time($__interval) fill(none)

Creating a high information-density dashboard 241

• Query B: SELECT mean("value") FROM "relativeHumidity" WHERE
$timeFilter GROUP BY time($__interval) fill(none)

• Query C: SELECT mean("value") FROM "temperature" WHERE $timeFilter
GROUP BY time($__interval) fill(none)

To set the colors, go ahead and update the three field overrides with new regexes and colors:

• Fields with name matching regex: /relativeHumidity/

 � Standard options | Color scheme: Single color

 � Color: Yellow

• Fields with name matching regex: /dewpoint/

 � Standard options | Color scheme: Single color

 � Color: Blue

• Fields with name matching regex: /temperature/

 � Standard options | Color scheme: Single color

 � Color: Red

Since the relative humidity is a completely different scale than the temperature and dew point,
we’ll set it up to use the right y axis. Add these additional override properties to the Field override
corresponding to relativeHumidity:

• Axis | Placement: Right

• Standard options | Unit: Misc | Percent (0-100)

• Standard options | Min: 0

• Standard options | Max: 100

We want to lock the minimum and maximum to 0 and 100, respectively, so that the graph doesn’t
scale up and down depending on the range of values in the displayed time frame. When these values
are set in this way, the graph is vertically scaled to fit the entire panel.

Since Percent is a quantity, we can go ahead and add a color fill to help reinforce that. Add another
override property to the relativeHumidity field override. Set the Graph styles | Fill opacity
override to 10.

After adding several property overrides to the single field override for relativeHumidity, you
might be wondering whether it might be better to have set the panel’s axis for relativeHumidity
and Axis overrides for the other two temperatures. That certainly is an option; either approach is valid.
Choose whichever approach works best for you.

Creating Insightful Dashboards242

Go to the Panel options section and set Title to Moisture. With that, you’ve completed another
row! The two rows should look similar to the following output:

Figure 9.5 – Second row

Next up, we’ll work on the panels displaying barometric pressure readings.

Adding the third row

On this row, we’re going to build two panels with slightly different views of the same data, namely
the barometric pressure. To do this, we’re going to create a single panel with both queries, but only
one enabled. Then, in a copy of the same panel, we’re going to swap the enabled queries. Just like
copying the panel and tweaking the queries, this is another technique you can use to produce several
similar panels.

Building the barometric pressure panel

Copy your base panel (or create a new panel) and set the following two queries:

• Data source: InfluxDB Weather

• Query A: SELECT mean("value") / 1000 FROM "barometricPressure"
WHERE ("station"::tag = 'KSFO') AND $timeFilter GROUP BY time($__
interval) fill(none)

• Query A/Alias by: $col $measurement

• Query B: SELECT derivative(mean("value"), 1h) / 1000 FROM
"barometricPressure" WHERE ("station"::tag = 'KSFO') AND
$timeFilter GROUP BY time($__interval) fill(none)

• Query B/Alias by: $col $measurement

• Query options/Min Interval: 15m

Creating a high information-density dashboard 243

In the A query’s SELECT statement, we’re querying for the barometric pressure. Since the NWS is
sending the data in Pascals (Pa), we’ll divide them by 1,000 to convert this into kilopascals (kPa). In
the B query’s SELECT statement, we want to calculate the rate of change in barometric pressure. The
derivative will analyze the aggregated mean of barometric pressure over an interval – in this case, 1
hour – and determine the rate at which it’s changing. In calculus terms, we’re asking InfluxDB to get
the slope of the tangent to a curve that represents the pressure readings for a single hour.

Since this panel is only intended to show the actual barometric pressure, for now, disable the B query
by disabling its visibility (clicking the eye icon).

Next, we’ll style the graph. The style will be consistent with the temperature graphs:

• Graph styles | Style: Lines

• Graph styles | Line Interpolation: 1st option

• Graph styles | Line width: 1

• Graph styles | Fill opacity: 0

• Graph styles | Show points: Auto

• Graph styles | Point size: 5

• Legend | Visibility: on

• Legend | Mode: Table

• Legend | Values: Last *, Min, Max

• Standard options | Unit: Pressure | Kilopascals

Set Title in Panel options to Barometer Reading.

Building the barometric pressure trend panel

For the next panel, we’ll simply copy the Barometer Reading panel and duplicate it. In the Query
area, disable the A query and enable the B query.

We’ll need to make some adjustments to the axis to reflect a different measurement. Since the derivative
we calculate is over a period of 1 hour, the true unit is kilopascals per hour. Unfortunately, Grafana
doesn’t provide such a unit, but we can easily create a custom unit by typing it into the Unit text box:

• Standard options | Unit: suffix: kPa/hr

Set the Panel options Title as follows: Barometer Trend.

That was pretty easy! The Barometer Trend panel is used to depict the barometer reading trend. If
the derivative value is positive, that means the slope at the point is positive, so the barometer reading
is rising, which is usually a sign of building high pressure and better weather. On the other hand, if

Creating Insightful Dashboards244

the derivative value is negative, we know the pressure is dropping, which can signal an approaching
low-pressure system and possible inclement weather. In the next section, we’ll leverage the same
derivative but convert it into a rising/falling readout.

Our dashboard rows now look like this:

Figure 9.6 – Third row

The next row of panels will cover our wind panels.

Adding the fourth row

On our third row, we’ll use a third technique to streamline our panel creation. In this case, we want
to create two panels – one for wind speeds and another for wind direction. As we did previously, we’ll
create a single panel with all the necessary queries, but this time, we’ll keep them enabled and use
series overrides to hide the series we’re not interested in.

Building the wind speed graph panel

For the Wind Speed panel, we’ll start by creating our panel with three queries. First, we’ll set up the
A query for wind speed:

• Data source: InfluxDB Weather

• Query A: SELECT mean("value") FROM "windSpeed" WHERE ("station"::tag
= 'KSFO') AND $timeFilter GROUP BY time($__interval) fill(none)

• Query A | Alias By: $col $measurement

Creating a high information-density dashboard 245

Next, we’ll set up the B query for wind gust speed:

• Query B: SELECT mean("value") FROM "windGust" WHERE ("station"::tag
= 'KSFO') AND $timeFilter GROUP BY time($__interval) fill(none)

• Query B | Alias By: $col $measurement

Finally, we’ll set up the C query for the wind direction:

• Query C: SELECT distinct("value") FROM "windDirection" WHERE
("station"::tag = 'KSFO') AND $timeFilter GROUP BY time($__
interval) fill(none)

• Query C | Alias By: $col $measurement

• Query options | Min interval: 15m

Don’t worry if you don’t see any data points for the windGust measurement. If the wind is fairly steady,
there really just may not be any data. For the case of the C query SELECT statements, calculating an
aggregation value for a compass direction would be essentially meaningless, so we use distinct,
with the understanding that wind direction is relatively consistent in the intervening time periods
between samples.

Depicting wind speed in the graph is a bit tricky. I’m opting to use points to emphasize these are spot
averages; adding a line would imply the change in speed is continuous between samples, which is not
necessarily the case:

• Panel options | Title: Wind Speed

• Legend | Visibility: on

• Legend | Mode: Table

• Legend | Values: Last *, Max

• Graph styles | Style: Points

• Graph styles | Point size: 5

• Standard options | Unit: kilometers/hour (km/h)

We’re not that interested in minimum wind speeds as they are normally 0 anyway.

Since we may not have a windGust data series, it would be prudent to color the series using series
overrides. We’ll color the windSpeed series in a light purple and the windGust series in a dark
purple to help it stand out. We’ll also hide the windDirection series by setting a series override
to hide it and remove it from the legend, as follows:

• Fields with name matching regex: /windSpeed/

Creating Insightful Dashboards246

• Standard options | Color scheme: Single Color | light purple

• Fields with name matching regex: /windSpeed/

• Standard options | Color scheme: Single Color | dark purple

• Fields with name matching regex: /windDirection/

• Series | Hide in area: Tooltip off, Viz off, Legend off

Building the wind direction stat panel

Now that we have a panel containing all our wind-based queries, we can leverage it to set up a wind
panel for the direction. Instead of copying the Wind Speed panel, we just need to create a new panel
or copy our base panel.

For the query, we’re going to use a built-in dashboard data source to reference the existing query
from another panel on our dashboard. This plugin improves the efficiency of your dashboard by
leveraging the cached data retrieved from the query in another panel. It also improves maintenance
as you are changing multiple panels whenever you need to make a change to a single query they may
have in common.

A dashboard data source is available from the Query dropdown in the Queries tab. When you select
-- Dashboard -- you’ll then need to identify the query set from one of the dashboard’s panels by
selecting a panel from the Source menu. Since the selections in that menu are derived from panel
titles, I recommend that you uniquely identify any panels you plan to share in this way; it will make
your life easier. As we discussed previously, reference the panel results:

• Source/Use the same results as panel: Wind Speed

You can set the color of the data series using either the color bar in the legend or a series override.
We need to set up the styles, as follows:

• Graph styles | Style: Lines

• Graph styles | Line Interpolation: 1st option

• Graph styles | Line width: 1

• Graph styles | Fill opacity: 0

• Graph styles | Gradient mode: Opacity

• Graph styles | Show points: Auto

• Graph styles | Point size: 5

• Legend | Visibility: on

• Legend | Mode: Table

Creating a high information-density dashboard 247

• Legend | Values: Last *

• Standard options | Unit: Angle/Degrees (º)

I opted for turning on both the lines and points as I think it helps to make any discontinuities in
wind direction stand out. Significant and sustained wind direction changes can be a sign of a frontal
boundary passage. However, max and min values are inherently meaningless, so we left them off in
the legend. We’ll also add our series overrides, as follows:

• Fields with name matching regex: /windSpeed/

• Series > Hide in area: Tooltip off, Viz off, Legend off

• Fields with name matching regex: /windGust/

• Series > Hide in area: Tooltip off, Viz off, Legend off

• Fields with name matching regex: /windDirection/

• Series > Hide in area: Tooltip on, Viz on, Legend on

Scrolling down a bit, this is what the bottom rows now look like:

Figure 9.7 – Fourth row

There’s only one more panel to go and we’re done!

Adding the fifth row

We’re down to our last row, and there’s only one panel we’ll build. The other space is left up to you.

Creating Insightful Dashboards248

Building the visibility panel

Our final panel is simply intended to depict visibility and it’s straightforward to set up:

• Query: InfluxDB Weather

• Query A: SELECT mean("value") /1000 FROM "visibility" WHERE
("station"::tag = 'KSFO') AND $timeFilter GROUP BY time($__
interval) fill(none)

• Query A | Alias by: $col $measurement

• Query options | Min interval: 15m

The value is measured in meters, so we convert it into kilometers in the SELECT statement. Since the
visibility has a fixed range (10 miles or 16.09 km is considered the maximum visibility), I’m opting
for a more stylized graphical representation of the visibility graph:

• Panel options | Title: Visibility

• Graph styles | Style: Lines

• Graph styles | Line Interpolation: 3rd option (Step before)

• Graph styles | Line width: 1

• Graph styles | Fill opacity: 100

• Graph styles | Show points: Auto

• Graph styles | Point size: 5

• Legend | Visibility: on

• Legend | Mode: Table

• Legend | Values: Last *, Min, Max

• Standard Options | Unit: kilometer (km)

• Standard Options | Max: 16.09

• Standard Options | Color scheme: Single Color | light blue

We turned on the Step before option to help emphasize the discrete nature of the visibility observation.
Adding the fill helps reinforce the notion that visibility extends from 0 to the observation value.

Building the wind gust panel

As an exercise, try adding a Wind Gust panel in the last panel slot on the page. Here’s my version
(alas, there were no wind gusts at the time):

Creating a high-information visibility dashboard 249

Figure 9.8 – Fifth row

To help you work through any issues, I’ve included this dashboard in the GitHub repository for this
book. You’ll find it in the Chapter09/dashboards directory.

Creating a high-information visibility dashboard
In this second example, we’ll create a dashboard intended to provide information at a much higher
level of view; that is, a display intended to be scanned rapidly for us to get a big-picture viewpoint.
Typically, you’d see this type of dashboard in a kiosk-type context, such as in an operations center or
a public informational display.

We’ll be making extensive use of the Stat visualization as opposed to the Time series visualization, as
we did previously. The idea we’re trying to convey is that the dashboard will be displayed in a context
that makes details hard to read from a distance.

Designing the dashboard

What we want to do is create and arrange a set of panels that will fit on a single page as we may not
have the ability to scroll around or even interact with the page (kiosk mode). In keeping with the
strategy we described previously, here’s what we have in mind:

• First row:

 � Two Stat panels – one for the highest-magnitude earthquake, and one with the most
recent earthquake.

Creating Insightful Dashboards250

• Second row:

 � Two Table panels, one for the top-N highest-magnitude earthquakes, and one with the top-N
most recent earthquakes. We’ll decide N when we lay out the dashboard.

• Third row:

 � Three Geomap panels, depicting earthquakes from three different regions.

In this example, we’ll try to use some of what we’ve learned about efficient panel creation to quickly
set up these panels. We’ll also try to reuse some of what we built for the previous dashboard, with the
idea being that since we’ve already determined the queries, we can reference them from other panels.
Duplication of panels will speed up the process as well.

Ingesting the earthquake data

Before we acquire our earthquake dataset, we’ll need to make some simple changes to our pipeline.
To correctly display time information in our Stat panels, we will need a text version of the earthquake
timestamp. Since Grafana has no facility for formatting a timestamp (a numeric value) into a formatted
string, we’ll just accomplish it as part of the ETL script.

However, to properly translate the timestamp from UTC to the local time (which Grafana automatically
does), we’ll also need to set the local time zone in our Docker container. By default, Docker containers
are set to UTC, not the local time zone. It’s relatively simple to add an environment variable to the
Docker container at build time, and we’ll go ahead and use that facility in Docker Compose.

Whew! That was a bit long-winded as an explanation, but it will become clear shortly enough. In
summary, we need to do the following:

• Update our Docker container with the local time zone to match Grafana

• Update the earthquake.py script to add a Tag field containing a string representation of
the earthquake time, converted to our local time zone

• Load our earthquake data with the additional field

Creating the InfluxDB bucket

As it will have a different schema from our weather data, we’ll need to create a new InfluxDB instance
to store our data and a new Grafana data source to access it. The command is virtually identical to the
one we used to create our weather bucket:

% docker-compose exec -T \
 influxdb influx bucket create \
 --org LearnGrafana \
 --token=<API_TOKEN> \

Creating a high-information visibility dashboard 251

 --name earthquakedb
s
ID Name Retention Shard group duration Organization
ID Schema Type
abc0fc2527da0949 earthquakedb infinite 168h0m0s
8b0bea56cc2e149a implicit

Once we’ve created the bucket, we’ll need to add an InfluxDB data source to Grafana.

Configuring an InfluxDB data source

We just need to configure a Grafana data source to point at our bucket, and we’ll be ready to start
ingesting data and building panels:

1. Open your browser to the Grafana app and select Connections | Add new connection from
the main menu.

2. Search for the InfluxDB data source and select it.

3. Click on Add a new data source. Fill out the following form fields:

 � Name: InfluxDB Weather

 � Default: off

 � Query Language: InfluxQL

 � HTTP | URL: http://influxdb:8086

 � Custom HTTP Headers | Header: Authorization

 � Custom HTTP Headers | Value: Token <API Token>

 � Database: earthquakedb

Note
Make sure there is a space between Token and <API Token>.

Creating Insightful Dashboards252

Your data source configuration should look like this:

Figure 9.9 – InfluxDB data source for earthquakedb

Click on Save and Test to confirm you can successfully connect to the InfluxDB server.

Creating a high-information visibility dashboard 253

Updating docker-compose.yml

Open your docker-compose.yml file, and add the following lines:

 python:
 build: .
 image: python:ch9
 environment:
 TZ: "America/Los_Angeles"
 volumes:
 - "${PWD-.}/app:/usr/src/app"
 - "${PWD-.}/data:/data"

This is basically just a Docker Compose representation of the earlier instructions on how to build
and run our Python container:

• The build section indicates our Dockerfile lives in the same directory as the docker-
compose.yml file.

• The image section is just the name of the Docker image that we’ll build.

• The environment section adds a TZ environment variable to correspond to my local
time zone. You should set this to your own time zone. A full list can be found in Wikipedia
at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

• The volumes section maps the app directory into /usr/src/app so the container can see
our earthquake.py script. Make sure your earthquake.py script is in the app directory.

Next, run the Docker Compose build command to create a new image:

% docker-compose build python
[+] Building 0.8s (9/9) FINISHED
 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 81B 0.0s
 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 => [internal] load metadata for docker.io/library/python:3.10 0.7s
 => [1/4] FROM docker.io/library/python:3.10@sha256:0e85513fb9bbdd1
a4fdf4a54b44844c5d60dc2f33f7584fec81d080d00213ede 0.0s
 => [internal] load build context 0.0s
 => => transferring context: 87B 0.0s
 => CACHED [2/4] WORKDIR /usr/src/app 0.0s
 => CACHED [3/4] COPY requirements.txt ./ 0.0s
 => CACHED [4/4] RUN pip install --no-cache-dir -r requirements.
txt 0.0s
 => exporting to image 0.0s
 => => exporting layers 0.0s

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Creating Insightful Dashboards254

 => => writing image sha256:0c65b706de094975ece5cee92fb6
2bc23a8bfd46d87d7eafcb5cbc3a9b856c68 0.0s
 => => naming to docker.io/library/python:ch9

Let’s move on to take care of the script.

Modifying the earthquake.py script

We just want to add a new tag field containing the formatted string representation of an earthquake
timestamp. We add a new routine called time_to_string:

def time_to_string(t):
 epoch_secs = int(t/1000)
 ltime = time.localtime(epoch_secs)
 ftime = time.strftime('%Y-%m-%d %H:%M:%S', ltime)
 return ftime

We just convert the timestamp argument from milliseconds to seconds, then create a time struct
in the local time zone, and finally format the time into a string that matches the format in Grafana.

We’ll insert the call to this routine along with the code that creates our list of tags:

 f"tag_alert={properties['alert']}",
 f"tag_time={escape_string(time_to_string(properties[
 'time']))}"
]

We need to use escape_string for our time string because it will have spaces in it. We should be
ready to download our data now.

Loading earthquake data

We’ll pull down about a week’s worth of data, although we’ll mostly concentrate on the current
24-hour period:

% docker-compose run python \
 /usr/src/app/earthquake.py \
 --size all \
 --window week \
 --output /data/eq.txt INFO:root:https://earthquake.usgs.gov/
earthquakes/feed/v1.0/summary/all_week.geojson

Note how much cleaner the command is compared to the Docker version. As an exercise, look into what
options you might have to load a smaller set of data, possibly with a smaller set of large earthquakes
and covering a smaller range of time.

Creating a high-information visibility dashboard 255

Next, we load the data into our InfluxDB earthquakedb bucket. Now that we’re contacting InfluxDB
from within a Docker Compose network, we don’t use localhost as the address; we need to use
the network name defined by the InfluxDB service: influxdb.

% docker-compose run python \
 /usr/src/app/earthquake.py \
 --host=influxdb \
 --input /data/eq.txt \
 --precision ms \
 --db earthquakedb \
 --token=<API_TOKEN>
INFO:root:http://influxdb:8086/write?db=earthquakedb&precision=ms

That’s it! We just need to create a new Grafana data source to query our data.

Adding the first row

We begin the dashboard-building process by creating a new dashboard, taking care to save any
previous dashboard we were working on. Again, space doesn’t permit me to enumerate all the panel
configuration settings, so I’m concentrating on the ones that change from their defaults.

We start off by querying our earthquake InfluxDB bucket:

• Data source: InfluxDB Earthquake

• Query: SELECT "magnitude" FROM "event" WHERE $timeFilter AND
"magnitude" >= 2.0 GROUP BY "tag_place"::tag, "tag_time"::tag

• Format as: Table

Unlike the weather dashboard, queries will be fairly simple and consistent across this dashboard. We
are pulling in the magnitude metric from each event and bringing in the place and newly created time
tags. Convert the visualization to Stat.

Building the highest-magnitude Stat panel

This first panel is going to show off the time, place, and magnitude of the highest-magnitude earthquake
in the time range, so let’s set the time range to Last 24 hours. Additionally, set Title in the Panel
options to Highest Magnitude.

We need to first sort all the data by magnitude so the highest-magnitude earthquake is at the top of the
list. We’ll do this with Sort Transform. Set the Sort by field to magnitude from the drop-down menu.

Creating Insightful Dashboards256

Now, we display all the fields we want in this panel, but we want to set threshold colors based on
magnitude, and since they can be set independently for each field, it will be hard to control that
behavior if they’re kept separate. We’ll use another transform to collect them all into a single field
using the Rows to fields transform. Set the fields as follows:

• Time: Ignore

• Tag_place: Field label

• Tag_time: Field name

• Magnitude: Field value

This will enable us to combine all the information we want into a single composite field, and we’ll also
be able to set a threshold based on the Magnitude field’s value.

For the Value options, normally, we would use the Last* option, but since we’ve combined all our
data into a single row with many fields, that option is out. We’ll go ahead and select All values and
set Limit to 1. That should give us a panel with a single value. Set Fields to All Fields to finish up.

In the Stat styles, we just want to make sure the Stat visualization has a background and no sparkline
graph. You should feel free to experiment with this to see what looks good to you; here are my settings:

• Orientation: Auto

• Text mode: Value and name

• Color mode: Background

• Graph mode: None

• Text alignment: Auto

For the Text size, we want to display our text with a smallish text label and a large magnitude label:

• Title: 60

• Value: 120

The convention for earthquake magnitudes is to refer to them with a single decimal, so set Decimal in
the Standard options to 1. We want to control the background with thresholds, so set Color scheme
to From thresholds (by value).

Finally, we just need to set our thresholds and we’re done. I created three thresholds (plus the default
Base threshold) to give a sense that the higher the magnitude, the more serious the earthquake:

• Color: red | 7

• Color: orange | 5

Creating a high-information visibility dashboard 257

• Color: yellow | 3

• Base: green

Building the most recent Stat panel

To make our other Stat panel, size the current one to about half the width of the row and high enough
to accommodate the text. Then duplicate the panel. We want to change a couple of things:

1. Set Title in the Panel options to Most Recent.

2. In the Query tab, set Data source to -- Dashboard -- and Source to the Highest Magnitude panel.

3. In the Transform tab, set Field in the Sort by Transformation function to Time and enable
the Reverse option.

That should complete our first row. Mine looks like this:

Figure 9.10 – First row

We’ll be using a similar query and transform approach for the next row but using table visualizations instead.

Adding the second row

It turns out the Table panels for our second row will be functionally similar to the Stat visualization
panel, only we will be looking at several rows of data at a time. We’ll build the first panel, then copy
it and alter it to suit our needs.

Name a new panel 5 Highest Magnitude. We’ll use almost the same query:

• Data source: InfluxDB Earthquake

• Query: SELECT "magnitude" FROM "event" WHERE ("magnitude" >= 2.0)
AND $timeFilter GROUP BY "tag_place"::tag

• Format as: Table

Creating Insightful Dashboards258

Next, we use the Sort by Transformation function, followed by Limit, which we picked to fit on a
single page of the table:

• Sort by | Field: magnitude

• Limit | Limit: 5

From here, we just need to keep most of the defaults, making sure to enable the Show table header
option in the Table section. We’ll add the same thresholds as before:

• Standard options | Color scheme: From thresholds (by value)

• Color: red | 7

• Color: orange | 5

• Color: yellow | 3

• Base: green

We’ll add a bit of visual interest to the table by adding a basic gauge to the magnitude cells with a
field override. Add a field override for Fields with name field and select magnitude. Next, add these
override properties:

• Cell display mode: Basic gauge

• Standard options | Min: 0

• Standard options | Max: 10

Here’s what the field override should look like:

Figure 9.11 – Magnitude field override

Creating a high-information visibility dashboard 259

Apply the panel settings and size it to roughly half the width and enough to show a little more than
the 5 rows of data, then duplicate it. You’ll change the following settings to display the five most
recent earthquakes:

1. Set Title in the Panel options to 5 Most Recent.

2. In the Query tab, set Data source to -- Dashboard -- and Source to the 5 Highest Magnitude panel.

3. In the Transform tab, set Field in the Sort by Transformation function to Time and enable
the Reverse option.

You’ve now completed the second row! Here’s what my dashboard looks like so far:

Figure 9.12 – Second row

Configuring the panels for the final row is the same process we followed in the previous chapter. We’ll
query for earthquakes, and then map them by size.

Adding the third row

Create a new panel, set Visualization to Geomap, and add the following query:

• Data source: InfluxDB Earthquake

• Query: SELECT "magnitude" FROM "event" WHERE $timeFilter AND
("magnitude" >= 2.0) GROUP BY "tag_latitude"::tag, "tag_
longitude"::tag

• Format as: Table

Creating Insightful Dashboards260

There is no need to transform the data, so we’ll go right to mapping our earthquakes. Here are the settings:

• Map layers | Layer 1 | Layer type: Markers

• Map layers | Layer 1 | Location mode: Coords

• Map layers | Layer 1 | Latitude field: tag_latitude

• Map layers | Layer 1 | Longitude field: tag_longitude

• Map layers | Layer 1 | Styles | Size: magnitude

• Map layers | Layer 1 | Styles | Min: 2

• Map layers | Layer 1 | Styles | Max: 15

• Map layers | Layer 1 | Styles | Symbol: circle.svg

• Map layers | Layer 1 | Styles | Color: Fixed color | green

• Map layers | Layer 1 | Styles | Fill opacity: 0.4

• Map layers | Layer 1 | Show legend: disabled

• Map layers | Layer 1 | Show tooltip: enabled

• Basemap layer | Layer type: ArcGIS MapServer

• Basemap layer | Server instance: World Physical

• Basemap layer | Opacity: 0.5

• Map Controls | Show zoom control: enabled

• Map Controls | Mouse wheel zoom: disabled

• Map Controls | Show attribution: disabled

• Map Controls | Tooltip: Details

It’s left as an exercise for you to find out how to set the thresholds for each marker. We will want to
create three different panels, each looking from a different scale and/or region. The first one will look
at California, so set the title and the map view:

• Panel options | Title: California

• Map view | Initial view | View: Coordinates

• Map view | Initial view | Latitude: 37.441912

• Map view | Initial view | Longitude: -120.53232

• Map view | Initial view | Zoom: 5.5

Creating a high-information visibility dashboard 261

These are not intended to be exact, so feel free to center the display on whatever you’d like; these
are just where the map will zoom when first launched. Resize the panel to roughly a square shape,
measuring roughly a third of the width of the dashboard. You’ll need to make two copies, with these
settings for the second panel:

• Panel options | Title: North America

• Query | Data source: -- Dashboard --

• Query | Source: California

• Map view | Initial view | View: Coordinates

• Map view | Initial view | Latitude: 40

• Map view | Initial view | Longitude: -100

• Map view | Initial view | Zoom: 4

The third panel will have these settings:

• Panel options | Title: Oceania

• Query | Data source: -- Dashboard --

• Query | Source: California

• Map view | Initial view | View: Coordinates

• Map view | Initial view | Latitude: -10

• Map view | Initial view | Longitude: -140

• Map view | Initial view | Zoom: 2

Creating Insightful Dashboards262

When completed, the completed dashboard should look something like this:

Figure 9.13 – Final dashboard

And that completes our efforts. Don’t forget to save your dashboard! You now have two beautiful
dashboards to play with, and hopefully some new techniques for efficiently creating new ones.

Parting thoughts
Before we move on to the next chapter, there are a couple of things you should take away from this
exploration of how to develop meaningful Grafana presentations. The first deals with visual display
considerations and the second deals with automating the process of ingesting your data.

Considering layout

Play with your dashboards’ panel arrangements to see what various combinations look like. This is
a good opportunity to get a better understanding of how to work with the Grafana layout manager.
While you experiment with the ordering of the various panels, keep a few things in mind:

• Different cultural groups read from left to right, right to left, or from top to bottom. Know
your audience and arrange your dashboard panels to reveal information in the order that your
viewers typically scan.

Summary 263

• Use color, size, and visual contrast to draw the eye of the viewer toward the information you
want to particularly highlight. Finally, depending on the context, you may want to avoid
packing too much information onto a single dashboard. Too much visual information can be
confusing for the viewer.

• While it is beyond the scope of this book, bear in mind the accessibility considerations when
developing these dashboards and laying them out. Visually impaired viewers may have trouble
discerning certain color combinations, they may have trouble discerning small text, or they
may have difficulty with fine details such as lines and points.

Automating ingestion

Also, you may have noticed that if you want to continuously keep your dashboards up to date, you
must manually run the ETL scripts over and over again. That is certainly not my kind of fun, but
what’s the alternative? It’s beyond the scope of this book to explore how to orchestrate ETL execution,
but I would recommend some ideas.

One of the most simple and venerable tools for *nix operating systems is called cron. It is a system task
that can be configured to run arbitrary scripts on a regular basis, from every few seconds to monthly.
The computer you are working on most likely is using some form of cron as we speak.

At the other extreme is a full-production ETL orchestration system such as the open source Apache
Airflow. It is a complex, powerful system that can schedule complex Python script assemblages called
Directed Acyclic Graphs (DAGs) and even comes with a number of open source ETL plugins ready-
made for connecting to various third-party applications such as Salesforce or MySQL.

Summary
In this chapter, we first looked at how to break down the requirements for designing dashboards.
We compared the challenges of maximizing content or maximizing visibility by examining two use
cases. Finally, we mentioned the social need to consider audience perception and the technical need
to continuously update data.

In the next chapter, we’ll look at more ways to make panel creation more efficient and responsive. We’ll
also look at some more advanced dashboard features that can expand the scope of your dashboards
by linking them together into a coherent, interactive whole.

10
Working with Advanced

Dashboard Features and
Elasticsearch

By now, you’re probably feeling comfortable with Grafana but have legitimate concerns about the
effort involved. You may be thinking that the possibility of writing a lot of code to handle extract,
transform, and load (ETL) tasks might eat into your time budget to build the dashboards. Perhaps the
number of panels you will have to configure and organize on multiple dashboards seems potentially
tedious, error-prone work.

In this chapter, we’re going to look at how to reduce the ETL burden using off-the-shelf tools, as well
as how to use templates to fill a dashboard with variants, using only a single panel. We’ll also show you
how annotations make it possible to drill down into aggregated data in order to examine individual
data points. Then, we’ll take our dashboards and link them together with simple UI elements. Finally,
we’ll look at strategies to share our dashboards with others.

The following topics will be covered in this chapter:

• Building the data server

• Templating dashboards

• Linking dashboards

• Annotating dashboards

• Sharing dashboards

Let’s get started!

Working with Advanced Dashboard Features and Elasticsearch266

Technical requirements
The tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter10.

Building the data server
Imagine for a moment that you are working for the public works department of a major city. Throughout
the day, citizens use their phones and computers to report problems via the 311 service (https://
www.open311.org). You’ve been tasked with accessing the 311 data, building dashboards, and
presenting them to various stakeholders within the city government. They will want to see how many
of the various types of calls are made to the system, as well as how they are distributed across the city
in various council districts.

Before we can build our dashboards, we’ll need to get some data. Luckily, many major cities make
anonymized 311 data publicly accessible in many popular data formats, including JSON and CSV.
For this exercise, we’ll be working with 311 data from the city of San Francisco. This data is available
via their extensive data portal at https://data.sfgov.org/City-Infrastructure/
Current-FY-Cases/iy63-pi3t.

To get started with this exercise, open a Terminal shell window, change directory into the Chapter10
folder in your clone of this book’s GitHub repository, and download the dataset (in the CSV format)
from the DataSF website (or grab a copy from this book’s GitHub repository). After downloading
the file, we’ll set up an Elasticsearch server to serve our data. Elasticsearch is part of a powerful triad
of software, including Logstash and Kibana, that comprises the Elasticsearch ELK stack. Rather than
writing code to import the data into Elasticsearch, we’ll use Logstash to read our file and send it to
the server. Here’s a quick look at the docker-compose.yml file:

services:
 elasticsearch:
 image: docker.elastic.co/elasticsearch/elasticsearch:8.10.2
 ports:
 - "9200:9200"
 environment:
 - discovery.type=single-node
 - xpack.security.enabled=false
 - ingest.geoip.downloader.enabled=false
 volumes:
 - "${PWD-.}/elasticsearch/data:/usr/share/elasticsearch/data"

 grafana:
 image: "grafana/grafana:${GRAF_TAG-latest}"

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter10
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter10
https://www.open311.org
https://www.open311.org
https://data.sfgov.org/City-Infrastructure/Current-FY-Cases/iy63-pi3t
https://data.sfgov.org/City-Infrastructure/Current-FY-Cases/iy63-pi3t
entest

entest

entest

Building the data server 267

 ports:
 - "3000:3000"
 volumes:
 - "${PWD-.}/grafana:/var/lib/grafana"

 logstash:
 image: docker.elastic.co/logstash/logstash:${LS_TAG-8.6.1}
 volumes:
 - "${PWD-.}/logstash:/usr/share/logstash/pipeline"
 - "${PWD-.}/data:/data"

In this file, we first define an Elasticsearch service:

1. Use the latest image (8.10.2 at the time of writing) of Elasticsearch.

2. Expose the Elasticsearch port at 9200.

3. Disable the security settings and the geoip downloader, as they are not needed for this exercise;
lock Elasticsearch to a single node cluster.

4. Map the /usr/share/elasticsearch/data directory in the container to a local
Elasticsearch directory.

5. Set up a single worker node. Since you may be running Elasticsearch on a local platform such
as a laptop, we’ve set up an insecure configuration.

Warning
Elasticsearch normally ships with all security features enabled. However, to keep this exercise
as simple as possible, we have disabled those features. For safety, do not use this configuration
in production or in a way that exposes your site to the internet.

For Grafana, do the following:

1. Use the most current image.

2. Expose port 3000.

3. Map /var/lib/grafana in the container to a local Grafana directory.

Finally, we need to specify the Logstash service:

1. Use the latest image (8.6.1 at the time of writing) of Logstash.

2. Map the /usr/share/logstash/pipeline directory in the container to a local
Logstash directory.

We won’t actually run Logstash as a persistent service; instead, we will just use this service specification
in Docker Compose to give Logstash access to the network that our Elasticsearch and Grafana servers
are running on.

Working with Advanced Dashboard Features and Elasticsearch268

Launch the services by running docker-compose:

% docker-compose up --pull missing -d elasticsearch
% docker-compose up --pull missing -d grafana

We specify each service individually because we don’t want to spin up a Logstash service just yet. It
won’t hurt anything if you accidentally run all three services, but we want to control when Logstash
processes the CSV file.

Before we can import our file with Logstash, we need to configure it. It is beyond the scope of this book
to go into a lot of detail on the many features and capabilities of both Elasticsearch and Logstash (in
fact, there are whole books available from Packt and other publishers). In short, Logstash is designed
to deliver a log-processing pipeline in a single tool, configured through a single configuration file that
specifies the actions of a sequence of plugins.

A Logstash configuration includes three components: input, filters, and output. Here’s a simple
schematic diagram and how it maps into the traditional ETL pattern:

Figure 10.1 – The Logstash pipeline

In our case, the input will be a file read in from standard input (stdin). In order to properly clean
and conform our file so that it can be imported into Elasticsearch, we will configure some filters so
that they can process a CSV file. Finally, the output will be routed to standard output (stdout, for
debugging purposes) and our Elasticsearch server.

Building the data server 269

Let’s walk through the configuration file; first up is the input section:

input {
 stdin {}
}

It doesn’t get any simpler than this. Typically, Logstash is configured as a service that periodically
looks for changes in one or more files, and it then reads them in for processing. We only need to run
Logstash once to input our CSV file, so we use the stdin plugin so that Logstash gracefully exits
after the file processing is completed. Next up, we have the filter section:

filter {
 if "CaseID" in [message] {
 drop {}
 }
 csv {
 columns => ["CaseID","Opened","Closed",
 "ResponsibleAgency","Category","RequestType",
 "Address","Street",
 "SupervisorDistrict","Neighborhood",
 "PoliceDistrict","Latitude","Longitude","Source",
 "MediaURL"]
 convert => {
 "Latitude" => "float"
 "Longitude" => "float"
 }
 }
 date {
 match => ["Opened", "MM/dd/yyyy HH:mm:ss a"]
 target => "Opened"
 }
 date {
 match => ["Closed", "MM/dd/yyyy HH:mm:ss a"]
 target => "Closed"
 }
}

This is the section where the real work happens:

1. First, we check each line of the file (in Logstash, each line is treated as an event with the contents
of the line stored in message) for the CaseID string, which should only be present in the
header. If the line is indeed a header line, drop it from further processing.

2. Next, we configure the csv plugin to process each line, mapping each field in the parsed line
to the corresponding element in the columns list (copied from the header).

Working with Advanced Dashboard Features and Elasticsearch270

3. We convert the latitude and longitude into float values if we want to map them.

4. By default, the csv plugin won’t recognize the Opened and Closed fields as dates, so we will
use the date plugin to convert them by matching the string contents of the two named date
fields against the format string and storing the converted date objects back in their original fields.

Once we’ve parsed and processed the CSV file, we’ll need to ship the results to Elasticsearch. This is
handled in the output section:

output {
 elasticsearch {
 hosts => "elasticsearch:9200"
 index => "data-index"
 }
 stdout {}
}

We use two plugins to handle output – elasticsearch and stdout. The elasticsearch
plugin is given two parameters, with hosts specifying the host and port for the connection to
Elasticsearch and index specifying the destination index for the data. Think of an Elasticsearch index
as analogous to a database table or an InfluxDB bucket. The stdout plugin line is optional and is
included as it also prints out the same processed data it will transmit to the Elasticsearch server in the
Terminal window. This output is often helpful to monitor progress and troubleshoot any problems
that may arise when processing the data.

To load the data into Elasticsearch, run the following docker-compose command:

% docker-compose run logstash logstash < data/Current_FY_Cases.csv

This command runs logstash from the Logstash service and redirects its input from the CSV file.
The file in question is pretty big (~815 MB), so depending on your computer’s performance, it may
take around 30–60 minutes to load all the rows into Elasticsearch, so take a break!

If you’d rather not work with the entire dataset, use a standard text editor or (if available on your OS)
the tail command to extract the last few weeks. If you’d rather not wait to download or process the
full dataset, I’ve added some smaller datasets to the repository for you to experiment with.

Connecting Grafana to Elasticsearch 271

Because we are using the stdout plugin for output, you should be able to see the data rows printed
to the screen as they are processed. It can often be helpful to leverage these kinds of tricks to help
troubleshoot problems with data ingestion. If you don’t see what you’re expecting, you may have
a problem!

Let’s start working with that data by connecting Grafana to Elasticsearch!

Connecting Grafana to Elasticsearch
Now that we have our data loaded into Elasticsearch, we’ll need to create a data source connection in
Grafana to read it. Connecting to Elasticsearch is not substantially different from the InfluxDB data
sources we’ve been using. The authorization controls for our Elasticsearch container allow open access
to the data source, so we won’t need to use an API token to access it:

1. Open your browser to the Grafana app and select Connections | Add new connection from
the main menu.

2. Search for the Elasticsearch data source and select it.

3. Click on Add a new data source. Fill out the following form fields:

 � Name: Elasticsearch

 � HTTP | URL: http://elasticsearch:9200

 � Elasticsearch details | Index name: data-index

 � Elasticsearch details | pattern: No pattern

 � Elasticsearch details | Time field name: Opened

 � Elasticsearch details | Min time interval: 5m

entest

Working with Advanced Dashboard Features and Elasticsearch272

The data source page should look something like this:

Figure 10.2 – Elasticsearch data source

Since we are using Docker Compose to manage networking for our services, namely Grafana and
Elasticsearch, we need to configure the data source to access a URL with the service name from our
docker-compose.yml file. If you are able to successfully connect your data source to Elasticsearch,
you should see a green message near the bottom reading Data source successfully connected. This
indicates that the data source can access the index and identify the Opened field as a proper date
field, for use as a time field.

