
Production
Kubernetes
Building Successful Application Platforms

Josh Rosso, Rich Lander,
Alexander Brand & John Harris

Josh Rosso, Rich Lander,
Alexander Brand, and John Harris

Production Kubernetes
Building Successful Application Platforms

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09230-8

[LSI]

Production Kubernetes
by Josh Rosso, Rich Lander, Alexander Brand, and John Harris

Copyright © 2021 Josh Rosso, Rich Lander, Alexander Brand, and John Harris. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Jeff Bleiel
Production Editor: Christopher Faucher
Copyeditor: Kim Cofer
Proofreader: Piper Editorial Consulting, LLC

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2021: First Edition

Revision History for the First Edition
2021-03-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492092308 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Production Kubernetes, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and VMware Tanzu. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492092308
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. xiii

Preface. xv

1. A Path to Production. 1
Defining Kubernetes 1

The Core Components 2
Beyond Orchestration—Extended Functionality 4
Kubernetes Interfaces 5
Summarizing Kubernetes 7

Defining Application Platforms 7
The Spectrum of Approaches 8
Aligning Your Organizational Needs 10
Summarizing Application Platforms 11

Building Application Platforms on Kubernetes 12
Starting from the Bottom 13
The Abstraction Spectrum 15
Determining Platform Services 16
The Building Blocks 17

Summary 21

2. Deployment Models. 23
Managed Service Versus Roll Your Own 24

Managed Services 24
Roll Your Own 24
Making the Decision 25

Automation 26
Prebuilt Installer 26

iii

Custom Automation 27
Architecture and Topology 28

etcd Deployment Models 28
Cluster Tiers 29
Node Pools 31
Cluster Federation 32

Infrastructure 35
Bare Metal Versus Virtualized 36
Cluster Sizing 39
Compute Infrastructure 41
Networking Infrastructure 42
Automation Strategies 44

Machine Installations 46
Configuration Management 46
Machine Images 46
What to Install 47

Containerized Components 49
Add-ons 50
Upgrades 52

Platform Versioning 52
Plan to Fail 53
Integration Testing 54
Strategies 55

Triggering Mechanisms 60
Summary 61

3. Container Runtime. 63
The Advent of Containers 64
The Open Container Initiative 65

OCI Runtime Specification 65
OCI Image Specification 67

The Container Runtime Interface 69
Starting a Pod 70

Choosing a Runtime 72
Docker 73
containerd 74
CRI-O 75
Kata Containers 76
Virtual Kubelet 77

Summary 78

iv | Table of Contents

4. Container Storage. 79
Storage Considerations 80

Access Modes 80
Volume Expansion 81
Volume Provisioning 81
Backup and Recovery 81
Block Devices and File and Object Storage 82
Ephemeral Data 83
Choosing a Storage Provider 83

Kubernetes Storage Primitives 83
Persistent Volumes and Claims 83
Storage Classes 86

The Container Storage Interface (CSI) 87
CSI Controller 88
CSI Node 89

Implementing Storage as a Service 89
Installation 90
Exposing Storage Options 92
Consuming Storage 94
Resizing 96
Snapshots 97

Summary 99

5. Pod Networking. 101
Networking Considerations 102

IP Address Management 102
Routing Protocols 104
Encapsulation and Tunneling 106
Workload Routability 108
IPv4 and IPv6 109
Encrypted Workload Traffic 109
Network Policy 110
Summary: Networking Considerations 112

The Container Networking Interface (CNI) 112
CNI Installation 114

CNI Plug-ins 116
Calico 117
Cilium 120
AWS VPC CNI 123
Multus 125
Additional Plug-ins 126

Summary 126

Table of Contents | v

6. Service Routing. 127
Kubernetes Services 128

The Service Abstraction 128
Endpoints 135
Service Implementation Details 138
Service Discovery 148
DNS Service Performance 151

Ingress 152
The Case for Ingress 153
The Ingress API 154
Ingress Controllers and How They Work 156
Ingress Traffic Patterns 157
Choosing an Ingress Controller 161
Ingress Controller Deployment Considerations 162
DNS and Its Role in Ingress 165
Handling TLS Certificates 166

Service Mesh 169
When (Not) to Use a Service Mesh 169
The Service Mesh Interface (SMI) 170
The Data Plane Proxy 173
Service Mesh on Kubernetes 175
Data Plane Architecture 179
Adopting a Service Mesh 181

Summary 184

7. Secret Management. 187
Defense in Depth 188

Disk Encryption 189
Transport Security 190
Application Encryption 190

The Kubernetes Secret API 191
Secret Consumption Models 193
Secret Data in etcd 196
Static-Key Encryption 198
Envelope Encryption 201

External Providers 203
Vault 203
Cyberark 203
Injection Integration 204
CSI Integration 208

Secrets in the Declarative World 210
Sealing Secrets 211

vi | Table of Contents

Sealed Secrets Controller 211
Key Renewal 214
Multicluster Models 215

Best Practices for Secrets 215
Always Audit Secret Interaction 215
Don’t Leak Secrets 216
Prefer Volumes Over Environment Variables 216
Make Secret Store Providers Unknown to Your Application 216

Summary 217

8. Admission Control. 219
The Kubernetes Admission Chain 220
In-Tree Admission Controllers 222
Webhooks 223

Configuring Webhook Admission Controllers 225
Webhook Design Considerations 227

Writing a Mutating Webhook 228
Plain HTTPS Handler 229
Controller Runtime 231

Centralized Policy Systems 234
Summary 241

9. Observability. 243
Logging Mechanics 244

Container Log Processing 244
Kubernetes Audit Logs 247
Kubernetes Events 249
Alerting on Logs 250
Security Implications 251

Metrics 251
Prometheus 251
Long-Term Storage 253
Pushing Metrics 253
Custom Metrics 253
Organization and Federation 254
Alerts 255
Showback and Chargeback 257
Metrics Components 260

Distributed Tracing 269
OpenTracing and OpenTelemetry 269
Tracing Components 270
Application Instrumentation 272

Table of Contents | vii

Service Meshes 272
Summary 272

10. Identity. 273
User Identity 274

Authentication Methods 275
Implementing Least Privilege Permissions for Users 285

Application/Workload Identity 288
Shared Secrets 289
Network Identity 289
Service Account Tokens (SAT) 293
Projected Service Account Tokens (PSAT) 297
Platform Mediated Node Identity 299

Summary 311

11. Building Platform Services. 313
Points of Extension 314

Plug-in Extensions 314
Webhook Extensions 315
Operator Extensions 316

The Operator Pattern 317
Kubernetes Controllers 317
Custom Resources 318

Operator Use Cases 323
Platform Utilities 323
General-Purpose Workload Operators 324
App-Specific Operators 324

Developing Operators 325
Operator Development Tooling 325
Data Model Design 329
Logic Implementation 331

Extending the Scheduler 347
Predicates and Priorities 348
Scheduling Policies 348
Scheduling Profiles 350
Multiple Schedulers 350
Custom Scheduler 350

Summary 351

12. Multitenancy. 353
Degrees of Isolation 354

Single-Tenant Clusters 354

viii | Table of Contents

Multitenant Clusters 355
The Namespace Boundary 357
Multitenancy in Kubernetes 358

Role-Based Access Control (RBAC) 358
Resource Quotas 360
Admission Webhooks 361
Resource Requests and Limits 363
Network Policies 368
Pod Security Policies 370
Multitenant Platform Services 374

Summary 375

13. Autoscaling. 377
Types of Scaling 378
Application Architecture 379
Workload Autoscaling 380

Horizontal Pod Autoscaler 380
Vertical Pod Autoscaler 384
Autoscaling with Custom Metrics 387
Cluster Proportional Autoscaler 388
Custom Autoscaling 389

Cluster Autoscaling 389
Cluster Overprovisioning 393

Summary 395

14. Application Considerations. 397
Deploying Applications to Kubernetes 398

Templating Deployment Manifests 398
Packaging Applications for Kubernetes 399

Ingesting Configuration and Secrets 400
Kubernetes ConfigMaps and Secrets 400
Obtaining Configuration from External Systems 403

Handling Rescheduling Events 404
Pre-stop Container Life Cycle Hook 404
Graceful Container Shutdown 405
Satisfying Availability Requirements 407

State Probes 408
Liveness Probes 409
Readiness Probes 410
Startup Probes 411
Implementing Probes 412

Pod Resource Requests and Limits 413

Table of Contents | ix

Resource Requests 413
Resource Limits 414

Application Logs 415
What to Log 415
Unstructured Versus Structured Logs 416
Contextual Information in Logs 416

Exposing Metrics 416
Instrumenting Applications 417
USE Method 419
RED Method 419
The Four Golden Signals 419
App-Specific Metrics 419

Instrumenting Services for Distributed Tracing 420
Initializing the Tracer 420
Creating Spans 421
Propagate Context 422

Summary 423

15. Software Supply Chain. 425
Building Container Images 426

The Golden Base Images Antipattern 428
Choosing a Base Image 429
Runtime User 430
Pinning Package Versions 430
Build Versus Runtime Image 431
Cloud Native Buildpacks 432

Image Registries 434
Vulnerability Scanning 435
Quarantine Workflow 437
Image Signing 438

Continuous Delivery 439
Integrating Builds into a Pipeline 440
Push-Based Deployments 443
Rollout Patterns 445
GitOps 446

Summary 448

16. Platform Abstractions. 449
Platform Exposure 450
Self-Service Onboarding 451
The Spectrum of Abstraction 453

Command-Line Tooling 454

x | Table of Contents

Abstraction Through Templating 455
Abstracting Kubernetes Primitives 458
Making Kubernetes Invisible 462

Summary 464

Index. 465

Table of Contents | xi

Foreword

It has been more than six years since we publicly released Kubernetes. I was there at
the start and actually submitted the first commit to the Kubernetes project. (That isn’t
as impressive as it sounds! It was a maintenance task as part of creating a clean repo
for public release.) I can confidently say that the success Kubernetes has seen is some‐
thing we had hoped for but didn’t really expect. That success is based on a large com‐
munity of dedicated and welcoming contributors along with a set of practitioners
who bridge the gap to the real world.

I’m lucky enough to have worked with the authors of Production Kubernetes at the
startup (Heptio) that I cofounded with the mission to bring Kubernetes to typical
enterprises. The success of Heptio is, in large part, due to my colleagues’ efforts in
creating a direct connection with real users of Kubernetes who are solving real prob‐
lems. I’m grateful to each one of them. This book captures that on-the-ground experi‐
ence to give teams the tools they need to really make Kubernetes work in a
production environment.

My entire professional career has been based on building systems aimed at applica‐
tion teams and developers. It started with Microsoft Internet Explorer and then con‐
tinued with Windows Presentation Foundation and then moved to cloud with Google
Compute Engine and Kubernetes. Again and again I’ve seen those building platforms
suffer from what I call “The Platform Builder’s Curse.” The people who are building
the platforms are focused on a longer time horizon and the challenge of building a
foundation that will, hopefully, last decades. But that focus creates a blind spot to the
problems that users are having right now. Oftentimes we are so busy building a thing
we don’t have the time and problems that lead us to actually use the thing we are
building.

xiii

The only way to defeat the platform builder’s curse is to actively seek information
from outside our platform-builder bubble. This is what the Heptio Field Engineering
team (and later the VMware Kubernetes Architecture Team—KAT) did for me.
Beyond helping a wide variety of customers across industries be successful with
Kubernetes, the team is a critical window into the reality of how the “theory” of our
platform is applied.

This problem is only exacerbated by the thriving ecosystem that has been built up
around Kubernetes and the Cloud Native Computing Foundation (CNCF). This
includes both projects that are part of the CNCF and those that are in the larger orbit.
I describe this ecosystem as “beautiful chaos.” It is a rainforest of projects with vary‐
ing degrees of overlap and maturity. This is what innovation looks like! But, just like
exploring a rainforest, exploring this ecosystem requires dedication and time, and it
comes with risks. New users to the world of Kubernetes often don’t have the time or
capacity to become experts in the larger ecosystem.

Production Kubernetes maps out the parts of that ecosystem, when individual tools
and projects are appropriate, and demonstrates how to evaluate the right tool for the
problems the reader is facing. This advice goes beyond just telling readers to use a
particular tool. It is a larger framework for understanding the problem a class of tools
solves, knowing whether you have that problem, being familiar with the strengths
and weaknesses to different approaches, and offering practical advice for getting
going. For those looking to take Kubernetes into production, this information is gold!

In conclusion, I’d like to send a big “Thank You” to Josh, Rich, Alex, and John. Their
experience has made many customers directly successful, has taught me a lot about
the thing that we started more than six years ago, and now, through this book, will
provide critical advice to countless more users.

— Joe Beda
Principal Engineer for VMware Tanzu,

Cocreator of Kubernetes,
Seattle, January 2021

xiv | Foreword

Preface

Kubernetes is a remarkably powerful technology and has achieved a meteoric rise in
popularity. It has formed the basis for genuine advances in the way we manage soft‐
ware deployments. API-driven software and distributed systems were well estab‐
lished, if not widely adopted, when Kubernetes emerged. It delivered excellent
renditions of these principles, which are foundational to its success, but it also deliv‐
ered something else that is vital. In the recent past, software that autonomously con‐
verged on declared, desired state was possible only in giant technology companies
with the most talented engineering teams. Now, highly available, self-healing,
autoscaling software deployments are within reach of every organization, thanks to
the Kubernetes project. There is a future in front of us where software systems accept
broad, high-level directives from us and execute upon them to deliver desired out‐
comes by discovering conditions, navigating changing obstacles, and repairing prob‐
lems without our intervention. Furthermore, these systems will do it faster and more
reliably than we ever could with manual operations. Kubernetes has brought us all
much closer to that future. However, that power and capability comes at the cost of
some additional complexity. The desire to share our experiences helping others navi‐
gate that complexity is why we decided to write this book.

You should read this book if you want to use Kubernetes to build a production-grade
application platform. If you are looking for a book to help you get started with Kuber‐
netes, or a text on how Kubernetes works, this is not the right book. There is a wealth
of information on these subjects in other books, in the official documentation, and in
countless blog posts and the source code itself. We recommend pairing the consump‐
tion of this book with your own research and testing for the solutions we discuss, so
we rarely dive deeply into step-by-step tutorial style examples. We try to cover as
much theory as necessary and leave most of the implementation as an exercise to the
reader.

xv

MINH HAI, TRAN

Throughout this book, you’ll find guidance in the form of options, tooling, patterns,
and practices. It’s important to read this guidance with an understanding of how the
authors view the practice of building application platforms. We are engineers and
architects who get deployed across many Fortune 500 companies to help them take
their platform aspirations from idea to production. We have been using Kubernetes
as the foundation for getting there since as early as 2015, when Kubernetes reached
1.0. We have tried as much as possible to focus on patterns and philosophy rather
than on tools, as new tooling appears quicker than we can write! However, we inevi‐
tably have to demonstrate those patterns with the most appropriate tool du jour.

We have had major successes guiding teams through their cloud native journey to
completely transform how they build and deliver software. That said, we have also
had our doses of failure. A common reason for failure is an organization’s misconcep‐
tion of what Kubernetes will solve for. This is why we dive so deep into the concept
early on. Over this time we’ve found several areas to be especially interesting for our
customers. Conversations that help customers get further on their path to produc‐
tion, or even help them define it, have become routine. These conversations became
so common that we decided maybe it’s time to write a book!

While we’ve made this journey to production with organizations time and time again,
there is only one key consistency across them. This is that the road never looks the
same, no matter how badly we sometimes want it to. With this in mind, we want to
set the expectation that if you’re going into this book looking for the “5-step program”
for getting to production or the “10 things every Kubernetes user should know,”
you’re going to be frustrated. We’re here to talk about the many decision points and
the traps we’ve seen, and to back it up with concrete examples and anecdotes when
appropriate. Best practices exist but must always be viewed through the lens of prag‐
matism. There is no one-size-fits-all approach, and “It depends” is an entirely valid
answer to many of the questions you’ll inevitably confront on the journey.

That said, we highly encourage you to challenge this book! When working with clients
we’re always encouraging them to challenge and augment our guidance. Knowledge is
fluid, and we are always updating our approaches based on new features, informa‐
tion, and constraints. You should continue that trend; as the cloud native space con‐
tinues to evolve, you’ll certainly decide to take alternative roads from what we
recommended. We’re here to tell you about the ones we’ve been down so you can
weigh our perspective against your own.

xvi | Preface

MINH HAI, TRAN

MINH HAI, TRAN

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Kubernetes kinds are capitalized, as in Pod, Service, and StatefulSet.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download and
discussion at https://github.com/production-kubernetes.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

Preface | xvii

https://github.com/production-kubernetes
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Production Kubernetes
by Josh Rosso, Rich Lander, Alexander Brand, and John Harris (O’Reilly). Copyright
2021 Josh Rosso, Rich Lander, Alexander Brand, and John Harris,
978-1-492-09231-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xviii | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/production-kubernetes.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
The authors would like to thank Katie Gamanji, Michael Goodness, Jim Weber, Jed
Salazar, Tony Scully, Monica Rodriguez, Kris Dockery, Ralph Bankston, Steve Sloka,
Aaron Miller, Tunde Olu-Isa, Alex Withrow, Scott Lowe, Ryan Chapple, and Kenan
Dervisevic for their reviews and feedback on the manuscript. Thanks to Paul Lundin
for encouraging the development of this book and for building the incredible Field
Engineering team at Heptio. Everyone on the team has contributed in some way by
collaborating on and developing many of the ideas and experiences we cover over the
next 450 pages. Thanks also to Joe Beda, Scott Buchanan, Danielle Burrow, and Tim
Coventry-Cox at VMware for their support as we initiated and developed this project.
Finally, thanks to John Devins, Jeff Bleiel, and Christopher Faucher at O’Reilly for
their ongoing support and feedback.

The authors would also like to personally thank the following people:

Josh: I would like to thank Jessica Appelbaum for her absurd levels of support, specif‐
ically blueberry pancakes, while I dedicated my time to this book. I’d also like to
thank my mom, Angela, and dad, Joe, for being my foundation growing up.

Rich: I would like to thank my wife, Taylor, and children, Raina, Jasmine, Max, and
John, for their support and understanding while I took time to work on this book. I
would also like to thank my Mum, Jenny, and my Dad, Norm, for being great role
models.

Alexander: My love and thanks to my amazing wife, Anais, who was incredibly sup‐
portive as I dedicated time to writing this book. I also thank my family, friends, and
colleagues who have helped me become who I am today.

John: I’d like to thank my beautiful wife, Christina, for her love and patience during
my work on this book. Also thanks to my close friends and family for their ongoing
support and encouragement over the years.

Preface | xix

https://oreil.ly/production-kubernetes
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1

A Path to Production

Over the years, the world has experienced wide adoption of Kubernetes within organ‐
izations. Its popularity has unquestionably been accelerated by the proliferation of
containerized workloads and microservices. As operations, infrastructure, and devel‐
opment teams arrive at this inflection point of needing to build, run, and support
these workloads, several are turning to Kubernetes as part of the solution. Kubernetes
is a fairly young project relative to other, massive, open source projects such as Linux.
Evidenced by many of the clients we work with, it is still early days for most users of
Kubernetes. While many organizations have an existing Kubernetes footprint, there
are far fewer that have reached production and even less operating at scale. In this
chapter, we are going to set the stage for the journey many engineering teams are on
with Kubernetes. Specifically, we are going to chart out some key considerations we
look at when defining a path to production.

Defining Kubernetes
Is Kubernetes a platform? Infrastructure? An application? There is no shortage of
thought leaders who can provide you their precise definition of what Kubernetes is.
Instead of adding to this pile of opinions, let’s put our energy into clarifying the prob‐
lems Kubernetes solves. Once defined, we will explore how to build atop this feature
set in a way that moves us toward production outcomes. The ideal state of “Produc‐
tion Kubernetes” implies that we have reached a state where workloads are success‐
fully serving production traffic.

The name Kubernetes can be a bit of an umbrella term. A quick browse on GitHub
reveals the kubernetes organization contains (at the time of this writing) 69 reposito‐
ries. Then there is kubernetes-sigs, which holds around 107 projects. And don’t get
us started on the hundreds of Cloud Native Compute Foundation (CNCF) projects
that play in this landscape! For the sake of this book, Kubernetes will refer exclusively

1

to the core project. So, what is the core? The core project is contained in the kuber‐
netes/kubernetes repository. This is the location for the key components we find in
most Kubernetes clusters. When running a cluster with these components, we can
expect the following functionality:

• Scheduling workloads across many hosts
• Exposing a declarative, extensible, API for interacting with the system
• Providing a CLI, kubectl, for humans to interact with the API server
• Reconciliation from current state of objects to desired state
• Providing a basic service abstraction to aid in routing requests to and from

workloads
• Exposing multiple interfaces to support pluggable networking, storage, and more

These capabilities create what the project itself claims to be, a production-grade con‐
tainer orchestrator. In simpler terms, Kubernetes provides a way for us to run and
schedule containerized workloads on multiple hosts. Keep this primary capability in
mind as we dive deeper. Over time, we hope to prove how this capability, while foun‐
dational, is only part of our journey to production.

The Core Components
What are the components that provide the functionality we have covered? As we have
mentioned, core components reside in the kubernetes/kubernetes repository. Many
of us consume these components in different ways. For example, those running man‐
aged services such as Google Kubernetes Engine (GKE) are likely to find each compo‐
nent present on hosts. Others may be downloading binaries from repositories or
getting signed versions from a vendor. Regardless, anyone can download a Kuber‐
netes release from the kubernetes/kubernetes repository. After downloading and
unpacking a release, binaries may be retrieved using the cluster/get-kube-
binaries.sh command. This will auto-detect your target architecture and download
server and client components. Let’s take a look at this in the following code, and then
explore the key components:

$./cluster/get-kube-binaries.sh

Kubernetes release: v1.18.6
Server: linux/amd64 (to override, set KUBERNETES_SERVER_ARCH)
Client: linux/amd64 (autodetected)

Will download kubernetes-server-linux-amd64.tar.gz from https://dl.k8s.io/v1.18.6
Will download and extract kubernetes-client-linux-amd64.tar.gz
Is this ok? [Y]/n

2 | Chapter 1: A Path to Production

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
MINH HAI, TRAN

Inside the downloaded server components, likely saved to server/kubernetes-server-$
{ARCH}.tar.gz, you’ll find the key items that compose a Kubernetes cluster:

API Server
The primary interaction point for all Kubernetes components and users. This is
where we get, add, delete, and mutate objects. The API server delegates state to a
backend, which is most commonly etcd.

kubelet
The on-host agent that communicates with the API server to report the status of
a node and understand what workloads should be scheduled on it. It communi‐
cates with the host’s container runtime, such as Docker, to ensure workloads
scheduled for the node are started and healthy.

Controller Manager
A set of controllers, bundled in a single binary, that handle reconciliation of
many core objects in Kubernetes. When desired state is declared, e.g., three repli‐
cas in a Deployment, a controller within handles the creation of new Pods to sat‐
isfy this state.

Scheduler
Determines where workloads should run based on what it thinks is the optimal
node. It uses filtering and scoring to make this decision.

Kube Proxy
Implements Kubernetes services providing virtual IPs that can route to backend
Pods. This is accomplished using a packet filtering mechanism on a host such as
iptables or ipvs.

While not an exhaustive list, these are the primary components that make up the core
functionality we have discussed. Architecturally, Figure 1-1 shows how these compo‐
nents play together.

Kubernetes architectures have many variations. For example, many
clusters run kube-apiserver, kube-scheduler, and kube-controller-
manager as containers. This means the control-plane may also run
a container-runtime, kubelet, and kube-proxy. These kinds of
deployment considerations will be covered in the next chapter.

Defining Kubernetes | 3

Figure 1-1. The primary components that make up the Kubernetes cluster. Dashed bor‐
ders represent components that are not part of core Kubernetes.

Beyond Orchestration—Extended Functionality
There are areas where Kubernetes does more than just orchestrate workloads. As
mentioned, the component kube-proxy programs hosts to provide a virtual IP (VIP)
experience for workloads. As a result, internal IP addresses are established and route
to one or many underlying Pods. This concern certainly goes beyond running and
scheduling containerized workloads. In theory, rather than implementing this as part
of core Kubernetes, the project could have defined a Service API and required a plug-
in to implement the Service abstraction. This approach would require users to choose
between a variety of plug-ins in the ecosystem rather than including it as core
functionality.

This is the model many Kubernetes APIs, such as Ingress and NetworkPolicy, take.
For example, creation of an Ingress object in a Kubernetes cluster does not guarantee

4 | Chapter 1: A Path to Production

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

action is taken. In other words, while the API exists, it is not core functionality.
Teams must consider what technology they’d like to plug in to implement this API.
For Ingress, many use a controller such as ingress-nginx, which runs in the cluster. It
implements the API by reading Ingress objects and creating NGINX configurations
for NGINX instances pointed at Pods. However, ingress-nginx is one of many
options. Project Contour implements the same Ingress API but instead programs
instances of envoy, the proxy that underlies Contour. Thanks to this pluggable model,
there are a variety of options available to teams.

Kubernetes Interfaces
Expanding on this idea of adding functionality, we should now explore interfaces.
Kubernetes interfaces enable us to customize and build on the core functionality. We
consider an interface to be a definition or contract on how something can be interac‐
ted with. In software development, this parallels the idea of defining functionality,
which classes or structs may implement. In systems like Kubernetes, we deploy plug-
ins that satisfy these interfaces, providing functionality such as networking.

A specific example of this interface/plug-in relationship is the Container Runtime
Interface (CRI). In the early days of Kubernetes, there was a single container runtime
supported, Docker. While Docker is still present in many clusters today, there is
growing interest in using alternatives such as containerd or CRI-O. Figure 1-2 dem‐
onstrates this relationship with these two container runtimes.

Figure 1-2. Two workload nodes running two different container runtimes. The kubelet
sends commands defined in the CRI such as CreateContainer and expects the runtime
to satisfy the request and respond.

In many interfaces, commands, such as CreateContainerRequest or PortForwardRe
quest, are issued as remote procedure calls (RPCs). In the case of CRI, the communi‐
cation happens over GRPC and the kubelet expects responses such as
CreateContainerResponse and PortForwardResponse. In Figure 1-2, you’ll also
notice two different models for satisfying CRI. CRI-O was built from the ground up
as an implementation of CRI. Thus the kubelet issues these commands directly to it.

Defining Kubernetes | 5

https://kubernetes.github.io/ingress-nginx
https://projectcontour.io
https://github.com/kubernetes/cri-api
https://github.com/kubernetes/cri-api
https://containerd.io
https://github.com/cri-o/cri-o
MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

containerd supports a plug-in that acts as a shim between the kubelet and its own
interfaces. Regardless of the exact architecture, the key is getting the container run‐
time to execute, without the kubelet needing to have operational knowledge of how
this occurs for every possible runtime. This concept is what makes interfaces so pow‐
erful in how we architect, build, and deploy Kubernetes clusters.

Over time, we’ve even seen some functionality removed from the core project in favor
of this plug-in model. These are things that historically existed “in-tree,” meaning
within the kubernetes/kubernetes code base. An example of this is cloud-provider
integrations (CPIs). Most CPIs were traditionally baked into components such as the
kube-controller-manager and the kubelet. These integrations typically handled con‐
cerns such as provisioning load balancers or exposing cloud provider metadata.
Sometimes, especially prior to the creation of the Container Storage Interface (CSI),
these providers provisioned block storage and made it available to the workloads run‐
ning in Kubernetes. That’s a lot of functionality to live in Kubernetes, not to mention
it needs to be re-implemented for every possible provider! As a better solution, sup‐
port was moved into its own interface model, e.g., kubernetes/cloud-provider, that
can be implemented by multiple projects or vendors. Along with minimizing sprawl
in the Kubernetes code base, this enables CPI functionality to be managed out of
band of the core Kubernetes clusters. This includes common procedures such as
upgrades or patching vulnerabilities.

Today, there are several interfaces that enable customization and additional function‐
ality in Kubernetes. What follows is a high-level list, which we’ll expand on through‐
out chapters in this book:

• The Container Networking Interface (CNI) enables networking providers to
define how they do things from IPAM to actual packet routing.

• The Container Storage Interface (CSI) enables storage providers to satisfy intra-
cluster workload requests. Commonly implemented for technologies such as
ceph, vSAN, and EBS.

• The Container Runtime Interface (CRI) enables a variety of runtimes, common
ones including Docker, containerd, and CRI-O. It also has enabled a proliferation
of less traditional runtimes, such as firecracker, which leverages KVM to provi‐
sion a minimal VM.

• The Service Mesh Interface (SMI) is one of the newer interfaces to hit the Kuber‐
netes ecosystem. It hopes to drive consistency when defining things such as traf‐
fic policy, telemetry, and management.

• The Cloud Provider Interface (CPI) enables providers such as VMware, AWS,
Azure, and more to write integration points for their cloud services with Kuber‐
netes clusters.

6 | Chapter 1: A Path to Production

https://github.com/kubernetes/cloud-provider
https://github.com/kubernetes/cloud-provider
https://kubernetes-csi.github.io/docs/introduction.html
https://github.com/kubernetes/cloud-provider
MINH HAI, TRAN

• The Open Container Initiative Runtime Spec. (OCI) standardizes image formats
ensuring that a container image built from one tool, when compliant, can be run
in any OCI-compliant container runtime. This is not directly tied to Kubernetes
but has been an ancillary help in driving the desire to have pluggable container
runtimes (CRI).

Summarizing Kubernetes
Now we have focused in on the scope of Kubernetes. It is a container orchestrator,
with a couple extra features here and there. It also has the ability to be extended and
customized by leveraging plug-ins to interfaces. Kubernetes can be foundational for
many organizations looking for an elegant means of running their applications. How‐
ever, let’s take a step back for a moment. If we were to take the current systems used
to run applications in your organization and replace them with Kubernetes, would
that be enough? For many of us, there is much more involved in the components and
machinery that make up our current “application platform.”

Historically, we have witnessed a lot of pain when organizations hold the view of hav‐
ing a “Kubernetes” strategy—or when they assume that Kubernetes will be an ade‐
quate forcing function for modernizing how they build and run software. Kubernetes
is a technology, a great one, but it really should not be the focal point of where you’re
headed in the modern infrastructure, platform, and/or software realm. We apologize
if this seems obvious, but you’d be surprised how many executive or higher-level
architects we talk to who believe that Kubernetes, by itself, is the answer to problems,
when in actuality their problems revolve around application delivery, software devel‐
opment, or organizational/people issues. Kubernetes is best thought of as a piece of
your puzzle, one that enables you to deliver platforms for your applications. We have
been dancing around this idea of an application platform, which we’ll explore next.

Defining Application Platforms
In our path to production, it is key that we consider the idea of an application plat‐
form. We define an application platform as a viable place to run workloads. Like most
definitions in this book, how that’s satisfied will vary from organization to organiza‐
tion. Targeted outcomes will be vast and desirable to different parts of the business—
for example, happy developers, reduction of operational costs, and quicker feedback
loops in delivering software are a few. The application platform is often where we find
ourselves at the intersection of apps and infrastructure. Concerns such as developer
experience (devx) are typically a key tenet in this area.

Application platforms come in many shapes and sizes. Some largely abstract underly‐
ing concerns such as the IaaS (e.g., AWS) or orchestrator (e.g., Kubernetes). Heroku is
a great example of this model. With it you can easily take a project written in lan‐
guages like Java, PHP, or Go and, using one command, deploy them to production.

Defining Application Platforms | 7

MINH HAI, TRAN

MINH HAI, TRAN

Alongside your app runs many platform services you’d otherwise need to operate
yourself. Things like metrics collection, data services, and continuous delivery (CD).
It also gives you primitives to run highly available workloads that can easily scale.
Does Heroku use Kubernetes? Does it run its own datacenters or run atop AWS?
Who cares? For Heroku users, these details aren’t important. What’s important is del‐
egating these concerns to a provider or platform that enables developers to spend
more time solving business problems. This approach is not unique to cloud services.
RedHat’s OpenShift follows a similar model, where Kubernetes is more of an imple‐
mentation detail and developers and platform operators interact with a set of abstrac‐
tions on top.

Why not stop here? If platforms like Cloud Foundry, OpenShift, and Heroku have
solved these problems for us, why bother with Kubernetes? A major trade-off to
many prebuilt application platforms is the need to conform to their view of the world.
Delegating ownership of the underlying system takes a significant operational weight
off your shoulders. At the same time, if how the platform approaches concerns like
service discovery or secret management does not satisfy your organizational require‐
ments, you may not have the control required to work around that issue. Addition‐
ally, there is the notion of vendor or opinion lock-in. With abstractions come
opinions on how your applications should be architected, packaged, and deployed.
This means that moving to another system may not be trivial. For example, it’s signif‐
icantly easier to move workloads between Google Kubernetes Engine (GKE) and
Amazon Elastic Kubernetes Engine (EKS) than it is between EKS and Cloud Foundry.

The Spectrum of Approaches
At this point, it is clear there are several approaches to establishing a successful appli‐
cation platform. Let’s make some big assumptions for the sake of demonstration and
evaluate theoretical trade-offs between approaches. For the average company we work
with, say a mid to large enterprise, Figure 1-3 shows an arbitrary evaluation of
approaches.

In the bottom-left quadrant, we see deploying Kubernetes clusters themselves, which
has a relatively low engineering effort involved, especially when managed services
such as EKS are handling the control plane for you. These are lower on production
readiness because most organizations will find that more work needs to be done on
top of Kubernetes. However, there are use cases, such as teams that use dedicated
cluster(s) for their workloads, that may suffice with just Kubernetes.

8 | Chapter 1: A Path to Production

MINH HAI, TRAN

Figure 1-3. The multitude of options available to provide an application platform to
developers.

In the bottom right, we have the more established platforms, ones that provide an
end-to-end developer experience out of the box. Cloud Foundry is a great example of
a project that solves many of the application platform concerns. Running software in
Cloud Foundry is more about ensuring the software fits within its opinions. Open‐
Shift, on the other hand, which for most is far more production-ready than just
Kubernetes, has more decision points and considerations for how you set it up. Is this
flexibility a benefit or a nuisance? That’s a key consideration for you.

Lastly, in the top right, we have building an application platform on top of Kuber‐
netes. Relative to the others, this unquestionably requires the most engineering effort,
at least from a platform perspective. However, taking advantage of Kubernetes exten‐
sibility means you can create something that lines up with your developer, infrastruc‐
ture, and business needs.

Defining Application Platforms | 9

Aligning Your Organizational Needs
What’s missing from the graph in Figure 1-3 is a third dimension, a z-axis that dem‐
onstrates how aligned the approach is with your requirements. Let’s examine another
visual representation. Figure 1-4 maps out how this might look when considering
platform alignment with organizational needs.

Figure 1-4. The added complexity of the alignment of these options with your organiza‐
tional needs, the z-axis.

In terms of requirements, features, and behaviors you’d expect out of a platform,
building a platform is almost always going to be the most aligned. Or at least the most
capable of aligning. This is because you can build anything! If you wanted to re-
implement Heroku in-house, on top of Kubernetes, with minor adjustments to its
capabilities, it is technically possible. However, the cost/reward should be weighed
out with the other axes (x and y). Let’s make this exercise more concrete by consider‐
ing the following needs in a next-generation platform:

• Regulations require you to run mostly on-premise
• Need to support your baremetal fleet along with your vSphere-enabled

datacenter
• Want to support growing demand for developers to package applications in

containers

10 | Chapter 1: A Path to Production

• Need ways to build self-service API mechanisms that move you away from
“ticket-based” infrastructure provisioning

• Want to ensure APIs you’re building atop of are vendor agnostic and not going to
cause lock-in because it has cost you millions in the past to migrate off these
types of systems

• Are open to paying enterprise support for a variety of products in the stack, but
unwilling to commit to models where the entire stack is licensed per node, core,
or application instance

We must understand our engineering maturity, appetite for building and empowering
teams, and available resources to qualify whether building an application platform is
a sensible undertaking.

Summarizing Application Platforms
Admittedly, what constitutes an application platform remains fairly gray. We’ve
focused on a variety of platforms that we believe bring an experience to teams far
beyond just workload orchestration. We have also articulated that Kubernetes can be
customized and extended to achieve similar outcomes. By advancing our thinking
beyond “How do I get a Kubernetes” into concerns such as “What is the current
developer workflow, pain points, and desires?” platform and infrastructure teams will
be more successful with what they build. With a focus on the latter, we’d argue, you
are far more likely to chart a proper path to production and achieve nontrivial adop‐
tion. At the end of the day, we want to meet infrastructure, security, and developer
requirements to ensure our customers—typically developers—are provided a solution
that meets their needs. Often we do not want to simply provide a “powerful” engine
that every developer must build their own platform atop of, as jokingly depicted in
Figure 1-5.

Figure 1-5. When developers desire an end-to-end experience (e.g., a driveable car), do
not expect an engine without a frame, wheels, and more to suffice.

Defining Application Platforms | 11

MINH HAI, TRAN

Building Application Platforms on Kubernetes
Now we’ve identified Kubernetes as one piece of the puzzle in our path to production.
With this, it would be reasonable to wonder “Isn’t Kubernetes just missing stuff
then?” The Unix philosophy’s principle of “make each program do one thing well” is a
compelling aspiration for the Kubernetes project. We believe its best features are
largely the ones it does not have! Especially after being burned with one-size-fits-all
platforms that try to solve the world’s problems for you. Kubernetes has brilliantly
focused on being a great orchestrator while defining clear interfaces for how it can be
built on top of. This can be likened to the foundation of a home.

A good foundation should be structurally sound, able to be built on top of, and pro‐
vide appropriate interfaces for routing utilities to the home. While important, a foun‐
dation alone is rarely a habitable place for our applications to live. Typically, we need
some form of home to exist on top of the foundation. Before discussing building on
top of a foundation such as Kubernetes, let’s consider a pre-furnished apartment as
shown in Figure 1-6.

Figure 1-6. An apartment that is move-in ready. Similar to platform as a service options
like Heroku. Illustration by Jessica Appelbaum.

This option, similar to our examples such as Heroku, is habitable with no additional
work. There are certainly opportunities to customize the experience inside; however,
many concerns are solved for us. As long as we are comfortable with the price of rent
and are willing to conform to the nonnegotiable opinions within, we can be success‐
ful on day one.

12 | Chapter 1: A Path to Production

Circling back to Kubernetes, which we have likened to a foundation, we can now look
to build that habitable home on top of it, as depicted in Figure 1-7.

Figure 1-7. Building a house. Similar to establishing an application platform, which
Kubernetes is foundational to. Illustration by Jessica Appelbaum.

At the cost of planning, engineering, and maintaining, we can build remarkable plat‐
forms to run workloads throughout organizations. This means we’re in complete con‐
trol of every element in the output. The house can and should be tailored to the needs
of the future tenants (our applications). Let’s now break down the various layers and
considerations that make this possible.

Starting from the Bottom
First we must start at the bottom, which includes the technology Kubernetes expects
to run. This is commonly a datacenter or cloud provider, which offers compute, stor‐
age, and networking. Once established, Kubernetes can be bootstrapped on top.
Within minutes you can have clusters living atop the underlying infrastructure. There
are several means of bootstrapping Kubernetes, and we’ll cover them in depth in
Chapter 2.

From the point of Kubernetes clusters existing, we next need to look at a conceptual
flow to determine what we should build on top. The key junctures are represented in
Figure 1-8.

Building Application Platforms on Kubernetes | 13

Figure 1-8. A flow our teams may go through in their path to production with
Kubernetes.

From the point of Kubernetes existing, you can expect to quickly be receiving ques‐
tions such as:

• “How do I ensure workload-to-workload traffic is fully encrypted?”
• “How do I ensure egress traffic goes through a gateway guaranteeing a consistent

source CIDR?”
• “How do I provide self-service tracing and dashboards to applications?”
• “How do I let developers onboard without being concerned about them becom‐

ing Kubernetes experts?”

This list can be endless. It is often incumbent on us to determine which requirements
to solve at a platform level and which to solve at an application level. The key here is
to deeply understand exiting workflows to ensure what we build lines up with current
expectations. If we cannot meet that feature set, what impact will it have on the devel‐
opment teams? Next we can start the building of a platform on top of Kubernetes. In
doing so, it is key we stay paired with development teams willing to onboard early
and understand the experience to make informed decisions based on quick feedback.
After reaching production, this flow should not stop. Platform teams should not
expect what is delivered to be a static environment that developers will use for deca‐
des. In order to be successful, we must constantly be in tune with our development
groups to understand where there are issues or potential missing features that could
increase development velocity. A good place to start is considering what level of inter‐
action with Kubernetes we should expect from our developers. This is the idea of how
much, or how little, we should abstract.

14 | Chapter 1: A Path to Production

The Abstraction Spectrum
In the past, we’ve heard posturing like, “If your application developers know they’re
using Kubernetes, you’ve failed!” This can be a decent way to look at interaction with
Kubernetes, especially if you’re building products or services where the underlying
orchestration technology is meaningless to the end user. Perhaps you’re building a
database management system (DBMS) that supports multiple database technologies.
Whether shards or instances of a database run via Kubernetes, Bosh, or Mesos proba‐
bly doesn’t matter to your developers! However, taking this philosophy wholesale
from a tweet into your team’s success criteria is a dangerous thing to do. As we layer
pieces on top of Kubernetes and build platform services to better serve our custom‐
ers, we’ll be faced with many points of decision to determine what appropriate
abstractions looks like. Figure 1-9 provides a visualization of this spectrum.

Figure 1-9. The various ends of the spectrum. Starting with giving each team its own
Kubernetes cluster to entirely abstracting Kubernetes from your users, via a platform as
a service (PaaS) offering.

This can be a question that keeps platform teams up at night. There’s a lot of merit in
providing abstractions. Projects like Cloud Foundry provide a fully baked developer
experience—an example being that in the context of a single cf push we can take an
application, build it, deploy it, and have it serving production traffic. With this goal
and experience as a primary focus, as Cloud Foundry furthers its support for running
on top of Kubernetes, we expect to see this transition as more of an implementation
detail than a change in feature set. Another pattern we see is the desire to offer more
than Kubernetes at a company, but not make developers explicitly choose between
technologies. For example, some companies have a Mesos footprint alongside a
Kubernetes footprint. They then build an abstraction enabling transparent selection
of where workloads land without putting that onus on application developers. It also
prevents them from technology lock-in. A trade-off to this approach includes build‐
ing abstractions on top of two systems that operate differently. This requires signifi‐
cant engineering effort and maturity. Additionally, while developers are eased of the
burden around knowing how to interact with Kubernetes or Mesos, they instead need
to understand how to use an abstracted company-specific system. In the modern era
of open source, developers from all over the stack are less enthused about learning
systems that don’t translate between organizations. Lastly, a pitfall we’ve seen is an
obsession with abstraction causing an inability to expose key features of Kubernetes.

Building Application Platforms on Kubernetes | 15

Over time this can become a cat-and-mouse game of trying to keep up with the
project and potentially making your abstraction as complicated as the system it’s
abstracting.

On the other end of the spectrum are platform groups that wish to offer self-service
clusters to development teams. This can also be a great model. It does put the respon‐
sibility of Kubernetes maturity on the development teams. Do they understand how
Deployments, ReplicaSets, Pods, Services, and Ingress APIs work? Do they have a
sense for setting millicpus and how overcommit of resources works? Do they know
how to ensure that workloads configured with more than one replica are always
scheduled on different nodes? If yes, this is a perfect opportunity to avoid over-
engineering an application platform and instead let application teams take it from the
Kubernetes layer up.

This model of development teams owning their own clusters is a little less common.
Even with a team of humans that have a Kubernetes background, it’s unlikely that
they want to take time away from shipping features to determine how to manage the
life cycle of their Kubernetes cluster when it comes time to upgrade. There’s so much
power in all the knobs Kubernetes exposes, but for many development teams, expect‐
ing them to become Kubernetes experts on top of shipping software is unrealistic. As
you’ll find in the coming chapters, abstraction does not have to be a binary decision.
At a variety of points we’ll be able to make informed decisions on where abstractions
make sense. We’ll be determining where we can provide developers the right amount
of flexibility while still streamlining their ability to get things done.

Determining Platform Services
When building on top of Kubernetes, a key determination is what features should be
built into the platform relative to solved at the application level. Generally this is
something that should be evaluated at a case-by-case basis. For example, let’s assume
every Java microservice implements a library that facilitates mutual TLS (mTLS)
between services. This provides applications a construct for identity of workloads and
encryption of data over the network. As a platform team, we need to deeply under‐
stand this usage to determine whether it is something we should offer or implement
at a platform level. Many teams look to solve this by potentially implementing a tech‐
nology called a service mesh into the cluster. An exercise in trade-offs would reveal
the following considerations.

Pros to introducing a service mesh:

• Java apps no longer need to bundle libraries to facilitate mTLS.
• Non-Java applications can take part in the same mTLS/encryption system.
• Lessened complexity for application teams to solve for.

16 | Chapter 1: A Path to Production

Cons to introducing a service mesh:

• Running a service mesh is not a trivial task. It is another distributed system with
operational complexity.

• Service meshes often introduce features far beyond identity and encryption.
• The mesh’s identity API might not integrate with the same backend system as

used by the existing applications.

Weighing these pros and cons, we can come to the conclusion as to whether solving
this problem at a platform level is worth the effort. The key is we don’t need to, and
should not strive to, solve every application concern in our new platform. This is
another balancing act to consider as you proceed through the many chapters in this
book. Several recommendations, best practices, and guidance will be shared, but like
anything, you should assess each based on the priorities of your business needs.

The Building Blocks
Let’s wrap up this chapter by concretely identifying key building blocks you will have
available as you build a platform. This includes everything from the foundational
components to optional platform services you may wish to implement.

The components in Figure 1-10 have differing importance to differing audiences.

Figure 1-10. Many of the key building blocks involved in establishing an application
platform.

Building Application Platforms on Kubernetes | 17

Some components such as container networking and container runtime are required
for every cluster, considering that a Kubernetes cluster that can’t run workloads or
allow them to communicate would not be very successful. You are likely to find some
components to have variance in whether they should be implemented at all. For
example, secret management might not be a platform service you intend to imple‐
ment if applications already get their secrets from an external secret management
solution.

Some areas, such as security, are clearly missing from Figure 1-10. This is because
security is not a feature but more so a result of how you implement everything from
the IAAS layer up. Let’s explore these key areas at a high level, with the understanding
that we’ll dive much deeper into them throughout this book.

IAAS/datacenter and Kubernetes
IAAS/datacenter and Kubernetes form the foundational layer we have called out
many times in this chapter. We don’t mean to trivialize this layer because its stability
will directly correlate to that of our platform. However, in modern environments, we
spend much less time determining the architecture of our racks to support Kuber‐
netes and a lot more time deciding between a variety of deployment options and top‐
ologies. Essentially we need to assess how we are going to provision and make
available Kubernetes clusters.

Container runtime
The container runtime will faciliate the life cycle management of our workloads on
each host. This is commonly implemented using a technology that can manage con‐
tainers, such as CRI-O, containerd, and Docker. The ability to choose between these
different implementations is thanks to the Container Runtime Interface (CRI). Along
with these common examples, there are specialized runtimes that support unique
requirements, such as the desire to run a workload in a micro-vm.

Container networking
Our choice of container networking will commonly address IP address management
(IPAM) of workloads and routing protocols to facilitate communication. Common
technology choices include Calico or Cilium, which is thanks to the Container Net‐
working Interface (CNI). By plugging a container networking technology into the
cluster, the kubelet can request IP addresses for the workloads it starts. Some plug-ins
go as far as implementing service abstractions on top of the Pod network.

18 | Chapter 1: A Path to Production

Storage integration
Storage integration covers what we do when the on-host disk storage just won’t cut it.
In modern Kubernetes, more and more organizations are shipping stateful workloads
to their clusters. These workloads require some degree of certainty that the state will
be resilient to application failure or rescheduling events. Storage can be supplied by
common systems such as vSAN, EBS, Ceph, and many more. The ability to choose
between various backends is facilitated by the Container Storage Interface (CSI). Sim‐
ilar to CNI and CRI, we are able to deploy a plug-in to our cluster that understands
how to satisfy the storage needs requested by the application.

Service routing
Service routing is the facilitation of traffic to and from the workloads we run in
Kubernetes. Kubernetes offers a Service API, but this is typically a stepping stone for
support of more feature-rich routing capabilities. Service routing builds on container
networking and creates higher-level features such as layer 7 routing, traffic patterns,
and much more. Many times these are implemented using a technology called an
Ingress controller. At the deeper side of service routing comes a variety of service
meshes. This technology is fully featured with mechanisms such as service-to-service
mTLS, observability, and support for applications mechanisms such as circuit
breaking.

Secret management
Secret management covers the management and distribution of sensitive data needed
by workloads. Kubernetes offers a Secrets API where sensitive data can be interacted
with. However, out of the box, many clusters don’t have robust enough secret man‐
agement and encryption capabilities demanded by several enterprises. This is largely
a conversation around defense in depth. At a simple level, we can ensure data is
encrypted before it is stored (encryption at rest). At a more advanced level, we can
provide integration with various technologies focused on secret management, such as
Vault or Cyberark.

Identity
Identity covers the authentication of humans and workloads. A common initial ask of
cluster administrators is how to authenticate users against a system such as LDAP or
a cloud provider’s IAM system. Beyond humans, workloads may wish to identify
themselves to support zero-trust networking models where impersonation of work‐
loads is far more challenging. This can be facilitated by integrating an identity pro‐
vider and using mechanisms such as mTLS to verify a workload.

Building Application Platforms on Kubernetes | 19

Authorization/admission control
Authorization is the next step after we can verify the identity of a human or work‐
load. When users or workloads interact with the API server, how do we grant or deny
their access to resources? Kubernetes offers an RBAC feature with resource/verb-level
controls, but what about custom logic specific to authorization inside our organiza‐
tion? Admission control is where we can take this a step further by building out vali‐
dation logic that can be as simple as looking over a static list of rules to dynamically
calling other systems to determine the correct authorization response.

Software supply chain
The software supply chain covers the entire life cycle of getting software in source
code to runtime. This involves the common concerns around continuous integration
(CI) and continuous delivery (CD). Many times, developers’ primary interaction
point is the pipelines they establish in these systems. Getting the CI/CD systems
working well with Kubernetes can be paramount to your platform’s success. Beyond
CI/CD are concerns around the storage of artifacts, their safety from a vulnerability
standpoint, and ensuring integrity of images that will be run in your cluster.

Observability
Observability is the umbrella term for all things that help us understand what’s hap‐
pening with our clusters. This includes at the system and application layers. Typically,
we think of observability to cover three key areas. These are logs, metrics, and trac‐
ing. Logging typically involves forwarding log data from workloads on the host to a
target backend system. From this system we can aggregate and analyze logs in a con‐
sumable way. Metrics involves capturing data that represents some state at a point in
time. We often aggregate, or scrape, this data into some system for analysis. Tracing
has largely grown in popularity out of the need to understand the interactions
between the various services that make up our application stack. As trace data is col‐
lected, it can be brought up to an aggregate system where the life of a request or
response is shown via some form of context or correlation ID.

Developer abstractions
Developer abstractions are the tools and platform services we put in place to make
developers successful in our platform. As discussed earlier, abstraction approaches
live on a spectrum. Some organizations will choose to make the usage of Kubernetes
completely transparent to the development teams. Other shops will choose to expose
many of the powerful knobs Kubernetes offers and give significant flexibility to every
developer. Solutions also tend to focus on the developer onboarding experience,
ensuring they can be given access and secure control of an environment they can uti‐
lize in the platform.

20 | Chapter 1: A Path to Production

Summary
In this chapter, we have explored ideas spanning Kubernetes, application platforms,
and even building application platforms on Kubernetes. Hopefully this has gotten you
thinking about the variety of areas you can jump into in order to better understand
how to build on top of this great workload orchestrator. For the remainder of the
book we are going to dive into these key areas and provide insight, anecdotes, and
recommendations that will further build your perspective on platform building. Let’s
jump in and start down this path to production!

Summary | 21

CHAPTER 2

Deployment Models

The first step to using Kubernetes in production is obvious: make Kubernetes exist.
This includes installing systems to provision Kubernetes clusters and to manage
future upgrades. Being that Kubernetes is a distributed software system, deploying
Kubernetes largely boils down to a software installation exercise. The important dif‐
ference compared with most other software installs is that Kubernetes is intrinsically
tied to the infrastructure. As such, the software installation and the infrastructure it’s
being installed on need to be simultaneously solved for.

In this chapter we will first address preliminary questions around deploying Kuber‐
netes clusters and how much you should leverage managed services and existing
products or projects. For those that heavily leverage existing services, products, and
projects, most of this chapter may not be of interest because about 90% of the content
in this chapter covers how to approach custom automation. This chapter can still be
of interest if you are evaluating tools for deploying Kubernetes so that you can reason
about the different approaches available. For those in the uncommon position of hav‐
ing to build custom automation for deploying Kubernetes, we will address overarch‐
ing architectural concerns, including special considerations for etcd as well as how to
manage the various clusters under management. We will also look at useful patterns
for managing the various software installations as well as the infrastructure depen‐
dencies and will break down the various cluster components and demystify how they
fit together. We’ll also look at ways to manage the add-ons you install to the base
Kubernetes cluster as well as strategies for upgrading Kubernetes and the add-on
components that make up your application platform.

23

Managed Service Versus Roll Your Own
Before we get further into the topic of deployment models for Kubernetes, we should
address the idea of whether you should even have a full deployment model for Kuber‐
netes. Cloud providers offer managed Kubernetes services that mostly alleviate the
deployment concerns. You should still develop reliable, declarative systems for provi‐
sioning these managed Kubernetes clusters, but it may be advantageous to abstract
away most of the details of how the cluster is brought up.

Managed Services
The case for using managed Kubernetes services boils down to savings in engineering
effort. There is considerable technical design and implementation in properly manag‐
ing the deployment and life cycle of Kubernetes. And remember, Kubernetes is just
one component of your application platform—the container orchestrator.

In essence, with a managed service you get a Kubernetes control plane that you can
attach worker nodes to at will. The obligation to scale, ensure availability, and manage
the control plane is alleviated. These are each significant concerns. Furthermore, if
you already use a cloud provider’s existing services you get a leg up. For example, if
you are in Amazon Web Services (AWS) and already use Fargate for serverless com‐
pute, Identity and Access Management (IAM) for role-based access control, and
CloudWatch for observability, you can leverage these with their Elastic Kubernetes
Service (EKS) and solve for several concerns in your app platform.

It is not unlike using a managed database service. If your core concern is an applica‐
tion that serves your business needs, and that app requires a relational database, but
you cannot justify having a dedicated database admin on staff, paying a cloud pro‐
vider to supply you with a database can be a huge boost. You can get up and running
faster. The managed service provider will manage availability, take backups, and per‐
form upgrades on your behalf. In many cases this is a clear benefit. But, as always,
there is a trade-off.

Roll Your Own
The savings available in using a managed Kubernetes service come with a price tag.
You pay with a lack of flexibility and freedom. Part of this is the threat of vendor lock-
in. The managed services are generally offered by cloud infrastructure providers. If
you invest heavily in using a particular vendor for your infrastructure, it is highly
likely that you will design systems and leverage services that will not be vendor neu‐
tral. The concern is that if they raise their prices or let their service quality slip in the
future, you may find yourself painted into a corner. Those experts you paid to handle
concerns you didn’t have time for may now wield dangerous power over your destiny.

24 | Chapter 2: Deployment Models

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

Of course, you can diversify by using managed services from multiple providers, but
there will be deltas between the way they expose features of Kubernetes, and which
features are exposed could become an awkward inconsistency to overcome.

For this reason, you may prefer to roll your own Kubernetes. There is a vast array of
knobs and levers to adjust on Kubernetes. This configurability makes it wonderfully
flexible and powerful. If you invest in understanding and managing Kubernetes itself,
the app platform world is your oyster. There will be no feature you cannot imple‐
ment, no requirement you cannot meet. And you will be able to implement that
seamlessly across infrastructure providers, whether they be public cloud providers, or
your own servers in a private datacenter. Once the different infrastructure inconsis‐
tencies are accounted for, the Kubernetes features that are exposed in your platform
will be consistent. And the developers that use your platform will not care—and may
not even know—who is providing the underlying infrastructure.

Just keep in mind that developers will care only about the features of the platform,
not the underlying infrastructure or who provides it. If you are in control of the fea‐
tures available, and the features you deliver are consistent across infrastructure pro‐
viders, you have the freedom to deliver a superior experience to your devs. You will
have control of the Kubernetes version you use. You will have access to all the flags
and features of the control plane components. You will have access to the underlying
machines and the software that is installed on them as well as the static Pod manifests
that are written to disk there. You will have a powerful and dangerous tool to use in
the effort to win over your developers. But never ignore the obligation you have to
learn the tool well. A failure to do so risks injuring yourself and others with it.

Making the Decision
The path to glory is rarely clear when you begin the journey. If you are deciding
between a managed Kubernetes service or rolling your own clusters, you are much
closer to the beginning of your journey with Kubernetes than the glorious final con‐
clusion. And the decision of managed service versus roll your own is fundamental
enough that it will have long-lasting implications for your business. So here are some
guiding principles to aid the process.

You should lean toward a managed service if:

• The idea of understanding Kubernetes sounds terribly arduous
• The responsibility for managing a distributed software system that is critical to

the success of your business sounds dangerous
• The inconveniences of restrictions imposed by vendor-provided features seem

manageable

Managed Service Versus Roll Your Own | 25

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

• You have faith in your managed service vendor to respond to your needs and be a
good business partner

You should lean toward rolling your own Kubernetes if:

• The vendor-imposed restrictions make you uneasy
• You have little or no faith in the corporate behemoths that provide cloud com‐

pute infrastructure
• You are excited by the power of the platform you can build around Kubernetes
• You relish the opportunity to leverage this amazing container orchestrator to

provide a delightful experience to your devs

If you decide to use a managed service, consider skipping most of the remainder of
this chapter. “Add-ons” on page 50 and “Triggering Mechanisms” on page 60 are still
applicable to your use case, but the other sections in this chapter will not apply. If, on
the other hand, you are looking to manage your own clusters, read on! Next we’ll dig
more into the deployment models and tools you should consider.

Automation
If you are to undertake designing a deployment model for your Kubernetes clusters,
the topic of automation is of the utmost importance. Any deployment model will
need to keep this as a guiding principle. Removing human toil is critical to reduce
cost and improve stability. Humans are costly. Paying the salary for engineers to exe‐
cute routine, tedious operations is money not spent on innovation. Furthermore,
humans are unreliable. They make mistakes. Just one error in a series of steps may
introduce instability or even prevent the system from working at all. The upfront
engineering investment to automate deployments using software systems will pay
dividends in saved toil and troubleshooting in the future.

If you decide to manage your own cluster life cycle, you must formulate your strategy
for doing this. You have a choice between using a prebuilt Kubernetes installer or
developing your own custom automation from the ground up. This decision has par‐
allels with the decision between managed services versus roll your own. One path
gives you great power, control, and flexibility but at the cost of engineering effort.

Prebuilt Installer
There are now countless open source and enterprise-supported Kubernetes installers
available. Case in point: there are currently 180 Kubernetes Certified Service Provid‐
ers listed on the CNCF’s website. Some you will need to pay money for and will be
accompanied by experienced field engineers to help get you up and running as well as
support staff you can call on in times of need. Others will require research and

26 | Chapter 2: Deployment Models

https://www.cncf.io/certification/kcsp
MINH HAI, TRAN

MINH HAI, TRAN

experimentation to understand and use. Some installers—usually the ones you pay
money for—will get you from zero to Kubernetes with the push of a button. If you fit
the prescriptions provided and options available, and your budget can accommodate
the expense, this installer method could be a great fit. At the time of this writing,
using prebuilt installers is the approach we see most commonly in the field.

Custom Automation
Some amount of custom automation is commonly required even if using a prebuilt
installer. This is usually in the form of integration with a team’s existing systems.
However, in this section we’re talking about developing a custom Kubernetes installer.

If you are beginning your journey with Kubernetes or changing direction with your
Kubernetes strategy, the homegrown automation route is likely your choice only if all
of the following apply:

• You have more than just one or two engineers to devote to the effort
• You have engineers on staff with deep Kubernetes experience
• You have specialized requirements that no managed service or prebuilt installer

satisfies well

Most of the remainder of this chapter is for you if one of the following applies:

• You fit the use case for building custom automation
• You are evaluating installers and want to gain a deeper insight into what good

patterns look like

This brings us to details of building custom automation to install and manage Kuber‐
netes clusters. Underpinning all these concerns should be a clear understanding of
your platform requirements. These should be driven primarily by the requirements of
your app development teams, particularly those that will be the earliest adopters. Do
not fall into the trap of building a platform in a vacuum without close collaboration
with the consumers of the platform. Make early prerelease versions of your platform
available to dev teams for testing. Cultivate a productive feedback loop for fixing bugs
and adding features. The successful adoption of your platform depends upon this.

Next we will cover architecture concerns that should be considered before any imple‐
mentation begins. This includes deployment models for etcd, separating deployment
environments into tiers, tackling challenges with managing large numbers of clusters,
and what types of node pools you might use to host your workloads. After that, we’ll
get into Kubernetes installation details, first for the infrastructure dependencies, then,
the software that is installed on the clusters’ virtual or physical machines, and finally
for the containerized components that constitute the control plane of a Kubernetes
cluster.

Automation | 27

Architecture and Topology
This section covers the architectural decisions that have broad implications for the
systems you use to provision and manage your Kubernetes clusters. They include the
deployment model for etcd and the unique considerations you must take into account
for that component of the platform. Among these topics is how you organize the vari‐
ous clusters under management into tiers based on the service level objectives (SLOs)
for them. We will also look at the concept of node pools and how they can be used for
different purposes within a given cluster. And, lastly, we will address the methods you
can use for federated management of your clusters and the software you deploy to
them.

etcd Deployment Models
As the database for the objects in a Kubernetes cluster, etcd deserves special consider‐
ation. etcd is a distributed data store that uses a consensus algorithm to maintain a
copy of the your cluster’s state on multiple machines. This introduces network con‐
siderations for the nodes in an etcd cluster so they can reliably maintain that consen‐
sus over their network connections. It has unique network latency requirements that
we need to design for when considering network topology. We’ll cover that topic in
this section and also look at the two primary architectural choices to make in the
deployment model for etcd: dedicated versus colocated and whether to run in a con‐
tainer or install directly on the host.

Network considerations
The default settings in etcd are designed for the latency in a single datacenter. If you
distribute etcd across multiple datacenters, you should test the average round-trip
between members and tune the heartbeat interval and election timeout for etcd if
need be. We strongly discourage the use of etcd clusters distributed across different
regions. If using multiple datacenters for improved availability, they should at least be
in close proximity within a region.

Dedicated versus colocated
A very common question we get about how to deploy is whether to give etcd its own
dedicated machines or to colocate them on the control plane machines with the API
server, scheduler, controller manager, etc. The first thing to consider is the size of
clusters you will be managing, i.e., the number of worker nodes you will run per clus‐
ter. The trade-offs around cluster sizes will be discussed later in the chapter. Where
you land on that subject will largely inform whether you dedicate machines to etcd.
Obviously etcd is crucial. If etcd performance is compromised, your ability to control
the resources in your cluster will be compromised. As long as your workloads don’t

28 | Chapter 2: Deployment Models

have dependencies on the Kubernetes API, they should not suffer, but keeping your
control plane healthy is still very important.

If you are driving a car down the street and the steering wheel stops working, it is
little comfort that the car is still driving down the road. In fact, it may be terribly dan‐
gerous. For this reason, if you are going to be placing the read and write demands on
etcd that come with larger clusters, it is wise to dedicate machines to them to elimi‐
nate resource contention with other control plane components. In this context, a
“large” cluster is dependent upon the size of the control plane machines in use but
should be at least a topic of consideration with anything above 50 worker nodes. If
planning for clusters with over 200 workers, it’s best to just plan for dedicated etcd
clusters. If you do plan smaller clusters, save yourself the management overhead and
infrastructure costs—go with colocated etcd. Kubeadm is a popular Kubernetes boot‐
strapping tool that you will likely be using; it supports this model and will take care of
the associated concerns.

Containerized versus on host
The next common question revolves around whether to install etcd on the machine
or to run it in a container. Let’s tackle the easy answer first: if you’re running etcd in a
colocated manner, run it in a container. When leveraging kubeadm for Kubernetes
bootstrapping, this configuration is supported and well tested. It is your best option.
If, on the other hand, you opt for running etcd on dedicated machines your options
are as follows: you can install etcd on the host, which gives you the opportunity to
bake it into machine images and eliminate the additional concerns of having a con‐
tainer runtime on the host. Alternatively, if you run in a container, the most useful
pattern is to install a container runtime and kubelet on the machines and use a static
manifest to spin up etcd. This has the advantage of following the same patterns and
install methods as the other control plane components. Using repeated patterns in
complex systems is useful, but this question is largely a question of preference.

Cluster Tiers
Organizing your clusters according to tiers is an almost universal pattern we see in
the field. These tiers often include testing, development, staging, and production.
Some teams refer to these as different “environments.” However, this is a broad term
that can have different meanings and implications. We will use the term tier here to
specifically address the different types of clusters. In particular, we’re talking about
the SLOs and SLAs that may be associated with the cluster, as well as the purpose for
the cluster, and where the cluster sits in the path to production for an application, if at
all. What exactly these tiers will look like for different organizations varies, but there
are common themes and we will describe what each of these four tiers commonly
mean. Use the same cluster deployment and life cycle management systems across all

Architecture and Topology | 29

tiers. The heavy use of these systems in the lower tiers will help ensure they will work
as expected when applied to critical production clusters:

Testing
Clusters in the testing tier are single-tenant, ephemeral clusters that often have a
time-to-live (TTL) applied such that they are automatically destroyed after a
specified amount of time, usually less than a week. These are spun up very com‐
monly by platform engineers for the purpose of testing particular components or
platform features they are developing. Testing tiers may also be used by develop‐
ers when a local cluster is inadequate for local development, or as a subsequent
step to testing on a local cluster. This is more common when an app dev team is
initially containerizing and testing their application on Kubernetes. There is no
SLO or SLA for these clusters. These clusters would use the latest version of a
platform, or perhaps optionally a pre-alpha release.

Development
Development tier clusters are generally “permanent” clusters without a TTL.
They are multitenant (where applicable) and have all the features of a production
cluster. They are used for the first round of integration tests for applications and
are used to test the compatibility of application workloads with alpha versions of
the platform. Development tiers are also used for general testing and develop‐
ment for the app dev teams. These clusters normally have an SLO but not a for‐
mal agreement associated with them. The availability objectives will often be near
production-level, at least during business hours, because outages will impact
developer productivity. In contrast, the applications have zero SLO or SLA when
running on dev clusters and are very frequently updated and in constant flux.
These clusters will run the officially released alpha and/or beta version of the
platform.

Staging
Like those in the development tier, clusters in the staging tier are also permanent
clusters and are commonly used by multiple tenants. They are used for final inte‐
gration testing and approval before rolling out to live production. They are used
by stakeholders that are not actively developing the software running there. This
would include project managers, product owners, and executives. This may also
include customers or external stakeholders who need access to prerelease ver‐
sions of software. They will often have a similar SLO to development clusters.
Staging tiers may have a formal SLA associated with them if external stakeholders
or paying customers are accessing workloads on the cluster. These clusters will
run the officially released beta version of the platform if strict backward compati‐
bility is followed by the platform team. If backward compatibility cannot be guar‐
anteed, the staging cluster should run the same stable release of the platform as
used in production.

30 | Chapter 2: Deployment Models

Production
Production tier clusters are the money-makers. These are used for customer-
facing, revenue-producing applications and websites. Only approved,
production-ready, stable releases of software are run here. And only the fully tes‐
ted and approved stable release of the platform is used. Detailed well-defined
SLOs are used and tracked. Often, legally binding SLAs apply.

Node Pools
Node pools are a way to group together types of nodes within a single Kubernetes
cluster. These types of nodes may be grouped together by way of their unique charac‐
teristics or by way of the role they play. It’s important to understand the trade-offs of
using node pools before we get into details. The trade-off often revolves around the
choice between using multiple node pools within a single cluster versus provisioning
separate, distinct clusters. If you use node pools, you will need to use Node selectors
on your workloads to make sure they end up in the appropriate node pool. You will
also likely need to use Node taints to prevent workloads without Node selectors from
inadvertently landing where they shouldn’t. Additionally, the scaling of nodes within
your cluster becomes more complicated because your systems have to monitor dis‐
tinct pools and scale each separately. If, on the other hand, you use distinct clusters
you displace these concerns into cluster management and software federation con‐
cerns. You will need more clusters. And you will need to properly target your work‐
loads to the right clusters. Table 2-1 summarizes these pros and cons of using node
pools.

Table 2-1. Node pool pros and cons

Pros Cons

Reduced number of clusters under management Node selectors for workloads will often be needed

Smaller number of target clusters for workloads Node taints will need to be applied and managed

More complicated cluster scaling operations

A characteristic-based node pool is one that consists of nodes that have components
or attributes that are required by, or suited to, some particular workloads. An exam‐
ple of this is the presence of a specialized device like a graphics processing unit
(GPU). Another example of a characteristic may be the type of network interface it
uses. One more could be the ratio of memory to CPU on the machine. We will dis‐
cuss the reasons you may use nodes with different ratios of these resources in more
depth later on in “Infrastructure” on page 35. Suffice to say for now, all these charac‐
teristics lend themselves to different types of workloads, and if you run them collec‐
tively in the same cluster, you’ll need to group them into pools to manage where
different Pods land.

Architecture and Topology | 31

A role-based node pool is one that has a particular function and that you often want
to insulate from resource contention. The nodes sliced out into a role-based pool
don’t necessarily have peculiar characteristics, just a different function. A common
example is to dedicate a node pool to the ingress layer in your cluster. In the example
of an ingress pool, the dedicated pool not only insulates the workloads from resource
contention (particularly important in this case since resource requests and limits are
not currently available for network usage) but also simplifies the networking model
and the specific nodes that are exposed to traffic from sources outside the cluster. In
contrast to the characteristic-based node pool, these roles are often not a concern you
can displace into distinct clusters because the machines play an important role in the
function of a particular cluster. That said, do ensure you are slicing off nodes into a
pool for good reason. Don’t create pools indiscriminately. Kubernetes clusters are
complex enough. Don’t complicate your life more than you need to.

Keep in mind that you will most likely need to solve the multicluster management
problems that many distinct clusters bring, regardless of whether you use node pools.
There are very few enterprises that use Kubernetes that don’t accumulate a large num‐
ber of distinct clusters. There are a large variety of reasons for this. So if you are
tempted to introduce characteristic-based node pools, consider investing the engi‐
neering effort into developing and refining your multicluster management. Then you
unlock the opportunity to seamlessly use distinct clusters for the different machine
characteristics you need to provide.

Cluster Federation
Cluster federation broadly refers to how to centrally manage all the clusters under
your control. Kubernetes is like a guilty pleasure. When you discover how much you
enjoy it, you can’t have just one. But, similarly, if you don’t keep that habit under con‐
trol, it can become messy. Federation strategies are ways for enterprises to manage
their software dependencies so they don’t spiral into costly, destructive addictions.

A common, useful approach is to federate regionally and then globally. This lessens
the blast radius of, and reduces the computational load for, these federation clusters.
When you first begin federation efforts, you may not have the global presence or vol‐
ume of infrastructure to justify a multilevel federation approach, but keep it in mind
as a design principle in case it becomes a future requirement.

Let’s discuss some important related subjects in this area. In this section, we’ll look at
how management clusters can help with consolidating and centralizing regional serv‐
ices. We’ll consider how we can consolidate the metrics for workloads in various clus‐
ters. And we’ll discuss how this impacts the managing workloads that are deployed
across different clusters in a centrally managed way.

32 | Chapter 2: Deployment Models

Management clusters
Management clusters are what they sound like: Kubernetes clusters that manage other
clusters. Organizations are finding that, as their usage expands and as the number of
clusters under management increases, they need to leverage software systems for
smooth operation. And, as you might expect, they often use Kubernetes-based plat‐
forms to run this software. Cluster API has become a popular project for accomplish‐
ing this. It is a set of Kubernetes operators that use custom resources such as Cluster
and Machine resources to represent other Kubernetes clusters and their components.
A common pattern used is to deploy the Cluster API components to a management
cluster for deploying and managing the infrastructure for other workload clusters.

Using a management cluster in this manner does have flaws, however. It is usually
prudent to strictly separate concerns between your production tier and other tiers.
Therefore, organizations will often have a management cluster dedicated to produc‐
tion. This further increases the management cluster overhead. Another problem is
with cluster autoscaling, which is a method of adding and removing worker nodes in
response to the scaling of workloads. The Cluster Autoscaler typically runs in the
cluster that it scales so as to watch for conditions that require scaling events. But the
management cluster contains the controller that manages the provisioning and
decommissioning of those worker nodes. This introduces an external dependency on
the management cluster for any workload cluster that uses Cluster Autoscaler, as
illustrated in Figure 2-1. What if the management cluster becomes unavailable at a
busy time that your cluster needs to scale out to meet demand?

Figure 2-1. Cluster Autoscaler accessing a management cluster to trigger scaling events.

One strategy to remedy this is to run the Cluster API components in the workload
cluster in a self-contained manner. In this case, the Cluster and Machine resources
will also live there in the workload cluster. You can still use the management cluster
for creation and deletion of clusters, but the workload cluster becomes largely auton‐
omous and free from the external dependency on the management cluster for routine
operations, such as autoscaling, as shown in Figure 2-2.

Architecture and Topology | 33

https://cluster-api.sigs.k8s.io

Figure 2-2. Cluster Autoscaler accessing a local Cluster API component to perform scal‐
ing events.

This pattern also has the distinct advantage that if any other controllers or workloads
in the cluster have a need for metadata or attributes contained in the Cluster API cus‐
tom resources, they can access them by reading the resource through the local API.
There is no need to access the management cluster API. For example, if you have a
Namespace controller that changes its behavior based on whether it is in a develop‐
ment or production cluster, that is information that can already be contained in the
Cluster resource that represents the cluster in which it lives.

Additionally, management clusters also often host shared or regional services that are
accessed by systems in various other clusters. These are not so much management
functions. Management clusters are often just a logical place to run these shared serv‐
ices. Examples of these shared services include CI/CD systems and container
registries.

Observability
When managing a large number of clusters, one of the challenges that arises is the
collection of metrics from across this infrastructure and bringing them—or a subset
thereof—into a central location. High-level measurable data points that give you a
clear picture of the health of the clusters and workloads under management is a criti‐
cal concern of cluster federation. Prometheus is a mature open source project that
many organizations use to gather and store metrics. Whether you use it or not, the
model it uses for federation is very useful and worth looking at so as to replicate with
the tools you use, if possible. It supports the regional approach to federation by allow‐
ing federated Prometheus servers to scrape subsets of metrics from other, lower-level
Prometheus servers. So it will accommodate any federation strategy you employ.
Chapter 9 explores this topic in more depth.

34 | Chapter 2: Deployment Models

https://prometheus.io

Federated software deployment
Another important concern when managing various, remote clusters is how to man‐
age deployment of software to those clusters. It’s one thing to be able to manage the
clusters themselves, but it’s another entirely to organize the deployment of end-user
workloads to these clusters. These are, after all, the point of having all these clusters.
Perhaps you have critical, high-value workloads that must be deployed to multiple
regions for availability purposes. Or maybe you just need to organize where work‐
loads get deployed based on characteristics of different clusters. How you make these
determinations is a challenging problem, as evidenced by the relative lack of consen‐
sus around a good solution to the problem.

The Kubernetes community has attempted to tackle this problem in a way that is
broadly applicable for some time. The most recent incarnation is KubeFed. It also
addresses cluster configurations, but here we’re concerned more with the definitions
of workloads that are destined for multiple clusters. One of the useful design concepts
that has emerged is the ability to federate any API type that is used in Kubernetes. For
example, you can use federated versions of Namespace and Deployment types and for
declaring how resources should be applied to multiple clusters. This is a powerful
notion in that you can centrally create a FederatedDeployment resource in one man‐
agement cluster and have that manifest as multiple remote Deployment objects being
created in other clusters. However, we expect to see more advances in this area in the
future. At this time, the most common way we still see in the field to manage this
concern is with CI/CD tools that are configured to target different clusters when
workloads are deployed.

Now that we’ve covered the broad architectural concerns that will frame how your
fleet of clusters is organized and managed, let’s dig into the infrastructure concerns in
detail.

Infrastructure
Kubernetes deployment is a software installation process with a dependency on IT
infrastructure. A Kubernetes cluster can be spun up on one’s laptop using virtual
machines or Docker containers. But this is merely a simulation for testing purposes.
For production use, various infrastructure components need to be present, and they
are often provisioned as a part of the Kubernetes deployment itself.

A useful production-ready Kubernetes cluster needs some number of computers con‐
nected to a network to run on. To keep our terminology consistent, we’ll use the term
machines for these computers. Those machines may be virtual or physical. The
important issue is that you are able to provision these machines, and a primary con‐
cern is the method used to bring them online.

Infrastructure | 35

https://github.com/kubernetes-sigs/kubefed

You may have to purchase hardware and install them in a datacenter. Or you may be
able to simply request the needed resources from a cloud provider to spin up
machines as needed. Whatever the process, you need machines as well as properly
configured networking, and this needs to be accounted for in your deployment
model.

As an important part of your automation efforts, give careful consideration to the
automation of infrastructure management. Lean away from manual operations such
as clicking through forms in an online wizard. Lean toward using declarative systems
that instead call an API to bring about the same result. This automation model
requires the ability to provision servers, networking, and related resources on
demand, as with a cloud provider such as Amazon Web Services, Microsoft Azure, or
Google Cloud Platform. However, not all environments have an API or web user
interface to spin up infrastructure. Vast production workloads run in datacenters fil‐
led with servers that are purchased and installed by the company that will use them.
This needs to happen well before the Kubernetes software components are installed
and run. It’s important we draw this distinction and identify the models and patterns
that apply usefully in each case.

The next section will address the challenges of running Kubernetes on bare metal in
contrast to using virtual machines for the nodes in your Kubernetes clusters. We will
then discuss cluster sizing trade-offs and the implications that has for your cluster life
cycle management. Subsequently, we will go over the concerns you should take into
account for the compute and networking infrastructure. And, finally, this will lead us
to some specific strategies for automating the infrastructure management for your
Kubernetes clusters.

Bare Metal Versus Virtualized
When exploring Kubernetes, many ponder whether the relevance of the virtual
machine layer is necessary. Don’t containers largely do the same thing? Would you
essentially be running two layers of virtualization? The answer is, not necessarily.
Kubernetes initiatives can be wildly successful atop bare metal or virtualized environ‐
ments. Choosing the right medium to deploy to is critical and should be done
through the lens of problems solved by various technologies and your team’s maturity
in these technologies.

The virtualization revolution changed how the world provisions and manages infra‐
structure. Historically, infrastructure teams used methodologies such as PXE booting
hosts, managing server configurations, and making ancillary hardware, such as stor‐
age, available to servers. Modern virtualized environments abstract all of this behind
APIs, where resources can be provisioned, mutated, and deleted at will without
knowing what the underlying hardware looks like. This model has been proven
throughout datacenters with vendors such as VMware and in the cloud where the

36 | Chapter 2: Deployment Models

majority of compute is running atop some sort of hypervisor. Thanks to these
advancements, many newcomers operating infrastructure in the cloud native world
may never know about some of those underlying hardware concerns. The diagram in
Figure 2-3 is not an exhaustive representation of the difference between virtualization
and bare metal, but more so how the interaction points tend to differ.

Figure 2-3. Comparison of administrator interactions when provisioning and managing
bare metal compute infrastructure versus virtual machines.

The benefits of the virtualized models go far beyond having a unified API to interact
with. In virtualized environments, we have the benefit of building many virtual
servers within our hardware server, enabling us to slice each computer into fully iso‐
lated machines where we can:

• Easily create and clone machines and machine images
• Run many operating systems on the same server
• Optimize server usage by dedicating variant amounts of resources based on

application needs
• Change resource settings without disrupting the server
• Programmatically control what hardware servers have access to, e.g., NICs
• Run unique networking and routing configurations per server

This flexibility also enables us to scope operational concerns on a smaller basis. For
example, we can now upgrade one host without impacting all others running on the
hardware. Additionally, with many of the mechanics available in virtualized environ‐
ments, the creating and destroying of servers is typically more efficient. Virtualization
has its own set of trade-offs. There is, typically, overhead incurred when running fur‐
ther away from the metal. Many hyper-performance–sensitive applications, such as
trading applications, may prefer running on bare metal. There is also overhead in
running the virtualization stack itself. In edge computing, for cases such as telcos
running their 5G networks, they may desire running against the hardware.

Infrastructure | 37

Now that we’ve completed a brief review of the virtualization revolution, let’s examine
how this has impacted us when using Kubernetes and container abstractions because
these force our point of interaction even higher up the stack. Figure 2-4 illustrates
what this looks like through an operator’s eyes at the Kubernetes layer. The underly‐
ing computers are viewed as a “sea of compute” where workloads can define what
resources they need and will be scheduled appropriately.

Figure 2-4. Operator interactions when using Kubernetes.

It’s important to note that Kubernetes clusters have several integration points with the
underlying infrastructure. For example, many use CSI-drivers to integrate with stor‐
age providers. There are multiple infra management projects that enable requesting
new hosts from the provider and joining the cluster. And, most commonly, organiza‐
tions rely on Cloud Provider Integrations (CPIs), which do additional work, such as
provisioning load balancers outside of the cluster to route traffic within.

In essence, there are a lot of conveniences infrastructure teams lose when leaving vir‐
tualization behind—things that Kubernetes does not inherently solve. However, there
are several projects and integration points with bare metal that make this space ever‐
more promising. Bare metal options are becoming available through major cloud
providers, and bare metal–exclusive IaaS services like Packet (recently acquired by
Equinix Metal) are gaining market share. Success with bare metal is not without its
challenges, including:

Significantly larger nodes
Larger nodes cause (typically) more Pods per node. When thousands of Pods per
node are needed to make good use of your hardware, operations can become
more complicated. For example, when doing in-place upgrades, needing to drain
a node to upgrade it means you may trigger 1000+ rescheduling events.

38 | Chapter 2: Deployment Models

https://metal.equinix.com

Dynamic scaling
How to get new nodes up quickly based on workload or traffic needs.

Image provisioning
Quickly baking and distributing machine images to keep cluster nodes as immut‐
able as possible.

Lack of load balancer API
Need to provide ingress routing from outside of the cluster to the Pod network
within.

Less sophisticated storage integration
Solving for getting network-attached storage to Pods.

Multitenant security concerns
When hypervisors are in play, we have the luxury of ensuring security-sensitive
containers run on dedicated hypervisors. Specifically we can slice up a physical
server in any arbitrary way and make container scheduling decisions based on
that.

These challenges are absolutely solvable. For example, the lack of load balancer inte‐
gration can be solved with projects like kube-vip or metallb. Storage integration can
be solved by integrating with a ceph cluster. However, the key is that containers aren’t
a new-age virtualization technology. Under the hood, containers are (in most imple‐
mentations) using Linux kernel primitives to make processes feel isolated from others
on a host. There’s an endless number of trade-offs to continue unpacking, but in
essence, our guidance when choosing between cloud providers (virtualization), on-
prem virtualization, and bare metal is to consider what option makes the most sense
based on your technical requirements and your organization’s operational experience.
If Kubernetes is being considered a replacement for a virtualization stack, reconsider
exactly what Kubernetes solves for. Remember that learning to operate Kubernetes
and enabling teams to operate Kubernetes is already an undertaking. Adding the
complexity of completely changing how you manage your infrastructure underneath
it significantly grows your engineering effort and risk.

Cluster Sizing
Integral to the design of your Kubernetes deployment model and the planning for
infrastructure is the cluster sizes you plan to use. We’re often asked, “How many
worker nodes should be in production clusters?” This is a distinct question from,
“How many worker nodes are needed to satisfy workloads?” If you plan to use one,
single production cluster to rule them all, the answer to both questions will be the
same. However, that is a unicorn we never see in the wild. Just as a Kubernetes cluster
allows you to treat server machines as cattle, modern Kubernetes installation methods

Infrastructure | 39

https://kube-vip.io
https://metallb.universe.tf

and cloud providers allow you to treat the clusters themselves as cattle. And every
enterprise that uses Kubernetes has at least a small herd.

Larger clusters offer the following benefits:

Better resource utilization
Each cluster comes with a control plane overhead cost. This includes etcd and
components such as the API server. Additionally, you’ll run a variety of platform
services in each cluster; for example, proxies via Ingress controllers. These com‐
ponents add overhead. A larger cluster minimizes replication of these services.

Fewer cluster deployments
If you run your own bare metal compute infrastructure, as opposed to provision‐
ing it on-demand from a cloud provider or on-prem virtualization platform,
spinning clusters up and down as needed, scaling those clusters as demands dic‐
tate becomes less feasible. Your cluster deployment strategy can afford to be less
automated if you execute that deployment strategy less often. It is entirely possi‐
ble the engineering effort to fully automate cluster deployments would be greater
than the engineering effort to manage a less automated strategy.

Simpler cluster and workload management profile
If you have fewer production clusters, the systems you use to allocate, federate,
and manage these concerns need not be as streamlined and sophisticated. Feder‐
ated cluster and workload management across fleets of clusters is complex and
challenging. The community has been working on this. Large teams at enormous
enterprises have invested heavily in bespoke systems for this. And these efforts
have enjoyed limited success thus far.

Smaller clusters offer the following benefits:

Smaller blast radius
Cluster failures will impact fewer workloads.

Tenancy flexibility
Kubernetes provides all the mechanisms needed to build a multitenant platform.
However, in some cases you will spend far less engineering effort by provisioning
a new cluster for a particular tenant. For example, if one tenant needs access to a
cluster-wide resource like Custom Resource Definitions, and another tenant
needs stringent guarantees of isolation for security and/or compliance, it may be
justified to dedicate clusters to such teams, especially if their workloads demand
significant compute resources.

Less tuning for scale
As clusters scale into several hundred workers, we often encounter issues of scale
that need to be solved for. These issues vary case to case, but bottlenecks in your
control plane can occur. Engineering effort will need to be expended in

40 | Chapter 2: Deployment Models

troubleshooting and tuning clusters. Smaller clusters considerably reduce this
expenditure.

Upgrade options
Using smaller clusters lends itself more readily to replacing clusters in order to
upgrade them. Cluster replacements certainly come with their own challenges,
and these are covered later in this chapter in “Upgrades” on page 52, but this
replacement strategy is an attractive upgrade option in many cases, and operating
smaller clusters can make it even more attractive.

Node pool alternative
If you have workloads with specialized concerns such as GPUs or memory opti‐
mized nodes, and your systems readily accommodate lots of smaller clusters, it
will be trivial to run dedicated clusters to accommodate these kinds of specialized
concerns. This alleviates the complexity of managing multiple node pools as dis‐
cussed earlier in this chapter.

Compute Infrastructure
To state the obvious, a Kubernetes cluster needs machines. Managing pools of these
machines is the core purpose, after all. An early consideration is what types of
machines you should choose. How many cores? How much memory? How much
onboard storage? What grade of network interface? Do you need any specialized
devices such as GPUs? These are all concerns that are driven by the demands of the
software you plan to run. Are the workloads compute intensive? Or are they memory
hungry? Are you running machine learning or AI workloads that necessitate GPUs?
If your use case is very typical in that your workloads fit general-purpose machines’
compute-to-memory ratio well, and if your workloads don’t vary greatly in their
resource consumption profile, this will be a relatively simple exercise. However, if you
have less typical and more diverse software to run, this will be a little more involved.
Let’s consider the different types of machines to consider for your cluster:

etcd machines (optional)
This is an optional machine type that is only applicable if you run a dedicated
etcd clusters for your Kubernetes clusters. We covered the trade-offs with this
option in an earlier section. These machines should prioritize disk read/write
performance, so never use old spinning disk hard drives. Also consider dedicat‐
ing a storage disk to etcd, even if running etcd on dedicated machines, so that
etcd suffers no contention with the OS or other programs for use of the disk.
Also consider network performance, including proximity on the network, to
reduce network latency between machines in a given etcd cluster.

Infrastructure | 41

Control plane nodes (required)
These machines will be dedicated to running control plane components for the
cluster. They should be general-purpose machines that are sized and numbered
according to the anticipated size of the cluster as well as failure tolerance require‐
ments. In a larger cluster, the API server will have more clients and manage more
traffic. This can be accommodated with more compute resources per machine, or
more machines. However, components like the scheduler and controller-
manager have only one active leader at any given time. Increasing capacity for
these cannot be achieved with more replicas the way it can with the API server.
Scaling vertically with more compute resources per machine must be used if
these components become starved for resources. Additionally, if you are colocat‐
ing etcd on these control plane machines, the same considerations for etcd
machines noted above also apply.

Worker Nodes (required)
These are general-purpose machines that host non–control plane workloads.

Memory optimized Nodes (optional)
If you have workloads that have a memory profile that doesn’t make them a good
fit for general-purpose worker nodes, you should consider a node pool that is
memory optimized. For example, if you are using AWS general-purpose M5
instance types for worker nodes that have a CPU:memory ratio of 1CPU:4GiB,
but you have a workload that consumes resources at a ratio of 1CPU:8GiB, these
workloads will leave unused CPU when resources are requested (reserved) in
your cluster at this ratio. This inefficiency can be overcome by using memory-
optimized nodes such as the R5 instance types on AWS, which have a ratio of
1CPU:8GiB.

Compute optimized Nodes (optional)
Alternatively, if you have workloads that fit the profile of a compute-optimized
node such as the C5 instance type in AWS with 1CPU:2GiB, you should consider
adding a node pool with these machine types for improved efficiency.

Specialized hardware Nodes (optional)
A common hardware ask is GPUs. If you have workloads (e.g., machine learning)
requiring specialized hardware, adding a node pool in your cluster and then tar‐
geting those nodes for the appropriate workloads will work well.

Networking Infrastructure
Networking is easy to brush off as an implementation detail, but it can have impor‐
tant impacts on your deployment models. First, let’s examine the elements that you
will need to consider and design for.

42 | Chapter 2: Deployment Models

Routability
You almost certainly do not want your cluster nodes exposed to the public internet.
The convenience of being able to connect to those nodes from anywhere almost never
justifies the threat exposure. You will need to solve for gaining access to those nodes
should you need to connect to them, but a bastion host or jump box that is well
secured and that will allow SSH access, and in turn allow you to connect to cluster
nodes, is a low barrier to hop.

However, there are more nuanced questions to answer, such as network access on
your private network. There will be services on your network that will need connec‐
tivity to and from your cluster. For example, it is common to need connectivity with
storage arrays, internal container registries, CI/CD systems, internal DNS, private
NTP servers, etc. Your cluster will also usually need access to public resources such as
public container registries, even if via an outbound proxy.

If outbound public internet access is out of the question, those resources such as open
source container images and system packages will need to be made available in some
other way. Lean toward simpler systems that are consistent and effective. Lean away
from, if possible, mindless mandates and human approval for infrastructure needed
for cluster deployments.

Redundancy
Use availability zones (AZs) to help maintain uptime where possible. For clarity, an
availability zone is a datacenter that has a distinct power source and backup as well as
a distinct connection to the public internet. Two subnets in a datacenter with a shared
power supply do not constitute two availability zones. However, two distinct datacen‐
ters that are in relatively close proximity to one another and have a low-latency, high-
bandwidth network connection between them do constitute a pair of availability
zones. Two AZs is good. Three is better. More than that depends of the level of catas‐
trophe you need to prepare for. Datacenters have been known to go down. For multi‐
ple datacenters in a region to suffer simultaneous outages is possible, but rare and
would often indicate a kind of disaster that will require you to consider how critical
your workloads are. Are you running workloads necessary to national defense, or an
online store? Also consider where you need redundancy. Are you building redun‐
dancy for your workloads? Or the control plane of the cluster itself? In our experi‐
ence it is acceptable to run etcd across AZs but, if doing so, revisit “Network
considerations” on page 28. Keep in mind that distributing your control plane across
AZs gives redundant control over the cluster. Unless your workloads depend on the
cluster control plane (which should be avoided), your workload availability will not
be affected by a control plane outage. What will be affected is your ability to make any
changes to your running software. A control plane outage is not trivial. It is a high-
priority emergency. But it is not the same as an outage for user-facing workloads.

Infrastructure | 43

Load balancing
You will need a load balancer for the Kubernetes API servers. Can you programmati‐
cally provision a load balancer in your environment? If so, you will be able to spin up
and configure it as a part of the deployment of your cluster’s control plane. Think
through the access policies to your cluster’s API and, subsequently, what firewalls
your load balancer will sit behind. You almost certainly will not make this accessible
from the public internet. Remote access to your cluster’s control plane is far more
commonly done so via a VPN that provides access to the local network that your
cluster resides on. On the other hand, if you have workloads that are publicly
exposed, you will need a separate and distinct load balancer that connects to your clu‐
ster’s ingress. In most cases this load balancer will serve all incoming requests to the
various workloads in your cluster. There is little value in deploying a load balancer
and cluster ingress for each workload that is exposed to requests from outside the
cluster. If running a dedicated etcd cluster, do not put a load balancer between the
Kubernetes API and etcd. The etcd client that the API uses will handle the connec‐
tions to etcd without the need for a load balancer.

Automation Strategies
In automating the infrastructure components for your Kubernetes clusters, you have
some strategic decisions to make. We’ll break this into two categories, the first being
the tools that exist today that you can leverage. Then, we’ll talk about how Kubernetes
operators can be used in this regard. Recognizing that automation capabilities will
look very different for bare metal installations, we will start from the assumption that
you have an API with which to provision machines or include them in a pool for
Kubernetes deployment. If that is not the case, you will need to fill in the gaps with
manual operations up to the point where you do have programmatic access and con‐
trol. Let’s start with some of the tools you may have at your disposal.

Infra management tools
Tools such as Terraform and CloudFormation for AWS allow you to declare the
desired state for your compute and networking infrastructure and then apply that
state. They use data formats or configuration languages that allow you to define the
outcome you require in text files and then tell a piece of software to satisfy the desired
state declared in those text files.

They are advantageous in that they use tooling that engineers can readily adopt and
get outcomes with. They are good at simplifying the process of relatively complex
infrastructure provisioning. They excel when you have a prescribed set of infrastruc‐
ture that needs to be stamped out repeatedly and there is not a lot of variance
between instances of the infrastructure. It greatly lends itself to the principle of
immutable infrastructure because the repeatability is reliable, and infrastructure
replacement as opposed to mutation becomes quite manageable.

44 | Chapter 2: Deployment Models

https://www.terraform.io
https://aws.amazon.com/cloudformation

These tools begin to decline in value when the infrastructure requirements become
significantly complex, dynamic, and dependent on variable conditions. For example,
if you are designing Kubernetes deployment systems across multiple cloud providers,
these tools will become cumbersome. Data formats like JSON and configuration lan‐
guages are not good at expressing conditional statements and looping functions. This
is where general-purpose programming languages shine.

In development stages, infra management tools are very commonly used successfully.
They are indeed used to manage production environments in certain shops, too. But
they become cumbersome to work with over time and often take on a kind of techni‐
cal debt that is almost impossible to pay down. For these reasons, strongly consider
using or developing Kubernetes operators for this purpose.

Kubernetes operators
If infra management tools impose limitations that warrant writing software using
general-purpose programming languages, what form should that software take? You
could write a web application to manage your Kubernetes infrastructure. Or a
command-line tool. If considering custom software development for this purpose,
strongly consider Kubernetes operators.

In the context of Kubernetes, operators use custom resources and custom-built
Kubernetes controllers to manage systems. Controllers use a method of managing
state that is powerful and reliable. When you create an instance of a Kubernetes
resource, the controller responsible for that resource kind is notified by the API
server via its watch mechanism and then uses the declared desired state in the
resource spec as instructions to fulfill the desired state. So extending the Kubernetes
API with new resource kinds that represent infrastructure concerns, and developing
Kubernetes operators to manage the state of these infrastructure resources, is very
powerful. The topic of Kubernetes operators is covered in more depth in Chapter 11.

This is exactly what the Cluster API project is. It is a collection of Kubernetes opera‐
tors that can be used to manage the infrastructure for Kubernetes clusters. And you
can certainly leverage that open source project for your purposes. In fact, we would
recommend you examine this project to see if it may fit your needs before starting a
similar project from scratch. And if it doesn’t fulfill your requirements, could your
team get involved in contributing to that project to help develop the features and/or
supported infrastructure providers that you require?

Kubernetes offers excellent options for automating the management of containerized
software deployments. Similarly, it offers considerable benefits for cluster infrastruc‐
ture automation strategies through the use of Kubernetes operators. Strongly con‐
sider using and, where possible, contributing to projects such as Cluster API. If you
have custom requirements and prefer to use infrastructure management tools, you
can certainly be successful with this option. However, your solutions will have less

Infrastructure | 45

flexibility and more workarounds due to the limitations of using configuration lan‐
guages and formats rather than full-featured programming languages.

Machine Installations
When the machines for your cluster are spun up, they will need an operating system,
certain packages installed, and configurations written. You will also need some utility
or program to determine environmental and other variable values, apply them, and
coordinate the process of starting the Kubernetes containerized components.

There are two broad strategies commonly used here:

• Configuration management tools
• Machine images

Configuration Management
Configuration management tools such as Ansible, Chef, Puppet, and Salt gained pop‐
ularity in a world where software was installed on virtual machines and run directly
on the host. These tools are quite magnificent for automating the configuration of
multitudes of remote machines. They follow varying models but, in general, adminis‐
trators can declaratively prescribe how a machine must look and apply that prescrip‐
tion in an automated fashion.

These config management tools are excellent in that they allow you to reliably estab‐
lish machine consistency. Each machine can get an effectively identical set of software
and configurations installed. And it is normally done with declarative recipes or play‐
books that are checked into version control. These all make them a positive solution.

Where they fall short in a Kubernetes world is the speed and reliability with which
you can bring cluster nodes online. If the process you use to join a new worker node
to a cluster includes a config management tool performing installations of packages
that pull assets over network connections, you are adding significant time to the join
process for that cluster node. Furthermore, errors occur during configuration and
installation. Everything from temporarily unavailable package repositories to missing
or incorrect variables can cause a config management process to fail. This interrupts
the cluster node join altogether. And if you’re relying on that node to join an auto‐
scaled cluster that is resource constrained, you may well invoke or prolong an availa‐
bility problem.

Machine Images
Using machine images is a superior alternative. If you use machine images with all
required packages installed, the software is ready to run as soon as the machine boots

46 | Chapter 2: Deployment Models

up. There is no package install that depends on the network and an available package
repo. Machine images improve the reliability of the node joining the cluster and con‐
siderably shorten the lead time for the node to be ready to accept traffic.

The added beauty of this method is that you can often use the config management
tools you are familiar with to build the machine images. For example, using Packer
from HashiCorp you can employ Ansible to build an Amazon Machine Image and
have that prebuilt image ready to apply to your instances whenever they are needed.
An error running an Ansible playbook to build a machine image is not a big deal. In
contrast, having a playbook error occur that interrupts a worker node joining a clus‐
ter could induce a significant production incident.

You can—and should—still keep the assets used for builds in version control, and all
aspects of the installations can remain declarative and clear to anyone that inspects
the repository. Anytime upgrades or security patches need to occur, the assets can be
updated, committed and, ideally, run automatically according to a pipeline once
merged.

Some decisions involve difficult trade-offs. Some are dead obvious. This is one of
those. Use prebuilt machine images.

What to Install
So what do you need to install on the machine?

To start with the most obvious, you need an operating system. A Linux distribution
that Kubernetes is commonly used and tested with is the safe bet. RHEL/CentOS or
Ubuntu are easy choices. If you have enterprise support for, or if you are passionate
about, another distro and you’re willing to invest a little extra time in testing and
development, that is fine, too. Extra points if you opt for a distribution designed for
containers such as Flatcar Container Linux.

To continue in order of obviousness, you will need a container runtime such as
docker or containerd. When running containers, one must have a container runtime.

Next is the kubelet. This is the interface between Kubernetes and the containers it
orchestrates. This is the component that is installed on the machine that coordinates
the containers. Kubernetes is a containerized world. Modern conventions follow that
Kubernetes itself runs in containers. With that said, the kubelet is one of the compo‐
nents that runs as a regular binary or process on the host. There have been attempts
to run the kubelet as a container, but that just complicates things. Don’t do that.
Install the kubelet on the host and run the rest of Kubernetes in containers. The men‐
tal model is clear and the practicalities hold true.

So far we have a Linux OS, a container runtime to run containers, and an interface
between Kubernetes and the container runtime. Now we need something that can

Machine Installations | 47

https://www.packer.io
https://www.flatcar-linux.org

bootstrap the Kubernetes control plane. The kubelet can get containers running, but
without a control plane it doesn’t yet know what Kubernetes Pods to spin up. This is
where kubeadm and static Pods come in.

Kubeadm is far from the only tool that can perform this bootstrapping. But it has
gained wide adoption in the community and is used successfully in many enterprise
production systems. It is a command-line program that will, in part, stamp out the
static Pod manifests needed to get Kubernetes up and running. The kubelet can be
configured to watch a directory on the host and run Pods for any Pod manifest it
finds there. Kubeadm will configure the kubelet appropriately and deposit the mani‐
fests as needed. This will bootstrap the core, essential Kubernetes control plane com‐
ponents, notably etcd, kube-apiserver, kube-scheduler, and kube-controller-manager.

Thereafter, the kubelet will get all further instructions to create Pods from manifests
submitted to the Kubernetes API. Additionally, kubeadm will generate bootstrap
tokens you can use to securely join other nodes to your shiny new cluster.

Lastly, you will need some kind of bootstrap utility. The Cluster API project uses
Kubernetes custom resources and controllers for this. But a command-line program
installed on the host also works well. The primary function of this utility is to call
kubeadm and manage runtime configurations. When the machine boots, arguments
provided to the utility allow it to configure the bootstrapping of Kubernetes. For
example, in AWS you can leverage user data to run your bootstrap utility and pass
arguments to it that will inform which flags should be added to the kubeadm com‐
mand or what to include in a kubeadm config file. Minimally, it will include a run‐
time config that tells the bootstrap utility whether to create a new cluster with
kubeadm init or join the machine to an existing cluster with kubeadm join. It should
also include a secure location to store the bootstrap token if initializing, or to retrieve
the bootstrap token if joining. These tokens ensure only approved machines are
attached to your cluster, so treat them with care. To gain a clear idea of what runtime
configs you will need to provide to your bootstrap utility, run through a manual
install of Kubernetes using kubeadm, which is well documented in the official docs.
As you run through those steps it will become apparent what will be needed to meet
your requirements in your environment. Figure 2-5 illustrates the steps involved in
bringing up a new machine to create the first control plane node in a new Kubernetes
cluster.

48 | Chapter 2: Deployment Models

Figure 2-5. Bootstrapping a machine to initialize Kubernetes.

Now that we’ve covered what to install on the machines that are used as part of a
Kubernetes cluster, let’s move on to the software that runs in containers to form the
control plane for Kubernetes.

Containerized Components
The static manifests used to spin up a cluster should include those essential compo‐
nents of the control plane: etcd, kube-apiserver, kube-scheduler, and kube-controller-
manager. You can provide additional custom Pod manifests as needed, but strictly
limit them to Pods that absolutely need to run before the Kubernetes API is available
or registered into a federated system. If a workload can be installed by way of the API
server later on, do so. Any Pods created with static manifests can be managed only by
editing those static manifests on the machine’s disk, which is much less accessible and
prone to automation.

If using kubeadm, which is strongly recommended, the static manifests for your con‐
trol plane, including etcd, will be created when a control plane node is initialized with
kubeadm init. Any flag specifications you need for these components can be passed
to kubeadm using the kubeadm config file. The bootstrap utility that we discussed in
the previous section that calls kubeadm can write a templated kubeadm config file,
for example.

Avoid customizing the static Pod manifests directly with your bootstrap utility. If
really necessary, you can perform separate static manifest creation and cluster initiali‐
zation steps with kubeadm that will give you the opportunity to inject customization
if needed, but only do so if it’s important and cannot be achieved via the kubeadm

Containerized Components | 49

config. A simpler, less complicated bootstrapping of the Kubernetes control plane will
be more robust, faster, and will be far less likely to break with Kubernetes version
upgrades.

Kubeadm will also generate self-signed TLS assets that are needed to securely connect
components of your control plane. Again, avoid tinkering with this. If you have secu‐
rity requirements that demand using your corporate CA as a source of trust, then you
can do so. If this is a requirement, it’s important to be able to automate the acquisition
of the intermediate authority. And keep in mind that if your cluster bootstrapping
systems are secure, the trust of the self-signed CA used by the control plane will be
secure and will be valid only for the control plane of a single cluster.

Now that we’ve covered the nuts and bolts of installing Kubernetes, let’s dive into the
immediate concerns that come up once you have a running cluster. We’ll begin with
approaches for getting the essential add-ons installed onto Kubernetes. These add-
ons constitute the components you need to have in addition to Kubernetes to deliver
a production-ready application platform. Then we’ll get into the concerns and strate‐
gies for carrying out upgrades to your platform.

Add-ons
Cluster add-ons broadly cover those additions of platform services layered onto a
Kubernetes cluster. We will not cover what to install as a cluster add-on in this sec‐
tion. That is essentially the topic of the rest of the chapters in this book. Rather, this is
a look at how to go about installing the components that will turn your raw Kuber‐
netes cluster into a production-ready, developer-friendly platform.

The add-ons that you add to a cluster should be considered as a part of the deploy‐
ment model. Add-on installation will usually constitute the final phase of a cluster
deployment. These add-ons should be managed and versioned in combination with
the Kubernetes cluster itself. It is useful to consider Kubernetes and the add-ons that
comprise the platform as a package that is tested and released together since there will
inevitably be version and configuration dependencies between certain platform
components.

Kubeadm installs “required” add-ons that are necessary to pass the Kubernetes proj‐
ect’s conformance tests, including cluster DNS and kube-proxy, which implements
Kubernetes Service resources. However, there are many more, similarly critical com‐
ponents that will need to be applied after kubeadm has finished its work. The most
glaring example is a container network interface plug-in. Your cluster will not be
good for much without a Pod network. Suffice to say you will end up with a signifi‐
cant list of components that need to be added to your cluster, usually in the form of
DaemonSets, Deployments, or StatefulSets that will add functionality to the platform
you’re building on Kubernetes.

50 | Chapter 2: Deployment Models

Earlier, in “Architecture and Topology” on page 28, we discussed cluster federation
and the registration of new clusters into that system. That is usually a precursor to
add-on installation because the systems and definitions for installation often live in a
management cluster.

Whatever the architecture used, once registration is achieved, the installation of clus‐
ter add-ons can be triggered. This installation process will be a series of calls to the
cluster’s API server to create the Kubernetes resources needed for each component.
Those calls can come from a system outside the cluster or inside.

One approach to installing add-ons is to use a continuous delivery pipeline using
existing tools such as Jenkins. The “continuous” part is irrelevant in this context since
the trigger is not a software update but rather a new target for installation. The “con‐
tinuous” part of CI and CD usually refers to automated rollouts of software once new
changes have been merged into a branch of version-controlled source code. Trigger‐
ing installations of cluster add-on software into a newly deployed cluster is an entirely
different mechanism but is useful in that the pipeline generally contains the capabili‐
ties needed for the installations. All that is needed to implement is the call to run a
pipeline in response to the creation of a new cluster along with any variables to per‐
form proper installation.

Another approach that is more native to Kubernetes is to use a Kubernetes operator
for the task. This more advanced approach involves extending the Kubernetes API
with one or more custom resources that allow you to define the add-on components
for the cluster and their versions. It also involves writing the controller logic that can
execute the proper installation of the add-on components given the defined spec in
the custom resource.

This approach is useful in that it provides a central, clear source of truth for what the
add-ons are for a cluster. But more importantly, it offers the opportunity to program‐
matically manage the ongoing life cycle of these add-ons. The drawback is the com‐
plexity of developing and maintaining more complex software. If you take on this
complexity, it should be because you will implement those day-2 upgrades and ongo‐
ing management that will greatly reduce future human toil. If you stop at day-1
installation and do not develop the logic and functionality to manage upgrades, you
will be taking on a significant software engineering cost for little ongoing benefit.
Kubernetes operators offer the most value in ongoing operational management with
their watch functionality of the custom resources that represent desired state.

To be clear, the add-on operator concept isn’t necessarily entirely independent from
external systems such as a CI/CD. In reality, they are far more likely to be used in
conjunction. For example, you may use a CD pipeline to install the operator and add-
on custom resources and then let the operator take over. Also, the operator will likely
need to fetch manifests for installation, perhaps from a code repository that contains
templated Kubernetes manifests for the add-ons.

Add-ons | 51

Using an operator in this manner reduces external dependencies, which drives
improved reliability. However, external dependencies cannot be eliminated alto‐
gether. Using an operator to solve add-ons should be undertaken only when you have
engineers that know the Kubernetes operator pattern well and have experience lever‐
aging it. Otherwise, stick with tools and systems that your team knows well while you
advance the knowledge and experience of your team in this domain.