Querying with Elasticsearch 273

Querying with Elasticsearch
Now that we have a functioning data source, let’s build a regular time series visualization panel to get
a feel for how we’re going to present the data. Remember that we want to be able to look at the kinds
of calls made to 311 across different neighborhoods, so let’s first make a query just to get an idea of
how many graffiti calls are made. You can do this in Explore, but we’re going to build on our panel as
we go, so you’ll want to start with a dashboard and a new time series panel visualization.

Go to the panel’s Query tab to access the Elasticsearch data source query. You’ll notice its similarity
to the InfluxDB Query tab from previous chapters. The terminology may be a little different between
Elasticsearch and InfluxDB, but the concepts are very similar. Let’s enter a query string into the Query
field. Elasticsearch leverages a powerful Google-like search engine called Lucene to perform text queries,
so simply type in the word Graffiti, and you should get a response back with all the matching data.

If you don’t see anything change, make sure your query time frame is wide enough. If you downloaded
the dataset recently from DataSF, set it to Last 7 days; if you are using data from this book’s repository,
the data goes back to February 6, 2023. If your query found the data (called documents in Elasticsearch
terminology) in your Elasticsearch server and you have the approximate time range, you should see
an output similar to the following:

Figure 10.3 – An Elasticsearch query

Working with Advanced Dashboard Features and Elasticsearch274

The next field is called Metric, but it is easier to think of it as just an aggregation function. If you
use Date Histogram for Group By, the specified metric – in this case, Count – is calculated for each
time interval. For Group By, you can modify the time interval, but let’s leave it set to Interval: auto
for now. We will set the associated time field in the data to Opened, which we also configured as the
Time field name when we first set up the data source.

Next, let’s add another Group by option to give us a further grouping by supervisor district. Click the +
icon to the right of the Group by field. This should give you another Group by option, but with Terms.
Terms in the context of Elasticsearch, is much like an InfluxDB tag in that it represents a field of text
values. Let’s select SupervisorDistrict.keyword from the select field arrow dropdown. Since there are
11 supervisor districts in San Francisco, click on the dropdown to the right of SupervisorDistrict.
keyword, and select 15 from the Size dropdown:

Figure 10.4 – Elasticsearch Group By | Terms

Querying with Elasticsearch 275

While we’re at it, let’s get more specific about our query. By placing Graffiti as the only entry in
the Query box, we’re asking Elasticsearch to find the Graffiti string across all of the text fields
in our index. We only care about Graffiti as it pertains to a particular index field, namely the
Category field. Since we are looking at the Graffiti category, we want to search for our value
of the corresponding Category.keyword field. Let’s modify our query by entering the following
in the Query field (as shown in Figure 10.5):

• Query: Category.keyword:Graffiti

• Query options | Min interval: 1h

The auto time interval setting uses the $__interval set by Grafana, so we set the Min interval
option of 1h to give us a simpler look at the data. Alternatively, we could have set the query time
interval to 1h, but this gives us a bit more flexibility if we want to change the time range.

Info
Let’s pause for a moment to clarify something about text queries in Elasticsearch. Since we used
Logstash to add our data to the Elasticsearch index without specifying the index mapping (an
index configuration that works much like a database schema), Elasticsearch created one for
us. For each field not otherwise specified, Elasticsearch creates and indexes two fields – a text
field named for the field itself and a special .keyword version of the same field.

The content in the text fields is automatically broken up (analyzed) into word-like objects called
tokens and then indexed by those tokens. This is the way Elasticsearch matches a search on
the words in a field. Keyword fields are unanalyzed, so to search for a keyword field, you will
need to either exactly match the text or use wildcards.

Before we move on, let’s go ahead and configure some panel settings. I’ll point out the settings that
we need to change, leaving the rest to the defaults:

• Panel options | Title: Graffiti Calls by Supervisor District

• Legend | Visibility: on

• Graph styles | Style: Bars

• Graph styles | Fill opacity: 100

• Graph styles | Stack series: Normal

Working with Advanced Dashboard Features and Elasticsearch276

Here is what the term bars look like when they’re stacked up:

Figure 10.5 – Elasticsearch querying by category name

This is all well and good, but constantly having to change the query every time we want to look at a
different category is going to be tedious. We’re going to address this problem next.

Creating a template variable
Now that we have an idea of what our panel might look like, we observe that if we were to create
additional panels, one for each category of 311 call, we might need to create many panels, with each
being a virtually identical panel, except for the value of the category in question. This seems tedious
at best, and a potential maintenance nightmare at worst. What would happen if, say, you wanted to
tailor the color scheme for the breakdowns or change the stacking options? You might end up clicking
through dozens of panels, just to make a single change.

Creating a template variable 277

What if we could put a placeholder string in our query, and then set the value of that placeholder from
a menu selection? You would then be creating a kind of template panel, with a placeholder standing
in for the actual query value. In the panel query, you would fill a template panel variable. A template
variable is a special string that represents a placeholder that Grafana will substitute from a selection
of predefined values.

Template variables have three main characteristics:

• The variable definition, which determines its name and the set of possible values

• The variable embedding in various dashboard components, including panels and rows

• The evaluated variable, which, depending on the context, may be a defined constant, a user-specified
selection via a drop-down menu, or even a value calculated from other dependent variables

So, the first step in working with a template variable is to define one. We’ll start by defining a template
variable to represent a 311 category, and let’s call it 311Category.

Open Dashboard Settings, select Variables, and click Add Variable. Select the Query variable type
and use these settings:

• General | Name: 311Category

• General | Label: 311 Category

• Query Options | Data Source: Elasticsearch (the Elasticsearch data source)

• Query Options | Query: {"find": "terms", "field": "Category.keyword"}

• Query Options | Sort: Alphabetical (asc)

• Query Options | Refresh: On dashboard load

• Selection Options | Include All Option: on

If you typed in the query correctly, and your time frame encompasses a reasonable cross-section of
data (at least a day or two), you should see a list of possible values under Preview of values:

Working with Advanced Dashboard Features and Elasticsearch278

Figure 10.6 – Template variable creation

Tip
To check to see that your query correctly returns the values you need, click Run query. If you
don’t see results immediately after adding the data to Elasticsearch, you may want to give it a
few minutes to index before trying again.

Now, let’s go over these settings:

• Select variable type is one of several possible template variable types we’ll explore. In this case,
it is one that is derived via a data source query.

• Name is the actual name you will reference in the dashboard elements.

• Label is simply the label for the drop-down menu you will use to select the template variable’s value.

• Query is a snippet of JSON that will go into an Elasticsearch query, which generates the values
for the template variable.

Creating a template variable 279

The snippet we’re using in the template variable’s query indicates that it should find the unique values
(terms) for the Category.keyword field. The default maximum number of terms returned is
500, but if the cardinality (number of unique values) of a field is higher than a few dozen, you may
want to consider setting a limit by adding a size key to the query. A high-cardinality field is likely
to substantially slow down your UI. See the following example:

{"find": "terms", "field": "Category.keyword",
 "size": limit}

Moving on down with remaining settings:

• Set Sort to asc (ascending) in alphabetical order

• Enable Include All Option to give us the option to see all the categories

Don’t forget to click Apply when you have finished editing the template variable. It’s all too easy to
click away to one of the other settings pages and, sadly, lose your changes. Don’t forget to save your
dashboard as well!

Adding template variables to the graph panel

Now that we’ve added a template variable, we’ll put it to use. First, we’ll stop the query. In the Query
field, change Graffiti to $311Category:

• Query: Category.keyword:$311Category

Let’s also include the variable when we set Panel title:

• Title: $311Category by Supervisor District

As we can see, our variable works in other places besides the query! To reference a variable in a row or
panel, either use $ followed by the variable name, or if the variable is part of a string, surround it with
double brackets, [[and]]. Now that you’ve set up the panel, try out different values from the 311
Category dropdown. Note how both the results and the title change in response to the variable’s settings:

Working with Advanced Dashboard Features and Elasticsearch280

Figure 10.7 – A query with a template variable

Once you get a taste of the power of template variables, you’ll begin to see all sorts of places where
you can use them. When you do, your dashboards will become that much more flexible without a
lot of extra effort.

Templating additional variables

Why stop here? Perhaps we could template the interval? Let’s create a new variable that we will
use to set different Date Histogram intervals. That way, we can see what the call volume looks like
when aggregated across periods of time. But how do we specify possible values for time intervals?
Happily, Grafana provides the answer with the Interval variable type. Create a new variable and call
it HistInterval:

• Select variable type: Interval

• General | Name: HistInterval

• General | Label: Histogram Interval

Feel free to modify the list of possible time intervals. There is an additional option you can activate
called Auto Option. Turning this on will present a new interval, called Auto, that will automatically
divide up the overall time range into Step count intervals, but never create an interval smaller than
Min interval.

Once you’ve set up the variable, go to the Query tab in your panel, and next to Then by Date Histogram,
open the Interval section and type in $HistInterval. The Elasticsearch data source detects the
list of Interval values from the variable and makes them available in the dropdown.

Creating a template variable 281

Try out your new panel and experiment with different intervals. You may need to adjust your time
range to accommodate some of the larger intervals. Likewise, you may get an error from Elasticsearch
if you set the interval time too small. Don’t be alarmed – this just means that you’ve asked Elasticsearch
to break down the graph data into too many chunks of returned data (called buckets) than it has been
configured to aggregate. In a production environment, you would tune your Elasticsearch configuration
to handle higher bucket counts, if necessary, but for now, just scale down your time range width.

Here’s what a one-day interval across a seven-day time range might look like:

Figure 10.8 – Interval set by template variable

Why stop there? Behold the power of the template variable! Create a new Query variable
called FieldName:

• General | Name: FieldName

• General | Label: Field Name

• Query Options | Data Source: Elasticsearch

• Query Options | Query: {"find": "fields", "type": "keyword"}

• Query Options | Regex: /(.*)\.keyword/

• Query Options | Sort: Alphabetical (asc)

We use Regex to trim off the .keyword portion of the string. Only the text that matches the regex
within the parentheses is retained. Since we remove .keyword from the variable, you’ll still need
to append it when you reference the variable in your queries.

Working with Advanced Dashboard Features and Elasticsearch282

Next, we will create a new template variable that will take the result of the field name, creating a
variable with the terms for that field on the fly:

• Select variable type: Query

• General | Name: FieldTerms

• General | Label: Field Terms

• Query Options | Data Source: Elasticsearch

• Query Options | Query: {"find": "terms", "field": "$FieldName.keyword"}

• Query Options | Sort: Alphabetical (asc)

• Selection Options | Include All Options: on

Don’t worry if you don’t see a proper preview – the variables editor doesn’t know what the dependent
$FieldName variable is set to, so it can’t evaluate the full variable. If you want to get a sense of how
and where these dependencies might affect your variables, use the Show dependencies tool in the
Dashboard settings | Variables pane.

Now, update your panel query so that it uses both variables:

• Query: $FieldName:$FieldTerms

Also, update the title to $FieldName:$FieldTerms calls by Supervisor District.

Here’s an example where I selected Category as the field name and Abandoned Vehicle from the
listed field terms:

Figure 10.9 – Template variable substitution for the Query field and search term

Creating a template variable 283

Try out different combinations of settings for $FieldName and $FieldTerms, and see how they
affect both the graph and the title. Also, note how the contents of the Field Terms dropdown change
when you pick a different field name.

Creating ad hoc filters

Grafana has developed a special template variable that functions in a similar fashion to our terms
query. Called an ad hoc filter, it is designed to perform as a filter you would use to reduce a broad
query to a more specific query. There is almost no setup involved in using ad hoc filters. You simply
specify a name and the data source that corresponds to your panel queries. Once in place, it operates
on all of the dashboard’s panel queries. By clicking the + icon, you can continue to add Field Name/
Field Terms pairs to produce tighter filters.

Ad hoc filters can be very powerful to create quick queries on your data source without the need to
open and edit each panel. However, you have no control over the number of possible fields and how
many terms they produce, so they should be used with some caution. Here is an example that produces
similar results to the preceding Field Name/Field Terms combination:

Figure 10.10 – An ad hoc filter

In this case, I selected Category.keyword when I selected + to initiate the filter. Grafana
automatically adds the = comparison operator and the dropdown containing the possible Category.
keyword terms.

Working with Advanced Dashboard Features and Elasticsearch284

Repeating rows and panels with template variables

The dashboard layout is one of the more powerful uses for template variables. Instead of the grid
layout system that we looked at previously, earlier versions of Grafana used a layout model centered
around lining up panels on discrete rows. The panels could vary in size, but all the panels on a row
would render within the confines of the row they belonged to. This mechanic for laying out dashboards
wasn’t very flexible, and it could be very tricky to use, but it did necessitate a powerful feature that
still exists today – repeating rows and panels.

How does a repeating row or panel work? Simply put, when you designate the repeat template variable
for a row or panel, Grafana will, for each value of the variable, generate a copy of that row or panel and
set the panel’s template variable(s) to the corresponding value(s). You can find the Repeat options
setting in the Panel options section of each panel or row.

Let’s try an example that should give you a good idea of how the Repeat options settings work, helping
you to see how they react to different template variable settings. Start by creating a new dashboard,
and on that dashboard, create a single panel on a single row.

You can create a new row by clicking the dashboard’s Add dropdown and selecting Row. Open
Dashboard settings | Variables and create a new variable:

• Select variable type: Query

• General | Name: PanelRepeatField

• Query Options | Data source: Elasticsearch

• Query Options | Query: {"find": "fields", "type": "keyword"}

• Query Options | Regex: /(.*)\.keyword/

• Query Options | Sort: Alphabetical (asc)

• Other options: off

Next, create another variable for the terms:

• General | Type: Query

• General | Name: PanelRepeatTerms

• Query Options | Data source: Elasticsearch

• Query Options | Query: {"find": "terms", "field": "$PanelRepeatField.
keyword"}

• Query Options | Regex: /(.*)\.keyword/

• Query Options | Sort: Alphabetical (asc)

• Selection Options | Multi-value: on

• Other options: off

Creating a template variable 285

Now, create a second pair of these variables, but name them RowRepeatField and RowRepeatTerms,
respectively. The query for the RowRepeatTerms variable should, of course, reference the
$RowRepeatField variable. You’ll use those to control what each row should display.

In the row, click the settings (gear symbol) icon; you will see the dialog shown in the following screenshot:

Figure 10.11 – Row options with the template variable

Here, set the following values:

• Title: $RowRepeatTerms

• Repeat for: RowRepeatTerms

This sets the repeat for the row. The row itself is what I will refer to as a canonical row. Now, go to the
Options section in the (canonical) Panel tab. We’re going to put in some Markdown to display the
variables as they’re set for the panel:

 | Variable | Value |
 |--- | --- |
 | _RowRepeatField_ | $RowRepeatField |
 | _RowRepeatTerms_ | $RowRepeatTerms |
 | _PanelRepeatField_ | $PanelRepeatField |
 | _PanelRepeatTerms_ | $PanelRepeatTerms |

Here are the rest of the settings you need:

• Panel options | Title: $PanelRepeatTerms

• Panel options | Repeat options | Repeat by variable: PanelRepeatTerms

• Panel options | Repeat options | Repeat direction: Horizontal

• Panel options | Repeat options | Max per row: 6

Working with Advanced Dashboard Features and Elasticsearch286

The first option I set was PanelRepeatField; this will generate PanelRepeatTerms, which we will use
to set the title and generate panels. I then selected Category. Next, I selected 311 External Request,
Abandoned Vehicle, Graffiti, and Muni Service Feedback. For the rows, I’ll set RowRepeatField as
RequestType, which will generate the terms we’ll select for our rows. I’ll select Abandoned Vehicle
and Blocked_Sidewalk.

Note how quickly we were able to generate an entire grid of panels with just a few variable definitions
and the settings in a single row and panel. As you can see, any number of rows can repeat in the vertical
direction, but you can only limit the number of panels in the horizontal direction:

Figure 10.12 – Repeating rows and panels

Now, bear in mind, that you won’t get any useful information from these variable selections; this is
only going to be useful to illustrate the relationships between template variables and repeating rows
and panels. Nonetheless, try out different combinations of variables and see how they affect the rows
and panels.

Try out the new dashboard by selecting various repeat fields and their terms. Observe how the number
of rows and panels increases and decreases. Also, note how the size of the panels adjusts as the number
of panels increases. You may need to tweak the canonical panel to get a nice look for the table when
the panels get smaller.

Creating a new dashboard 287

Creating a new dashboard
Now, we have everything we need to begin building some dashboards with repeating rows and panels.
Observe that the data fields group roughly into four major types:

• Call type: (Category and RequestType)

• Responsibility: (PoliceDistrict, ResponsibleAgency, and SupervisorDistrict)

• Location: (Address, Neighborhood, Street, Latitude, and Longitude)

• Date: (Opened, Closed, and @timestamp)

What we will do here is create a series of dashboards, each one dedicated to a Responsibility
entity. Each dashboard will be split into two-column panels, one for each Call type. We will then
allow the user to decide the Group By terms for the panel queries. We’ll need to create several template
variables to drive the dashboard, but once they’re created, things should fall into place. Let’s get started!

First, we will need to create a dashboard. On the dashboard, we’ll create some template variables.

Setting up the template variables

The first set variable will set the Responsibility entity for the dashboard. Since we can’t query
for it and it has only three possible values anyway, we’ll create it as a custom variable. Custom variables
are just a comma-separated list of possible values:

• Select variable type: Custom

• General | Name: Entity

• Custom options | Values separated by comma: PoliceDistrict, ResponsibleAgency,
SupervisorDistrict

Working with Advanced Dashboard Features and Elasticsearch288

Here are the details for the custom variable:

Figure 10.13 – The Custom variable type

Creating a new dashboard 289

We follow up the Entity variable with the corresponding term’s variable, which we’ll call
EntityAgency. These will be the repeat variables for the dashboard rows:

• Select variable type: Query

• General | Name: EntityAgency

• Query Options | Data source: Elasticsearch

• Query Options | Query: {"find": "terms", "field": "$Entity.keyword"}

• Query Options | Sort: Alphabetical (asc)

• Selection Options | Multi-value: on

Next, we’ll create the two pairs of variables that represent the two columnar panels, one pair for
Category and the other for RequestType:

• Select variable type: Query

• General | Name: Category

• Query Options | Data source: Elasticsearch

• Query Options | Query: {"find": "terms", "field": "Category.keyword"}

• Query Options | Sort: Alphabetical (asc)

• Selection Options | Multi-value: on

• Selection Options | Include All Option: on

The Group by Terms variable needs to be set as follows:

• Select variable type: Query

• General | Name: CategoryGrouping

• Query Options | Data source: Elasticsearch

• Query Options | Query: {"find": "fields", "type": "keyword"}

• Query Options | Regex: /(.*)\.keyword/

• Query Options | Sort: Alphabetical (asc)

RequestType and RequestTypeGrouping are pretty much the same. Just duplicate Category
and CategoryGrouping and modify the query for RequestType to match. The last variable is
AggregationInterval for Date Histogram, which we created previously:

• Select variable type: Interval

• General | Name: AggregationInterval

• Interval Options | Values: 1m,10m,30m,1h,6h,12h,1d,7d,14d,30d

Working with Advanced Dashboard Features and Elasticsearch290

Don’t worry – if you ever get stuck or lose track of all the various option settings, these dashboards
can be found in the GitHub repository for this book. Next up, we’ll configure the panels.

Configuring the panels

Each panel will be similar, with just a few differences between them, so once we’ve configured our
first panel, we’ll just copy it and make the necessary tweaks. We’ll need to create a time series panel,
and the first order is to set up the query, as follows:

• Data source: Elasticsearch

• Query type: Metrics

• Query: $EntityAgency AND $Category

• Metric: Count

• Group By | Terms: $CategoryGrouping

• Group By | Terms | $CategoryGrouping | Order: Bottom

• Group By | Terms | $CategoryGrouping | Size: No limit

• Group By | Terms | $CategoryGrouping | Order By: Term value

• Then By | DateHistogram: Opened

• Then By | DateHistogram | Opened | Interval: $AggregationInterval

• Query options | Min interval: 5m

Here, we first query for the values of the documents that match both the value of $EntityAgency
and the value(s) of $Category. We group by $CategoryGrouping, which might normally be
Category.keyword, but it could be some other grouping. We set the Order from the bottom up
with a size of no limit so that we can see all the possible terms, and the Term value will appear in
proper alphabetical order (from the lowest value up) in sort Order By. Finally, we set the interval to
$AggregationInterval. For good measure, we set the minimum time interval to something
reasonable, such as five minutes.

In the Panel tab, we’ll turn on the bars and the legend; this is nothing too complicated:

• Legend | Visibility: on

• Legend | Values: Mean

• Graph styles | Style: Bars

• Graph styles | Stack series: Normal

Finally, we set the title in Panel options to $Entity ($EntityAgency) $Category by
$CategoryGrouping.

Creating a new dashboard 291

That takes care of the Category panel. Now, let’s move on to the second panel, which is much the same,
but we will make a few tweaks. Duplicate the Category panel and make these changes to the query:

• Query: $EntityAgency AND $RequestType

• Group by | Terms: $RequestTypeGrouping

Then, make the following change to the title, and we’re done:

• Panel options | Title: $Entity ($EntityAgency) $RequestType by
$RequestTypeGrouping

Now, we need to set up the repeating at the row level. Create a row, and make sure both panels are
positioned below the row header. Also, make sure to resize the panels if necessary so that they share
the row evenly. Here are the row settings:

• Row options | Title: $Entity $EntityAgency

• Row options | Repeat for: EntityAgency

From the template variables, select the following:

• Entity: Police District

• EntityAgency: BAYVIEW + RICHMOND

• Category: All

• CategoryGrouping: Category.keyword

• RequestType: All

• RequestTypeGrouping: RequestType.keyword

• AggregationInterval: 1d

Working with Advanced Dashboard Features and Elasticsearch292

Be sure to save your dashboard, and name it something relevant. When complete, the dashboard
should look something like this:

Figure 10.14 – Repeating panels driven by a single template variable

The neat thing about this is that you’ve effectively created three dashboards, each of which you can see
by just changing that single Entity variable. From here, you have a few choices, depending on what
works best. If you feel like your user would be happy switching between dashboards, then you could
publish this as it stands. If, on the other hand, your client doesn’t want to see the other dashboards,
you could do one of two things:

• Make a special copy of the dashboard with the client’s settings for Entity, and then hide the
Entity variable (set Show on dashboard to Nothing) so that it can’t be changed

• Make a special copy of the dashboard and convert the Entity variable into a constant type
set to the value pre-selected by the client

Next, we’re going to look at how to treat the dashboards as separate but still connected, via
dashboard linking.

Linking dashboards
Now that you have your dashboards set up, you may have noticed that navigating between dashboards
can be a bit tedious. To go to a different dashboard, you click the dashboard’s name, click the Grafana
logo, or click the Dashboards sidebar menu, and then you look for your dashboard and click on it.

Linking dashboards 293

This isn’t very efficient, and it makes it difficult to deploy your dashboards as a coherent site that
doesn’t force your users to go rummaging through a lot of dashboards that aren’t relevant to them,
in search of the ones that are.

Fortunately, you’re in luck! Grafana provides a simple, dashboard-level linking system to facilitate the
creation of navigable dashboards. Dashboard linking supports intra-dashboard links via tagging, or
inter-dashboard via URL. Let’s see how that works for our newly created dashboards.

Adding dashboard tags

The first step is to make a copy of the dashboard you created in the previous section. Ultimately,
we’re going to make three different versions of this dashboard. You can copy a dashboard by going to
Dashboard settings and clicking Save As.... Then, rename the dashboard to something that references
the Entity variable you will choose for this dashboard.

First off, we will need to tag the dashboard. Go to Dashboard settings | General and set the
following option:

• Tags: 311 Calls

The following screenshot shows the General panel, showing the tag settings for the dashboard:

Figure 10.15 – The dashboard tag

Once we’ve tagged our dashboards, we’ll be able to easily create dashboard links based on the tag.

Working with Advanced Dashboard Features and Elasticsearch294

Locking down a template variable

Next, we’ll lock down the Entity variable. Go to Dashboard settings | Variables, and for the Entity
variable, remove all but one of the values in Values separated by comma. Set Show on dashboard
to Nothing. This step will go more smoothly if you pick the value that matches the Entity variable
that was selected for the dashboard. Otherwise, you may have to do some selecting and reloading to
make sure that all the variables reflect the correct one for the dashboard.

Creating dashboard links

Open the Dashboard settings | Links menu and select Add Dashboard Link. Immediately, you
will be presented with the option, via the dropdown, to create either a dashboard link or a URL link.
Create the link with these settings:

• Title: 311 Calls

• Type: dashboards

• With tags: 311 Calls

• Options | Show as dropdown: on

• Options | Include current time range: on

• Options | Include current template variable values: on

Here’s a closer look at the configuration for Dashboard Links:

Figure 10.16 – Dashboard linking

Annotating dashboards 295

This will give you a menu that appears on the header, below the template variables. The menu will
navigate you to the other dashboards that share the same tags. The settings will preserve the time
range and variable values so that you don’t lose your settings if you need to switch back and forth
between different dashboards.

As an exercise, try to make copies of the dashboards to cover the other two entities, and link them all
together. When finished, you should be able to navigate between all three; each menu should have two
entries for the other two dashboards, as shown in the following screenshot (on the right):

Figure 10.17 – The dashboard link menu

Next, we’re going to move on to another advanced dashboard feature – the ability to create annotations
of individual data points, both manually in the UI and automatically via an Elasticsearch query.

Annotating dashboards
Annotations are a versatile mechanism to highlight individual events in a time series. By singling out
a single data point at a particular time and marking it with metadata, you have the capability to mark
up your dashboard panels with rich data, such as text and tagging. Grafana provides two annotation
capabilities to choose from – native annotation queries are created interactively and stored with the
dashboard on the Grafana server, while data source annotation queries are created as data source
queries, with the query and annotation configuration stored with the dashboard.

Annotating the graph panel

Since data source annotations can be resource-intensive, we’ll demonstrate annotation with just a single-
panel dashboard. Create a new dashboard and a single Time series panel with the following settings:

• Data Source: Elasticsearch

• Query: RequestType:Graffiti

• Query options | Min interval: 1h

Working with Advanced Dashboard Features and Elasticsearch296

• Legend | Visibility: on

• Graph styles | Style: Bars

• Graph styles | Stack series: Normal

It’s not critical that you get the settings exactly right; the goal here is to just come up with a panel
depicting some of our data. Once you have a working panel, manually adding annotations is quite simple:

1. Identify the appropriate moment in time.

2. On the graph, either Option + click and select Add annotation, or Command + click to bring
up an annotation popup. If this doesn’t work, try simply clicking on the data point to bring
up the popup.

3. Fill in the text with descriptive text.

4. Add one or more tags (complete a tag by typing and then using the Return or Tab key).

An annotation is visually depicted on the time series panel as a vertical dashed line with a pointer
triangle, just below the graph baseline, as shown here:

Figure 10.18 – Annotation

That’s pretty much all there is to creating a native annotation! Next up, we’ll look at how to query for
our annotation data.

Annotating dashboards 297

Querying tagged annotations

Once you’ve created some annotations, you’ll of course want to be able to see and potentially query
for them. To provide visibility into any native annotations, Grafana provides a built-in query, which
you’ll find in Dashboard settings | Annotations. The query is referred to as Annotations & alerts,
and among the configuration options are the following:

• Name

• Data source

• Enabled/disabled on every dashboard refresh

• A hidden annotation queries toggle

• Annotation marker color

• Query filtering by dashboard or tag

• Maximum number of annotations to display

So, if you toggle Hidden to off, you’ll now see a visibility toggle control on the heading, which enables
and disables the query for dashboard annotations. Now, let’s add a new annotation query and see how
that behaves. Earlier, I added an annotation for Graffiti with the following settings:

• Description: Graffiti report here

• Tags: Graffiti

Let’s go to Dashboard Settings, open Annotations, and create a new annotation query:

• Name: Graffiti

• Data source: --Grafana--

• Enabled: on

• Hidden: off

• Color: Red

• Filter by: Tags

• Tags: Graffiti

When you return to your dashboard, you should see two toggle switches – one for Annotations &
Alerts and the other for Graffiti. Now, toggle the Annotations & Alerts query off. You should now
see a red annotation marker, corresponding to our original Graffiti annotation query. Hover over the
triangle; you’ll see our Graffiti annotation.

Working with Advanced Dashboard Features and Elasticsearch298

Now, swap the settings so that Graffiti is off and Annotations & Alerts is on. You should now see
the same annotation in blue. Hovering over the annotation triangle shows the same annotation. This
indicates that our annotation queries are, in fact, independent. The annotations are always there, stored
in Grafana’s internal database; the reason you can normally see annotations is that each dashboard
contains one annotation query dashboard filter that is both enabled and hidden.

Let’s move on to querying our Elasticsearch data source for annotation data.

Creating Elasticsearch annotation queries

Along with native annotations, Grafana also allows us to leverage data sources to serve annotation
queries. Unlike the native annotation queries, no actual annotation data is produced. Instead, the data
source annotation query provides a view into the underlying data, which is then displayed by Grafana
as annotations. Consequently, you wouldn’t be able to produce a data source annotation query and then
capture a native annotation query for any of the tags generated by the data source annotation query.

Since the annotations are generated from the results of a data source query, you must be very cautious
of how many annotations your data source query might generate. Depending on the number of panels
you have on the dashboard, and the number of annotations returned from the query, you can easily
lock up your page as Grafana struggles to track the thousands of annotations.

You should use Explore to vet your query, especially as Elasticsearch can often return a significant
number of hits from a query. Use the Explore Inspector | Stats options to calculate the number of
documents returned from your query.

In this example, we’ll create a query for a specific annotation that is a common issue in metropolitan
areas – waste on the streets. We’ll create a query to look for street waste (both human and animal)
with associated photo URLs in a specific supervisor district, tag the annotations with the appropriate
RequestType, and embed the link in the photos in the Text field. Ready?

Add a new annotation query in Dashboard settings | Annotations. Here are the settings:

• Name: District 8 Waste

• Data source: Elasticsearch

• Enabled: on

• Hidden: off

• Color: Orange

• Query: RequestType.keyword:*Waste AND MediaURL.keyword:http* AND
SupervisorDistrict.keyword:8

• Field mappings | Time: Opened

Annotating dashboards 299

• Field mappings | Text: MediaURL

• Field mappings | Tags: RequestType

This is what the Elasticsearch annotations query looks like:

Figure 10.19 – An Elasticsearch annotation query

Here, the biggest difference between a native annotation query and this data source annotation query
is the settings for the Query and Field mappings. The query looks for either Human and Animal Waste
or Medical Waste, with the *Waste wildcard string in the RequestType field, the http* wildcard in
the MediaURL indicating a URL to a photo, and a SupervisorDistrict value of 8. Then, we
use the Field mappings option to use the Opened field to set the time for the annotation (useful for
creating alerts), MediaURL in the Text field, and create a tag using the RequestType field.

Working with Advanced Dashboard Features and Elasticsearch300

Once you’ve set up the query, look at a day or two’s worth of data:

Figure 10.20 – Annotation hover

There should be a few annotations per day. Hovering over one of them reveals a URL in the Text field
and the RequestType tag. Unfortunately, the URL isn’t clickable, but it does illustrate the potential
to embed rich data into an annotation.

Sharing dashboards
Now that you’ve created these lovely dashboards, how do you share them with the world (or just your
boss)? One of the first questions you must consider is the link between your dashboards and your data
sources. For the sake of this exercise, we’ll keep the data sources and the dashboards in proximity –
that is, on the same host and the same network. If you wish to share your dashboards, they will need
to access your machine and possibly your network. You’ll want to give some serious thought to how
best to share them. Here, we’ll discuss a few strategies and their pros and cons.

Sharing dashboards 301

Sharing dashboard links

The most straightforward sharing mechanism is to simply give out a URL to your Grafana server that
references the dashboard in question. Click the Share dashboard button (the three circle interface
icon in the dashboard bar and use the Link tab to create a link. If you want the dashboard to preserve
the current view, make sure you enable Current time range and Template variables. Grafana will
generate a custom URL you can copy and mail out.

This technique will only work if the client has access to your server and you’ve configured it to serve
other browsers on your network. If that’s not the case, you might have some difficulties. This option is
most suitable for production environments where the Grafana server has been configured for multiple
clients. However, the Grafana setup for this book is only able to serve localhost at port 9200,
which is essentially the computer that you’re running Grafana on.

Sharing dashboards by exporting

The next best option is to export your dashboards if you know that your client also has access to the
same data sources. You can then export to JSON and transfer the text file. Then, your clients just need
to import the JSON file and make sure they’ve properly configured the data source(s). This is a good
option if you are in an environment where you have centralized database servers and you want to
transfer your dashboards for someone to review, modify, or install them on another server with the
same data sources. This is how I shared the dashboards that were created for this book.

The process is quite simple – just click Share dashboards and use the Export tab to save the JSON
to a file, or copy it to a dashboard so that you can paste it into an email. The Export for sharing
externally toggle is used when you want to share your dashboard publicly (such as on grafana.
com) but want to make sure there are no explicit data source names embedded in the file. Instead, they
are templated so that the importer of the dashboard file will assign them to their own data sources,
using a data source template variable.

Sharing dashboard snapshots

The final option is the one that is the most isolated and is for scenarios where you may have nothing
more than access to a local Grafana server. For example, you may be giving a demo and you have no
virtual private network (VPN) connection to your data sources, or possibly no network access at all.
The snapshot option is intended to export the dashboard and a sample dataset, either to a local file or
to a Grafana sharing service such as https://snapshots.raintank.io:

http://grafana.com
http://grafana.com
https://snapshots.raintank.io

Working with Advanced Dashboard Features and Elasticsearch302

Figure 10.21 – A dashboard snapshot

The snapshot is limited to the current time frame, so choose one that you feel gives the best representation
of the data. You will also be limited to some of the data you can show. The dashboard view is intended
to be strictly read-only, so you will have no ability to edit the panels or even see the queries. The
snapshot can be limited, but if you are looking to give a report on a specific timeslice of data and you
don’t mind having some functional limitations, the snapshot can be very useful.

Summary
We’ve accomplished a lot in this chapter. Here, we created an Elasticsearch server, imported a realistic
textual dataset with Logstash, and learned about several different types of template variables, as well
as how to set them up to parameterize our dashboards. Then, we applied template variables to repeat
rows and panels and discovered the native annotation feature, as well as how to create annotations
from an Elasticsearch query. Finally, we explored different sharing options and their pros and cons.

At this point, you have been exposed to enough of Grafana to now go off and create dashboards built
around your own data sources. We’ve looked at two of the more popular data sources, InfluxDB and
Elasticsearch, but we’ve only scratched the surface of their capabilities, apart from being used with
Grafana. I encourage you to explore them; the more you understand how data sources manage data,
the better you will be able to tailor your datasets to get the most out of Grafana.

Summary 303

In the next chapters, we will be pivoting toward the exciting field of observability. Observability is
one of the hottest areas for visualization, and Grafana is right up there. We will start in Chapter 11,
Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live, by looking into how to ship real-
time metrics to Grafana with Grafana Live. In Chapter 12, Monitoring Data Streams with Grafana
Alerts, we’ll look at how to set up and communicate alerts when metrics exceed certain thresholds.
In the final chapter of our observability trilogy, Chapter 13, Exploring Log Data with Grafana’s Loki,
we’ll use Loki to examine logging data and metrics for potential patterns we can use to create alerts.

11
Streaming Real-Time IoT Data from

Telegraf Agent to Grafana Live

In this chapter, we’re going to dip a toe into the exciting world of observability. While you’ve probably
heard that observability is currently one of the hottest fields in IT, you may be wondering what it
is, and how Grafana supports it. Here is a definition of observability from Wikipedia (https://
en.wikipedia.org/wiki/Software_observability):

“In distributed systems, observability is the ability to collect data about program
execution, internal states of modules, and communication between components.”

This is a little bit abstract, so let me offer my refinement:

Observability is the practice of collecting metrics data from telemetered systems, scanning, detecting, and
alerting on anomalous behavior, and distributing state metrics at an appropriate frequency for analysis.

This divides observability into three core functions:

• Metrics collection

• Alerting

• Data distribution

In the next few chapters, we’re going to be looking at these functions in more detail. In this chapter,
we will concentrate on the collection of data – specifically, IoT data in real time or near real time. In
Chapter 12, Monitoring Data Streams with Grafana Alerts, we will look at how to monitor for anomalous
data and generate alerts. Finally, in Chapter 13, Exploring Log Data with Grafana’s Loki, we will look
at how to manage and analyze the sometimes overwhelming log data that our processes generate.

https://en.wikipedia.org/wiki/Software_observability
https://en.wikipedia.org/wiki/Software_observability

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live306

In this chapter, we will cover the following topics:

• Streaming real-time data from Telegraf to Grafana

• Sending IoT data to Telegraf with MQTT and Mosquitto

• Generating messages to an IoT pipeline

Technical requirements
The tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter11.

Streaming real-time data from Telegraf to Grafana
In previous chapters, we typically sourced a collection of metrics from, say, a website or a data file, and
after storing that data in a time-series database, we then used Grafana to query that data for analysis
and visualization. This process of working a corpus of data as a single entity is sometimes referred to
as batch handling. By contrast, in this chapter, we will be continuously moving time samples of data
as they are generated, or streaming the data from source to destination.

This style of handling data is suitable for many applications where the data needs to be visualized
or otherwise processed in real time for monitoring and alerting. It is also most useful in those cases
where it would be difficult or impractical to wait for all the data to arrive before analyzing, or where
sampled, non-transactional data is the norm.

To get an idea about how to distinguish between these two use cases, imagine the case where you
need to process all sales receipts for a single day, month, or quarter. To close the books in keeping
with regulations, you need to establish all the receipts for a fixed period of time, and missing a single
receipt could have drastic consequences. This is a use case where batch processing of data is a requisite.

However, now imagine a refinery or a power plant where thousands of processes are continuously
generating data every millisecond, second, or minute. If one of those metrics indicates a process or
machine exceeding safe tolerances, a delay of seconds could mean the difference between life and
death. Waiting for arbitrary time periods would be ill-advised, and thus streaming is the better choice.

In this chapter, we’ll be generating several data streams and developing the pipelines to transfer them
in real time for Grafana to display, beginning with the very systems that drive the computer you’re
working on. Later, we’ll extend the pipeline to a data stream that simulates an IoT device such as a
smart thermostat. This will involve our most complex pipeline so far, but rest assured, we’ll go through
it step by step.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter11
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter11

Streaming real-time data from Telegraf to Grafana 307

Setting up Grafana for streaming

We’re going to work on this tutorial in a kind of reverse order. In the past exercises, we’ve started with
the data collection and worked forward to Grafana dashboard panels. In this case, we’re going to first
set up Grafana to provide a destination for our data, then we’ll set up a Telegraf metrics collector to
route the data to Grafana.

Here’s a schematic representation of the pipeline we will build:

Figure 11.1 – Telegraf to Grafana pipeline

The first order of business is to set up our processes, beginning with Grafana. We’ll use our trusty
docker-compose.yml file to establish a Grafana service:

services:
 grafana:
 image: "grafana/grafana:${GRAF_TAG-latest}"
 ports:
 - "3000:3000"
 volumes:
 - "${PWD-.}/grafana:/var/lib/Grafana

This is the standard Docker Compose pattern for setting up our Grafana container. Launch the service
and connect to http://localhost:3000:

docker-compose up --pull missing -d grafana
[+] Running 1/1
 Container chapter11-grafana-1 Started
 0.5s

Normally, this is the point where we’d create a Grafana data source that we’d query for our dashboard
panels. This time, we’ll be taking advantage of a built-in Grafana data source called Grafana Live,
which will accept streaming data. We just need to generate some real-time data to stream. That’s
where Telegraf comes in.

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live308

Installing the Telegraf agent

Telegraf is a data collection agent application developed by InfluxData and designed to transfer metrics
data from almost any platform. It consists of a long-running agent process that can be configured to
collect, process, and transmit data efficiently to a waiting process.

Installation is simply a matter of launching a Telegraf Docker container configured with the necessary
plugins to acquire and transmit data to Grafana. In our case, we will be collecting stats from our local
computer and transmitting them to the Grafana Live endpoint.