That brings us to the conclusion of the “day 1” concerns: the systems to install a
Kubernetes cluster and its add-ons. Now we will turn to the “day 2” concern of
upgrades.

Upgrades
Cluster life cycle management is closely related to cluster deployment. A cluster
deployment system doesn’t necessarily need to account for future upgrades; however,
there are enough overlapping concerns to make it advisable. At the very least, your
upgrade strategy needs to be solved before going to production. Being able to deploy
the platform without the ability to upgrade and maintain it is hazardous at best.
When you see production workloads running on versions of Kubernetes that are way
behind the latest release, you are looking at the outcome of developing a cluster
deployment system that has been deployed to production before upgrade capabilities
were added to the system. When you first go to production with revenue-producing
workloads running, considerable engineering budget will be spent attending to fea‐
tures you find missing or to sharp edges you find your team cutting themselves on.
As time goes by, those features will be added and the sharp edges removed, but the
point is they will naturally take priority while the upgrade strategy sits in the backlog
getting stale. Budget early for those day-2 concerns. Your future self will thank you.

In addressing this subject of upgrades we will first look at versioning your platform to
help ensure dependencies are well understood for the platform itself and for the
workloads that will use it. We will also address how to approach planning for roll‐
backs in the event something goes wrong and the testing to verify that everything has
gone according to plan. Finally, we will compare and contrast specific strategies for
upgrading Kubernetes.

Platform Versioning
First of all, version your platform and document the versions of all software used in
that platform. That includes the operating system version of the machines and all
packages installed on them, such as the container runtime. It obviously includes the
version of Kubernetes in use. And it should also include the version of each add-on
that is added to make up your application platform. It is somewhat common for
teams to adopt the Kubernetes version for their platform so that everyone knows that
version 1.18 of the application platform uses Kubernetes version 1.18 without any

52 | Chapter 2: Deployment Models

mental overhead or lookup. This is of trivial importance compared to the fact of just
doing the versioning and documenting it. Use whatever system your team prefers.
But have the system, document the system, and use it religiously. My only objection
to pinning your platform version to any component of that system is that it may occa‐
sionally induce confusion. For example, if you need to update your container runti‐
me’s version due to a security vulnerability, you should reflect that in the version of
your platform. If using semantic versioning conventions, that would probably look
like a change to the bugfix version number. That may be confused with a version
change in Kubernetes itself, i.e., v1.18.5 → 1.18.6. Consider giving your platform its
own independent version numbers, especially if using semantic versioning that fol‐
lows the major/minor/bugfix convention. It’s almost universal that software has its
own independent version with dependencies on other software and their versions. If
your platform follows those same conventions, the meaning will be immediately clear
to all engineers.

Plan to Fail
Start from the premise that something will go wrong during the upgrade process.
Imagine yourself in the situation of having to recover from a catastrophic failure, and
use that fear and anguish as motivation to prepare thoroughly for that outcome.
Build automation to take and restore backups for your Kubernetes resources—both
with direct etcd snapshots as well as Velero backups taken through the API. Do the
same for the persistent data used by your applications. And address disaster recovery
for your critical applications and their dependencies directly. For complex, stateful,
distributed applications it will likely not be enough to merely restore the application’s
state and Kubernetes resources without regard to order and dependencies. Brain‐
storm all the possible failure modes, and develop automated recovery systems to rem‐
edy and then test them. For the most critical workloads and their dependencies,
consider having standby clusters ready to fail over to—and then automate and test
those fail-overs where possible.

Consider your rollback paths carefully. If an upgrade induces errors or outages that
you cannot immediately diagnose, having rollback options is good insurance. Com‐
plex distributed systems can take time to troubleshoot, and that time can be extended
by the stress and distraction of production outages. Predetermined playbooks and
automation to fall back on are more important than ever when dealing with complex
Kubernetes-based platforms. But be practical and realistic. In the real world, rollbacks
are not always a good option. For example, if you’re far enough along in an upgrade
process, rolling all earlier changes back may be a terrible idea. Think that through
ahead of time, know where your points of no return are, and strategize before you
execute those operations live.

Upgrades | 53

Integration Testing
Having a well-documented versioning system that includes all component versions is
one thing, but how you manage these versions is another. In systems as complex as
Kubernetes-based platforms, it is a considerable challenge to ensure everything inte‐
grates and works together as expected every time. Not only is compatibility between
all components of the platform critical, but compatibility between the workloads that
run on the platform and the platform itself must also be tested and confirmed. Lean
toward platform agnosticism for your applications to reduce possible problems with
platform compatibility, but there are many instances when application workloads
yield tremendous value when leveraging platform features.

Unit testing for all platform components is important, along with all other sound
software engineering practices. But integration testing is equally vital, even if consid‐
erably more challenging. An excellent tool to aid in this effort is the Sonobuoy con‐
formance test utility. It is most commonly used to run the upstream Kubernetes end-
to-end tests to ensure you have a properly running cluster; i.e., all the cluster’s
components are working together as expected. Often teams will run a Sonobuoy scan
after a new cluster is provisioned to automate what would normally be a manual pro‐
cess of examining control plane Pods and deploying test workloads to ensure the
cluster is properly operational. However, I suggest taking this a couple of steps fur‐
ther. Develop your own plug-ins that test the specific functionality and features of
your platform. Test the operations that are critical to your organization’s require‐
ments. And run these scans routinely. Use a Kubernetes CronJob to run at least a sub‐
set of plug-ins, if not the full suite of tests. This is not exactly available out of the box
today but can be achieved with a little engineering and is well worth the effort: expose
the scan results as metrics that can be displayed in dashboards and alerted upon.
These conformance scans can essentially test that the various parts of a distributed
system are working together to produce the functionality and features you expect to
be there and constitute a very capable automated integration testing approach.

Again, integration testing must be extended to the applications that run on the plat‐
form. Different integration testing strategies will be employed by different app dev
teams, and this may be largely out of the platform team’s hands, but advocate strongly
for it. Run the integrations tests on a cluster that closely resembles the production
environment, but more on that shortly. This will be more critical for workloads that
leverage platform features. Kubernetes operators are a compelling example of this.
These extend the Kubernetes API and are naturally deeply integrated with the plat‐
form. And if you’re using an operator to deploy and manage the life cycle for any of
your organization’s software systems, it is imperative that you perform integration
tests across versions of your platform, especially when Kubernetes version upgrades
are involved.

54 | Chapter 2: Deployment Models

Strategies
We’re going to look at three strategies for upgrading your Kubernetes-based
platforms:

• Cluster replacement
• Node replacement
• In-place upgrades

We’re going to address them in order of highest cost with lowest risk to lowest cost
with highest risk. As with most things, there is a trade-off that eliminates the oppor‐
tunity for a one-size-fits-all, universally ideal solution. The costs and benefits need to
be considered to find the right solution for your requirements, budget, and risk toler‐
ance. Furthermore, within each strategy, there are degrees of automation and testing
that, again, will depend on factors such as engineering budget, risk tolerance, and
upgrade frequency.

Keep in mind, these strategies are not mutually exclusive. You can use combinations.
For example, you could perform in-place upgrades for a dedicated etcd cluster and
then use node replacements for the rest of the Kubernetes cluster. You can also use
different strategies in different tiers where the risk tolerances are different. However,
it is advisable to use the same strategy everywhere so that the methods you employ in
production have first been thoroughly tested in development and staging.

Whichever strategy you employ, a few principles remain constant: test thoroughly
and automate as much as is practical. If you build automation to perform actions and
test that automation thoroughly in testing, development, and staging clusters, your
production upgrades will be far less likely to produce issues for end users and far less
likely to invoke stress in your platform operations team.

Cluster replacement
Cluster replacement is the highest cost, lowest risk solution. It is low risk in that it
follows immutable infrastructure principles applied to the entire cluster. An upgrade
is performed by deploying an entirely new cluster alongside the old. Workloads are
migrated from the old cluster to the new. The new, upgraded cluster is scaled out as
needed as workloads are migrated on. The old cluster’s worker nodes are scaled in as
workloads are moved off. But throughout the upgrade process there is an addition of
an entirely distinct new cluster and the costs associated with it. The scaling out of the
new and scaling in of the old mitigates this cost, which is to say that if you are
upgrading a 300-node production cluster, you do not need to provision a new cluster
with 300 nodes at the outset. You would provision a cluster with, say, 20 nodes. And
when the first few workloads have been migrated, you can scale in the old cluster that
has reduced usage and scale out the new to accommodate other incoming workloads.

Upgrades | 55

The use of cluster autoscaling and cluster overprovisioning can make this quite seam‐
less, but upgrades alone are unlikely to be a sound justification for using those tech‐
nologies. There are two common challenges when tackling a cluster replacement.

The first is managing ingress traffic. As workloads are migrated from one cluster to
the next, traffic will need to be rerouted to the new, upgraded cluster. This implies
that DNS for the publicly exposed workloads does not resolve to the cluster ingress,
but rather to a global service load balancer (GSLB) or reverse proxy that, in turn,
routes traffic to the cluster ingress. This gives you a point from which to manage traf‐
fic routing into multiple clusters.

The other is persistent storage availability. If using a storage service or appliance, the
same storage needs to be accessible from both clusters. If using a managed service
such as a database service from a public cloud provider, you must ensure the same
service is available from both clusters. In a private datacenter this could be a network‐
ing and firewalling question. In the public cloud it will be a question of networking
and availability zones; for example, AWS EBS volumes are available from specific
availability zones. And managed services in AWS often have specific Virtual Private
Clouds (VPCs) associated. You may consider using a single VPC for multiple clusters
for this reason. Oftentimes Kubernetes installers assume a VPC per cluster, but this
isn’t always the best model.

Next, you will concern yourself with workload migrations. Primarily, we’re talking
about the Kubernetes resources themselves—the Deployments, Services, ConfigMaps,
etc. You can do this workload migration in one of two ways:

1. Redeploy from a declared source of truth
2. Copy the existing resources over from the old cluster

The first option would likely involve pointing your deployment pipeline at the new
cluster and having it redeploy the same resource to the new cluster. This assumes the
source of truth for your resource definitions that you have in version control is relia‐
ble and that no in-place changes have taken place. In reality, this is quite uncommon.
Usually, humans, controllers, and other systems have made in-place changes and
adjustments. If this is the case, you will need go with option 2 and make a copy of the
existing resources and deploy them to the new cluster. This is where a tool like Velero
can be extremely valuable. Velero is more commonly touted as a backup tool, but its
value as a migration tool is as high or possibly even higher. Velero can take a snapshot
of all resources in your cluster, or a subset. So if you migrate workloads one Name‐
space at a time, you can take snapshots of each Namespace at the time of migration
and restore those snapshots into the new cluster in a highly reliable manner. It takes
these snapshots not directly from the etcd data store, but rather through the Kuber‐
netes API, so as long as you can provide access to Velero to the API server for both
clusters, this method can be very useful. Figure 2-6 illustrates this approach.

56 | Chapter 2: Deployment Models

Figure 2-6. Migrating workloads between clusters with a backup and restore using
Velero.

Node replacement
The node replacement option represents a middle ground for cost and risk. It is a
common approach and is supported by Cluster API. It is a palatable option if you’re
managing larger clusters and compatibility concerns are well understood. Those
compatibility concerns represent one of the biggest risks for this method because you
are upgrading the control plane in-place as far as your cluster services and workloads
are concerned. If you upgrade Kubernetes in-place and an API version that one of
your workloads is using is no longer present, your workload could suffer an outage.
There are several ways to mitigate this:

• Read the Kubernetes release notes. Before rolling out a new version of your plat‐
form that includes a Kubernetes version upgrade, read the CHANGELOG thor‐
oughly. Any API deprecations or removals are well documented there, so you will
have plenty of advance notice.

• Test thoroughly before production. Run new versions of your platform exten‐
sively in development and staging clusters before rolling out to production. Get
the latest version of Kubernetes running in dev shortly after it is released and you
will be able to thoroughly test and still have recent releases of Kubernetes run‐
ning in production.

Upgrades | 57

• Avoid tight coupling with the API. This doesn’t apply to platform services that
run in your cluster. Those, by their nature, need to integrate closely with Kuber‐
netes. But keep your end user, production workloads as platform-agnostic as pos‐
sible. Don’t have the Kubernetes API as a dependency. For example, your
application should know nothing of Kubernetes Secrets. It should simply con‐
sume an environment variable or read a file that is exposed to it. That way, as
long as the manifests used to deploy your app are upgraded, the application
workload itself will continue to run happily, regardless of API changes. If you
find that you want to leverage Kubernetes features in your workloads, consider
using a Kubernetes operator. An operator outage should not affect the availability
of your application. An operator outage will be an urgent problem to fix, but it
will not be one your customers or end users should see, which is a world of
difference.

The node replacement option can be very beneficial when you build machine images
ahead of time that are well tested and verified. Then you can bring up new machines
and readily join them to the cluster. The process will be rapid because all updated
software, including operating system and packages, are already installed and the pro‐
cesses to deploy those new machines can use much the same process as original
deployment.

When replacing nodes for your cluster, start with the control plane. If you’re running
a dedicated etcd cluster, start there. The persistent data for your cluster is critical and
must be treated carefully. If you encounter a problem upgrading your first etcd node,
if you are properly prepared, it will be relatively trivial to abort the upgrade. If you
upgrade all your worker nodes and the Kubernetes control plane, then find yourself
with issues upgrading etcd, you are in a situation where rolling back the entire
upgrade is not practical—you need to remedy the live problem as a priority. You have
lost the opportunity to abort the entire process, regroup, retest, and resume later. You
need to solve that problem or at the very least diligently ensure that you can leave the
existing versions as-is safely for a time.

For a dedicated etcd cluster, consider replacing nodes subtractively; i.e., remove a
node and then add in the upgraded replacement, as opposed to first adding a node to
the cluster and then removing the old. This method gives you the opportunity to
leave the member list for each etcd node unchanged. Adding a fourth member to a
three-node etcd cluster, for example, will require an update to all etcd nodes’ member
list, which will require a restart. It will be far less disruptive to drop a member and
replace it with a new one that has the same IP address as the old, if possible. The etcd
documentation on upgrades is excellent and may lead you to consider doing in-place
upgrades for etcd. This will necessitate in-place upgrades to OS and packages on the
machine as applicable, but this will often be quite palatable and perfectly safe.

58 | Chapter 2: Deployment Models

For the control plane nodes, they can be replaced additively. Using kubeadm join
with the --control-plane flag on new machines that have the upgraded Kubernetes
binaries—kubeadm, kubectl, kubelet—installed. As each of the control plane nodes
comes online and is confirmed operational, one old-versioned node can be drained
and then deleted. If you are running etcd colocated on the control plane nodes,
include etcd checks when confirming operationality and etcdctl to manage the mem‐
bers of the cluster as needed.

Then you can proceed to replace the worker nodes. These can be done additively or
subtractively—one at a time or several at a time. A primary concern here is cluster
utilization. If your cluster is highly utilized, you will want to add new worker nodes
before draining and removing existing nodes to ensure you have sufficient compute
resources for the displaced Pods. Again, a good pattern is to use machine images that
have all the updated software installed that are brought online and use kubeadm join
to be added to the cluster. And, again, this could be implemented using many of the
same mechanisms as used in cluster deployment. Figure 2-7 illustrates this operation
of replacing control plane nodes one at a time and worker nodes in batches.

Figure 2-7. Performing upgrades by replacing nodes in a cluster.

In-place upgrades
In-place upgrades are appropriate in resource-constrained environments where
replacing nodes is not practical. The rollback path is more difficult and, hence, the
risk is higher. But this can and should be mitigated with comprehensive testing. Keep
in mind as well that Kubernetes in production configurations is a highly available sys‐
tem. If in-place upgrades are done one node at a time, the risk is reduced. So, if using
a config management tool such as Ansible to execute the steps of this upgrade opera‐
tion, resist the temptation to hit all nodes at once in production.

Upgrades | 59

For etcd nodes, following the documentation for that project, you will simply take
each node offline, one at a time, performing the upgrade for OS, etcd, and other
packages, and then bringing it back online. If running etcd in a container, consider
pre-pulling the image in question prior to bringing the member offline to minimize
downtime.

For the Kubernetes control plane and worker nodes, if kubeadm was used for initial‐
izing the cluster, that tool should also be used for upgrades. The upstream docs have
detailed instructions on how to perform this process for each minor version upgrade
from 1.13 forward. At the risk of sounding like a broken record, as always, plan for
failure, automate as much as possible, and test extensively.

That brings us to end of upgrade options. Now, let’s circle back around to the begin‐
ning of the story—what mechanisms you use to trigger these cluster provisioning and
upgrade options. We’re tackling this topic last because it requires the context of every‐
thing we’ve covered so far in this chapter.

Triggering Mechanisms
Now that we’ve looked at all the concerns to solve for in your Kubernetes deployment
model, it’s useful to consider the triggering mechanisms that fire off the automation
for installation and management, whatever form that takes. Whether using a Kuber‐
netes managed service, a prebuilt installer, or your own custom automation built
from the ground up, how you fire off cluster builds, cluster scaling, and cluster
upgrades is important.

Kubernetes installers generally have a CLI tool that can be used to initiate the installa‐
tion process. However, using that tool in isolation leaves you without a single source
of truth or cluster inventory record. Managing your cluster inventory is difficult
when you don’t have a list of that inventory.

A GitOps approach has become popular in recent years. In this case the source of
truth is a code repository that contains the configurations for the clusters under man‐
agement. When configurations for a new cluster are committed, automation is trig‐
gered to provision a new cluster. When existing configurations are updated,
automation is triggered to update the cluster, perhaps to scale the number of worker
nodes or perform an upgrade of Kubernetes and the cluster add-ons.

Another approach that is more Kubernetes-native is to represent clusters and their
dependencies in Kubernetes custom resources and then use Kubernetes operators to
respond to the declared state in those custom resources by provisioning clusters. This
is the approach taken by projects like Cluster API. The sources of truth in this case
are the Kubernetes resources stored in etcd in the management cluster. However,
multiple management clusters for different regions or tiers are commonly employed.
Here, the GitOps approach can be used in conjunction whereby the cluster resource

60 | Chapter 2: Deployment Models

manifests are stored in source control and the pipeline submits the manifests to the
appropriate management cluster. In this way, you get the best of both the GitOps and
Kubernetes-native worlds.

Summary
When developing a deployment model for Kubernetes, consider carefully what man‐
aged services or existing Kubernetes installers (free and licensed) you may leverage.
Keep automation as a guiding principle for all the systems you build. Wrap your wits
around all the architecture and topology concerns, particularly if you have uncom‐
mon requirements that need to be met. Think through the infrastructure dependen‐
cies and how to integrate them into your deployment process. Consider carefully how
to manage the machines that will comprise your clusters. Understand the container‐
ized components that will form the control plane of your cluster. Develop consistent
patterns for installing the cluster add-ons that will provide the essential features of
your app platform. Version your platform and get your day-2 management and
upgrade paths in place before you put production workloads on your clusters.

Summary | 61

CHAPTER 3

Container Runtime

Kubernetes is a container orchestrator. Yet, Kubernetes itself does not know how to
create, start, and stop containers. Instead, it delegates these operations to a pluggable
component called the container runtime. The container runtime is a piece of software
that creates and manages containers on a cluster node. In Linux, the container run‐
time uses a set of kernel primitives such as control groups (cgroups) and namespaces
to spawn a process from a container image. In essence, Kubernetes, and more specifi‐
cally, the kubelet, works together with the container runtime to run containers.

As we discussed in Chapter 1, organizations building platforms on top of Kubernetes
are faced with multiple choices. Which container runtime to use is one such choice.
Choice is great as it lets you customize the platform to your needs, enabling innova‐
tion and advanced use cases that might otherwise not be possible. However, given the
fundamental nature of a container runtime, why does Kubernetes not provide an
implementation? Why does it choose to provide a pluggable interface and offload the
responsibility to another component?

To answer these questions, we will look back and briefly review the history of con‐
tainers and how we got here. We will first discuss the advent of containers and how
they changed the software development landscape. After all, Kubernetes would prob‐
ably not exist without them. We will then discuss the Open Container Initiative
(OCI), which arose from the need for standardization around container runtimes,
images, and other tooling. We will review the OCI specifications and how they per‐
tain to Kubernetes. After OCI, we will discuss the Kubernetes-specific Container
Runtime Interface (CRI). The CRI is the bridge between the kubelet and the con‐
tainer runtime. It specifies the interface that the container runtime must implement
to be compatible with Kubernetes. Finally, we will discuss how to choose a runtime
for your platform and review the available options in the Kubernetes ecosystem.

63

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

The Advent of Containers
Control groups (cgroups) and namespaces are the primary ingredients necessary to
implement containers. Cgroups impose limits on the amount of resources a process
can use (e.g., CPU, memory, etc.), while namespaces control what a process can see
(e.g., mounts, processes, network interfaces, etc.). Both these primitives have been in
the Linux kernel since 2008. Even earlier in the case of namespaces. So why did con‐
tainers, as we know them today, become popular years later?

To answer this question, we first need to consider the environment surrounding the
software and IT industry at the time. An initial factor to think about is the complexity
of applications. Application developers built applications using service-oriented
architectures and even started to embrace microservices. These architectures brought
various benefits to organizations, such as maintainability, scalability, and productiv‐
ity. However, they also resulted in an explosion in the number of components that
made up an application. Meaningful applications could easily involve a dozen serv‐
ices, potentially written in multiple languages. As you can imagine, developing and
shipping these applications was (and continues to be) complex. Another factor to
remember is that software quickly became a business differentiator. The faster you
could ship new features, the more competitive your offerings. Having the ability to
deploy software in a reliable manner was key to a business. Finally, the emergence of
the public cloud as a hosting environment is another important factor. Developers
and operations teams had to ensure that applications behaved the same across all
environments, from a developer’s laptop to a production server running in someone
else’s datacenter.

Keeping these challenges in mind, we can see how the environment was ripe for inno‐
vation. Enter Docker. Docker made containers accessible to the masses. They built an
abstraction that enabled developers to build and run containers with an easy-to-use
CLI. Instead of developers having to know the low-level kernel constructs needed to
leverage container technology, all they had to do was type docker run in their
terminal.

While not the answer to all our problems, containers improved many stages of the
software development life cycle. First, containers and container images allowed devel‐
opers to codify the application’s environment. Developers no longer had to wrestle
with missing or mismatched application dependencies. Second, containers impacted
testing by providing reproducible environments for testing applications. Lastly, con‐
tainers made it easier to deploy software to production. As long as there was a Docker
Engine in the production environment, the application could be deployed with mini‐
mum friction. Overall, containers helped organizations to ship software from zero to
production in a more repeatable and efficient manner.

64 | Chapter 3: Container Runtime

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

MINH HAI, TRAN

The advent of containers also gave birth to an abundant ecosystem full of different
tools, container runtimes, container image registries, and more. This ecosystem was
well received but introduced a new challenge: How do we make sure that all these
container solutions are compatible with each other? After all, the encapsulation and
portability guarantees are one of the main benefits of containers. To solve this chal‐
lenge and to improve the adoption of containers, the industry came together and col‐
laborated on an open source specification under the umbrella of the Linux
Foundation: the Open Container Initiative.

The Open Container Initiative
As containers continued to gain popularity across the industry, it became clear that
standards and specifications were required to ensure the success of the container
movement. The Open Container Initiative (OCI) is an open source project estab‐
lished in 2015 to collaborate on specifications around containers. Notable founders of
this initiative included Docker, which donated runc to the OCI, and CoreOS, which
pushed the needle on container runtimes with rkt.

The OCI includes three specifications: the OCI runtime specification, the OCI image
specification, and the OCI distribution specification. These specs enable development
and innovation around containers and container platforms such as Kubernetes. Fur‐
thermore, the OCI aims to allow end users to use containers in a portable and intero‐
perable manner, enabling them to move between products and solutions more easily
when necessary.

In the following sections, we will explore the runtime and image specifications. We
will not dig into the distribution specification, as it is primarily concerned with con‐
tainer image registries.

OCI Runtime Specification
The OCI runtime specification determines how to instantiate and run containers in
an OCI-compatible fashion. First, the specification describes the schema of a contain‐
er’s configuration. The schema includes information such as the container’s root file‐
system, the command to run, the environment variables, the user and group to use,
resource limits, and more. The following snippet is a trimmed example of a container
configuration file obtained from the OCI runtime specification:

{
 "ociVersion": "1.0.1",
 "process": {
 "terminal": true,
 "user": {
 "uid": 1,
 "gid": 1,
 "additionalGids": [

The Open Container Initiative | 65

 5,
 6
]
 },
 "args": [
 "sh"
],
 "env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "TERM=xterm"
],
 "cwd": "/",
 ...
 },
 ...
 "mounts": [
 {
 "destination": "/proc",
 "type": "proc",
 "source": "proc"
 },
 ...
 },
 ...
}

The runtime specification also determines the operations that a container runtime
must support. These operations include create, start, kill, delete, and state (which pro‐
vides information about the container’s state). In addition to the operations, the run‐
time spec describes the life cycle of a container and how it progresses through
different stages. The life cycle stages are (1) creating, which is active when the con‐
tainer runtime is creating the container; (2) created, which is when the runtime has
completed the create operation; (3) running, which is when the container process
has started and is running; and (4) stopped, which is when the container process has
finished.

The OCI project also houses runc, a low-level container runtime that implements the
OCI runtime specification. Other higher-level container runtimes such as Docker,
containerd, and CRI-O use runc to spawn containers according to the OCI spec, as
shown in Figure 3-1. Leveraging runc enables container runtimes to focus on higher-
level features such as pulling images, configuring networking, handling storage, and
so on while conforming to the OCI runtime spec.

66 | Chapter 3: Container Runtime

Figure 3-1. Docker Engine, containerd, and other runtimes use runc to spawn containers
according to the OCI spec.

OCI Image Specification
The OCI image specification focuses on the container image. The specification
defines a manifest, an optional image index, a set of filesystem layers, and a configu‐
ration. The image manifest describes the image. It includes a pointer to the image’s
configuration, a list of image layers, and an optional map of annotations. The follow‐
ing is an example manifest obtained from the OCI image specification:

{
 "schemaVersion": 2,
 "config": {
 "mediaType": "application/vnd.oci.image.config.v1+json",
 "size": 7023,
 "digest": "sha256:b5b2b2c507a0944348e0303114d8d93aaaa081732b86451d9bce1f4..."
 },
 "layers": [
 {
 "mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
 "size": 32654,
 "digest": "sha256:9834876dcfb05cb167a5c24953eba58c4ac89b1adf57f28f2f9d0..."
 },
 {
 "mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
 "size": 16724,
 "digest": "sha256:3c3a4604a545cdc127456d94e421cd355bca5b528f4a9c1905b15..."
 },
 {
 "mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
 "size": 73109,
 "digest": "sha256:ec4b8955958665577945c89419d1af06b5f7636b4ac3da7f12184..."
 }
],
 "annotations": {
 "com.example.key1": "value1",
 "com.example.key2": "value2"
 }
}

The Open Container Initiative | 67

The image index is a top-level manifest that enables the creation of multiplatform
container images. The image index contains pointers to each of the platform-specific
manifests. The following is an example index obtained from the specification. Notice
how the index points to two different manifests, one for ppc64le/linux and another
for amd64/linux:

{
 "schemaVersion": 2,
 "manifests": [
 {
 "mediaType": "application/vnd.oci.image.manifest.v1+json",
 "size": 7143,
 "digest": "sha256:e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab...",
 "platform": {
 "architecture": "ppc64le",
 "os": "linux"
 }
 },
 {
 "mediaType": "application/vnd.oci.image.manifest.v1+json",
 "size": 7682,
 "digest": "sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e9...",
 "platform": {
 "architecture": "amd64",
 "os": "linux"
 }
 }
],
 "annotations": {
 "com.example.key1": "value1",
 "com.example.key2": "value2"
 }
}

Each OCI image manifest references a container image configuration. The configura‐
tion includes the image’s entry point, command, working directory, environment
variables, and more. The container runtime uses this configuration when instantiat‐
ing a container from the image. The following snippet shows the configuration of a
container image, with some fields removed for brevity:

{
 "architecture": "amd64",
 "config": {
 ...
 "ExposedPorts": {
 "53/tcp": {},
 "53/udp": {}
 },
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,

68 | Chapter 3: Container Runtime

 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "Cmd": null,
 "Image": "sha256:7ccecf40b555e5ef2d8d3514257b69c2f4018c767e7a20dbaf4733...",
 "Volumes": null,
 "WorkingDir": "",
 "Entrypoint": [
 "/coredns"
],
 "OnBuild": null,
 "Labels": null
 },
 "created": "2020-01-28T19:16:47.907002703Z",
 ...

The OCI image spec also describes how to create and manage container image layers.
Layers are essentially TAR archives that include files and directories. The specifica‐
tion defines different media types for layers, including uncompressed layers, gzipped
layers, and nondistributable layers. Each layer is uniquely identified by a digest, usu‐
ally a SHA256 sum of the contents of the layer. As we discussed before, the container
image manifest references one or more layers. The references use the SHA256 digest
to point to a specific layer. The final container image filesystem is the result of apply‐
ing each of the layers, as listed in the manifest.

The OCI image specification is crucial because it ensures that container images are
portable across different tools and container-based platforms. The spec enables the
development of different image build tools, such as kaniko and Buildah for userspace
container builds, Jib for Java-based containers, and Cloud Native Buildpacks for
streamlined and automated builds. (We will explore some of these tools in Chap‐
ter 15). Overall, this specification ensures that Kubernetes can run container images
regardless of the tooling used to build them.

The Container Runtime Interface
As we’ve discussed in prior chapters, Kubernetes offers many extension points that
allow you to build a bespoke application platform. One of the most critical extension
points is the Container Runtime Interface (CRI). The CRI was introduced in Kuber‐
netes v1.5 as an effort to enable the growing ecosystem of container runtimes, which
included rkt by CoreOS and hypervisor-based runtimes such as Intel’s Clear Contain‐
ers, which later became Kata Containers.

Prior to CRI, adding support for a new container runtime required a new release of
Kubernetes and intimate knowledge of the Kubernetes code base. Once the CRI was
established, container runtime developers could simply adhere to the interface to
ensure compatibility of the runtime with Kubernetes.

The Container Runtime Interface | 69

Overall, the goal of the CRI was to abstract the implementation details of the con‐
tainer runtime away from Kubernetes, more specifically the kubelet. This is a classic
example of the dependency inversion principle. The kubelet evolved from having
container runtime–specific code and if-statements scattered throughout to a leaner
implementation that relied on the interface. Thus, the CRI reduced the complexity of
the kubelet implementation while also making it more extensible and testable. These
are all important qualities of well-designed software.

The CRI is implemented using gRPC and Protocol Buffers. The interface defines two
services: the RuntimeService and the ImageService. The kubelet leverages these serv‐
ices to interact with the container runtime. The RuntimeService is responsible for all
the Pod-related operations, including creating Pods, starting and stopping containers,
deleting Pods, and so on. The ImageService is concerned with container image opera‐
tions, including listing, pulling, and removing container images from the node.

While we could detail the APIs of both the RuntimeService and ImageService in this
chapter, it is more useful to understand the flow of perhaps the most important oper‐
ation in Kubernetes: starting a Pod on a node. Thus, let’s explore the interaction
between the kubelet and the container runtime through CRI in the following section.

Starting a Pod

The following descriptions are based on Kubernetes v1.18.2 and
containerd v1.3.4. These components use the v1alpha2 version of
the CRI.

Once the Pod is scheduled onto a node, the kubelet works together with the container
runtime to start the Pod. As mentioned, the kubelet interacts with the container run‐
time through the CRI. In this case, we will explore the interaction between the kube‐
let and the containerd CRI plug-in.

The containerd CRI plug-in starts a gRPC server that listens on a Unix socket. By
default, this socket is located at /run/containerd/containerd.sock. The kubelet is con‐
figured to interact with containerd through this socket with the container-runtime
and container-runtime-endpoint command-line flags:

/usr/bin/kubelet
 --container-runtime=remote
 --container-runtime-endpoint=/run/containerd/containerd.sock
 ... other flags here ...

To start the Pod, the kubelet first creates a Pod sandbox using the RunPodSandbox
method of the RuntimeService. Because a Pod is composed of one or more contain‐
ers, the sandbox must be created first to establish the Linux network namespace

70 | Chapter 3: Container Runtime

(among other things) for all containers to share. When calling this method, the kube‐
let sends metadata and configuration to containerd, including the Pod’s name, unique
ID, Kubernetes Namespace, DNS configuration, and more. Once the container run‐
time creates the sandbox, the runtime responds with a Pod sandbox ID that the kube‐
let uses to create containers in the sandbox.

Once the sandbox is available, the kubelet checks whether the container image is
present on the node using the ImageStatus method of the ImageService. The Image
Status method returns information about the image. When the image is not present,
the method returns null and the kubelet proceeds to pull the image. The kubelet uses
the PullImage method of the ImageService to pull the image when necessary. Once
the runtime pulls the image, it responds with the image SHA256 digest, which the
kubelet then uses to create the container.

After creating the sandbox and pulling the image, the kubelet creates the containers
in the sandbox using the CreateContainer method of the RuntimeService. The kube‐
let provides the sandbox ID and the container configuration to the container run‐
time. The container configuration includes all the information you might expect,
including the container image digest, command and arguments, environment vari‐
ables, volume mounts, etc. During the creation process, the container runtime gener‐
ates a container ID that it then passes back to the kubelet. This ID is the one you see
in the Pod’s status field under container statuses:

containerStatuses:
 - containerID: containerd://0018556b01e1662c5e7e2dcddb2bb09d0edff6cf6933...
 image: docker.io/library/nginx:latest

The kubelet then proceeds to start the container using the StartContainer method
of the RuntimeService. When calling this method, it uses the container ID it received
from the container runtime.

And that’s it! In this section, we’ve learned how the kubelet interacts with the con‐
tainer runtime using the CRI. We specifically looked at the gRPC methods invoked
when starting a Pod, which include those on the ImageService and the RuntimeSer‐
vice. Both of these CRI services provide additional methods that the kubelet uses to
complete other tasks. Besides the Pod and container management (i.e., CRUD) meth‐
ods, the CRI also defines methods to execute a command inside a container (Exec
and ExecSync), attach to a container (Attach), forward a specific container port
(PortForward), and others.

The Container Runtime Interface | 71

Choosing a Runtime
Given the availability of the CRI, platform teams get the flexibility of choice when it
comes to container runtimes. The reality, however, is that over the last couple of years
the container runtime has become an implementation detail. If you are using a
Kubernetes distribution or leveraging a managed Kubernetes service, the container
runtime will most likely be chosen for you. This is the case even for community
projects such as Cluster API, which provide prebaked node images that include a
container runtime.

With that said, if you do have the option to choose a runtime or have a use case for a
specialized runtime (e.g., VM-based runtimes), you should be equipped with infor‐
mation to make that decision. In this section, we will discuss considerations you
should make when choosing a container runtime.

The first question we like to ask when helping organizations in the field is which con‐
tainer runtime they have experience with. In most cases, organizations that have a
long history with containers are using Docker and are familiar with Docker’s tool‐
chain and user experience. While Kubernetes supports Docker, we discourage its use
as it has an extended set of capabilities that Kubernetes does not need, such as build‐
ing images, creating container networks, and so on. In other words, the fully fledged
Docker daemon is too heavy or bloated for the purposes of Kubernetes. The good
news is that Docker uses containerd under the covers, one of the most prevalent con‐
tainer runtimes in the community. The downside is that platform operators have to
learn the containerd CLI.

Another consideration to make is the availability of support. Depending on where
you are getting Kubernetes from, you might get support for the container runtime.
Kubernetes distributions such as VMware’s Tanzu Kubernetes Grid, RedHat’s Open‐
Shift, and others usually ship a specific container runtime. You should stick to that
choice unless you have an extremely compelling reason not to. In that case, ensure
that you understand the support implications of using a different container runtime.

Closely related to support is conformance testing of the container runtime. The
Kubernetes project, specifically the Node Special Interest Group (sig-node), defines a
set of CRI validation tests and node conformance tests to ensure container runtimes
are compatible and behave as expected. These tests are part of every Kubernetes
release, and some runtimes might have more coverage than others. As you can imag‐
ine, the more test coverage the better, as any issues with the runtime are caught dur‐
ing the Kubernetes release process. The community makes all tests and results
available through the Kubernetes Test Grid. When choosing a runtime, you should
consider the container runtime’s conformance tests and more broadly, the runtime’s
relationship with the overall Kubernetes project.

72 | Chapter 3: Container Runtime

https://k8s-testgrid.appspot.com

Lastly, you should determine if your workloads need stronger isolation guarantees
than those provided by Linux containers. While less common, there are use cases that
require VM-level isolation for workloads, such as executing untrusted code or run‐
ning applications that require strong multitenancy guarantees. In these cases, you can
leverage specialized runtimes such as Kata Containers.

Now that we have discussed the considerations you should make when choosing a
runtime, let’s review the most prevalent container runtimes: Docker, containerd, and
CRI-O. We will also explore Kata Containers to understand how we can run Pods in
VMs instead of Linux Containers. Finally, while not a container runtime or compo‐
nent that implements CRI, we will learn about Virtual Kubelet, as it provides another
way to run workloads on Kubernetes.

Docker
Kubernetes supports the Docker Engine as a container runtime through a CRI shim
called the dockershim. The shim is a component that’s built into the kubelet. Essen‐
tially, it is a gRPC server that implements the CRI services we described earlier in this
chapter. The shim is required because the Docker Engine does not implement the
CRI. Instead of special-casing all the kubelet code paths to work with both the CRI
and the Docker Engine, the dockershim serves as a facade that the kubelet can use to
communicate with Docker via the CRI. The dockershim handles the translation
between CRI calls to Docker Engine API calls. Figure 3-2 depicts how the kubelet
interacts with Docker through the shim.

Figure 3-2. Interaction between the kubelet and Docker Engine via the dockershim.

As we mentioned earlier in the chapter, Docker leverages containerd under the hood.
Thus, the incoming API calls from the kubelet are eventually relayed to containerd,
which starts the containers. In the end, the spawned container ends up under con‐
tainerd and not the Docker daemon:

systemd
 └─containerd
 └─containerd-shim -namespace moby -workdir ...
 └─nginx
 └─nginx

From a troubleshooting perspective, you can use the Docker CLI to list and inspect
containers running on a given node. While Docker does not have the concept of
Pods, the dockershim encodes the Kubernetes Namespace, Pod name, and Pod ID

Choosing a Runtime | 73

into the name of containers. For example, the following listing shows the containers
that belong to a Pod called nginx in the default namespace. The Pod infrastructure
container (aka, pause container) is the one with the k8s_POD_ prefix in the name:

$ docker ps --format='{{.ID}}\t{{.Names}}' | grep nginx_default
3c8c01f47424 k8s_nginx_nginx_default_6470b3d3-87a3-499c-8562-d59ba27bced5_3
c34ad8d80c4d k8s_POD_nginx_default_6470b3d3-87a3-499c-8562-d59ba27bced5_3

You can also use the containerd CLI, ctr, to inspect containers, although the output
is not as user friendly as the Docker CLI output. The Docker Engine uses a contain‐
erd namespace called moby:

$ ctr --namespace moby containers list
CONTAINER IMAGE RUNTIME
07ba23a409f31bec7f163a... - io.containerd.runtime.v1.linux
0bfc5a735c213b9b296dad... - io.containerd.runtime.v1.linux
2d1c9cb39c674f75caf595... - io.containerd.runtime.v1.linux
...

Finally, you can use crictl if available on the node. The crictl utility is a
command-line tool developed by the Kubernetes community. It is a CLI client for
interacting with container runtimes over the CRI. Even though Docker does not
implement the CRI, you can use crictl with the dockershim Unix socket:

$ crictl --runtime-endpoint unix:///var/run/dockershim.sock ps --name nginx
CONTAINER ID IMAGE CREATED STATE NAME POD ID
07ba23a409f31 nginx@sha256:b0a... 3 seconds ago Running nginx ea179944...

containerd
containerd is perhaps the most common container runtime we encounter when
building Kubernetes-based platforms in the field. At the time of writing, containerd is
the default container runtime in Cluster API-based node images and is available
across various managed Kubernetes offerings (e.g., AKS, EKS, and GKE).

The containerd container runtime implements the CRI through the containerd CRI
plug-in. The CRI plug-in is a native containerd plug-in that is available since contain‐
erd v1.1 and is enabled by default. containerd exposes its gRPC APIs over a Unix
socket at /run/containerd/containerd.sock. The kubelet uses this socket to interact with
containerd when it comes to running Pods, as depicted in Figure 3-3.

Figure 3-3. Interaction between the kubelet and containerd through the containerd CRI
plug-in.

74 | Chapter 3: Container Runtime

The process tree of spawned containers looks exactly the same as the process tree
when using the Docker Engine. This is expected, as the Docker Engine uses contain‐
erd to manage containers:

systemd
 └─containerd
 └─containerd-shim -namespace k8s.io -workdir ...
 └─nginx
 └─nginx

To inspect containers on a node, you can use ctr, the containerd CLI. As opposed to
Docker, the containers managed by Kubernetes are in a containerd namespace called
k8s.io instead of moby:

$ ctr --namespace k8s.io containers ls | grep nginx
c85e47fa... docker.io/library/nginx:latest io.containerd.runtime.v1.linux

You can also use the crictl CLI to interact with containerd through the containerd
unix socket:

$ crictl --runtime-endpoint unix:///run/containerd/containerd.sock ps
 --name nginx
CONTAINER ID IMAGE CREATED STATE NAME POD ID
c85e47faf3616 4bb46517cac39 39 seconds ago Running nginx 73caea404b92a

CRI-O
CRI-O is a container runtime specifically designed for Kubernetes. As you can proba‐
bly tell from the name, it is an implementation of the CRI. Thus, in contrast to
Docker and containerd, it does not cater to uses outside of Kubernetes. At the time of
writing, one of the primary consumers of the CRI-O container runtime is the RedHat
OpenShift platform.

Similar to containerd, CRI-O exposes the CRI over a Unix socket. The kubelet uses
the socket, typically located at /var/run/crio/crio.sock, to interact with CRI-O.
Figure 3-4 depicts the kubelet interacting directly with CRI-O through the CRI.

Figure 3-4. Interaction between the kubelet and CRI-O using the CRI APIs.

When spawning containers, CRI-O instantiates a process called conmon. Conmon is a
container monitor. It is the parent of the container process and handles multiple con‐
cerns, such as exposing a way to attach to the container, storing the container’s
STDOUT and STDERR streams to logfiles, and handling container termination:

Choosing a Runtime | 75

systemd
 └─conmon -s -c ed779... -n k8s_nginx_nginx_default_e9115... -u8cdf0c...
 └─nginx
 └─nginx

Because CRI-O was designed as a low-level component for Kubernetes, the CRI-O
project does not provide a CLI. With that said, you can use crictl with CRI-O as
with any other container runtime that implements the CRI:

$ crictl --runtime-endpoint unix:///var/run/crio/crio.sock ps --name nginx
CONTAINER IMAGE CREATED STATE NAME POD ID
8cdf0c... nginx@sha256:179... 2 minutes ago Running nginx eabf15237...

Kata Containers
Kata Containers is an open source, specialized runtime that uses lightweight VMs
instead of containers to run workloads. The project has a rich history, resulting from
the merge of two prior VM-based runtimes: Clear Containers from Intel and RunV
from Hyper.sh.

Due to the use of VMs, Kata provides stronger isolation guarantees than Linux con‐
tainers. If you have security requirements that prevent workloads from sharing a
Linux kernel or resource guarantee requirements that cannot be met by cgroup isola‐
tion, Kata Containers can be a good fit. For example, a common use case for Kata
containers is to run multitenant Kubernetes clusters that run untrusted code. Cloud
providers such as Baidu Cloud and Huawei Cloud use Kata Containers in their cloud
infrastructure.

To use Kata Containers with Kubernetes, there is still a need for a pluggable container
runtime to sit between the kubelet and the Kata runtime, as shown in Figure 3-5. The
reason is that Kata Containers does not implement the CRI. Instead, it leverages
existing container runtimes such as containerd to handle the interaction with Kuber‐
netes. To integrate with containerd, the Kata Containers project implements the con‐
tainerd runtime API, specifically the v2 containerd-shim API.

Figure 3-5. Interaction between the kubelet and Kata Containers through containerd.

Because containerd is required and available on the nodes, it is possible to run Linux
container Pods and VM-based Pods on the same node. Kubernetes provides a mecha‐
nism to configure and run multiple container runtimes called Runtime Class. Using
the RuntimeClass API, you can offer different runtimes in the same Kubernetes plat‐
form, enabling developers to use the runtime that better fits their needs. The follow‐
ing snippet is an example RuntimeClass for the Kata Containers runtime:

76 | Chapter 3: Container Runtime

https://oreil.ly/btDL9
https://oreil.ly/Mzarh
https://oreil.ly/DxGyZ

apiVersion: node.k8s.io/v1beta1
kind: RuntimeClass
metadata:
 name: kata-containers
handler: kata

To run a Pod under the kata-containers runtime, developers must specify the run‐
time class name in their Pod’s specification:

apiVersion: v1
kind: Pod
metadata:
 name: kata-example
spec:
 containers:
 - image: nginx
 name: nginx
 runtimeClassName: kata-containers

Kata Containers supports different hypervisors to run workloads, including QEMU,
NEMU, and AWS Firecracker. When using QEMU, for example, we can see a QEMU
process after launching a Pod that uses the kata-containers runtime class:

$ ps -ef | grep qemu
root 38290 1 0 16:02 ? 00:00:17
 /snap/kata-containers/690/usr/bin/qemu-system-x86_64
 -name sandbox-c136a9addde4f26457901ccef9de49f02556cc8c5135b091f6d36cfc97...
 -uuid aaae32b3-9916-4d13-b385-dd8390d0daf4
 -machine pc,accel=kvm,kernel_irqchip
 -cpu host
 -m 2048M,slots=10,maxmem=65005M
 ...

While Kata Containers provides interesting capabilities, we consider it a niche and
have not seen it used in the field. With that said, if you need VM-level isolation guar‐
antees in your Kubernetes cluster, Kata Containers is worth looking into.

Virtual Kubelet
Virtual Kubelet is an open source project that behaves like a kubelet but offers a plug‐
gable API on the backend. While not a container runtime per se, its main purpose is
to surface alternative runtimes to run Kubernetes Pods. Because of the Virtual Kube‐
let’s extensible architecture, these alternative runtimes can essentially be any systems
that can run an application, such as serverless frameworks, edge frameworks, etc. For
example, as shown in Figure 3-6, the Virtual Kubelet can launch Pods on a cloud ser‐
vice such as Azure Container Instances or AWS Fargate.

Choosing a Runtime | 77

https://www.qemu.org
https://github.com/intel/nemu
https://firecracker-microvm.github.io
https://github.com/virtual-kubelet/virtual-kubelet

Figure 3-6. Virtual Kubelet running Pods on a cloud service, such as Azure Container
Instances, AWS Fargate, etc.

The Virtual Kubelet community offers a variety of providers that you can leverage if
they fit your need, including AWS Fargate, Azure Container Instances, HashiCorp
Nomad, and others. If you have a more specific use case, you can implement your
own provider as well. Implementing a provider involves writing a Go program using
the Virtual Kubelet libraries to handle the integration with Kubernetes, including
node registration, running Pods, and exporting APIs expected by Kubernetes.

Even though Virtual Kubelet enables interesting scenarios, we have yet to run into a
use case that needed it in the field. With that said, it is useful to know that it exists,
and you should keep it in your Kubernetes toolbox.

Summary
The container runtime is a foundational component of a Kubernetes-based platform.
After all, it is impossible to run containerized workloads without a container runtime.
As we learned in this chapter, Kubernetes uses the Container Runtime Interface (CRI)
to interact with the container runtime. One of the main benefits of the CRI is its plug‐
gable nature, which allows you to use the container runtime that best fits your needs.
To give you an idea of the different container runtimes available in the ecosystem, we
discussed those that we typically see in the field, such as Docker, containerd, etc.
Learning about the different options and further exploring their capabilities should
help you select the container runtime that satisfies the requirements of your applica‐
tion platform.

78 | Chapter 3: Container Runtime

CHAPTER 4

Container Storage

While Kubernetes cut its teeth in the world of stateless workloads, running stateful
services has become increasingly common. Even complex stateful workloads such as
databases and message queues are finding their way to Kubernetes clusters. To sup‐
port these workloads, Kubernetes needs to provide storage capabilities beyond
ephemeral options. Namely, systems that can provide increased resilience and availa‐
bility in the face of various events such as an application crashing or a workload being
rescheduled to a different host.

In this chapter we are going to explore how our platform can offer storage services to
applications. We’ll start by covering key concerns of application persistence and stor‐
age system expectations before moving on to address the storage primitives available
in Kubernetes. As we get into more advanced storage needs, we will look to the Con‐
tainer Storage Interface (CSI), which enables our integration with various storage
providers. Lastly, we’ll explore using a CSI plug-in to provide self-service storage to
our applications.

Storage is a vast subject in itself. Our intentions are to give you just
enough detail to make informed decisions about the storage you
may offer to workloads. If storage is not your background, we
highly recommend going over these concepts with your infrastruc‐
ture/storage team. Kubernetes does not negate the need for storage
expertise in your organization!

79

https://kubernetes-csi.github.io/docs
https://kubernetes-csi.github.io/docs

Storage Considerations
Before getting into Kubernetes storage patterns and options, we should take a step
back and analyze some key considerations around potential storage needs. At an
infrastructure and application level, it is important to think through the following
requirements.

• Access modes
• Volume expansion
• Dynamic provisioning
• Backup and recovery
• Block, file, and object storage
• Ephemeral data
• Choosing a provider

Access Modes
There are three access modes that can be supported for applications:

ReadWriteOnce (RWO)
A single Pod can read and write to the volume.

ReadOnlyMany (ROX)
Multiple Pods can read the volume.

ReadWriteMany (RWX)
Multiple Pods can read and write to the volume.

For cloud native applications, RWO is by far the most common pattern. When lever‐
aging common providers such Amazon Elastic Block Storage (EBS) or Azure Disk
Storage, you are limited to RWO because the disk may only be attached to one node.
While this limitation may seem problematic, most cloud native applications work
best with this kind of storage, where the volume is exclusively theirs and offers high-
performance read/write.

Many times, we find legacy applications that have a requirement for RWX. Often,
they are built to assume access to a network file system (NFS). When services need to
share state, there are often more elegant solutions than sharing data over NFS; for
example, the use of message queues or databases. Additionally, should an application
wish to share data, it’s typically best to expose this over an API, rather than grant
access to its file system. This makes many use cases for RWX, at times, questionable.
Unless NFS is the correct design choice, platform teams may be confronted with the
tough choice of whether to offer RWX-compatible storage or request their developers

80 | Chapter 4: Container Storage

https://aws.amazon.com/ebs
https://oreil.ly/wAtBg
https://oreil.ly/wAtBg
https://oreil.ly/OrsBR

re-architect applications. Should the call be made that supporting ROX or RWX is
required, there are several providers that can be integrated with, such as Amazon
Elastic File System (EFS) and Azure File Share.

Volume Expansion
Over time, an application may begin to fill up its volume. This can pose a challenge
since replacing the volume with a larger one would require migration of data. One
solution to this is supporting volume expansion. From the perspective of a container
orchestrator such as Kubernetes, this involves a few steps:

1. Request additional storage from the orchestrator (e.g., via a PersistentVolume‐
Claim).

2. Expand the size of the volume via the storage provider.
3. Expand the filesystem to make use of the larger volume.

Once complete, the Pod will have access to the additional space. This feature is con‐
tingent on our choice of storage backend and whether the integration in Kubernetes
can facilitate the preceding steps. We will explore an example of volume expansion
later in this chapter.

Volume Provisioning
There are two provisioning models available to you: dynamic and static provisioning.
Static provisioning assumes volumes are created on nodes for Kubernetes to con‐
sume. Dynamic provisioning is when a driver runs within the cluster and can satisfy
storage requests of workloads by talking to a storage provider. Out of these two mod‐
els, dynamic provisioning, when possible, is preferred. Often, the choice between the
two is a matter of whether your underlying storage system has a compatible driver for
Kubernetes. We’ll dive into these drivers later in the chapter.

Backup and Recovery
Backup is one of the most complex aspects of storage, especially when automated
restores are a requirement. In general terms, a backup is a copy of data that is stored
for use in case of data loss. Typically, we balance backup strategies with the availabil‐
ity guarantees of our storage systems. For example, while backups are always impor‐
tant, they are less critical when our storage system has a replication guarantee where
loss of hardware will not result in loss of data. Another consideration is that applica‐
tions may require different procedures to facilitate backup and restores. The idea that
we can take a backup of an entire cluster and restore it at any time is typically a naive
outlook, or at minimum, one that requires mountains of engineering effort to
achieve.

Storage Considerations | 81

https://aws.amazon.com/efs
https://aws.amazon.com/efs
https://oreil.ly/u6HiQ

Deciding who should be responsible for backup and recovery of applications can be
one of the most challenging debates within an organization. Arguably, offering
restore features as a platform service can be a “nice to have.” However, it can tear at
the seams when we get into application-specific complexity—for example, when an
app cannot restart and needs actions to take place that are known only to developers.

One of the most popular backup solutions for both Kubernetes state and application
state is Project Velero. Velero can back up Kubernetes objects should you have a
desire to migrate or restore them across clusters. Additionally, Velero supports the
scheduling of volume snapshots. As we dive deeper into volume snapshotting in this
chapter, we’ll learn that the ability to schedule and manage snapshots is not taken care
of for us. More so, we are often given the snapshotting primitives but need to define
an orchestration flow around them. Lastly, Velero supports backup and restore hooks.
These enable us to run commands in the container before performing backup or
recovery. For example, some applications may require stopping traffic or triggering a
flush before a backup should be taken. This is made possible using hooks in Velero.

Block Devices and File and Object Storage
The storage types our applications expect are key to selecting the appropriate under‐
lying storage and Kubernetes integration. The most common storage type used by
applications is file storage. File storage is a block device with a filesystem on top. This
enables applications to write to files in the way we are familiar with on any operating
system.

Underlying a filesystem is a block device. Rather than establishing a filesystem on top,
we can offer the device such that applications may communicate directly with raw
block. Filesystems inherently add overhead to writing data. In modern software
development, it’s pretty rare to be concerned about filesystem overhead. However, if
your use case warrants direct interaction with raw block devices, this is something
certain storage systems can support.