Configuring Telegraf is easy. All we need to do is define what metrics it must monitor, how to send
the metrics to Grafana, and how often to sample and transmit. But before we do that, let’s set up our
docker-compose.yml file with the additional service:

 telegraf:
 image: "telegraf:${TELE_TAG-latest}"
 volumes:
 - "${PWD-.}/telegraf/etc:/etc/telegraf

Here, we just create a new service by pulling down the latest version of Telegraf. We also specify a
local directory for storing our telegraf.conf file. There is no need to create any other persistent
storage as Telegraf is only acting as a conduit for sending data to Grafana. In fact, we won’t be storing
any data in this chapter.

Configuring the Telegraf agent

Before we launch our service, let’s configure it. In the Chapter11 directory of your repository,
create a telegraf/etc directory. In it, store a telegraf.conf file. We start by setting up the
frequency of how often the service should poll and transmit metrics data:

[agent]
 interval = "1s"
 flush_interval = "1s"

Here, interval sets how often to poll for data, and flush_interval sets how often to transmit
the data. You should set the two intervals to whatever you’d like; just don’t set flush_interval
to be less than interval.

Setting the input plugins

Telegraf ’s metrics pipeline has a very simple model of four phases, not dissimilar to that of Elasticsearch’s
Logstash from Chapter 10, Working with Advanced Dashboard Features and Elasticsearch, Input, Process,
Aggregate, and Output. Each phase is implemented as a Telegraf plugin. For many applications, it
will be enough to configure a set of inputs and an output. Indeed, for our initial exercise, that is what
we will do.

Streaming real-time data from Telegraf to Grafana 309

First up, we’ll configure our inputs – that is, the metrics we want to track. The full catalog of Telegraf
plugins numbers in the hundreds and can be found in the InfluxLabs Telegraf documentation at
https://www.influxdata.com/products/integrations. The catalog also contains
links to the configuration documentation for each plugin. Initially, we’ll use the same metrics as
documented in the official Grafana documentation tutorial: input.cpus. They make a good initial
choice because they are supported across multiple platforms and they are easy to conceptualize.

The configuration is located in the input.cpus GitHub repository at https://github.com/
influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md. In it, we see
that there is only a handful of configuration options, and the plugin produces several output metrics.
The documented configuration options are defaults and don’t need to be added to our telegraf.
conf file unless we plan to override them. In our case, we don’t want to overwhelm Grafana with too
many metrics, so we’ll override percpu and set it to false. This sets the metrics to represent the
aggregation of however many CPUs exist on the computer, rather than breaking them out separately.
Add the following to your telegraf.conf file:

[[inputs.cpu]]
 percpu = false

Setting the outputs plugin

Now that we have our inputs, we move on to the outputs. It won’t do us any good to have Telegraf
collect our metrics if we don’t also tell it where to send them! We’ll use the outputs plugin to send our
data to the Grafana Live facility inside the Grafana server. Grafana Live is a messaging service that
continuously monitors various channels for events, and then passes along those events to subscribers
in the Grafana frontend. In our case, we are passing along a Telegraf-captured data stream in InfluxDB
format to Grafana Live, which will pass it along to an internal data source that we can then access
from a Dashboard panel or Grafana Explore.

The data we capture will be broken out into several fields of data, which we can then access in
Grafana just like a normal dataset. Grafana provides an API for sending data using the /api/live/
push/<:streamId> endpoint, where :streamId is the name of our stream. We’ll use the
outputs.http section to send our data stream to the Grafana Live endpoint using HTTP REST.
Have a look at the settings documentation at https://github.com/influxdata/telegraf/
tree/master/plugins/outputs/http. There are quite a few of them, but let’s zero in on
the most important one: url. This sets the destination endpoint for our output, so let’s set that first:

[[outputs.http]]
 url = http://grafana:3000/api/live/push/telegraf_id

Remember, our URL must point to the Grafana running in our container as seen from the perspective
of the Telegraf container. That’s why we use the network name grafana, not localhost. We also
set our :streamId value to telegraf_id. For security, we also need to set up a way for Grafana

https://www.influxdata.com/products/integrations
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md
https://github.com/influxdata/telegraf/tree/master/plugins/outputs/http
https://github.com/influxdata/telegraf/tree/master/plugins/outputs/http

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live310

to authenticate our Telegraf process. We’ll issue a Grafana service account key and add it to the header
of our HTTP REST calls.

Generating a service account key

Before we go any further, we need to return to Grafana and generate a service account key. Formerly
programmatic access was implemented in the form of API keys, Grafana replaced the API key with a
token generated as part of a service account. Service accounts give finer control over the access granted
to simple API keys, so they are more secure. Happily, a service account token can be used anywhere
you need an API key, as in this case. Follow these steps:

1. Go to Administration from the main menu and select Service Accounts.

2. Click Add service account and name it Telegraf. Give it an Admin role. Your service
account page should look something like the following screen capture:

Figure 11.2 – Creating a service account

3. Finally, click on the new Telegraf service account and then on Add service account token.

Streaming real-time data from Telegraf to Grafana 311

4. Copy the token to the clipboard for later entry, as shown here:

Figure 11.3 – Service account token

Running Telegraf

In the telegraf.conf file, add the authentication configuration to the outputs.http configuration:

 [outputs.http.headers]
 Authorization = "Bearer <your token here>"

This is basically the inverse of the authentication setting for the InfluxDB data source: instead of setting
the authentication for Grafana to connect to the InfluxDB API as we did in previous chapters, now
you’re doing the opposite and authenticating from Telegraf to Grafana.

Now, launch the Telegraf agent:

% docker-compose up --pull missing -d telegraf
[+] Running 1/1
 Container chapter11-telegraf-1 Started
 0.6s

You might need to check the logs for errors. The following is a somewhat abbreviated representation
of the logging; in it, you should see mentions of your telegraf.conf configuration settings:

% docker-compose logs -f telegraf
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! [agent] Hang on,
flushing any cached metrics before shutdown
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! [agent] Stopping
running outputs
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! Using config file: /
etc/telegraf/telegraf.conf

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live312

chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! Starting Telegraf
1.25.2
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! Available plugins:
227 inputs, 9 aggregators, 26 processors, 21 parsers, 57 outputs, 2
secret-stores
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! Loaded inputs: cpu
…
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! Loaded outputs: http
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! Tags enabled:
host=30a2a03d7a3d
chapter11-telegraf-1 | 2023-02-24T04:18:06Z I! [agent] Config:
Interval:1s, Quiet:false, Hostname:"30a2a03d7a3d", Flush Interval:1s

If you don’t see any errors, head on over to Grafana and go to Explore to see our data.

From Explore, you need to set -- Grafana – as your data source. If you don’t have any other data
sources configured, it will be the only choice. Set Query type to Live Measurements.

Grafana identifies each channel as a triplet of scope/namespace/path. There should be only one channel
available to you with the stream scope, the namespace corresponding to the :streamId value in
our Telegraf configuration for the outputs.http URL, and the path corresponding to our inputs
plugin: stream/telegraf_id/cpu. Here’s what the Explore configuration should look like:

Figure 11.4 – Telegraf data streams in Explore

Once you have selected the correct channel, set the time range to Last 15 minutes, and click on Run
query. If you get a query error, try refreshing the page. With any luck, you’ll start seeing data flowing
almost immediately. Click on the Lines display type to get a good view of the slight variations.

Streaming IoT data with MQTT and Mosquitto 313

Over time, you should see something like the following as the data starts coming in:

Figure 11.5 – Telegraf data stream graph in Explore

Refresh the time range or choose one to see the latest data. Click Cancel to stop the streaming display.
Congratulations, you’re streaming data into Grafana!

Streaming IoT data with MQTT and Mosquitto
Now that we’ve established the basis for communicating real-time data with Telegraf and Grafana,
we can move on to integrate that knowledge with the world of the Internet of Things (IoT). The IoT
makes it possible for virtually any properly equipped device to transmit its telemetry data over the
internet using lightweight messaging protocols. One of the most common of these protocols is called
MQTT, an abbreviation for Message Queuing Telemetry Transport. MQTT, now on version 5, is
simple, open, and requires only a small software footprint.

However, unlike REST calls over the HTTP protocol, which tend to connect directly from client to
server and back, MQTT requires an intermediary broker to maintain the message queue and facilitate
transport between message producers and message consumers. To simulate an IoT message producer,
we will be developing a simple Python script to create messages, and we will rely on Telegraf to consume
those messages and deliver the data to Grafana.

Describing the pipeline architecture

Knowing what we do about MQTT, let’s propose a pipeline architecture for simulating our IoT device.
We will need something to simulate a device that generates metrics. For that, we will write a simple
Python script that will read in some CSV test data as a basis for generating messages. Next, we will set
up an MQTT broker that our script will send those messages to and will also relay those messages to
Telegraf. For that function, we will use the open source Eclipse Mosquitto broker. From there, we will
be using the combination of Telegraf and Grafana. A visual schematic of our pipeline is shown here:

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live314

Figure 11.6 – MQTT streaming data pipeline

As we did in the previous section, we will be working backward from the destination of our messages
(Grafana). Since we have already set up our connection between Telegraf and Grafana using the http
output plugin, we next need to set up a connection between Telegraf and the Mosquitto broker. Telegraf
comes with an MQTT consumer plugin, so we will configure it next.

Configuring the Telegraf MQTT consumer

The Telegraf MQTT consumer plugin is an input plugin and can be found in the Telegraf repository
at https://github.com/influxdata/telegraf/blob/release-1.24/plugins/
inputs/mqtt_consumer/README.md. The list of configuration options is pretty long, but we
won’t need to address most of them. We’ll be concerned with the address of our broker, the servers
option, and the list of topics the agent should monitor.

In this case, the address of our server (we only have one, but it’s possible to have many) is the name of
the broker service as seen from the Telegraf service configured in our docker-compose.yml file:
mosquitto. We don’t have a name for our topic, so let’s name it thermostat/mqtt now, keeping
it in mind for when we produce our messages later. Add the following to your telegraf.conf file:

[[inputs.mqtt_consumer]]
 servers = ["tcp://mosquitto:1883"]
 topics = ["thermostat/mqtt"]

We’ll be communicating with the broker over the common TCP port of 1883, as described in the
default configuration, so let’s note that for our broker configuration.

Installing the Mosquitto broker

The Mosquitto broker is available as a Docker container, so we’ll add it to our docker-compose.
yml file. Here is the service configuration:

 mosquitto:
 image: "eclipse-mosquitto:${MOSQ_TAG-latest}"
 ports:
 - "1883:1883"
 volumes:

https://github.com/influxdata/telegraf/blob/release-1.24/plugins/inputs/mqtt_consumer/README.md
https://github.com/influxdata/telegraf/blob/release-1.24/plugins/inputs/mqtt_consumer/README.md

Streaming IoT data with MQTT and Mosquitto 315

 - "${PWD-.}/mosquitto/config/mosquitto.conf:/mosquitto/
config/mosquitto.conf"

As we’ve done for other services, pull an image, set the ports, and map a volume for persisting a local
file or directory. Let’s go over the configuration:

1. Bring in the latest Mosquitto Docker image.

2. Map the internal port 1883 to the standard external port 1883.

3. Map the mosquitto.conf configuration file to a local file in the mosquitto/
config directory.

4. Next, we need to create that configuration file, so create a mosquitto/config subdirectory
in your Chapter11 repo directory. Edit a file in the config directory named mosquitto.
conf with the following contents:

listener 1883
allow_anonymous true

This configuration performs two functions:

 � Allows connections on port 1883 from external hosts

 � Allows anonymous connections without needing to authenticate

To start up the service, run the following docker-compose command:
% docker-compose up --pull missing -d mosquitto
[+] Running 1/1
 Container chapter11-mosquitto-1 Started

 1.1s

You might want to review the Mosquitto logging for information. It should confirm the
broker startup:

% docker-compose logs -f mosquitto
chapter11-mosquitto-1 | 1677732679: mosquitto version 2.0.15
terminating
chapter11-mosquitto-1 | 1677907267: mosquitto version 2.0.15
starting
chapter11-mosquitto-1 | 1677907267: Config loaded from /
mosquitto/config/mosquitto.conf.
chapter11-mosquitto-1 | 1677907267: Opening ipv4 listen socket
on port 1883.
chapter11-mosquitto-1 | 1677907267: Opening ipv6 listen socket
on port 1883.
chapter11-mosquitto-1 | 1677907267: mosquitto version 2.0.15
running

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live316

Now that we have our infrastructure in place, we need to generate our simulated IoT metrics data in
the form of messages sent to the Mosquitto broker. To do that, we’ll write a simple Python script to
read a file of metrics data and transmit the data to the broker.

Generating messages to an IoT data pipeline
Before we write any code, let’s take a look at the schema of the metrics data we’ll be sending to the broker.

Examining the simulated metrics data

Our data is based on consumer metrics generated by a smart thermostat. While it isn’t the raw
data directly transmitted by the device to the thermostat company’s servers, it can be considered
representative of the kind of data typical of such a device. This is the list of fields from the header
of data/thermostat_events.csv:

System Setting,System Mode,Calendar Event,Program Mode,Cool Set Temp
(F),Heat Set Temp (F),Current Temp (F),Current Humidity (%RH),Outdoor
Temp (F),Wind Speed (km/h),Cool Stage 1 (sec),Heat Stage 1 (sec),Aux
Heat 1 (sec),Fan (sec),DM Offset,Thermostat Temperature (F),Thermostat
Humidity (%RH),Thermostat Motion,Upstairs (F),Upstairs2

Most of the fields we’re interested in are temperatures, denoted by (F). We’ll also add the Current
Humidity (%RH) and Wind Speed (km/h) fields. In order to add some tagging information,
we’ll also include the System Setting and System Mode fields. When we write our script, we’ll
be sure to identify these fields as ones to extract from the CSV to include in our messages.

In the previous chapters, I’ve laid out any Python scripting without much of an explanation of how
we got there. Now I’ll take this opportunity to introduce a couple of best practices.

Our first best practice is to gather the requirements for our script, and then use them to drive our design.
The next best practice will be to sketch out a few design principles that will serve our requirements.
Once we have our design principles in place, our final best practice will be to use object-orientation
features such as classes and objects in our implementation. After our code review, we’ll need to spin
up a Python Docker container to run it.

Before we can write any code, we should first determine the goals for our script and the requirements
that will satisfy those goals. The goals for the script are straightforward:

1. Load up a CSV file of test data.

2. Convert the rows into messages.

3. Send them to our MQTT broker.

Generating messages to an IoT data pipeline 317

Now that we’ve established our goals, let’s break down the requirements that will get us to those goals:

1. Accept various configuration options on the command line:

A. Input CSV file

B. Broker address

C. Broker port

D. Message topic

E. Message transmission interval

2. Open a CSV file and parse it for message fields.

3. Select some subsets of CSV fields for metrics as either InfluxDB tags or fields and use them to
create a message conforming to the InfluxDB line protocol.

4. Open a connection to the MQTT broker and send the message.

5. Wait a fixed interval of time and repeat steps 3–5 for the next row of CSV.

6. Also, since the data is dummy test data, there is no need to checkpoint the last sent message.
There is no need to check whether the message was sent.

We’ll handle some of these tasks using Python classes; for others, we’ll just use regular functions.
Let’s reiterate the requirements, along with the functions and classes that we created to handle them:

1. Accept various configuration options on the command line (parse_cli).

2. Open the CSV file and parse it for message fields (csvfile).

3. Select some subset of CSV fields for metrics as either InfluxDB tags or fields and use them to
create a message conforming to the InfluxDB line protocol (MQTTMetric).

4. Open a connection to the MQTT broker and send the message (MQTTPublisher).

We will continue with the model from previous scripts of using a load_event_data function to
act as a controller for driving the various execution stages. Let’s go over the code now.

Reviewing the mqtt_pub.py script

Now that we have everything we need to fulfill our requirements, let’s walk through the proposed
Python script, called mqtt_pub.py.

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live318

Parsing the command line

First up, we need to parse the command line for various options. This code is structurally similar to
our previous scripts in that we create an argparse.ArgumentParser object, add arguments,
and then parse the command line and return the results:

def process_cli():
 parser = argparse.ArgumentParser(
 description="publish MQTT messages")
 parser.add_argument(
 "--broker", dest="broker", default="localhost",
 help="MQTT broker host"
)
 parser.add_argument(
 "--port", dest="port", type=int, default=1883,
 help="MQTT broker port"
)
 parser.add_argument("--topic", dest="topic",
 help="MQTT topic")
 parser.add_argument(
 "--interval",
 dest="interval",
 type=int,
 default="5",
 help="publish interval (secs)",
)
 parser.add_argument(
 "--input", dest="input_file",
 type=argparse.FileType("r"), help="input file"
)
 return parser.parse_args()

Since you’ve seen this pattern before, I’ll only call attention to the --input option. The argparse.
FileType type specification causes the parser to open the file path from the command line and
store a file object in input_file, not the name of the file. This is helpful as we don’t need to deal
with the process of opening the file. Let’s move on to the load_events function to get an idea of
the control flow before going over the objects.

Controlling the program flow

Like in our previous scripts, we use the load_event_data function as a general controller for driving
the overall workflow. The code is very simple because we’ve delegated most of the work to objects:

def load_event_data(config, broker, port, topic, csvfile, interval):
 reader = CSVReader(csvfile).reader

Generating messages to an IoT data pipeline 319

 publisher = MQTTPublisher(broker, port)

 for r in reader:
 metric = MQTTMetric(
 measurement="thermostat",
 data=r,
 tag_names=config["tags"],
 field_names=config["fields"],
)

 publisher.publish(topic, metric.message)
 time.sleep(interval)

We’ll take this step by step:

1. Instantiate a new CSVReader object with the csvfile file object and get a csv.
DictReader object.

2. Instantiate an MQTTPublisher object with the broker address and port number.

3. Iterate through each row in the csv.DictReader object.

4. For each iteration, instantiate a new MQTTMetric object setting thermostat as the
measurement, along with the row, and the configuration of which tags and fields to use.

5. Publish the message to topic.

6. Put the process to sleep for interval seconds.

That is the bulk of the control flow, but the actual work happens in the object methods.

Loading and parsing the CSV

Our first object is csvfile, which is really just a bit of wrapper code around the csv.
DictReader object:

class CSVReader:
 def __init__(self, csvfile):
 self._csvfile = csvfile
 self._dialect = csv.Sniffer().sniff(
 self._csvfile.read(1024))

 @property
 def csvfile(self):
 self._csvfile.seek(0)
 return self._csvfile

 @property

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live320

 def dialect(self):
 return self._dialect

 @property
 def reader(self):
 reader = csv.DictReader(self.csvfile,
 dialect=self.dialect)
 return reader

We start off each class with the initialization:

1. Initialize the object with the csvfile file object. Use csv.Sniffer.sniff to sample
the first 1,024 characters of the file to discover the header fields and the dialect of the CSV file.

2. Specify three accessor methods, decorated as properties so they can be called as attributes on
the object.

3. csvfile returns the file object after the seek pointer has been reset to the start of the file.
The csv.Sniffer.sniff function leaves the seek pointer 1,025 characters into the file.

4. dialect returns the dialect discovered by csv.Sniffer.sniff.

5. reader returns an opened and parsed csv.DictReader object. The csv.DictReader
object is an iterator that converts each line of the CSV into a dictionary so you can reference
each field in the row by name.

The next object we encounter is MQTTPublisher, but since we don’t use it until later, let’s come
back to it after we look at the MQTTMetric class.

Building messages

The MQTTMetric class is responsible for picking through the fields in each CSV row and converting
them to either an InfluxDB tag or field. It’s the longest bit of code in the whole script, so we’ll break
it down into the initializer, the accessors, and the utility methods:

class MQTTMetric:
 def __init__(
 self, measurement: str, data: dict,
 tag_names: list, field_names: list
):
 self._measurement = measurement
 self._data = data
 self._tag_names = tag_names
 self._field_names = field_names
 self._tags = []
 self._fields = []

Generating messages to an IoT data pipeline 321

There isn’t much to talk about here; it’s mostly just the initialization of different object attributes. Let’s
move on to the accessor methods:

 @property
 def measurement(self):
 return self._measurement

 @property
 def timestamp(self):
 return int(time.time() * 1e9)

 @property
 def message(self):
 for k in self._tag_names:
 self.add_tag(k, self._data[k])
 for k in self._field_names:
 self.add_field(k, self._data[k])
 return f"{self.measurement}{self.tags_to_string} {
 self.fields_to_string} {self.timestamp}\n"

The key thing to note is that the message accessor is where we create the actual message. We use
three Python class properties to construct the message components:

• measurement just accesses the internally stored measurement attribute

• timestamp creates a timestamp for the current time in nanoseconds

• message creates a single InfluxDB line protocol string, constructed from the measurement,
any tags, the fields, and the timestamp

Next are the various utility methods mostly used to build the lists of tags and fields and convert those
lists to proper strings for use in the message:

 def add_field(self, key, value):
 self._fields.append(f"{self.escape_string(key)}={
 value}")

 def add_tag(self, key, value):
 self._tags.append(f"{self.escape_string(key)}={
 self.escape_string(value)}")

 def _fields_to_string(self):
 return ",".join(self._fields)

 def _tags_to_string(self):

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live322

 if self._tags:
 return f",{','.join(self._tags)}"
 else:
 return ""

 @staticmethod
 def escape_string(string):
 return string.translate(string.maketrans(
 {",": r"\,", " ": r"\ ", "=": r"\="}))

 @staticmethod
 def quote_string(string):
 return f'"{string}"'

Of note are the escape_string and quote_string static methods. I set those just in case
they might be used in a library. By decorating them as staticmethod, they can be referenced
from the library directly without the need to create an object instance. Here is the rundown of those
utility methods:

• add_field adds a key-value pair to the fields list, with the field name properly quoted.

• add_tag adds a key-value pair to the tags list, with the tag name and value properly quoted.

• fields_to_string converts the fields list to a comma-separated string for use in
the message.

• tags_to_string converts the tags list to a comma-separated string for use in the message.

• escape_string properly quotes any special characters, such as quote marks or spaces in
the string, so they can be used in the message.

• quote_string wraps the entire string in quote marks. We would use this if we were including
fields with string values. We won’t in this case, but it’s there for future use.

The only object left is MQTTPublisher, which we will return to now.

Sending messages

To send our messages, we will rely on the open source Python library called paho-mqtt. We’ll include all
the extra libraries when we build our Python container. For now, let’s look at our MQTTPublisher class:

class MQTTPublisher:
 def __init__(self, broker: str, port: int):
 self.broker = broker
 self.port = port

 def publish(self, topic, message):

Generating messages to an IoT data pipeline 323

 publish.single(topic, payload=message,
 hostname=self.broker, port=self.port)
 logging.info(f"Published `{message}` to topic `{
 topic}`")

It really doesn’t get much simpler than this:

1. Initialize the class with the broker address and the port number.

2. Publish the message to the topic using the publish.single function. The function takes
the topic, message, broker, and port as arguments, connects to the broker, and publishes the
message. It takes a few other optional arguments, but these are the minimum necessary.

In this case, we are using the minimum amount of code to get a message published per our requirements.
If you are interested, there are other functions available in the paho-mqtt library that can give a
return status and even trigger callback functions on publish events.

That completes our code review. Let’s get this script running!

Running the mqtt_pub.py script

As we’ve done in previous chapters, we’ll launch our script using a containerized Python interpreter
executable. It’s easy to spin one up with a simple Dockerfile and a requirements.txt file for
adding any additional library dependencies. We can even configure our docker-compose.yml
file to do most of the work for us.

Building a Python container

First, we need a Dockerfile in order to build our container with the ability to add additional dependencies
with pip. We’ve used this same file in previous chapters, so I include it here without modification:

FROM python:3
WORKDIR /usr/src/app
COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt
ENTRYPOINT ["python"]

Before we build the container, we need to update our requirements.txt file to include a couple
of extra library packages – namely, paho-mqtt for our MQTT publisher, and pyyaml to parse our
snippet of YAML configuration. Here’s the requirements.txt file:

paho-mqtt
pyyaml

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live324

If we add our Python container as a service to docker-compose.yml, we can use Docker Compose
to help us build and run the container, so let’s do that next:

 python:
 build: .
 image: python:ch11
 environment:
 TZ: "America/Los_Angeles"
 volumes:
 - "${PWD-.}/app:/usr/src/app"
 - "${PWD-.}/data:/data"

Here, we just need to do the following:

1. Tag the image we’ll build.

2. Set the internal time zone so timestamps generated by the container will be consistent in Grafana.
Feel free to change it to your local time zone. The zone names are listed in Wikipedia: https://
en.wikipedia.org/wiki/List_of_tz_database_time_zones.

3. Map the local app and data directories into a volume so the container can see our script to
run it and our data to load it.

To build our container, simply use the Docker Compose build command:

% docker-compose build --pull python

Running the script

To run the script, we can again use Docker Compose; however, we do need to invoke our script and
the associated command-line options. Make sure your mqtt_pub.py script is in the bin directory
and the thermostat_events.csv file is in data. Here is how I would run it, with a 5-second
interval, and a topic named thermostat/mqtt:

% docker-compose run --rm \
 --name python python \
 /usr/src/app/mqtt_pub.py \
 --broker mosquitto \
 --topic "thermostat/mqtt" \
 --input "/data/thermostat_events.csv" \
 --interval 5
INFO:root:Published `thermostat,System\ Setting=heat,System\
Mode=compressorHeatOff Cool\ Set\ Temp\ (F)=73,Heat\ Set\ Temp\
(F)=62,Current\ Temp\ (F)=68.3,Outdoor\ Temp\ (F)=49.6,Current\
Humidity\ (%RH)=46,Wind\ Speed\ (km/h)=0 1677961726451509248
` to topic `thermostat/mqtt

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Generating messages to an IoT data pipeline 325

It is critical that your topic name matches the topic Telegraf is monitoring as specified in the telegraf.
conf file. If all goes well, you should see output similar to the preceding output appearing every
5 seconds.

It is a good practice to additionally check the Mosquitto logs and the Telegraf logs to verify the
messages are reaching the broker:

% docker-compose logs -f mosquitto
chapter11-mosquitto-1 | 1677961801: New connection from
172.25.0.3:58891 on port 1883.
chapter11-mosquitto-1 | 1677961801: New client connected from
172.25.0.3:58891 as auto-05B8B76E-CBB7-A912-B59C-8B954C1EDE23 (p2, c1,
k60).
chapter11-mosquitto-1 | 1677961801: Client auto-05B8B76E-CBB7-A912-
B59C-8B954C1EDE23 disconnected.

Also, check that Telegraf is not having any issues connecting to either the broker or Grafana:

% docker-compose logs -f telegraf

Exploring the IoT data

Let’s return to Grafana and have a look at Explore. If it isn’t already, configure Explore to use the --
Grafana -- data source, with the Live Measurements query type. Set Channel to steam/telegraf_id/
thermostat. The channel should describe the number of messages received per minute. Your Explore
configuration should look something like this:

Figure 11.7 – Thermostat data stream in Explore

Within a matter of moments, you should start seeing a flow of data on this channel. Refreshing the
time range over time should result in the Explore graph looking something like the following:

Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live326

Figure 11.8 – Thermostat data stream graph in Explore

It’s possible that since we’re pulling data with different tags, the number of fields will change until all
the possible tag/field combinations arrive. This is because InfluxDB determines a unique dataset by
the combination of tags and fields. Simply click on any of the fields in the legend to isolate one, then
click it again. That should refresh the display with the additional datasets.

Now would be a good time to look at the pipeline and see what else you can do to improve it:

• Add other inputs to the Telegraf agent configuration.

• Add status checks and callbacks to the mqtt_pub.py script when messages are published.

• Look at how we configure the fields with a YAML specification. Could the command-line
options be defined similarly? Could this configuration be read in from an external file?

Summary
There you have it! We’ve accomplished a lot in this chapter, probably without even realizing it. Of
course, we learned about a new Grafana capability in Grafana Live, and we learned a little bit about
streaming data with Telegraf. We also picked up a sampling from the world of message brokering in IoT.

But I also slipped in a couple of other aspects you may not have noticed. We learned about using
requirements to drive software development. Our code was cleaner and easier to understand when
we adopted object orientation and the principles of delegation and separation of responsibilities.
Finally, we also developed our script as a minimum viable product (MVP) by implementing only
those aspects deemed important at this stage.

In our next chapter, we’ll look at how to monitor our real-time data for anomalous metrics and how we
might not only detect them but also trigger warning alerts. We’ll even learn how to leverage Grafana’s
alerting system to flexibly distribute alerts to multiple channels for better observability. Stay tuned!

12
Monitoring Data Streams with

Grafana Alerts

In our last chapter, we explored the world of real-time data streaming by combining Telegraf ’s input
plugins to capture CPU metrics, and by simulating an IoT metrics pipeline with the addition of a
Mosquitto broker and a simple Python script standing in for an IoT device.

As part of our three-chapter exploration of Grafana’s observability features, we’re going to move from
simply streaming metrics to adding a key observability feature: the ability to trigger some form of
an alert when certain conditions are met. Without the ability to monitor our systems and then alert
when we detect anomalous behavior, we risk deterioration, instability, or even significant outages.

We’ll start out by discussing aspects of monitoring and observability with an eye toward good strategies
for identifying the alert conditions we want to watch for. Next, we’ll talk about Grafana’s alerting
features, especially the key features of alert rules and contact points.

After we get through the brief overview of monitoring in general and Grafana alerting specifically,
we’ll set about to define typical alert rules. Initially, we’ll be monitoring Docker Compose service
containers for alert conditions, then we’ll establish similar monitoring for an NGINX web server.

Next, we’ll be integrating three different contact points with Grafana: email, Slack, and PagerDuty. Finally,
we’ll define labels and notification policies to route our alert messages to the proper contact points.

The Grafana alerting system is complex and powerful, so in a sense, we’ll only be scratching the
surface of its many capabilities. Nonetheless, it should provide a good introduction to many of the
key concepts you might need in order to adopt Grafana for your particular needs.

In this chapter, we will cover the following topics:

• Monitoring and observability

• Alerting in Grafana

• Defining alert rules

Monitoring Data Streams with Grafana Alerts328

• Alert messaging to contact points

• Routing alerts with notification policies

Technical requirements
Tutorial code, dashboards, and other helpful files for this chapter can be found in the book’s GitHub
repository at https://github.com/PacktPublishing/Learn-Grafana-10/tree/
main/Chapter12.

Monitoring and observability
The key to observability is, of course, proper monitoring. Without the ability to monitor, there can
be no awareness of the status of your systems and, consequently, no way to react to changes in those
systems, be they adverse or otherwise.

In our examples, we will be looking at two kinds of monitoring: an orchestrated computing platform
such as Docker Compose or Kubernetes, and a lightweight application such as a web server. We will be
using the techniques we demonstrated in the previous chapter to track metrics generated by Telegraf;
these principles are the same whether we’re talking about small servers or massive compute clouds.
But first, let’s discuss some key concepts.

Monitoring processes

When we look at monitoring whether it’s on-premises or in the cloud, we tend to see the world from
two main perspectives: how the system manages its processes, or the processes themselves. Either
you are monitoring how processes are performing in relation to each other on the platform or you’re
monitoring whether the process is behaving in line with expectation.

In the first case, we only care to monitor processes in terms of how they consume standard system
resources such as CPU, memory, or disk space. In the second case, we care about the performance
metrics unique to the application itself, whether it’s web pages served or data frames visualized.

Monitoring system resources

The platform itself, regardless of whether it is literally a computer or a virtual abstraction, still must
manage a standard array of resources. Among those resources are the following:

• Computational resources in the form of CPUs, GPUs, or any number of the new special-purpose
processors for machine learning

• Memory resources, whether they exist in virtual form or in hardware

• Storage resources, such as spinning disks, or solid-state devices

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter12
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter12

Monitoring and observability 329

Let’s take a closer look at some of these resources and why they might require monitoring attention.

Monitoring computational resources

Without the CPUs, GPUs, and other processors, computers would just be mostly empty boxes with
blinking lights. But while we take computation for granted on a platform, why would we need monitoring?

Like the resources we described previously, computing resources are bounded, meaning that they are
finite and so must be shared among all the other processes running on the computer. When you run
a process on a computer, regardless of how many CPU processing cores it might have, that process
is only able to access CPU resources for a short period of time before they must be released for use
by other processes.

Depending upon how heavily your processes need to use CPU resources, monitoring them will reveal
how much time the processors spend executing your processes as opposed to running other processes,
or even its own. Consequently, when you monitor CPU utilization, you will be observing the percentage
of time spent doing useful computation. High CPU utilization might be perfectly normal, or it might
be an indication of a problem that is preventing work from getting done on time.

Understanding the nature of your computing needs will help to determine whether you should expect
to see your computing resources heavily utilized or not. For example, if you have a computational
server doing complex simulation work, you might expect that if a steady stream of work is delivered
to that server and knowing that simulation software can require a great deal of computing resources,
you should then be monitoring for high utilization. Likewise, if you are monitoring an interactive
platform, you might only be expecting light utilization, and anything above a lightly loaded CPU
might be a cause for concern.

Monitoring memory resources

Unlike CPU, memory does not always lend itself well to the simplistic notions of high versus low
utilization. Memory use can vary widely depending upon the purpose of a process and how well it’s been
developed. Typically, memory is well managed by modern operating systems so that even with most
of their memory in use, computers can still efficiently work with almost no performance degradation.

Common terms you might hear to describe the behavior of operating system memory management
are leaking, paging, swapping, or thrashing. While memory thrashing is typically considered
pathological, sometimes even memory paging or swapping can be considered pathological under
certain circumstances. Consequently, careful monitoring of memory resource utilization is still
important as memory is still not infinite, and most operating systems will protect themselves by killing
processes that are in danger of jeopardizing overall memory management; identifying processes that
are misusing memory is thus a key reason for memory monitoring.

Monitoring Data Streams with Grafana Alerts330

Monitoring storage

Storage monitoring is vital as it is always finite and, unlike memory or CPU, cannot be easily reclaimed
once it is truly used up. Storage is often used for tracking state, for cache, for memory mapping, and
for process backup. Running out of storage risks catastrophic failure as there is no failover in that case.

Monitoring the state of storage is vital, and so storage monitoring and alerting is often the primary
requirement for proper platform observability.

Monitoring applications

Applications are a little trickier to monitor. While we have very well-understood observability for our
compute platforms, monitoring applications and services themselves requires intimate knowledge of
these processes. If they provide any observability features, it is often through specific and idiosyncratic
APIs. For security reasons, they may require some form of authentication to even access them.

However, there are now efforts underway such as the Open Telemetry project to try to craft standards
for capturing observability data from software applications. Even so, it will require the cooperation
of software developers to modify their code to comply with these initiatives, which means adoption
is likely to be slow going.

Capturing metrics for alerting

For us to properly monitor our CPU resources, we’ll need to first capture them. Unfortunately, Grafana
does not support the monitoring of Grafana Live data streams, so we’ll have to convert them to one
of Grafana’s supported Data Sources. Luckily, since we are using InfluxDB line protocol, we can store
the metrics in an InfluxDB bucket. Telegraf even supports an output plugin for writing directly into
InfluxDB. We’re going to set that up in the next section.

Alerting in Grafana
Grafana alerting has evolved significantly over the last few versions to a complex, powerful, and versatile
system for combining monitoring, alerting, and notification. Its power can be a bit intimidating but
bear in mind that you may not need every capability in Grafana alerting.

We’ll take things step by step, so you can see how the parts fit together. Once you understand the
basics, if you run into a more complex observability scenario, you will know how best to extend your
own alerting to accommodate it.

Let’s start by reviewing how the Grafana alerting works. There are four main components to Grafana
alerting: alert rules, labels, notification policies, and contact points. We’ll go over their roles one
by one.

Defining alert rules 331

Alert rules

Alert rules are the trigger mechanism for Grafana alerting. You can have all the metrics you want
streaming into Grafana, but if you don’t have any alert rules, how would you know when something
is wrong? Put simply, alert rules are the conditions that, if met, trigger an alert. However simple that
definition may be, defining alert rules can be quite a complex effort.

Labels

Once alert rules have been defined, labels are metadata Grafana uses to identify different alert rules.
In order to define a notification policy, labels are used to match alert rules with their ultimate contact
point destination.

Notification policies

Notification policies are the traffic control for alerting. Notification policies use powerful templating
features for setting the content of the messages sent to contact points, and based upon the labels they
are matched up with, they determine what messages will go to which contact points.

Contact points

Contact points integrate Grafana alerting with various supported notification destinations such as
email or chat. A contact point is essentially a Grafana plugin that is configured to communicate with
a notification destination service.

As you can see each of these four components can seem complex, and lining up all of them to generate
even a single message may seem like a daunting task, but a simple alert pipeline can be easily configured
using mostly default settings. Let’s get started!

Defining alert rules
Let’s start off by talking about how we want to look at triggering alerts. To build an alert, you will need
to answer a series of questions in this form:

What condition must exist as measured by what metrics, and for how long?

Let’s break this concept down into its constituent parts.

What condition…

An alert ultimately boils down to a switch: at any given moment in time, the evaluation interval,
an alert may need to be triggered. How you determine whether the alert should be in a triggered (or
firing) state is called the alert condition. Most of the work you will do in defining an alert condition
consists of reducing metrics data to a simple Boolean yes-or-no assertion about whether an alert
should be triggered.

Monitoring Data Streams with Grafana Alerts332

Space prevents us from devoting an entire chapter to exploring the possible ways to define alert
conditions, but I can offer some heuristics for identifying possible alert conditions:

• Is the condition based upon a threshold? Does the threshold have precursors that would increase
the readiness level? For example, when a disk is at 80% capacity, should that trigger a warning
alert before a critical one at 95%?

• Look for conditions based upon trends. In these cases, you’re looking for values that trend up
when they should be down, or down when they should be steady. Classic examples are spiking
traffic on a website or rapidly declining disk space. Pay heed to both the direction of the trend
and the rate of change.

• Don’t try to anticipate the unexpected, manage it. Don’t treat every incident as a requirement to
acquire more metrics or define more conditions. Think about your normal state as an envelope
of appropriate behavior that should be monitored for anomalies that lie outside that envelope. If
your servers’ resources normally run at 40% to 50%, don’t try to guess what specific threshold
might cause performance issues; simply monitor for falling below 40% or rising above 50%.

• Remember to watch for the absence of data; often gaps in data may be the indicator of additional
problems. At the very least, it could indicate where additional observability may be necessary.

What metrics…

To sense whether to trigger an alert, you will need to know something about the state of the world,
hence you need to gather the metrics necessary to describe the state of your system sufficiently enough
that when you test for the alert condition, you will get an answer that reflects whether the metrics
are accurately representing your observations. This is often the trickiest part as sometimes you will
need to gather more metrics just to make sure you’re properly observing the system state. Here’s an
admittedly outrageous example of what I mean:

To protect our coal miners, we’ve deployed over 250 yellow canaries at various key locations. Each is
equipped with radio transmitters delivering information about their current location, level of activity,
and respiration. We believe that correctly measuring whether our canaries are in our mines, whether they
are still breathing, and if they are still moving, is the best means for determining whether they are alive
and are not suffering from the levels of poisonous gas that might affect our miners adversely.

This is a great description showing how the addition of more metrics makes it possible to derive a
good sense of whether the canaries are both alive and in the right parts of the mine. It also points to
a potential flaw that we could better describe in this way:

To protect our miners, we’ve deployed over 250 sensors capable of detecting and relaying the quantities
of three potentially lethal gases (carbon monoxide, carbon dioxide, and methane). Each is tagged and
registered with the correct location in the mine.

Defining alert rules 333

The difference between the two shows a trap that you can easily fall into: that of obsessively monitoring
second- or third-order effects rather than properly monitoring first-order ones. The lesson is: don’t
place poor canaries in coal mines and then monitor them for the effects of poisonous gases; directly
monitor for the actual gases!

How long…

Finally, when you have analyzed your metrics for alert conditions, bear in mind the time frame. Do you
want an alert on the first sign of trouble, or do you want to wait to see if the condition resolves itself
on its own? Think about the effects of generating an alert. Do you want to wake somebody up every 15
seconds, only to say “never mind” after 5? Duration becomes an important characteristic to examine.

With those preliminaries out of the way, let’s examine a couple of use cases for monitoring both processes
and services. We’ll first explore process monitoring by using Telegraf to capture Docker container
metrics. We’ll build an alert rule to detect when our CPU percentage rises above a certain threshold.
Following that, we’ll spin up an NGINX web server and again use Telegraf to capture metrics and set
up an alert rule to detect when the server goes down.

Monitoring systems

For us to demonstrate process monitoring, we will use Telegraf ’s docker input plugin to scrape
Docker for metrics from our containers and services. More information about the plugin can be found
at https://github.com/influxdata/telegraf/tree/master/plugins/inputs/
docker. Since Grafana alerting doesn’t support internal streaming, we’ll need to store those metrics
in a data source that Grafana alerting does support. Happily, InfluxDB fills the bill, so we just need to
add the influxdb_v2 output plugin to our telegraf.conf file.

Before we can update our telegraf.conf file though, we’ll first need to get an InfluxDB server
running. We’ll also need to generate an API key for Telegraf so that it can store data in an InfluxDB
bucket, and one for Grafana so we can query InfluxDB from a data source. By now, you should be well
versed in performing the necessary steps, so I won’t need to go into as much detail as in previous chapters.

To get InfluxDB up and running we’ll use Docker Compose; here’s the relevant section of the docker-
compose.yml file:

 influxdb:
 image: "influxdb:latest"
 ports:
 - "8086:8086"
 volumes:
 - "${PWD-.}/influxdb2:/var/lib/influxdb2"

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/docker
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/docker

Monitoring Data Streams with Grafana Alerts334

To pull the image and start it up, run the following:

% docker-compose up –pull missing -d influxdb

Open a web browser to http://localhost:8086 and perform the initial setup to set a username
and password. Set the Organization to LearnGrafana and the Bucket to Chapter12.

We need to generate an API token, so go to Load Data | API Tokens and clone your user’s token.
Capture the token to the clipboard and paste it somewhere for future reference.

At this point, we need to set up both the Telegraf docker input plugin and the influxdb_v2 output
plugin as well. You can use the InfluxDB + Create Configuration tool to generate the appropriate
configuration, or you can use this one for the agent and inputs plugin:

[agent]
 interval = "1s"
 flush_interval = "1s"

[[inputs.docker]]
 ## Docker Endpoint
 ## To use TCP, set endpoint = "tcp://[ip]:[port]"
 ## To use environment variables (ie, docker-machine), set
endpoint = "ENV"
 endpoint = "unix:///var/run/docker.sock"

 ## Set to true to collect Swarm metrics(desired_replicas, running_
replicas)
 gather_services = false

 ## Set the source tag for the metrics to the container ID hostname,
eg first 12 chars
 source_tag = false

 ## Containers to include and exclude. Globs accepted.
 ## Note that an empty array for both will include all containers
 container_name_include = []
 container_name_exclude = []

 ## Timeout for docker list, info, and stats commands
 timeout = "5s"

 ## docker labels to include and exclude as tags. Globs accepted.
 ## Note that an empty array for both will include all labels as tags
 docker_label_include = []
 docker_label_exclude = []

Defining alert rules 335

This one is for the influxdb_v2 plugin:

[[outputs.influxdb_v2]]
 ## The URLs of the InfluxDB cluster nodes.
 ##
 ## Multiple URLs can be specified for a single cluster, only ONE of
the
 ## urls will be written to each interval.
 ## ex: urls = ["https://us-west-2-1.aws.cloud2.influxdata.com"]
 urls = ["http://influxdb:8086"]

 ## API token for authentication.
 token = "<your-token-here>"

 ## Organization is the name of the organization you wish to write
to; must exist.
 organization = "LearnGrafana"

 ## Destination bucket to write into.
 bucket = "Chapter12"

Paste in your API token into the config file token setting.

You’ll also need to make some adjustments to the docker-compose.yml to make it possible for
Telegraf to access Docker. The Docker socket (as referenced in the telegraf.conf) needs to be
mapped into Telegraf ’s Docker container. In our docker-compose.yml file, that would look like this:

volumes:
 - /var/run/docker.sock:/var/run/docker.sock

You will also need to make sure the container runs under both the telegraf user and the group
that owns the Docker socket file. On Windows and Linux, you can find the groupid by running
the following command:

% stat -c '%g' /var/run/docker.sock

The addition to the docker-compose.yml will look like this:

user: telegraf:<group id>

Note
Due to some complications related to how Docker is installed on MacOS, you will need to
do things a bit differently. While the groupid for telegraf does not need to be set in
docker-compose.yml, the Docker socket file needs to also allow group write permissions
inside the container. In my case, I needed to use the chmod command:

% docker-compose exec chmod 775 telegraf /var/run/docker.sock

Monitoring Data Streams with Grafana Alerts336

The final Telegraf service should look like this:

 telegraf:
 image: "telegraf:latest"
 user: telegraf:<group id> # not needed on MacOS
 volumes:
 - "${PWD-.}/telegraf/etc/telegraf.conf:/etc/telegraf/
telegraf.conf"
 - /var/run/docker.sock:/var/run/docker.sock

Start up the Telegraf container:

% docker-compose up --pull missing -d telegraf

To confirm you have data, go to Data Explorer in your InfluxDB GUI and click on the Chapter12
bucket. You should see docker listed under _measurement, indicating the docker plugin data is
flowing into the bucket and is available as a measurement in InfluxDB.

Figure 12.1 – Docker measurements

Defining alert rules 337

The last steps are to launch an instance of Grafana and create a new data source that will connect to
InfluxDB. We’ll first configure a Docker Compose service for Grafana in our docker-compose.
yml file:

 grafana:
 image: "grafana/grafana:latest"
 ports:
 - "3000:3000"
 volumes:
 - "${PWD-.}/grafana:/var/lib/Grafana

Launch the service and connect to http://localhost:3000:

docker-compose up --pull missing -d grafana

Next, we’ll create a data source connection to the InfluxDB database where our data is landing
from Telegraf:

1. Open your browser to the Grafana app and select Connections | Add new connection from
the main menu.

2. Search for the InfluxDB data source and select it.

3. Click on Add a new data source. You’ll create a new InfluxDB data source with the
following settings:

 � Name: InfluxDB

 � Query Language: InfluxQL

 � HTTP | URL: http://influxdb:8086

 � Custom HTTP Headers | Header: Authorization

 � Custom HTTP Headers | Value: Token <influxdb-api-token>

 � Database: Chapter12

Remember to mind the space between the Token string and the token itself. You can use the token
you generated for your Telegraf output plugin or generate a new one.

Monitoring Data Streams with Grafana Alerts338

Figure 12.2 – InfluxDB data source

If you’ve configured the data source correctly, Grafana will acknowledge the new measurements
corresponding to your docker plugin metrics. This would be a good opportunity to familiarize
yourself with those different data series in Explore.

Now that we have a working data series to query for our alerting, let’s create an alerting rule based on
the docker_container_cpu measurement.

Alert query

Recalling our earlier rubric for constructing an alert, let’s map it into a Grafana alert rule.

We’ll start off by setting up a single query that will identify what metric, in this case the Docker
docker_container_cpu measurement. This measurement tracks the various measures of time
and other resources the CPU is devoting to containers:

Defining alert rules 339

1. In the main menu, select Alerting | Alerting rules and click + New alert rule.

2. Set the name in the first section, 1 Set alert rule name, to docker-cpu.

3. Next, we’ll set up the query in 2 Define query and alert condition. Set the data source in
Query A to InfluxDB.

4. Click Options to the right of the data source dropdown and set the Time Range to now-10m
to now.

5. Click the pencil icon to the right of the query to switch to raw query mode and enter the
following query:

SELECT max("usage_percent")
FROM "docker_container_cpu"
WHERE $timeFilter
GROUP BY time($__interval) fill(none)

In the query, we’re looking at the docker_container_cpu metric usage_percent, which
indicates what percentage of time is devoted to the CPU. We aggregate on the max value and fill in
blank values with none. If data is flowing into InfluxDB, entering the raw query should trigger a
graph with the current data stream, as depicted in the following screenshot:

Figure 12.3 – Alert rule query

Monitoring Data Streams with Grafana Alerts340

Alert conditions

At this point, we do have a data series, but that’s insufficient to determine under what conditions. We
need to reduce the query results to a single value that we will then evaluate to see if an alert should
be triggered:

1. In the Expressions section, confirm the type of expression B is Reduce, because we’ll be reducing
our threshold series in A to a single value.

2. Set Input to A. That’s our query.

3. Select Last for Function. We want to evaluate the latest value at all times.

4. Set the Mode to Strict. This mode will accept non-numerical values (NaN or Not a Number),
but will trigger an alert downstream if any are detected.

Finally, we still need to determine whether the single value fulfills the conditions that would
generate an alert. Let’s set a trigger threshold of 95, which means that we will generate an alert
if the service’s CPU time is greater than 95%:

5. Confirm the type of expression C is Threshold.

6. Threshold of what? Why, expression B, of course. Set Input to B.

7. Set the condition to IS ABOVE and the value to 95.

8. Confirm the Alert condition is set in Threshold expression C.

Figure 12.4 – Alert rule conditions

To check whether your alert rule works, click on Preview. You should see an indicator in expression
C as to whether the condition is met and a visual display of the data series. Unless your machine is
heavily loaded, 95% CPU is so high the alert status is most likely indicating a green normal state.

Alert evaluation behavior

In section 3, Set alert evaluation behavior, the conditions for how we respond to alerts begin to take
shape. Here, we store our rule along with other rules that need to be grouped together for logical
reasons. We also set the evaluation group of which alerts need to be evaluated during the same interval.
Finally, we set the interval of time an alert rule is in violation before we trigger the rule.

Defining alert rules 341

Since this is our first and only rule so far, we’ll first need to create a folder to store it in. Select + New
folder and name it System Alerts. Think of the folder as a container, much like a dashboard
folder, an organizational feature that allows you to store and assign access control to a collection of
alert rules. In fact, the alert rule folders can be found alongside the dashboard folders.

Next, we need to create an evaluation group, a set of alert rules that is evaluated during the same time
interval. All alert rules in the same evaluation group are evaluated in sequence during the interval,
not simultaneously. Recall that when we set up the alert rule, we set the threshold interval to 10m,
meaning all data over the last ten minutes is run through the expression to check for the alert condition.
Don’t confuse the alert rule interval with the evaluation rule. The former governs the block of time
evaluated for alert conditions; the latter governs how often that evaluation is run.

All alerts must be assigned to an evaluation group. Add alerts by clicking on the drop-down menu.
We don’t have one yet, so let’s create one. We will need to specify the name of the group and its
evaluation interval:

1. Click on + New evaluation group.

2. Set the name to cpu as we will be evaluating CPU time.

3. Set the evaluation interval to 1m. You want to set this interval to a period that maintains
responsiveness but is long enough that you can perform all the evaluations and not tax your
Grafana server. If you later want to change the evaluation group, click on the pencil icon. The
following screenshot shows an example of what creating a group looks like:

Figure 12.5 – Evaluation group

All members of the same evaluation group will be evaluated sequentially during that minute as well.
This can be useful if you need to queue your alerts to run in a specific order or to prevent them from
running at the same time.

Monitoring Data Streams with Grafana Alerts342

Finally, we’ll need to set the Pending period value, the amount of time a violating condition must
hold before an alert is triggered. Depending upon your circumstances, you may not want to trigger
an alert unless the condition has been maintained for a substantial amount of time. In our case, we’ll
set it to 5m or five minutes. Here’s our evaluation behavior:

Figure 12.6 – Alert rule evaluation behavior

Adding annotations

Before we can use our new alert rule, we may need to add specific metadata information to the rule
that can be inserted into the alert message payload. These annotations provide detail and richness to
the content of your alerts and can include a summary, a detailed description, the URL to a runbook
of actions to take, other custom annotations, and links to a dashboard and panel created to depict the
conditions that triggered the alert.

Summary, Description, Runbook URL, custom annotations, and the dashboard panel link are all
stored as template variables for when a notification policy assembles the final message before sending
it to the contact point. This is your opportunity to assemble as much information as you think the
reader of your alert message needs to address the alert.

In our example, we’ll set the summary. The summary is one of several annotations you can attach to
an alert rule, which can then be inserted into the message when it’s sent to a contact point. Grafana
alerting leverages the powerful Golang templating system for message templating, and the annotations
are no exception.

While space prevents me from going into much detail on the templating system, I can show you an
example of how we could use it. Perhaps we want to indicate in our summary that the CPU percentage
is high. While we could indicate in our summary annotation the specific threshold of 95% that we’ve
fallen below, it would be even more useful if we also knew what the actual percentage was.

Defining alert rules 343

We can access this in our template from a built-in variable called $value, which corresponds to the
values of each of our B and C expressions. We can get at the value of B by using a dotted notation:
$value.B. To access the template, we wrap it in double braces.

So, our final summary message could then be set to the following:

Summary (optional): The CPU idle time > 95% [{{ $values.B }}]%

Figure 12.7 – Alert rule summary

All that is left at this point is to configure our notifications by adding special Labels. While labels
aren’t strictly necessary, they will be a useful form of metadata for routing our alerts, so let’s investigate
adding them now.

Configuration notifications with labels

Labels are an additional form of metadata that has a few purposes. First, it serves to tie an alert to a
specific identifier in order to differentiate it from other alerts. For example, you may want to label an
alert with a server or application name so that you are able to trace a common alert to the specific
server or application that generated it.

Secondly, it serves as a form of identification for use in a notification policy to direct alerting to various
contact points. You may need to label a specific alert with a severity that a notification policy will
match to a specific contact point or service in a contact point. Those same labels also apply to silences
in case you need to establish a time window to disable a collection of alert rules.

Monitoring Data Streams with Grafana Alerts344

For our case, we’ll just add a single severity label. Under Custom labels, type severity in the key
box and critical in the value box. Click + Add label if you want to add more labels.

Figure 12.8 – Alert rule custom labels

Think about how you might scale up these alerts to cover other relevant CPU metrics. You might find
that you need to create several similar rules that are differentiated by metric or by threshold, in which
case the metric name or the threshold value itself could become useful labels.

Multi-dimensional rules

Now, you might be thinking: what if I want to scale up these alert rules to cover all my Docker Compose
services? Surely I don’t want to create a separate rule for each of them? Well, you don’t have to! As
a matter of fact, Grafana can not only generate a series of alert rules based on your alert query, but
it will also create labels to help you differentiate them in your alert messaging. It does this through
something called a multi-dimensional rule. What we just created was a single rule, which is what
you would expect: a single alert rule that corresponds to a single instance of an alert.

A multi-dimensional rule, by contrast, can generate multiple alert instances based upon the results
of the alert query. How does this work? By examining the results of the GROUP BY in our query,
Grafana will then generate an instance and a label for each term in the GROUP BY. Let’s look at our
docker-cpu alert rule:

1. Modify the rule query to look like this:

SELECT max("usage_percent")
FROM "docker_container_cpu"
WHERE $timeFilter
GROUP BY time($__interval),
 "com.docker.compose.service" fill(none)

2. Press the Preview button to see the results of the query.

Defining alert rules 345

Figure 12.9 – Multi-dimensional alert rule

As you can see, there are multiple datasets, and each one is listed in each of our expressions. If any (or
all) of those instances crosses the threshold, it will trigger an alert. Now, how do we take advantage
of the labeling? Observe that in an expression, each data series is represented by a key/value pairing
of the GROUP BY field and its value in the series.

Each of those key/value pairs is expressed in a label, and that label can be accessed in the template for
our summary. Like we did before, we can build a template expression in the summary that references
labels using the $labels variable. Normally, you would just access the GROUP BY field in the
variable using the dot notation:

{{ $labels.com.docker.compose.service }}

That won’t work if there is a . in the name. However, there is an alternative: using the index template
function. The index function takes two parameters, the variable in question and the name of the
field in quotes:

{{ index $labels "com.docker.compose.service" }}

Remember, the entire double-brace template is replaced by the value, so don’t worry about the spacing
inside. Let’s create a new summary value that incorporates what we’ve learned about both the $labels
and the $values variables:

CPU usage for Docker Compose service {{
 index $labels "com.docker.compose.service" }
 } is > 95% CPU [{{ $values.B }}]

Monitoring Data Streams with Grafana Alerts346

Figure 12.10 – Template variable in alert rule summary

Click on Save and exit to continue.

It’s at this point, you might start to wonder about how to evaluate these template expressions to see if
they produce the correct messages. Would we have to indefinitely wait for a threshold to be exceeded
or to manually trigger an alert to see the message? As it happens, there is indeed a way to observe the
evaluated template without triggering an alert:

1. From Alerting | Alert rules, open the alert group you’re interested in by clicking the disclosure
control on the left of the group as shown by the number 1 in Figure 12.11.

2. Next, open the alert rule by clicking on the disclosure button to the left of the rule itself. This
is indicated by the number 2 in Figure 12.11.

3. In this window, you should see each alert rule instance and a description of the summary. If you
don’t see them, wait a few moments for the evaluation period to pass. If the stated period (1m
in our case) passes without an update, you possibly have an error in your summary or other
annotation (number 3 in Figure 12.11), so you’ll want to edit the alert rule and fix any errors.

4. Open the alert instance you’re interested in by again clicking the disclosure button to the left
as shown by number 4 in Figure 12.11. Directly below the instance, you will see the current
summary message with all templates substituted.

Defining alert rules 347

Figure 12.11 – Alert summary evaluation

Monitoring applications

Now that we’ve gotten our feet wet with an initial alert rule, let’s turn from process monitoring to
service monitoring and add an application to monitor for alerting.

We’re going to install and launch an instance of NGINX a lightweight open source web server. We don’t
really care about serving pages, we just want to run the server and gather metrics we can monitor for
our alerting purposes. In this case, we want to use Telegraf to continuously extract metrics from the
NGINX endpoint and save them in InfluxDB just as we did for the CPU metrics.

Monitoring Data Streams with Grafana Alerts348

Installing NGINX

Our first task is to set up the Docker Compose configuration with the requisite image, ports, and volume
mappings. We’ll need to make a tweak to the configuration, so we’ll need to map a local configuration
file into the container’s filesystem, but as we’ve done before, it should pose no real difficulty.

Here’s the docker-compose.yml service configuration you’ll need:

 nginx:
 image: nginx
 ports:
 - 8080:8080
 volumes:
 - "${PWD-.}/nginx/html:/usr/share/nginx/html"
 - "${PWD-.}/nginx/default.conf:/etc/nginx/conf.d/default.
conf"

This will map a local default.conf file into the /etc/nginx/conf.d directory in our NGINX
container so we can override the built-in configuration. Before we build that configuration, we’ll need
to configure Telegraf to scrape the NGINX metrics, not unlike what we did with Prometheus many
chapters ago.

Configuring Telegraf

Telegraf has a nice inputs plugin called nginx. You can find the configuration information at
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/
nginx. Note this is for the basic open source NGINX not NGINX Plus. We build the configuration
with the InfluxDB GUI by going to Load Data | Telegraf | + Create Configuration, or go with this:

[[inputs.nginx]]
 # An array of Nginx stub_status URI to gather stats.
 urls = ["http://nginx/server_status"]

 # HTTP response timeout (default: 5s)
 response_timeout = "5s"

Restart your Telegraf service when you’ve completed the configuration change. The neat thing is that
we will get a new dataset in our existing bucket, and that will translate into a new measurement for
Grafana data source to query.

Configuring NGINX

Next, we need to enable our NGINX metrics with a module called stub_status. We just need to
configure an endpoint for stub_status at /server_status, which matches the one specified
in the Telegraf configuration.

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/nginx
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/nginx

Defining alert rules 349

Here’s a configuration file that sets up the endpoint. You should store it in nginx/default.conf
so the mapped volume exposes it in the container. Start up your NGINX server with this:

% docker-compose up --pull missing -d nginx

You can check the logs to see that Telegraf is accessing the endpoint:

% docker-compose logs -f nginx
…
chapter12-nginx-1 | 172.24.0.4 - - [17/Mar/2023:05:06:08 +0000] "GET
/server_status HTTP/1.1" 200 98 "-" "Go-http-client/1.1" "-"
chapter12-nginx-1 | 172.24.0.4 - - [17/Mar/2023:05:06:09 +0000] "GET
/server_status HTTP/1.1" 200 98 "-" "Go-http-client/1.1" "-"
chapter12-nginx-1 | 172.24.0.4 - - [17/Mar/2023:05:06:10 +0000] "GET
/server_status HTTP/1.1" 200 98 "-" "Go-http-client/1.1" "-"
chapter12-nginx-1 | 172.24.0.4 - - [17/Mar/2023:05:06:11 +0000] "GET
/server_status HTTP/1.1" 200 98 "-" "Go-http-client/1.1" "-"
chapter12-nginx-1 | 172.24.0.4 - - [17/Mar/2023:05:06:12 +0000] "GET
/server_status HTTP/1.1" 200 98 "-" "Go-http-client/1.1" "-"

You’ll find the data in the InfluxDB Chapter12 bucket by checking the InfluxDB GUI in Data
Explorer. Finally, you can confirm the Grafana data source by going to Explore and querying the
InfluxDB data source for the nginx measurement.

Now that we have our data, let’s go ahead and create an alert for it. Click + New alert rule to create a
new alert rule. In this scenario, we’re going to take a slightly different approach. We’re going to build
a simple dashboard with a single panel for our query. From that panel, we’ll generate our alert rule.

Creating an alert rule from a dashboard panel

Create and save a new dashboard. On the dashboard, create a new panel and open it to edit. Set the
time frame to Last 15 minutes. Enter the following query:

SELECT max("active") FROM "nginx" WHERE $timeFilter GROUP BY time($__
interval) fill(none)

The query will check for the number of active connections. Since every poll by Telegraf is an active
connection, there should be at least one most of the time. We’ll use the active connections as a proxy
for determining whether our NGINX server is running. Set the Title of the panel to nginx-active
for reasons that will become obvious later. Click on Apply to apply the settings and then on Save
the dashboard.

Reopen the panel, click on the Alert tab, and click on Create alert rule from this panel. You should
end up back where we were, this time with a new alert rule and our query carried over as the query
for the alert rule. We have few more things to set up:

1. Notice the alert rule is named for the dashboard panel you just created.

Monitoring Data Streams with Grafana Alerts350

2. In the A query, set Options | Time Range to now-15m to now.

3. Press Enter or Tab in the raw query area to confirm that data is visible in the time range.

4. Set the B Reduce expression Input to A, Function to Last, and Mode to Strict.

5. Delete the C Threshold expression by clicking the trash can icon. We’ll replace it with a Math
expression instead.

6. Click on Add expression and select Math from the popup menu.

7. Set up the C Math expression with a $B < 1 Expression. We don’t need to specify the B
expression as our input because we use the $B variable instead.

8. Click on Set as alert condition so it is our final expression to evaluate for our alert:

Figure 12.12 – NGINX alert rule query and alert condition

Next, we need to set up further alerting in case NGINX is down and there is no data at all. In section
3, follow these steps:

1. Under Folder, select + New folder and create a new one named Application Alerts.
Select the Application Alerts folder to store this rule.

2. Click + New evaluation group and name it nginx. Assign your rule to the new evaluation
group. By default, the evaluation time is set to 1m.

Defining alert rules 351

3. Set the Pending period to 5m, if it isn’t already.

4. Open the Configure no data and error handling disclosure triangle and set Alert state if no
data or all values are null to Alerting. This triggers an alert if we stop receiving data. Under
some circumstances, you might want to use a dedicated heartbeat metric for this purpose.

5. Here’s what our evaluation behavior section should look like:

Figure 12.13 – NGINX alert rule evaluation behavior

Finally, we’ll need to set our annotations. When it comes to the link to our dashboard panel, the
work has already been done for us. We have been gifted two annotations, a UID that links back to the
dashboard, and a panel ID for the panel on the dashboard. When the alert fires, the message generated
for the contact point will contain a link to the specific panel with the alert rule query.

Monitoring Data Streams with Grafana Alerts352

Go ahead and add a summary that indicates the number of active connections is less than one and
save the alert rule. Our annotations section should look like this:

Figure 12.14 – NGINX alert rule annotations with dashboard UID and panel ID

Alert messaging to contact points
Before we can establish the notification policies that will direct our alerts to contact points, we should
first define our contact points. Grafana supports an ever-growing number of contact points, so to find
out more about a specific contact point, consult the Grafana documentation.

We are going to concentrate on three common contact points that cover many typical use cases. We’ll
use an email contact point to represent the typical use case where email is the destination for all alert
messages. The Slack contact point is used when the alert needs to be visible to a defined group, such
as the members of a Slack channel. Our final contact point is PagerDuty, a destination for alerts that
need to be directed to a specific person or team for potentially immediate action.

Alert messaging to contact points 353

Configuring an email contact point

One of the most common and oldest forms of contact point is simply good old email. Nearly everyone
has it, and access to email servers is almost ubiquitous. If you get emails, you can also send them.

To set up an email contact point, we’ll first need to gather some information on how to contact and
authenticate (if necessary) the Simple Mail Transfer Protocol (SMTP) email provider we plan to
use. We will need to find out the following:

• The SMTP server and port

• The SMTP username and password

Once we’ve gathered this information, we’ll need to modify the Grafana configuration. By default, SMTP
is disabled, so we’ll need to enable it in the Grafana configuration. One possible way of modifying the
configuration is to copy the sample config file into a mapped volume, modify the configuration file, and
restart our Grafana server. An easier way, since we’re using Docker Compose to provision our containers,
is to identify and set environment variables corresponding to the appropriate configuration settings.

Most settings defined in a Grafana configuration file are available as a corresponding environment
variable that can be set the following way:

GF_SECTION_CONFIGNAME=configvalue

SECTION is the name of the bracketed section (in uppercase) in the config file, CONFIGNAME is
the name of the configuration option (in uppercase), and configvalue is the configuration value.
For example, the following might be in a section of the configuration file:

[security]
admin_user = admin

That would be overridden with an environment variable such as this:

GB_SECURITY_ADMIN_USER=myadmin

Armed with that information, and having checked the Grafana documentation at https://
grafana.com/docs/grafana/latest/setup-grafana/configure-grafana, we’ll
need to set four environment variables:

• GF_SMTP_ENABLED: “true”

• GF_SMTP_USER: “smtp_user”

• GF_SMTP_PASSWORD: “smtp_password”

• GF_SMTP_HOST: “smtp_host:smtp_port”

https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana
https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana

Monitoring Data Streams with Grafana Alerts354

You should of course fill in the environment values with your own settings.

Warning
It is at this point that I need to caution you about exposing secure information such as your
password in a plaintext file. Do not follow this practice on a production server; this example
is intended for educational purposes only!

Both Docker Compose and Kubernetes support the use of encrypted secrets to prevent their
exposure in a configuration file such as this one.

For myself, I generated an application-specific password intended for this purpose only, with
the understanding that if my computer is compromised, I can easily revoke the password.

This is what your docker-compose.yml file should look like after you add the new
environment variables:

 grafana:
 image: grafana/grafana:latest
 ports:
 - 3000:3000
 environment:
 GF_SMTP_ENABLED: "true"
 GF_SMTP_USER: "<smtp_user>"
 GF_SMTP_PASSWORD: "<smtp_password>"
 GF_SMTP_HOST: "<smtp_host>:<smtp_port>"
 volumes:
 - $PWD/grafana:/var/lib/grafana

After you’ve updated docker-compose.yml, restart the Grafana server:

% docker-compose down
% docker-compose up --pull missing -d grafana

Once you’ve restarted Grafana, you should create a new email contact point:

1. From the main menu, select Alerting | Contact points.

2. Either click on + Add contact point or edit (pencil icon) an existing contact point.

3. Name the contact point.

4. Make sure the contact point Integration is set to Email.

5. In Addresses, enter an email address where you’d like alert messages to be sent.

Alert messaging to contact points 355

At this point, you should test the email connection to confirm Grafana can connect to your SMTP
server and deliver messages by clicking on the Test button.

Configuring a PagerDuty contact point

While email is certainly traditional and common, when used in the context of an operations or SRE
team, it can be pretty limiting. Not everyone consistently reads emails, high-priority messages often
get lost among the volume of emails, and email typically doesn’t reflect roles and responsibilities.
Enter PagerDuty, a powerful system for managing the distribution of alerting messages. It’s designed
to send alert messages to a diverse set of communication mechanisms from email to voice and text
to mobile applications.

While it’s not in the scope of this book to go through the process of setting up a PagerDuty installation
(you can find the docs here: https://support.pagerduty.com/docs/trial-account-
onboarding), we’ll just cover the configuration of a PagerDuty contact point from the perspective
of an already-configured installation:

1. In PagerDuty, click on Services | Service Directory to identify the service that you want to
direct messages to. In my case, I’ll use the Default Service.

Figure 12.15 – PagerDuty service directory

2. From the Service Directory in PagerDuty, click on the Default Service to open it (you may
need to click on Clear All Filters to see it).

https://support.pagerduty.com/docs/trial-account-onboarding
https://support.pagerduty.com/docs/trial-account-onboarding

Monitoring Data Streams with Grafana Alerts356

Figure 12.16 – PagerDuty service

3. Select Integrations from the Integrations tab, next to the Activity tab

4. Click on Add an Integration.

5. Select the Events API V2 webhook, as shown in the following screenshot:

Figure 12.17 – PagerDuty Events API integration

6. Open the integration with the disclosure icon. You should now see an Integration Key value.
Copy it to the clipboard:

Alert messaging to contact points 357

Figure 12.18 – PagerDuty integration key

7. Now that you have a key, return to Grafana and open Alerting | Contact points and do
the following:

I. Click + New contact point.

II. Name your contact point something descriptive like pagerduty.

III. Set Integration to PagerDuty.

IV. Add your integration key to the Integration Key field.

Figure 12.19 – PagerDuty contact point

Monitoring Data Streams with Grafana Alerts358

8. Click on the Test button to send a test alert to your PagerDuty service. You should see the alert
fire in PagerDuty. The triggered alert in PagerDuty should look something like this:

Figure 12.20 – PagerDuty test incident

We only have one last contact point to configure, the Slack contact point.

Configuring a Slack contact point

Let’s now move to our final notification integration, a chat-based one. In a chat application, all participants
can see messages and respond to them in real time, and as is often the case, retain the message threads
for future reference, especially in situations where participants come into the discussion at later times.

One of the most popular workforce instant messaging systems in the world is Slack; as a platform for
managing the kinds of messages generated by observability, it is quite capable. Again, it is beyond the
scope of the book to work through the entire process of subscribing to Slack, establishing an environment
(called a workspace in Slack parlance), or configuring specific channels for observability. We’ll assume
you’ve already established a Slack workspace (go to https://slack.com/get-started#/
createnew to create one).

This section of the chapter will be concerned with integrating a Grafana alerting contact point with
Slack. To successfully configure the integration, you will need to have administrative access to Slack as
you will be enabling the Slack integration for your workspace. We’ll also assume you have permission
to create a channel for routing message.

Our first stop is Slack, where we’ll create a channel called #learn-grafana-90-alert.

Next, we need to create a Slack application, which is a special security designation for applications
that connect to Slack via the API. Here’s the process:

https://slack.com/get-started#/createnew
https://slack.com/get-started#/createnew

Alert messaging to contact points 359

1. In Slack, from the workspace menu, select Settings & administration | Manage apps.

Figure 12.21 – Slack Settings & administration menu

2. Click Build at the top right.

3. Click the big green Create an App button.

4. Select From scratch.

Figure 12.22 – Slack app creation dialog

Monitoring Data Streams with Grafana Alerts360

5. Set App Name to Grafana Alerting and select the workspace from the dropdown.

Figure 12.23 – Slack workspace chooser

All you need to do next is to create an incoming webhook, which will bundle the channel for
the connection and the Slack authentication in a single URL.

6. Click on your newly created app. In the Features section, select Incoming Webhooks.

7. Enable Activate Incoming Webhooks.

8. Click Add New Webhook to Workspace.

9. Set the name of the channel to the one you created previously.

Figure 12.24 – Slack app channel selection

Alert messaging to contact points 361

10. Copy the URL for the incoming webhook to the clipboard.

Figure 12.25 – Slack incoming webhooks

11. Now, return to Grafana, select Alerting | Contact points, and create a new contact point.

12. Set a name for the contact point, such as slack.

13. Set the Integration to Slack.

14. Since we are sending messages to Slack via webhooks, you can skip the Recipient and Token settings.

Monitoring Data Streams with Grafana Alerts362

15. Under Webhook URL, paste the webhook URL.

Figure 12.26 – Slack contact point

16. To test the contact point, click the Test button, and select either the Predefined message or
create a Custom one.

17. Check the Slack channel for your message:

Figure 12.27 – Slack alert test message

Routing alerts with notification policies 363

That’s it for our contact points! We’ll need to create notification policies that will route alert messages
to these contact points.

Routing alerts with notification policies
Now that we have our alert rules and our contact points, we’re able to link them up using our notification
policies. One of the most common notification policies is to match up an alert severity with a particular
contact point. That is why we initially set a severity label when we created our alert rules.

Now that we have our severity label, we can use it in a notification policy, so let’s set up such
a policy. A notification policy can be as simple or complex as you want. The point is to use the
information represented in the labels to determine which contact point(s) should receive your alert.
It can be as simple as that.

For example, you may have a situation where you want all your low-severity (informational) incidents
to go to an email address, but you want medium-severity (actionable, normal response) incidents to
go to Slack or Discord, and your high-severity (actionable, immediate response) incidents to go to
PagerDuty. To accomplish that, you’ll want to set a label of high, medium, or low severity.

In your notification policy, you then match the label corresponding to the severity with the appropriate
contact point:

• Label: Critical severity, Contact point: PagerDuty

• Label: Normal severity, Contact point: Slack

• Label: Low severity, Contact point: email

Let’s set that up in practice for our contact points. Go to Alerting | Notification policies. If you want
all alerts to go to the same contact point, you will set that by editing the default policy. In our case,
we’ll set the email contact point as our default for archival purposes:

1. For the Default policy, click on the meatballs (3-dot) menu and select Edit.

2. Select your email contact point from the drop-down menu.

3. Click Update default policy.

At this point, you could also adjust the Group by options for the Default policy. These are the labels
that determine which alerts should be treated as being in the same group. Group by comes into play
as part of the sequencing for alerts. Sequencing is controlled by the Timing options section.

The idea behind the alert grouping is to prevent a rapid-fire alerting scenario from overwhelming your
contact points with simultaneous, redundant alerts. Imagine a situation where a significant number of
servers all go offline due to a networking failure. Each server will generate a single alert, but multiple
racks of servers could end up creating hundreds of alerts almost simultaneously. If all the alerts are
defined to be in the same group, Grafana will only send a single alert using non-grouping labels to
indicate the scope of the alert.

Monitoring Data Streams with Grafana Alerts364

The timing options are configured to protect contact points from an inadvertent Denial of Service
(DoS) attack by modeling an exponential back-off. The initial alert is sent after 30 seconds, any
additional alerts are sent in 5-minute intervals, and any recent alerts don’t go out for 4 hours. This
assures a reasonable distribution of alerts to minimize cost and avoid service provider Terms of
Service (ToS) violations.

The key to the group is to make sure you’ve labeled your alert rules in such a way that if a significant
incident were to occur, grouping by the right labels would minimize the number of alerts that need
to be sent out, saving on unnecessary and costly redundant messaging.

Specific routing

Now that we’ve established the default policy, let’s set the policies for our severity labels. Under Default
policy, click on + New nested policy to add a new notification policy.

Under Matching labels, do the following:

1. Type severity into the Label field.

2. Leave Operator as =.

3. Add critical to the Value field.

4. Set the contact point to PagerDuty.

5. Click Save policy.

Here’s an example of setting the label in the policy:

Figure 12.28 – Notification policy

Routing alerts with notification policies 365

Next, add two more nested notification policies:

• Matching labels: severity = normal | Contact point: Slack

• Matching labels: severity = low | Contact point: email

Now, it might be the case that you don’t want each alert to go to a different contact point; instead,
you’d like the policies to be additive, that is, you want only the normal alerts to be sent via email, but
the critical alerts to go to all the contact points. That’s easy enough: just add additional matchers to
each notification policy. Remember to build the policy around the contact point, not the other way
around. Ask yourself: what alerts do I want to go to the contact point?

Mute timings

Space prevents us from going into a lot of detail on mute timings but suffice to say they are useful
when you don’t want or need an alert to go to a contact point during certain windows of time. Say
you don’t want normal severity alerts to send email messages during weekends. You first create a mute
timing, then assign the mute timing to the notification policy.

Here’s how we might do that:

1. Select Alerting | Notification policies from the main menu. Click on the Mute timings tab.

2. Click on + Add mute timing.

3. Under Name *, type in weekends.

4. Under Days of the week, enter Sat, Sun.

5. Click Save.

6. To assign the mute timing, click the edit box next to the policy with severity=normal
matching labels.

7. Next to Mute timings, select weekends from the drop-down.

8. Click Save.

Monitoring Data Streams with Grafana Alerts366

Creating this mute timing is depicted in the following screenshot:

Figure 12.29 – Mute timing

Now you have an end-to-end Grafana alerting system with a couple of alert rules to get you started.
Try them out by triggering alerts. You may have to force them by altering the threshold values, so
remember to set them back when you finish testing!

On your own

Grafana alerting is so complex and powerful that a single chapter can hardly do it justice, but this
should whet your appetite for exploring even more features. Here are some things you can try out:

• Add a new set of alert rules based on another Docker measurement, such as memory.

Summary 367

• Add additional alert rules to the cpu alert group but with different thresholds of 50% and 10%.
Map them into different severity labels.

• Explore the templating system and experiment with how additional annotations can affect the
message delivered to the contact point.

• Add more labels and then embed them in annotations or message templates for richer
alert messages.

Summary
This was an extensive chapter, and we covered a lot of ground. Observability is becoming a large,
important technology sector and Grafana is keeping up by making its alerting capabilities more
powerful and versatile.

In this chapter, we set up monitoring for both Docker and NGINX using InfluxDB as a data source.
We created alert rules to query and analyze the data from our monitoring, used expressions to reduce
the data to a single value, and created expressions to evaluate that value for violating conditions that
might need to trigger an alert. We integrated Grafana contact points with email, PagerDuty, and
Slack to receive our alerts with messages that contain annotation data set by our alert rules evaluation
behavior. We also established notification policies to route our alert messages to different contact
points based on the severity derived from alert rule labels. Finally, we briefly considered how to set
up mute timings for when we might want to disable certain alert rules based on the day of the week.

We’ll wrap up our tour of observability in the next chapter using Loki to manage log search, which
can benefit troubleshooting by linking logs to time-correlated metrics.

13
Exploring Log Data with

Grafana’s Loki

In this final chapter of Part 2, Real-World Grafana, we’re going to shift gears a bit. So far, we’ve been
operating under a dashboard-oriented paradigm in terms of how we use Grafana. This is not too
unusual since Grafana has always been structured around the dashboard metaphor. The introduction
of Explore in Grafana 6 brought an alternative workflow – one that is data-driven and, dare I say
it, exploratory.

Grafana really shines when working with numerical and some forms of textual data, but what if the data
includes substantial amounts of log data? Every day, countless applications disgorge not only standard
numerical metrics but also copious text logs. If you’ve ever enabled debug mode in an application, then
you’ve seen how a few meager kilobytes of information can quickly become a flood of gigabytes worth
of repetitive, inscrutable gibberish. Diagnosing a problem by enabling the debugging code is more
like the proverbial needle in a haystack as even a few seconds of data spans thousands of lines of text.

The goal of Grafana’s Explore and other similar tools is to try to get a handle on some of that data by
making searching and filtering easier, and by making it possible to associate metrics data with time-
correlated log data. It’s not enough for Explore to provide the ad hoc analysis; it needs to be coupled
with data sources that can handle logging and metrics data.