The final storage type is object storage. Object storage deviates from files in the sense
that there is not the conventional hierarchy. Object storage enables developers to take
unstructured data, give it a unique identifier, add some metadata around it, and store
it. Cloud-provider object stores such as Amazon S3 have become popular locations
for organizations to host images, binaries, and more. This popularity has been accel‐
erated by its fully featured web API and access control. Object stores are most com‐
monly interacted with from the application itself, where the application uses a library
to authenticate and interact with the provider. Since there is less standardization
around interfaces for interaction with object stores, it is less common to see them
integrated as platform services that applications can interact with transparently.

82 | Chapter 4: Container Storage

https://velero.io
https://aws.amazon.com/s3

Ephemeral Data
While storage may imply a level of persistence that is beyond the life cycle of a Pod,
there are valid use cases for supporting ephemeral data usage. By default, containers
that write to their own filesystem will utilize ephemeral storage. If the container were
to restart, this storage would be lost. The emptyDir volume type is available for
ephemeral storage that is resilient to restarts. Not only is this resilient to container
restarts, but it can be used to share files between containers in the same Pod.

The biggest risk with ephemeral data is ensuring your Pods don’t consume too much
of the host’s storage capacity. While numbers like 4Gi per Pod might not seem like
much, consider a node can run hundreds, in some cases thousands, of Pods. Kuber‐
netes supports the ability to limit the cumulative amount of ephemeral storage avail‐
able to Pods in a Namespace. Configuration of these concerns are covered in
Chapter 12.

Choosing a Storage Provider
There is no shortage of storage providers available to you. Options span from storage
solutions you might manage yourself such as Ceph to fully managed systems like
Google Persistent Disk or Amazon Elastic Block Store. The variance in options is far
beyond the scope of this book. However, we do recommend understanding the capa‐
bilities of storage systems along with which of those capabilities are easily integrated
with Kubernetes. This will surface perspective on how well one solution may satisfy
your application requirements relative to another. Additionally, in the case you may
be managing your own storage system, consider using something you have opera‐
tional experience with when possible. Introducing Kubernetes alongside a new stor‐
age system adds a lot of new operational complexity to your organization.

Kubernetes Storage Primitives
Out of the box, Kubernetes provides multiple primitives to support workload storage.
These primitives provide the building blocks we will utilize to offer sophisticated
storage solutions. In this section, we are going to cover PersistentVolumes, Persistent‐
VolumeClaims, and StorageClasses using an example of allocating fast pre-
provisioned storage to containers.

Persistent Volumes and Claims
Volumes and claims live at the foundation of storage in Kubernetes. These are
exposed using the PersistentVolume and PersistentVolumeClaim APIs. The Persis‐
tentVolume resource represents a storage volume known to Kubernetes. Let’s assume
an administrator has prepared a node to offer 30Gi of fast, on-host, storage. Let’s also
assume the administrator has provisioned this storage at /mnt/fast-disk/pod-0. To

Kubernetes Storage Primitives | 83

https://oreil.ly/86zjA
https://oreil.ly/7_OAz
https://oreil.ly/PKtAr

represent this volume in Kubernetes, the administrator can then create a Persistent‐
Volume object:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0
spec:
 capacity:
 storage: 30Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 storageClassName: local-storage
 local:
 path: /mnt/fast-disk/pod-0
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - test-w

The amount of storage available in this volume. Used to determine whether a
claim can bind to this volume.

Specifies whether the volume is a block device or filesystem.

Specifies the access mode of the volume. Includes ReadWriteOnce, ReadMany, and
ReadWriteMany.

Associates this volume with a storage class. Used to pair an eventual claim to this
volume.

Identifies which node this volume should be associated with.

84 | Chapter 4: Container Storage

https://oreil.ly/mrHwE

As you can see, the PersistentVolume contains details around the implementation of
the volume. To provide one more layer of abstraction, a PersistentVolumeClaim is
introduced, which binds to an appropriate volume based on its request. Most com‐
monly, this will be defined by the application team, added to their Namespace, and
referenced from their Pod:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc0
spec:
 storageClassName: local-storage
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 30Gi

apiVersion: v1
kind: Pod
metadata:
 name: task-pv-pod
spec:
 volumes:
 - name: fast-disk
 persistentVolumeClaim:
 claimName: pvc0
 containers:
 - name: ml-processer
 image: ml-processer-image
 volumeMounts:
 - mountPath: "/var/lib/db"
 name: fast-disk

Checks for a volume that is of the class local-storage with the access mode
ReadWriteOnce.

Binds to a volume with >= 30Gi of storage.

Declares this Pod a consumer of the PersistentVolumeClaim.

Based on the PersistentVolume’s nodeAffinity settings, the Pod will be automatically
scheduled on the host where this volume is available. There is no additional affinity
configuration required from the developer.

This process has demonstrated a very manual flow for how administrators could
make this storage available to developers. We refer to this as static provisioning. With
proper automation this could be a viable way to expose fast disk on hosts to Pods. For
example, the Local Persistence Volume Static Provisioner can be deployed to the

Kubernetes Storage Primitives | 85

https://oreil.ly/YiQ0G

cluster to detect preallocated storage and expose it, automatically, as PersistentVo‐
lumes. It also provides some life cycle management capabilities such as deleting data
upon destruction of the PersistentVolumeClaim.

There are multiple ways to achieve local storage that can lead you
into a bad practice. For example, it can seem compelling to allow
developers to use hostPath rather than needing to preprovision a
local storage. hostPath enables you to specify a path on the host to
bind to rather than having to use a PersistentVolume and Persis‐
tentVolumeClaim. This can be a huge security risk as it enables
developers to bind to directories on the host, which can have a neg‐
ative impact on the host and other Pods. If you desire to provide
developers ephemeral storage that can withstand a Pod restart but
not the Pod being deleted or moved to a different node, you can
use EmptyDir. This will allocate storage in the filesystem managed
by Kube and be transparent to the Pod.

Storage Classes
In many environments, expecting nodes to be prepared ahead of time with disks and
volumes is unrealistic. These cases often warrant dynamic provisioning, where vol‐
umes can be made available based on the needs of our claims. To facilitate this model,
we can make classes of storage available to our developers. These are defined using
the StorageClass API. Assuming your cluster runs in AWS and you want to offer EBS
volumes to Pods dynamically, the following StorageClass can be added:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ebs-standard
 annotations:
 storageclass.kubernetes.io/is-default-class: true
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io2
 iopsPerGB: "17"
 fsType: ext4

The name of the StorageClass that can be referenced from claims.

Sets this StorageClass as the default. If a claim does not specify a class, this will be
used.

Uses the aws-ebs provisioner to create the volumes based on claims.

Provider-specific configuration for how to provision volumes.

86 | Chapter 4: Container Storage

https://oreil.ly/PAU8Y
https://oreil.ly/mPwBg
https://oreil.ly/MoG_T

You can offer a variety of storage options to developers by making multiple Storage‐
Classes available. This includes supporting more than one provider in a single cluster
—for example, running Ceph alongside VMware vSAN. Alternatively, you may offer
different tiers of storage via the same provider. An example would be offering cheaper
storage alongside more expensive options. Unfortunately, Kubernetes lacks granular
controls to limit what classes developers can request. Control can be implemented as
validating admission control, which is covered in Chapter 8.

Kubernetes offers a wide variety of providers including AWS EBS, Glusterfs, GCE PD,
Ceph RBD, and many more. Historically, these providers were implemented in-tree.
This means storage providers needed to implement their logic in the core Kubernetes
project. This code would then get shipped in the relevant Kubernetes control plane
components.

There were several downsides to this model. For one, the storage provider could not
be managed out of band. All changes to the provider needed to be tied to a Kuber‐
netes release. Also, every Kubernetes deployment shipped with unnecessary code. For
example, clusters running AWS still had the provider code for interacting with GCE
PDs. It quickly became apparent there was high value in externalizing these provider
integrations and deprecating the in-tree functionality. FlexVolume drivers were an
out-of-tree implementation specification that initially aimed to solve this problem.
However, FlexVolumes have been put into maintenance mode in favor of our next
topic, the Container Storage Interface (CSI).

The Container Storage Interface (CSI)
The Container Storage Interface is the answer to how we provide block and file stor‐
age to our workloads. The implementations of CSI are referred to as drivers, which
have the operational knowledge for talking to storage providers. These providers
span from cloud systems such as Google Persistent Disks to storage systems (such as
Ceph) deployed and managed by you. The drivers are implemented by storage pro‐
viders in projects that live out-of-tree. They can be entirely managed out of band
from the cluster they are deployed within.

At a high level, CSI implementations feature a controller plug-in and a node plug-in.
CSI driver developers have a lot of flexibility in how they implement these compo‐
nents. Typically, implementations bundle the controller and node plug-ins in the
same binary and enable either mode via an environment variable such as X_CSI_MODE.
The only expectations are that the driver registers with the kubelet and the endpoints
in the CSI specification are implemented.

The controller service is responsible for managing the creation and deletion of vol‐
umes in the storage provider. This functionality extends into (optional) features such
as taking volume snapshots and expanding volumes. The node service is responsible

The Container Storage Interface (CSI) | 87

https://oreil.ly/YnnCq
https://cloud.google.com/persistent-disk
https://ceph.io

for preparing volumes to be consumed by Pods on the node. Often this means setting
up the mounts and reporting information about volumes on the node. Both the node
and controller service also implement identity services that report plug-in info, capa‐
bilities, and whether the plug-in is healthy. With this in mind, Figure 4-1 represents a
cluster architecture with these components deployed.

Figure 4-1. Cluster running a CSI plug-in. The driver runs in a node and controller
mode. The controller is typically run as a Deployment. The node service is deployed as a
DaemonSet, which places a Pod on each host.

Let’s take a deeper look at these two components, the controller and the node.

CSI Controller
The CSI Controller service provides APIs for managing volumes in a persistent stor‐
age system. The Kubernetes control plane does not interact with the CSI Controller
service directly. Instead, controllers maintained by the Kubernetes storage commu‐
nity react to Kubernetes events and translate them into CSI instructions, such as Cre‐
ateVolumeRequest when a new PersistentVolumeClaim is created. Because the CSI
Controller service exposes its APIs over UNIX sockets, the controllers are usually
deployed as sidecars alongside the CSI Controller service. There are multiple external
controllers, each with different behavior:

external-provisioner
When PersistentVolumeClaims are created, this requests a volume be created
from the CSI driver. Once the volume is created in the storage provider, this pro‐
visioner creates a PersistentVolume object in Kubernetes.

88 | Chapter 4: Container Storage

external-attacher
Watches the VolumeAttachment objects, which declare that a volume should be
attached or detached from a node. Sends the attach or detach request to the CSI
driver.

external-resizer
Detects storage-size changes in PersistentVolumeClaims. Sends requests for
expansion to the CSI driver.

external-snapshotter
When VolumeSnapshotContent objects are created, snapshot requests are sent to
the driver.

When implementing CSI plug-ins, developers are not required to
use the aforementioned controllers. However, their use is encour‐
aged to prevent duplication of logic in every CSI plug-in.

CSI Node
The Node plug-in typically runs the same driver code as the controller plug-in. How‐
ever, running in the “node mode” means it is focused on tasks such as mounting
attached volumes, establishing their filesystem, and mounting volumes to Pods.
Requests for these behaviors is done via the kubelet. Along with the driver, the fol‐
lowing sidecars are often included in the Pod:

node-driver-registrar
Sends a registration request to the kubelet to make it aware of the CSI driver.

liveness-probe
Reports the health of the CSI driver.

Implementing Storage as a Service
We have now covered key considerations for application storage, storage primitives
available in Kubernetes, and driver integration using the CSI. Now it’s time to bring
these ideas together and look at an implementation that offers developers storage as a
service. We want to provide a declarative way to request storage and make it available
to workloads. We also prefer to do this dynamically, not requiring an administrator to
preprovision and attach volumes. Rather, we’d like to achieve this on demand based
on the needs of workloads.

In order to get started with this implementation, we’ll use Amazon Web Services
(AWS). This example integrates with AWS’s elastic block storage system. If your

Implementing Storage as a Service | 89

https://oreil.ly/kmkJh
https://oreil.ly/I4VVw

choice in provider differs, the majority of this content will still be relevant! We are
simply using this provider as a concrete example of how all the pieces fit together.

Next we are going to dive into installation of the integration/driver, exposing storage
options to developers, consuming the storage with workloads, resizing volumes, and
taking volume snapshots.

Installation
Installation is a fairly straightforward process consisting of two key steps:

1. Configure access to the provider.
2. Deploy the driver components to the cluster.

The provider, in this case AWS, will require the driver to identify itself, ensuring it
has appropriate access. In this case, we have three options available to us. One is to
update the instance profile of the Kubernetes nodes. This will prevent us from worry‐
ing about credentials at the Kubernetes level but will provide universal privileges to
workloads that can reach the AWS API. The second and likely most secure option is
to introduce an identity service that can provide IAM permissions to specific work‐
loads. A project that is an example of this is kiam. This approach is covered in Chap‐
ter 10. Lastly, you can add credentials in a secret that gets mounted into the CSI
driver. In this model, the secret would look as follows:

apiVersion: v1
kind: Secret
metadata:
 name: aws-secret
 namespace: kube-system
stringData:
 key_id: "AKIAWJQHICPELCJVKYNU"
 access_key: "jqWi1ut4KyrAHADIOrhH2Pd/vXpgqA9OZ3bCZ"

This account will have access to manipulating an underlying stor‐
age system. Access to this secret should be carefully managed. See
Chapter 7 for more information.

With this configuration in place, the CSI components may be installed. First, the con‐
troller is installed as a Deployment. When running multiple replicas, it will use
leader-election to determine which instance should be active. Then, the node plug-in
is installed, which comes in the form of a DaemonSet running a Pod on every node.
Once initialized, the instances of the node plug-in will register with their kubelets.
The kubelet will then report the CSI-enabled node by creating a CSINode object for
every Kubernetes node. The output of a three-node cluster is as follows:

90 | Chapter 4: Container Storage

https://oreil.ly/fGWYd
https://github.com/uswitch/kiam

$ kubectl get csinode

NAME DRIVERS AGE
ip-10-0-0-205.us-west-2.compute.internal 1 97m
ip-10-0-0-224.us-west-2.compute.internal 1 79m
ip-10-0-0-236.us-west-2.compute.internal 1 98m

As we can see, there are three nodes listed with one driver registered on each node.
Examining the YAML of one CSINode exposes the following:

apiVersion: storage.k8s.io/v1
kind: CSINode
metadata:
 name: ip-10-0-0-205.us-west-2.compute.internal
spec:
 drivers:
 - allocatable:
 count: 25
 name: ebs.csi.aws.com
 nodeID: i-0284ac0df4da1d584
 topologyKeys:
 - topology.ebs.csi.aws.com/zone

The maximum number of volumes allowed on this node.

When a node is picked for a workload, this value will be passed in the CreateVo‐
lumeRequest so that the driver knows where to create the volume. This is impor‐
tant for storage systems where nodes in the cluster won’t have access to the same
storage. For example, in AWS, when a Pod is scheduled in an availability zone,
the Volume must be created in the same zone.

Additionally, the driver is officially registered with the cluster. The details can be
found in the CSIDriver object:

apiVersion: storage.k8s.io/v1
kind: CSIDriver
metadata:
 name: aws-ebs-csi-driver
 labels:
 app.kubernetes.io/name: aws-ebs-csi-driver
spec:
 attachRequired: true
 podInfoOnMount: false
 volumeLifecycleModes:
 - Persistent

The name of the provider representing this driver. This name will be bound to
class(es) of storage we offer to platform users.

Implementing Storage as a Service | 91

Specifies that an attach operation must be completed before volumes are
mounted.

Does not need to pass Pod metadata in as context when setting up a mount.

The default model for provisioning persistent volumes. Inline support can be
enabled by setting this option to Ephemeral. In the ephemeral mode, the storage
is expected to last only as long as the Pod.

The settings and objects we have explored so far are artifacts of our bootstrapping
process. The CSIDriver object makes for easier discovery of driver details and was
included in the driver’s deployment bundle. The CSINode objects are managed by the
kubelet. A generic registrar sidecar is included in the node plug-in Pod and gets
details from the CSI driver and registers the driver with the kubelet. The kubelet then
reports up the quantity of CSI drivers available on each host. Figure 4-2 demonstrates
this bootstrapping process.

Figure 4-2. CSIDriver object is deployed and part of the bundle while the node plug-in
registers with the kubelet. This in turn creates/manages the CSINode objects.

Exposing Storage Options
In order to provide storage options to developers, we need to create StorageClasses.
For this scenario we’ll assume there are two types of storage we’d like to expose.The
first option is to expose cheap disk that can be used for workload persistence needs.
Many times, applications don’t need an SSD as they are just persisting some files that
do not require quick read/write. As such, the cheap disk (HDD) will be the default

92 | Chapter 4: Container Storage

https://oreil.ly/Z_pDY

option. Then we’d like to offer faster SSD with a custom IOPS per gigabyte config‐
ured. Table 4-1 shows our offerings; prices reflect AWS costs at the time of this writ‐
ing.

Table 4-1. Storage offerings

Offering name Storage type Max throughput per volume AWS cost

default-block HDD (optimized) 40–90 MB/s $0.045 per GB per month

performance-block SSD (io1) ~1000 MB/s $0.125 per GB per month + $0.065 per provisioned
IOPS per month

In order to create these offerings, we’ll create a storage class for each. Inside each
storage class is a parameters field. This is where we can configure settings that satisfy
the features in Table 4-1.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: default-block
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: ebs.csi.aws.com
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
parameters:
 type: st1

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: performance-block
provisioner: ebs.csi.aws.com
parameters:
 type: io1
 iopsPerGB: "20"

This is the name of the storage offering we are providing to platform users. It will
be referenced from PeristentVolumeClaims.

This sets the offering as the default. If a PersistentVolumeClaim is created
without a StorageClass specified, default-block will be used.

Mapping to which CSI driver should be executed.

Allow expansion of the volume size via changes to a PersistentVolumeClaim.

Do not provision the volume until a Pod consumes the PersistentVolumeClaim.
This will ensure the volume is created in the appropriate availability zone of the

Implementing Storage as a Service | 93

https://oreil.ly/qXMcQ

scheduled Pod. It also prevents orphaned PVCs from creating volumes in AWS,
which you will be billed for.

Specifies what type of storage the driver should acquire to satisfy claims.

Second class, tuned to high-performance SSD.

Consuming Storage
With the preceding pieces in place, we are now ready for users to consume these dif‐
ferent classes of storage. We will start by looking at the developer experience of
requesting storage. Then we’ll walk through the internals of how it is satisfied. To
start off, let’s see what a developer gets when listing available StorageClasses:

$ kubectl get storageclasses.storage.k8s.io

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
default-block (default) ebs.csi.aws.com Delete Immediate
performance-block ebs.csi.aws.com Delete WaitForFirstConsumer

ALLOWVOLUMEEXPANSION
true
true

By enabling developers to create PVCs, we will be allowing them to
reference any StorageClass. If this is problematic, you may wish to
consider implementing Validating Admission control to assess
whether requests are appropriate. This topic is covered in
Chapter 8.

Let’s assume the developer wants to make a cheaper HDD and more performant SSD
available for an application. In this case, two PersistentVolumeClaims are created.
We’ll refer to these as pvc0 and pvc1, respectively:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc0
spec:
 resources:
 requests:
 storage: 11Gi

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc1
spec:
 resources:

94 | Chapter 4: Container Storage

 requests:
 storage: 14Gi
 storageClassName: performance-block

This will use the default storage class (default-block) and assume other defaults
such as RWO and filesystem storage type.

Ensure performance-block is requested to the driver rather than default-
block.

Based on the StorageClass settings, these two will exhibit different provisioning
behaviors. The performant storage (from pvc1) is created as an unattached volume in
AWS. This volume can be attached quickly and is ready to use. The default storage
(from pv0) will sit in a Pending state where the cluster waits until a Pod consumes the
PVC to provision storage in AWS. While this will require more work to provision
when a Pod finally consumes the claim, you will not be billed for the unused storage!
The relationship between the claim in Kubernetes and volume in AWS can be seen in
Figure 4-3.

Figure 4-3. pv1 is provisioned as a volume in AWS, and the CSIVolumeName is propa‐
gated for ease of correlation. pv0 will not have a respective volume created until a Pod
references it.

Now let’s assume the developer creates two Pods. One Pod references pv0 while the
other references pv1. Once each Pod is scheduled on a Node, the volume will be
attached to that node for consumption. For pv0, before this can occur the volume will
also be created in AWS. With the Pods scheduled and volumes attached, a filesystem
is established and the storage is mounted into the container. Because these are persis‐
tent volumes, we have now introduced a model where even if the Pod is rescheduled
to another node, the volume can come with it. The end-to-end flow for how we’ve
satisfied the self-service storage request is shown in Figure 4-4.

Implementing Storage as a Service | 95

Figure 4-4. End-to-end flow of the driver and Kubernetes working together to satisfy the
storage request.

Events are particularly helpful in debugging storage interaction
with CSI. Because provisioning, attaching, and mounting are all
happening in order to satisfy a PVC, you should view events on
these objects as different components report what they have done.
kubectl describe -n $NAMESPACE pvc $PVC_NAME is an easy way
to view these events.

Resizing
Resizing is a supported feature in the aws-ebs-csi-driver. In most CSI implementa‐
tions, the external-resizer controller is used to detect changes in PersistentVolu‐
meClaim objects. When a size change is detected, it is forwarded to the driver, which
will expand the volume. In this case, the driver running in the controller plug-in will
facilitate expansion with the AWS EBS API.

Once the volume is expanded in EBS, the new space is not immediately usable to the
container. This is because the filesystem still occupies only the original space. In order
for the filesystem to expand, we’ll need to wait for the node plug-in’s driver instance
to expand the filesystem. This can all be done without terminating the Pod. The file‐
system expansion can be seen in the following logs from the node plug-in’s CSI
driver:

mount_linux.go: Attempting to determine if disk "/dev/nvme1n1" is formatted
using blkid with args: ([-p -s TYPE -s PTTYPE -o export /dev/nvme1n1])

96 | Chapter 4: Container Storage

mount_linux.go: Output: "DEVNAME=/dev/nvme1n1\nTYPE=ext4\n", err: <nil>

resizefs_linux.go: ResizeFS.Resize - Expanding mounted volume /dev/nvme1n1

resizefs_linux.go: Device /dev/nvme1n1 resized successfully

Kubernetes does not support downsizing a PVC’s size field. Unless
the CSI-driver provides a workaround for this, you may not be able
to downsize without re-creating a volume. Keep this in mind when
growing volumes.

Snapshots
To facilitate periodic backups of volume data used by containers, snapshot function‐
ality is available. The functionality is often broken into two controllers, which are
responsible for two different CRDs. The CRDs include VolumeSnapshot and Volu‐
meContentSnapshot. At a high-level, the VolumeSnapshot is responsible for the life
cycle of volumes. Based on these objects, VolumeContentSnapshots are managed by
the external-snapshotter controller. This controller is typically run as a sidecar in the
CSI’s controller plug-in and forwards requests to the driver.

At the time of this writing, these objects are implemented as CRDs
and not core Kubernetes API objects. This requires the CSI driver
or Kubernetes distribution to deploy the CRD definitions ahead of
time.

Similar to offering storage via StorageClasses, snapshotting is offered by introducing
a Snapshot class. The following YAML represents this class:

apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshotClass
metadata:
 name: default-snapshots
driver: ebs.csi.aws.com
deletionPolicy: Delete

Which driver to delegate snapshot request to.

Whether the VolumeSnapshotContent should be deleted when the VolumeSnap‐
shot is deleted. In effect, the actual volume could be deleted (depending on sup‐
port from the provider).

In the Namespace of the application and PersistentVolumeClaim, a VolumeSnapshot
may be created. An example is as follows:

Implementing Storage as a Service | 97

apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
 name: snap1
spec:
 volumeSnapshotClassName: default-snapshots
 source:
 persistentVolumeClaimName: pvc0

Specifies the class, which informs the driver to use.

Specifies the volume claim, which informs the volume to snapshot.

The existence of this object will inform the need to create a VolumeSnapshotContent
object. This object has a scope of cluster-wide. The detection of a VolumeSnapshot‐
Content object will cause a request to create a snapshot and the driver will satisfy this
by communicating with AWS EBS. Once satisfied, the VolumeSnapshot will report
ReadyToUse. Figure 4-5 demonstrates the relationship between the various objects.

Figure 4-5. The various objects and their relations that make up the snapshot flow.

With a snapshot in place, we can explore a scenario of data loss. Whether the original
volume was accidentally deleted, had a failure, or was removed due to an accidental
deletion of a PersistentVolumeClaim, we can reestablish the data. To do this, a new
PersistentVolumeClaim is created with the spec.dataSource specified. dataSource
supports referencing a VolumeSnapshot that can populate data into the new claim.
The following manifest recovers from the previously created snapshot:

98 | Chapter 4: Container Storage

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-reclaim
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: default-block
 resources:
 requests:
 storage: 600Gi
 dataSource:
 name: snap1
 kind: VolumeSnapshot
 apiGroup: snapshot.storage.k8s.io

The VolumeSnapshot instance that references the EBS snapshot to replenish the
new PVC.

Once the Pod is re-created to reference this new claim, the last snapshotted state will
return to the container! Now we have access to all the primitives for creating a robust
backup and recovery solution. Solutions could range from scheduling snapshots via a
CronJob, writing a custom controller, or using tools such as Velero to back up Kuber‐
netes objects along with data volumes on a schedule.

Summary
In this chapter, we’ve explored a variety of container storage topics. First, we want to
have a deep understanding of application requirements to best inform our technical
decision. Then we want to ensure that our underlying storage provider can satisfy
these needs and that we have the operational expertise (when required) to operate
them. Lastly, we should establish an integration between the orchestrator and the
storage system, ensuring developers can get the storage they need without being pro‐
ficient in an underlying storage system.

Summary | 99

https://velero.io

CHAPTER 5

Pod Networking

Since the early days of networking, we have concerned ourselves with how to facili‐
tate host-to-host communication. These concerns include uniquely addressing hosts,
routing of packets across networks, and propagation of known routes. For more than
a decade, software-defined networks (SDNs) have seen rapid growth by solving these
concerns in our increasingly dynamic environments. Whether it is in your datacenter
with VMware NSX or in the cloud with Amazon VPCs, you are likely a consumer of
an SDN.

In Kubernetes, these principles and desires hold. Although our unit moves from hosts
to Pods, we need to ensure we have addressability and routability of our workloads.
Additionally, given Pods are running as software on our hosts, we will most com‐
monly establish networks that are entirely software-defined.

This chapter will explore the concept of Pod networks. We will start off by addressing
some key networking concepts that must be understood and considered before
implementing Pod networks. Then we will cover the Container Networking Interface
(CNI), which enables your choice of network implementation based on your net‐
working requirements. Lastly, we will examine common plug-ins, such as Calico and
Cilium, in the ecosystem to make the trade-offs more concrete. In the end, you’ll be
more equipped to make decisions around the right networking solution and configu‐
ration for your application platform.

Networking is a vast subject in itself. Our intentions are to give you
just enough to make informed decisions on your Pod network. If
your background is not networking, we highly recommend you go
over these concepts with your networking team. Kubernetes does
not negate the need to have networking expertise in your
organization!

101

https://github.com/containernetworking/cni
https://github.com/containernetworking/cni

Networking Considerations
Before diving into implementation details around Pod networks, we should start with
a few key areas of consideration. These areas include:

• IP Address Management (IPAM)
• Routing protocols
• Encapsulation and tunneling
• Workload routability
• IPv4 and IPv6
• Encrypted workload traffic
• Network policy

With an understanding of these areas, you can begin to make determinations around
the correct networking solution for your platform.

IP Address Management
In order to communicate to and from Pods, we must ensure they are uniquely
addressable. In Kubernetes, each Pod receives an IP. These IPs may be internal to the
cluster or externally routable. Each Pod having its own address simplifies the net‐
working model, considering we do not have to be concerned with colliding ports on
shared IPs. However, this IP-per-Pod model does come with its own challenges.

Pods are best thought of as ephemeral. Specifically, they are prone to being restarted
or rescheduled based on the needs of the cluster or system failure. This requires IP
allocation to execute quickly and the management of the cluster’s IP pool to be effi‐
cient. This management is often referred to as IPAM and is not unique to Kubernetes.
As we dive deeper into container networking approaches, we will explore a variety of
ways IPAM is implemented.

This ephemeral expectation of a workload’s IP causes issues in
some legacy workloads, for example, workloads that pin themselves
to a specific IP and expect it to remain static. Depending on your
implementation of container networking (covered later in this
chapter), you may be able to explicitly reserve IPs for specific
workloads. However, we recommend against this model unless
necessary. There are many capable service discovery or DNS mech‐
anisms that workloads can take advantage of to properly remedy
this issue. Review Chapter 6 for examples.

102 | Chapter 5: Pod Networking

https://oreil.ly/eWJki

IPAM is implemented based on your choice of CNI plug-in. There are a few com‐
monalities in these plug-ins that pertain to Pod IPAM. First, when clusters are cre‐
ated, a Pod network’s Classless Inter-Domain Routing (CIDR) can be specified. How
it is set varies based on how you bootstrap Kubernetes. In the case of kubeadm, a flag
can be passed as follows:

kubeadm init --pod-network-cidr 10.30.0.0/16

In effect, this sets the --cluster-cidr flag on the kube-controller-manager. Kuber‐
netes will then allocate a chunk of this cluster-cidr to every node. By default, each
node is allocated /24. However, this can be controlled by setting the --node-cidr-
mask-size-ipv4 and/or --node-cidr-mask-size-ipv6 flags on the kube-controller-
manager. A Node object featuring this allocation is as follows:

apiVersion: v1
kind: Node
metadata:
 labels:
 kubernetes.io/arch: amd64
 kubernetes.io/hostname: test
 kubernetes.io/os: linux
 manager: kubeadm
 name: master-0
spec:
 podCIDR: 10.30.0.0/24
 podCIDRs:
 - 10.30.0.0/24

This field exists for compatibility. podCIDRs was later introduced as an array to
support dual stack (IPv4 and IPv6 CIDRs) on a single node.

The IP range assigned to this node is 10.30.0.0 - 10.30.0.255. This is 254
addresses for Pods, out of the 65,534 available in the 10.30.0.0/16 cluster CIDR.

Whether these values are used in IPAM is up to the CNI plug-in. For example, Calico
detects and respects this setting, while Cilium offers an option to either manage IP
pools independent of Kubernetes (default) or respect these allocations. In most CNI
implementations, it is important that your CIDR choice does not overlap with the clu‐
ster’s host/node network. However, assuming your Pod network will remain internal
to the cluster, the CIDR chosen can overlap with network space outside the cluster.
Figure 5-1 demonstrates the relationship of these various IP spaces and examples of
allocations.

Networking Considerations | 103

https://oreil.ly/honRv

How large you should set your cluster’s Pod CIDR is often a prod‐
uct of your networking model. In most deployments, a Pod net‐
work is entirely internal to the cluster. As such, the Pod CIDR can
be very large to accommodate for future scale. When the Pod
CIDR is routable to the larger network, thus consuming address
space, you may have to do more careful consideration. Multiplying
the number of Pods per node by your eventual node count can give
you a rough estimate. The number of Pods per node is configurable
on the kubelet, but by default is 110.

Figure 5-1. The IP spaces and IP allocations of the host network, Pod network, and each
[host] local CIDR.

Routing Protocols
Once Pods are addressed, we need to ensure that routes to and from them are under‐
stood. This is where routing protocols come in to play. Routing protocols can be
thought of as different ways to propagate routes to and from places. Introducing a
routing protocol often enables dynamic routing, relative to configuring static routes.
In Kubernetes, understanding a multitude of routes becomes important when not
leveraging encapsulation (covered in the next section), since the network will often be
unaware of how to route workload IPs.

104 | Chapter 5: Pod Networking

https://oreil.ly/97En2

Border Gateway Protocol (BGP) is one of the most commonly used protocols to dis‐
tribute workload routes. It is used in projects such as Calico and Kube-Router. Not
only does BGP enable communication of workload routes in the cluster but its inter‐
nal routers can also be peered with external routers. Doing so can make external net‐
work fabrics aware of how to route to Pod IPs. In implementations such as Calico, a
BGP daemon is run as part of the Calico Pod. This Pod runs on every host. As routes
to workloads become known, the Calico Pod modifies the kernel routing table to
include routes to each potential workload. This provides native routing via the work‐
load IP, which can work especially well when running in the same L2 segment.
Figure 5-2 demonstrates this behavior.

Figure 5-2. The calico-pod sharing routes via its BGP peer. The kernel routing table is
then programmed accordingly.

Making Pod IPs routable to larger networks may seem appealing at
first glance but should be carefully considered. See “Workload
Routability” on page 108 for more details.

Networking Considerations | 105

https://www.projectcalico.org
https://www.kube-router.io

In many environments, native routing to workload IPs is not possible. Additionally,
routing protocols such as BGP may not be able to integrate with an underlying net‐
work; such is the case running in a cloud-provider’s network. For example, let’s con‐
sider a CNI deployment where we wish to support native routing and share routes via
BGP. In an AWS environment, this can fail for two reasons:

Source/Destination checks are enabled
This ensures that packets hitting the host have the destination (and source IP) of
the target host. If it does not match, the packet is dropped. This setting can be
disabled.

Packet needs to traverse subnets
If the packet needs to leave the subnet, the destination IP is evaluated by the
underlying AWS routers. When the Pod IP is present, it will not be able to route.

In these scenarios, we look to tunneling protocols.

Encapsulation and Tunneling
Tunneling protocols give you the ability to run your Pod network in a way that is
mostly unknown to the underlying network. This is achieved using encapsulation. As
the name implies, encapsulation involves putting a packet (the inner packet) inside
another packet (the outer packet). The inner packet’s src IP and dst IP fields will ref‐
erence the workload (Pod) IPs, whereas the outer packet’s src IP and dst IP fields will
reference the host/node IPs. When the packet leaves a node, it will appear to the
underlying network as any other packet since the workload-specific data is in the pay‐
load. There are a variety of tunneling protocols such as VXLAN, Geneve, and GRE.
In Kuberntes, VXLAN has become one of the most commonly used methods by net‐
working plug-ins. Figure 5-3 demonstrates an encapsulated packet crossing the wire
via VXLAN.

As you can see, VXLAN puts an entire Ethernet frame inside a UDP packet. This
essentially gives you a fully virtualized layer-2 network, often referred to as an overlay
network. The network beneath the overlay, referred to as the underlay network, does
not concern itself with the overlay. This is one of the primary benefits to tunneling
protocols.

106 | Chapter 5: Pod Networking

Figure 5-3. VXLAN encapsulation used to move an inner packet, for workloads, across
hosts. The network cares only about the outer packet, so it needs to have zero awareness
of workload IPs and their routes.

Often, you choose whether to use a tunneling protocol based on the requirements/
capabilities of your environment. Encapsulation has the benefit of working in many
scenarios since the overlay is abstracted from the underlay network. However, this
approach comes with a few key downsides:

Traffic can be harder to understand and troubleshoot
Packets within packets can create extra complexity when troubleshooting net‐
work issues.

Encapsulation/decapsulation will incur processing cost
When a packet goes to leave a host it must be encapsulated, and when it enters a
host it must be decapsulated. While likely small, this will add overhead relative to
native routing.

Packets will be larger
Due to the embedding of packets, they will be larger when transmitted over the
wire. This may require adjustments to the maximum transmission unit (MTU) to
ensure they fit on the network.

Networking Considerations | 107

https://oreil.ly/dzYBz

Workload Routability
In most clusters, Pod networks are internal to the cluster. This means Pods can
directly communicate with each other, but external clients cannot reach Pod IPs
directly. Considering Pod IPs are ephemeral, communicating directly with a Pod’s IP
is often bad practice. Relying on service discovery or load balancing mechanics that
abstract the underlying IP is preferable. A huge benefit to the internal Pod network is
that it does not occupy precious address space within your organization. Many organ‐
izations manage address space to ensure addresses stay unique within the company.
Thus, you would certainly get a dirty look when you ask for a /16 space (65,536 IPs)
for each Kubernetes cluster you bootstrap!

When Pods are not directly routable, we have several patterns to facilitate external
traffic to Pod IPs. Commonly we will expose an Ingress controller on the host net‐
work of a subset of dedicated nodes. Then, once the packet enters the Ingress control‐
ler proxy, it can route directly to Pod IPs since it takes part in the Pod network. Some
cloud providers even include (external) load balancer integration that wires this all
together automatically. We explore a variety of these ingress models, and their trade-
offs, in Chapter 6.

At times, requirements necessitate that Pods are routable to the larger network. There
are two primary means to accomplish this. The first is to use a networking plug-in
that integrates with the underlying network directly. For example, AWS’s VPC CNI
attaches multiple secondary IPs to each node and allocates them to Pods. This makes
each Pod routable just as an EC2 host would be. The primary downside to this model
is it will consume IPs in your subnet/VPC. The second option is to propagate routes
to Pods via a routing protocol such as BGP, as described in “Routing Protocols” on
page 104. Some plug-ins using BGP will even enable you to make a subset of your
Pod network routable, rather than having to expose the entire IP space.

Avoid making your Pod network externally routable unless abso‐
lutely necessary. We often see legacy applications driving the desire
for routable Pods. For example, consider a TCP-based workload
where a client must be pinned to the same backend. Typically, we
recommend updating the application(s) to fit within the container
networking paradigm using service discovery and possibly re-
architecting the backend to not require client-server affinity (when
possible). While exposing the Pod networking may seem like a sim‐
ple solution, doing so comes at the cost of eating up IP space and
potentially making IPAM and route propagation configurations
more complex.

108 | Chapter 5: Pod Networking

https://github.com/aws/amazon-vpc-cni-k8s

IPv4 and IPv6
The overwhelming majority of clusters today run IPv4 exclusively. However, we are
seeing the desire to run IPv6-networked clusters in certain clients such as telcos
where addressability of many workloads is critical. Kubernetes does support IPv6 via
dual-stack as of 1.16. At the time of this writing, dual-stack is an alpha feature. Dual-
stack enables you to configure IPv4 and IPv6 address spaces in your clusters.

If your use case requires IPv6, it can easily be enabled but requires a few components
to line up:

• While still in alpha, a feature-gate must be enabled on the kube-apiserver and
kubelet.

• The kube-apiserver, kube-controller-manager, and kube-proxy all require an
additional configuration to specify the IPv4 and IPv6 space.

• You must use a CNI plug-in that supports IPv6, such as Calico or Cilium.

With the preceding in place, you will see two CIDR allocations on each Node object:

spec:
 podCIDR: 10.30.0.0/24
 podCIDRs:
 - 10.30.0.0/24
 - 2002:1:1::/96

The CNI plug-in’s IPAM is responsible for determining whether an IPv4, IPv6, or
both is assigned to each Pod.

Encrypted Workload Traffic
Pod-to-Pod traffic is rarely (if ever) encrypted by default. This means that packets
sent over the wire without encryption, such as TLS, can be sniffed as plain text. Many
network plug-ins support encrypting traffic over the wire. For example, Antrea sup‐
ports encryption with IPsec when using a GRE tunnel. Calico is able to encrypt traffic
by tapping into a node’s WireGuard installation.

Enabling encryption may seem like a no-brainer. However, there are trade-offs to be
considered. We recommend talking with your networking team to understand how
host-to-host traffic is handled today. Is data encrypted when it goes between hosts in
your datacenter? Additionally, what other encryption mechanisms may be at play?
For example, does every service talk over TLS? Do you plan to leverage a service
mesh where workload proxies leverage mTLS? If so, is encrypting at the service proxy
and CNI layer required? While encryption will increase the depth of defense, it will
also add complexity to network management and troubleshooting. Most importantly,
needing to encrypt and decrypt packets will impact performance, thus lowering your
potential throughput.

Networking Considerations | 109

https://oreil.ly/sj_jN
https://projectcalico.org
https://cilium.io
https://oreil.ly/jqzCQ
https://www.wireguard.com

Network Policy
Once the Pod network is wired up, a logical next step is to consider how to set up
network policy. Network policy is similar to firewall rules or security groups, where
we can define what ingress and egress traffic is allowed. Kubernetes offers a Network‐
Policy API, as part of the core networking APIs. Any cluster can have policies added
to it. However, it is incumbent on the CNI provider to implement the policy. This
means that a cluster running a CNI provider that does not support NetworkPolicy,
such as flannel, will accept NetworkPolicy objects but not act on them. Today, most
CNIs have some level of support for NetworkPolicy. Those that do not can often be
used alongside plug-ins such as Calico, where the plug-in runs in a mode where it
provides only policy enforcement.

NetworkPolicy being available inside of Kubernetes adds yet another layer where
firewall-style rules can be managed. For example, many networks provide subnet or
host-level rules available via a distributed firewall or security group mechanism.
While good, often these existing solutions do not have visibility into the Pod network.
This prevents the level of granularity that may be desired in setting up rules for Pod-
based workload communication. Another compelling aspect of Kubernetes Network‐
Policy is that, like most objects we deal with in Kubernetes, it is defined declaratively
and, we think, far easier to manage relative to most firewall management solutions!
For these reasons, we generally recommend considering implementing network pol‐
icy at the Kubernetes level rather than trying to make existing firewall solutions fit
this new paradigm. This does not mean you should throw out your existing host-to-
host firewall solution(s). More so, let Kubernetes handle the intra-workload policy.

Should you choose to utilize NetworkPolicy, it is important to note these policies are
Namespace-scoped. By default, when NetworkPolicy objects are not present, Kuber‐
netes allows all communication to and from workloads. When setting a policy, you
can select what workloads the policy applies to. When present, the default behavior
inverts and any egress and ingress traffic not allowed by the policy will be blocked.
This means that the Kubernetes NetworkPolicy API specifies only what traffic is
allowed. Additionally, the policy in a Namespace is additive. Consider the following
NetworkPolicy object that configures ingress and egress rules:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: team-netpol
 namespace: org-1
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress
 ingress:

110 | Chapter 5: Pod Networking

https://oreil.ly/1UV_3
https://oreil.ly/1UV_3
https://github.com/coreos/flannel

 - from:
 - ipBlock:
 cidr: 10.40.0.0/24
 ports:
 - protocol: TCP
 port: 80
 egress:
 - to:
 ports:
 - protocol: UDP
 port: 53
 - to:
 - namespaceSelector:
 matchLabels:
 name: org-2
 - podSelector:
 matchLabels:
 app: team-b
 ports:
 - protocol: TCP
 port: 80

The empty podSelector implies this policy applies to all Pods in this Namespace.
Alternatively, you can match against a label.

This ingress rule allows traffic from sources with an IP in the range of
10.40.0.0/24, when the protocol is TCP and the port is 80.

This egress rule allows DNS traffic from workloads.

This egress rule limits sending traffic to packets destined for workloads in the
org-2 Namespace with the label team-b. Additionally, the protocol must be TCP
and the destination port is 80.

Over time, we have seen the NetworkPolicy API be limiting to certain use cases.
Some common desires include:

• Complex condition evaluation
• Resolution of IPs based on DNS records
• L7 rules (host, path, etc.)
• Cluster-wide policy, enabling global rules to be put in place, rather than having to

replicate them in every Namespace.

To satisfy these desires, some CNI plug-ins offer their own, more capable, policy
APIs. The primary trade-off to using provider-specific APIs is that your rules are no
longer portable across plug-ins. We will explore examples of these when we cover
Calico and Cilium later in the chapter.

Networking Considerations | 111

Summary: Networking Considerations
In the previous sections we have covered key networking considerations that will
enable you to make an informed decision about your Pod networking strategy. Before
diving into CNI and plug-ins, let’s recap some of the key areas of consideration:

• How large should your Pod CIDR be per cluster?
• What networking constraints does your underlay network put on your future

Pod network?
• If using a Kubernetes managed service or vendor offering, what networking plug-

in(s) are supported?
• Are routing protocols such as BGP supported in your infrastructure?
• Could unencapsulated (native) packets be routed through the network?
• Is using a tunnel protocol (encapsulation) desirable or required?
• Do you need to support (externally) routable Pods?
• Is running IPv6 a requirement for your workloads?
• On what level(s) will you expect to enforce network policy or firewall rules?
• Does your Pod network need to encrypt traffic on the wire?

With the answers to these questions fleshed out, you are in a good place to start
learning about what enables you to plug in the correct technology to solve these
issues, the Container Networking Interface (CNI).

The Container Networking Interface (CNI)
All the considerations discussed thus far make it clear that different use cases warrant
different container networking solutions. In the early days of Kubernetes, most
clusters were running a networking plug-in called flannel. Over time, solutions such
as Calico and others gained popularity. These new plug-ins brought different
approaches to creating and running networks. This drove the creation of a standard
for how systems such as Kubernetes could request networking resources for its work‐
loads. This standard is known as the Container Networking Interface (CNI). Today,
all networking options compatible with Kubernetes conform to this interface. Similar
to the Container Storage Interface (CSI) and Container Runtime Interface (CRI), this
gives us flexibility in the networking stack of our application platform.

The CNI specification defines a few key operations:

ADD

Adds a container to the network and responds with the associated interface(s),
IP(s), and more.

112 | Chapter 5: Pod Networking

https://github.com/coreos/flannel
https://www.projectcalico.org
https://github.com/containernetworking/cni

DELETE

Removes a container from the network and releases all associated resources.

CHECK

Verifies a container’s network is set up properly and responds with an error if
there are issues.

VERSION

Returns the CNI version(s) supported by the plug-in.

This functionality is implemented in a binary that is installed on the host. The kube‐
let will communicate with the appropriate CNI binary based on the configuration it
expects on the host. An example of this configuration file is as follows:

{
 "cniVersion": "0.4.0",
 "name": "dbnet",
 "type": "bridge",
 "bridge": "cni0",
 "args": {
 "labels" : {
 "appVersion" : "1.0"
 }
 },
 "ipam": {
 "type": "host-local",
 "subnet": "10.1.0.0/16",
 "gateway": "10.1.0.1"
 }
}

The CNI (specification) version this plug-in expects to talk over.

The CNI driver (binary) to send networking setup requests to.

The IPAM driver to use, specified when the CNI plug-in does not handle IPAM.

Multiple CNI configurations may exist in the CNI conf directory.
They are evaluated lexicographically, and the first configuration
will be used.

Along with the CNI configuration and CNI binary, most plug-ins run a Pod on each
host that handles concerns beyond interface attachment and IPAM. This includes
responsibilities such as route propagation and network policy programming.

The Container Networking Interface (CNI) | 113

CNI Installation
CNI drivers must be installed on every node taking part in the Pod network. Addi‐
tionally, the CNI configuration must be established. The installation is typically han‐
dled when you deploy a CNI plug-in. For example, when deploying Cilium, a
DaemonSet is created, which puts a cilium Pod on every node. This Pod features a
PostStart command that runs the baked-in script install-cni.sh. This script will start
by installing two drivers. First it will install the loopback driver to support the lo
interface. Then it will install the cilium driver. The script executes conceptually as
follows (the example has been greatly simplified for brevity):

Install CNI drivers to host

Install the CNI loopback driver; allow failure
cp /cni/loopback /opt/cin/bin/ || true

install the cilium driver
cp /opt/cni/bin/cilium-cni /opt/cni/bin/

After installation, the kubelet still needs to know which driver to use. It will look
within /etc/cni/net.d/ (configurable via flag) to find a CNI configuration. The same
install-cni.sh script adds this as follows:

cat > /etc/cni/net.d/05-cilium.conf <<EOF
{
 "cniVersion": "0.3.1",
 "name": "cilium",
 "type": "cilium-cni",
 "enable-debug": ${ENABLE_DEBUG}
}
EOF

To demonstrate this order of operations, let’s take a look a newly bootstrapped,
single-node cluster. This cluster was bootstrapped using kubeadm. Examining all Pods
reveals that the core-dns Pods are not running:

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-f9fd979d6-26lfr 0/1 Pending 0 3m14s
kube-system coredns-f9fd979d6-zqzft 0/1 Pending 0 3m14s
kube-system etcd-test 1/1 Running 0 3m26s
kube-system kube-apiserver-test 1/1 Running 0 3m26s
kube-system kube-controller-manager-test 1/1 Running 0 3m26s
kube-system kube-proxy-xhh2p 1/1 Running 0 3m14s
kube-system kube-scheduler-test 1/1 Running 0 3m26s

After examining the kubelet logs on the host scheduled to run core-dns, it becomes
clear that the lack of CNI configuration is causing the container runtime to not start
the Pod:

114 | Chapter 5: Pod Networking

This case of DNS not starting is one of the most common indica‐
tors of CNI issues after cluster bootstrapping. Another symptom is
nodes reporting NotReady status.

journalctl -f -u kubelet

-- Logs begin at Sun 2020-09-27 15:40:13 UTC. --
Sep 27 17:11:18 test kubelet[2972]: E0927 17:11:18.817089 2972 kubelet.go:2103]
Container runtime network not ready: NetworkReady=false
reason:NetworkPluginNotReady message:docker: network plugin is not ready: cni
config uninitialized
Sep 27 17:11:19 test kubelet[2972]: W0927 17:11:19.198643 2972 cni.go:239]
Unable to update cni config: no networks found in /etc/cni/net.d

The reason Pods such as kube-apiserver and kube-controller-
manager started successfully is due to their use of the host network.
Since they leverage the host network and do not rely on the Pod
network, they are not susceptible to the same behavior seen by
core-dns.

Cilium can be deployed to the cluster by simply applying a YAML file from the Cil‐
ium documentation. In doing so, the aforementioned cilium Pod is deployed on
every node, and the cni-install.sh script is run. Examining the CNI bin and configura‐
tion directories, we can see the installed components:

ls /opt/cni/bin/ | grep -i cilium
cilium-cni

ls /etc/cni/net.d/ | grep -i cilium
05-cilium.conf

With this in place, the kubelet and container runtime are functioning as expected.
Most importantly, the core-dns Pod is up and running! Figure 5-4 demonstrates the
relationship we’ve covered thus far in this section.

The Container Networking Interface (CNI) | 115

Figure 5-4. Docker is used to run containers. The kubelet interacts with the CNI to
attach network interfaces and configure the Pod’s network.

While this example explored installation via Cilium, most plug-ins follow a similar
deployment model. The key justification for plug-in choice is based on the discussion
in “Networking Considerations” on page 102. With this in mind, we’ll transition to
exploring some CNI plug-ins to better understand different approaches.

CNI Plug-ins
Now we are going to explore a few implementations of CNI. CNI has one of the larg‐
est array of options relative to other interfaces such as CRI. As such, we won’t be
exhaustive in the plug-ins we cover and encourage you to explore more than what we
will. We chose the following plug-ins as a factor of being the most common we see at
clients and unique enough to demonstrate the variety of approaches.

A Pod network is foundational to any Kubernetes cluster. As such,
your CNI plug-in will be in the critical path. As time goes on, you
may wish to change your CNI plug-in. If this occurs, we recom‐
mend rebuilding clusters as opposed to doing in-place migrations.
In this approach, you spin up a new cluster featuring the new CNI.
Then, depending on your architecture and operational model,
migrate workloads to the new cluster. It is possible to do an in-
place CNI migration, but it takes on nontrivial risk and should be
carefully weighed against our recommendation.

116 | Chapter 5: Pod Networking

Calico
Calico is a well-established CNI plug-in in the cloud native ecosystem. Project Calico
is the open source project that supports this CNI plug-in, and Tigera is the commer‐
cial company offering enterprise features and support. Calico makes heavy use of
BGP to propagate workload routes between nodes and to offer integration with larger
datacenter fabrics. Along with installing a CNI binary, Calico runs a calico-node
agent on each host. This agent features a BIRD daemon for facilitating BGP peering
between nodes and a Felix agent, which takes the known routes and programs them
into the kernel route tables. This relationship is demonstrated in Figure 5-5.

Figure 5-5. Calico component relationship showing the BGP peering to communicate
routes and the programming of iptables and kernel routing tables accordingly.

For IPAM, Calico initially respects the cluster-cidr setting described in “IP Address
Management” on page 102. However, its capabilities are far greater than relying on a
CIDR allocation per node. Calico creates CRDs called IPPools. This provides a lot of
flexibility in IPAM, specifically enabling features such as:

• Configuring block size per node
• Specifying what node(s) an IPPool applies to
• Allocating IPPools to Namespaces, rather than nodes
• Configuring routing behavior

CNI Plug-ins | 117

https://www.projectcalico.org
https://www.tigera.io
https://oreil.ly/-Nd-Q

Paired with the ability to have multiple pools per cluster, you have a lot of flexibility
in IPAM and network architecture. By default, clusters run a single IPPool, as shown
here:

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: default-ipv4-ippool
spec:
 cidr: 10.30.0.0/16
 blockSize: 29
 ipipMode: Always
 natOutgoing: true

The cluster’s Pod network CIDR.

The size of each node-level CIDR allocation.

The encapsulation mode.

Calico offers a variety of ways to route packets inside of the cluster. This includes:

Native
No encapsulation of packets.

IP-in-IP
Simple encapsulation. IP packet is placed in the payload of another.

VXLAN
Advanced encapsulation. An entire L2 frame is encapsulated within a UDP
packet. Establishes a virtual L2 overlay.

Your choice is often a function of what your network can support. As described in
“Routing Protocols” on page 104, native routing will likely provide the best perfor‐
mance, smallest packet size, and simplest troubleshooting experience. However, in
many environments, especially those involving multiple subnets, this mode is not
possible. The encapsulation approaches work in most environments, especially
VXLAN. Additionally, the VXLAN mode does not require usage of BGP, which can
be a solution to environments where BGP peering is blocked. One unique feature of
Calico’s encapsulation approach is that it can be enabled exclusively for traffic that
crosses a subnet boundary. This enables near native performance when routing
within the subnet while not breaking routing outside the subnet. This can be enabled
by setting the IPPool’s ipipMode to CrossSubnet. Figure 5-6 demonstrates this
behavior.

118 | Chapter 5: Pod Networking

Figure 5-6. Traffic behavior when CrossSubnet IP-in-IP mode is enabled.

For deployments of Calico that keep BGP enabled, by default, no additional work is
needed thanks to the built-in BGP daemon in the calico-node Pod. In more com‐
plex architectures, organizations use this BGP functionality as a way to introduce
route reflectors, sometimes required at large scales when the (default) full-mesh
approach becomes limited. Along with route reflectors, peering can be configured to
talk to network routers, which in turn can make the overall network aware of routes
to Pod IPs. This is all configured using Calico’s BGPPeer CRD, seen here:

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: external-router
spec:
 peerIP: 192.23.11.100
 asNumber: 64567
 nodeSelector: routing-option == 'external'

The IP of the device to (bgp) peer with.

The autonomous system ID of the cluster.

Which cluster nodes should peer with this device. This field is optional. When
omitted, the BGPPeer configuration is considered global. Not peering global is
advisable only when a certain set of nodes should offer a unique routing capabil‐
ity, such as offering routable IPs.

CNI Plug-ins | 119

https://tools.ietf.org/html/rfc4456
https://oreil.ly/HiXLN

In terms of network policy, Calico fully implements the Kubernetes NetworkPolicy
API. Calico offers two additional CRDs for increased functionality. These include
(projectcalico.org/v3).NetworkPolicy and GlobalNetworkPolicy. These Calico-
specific APIs look similar to Kubernetes NetworkPolicy but feature more capable
rules and richer expressions for evaluation. Also, policy ordering and application
layer policy (requires integration with Istio) are supported. GlobalNetworkPolicy
is particularly useful because it applies policy at a cluster-wide level. This makes it
easier to achieve models such as micro-segmentation, where all traffic is denied by
default and egress/ingress is opened up based on the workload needs. You can apply a
GlobalNetworkPolicy that denies all traffic except for critical services such as DNS.
Then, at a Namespace level, you can open up access to ingress and egress accordingly.
Without GlobalNetworkPolicy, we’d need to add and manage deny-all rules in every
Namespace.

Historically, Calico has made use of iptables to implement packet
routing decisions. For Services, Calico relies on the programming
done by kube-proxy to resolve an endpoint for a Service. For net‐
work policy, Calico programs iptables to determine whether a
packet should be allowed to enter or leave the host. At the time of
this writing, Calico has introduced an eBPF dataplane option. We
expect, over time, more functionality used by Calico to be moved
into this model.

Cilium
Cilium is a newer CNI plug-in relative to Calico. It’s the first CNI plug-in to utilize
the extended Berkeley Packet Filter (eBPF). This means that rather than processing
packets in userspace it is able to do so without leaving kernel space. Paired with
eXpress Data Path (XDP), hooks may be established in the NIC driver to make rout‐
ing decisions. This enables routing decisions to occur immediately when the packet is
received.

As a technology, eBPF has demonstrated performance and scale at organizations such
as Facebook and Netflix. With the usage of eBPF, Cilium is able to claim increased
features around scalability, observability, and security. This deep integration with BPF
means that common CNI concerns such as NetworkPolicy enforcement are no longer
handled via iptables in userspace. Instead, extensive use of eBPF maps enable deci‐
sions to occur quickly in a way that scales as more and more rules are added.
Figure 5-7 shows a high-level overview of the stack with Cilium installed.

120 | Chapter 5: Pod Networking

https://oreil.ly/oMsCm
https://oreil.ly/3pUOs
https://ebpf.io
https://oreil.ly/M3m6t
https://oreil.ly/agUXl
https://oreil.ly/Ubt1Q
https://oreil.ly/4Rdvf

Figure 5-7. Cilium interacts with eBPF maps and programs at the kernel level.

For IPAM, Cilium follows the model of either delegating IPAM to a cloud provider
integration or managing it itself. In the most common scenario of Cilium managing
IPAM, it will allocate Pod CIDRs to each node. By default, Cilium will manage these
CIDRs independent of Kubernetes Node allocations. The node-level addressing will
be exposed in the CiliumNode CRD. This will provide greater flexibility in manage‐
ment of IPAM and is preferable. If you wish to stick to the default CIDR allocations
done in Kubernetes based on its Pod CIDR, Cilium offer a kubernetes IPAM mode.
This will rely on the Pod CIDR allocated to each node, which is exposed in the Node
object. Following is an example of a CiliumNode object. You can expect one of these
to exist for each node in the cluster:

apiVersion: cilium.io/v2
kind: CiliumNode
metadata:
 name: node-a
spec:
 addresses:
 - ip: 192.168.122.126
 type: InternalIP
 - ip: 10.0.0.245
 type: CiliumInternalIP
 health:
 ipv4: 10.0.0.78

CNI Plug-ins | 121

 ipam:
 podCIDRs:
 - 10.0.0.0/24

IP address of this workload node.

CIDR allocated to this node. The size of this allocation can be controlled in Cil‐
ium’s config using cluster-pool-ipv4-mask-size: "24".

Similar to Calico, Cilium offers encapsulated and native routing modes. The default
mode is encapsulated. Cilium supports using tunneling protocols VXLAN or Geneve.
This mode should work with most networks as long as host-to-host routability pre-
exists. To run in native mode, Pod routes must be understood at some level. For
example, Cilium supports using AWS’s ENI for IPAM. In this model, the Pod IPs are
known to the VPC and are inherently routable. To run a native-mode with Cilium-
managed IPAM, assuming the cluster runs in the same L2 segment, auto-direct-
node-routes: true can be added to Cilium’s configuration. Cilium will then
program the host’s route tables accordingly. If you span L2 networks, you may need
to introduce additional routing protocols such as BGP to distribute routes.

In terms of network policy, Cilium can enforce the Kubernetes NetworkPolicy API.
As an alternative to this policy, Cilium offers its own CiliumNetworkPolicy and Cil‐
iumClusterwideNetworkPolicy. The key difference between these two is the scope of
the policy. CiliumNetworkPolicy is Namespace scoped, while CiliumClusterwideNet‐
workPolicy is cluster-wide. Both of these have increased functionality beyond the
capabilities of Kubernetes NetworkPolicy. Along with supporting label-based layer 3
policy, they support policy based on DNS resolution and application-level (layer 7)
requests.

While most CNI plug-ins don’t involve themselves with Services, Cilium offers a fully
featured kube-proxy replacement. This functionality is built into the cilium-agent
deployed to each node. To deploy in the mode, you’ll want to ensure kube-proxy is
absent from your cluster and that the KubeProxyReplacement setting is set to strict
in Cilium. When using this mode, Cilium will configure routes for Services within
eBPF maps, making resolution as fast as O(1). This is in contrast to kube-proxy,
which implements Services in iptables chains and can cause issues at scale and/or
when there is high churn of Services. Additionally, the CLI provided by Cilium offers
a good experience when troubleshooting constructs such as Services or network pol‐
icy. Rather than trying to interpret iptables chains, you can query the system as
follows:

122 | Chapter 5: Pod Networking

https://oreil.ly/_WUKS
https://oreil.ly/EpkhJ
https://oreil.ly/RtYH5
https://oreil.ly/RtYH5

kubectl exec -it -n kube-system cilium-fmh8d -- cilium service list

ID Frontend Service Type Backend
[...]
7 192.40.23.111:80 ClusterIP 1 => 10.30.0.28:80
 2 => 10.30.0.21:80

Cilium’s use of eBPF programs and maps makes it an extremely compelling and inter‐
esting CNI option. By continuing to leverage eBPF programs, more functionality is
being introduced that integrates with Cilium—for example, the ability to extract flow
data, policy violations, and more. To extract and present this valuable data, hubble
was introduced. It makes use of Cilium’s eBPF programs to provide a UI and CLI for
operators.

Lastly, we should mention that the eBPF functionality made available by Cilium can
be run alongside many existing CNI providers. This is achieved by running Cilium in
its CNI chaining mode. In this mode, an existing plug-in such as AWS’s VPC CNI
will handle routing and IPAM. Cilium’s responsibility will exclusively be the function‐
ality offered by its various eBPF programs including network observability, load bal‐
ancing, and network policy enforcement. This approach can be preferable when you
either cannot fully run Cilium in your environment or wish to test out its functional‐
ity alongside your current CNI choice.

AWS VPC CNI
AWS’s VPC CNI demonstrates a very different approach to what we have covered
thus far. Rather than running a Pod network independent of the node network, it
fully integrates Pods into the same network. Since a second network is not being
introduced, the concerns around distributing routes or tunneling protocols are no
longer needed. When a Pod is provided an IP, it becomes part of the network in the
same way an EC2 host would. It is subject to the same route tables as any other host
in the subnet. Amazon refers to this as native VPC networking.

For IPAM, a daemon will attach a second elastic network interface (ENI) to the
Kubernetes node. It will then maintain a pool of secondary IPs that will eventually get
attached to Pods. The amount of IPs available to a node depends on the EC2 instance
size. These IPs are typically “private” IPs from within the VPC. As mentioned earlier
in this chapter, this will consume IP space from your VPC and make the IPAM sys‐
tem more complex than a completely independent Pod network. However, the rout‐
ing of traffic and troubleshooting has been significantly simplified given we are not
introducing a new network! Figure 5-8 demonstrates the IPAM setup with AWS VPC
CNI.

CNI Plug-ins | 123

https://github.com/cilium/hubble
https://oreil.ly/HYHHp
https://oreil.ly/NBjs3
https://oreil.ly/vUGdI

Figure 5-8. The IPAM daemon is responsible for maintaining the ENI and pool of secon‐
dary IPs.

The use of ENIs will impact the number of Pods you can run per
node. AWS maintains a list on its GitHub page that correlates
instance type to max Pods.

124 | Chapter 5: Pod Networking

https://oreil.ly/jk_XL

Multus
So far, we have covered specific CNI plug-ins that attach an interface to a Pod, thus
making it available on a network. But what if a Pod needs to be attached to more than
one network? This is where the Multus CNI plug-in comes in. While not extremely
common, there are use cases in the telecommunications industry that require their
network function virtualizations (NFVs) to route traffic to a specific, dedicated,
network.

Multus can be thought of as a CNI that enables using multiple other CNIs. In this
model, Multus becomes the CNI plug-in interacted with by Kubernetes. Multus is
configured with a default network that is commonly the network expected to facili‐
tate Pod-to-Pod communication. This could even be one of the plug-ins we’ve talked
about in this chapter! Then, Multus supports configuring secondary networks by
specifying additional plug-ins that can be used to attach another interface to a Pod.
Pods can then be annotated with something like k8s.v1.cni.cncf.io/networks:
sriov-conf to attach an additional network. Figure 5-9 shows the result of this
configuration.

Figure 5-9. The traffic flow of a multinetwork Multus configuration.

CNI Plug-ins | 125

Additional Plug-ins
The landscape of plug-ins is vast, and we’ve covered only a very small subset. How‐
ever, the ones covered in this chapter do identify some of the key variances you’ll find
in plug-ins. The majority of alternatives take differing approaches to the engine used
to facilitate the networking, yet many core principles stay the same. The following list
identifies some additional plug-ins and gives a small glimpse into their networking
approach:

Antrea
Data plane is facilitated via Open vSwitch. Offers high-performance routing
along with the ability to introspect flow data.

Weave
Overlay network that provides many mechanisms to route traffic—for example,
the fast datapath options using OVS modules to keep packet processing in the
kernel.

flannel
Simple layer-3 network for Pods and one of the early CNIs. It supports multiple
backends yet is most commonly configured to use VXLAN.

Summary
The Kubernetes/container networking ecosystem is filled with options. This is good!
As we’ve covered throughout this chapter, networking requirements can vary signifi‐
cantly from organization to organization. Choosing a CNI plug-in is likely to be one
of the most foundational considerations for your eventual application platform.
While exploring the many options may feel overwhelming, we highly recommend
you work to better understand the networking requirements of your environment
and applications. With a deep understanding of this, the right networking plug-in
choice should fall into place!

126 | Chapter 5: Pod Networking

https://antrea.io/docs
https://www.openvswitch.org
https://www.weave.works/oss/net
https://github.com/coreos/flannel

CHAPTER 6

Service Routing

Service routing is a crucial capability of a Kubernetes-based platform. While the con‐
tainer networking layer takes care of the low-level primitives that connect Pods,
developers need higher-level mechanisms to interconnect services (i.e., east-west ser‐
vice routing) and to expose applications to their clients (i.e., north-south service rout‐
ing). Service routing encompasses three concerns that provide such mechanisms:
Services, Ingress, and service mesh.

Services provide a way to treat a set of Pods as a single unit or network service. They
provide load balancing and routing features that enable horizontal scaling of applica‐
tions across the cluster. Furthermore, Services offer service discovery mechanisms
that applications can use to discover and interact with their dependencies. Finally,
Services also provide layer 3/4 mechanisms to expose workloads to network clients
outside of the cluster.

Ingress handles north-south routing in the cluster. It serves as an entry point into
workloads running in the cluster, mainly HTTP and HTTPS services. Ingress pro‐
vides layer 7 load balancing capabilities that enable more granular traffic routing than
Services. The load balancing of traffic is handled by an Ingress controller, which must
be installed in the cluster. Ingress controllers leverage proxy technologies such as
Envoy, NGINX, or HAProxy. The controller gets the Ingress configuration from the
Kubernetes API and configures the proxy accordingly.

A service mesh is a service routing layer that provides advanced routing, security, and
observability features. It is mainly concerned with east-west service routing, but some
implementations can also handle north-south routing. Services in the mesh commu‐
nicate with each other through proxies that augment the connection. The use of prox‐
ies makes meshes compelling, as they enhance workloads without changes to source
code.

127

This chapter digs into these service routing capabilities, which are critical in produc‐
tion Kubernetes platforms. First, we will discuss Services, the different Service types,
and how they are implemented. Next, we will explore Ingress, Ingress controllers, and
the different considerations to take into account when running Ingress in production.
Finally, we will cover service meshes, how they work on Kubernetes, and considera‐
tions to make when adopting a service mesh in a production platform.

Kubernetes Services
The Kubernetes Service is foundational to service routing. The Service is a network
abstraction that provides basic load balancing across several Pods. In most cases,
workloads running in the cluster use Services to communicate with each other. Using
Services instead of Pod IPs is preferred because of the fungible nature of Pods.

In this section, we will review Kubernetes Services and the different Service types. We
will also look at Endpoints, another Kubernetes resource that is intimately related to
Services. We will then dive into the Service implementation details and discuss kube-
proxy. Finally, we will discuss Service Discovery and considerations to make for the
in-cluster DNS server.

The Service Abstraction
The Service is a core API resource in Kubernetes that load balances traffic across
multiple Pods. The Service does load balancing at the L3/L4 layers in the OSI model.
It takes a packet with a destination IP and port and forwards it to a backend Pod.

Load balancers typically have a frontend and a backend pool. Services do as well. The
frontend of a Service is the ClusterIP. The ClusterIP is a virtual IP address (VIP) that
is accessible from within the cluster. Workloads use this VIP to communicate with the
Service. The backend pool is a collection of Pods that satisfy the Service’s Pod selector.
These Pods receive the traffic destined for the Cluster IP. Figure 6-1 depicts the front‐
end of a Service and its backend pool.

Figure 6-1. The Service has a frontend and a backend pool. The frontend is the ClusterIP,
while the backend is a set of Pods.

128 | Chapter 6: Service Routing

Service IP Address Management
As we discussed in the previous chapter, you configure two ranges of IP addresses
when deploying Kubernetes. On the one hand, the Pod IP range or CIDR block pro‐
vides IP addresses to each Pod in the cluster. On the other hand, the Service CIDR
block provides the IP addresses for Services in the cluster. This CIDR is the range that
Kubernetes uses to assign ClusterIPs to Services.

The API server handles the IP Address Management (IPAM) for Kubernetes Services.
When you create a Service, the API Server (with the help of etcd) allocates an IP
address from the Service CIDR block and writes it to the Service’s ClusterIP field.

When creating Services, you can also specify the ClusterIP in the Service specifica‐
tion. In this case, the API Server makes sure that the requested IP address is available
and within the Services CIDR block. With that said, explicitly setting ClusterIPs is an
antipattern.

The Service resource
The Service resource contains the configuration of a given Service, including the
name, type, ports, etc. Example 6-1 is an example Service definition in its YAML rep‐
resentation named nginx.

Example 6-1. Service definition that exposes NGINX on a ClusterIP

apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080
 clusterIP: 172.21.219.227
 type: ClusterIP

The Pod selector. Kubernetes uses this selector to find the Pods that belong to this
Service.

Ports that are accessible through the Service.

Kubernetes supports TCP, UDP, and SCTP protocols in Services.

Port where the Service can be reached.

Kubernetes Services | 129

Port where the backend Pod is listening, which can be different than the port
exposed by the Service (the port field above).

Cluster IP that Kubernetes allocated for this Service.

The Service’s Pod selector determines the Pods that belong to the Service. The Pod
selector is a collection of key/value pairs that Kubernetes evaluates against Pods in the
same Namespace as the Service. If a Pod has the same key/value pairs in their labels,
Kubernetes adds the Pod’s IP address to the backend pool of the Service. The man‐
agement of the backend pool is handled by the Endpoints controller through End‐
points resources. We will discuss Endpoints in more detail later in this chapter.

Service types
Up to this point, we have mainly talked about the ClusterIP Service, which is the
default Service type. Kubernetes offers multiple Service types that offer additional fea‐
tures besides the Cluster IP. In this section, we will discuss each Service type and how
they are useful.

ClusterIP. We have already discussed this Service type in the previous sections. To
recap, the ClusterIP Service creates a virtual IP address (VIP) that is backed by one or
more Pods. Usually, the VIP is available only to workloads running inside the cluster.
Figure 6-2 shows a ClusterIP Service.

Figure 6-2. The ClusterIP Service is a VIP that is accessible to workloads running within
the cluster.

NodePort. The NodePort Service is useful when you need to expose a Service to net‐
work clients outside of the cluster, such as existing applications running in VMs or
users of a web application.

As the name suggests, the NodePort Service exposes the Service on a port across all
cluster nodes. The port is assigned randomly from a configurable port range. Once
assigned, all nodes in the cluster listen for connections on the given port. Figure 6-3
shows a NodePort Service.

130 | Chapter 6: Service Routing

Figure 6-3. The NodePort Service opens a random port on all cluster nodes. Clients out‐
side of the cluster can reach the Service through this port.

The primary challenge with NodePort Services is that clients need to know the Serv‐
ice’s node port number and the IP address of at least one cluster node to reach the
Service. This is problematic because nodes can fail or be removed from the cluster.

A common way to solve this challenge is to use an external load balancer in front of
the NodePort Service. With this approach, clients don’t need to know the IP addresses
of cluster nodes or the Service’s port number. Instead, the load balancer functions as
the single entry point to the Service.

The downside to this solution is that you need to manage external load balancers and
update their configuration constantly. Did a developer create a new NodePort Ser‐
vice? Create a new load balancer. Did you add a new node to the cluster? Add the new
node to the backend pool of all load balancers.

In most cases, there are better alternatives to using a NodePort Service. The LoadBa‐
lancer Service, which we’ll discuss next, is one of those options. Ingress controllers
are another option, which we’ll explore later in this chapter in “Ingress” on page 152.

LoadBalancer. The LoadBalancer Service builds upon the NodePort Service to
address some of its downsides. At its core, the LoadBalancer Service is a NodePort
Service under the hood. However, the LoadBalancer Service has additional function‐
ality that is satisfied by a controller.

The controller, also known as a cloud provider integration, is responsible for auto‐
matically gluing the NodePort Service with an external load balancer. In other words,
the controller takes care of creating, managing, and configuring external load balanc‐
ers in response to the configuration of LoadBalancer Services in the cluster. The con‐
troller does this by interacting with APIs that provision or configure load balancers.
This interaction is depicted in Figure 6-4.

Kubernetes Services | 131

Figure 6-4. The LoadBalancer Service leverages a cloud provider integration to create an
external load balancer, which forwards traffic to the node ports. At the node level, the
Service is the same as a NodePort.

Kubernetes has built-in controllers for several cloud providers, including Amazon
Web Services (AWS), Google Cloud, and Microsoft Azure. These integrated control‐
lers are usually called in-tree cloud providers, as they are implemented inside the
Kubernetes source code tree.

As the Kubernetes project evolved, out-of-tree cloud providers emerged as an alter‐
native to in-tree providers. Out-of-tree providers enabled load balancer vendors to
provide their implementations of the LoadBalancer Service control loop. At this time,
Kubernetes supports both in-tree and out-of-tree providers. However, the commu‐
nity is quickly adopting out-of-tree providers, given that the in-tree providers are
deprecated.

LoadBalancer Services Without a Cloud Provider
If you run Kubernetes without a cloud provider integration, you will notice that
LoadBalancer Services remain in the “Pending” state. A great example of this problem
is bare metal deployments. If you are running your platform on bare-metal, you
might be able to leverage MetalLB to support LoadBalancer Services.

MetalLB is an open source project that provides support for LoadBalancer Services on
bare metal. MetalLB runs in the cluster, and it can operate in one of two modes. In
layer 2 mode, one of the cluster nodes becomes the leader and starts responding to
ARP requests for the external IPs of LoadBalancer Services. Once traffic reaches the
leader, kube-proxy handles the rest. If the leader fails, another node in the cluster

132 | Chapter 6: Service Routing

https://metallb.universe.tf

takes over and begins handling requests. A big downside of this mode is that it does
not offer true load balancing capabilities, given that a single node is the one respond‐
ing to the ARP requests.

The second mode of operation uses BGP to peer with your network routers. Through
the peering relationship, MetalLB advertises the external IPs of LoadBalancer Serv‐
ices. Similar to the layer 2 mode, kube-proxy takes care of routing the traffic from one
of the cluster nodes to the backend Pod. The BGP mode addresses the limitations of
the layer 2 mode, given that traffic is load balanced across multiple nodes instead of a
single, leader node.

If you need to support LoadBalancer Services, MetalLB might provide a viable path
forward. In most cases, however, you can get away without supporting LoadBalancer
Services. For example, if a large proportion of your applications are HTTP services,
you can leverage an Ingress controller to load balance and bring traffic into these
applications.

ExternalName. The ExternalName Service type does not perform any kind of load
balancing or proxying. Instead, an ExternalName Service is primarily a service dis‐
covery construct implemented in the cluster’s DNS. An ExternalName Service maps a
cluster Service to a DNS name. Because there is no load balancing involved, Services
of this type lack ClusterIPs.

ExternalName Services are useful in different ways. Piecemeal application migration
efforts, for example, can benefit from ExternalName Services. If you migrate compo‐
nents of an application to Kubernetes while leaving some of its dependencies outside,
you can use an ExternalName Service as a bridge while you complete the migration.
Once you migrate the entire application, you can change the Service type to a Clus‐
terIP without having to change the application deployment.

Even though useful in creative ways, the ExternalName Service is probably the least
common Service type in use.

Headless Service. Like the ExternalName Service, the Headless Service type does not
allocate a ClusterIP or provide any load balancing. The Headless Service merely func‐
tions as a way to register a Service and its Endpoints in the Kubernetes API and the
cluster’s DNS server.

Headless Services are useful when applications need to connect to specific replicas or
Pods of a service. Such applications can use service discovery to find all the Pod IPs
behind the Service and then establish connections to specific Pods.

Kubernetes Services | 133

Supported communication protocols
Kubernetes Services support a specific set of protocols: TCP, UDP, and SCTP. Each
port listed in a Service resource specifies the port number and the protocol. Services
can expose multiple ports with different protocols. For example, the following snippet
shows the YAML definition of the kube-dns Service. Notice how the list of ports
includes TCP port 53 and UDP port 53:

apiVersion: v1
kind: Service
metadata:
 labels:
 k8s-app: kube-dns
 kubernetes.io/cluster-service: "true"
 kubernetes.io/name: KubeDNS
 name: kube-dns
 namespace: kube-system
spec:
 clusterIP: 10.96.0.10
 ports:
 - name: dns
 port: 53
 protocol: UDP
 targetPort: 53
 - name: dns-tcp
 port: 53
 protocol: TCP
 targetPort: 53
 - name: metrics
 port: 9153
 protocol: TCP
 targetPort: 9153
 selector:
 k8s-app: kube-dns
 type: ClusterIP

Protocols and Troubleshooting Services
While working with Kubernetes, you might have tried to use ping to troubleshoot
Kubernetes Services. You probably found that any attempts to ping a Service resulted
in 100% packet loss. The problem with using ping is that it uses ICMP datagrams,
which are not supported in Kubernetes Services.

Instead of using ping, you must resort to alternative tools when it comes to trouble‐
shooting Services. If you are looking to test connectivity, choose a tool that works
with the Service’s protocol. For example, if you need to troubleshoot a web server, you
can use telnet to test whether you can establish a TCP connection to the server.

134 | Chapter 6: Service Routing

Another quick way to troubleshoot Services is to verify that the Pod selector is select‐
ing at least one Pod by checking the corresponding Endpoints resource. Invalid selec‐
tors are a common issue with Services.

As we’ve discussed up to this point, Services load balance traffic across Pods. The Ser‐
vice API resource represents the frontend of the load balancer. The backend, or the
collection of Pods that are behind the load balancer, are tracked by the Endpoints
resource and controller, which we will discuss next.

Endpoints
The Endpoints resource is another API object that is involved in the implementation
of Kubernetes Services. Every Service resource has a sibling Endpoints resource. If
you recall the load balancer analogy, you can think of the Endpoints object as the
pool of IP addresses that receive traffic. Figure 6-5 shows the relationship between a
Service and an Endpoint.

Figure 6-5. Relationship between the Service and the Endpoints resources.

The Endpoints resource

An example Endpoints resource for the nginx Service in Example 6-1 might look like
this (some extraneous fields have been removed):

apiVersion: v1
kind: Endpoints
metadata:
 labels:
 run: nginx
 name: nginx
 namespace: default
subsets:
- addresses:

Kubernetes Services | 135

 - ip: 10.244.0.10
 nodeName: kube03
 targetRef:
 kind: Pod
 name: nginx-76df748b9-gblnn
 namespace: default
 - ip: 10.244.0.9
 nodeName: kube04
 targetRef:
 kind: Pod
 name: nginx-76df748b9-gb7wl
 namespace: default
 ports:
 - port: 8080
 protocol: TCP

In this example, there are two Pods backing the nginx Service. Network traffic des‐
tined to the nginx ClusterIP is load balanced across these two Pods. Also notice how
the port is 8080 and not 80. This port matches the targetPort field specified in the
Service. It is the port that the backend Pods are listening on.

The Endpoints controller
An interesting thing about the Endpoints resource is that Kubernetes creates it auto‐
matically when you create a Service. This is somewhat different from other API
resources that you usually interact with.

The Endpoints controller is responsible for creating and maintaining the Endpoints
objects. Whenever you create a Service, the Endpoints controller creates the sibling
Endpoints resource. More importantly, it also updates the list of IPs within the End‐
points object as necessary.

The controller uses the Service’s Pod selector to find the Pods that belong to the Ser‐
vice. Once it has the set of Pods, the controller grabs the Pod IP addresses and
updates the Endpoints resource accordingly.

Addresses in the Endpoints resource can be in one of two sets: (ready) addresses and
notReadyAddresses. The Endpoints controller determines whether an address is
ready by inspecting the corresponding Pod’s Ready condition. The Pod’s Ready con‐
dition, in turn, depends on multiple factors. One of them, for example, is whether the
Pod was scheduled. If the Pod is pending (not scheduled), its Ready condition is false.
Ultimately, a Pod is considered ready when it is running and passing its readiness
probe.

136 | Chapter 6: Service Routing

Pod readiness and readiness probes
In the previous section, we discussed how the Endpoints controller determines
whether a Pod IP address is ready to accept traffic. But how does Kubernetes tell
whether a Pod is ready or not?

There are two complementary methods that Kubernetes uses to determine Pod
readiness:

Platform information
Kubernetes has information about the workloads under its management. For
example, the system knows whether the Pod has been successfully scheduled to a
node. It also knows whether the Pod’s containers are up and running.

Readiness probes
Developers can configure readiness probes on their workloads. When set, the
kubelet probes the workload periodically to determine if it is ready to receive
traffic. Probing Pods for readiness is more powerful than determining readiness
based on platform information because the probe checks for application-specific
concerns. For example, the probe can check whether the application’s internal
initialization process has completed.

Readiness probes are essential. Without them, the cluster would route traffic to work‐
loads that might not be able to handle it, which would result in application errors and
irritated end users. Ensure that you always define readiness probes in the applications
you deploy to Kubernetes. In Chapter 14, we will further discuss readiness probes.

The EndpointSlices resource
The EndpointSlices resource is an optimization implemented in Kubernetes v1.16. It
addresses scalability issues that can arise with the Endpoints resource in large cluster
deployments. Let’s review these issues and explore how EndpointSlices help.

To implement Services and make them routable, each node in the cluster watches the
Endpoints API and subscribes for changes. Whenever an Endpoints resource is upda‐
ted, it must be propagated to all nodes in the cluster to take effect. A scaling event is a
good example. Whenever there is a change to the set of Pods in the Endpoints
resource, the API server sends the entire updated object to all the cluster nodes.

This approach to handling the Endpoints API does not scale well with larger clusters
for multiple reasons:

• Large clusters contain many nodes. The more nodes in the cluster, the more
updates need to be sent when Endpoints objects change.

• The larger the cluster, the more Pods (and Services) you can host. As the number
of Pods increases, the frequency of Endpoints resource updates also grows.

Kubernetes Services | 137

https://oreil.ly/H8rHC
https://oreil.ly/H8rHC

• The size of Endpoints resources increases as the number of Pods that belong to
the Service grows. Larger Endpoints objects require more network and storage
resources.

The EndpointSlices resource fixes these issues by splitting the set of endpoints across
multiple resources. Instead of placing all the Pod IP addresses in a single Endpoints
resource, Kubernetes splits the addresses across various EndpointSlice objects. By
default, EndpointSlice objects are limited to 100 endpoints.

Let’s explore a scenario to better understand the impact of EndpointSlices. Consider a
Service with 10,000 endpoints, which would result in 100 EndpointSlice objects. If
one of the endpoints is removed (due to a scale-in event, for example), the API server
sends the affected EndpointSlice object to each node. Sending a single EndpointSlice
with 100 endpoints is much more efficient than sending a single Endpoints resource
with thousands of endpoints.

To summarize, the EndpointSlices resource improves the scalability of Kubernetes by
splitting a large number of endpoints into a set of EndpointSlice objects. If you are
running a platform that has Services with hundreds of endpoints, you might benefit
from the EndpointSlice improvements. Depending on your Kubernetes version, the
EndpointSlice functionality is opt-in. If you are running Kubernetes v1.18, you must
set a feature flag in kube-proxy to enable the use of EndpointSlice resources. Starting
with Kubernetes v1.19, the EndpointSlice functionality will be enabled by default.

Service Implementation Details
Until now, we’ve talked about Services, Endpoints, and what they provide to work‐
loads in a Kubernetes cluster. But how does Kubernetes implement Services? How
does it all work?

In this section, we will discuss the different approaches available when it comes to
realizing Services in Kubernetes. First, we will talk about the overall kube-proxy
architecture. Next, we will review the different kube-proxy data plane modes. Finally,
we will discuss alternatives to kube-proxy, such as CNI plug-ins that are capable of
taking over kube-proxy’s responsibilities.

Kube-proxy
Kube-proxy is an agent that runs on every cluster node. It is primarily responsible for
making Services available to the Pods running on the local node. It achieves this by
watching the API server for Services and Endpoints and programming the Linux net‐
working stack (using iptables, for example) to handle packets accordingly.

138 | Chapter 6: Service Routing

Historically, kube-proxy acted as a network proxy between Pods
running on the node and Services. This is where the kube-proxy
name came from. As the Kubernetes project evolved, however,
kube-proxy stopped being a proxy and became more of a node
agent or localized control plane.

Kube-proxy supports three modes of operation: userspace, iptables, and IPVS. The
userspace proxy mode is seldom used, since iptables and IPVS are better alternatives.
Thus, we will only cover the iptables and IPVS modes in the following sections of this
chapter.

Kube-proxy: iptables mode
The iptables mode is the default kube-proxy mode at the time of writing (Kubernetes
v1.18). It is safe to say that the iptables mode is the most prevalent across cluster
installations today.

In the iptables mode, kube-proxy leverages the network address translation (NAT)
features of iptables.

ClusterIP Services. To realize ClusterIP Services, kube-proxy programs the Linux ker‐
nel’s NAT table to perform Destination NAT (DNAT) on packets destined for Serv‐
ices. The DNAT rules replace the packet’s destination IP address with the IP address
of a Service endpoint (a Pod IP address). Once replaced, the network handles the
packet as if it was originally sent to the Pod.

To load balance traffic across multiple Service endpoints, kube-proxy uses multiple
iptables chains:

Services chain
Top-level chain that contains a rule for each Service. Each rule checks whether
the destination IP of the packet matches the ClusterIP of the Service. If it does,
the packet is sent to the Service-specific chain.

Service-specific chain
Each Service has its iptables chain. This chain contains a rule per Service end‐
point. Each rule uses the statistic iptables extension to select a target endpoint
randomly. Each endpoint has 1/n probability of being selected, where n is the
number of endpoints. Once selected, the packet is sent to the Service endpoint
chain.

Service endpoint chain
Each Service endpoint has an iptables chain that performs DNAT on the packet.

Kubernetes Services | 139

The following listing of iptables rules shows an example of a ClusterIP Service. The
Service is called nginx and has three endpoints (extraneous iptables rules have been
removed for brevity):

$ iptables --list --table nat
Chain KUBE-SERVICES (2 references)
target prot opt source destination
KUBE-MARK-MASQ tcp -- !10.244.0.0/16 10.97.85.96
 /* default/nginx: cluster IP */ tcp dpt:80
KUBE-SVC-4N57TFCL4MD7ZTDA tcp -- anywhere 10.97.85.96
 /* default/nginx: cluster IP */ tcp dpt:80
KUBE-NODEPORTS all -- anywhere anywhere
 /* kubernetes service nodeports; NOTE: this must be the last rule in
 this chain */ ADDRTYPE match dst-type LOCAL

Chain KUBE-SVC-4N57TFCL4MD7ZTDA (1 references)
target prot opt source destination
KUBE-SEP-VUJFIIOGYVVPH7Q4 all -- anywhere anywhere /* default/nginx: */
 statistic mode random probability 0.33333333349
KUBE-SEP-Y42457KCQHG7FFWI all -- anywhere anywhere /* default/nginx: */
 statistic mode random probability 0.50000000000
KUBE-SEP-UOUQBAIW4Z676WKH all -- anywhere anywhere /* default/nginx: */

Chain KUBE-SEP-UOUQBAIW4Z676WKH (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.244.0.8 anywhere /* default/nginx: */
DNAT tcp -- anywhere anywhere /* default/nginx: */
 tcp to:10.244.0.8:80

Chain KUBE-SEP-VUJFIIOGYVVPH7Q4 (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.244.0.108 anywhere /* default/nginx: */
DNAT tcp -- anywhere anywhere /* default/nginx: */
 tcp to:10.244.0.108:80

Chain KUBE-SEP-Y42457KCQHG7FFWI (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.244.0.6 anywhere /* default/nginx: */
DNAT tcp -- anywhere anywhere /* default/nginx: */
 tcp to:10.244.0.6:80

This is the top-level chain. It has rules for all the Services in the cluster. Notice
how the KUBE-SVC-4N57TFCL4MD7ZTDA rule specifies a destination IP of
10.97.85.96. This is the nginx Service’s ClusterIP.

This is the chain of the nginx Service. Notice how there is a rule for each Service
endpoint with a given probability of matching the rule.

140 | Chapter 6: Service Routing

This chain corresponds to one of the Service endpoints. (SEP stands for Service
endpoint.) The last rule in this chain is the one that performs DNAT to forward
the packet to the endpoint (or Pod).

NodePort and LoadBalancer Services. When it comes to NodePort and LoadBalancer
Services, kube-proxy configures iptables rules similar to those used for ClusterIP
Services. The main difference is that the rules match packets based on their destina‐
tion port number. If they match, the rule sends the packet to the Service-specific
chain where DNAT happens. The snippet below shows the iptables rules for a Node‐
Port Service called nginx listening on port 31767.

$ iptables --list --table nat
Chain KUBE-NODEPORTS (1 references)
target prot opt source destination
KUBE-MARK-MASQ tcp -- anywhere anywhere /* default/nginx: */
 tcp dpt:31767
KUBE-SVC-4N57TFCL4MD7ZTDA tcp -- anywhere anywhere /* default/nginx: */
 tcp dpt:31767

Kube-proxy programs iptables rules for NodePort Services in the KUBE-

NODEPORTS chain.

If the packet has tcp: 31767 as the destination port, it is sent to the Service-
specific chain. This chain is the Service-specific chain we saw in callout 2 in the
previous code snippet.

In addition to programming the iptables rules, kube-proxy opens the port assigned to
the NodePort Service and holds it open. Holding on to the port has no function from
a routing perspective. It merely prevents other processes from claiming it.

A key consideration to make when using NodePort and LoadBalancer Services is the
Service’s external traffic policy setting. The external traffic policy determines whether
the Service routes external traffic to node-local endpoints (externalTrafficPolicy:
Local) or cluster-wide endpoints (externalTrafficPolicy: Cluster). Each policy
has benefits and trade-offs, as discussed next.

When the policy is set to Local, the Service routes traffic to endpoints (Pods) running
on the node receiving the traffic. Routing to a local endpoint has two important bene‐
fits. First, there is no SNAT involved so the source IP is preserved, making it available
to the workload. And second, there is no additional network hop that you would
otherwise incur when forwarding traffic to another node. With that said, the Local
policy also has downsides. Mainly, traffic that reaches a node that lacks Service end‐
points is dropped. For this reason, the Local policy is usually combined with an
external load balancer that health-checks the nodes. When the node doesn’t have an
endpoint for the Service, the load balancer does not send traffic to the node, given

Kubernetes Services | 141

that the health check fails. Figure 6-6 illustrates this functionality. Another downside
of the Local policy is the potential for unbalanced application load. For example, if a
node has three Service endpoints, each endpoint receives 33% of the traffic. If another
node has a single endpoint, it receives 100% of the traffic. This imbalance can be miti‐
gated by spreading the Pods with anti-affinity rules or using a DaemonSet to schedule
the Pods.

Figure 6-6. LoadBalancer Service with Local external traffic policy. The external load
balancer runs health checks against the nodes. Any node that does not have a Service
endpoint is removed from the load balancer’s backend pool.

If you have a Service that handles a ton of external traffic, using the Local external
policy is usually the right choice. However, if you do not have a load balancer at your
disposal, you should use the Cluster external traffic policy. With this policy, traffic is
load balanced across all endpoints in the cluster, as shown in Figure 6-7. As you can
imagine, the load balancing results in the loss of the Source IP due to SNAT. It can
also result in an additional network hop. However, the Cluster policy does not drop
external traffic, regardless of where the endpoint Pods are running.

142 | Chapter 6: Service Routing

Figure 6-7. LoadBalancer Service with Cluster external traffic policy. Nodes that do not
have node-local endpoints forward the traffic to an endpoint on another node.

Connection tracking (conntrack). When the kernel’s networking stack performs DNAT
on a packet destined to a Service, it adds an entry to the connection tracking (conn‐
track) table. The table tracks the translation performed so that it is applied to any
additional packet destined to the same Service. The table is also used to remove the
NAT from response packets before sending them to the source Pod.

Each entry in the table maps the pre-NAT protocol, source IP, source port, destina‐
tion IP, and destination port onto the post-NAT protocol, source IP, source port, des‐
tination IP, and destination port. (Entries include additional information but are not
relevant in this context.) Figure 6-8 depicts a table entry that tracks the connection
from a Pod (192.168.0.9) to a Service (10.96.0.14). Notice how the destination IP
and port change after the DNAT.

Figure 6-8. Connection tracking (conntrack) table entry that tracks the connection from
a Pod (192.168.0.9) to a Service (10.96.0.14).

Kubernetes Services | 143

When the conntrack table fills up, the kernel starts dropping or
rejecting connections, which can be problematic for some applica‐
tions. If you are running workloads that handle many connections
and notice connection issues, you may need to tune the maximum
size of the conntrack table on your nodes. More importantly, you
should monitor the conntrack table utilization and alert when the
table is close to being full.

Masquerade. You may have noticed that we glossed over the KUBE-MARK-MASQ iptables
rules listed in the previous examples. These rules are in place for packets that arrive at
a node from outside the cluster. To route such packets properly, the Service fabric
needs to masquerade/source NAT the packets when forwarding them to another
node. Otherwise, response packets will contain the IP address of the Pod that handled
the request. The Pod IP in the packet would cause a connection issue, as the client
initiated the connection to the node and not the Pod.

Masquerading is also used to egress from the cluster. When Pods connect to external
services, the source IP must be the IP address of the node where the Pod is running
instead of the Pod IP. Otherwise, the network would drop response packets because
they would have the Pod IP as the destination IP address.

Performance concerns. The iptables mode has served and continues to serve Kuber‐
netes clusters well. With that said, you should be aware of some performance and
scalability limitations, as these can arise in large cluster deployments.

Given the structure of the iptables rules and how they work, whenever a Pod estab‐
lishes a new connection to a Service, the initial packet traverses the iptables rules until
it matches one of them. In the worst-case scenario, the packet needs to traverse the
entire collection of iptables rules.

The iptables mode suffers from O(n) time complexity when it processes packets. In
other words, the iptables mode scales linearly with the number of Services in the clus‐
ter. As the number of Services grows, the performance of connecting to Services gets
worse.

Perhaps more important, updates to the iptables rules also suffer at large scale.
Because iptables rules are not incremental, kube-proxy needs to write out the entire
table for every update. In some cases, these updates can even take minutes to com‐
plete, which risks sending traffic to stale endpoints. Furthermore, kube-proxy needs
to hold the iptables lock (/run/xtables.lock) during these updates, which can cause
contention with other processes that need to update the iptables rules, such as CNI
plug-ins.

144 | Chapter 6: Service Routing

Linear scaling is an undesirable quality of any system. With that said, based on tests
performed by the Kubernetes community, you should not notice any performance
degradation unless you are running clusters with tens of thousands of Services. If you
are operating at that scale, however, you might benefit from the IPVS mode in kube-
proxy, which we’ll discuss in the following section.

Rolling Updates and Service Reconciliation
An interesting problem with Services is unexpected request errors during application
rolling updates. While this issue is less common in development environments, it can
crop up in production clusters that are hosting many workloads.

The crux of the problem is the distributed nature of Kubernetes. As we’ve discussed in
this chapter, multiple components work together to make Services work in Kuber‐
netes, mainly the Endpoints controller and kube-proxy.

When a Pod is deleted, the following happens simultaneously:

• The kubelet initiates the Pod shutdown sequence. It sends a SIGTERM signal to
the workload and waits until it terminates. If the process continues to run after
the graceful shutdown period, the kubelet sends a SIGKILL to terminate the
workload forcefully.

• The Endpoints controller receives a Pod deletion watch event, which triggers the
removal of the Pod IP address from the Endpoints resource. Once the Endpoints
resource is updated, kube-proxy removes the IP address from the iptables rules
(or IPVS virtual service).

This is a classic distributed system race. Ideally, the Endpoints controller and kube-
proxy finish their updates before the Pod exits. However, ordering is not guaranteed,
given that these workflows are running concurrently. There is a chance that the work‐
load exits (and thus stops accepting requests) before kube-proxy on each node
removes the Pod from the list of active endpoints. When this happens, in-flight
requests fail because they get routed to a Pod that is no longer running.

To solve this, Kubernetes would have to wait until all kube-proxies finish updating
endpoints before stopping workloads, but this is not feasible. For example, how
would it handle the case of a node becoming unavailable? With that said, we’ve used
SIGTERM handlers and sleep pre-stop hooks to mitigate this issue in practice.

Kube-proxy: IP Virtual Server (IPVS) mode
IPVS is a load balancing technology built into the Linux kernel. Kubernetes added
support for IPVS in kube-proxy to address the scalability limitations and perfor‐
mance issues of the iptables mode.

Kubernetes Services | 145

https://oreil.ly/YJAu9

As discussed in the previous section, the iptables mode uses iptables rules to imple‐
ment Kubernetes Services. The iptables rules are stored in a list, which packets need
to traverse in its entirety in the worst-case scenario. IPVS does not suffer from this
problem because it was originally designed for load balancing use cases.

The IPVS implementation in the Linux kernel uses hash tables to find the destination
of a packet. Instead of traversing the list of Services when a new connection is estab‐
lished, IPVS immediately finds the destination Pod based on the Service IP address.

Let’s discuss how kube-proxy in IPVS mode handles each of the Kubernetes Service
types.

ClusterIP Services. When handling Services that have a ClusterIP, kube-proxy in ipvs
mode does a couple of things. First, it adds the IP address of the ClusterIP Service to
a dummy network interface on the node called kube-ipvs0, as shown in the follow‐
ing snippet:

$ ip address show dev kube-ipvs0
28: kube-ipvs0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
 link/ether 96:96:1b:36:32:de brd ff:ff:ff:ff:ff:ff
 inet 10.110.34.183/32 brd 10.110.34.183 scope global kube-ipvs0
 valid_lft forever preferred_lft forever
 inet 10.96.0.10/32 brd 10.96.0.10 scope global kube-ipvs0
 valid_lft forever preferred_lft forever
 inet 10.96.0.1/32 brd 10.96.0.1 scope global kube-ipvs0
 valid_lft forever preferred_lft forever

After updating the dummy interface, kube-proxy creates an IPVS virtual service with
the IP address of the ClusterIP Service. Finally, for each Service endpoint, it adds an
IPVS real server to the IPVS virtual service. The following snippet shows the IPVS
virtual service and real servers for a ClusterIP Service with three endpoints:

$ ipvsadm --list --numeric --tcp-service 10.110.34.183:80
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.110.34.183:80 rr
 -> 192.168.89.153:80 Masq 1 0 0
 -> 192.168.89.154:80 Masq 1 0 0
 -> 192.168.89.155:80 Masq 1 0 0

This is the IPVS virtual service. Its IP address is the IP address of the ClusterIP
Service.

This is one of the IPVS real servers. It corresponds to one of the Service end‐
points (Pods).

NodePort and LoadBalancer Services. For NodePort and LoadBalancer Services, kube-
proxy creates an IPVS virtual service for the Service’s cluster IP. Kube-proxy also

146 | Chapter 6: Service Routing

creates an IPVS virtual service for each of the node’s IP addresses and the loopback
address. For example, the following snippet shows a listing of the IPVS virtual serv‐
ices created for a NodePort Service listening on TCP port 30737:

ipvsadm --list --numeric
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.0.99.67:30737 rr
 -> 192.168.89.153:80 Masq 1 0 0
 -> 192.168.89.154:80 Masq 1 0 0
 -> 192.168.89.155:80 Masq 1 0 0
TCP 10.110.34.183:80 rr
 -> 192.168.89.153:80 Masq 1 0 0
 -> 192.168.89.154:80 Masq 1 0 0
 -> 192.168.89.155:80 Masq 1 0 0
TCP 127.0.0.1:30737 rr
 -> 192.168.89.153:80 Masq 1 0 0
 -> 192.168.89.154:80 Masq 1 0 0
 -> 192.168.89.155:80 Masq 1 0 0
TCP 192.168.246.64:30737 rr
 -> 192.168.89.153:80 Masq 1 0 0
 -> 192.168.89.154:80 Masq 1 0 0
 -> 192.168.89.155:80 Masq 1 0 0

IPVS virtual service listening on the node’s IP address.

IPVS virtual service listening on the Service’s cluster IP address.

IPVS virtual service listening on localhost.

IPVS virtual service listening on a secondary network interface on the node.

Running without kube-proxy
Historically, kube-proxy has been a staple in all Kubernetes deployments. It is a vital
component that makes Kubernetes Services work. As the community evolves, how‐
ever, we could start seeing Kubernetes deployments that do not have kube-proxy run‐
ning. How is this possible? What handles Services instead?

With the advent of extended Berkeley Packet Filters (eBPF), CNI plug-ins such as
Cilium and Calico can absorb kube-proxy’s responsibilities. Instead of handling Serv‐
ices with iptables or IPVS, the CNI plug-ins program Services right into the Pod net‐
working data plane. Using eBPF improves the performance and scalability of Services
in Kubernetes, given that the eBPF implementation uses hash tables for endpoint
lookups. It also improves Service update processing, as it can handle individual Ser‐
vice updates efficiently.

Kubernetes Services | 147

https://oreil.ly/sWoh5
https://oreil.ly/0jrKG

Removing the need for kube-proxy and optimizing Service routing is a worthy feat,
especially for those operating at scale. However, it is still early days when it comes to
running these solutions in production. For example, the Cilium implementation
requires newer kernel versions to support a kube-proxy-less deployment (at the time
of writing, the latest Cilium version is v1.8). Similarly, the Calico team discourages
the use of eBPF in production because it is still in tech preview. (At the time of writ‐
ing, the latest calico version is v3.15.1.) Over time, we expect to see kube-proxy
replacements become more common. Cilium even supports running its proxy
replacement capabilities alongside other CNI plug-ins (referred to as CNI chaining).

Service Discovery
Service discovery provides a mechanism for applications to discover services that are
available on the network. While not a routing concern, service discovery is intimately
related to Kubernetes Services.

Platform teams may wonder whether they need to introduce a dedicated service dis‐
covery system to a cluster, such as Consul. While possible, it is typically not neces‐
sary, as Kubernetes offers service discovery to all workloads running in the cluster. In
this section, we will discuss the different service discovery mechanisms available in
Kubernetes: DNS-based service discovery, API-based service discovery, and environ‐
ment variable-based service discovery.

Using DNS
Kubernetes provides service discovery over DNS to workloads running inside the
cluster. Conformant Kubernetes deployments run a DNS server that integrates with
the Kubernetes API. The most common DNS server in use today is CoreDNS, an
open source, extensible DNS server.

CoreDNS watches resources in the Kubernetes API server. For each Kubernetes Ser‐
vice, CoreDNS creates a DNS record with the following format: <service-

name>.<namespace-name>.svc.cluster.local. For example, a Service called nginx
in the default Namespace gets the DNS record nginx.default.svc.cluster.local.
But how can Pods use these DNS records?

To enable DNS-based service discovery, Kubernetes configures CoreDNS as the DNS
resolver for Pods. When setting up a Pod’s sandbox, the kubelet writes an /etc/
resolv.conf that specifies CoreDNS as the nameserver and injects the config file into
the container. The /etc/resolv.conf file of a Pod looks something like this:

$ cat /etc/resolv.conf
search default.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10
options ndots:5

148 | Chapter 6: Service Routing

https://oreil.ly/jZ-2r
https://coredns.io

Given this configuration, Pods send DNS queries to CoreDNS whenever they try to
connect to a Service by name.

Another interesting trick in the resolver configuration is the use of ndots and search
to simplify DNS queries. When a Pod wants to reach a Service that exists in the same
Namespace, it can use the Service’s name as the domain name instead of the fully
qualified domain name (nginx.default.svc.cluster.local):

$ nslookup nginx
Server: 10.96.0.10
Address: 10.96.0.10#53

Name: nginx.default.svc.cluster.local
Address: 10.110.34.183

Similarly, when a Pod wants to reach a Service in another Namespace, it can do so by
appending the Namespace name to the Service name:

$ nslookup nginx.default
Server: 10.96.0.10
Address: 10.96.0.10#53

Name: nginx.default.svc.cluster.local
Address: 10.110.34.183

One thing to consider with the ndots configuration is its impact on applications that
communicate with services outside of the cluster. The ndots parameter specifies how
many dots must appear in a domain name for it to be considered an absolute or fully
qualified name. When resolving a name that’s not fully qualified, the system attempts
various lookups using the items in the search parameter, as seen in the following
example. Thus, when applications resolve cluster-external names that are not fully
qualified, the resolver consults the cluster DNS server with multiple futile requests
before attempting to resolve the name as an absolute name. To avoid this issue, you
can use fully qualified domain names in your applications by adding a . at the end of
the name. Alternatively, you can tune the DNS configuration of the Pod via the
dnsConfig field in the Pod’s specification.

The following snippet shows the impact of the ndots configuration on Pods that
resolve external names. Notice how resolving a name that has less dots than the con‐
figured ndots results in multiple DNS queries, while resolving an absolute name
results in a single query:

$ nslookup -type=A google.com -debug | grep QUESTIONS -A1
 QUESTIONS:
google.com.default.svc.cluster.local, type = A, class = IN
--
 QUESTIONS:
google.com.svc.cluster.local, type = A, class = IN
--

Kubernetes Services | 149

 QUESTIONS:
google.com.cluster.local, type = A, class = IN
--
 QUESTIONS:
google.com, type = A, class = IN

$ nslookup -type=A -debug google.com. | grep QUESTIONS -A1
 QUESTIONS:
google.com, type = A, class = IN

Attempt to resolve a name with less than 5 dots (not fully qualified). The resolver
performs multiple lookups, one per item in the search field of /etc/resolv.conf.

Attempt to resolve a fully qualified name. The resolver performs a single lookup.

Overall, service discovery over DNS is extremely useful, as it lowers the barrier for
applications to interact with Kubernetes Services.

Using the Kubernetes API
Another way to discover Services in Kubernetes is by using the Kubernetes API. The
community maintains various Kubernetes client libraries in different languages,
including Go, Java, Python, and others. Some application frameworks, such as Spring,
also support service discovery through the Kubernetes API.

Using the Kubernetes API for service discovery can be useful in specific scenarios.
For example, if your applications need to be aware of Service endpoint changes as
soon as they happen, they would benefit from watching the API.

The main downside of performing service discovery through the Kubernetes API is
that you tightly couple the application to the underlying platform. Ideally, applica‐
tions should be unaware of the platform. If you do choose to use the Kubernetes API
for service discovery, consider building an interface that abstracts the Kubernetes
details away from your business logic.

Using environment variables
Kubernetes injects environment variables into Pods to facilitate service discovery. For
each Service, Kubernetes sets multiple environment variables according to the Service
definition. The environment variables for an nginx ClusterIP Service listening on
port 80 look as follows:

NGINX_PORT_80_TCP_PORT=80
NGINX_SERVICE_HOST=10.110.34.183
NGINX_PORT=tcp://10.110.34.183:80
NGINX_PORT_80_TCP=tcp://10.110.34.183:80
NGINX_PORT_80_TCP_PROTO=tcp
NGINX_SERVICE_PORT=80
NGINX_PORT_80_TCP_ADDR=10.110.34.183

150 | Chapter 6: Service Routing

The downside to this approach is that environment variables cannot be updated
without restarting the Pod. Thus, Services must be in place before the Pod starts up.

DNS Service Performance
As mentioned in the previous section, offering DNS-based service discovery to work‐
loads on your platform is crucial. As the size of your cluster and number of applica‐
tions grows, the DNS service can become a bottleneck. In this section, we will discuss
techniques you can use to provide a performant DNS service.

DNS cache on each node
The Kubernetes community maintains a DNS cache add-on called NodeLocal
DNSCache. The add-on runs a DNS cache on each node to address multiple prob‐
lems. First, the cache reduces the latency of DNS lookups, given that workloads get
their answers from the local cache (assuming a cache hit) instead of reaching out to
the DNS server (potentially on another node). Second, the load on the CoreDNS
servers goes down, as workloads are leveraging the cache most of the time. Finally, in
the case of a cache miss, the local DNS cache upgrades the DNS query to TCP when
reaching out to the central DNS service. Using TCP instead of UDP improves the
reliability of the DNS query.