If you are familiar with Elasticsearch, then you’ll know this sounds like a description of the ELK stack,
which is a combination of Elasticsearch for data storage and search, Logstash for data capture, and
Kibana for visualization. Grafana also provides a similar application stack Loki, a project that in their
words provides the following (https://grafana.com/oss/loki):

“...a horizontally-scalable, highly-available, multi-tenant log aggregation system
inspired by Prometheus. It is designed to be very cost-effective and easy to operate. It
does not index the contents of the logs, but rather a set of labels for each log stream.”

By combining Loki log aggregation with Prometheus metrics and Grafana visualization, Grafana
is developing a software suite that rivals the venerable ELK stack.

https://grafana.com/oss/loki

Exploring Log Data with Grafana’s Loki370

In this chapter, we’ll be covering the following topics:

• Loading system logs into Loki

• Visualizing Loki log data with Explore

• Capturing simulated logs generated programmatically and real logs output by Docker

• Querying synchronized logs and metrics in Explore

Since our ultimate goal will be to use Explore to simultaneously analyze logs and metrics, as in
previous chapters, we will be setting up a pipeline of several services and getting them to talk to each
other. Here’s the plan for this chapter:

1. Collect system logs with Promtail, an agent similar in function to Elasticsearch Logstash or
Influx Telegraf.

2. Stand up a Loki service as a Grafana data source.

3. Make any transformations to the collected log data to increase its utility in Explore.

4. Collect additional logging from the various services in our pipeline, including Grafana.

5. Use Prometheus to scrape the metrics from our services and use an Explore feature called Split
to compare the logs with the time-correlated metrics.

Along the way, we’ll be learning about some of the interesting Explore features that become available
when you use the Loki data source. Let’s get started!

Technical requirements
The tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter13.

Loading system logs into Loki
To get started, cd to the Chapter13 directory in your clone of this book’s repository.

To stand up a Loki logging pipeline, we’ll need to set up a series of services in Docker Compose. In
our initial deployment, we will set up three services: loki, promtail, and grafana. By now,
adding these services to a docker-compose.yml file should be familiar and straightforward.

Networking our services

Before we start up our services, we will want to establish a network that links them all together. All
services started from a single docker-compose.yml file that shares a common network called
myapp_default. We will not use the default name and instead define the network name for our

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter13
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter13

Loading system logs into Loki 371

service as loki. There is no requirement to do this, but it demonstrates how you can link up multiple
services to not just one default network but potentially several in a more complex network topology.

This is how we will start off our docker-compose.yml file:

networks:
 loki:

To bind any of our services, we’ll need to add a network specification to the service definition, like so:

 networks:
 - loki

We’ll see this in action in the next section.

Installing Promtail

Our first service will scrape logs from our local computer. Similar in function to Telegraf, Promtail
serves this purpose in the Loki pipeline. Initially, we will be working with a minimal configuration
just to get things up and running, then layer in more specific configurations as we go. The Promtail
service configuration looks like this:

 promtail:
 image: "grafana/promtail:latest"
 ports:
 - "9080:9080"
 networks:
 - loki

First, we pull down the latest version of Promtail and then expose port 9080. Finally, we must set
up a common network called loki. This will allow our services to talk to each other. It’s not entirely
necessary as all services are already linked to a common network by default, but it’s helpful to see
how you can potentially set up multiple networks in a single docker-compose.yml file. Launch
the service:

% docker-compose up --pull missing -d promtail
[+] Running 1/1
 Container chapter13-promtail-1 Started 0.4s

To check for our Promtail service, just query the endpoint with curl:

% curl -XGET http://localhost:9080/ready
Ready

The Ready response indicates that our service is up and running.

Exploring Log Data with Grafana’s Loki372

Installing Loki

Once we start scraping for logs, Loki will provide the log storage service that the Grafana data source
will access to search for and aggregate our logs. Let’s have a quick look at the configuration for the
Loki service:

 loki:
 image: "grafana/loki:latest
 ports:
 - "3100:3100"
 networks:
 - loki

In the Loki service configuration, we pull the latest Docker image from the repository and expose
port 3100. The networks setting links our service to the common network, loki. Let’s start up
our Loki service:

% docker-compose up --pull missing -d loki
[+] Running 1/1
 Container chapter13-loki-1 Started 0.6s

We’ll use curl to check for our service readiness:

% curl -XGET http://localhost:3100/ready
ready

You may see the following message:

Ingester not ready: waiting for 15s after being ready

It will take the order of a few seconds to a minute to launch. Give it time.

Note that we don’t appear to have configured any persistence for either of our services. That’s okay
for now; the persistence is the logs themselves. Don’t worry – we’ll add that capability a little later.

Launching Grafana

This covers our Loki pipeline, so we’ll go ahead with our Grafana service, which you should be very
familiar with by now:

 grafana:
 image: "grafana/grafana:${GRAF_TAG-latest}"
 ports:
 - "3000:3000"
 volumes:
 - "${PWD-.}/grafana:/var/lib/grafana"

Loading system logs into Loki 373

 networks:
 - loki

Now, let’s launch Grafana:

% docker-compose up --pull missing -d grafana
[+] Running 1/1
 Container chapter13-grafana-1 Started 0.6s
 Container chapter13-loki-1 Creating 9.5s

Let’s configure a Loki data source in Grafana and see what Promtail and Loki have done with our logs.

Creating a Loki data source

Create a Loki data source in Grafana with these settings:

• Name: Loki

• HTTP/URL: http://loki:3100

If successful, you should get a message that reads Data source successfully connected:

Figure 13.1 – Loki data source

Exploring Log Data with Grafana’s Loki374

Now that we have a working Loki data source, let’s go to Explore to see what the data looks like.

Visualizing Loki log data with Explore
Go to Explore and confirm that Loki is set as your data source. Welcome to Loki! Things may look a bit
different from what you may remember from using Explore with other data sources. On the far right
of Kick start your query, click on Builder mode. Let’s take a quick tour of some of Loki’s UI features:

Figure 13.2 – Loki data source in Explore

The following features are highlighted in the preceding figure:

1. Split: Splits the window into two queries that are side by side. For example, you can put logs
on one side and metrics on the other.

2. Add to dashboard: Captures your current query and creates a panel on a dashboard.

3. Time frame selection. Selects the time period for the query.

4. Run query: Use the dropdown to set a continuous refresh rate for the query.

5. Live: This continuously displays the last few loglines matching the query. The button switches
to a pause or stop selector.

6. Kick start your query: Offers sample logs and metrics queries to get started.

7. Label browser: Offers sample logs and metrics queries to get started.

8. Explain query: Enables helpful annotations to queries.

9. Builder/Code: Switches from the UI query builder to a simple query code text box.

10. Query builder: In Builder mode, you can assemble log stream processing pipelines using the
LogQL query language, similar to PromQL for Prometheus.

Visualizing Loki log data with Explore 375

11. Options: This sets several options, including overrides for the legend, the log line limit (the
default is 1,000 lines), whether the Loki query is over a time range or a point in time, and the
resolution of the display corresponding to the query step size.

12. Add query: Adds additional queries.

13. Query history: Opens the query history selector.

14. Inspector: Opens the query inspector, like the one in the panel query.

Let’s have a look at the logs. Make sure that you’ve selected Loki as the data source. Set a Time range
value that includes the period from when you started up the services in Docker Compose. Under
Label filters, click on the Select label dropdown, and select any of the menu items. Under the Select
value dropdown, select any item that has been auto-filled. If you don’t see anything, don’t worry – it
just means Promtail’s default settings didn’t detect any logs.

In this example, we’ve picked up some logs from a log source or job called varlogs:

Figure 13.3 – Log query

Note that a LogQL query string is now visible in an area called the Raw query section. It should be
identical to the query you’d see if you switched to Code mode.

Exploring Log Data with Grafana’s Loki376

Let’s open one of the log entries to see how they’re processed by Loki:

Figure 13.4 – Log entry

Since these log entries aren’t particularly rich – they’re just lines of text – Loki is unable to identify
any labels other than the ones passed to it from Promtail, filename, and the job name. Never
fear – we’re just getting started!

To give you a quick idea of the log metrics capability of Loki, click Kick start your query, open Metric
query starters, and select one of the starters. For example, I selected Use this query under Bytes used
by a log stream, then confirmed I wanted to Replace query:

Figure 13.5 – Kickstart metrics query

Visualizing Loki log data with Explore 377

Clicking Run query fires it off. Let’s see what the results look like:

Figure 13.6 – Log metrics

Since it’s a short data stream generated from a log file, there’s only a single data point. Before we move
on, let’s turn on the Explain feature to see how much information it can provide:

Figure 13.7 – The Explain feature

Exploring Log Data with Grafana’s Loki378

As you can see, Grafana provides extensive documentation to help guide your query designs.

While we were able to sample some readily available logs for Loki, they aren’t being consistently delivered
in the quantities we would like to have for experimentation purposes. To keep things controllable,
we won’t depend on our local platform and its variations by operating system, processor, application
working set, and so on. Instead, we will simulate the logs we need using a logging generator that we
can completely control.

Simulating logs with flog
As-is, this is a fairly limited view of Loki’s capabilities, largely because we haven’t fed it some real
logging to work with. Let’s fix that by first adding some live logs and then configuring Promtail to
scrape them. Taking a cue from the Loki documentation, we’ll use an open source logging generator
called flog to generate fake logging. Next, we’ll create a configuration file for Promtail that will
scrape those logs in real time.

flog is available as a Docker container, so we just need to add it as a service to our docker-
compose.yml file:

 flog:
 image: mingrammer/flog:latest
 command: -l -d 1

The service entry for flog is very simple: pull the latest image and run it with the -l command-line
option for continuous looping, and -d 1 to run with a delay interval of 1 second so that we don’t
overwhelm Promtail.

Note
If you are running on an Apple Silicon-based computer, will need to tell Docker to build an
image that is supported by Apple Rosetta 2 Intel emulation. You just need to add a platform
specification to your flog service, like so:

 flog:

 image: mingrammer/flog:${FLOG_TAG-latest}

 # uncomment the following line if running on an Apple
Silicon Mac

 platform: linux/amd64

 command: -l -d 1 -f json

Simulating logs with flog 379

To get an idea of what it can generate, start it up and run the Docker Compose logs command with
the tail option (-f) to see the logs it generates:

% docker-compose up --pull missing -d flog
[+] Running 1/1
 Container chapter13-flog-1 Started 0.4s
% docker-compose logs -f flog
chapter13-flog-1 | 176.73.77.191 - - [03/Apr/2023:02:34:43 +0000]
"PUT /compelling/magnetic HTTP/1.0" 502 2314
chapter13-flog-1 | 214.212.27.222 - abshire8143 [03/Apr/2023:02:34:44
+0000] "DELETE /incentivize HTTP/1.1" 205 16657
chapter13-flog-1 | 181.95.51.22 - - [03/Apr/2023:02:34:45 +0000]
"HEAD /best-of-breed/bandwidth HTTP/1.0" 500 18034
chapter13-flog-1 | 126.227.221.120 - trantow4368 [03/
Apr/2023:02:34:46 +0000] "PATCH /mission-critical HTTP/2.0" 401 11849
chapter13-flog-1 | 135.221.239.8 - reinger5263 [03/Apr/2023:02:34:47
+0000] "DELETE /partnerships/partnerships HTTP/2.0" 401 24724
chapter13-flog-1 | 135.186.148.135 - thiel3341 [03/Apr/2023:02:34:48
+0000] "PUT /architect/utilize/e-services/grow HTTP/1.0" 100 26296
chapter13-flog-1 | 198.86.17.203 - bartell2204 [03/Apr/2023:02:34:49
+0000] "HEAD /virtual/rich HTTP/1.0" 403 21582
…

By default, Promtail will not know about our new logging, so we’ll need to somehow configure it with
the necessary information. However, to do that, we’ll also need to run and add a configuration file to
our promtail service container.

Configuring promtail

First, we need to copy a sample Promtail configuration file (promtail-config.yaml) into a local
directory before mapping that file into our container. The easiest way to do this is to just download
a sample config file from the Grafana Loki Getting Started documentation (https://grafana.
com/docs/loki/latest/get-started/#obtain-the-test-environment):

% wget https://raw.githubusercontent.com/grafana/loki/main/examples/
getting-started/promtail-local-config.yaml -O promtail/etc/promtail-
local-config.yaml

The wget command will save this file as promtail/etc/promtail-local-config.yml.
This is what the Promtail configuration file looks like:

server:
 http_listen_port: 9080
 grpc_listen_port: 0

http://.com/docs/loki/latest/get-started/#obtain-the-test-environment
http://.com/docs/loki/latest/get-started/#obtain-the-test-environment

Exploring Log Data with Grafana’s Loki380

positions:
 filename: /tmp/positions.yaml

clients:
 - url: http://loki:3100/loki/api/v1/push
 tenant_id: tenant1

scrape_configs:
 - job_name: flog_scrape
 docker_sd_configs:
 - host: unix:///var/run/docker.sock
 refresh_interval: 5s
 relabel_configs:
 - source_labels: ['__meta_docker_container_name']
 regex: '/(.*)'
 target_label: 'container'

While it is beyond the scope of this book to cover Promtail configuration in detail, let’s go over this
configuration file as it’s pretty short. The server block sets up Promtail’s web server endpoint port,
which we exposed in our Docker Compose service configuration. The positions block indicates
where to store the last-read log file locations in case Promtail is restarted. We’ll need to map that into
a local file location to persist it. The clients block sets the location of our loki server to send the
logs. By establishing the Docker Compose network as loki, we can use it as the hostname for the URL.

scrape_configs is where the real work gets done. It specifies where to gather log files, along with
a series of pipeline stages for further processing, before handing them off to Loki.

Pipeline stages are intended to perform data parsing and transformation, not altogether different than
the filter section of a Logstash pipeline configuration. Pipeline stages come in four types, each
performing different tasks on loglines and passing the results to the next stage:

• Parsing stages: Parses the logline and extract fields from parse matches

• Transform stages: Modifies the extracted fields

• Action stages: Performs some action with the extracted fields or even the logline itself

• Filtering stages: Drops certain stages or loglines

From this configuration, we can see that we will be scraping the Docker socket interface every 5 seconds
before passing along the results to a transform stage called relabel_configs. In this case, we are
going to search for a label attached to the log called __meta_docker_container_name. The
regular expression, regex, matches against the value of that label everything after the slash character.
The matched string is given a new label of container.

Simulating logs with flog 381

Our new configuration will extract logs from our Docker containers, and label them according to
container name. How will that help us find our new logs generated by flog? Let’s reconfigure our
promtail service and find out!

Promtail in Docker Compose

We need to update the promtail service in our docker-compose.yml file to accomplish a
few things:

• We need to map our local Promtail configuration into the container for the promtail Docker
Compose service

• We also need to update the promtail command to launch Promtail and make it use our
local configuration file

• We need to map our Docker socket file, /var/run/docker.sock, into the container so
that Promtail can access it

• Optionally, we want to map local temp directories so that log files can be found and the positions
file can persist, even if the container is restarted

Here’s the new docker-compose.yml service configuration for Promtail:

 promtail:
 image: "grafana/promtail:latest
 ports:
 - "9080:9080"
 command: -config.file=/etc/promtail/promtail-local-config.yaml
 networks:
 - loki
 volumes:
 - "${PWD-.}/promtail/etc:/etc/promtail"
 - "${PWD-.}/promtail/tmp:/tmp"
 - /var/run/docker.sock:/var/run/docker.sock
 - /var/log:/var/log

Let’s stop our service and then start it up with the new configuration:

% docker-compose stop promtail
[+] Running 1/1
 Container chapter13-promtail-1 Stopped 0.3s
docker-compose up --pull missing -d promtail
[+] Running 1/1
 Container chapter13-promtail-1 Started 0.6s

Exploring Log Data with Grafana’s Loki382

If everything has gone well, we should be able to return to Grafana Explore. Now, when selecting
a label under Label Filters, we should see (and select) container. Clicking on the Select value
dropdown should now list a set of the following containers, based on the labels derived from our
new Promtail configuration:

• chapter13-grafana-1

• chapter13-promtail-1

• chapter13-loki-1

• chapter13-flog-1

This answers the question: how do we see the flog logs? By selecting chapter13-flog-1 and
clicking on Run query, you should now see the results as a graph and a list of log entries:

Figure 13.8 – Flog logs

Alas, when we open one of our log entries, we still don’t see much in the way of identifying useful
labels, just the container name:

Figure 13.9 – Flog log entry

What we need to see is structured logging, such as logfmt or JSON. We can adjust the flog
command to do just that. Modify the command in the flog Docker Compose service block so that
it looks like this:

Simulating logs with flog 383

 flog:
 image: mingrammer/flog:${FLOG_TAG-latest}
 platform: linux/amd64
 command: -l -d 1 -f json

The command is asking flog to send JSON-formatted output instead. Stop and recreate the container
with the new command:

% docker-compose stop flog
[+] Running 1/1
 Container chapter13-flog-1 Stopped 0.2s
% docker-compose up --pull missing -d flog
[+] Running 1/1
 Container chapter13-flog-1 Started

Checking the log’s output shows we are now generating JSON-formatted logs:

% docker-compose logs -f flog
chapter13-flog-1 | {"host":"60.111.28.122", "user-identifier":"-",
"datetime":"03/Apr/2023:05:21:47 +0000", "method": "DELETE",
"request": "/e-business/convergence/back-end/robust",
"protocol":"HTTP/1.1", "status":100, "bytes":22594, "referer":
"https://www.nationalvortals.info/e-enable"}
chapter13-flog-1 | {"host":"199.51.180.74", "user-identifier":"-",
"datetime":"03/Apr/2023:05:21:48 +0000", "method": "HEAD", "request":
"/architect/end-to-end/enable/bleeding-edge", "protocol":"HTTP/2.0",
"status":405, "bytes":633, "referer": "https://www.corporateworld-
class.org/monetize/disintermediate/wireless"}
chapter13-flog-1 | {"host":"12.98.181.20", "user-
identifier":"rippin3861", "datetime":"03/Apr/2023:05:21:49 +0000",
"method": "PUT", "request": "/streamline/functionalities",
"protocol":"HTTP/1.0", "status":502, "bytes":3726, "referer":
"https://www.centralone-to-one.net/reintermediate/strategize/
innovative"}
chapter13-flog-1 | {"host":"93.209.28.15", "user-identifier":"-",
"datetime":"03/Apr/2023:05:21:50 +0000", "method": "PUT", "request":
"/e-business/integrate", "protocol":"HTTP/2.0", "status":201,
"bytes":16880, "referer": "http://www.corporateplug-and-play.com/
platforms/visualize/roi/reintermediate"}
…

Now, when we refresh our query in Explore, we should see those same JSON-formatted logs:

Figure 13.10 – JSON-formatted logs

Exploring Log Data with Grafana’s Loki384

We need to do one more thing to get Loki to properly detect the fields in our logs. To do that, we need
to pass them through a JSON parser. Loki may have already hinted that your query pipeline could use
the addition of such a parser. Let’s oblige it by adding a JSON parser. Either click on hint: add json
parser or select + Operations | Formats | Json:

Figure 13.11 – JSON-formatted log fields

Now, not only do we have fields, but we also have labels parsed from the logs. Clicking on the magnifying
glass with a (+) sign next to one of the labels will add a query for that label to our pipeline:

Figure 13.12 – Log filtering

Already, we can see how powerful Loki and its LogQL query language can be, and we’ve barely
scratched the surface.

Alternative Docker log capture 385

From here, we can continue to add label filters to our query to narrow down our search. We can also
optimize the display by clicking on the (eye) icons next to only the fields we want to examine.

Next, we’re going to look at another option for gathering logs from Docker through the use of a Docker
plugin that we can install and connect directly to Loki.

Alternative Docker log capture
If you are having trouble with the Docker socket method of scraping logs, or for security reasons can’t
use that method, the folks at Grafana have provided a log driver for Docker that can deliver logs to Loki
directly, thus bypassing Promtail entirely. It requires downloading a special Loki log driver for Docker
and updating the docker-compose.yml file so that it includes driver-specific configuration. To
download and install the driver, run the following command:

% docker plugin install grafana/loki-docker-driver:latest --alias loki
--grant-all-permissions

The plugin installation command will download the latest driver and install it with an alias of loki
(so that we can access it easily from Docker Compose), with wide-open permissions. To confirm the
installation, run the following command:

% docker plugin ls
ID NAME DESCRIPTION ENABLED
692bec0b6ade loki:latest Loki Logging Driver true

If you get true as output, then your plugin loaded properly and is ready to go. More information
on the driver can be found in the Loki GitHub repository (https://github.com/grafana/
loki/tree/main/clients/cmd/docker-driver).

To take advantage of the driver, we’ll need to update our docker-compose.yml file and reload
the containers. For Loki logs, update the service so that it includes a logging block:

 loki:
 image: "grafana/loki:latest
 ports:
 - "3100:3100"
 networks:
 - loki
 logging:
 driver: loki
 options:
 loki-url: "http://host.docker.internal:3100/loki/api/v1/
push"

https://github.com/grafana/loki/tree/main/clients/cmd/docker-driver
https://github.com/grafana/loki/tree/main/clients/cmd/docker-driver

Exploring Log Data with Grafana’s Loki386

Here, we’re adding a new logging configuration to the service. We reference our driver aliased to loki
and set the URL the driver needs to send the logs.

You can find the same URL form in the Promtail configuration file. Here’s the excerpt:

clients:
 - url: http://loki:3100/loki/api/v1/push

We configure the logging to set the --log-opt command-line option for docker run, which
launches the container. Information on how to configure containers to use the driver can be found
in the following GitHub repository: https://github.com/grafana/loki/blob/main/
docs/sources/clients/docker-driver/configuration.md.

In case you’re wondering why we don’t set the host to loki (the hostname for the Loki service itself)
in the loki service configuration, the explanation is a bit tricky. The driver is set by Docker to be
on the network for the Docker host itself, not the Docker Compose internal network. Effectively, it is
outside the network we created for our services. Docker provides a special address for containers to
access the internal host network: host.docker.internal.

Now that the configuration is out of the way, let’s restart our new service stack so that we can access
the Docker container logs:

1. Shut down all our services:

% docker-compose down
[+] Running 6/6
 ✔ Container chapter13-promtail-1 Removed 10.2s
 ✔ Container chapter13-grafana-1 Removed 0.3s
 ✔ Container chapter13-loki-1 Removed 31.9s
 ✔ Container chapter13-flog-1 Removed 0.2s
 ✔ Network chapter13_default Removed 0.1s
 ✔ Network chapter13_loki Removed

2. Start up the loki service first so that the other services have a service to send their logs:

% docker-compose up -d loki
[+] Building 0.0s (0/0) docker:desktop-linux
[+] Running 1/1
 ✔ Container chapter13-loki-1 Started

3. Next, we must run our check to confirm Loki is running:

% curl -XGET http://localhost:3100/ready
ready

https://github.com/grafana/loki/blob/main/docs/sources/clients/docker-driver/configuration.md
https://github.com/grafana/loki/blob/main/docs/sources/clients/docker-driver/configuration.md

Alternative Docker log capture 387

4. We must set the configurations for the other services in a similar fashion. Here is the
grafana service:

 grafana:
 image: "grafana/grafana:latest
 ports:
 - "3000:3000"
 volumes:
 - "${PWD-.}/grafana:/var/lib/grafana"
 networks:
 - loki
 logging:
 driver: loki
 options:
 loki-url: http://host.docker.internal:3100/loki/api/
v1/push

5. Next up is promtail:

 promtail:
 image: "grafana/promtail:${PROMT_TAG-latest}"
 ports:
 - "9080:9080"
 networks:
 - loki
 command: -config.file=/etc/promtail/promtail-local-config.
yaml
 volumes:
 - "${PWD-.}/promtail/etc:/etc/promtail"
 - "${PWD-.}/promtail/tmp:/tmp"
 - /var/run/docker.sock:/var/run/docker.sock
 - /var/log:/var/log
 logging:
 driver: loki
 options:
 loki-url: "http:// host.docker.internal
:3100/loki/api/v1/push"

6. Finally, we’ll go ahead and set up logging for our flog server:

 flog:
 image: mingrammer/flog:latest
 platform: linux/amd64
 command: -l -d 1 -f json
 logging:
 driver: loki

Exploring Log Data with Grafana’s Loki388

 options:
 loki-url: "http://host.docker.internal:3100/loki/api/
v1/push"

7. Remember, if you’re changing the configuration files for a service, docker-compose restart
is sufficient, but if you’re changing the service configuration in docker-compose.yml, you’ll
need to recreate the service with docker-compose up -d. Start up the rest of the services:

erics@blossom Chapter13 % docker-compose up -d grafana promptail
flog
docker-compose up -d
[+] Building 0.0s (0/0) docker:desktop-linux
[+] Running 4/4
 Container chapter13-promtail-1 Started 0.1s
 Container chapter13-flog-1 Started 0.1s
 Container chapter13-grafana-1 Started
ready

Once we’ve confirmed that the Loki service is up and running, reloading the Explore page should
reveal new labels corresponding to our additional logs:

Figure 13.13 – Docker logging driver labels

Where did all those labels come from? The Loki logging driver not only delivered the logging for all
our containers, but it also set labels based on the Docker container configuration and then parsed
them to produce a set of fields. To get the same logs previously delivered by Promtail to Loki, select
the compose_service label and the flog value. You may also need to format the logs through
the JSON formatter as before.

Alternative Docker log capture 389

While we’re here, let’s take a quick look at the deduplication feature. Deduplication is helpful when
you’re looking at a stream of logs that are very similar in structure or have large chunks of repetition.
Explore provides a few deduplication strategies that can reduce logs, depending on what it can safely
ignore. To try it out, let’s look at Loki’s logging capabilities.

Switch from Builder mode to Code, type in the following query, and click Run query:

{compose_service="loki"}

You should see a well-populated list of log lines, and you might even detect visually similar line clusters.
This is because logging code is often repetitive, differing only by a few parameters. Loki can detect
these repetitive patterns to reduce entire line clusters down to single representatives.

Bear in mind that Explore is not searching for identical lines, rather it is choosing to examine logs
after ignoring certain common log fields. There are three methods to choose from:

• Exact: Deduplicate logs, ignoring timestamps

• Numbers: Deduplicate logs differing only by numerical values

• Signature: Deduplicate logs matching similar punctuation and whitespace

Clicking on Exact yields the following excerpted results:

Figure 13.14 – Deduplication

You can see that deduplication has grouped many of the logs, reducing the log count by some 30%.

Now that we’ve seen the power of Loki log aggregation, let’s couple that with Prometheus’ metrics to
see how we might couple log analysis to metrics.

Exploring Log Data with Grafana’s Loki390

Querying logs and metrics with Explore
Adding Prometheus metrics to the mix is relatively simple: we just need to add a new Prometheus service
while sending its logs to Loki to be aggregated (why not?). We’ll also need to configure Prometheus
to scrape the metrics endpoints of our services. We already did this earlier in this book, so it should
be no problem for us to configure the scrapers for each service.

First, let’s add Prometheus to our Docker Compose:

 prometheus:
 image: "prom/prometheus:latest"
 ports:
 - "9090:9090"
 volumes:
 - "${PWD-.}/prometheus/etc:/etc/prometheus"
 command: --config.file=/etc/prometheus/prometheus-config.yaml
 networks:
 - loki
 logging:
 driver: loki
 options:
 loki-url: "http://host.docker.internal:3100/loki/api/v1/
push"

Much of the settings are like those for the other services. We pull down the latest image, expose
9090 as our port, connect the loki network, and send logs to Loki. To set up Prometheus metrics
scraping of our different services, we must map a local directory for our configuration file (named
prometheus-config.yml), then set the prometheus command to read it on startup.

The Prometheus configuration file is based on the one we developed back in Chapter 4, Connecting
Grafana to a Prometheus Data Source. First, we must set the default scrape interval to 30 seconds:

 global:
 # How frequently to scrape targets by default.
 scrape_interval: 30s # By default, scrape targets every 30
seconds.

We must also set the scrape configuration jobs, one for each service, including Prometheus:

 scrape_configs:
 # The job name is added as a label `job=<job_name>` to any
timeseries scraped from this config.
 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']
 - job_name: 'grafana'

Querying logs and metrics with Explore 391

 static_configs:
 - targets: ['grafana:3000']
 - job_name: 'promtail'
 static_configs:
 - targets: ['promtail:9080']
 - job_name: 'loki'
 static_configs:
 - targets: ['loki:3100']

We use the service names and exposed ports to set the targets for each job. We don’t include flog as
it’s not a true service presenting a metrics endpoint. Start up the new prometheus service:

% docker-compose up --pull missing -d prometheus
[+] Running 1/1
 Container chapter13-prometheus-1 Started 0.6s

You can check the Prometheus service by opening http://localhost:9090/graph. Next,
we’ll need to create a Prometheus data source with the following settings:

• Name: Prometheus

• HTTP/URL: http://prometheus:9090

The key portion of the data source should look as follows:

Figure 13.15 – Prometheus data source

http://localhost:9090/graph
http://prometheus:9090

Exploring Log Data with Grafana’s Loki392

If Prometheus is working correctly, you should get a message along the lines of Data source is working.
Return to Explore to have a look at what we’ve collected. I’m going to use the Split feature to compare
the log information I gathered with the metrics I’ve scraped. This particular scenario is meant to be
illustrative and was created with the previous version of Grafana. The Grafana 10 interface is virtually
identical, so you should have no trouble following along.

First, let’s set up a query in Explore to examine how our Loki instance is doing:

1. First, set Data Source to Loki.

2. Next, set Time Range to the last few minutes or further back in time until we can find some
interesting logging data.

3. Switch to Code mode and enter the following query:

{compose_service="loki"} | logfmt

In this case, quite a few errors have been generated by Loki, possibly due to issues with the
flog log lines:

Figure 13.16 – Loki logs

Let’s zero in on the error logs only by adding a filter to our query.

Querying logs and metrics with Explore 393

4. Update the query so that it pipes the output of the parser and passes only the messages that
specify the error level:

logfm{compose_service="loki"} | logfmt | level=`error`

Now, all we will see are the logged errors:

Figure 13.17 – Loki error logs

What we want to do is try to cross-reference these errors to our Prometheus metrics. Can we
find metrics that respond at the same time? Can we use those metrics to create an alert that
will let us know when the error log levels start climbing?

5. To get two panes for analysis, click Split.

6. Next, set the right-hand pane data source to Prometheus.

7. Also, make sure you click Sync all views (chain link icon) so that you can see the metrics and
logs time-correlated.

Much like we did in Chapter 4, Connecting Grafana to a Prometheus Data Source, we’ll use Metrics
browser to help us build a query to find metrics that correspond to our error logs:

1. Start by opening Metrics browser.

Exploring Log Data with Grafana’s Loki394

2. Type log and scroll down to find loki_log_messages_total in the list. Clicking on
it enters it as a metric. It should then appear under 4. Resulting selector:

Figure 13.18 – Prometheus selector

3. Under 2. Select labels to search in, select instance and level to make sure you’re filtering on
a particular Docker instance and log level. The number in parentheses indicates how many
options are available.

Querying logs and metrics with Explore 395

4. For instance, I selected loki:3100, and for level, I selected error:

Figure 13.19 – Prometheus labels selection

Exploring Log Data with Grafana’s Loki396

5. Clicking on Use query shows the stairstep pattern of new error logs arriving. We can also see
how each jump in the metrics correlates with when Loki registers the error logs:

Figure 13.20 – Time linking

Now, we can’t develop an alert based on this error log metric because it would trip right after
the first error is logged. What we need to do is track when the count of logs increases. We’re
talking about an example of a rate query.

6. To get a rate query of log messages, we need to go back and repeat steps 8 through 11.

7. But now, instead of clicking on Use query, we must click on Use as rate query instead.

If you are following along in Grafana 10, you’ll get a new metrics query:

rate(loki_log_messages_total{instance="loki:3100",level="error"}[$__
rate_interval])

Where did $__rate_interval come from? In the earlier version of Grafana, Use as rate query
used $__interval as the default time period, which wouldn’t generate any data. Checking in the
inspector revealed $__interval to be about 15s, which is too short a period to yield enough data to
evaluate a rate. Manually substituting $__rate_interval instead gave rate a time period of 1m,
which is much larger. Grafana 10 is smarter, and it knows that we need to use $__rate_interval:

Querying logs and metrics with Explore 397

Figure 13.21 – Rate query

Running the query now shows clear jumps in the rate every time errors are logged. Now, all we need
to do is create an alert around these jumps:

1. Click Add to dashboard and add it to a dashboard.

2. Next, edit the panel and go to the Alert tab.

Exploring Log Data with Grafana’s Loki398

3. To generate an alert rule, click Create alert rule from this panel:

Figure 13.22 – Rate query alert rule

4. Note that the query has been filled in for you. All you need to do is set a threshold. Based on
the history, set the threshold to 5. This means that if Grafana detects more than five errors
within $__rate_interval, it will trigger an alert.

The rest is just details to be filled out like a normal alert. Since the log spikes only last for a short
period, the Alert evaluation behavior intervals may need to be tuned so as not to miss the spike as
it can be short-lived.

This can be a standard workflow for identifying possible anomalous behavior, capturing it in a
dashboard, and finally adding an alert to the existing Grafana Alerting configuration.

Summary
We’ve reached the end of Chapter 13, Exploring Log Data with Grafana’s Loki. In this chapter, we learned
how to use Explore with the Loki data source to perform ad hoc analysis of logs and aggregated log
metrics. We deployed a Loki pipeline to aggregate filesystem log files and the logs generated by our
Docker containers. We used Prometheus to collect dozens of metrics about those container services.
Finally, using the Split feature, we made side-by-side comparisons of both log and service metrics.

Summary 399

With that, we’ve also reached the end of Part 2 – Real-World Grafana. In Part 3 – Managing Grafana,
we’ll step out of our role as an end user of Grafana and into that of an administrator. We’ll learn about
how to manage dashboards, users, and teams. We’ll also learn how to secure the Grafana server by
authenticating our users with services such as OAuth2 and LDAP. Finally, we’ll explore the rapidly
expanding world of cloud monitoring and how Grafana fits into it.

See you soon!

Part 3 – Managing
Grafana

This section is intended to highlight aspects of Grafana beyond building dashboard panels. In these
chapters, we’ll learn about naming and organizing Grafana’s dashboards by organizing them into
structured folders, managing users and teams and their permissions to access the dashboards and
folders in a Grafana organization, leveraging external authentication services such as LDAP, Okta,
and Oauth, and connecting to cloud provider metrics and logging into AWS, Google Cloud, and
Microsoft Azure.

This part comprises the following chapters:

• Chapter 14, Organizing Dashboards and Folders

• Chapter 15, Managing Permissions for Users, Teams, and Organizations

• Chapter 16, Authenticating Grafana Logins Using LDAP or OAuth 2 Providers

• Chapter 17, Cloud Monitoring AWS, Azure, and GCP

14
Organizing Dashboards and Folders

Welcome to the first chapter of Part 3, Managing Grafana. By now, you’ve created some awesome
dashboards. Maybe you’ve even set up valuable alerts with some of those dashboards, and now you’re
in the enviable position of being your team’s Grafana guru. That great honor will be accompanied by
great responsibilities. You’re now the de facto manager of your Grafana server and all the requisite
administrative tasks that come along for the ride.

In this section of the book, we’ll cover some of the more common aspects of Grafana management, from
keeping your dashboards tidy to managing and authenticating your users and teams, to monitoring
your applications in the cloud. In Part 2, Real-World Grafana, we used various realistic scenarios to
drive the descriptions and the associated exercises. In this section, we will present the material in a
more straightforward how-to style, and along the way, cover use cases, tips, and guidelines.

We’ll start by looking at some strategies for managing the broad but common problem of dashboard
proliferation in this chapter, then proceed through more esoteric problems such as user management
(Chapter 15, Managing Permissions for Users, Teams, and Organizations) and authentication using
services such as Okta and LDAP (Chapter 16, Authenticating Grafana Logins Using LDAP or OAuth
2 Providers) before ultimately culminating in a survey of current cloud monitoring integrations such
as AWS and Azure (Chapter 17, Cloud Monitoring AWS, Azure, and GCP).

By the end of this chapter, not only should you have a good understanding of the run-of-the-mill
aspects of managing dashboards, compiling them into playlists, and cataloging them on dashboard
panels, but you should have learned about strategies for naming dashboards, organizing them into
folders, and managing your site as it scales up.

In this chapter, we will have a look at the following topics:

• Managing dashboards and creating folders

• Starring and tagging dashboards

• Building and running dashboard playlists

• Cataloging dashboards in the Dashboard list panel visualization

• Duplicating dashboards

Organizing Dashboards and Folders404

Info
Tutorial code, dashboards, and other helpful files for this chapter can be found in this book’s
GitHub repository at https://github.com/PacktPublishing/Learn-Grafana-10/
tree/main/Chapter14.

Let’s get started!

Managing dashboards and folders
By now, you’ve probably created at least a handful of dashboards, if only to work through the examples
in this book. Ideally, you’re well on your way to creating many more, along with other members of
your team, unit, and even your entire company. What you’ll quickly find – if you haven’t already – is
that you’ve ended up with a number of dashboards in various stages of development and potentially
connected to a number of data sources, all of them lying around in the dashboard display.

Conceptually, Grafana provides four classification schemes aimed at helping you identify dashboards
to satisfy common organizational needs. The first is what I call a significance-based scheme, which
identifies the most important dashboard through a starred or favorited designation. The second is a
structure-based scheme, which places dashboards into an arbitrary hierarchical structure of folders.
The third scheme is a nomenclature-based scheme, or the naming convention by which we determine
how best to name dashboards. The fourth and final scheme is semantic-based in that we attach labels
or tags to dashboards, giving them whatever meaning we might desire.

Let’s first look at how to name a dashboard, while also keeping in mind good practices for doing so.
After that, we’ll go into how to organize dashboards into folders.

Naming a dashboard

Here’s how to name (or rename) a dashboard:

1. Open the dashboard.

2. Select the gear icon for dashboard settings.

3. Make sure the General item is selected on the side menu.

4. Type a name into the Name field.

5. Click on Save dashboard.

6. Click on Close to return to the dashboard.

https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter14
https://github.com/PacktPublishing/Learn-Grafana-10/tree/main/Chapter14

Managing dashboards and folders 405

Here’s an example of editing the name of the dashboard and setting it to My Excellent Dashboard:

Figure 14.1 – Editing a dashboard name

Whenever you make a change to the dashboard settings, remember to make the long UX journey to
the right-hand side of the page and click on Save dashboard. If you return to the dashboard without
saving the change, there is always the possibility that Grafana won’t catch it when you try to load a
different one.

Dashboard naming tips

The first opportunity you will get to organize your dashboards is when you first create and then save
your dashboard. At that point, you will be forced to decide about what you want to name it. A lot of
people, me included, will be much more interested in building the dashboard than coming up with a
proper name. Unfortunately, that tendency leads to a lot of Dashboard 1, Dashboard 2, and
Dashboard 4 copy dashboards.

These less-than-creative names fail for a couple of reasons: they don’t describe the content of the
dashboard either to your future self or to your audience, or they tend to collide with other lazily
named dashboards. Here are a few of my opinionated suggestions for constructively naming them:

• Do use a name that accurately describes the contents of the dashboard: A few examples are
Total CMMR Income From Region 2, Server Room Climate Monitors,
and Minneapolis 311 Calls-Real Time.

Organizing Dashboards and Folders406

• Do try to adhere to some form of naming convention so that they are easy to scan in
lists: For example, "Financial Analysis, SEC Model 2012-10, Daugherty",
"Sales Profile, Refreshed Customers AUNZ, Jones". Here, we’re placing
the broadest scope of the dashboard first, followed by a more specific description, followed by
the owner. You might also do this with tagging and folders, but it does make it quicker to find
the dashboard from a lengthy list.

• Do consider using template variables to combine dashboards that differ by a single variable:
Such as a department, business unit, or region, rather than name multiple similar dashboards
with specific names.

• Don’t try to encode a hierarchical dashboard structure by naming convention: For example,
Global Sales-Regional-NE Texas and Global Sales-Regional-SW Texas.
Place the dashboards into nested folders and set up labels to reflect the tiers of your hierarchy.