The DNS cache runs as a DaemonSet on the cluster. Each replica of the DNS cache
intercepts the DNS queries that originate from their node. There’s no need to change
application code or configuration to use the cache. The node-level architecture of the
NodeLocal DNSCache add-on is depicted in Figure 6-9.

Figure 6-9. Node-level architecture of the NodeLocal DNSCache add-on. The DNS cache
intercepts DNS queries and responds immediately if there’s a cache hit. In the case of a
cache miss, the DNS cache forwards the query to the cluster DNS service.

Kubernetes Services | 151

https://oreil.ly/lQdTH
https://oreil.ly/lQdTH

Auto-scaling the DNS server deployment
In addition to running the node-local DNS cache in your cluster, you can automati‐
cally scale the DNS Deployment according to the size of the cluster. Note that this
strategy does not leverage the Horizontal Pod Autoscaler. Instead, it uses the cluster
Proportional Autoscaler, which scales workloads based on the number of nodes in
the cluster.

The Cluster Proportional Autoscaler runs as a Pod in the cluster. It has a configura‐
tion flag to set the workload that needs autoscaling. To autoscale DNS, you must set
the target flag to the CoreDNS (or kube-dns) Deployment. Once running, the
autoscaler polls the API server every 10 seconds (by default) to get the number of
nodes and CPU cores in the cluster. Then, it adjusts the number of replicas in the
CoreDNS Deployment if necessary. The desired number of replicas is governed by a
configurable replicas-to-nodes ratio or replicas-to-cores ratio. The ratios to use
depend on your workloads and how DNS-intensive they are.

In most cases, using node-local DNS cache is sufficient to offer a reliable DNS ser‐
vice. However, autoscaling DNS is another strategy you can use when autoscaling
clusters with a wide-enough range of minimum and maximum nodes.

Ingress
As we’ve discussed in Chapter 5, workloads running in Kubernetes are typically not
accessible from outside the cluster. This is not a problem if your applications do not
have external clients. Batch workloads are a great example of such applications. Real‐
istically, however, most Kubernetes deployments host web services that do have end
users.

Ingress is an approach to exposing services running in Kubernetes to clients outside
of the cluster. Even though Kubernetes does not fulfill the Ingress API out of the box,
it is a staple in any Kubernetes-based platform. It is not uncommon for off-the-shelf
Kubernetes applications and cluster add-ons to expect that an Ingress controller is
running in the cluster. Moreover, your developers will need it to be able to run their
applications successfully in Kubernetes.

This section aims to guide you through the considerations you must make when
implementing Ingress in your platform. We will review the Ingress API, the most
common ingress traffic patterns that you will encounter, and the crucial role of
Ingress controllers in a Kubernetes-based platform. We will also discuss different
ways to deploy Ingress controllers and their trade-offs. Finally, we will address com‐
mon challenges you can run into and explore helpful integrations with other tools in
the ecosystem.

152 | Chapter 6: Service Routing

https://oreil.ly/432we
https://oreil.ly/432we

The Case for Ingress
Kubernetes Services already provide ways to route traffic to Pods, so why would you
need an additional strategy to achieve the same thing? As much as we are fans of
keeping platforms simple, the reality is that Services have important limitations and
downsides:

Limited routing capabilities
Services route traffic according to the destination IP and port of incoming
requests. This can be useful for small and relatively simple applications, but it
quickly breaks down for more substantial, microservices-based applications.
These kinds of applications require smarter routing features and other advanced
capabilities.

Cost
If you are running in a cloud environment, each LoadBalancer Service in your
cluster creates an external load balancer, such as an ELB in the case of AWS. Run‐
ning a separate load balancer for each Service in your platform can quickly
become cost-prohibitive.

Ingress addresses both these limitations. Instead of being limited to load balancing at
layer 3/4 of the OSI model, Ingress provides load balancing and routing capabilities at
layer 7. In other words, Ingress operates at the application layer, which results in
more advanced routing features.

Another benefit of Ingress is that it removes the need to have multiple load balancers
or entry points into the platform. Because of the advanced routing capabilities avail‐
able in Ingress, such as the ability to route HTTP requests based on the Host header,
you can route all the service traffic to a single entry point and let the Ingress control‐
ler take care of demultiplexing the traffic. This dramatically reduces the cost of bring‐
ing traffic into your platform.

The ability to have a single ingress point into the platform also reduces the complex‐
ity of noncloud deployments. Instead of potentially having to manage multiple exter‐
nal load balancers with a multitude of NodePort Services, you can operate a single
external load balancer that routes traffic to the Ingress controllers.

Even though Ingress solves most of the downsides related to Kubernetes Services, the
latter are still needed. Ingress controllers themselves run inside the platform and thus
need to be exposed to clients that exist outside. And you can use a Service (either a
NodePort or LoadBalancer) to do so. Besides, most Ingress controllers shine when it
comes to load balancing HTTP traffic. If you want to be able to host applications that
use other protocols, you might have to use Services alongside Ingress, depending on
the capabilities of your Ingress controller.

Ingress | 153

The Ingress API
The Ingress API enables application teams to expose their services and configure
request routing according to their needs. Because of Ingress’s focus on HTTP routing,
the Ingress API resource provides different ways to route traffic according to the
properties of incoming HTTP requests.

A common routing technique is routing traffic according to the Host header of
HTTP requests. For example, given the following Ingress configuration, HTTP
requests with the Host header set to bookhotels.com are routed to one service, while
requests destined to bookflights.com are routed to another:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: hotels-ingress
spec:
 rules:
 - host: bookhotels.com
 http:
 paths:
 - path: /
 backend:
 serviceName: hotels
 servicePort: 80

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: flights-ingress
spec:
 rules:
 - host: bookflights.com
 http:
 paths:
 - path: /
 backend:
 serviceName: flights
 servicePort: 80

Hosting applications on specific subdomains of a cluster-wide domain name is a
common approach we encounter in Kubernetes. In this case, you assign a domain
name to the platform, and each application gets a subdomain. Keeping with the travel
theme in the previous example, an example of subdomain-based routing for a travel
booking application could have hotels.cluster1.useast.example.com and
flights.cluster1.useast.example.com. Subdomain-based routing is one of the
best strategies you can employ. It also enables other interesting use cases, such as
hosting tenants of a software-as-a-service (SaaS) application on tenant-specific

154 | Chapter 6: Service Routing

domain names (tenantA.example.com and tenantB.example.com, for example). We
will further discuss how to implement subdomain-based routing in a later section.

Ingress Configuration Collisions and How to Avoid Them
The Ingress API is prone to configuration collisions in multiteam or multitenant clus‐
ters. The primary example is different teams trying to use the same domain name to
expose their applications. Consider a scenario where an application team creates an
Ingress resource with the host set to app.bearcanoe.com. What happens when
another team creates an Ingress with the same host? The Ingress API does not specify
how to handle this scenario. Instead, it is up to the Ingress controller to decide what
to do. Some controllers merge the configuration when possible, while others reject the
new Ingress resource and log an error message. In any case, overlapping Ingress
resources can result in surprising behavior, and even outages!

Usually, we tackle this problem in one of two ways. The first is using an admission
controller that validates the incoming Ingress resource and ensures the hostname is
unique across the cluster. We’ve built many of these admission controllers over time
while working in the field. These days, we use the Open Policy Agent (OPA) to handle
this concern. The OPA community even maintains a policy for this use case.

The Contour Ingress controller approaches this with a different solution. The
HTTPProxy Custom Resource handles this use case with root HTTPProxy resources
and inclusion. In short, a root HTTPProxy specifies the host and then includes other
HTTPProxy resources that are hosted under that domain. The idea is that the opera‐
tor manages root HTTPProxy resources and assigns them to specific teams. For
example, the operator would create a root HTTPProxy with the host app1.bearca
noe.com and include all HTTPProxy resources in the app1 Namespace. See Contour’s
documentation for more details.

The Ingress API supports features beyond host-based routing. Through the evolution
of the Kubernetes project, Ingress controllers extended the Ingress API. Unfortu‐
nately, these extensions were made using annotations instead of evolving the Ingress
resource. The problem with using annotations is that they don’t have a schema. This
can result in a poor user experience, as there is no way for the API server to catch
misconfigurations. To address this issue, some Ingress controllers provide Custom
Resource Definitions (CRDs). These resources have well-defined APIs offering fea‐
tures otherwise not available through Ingress. Contour, for example, provides an
HTTPProxy custom resource. While leveraging these CRDs gives you access to a
broader array of features, you give up the ability to swap Ingress controllers if neces‐
sary. In other words, you “lock” yourself into a specific controller.

Ingress | 155

https://oreil.ly/wnN0V
https://oreil.ly/xOzBF
https://oreil.ly/xOzBF

Ingress Controllers and How They Work
If you can recall the first time you played with Kubernetes, you probably ran into a
puzzling scenario with Ingress. You downloaded a bunch of sample YAML files that
included a Deployment and an Ingress and applied them to your cluster. You noticed
that the Pod came up just fine, but you were not able to reach it. The Ingress resource
was essentially doing nothing. You probably wondered, What’s going on here?

Ingress is one of those APIs in Kubernetes that are left to the platform builder to
implement. In other words, Kubernetes exposes the Ingress interface and expects
another component to provide the implementation. This component is commonly
called an Ingress controller.

An Ingress controller is a platform component that runs in the cluster. The controller
is responsible for watching the Ingress API and acting according to the configuration
defined in Ingress resources. In most implementations, the Ingress controller is
paired with a reverse proxy, such as NGINX or Envoy. This two-component architec‐
ture is comparable to other software-defined networking systems, in that the control‐
ler is the control plane of the Ingress controller, while the proxy is the data plane
component. Figure 6-10 shows the control plane and data plane of an Ingress
controller.

Figure 6-10. The Ingress controller watches various resources in the API server and con‐
figures the proxy accordingly. The proxy handles incoming traffic and forwards it to
Pods, according to the Ingress configuration.

The control plane of the Ingress controller connects to the Kubernetes API and
watches a variety of resources, such as Ingress, Services, Endpoints, and others.

156 | Chapter 6: Service Routing

Whenever these resources change, the controller receives a watch notification and
configures the data plane to act according to the desired state declared in the Kuber‐
netes API.

The data plane handles the routing and load balancing of network traffic. As men‐
tioned before, the data plane is usually implemented with an off-the-shelf proxy.

Because the Ingress API builds on top of the Service abstraction, Ingress controllers
have a choice between forwarding traffic through Services or sending it directly to
Pods. Most Ingress controllers opt for the latter. They don’t use the Service resource,
other than to validate that the Service referenced in the Ingress resource exists. When
it comes to routing, most controllers forward traffic to the Pod IP addresses listed in
the corresponding Endpoints object. Routing traffic directly to the Pod bypasses the
Service layer, which reduces latency and adds different load balancing strategies.

Ingress Traffic Patterns
A great aspect of Ingress is that each application gets to configure routing according
to its needs. Typically, each application has different requirements when it comes to
handling incoming traffic. Some might require TLS termination at the edge. Some
might want to handle TLS themselves, while others might not support TLS at all
(hopefully, this is not the case).

In this section, we will explore the common ingress traffic patterns that we have
encountered. This should give you an idea of what Ingress can provide to your devel‐
opers and how Ingress can fit into your platform offering.

HTTP proxying
HTTP proxying is the bread-and-butter of Ingress. This pattern involves exposing
one or more HTTP-based services and routing traffic according to the HTTP
requests’ properties. We have already discussed routing based on the Host header.
Other properties that can influence routing decisions include the URL path, the
request method, request headers, and more, depending on the Ingress controller.

The following Ingress resource exposes the app1 Service at app1.example.com. Any
incoming request that has a matching Host HTTP header is sent to an app1 Pod.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: app1
spec:
 rules:
 - host: app1.example.com
 http:
 paths:
 - path: /

Ingress | 157

 backend:
 serviceName: app1
 servicePort: 80

Once applied, the preceding configuration results in the data plane flow depicted in
Figure 6-11.

Figure 6-11. Path of an HTTP request from the client to the target Pod through the
Ingress controller.

HTTP proxying with TLS
Supporting TLS encryption is table-stakes for Ingress controllers. This ingress traffic
pattern is the same as HTTP proxying from a routing perspective. However, clients
communicate with the Ingress controller over a secure TLS connection instead of
plain-text HTTP.

The following example shows an Ingress resource that exposes app1 with TLS. The
controller gets the TLS serving certificate and key from the referenced Kubernetes
Secret.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: app1
spec:
 tls:
 - hosts:
 - app1.example.com
 secretName: app1-tls-cert
 rules:
 - host: app1.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: app1
 servicePort: 443

Ingress controllers support different configurations when it comes to the connection
between the Ingress controller and the backend service. The connection between the
external client and the controller is secure (TLS), while the connection between
the Ingress controller and the backend application does not have to be. Whether the

158 | Chapter 6: Service Routing

connection between the controller and the backend is secure depends on whether the
application is listening for TLS connections. By default, most Ingress controllers ter‐
minate TLS and forward requests over an unencrypted connection, as depicted in
Figure 6-12.

Figure 6-12. Ingress controller handling an HTTPS request by terminating TLS and for‐
warding the request to the backend Pod over an unencrypted connection.

In the case where a secure connection to the backend is required, the Ingress control‐
ler terminates the TLS connection at the edge and establishes a new TLS connection
with the backend (illustrated in Figure 6-13). The reestablishment of the TLS connec‐
tion is sometimes not appropriate for certain applications, such as those that need to
perform the TLS handshake with their clients. In these situations, TLS passthrough,
which we will discuss further later, is a viable alternative.

Figure 6-13. Ingress controller terminating TLS and establishing a new TLS connection
with the backend Pod when handling HTTPS requests.

Layer 3/4 proxying
Even though the Ingress API’s primary focus is layer 7 proxying (HTTP traffic), some
Ingress controllers can proxy traffic at layer 3/4 (TCP/UDP traffic). This can be use‐
ful if you need to expose applications that do not speak HTTP. When evaluating
Ingress controllers, you must keep this in mind, as support for layer 3/4 proxying
varies across controllers.

The main challenge with proxying TCP or UDP services is that Ingress controllers
listen on a limited number of ports, usually 80 and 443. As you can imagine, exposing

Ingress | 159

different TCP or UDP services on the same port is impossible without a strategy to
distinguish the traffic. Ingress controllers solve this problem in different ways. Some,
such as Contour, support proxying of only TLS encrypted TCP connections that use
the Server Name Indication (SNI) TLS extension. The reason for this is that Contour
needs to know where the traffic is headed. And when using SNI, the target domain
name is available (unencrypted) in the ClientHello message of the TLS handshake.
Because TLS and SNI are dependent on TCP, Contour does not support UDP
proxying.

The following is a sample HTTPProxy Custom Resource, which is supported by Con‐
tour. Layer 3/4 proxying is one of those cases where a Custom Resource provides a
better experience than the Ingress API:

apiVersion: projectcontour.io/v1
kind: HTTPProxy
metadata:
 name: tcp-proxy
spec:
 virtualhost:
 fqdn: tcp.bearcanoe.com
 tls:
 secretName: secret
 tcpproxy:
 services:
 - name: tcp-app
 port: 8080

With the preceding configuration, Contour reads the server name in the SNI exten‐
sion and proxies the traffic to the backend TCP service. Figure 6-14 illustrates this
capability.

Figure 6-14. The Ingress controller inspects the SNI header to determine the backend,
terminates the TLS connection, and forwards the TCP traffic to the Pod.

Other Ingress controllers expose configuration parameters that you can use to tell the
underlying proxy to bind additional ports for layer 3/4 proxying. You then map these
additional ports to specific services running in the cluster. This is the approach that
the community-led NGINX Ingress controller takes for layer 3/4 proxying.

160 | Chapter 6: Service Routing

A common use case of layer 3/4 proxying is TLS passthrough. TLS passthrough
involves an application that exposes a TLS endpoint and the need to handle the TLS
handshake directly with the client. As we discussed in the “HTTP proxying with TLS”
pattern, the Ingress controller usually terminates the client-facing TLS connection.
The TLS termination is necessary so that the Ingress controller can inspect the HTTP
request, which would otherwise be encrypted. However, with TLS passthrough, the
Ingress controller does not terminate TLS and instead proxies the secure connection
to a backend Pod. Figure 6-15 depicts TLS passthrough.

Figure 6-15. When TLS passthrough is enabled, the Ingress controller inspects the SNI
header to determine the backend and forwards the TLS connection accordingly.

Choosing an Ingress Controller
There are several Ingress controllers that you can choose from. In our experience, the
NGINX Ingress controller is one of the most commonly used. However, that does not
mean it is best for your application platform. Other choices include Contour, HAP‐
roxy, Traefik, and more. In keeping with this book’s theme, our goal is not to tell you
which to use. Instead, we aim to equip you with the information you need to make
this decision. We will also highlight significant trade-offs where applicable.

Stepping back a bit, the primary goal of an Ingress controller is to handle application
traffic. Thus, it is natural to turn to the applications as the primary factor when select‐
ing an Ingress controller. Specifically, what are the features and requirements that
your applications need? The following is a list of criteria that you can use to evaluate
Ingress controllers from an application support perspective:

• Do applications expose HTTPS endpoints? Do they need to handle the TLS
handshake with the client directly, or is it okay to terminate TLS at the edge?

• What SSL ciphers do the applications use?
• Do applications need session affinity or sticky sessions?

Ingress | 161

• Do applications need advanced request routing capabilities, such as HTTP
header-based routing, cookie-based routing, HTTP method-based routing, and
others?

• Do applications have different load balancing algorithm requirements, such as
round-robin, weighted least request, or random?

• Do applications need support for Cross-Origin Resource Sharing (CORS)?
• Do applications offload authentication concerns to an external system? Some

Ingress controllers provide authentication features that you can leverage to pro‐
vide a common authentication mechanism across applications.

• Are there any applications that need to expose TCP or UDP endpoints?
• Does the application need the ability to rate-limit incoming traffic?

In addition to application requirements, another crucial consideration to make is
your organization’s experience with the data plane technology. If you are already inti‐
mately familiar with a specific proxy, it is usually a safe bet to start there. You will
already have a good understanding of how it works, and more importantly, you will
know its limitations and how to troubleshoot it.

Supportability is another critical factor to consider. Ingress is an essential component
of your platform. It exists right in the middle of your customers and the services they
are trying to reach. When things go wrong with your Ingress controller, you want to
have access to the support you need when facing an outage.

Finally, remember that you can run multiple Ingress controllers in your platform
using Ingress classes. Doing so increases the complexity and management of your
platform, but it is necessary in some cases. The higher the adoption of your platform
and the more production workloads you are running, the more features they will
demand from your Ingress tier. It is entirely possible that you will end up having a set
of requirements that cannot be fulfilled with a single Ingress controller.

Ingress Controller Deployment Considerations
Regardless of the Ingress controller, there is a set of considerations that you should
keep in mind when it comes to deploying and operating the Ingress tier. Some of
these considerations can also have an impact on the applications running on the
platform.

Dedicated Ingress nodes
Dedicating (or reserving) a set of nodes to run the Ingress controller and thus serve
as the cluster’s “edge” is a pattern that we have found very successful. Figure 6-16
illustrates this deployment pattern. At first, it might seem wasteful to use dedicated
ingress nodes. However, our philosophy is, if you can afford to run dedicated control

162 | Chapter 6: Service Routing

plane nodes, you can probably afford to dedicate nodes to the layer that is in the criti‐
cal path for all workloads on the cluster. Using a dedicated node pool for Ingress
brings considerable benefits.

Figure 6-16. Dedicated ingress nodes are reserved for the Ingress controller. The ingress
nodes serve as the “edge” of the cluster or the Ingress tier.

The primary benefit is resource isolation. Even though Kubernetes has support for
configuring resource requests and limits, we have found that platform teams can
struggle with getting those parameters right. This is especially true when the platform
team is at the beginning of their Kubernetes journey and is unaware of the implemen‐
tation details that underpin resource management (e.g., the Completely Fair Schedu‐
ler, cgroups). Furthermore, at the time of writing, Kubernetes does not support
resource isolation for network I/O or file descriptors, making it challenging to guar‐
antee the fair sharing of these resources.

Another reason for running Ingress controllers on dedicated nodes is compliance. We
have encountered that a large number of organizations have pre-established firewall
rules and other security practices that can be incompatible with Ingress controllers.
Dedicated ingress nodes are useful in these environments, as it is typically easier to
get exceptions for a subset of cluster nodes instead of all of them.

Finally, limiting the number of nodes that run the Ingress controller can be helpful in
bare-metal or on-premises installations. In such deployments, the Ingress tier is fron‐
ted by a hardware load balancer. In most cases, these are traditional load balancers

Ingress | 163

that lack APIs and must be statically configured to route traffic to a specific set of
backends. Having a small number of ingress nodes eases the configuration and man‐
agement of these external load balancers.

Overall, dedicating nodes to Ingress can help with performance, compliance, and
managing external load balancers. The best approach to implement dedicated ingress
nodes is to label and taint the ingress nodes. Then, deploy the Ingress controller as a
DaemonSet that (1) tolerates the taint, and (2) has a node selector that targets the
ingress nodes. With this approach, ingress node failures must be accounted for, as
Ingress controllers will not run on nodes other than those reserved for Ingress. In the
ideal case, failed nodes are automatically replaced with new nodes that can continue
handling Ingress traffic.

Binding to the host network
To optimize the ingress traffic path, you can bind your Ingress controller to the
underlying host’s network. By doing so, incoming requests bypass the Kubernetes
Service fabric and reach the Ingress controller directly. When enabling host network‐
ing, ensure that the Ingress controller’s DNS policy is set to ClusterFirstWithHost
Net. The following snippet shows the host networking and DNS policy settings in a
Pod template:

spec:
 containers:
 - image: nginx
 name: nginx
 dnsPolicy: ClusterFirstWithHostNet
 hostNetwork: true

While running the Ingress controller directly on the host network can increase per‐
formance, you must keep in mind that doing so removes the network namespace
boundary between the Ingress controller and the node. In other words, the Ingress
controller has full access to all network interfaces and network services available on
the host. This has implications on the Ingress controller’s threat model. Namely, it
lowers the bar for an adversary to perform lateral movement in the case of a data
plane proxy vulnerability. Additionally, attaching to the host network is a privileged
operation. Thus, the Ingress controller needs elevated privileges or exceptions to run
as a privileged workload.

Even then, we’ve found that binding to the host network is worth the trade-off and is
usually the best way to expose the platform’s Ingress controllers. The ingress traffic
arrives directly at the controller’s gate, instead of traversing the Service stack (which
can be suboptimal, as discussed in “Kubernetes Services” on page 128).

164 | Chapter 6: Service Routing

Ingress controllers and external traffic policy
Unless configured properly, using a Kubernetes Service to expose the Ingress control‐
ler impacts the performance of the Ingress data plane.

If you recall from “Kubernetes Services” on page 128, a Service’s external traffic policy
determines how to handle traffic that’s coming from outside the cluster. If you are
using a NodePort or LoadBalancer Service to expose the Ingress controller, ensure
that you set the external traffic policy to Local.

Using the Local policy avoids unnecessary network hops, as the external traffic rea‐
ches the local Ingress controller instead of hopping to another node. Furthermore,
the Local policy doesn’t use SNAT, which means the client IP address is visible to
applications handling the requests.

Spread Ingress controllers across failure domains
To ensure the high-availability of your Ingress controller fleet, use Pod anti-affinity
rules to spread the Ingress controllers across different failure domains.

DNS and Its Role in Ingress
As we have discussed in this chapter, applications running on the platform share the
ingress data plane, and thus share that single entry point into the platform’s network.
As requests come in, the Ingress controller’s primary responsibility is to disambiguate
traffic and route it according to the Ingress configuration.

One of the primary ways to determine the destination of a request is by the target
hostname (the Host header in the case of HTTP or SNI in the case of TCP), turning
DNS into an essential player of your Ingress implementation. We will discuss two of
the main approaches that are available when it comes to DNS and Ingress.

Wildcard DNS record
One of the most successful patterns we continuously use is to assign a domain name
to the environment and slice it up by assigning subdomains to different applications.
We sometimes call this “subdomain-based routing.” The implementation of this pat‐
tern involves creating a wildcard DNS record (e.g., *.bearcanoe.com) that resolves to
the Ingress tier of the cluster. Typically, this is a load balancer that is in front of the
Ingress controllers.

There are several benefits to using a wildcard DNS record for your Ingress
controllers:

• Applications can use any path under their subdomain, including the root path
(/). Developers don’t have to spend engineering hours to make their apps work

Ingress | 165

on subpaths. In some cases, applications expect to be hosted at the root path and
do not work otherwise.

• The DNS implementation is relatively straightforward. There is no integration
necessary between Kubernetes and your DNS provider.

• The single wildcard DNS record removes DNS propagation concerns that could
arise when using different domain names for each application.

Kubernetes and DNS integration
An alternative to using a wildcard DNS record is to integrate your platform with your
DNS provider. The Kubernetes community maintains a controller that offers this
integration called external-dns. If you are using a DNS provider that is supported,
consider using this controller to automate the creation of domain names.

As you might expect from a Kubernetes controller, external-dns continuously recon‐
ciles the DNS records in your upstream DNS provider and the configuration defined
in Ingress resources. In other words, external-dns creates, updates, and deletes DNS
records according to changes that happen in the Ingress API. External-dns needs two
pieces of information to configure the DNS records, both of which are part of the
Ingress resource: the desired hostname, which is in the Ingress specification, and the
target IP address, which is available in the status field of the Ingress resource.

Integrating the platform with your DNS provider can be useful if you need to support
multiple domain names. The controller takes care of automatically creating DNS
records as needed. However, it is important to keep the following trade-offs in mind:

• You have to deploy an additional component (external-dns) into your cluster. An
additional add-on brings about more complexity into your deployments, given
that you have to operate, maintain, monitor, version, and upgrade one more
component in your platform.

• If external-dns does not support your DNS provider, you have to develop your
own controller. Building and maintaining a controller requires engineering effort
that could be spent on higher-value efforts. In these situations, it is best to simply
implement a wildcard DNS record.

Handling TLS Certificates
Ingress controllers need certificates and their corresponding private keys to serve
applications over TLS. Depending on your Ingress strategy, managing certificates can
be cumbersome. If your cluster hosts a single domain name and implements
subdomain-based routing, you can use a single wildcard TLS certificate. In some
cases, however, clusters host applications across a variety of domains, making it chal‐
lenging to manage certificates efficiently. Furthermore, your security team might
frown upon the usage of wildcard certificates. In any case, the Kubernetes community

166 | Chapter 6: Service Routing

https://github.com/kubernetes-sigs/external-dns

has rallied around a certificate management add-on that eases the minting and man‐
agement of certificates. The add-on is aptly called cert-manager.

Cert-manager is a controller that runs in your cluster. It installs a set of CRDs that
enable declarative management of Certificate Authorities (CAs) and Certificates via
the Kubernetes API. More importantly, it supports different certificate issuers, includ‐
ing ACME-based CAs, HashiCorp Vault, Venafi, etc. It also offers an extension point
to implement custom issuers, when necessary.

The certificate minting features of cert-manager revolve around issuers and certifi‐
cates. Cert-manager has two issuer Custom Resources. The Issuer resource represents
a CA that signs certificates in a specific Kubernetes Namespace. If you want to issue
certificates across all Namespaces, you can use the ClusterIssuer resource. The follow‐
ing is a sample ClusterIssuer definition that uses a private key stored in a Kubernetes
Secret named platform-ca-key-pair:

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: prod-ca-issuer
spec:
 ca:
 secretName: platform-ca-key-pair

The great thing about cert-manager is that it integrates with the Ingress API to auto‐
matically mint certificates for Ingress resources. For example, given the following
Ingress object, cert-manager automatically creates a certificate key pair suitable for
TLS:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: prod-ca-issuer
 name: bearcanoe-com
spec:
 tls:
 - hosts:
 - bearcanoe.com
 secretName: bearcanoe-cert-key-pair
 rules:
 - host: bearcanoe.com
 http:
 paths:
 - path: /
 backend:
 serviceName: nginx
 servicePort: 80

Ingress | 167

https://cert-manager.io

The cert-manager.io/cluster-issuer annotation tells cert-manager to use the
prod-ca-issuer to mint the certificate.

Cert-manager stores the certificate and private key in a Kubernetes Secret called
bearcanoe-cert-key-pair.

Behind the scenes, cert-manager handles the certificate request process, which
includes generating a private key, creating a certificate signing request (CSR), and
submitting the CSR to the CA. Once the issuer mints the certificate, cert-manager
stores it in the bearcanoe-cert-key-pair certificate. The Ingress controller can then
pick it up and start serving the application over TLS. Figure 6-17 depicts the process
in more detail.

Figure 6-17. Cert-manager watches the Ingress API and requests a certificate from a
Certificate Authority when the Ingress resource has the cert-manager.io/cluster-
issuer annotation.

As you can see, cert-manager simplifies certificate management on Kubernetes. Most
platforms we’ve encountered use cert-manager in some capacity. If you leverage cert-
manager in your platform, consider using an external system such as Vault as the CA.
Integrating cert-manager with an external system instead of using a CA backed by a
Kubernetes Secret is a more robust and secure solution.

168 | Chapter 6: Service Routing

Service Mesh
As the industry continues to adopt containers and microservices, service meshes have
gained immense popularity. While the term “service mesh” is relatively new, the con‐
cepts that it encompasses are not. Service meshes are a rehash of preexisting ideas in
service routing, load balancing, and telemetry. Before the rise of containers and
Kubernetes, hyperscale internet companies implemented service mesh precursors as
they ran into challenges with microservices. Twitter, for example, created Finagle, a
Scala library that all its microservices embedded. It handled load balancing, circuit
breaking, automatic retries, telemetry, and more. Netflix developed Hystrix, a similar
library for Java applications.

Containers and Kubernetes changed the landscape. Service meshes are no longer
language-specific libraries like their precursors. Today, service meshes are distributed
systems themselves. They consist of a control plane that configures a collection of
proxies that implement the data plane. The routing, load balancing, telemetry, and
other capabilities are built into the proxy instead of the application. The move to the
proxy model has enabled even more apps to take advantage of these features, as
there’s no need to make code changes to participate in a mesh.

Service meshes provide a broad set of features that can be categorized across three
pillars:

Routing and reliability
Advanced traffic routing and reliability features such as traffic shifting, traffic
mirroring, retries, and circuit breaking.

Security
Identity and access control features that enable secure communication between
services, including identity, certificate management, and mutual TLS (mTLS).

Observability
Automated gathering of metrics and traces from all the interactions happening in
the mesh.

Throughout the rest of this chapter, we are going to discuss service mesh in more
detail. Before we do so, however, let’s return to this book’s central theme and ask “Do
we need a service mesh?” Service meshes have risen in popularity as some organiza‐
tions see them as a golden bullet to implement the aforementioned features. However,
we have found that organizations should carefully consider the impact of adopting a
service mesh.

When (Not) to Use a Service Mesh
A service mesh can provide immense value to an application platform and the
applications that run atop. It offers an attractive feature set that your developers will

Service Mesh | 169

https://twitter.github.io/finagle
https://github.com/Netflix/Hystrix

appreciate. At the same time, a service mesh brings a ton of complexity that you must
deal with.

Kubernetes is a complex distributed system. Up to this point in the book, we have
touched on some of the building blocks you need to create an application platform
atop Kubernetes, and there are still a bunch of chapters left. The reality is that build‐
ing a successful Kubernetes-based application platform is a lot of work. Keep this in
mind when you are considering a service mesh. Tackling a service mesh implementa‐
tion while you are beginning your Kubernetes journey will slow you down, if not take
you down the path to failure.

We have seen these cases firsthand while working in the field. We have worked with
platform teams who were blinded by the shiny features of a service mesh. Granted,
those features would make their platform more attractive to developers and thus
increase the platform’s adoption. However, timing is important. Wait until you gain
operational experience in production before thinking about service mesh.

Perhaps more critical is for you to understand your requirements or the problems
you are trying to solve. Putting the cart before the horse will not only increase the
chances of your platform failing but also result in wasted engineering effort. A fitting
example of this mistake is an organization that dove into service mesh while develop‐
ing a Kubernetes-based platform that was not yet in production. “We want a service
mesh because we need everything it provides,” they said. Twelve months later, the
only feature they were using was the mesh’s Ingress capabilities. No mutual TLS, no
fancy routing, no tracing. Just Ingress. The engineering effort to get a dedicated
Ingress controller ready for production is far less than a full-featured mesh imple‐
mentation. There’s something to be said for getting a minimum viable product into
production and then iterating to add features moving forward.

After reading this, you might feel like we think there’s no place for a service mesh in
an application platform. Quite the opposite. A service mesh can solve a ton of prob‐
lems if you have them, and it can bring a ton of value if you take advantage of it. In
the end, we have found that a successful service mesh implementation boils down to
timing it right and doing it for the right reasons.

The Service Mesh Interface (SMI)
Kubernetes provides interfaces for a variety of pluggable components. These inter‐
faces include the Container Runtime Interface (CRI), the Container Networking
Interface (CNI), and others. As we’ve seen throughout the book, these interfaces are
what makes Kubernetes such an extensible foundation. Service mesh is slowly but
surely becoming an important ingredient of a Kubernetes platform. Thus, the service
mesh community collaborated to build the Service Mesh Interface, or SMI.

170 | Chapter 6: Service Routing

Similar to the other interfaces we’ve already discussed, the SMI specifies the interac‐
tion between Kubernetes and a service mesh. With that said, the SMI is different than
other Kubernetes interfaces in that it is not part of the core Kubernetes project.
Instead, the SMI project leverages CRDs to specify the interface. The SMI project also
houses libraries to implement the interface, such as the SMI SDK for Go.

The SMI covers the three pillars we discussed in the previous section with a set of
CRDs. The Traffic Split API is concerned with routing and splitting traffic across a
number of services. It enables percent-based traffic splitting, which enables different
deployment scenarios such as blue-green deployments and A/B testing. The following
snippet is an example of a TrafficSplit that performs a canary deployment of the
“flights” web service:

apiVersion: split.smi-spec.io/v1alpha3
kind: TrafficSplit
metadata:
 name: flights-canary
 namespace: bookings
spec:
 service: flights
 backends:
 - service: flights-v1
 weight: 70
 - service: flights-v2
 weight: 30

The top-level Service that clients connect to (i.e., flights.bookings.clus
ter.svc.local).

The backend Services that receive the traffic. The v1 version receives 70% of traf‐
fic and the v2 version receives the rest.

The Traffic Access Control and Traffic Specs APIs work together to implement secu‐
rity features such as access control. The Traffic Access Control API provides CRDs to
control the service interactions that are allowed in the mesh. With these CRDs, devel‐
opers can specify access control policy that determines which services can talk to each
other and under what conditions (list of allowed HTTP methods, for example). The
Traffic Specs API offers a way to describe traffic, including an HTTPRouteGroup CRD
for HTTP traffic and a TCPRoute for TCP traffic. Together with the Traffic Access
Control CRDs, these apply policy at the application level.

For example, the following HTTPRouteGroup and TrafficTarget allow all requests
from the bookings service to the payments service. The HTTPRouteGroup resource
describes the traffic, while the TrafficTarget specifies the source and destination
services:

apiVersion: specs.smi-spec.io/v1alpha3
kind: HTTPRouteGroup

Service Mesh | 171

metadata:
 name: payment-processing
 namespace: payments
spec:
 matches:
 - name: everything
 pathRegex: ".*"
 methods: ["*"]

apiVersion: access.smi-spec.io/v1alpha2
kind: TrafficTarget
metadata:
 name: allow-bookings
 namespace: payments
spec:
 destination:
 kind: ServiceAccount
 name: payments
 namespace: payments
 port: 8080
 rules:
 - kind: HTTPRouteGroup
 name: payment-processing
 matches:
 - everything
 sources:
 - kind: ServiceAccount
 name: flights
 namespace: bookings

Allow all requests in this HTTPRouteGroup.

The destination service. In this case, the Pods using the payments Service
Account in the payments Namespace.

The HTTPRouteGroups that control the traffic between the source and destina‐
tion services.

The source service. In this case, the Pods using the flights Service Account in
the bookings Namespace.

Finally, the Traffic Metrics API provides the telemetry functionality of a service mesh.
This API is somewhat different than the rest in that it defines outputs instead of
mechanisms to provide inputs. The Traffic Metrics API defines a standard to expose
service metrics. Systems that need these metrics, such as monitoring systems,
autoscalers, dashboards, and others, can consume them in a standardized fashion.
The following snippet shows an example TrafficMetrics resource that exposes metrics
for traffic between two Pods:

172 | Chapter 6: Service Routing

apiVersion: metrics.smi-spec.io/v1alpha1
kind: TrafficMetrics
resource:
 name: flights-19sk18sj11-a9od2
 namespace: bookings
 kind: Pod
edge:
 direction: to
 side: client
 resource:
 name: payments-ks8xoa999x-xkop0
 namespace: payments
 kind: Pod
timestamp: 2020-08-09T01:07:23Z
window: 30s
metrics:
- name: p99_response_latency
 unit: seconds
 value: 13m
- name: p90_response_latency
 unit: seconds
 value: 7m
- name: p50_response_latency
 unit: seconds
 value: 3m
- name: success_count
 value: 100
- name: failure_count
 value: 0

The SMI is one of the newest interfaces in the Kubernetes community. While still
under development and iteration, it paints the picture of where we are headed as a
community. As with other interfaces in Kubernetes, the SMI enables platform build‐
ers to offer a service mesh using portable and provider-agnostic APIs, further
increasing the value, flexibility, and power of Kubernetes.

The Data Plane Proxy
The data plane of a service mesh is a collection of proxies that connect services
together. The Envoy proxy is one of the most popular service proxies in the cloud
native ecosystem. Originally developed at Lyft, it has quickly become a prevalent
building block in cloud native systems since it was open sourced in late 2016.

Envoy is used in Ingress controllers (Contour), API gateways (Ambassador, Gloo),
and, you guessed it, service meshes (Istio, OSM).

One of the reasons why Envoy is such a good building block is its support for
dynamic configuration over a gRPC/REST API. Open source proxies that predate
Envoy were not designed for environments as dynamic as Kubernetes. They used
static configuration files and required restarts for configuration changes to take effect.

Service Mesh | 173

https://www.envoyproxy.io
https://oreil.ly/u5fCD
https://projectcontour.io
https://www.getambassador.io
https://docs.solo.io/gloo/latest
https://istio.io
https://github.com/openservicemesh/osm

Envoy, on the other hand, offers the xDS (* discovery service) APIs for dynamic con‐
figuration (depicted in Figure 6-18). It also supports hot restarts, which allow Envoy
to reinitialize without dropping any active connections.

Figure 6-18. Envoy supports dynamic configuration via the XDS APIs. Envoy connects
to a configuration server and requests its configuration using LDS, RDS, EDS, CDS, and
other xDS APIs.

Envoy’s xDS is a collection of APIs that includes the Listener Discovery Service
(LDS), the Cluster Discovery Service (CDS), the Endpoints Discovery Service (EDS),
the Route Discovery Service (RDS), and more. An Envoy configuration server imple‐
ments these APIs and behaves as the source of dynamic configuration for Envoy.
During startup, Envoy reaches out to a configuration server (typically over gRPC)
and subscribes to configuration changes. As things change in the environment, the
configuration server streams changes to Envoy. Let’s review the xDS APIs in more
detail.

The LDS API configures Envoy’s Listeners. Listeners are the entry point into the
proxy. Envoy can open multiple Listeners that clients can connect to. A typical exam‐
ple is listening on ports 80 and 443 for HTTP and HTTPS traffic.

Each Listener has a set of filter chains that determine how to handle incoming traffic.
The HTTP connection manager filter leverages the RDS API to obtain routing con‐
figuration. The routing configuration tells Envoy how to route incoming HTTP
requests. It provides details around virtual hosts and request matching (path-based,
header-based, and others).

Each route in the routing configuration references a Cluster. A cluster is a collection
of Endpoints that belong to the same service. Envoy discovers Clusters and Endpoints
using the CDS and EDS APIs, respectively. Interestingly enough, the EDS API does
not have an Endpoint object per se. Instead, Endpoints are assigned to clusters using
ClusterLoadAssignment objects.

While digging into the details of the xDS APIs merits its own book, we hope the pre‐
ceding overview gives you an idea of how Envoy works and its capabilities. To sum‐
marize, listeners bind to ports and accept connections from clients. Listeners have
filter chains that determine what to do with incoming connections. For example, the
HTTP filter inspects requests and maps them to clusters. Each cluster has one or

174 | Chapter 6: Service Routing

more endpoints that end up receiving and handling the traffic. Figure 6-19 shows a
graphical representation of these concepts and how they relate to each other.

Figure 6-19. Envoy configuration with a Listener that binds to port 80. The Listener has
an HTTP connection manager filter that references a routing configuration. The routing
config matches requests with / prefix and forwards requests to the my_service cluster,
which has three endpoints.

Service Mesh on Kubernetes
In the previous section, we discussed how the data plane of a service mesh provides
connectivity between services. We also talked about Envoy as a data plane proxy and
how it supports dynamic configuration through the xDS APIs. To build a service
mesh on Kubernetes, we need a control plane that configures the mesh’s data plane
according to what’s happening inside the cluster. The control plane needs to under‐
stand Services, Endpoints, Pods, etc. Furthermore, it needs to expose Kubernetes
Custom Resources that developers can use to configure the service mesh.

One of the most popular service mesh implementations for Kubernetes is Istio. Istio
implements a control plane for an Envoy-based service mesh. The control plane is
implemented in a component called istiod, which itself has three primary sub-
components: Pilot, Citadel, and Galley. Pilot is an Envoy configuration server. It
implements the xDS APIs and streams the configuration to the Envoy proxies run‐
ning alongside the applications. Citadel is responsible for certificate management
inside the mesh. It mints certificates that are used to establish service identity and
mutual TLS. Finally, Galley interacts with external systems such as Kubernetes to
obtain configuration. It abstracts the underlying platform and translates configura‐
tion for the other istiod components. Figure 6-20 shows the interactions between the
Istio control plane components.

Service Mesh | 175

Figure 6-20. Istio control plane interactions.

Istio provides other capabilities besides configuring the data plane of the service
mesh. First, Istio includes a mutating admission webhook that injects an Envoy side‐
car into Pods. Every Pod that participates in the mesh has an Envoy sidecar that han‐
dles all the incoming and outgoing connections. The mutating webhook improves the
developer experience on the platform, given that developers don’t have to manually
add the sidecar proxy to all of their application deployment manifests. The platform
injects the sidecar automatically with both an opt-in and opt-out model. With that
said, merely injecting the Envoy proxy sidecar alongside the workload does not mean
the workload will automatically start sending traffic through Envoy. Thus, Istio uses
an init-container to install iptables rules that intercept the Pod’s network traffic and
routes it to Envoy. The following snippet (trimmed for brevity) shows the Istio init-
container configuration:

...
initContainers:
- args:
 - istio-iptables
 - --envoy-port
 - "15001"
 - --inbound-capture-port
 - "15006"
 - --proxy-uid
 - "1337"
 - --istio-inbound-interception-mode
 - REDIRECT
 - --istio-service-cidr
 - '*'
 - --istio-inbound-ports
 - '*'
 - --istio-local-exclude-ports
 - 15090,15021,15020
 image: docker.io/istio/proxyv2:1.6.7

176 | Chapter 6: Service Routing

 imagePullPolicy: Always
 name: istio-init
...

Istio installs an iptables rule that captures all outbound traffic and sends it to
Envoy at this port.

Istio installs an iptables rule that captures all inbound traffic and sends it to
Envoy at this port.

List of CIDRs to redirect to Envoy. In this case, we are redirecting all CIDRs.

List of ports to redirect to Envoy. In this case, we are redirecting all ports.

Now that we’ve discussed Istio’s architecture, let’s discuss some of the service mesh
features that are typically used. One of the more common requirements we run into
in the field is service authentication and encryption of service-to-service traffic. This
feature is covered by the Traffic Access Control APIs in the SMI. Istio and most ser‐
vice mesh implementations use mutual TLS to achieve this. In Istio’s case, mutual TLS
is enabled by default for all services that are participating in the mesh. The workload
sends unencrypted traffic to the sidecar proxy. The sidecar proxy upgrades the con‐
nection to mTLS and sends it along to the sidecar proxy on the other end. By default,
the services can still receive non-TLS traffic from other services outside of the mesh.
If you want to enforce mTLS for all interactions, Istio supports a STRICT mode that
configures all services in the mesh to accept only TLS-encrypted requests. For exam‐
ple, you can enforce strict mTLS at the cluster level with the following configuration
in the istio-system Namespace:

apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:
 name: "default"
 namespace: "istio-system"
spec:
 mtls:
 mode: STRICT

Traffic management is another key concern handled by a service mesh. Traffic man‐
agement is captured in the Traffic Split API of the SMI, even though Istio’s traffic
management features are more advanced. In addition to traffic splitting or shifting,
Istio supports fault injection, circuit breaking, mirroring, and more. When it comes
to traffic shifting, Istio uses two separate Custom Resources for configuration: Vir‐
tualService and DestinationRule.

• The VirtualService resource creates services in the mesh and specifies how traffic
is routed to them. It specifies the hostname of the service and rules that control
the destination of the requests. For example, the VirtualService can send 90% of

Service Mesh | 177

traffic to one destination and send the rest to another. Once the VirtualService
evaluates the rules and chooses a destination, it sends the traffic along to a spe‐
cific subset of a DestinationRule.

• The DestinationRule resource lists the “real” backends that are available for a
given Service. Each backend is captured in a separate subset. Each subset can
have its own routing configuration, such as load balancing policy, mutual TLS
mode, and others.

As an example, let’s consider a scenario where we want to slowly roll out version 2 of
a service. We can use the following DestinationRule and VirtualService to achieve
this. The DestinationRule creates two service subsets: v1 and v2. The VirtualService
references these subsets. It sends 90% of traffic to the v1 subset and 10% of the traffic
to the v2 subset:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: flights
spec:
 host: flights
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: flights
spec:
 hosts:
 - flights
 http:
 - route:
 - destination:
 host: flights
 subset: v1
 weight: 90
 - destination:
 host: flights
 subset: v2
 weight: 10

Service observability is another feature that is commonly sought after. Because there’s
a proxy between all services in the mesh, deriving service-level metrics is straightfor‐
ward. Developers get these metrics without having to instrument their applications.

178 | Chapter 6: Service Routing

The metrics are exposed in the Prometheus format, which makes them available to a
wide range of monitoring systems. The following is an example metric captured by
the sidecar proxy (some labels removed for brevity). The metric shows that there
have been 7183 successful requests from the flights booking service to the payment
processing service:

istio_requests_total{
 connection_security_policy="mutual_tls",
 destination_service_name="payments",
 destination_service_namespace="payments",
 destination_version="v1",
 request_protocol="http",
 ...
 response_code="200",
 source_app="bookings",
 source_version="v1",
 source_workload="bookings-v1",
 source_workload_namespace="flights"
} 7183

Overall, Istio offers all of the features that are captured in the SMI. However, it does
not yet implement the SMI APIs (Istio v1.6). The SMI community maintains an
adapter that you can use to make the SMI APIs work with Istio. We discussed Istio
mainly because it is the service mesh that we’ve most commonly encountered in the
field. With that said, there are other meshes available in the Kubernetes ecosystem,
including Linkerd, Consul Connect, Maesh, and more. One of the things that varies
across these implementations is the data plane architecture, which we’ll discuss next.

Data Plane Architecture
A service mesh is a highway that services can use to communicate with each other. To
get onto this highway, services use a proxy that serves as the on-ramp. Service meshes
follow one of two architecture models when it comes to the data plane: the sidecar
proxy or the node proxy.

Service Mesh | 179

https://github.com/servicemeshinterface/smi-adapter-istio

Sidecar proxy
The sidecar proxy is the most common architecture model among the two. As we dis‐
cussed in the previous section, Istio follows this model to implement its data plane
with Envoy proxies. Linkerd uses this approach as well. In essence, service meshes
that follow this pattern deploy the proxy inside the workload’s Pod, running alongside
the service. Once deployed, the sidecar proxy intercepts all the communications into
and out of the service, as depicted in Figure 6-21.

Figure 6-21. Pods participating in the mesh have a sidecar proxy that intercepts the Pod’s
network traffic.

When compared to the node proxy approach, the sidecar proxy architecture can have
greater impact on services when it comes to data plane upgrades. The upgrade
involves rolling all the service Pods, as there is no way to upgrade the sidecar without
re-creating the Pods.

Node proxy
The node proxy is an alternative data plane architecture. Instead of injecting a sidecar
proxy into each service, the service mesh consists of a single proxy running on each
node. Each node proxy handles the traffic for all services running on their node, as
depicted in Figure 6-22. Service meshes that follow this architecture include Consul
Connect and Maesh. The first version of Linkerd used node proxies as well, but the
project has since moved to the sidecar model in version 2.

When compared to the sidecar proxy architecture, the node proxy approach can have
greater performance impact on services. Because the proxy is shared by all the serv‐
ices on a node, services can suffer from noisy neighbor problems and the proxy can
become a network bottleneck.

180 | Chapter 6: Service Routing

https://www.consul.io/docs/connect
https://www.consul.io/docs/connect
https://containo.us/maesh

Figure 6-22. The node proxy model involves a single service mesh proxy that handles the
traffic for all services on the node.

Adopting a Service Mesh
Adopting a service mesh can seem like a daunting task. Should you deploy it to an
existing cluster? How do you avoid affecting workloads that are already running?
How can you selectively onboard services for testing?

In this section, we will explore the different considerations you should make when
introducing a service mesh to your application platform.

Prioritize one of the pillars
One of the first things to do is to prioritize one of the service mesh pillars. Doing so
will allow you to narrow the scope, both from an implementation and testing per‐
spective. Depending on your requirements (which you’ve established if you’re adopt‐
ing a service mesh, right?), you might prioritize mutual TLS, for example, as the first
pillar. In this case, you can focus on deploying the PKI necessary to support this fea‐
ture. No need to worry about setting up a tracing stack or spending development
cycles testing traffic routing and management.

Focusing on one of the pillars enables you to learn about the mesh, understand how it
behaves in your platform, and gain operational expertise. Once you feel comfortable,
you can implement additional pillars, as necessary. In essence, you will be more suc‐
cessful if you follow a piecemeal deployment instead of a big-bang implementation.

Deploy to a new or an existing cluster?
Depending on your platform’s life cycle and topology, you might have a choice
between deploying the service mesh to a new, fresh cluster or adding it to an existing
cluster. When possible, prefer going down the new cluster route. This eliminates any

Service Mesh | 181

potential disruption to applications that would otherwise be running in an existing
cluster. If your clusters are ephemeral, deploying the service mesh to a new cluster
should be a natural path to follow.

In situations where you must introduce the service mesh into an existing cluster,
make sure to perform extensive testing in your development and testing tiers. More
importantly, offer an onboarding window that allows development teams to experi‐
ment and test their services with the mesh before rolling it out to the staging and pro‐
duction tiers. Finally, provide a mechanism that allows applications to opt into being
part of the mesh. A common way to enable the opt-in mechanism is to provide a Pod
annotation. Istio, for example, provides an annotation (sidecar.istio.io/inject)
that determines whether the platform should inject the sidecar proxy into the work‐
load, which is visible in the following snippet:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true"
 spec:
 containers:
 - name: nginx
 image: nginx

Handling upgrades
When offering a service mesh as part of your platform, you must have a solid upgrade
strategy in place. Keep in mind that the service mesh data plane is in the critical path
that connects your services, including your cluster’s edge (regardless of whether you
are using the mesh’s Ingress gateway or another Ingress controller). What happens
when there’s a CVE that affects the mesh’s proxy? How will you handle upgrades
effectively? Do not adopt a service mesh without understanding these concerns and
having a well-established upgrade strategy.

The upgrade strategy must account for both the control plane and the data plane. The
control plane upgrade carries less risk, as the mesh’s data plane should continue to
function without it. With that said, do not discount control plane upgrades. You
should understand the version compatibility between the control plane and the data
plane. If possible, follow a canary upgrade pattern, as recommended by the Istio
project. Also make sure to review any service mesh Custom Resource Definition
(CRD) changes and whether they impact your services.

182 | Chapter 6: Service Routing

https://oreil.ly/TZj7F
https://oreil.ly/TZj7F

The data plane upgrade is more involved, given the number of proxies running on
the platform and the fact that the proxy is handling service traffic. When the proxy
runs as a sidecar, the entire Pod must be re-created to upgrade the proxy as Kuber‐
netes doesn’t support in-place upgrades of containers. Whether you do a full data
plane upgrade or a slow rollout of the new data plane proxy depends on the reason
behind the upgrade. One one hand, if you are upgrading the data plane to handle a
vulnerability in the proxy, you must re-create every single Pod that participates in the
mesh to address the vulnerability. As you can imagine, this can be disruptive to some
applications. If, on the other hand, you are upgrading to take advantage of new fea‐
tures or bug fixes, you can let the new version of the proxy roll out as Pods are cre‐
ated or moved around in the cluster. This slower, less disruptive upgrade results in
version sprawl of the proxy, which may be acceptable as long as the service mesh sup‐
ports it. Regardless of why you are upgrading, always use your development and test‐
ing tiers to practice and validate service mesh upgrades.

Another thing to keep in mind is that meshes typically have a narrow set of Kuber‐
netes versions they can support. How does a Kubernetes upgrade affect your service
mesh? Does leveraging a service mesh hinder your ability to upgrade Kubernetes as
soon as a new version is released? Given that Kubernetes APIs are relatively stable,
this should not be the case. However, it is possible and something to keep in mind.

Resource overhead
One of the primary trade-offs of using a service mesh is the resource overhead that it
carries, especially in the sidecar architecture. As we’ve discussed, the service mesh
injects a proxy into each Pod in the cluster. To get its job done, the proxy consumes
resources (CPU and memory) that would otherwise be available to other services.
When adopting a service mesh, you must understand this overhead and whether the
trade-off is worth it. If you are running the cluster in a datacenter, the overhead is
probably palatable. However, the overhead might prevent you from using a service
mesh in edge deployments where resource constraints are tighter.

Perhaps more important, a service mesh introduces latency between services given
that the service calls are traversing a proxy on both the source and the destination
services. While the proxies used in service meshes are usually highly performant, it is
important to understand the latency overhead they introduce and whether your
application can function given the overhead.

When evaluating a service mesh, spend time investigating its resource overhead. Even
better, run performance tests with your services to understand how the mesh behaves
under load.

Service Mesh | 183

Certificate Authority for mutual TLS
The identity features of a service mesh are usually based on X.509 certificates. Proxies
in the mesh use these certificates to establish mutual TLS (mTLS) connections
between services.

Before being able to leverage the mTLS features of a service mesh, you must establish
a certificate management strategy. While the mesh is usually responsible for minting
the service certificates, it is up to you to determine the Certificate Authority (CA). In
most cases, a service mesh uses a self-signed certificate as the CA. However, mature
service meshes allow you to bring your own CA, if necessary.

Because the service mesh handles service-to-service communications, using a self-
signed CA is adequate. The CA is essentially an implementation detail that is invisible
to your applications and their clients. With that said, security teams can disapprove of
the use of self-signed CAs. When adopting a service mesh, make sure to bring your
security team into the conversation.

If using a self-signed CA for mTLS is not viable, you will have to provide a CA certifi‐
cate and key that the service mesh can use to mint certificates. Alternatively, you can
integrate with an external CA, such as Vault, when an integration is available.

Multicluster service mesh
Some service meshes offer multicluster capabilities that you can use to extend the
mesh across multiple Kubernetes clusters. The goal of these capabilities is to connect
services running in different clusters through a secure channel that is transparent to
the application. Multicluster meshes increase the complexity of your platform. They
can have both performance and fault-domain implications that developers might
have to be aware of. In any case, while creating multicluster meshes might seem
attractive, you should avoid them until you gain the operational knowledge to run a
service mesh successfully within a single cluster.

Summary
Service routing is a crucial concern when building an application platform atop
Kubernetes. Services provide layer 3/4 routing and load balancing capabilities to
applications. They enable applications to communicate with other services in the
cluster without worrying about changing Pod IPs or failing cluster nodes. Further‐
more, developers can use NodePort and LoadBalancer Services to expose their appli‐
cations to clients outside of the cluster.

Ingress builds on top of Services to provide richer routing capabilities. Developers
can use the Ingress API to route traffic according to application-level concerns, such
as the Host header of the request or the path that the client is trying to reach. The
Ingress API is satisfied by an Ingress controller, which you must deploy before using

184 | Chapter 6: Service Routing

Ingress resources. Once installed, the Ingress controller handles incoming requests
and routes them according to the Ingress configuration defined in the API.

If you have a large portfolio of microservices-based applications, your developers
might benefit from a service mesh’s capabilities. When using a service mesh, services
communicate with each other through proxies that augment the interaction. Service
meshes can provide a variety of features, including traffic management, mutual TLS,
access control, automated service metrics gathering, and more. Like other interfaces
in the Kubernetes ecosystem, the Service Mesh Interface (SMI) aims to enable plat‐
form operators to use a service mesh without tying themselves to specific implemen‐
tations. However, before adopting a service mesh, ensure that you have the
operational expertise in your team to operate an additional distributed system on top
of Kubernetes.

Summary | 185

CHAPTER 7

Secret Management

In any application stack, we are almost guaranteed to run into secret data. This is the
data that applications want to keep, well, secret. Commonly, we associate secrets with
credentials. Often these credentials are used to access systems within or external to
the cluster, such as databases or message queues. We also run into secret data when
using private keys, which may support our application’s ability to perform mutual
TLS with other applications. These kinds of concerns are covered in Chapter 11. The
existence of secrets bring in many operational concerns to consider, such as:

Secret rotation policies
How long is a secret allowed to remain before it must be changed?

Key (encryption) rotation policies
Assuming secret data is encrypted at the application layer before being persisted
to disk, how long is an encryption key allowed to stay around before it must be
rotated?

Secret storage policies
What requirements must be satisfied in order to store secret data? Do you need
to persist secrets to isolated hardware? Do you need your secret management sol‐
ution to integrate with a hardware security module (HSM)?

Remediation plan
If secret(s) or encryption key(s) are compromised, how do you plan to remedi‐
ate? Can your plan or automation be run without impact to applications?

A good starting point is to determine what layer to offer secret management for your
applications. Some organizations choose to not solve this at a platform level and
instead expect application teams to inject secrets into their applications dynamically.
For example, if an organization is running a secret management system such as Vault,
applications can talk directly to the API to authenticate and retrieve secrets.

187

Application frameworks may even offer libraries to talk directly to these systems. For
example, Spring offers the spring-vault project to authenticate against Vault, retrieve
secrets, and inject their values directly into Java classes. While possible to do at the
application layer, many platform teams aspire to offer enterprise-grade secret capabil‐
ities as platform services, perhaps in a way that application developers need not be
concerned with how the secret got there or what external provider (e.g., Vault) is
being used under the hood.

In this chapter we’ll dive into how to think about secret data in Kubernetes. We’ll start
at lower-level layers Kubernetes runs on and work up to the APIs Kubernetes exposes
that make secret data available to workloads. Like many topics in this book, you’ll
find these considerations and recommendations to live on a spectrum—one end of
the spectrum includes how secure you’re willing to get relative to engineering effort
and tolerance for risk, and the other end focuses on what level of abstractions you’d
like to provide to developers consuming this platform.

Defense in Depth
Protection of our secret data largely comes down to what depths we’re willing to go to
make it secure. As much as we’d like to say we always choose the most secure options,
the reality is we make sensible decisions that keep us “safe enough” and ideally harden
them over time. This comes with risk and technical debt that is quintessential to our
work. However, there’s no denying that a misjudgment of what is “safe enough” can
quickly make us famous, and not in a good way. In the following sections, we’ll look
at these layers of security and call out some of the most critical points.

Defense can start literally at the physical layer. A prime example is Google. It has mul‐
tiple whitepapers, and even a video on YouTube, that describe its approach to data‐
center security. This includes metal detectors, vehicle barriers capable of stopping a
semi truck, and several layers of building security just to get into the datacenter. This
attention to detail extends beyond what is live and racked. When drives are retired,
Google has authorized staff zero-out the data and then potentially crush and shred
the drives. While the subject of physical security is interesting, this book will not go
into depth around physical security of your datacenter, but the steps cloud providers
take to ensure the security of their hardware are amazing, and that’s just the start.

Let’s say a human did somehow get access to a disk before it was zeroed out or
crushed. Most cloud providers and datacenters are securing their physical disks by
ensuring the drive is encrypted at rest. Providers may do this with their own encryp‐
tion keys and/or they allow customers to provide their own keys, which makes it near
impossible for providers to access your unencrypted data. This is a perfect example of
defense in depth. We are protected from a physical standpoint, intra-datacenter, and
we extend that to encrypting data on the physical disks themselves, closing off further
opportunities for bad actors internally to do anything with users’ data.

188 | Chapter 7: Secret Management

https://cloud.google.com/security/overview/whitepaper
https://oreil.ly/dtHUx

Disk Encryption
Let’s take a closer look at the disk encryption domain. There are several ways to
encrypt disks. A common method in Linux for full block encryption is leveraging
Linux Unified Key System (LUKS). LUKS works in conjunction with the dm-crypt
encryption subsystem, which has been available in the Linux kernel since version 2.6.
For dedicated storage systems such as vSAN, ceph, or Gluster, each provide one or
many means to provide encryption at rest. In cloud providers, the default encryption
behavior can vary. For AWS, you should explore its documentation to enable encryp‐
tion for Elastic Block Storage. AWS offers the ability to enable encryption by default,
which we recommend as a best-practice setting. Google Cloud, on the other hand,
performs encryption at rest as its default mode. Similar to AWS, it can be configured
with the Key Management Service (KMS), which enables you to customize the
encryption behavior, such as providing your own encryption keys.

Regardless of the trust you do or don’t have for your cloud provider or datacenter
operators, we highly recommend encryption at rest as your default practice. Encryp‐
tion at rest essentially means the data is stored encrypted. Not only is this good for
mitigating attack vectors, but it provides some protection against possible mistakes.
For example, the world of virtual machines has made it trivial to create snapshots of
hosts. Snapshots end up like any other file, data that is too easy to accidentally expose
to an internal or external network. In the spirit of defense in depth, we should protect
ourselves against this scenario where, if we select the wrong button via a UI or field in
an API, the leaked data is useless for those without private key access. Figure 7-1
shows the UI for how easily these permissions can be toggled.

Figure 7-1. Permission setting on an AWS snapshot, as the warning says “making pub‐
lic” will give others access to create a volume from this snapshot and, potentially, access
the data.

Defense in Depth | 189

Transport Security
With a better understanding of encrypted data at rest, how about data that is actively
in flight? Without having explored the Kubernetes secret architecture yet, let’s look at
the paths a secret can take when being transported between services. Figure 7-2
shows some of the interaction points for secrets. The arrows represent the secret
moving through the network between hosts.

Figure 7-2. Diagram demonstrating points where a secret may pass over the wire.

The figure shows secret data moving across the network to reach different hosts. No
matter how strong our encryption at rest strategy is, if any of the interaction points
do not communicate over TLS, we have exposed our secret data. As seen Figure 7-2,
this includes the human-to-system interaction, kubectl, and the system-to-system
interaction, kubelet to API server. In summary, it’s crucial communications with the
API server and etcd that happen exclusively over TLS. We won’t spend much time
discussing this need as it is the default for almost every mode of installing or boot‐
strapping Kubernetes clusters. Often the only configuration you may wish to do is to
provide a Certificate Authority (CA) to generate the certificates. However, keep in
mind these certificates are internal to Kubernetes system components. With this in
mind, you might not need to overwrite the default CA Kubernetes will generate.

Application Encryption
Application encryption is the encryption we perform within our system components
or workloads running in Kubernetes. Application encryption can have many layers
itself. For example, a workload in Kubernetes can encrypt data before persisting it to
Kubernetes, which could then encrypt it, and then persisting it to etcd where it’ll be
encrypted at the filesystem level. The first two encryption points are considered
“application-level.” That’s a lot of encryption!

190 | Chapter 7: Secret Management

While we won’t always have encryption or decryption take place at that many levels,
there is something to be said about data being encrypted at least once at the applica‐
tion level. Consider what we’ve talked about thus far: encryption over TLS and
encryption at rest. If we’d stopped there, we’d have a decent start. When secret data is
in flight, it will be encrypted, and it’ll also be encrypted on the physical disk. But what
about on the running system? While the bits persisted to disk may be encrypted, if a
user were to gain access to the system they would likely be able to read the data! Con‐
sider your encrypted desktop computer where you may keep sensitive credentials in a
dotfile (we’ve all done it). If I steal your computer and try to access this data by sled‐
ding the drive, I won’t be able to get the information I’m after. However, if I succeed at
booting your computer and logging in as you, I now have full access to this data.

Application encryption is the act of encrypting that data with a key at the userspace
level. In this computer example, I could use a (strongly) password protected gpg key
to encrypt that dotfile, requiring my user to decrypt it before it can be used. Writing a
simple script can automate this process and you’re off to the races with a far deeper
security model. As the attacker logged in as you, even the decryption key is useless
because without the password it’s just useless bits. The same consideration applies to
Kubernetes. Going forward we’re going to assume two things are set up in your
cluster:

• Encryption at rest is enabled in the filesystem and/or storage systems used by
Kubernetes.

• TLS is enabled for all Kubernetes components and etcd.

With this, let’s begin our exploration of encryption at the Kubernetes application
level.

The Kubernetes Secret API
The Kubernetes Secret API is one of the most-used APIs in Kubernetes. While there
are many ways for us to populate the Secret objects, the API provides a consistent
means for workloads to interact with secret data. Secret objects heavily resemble Con‐
figMaps. They also have similar mechanics around how workloads can consume the
objects, via environment variables or volume data. Consider the following Secret
object:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 dbuser: aGVwdGlvCg==
 dbkey: YmVhcmNhbm9lCg==

The Kubernetes Secret API | 191

In the data field, dbuser and dbkey are base64 encoded. All Kubernetes secret data is.
If you wish to submit nonencoded string data to the API server, you can use the
stringData field as follows:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
stringData:
 dbuser: heptio
 dbkey: bearcanoe

When applied, the stringData will be encoded at the API server and applied to etcd.
A common misconception is that Kubernetes is encoding this data as a practice of
security. This is not the case. Secret data can contain all kinds of strange characters or
binary data. In order to ensure it’s stored correctly, it is base64 encoded. By default,
the key mechanism for ensuring that Secrets aren’t compromised is RBAC. Under‐
standing the implications of RBAC verbs as they pertain to Secrets is crucial to pre‐
vent introducing vectors of attack:

get

Retrieve the data of a known secret by its name.

list

Get a list of all secrets and/or secret data.

watch

Watch any secret change and/or change to secret data.

As you can imagine, small RBAC mistakes, such as giving the user list access, expose
every Secret in a Namespace or, worse, the entire cluster if a ClusterRoleBinding is
accidentally used. The truth is, in many cases, users don’t need any of these permis‐
sions. This is because a user’s RBAC does not determine what secrets the workload
can have access to. Generally the kubelet is responsible for making the secret available
to the container(s) in a Pod. In summary, as long as your Pod references a valid
secret, the kubelet will make it available through the means you specify. There are a
few options to how we expose the secret in the workload, which is covered next.

The Scope of Secrets
The kubelet handling secret retrieval and injection is very convenient. However, it
begs the question, How does the kubelet know whether my application should be able
to access a secret? The model for workload access to secrets in Kubernetes is very
simple, for better or for worse. Secrets are Namespace scoped, meaning that without
replicating the Secret across Namespaces, a Pod may reference Secret(s) only in its
Namespace. Which also means that Pods may access any Secret available in their

192 | Chapter 7: Secret Management

Namespace. This is one reason careful consideration of how Namespaces are shared
among workloads is critical. If this model is unacceptable, there are ways to add addi‐
tional checks at the admission control layer, which will be covered in a future chapter.

Secret Consumption Models
For workloads wishing to consume a Secret, there are several choices. The preference
on how secret data is ingested may depend on the application. However, there are
trade-offs to the approach you choose. In the coming sections, we’ll look at three
means of consuming secret data in workloads.

Environment variables
Secret data may be injected into environment variables. In the workload YAML, an
arbitrary key and reference to the secret may be specified. This can be a nice feature
for workloads moving onto Kubernetes that already expect an environment variable
by reducing the need to change application codes. Consider the following Pod
example:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 env:
 - name: USER
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: dbuser
 - name: PASS
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: dbkey

The environment variable key that will be available in the application.

The name of the Secret object in Kubernetes.

The key in the Secret object that should be injected into the USER variable.

The downside to exposing secrets in environment variables is their inability to be hot
reloaded. A change in a Secret object will not be reflected until the Pod is re-created.

The Kubernetes Secret API | 193

This could occur through manual intervention or system events such as the need to
reshedule. Additionally, it is worth calling out that some consider secrets in environ‐
ment variables to be less secure than reading from volume mounts. This point can be
debated, but it is fair to call out some of the common opportunities to leak. Namely,
when processes or container runtimes are inspected, there may be ways to see the
environment variables in plain text. Additionally, some frameworks, libraries, or lan‐
guages may support debug or crash modes where they dump (spew) environment
variables out to the logs. Before using environment variables, these risks should be
considered.

Volumes
Alternatively, secret objects may be injected via volumes. In the workload’s YAML, a
volume is configured where the secret is referenced. The container that the secret
should be injected into references that volume using a volumeMount:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: creds
 readOnly: true
 mountPath: "/etc/credentials"
 volumes:
 - name: creds
 secret:
 secretName: mysecret

Pod-level volumes available for mounting. Name specified must be referenced in
the mount.

The volume object to mount into the container filesystem.

Where in the container filesystem the mount is made available.

With this Pod manifest, the secret data is available under /etc/credentials with each
key/value pair in the secret object getting its own file:

root@nginx:/# cat /etc/credentials/db
dbkey dbuser

The biggest benefit to the volume approach is that secrets may be updated dynami‐
cally, without the Pod restarting. When a change to the secret is seen, the kubelet will
reload the secret and it’ll show as updated in the container’s filesystem. It’s important

194 | Chapter 7: Secret Management

to call out that the kubelet is using tmpfs, on Linux, to ensure secret data is stored
exclusively in memory. We can see this by examining the mount table file on the
Linux host:

grep 'secret/creds' secret/creds

tmpfs
/var/lib/kubelet/pods/
e98df9fe-a970-416b-9ddf-bcaff15dff87/volumes/
kubernetes.io~secret/creds tmpfs rw,relatime 0 0

If the nginx Pod is removed from this host, this mount is discarded. With this model
in mind, it’s especially important to consider that Secret data should never be large in
size. Ideally it holds credentials or keys and is never used as a pseudo database.

From an application perspective, a simple watch on the directory or file, then re-
injecting values into the application, is all it would take to handle a secret change. No
need to understand or communicate with the Kubernetes API server. This is an ideal
pattern we’ve seen success with in many workloads.

Client API Consumption
The last consumption model, Client API Consumption, is not a core Kubernetes fea‐
ture. This model puts the onus on the application to communicate with the kube-
apiserver to retrieve Secret(s) and inject them into the application. There are several
frameworks and libraries out there that make communicating with Kubernetes trivial
for your application. For Java, Spring’s Spring Cloud Kubernetes brings this function‐
ality to Spring applications. It takes the commonly used Spring PropertySource type
and enables it to be wired up by connecting to Kubernetes and retreiving Secrets
and/or ConfigMaps.

Caution: Carefully Consider This Approach
While consumption of Secret objects directly from the client application is possible,
we generally discourage this approach. Previously, we talked about Spring’s affinity
toward mounting secrets but talking to the API server for ConfigMap. Even in the
case of ConfigMaps, it’s less than ideal to require each application to communicate
directly to the API server. From a philosophical standpoint, when possible, we’d
rather the application not be aware of where it’s running. Meaning, if we can make it
run on a VM as we could on Kubernetes or another container service, that’s prefera‐
ble. Most languages and frameworks have primitives needed to read environment
variables and files. The kubelet can ensure our containers get Secret data through
these mediums, so why add provider-specific logic into our applications for this use
case? Philosophy aside, this is another client that will need to connect and establish a
watch on the API server. Not only is this another unnecessary connection, but we
now need to ensure the workloads get their own Service Account with accompanying

The Kubernetes Secret API | 195

RBAC to access their Secret object(s). Whereas, in delegating this work to the kubelet,
no Service Account is required. In fact, the Service Account (default) can and should
be disabled altogether!

Now that we have covered consumption of secrets at a workload level, it is time to
talk about storing secret data.

Secret Data in etcd
Like most Kubernetes objects, Secrets are stored in etcd. By default, no encryption is
done at the Kubernetes layer before persisting Secrets to etcd. Figure 7-3 shows the
flow of a secret from manifest to etcd.

Figure 7-3. Default secret data flow in Kubernetes (the colocated etcd is sometimes run
on a separate host).

While Kubernetes did not encrypt the secret data, this does not imply access to the
data upon gaining hardware access. Remember that encryption at rest can be per‐
formed on disks through methods such as Linux Unified Key Setup (LUKS), where
physical access to hardware gives you access only to encrypted data. For many cloud
providers and enterprise datacenters, this is a default mode of operation. However,
should we gain ssh access to the server running etcd and a user that has privileges or
can escalate to see its filesystem, then we can potentially gain access to the secret data.

For some cases, this default model can be acceptable. etcd can be run external to the
Kubernetes API server, ensuring it is separated by at least a hypervisor. In this model,
an attacker would likely need to obtain root access to the etcd node, find the data
location, and then read the secrets from the etcd database. The other entry point
would be an adversary getting root access to the API server, locating the API server
and etcd certs, then impersonating the API server in communicating with etcd to
read secrets. Both cases assume potentially other breaches. For example, the attacker
would have had to gain access to the internal network or subnet that is running the
control-plane components. Additionally, they’d need to get the appropriate key to ssh
into the node. Frankly, it’s far more likely that an RBAC mistake or application com‐
promise would expose a secret before this case.

196 | Chapter 7: Secret Management

To better understand the threat model, let’s work through an example of how an
attacker could gain access to Secrets. Let’s consider the case where an attacker SSHs
and gains root access to the kube-apiserver node. The attacker could set up a script as
follows:

#!/bin/bash

Change this based on location of etcd nodes
ENDPOINTS='192.168.3.43:2379'

ETCDCTL_API=3 etcdctl \
 --endpoints=${ENDPOINTS} \
 --cacert="/etc/kubernetes/pki/etcd/ca.crt" \
 --cert="/etc/kubernetes/pki/apiserver-etcd-client.crt" \
 --key="/etc/kubernetes/pki/apiserver-etcd-client.key" \
 ${@}

The certificate and key locations seen in this snippet are the default when Kubernetes
was bootstrapped by kubeadm, which is also used by many tools such as cluster-api.
etcd stores the secret data within the directory /registry/secrets/${NAMESPACE}/$
{SECRET_NAME}. Using this script to get a secret, named login1, would look as
follows:

./etcctl-script get /registry/secrets/default/login1

/registry/secrets/default/login1
k8s

v1Secret

login1default"*$6c991b48-036c-48f8-8be3-58175913915c2bB
0kubectl.kubernetes.io/last-applied-configuration{"apiVersion":"v1","data":
{"dbkey":"YmVhcmNhbm9lCg==","dbuser":"aGVwdGlvCg=="},"kind":"Secret",
"metadata":{"annotations":{},"name":"login1","namespace":"default"},
"type":"Opaque"}
z
dbkey
bearcanoe

dbuserheptio
Opaque"

With this, we have successfully compromised the secret login1.

Even though storing Secrets without encryption can be acceptable, many platform
operators choose not to stop here. Kubernetes supports a few ways to encrypt the data
within etcd, furthering the depth of your defense with respect to secrets. These
include models to support encryption at rest (where encryption occurs at the Kuber‐
netes layer) before it rests in etcd. These models include static-key encryption and
envelope encryption.

The Kubernetes Secret API | 197

Static-Key Encryption
The Kubernetes API server supports encrypting secrets at rest. This is achieved by
providing the Kubernetes API server with an encryption key, which it will use to
encrypt all secret objects before persisting them to etcd. Figure 7-4 shows the flow of
a secret when static-key encryption is in play.

Figure 7-4. The relationship between an encryption key, on the API server, being used to
encrypt secrets before storing them in etcd.

The key, held within an EncryptionConfiguration, is used to encrypt and decrypt
Secret objects as they move through the API server. Should an attacker get access to
etcd, they would see the encrypted data within, meaning the Secret data is not com‐
promised. Keys can be created using a variety of providers, including secretbox,
aescbc, and aesgcm.

Each provider has its own trade-offs, and we recommend working with your security
team to select the appropriate option. Kubernetes issue #81127 is a good read on
some considerations around these providers. If your enterprise needs to comply with
standards such as the Federal Information Processing Standards (FIPS), these choices
should be carefully considered. In our example we’ll use secretbox, which acts as a
fairly performant and secure encryption provider.

To set up static-key encryption, we must generate a 32-byte key. Our encryption and
decryption model is symmetric, so a single key serves both purposes. How you gener‐
ate a key can vary enterprise to enterprise. Using a Linux host, we can easily
use /dev/urandom if we’re satisfied with its entropy:

head -c 32 /dev/urandom | base64

Using this key data, an EncryptionConfiguration should be added to all nodes run‐
ning a kube-apiserver. This static file should be added using configuration manage‐
ment such as ansible or KubeadmConfigSpec if using Cluster API. This ensures keys
can be added, deleted, and rotated. The following example assumes the configuration
is stored at /etc/kubernetes/pki/secrets/encryption-config.yaml:

198 | Chapter 7: Secret Management

apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
 - resources:
 - secrets
 providers:
 - secretbox:
 keys:
 - name: secret-key-1
 secret: u7mcOcHKbFh9eVluB18hbFIsVfwpvgbXv650QacDYXA==
 # identity is a required (default) provider
 - identity: {}

The list of providers is ordered, meaning encryption will always occur using the first
key and decryption will be attempted in order of keys listed. Identity is the default
plain-text provider and should be last. If it’s first, secrets will not be encrypted.

To respect the preceding configuration, every instance of the kube-apiserver must be
updated to load the EncryptionConfiguration locally. In /etc/kubernetes/manifests/
kube-apiserver.yaml, an argument can be added as follows.

--encryption-provider-config=/etc/kubernetes/pki/secrets/encryption-config.yaml

Once the kube-apiserver(s) restart, this change will take effect and secrets will be
encrypted before being sent to etcd. The kube-apiserver restart may be automatic. For
example, when using static Pods to run the API server, a change to the manifest file
will trigger a restart. Once you’re past stages of experimentation, it’s recommended
you pre-provision hosts with this file and ensure the encryption-provider is
enabled by default. The EncryptionConfiguration file can be added using configura‐
tion management tools such as Ansible or, with cluster-api, by setting that static file
in a kubeadmConfigSpec. Note this cluster-api approach will put the EncryptionCon‐
figuration in user data; make sure the user data is encrypted! Adding the
encryption-provider-config flag to the API server can be done by adding the argu‐
ment to the apiServer within a ClusterConfiguration, assuming you’re using
kubeadm. Otherwise, ensure the flag is present based on your mechanism for starting
the server.

To validate the encryption, you can apply a new secret object to the API server.
Assuming the secret is named login2, using the script from the previous section we
can retrieve it as follows:

./etcctl-script get /registry/secrets/default/login2

/registry/secrets/default/login2
k8s:enc:secretbox:v1:secret-key-1:^Dʜ
 HN,lU/:L kdR<_h (fO$V
y.
 r/m
MٜjVĄGP<%B0kZHY}->q|&c?a\i#xoZsVXd+8_rCצgcj[Mv<X5N):MQ'7t

The Kubernetes Secret API | 199

'pLBxqݡ)b ݉/+r49ޓ`f
 6(iciQⰪſ$'.ejbprλ=Cp+R-D%q!r/pbv1_.izyPlQ)1!7@X\0
 EiĿr(dwlS

Here we can see the data is fully encrypted in etcd. Note there is metadata specifying
which provider (secretbox) and key (secret-key-1) was used to do the encryption.
This is important to Kubernetes as it supports many providers and keys at once. Any
object created before the encryption key was set; let’s assume login1 can be queried
and will still show up in plain text:

./etcctl-script get /registry/secrets/default/login1

/registry/secrets/default/login1
k8s

This demonstrates two important concepts. One, login1 is not encrypted. While the
encryption key is in place, only newly created or altered secret objects will be encryp‐
ted using this key. Secondly, when passing back through the kube-apiserver, no pro‐
vider/key mapping is present and no decryption will be attempted. This latter concept
is important because it is highly recommended you rotate encryption keys over a
defined span. Let’s say you rotate once every three months. When three months have
elapsed, we’d alter the EncryptionConfiguation as follows:

- secretbox:
 keys:
 - name: secret-key-2
 secret: xgI5XTIRQHN/C6mlS43MuAWTSzuwkGSvIDmEcw6DDl8=
 - name: secret-key-1
 secret: u7mcOcHKbFh9eVluB18hbFIsVfwpvgbXv650QacDYXA=

It is crucial that secret-key-1 is not removed. While it will not be used for new
encryption, it is used for existing secret objects, previously encrypted by it, for
decryption! The removal of this key will prevent the API server from returning secret
objects, such as login2, to clients. Since this key is first, it will be used for all new
encryption. When secret objects are updated, they will be re-encrypted using this
new key over time. Until then, the original key can remain in the list as a fallback
decryption option. If you delete the key, you’ll see the following responses from your
client:

Error from server (InternalError): Internal error occurred: unable to transform
key "/registry/secrets/default/login1": no matching key was found for the
provided Secretbox transformer

Authors Recommendation: Understand New Vectors
With each step taken toward increasing your defense in depth, it is crucial you under‐
stand how attack vectors have shifted. The static-key encryption model is certainly
more secure than no encryption. However, note that the encryption key lives on the

200 | Chapter 7: Secret Management

same host at the API server. Many Kubernetes deployments run etcd and the kube-
apiserver on the same host, meaning with root access, the attacker could decrypt the
data they query from etcd. Ideally, you should not rely solely on encryption at rest
using a static key. If this is unacceptable, it may be time to consider using an external
secret store or leveraging a KMS-plug-in. Both of these alternative approaches are
covered in subsequent sections.

Envelope Encryption
Kubernetes 1.10 and later supports integrating with a KMS to achieve envelope
encryption. Envelope encryption involves two keys: the key encryption key (KEK)
and the data encryption key (DEK). KEKs are stored externally in a KMS and aren’t at
risk unless the KMS provider is compromised. KEKs are used to encrypt DEKs,
which are responsible for encrypting Secret objects. Each Secret object gets its own
unique DEK to encrypt and decrypt the data. Since DEKs are encrypted by a KEK,
they can be stored with the data itself, preventing the kube-apiserver from needing to
be aware of many keys. Architecturally, the flow of envelope encryption would look
like the diagram shown in Figure 7-5.

Figure 7-5. Flow to encrypt secrets using envelope encryption. The KMS layer lives out‐
side the cluster.

The Kubernetes Secret API | 201

There can be some variance in how this flow works, based on a KMS provider, but
generally this demonstrates how envelope encryption functions. There are multiple
benefits to this model:

• KMS is external to Kubernetes, increasing security via isolation.
• Centralization of KEKs enables easy rotation of keys.
• Separation of DEK and KEK means that secret data is never sent to or known by

the KMS
• KMS is concerned only with decrypting DEKs.
• Encryption of DEKs means they are easy to store alongside their secret, making

management of keys in relation to their secrets easy.

The provider plug-ins work by running a privileged container implementing a gRPC
server that can communicate with a remote KMS. This container runs exclusively on
master nodes where a kube-apiserver is present. Then, similar to setting up encryp‐
tion in the previous section, an EncryptionConfiguration must be added to master
nodes with settings to communicate with the KMS plug-in:

apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
- resources:
- secrets
providers:
- kms:
 name: myKmsPlugin
 endpoint: unix:///tmp/socketfile.sock
 cachesize: 100
 timeout: 3s
required, but not used for encryption
- identity: {}

Assuming the EncryptionConfiguration is saved on each master node at /etc/kuber‐
netes/pki/secrets/encryption-config.yaml, the kube-apiserver arguments must be upda‐
ted to include the following:

--encryption-provider-config=/etc/kubernetes/pki/secrets/encryption-config.yaml

Changing the value should restart the kube-apiserver. If it doesn’t, a restart is
required for the change to take effect.

From a design perspective, this is a viable model. However, KMS plug-in implemen‐
tations are scarce and the ones that do exist are immature. When we wrote this book,
the following data points are true. There are no tagged releases for the aws-
encryption-provider (AWS) or the k8s-cloudkms-plugin (Google). Azure’s plug-in
kubernetes-kms has notable limitations, such as no support for key rotation. So with
the exception of running in a managed service, such as GKE where the KMS plug-in

202 | Chapter 7: Secret Management

is automatically available and supported by Google, usage may prove unstable. Lastly,
the only cloud provider-agnostic KMS plug-in available was kubernetes-vault-kms-
plugin, which was only partially implemented and has been archived (abandoned).

External Providers
Kubernetes is not what we’d consider an enterprise-grade secret store. While it does
offer a Secret API that will be used for things like Service Accounts, for enterprise
secret data it may fall short. There is nothing inherently wrong with using it to store
application secrets, as long as the risks and options are understood, which is largely
what this chapter has described thus far! However, many of our clients demand more
than what the Secret API can offer, especially those working in sectors such as finan‐
cial services. These users need capabilities such as integration with a hardware secu‐
rity module (HSM) and have advanced key rotation policies.

Our guidance is generally to start with what Kubernetes offers and see if the
approaches to harden its security (i.e., encryption) are adequate. As described in the
previous section, KMS encryption models that offer envelope encryption provide a
pretty strong story around the safety of secret data in etcd. If we need to extend
beyond this (and we often do), we then look to what secret management tooling pre‐
exists that the engineering team(s) have operational knowledge of. Running secret
management systems in a production-ready capacity can be a challenging task, simi‐
lar to running any stateful service where the data contained within needs to be not
only highly available but protected from potential attackers.

Vault
Vault is an open source project by HashiCorp. It is by far the most popular project we
run into with our clients when it comes to secret management solutions. Vault has
found several ways to integrate in the cloud native space. Work has been done around
providing first-class integration in frameworks such as Spring and in Kubernetes
itself. One emerging pattern is to run Vault within Kubernetes and enable Vault to use
the TokenReview API to authenticate requests against the Kubernetes API Server.
Next, we’ll explore two common Kubernetes integration points, including sidecar and
initContainer injection along with a newer approach, CSI integration.

Cyberark
Cyberark is another popular option we see with clients. As a company, it’s been
around for a while, and often we find preexisting investments to exist and a desire to
integrate Kubernetes with it. Cyberark offers a Credential Provider and Dynamic
Access Provider (DAP). DAP provides multiple enterprise mechanisms Kubernetes
administrators may want to integrate with. Similar to Vault, it supports the ability to
use initContainers alongside your application to communicate with DAP.

External Providers | 203

Injection Integration
Once an external secret store is available to workloads in Kubernetes, there are sev‐
eral options for retrieval. This section covers these approaches, our recommenda‐
tions, and trade-offs. We’ll cover each design approach to consuming secrets and
describe Vault’s implementation.

This approach runs an initContainer and/or sidecar container to communicate with
an external secret store. Typically, secrets are injected into the Pod’s filesystem, mak‐
ing them available to all containers running in a Pod. We highly recommend this
approach when possible. The major benefit is that it decouples the secret store
entirely from the application. However, this does make the platform more complex,
as facilitating secret injection is now an offering of the Kubernetes-based platform.

Vault’s implementation of this model uses a MutatingWebhook pointed at a vault-
agent-injector. As Pods are created, based on annotations, the vault-agent-injector
adds an initContainer (used for retrieval of the initial secret) and a sidecar container
to keep secrets updated, if needed. Figure 7-6 demonstrates this flow of interaction
between the Pod and Vault.

Figure 7-6. Sidecar injection architecture. Along with my-app-container, all Vault Pods
are run as sidecars.

The configuration of the MutatingWebhook that will inject these vault-specific con‐
tainers is as follows:

apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
 labels:
 app.kubernetes.io/instance: vault
 app.kubernetes.io/managed-by: Helm
 app.kubernetes.io/name: vault-agent-injector
 name: vault-agent-injector-cfg
webhooks:
- admissionReviewVersions:
 - v1beta1
 clientConfig:
 caBundle: REDACTED
 service:

204 | Chapter 7: Secret Management

 name: vault-agent-injector-svc
 namespace: default
 path: /mutate
 port: 443
 failurePolicy: Ignore
 matchPolicy: Exact
 name: vault.hashicorp.com
 namespaceSelector: {}
 objectSelector: {}
 reinvocationPolicy: Never
 rules:
 - apiGroups:
 - ""
 apiVersions:
 - v1
 operations:
 - CREATE
 - UPDATE
 resources:
 - pods
 scope: '*'
 sideEffects: Unknown
 timeoutSeconds: 30

The MutatingWebhook is invoked on every Pod CREATE or UPDATE event. While
evaluation will occur on every Pod, not every Pod will be mutated, or injected with a
vault-agent. The vault-agent-injector is looking for two annotations in every Pod
spec:

vault.hashicorp.com/agent-inject: "true"

Instructs the injector to include a vault-agent initContainer, which retrieves
secrets and writes them to the Pod’s filesystem, prior to other containers starting.

vault.hashicorp.com/agent-inject-status: "update"

Instructs the injector to include a vault-agent sidecar, which runs alongside the
workload. It will update the secret, should it change in Vault. The initContainer
still runs in this mode. This parameter is optional and when it is not included,
the sidecar is not added.

When the vault-agent-injector does a mutation based on vault.hashicorp.com/
agent-inject: "true", the following is added:

initContainers:
- args:
 - echo ${VAULT_CONFIG?} | base64 -d > /tmp/config.json
 - vault agent -config=/tmp/config.json
 command:
 - /bin/sh
 - -ec
 env:
 - name: VAULT_CONFIG

External Providers | 205

 value: eyJhd
 image: vault:1.3.2
 imagePullPolicy: IfNotPresent
 name: vault-agent-init
 securityContext:
 runAsGroup: 1000
 runAsNonRoot: true
 runAsUser: 100
 volumeMounts:
 - mountPath: /vault/secrets
 name: vault-secrets

When the vault-agent-injector sees the annotation vault.hashicorp.com/agent-
inject-status: "update", the following is added:

containers:
 #
 # ORIGINAL WORKLOAD CONTAINER REMOVED FOR BREVITY
 #
- name: vault-agent
 args:
 - echo ${VAULT_CONFIG?} | base64 -d > /tmp/config.json
 - vault agent -config=/tmp/config.json
 command:
 - /bin/sh
 - -ec
 env:
 - name: VAULT_CONFIG
 value: asdfasdfasd
 image: vault:1.3.2
 imagePullPolicy: IfNotPresent
 securityContext:
 runAsGroup: 1000
 runAsNonRoot: true
 runAsUser: 100
 volumeMounts:
 - mountPath: /vault/secrets
 name: vault-secrets

With the agents present, they will retrieve and download secrets based on the Pod
annotations, such as the following annotation that requests a database secret from
Vault:

vault.hashicorp.com/agent-inject-secret-db-creds: "serets/db/creds"

By default, the secret value will be persisted as if a Go map was printed out. Syntacti‐
cally, it appears as follows. All secrets are put into /vault/secrets:

key: map[k:v],
key: map[k:v]

To ensure that formatting of a secret is optimal for consumption, Vault supports
adding templates into the annotation of Pods. This uses standard Go templating. For

206 | Chapter 7: Secret Management

example, to create a JDBC connection string, the following template can be applied to
a secret named creds:

spec:
 template:
 metadata:
 annotations:
 vault.hashicorp.com/agent-inject: "true"
 vault.hashicorp.com/agent-inject-status: "update"
 vault.hashicorp.com/agent-inject-secret-db-creds: "secrets/db/creds"
 vault.hashicorp.com/agent-inject-template-db-creds: |
 {{- with secret "secrets/db/creds" -}}
 jdbc:oracle:thin:{{ .Data.data.username }}/{{ .Data.data.password }}
 {{- end }}

A primary area of complexity in this model is authentication and authorization of the
requesting Pod. Vault provides several authentication methods. When running Vault
within Kubernetes and especially in this sidecar injection model, you may wish to set
up Vault to authenticate against Kubernetes so that Pods can provide their existing
Service Account tokens as identity. Setting up this authentication mechanism appears
as follows:

from within a vault container

vault write auth/kubernetes/config \
 kubernetes_host="https://$KUBERNETES_PORT_443_TCP_ADDR:443" \
 kubernetes_ca_cert=@/var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
 token_reviewer_jwt=\
 "$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"

This environment variable should be present in the Vault Pod by default.

Location of this Pod’s Service Account token, used to auth against the Kubernetes
API server when performing TokenReview requests.

When requests for secrets enter Vault, the requester’s Service Account can then be
validated by Vault. Vault does this by communicating through the Kubernetes Token‐
Review API to validate the identity of the requester. Assuming the identity is valida‐
ted, Vault must then determine whether the Service Account is authorized to access
the secret. These authorization policies and bindings between Service Accounts and
policies must be configured and maintained within Vault. In Vault, a policy is written
as follows:

from within a vault container
vault policy write team-a - <<EOF

path "secret/data/team-a/*" {
 capabilities = ["read"]
}
EOF

External Providers | 207

https://www.vaultproject.io/docs/auth

This has created a policy in Vault referred to as team-a, which provides read access to
all the secrets within secret/data/team-a/:

vault policy list
default
team-a
root

The last step is to associate the requester’s Service Account with the policy so Vault
can authorize access:

vault write auth/kubernetes/role/database \
 bound_service_account_names=webapp \
 bound_service_account_namespaces=team-a \
 policies=team-a \
 ttl=20m

Name of the requester’s Service Account.

Namespace of the requester.

Binding to associate this account to one or many policies.

Duration the vault-specific authorization token should live for. Once expired,
authn/authz is performed again.

The vault-specific process we have explored so far likely applies to any variety of
external secret management stores. You’ll be faced with some amount of overhead
regarding integration of identity and authorization around secret access when dealing
with systems beyond Kubernetes core.

CSI Integration
A newer approach to secret store integration is to leverage the secrets-store-csi-driver.
At the time of this writing, this is a Kubernetes subproject within kubernetes-sigs.
This approach enables integration with secret management systems at a lower level.
Namely, it enables Pods to gain access to externally hosted secrets without running a
sidecar or initContainer to inject secret data into the Pod. The result is secret interac‐
tion feeling more like a platform service and less like something applications need to
integrate with. The secrets-store-csi-driver runs a driver Pod (as a DaemonSet) on
every host, simliar to how you’d expect a CSI driver to work with a storage provider.

The driver then relies on a provider that is responsible for secret lookup in the exter‐
nal system. In the case of Vault, this would involve installing the vault-provider
binary on every host. The binary location is expected to be where the driver’s
provider-dir mount is set. This binary may preexist on the host or, most commonly,

208 | Chapter 7: Secret Management

it is installed via a DaemonSet-like process. The overall architecture would appear
close to what’s shown in Figure 7-7.

Figure 7-7. CSI driver interaction flow.

This is a fairly new approach that seems promising based on its UX and ability to
abstract secret providers. However, it does pose additional challenges. For example,
how is identity handled when the Pod itself is not requesting the secret? This is some‐
thing the driver and/or provider must figure out since they’re making requests on
behalf of the Pod. For now, we can look at the primary API, which includes the
SecretProviderClass. To interact with an external system such as Vault, the SecretPro‐
viderClass would look as follows:

apiVersion: secrets-store.csi.x-k8s.io/v1alpha1
kind: SecretProviderClass
metadata:
 name: apitoken
spec:
 provider: vault
 parameters:
 roleName: "teama"
 vaultAddress: "https://vault.secret-store:8000"
 objects: |
 array:
 - |
 objectPath: "/secret/team-a"
 objectName: "apitoken"
 objectVersion: ""

This is the location of Vault and would have the Service name (vault) followed
by the Namespace secret-store.

This is the path in Vault the Key/Value object was written to.

External Providers | 209

This is the actual object to lookup in team-a.

With the SecretProviderClass in place, a Pod can consume and reference this as
follows:

kind: Pod
apiVersion: v1
metadata:
 name: busybox
spec:
 containers:
 - image:
 name: busybox
 volumeMounts:
 - name: secrets-api
 mountPath: "/etc/secrets/apitoken"
 readOnly: true
 volumes:
 - name: secrets-api
 csi:
 driver: secrets-store.csi.k8s.com
 readOnly: true
 volumeAttributes:
 secretProviderClass: "apitoken"

When this Pod starts, the driver and provider attempt to retrieve the secret data. The
secret data will appear in a volume mount as any Kubernetes secret would, assuming
authentication and authorization to the external provider is successful. From the
driver Pod on the node, you can examine the logs to see the command sent to the
provider:

level=info msg="provider command invoked: /etc/kubernetes/
secrets-store-csi-providers/vault/provider-vault --attributes [REDACTED]
--secrets [REDACTED] [--targetPath /var/lib/kubelet/pods/
643d7d88-fa58-4f3f-a7eb-341c0adb5a88/volumes/kubernetes.io~csi/
secrets-store-inline/mount --permission 420]"

In summary, secret-store-csi-drive is an approach worth keeping an eye on. Over
time, if the project stabilizes and providers begin to mature, we could see the
approach becoming common for those building application platforms on top of
Kubernetes.

Secrets in the Declarative World
A common aspiration of application deployments, continuous integration, and con‐
tinuous delivery is to move purely into a declarative model. This is the same model
used in Kubernetes where you declare a desired state and over time controllers work
to reconcile the desired state with current state. For application developers and
DevOps teams, these aspirations commonly surface in a pattern called GitOps. A

210 | Chapter 7: Secret Management

central tenet of most GitOps approaches is to use one or many git repositories as the
source of truth for workloads. When a commit is seen on some branch or tag, it can
be picked up by build and deploy processes, often inside a cluster. This eventually
aims to make the available workload capable of receiving traffic. Models such as
GitOps are covered at greater length in Chapter 15.

When taking a purist-declarative approach, secret data creates a unique challenge.
Sure you can commit your configurations alongside your code, but what about the
credentials and keys used by your application? We have a feeling an API key showing
up in a commit might make some people unhappy. There are some ways around this.
One is, of course, to keep secret data outside of this declarative model and repent
your sins toward the GitOps gods. Another is to consider “sealing” your secret data,
in a way that accessing the data exposes nothing about the meaningful value, which is
what we’ll explore in the next section.

Sealing Secrets
How can we truly seal a secret? The concept is nothing new. Using asymmetric cryp‐
tography, we can ensure a way to encrypt secrets, commit them to places, and not
worry about anyone exposing the data. In this model, we have an encryption key
(typically public) and a decryption key (typically private). The idea is that any secret
created by the encryption key cannot have its value compromised without the private
key being compromised. Of course, we need to ensure many things to stay safe in this
model, such as choose a cipher we can trust, ensure the private key is always safe, and
establish both encryption key and secret data rotation policies. A model we’ll explore
in the coming sections is how this looks when a private key is generated in the cluster,
and developers can be distributed their own encryption key that they can use on their
secret data.

Sealed Secrets Controller
Bitnami-labs/sealed-secrets is a commonly used, open source project for achieving
what has been described. However, should you choose alternative tooling or build
something yourself, the key concepts are unlikely to change drastically.

The key component to this project is a sealed-secret-controller that runs inside the
cluster. By default, it generates the keys needed to perform encryption and decryp‐
tion. On the client side, developers use a command-line utility called kubeseal. Being
that we’re using asymmetric encryption, kubeseal needs to know only about the pub‐
lic key (for encryption). Once developers encrypt their data using it, they won’t even
be able to decrypt the values directly. To get started, we first deploy the controller to
the cluster:

Secrets in the Declarative World | 211

kubectl apply -f
https://github.com/bitnami-labs/sealed-secrets/releases/\
download/v0.9.8/controller.yaml

By default, the controller will create encryption and decryption keys for us. However,
it is possible to bring your own certificates. The public (cert) and private (key) are
stored in a Kubernetes Secret under kube-system/sealed-secret-key. The next step is
allowing developers to retrieve the encryption key so they can get to work. This
should not be done by accessing the Kubernetes Secret directly. Instead, the controller
exposes an endpoint that can be used to retrieve the encryption key. How you access
this service is up to you, but clients need to be able to call it using the following com‐
mand, which has its flow detailed in Figure 7-8:

kubeseal --fetch-cert

Figure 7-8. Sealed-secret-controller architecture.

Once the public key is loaded in kubeseal, you can generate SealedSecret CRDs that
contain (encrypted) secret data. These CRDs are stored in etcd. The sealed-secret-
controller makes the secrets available using standard Kubernetes Secrets. To ensure
SealedSecret data is converted to a Secret correctly, you can specify templates in the
SealedSecret object.

You can start with a Kubernetes Secret, like any other:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 dbuser: aGVwdGlvCg==
 dbkey: YmVhcmNhbm9lCg==

212 | Chapter 7: Secret Management

To “seal” the secret, you can run kubeseal against it and generate an encrypted output
in JSON:

kubeseal mysecret.yaml

{
 "kind": "SealedSecret",
 "apiVersion": "bitnami.com/v1alpha1",
 "metadata": {
 "name": "mysecret",
 "namespace": "default",
 "creationTimestamp": null
 },
 "spec": {
 "template": {
 "metadata": {
 "name": "mysecret",
 "namespace": "default",
 "creationTimestamp": null
 },
 "type": "Opaque"
 },
 "encryptedData": {
 "dbkey": "gCHJL+3bTRLw6vL4Gf......",
 "dbuser": "AgCHJL+3bT......"
 }
 },
 "status": {

 }
}

The preceding SealedSecret object can be placed anywhere. As long as the sealing key,
held by the sealed-secret-controller is not compromised, the data will be safe. Rota‐
tion is especially important in this model, which is covered in a subsequent section.

Once applied, the flow and storage look as described in Figure 7-9.

The Secret object made by the sealed-secret-controller is owned by its corresponding
SealedSecret CRD:

ownerReferences:
- apiVersion: bitnami.com/v1alpha1
 controller: true
 kind: SealedSecret
 name: mysecret
 uid: 49ce4ab0-3b48-4c8c-8450-d3c90aceb9ee

Secrets in the Declarative World | 213

Figure 7-9. Sealed-secret-controller interaction around managing sealed and unsealed
secrets.

This means that if the SealedSecret is deleted, its corresponding Secret object will be
garbage collected.

Key Renewal
If the sealed-secret private key is leaked (perhaps due to RBAC misconfiguration),
every secret should be considered compromised. It’s especially important that the
sealing key is renewed on an interval and that you understand the scope of “renewal.”
The default behavior is for this key to be renewed every 30 days. It does not replace
the existing keys; instead, it is appended to the existing list of keys capable of unseal‐
ing the data. However, the new key is used for all new encryption activity. Most
importantly, existing sealed secrets are not re-encrypted.

In the event of a leaked key, you should:

• Immediately rotate your encryption key.
• Rotate all existing secrets.
• Remember that just re-encrypting isn’t good enough. For example, someone

could easily go into git history, find the old encrypted asset, and use the compro‐
mised key on it. Generally speaking, you should have rotation and renewal strate‐
gies for passwords and keys, respectively.

214 | Chapter 7: Secret Management

SealedSecrets uses a trick where the Namespace is used during encryption. This pro‐
vides an isolation mechanic where a SealedSecret truly belongs to the Namespace it
was created in and cannot just be moved between them. Generally, this default behav‐
ior is the most secure and should just be left as is. However, it does support configu‐
rable access policies, which are covered in the sealed-secrets documentation.

Multicluster Models
Another key consideration for sealed-secret models is deployment topologies involv‐
ing many clusters. Many of these topologies treat clusters ephemerally. In cases such
as these, it may be harder to run sealed-secret-style controllers because—unless you
are sharing private keys among them all—you now need to worry about having
unique keys for each cluster. Additionally, the point of interaction a developer has to
get the encryption key (as described in previous sections) goes from one cluster to
many. While by no means an impossible problem to solve, it is worth considering.

Know the Scope!
When working with clients, we often run into a misunderstanding around what Seal‐
edSecrets solves for. Commonly, there is the perception that you can use a SealedSe‐
cret approach as an alternative to encrypting etcd or running an enterprise-grade
secret store such as Vault. These concerns are not what sealed secrets aim to solve!
This approach enables us to encrypt and safely store data in git repositories. However,
the private key and unencrypted secrets still end up in Kubernetes. This means, in the
absence of taking any steps beyond Kubernetes Secret API defaults, they will exist in
an unencrypted state (at the application layer). In summary, be sure to know the
scope of this and all other solutions talked about in this chapter!

Best Practices for Secrets
Application consumption of secrets is highly dependent on the language and frame‐
works at play. While variance is high, there are general best practices we recommend
and encourage application developers to consider.

Always Audit Secret Interaction
A Kubernetes cluster should be configured with auditing enabled. Auditing allows
you to specify the events that occur around specific resources. This will tell you when
and by whom a resource was interacted with. For mutations, it will also detail what
changed. Auditing secret events is critical in reacting to access issues. For details
about auditing, see the cluster audit documentation.

Best Practices for Secrets | 215

Don’t Leak Secrets
While leaking secrets is never desirable, in multitenant Kubernetes environments it’s
important to consider how secrets can be leaked. A common occurrence is to acci‐
dentally log a secret. For example, we have seen this a few times when platform engi‐
neers build operators (covered in Chapter 11). These operators often deal with secrets
for the systems they are managing and potentially external systems they need to con‐
nect to. During the development phase, it can be common to log this secret data for
the sake of debugging. Logs go to stdout/stderr and are, in many Kubernetes-based
platforms, forwarded to a log analysis platform. This means the secret may pass in
plain text through many environments and systems.

Kubernetes is primarily a declarative system. Developers write manifests that can
easily contain secret data, especially when testing. Developers should work with cau‐
tion to ensure that secrets used while testing don’t get committed into source control
repositories.

Prefer Volumes Over Environment Variables
The most common ways to access secrets provided by Kubernetes is to propagate the
value into an environment variable or volumes. For most applications, volumes
should be preferred. Environment variables can have a higher chance of being leaked
through various means—for example, an echo command performed while testing or
a framework automatically dumping environment variables on startup or during a
crash. This doesn’t mean these concerns are inherently solved for with volumes!

Security aside, the key benefit to app developers is that when secrets change, volumes
are automatically updated; this will enable hot-reloading of secrets such as tokens.
For a secret change to take place with environment variables, Pods must be restarted.

Make Secret Store Providers Unknown to Your Application
There are several approaches an application can take to retrieve and consume its
required secrets. These can range from calling a secret store within business logic to
expecting an environment variable to be set on startup. Following the philosophy of
separation of concerns, we recommend implementing secret consumption in a way
that whether Kubernetes, Vault, or other providers are managing the secret does not
matter to the application. Achieving this makes your application portable and plat‐
form agnostic, and it reduces the complexity of your app’s interaction. Complexity is
reduced because for an application to retrieve secrets from a provider it needs to both
understand how to talk to the provider and be able to authenticate for communica‐
tion with the provider.

216 | Chapter 7: Secret Management

To achieve this provider-agnostic implementation, applications should prefer loading
secrets from environment variables or volumes. As we said earlier, volumes are the
most ideal. In this model, an application will assume the presence of secrets in one or
many volumes. Since volumes can be updated dynamically (without Pod restart) the
application can watch the filesystem if a hot-reload of secrets is desired. By consum‐
ing from the container’s local filesystem, it does not matter whether the backing store
is Kubernetes or otherwise.

Some application frameworks, such as Spring, include libraries to communicate
directly to the API server and auto-inject secrets and configuration. While these util‐
ities are convenient, consider the points just discussed to determine what approaches
hold the most value to your application.

Summary
In this chapter we’ve explored the Kubernetes Secret API, ways to interact with
secrets, means of storing secrets, how to seal secrets, and some best practices. With
this knowledge, it’s important we consider the amount of depth we’re interested in
protecting, and with that, determining how to prioritize solving for each layer.

Summary | 217

CHAPTER 8

Admission Control

We have written many times in this book about the flexible, modular design of
Kubernetes being one of its great strengths. Sensible defaults can be replaced, aug‐
mented, or built upon to provide alternative or more fully featured experiences for
platform consumers. Admission control is one area that particularly benefits from
this flexible design goal. Admission control is concerned with validating and mutat‐
ing requests to the Kubernetes API server before they are persisted in etcd. This abil‐
ity to intercept objects with fine granularity and control opens up a number of
interesting use cases. For example:

• Ensuring that new objects cannot be created in a Namespace that is currently
being deleted (in terminating state)

• Enforcing that new Pods are not going to run as the root user
• Making sure that the total sum of memory used by all the Pods in a Namespace

does not exceed a user-defined limit
• Ensuring that Ingress rules cannot be overwritten accidentally
• Adding a sidecar container to every Pod (e.g., Istio)

First we’ll take a high-level look at the admission chain, which is the process all
requests to the API server go through. Then we’ll move on to cover the in-tree con‐
trollers. These are built-in admission controllers that can be enabled and disabled via
flags to the API server and enable some of the preceding use cases. Other use cases
require more custom implementation and are integrated via a flexible webhook
model. We’ll dedicate a lot of time to diving into the webhook model as it provides
the most powerful and flexible options for integrating admission control into a clus‐
ter. Lastly, we’ll finish by covering Gatekeeper, which is an opinionated open source

219

project that implements the webhook model and provides additional user-friendly
functionality.