• Don’t try to use the name for version control: For example, Housing Analysis 2021.
v22. Grafana tracks all dashboard saves, and you can always revert to an earlier version from
the Dashboard settings | Versions page. Remember to add a comment to your saves so that
you know what the version change is about.

These suggestions should not be interpreted as requirements; you might find it easier to do some of
these but not others. You may not even have to ability to implement the kind of naming conventions
you’d like. However, if you do have the opportunity to set up standards, try to maintain them as
consistently as possible. It’s better to try and maintain some level of control with a few outliers as
opposed to an unmanageable free-for-all that you are forced to clean up later. Now that we have some
best practices for naming our dashboards, let’s find out how to further organize them into folders.

Working with dashboard folders

After naming the dashboards, arranging them into specific folders is the next mechanism for keeping
things organized and tidy. Not only do folders keep your dashboards in some form of structured
storage, but they also provide a means by which you can establish access controls to your dashboards.
We’ll discuss access control in more detail in the next chapter.

In the meantime, let’s go over some common folder-related tasks:

• Creating dashboard folders

• Adding dashboards to folders

• Deleting folders

Finally, we’ll also go over some tips for keeping dashboards and folders tidy and manageable.

Managing dashboards and folders 407

Creating a dashboard folder

The easiest way to organize dashboards is to corral them into folders. But how do we create folders?
It’s easy:

1. Select Dashboards from the main menu, then select New | New folder from the drop-down menu.

2. On the Create a new folder page, type the folder’s name into the Folder name field.

3. Click Create, as shown here:

Figure 14.2 – Creating a new folder

After creating a new folder, you will land on the Dashboards tab of the dashboard folder management
page, as shown in the following screenshot:

Figure 14.3 – Dashboard folder management

Once you’ve created a folder, you’ll want to put something in it. We’ll cover adding dashboards to a
folder next.

Organizing Dashboards and Folders408

Adding dashboards to a folder

When a folder is created, by default it is in the General folder. You can always move it from there,
provided you have the proper permissions.

There are two methods for adding a dashboard, dashboard-centric and folder-centric.

The dashboard-centric method places a single dashboard in a folder by editing it:

1. Load a dashboard and open its Settings.

2. Select the General page, if you aren’t already looking at it.

3. Select a dashboard folder from the Folder dropdown.

4. Save the dashboard by clicking Save dashboard. If you return to the dashboard without saving,
the location will appear to have changed, but it may not persist if you open a different dashboard.

5. Click Close to return to the dashboard and confirm the new dashboard location in the dashboard
navigation menu.

Selecting the folder from the dropdown can be seen in the following screenshot:

Figure 14.4 – Setting the dashboard folder

The folder-centric method collects one or more dashboards and moves them into a designated folder:

1. Select Dashboard from the main menu.

2. If one doesn’t already exist, create a new one by selecting New | New Folder.

3. Check the boxes next to the dashboards you wish to place into the folder.

Managing dashboards and folders 409

4. Click Move.

5. Select the folder from the Choose Dashboard Folder pop-up dialog.

Here’s what a dashboard move to another folder looks like:

Figure 14.5 – Dashboard move to a folder

This method is clearly the one to use if you need to move a lot of dashboards around. What if you get
tired of your folder? Next, we’ll find out how to delete a folder.

Deleting folders

In Grafana, deleting folders is a high-risk operation, so do it with the utmost caution because deleting
a folder also deletes its contents. Follow these steps to delete a folder:

1. Select Dashboard from the main menu.

2. Click the box next to the folder to delete.

Organizing Dashboards and Folders410

3. Click Delete. You will see a warning if the folder contains dashboards:

Figure 14.6 – Dashboard deletion warning

This is a very risky procedure, so you may want to consider tagging (with a Delete tag, for example)
the dashboards you want to delete and evacuating everything else from the folder before deleting it.

Tips to manage dashboard folders

Here are a few suggestions when it comes to managing dashboard folders:

• Do embrace folders, opting for depth over breadth. Fewer top-level folders will make it easier
to find and work with dashboards.

• Do think about the overall folder structure for your dashboards and settle for the one that
offers the most utility. If you have a larger organization, it might be better to create a folder
structure that partitions by department or business unit, and then allow each to create their
own hierarchies. Alternatively, you might be a member of a small team that creates dashboards
within an ongoing set of projects, perhaps with a folder devoted to each project.

Starring and tagging dashboards 411

• Don’t redundantly embed hierarchy in folder names; for example, A/Project A-Database
Queries/Project A-Database Queries-Queries per Server. Just name each
folder and dashboard for its place in the hierarchy since the navbar breadcrumbs will depict
the hierarchy; that is, Project A/Database Queries/Queries per Server.

• Don’t duplicate dashboards into multiple folders. This approach will prove to be a maintenance
nightmare. If you are tempted to put the same dashboard into multiple folders by performing
duplication, consider tagging the dashboard with multiple tags instead, or consider the
possibility of using template variables if the dashboard is minimally altered after being placed
in the different folders.

In the next section, we’ll look at starring and tagging dashboards.

Starring and tagging dashboards
Our previous sections mostly dealt with the key structural aspects of a dashboard: the name and its
location in a specific folder. We will now turn to more semantic aspects, ones that are best described
in terms of dashboard metadata, namely dashboard stars and labels. As we saw in Chapter 10, Working
with Advanced Dashboard Features and Elasticsearch, dashboard tags may prove useful when linking
dashboards, but that’s not the case for tags or stars, as we’re about to find out.

Marking dashboards as favorites

Starred dashboards are mostly useful for when you want to highlight certain dashboards as important
or otherwise memorable to you. They can be for bookmarking frequently accessed dashboards or for
marking dashboards as needing some kind of special attention.

Starring dashboards is even easier than tagging:

1. Load up a dashboard.

2. Click the star icon to Mark as favorite, as shown in the following screenshot:

Figure 14.7 – Starring a dashboard favorite

Organizing Dashboards and Folders412

This is pretty inefficient if you want to star several dashboards at one time, so it’s better to star them
from a Dashboard list panel visualization instead:

Figure 14.8 – Quickly selecting favorites from Dashboard list panel

Starring a dashboard will place it under the starred side menu item, so you do want to reserve that for
the most used/important dashboards. Otherwise, you should rely on dashboard tagging.

Tagging dashboards

Dashboard tags are vastly more powerful than stars. For example, you can tag each dashboard with
any number of tags. These tags can be leveraged for many important functions, including grouping,
searching, and filtering. We saw tags in action when we created dashboard links back in Chapter 10,
Working with Advanced Dashboard Features and Elasticsearch.

You will find dashboard tags used in several places:

• Dashboard links

• Dashboards page

• Dashboards | Playlists page

• Dashboard list visualization panel

Starring and tagging dashboards 413

Let’s go over the common tag tasks, namely adding and deleting tags.

Adding tags

Currently, there is only one mechanism for adding tags to a dashboard:

1. Open a dashboard for editing.

2. Select the dashboard’s settings gear icon.

3. Make sure you’re viewing the General page.

4. Type the tag name into the field.

5. Click Add to add one or more tags.

6. Click Save dashboard.

7. Click Close to return to the dashboard.

Here, we’re adding the tag called excellent:

Figure 14.9 – Dashboard tagging

Refer to Chapter 10, Working with Advanced Dashboard Features and Elasticsearch, for details on how
to use tags to link dashboards. As we’ve seen, tags are very useful, but creating them can be tedious as
they can only be added on a per-dashboard basis. Sadly, deleting them isn’t much easier.

Organizing Dashboards and Folders414

Deleting tags

Unfortunately, there is no explicit mechanism for managing tags, either to create them or to delete
them. If you want to get rid of a tag, you will need to go through every tagged dashboard and delete
it manually.

What if you need to continuously cycle through a series of dashboards? Perhaps you have an operational
dashboard that shows several cycling dashboards, or you have a running demo of dashboards to show
off for stakeholders or customers. This is where playlists come in.

Building and running dashboard playlists
A dashboard playlist is a selection of dashboards that can be played in a looped sequence. Any
dashboard can appear in such a playlist. A playlist consists of one or more dashboards displayed in a
sequence, separated by a specified interval. They’re typically used to create an automated display cycle
of dashboards for unattended venues such as kiosks or operation centers.

Creating a playlist

Before we can start running a playlist, we’ll need to create one. The Playlists page can be found under
the Dashboards main menu. Follow these steps:

1. Under Dashboards on the main menu, select Playlists.

2. Click New Playlist.

3. Set a Name for the playlist. You will not be able to save the playlist until you set the Name.

4. Set the time Interval between dashboards.

5. Select a dashboard from the Add by title drop-down menu to add a dashboard to the playlist.
You can also add tagged dashboards by selecting tags from the Add by tag drop-down menu.
The number next to the tag represents the number of dashboards with the tag.

6. Using the six-dot drag handle, drag and drop dashboards in the Dashboards list to adjust the
playlist display order for the dashboards.

7. Click Save to commit your changes.

Building and running dashboard playlists 415

Here is an example of the playlist page after selecting a dashboard for the playlist:

Figure 14.10 – Creating a dashboard playlist

As the number of dashboards grows, it could become more difficult to find dashboards for playlists,
so consider naming conventions, tags, or stars so that you can filter on them when you create or
edit playlists.

In the next few sections, we’ll go into a little more detail about how to run playlists, especially in their
various display modes. These modes are designed to hide the user interface controls depending on
how much interaction you will have with the dashboards running in the playlist.

Organizing Dashboards and Folders416

Displaying a playlist

Now that you’ve set up a playlist, it’s time to play it. Here’s how to run a playlist:

1. From the Dashboard side menu, select Playlists.

2. Click Start playlist, then select the appropriate mode from the dialog:

 � Normal

 � TV

 � Kiosk

Here is an example of the dialog for selecting the playlist Mode:

Figure 14.11 – Start playlist dialog

These modes correspond to the three view modes controlled by Cycle view mode, which can be found
at the top of the dashboard. Let’s look at each one to see how they differ.

Displaying playlists in normal mode

In Normal mode, the navigation bar, row, and panel controls are all visible. Clicking the hamburger
tribar on the top left still reveals the main menu. The standard dashboard controls are replaced with
playlist controls. Following is a look at the controls in the top navigation bar between the breadcrumbs
and the time range controls:

Figure 14.12 – Normal playlist mode controls

Building and running dashboard playlists 417

From left to right, the playlist controls are as follows:

• Left fast forward icon: Goes to the previous dashboard in the playlist

• Stop playlist: Stop the playlist from playing

• Right fast forward icon: Goes to the next dashboard in the playlist

Normal mode is useful if you still want to access the UI. Accessing items in the main menu will stop
the playlist.

Displaying playlists in TV mode

TV mode is similar to Normal mode in that the menus, top navbar, row, and panel controls are still
visible. TV mode will activate after 1 minute of inactivity; this is useful when you need to grab control
for a moment, but then have the playlist return to playing when you step away for a period of time.

The following capture shows a TV mode dashboard. Note the panel scaling and arrangement, as well
as the various dashboard controls:

Figure 14.13 – TV mode

If you really want a clean display that only shows off your dashboard panels, then you want Kiosk
mode. Let’s look at Kiosk mode.

Displaying playlists in Kiosk mode

If you need to run a playlist unattended with no visible controls, select either of the Kiosk modes. In
this mode, all the controls including the side menu are hidden.

In either Normal or TV playlist modes, you can immediately switch to Kiosk mode by clicking on the
small monitor icon at the top right. To return to the previous mode, hit the Esc key.

Organizing Dashboards and Folders418

Displaying playlists with auto fit panels

Both TV mode and Kiosk mode feature alternates that include the autofit option. Autofitting causes
the dashboard panels to automatically stretch or shrink to fill the entire screen space, depending on
how much larger the display screen is compared to the original dashboard layout.

For example, here’s a simple dashboard with two panels in TV mode:

Figure 14.14 – Dashboard in TV mode

Here is the same dashboard in TV mode (with autofit):

Figure 14.15 – Dashboard in TV mode with autofit

Building and running dashboard playlists 419

Typically, you’ll want to use autofit not when you have a couple of panels you want to stretch to fit,
but rather when you have a few extra panels you want Grafana to squeeze onto the screen. This can
prove to be helpful when the screen size of your display is a bit different than the one you use to lay
out your dashboard.

To give you an idea of how flexible autofit can be, here is the graph portion of a dashboard in Normal
layout mode:

Figure 14.16 – Dashboard in Normal mode

Organizing Dashboards and Folders420

And here’s the same portion of the dashboard in Kiosk mode (with autofit panels):

Figure 14.17 – Dashboard in Kiosk mode with autofit

As you can see, Grafana adjusted the size of each panel to squeeze all the panels onscreen.

Editing a playlist

On the Playlists page, clicking on Edit playlist will open an Edit Playlist page, which is similar in
structure to the New Playlist page. Here, you can do the following:

• Change the Name

• Set the Interval

• Delete dashboards by clicking the × icon

• Change the dashboard display order using drag and drop

• Add dashboards by using the drop-down menu under Add by title, or by selecting a tag from
the drop-down menu under Add by tag

Exploring the Dashboard list panel 421

That covers basic dashboard playlist features. Now, let’s move on to another helpful dashboard
management feature: a panel visualization designed solely to display a catalog of dashboards!

Exploring the Dashboard list panel
If you’ve taken a look at the Home dashboard, then you’re already familiar with the dashboard list
panel visualization. You can set the dashboard list visualization for any panel by selecting it from the
visualization dropdown in edit mode. It typically displays starred dashboards (for quick reference)
and a list of recently visited dashboards. It can also be configured with several more options. Let’s
open it up and see what else we can configure it to do.

Setting Dashboard list panel options

In the Dashboard list section of the panel edit pane are the following settings and descriptions:

• Include current time range: Carries over the current time range to the selected dashboard

• Include current template variable values: Carries over the current template variable settings
to the selected dashboard

• Starred: Enables display of starred dashboards

• Recently viewed dashboards: Enables display of recently viewed dashboards

• Search: Enables display of the results of the Search section

• Show headings: Enables the display of headings for each option mentioned previously

• Max items: Sets the maximum number of items displayed of each type

The first two switches control whether the current time range and template variables carry over into
the dashboards selected from the list. The next three switches enable and disable the display of starred,
recently viewed, and search results. The last two control whether headings are displayed and how
many dashboards can be displayed at one time.

The Query, Folder, and Tags settings can be combined into a search filter that allows you to specify a
static list of dashboards that will always be displayed, as opposed to the Starred and Recently viewed
dashboards, which are dynamically generated:

• Query: Searches for dashboards matching the string, partial matches included

• Folder: Includes all dashboards within a folder

• Tags: Includes all dashboards matching tags

Setting multiple search fields will return results that match all the fields. If you want to expand the
search as wide as possible, be sure to set Folder to All.

Organizing Dashboards and Folders422

Here’s an example showing many of the options, including Search, that are enabled:

Figure 14.18 – Dashboard list visualization options

If you want to get a feel for how the Dashboard list panel works, play with the one on the Home
dashboard or just create your own!

One of the trickier aspects of working with popular or useful dashboards is how to duplicate them
for use in other contexts, without creating a maintenance headache. We’re going to discuss a couple
of the safer strategies next.

Duplicating dashboards
If you want to experiment with changes to a dashboard or you want to propagate a dashboard to
another organization or even another server, there are two ways to duplicate or copy a dashboard.

Internal dashboard duplications

If you just want to create another version of the dashboard for experimentation or to stage prior
to putting it into production, use the Save as option at the top of the dashboard Settings page.
Remember, you can always roll back changes to an existing dashboard from the Versions page under
dashboard Settings.

Here’s how to copy a dashboard to a new name:

1. Open the dashboard settings.

Duplicating dashboards 423

2. Instead of clicking Save dashboard, click on Save as. That will bring up a new dialog where
you can pick a name for the copy of the dashboard:

3. Set the name and optionally the folder. Set the tags if you’d like to keep the existing tags.

Figure 14.19 – Copying a dashboard

4. Click Save.

Alternatively, if you are just concerned about making irreversible changes, you can save a copy at
the current version, sometimes called a checkpoint, then roll back if you need to. The process goes
something like this:

1. Make a change to a dashboard to enable a save point.

2. Go to the dashboard Settings and click Save dashboard.

3. In the Details, note the save is a checkpoint.

4. Click Save.

Make the changes you want to experiment with, and at the point you feel like you need to roll back,
make a save. This will give you a new checkpoint that is different from the previous one, otherwise
the changes will just be on the previous save. Here’s a quick glimpse of how to revert a dashboard to
an earlier save:

1. To roll back, open the dashboard Settings and go to the Versions page.

Organizing Dashboards and Folders424

2. Click the Restore button to restore the older version:

Figure 14.20 – Dashboard version control

External dashboard duplications

This is all fine if you are sticking to your own Grafana organization. However, if you need to make a
copy of a dashboard to be used outside your current organization, you’ll want to export a dashboard,
then import it from within the other organization.

As we discussed previously in Chapter 10, Working with Advanced Dashboard Features and Elasticsearch,
the Export tab can accessed from the Share modal that pops up when you click the sharing icon. If
you don’t plan to connect the dashboard to a data source accessible to both organizations, you’ll want
to enable Export for sharing externally.

If you plan to do this frequently, consider putting the exported dashboards under some form of
revision control, such as GitHub. Bear in mind that these actions will potentially increase your
dashboard maintenance burden as any changes you make to the original dashboard might also need
to be propagated to your duplicated dashboards as well. Have a system in mind for dealing with these
scenarios, or things could get unmanageable quickly!

Summary
This was a relatively easy introduction to some of the concepts involved in Grafana management. In
this chapter, we looked at how to name dashboards and folders, as well as some strategies for creating
folders, and looked at starring and tagging dashboards and how they can be useful for grouping
and filtering dashboards. Then, we created some dashboard playlists, a common function if you are
creating dashboard presentations. We looked at how the Dashboard list panel can be configured to
help create catalogs of dashboards, especially by leveraging the search option and tags. Finally, we
discussed strategies for duplicating dashboards.

Summary 425

The intention here wasn’t to reveal especially esoteric Grafana concepts – in fact, you may have
already been working with some of the features we highlighted in this chapter. The goal was to get
you to shift your thinking to a more operational viewpoint, one that often must take into account the
potentially competing needs of different stakeholders. In other words, if you become responsible for
your Grafana operations, you won’t be able to build dashboards, name them whatever you like, and
put them anywhere:

• You might need to consider what happens if you update a dashboard someone else is using
without telling them

• When you move dashboards into folders, you might need to communicate to the users that
the dashboards they regularly use may have moved

• You might need to consider how to maintain and update dashboards used in different
Grafana organizations

Just managing the dashboards on a moderately-sized server instance can be a challenging task, not
necessarily for technical reasons, but for the inevitable social-political circumstances that arise when
multiple groups must share a common resource.

It may not always be easy, but if you face these challenges head-on and engage your user community
with transparency, continual improvement, and good humor, your experience will surely be a rewarding
one. Good luck!

In the same vein of handling the challenge of managing asset entities such as dashboards and folders,
in the next chapter, Chapter 15, Managing Permissions for Users, Teams, and Organizations, we’ll take
on the challenge of managing actor entities such as users and teams, especially when it comes to
managing simply who accesses what.

15
Managing Permissions

for Users, Teams, and
Organizations

In this chapter, we’ll be taking a closer look at how to manage users, teams, and organizations with respect
to controlling access to Grafana resources, such as dashboards, folders, or data sources. Throughout
the course of this book, you’ve probably been logging into your site as the sole admin user, which is
fine for a server limited to a local computer used almost exclusively for learning. However, it would
be a completely unsuitable setup for a server supporting even a handful of users.

If you are responsible for managing your Grafana site, you’ll soon be dealing with new users, and with
every new user comes the inevitable question, how much access should I allow this user? You could set
up every user with full admin permissions to do anything and everything, but what if they accidentally
delete something important? What if they inadvertently create a panel that accesses a data source
containing sensitive records? Conversely, if you deny all your users any permissions other than the
essentials, what if they need to fix another user’s dashboard and you’re not available?

It would be beyond the scope of this book to offer a complete checklist of all the possible scenarios
that you must consider before endeavoring to establish a secure, healthy Grafana environment, so we’ll
try to do the next best thing – give you the ability to understand how users and permissions work in
Grafana, as well as how they come together to give you the flexibility to adapt your configuration to
suit your specific needs.

In this chapter, we’ll look at how to add users to a Grafana site, as well as how to manage the permissions
for our users. Once we’ve addressed the fundamentals for user permissions, we’ll learn how grouping
users into teams can be a useful strategy for managing permissions on a larger scale. Finally, we’ll look
at how to partition a Grafana site into organizations that each have independent users, data sources,
and dashboards, making it possible to offer the security benefits of isolation without the need to
maintain multiple servers.

Managing Permissions for Users, Teams, and Organizations428

In this chapter, we will cover the following topics:

• Understanding key permission concepts

• Adding users

• Setting permissions

• Establishing teams

• Administering users and organizations

Let’s get started!

Understanding key permission concepts
Before we can delve into the specifics of adding users or setting their permissions, we need to cover
some fundamental security concepts that are built into Grafana. Once you understand the terminology,
it will be easier to piece together how these concepts interact to produce a coherent framework to
govern user access.

Organizations

You may not have been aware of it, but for the entire time we’ve been learning about Grafana, we’ve
been working inside an entity that Grafana refers to as an organization. Much like our universe is a
single entity unto itself, this default organization, or org for short, can have its own teams, data sources,
dashboards, dashboard folders, and so on. These types of resources cannot be accessed from or shared
with any organization. Grafana lets you create as many organizations as you want, and while each
one is completely independent of the others, users can be members of more than one organization.

Users

Obviously, anyone needing access to a Grafana site must also have some kind of account. Within
Grafana, these accounts are called users. In Chapter 16, Authenticating Grafana Logins Using LDAP or
OAuth 2 Providers, we’ll look at common user authentication mechanisms used in larger enterprises,
but for now, we’ll use regular password logins. A user can belong to multiple organizations and, once
logged in, can easily switch between them.

Roles

To determine what a user can do within a given organization, each user is assigned a role. Grafana
provides three typical user roles and one special role. The typical user roles are called Viewer, Editor,
and Admin:

• The Viewer role: This is basically a read-only role in that it can’t do anything except see
dashboards and folders, but it can’t edit them

Adding users 429

• The Editor role: This can only create and edit dashboards, alerts, and folders

• The Admin role: This can do everything within an organization, including adding and modifying
users, teams, data sources, and plugins

The special role is called Super Admin, and it has ultimate power over the entire site, including the
ability to administer both users (including other Super Admins) and organizations.

Teams

To make it easier to manage the permissions for larger groups of users, Grafana includes a grouping
of users called a Team. Within an organization, users can be assigned to teams, which may have their
own permission settings. Depending on how those permissions are set, membership in a Team can
even elevate the access level for a user above its defined organizational role.

With these concepts in mind, let’s learn how to add new users to a Grafana site.

Adding users
While it might seem perfectly reasonable to use and manage a simple Grafana tutorial server with a
single admin user, it would be impractical, if not irresponsible, to try to do the same for a Grafana site
with more than a couple of people. With that in mind, you should go ahead and establish independent
user accounts for anyone who plans to access your site. It will also be your responsibility to add and
delete those user accounts, set their roles, and establish what those users will be able to access within
those roles.

Tip
Initially, you probably logged in with the default admin user, which is installed with every
Grafana instance. That user has full administrative privileges and, unless you changed it, an
insecure password. This is not at all secure, so before you even add a single user, be sure to
reset the password to one of your own choosing.

Adding users – by invitation only

Out of the box, Grafana only provides a single mechanism to add users – via an administrative
invitation. This is generally for good security reasons, especially if your site happens to be exposed to
the internet. Generally, it’s better to be in the position of controlling who can request access to your
site when you must proactively reach out to prospective users. Grafana makes it easy to create those
accounts and send off the invitations. It also tracks all invitations so that you can send out reminders
or even retract them.

Managing Permissions for Users, Teams, and Organizations430

To be able to invite a new user, you will need to have an account with an admin organization role.
Log in and go to Administration | Users in the main menu. After selecting the Organization users
tab, you will be presented with a listing of all user accounts within your organization. To invite a new
user, simply click Invite and submit the form (as shown in Figure 15.1). You can set either a username
(for a local user) or an email address. The name is optional but helps to keep track of who your users
are. You can choose from one of three roles – that is, Viewer, Editor, or Admin, but it is often safer
to select the most restrictive role, Viewer.

By toggling the Send invite email switch, you can send an email invitation, provided you have entered
a valid email address. If you plan to send email invites, you will need to configure the Simple Mail
Transfer Protocol (SMTP) on your Grafana server to send emails. Refer to Chapter 12, Monitoring
Data Streams with Grafana Alerts, for more information on how to set up SMTP with the docker-
compose.yml environment variables.

Here is a typical invitation:

Figure 15.1 – A new user invitation

Once you’ve set up a new user invitation, you can see all your invited users in the Pending Invites
tab. If you want to manually share an invitation link via another method, such as a text message or
Slack, click Copy Invite to place the URL on the clipboard for pasting:

Adding users 431

Figure 15.2 – Pending Invites

This is an example of what a user might see when following the link:

Figure 15.3 – An example invitation

To get to this page, just click on Copy Invite next to the name, and paste the URL into a browser.
The same URL is embedded in the email message, so all they need to do is add a password and click
Sign up, and they’re in!

Tip
If, at any point, you decide you want to revoke an active or invited user, just click the red x
symbol in either the Users tab or the Pending Invites tab.

Managing Permissions for Users, Teams, and Organizations432

Adding users – a self-service model

If you are in a situation where you don’t necessarily need to be manually adding users to your site, and
you have relative confidence that you can trust your user community, you can modify your Grafana
server configuration to allow users to add themselves. Bearing in mind that you may not want to make
this change without consulting your IT security team first, here’s how to do it.

First, you will need to modify the users configuration setting for allow_sign_up from the
default false to true. If you were editing the configuration file (conf/grafana.ini) for your
Grafana server, it would look like this:

[users]
allow_sign_up = true

Since we are using Docker Compose to set our configuration, we’ll use an environment variable
instead. As discussed previously in Chapter 12, Monitoring Data Streams with Grafana Alerts, any
setting in the configuration file can be mapped to a corresponding environment variable in this way:

GF_<SectionName>_<KeyName>

The variable must be capitalized as well. In this case, the environment variable should be GF_USERS_
ALLOW_SIGN_UP. This is what our docker-compose.yml file looks like:

services:
 grafana:
 image: "grafana/grafana:latest"
 ports: - "3000:3000"
 environment: - GF_USERS_ALLOW_SIGN_UP=true
 volumes: - "${PWD-.}/grafana:/var/lib/grafana"

Shut down your Grafana service (if one is running) and then start it back up:

% docker-compose down
[+] Running 2/2
 Container chapter15-grafana-1 Removed 0.2s
 Network chapter15_Removed 0.0s
% docker-compose up -d
[+] Running 2/2
 Network chapter15_default Created 0.0s
 Container chapter15-grafana-1 Started 0.3s

Setting permissions 433

When you open the landing page for Grafana, you should see a subtle difference. There is now a New
to Grafana? prompt and a Sign up button:

Figure 15.4 – Self-sign up

Clicking the Sign up button presents the user with a form they need to submit before they can be
granted access. By default, all new users are set to the Viewer role, which is the role with the most
restrictive settings. That default can be changed by altering the auto_assign_org_role user
configuration setting (the GF_USERS_AUTO_ASSIGN_ORG_ROLE environment variable).

Now that we’ve added users, we’ll need to manage what level of access they have to Grafana. You
probably want every user to be able to create and edit dashboards, but maybe you don’t want them to
also be able to delete them by mistake. That’s where permissions come in.

Setting permissions
While you can grant a role to every user for the purpose of ultimately restricting their access to your
Grafana site, you also need the ability to determine what parts of the site are ultimately accessible to
users with those different roles. Happily, Grafana allows users with admin privileges to specify access
levels for dashboards and folders.

Managing Permissions for Users, Teams, and Organizations434

Setting organization roles

First off, let’s simply set the user’s organization role. It’s a straightforward process, and one that you
probably followed when you first invited a user:

1. Go to Users under Administration in the main menu.

2. Select the Organization users tab.

3. Set a Role for the user in the dropdown. This is what the Users tab page might look like with
a handful of users:

Figure 15.5 – The Organization users tab

Once we’ve set the role for the user, we can either allow the default roles to be applied to folders or
choose whether we want to add specific roles to the folder.

Setting folder permissions

Now that we’ve established roles for our users, we can set the access controls for our dashboards and folders.
Typically, the default permissions for a folder directly map into the roles, as we described previously:

• The Admin role can administer the folder

• The Editor role can edit the folder

• The Viewer role can view the folder

Setting permissions 435

Here’s what those typical folder permissions look like:

Figure 15.6 – The dashboard folder permissions

You can either modify the permissions for those roles or set additional permissions. It’s easy to alter
the existing permissions for a folder:

1. From the main menu, select Dashboards.

2. Hover over the dashboard folder you wish to configure and click Go to folder.

3. Select the Permissions tab.

4. Select a new permission for the given role from the dropdown.

To add a new permission, you will need to specify whether the permission applies to a user, team,
or role (for lack of a better term, let’s call it a permission target type); the specific user, team, or role
(the permission target); and the permission itself:

1. From the Dashboards page, go to a dashboard folder.

2. Go to the Permissions tab.

3. Click Add a permission.

4. Select the permission target type (User, Team, or Role) from the drop-down menu.

5. Select the permission target from the dropdown.

6. Select the permission (View, Edit, or Admin) from the drop-down menu.

7. Click Save.

Managing Permissions for Users, Teams, and Organizations436

Permission target types can be a single user, a team (if you’ve created a team for your organization),
or everyone with either the viewer or editor roles. Let’s walk through a quick example for an example
folder called My Dashboard Folder:

1. Go to My Dashboard Folder.

2. Select the Permissions tab.

3. Click Add a permission.

4. Select User from the dropdown, and then select the user from the dropdown – in this
case, apeschotti.

5. Select the Edit permission from the dropdown.

6. Click Save.

Here’s what our example looks like while editing the user:

Figure 15.7 – Setting the dashboard folder permissions

And that’s all there is to assigning folder permissions. The workflow for dashboards is quite similar,
so let’s look at it now.

Setting dashboard permissions

Like folders, dashboards can also be assigned permissions, but with an additional subtlety – dashboards
can inherit permissions from folders. The process of editing permissions on a dashboard is quite like
how you alter the existing permissions for a folder:

1. Open a dashboard.

2. Click the settings (gear) icon.

Setting permissions 437

3. Go to the Permissions tab.

4. Select a permission from the dropdown.

Again, to add a new permission, you will need to specify the permission target type, the permission
target, and the permission, as follows:

1. Open a dashboard.

2. Click the settings (gear) icon.

3. Go to the Permissions tab.

4. Click Add a permission.

5. Select the permission target type (User, Team, or Role) from the dropdown.

6. Select the permission target from the dropdown.

7. Select the permission (View, Edit, or Admin) from the dropdown.

8. Click Save.

Permission target types can be a single user, a team (if you’ve created a team for your organization), or
everyone with either the viewer or editor roles. Let’s walk through a quick example of a hypothetical
dashboard called Simple Dashboard:

1. Open Simple Dashboard.

2. Click the settings (gear) icon.

3. Select the Permissions tab.

4. Click Add a permission.

5. Select User from the dropdown.

6. Select the snewberg user from the dropdown.

7. Select the Admin permission from the dropdown.

8. Click Save.

Managing Permissions for Users, Teams, and Organizations438

Here’s what our example looks like:

Figure 15.8 – Setting dashboard permissions

Note how the other existing permissions are inherited from the enclosing folder’s permissions.
To override those inherited permissions, you’ll need to first click the blue lock icon.

With that, we’ve covered setting up permissions for users, but doing so for several users can quickly
become tedious. Because of that, Grafana has another role level that can encompass a collection of
users called a Team. Next, we’ll look at how to set up a team, as well as how to assign permissions at
the team level.

Establishing teams
Above a user, a Team forms the next level of a kind of hierarchy of role class. While every user is
assigned a permission level (Viewer, Editor, or Admin), you can also assign each user to a team,
which can then have its own permission settings. The first thing we’ll need to do is add a team.

Setting up a team

Setting up a team and adding users requires a user with the organization role of admin. To create a
team, follow these steps:

1. Go to Administration | Teams from the main menu.

2. Click New team.

3. Enter the name of the team and an optional Email contact.

Establishing teams 439

4. Click Create, as shown in the following screenshot:

Figure 15.9 – A new team creation

Once you’ve created a team, you can add users as members of the team, as follows:

1. Go to Administration | Teams from the left sidebar.

2. Select the team you wish to add members to.

3. Click Add member.

4. Select the role type from the drop-down menu.

5. Select a member from the drop-down menu.

6. Set the role for the member from the drop-down menu.

7. Click Save.

The following screenshot shows what adding a team member looks like:

Figure 15.10 – Adding a team member

Managing Permissions for Users, Teams, and Organizations440

Now that we’ve added a team, we’ll learn about how to set various preferences for the team, including
its email address, home dashboard, and UI theme.

Team members

From the Teams page, go to the Members tab to manage the team’s members:

• If you need to delete a team member, simply click the red x icon next to the user’s entry on
the team’s page

• If you need to delete a team, click the red x icon character next to the team entry on the Teams page

Team settings

From the Team page, go to the Settings tab to change the team settings. These settings will apply to
any member of the Team. This is what you should know:

• Under Team Details, you can rename the team and change its email address

• Under Preferences, you can set things such as the UI Theme, Home Dashboard, Timezone,
Week start, and Language settings

Info
Changing the team settings will override the organization preference settings.

Permission rules

By now, you may worry that the myriad combinations of organization, teams, users, and roles, not to
mention the various dashboard and folder permissions, are so complex that planning or troubleshooting
access control issues might become intractably difficult. Nothing could be further from the truth!
Grafana determines access control with some simple rules. First, permissions are defined in four layers:

• The organizational role (Admin, Editor, or Viewer)

• Team membership (Member or Admin)

• Direct permission assignment on dashboards, folders, and data sources

• Super Admin enabled

Administering users and organizations 441

When permissions in more than one layer are defined, the highest permission setting prevails,
according to two rules:

• The Organization Admin role cannot be overruled

• Lower specific permissions can be overruled by higher general permissions

What this means practically is that setting users to stricter permissions (Viewer, for example) has no
effect if an organization’s permission for a dashboard is looser (Admin, for example). If you need to
strictly control access to a particular resource, make sure to remove any general permission settings
for the resource. The best way to learn the implications of these rules is to experiment with different
combinations of settings firsthand. Give it a try!

Someone will need to establish and manage Grafana users and organizations. That is the role of the
Super Admin, as that role must operate above the organizational level. Let’s look at the practical aspects
of administering both users and organizations in Grafana.

Administering users and organizations
There are two major tasks that can only be performed by a user with the Super Admin role – the
management of users and the management of organizations. When you logged into your brand-new
Grafana site as admin, you were really logging in as a super admin, and as a super admin, you have the
ability to create users and organizations. Managing users and organizations is accomplished through
a special Server Admin page, which can only be accessed by super admins from the left sidebar.

First, let’s look at how to create new users. Previously, we discussed the idea that the only way to add
new user accounts is to invite someone or (with a configuration change) allow users to add themselves.
Those restrictions only apply to organizations and organizational Admins. As it turns out, there is yet
another way – if you’re a Super Admin.

Managing users

If you have several users to add to your site and you need to assign them to different organizations, it
might be more efficient to simply add them manually. You can add users and assign them passwords
from the Administration | Users page, all without the need to go through the process of sending out
invites and waiting for the response. Here’s how to create a new user:

1. From the main menu, go to Adminstration | Users. Confirm you are on the All users tab.

2. Click New user.

3. Fill in at least the Name and Password details, as indicated by the asterisks (*). The other
settings can be set by the user after they’ve logged in.

Managing Permissions for Users, Teams, and Organizations442

As you’re creating a user, this is what the New user page typically looks like:

Figure 15.11 – Adding a new user

Now, let’s look at how to modify a user:

1. From the main menu, select Administration | Users. Confirm you are on the All users tab.

2. Click on a user.

3. Edit the user information by clicking Edit next to the item. You can edit the user’s name, email,
username, and password. The remaining items will be covered shortly.

Continuing down the user’s page, let’s look at disabling or deleting the user.

Disabling or deleting a user

First, we’ll look at how we manage the user account. Under User information, we can disable or
delete the account, as follows:

• To delete the user, select Delete User

• If you only want to block the user without deleting, select Disable User

Now, let’s look at elevating a user to Super Admin.

Administering users and organizations 443

Elevating a user to Super Admin

You might be wondering how to go about giving another user the Super Admin role. You can only
do this if you’re a Super Admin yourself. We can elevate a user to Super Admin under Permissions
| Grafana Admin, as follows:

1. Select Change.

2. Select Yes from the toggle.

3. Finally, select Change to confirm.

Let’s move on down, we’ll next learn how to set the user’s organization membership.

Setting user organization membership

As a Super Admin user, you can control organizational membership at a global level, which means you
can add, remove, and set the role of the user for any organization. To add a user to an organization,
follow these steps:

1. Under Organizations, select Add user to organization.

2. Select an organization from the dropdown.

3. If necessary, select a role from the dropdown.

4. Click Add to organization. Here is an example:

Figure 15.12 – Adding a user to an organization

To change the user’s role within an organization:

1. Next to the organization in question, select Change role.

2. Select the new role from the dropdown.

3. Click Save.

Managing Permissions for Users, Teams, and Organizations444

Finally, to remove a user from an organization, follow these steps:

1. Select Remove from organization. Bear in mind that a user must be a member of at least
one organization.

2. Click Confirm removal.

You can get a lot of user account management accomplished from this one page. On the other hand,
you can easily affect a lot of users, so be careful when assigning Super Admin permissions.

Organization admin and Super Admin roles

It might seem a little head-spinning to try to keep track of the differences between an Admin operating
at the organization level and a Super Admin acting at the Server Admin level. What if you set the
organization role of the only Admin user to Editor? Can you lock yourself out of an organization, or
completely out of Grafana for that matter?

Fortunately, Grafana has some safety in place to keep you from getting stuck. While organizational Admins
can set Admin permissions, Super Admins can set both organizational Admins and Super Admins.

Super Admins can, of course, downgrade a role, but not in such a way as to reduce the number of Super
Admins to zero. Any such attempt will trigger an error message. That way, you, as a Super Admin,
can’t inadvertently lock yourself out of your ability to administer your own site.

Likewise, each organization must also have at least one user at the Admin level. Any attempt to
eliminate all Admins in an organization will also trigger an error. This is to prevent the only Admin
from locking themselves out of their organization.

Managing organizations

The other major task performed by Super Admins is managing organizations. But why might you want
to set up more than one organization in the first place? While it isn’t necessary to establish multiple
organizations on a single Grafana site, there are cases where you may want to establish independent
Grafana sites, each with its own data sources, dashboards, and so on, but you don’t want to spin up
multiple servers.

For example, you may have restrictions on who can access proprietary or sensitive information, and
you don’t want the members of one organization accessing the data sources of another. You may have
specific accounting constraints that determine which plugins a particular organization has access to.

While it is simple enough to spin up another Grafana instance in this case, it is much easier, from a
management perspective, to have a single deployment that’s partitioned into multiple organizations.
This way, you can provision data sources and plugins more easily, and the Grafana UI makes it easy to
quickly switch from one organization to another. You can easily assign users to multiple organizations
and grant them roles specific to the organizations they are members of.

Administering users and organizations 445

Creating a new organization

We’ll start by creating a new organization. You will need to be logged in as a user with the Super
Admin role:

1. From the left sidebar, go to Organizations under Administration.

2. Click + New org.

3. Fill in the Organization name field.

4. Select Create.

That’s all there is to it! You will be automatically switched to the new organization, where you can then
set the preferences for the organization.

To delete an organization, simply click the red (×) icon next to the organization. This is an irreversible
operation, so heed the scary-looking dialog box that pops up for confirmation.

Switching between organizations

As a Super Admin, you can not only switch to a different organization you are a member of but also
switch to any organization, simply by selecting the organization from the drop-down menu at the
left of the search bar, at the top of the window. Once you have set your current organization, you can
then change its name, the default preferences, and the preferences set for all organization members.
Here’s how.

Renaming and setting an organization’s default preferences

To rename or set a organization’s default preferences, follow these steps:

1. To rename the current organization, go to Administration | Default preferences from the
main menu.

2. Change the organization name in the textbox.

3. Click Update organization name to confirm the change.

Alternatively, you can edit the name of any organization from the Organizations page simply by
selecting the organization you want to rename, changing the name in the text box, and clicking Update.

To change the default preferences for an organization, follow these steps:

1. Under Preferences, additionally set or change the Interface Theme, Home Dashboard,
Timezone, Week start, and Language settings.

2. Click Save.

Any user can override the default settings for themselves by editing them on their Profile page.

Managing Permissions for Users, Teams, and Organizations446

Tip
The Home Dashboard drop-down menu will be filled in with any of the organization’s
starred dashboards.

That completes an overview of the management of Grafana’s users, teams, and organizations. Let’s
summarize what we learned in this chapter.

Summary
In this chapter, we covered many common tasks faced by a Grafana admin. First, we took a closer look
at users, teams, and organizations and saw how roles can be mapped to permissions for dashboards,
folders, and data sources. Then, we learned how organization admins can manage both users and
teams. Finally, we examined how the Super Admin role can create new users and organizations.

Don’t worry if it’s difficult to visualize all the possibilities afforded by the Grafana permission model.
It may be that, for now, you have no need to establish multiple organizations, specify permissions
on specific dashboards or folders, or even assemble users into teams. However, as your site grows in
complexity, you may find that access control issues present themselves, and you may want to come back
to this chapter. Concepts that seem a little abstract right now may have concrete relevance in the future.

Throughout the course of this book, we’ve been using a simple password-based authentication scheme
for our Grafana server, but there are a number of powerful external authentication systems available.
In the next chapter, we’ll take a look at a few of them. These systems are important for integrating your
Grafana authentication with that of a larger organization so that users have a seamless experience,
regardless of whether they are logging into their email, chats, conferences, or even Grafana.

16
Authenticating Grafana

Logins Using LDAP or OAuth 2
Providers

In the previous chapter, when delving into how to manage users and teams, we briefly examined the
options for adding and authenticating users. We also looked at how Grafana can group user memberships
into teams, allowing for more granular control over permissions to resources such as dashboards,
panels, and data sources. Out of the box, Grafana provides a very straightforward authentication
scheme based on authenticating against a user/password pair. New users can either be created under
this scheme or they can add themselves (with a minor configuration change). Grafana provides more
than a couple of variations of this mechanism, with varying levels of complexity and security.

However, the use of these methodologies is not considered ideal. In many corporate environments,
user access must be strictly tracked and integrated with numerous systems, including administration
and the IT department. Authentication models must provide robust security against any potential
threat; they may need to scale to hundreds – if not thousands – of users. In these circumstances,
Grafana’s native authentication would be inadequate for the task and, depending on the corporate
environment, may not pass the required security reviews.

A solution to these issues can be found in a dedicated external service capable of storing users and their
credentials and supporting state-of-the-art protocols for authenticating them. These authentication
services work to offload most of the drudgery of maintaining user access lists, groups, authentication
tokens, and so on. They tend to provide some or all of the following important features:

• Single sign-on (SSO): Authenticates the user once so that they can access many platforms

• Universal directory services: Tracks users, groups, credentials, and contact information

• Adaptive multi-factor authentication: Verifies login with a personal confirmation

• User life cycle management: Initiates, suspends, and terminates user accounts

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers448

In the following sections, we’ll look at how Grafana can integrate with the locally deployed OpenLDAP
directory service. As an alternative, we will look at three external authentication services that provide
authentication through the OAuth 2 standard. We’ll start with GitHub, where many software-driven
organizations and individuals may already have accounts. We’ll follow that with a look at Google,
which many enterprises will have access to through their G Suite application stack. Finally, we will
wrap things up with the Okta dedicated authentication service provider. The following topics will be
covered in this chapter:

• Authenticating with OpenLDAP

• Authenticating with GitHub

• Authenticating with Google

• Authenticating with Okta

Authenticating with OpenLDAP
Let’s start with one of the more venerable authentication schemes available today: Lightweight
Directory Access Protocol (LDAP), originally developed in the early 1990s. While it is often used to
store user information for authentication purposes, it can also serve all kinds of directory information,
including user groups, hostnames, network addresses, and even office addresses and phone numbers.

In this section, we’ll set up a simple directory using the OpenLDAP implementation and configure
Grafana to bind to the OpenLDAP server to look up users and teams. This process can be a little bit
complicated, but we’ll go through it step by step. It is beyond the scope of this book to go through
the details of setting up and maintaining a production LDAP directory, but I will endeavor to explain
things in some detail as we go along. If you are looking to integrate your Grafana server with an existing
LDAP installation, this should give you a feel for what is involved.

To set up an LDAP authentication server, follow these steps:

1. Download and install an OpenLDAP server.

2. Configure Grafana to bind to the LDAP server.

3. Test to confirm whether Grafana can connect to LDAP.

4. Add a user to the LDAP directory.

5. Perform an LDAP lookup from within Grafana.

We’ll start by downloading and configuring an open source LDAP server called OpenLDAP.

Setting up an OpenLDAP server 449

Setting up an OpenLDAP server
We will use Docker Compose to download an image of the OpenLDAP implementation of LDAP,
which is available from osixia. Information about how to work with this Docker image can be found
on GitHub at https://github.com/osixia/docker-openldap. Our Docker Compose
file will ultimately contain two services: one for LDAP and the other for Grafana. The full docker-
compose.yml file is available in this book’s GitHub repository in the Chapter16 directory.

Here’s the first part of the LDAP service:

 ldap:
 image: osixia/openldap

Here, we’re just downloading the image from osixia. Once we have downloaded the image, we’ll
need to open port 389. If you enable support for Transport Layer Security (TLS) connections,
you’ll need to open port 636. For demonstration purposes, we’ll connect to our LDAP server over
an unsecured connection:

 ports:
 - 389:389

By default, the osixia Docker image has a predefined organization and domain, but we’d like to
override that with our own. We can do that with a couple of environment variables:

 environment:
 LDAP_ORGANISATION: "My Grafana Company"
 LDAP_DOMAIN: "grafana.org"

Finally, we need to create volumes to serve two purposes – if we want to persist our LDAP directory
database and so that we can access the container’s internal filesystem to add our own files. We’ll need
this capability later when we add a user.

Once we’ve created docker-compose.yml, we can go ahead and launch it to get the LDAP server
up and running:

% docker-compose up --pull missing -d ldap
[+] Running 11/11
 ldap 10 layers
[…] 0B/0B Pulled 39.1s
 83c5cfdaa538 Pull complete 3.6s
 b7185bbc69c9 Pull complete 3.7s
 5aad93bf369a Pull complete 3.8s
 3908fcbd6300 Pull complete 4.4s
 2ec0882530ef Pull complete 4.5s
 96ac4bb6da11 Pull complete 4.5s

https://github.com/osixia/docker-openldap

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers450

 735dc1ab9556 Pull complete 6.3s
 7e5bbbe3d89a Pull complete 6.3s
 b00b9df2d406 Pull complete 6.3s
 0cad5ac09677 Pull complete 6.4s
[+] Running 2/2
 Network chapter16_default Created 0.1s
 Container chapter16-ldap-1 Started 1.1s

To confirm whether we have a running installation, we can carry out a simple query:

% docker-compose exec ldap \
 ldapsearch -x -w admin \
 -H ldap://localhost \
 -b dc=grafana,dc=org -D "cn=admin,dc=grafana,dc=org"

That’s a gnarly-looking command, but it’s not too bad if we break it down:

• The first line, docker-compose exec ldap, indicates that we’re going to run a command
inside the ldap container.

• The next line is the ldapsearch command. The -x option indicates that we want to use
simple authentication by using -w as the option and admin as the password.

• You might be able to guess that -H ldap://localhost is the option for passing the
server address (called ldapuri) – in this case, for opening a connection to a ldap server
on localhost.

• The -b dc=grafana,dc=org option indicates the search base for our query, a kind of root
in our LDAP search hierarchy. We are searching the domain or dc for grafana.org, which
we specified in our LDAP_DOMAIN environment variable when we configured our service.

• Lastly, -D "cn=admin,dc=grafana,dc=org" specifies our search term; this is called
a distinguished name. Think of it as encoding the admin@grafana.org login name, built
by combining the common name (cn) and the two domain names (dc).

If your server is running, you should get results that look something like this:

extended LDIF
#
LDAPv3
base <dc=grafana,dc=org> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

grafana.org

Setting up an OpenLDAP server 451

dn: dc=grafana,dc=org
objectClass: top
objectClass: dcObject
objectClass: organization
o: My Grafana Company
dc: grafana

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

You should see an entry – one matching an organization of grafana.org. If you don’t see these results,
ensure your server is running in Docker Compose. Now, let’s go ahead and set up our Grafana server.

Configuring Grafana to use LDAP

For our Grafana server, we’ll use the same Docker Compose service we’ve used throughout this book,
but with one small change. As with the LDAP service, we will create an additional volume mapping to
a local directory so that we can install a file in the container’s filesystem. In the case of Grafana, we’ll
be installing a couple of necessary configuration files to enable proper LDAP support on our server.

Let’s walk through our Grafana Docker Compose service. The first few lines are pretty much identical
to a typical service:

 grafana:
 image: grafana/grafana:latest
ports:
 - "3000:3000"

Following those lines is our first big change. We’re going to tell Grafana to look for a configuration
file in /etc/grafana/grafana.ini:

 environment:
 GF_PATHS_CONFIG: "/etc/grafana/grafana.ini"

To access the file outside the container, we’ll need to create a volume mapping. We’ll create two – the
usual one for persisting our Grafana data and one for the config file:

 volumes:
 - $PWD/grafana/data:/var/lib/grafana
 - $PWD/grafana/etc:/etc/grafana

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers452

Finally, we’ll make the ldap service a dependency for our grafana service:

 depends_on:
 - ldap

Now that we’ve set up our service, we’ll need to add two configuration files. The first file is called
grafana.ini and is used to override the default configuration, much like how we used environment
variables in previous chapters. We could do the same in this case, but since we will be installing an
additional file, we might as well go ahead and use the grafana.ini file. Our grafana.ini file
is based on an example provided by Grafana and looks like this:

[auth.ldap]
Set to `true` to enable LDAP integration (default: `false`)
enabled = true

Path to the LDAP specific configuration file (default: `/etc/
grafana/ldap.toml`)
config_file = /etc/grafana/ldap.toml

Allow sign-up should be `true` (default) to allow Grafana to create
users on successful LDAP authentication.
If set to `false` only already existing Grafana users will be able
to login.
allow_sign_up = true

It’s pretty straightforward and, with all the comments, self-explanatory. From what we can see in this
file, we need to install a second file in /etc/grafana called ldap.toml. This file will describe
how Grafana will communicate with the LDAP server.

Our ldap.toml file also comes from the Grafana documentation, albeit with a couple of changes
so that we can use it in the Docker container context. Here’s an excerpt of the file (the full file can be
found in the Chapter16 folder in this book’s GitHub repository at https://github.com/
PacktPublishing/Learn-Grafana-10/blob/main/Chapter16/ldif/new-user.
ldif):

 [[servers]]
 # Ldap server host (specify multiple hosts space separated)
 host = "ldap"

The first change we’ve made is to set host = "ldap" so that our Grafana server can talk to the
ldap server container. Next, for this tutorial, we’ll need to disable TLS/SSL:

use_ssl = false

This is inadvisable for a production environment, but for demonstration purposes, it will be fine.
Finally, we need to set the bind password so that Grafana can authenticate with the LDAP server. The
default for the OpenLDAP Docker image is admin:

https://github.com/PacktPublishing/Learn-Grafana-10/blob/main/Chapter16/ldif/new-user.ldif
https://github.com/PacktPublishing/Learn-Grafana-10/blob/main/Chapter16/ldif/new-user.ldif
https://github.com/PacktPublishing/Learn-Grafana-10/blob/main/Chapter16/ldif/new-user.ldif

Setting up an OpenLDAP server 453

bind_password = "admin"

You should create a grafana/etc directory in your current directory and copy the files there (if
they aren’t already), then launch your grafana service:

% docker-compose up -d grafana
Creating network "ch13_default" with the default driver
Creating ch13_ldap_1 ... done
Creating ch13_grafana_1 ... done

Since the ldap service is a dependency on the grafana service, it will also launch (if it isn’t already
running). Let’s check out our Grafana server to confirm that it can connect to our LDAP server.

Securing the bind password

Now, having a free-text password in your configuration file is not a good practice, so let’s devote a
little extra effort to fixing that. First, let’s change the bind_password entry so that it redirects to
an external environment variable. This way, we can set the variable's value at service launch:

bind_password = "${LDAP_BIND_PASSWORD}"

We could set the environment variable in our docker-compose.yml file like this:

 grafana:
...
 command:
 export LDAP_BIND_PASSWORD="admin"

That’s not much better than leaving it in the original configuration file – we just moved the password
text from one configuration file to another. A better solution is to store our password in a Docker
Compose secret. To do that, we need to take care of three things:

1. We need to store the password in a secret file, which we’ll call ldap_admin_secret.txt.

2. We need to create a secret in our docker-compose.yml file that points to our secret.

3. We need to reference the secret when we set the password environment variable.

The first thing we must do is create the secret file and add the password to it. Next, we must update
our docker-compose.yml file by adding the following secret:

secrets:
 ldap_admin_secret:
 file: ./ldap_admin_secret.txt

Make sure the path is relative to the Chapter16 directory. The secret will be named ldap_admin_
secret. Keep this in mind for later.

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers454

Finally, update the grafana service in our docker-compose.yml file to the following:

 grafana:
 image: grafana/grafana:latest
 ports:
 - "3000:3000"
 environment:
 GF_PATHS_CONFIG: "/etc/grafana/grafana.ini"
 volumes:
 - "${PWD-.}/grafana/data:/var/lib/grafana"
 - "${PWD-.}/grafana/etc:/etc/grafana"
 depends_on:
 - ldap
 secrets:
 - ldap_admin_secret
 command:
 ['/bin/sh', '-c', 'export LDAP_ADMIN_PASSWORD=$$(cat /run/
secrets/ldap_admin_secret) ; source /run.sh']

By default, the path to a secret in a Docker Compose container is /run/secrets/<secret_name>,
which we are referencing in the entrypoint command – this sets LDAP_BIND_PASSWORD to
the contents of the secret file. It’s just replacing the existing entrypoint command with a new one
that invokes a shell to run two commands: one copies the password stored in the secret file, while the
other runs the real entrypoint command.

You might have noticed that we’re still not quite secure, are we? We are still storing our password in
free text (and in a GitHub repository). We’ll create a .gitignore file and store the name of our
password file in it:

ldap_admin_secret.txt

This is not too bad for security. The file won’t be checked into GitHub, the content of the file itself is
only made available to the Docker service as a secret, and the container only gets it as an environment
variable at runtime. It’s not potentially visible to anybody along its journey from a local file to Grafana.

Testing the Grafana configuration

From a browser, log in as a Grafana admin and navigate to Authentication under Administration.
You’ll find that the currently Configured authentication method is indeed LDAP:

Setting up an OpenLDAP server 455

Figure 16.1 – LDAP configuration enabled

Click on the LDAP box. If Grafana was successful in binding to your LDAP server, you should see
a page showing a check next to port 389, indicating a successful connection to your LDAP server:

Figure 16.2 – Successful LDAP connection

Searching for a user won’t yield anything as we don’t have any users in LDAP. So, let’s add one.

Adding a user to OpenLDAP

For our server to truly be useful for authentication, we’ll need to add user accounts. Before we proceed,
however, we need to take note of something. When we add a user to LDAP, we need to make sure the
entry fields we add to the directory will be understood by Grafana – that is, when Grafana does an

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers456

LDAP lookup for a user, it knows what fields in the response to look for to satisfy itself. We can find
this list at the bottom of our ldap.toml file:

[servers.attributes]
member_of = "memberOf"
email = "email"

This is a list of Grafana user fields and their corresponding entries in an LDAP entry. Armed with this
information, we can set up a user, making sure we include the appropriate fields. We use the ldif
format for the file, which will be named new-user.ldif. Here’s the file I’ve created for a user:

dn: cn=myuser,dc=grafana,dc=org
changetype: add
givenName: My
sn: User
cn: myuser
uid: cn
uidNumber: 14583102
gidNumber: 14564100
homeDirectory: /home/myuser
objectClass: top
objectClass: posixAccount
objectClass: inetOrgPerson
userPassword: {SHA}kd/Z3bQZiv/FwZTNjObTOP3kcOI=
mail: myuser@grafana.org

As you can see, I’ve included the name, surname, username, and email, and tagged these properties with
the appropriate field names. The SHA-encoded user password I created using an LDAP command-line
tool – slappasswd – is provided alongside the OpenLDAP installation in the container:

% docker-compose exec ldap \

 slappasswd -h {SHA} -s mypassword
{SHA}kd/Z3bQZiv/FwZTNjObTOP3kcOI=

Next, we’ll copy this file into a directory we’ve created that’s visible to the container (slap.d,
for example):

% mkdir -p slapd.d/assets/test
% cp ldif/new-user.ldif slapd.d/assets/test

Finally, we must run the ldapadd command to inform our LDAP server of the new user:

% docker-compose exec ldap \
 ldapadd -x -w admin \
 -H ldap://localhost \

Setting up an OpenLDAP server 457

 -D "cn=admin,dc=grafana,dc=org" \
 -f /etc/ldap/slapd.d/assets/test/new-user.ldif
adding new entry "cn=myuser,dc=grafana,dc=org"

Let’s break this command down:

• In our first line, we invoke a command inside our ldap service container

• In the second line, we invoke the ldapsearch command, which we will simply authenticate
(-x) with the password (-w), admin

• In the next line, we indicate the URI for the LDAP server with the -H option

• Finally, we use the -D option to pass the bind account name (admin@grafana.org)

Following these boilerplate options is the option (-f) for the path to the LDIF file (as seen from
inside the container). Remember that in docker-compose.yml, we volume-mapped our local
slapd.d directory to /etc/ldap/slapd.d inside the container.

Looking up a user in Grafana

Now that we have a user in our LDAP, let’s confirm that Grafana sees the user. On the Authentication
page, click on the LDAP box and enter our new user, myuser, in the Username box under Test user
mapping. You should see the following results:

Figure 16.3 – LDAP test user mapping

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers458

Note how the Grafana fields are filled in from the corresponding fields in our LDAP entry. However,
there’s a bunch of information left out that we know we included in the LDAP user entry we created.
We need to map more of that data using the servers.attributes configuration option in our
ldap.toml file. It looks like we should be able to map the following fields into counterparts in our
LDAP entry:

• First Name

• Surname

• Username

• Email

We just need to include those and their LDAP counterpart fields in the servers.attributes section:

name = "givenName"
surname = "sn"
username = "cn"
email = "mail"

Remember to restart your Grafana server. Now, when you query for a user, you should see the mapped
fields filled out, as shown in the following screenshot:

Figure 16.4 – LDAP test user mapping with fields filled in

Authenticating with OAuth 2 459

There you have it! Try logging into your Grafana server with our new user account to confirm that
Grafana is authenticating against the username and password stored in LDAP.

Now that we’ve examined how to internally host an authentication server, we’ll move on and look at
how to perform external third-party authentication using the OAuth 2 protocol standard.

Authenticating with OAuth 2
Now that we’ve covered our local LDAP authentication, we’ll cover three examples that all use the
OAuth 2 authentication standard. It is beyond the scope of this book to go into detail about the OAuth
2 standard but suffice to say it represents one of the most popular industry standards for application
authentication. To use OAuth 2 to provide Grafana authentication, rather than running a lookup
service, we will leverage external providers. We will look at three different popular services, each
providing similar setup techniques but serving slightly different audiences.

In each case, we’ll go through the typical workflow for registering the Grafana application to secure a
known key, then configuring Grafana to use the key to perform the necessary trusted authentication
after a user has logged into a provider account.

Without going into the specifics, the process for each implementation of OAuth 2 is relatively consistent:

1. Register both Grafana’s login page URL and a special redirect URL for the provider to send
properly authenticated users.

2. Return a client ID and a client secret. These work like Grafana’s username and password with
the provider.

3. Configure Grafana with the appropriate provider information, including the client ID and secret.

4. Restart Grafana so that it picks up the new configuration.

Note
The instructions presented here are valid at the time of writing but may be subject to change.

GitHub OAuth 2 authentication

First, we’ll look at Grafana authentication via GitHub, a common site for organizations working in
the software space. We’ll need to create an authorized OAuth 2 application for Grafana to talk to.
In each of the following examples, we’ll assume you are registering on behalf of a Grafana server at
http://localhost:3000. Obviously, for a production server, you’ll want to use an actual host
and domain name; for our purposes, it will suffice to work with our local server. Follow these steps:

1. Log into GitHub using the account that will be responsible for the application.

2. From your user account menu, navigate to Settings | Developer Settings.

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers460

3. Select OAuth Apps. You’ll be presented with the following screen:

Figure 16.5 – GitHub OAuth Apps

4. Click on Register a new application.

5. Fill in the following fields and click on Register application:

 � Application name: Grafana

 � Homepage URL: http://localhost:3000

 � Authorization callback URL: http://localhost:3000/login/github:

Figure 16.6 – GitHub – Register a new OAuth application

Authenticating with OAuth 2 461

6. Copy and retain the client ID and client secret for the Grafana configuration. You’ll find them
on the application page:

Figure 16.7 – GitHub client ID and secrets

7. Now, add the following lines to your grafana.ini file (making sure to comment out any
other auth.* sections):

[auth.github]
enabled = true

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers462

allow_sign_up = true
client_id = <CLIENT_ID>
client_secret = <CLIENT_SECRET>
scopes = user:email,read:org
auth_url = https://github.com/login/oauth/authorize
token_url = https://github.com/login/oauth/access_token
api_url = https://api.github.com/user
team_ids =
allowed_organizations =

Of course, you’ll want to fill in your own client ID and client secret. After making your edits to the
grafana.ini file, restart your Grafana server. When you open http://localhost:3000,
you should see the Grafana login page with the option to sign in with GitHub.

Moving on from GitHub, next, we’ll look at authentication via Google, a provider that’s common with
many enterprises that depend on Google for office applications, such as Gmail and the G Suite of tools.

Google OAuth 2 authentication

Compared to GitHub, Google has a much more elaborate system, but if your Grafana users are part
of your G Suite account, this is a good way to provide them with access. After some initial steps that
involve configuring an OAuth consent page, getting a client ID and client secret is simple:

1. Go to https://console.developers.google.com/apis/credentials. If this is
your first time accessing this area, you may have to accept Google’s Terms of Service to proceed:

Figure 16.8 – Google – Credentials

https://console.developers.google.com/apis/credentials

Authenticating with OAuth 2 463

2. Create a project if you don’t already have one. For our example, we’ll call it grafana:

Figure 16.9 – Creating a new Google project

3. Once you’ve created the project, you’ll be returned to the Credentials page. Select + CREATE
CREDENTIALS | OAuth client ID:

Figure 16.10 – Creating Google OAuth client ID credentials

4. You’ll be required to fill out an OAuth consent page. This configures the page that you will see
when you attempt to sign in using Google. Since this is an internal application, you only need
to fill out the following minimal information:

 � App name: Grafana

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers464

 � User support email: <email address>:

Figure 16.11 – OAuth consent screen

5. After saving the consent screen configuration, you can finally do what you came here for –
create an OAuth client ID. Under Authorized JavaScript Origins, click on + Add URI and
add http://localhost:3000 in the URIs 1 * textbox.

Authenticating with OAuth 2 465

6. Under Authorized redirect URIs, click on + Add URI and add http://localhost:3000/
login/google in the URIs 1 * textbox. Your form should look something like this:

Figure 16.12 – Create OAuth client ID

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers466

7. Click Create. You should now have an OAuth ID created with a client ID and a client secret.
You’ll need those for the Grafana configuration, so you should either click on the two copy
icons and save the client ID and client secret to a file, or click on DOWNLOAD JSON to save
the credentials:

Figure 16.13 – OAuth client created

Next, we’ll set up the configuration on the Grafana side. Edit grafana.ini, making sure to comment
out any other auth.* sections, and add the following lines:

[auth.google]
enabled = true
client_id = 27480276250-
 laq6jp99jqbqgfiked0d7kq3js9umld7.apps.googleusercontent.com
client_secret = eFUVWK2EgnqXHUcy-FDendOP
scopes = https://www.googleapis.com/auth/userinfo.profile
 https://www.googleapis.com/auth/userinfo.email
auth_url = https://accounts.google.com/o/oauth2/auth
token_url = https://accounts.google.com/o/oauth2/token
allowed_domains =
allow_sign_up = true

Authenticating with OAuth 2 467

Fill in your own client ID and client secret. If you want new users to be able to self-register with Google
OAuth, make sure allow_sign_up is set to true. Restart your Grafana server; you should now
have a Google sign-in option on your Grafana startup screen:

Figure 16.14 – Grafana – Sign in with Google

Finally, we’ll look at authentication with Okta, a full-service provider that is well-known for providing
SSO solutions.

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers468

Authenticating with Okta
Okta is a well-known authentication provider for enterprises. The process is very similar to Google,
but it only requires you to register your application with Okta to generate a client ID and secret. To
generate the appropriate secrets, you’ll need to sign up for a developer account. Once you’ve logged
into your Okta developer account, follow these instructions:

1. From the Dashboard area, open Applications, select Applications, and click on Create
App Integration:

Figure 16.15 – Okta – the Applications menu

Authenticating with Okta 469

2. Select OIDC – OpenID Connect for Sign-in method and Web Application for Application
type, then click Next:

Figure 16.16 – New app integration settings

3. On the New Web App Integration form, under General Settings, fill in the following fields
and click Done:

• App integration name: Grafana

• Sign-in redirect URIs: http://localhost:3000/login/okta

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers470

• Sign-out redirect URIs: http://localhost:3000:

Figure 16.17 – New Web App Integration – General Settings

4. Under Trusted Origins, set Base URIs to http://localhost:3000:

Figure 16.18 – App integration – Trusted Origins

Authenticating with Okta 471

5. Finally, under Assignments, set Allow everyone in your organization to access for Controlled
access and accept the recommended defaults for Enable immediate access. Click Save to continue:

Figure 16.19 – App integration – Assignments

6. On the next page, on the General Settings tab, you’ll find a Client Credentials box with both
Client ID and Secret fields. You’ll be copying them in the next step:

Figure 16.20 – Okta client ID and secret

Authenticating Grafana Logins Using LDAP or OAuth 2 Providers472

7. Add the following configuration lines to your grafana.ini file (making sure to comment
out any other auth.* sections):

[auth.okta]
name = Okta
icon = okta
enabled = true
allow_sign_up = true
client_id = 0oackq4tx6ivAX4w04x7
client_secret = vwYpfG6OW-Bmm3d9b-eRVsPRZA0v0xK_FCukKXBK
scopes = openid profile email groups
auth_url = https://dev-670643.okta.com/oauth2/v1/authorize
token_url = https://dev-670643.okta.com/oauth2/v1/token
api_url = https://dev-670643.okta.com/oauth2/v1/userinfo
allowed_domains =
allowed_groups =
role_attribute_path =

8. You’ll need to add your client ID and secret from the previous step. You’ll also need to include
your Okta tenant ID under auth_url, token_url, and api_url. Typically, this can be
found at your Okta URL: https://<tenant-id>.okta.com/.

9. Restart your Grafana service; you should have the option to sign in with Okta on the Grafana
login screen:

Figure 16.21 – Grafana – Sign in with Okta

Summary 473

10. If you are currently logged into Okta, clicking on Sign in with Okta will sign you into Grafana.

That completes our tour of three popular OAuth 2 providers. Well done! This is by no means the
full list of authentication services Grafana integrates with. You’ll want to check out the Grafana
documentation for the full list.

Summary
We certainly covered a lot of ground in this chapter. First, we learned how to install and configure an
OpenLDAP server and integrate it with Grafana to provide authentication lookup. Then, we walked
through the process of registering Grafana with three different OAuth 2 providers: GitHub, Google, and
Okta. If you want full control of all aspects of user lookup for authentication, then LDAP is certainly
a viable solution. If you’d rather have authentication handled securely by a third-party provider,
especially if it integrates with other user management systems in your organization, then an external
OAuth provider is probably a better solution.

Yet, after all of this, we have only touched on a few of the ever-growing number of authentication
options available for Grafana, so consult the Grafana documentation for more details.

In this chapter, we took a small step in integrating Grafana authentication with external cloud services.
In the next (and final) chapter, Chapter 17, Cloud Monitoring AWS, Azure, and GCP, we will make
a giant leap into the cloud. We will configure Grafana data sources to monitor cloud services, such
as Amazon CloudWatch and Google Cloud Monitoring. We’ll also tackle the process of setting up
your cloud account to work with Grafana, as well as installing data sources and dashboards that are
specially designed to query Amazon AWS metrics and logging. If you have any services running in
the cloud, you should check this chapter out!

17
Cloud Monitoring AWS, Azure,

and GCP

In this final chapter of Learn Grafana 10.x, we’ll take a brief look at Grafana’s cloud integration
capabilities. Grafana treats cloud monitoring as just another data source, so adding monitoring features
to your cloud deployments is not much more than filling in a few fields in a data source configuration.
Most of the work lies on the provider side as you will need to spend some time on cloud console pages
registering applications and generating authentication credentials.

Once you have completed the walk-throughs for each cloud provider, you should have a good idea of
how to navigate parts of a cloud services management console. You will be able to create the policies,
service accounts, and credentials necessary to link Grafana with cloud providers. Armed with these
credentials, you should have no trouble configuring future cloud monitoring data sources.

Then, once you have access to a vast variety of cloud monitoring data resources and you start to
put monitor dashboards together, you will start gaining insights into how your cloud services are
performing. Over time, you may even want to establish Grafana alerts, similar to the ones we studied
in Chapter 12, Monitoring Data Streams with Grafana Alerts.

It’s beyond the scope of this book to cover cloud technology, nor does it allow for a survey of all cloud
platforms in the industry. We will, however, review offerings from the three largest cloud providers
– that is, Amazon, Microsoft, and Google.

Note
The workflows and user experiences depicted in this chapter were accurate at the time of writing,
but the cloud space is fast-moving and ever-changing, so things may look a little different by
the time you get your hands on this book. Check with Grafana and your cloud provider for
the most current information.

We’ll assume that, before proceeding with this chapter, you have already established accounts with one
or more of these cloud service providers and that you also have the requisite administrator permissions
to provision resources and manage user accounts, application registries, and access roles.

Cloud Monitoring AWS, Azure, and GCP476

The following topics will be covered in this chapter:

• Configuring an AWS CloudWatch data source

• Configuring a Microsoft Azure Monitor data source

• Configuring a GCM data source

With this in mind, let’s get started with one of the first big cloud players: Amazon Web Services (AWS).

Configuring an AWS CloudWatch data source
This section assumes that you have an AWS account with administrative privileges. You’ll also need
to be logged into the AWS Management Console so that you can work through these steps. The basic
process is straightforward:

1. Create a policy to grant access to CloudWatch.

2. Create a user and attach the policy to the user.

3. Capture the user credentials.

4. Configure an AWS data source with the user credentials.

Now, let’s look at each of these steps in more detail.

Creating the policy

The first step toward creating a policy to grant our data source access to CloudWatch is using AWS
and its Identity and Access Management (IAM) service. To get to the service, simply type iam into
the search box on the Management Console page:

Figure 17.1 – AWS IAM service

We will be creating a policy that allows Grafana to use the AWS CloudWatch API to get metrics data.
Grafana has helpfully supplied a basic set of policies to help us access both CloudWatch metrics and
logs. Here’s the JSON version of the policy:

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowReadingMetricsFromCloudWatch",
 "Effect": "Allow",
 "Action": [

Configuring an AWS CloudWatch data source 477

 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:ListMetrics",
 "cloudwatch:GetMetricData",
 "cloudwatch:GetInsightRuleReport"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowReadingLogsFromCloudWatch",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups",
 "logs:GetLogGroupFields",
 "logs:StartQuery",
 "logs:StopQuery",
 "logs:GetQueryResults",
 "logs:GetLogEvents"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowReadingTagsInstancesRegionsFromEC2",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags",
 "ec2:DescribeInstances",
 "ec2:DescribeRegions"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowReadingResourcesForTags",
 "Effect": "Allow",
 "Action": "tag:GetResources",
 "Resource": "*"
 }
]
}

Cloud Monitoring AWS, Azure, and GCP478

To create the policy, follow these steps:

1. Select Policies from the left-hand menu and click Create policy:

Figure 17.2 – Create policy

2. On the Create policy page, select the JSON tab and replace the contents of the textbox with
the preceding JSON blob of code.

3. Click Review policy. If the JSON text was entered correctly, you should now see three services
affected by the policy: CloudWatch, EC2, and Resource Group Tagging. Go ahead and name
your policy something descriptive, such as GrafanaCloudWatch:

Figure 17.3 – Reviewing policy permissions

Configuring an AWS CloudWatch data source 479

4. Click Create policy to confirm the policy’s creation.

You should now see a banner confirming the policy’s creation.

Creating the user

Now that you’ve created a policy, you will need to assign the policy to a user. We’ll create a specific
user for this policy, named grafana:

1. From the IAM service page, select Users from the left-hand side menu and click Add user.

2. On the Add user page, set the following details and click Next to continue:

 � Select User details | User name: grafana

 � Select AWS access type | Access type: Programmatic access:

Figure 17.4 – User details

3. On the Set permissions page, select Attach existing policies directly.

4. Type grafana into the search box to find the GrafanaCloudWatch policy and check it. Click
Next to continue.

Cloud Monitoring AWS, Azure, and GCP480

5. Confirm the following and then click Create user to proceed:

 � User details | User name: grafana

 � Permissions summary | Name: GrafanaCloudWatch

 � Permissions summary | Type: Customer managed

 � Permissions summary | Used as: Permissions policy:

Figure 17.5 – Review and create

Configuring an AWS CloudWatch data source 481

If you missed the part where we downloaded the credentials CSV file, don’t worry. You can always
generate a new one (illustrated as follows):

1. From the Identity and Access Management (IAM) left-hand menu, select Users.

2. Click on the grafana user to load the Summary page.

3. Select the Security credentials tab.

4. Under Access keys, click Create access key to generate a new credential.

5. From the Access key best practices & alternatives page, select Application running outside
AWS and click Next to continue:

Figure 17.6 – Selecting an application running outside AWS for the access key

Cloud Monitoring AWS, Azure, and GCP482

6. Click Download .csv file to save the credentials file, as illustrated here:

Figure 17.7 – Retrieve access keys

Now that you have a CSV file containing the necessary credentials, you should have everything you
need to configure our CloudWatch data source.

Configuring a new Grafana connection for AWS CloudWatch

Once you have configured AWS with a user (grafana) with the proper policy (GrafanaCloudWatch),
you’ll need to set up a CloudWatch data source within Grafana so that you can gather metrics via the
CloudWatch API:

1. We will use a docker-compose.yml file with the following contents to start up a Grafana server:

services:
 grafana:

Configuring an AWS CloudWatch data source 483

 image: "grafana/grafana:latest"
 ports:
 - "3000:3000"
 volumes:
 - "${PWD-.}/grafana:/var/lib/grafana"

2. Start up the grafana service by running the following command:

% docker-compose up -d --pull missing grafana

3. Under Connections on the main menu, select Add new connection.

4. Search for CloudWatch and select it.

5. Click on Add new data source.

6. You have a couple of options regarding how to configure the data source with the credentials
for the Grafana user:

 � Launch Grafana with the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
environment variables

 � Load a credentials file located in ~/.aws/credentials

 � Hardcode the credentials into the data source itself

In this case, we are going with the third option. In a production setting, you probably want to
manage the user credentials so that you can rotate them regularly, without having to reconfigure
the data source all the time. However, we are going with the easy path for now, so we’ll just fill
in the fields from our CSV file.

7. Fill in the fields as follows:

 � Authentication Provider: Access & secret key

 � Access Key ID: (from the CSV file)

 � Secret access key: (from the CSV file)

For the Default region, you’ll want to check what region you’ve specified for CloudWatch. Go
to the CloudWatch service from Management Console and check the pull-down menu at the
top right, between the User and Support menus. It should indicate a geographic region when

Cloud Monitoring AWS, Azure, and GCP484

you select the menu. The bold selection indicates your default region. In our case, I have set
Default Region to us-east-2:

Figure 17.8 – CloudWatch data source

8. Click Save & test. If everything worked as planned, you should see a green Data source is
working indicator:

Figure 17.9 – CloudWatch data source access confirmation

From here, you can start monitoring CloudWatch services by creating a dashboard panel and selecting
your CloudWatch data source in the query.

Configuring a Microsoft Azure Monitor data source 485

To get you started, the data source configuration page includes a Dashboards tab (as depicted in
Figure 17.8), where you can download sample dashboards to monitor several popular Amazon AWS
services, including the following:

• Amazon EC2

• Amazon EBS

• AWS Lambda

• Amazon RDS

• CloudWatch Logs

Each dashboard you download contains panels specifically tailored to monitor the service in question.
To get started, simply select your data source from the Data source template variable dropdown. Try
them out!

Now, let’s move on and look at our next cloud provider: Microsoft and its Azure cloud service.

Configuring a Microsoft Azure Monitor data source
The next stop in our tour of the big cloud providers takes us to Microsoft Azure. The Azure Monitor
data source supports four different services:

• Azure Monitor

• Azure Log Analytics

• Application Insights

• Application Insights Analytics

Fortunately, you can configure Azure to allow the data source to access all four services.

As you may recall from Chapter 16, Authenticating Grafana Logins Using LDAP or OAuth 2 Providers,
to generate OAuth2 client IDs and secrets, we needed to register our Grafana server as an application
with the cloud service. The process for Microsoft Azure is very similar:

1. Copy your Tenant ID from Microsoft Entra ID.

2. Register a new application for the Grafana data source and establish its proper role.

3. Generate a Client ID value and secret for authentication from Grafana.

4. Create and configure the Azure Monitor Grafana connection with the Tenant ID and
Client credentials.

Start by creating or signing into your Microsoft Azure account. You’ll also need to create a subscription
– the free Basic level subscription is sufficient for this tutorial. We’ll start from the Azure portal.

Cloud Monitoring AWS, Azure, and GCP486

Registering the Grafana application

The first task is to register a new application so that we’ll be able to generate the application client ID
and secret. Under Azure Services, go to Microsoft Entra ID. Then, follow these steps:

1. The first thing you will notice is the Tenant ID value for Default Directory. Copy the ID and
save it somewhere for later use. You can even paste it into the Azure Monitor data source if
you want to skip ahead.

2. From the left-hand menu, select App registrations and click + New Registration.

3. Fill in the following details (see the following screenshot):

 � Name: Grafana

 � Select Accounts in this organizational directory only (Default Directory only - Single tenant)

 � Redirect URI: Web | http://localhost:3000

4. Click Register to complete the registration process:

Figure 17.10 – Azure application registration

Configuring a Microsoft Azure Monitor data source 487

Redirect URI is the link back to the application after authentication. Unlike the examples in Chapter 16,
Authenticating Grafana Logins Using LDAP or OAuth 2 Providers, we aren’t authenticating a user of
Grafana; here, we are authenticating Grafana as an application with Azure.

Setting the application role

Once we have an application, we’ll need to set the role for it. This will dictate what level of access the
data source can have. We’ll set our permissions at the subscription level as that’s the easiest way to do
things. Follow these steps:

1. Go to the Azure portal and search for Subscriptions.

2. Click on the appropriate subscription. In my case, it’s called Azure Subscription 1.

3. Select Access control (IAM).

4. Click + Add and, from the drop-down menu, select Add role assignment:

Figure 17.11 – Add role assignment

5. Under the Role tab on the Add role assignment page, type reader into the search box and
select Reader from the displayed list of roles. Click Next to continue to the Members tab:

Figure 17.12 – Assigning the Reader role

Cloud Monitoring AWS, Azure, and GCP488

6. On the Members tab, confirm that Selected role is Reader. Next to Members, click +
Select members.

7. Under Select, in the search box, type grafana to find the registered Grafana application,
and click Select to confirm this:

Figure 17.13 – Adding the Grafana member

8. Click Review + Assign to add Grafana as Reader.

If you haven’t already captured the tenant ID and client ID, you can find them by going back to Home |
Microsoft Entra ID and selecting App registrations. Clicking on your registered Grafana application
should reveal both the Directory (tenant) ID and the Application (client) ID details. We only need
to generate our application client secret and we’ll be almost done!

Generating application secrets

In much the same way as we did in Chapter 16, Authenticating Grafana Logins Using LDAP or OAuth
2 Providers, we’re going to generate an application client secret. Follow these steps:

1. Make sure you’re on your Grafana Overview page, which you can reach via Home |
App Registrations.

2. From the left-hand menu, select Certificates & secrets.

3. Under Client secrets, click + New client secret.

4. Fill out the form as follows and click Add (see the following screenshot):

Configuring a Microsoft Azure Monitor data source 489

 � Description: Grafana Client Secret

 � Expires: Recommended 180 days (6 months):

Figure 17.14 – Add a client secret

5. Click the copy icon next to the Grafana client secret’s Value field for the generated key and
paste it somewhere where you can access it for our next task.

You should now have the requisite information to begin configuring an Azure Monitor data source.

Configuring a new Grafana connection for Azure Monitor

Gather the generated credentials and get ready to connect Grafana to Microsoft Azure Monitor. You
did copy your Tenant ID, Application (client) ID, and Client secret, right?

1. Return to Grafana and, under Connections, select Add new connection.

2. Search for and select Azure Monitor and fill in the following details:

 � Name: Azure Monitor

 � Azure Cloud: Azure

 � Directory (tenant) ID: <Tenant_ID>

 � Application (client) ID: <Application_ID>

 � Client Secret: <Client Secret>

Cloud Monitoring AWS, Azure, and GCP490

3. Click Load subscriptions and select the appropriate subscription from the menu.

Note
If you get an error, go back to Certificates & secrets and confirm that you copied Value for
the Grafana client secret, not the secret ID.

At this point, you should be able to click Save & test and get an indication of which services the
data source was able to contact. Don’t be alarmed by the error message – we will enable the failed
services momentarily:

Figure 17.15 – Azure Monitor data source

The service that it’s complaining about in check #2 is for Azure Log Analytics. To pass all the checks,
we need to establish a Log Analytics workspace. Azure Log Analytics, like Google Cloud Monitoring,
allows you to query and perform analytics on your application cloud logs.

Configuring a Microsoft Azure Monitor data source 491

Configuring Azure Log Analytics

To proceed with the rest of this exercise, you’ll need to create a Log Analytics workspace if you don’t
already have one. This process is relatively straightforward but it will involve provisioning some Azure
resources, which may potentially cause you to incur additional costs, so feel free to skip this section
if that is a concern.

I am including it to complete the Azure data source provisioning section; it will prove useful if you have
an interest in querying and analyzing Azure cloud application log data. To proceed, follow these steps:

1. From the Azure portal, search for or select Log Analytics Workspaces.

2. Click + Create to add a new workspace.

3. Fill in the following details (see the following screenshot):

 � Project details:

 � Subscription: Select a subscription from the drop-down menu

 � Resource group: Create a new group or select one from the drop-down menu

 � Instance details:

 � Name: Create a name for the provisioned instance

 � Region: Select a region from the dropdown:

Figure 17.16 – Create Log Analytics workspace

Cloud Monitoring AWS, Azure, and GCP492

4. Click Review + Create; then, after validation, click Create to deploy the Log Analytics workspace.
The final deployment should look something like this:

Figure 17.17 – Azure Log Analytics deployment

You should now be able to return to your Azure Monitor data source and click Save & Test to confirm
the configuration for Azure Log Analytics. It should now give you a green success indicator:

Figure 17.18 – Full Azure data source support

Configuring a GCM data source 493

From here, you can go to the Dashboards tab to import various dashboards for monitoring your
Azure cloud instance. Among the sample dashboards are the following options:

• Azure / Alert Consumption

• Azure / Insights / Applications

• Azure / Insights / Applications Test Availability Geo Map

• Azure / Insights / Cosmos DB

• Azure / Insights / Data Explorer Clusters

• Azure / Insights / Key vaults

• Azure / Insights / Networks

• Azure / Insights / SQL Database

• Azure / Insights / Storage Accounts

• Azure / Insights / Virtual Machines by Resource Group

• Azure / Insights / Virtual Machines by Workspace

• Azure / Resources Overview

If you have a new Azure cloud instance, you probably won’t have many or even most of these services
installed to monitor on one of the sample dashboards. However, the Resources Overview dashboard
should be functional even with a minimal subscription.

Let’s move on to our last cloud provider: Google Cloud Platform (GCP). We’ll be connecting to
Google Cloud Monitoring (GCM), Google Cloud’s system for monitoring, alerting, and logging in
GCP. The Grafana data source provides example dashboards for monitoring Google Cloud Functions,
Google Cloud Environment (GCE) VMs, Cloud SQL, and more.

Configuring a GCM data source
Our last stop on our tour of cloud providers is GCP and its GCM service. We’ll go through the
procedure to connect the GCM data source. The process for connecting a local data source with GCM
involves only a few steps:

1. Enable the relevant monitoring APIs.

2. Create a service account with appropriate permissions.

3. Generate a JSON Web Token (JWT).

4. Load the JWT into the GCM data source configuration.

Cloud Monitoring AWS, Azure, and GCP494

To get started, log in to your Google Cloud console and select the appropriate project. It is in this
project that we’ll define our service account. This will be the only one our data source can access. You
will need to create a separate data source for each GCP project you want to monitor.

Enabling a Google Cloud API

After selecting your project, use the left-hand menu to navigate to APIs & Services. Then, follow
these steps:

1. Select + Enable APIs and Services.

2. Use the search box to locate Stackdriver Monitoring API and then select it.

3. Enable the API.

4. Go back to the APIs & Services dashboard and, again, select + Enable APIs and Services.

5. This time, search for Cloud Resource Manager API and select it.

6. Enable the API.

Once you have enabled the API, you should be able to create a service account with the necessary
permissions to access it.

Creating a Google service account

Go back to the APIs & Services dashboard and navigate to Credentials. Follow these steps:

1. Click + CREATE CREDENTIALS and select Service account from the drop-down menu:

Figure 17.19 – Google Cloud – creating a service account

2. Fill in the following fields (fill them in at your discretion) and click CREATE AND CONTINUE
(see the following screenshot):

 � Service account name: Grafana Data Source

Configuring a GCM data source 495

 � Service account description: Service account for Grafana Stackdriver
data source (or something similarly descriptive):

Figure 17.20 – Specifying service account details

3. Now, add the Monitoring Viewer role, using the search box to locate it, and then click Continue.

4. Skip the optional Grant users access to this service account step and click Done.

Cloud Monitoring AWS, Azure, and GCP496

5. To create the necessary credentials, go to the Credentials page. Under Service accounts, you
should see your new service account. Click on it to go to the Service account details page:

Figure 17.21 – Service account details

6. Click on the KEYS tab, click on ADD KEY, and select Create new key:

Figure 17.22 – Create new key

Configuring a GCM data source 497

7. Leave JSON selected and click CREATE. You’ll get a confirmation popup that specifies the
name of the JWT key file; a JSON file will be downloaded:

Figure 17.23 – JSON key type

Locate the JSON file containing your credentials for the next steps.

Configuring a new Grafana connection for GCM

Now that you have the necessary JWT credentials, there’s not much more involved. Back in Grafana,
go to Connections | Add new connection and follow these steps:

1. Search for and select Google Cloud Monitoring.

2. Click Add new data source.

3. Fill in the following details:

 � Name: Google Cloud Monitoring

 � Authentication | Authentication Type: Google JWT File

4. Drop your JSON JWT file into Drop the Google JWT file here.

5. If the key was parsed correctly, you should see the contents of Project, Client Email, and
Token URI.

Cloud Monitoring AWS, Azure, and GCP498

6. Click Save & Test to confirm that you have a valid connection to Google Cloud:

Figure 17.24 – GCM data source

Summary 499

And we’re done! From here, you should check the Dashboards tab to see the set of dashboards available
for import. Here is a list of sample dashboards provided with the GCM data source:

• Data Processing Monitoring

• Cloud Functions Monitoring

• GCE VM Instance Monitoring

• GKE Prometheus Pod/Node Monitoring

• Firewall Insights Monitoring

• GCE Network Monitoring

• HTTP/S LB Backend Services

• HTTP/S GCP Load Balancer Monitoring

• Network TCP Load Balancer Monitoring

• MicroService Monitoring

• Cloud Storage Monitoring

• Cloud SQL Monitoring

• Cloud SQL(MySQL) Monitoring

While you may not have many of the services installed, you can see that many commonly used Google
services are covered by these dashboards. As with the previous data sources, these sample dashboards
can provide valuable insights into the creation of dashboards. Open them up, examine how the queries
are set up, step through how the graph is styled, then copy it and make it yours. Good luck!

Summary
In this chapter, we covered Grafana integrations for three of the world’s biggest cloud providers.
Grafana currently provides built-in data sources for Amazon CloudWatch, Azure Monitor Logs, and
Google Cloud Monitoring. While each service can have its own interfaces of varying complexity, the
procedures are remarkably similar. They consist mainly of registering an application (or application
service account), assigning a role to enable or restrict the application permissions, and generating a
client ID and secret. Once you have the secrets, it’s only a matter of plugging them into the data source.

Not only have we reached the end of this chapter, but we’ve reached the end of this book! I hope you
found the previous chapters as informative and enjoyable to read as it was for me to write them. By
the time you read this, Grafana 10 will have undoubtedly experienced several feature releases beyond
the initial rollout and will only continue to grow in terms of its versatility. May your understanding
grow as well. Good luck!

Index

Symbols

+ Expression 58
+ Query 58

A
Add menu 22, 45-47

Create alert rule 22
Import dashboard 22
New dashboard 22

ad hoc analysis 6
ad hoc filters

creating 283
Administration menu 39

Data sources page 39
Default preferences 43
Organizations 44
Plugins page 40
Service accounts 42, 43
Settings 44
Stats and license 45
Teams tab 42
Users page 40, 41

Admin role 429, 444
advanced queries

creating 104

aggregations 123
applying, to query data 94-98
trends, detecting with 94

alert condition 331
alerting 330

alert rules 331
contact points 331
labels 331
metrics, capturing for 330
notification policies 331

Alerting menu 34
Admin page 37
Alert rules page 35, 36
Contact points page 36
Groups page 37
Notification policies 37
Silences page 37

alert messaging, to contact points 352
email contact point, configuring 353, 354
PagerDuty contact point,

configuring 355-358
Slack contact point, configuring 358-362

alert routing
features 366, 367
mute timings 365, 366
specific routing 364, 365
with notification policies 363

Index502

alert rules
alert condition 331, 332, 340
alert evaluation behavior 340, 341
alert metrics 332
alert query 338
annotations, adding 342, 343
application monitoring 347
creating, from dashboard panel 349-351
defining 331
multi-dimensional rules 344-346
notifications, configuring

with labels 343, 344
system monitoring 333-338
time frame 333

Alert tab
monitoring with 74, 75

analysis
expanding, with transformation 164-166

API keys 310
API token

generating 114, 227
application monitoring 347

nginx, configuring 348, 349
nginx, installing 348
Telegraf, configuring 348

application role
setting 487, 488

applications
monitoring 330

application secrets
generating 488, 489

authentication services 447
auto fit panels

dashboard playlists, displaying with 418-420
autoscaling 137
AWS CloudWatch data source

configuring 476
Grafana connection, configuring 482-485

policy, creating 476-479
user, creating 479-482

AWS Management Console 476
axis

setting 133
Axis section 65

settings 66
Soft min/Soft max setting 66
Time Zone setting 66

axis units
setting 134, 135

Azure Log Analytics 490
configuring 491-493

B
bar chart visualization

category data, displaying with 215-218
histogram data, displaying with 220-222

bar gauge 197
building 198-200
settings 197

Bars style 69
batch handling 306
Beaufort scale

reference link 195
bind password

securing 453, 454
bins 219
breadcrumb 45
buckets 219, 281

C
calculation

fields, adding from 149-151
canonical row 285

Index 503

category data
displaying, with bar chart

visualization 215-218
checkpoint 423
classification schemes 404

nomenclature-based scheme 404
semantic-based scheme 404
significance-based scheme 404
structure-based scheme 404

column names
data, filtering by 156, 157

command-line interface (CLI) 229
command-line options

--db 107
--host 107
--input 107
--output 107
--port 107
--stations 107

computational resources
monitoring 329

Connections menu 37
Add a new connection page 38
Data sources page 38

contact point 36
County Warning Area (CWA) 109
cron 263

D
Dashboard content 47
dashboard duplications 422

external dashboard duplications 424
internal dashboard duplications 422, 423

dashboard folders
creating 407
tips, for managing 410, 411
working with 406

dashboard links
creating 294, 295
sharing 301

Dashboard list panel 421
options, setting 421, 422

dashboard permissions
setting 436-438

dashboard playlists 414
creating 414
displaying 416
displaying, in Kiosk mode 417
displaying, in normal mode 416
displaying, in TV mode 417
displaying, with auto fit panels 418-420
editing 420

dashboards
adding, to folder 408, 409
annotating 295
creating 287
designing 228
Elasticsearch annotation queries,

creating 298-300
elements of importance, prioritizing 229
graph panel, annotating 295, 296
information, conveying 228
linking 292
naming 404
naming tips 405, 406
panels, configuring 290-292
sharing 300
sharing, by export option 301
starring 411, 412
tagged annotations, querying 297, 298
tagging 411, 412
tags, adding to 413
tags, deleting 414
template variable, locking down 294
template variables, setting up 287-290
visual context, determining 228

Index504

Dashboards menu 28, 29
Dashboard settings 30
Import selection 31
Library panels 33
New Dashboard 29, 30
New folder option 31
Playlists 32, 33
Snapshots 33

dashboard snapshots
sharing 301

dashboard tags
adding 293

data
overview 4, 5
retrieving 5
storing 5
visualizing 5

Datadog
URL 10

DataFrame 145
data links section 72
data series

generating, in Query tab 54
data server

building 266-271
data source 37, 51

creating 51, 52
data source limitations 98

data source dashboards, exploring 100
querying, for series aggregations 98, 99
querying, for time aggregations 99, 100

Data source menu 56
deduplication 389
Denial of Service (DoS) attack 364
Did You Feel It (DYFI) responses 207
Directed Acyclic Graphs (DAGs) 263
distinguished name 450

Docker
Prometheus, installing from 80-82
URL 11

Docker log
capturing 385-389

Domain Name Service (DNS) 86
drilling down 6
dual Y-axis display 137

relative humidity, graphing 137, 138
wind chill, graphing 139, 140

E
Earthquake Community for Data

Integration (CDI) intensity 207
earthquake data

docker-compose.yml, updating 253
earthquake.py script, modifying 254
InfluxDB bucket, creating 250, 251
InfluxDB data source, creating 251, 252
ingesting 250
loading 254, 255

earthquake data, mapping with
Geomap visualization 209-211

basemap, setting 209
data markers, styling 211-213
map, finishing 214, 215

Editor role 429
Elasticsearch

Grafana, connecting to 271, 272
querying with 273-276
URL 10

Elasticsearch annotation queries
creating 298-300

Elasticsearch, Logstash, and
Kibana (ELK) 10

email contact point
configuring 353, 354

Index 505

ETL script
writing 106-112

evaluation interval 331
existing query

duplicating 58, 59
Explore feature 33, 34
external dashboard duplications 424
extract, transform, and load (ETL) 201, 265

F
Fahrenheit

temperature, converting into 136
favorited designation 404
field override 74, 181
fields

adding 149
adding, from calculation 149-151
concatenating 161
extracting 152-154
labels, converting into 154-156
modifying 151
organizing 152

field types
converting 151, 152

firing state 331
flog

used, for simulating logs 378, 379
Flux 114
folder permissions

setting 434-436
folders

dashboards, adding to 408, 409
deleting 409

G
gauge

colors, setting for 195-197
options 194, 195
threshold values, setting for 195-197

gauge visualization 193, 194
GCM data source

configuring 493
Google Cloud API, enabling 494
Google Service account, creating 494-497
Grafana connection, configuring 497-499

Geomap visualization
earthquake data, mapping with 209
spatial data, exploring with 205

GitHub OAuth 2 authentication 459-462
Google Cloud Environment (GCE) 490, 493
Google Cloud Monitoring (GCM) 493
Google Cloud Platform (GCP) 493
Google OAuth 2 authentication 462-467
Grafana 3

analysis 7, 8
configuring, to use LDAP 451, 452
connecting, to Elasticsearch 271, 272
download link 11, 14
exploration 6, 7
features 10
in Docker container 11, 12
installation for Windows 15
installing 11
launching 372
make 12, 13
Makefile 12, 13
need for 6
observability 9
presentation 8, 9
selecting 10
setting up, for streaming 307
user, looking up 457-459

Index506

Grafana alerting. See alerting
Grafana application

registering 486, 487
Grafana blog 24
Grafana Cloud 15
Grafana Cloud account creation

reference link 15
Grafana configuration 44

testing 454
Grafana connection

configuring, for AWS CloudWatch
data source 482-485

configuring, for Microsoft Azure
Monitor data source 489, 490

Grafana dashboard title bar 45
Add menu 45-47
breadcrumbs 45

Grafana dashboard UI 45
Dashboard content 47

Grafana DataFrame 146
Grafana, for Linux 14

Apt installation 14
Yum installation 14

Grafana, for macOS 13
Homebrew 13
installing, via command line 13

Grafana logo 20
Grafana menu options 26, 27

Administration menu 39
Alerting menu 34
Connections menu 37
Dashboards menu 28
Explore 33, 34
Home dashboard 27

Grafana metrics
configuring 86, 87

Grafana panel user interface 50
data source, creating 51, 52
graph panel, creating 52, 53

Grafana search bar 19, 20
+ (add) menu 22
Help menu 23
Organization menu 21
search box 21
User menu 24

Grafana server
connecting to 15, 16

Grafana visualization 370
graph panel

annotating 295, 296
creating 52, 53
template variable, adding to 279, 280

Graph styles section 67, 68
Bars style 69
Lines options 68
Points style 69
Stack series 69

Gross Domestic Products (GDPs) 219
G Suite application stack 448

H
Heating, Ventilation, and Air

Conditioning (HVAC) system 4
heatmap

histogram data over time,
visualizing with 222-224

Help menu 23
Community 24
Documentation 23
Keyboard shortcuts 24
Support bundles 23

high information-density dashboard
creating 229
designing 232
weather data, ingesting 229

Index 507

high information-density
dashboard, fifth row

adding 247
visibility panel, building 248
wind gust panel, building 248

high information-density
dashboard, first row

adding 232
current conditions panel, building 236, 237
station text panel, building 233, 234
weather data, ingesting 235, 236
weather.py script, modifying 234, 235

high information-density
dashboard, fourth row

adding 244
wind direction stat panel, building 246, 247
wind speed graph panel, building 244, 245

high information-density
dashboard, second row

adding 237
base panel, creating 238
moisture panel, building 240, 241
temperature panel, building 239, 240

high information-density
dashboard, third row

adding 242
barometric pressure panel, building 242, 243
barometric pressure trend panel,

building 243, 244
high-information visibility dashboard

creating 249
designing 249
earthquake data, ingesting 250
second row, adding 257-259
third row, adding 259-262

high-information visibility
dashboard, first row

adding 255

highest-magnitude Stat panel,
building 255, 256

most recent Stat panel, building 257
histogram data

displaying, with bar chart
visualization 220-222

histogram data over time
visualizing, with heatmap 222-224

histograms 219
producing, with transformations 219, 220

Homebrew
URL 13

Home dashboard 18, 19, 27
UI elements 18, 19

I
Identity and Access Management (IAM) 476
InfluxDB bucket

creating 229, 230
InfluxDB database

API token, generating 114, 227
Python Docker container, building 227
setting up 114, 175, 203, 226

InfluxDB data source
configuring 115-119, 175-177,

203-205, 231, 232
InfluxDB server

API token, generating 175, 203
initializing 175, 203, 227
setting up 114

InfluxDB server bucket
data, loading into 177

InfluxQL 114
ingestion

automating 263
interactive development

environment (IDE) 80

Index508

internal dashboard duplications 422, 423
Internet of Things (IoT) 313
interval 56
IoT data

exploring 325, 326

J
joining by field 162
JSON Web Token (JWT) 493

K
Kiosk mode

dashboard playlist, displaying in 417

L
label 85
Labels To fields 154-156
layout

considering 262, 263
LDAP authentication server

setting up 448
legend

working with 140, 141
legend aggregations

enabling 142-144
legend contents

setting 141, 142
Legend section 64

settings 64
Lightweight Directory Access

Protocol (LDAP) 448
Limit transformation 159
Lines options 68

connect null values 69
fill opacity 68
gradient mode 68

logs
promtail service, configuring 380
promtail service, reconfiguring in

Docker Compose 381-384
querying, with Explore 390-398
simulating, with flog 378, 379

Loki
installing 372
system logs, loading 370

Loki log aggregation 369
Loki log data

visualizing, with Explore 374-378
Lucene 273

M
memory resources

monitoring 329
merging query 162-164
Message Queuing Telemetry

Transport (MQTT) 313
pipeline architecture 313

messages, generating to IoT
data pipeline 316

mqtt_pub.py script, reviewing 317
mqtt_pub.py script, running 323
simulated metrics data, examining 316, 317

metrics
capturing, for alerting 330
querying, with Explore 390-398

Microsoft Azure Monitor data source
application role, setting 487, 488
application secrets, generating 488, 489
configuring 485
Grafana application, registering 486, 487
Grafana connection, configuring 489, 490

minimum interval
setting 130-133

Index 509

Modified Mercalli Intensity (MMI) 207, 222
monitoring 328

applications 330
processes 328
system resources 328

Mosquitto broker
installing 314, 315

mqtt_pub.py script, reviewing 317
command line, parsing 318
CSV, loading and parsing 319, 320
messages, building 320-322
messages, sending 322, 323
program flow, controlling 318, 319

mqtt_pub.py script, running 323-325
Python container, building 323, 324

multi-dimensional rule 344

N
namespace 86
National Weather Service (NWS) 103, 177
networking service 370
new earthquake dataset, ingesting 205

data, loading 208
dump_eq_data(), adding 206-208
main(), updating 206
process_cli(), updating 205

nginx
configuring 348, 349
installing 348

nomenclature-based scheme 404
non-numerical values (NaN) 340
normal mode

dashboard playlist, displaying in 416
notification policies

used, for alert routing 363

O
OAuth 2 448

authenticating with 459
GitHub OAuth 2 authentication 459-462
Google OAuth 2 authentication 462-467

observability 305, 328
reference link 305

Okta 448
authenticating with 468-473

Open311
URL 266

open-high-low-close (OHLC) chart 159
OpenLDAP server

authenticating with 448
bind password, securing 453, 454
Grafana configuration, testing 454
Grafana, configuring to use LDAP 451, 452
setting up 449-451
user, adding to 455-457
user, looking up in Grafana 457-459

Open Telemetry project 330
Organization menu 21
organization roles

setting 434
organizations 428

administering 441
creating 445
default preferences, renaming 445
managing 444
switching between 445

P
PagerDuty contact point

configuring 355-358
Panel options section 61

global settings 62
panel title and description, setting 62, 63

Index510

panel queries
data, filtering by 158

panels 19
configuring 290-292
repeating, with template variable 284-286

panel settings
Axis section 65
data links section 72
editing 60
Graph styles section 67, 68
Legend section 64
Panel options section 61
panel visualizations, selecting 60
Standard options section 70, 71
Thresholds section 73
Tooltip section 63
Value mappings section 73

panel visualizations
selecting 60

permission rules 440, 441
permissions

setting 433
permission target 435
pipeline stages 380
Points style 69
power-law distribution 219
processes

monitoring 328
Prometheus 80

Explore, using for investigation 84-86
exploring 84
Grafana metrics, configuring 86, 87
installing, from Docker 80-82

Prometheus data source
configuring 82-84
limitations 98
metrics query, typing in 88-91
querying 87, 88

querying, for memory metrics 93
querying, for process metrics 91-93

Prometheus metrics 369
Prometheus server

installing 80
Promtail

installing 371
promtail service

configuring 379, 380
reconfiguring, in Docker Compose 381-384

Python Docker container
building 177, 205, 227

Q
Query 57
Query controls 57

copy icon 57
delete icon 58
drag and drop icon 58
visibility icon 58

Query inspector 57
used, for debugging queries 125-128

Query options 56
max data points 56
min interval 56
relative time 56

Query tab 54
data series, generating 54
existing query, duplicating 58, 59
features 55
Transform tab 59

Query tab, features 55
+ Expression 58
+ Query 58
data source menu 56
Query 57
Query inspector 57
Query options 56

Index 511

R
Random Walk 51
real-time data

streaming, from Telegraf to Grafana 306
Reduce transformation 159
regression to the mean 130
regular expression (regex) 129
relational database management

systems (RDBMSs) 107
retention policy, for database 117
roles 42, 428

Admin 429
Editor 429
Super Admin 429
Viewer 428

rows 19
reducing 158
repeating, with template variable 284-286

row values
data, filtering by 157, 158

S
script

running 112-114
search box 21
semantic-based scheme 404
series aggregations

limits, querying for 98, 99
Series to rows 161, 162
server Docker containers

launching 104-226
service account key 310
significance-based scheme 404
Simple Mail Transfer Protocol

(SMTP) 353, 430

Slack contact point
configuring 358-361

Snapshots 33
Soft min/Soft max setting 66
spatial data

exploring, with Geomap visualization 205
splitting the difference 123
Splunk

URL 10
Stack series 69
Standard options section 70, 71

color scheme 72
display name 72
no value 72
unit 71

starred dashboards 27, 411
starred designation 404
Stat styles

settings 189, 190
stat visualization 186

value mappings, defining in 190-193
stat visualization panel

creating 186-189
storage monitoring 330
streaming 306

Grafana, setting up for 307
structure-based scheme 404
Super Admin 429, 444

users, elevating to 443
system logs

Grafana, launching 372
loading, into Loki 370
Loki data source, creating 373, 374
Loki, installing 372
networking service 370
Promtail, installing 371

Index512

system resources monitoring 328
computational resources 329
memory resources 329
storage 330

T
tables

combining 160
table visualization

aggregations, comparing 178-181
display name, setting 184, 185
field settings, overriding 181-184
reviewing 178

tagged annotations
querying 297, 298

tags 85
adding, to dashboards 413

target 12
team 429

members 440
settings 438-440

Telegraf 308
configuring 348
running 311-313

Telegraf agent
configuring 308
input plugins, setting up 308, 309
installing 308
output plugins, setting up 309
service account key, generating 310

Telegraf MQTT consumer
configuring 314

temperature
converting, into Fahrenheit 136

template variable 127
adding, to graph panel 279, 280
additional variables, templating 280-283

ad hoc filters, creating 283
characteristics 277
creating 276-279
locking down 294
rows and panels, repeating with 284-286
setting, on dashboard 287-290

Terms of Service (ToS) 364
TestData data source

installing 148
Thresholds section 73

field overrides 74
time-aggregated data

displaying 125
time aggregations

limits, querying for 99, 100
time interval effects

observing 128-130
time series 5
time-series database (TSDB) 5
time-series dataset 5
time series data visualization 119-124

minimum interval, setting 130-133
queries, debugging with Query

inspector 125-128
timestamp 5
Time Zone setting 66
tokens 275
Tooltip section 63

settings 64
transformation functions 146, 147

capabilities 146
transformations

analysis, expanding with 164-166
chaining, into visualization pipeline 167-171
filtering 156
histograms, producing with 219, 220
limitations 171
selecting 149

Index 513

Transform tab 59
Transport Layer Security (TLS) 449
TV mode

dashboard playlist, displaying in 417

U
United States Geological Survey (USGS) 201
user interface (UI) 17
User menu 24

Change password 26
Notification history 26
Profile page 25, 26
Sign out 26

user organization membership
setting 443, 444

users 428
adding 429
adding, by invitation only 429-431
adding, by self-service model 432, 433
adding, to OpenLDAP server 455-457
administering 441
deleting 442
elevating, to Super Admin 443
managing 441, 442

V
value mappings 73

defining, in stat visualization 190-193
setting 73
types 73

Viewer 42
Viewer role 428
visualization pipeline 173

transformations, chaining into 167-171

W
weather data

InfluxDB bucket, creating 229, 230
InfluxDB data source, configuring 231, 232
ingesting 229

Windows
Grafana installation 15

Y
Y-axis

autoscaling 136, 137

Z
Zabbix

URL 10

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Alteryx Designer Cookbook

Alberto Guisande

ISBN: 9781804615089

• Speed up the cleansing, data preparing, and shaping process

• Perform operations and transformations on the data to suit your needs

• Blend different types of data sources for analysis

• Pivot and un-pivot the data for easy manipulation

• Perform aggregations and calculations on the data

• Encapsulate reusable logic into macros

• Develop high-quality, data-driven reports to improve consistency

https://packt.link/9781804615089

517Other Books You May Enjoy

Splunk 9.x Enterprise Certified Admin Guide

Srikanth Yarlagadda

ISBN: 9781803230238

• Explore Splunk Enterprise 9.x features and usage

• Install, configure, and manage licenses and users for Splunk

• Create and manage indexes for data storage

• Explore Splunk configuration files, their precedence, and troubleshooting

• Manage forwarders and source data into Splunk from various resources

• Parse and transform data to make it easy to use

• Extract fields from data at search and index time for data analysis

• Engage with mock exam questions to simulate the Splunk admin exam

https://packt.link/9781803230238

518

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Learn Grafana 10.x, we’d love to hear your thoughts! If you purchased the book
from Amazon, please click here to go straight to the Amazon review page for this book and share
your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-803-23108-4
https://packt.link/r/1-803-23108-4

519

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803231082

1. Submit your proof of purchase

2. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803231082

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1 – Getting Started
with Grafana
	Chapter 1: Introducing Data Visualization with Grafana
	Technical requirements
	Appreciating data and visualization
	Storing, retrieving, and visualizing data

	Why Grafana?
	Exploration
	Analysis
	Presentation
	Observability
	Choosing Grafana

	Installing Grafana
	Grafana in a Docker container
	Make and Makefile
	Grafana for macOS
	Grafana for Linux
	Grafana for Windows
	Grafana Cloud

	Connecting to the Grafana server
	Summary
	Further reading

	Chapter 2: Touring the Grafana Interface
	Technical requirements
	Exploring Grafana—the Home dashboard
	Introducing the Grafana search bar
	Grafana logo
	Organization menu
	Search box
	+ (add) menu
	Help
	Grafana blog
	User menu

	Expanding Grafana’s main menu
	Home
	Starred
	Dashboards
	Explore
	Alerting
	Connections
	Administration

	Exploring the Grafana dashboard UI
	Grafana dashboard title bar
	Dashboard content

	Summary

	Chapter 3: Diving into Grafana's Time Series Visualization
	Touring the Grafana panel UI
	Creating a simple data source
	Creating a graph panel

	Generating data series in the Query tab
	What is a query?
	Query tab features
	Duplicating an existing query
	Transform

	Editing the panel settings
	Selecting panel visualizations
	The Panel options section
	The Tooltip section
	The Legend section
	The Axis section
	The Graph styles section
	The Standard options section
	The Data links section
	The Value mappings section
	The Thresholds section

	Monitoring with the Alert tab
	Further exploration
	Summary

	Part 2 – Real-World Grafana
	Chapter 4: Connecting Grafana to a Prometheus Data Source
	Technical requirements
	Installing the Prometheus server
	Installing Prometheus from Docker
	Configuring the Prometheus data source

	Exploring Prometheus
	Using Explore for investigation
	Configuring Grafana metrics

	Querying the Prometheus data source
	Typing in a metrics query
	Querying for process metrics
	Querying for memory metrics

	Detecting trends with aggregations
	Applying aggregations to our query data

	Understanding the data source limitations
	Querying limits for series aggregations
	Querying limits for time aggregations
	Exploring data source dashboards

	Summary

	Chapter 5: Extracting and Visualizing Data with InfluxDB and Grafana
	Technical requirements
	Making advanced queries
	Launching server Docker containers
	Writing the ETL script
	Running the script
	Setting up an InfluxDB database
	Configuring the InfluxDB data source

	Understanding the time series data visualization
	Displaying time-aggregated data
	Debugging queries with Query inspector
	Observing time interval effects
	Setting the minimum interval

	Setting the axis
	Setting axis units
	Converting temperature into Fahrenheit
	Autoscaling the Y axis
	Dual y axis display

	Working with legends
	Setting legend contents
	Enabling legend aggregations

	Summary

	Chapter 6: Shaping Data with Grafana Transformations
	About Grafana DataFrames and transformations
	Exploring the various transformation functions
	Installing the TestData data source
	Selecting transformations
	Adding fields
	Modifying fields
	Filtering results
	Reducing rows
	Combining tables

	Expanding analysis with a transformation
	Chaining transformations into a visualization pipeline
	Limitations of transformations

	Summary

	Chapter 7: Surveying Key Grafana Visualizations
	Technical requirements
	Launching server Docker containers
	Setting up the InfluxDB database
	Initializing the InfluxDB server
	Generating an API token
	Configuring the InfluxDB data source
	Building the Python Docker container
	Loading the data

	Reviewing the table visualization
	Comparing aggregations
	Overriding field settings
	Setting a display name

	Introducing the stat visualization
	Creating a stat visualization panel
	Setting stat styles
	Defining value mappings in a stat visualization

	Adding visual interest with a gauge
	Exploring the gauge options
	Setting the threshold values and colors

	Going linear with a bar gauge
	Exploring the bar gauge settings
	Building a bar gauge

	Summary

	Chapter 8: Surveying Additional Grafana Visualizations
	Technical requirements
	Launching server Docker containers
	Setting up the InfluxDB database
	Initializing the InfluxDB server
	Generating an API token

	Configuring the InfluxDB data source
	Building the Python Docker container

	Exploring spatial data with the Geomap visualization
	Ingesting a new earthquake dataset
	Mapping earthquake data with the Geomap visualization

	Displaying category data with a bar chart visualization
	Understanding histograms
	Producing histograms with transformations

	Displaying histogram data with the bar chart visualization
	Visualizing histogram data over time with the heatmap
	Summary

	Chapter 9: Creating Insightful Dashboards
	Technical requirements
	Launching server Docker containers
	Setting up the InfluxDB database

	Designing a dashboard
	Conveying information
	Determining the visual context
	Prioritizing elements of importance

	Creating a high information-density dashboard
	Ingesting the weather data
	Designing the dashboard
	Adding the first row
	Adding the second row
	Adding the third row
	Adding the fourth row
	Adding the fifth row

	Creating a high-information visibility dashboard
	Designing the dashboard
	Ingesting the earthquake data
	Adding the first row
	Adding the second row
	Adding the third row

	Parting thoughts
	Considering layout
	Automating ingestion

	Summary

	Chapter 10: Working with Advanced Dashboard Features and Elasticsearch
	Technical requirements
	Building the data server
	Connecting Grafana to Elasticsearch
	Querying with Elasticsearch
	Creating a template variable
	Adding template variables to the graph panel
	Templating additional variables
	Creating ad hoc filters
	Repeating rows and panels with template variables

	Creating a new dashboard
	Setting up the template variables
	Configuring the panels

	Linking dashboards
	Adding dashboard tags
	Locking down a template variable
	Creating dashboard links

	Annotating dashboards
	Annotating the graph panel
	Querying tagged annotations
	Creating Elasticsearch annotation queries

	Sharing dashboards
	Sharing dashboard links
	Sharing dashboards by exporting
	Sharing dashboard snapshots

	Summary

	Chapter 11: Streaming Real-Time IoT Data from Telegraf Agent to Grafana Live
	Technical requirements
	Streaming real-time data from Telegraf to Grafana
	Setting up Grafana for streaming
	Installing the Telegraf agent
	Configuring the Telegraf agent
	Running Telegraf

	Streaming IoT data with MQTT and Mosquitto
	Describing the pipeline architecture
	Configuring the Telegraf MQTT consumer
	Installing the Mosquitto broker

	Generating messages to an IoT data pipeline
	Examining the simulated metrics data
	Reviewing the mqtt_pub.py script
	Running the mqtt_pub.py script
	Exploring the IoT data

	Summary

	Chapter 12: Monitoring Data Streams with Grafana Alerts
	Technical requirements
	Monitoring and observability
	Monitoring processes
	Monitoring system resources
	Monitoring applications
	Capturing metrics for alerting

	Alerting in Grafana
	Alert rules
	Labels
	Notification policies
	Contact points

	Defining alert rules
	What condition…
	What metrics…
	How long…
	Monitoring systems
	Monitoring applications

	Alert messaging to contact points
	Configuring an email contact point
	Configuring a PagerDuty contact point
	Configuring a Slack contact point

	Routing alerts with notification policies
	Specific routing
	Mute timings
	On your own

	Summary

	Chapter 13: Exploring Log Data with Grafana’s Loki
	Technical requirements
	Loading system logs into Loki
	Networking our services
	Installing Promtail
	Installing Loki
	Launching Grafana
	Creating a Loki data source

	Visualizing Loki log data with Explore
	Simulating logs with flog
	Configuring promtail
	Promtail in Docker Compose

	Alternative Docker log capture
	Querying logs and metrics with Explore
	Summary

	Part 3 – Managing Grafana
	Chapter 14: Organizing Dashboards and Folders
	Managing dashboards and folders
	Naming a dashboard
	Dashboard naming tips
	Working with dashboard folders
	Tips to manage dashboard folders

	Starring and tagging dashboards
	Marking dashboards as favorites
	Tagging dashboards

	Building and running dashboard playlists
	Creating a playlist
	Displaying a playlist
	Displaying playlists in normal mode
	Displaying playlists in TV mode
	Displaying playlists in Kiosk mode
	Displaying playlists with auto fit panels
	Editing a playlist

	Exploring the Dashboard list panel
	Setting Dashboard list panel options

	Duplicating dashboards
	Internal dashboard duplications
	External dashboard duplications

	Summary

	Chapter 15: Managing Permissions for Users, Teams, and Organizations
	Understanding key permission concepts
	Organizations
	Users
	Roles
	Teams

	Adding users
	Adding users – by invitation only
	Adding users – a self-service model

	Setting permissions
	Setting organization roles
	Setting folder permissions
	Setting dashboard permissions

	Establishing teams
	Setting up a team
	Permission rules

	Administering users and organizations
	Managing users
	Organization admin and Super Admin roles
	Managing organizations

	Summary

	Chapter 16: Authenticating Grafana Logins Using LDAP or OAuth 2 Providers
	Authenticating with OpenLDAP
	Setting up an OpenLDAP server
	Configuring Grafana to use LDAP
	Securing the bind password
	Testing the Grafana configuration
	Adding a user to OpenLDAP
	Looking up a user in Grafana

	Authenticating with OAuth 2
	GitHub OAuth 2 authentication
	Google OAuth 2 authentication

	Authenticating with Okta
	Summary

	Chapter 17: Cloud Monitoring AWS, Azure, and GCP
	Configuring an AWS CloudWatch data source
	Creating the policy
	Creating the user
	Configuring a new Grafana connection for AWS CloudWatch

	Configuring a Microsoft Azure Monitor data source
	Registering the Grafana application
	Setting the application role
	Generating application secrets
	Configuring a new Grafana connection for Azure Monitor
	Configuring Azure Log Analytics

	Configuring a GCM data source
	Enabling a Google Cloud API
	Creating a Google service account
	Configuring a new Grafana connection for GCM

	Summary

	Index
	Other Books You May Enjoy