Further into this chapter we’ll dive into some code written in the
Go programming language. Kubernetes and many other cloud
native tools are implemented in Go due to its rapid speed of devel‐
opment, strong concurrency primitives, and clean design. It’s not
necessary to know Go to understand most of this chapter (but we’d
advise you to look into it if you’re interested in Kubernetes tooling),
and we will discuss the trade-off of needing development skills
when weighing custom versus off-the-shelf tooling choices.

The Kubernetes Admission Chain
Before we look closer at the functionality and mechanics of individual controllers,
let’s first understand the flow of requests to and from the Kubernetes API server as
shown in Figure 8-1.

Figure 8-1. Admission chain.

Initially when requests arrive at the API server they are authenticated and authorized
to ensure that the client is valid and able to perform the requested action (e.g., create
a Pod in a specific Namespace) according to any configured RBAC rules.

In the next stage, requests pass through mutating admission controllers represented
by the leftmost blue box in Figure 8-1. These can be built-in controllers or calls to
external (out-of-tree) mutating webhooks (we’ll discuss these later in the chapter).
These controllers are able to modify the resource attributes before they pass onto
future phases. As an example of why this might be useful, let’s consider the Service
Account controller (which is built in and enabled by default). When a Pod is submit‐
ted, the Service Account controller inspects the Pod’s spec to ensure that it has the
serviceAccount (SA) field set. If not, then it adds the field and sets it to the default
SA for the Namespace. It also adds ImagePullSecrets and a Volume to allow the Pod
to access its Service Account token.

220 | Chapter 8: Admission Control

https://oreil.ly/K6e5E

Requests then undergo schema validation to ensure that the object being submmitted
is valid according to the defined schema. Here it ensures things like mandatory fields
are set. This ordering is important as it means we can set fields in mutating admission
controllers before the object is validated.

The final stage before the object is persisted to etcd is for it to pass through validating
admission controllers, represented by the rightmost blue box in Figure 8-1. These can
be built-in controllers or calls to external (out-of-tree) validating webhooks (we’ll
briefly cover these later in the chapter). These validating controllers differ from
mutating controllers in the sense that they are only able to admit or reject the request,
not modify the payload. They differ from the prior schema validation step in that they
are concerned with validating against operational logic, not a standardized schema.

An example validating admission controller is the NamespaceLifecycle controller. It
has several jobs related to Namespaces, but the one we’ll take a look at is its responsi‐
bility to reject requests for new objects to be created in a Namespace that is currently
being deleted. We can see the behavior in this code snippet:

// ensure that we're not trying to create objects in terminating Namespaces
if a.GetOperation() == admission.Create {
 if namespace.Status.Phase != v1.NamespaceTerminating {
 return nil
 }

 err := admission.NewForbidden(a, fmt.Errorf("unable to create new content in
 namespace %s because it is being terminated", a.GetNamespace()))
 if apierr, ok := err.(*errors.StatusError); ok {
 apierr.ErrStatus.Details.Causes = append(apierr.ErrStatus.Details.Causes,
 metav1.StatusCause{
 Type: v1.NamespaceTerminatingCause,
 Message: fmt.Sprintf("namespace %s is being terminated", a.GetNamespace()),
 Field: "metadata.namespace",
 })
 }
 return err
}

If the operation is a Create but the Namespace is currently not terminating,
return no error. The request would pass this controller.

Else, return an API error stating that the Namespace is being terminated. If an
error is returned, the request is denied.

For a request to pass and the object to be persisted into etcd it must
be admitted by all validating admission controllers. For it to be
denied, only one controller needs to reject it.

The Kubernetes Admission Chain | 221

In-Tree Admission Controllers
When Kubernetes was first released there was only a minimal number of interfaces
for users to plug in or extend external functionality, such as the Container Network
Interface (CNI). Other integrations with cloud providers, storage providers, and the
implementation of admission controllers were all baked into the core Kubernetes
code base and often described as being in-tree. Over time the project has sought to
increase the number of pluggable interfaces, and we have seen the creation of the
Container Storage Interface (CSI) and the movement toward external cloud
providers.

Admission controllers are one area where many core features are still in-tree. Kuber‐
netes ships with many different admission controllers that can be enabled or disabled
by configuring API server flags. This model has proved problematic for those users of
cloud-managed Kubernetes platforms who historically did not have access to config‐
ure those flags. PodSecurityPolicy (PSP) is an example of a controller that enables
advanced and robust security capabilities across the cluster but is not enabled by
default, therefore excluding users from benefitting from it.

However, admission control is slowly following the trend of shifting code out of the
API server and moving toward increased pluggability. The start of this process came
with the addition of mutating and validating webhooks. These are two flexible admis‐
sion controllers that allow us to specify that the API server should forward requests
(that match specific criteria) and delegate admission decisions to external webhooks.
We will discuss these in greater detail in the next section.

Another step in this process is the announced deprecation of the current PodSecuri‐
tyPolicy built-in controller. Although there are multiple approaches to replace it, we
think the implementation of PSPs will be delegated to an external admission control‐
ler, as the community continues to move code out of tree. In fact, we believe that
more of the built-in admission controllers will be eventually moved out of tree. These
would be replaced either by recommendations to utilize third-party tooling or stan‐
dardized components that live in the Kubernetes upstream organization but not the
core code base, thereby allowing users a sane default choice with the ability to replace
if necessary.

222 | Chapter 8: Admission Control

https://github.com/kubernetes/enhancements/issues/5

A subset of the built-in admission controllers is enabled by default.
These are intended as a set of sane defaults that should work well
for most clusters. We won’t replicate the list here, but you should
take care to ensure the controllers you need are enabled. Also note
that the UX for this feature can be a little confusing. To enable
additional (nondefault) controllers you must use the --enable-
admission-plugins flag to the API server, and to disable default
controllers you must specify the --disable-admission-plugins
list parameter.

There is a lot of good information on the in-tree controllers available in the official
Kubernetes documentation, so we’re not going to cover much more on them here.
The real power of admission controllers is enabled by the two special validating and
mutating webhooks, which is where we’re headed next!

Webhooks
All admission controllers sit in the critical path for requests going
to the Kubernetes API server. They have varying scopes, so not all
requests may be intercepted, but you should definitely be aware of
this when enabling and/or injecting them. This is especially rele‐
vant when discussing webhook admission controllers for two rea‐
sons. First, they have added latency as they reside out of tree and
must be called via HTTPS. Second, they have a broad potential
scope of functionality, maybe even calling out to third-party sys‐
tems. Great care should be taken to make admission controllers
perform as efficiently as possible, returning at the earliest
opportunity.

Webhooks are a special type of admission controller. We can configure the Kuber‐
netes API server to send an API request to external webhook endpoints and receive a
decision (whether the original request should be allowed, denied, or altered/mutated)
response. This is incredibly powerful for a number of reasons:

• The receiving web server can be written in any language that can expose an
HTTPS listener. We can take advantage of web frameworks, libraries, and exper‐
tise that may be available to us to implement any logic we need to make admis‐
sion decisions.

• They can be run in or out of cluster. We can take advantage of the discovery and
operator primitives that are available to us if we want to run them in-cluster, or
we can implement reusable functionality in a serverless function, for example.

Webhooks | 223

• We are able to make callouts to systems and datastores external to Kubernetes to
make policy decisions. For instance, we could query a centralized security system
to check if specific images were approved for use in Kubernetes manifests.

The API server will call webhooks over TLS, so webhooks must
present certificates trusted by the Kubernetes API. This is often
achieved by deploying Cert Manager into the cluster and automati‐
cally generating certificates. If running out of cluster, you will need
to provision certificates that are trusted by the Kubernetes API
server, either from a public root CA or some internal CA that
Kubernetes is aware of.

For the webhook model to work, there must be a defined schema for the request and
response messages exchanged between the API server and the webhook server. In
Kubernetes this is defined as an AdmissionReview object and is a JSON payload that
contains information about the request, including:

• API version, group, and kind
• Metadata such as the name and Namespace, and a unique ID to correlate it with

the response decision
• The operation attempted (e.g., CREATE)
• Information about the user initiating the request including their group

membership
• Whether this is a dry run request (this is important as we’ll see later when we dis‐

cuss design considerations)
• The actual resource

All of this information can be used by the receiving webhook to calculate an admis‐
sion decision. Once decided, the server needs to respond with an AdmissionReview
message of its own (this time with a response field). It will contain:

• The unique ID from the request (for correlation)
• Whether the request should be allowed to proceed
• An optional customized error status and message

Validating webhooks are not able to modify the requests sent to them and can admit
or reject only the original object. This restriction makes them fairly limited; however,
they are a good fit when ensuring that objects applied to the cluster conform to secu‐
rity standards (specific user IDs, no host mounts, etc.) or contain all required meta‐
data (internal team labels, annotations, etc.).

224 | Chapter 8: Admission Control

In the case of a mutating webhook the response structure can also include a patch set
(if desired). This is a base64-encoded string containing a valid JSONPatch structure
encapsulating the changes that should be made to the request before it is admitted to
the API server. If you want a more detailed explanation of all the fields and structure
for AdmissionReview objects, then the official documentation does a great job here.

A simple example of a mutating controller might be one that adds a set of labels con‐
taining team- or workload-specific metadata to Pods or Deployments. Another more
complex but common use of mutating controllers you may come across is the injec‐
tion of a sidecar proxy in many service mesh implementations. The way this works is
that the service mesh (Istio in this case) runs an admission controller that mutates
Pod specs to add a sidecar container that will participate in the data plane of the
mesh. This injection occurs by default but can be overridden by annotations at the
Namespace or Pod level to provide additional control.

This model is an effective way of enriching Deployments with additional functional‐
ity but hiding that complexity to improve the end-user experience. However, as with
many decisions this can be a double-edged sword. One downside of mutating con‐
trollers is that visibility is removed from the end user, with objects being applied to
the cluster that are not consistent with those that they originally created, potentially
causing confusion if the user is unaware that mutating controllers are in operation on
the cluster.

Configuring Webhook Admission Controllers
Cluster administrators can use the MutatingWebhookConfiguration and Validating‐
WebhookConfiguration kinds to specify the configuration of dynamic webhooks.
Following is an annotated example briefly describing the relevant sections. We’ll dig
into some of the more advanced considerations for some of these fields in the follow‐
ing section:

apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
 name: "test-mutating-hook"
webhooks:
- name: "test-mutating-hook"
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: test-ns
 name: test-service

Webhooks | 225

https://oreil.ly/NWagy

 path: /test-path
 port: 8443
 caBundle: "Ci0tLS0tQk...tLS0K"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: "None"
 timeoutSeconds: "5"
 reinvocationPolicy: "IfNeeded"
 failurePolicy: "Fail"

Matching rules. What API/kind/version/operations this webhook should be sent.

The operations that should trigger a call to the webhook.

Which kind to target.

Whether Namespace-scoped or cluster-scoped resources should be targeted.

Describes how the API server should connect to the webhook. In this case it’s in
cluster at test-service.test-ns.svc.

A PEM encoded CA bundle that will be used to validate the webhook’s server
certificate.

Declare the admissionReviewVersions that the webhook supports.

Describes whether the webhook has external side effects (calls/dependencies to
external systems).

How long to wait until triggering the failurePolicy.

Whether this webhook can be re-invoked (this may happen after other webhooks
have been called).

Whether the webhook should fail open or closed. This has security implications.

As you can see in the preceding configuration, we can be very granular about select‐
ing which requests we want to intercept with our admission webhooks. For example,
if we wanted to target only requests that are creating Secrets, we could use the follow‐
ing rule:

<...snip...>
rules:
- apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["secrets"]

226 | Chapter 8: Admission Control

 scope: "Namespaced"
<...snip...>

We can additionally combine this with Namespace or object selectors, which enable
further granularity. These allow us to specify any number of Namespaces to target
and/or objects with specific labels; for instance, in the following snippet we are
choosing only Secrets that are in Namespaces that have label of webhook: enabled:

<...snip...>
namespaceSelector:
 matchExpressions:
 - key: webhook
 operator: In
 values: ["enabled"]
<...snip...>

Webhook Design Considerations
There are several factors to be mindful of when writing and implementing admission
webhooks. We’ll talk more in detail about how these impact some real-world scenar‐
ios in the next section, but at a high level you should be aware of the following
concerns:

Failure modes
If a webhook is unreachable or sends an unknown response back to the API
server, it is treated as failing. Administrators must choose whether to fail open or
closed in this situation by setting the failurePolicy field to Ignore (allow the
request) or Fail (reject the request).

For security-related (or critical functionality) webhooks, Fail is the
safest option. For noncritical hooks Ignore may be safe (potentially
in conjunction with a reconciling controller as a backup). Combine
these recommendations with those discussed under the perfor‐
mance item in this list.

Ordering
The first thing to note with regards to API server request flow is that mutating
webhooks will all be called (potentially more than once) before validating web‐
hooks are called. This is important because it enables validating webhooks
(which may reject a request based on security requirements) always to see the
final version of a resource before it is applied.

Mutating webhooks are not guaranteed to be called in a specific order and may
be called multiple times if subsequent hooks modify a request. This can be modi‐
fied by specifying the reinvocationPolicy, but ideally webhooks should be
designed for idempotency to ensure ordering does not affect their functionality.

Webhooks | 227

Performance
Webhooks are called as part of the critical path of requests flowing to the API
server. If a webhook is critical (security-related) and fails closed (if a timeout
occurs, the request is denied), then it should be designed with high availability in
mind. As one of our esteemed former colleagues often comments, admission
control can become bottleneck-as-a-service if users are not careful in its
application.

If a webhook is resource-intensive and/or has external dependencies, considera‐
tion should be taken for how often the hook will be called, and the performance
impact of adding the functionality into the critical path. In these situations a con‐
troller that reconciles objects once in-cluster may be preferable. When writing
webhook configurations you should try to scope them down as tightly as possible
to ensure they are not called unnecessarily or on irrelevant resources.

Side effects
Some webhooks may be responsible for modifying external resources (e.g., some
resource in a cloud provider) based on a request to the Kubernetes API. These
webhooks should be aware of and respect the dryRun option and skip external
state modification when it is enabled. Webhooks are responsible for declaring
that they either have no side effects or respect this option by setting the sideEf
fects field. More information on the valid options for this field and the behavior
of each option is detailed in the official documentation.

Writing a Mutating Webhook
In this section we’ll take a look at two approaches for writing a mutating admission
webhook. First we’ll talk briefly about implementing one with a plain HTTPS handler
that is language agnostic. Then we’ll take a deeper dive into a real use case while cov‐
ering the controller-runtime upstream project, which is designed to help teams
develop Kubernetes controller components.

Both of the solutions in this section require expertise in either Go (for controller-
runtime) or another programming language. There are cases where this requirement
is an impediment to creating and implementing admission controllers. If your teams
don’t have the experience or need to write bespoke webhooks, the final section in this
chapter offers a solution for configurable admission policies that don’t require pro‐
gramming knowledge.

228 | Chapter 8: Admission Control

https://twitter.com/mauilion
https://oreil.ly/8FGic

Plain HTTPS Handler
One of the advantages of the webhook model for admission controllers is that we’re
able to implement them from scratch in any language. The examples we’re using here
are written in Go, but any language capable of TLS-enabled HTTP handling and
JSON parsing is acceptable.

This way of writing a webhook provides the most flexibility to integrate with the cur‐
rent stacks in use but comes at the cost of many high-level abstractions (although lan‐
guages with mature Kubernetes client libraries can alleviate this).

As described in the introduction to this section, admission control webhooks receive
and return requests from and to the API server. The schema of these messages is well
known, so it’s possible to receive the request and modify the object (via patches)
manually.

For a concrete example of this approach let’s take an in-depth look at the AWS IAM
Roles for Service Accounts mutating webhook. This webhook is used to inject a Pro‐
jected Volume into Pods with a Service Account token that can be used for authenti‐
cation to AWS services. (See Chapter 10 for more detail on the security aspect of this
use case.)

// <...snip...>
type patchOperation struct {
 Op string `json:"op"`
 Path string `json:"path"`
 Value interface{} `json:"value,omitempty"`
}

volume := corev1.Volume{
 Name: m.volName,
 VolumeSource: corev1.VolumeSource{
 Projected: &corev1.ProjectedVolumeSource{
 Sources: []corev1.VolumeProjection{
 {
 ServiceAccountToken: &corev1.ServiceAccountTokenProjection{
 Audience: audience,
 ExpirationSeconds: &m.Expiration,
 Path: m.tokenName,
 },
 },
 },
 },
 },
}

patch := []patchOperation{
 {
 Op: "add",
 Path: "/spec/volumes/0",

Writing a Mutating Webhook | 229

https://oreil.ly/rW3ym
https://oreil.ly/rW3ym

 Value: volume,
 },
}

if pod.Spec.Volumes == nil {
 patch = []patchOperation{
 {
 Op: "add",
 Path: "/spec/volumes",
 Value: []corev1.Volume{
 volume,
 },
 },
 }
}

patchBytes, err := json.Marshal(patch)
// <...snip...>

Define a patchOperation struct that will be marshaled to JSON for the response
back to the Kubernetes API server.

Construct the Volume struct with the relevant ServiceAccountToken content.

Create an instance of the patchOperation with the Volume content previously
constructed.

If there are currently no Volumes, create that key and add the Volume content
previously constructed.

Create the JSON object containing the patch contents.

Note that the actual implementation for this admission webhook includes some addi‐
tional functionality that also adds to the patch set (e.g., adding environment vari‐
ables), but we’re going to ignore that for the purposes of this example. After the patch
set is complete we need to return an AdmissionResponse object that contains our
patch set (the Patch field in the following snippet):

return &v1beta1.AdmissionResponse{
 Allowed: true,
 Patch: patchBytes,
 PatchType: func() *v1beta1.PatchType {
 pt := v1beta1.PatchTypeJSONPatch
 return &pt
 }(),
}

230 | Chapter 8: Admission Control

We can see in this example that there is a lot of manual work to be done generating
patch sets and constructing the appropriate response for the API server. This is even
present when utilizing some of the Kubernetes libraries available in the Go language.
However, there is a large amount of supporting code we’ve omitted that’s required to
handle errors, graceful shutdown, HTTP header handling, and so on.

While this approach affords us maximum flexibility, it requires more domain knowl‐
edge and is more complex to implement and maintain. This trade-off will be all-too-
familiar for most readers. and care needs to be taken when evaluating your specific
use cases and internal expertise.

In the next section we’ll see an approach that removes a lot of the boilerplate and
bespoke work in favor of implementing an upstream helper framework, controller-
runtime.

Controller Runtime
In this section we’re going to dive into the upstream project controller-runtime and
see what abstractions it provides on top of the native Kubernetes client libraries to
make writing admission controllers more streamlined. To provide more color we’ll
use an open source controller we built to satisfy a community requirement as a way of
illustrating some of the advantages of controller-runtime and cover some of the tech‐
niques and pitfalls previously discussed. While we have simplified the functionality
and code of the controller somewhat for brevity, the core underlying ideas remain.

Kubebuilder
The upstream repository contains examples that can help you get started implement‐
ing webhooks for built-in types (e.g., Pod, Deployment, etc.). If you want to imple‐
ment webhooks for custom resources (CRDs), then the Kubebuilder project is
probably more suitable for a holistic solution. Kubebuilder utilizes controller-
runtime and provides additional generation utilities and helpers. We’ll dive more into
CRDs and Kubebuilder later in this book.

If you are using Kubebuilder, the project provides a convenient marker system that
allows you to generate the relevant manifests to deploy your webhook to the Kuber‐
netes cluster. For example:

/* +kubebuilder:webhook:path=/infoblox-ipam,mutating=true,failurePolicy=fail,
groups="infrastructure.cluster.x-k8s.io",resources=vspheremachines,
verbs=create,versions=v1alpha3,
name=mutating.infoblox.ipam.vspheremachines.infrastructure.cluster.x-k8s.io */

The controller we’ll be walking through is a webhook designed to perform the follow‐
ing actions:

Writing a Mutating Webhook | 231

https://github.com/kubernetes-sigs/controller-runtime
https://oreil.ly/sBfth
https://github.com/kubernetes-sigs/kubebuilder

1. Watch for Cluster API VSphereMachine objects.
2. Based on a configurable field, allocate an IP address in an external IPAM system

(in this case, Infoblox).
3. Insert the allocated IP into the static IP field in the VSphereMachine.
4. Allow the mutated requested through to the Kubernetes API server to be

actioned (by the Cluster API controller) and persisted into etcd.

This use case is a good candidate for a custom-built (using controller-runtime)
mutating webhook for a couple of reasons:

• We need to mutate the request to add an IP address before the request hits the
API server (otherwise it would error).

• We’re calling out to an external system (Infoblox) and can therefore leverage its
Go library for interactions.

• Small amount of boilerplate allows newer community and/or client developers to
understand and extend the functionality.

Although out-of-scope for this chapter, we did accompany this
webhook with a controller that runs in the cluster. This is impor‐
tant when your webhooks interact with and modify or depend on
external state (Infoblox in this case) because you should be con‐
stantly reconciling that state, rather than relying on the state just
seen at admission time. This is something to consider when build‐
ing a mutating admission webhook and may increase the complex‐
ity of your solutions if the extra component is required.

Controller-runtime webhooks must implement a Handle method whose signature is:

func (w *Webhook) Handle(
 ctx context.Context,
 req admission.Request) admission.Response

The admission.Request object is an abstraction over the raw JSON that webhooks
receive and provides easy access to the raw applied object, the operation being exe‐
cuted (e.g., CREATE), and many other useful pieces of metadata:

vm := &v1alpha3.VSphereMachine{}
err := w.decoder.DecodeRaw(req.Object, vm)
if err != nil {
 return admission.Errored(http.StatusBadRequest, err)
}

Create a new VSphereMachine object.

232 | Chapter 8: Admission Control

Use the built-in decoder to decode the raw object from the request into the Go
VSphereMachine object.

Use the convenience method Errored to construct and return an error response
if the decoding step returns an error.

The vm object from the request can be modified or validated in any way before the
response is returned. In the following example we are checking to see if the infoblox
annotation (denoting that our webhook should take action) is present on the VSpher‐
eMachine object. This is an important step to perform early on in the webhook
because we can short-circuit out of any further logic if no action should be taken. If
the annotation is not present, we utilize the convenience Allowed method to return
the unmodified object through to the API server as quickly as possible. As we dis‐
cussed earlier in “Webhook Design Considerations” on page 227, webhooks are on
the critical path for API requests, and any actions we perform inside them should be
as fast as possible:

if _, ok := vm.Annotations["infoblox"]; !ok {
 return admission.Allowed("Nothing to do")
}

Assuming we should handle this request and the preceding logic does not trigger, we
retrieve an IP address from Infoblox (not shown) and write it directly into the vm
object:

vm.Spec.VirtualMachineCloneSpec.Network.Devices[0].IPAddrs[0] = ipFromInfoblox
marshaledVM, err := json.Marshal(vm)
if err != nil {
 return admission.Errored(http.StatusInternalServerError, err)
}
return admission.PatchResponseFromRaw(req.Object.Raw, marshaledVM)

Set the IP field on the vm object, thereby mutating it.

Marshal the vm object to JSON ready to send back to the API server.

If the marshaling fails we’ll use the convenience error method we saw earlier.

Another convenience method, PatchReponseFromRaw, sends back the response.
We’ll discuss this in more detail later.

Writing a Mutating Webhook | 233

There are use cases where you may want and/or need to intercept
DELETE requests to the API server. An example of this might be to
clean up some external state that might be tied to resources in the
cluster. While this can be done in a webhook, you should consider
whether you’re failing open or closed and the risks of having mis‐
aligned state in the former case. Ideally, deletion logic should be
implemented with a finalizer and a custom controller running in
the cluster to guarantee cleanup.

In the preceding snippet we see another of controller-runtime’s convenience meth‐
ods, PatchResponseFromRaw. This method will automatically calculate the JSONPatch
diffs required between the original raw object and the one we have been modifying
before sending the correctly serialized response. Compared to the more manual
approach covered in the previous section, this is a great way to remove some boiler‐
plate and make our controller code leaner.

In the case of a simple validating hook, we can also leverage convenience functions
like admission.Allowed() and admission.Denied() that can be used after process‐
ing the required logic.

If we’re manipulating external state as part of an admission control‐
ler we need to be aware of and check for the req.DryRun condition.
If this is set, the user is only executing a dry run, no-op request and
we should ensure that our controller does not mutate external state
in this case.

Controller-runtime provides a very strong foundation with which to build admission
controllers, allowing us to focus on the logic we want to implement with minimal
boilerplate. However, it does require programming expertise, and the admission logic
is obfuscated inside the controller code, potentially leading to more confusing or
unexpected results for end users.

In the next section of this chapter, we’ll take a look at an emerging model that central‐
izes policy logic and introduces a standard language to author decision rules. The
tools appearing in this area strive to combine the flexibility of a custom controller
with greater usability features for less technical operators and/or end users.

Centralized Policy Systems
So far we’ve looked at a number of different methods for implementing and configur‐
ing admission controllers. Each has its own specific trade-offs that have to be consid‐
ered when choosing to adopt them. In this final section, we’re going to cover an
emerging model of centralizing policy logic into one place and using standardized
languages to express the allow/deny rules. This model has two main advantages:

234 | Chapter 8: Admission Control

https://oreil.ly/Y1iGD

• Programming knowledge is not required to create admission controllers, as we
can express rules in a specific policy language (as opposed to a general-purpose
programming language). This also means that changes to logic do not require
rebuilding and redeploying the controller each time.

• Policies and rules are stored in a single location (in most cases, the cluster itself)
for viewing, editing, and auditing.

This model is being built out and implemented by several open source tools and usu‐
ally comprises two components:

• A policy/query language that can express conditions on whether an object should
be admitted or rejected.

• A controller that sits in the cluster serving as an admission controller. The con‐
troller’s job is to evaluate the policies/rules against objects coming into the API
server and make admit or reject decisions.

For the rest of this chapter we’re going to focus on the most popular implementation
of this centralized policy model called Gatekeeper, although other tools such as
Kyverno are also gaining traction. Gatekeeper is built on a lower-level tool called
Open Policy Agent (OPA). OPA is an open source policy engine that applies policies
written in the Rego language to ingested JSON documents and returns a result.

Rego Language
Rego is the declarative query language used by Open Policy Agent. It was created by
the creators of OPA and is used as the policy language in the OPA engine. It is not
designed to be a general-purpose programming language and is specialized for query‐
ing and performing logic operations over data structures. This approach results in a
fairly lean syntax, but it can be difficult to read and write initially. We won’t cover
Rego syntax in detail in this book, but there is an online training portal where users
can learn Rego and test their knowledge for free.

A calling application can utilize OPA by receiving the result and deciding how to pro‐
ceed (making a policy decision). We know from this chapter that Kubernetes has a
standard schema for sending requests and receiving admission decision responses, so
it immediately seems like this is a promising fit. However, OPA itself is platform/
context agnostic and is simply a policy engine that operates on JSON. We need a con‐
troller that will act as an interface between the OPA engine and Kubernetes. Gate‐
keeper is the tool that fulfills that interface role and provides some additional
Kubernetes-native functionality around templates and extensibility to make it easier
for platform operators to author and apply policies. Gatekeeper is deployed to the

Centralized Policy Systems | 235

https://github.com/open-policy-agent/gatekeeper
https://kyverno.io
https://academy.styra.com/courses/opa-rego

cluster as an admission controller that allows users to write rules in Rego to make
admission policy decisions about Kubernetes resources being applied to the cluster.

Gatekeeper enables a model whereby cluster operators can create and expose preset
policy templates as ConstraintTemplate CRDs. These templates create new CRDs
for the specific constraints that can accept custom input parameters (much like a
function). This approach is powerful because end users can then create an instance of
the constraint with their own values, which will be used by Gatekeeper as part of
admission control to the cluster.

For some of the reasons detailed in the latter part of this section,
you should be aware that Gatekeeper currently fails open by default.
This can have serious security implications, and you should care‐
fully understand the trade-offs (detailed in this chapter and in
much of the official documentation) involved in each approach
before implementing these solutions in production.

One common rule we’ve implemented in the field is ensuring that teams cannot over‐
write existing Ingress resources. This is a requirement in most Kubernetes clusters,
and some Ingress controllers (e.g., Contour) provide mechanisms to protect against
this out of the box. However, if this is not the case with your tooling, you can use
Gatekeeper to enforce this rule. This scenario is one of several maintained as a library
of common policies in the official Gatekeeper documentation.

In this situation it’s necessary to make a policy decision based on data that exists
externally to the object that’s being applied to the cluster. We need to query Kuber‐
netes directly to know what Ingress resources already exist and to be able to inspect
metadata around them to compare against the one being applied.

Let’s take an even more complex example that builds on these ideas, and we’ll walk
through the implementation of each resource. In this case, we’re going to annotate a
Namespace with a regex pattern and ensure any Ingress applied in that Namespace
conforms to the regex. We mentioned earlier that we need information about the
cluster to be available to Gatekeeper to make policy decisions. This is achieved by
defining a sync config to specify which resources in Kubernetes should be synchron‐
ized to Gatekeeper’s cache (in order to provide that queryable data source):

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
 name: config
 namespace: "gatekeeper-system"
spec:
 sync:
 syncOnly:
 - group: "extensions"

236 | Chapter 8: Admission Control

https://oreil.ly/LINGy

 version: "v1beta1"
 kind: "Ingress"
 - group: "networking.k8s.io"
 version: "v1beta1"
 kind: "Ingress"
 - group: ""
 version: "v1"
 kind: "Namespace"

The sync section specifies all the Kubernetes resources that Gatekeeper should
cache to assist with policy decisions.

The cache exists to remove the need for Gatekeeper to keep query‐
ing the Kubernetes API server for the required resources. However,
there is potential for Gatekeeper to make decisions based on stale
data. To mitigate this, there is an audit capability that intermittently
runs policies against existing resources and records violations in
the status field of each constraint. These should be monitored to
ensure that violations that pass through (maybe as a result of a stale
cache read) are not left unchecked.

Once the config is applied, then an administrator can create the ConstraintTem
plate. This resource defines the main content of the policy and any input parameters
that are available for administrators or other operators to provide/override:

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: limitnamespaceingress
spec:
 crd:
 spec:
 names:
 kind: LimitNamespaceIngress
 listKind: LimitNamespaceIngressList
 plural: limitnamespaceingresss
 singular: limitnamespaceingress
 validation:
 # Schema for the `parameters` field in the constraint
 openAPIV3Schema:
 properties:
 annotation:
 type: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package limitnamespaceingress

 violation[{"msg": msg}] {

Centralized Policy Systems | 237

 cluster := data.inventory.cluster.v1
 namespace := cluster.Namespace[input.review.object.metadata.namespace]
 regex := namespace.metadata.annotations[input.parameters.annotation]
 hosts := input.review.object.spec.rules[_].host
 not re_match(regex, hosts)
 msg := sprintf("Only ingresses matching %v in namespace %v allowed",
 [regex ,input.review.object.metadata.namespace])
 }

The properties section defines the input parameters that will be available to
inject into the Rego policy for each instantiation of the rule.

The targets section contains the Rego code for our policy rules. We won’t dig
into Rego syntax here, but notice that the input parameter is being referenced via
input.parameters.<parameter_name> (in this case, annotation).

The annotation in the custom input parameters allows the user to specify the specific
annotation name that Gatekeeper should pull the regex pattern from. Rego won’t trig‐
ger a violation if any statement returns False. In this case, we’re checking that the
hosts do match the regex, so to ensure that doesn’t trigger a violation we need to
invert the re_match() with not to ensure that a positive match doesn’t trigger a viola‐
tion and instead allows the request through admission control.

Lastly, we create an instance of the preceding policy to configure Gatekeeper to apply
it against specific resources as part of admission control. The LimitNamespaceIn
gress object specifies that the rule should apply to Ingress objects for both apiGroups
and designates allowed-ingress-pattern as the annotation that should be inspected
for the regex pattern (this was the customizable input parameter):

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: LimitNamespaceIngress
metadata:
 name: limit-namespace-ingress
spec:
 match:
 kinds:
 - apiGroups: ["extensions", "networking.k8s.io"]
 kinds: ["Ingress"]
 parameters:
 annotation: allowed-ingress-pattern

Finally, the Namespace object itself is applied with the custom annotation and pat‐
tern. Here we are specifying the regex \w\.my-namespace\.com in the allowed-
ingress-pattern field:

238 | Chapter 8: Admission Control

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 # Note regex special character escaping
 allowed-ingress-pattern: \w\.my-namespace\.com
 name: ingress-test

The setup steps are all now complete. We can begin adding Ingress objects, and the
rules we have configured will evaluate against them and either allow or deny the per‐
sistence/creation of the Ingress:

FAILS because the host doesn't match the pattern above
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-1
 namespace: ingress-test
spec:
 rules:
 - host: foo.other-namespace.com
 http:
 paths:
 - backend:
 serviceName: service1
 servicePort: 80

SUCCEEDS as the pattern matches
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-2
 namespace: ingress-test
spec:
 rules:
 - host: foo.my-namespace.com
 http:
 paths:
 - backend:
 serviceName: service2
 servicePort: 80

The second Ingress will succeed as the spec.rules.host matches the regex pattern
specified in the allowed-ingress-pattern annotation on the ingress-test Name‐
space. However, the first Ingress does not match and results in an error:

Error from server ([denied by limit-namespace-ingress] Only ingresses with
host matching \w\.my-namespace\.com are allowed in namespace ingress-test):
error when creating "ingress.yaml": admission webhook "validation.gatekeeper.sh"
denied the request: [denied by limit-namespace-ingress] Only ingresses with host
matching \w\.my-namespace\.com are allowed in namespace ingress-test

Centralized Policy Systems | 239

Gatekeeper has a number of strengths:

• The extensible ConstraintTemplate model allows admins to define common
policies and share/reuse them as libraries across the organization.

• While it does require Rego knowledge, there is no additional programming lan‐
guage experience required, lowering the barrier to entry for policy design and
creation.

• The underlying technology (OPA) is fairly mature and well-supported in the
community. Gatekeeper is a newer layer but has experienced strong early
support.

• Consolidating all policy enforcement into one admission controller allows us to
access a centralized audit log, which is often important in regulated
environments.

The main weakness of Gatekeeper is that it is currently unable to mutate requests.
And while it does support external data sources (through a variety of methods), they
can be cumbersome to implement. These issues will inevitably be addressed in the
future, but should you have strong requirements in those areas, it’s likely you will
need to implement one of the custom admission control solutions described in previ‐
ous sections.

One last consideration when utilizing Gatekeeper (and any general-purpose admis‐
sion controller) is that the scope of requests captured by these tools is likely to be very
broad. This is required for them to be useful because rules covering many different
objects can be written and the controller itself needs to contain a superset of permis‐
sions to be able to capture them. However, this has several ramifications:

• As mentioned previously, these tools are in the critical path. If there is a bug or
other issue with the controller and/or your configuration, there is the potential
for widespread outage.

• As a continuation of the previous point, because the controllers intercept
requests to the control plane, it’s possible that you as administrators may also be
temporarily locked out from performing remediation steps. This is pertinent
especially in the case of resources that are important and/or integral to the opera‐
tion of the cluster (e.g., networking resources and so on).

• The broad scope necessarily requires that a broad RBAC policy is attached to the
admission controller/policy server. If there is a vulnerability in this software, then
the potential for destructive actions is significant.

240 | Chapter 8: Admission Control

You should avoid configuring admission webhooks to intercept
resources targeting the kube-system Namespace. Objects in this
Namespace are often integral to the operation of the cluster and
accidental mutations or rejections of these objects could cause seri‐
ous issues in the cluster.

Summary
In this chapter we covered the many ways that we can control which objects are
admitted to a Kubernetes cluster. Much like many of the concerns that we cover in
this book, each way has its own specific trade-offs and decisions to make with regards
to your individual requirements. Admission control is an area where even more care‐
ful examination and deeper knowledge is essential, given its heavy application in the
area of cluster and workload security.

Built-in controllers expose a solid set of functionality but are unlikely to be all that
you need. We expect more and more of these actions to move to external (out-of-
tree) controllers that leverage the mutating and validating webhook capabilities. In
the near term you may find that building your own webhooks is required (either
from scratch or using a framework) for more complex functionality. However, as we
see broad admission policy tools like Gatekeeper become more mature, we think this
is where a lot of value can be added.

Summary | 241

CHAPTER 9

Observability

The ability to observe any software system is critical. If you cannot examine the con‐
dition of your running applications, you cannot effectively manage them. And that is
what we are addressing with observability: the various mechanisms and systems we
use to understand the condition of running software that we are responsible for. We
should acknowledge that we’re not adhering to the control theory definition of
observability in this context. We chose to use this term simply because it has become
popular and we want people to readily understand what we’re getting at.

The components of observability can be broken into three categories:

Logging
Aggregating and storing the logged event messages written by programs

Metrics
Collecting time series data, making it available in dashboards, and alerting upon
it

Tracing
Capturing data for requests that traverse multiple distinct workloads in the
cluster

In this chapter, we will cover how to implement effective observability in Kubernetes-
based platforms so that you can safely manage a platform and the workloads it hosts
in production. First, we will explore logging and examine the systems for aggregating
logs and forwarding them to your company’s logging backend. Next, we’ll cover how
to collect metrics, how to visualize that data, and how to alert upon it. Lastly, we’ll
cover tracing requests through distributed systems so as to better understand what’s
happening when applications are composed of distinct workloads. Let’s jump into
logging and cover the commonly successful models there.

243

Logging Mechanics
This section covers logging concerns in a Kubernetes-based platform. We’re primarily
dealing with the mechanisms for capturing, processing, and forwarding logs from
your platform components and tenant workloads to a storage backend.

Once upon a time, the software we ran in production usually wrote logs to a file on
disk. Aggregation of logs—if performed at all—was a simpler exercise because there
were fewer distinct workloads and fewer instances of those workloads compared with
today’s systems. In a containerized world, our applications commonly log to standard
out and standard error the way an interactive CLI would. Indeed, this became
accepted as best practice for modern service-oriented software even before containers
became prevalent. In cloud native software ecosystems, there are more distinct work‐
loads and instances of each, but they’re also ephemeral and often without a disk
mounted to persist the logs—hence the shift away from writing logs to disk. This
introduced challenges in the collection, aggregation, and storage of logs.

Often a single workload will have multiple replicas, and there may be multiple dis‐
tinct components to examine. Without centralized log aggregation, analyzing (view‐
ing and parsing) logs in this scenario becomes very tedious, if not practically
impossible. Consider having to analyze logs for a workload that has dozens of repli‐
cas. In these cases, it is essential to have a central collection point that allows you to
search the log entries across replicas.

In covering logging mechanics, we’ll first look at strategies for capturing and routing
the logs from the containerized workloads in your platform. This includes the logs for
the Kubernetes control plane and platform utilities as well as the platform tenants.
We’ll also cover the Kubernetes API Server audit logs as well as Kubernetes Events in
this section. Lastly, we’ll address the notion of alerting upon conditions found in log‐
ged data and alternative strategies for that. We will not cover the storage of logs
because most enterprises have a log backend that we will integrate with—it is gener‐
ally not a concern of the Kubernetes-based platform itself.

Container Log Processing
Let’s look at three ways log processing could be done for the containerized workloads
in a Kubernetes-based platform:

Application forwarding
Send logs to the backend directly from the application.

Sidecar processing
Use a sidecar to manage the logs for an application.

244 | Chapter 9: Observability

Node agent forwarding
Run a Pod on each Node that forwards logs for all containers on that Node to the
backend.

Application forwarding
In this case, the application needs to be integrated with the backend storage of logs.
The developers have to build this functionality into their application and maintain
that functionality. If the log backend changes, an update to the application will likely
be required. Since log processing is virtually universal, it makes much more sense to
offload this from the application. Application forwarding is not a good option in
most situations and is rarely seen in production environments. It makes sense only if
you have a heritage application that is being migrated to a Kubernetes-based platform
that already integrates with a log backend.

Sidecar processing
In this model, the application runs in one container and writes logs to one or more
files in the shared storage for the Pod. Another container in the same Pod, a sidecar,
reads those logs and processes them. The sidecar does one of two things with the logs:

1. Forwards them directly to the log storage backend
2. Writes the logs to standard error and standard out

Forwarding directly to the backend is the primary use case for sidecar log processing.
This approach is uncommon and is usually a makeshift workaround where the plat‐
form offers no log aggregation system.

In situations where the sidecar writes the logs to standard out and standard error, it
does so to leverage Node agent forwarding (which is covered in the next section).
This is also an uncommon method and is only useful if you are running an applica‐
tion that just isn’t able to write logs to standard out and standard error.

Node agent forwarding
With node agent forwarding, a log processing workload runs on each node in the
cluster, reads the logfiles for each container written by the container runtime, and
forwards the logs to the backend storage.

This is the model we generally recommend and is, by far, the most common imple‐
mentation. It is a useful pattern because:

• There is a single point of integration between the log forwarder and the backend,
as opposed to different sidecars and/or applications having to maintain that
integration.

Logging Mechanics | 245

• The configuration of standardized filtering, attaching metadata, and forwarding
to multiple backends is centralized.

• Log rotation is taken care of by the kubelet or container runtime. If the applica‐
tion is writing logfiles inside the container, the application itself or the sidecar (if
there is one) needs to handle log rotation.

The prevailing tools used for this node agent log forwarding are Fluentd and Fluent
Bit. As the names suggest, they are related projects. Fluentd was the original, is writ‐
ten primarily in Ruby, and has a rich ecosystem of plug-ins around it. Fluent Bit came
from a demand for a more lightweight solution for environments like embedded
Linux. It is written in C and has a much smaller memory footprint than Fluentd, but
it does not have as many plug-ins available.

The general guidance we give platform engineers when choosing a log aggregation
and forwarding tool is to use Fluent Bit unless there are plug-ins for Fluentd that
have compelling features. If you find a need to leverage Fluentd plug-ins, consider
running it as a cluster-wide aggregator in conjunction with Fluent Bit as the node
agent. In this model, you use Fluent Bit as the node agent, which is deployed as a
DaemonSet. Fluent Bit forwards logs to Fluentd running in the cluster as a Deploy‐
ment or StatefulSet. Fluentd performs further tagging and routes the logs to one or
more backends where developers access them. Figure 9-1 illustrates this pattern.

Figure 9-1. Aggregation of logs from containerized apps to backend.

While we strongly prefer the node agent forwarding method, it’s worth calling out the
potential problems with centralizing log aggregation. You are introducing a central
point of failure for each node, or for the entire cluster if you use a cluster-wide aggre‐
gator in your stack. If your node agent gets bogged down by one workload that is log‐
ging excessively, that could affect the collection of logs for all workloads on that node.
If you have a Fluentd cluster-wide aggregator running as a Deployment, it will be

246 | Chapter 9: Observability

https://www.fluentd.org
https://fluentbit.io
https://fluentbit.io

using the ephemeral storage layer in its Pod as a buffer. If it gets killed before it can
flush the logs from its buffer, you will lose logs. For this reason, consider running it as
a StatefulSet so those logs aren’t lost if the Pod goes down.

Kubernetes Audit Logs
This section covers collecting audit logs from the Kubernetes API. These logs offer a
way to find out who did what in the cluster. You will want to have these turned on in
production so that you can perform a root cause analysis in the event that something
goes wrong. You may also have compliance requirements that necessitate them.

Audit logs are enabled and configured with flags on the API server. The API server
allows you to capture a log of every stage of every request sent to it, including the
request and response bodies. In reality, it’s unlikely you will want every request log‐
ged. There are a lot of calls to the API server so there will be a very large number of
log entries to store. You can use rules in an audit policy to qualify which requests and
stages you wish your API server to write logs for. Without any audit policy, the API
server won’t actually write any logs. Tell the API server where your audit policy is on
the control plane node’s filesystem with the --audit-policy-file flag. Example 9-1
shows several rules that illustrate how the policy rules work so that you can limit the
volume of log information without excluding important data.

Example 9-1. Example audit policy

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
- level: None
 users: ["system:kube-proxy"]
 verbs: ["watch"]
 resources:
 - group: "" # core
 resources: ["endpoints", "services", "services/status"]
- level: Metadata
 resources:
 - group: ""
 resources: ["secrets", "configmaps"]
 - group: authentication.k8s.io
 resources: ["tokenreviews"]
 omitStages:
 - "RequestReceived"
- level: Request
 verbs: ["get", "list", "watch"]
 resources:
 - group: ""
 - group: "apps"
 - group: "batch"
 omitStages:

Logging Mechanics | 247

 - "RequestReceived"
- level: RequestResponse
 resources:
 - group: ""
 - group: "apps"
 - group: "batch"
 omitStages:
 - "RequestReceived"
Default level for all other requests.
- level: Metadata
 omitStages:
 - "RequestReceived"

The None auditing level means the API server will not log events that match this
rule. So when the user system:kube-proxy requests a watch on the listed resour‐
ces, the event is not logged.

The Metadata level means that only request metadata is logged. When any
request for the listed resources is received by the API server, it will log which user
made what type of requests for what resource, but not the body of the request or
response. The RequestReceived stage will not be logged. This means it will not
write a separate log entry when the request is received. It will write a log entry
when it starts the response for a long-running watch. It will write a log entry after
it completes the response to the client. And it will log any panic that occurs. But
will omit a log entry when the request is first received.

The Request level will instruct the API server to log the request metadata and
request body, but not the response body. So when any client sends a get, list, or
watch request, the potentially verbose response body—that contains the object/s
—is not logged.

The RequestResponse level logs the most information: the request metadata, the
request body, and the response body. This rule lists the same API groups as the
previous. So, in effect, this rule says that if a request is not a get, list, or watch for
a resource in one of these groups, additionally log the response body. In effect
this becomes the default log level for the listed groups.

Any other resources that aren’t matched in previous rules will have this default
applied, which says to skip the additional log message when a request is received
and log only request metadata and excluded request and response bodies.

248 | Chapter 9: Observability

As with other logs in your system, you will want to forward the audit logs to some
backend. You can use either the application forwarding or node agent forwarding
strategies we covered earlier in this chapter. Much of the same principles and patterns
apply.

For the application forwarding approach, you can configure the API server to send
logs directly to a webhook backend. In this case you tell the API server with a flag
where the config file is that contains the address and credentials to connect. This con‐
fig file uses the kubeconfig format. You will need to spend some time tuning the con‐
figuration options for buffering and batching to ensure all logs arrive at the backend.
For example, if you set a buffer size for the number of events to buffer before batch‐
ing that is too low and it overflows, events will be dropped.

For node agent forwarding, you can have the API server write logfiles to the filesys‐
tem on the control plane node. You can provide flags to the API server to configure
the filepath, maximum retention period, maximum number of files, and maximum
logfile size. In this case you can aggregate and forward logs with tools like Fluent Bit
and Fluentd. This is likely a good pattern to follow if you are already using these tools
to manage logs with the node agent forwarding discussed earlier.

Kubernetes Events
In Kubernetes, Events are a native resource. They are a way for platform components
to expose information about what has happened to different objects through the
Kubernetes API. In effect, they are a kind of platform log. Unlike other logs, they are
not generally stored in a logging backend. They are stored in etcd and, by default, are
retained for one hour. They are most commonly used by platform operators and
users when they want to gather information about actions taken against objects.
Example 9-2 shows the Events provided when describing a newly created Pod.

Example 9-2. Events given with Pod description

$ kubectl describe pod nginx-6db489d4b7-q8ppw
Name: nginx-6db489d4b7-q8ppw
Namespace: default
...
Events:
 Type Reason Age From
 ---- ------ ---- ----
 Message

 Normal Scheduled <unknown> default-scheduler
 Successfully assigned default/nginx-6db489d4b7-q8ppw
 Normal Pulling 34s kubelet, ip-10-0-0-229.us-east-2.compute.internal
 Pulling image "nginx"
 Normal Pulled 30s kubelet, ip-10-0-0-229.us-east-2.compute.internal
 Successfully pulled image "nginx"

Logging Mechanics | 249

 Normal Created 30s kubelet, ip-10-0-0-229.us-east-2.compute.internal
 Created container nginx
 Normal Started 30s kubelet, ip-10-0-0-229.us-east-2.compute.internal
 Started container nginx

You can also retrieve the same Events directly as shown in Example 9-3. In this case it
includes the Events for the ReplicaSet and Deployment resources in addition to the
Pod Events we saw when describing that resource.

Example 9-3. Events for a namespace retrieved directly

$ kubectl get events -n default
LAST SEEN TYPE REASON OBJECT
 MESSAGE
2m5s Normal Scheduled pod/nginx-6db489d4b7-q8ppw
 Successfully assigned default/nginx-6db489d4b7-q8ppw
2m5s Normal Pulling pod/nginx-6db489d4b7-q8ppw
 Pulling image "nginx"
2m1s Normal Pulled pod/nginx-6db489d4b7-q8ppw
 Successfully pulled image "nginx"
2m1s Normal Created pod/nginx-6db489d4b7-q8ppw
 Created container nginx
2m1s Normal Started pod/nginx-6db489d4b7-q8ppw
 Started container nginx
2m6s Normal SuccessfulCreate replicaset/nginx-6db489d4b7
 Created pod: nginx-6db489d4b7-q8ppw
2m6s Normal ScalingReplicaSet deployment/nginx
 Scaled up replica set nginx-6db489d4b7 to 1

Being that Kubernetes Events are available through the Kubernetes API, it is entirely
possible to build automation to watch for, and react to, specific Events. However, in
reality, we don’t see this commonly done. One additional way you can leverage them
is through an Event exporter that exposes them as metrics. See “Prometheus” on page
251 for more on Prometheus exporters.

Alerting on Logs
Application logs expose important information about the behavior of your software.
They are especially valuable when unexpected failures occur that require investiga‐
tion. This may lead you to find patterns of events that precipitate problems. If you
find yourself wanting to set up alerts on Events exposed in logs, first consider using
metrics instead. If you expose metrics that represent that behavior, you can imple‐
ment alerting rules against them. Log messages are less reliable to alert on as they are
more subject to change. A slight change to the text of a log message may inadver‐
tently break the alerting that uses it.

250 | Chapter 9: Observability

Security Implications
Don’t forget to give some thought to the access users have to the various logs aggrega‐
ted in your backend. You may not want your production API server audit logs acces‐
sible to everyone. You may have sensitive systems with information that only
privileged users should have access to. This may impact the tagging of logs or may
necessitate using multiple backends, impacting your forwarding configurations.

Now that we’ve covered the various mechanics involved in managing the logs from
your platform and its tenants, let’s move on to metrics and alerting.

Metrics
Metrics and alerting services are vital to the usability of the platform. Metrics allow us
to plot measured data on a timeline and recognize divergences that indicate undesira‐
ble or unexpected behavior. They help us understand what’s happening with our
applications, inform us whether they are behaving as we expect, and give us insights
into how we can remedy problems or improve how we manage our workloads. And,
critically, metrics give us useful measurements to alert on. Notifications of failures, or
preferably warnings of impending failures, give us the opportunity to avert and/or
minimize downtime and errors.

In this section, we’re going to cover how to provide metrics and alerting as a platform
service using Prometheus. There is considerable detail to explore here, and it will be
helpful to reference a particular software stack as we do so. This is not to say you can‐
not or should not use other solutions. There are many circumstances where Prome‐
theus may not be the right solution. However, Prometheus does provide an excellent
model for addressing the subject. Regardless of the exact tools you use, the Prome‐
theus model provides a clear implementation reference that will inform how you
approach this topic.

First, we will take a general look at what Prometheus is, how it collects metrics, and
what functions it provides. Then we will address various general subtopics, including
long-term storage and the use case for pushing metrics. Next, we’ll cover custom met‐
rics generation and collection as well as organization and federation of metrics collec‐
tion across your infrastructure. Also, we will dive into alerting and using metrics for
actionable showback and chargeback data. Finally, we will break down each of the
various components in the Prometheus stack and illustrate how they fit together.

Prometheus
Prometheus is an open source metrics tool that has become the prevalent open source
solution for Kubernetes-based platforms. The control plane components expose
Prometheus metrics, and virtually every production cluster uses Prometheus export‐
ers to get metrics from things like the underlying nodes. Due to this, many enterprise

Metrics | 251

systems such as Datadog, New Relic, and VMware Tanzu Observability support con‐
suming Prometheus metrics.

Prometheus metrics are simply a standard format for time series data that can
actually be used by any system. Prometheus uses a scraping model whereby it collects
metrics from targets. So applications and infrastructure do not typically send metrics
anywhere, they expose them at an endpoint from which Prometheus can scrape them.
This model removes the app’s responsibility for knowing anything about the metrics
system beyond the format in which to present the data.

This scraping model for collecting metrics, its ability to process large amounts of
data, the use of labels in its data model, and the Prometheus Query Language
(PromQL) make it a great metrics tool for dynamic, cloud native environments. New
workloads can be readily introduced and monitored. Expose Prometheus metrics
from an application or system, add a scrape configuration to a Prometheus server,
and use PromQL to turn the raw data into meaningful insights and alerts. These are
some of the core reasons Prometheus became such a popular choice in the Kuber‐
netes ecosystem.

Prometheus provides several critical metrics functions:

• Collects metrics from targets using its scraping model
• Stores the metrics in a time series database
• Sends alerts, usually to Alertmanager, which is discussed later in this chapter,

based on alerting rules
• Exposes an HTTP API for other components to access the metrics stored by

Prometheus
• Provides a dashboard that is useful for executing ad hoc metric queries and get‐

ting various status info

Most teams use Prometheus for metrics collection paired with Grafana for visualiza‐
tion when they start out. However, maintaining organized use of the system in a pro‐
duction environment can become challenging for smaller teams. You will have to
solve for long-term storage of your metrics, scaling Prometheus as the volume of
metrics grows, as well as organizing the federation of your metrics systems. None of
these are trivial problems to solve and manage over time. So if the maintenance of the
metrics stack becomes cumbersome as the system scales, you can migrate to one of
those commercial systems without changing the type of metrics you use.

252 | Chapter 9: Observability

Long-Term Storage
It’s important to note that Prometheus is not designed for long-term storage of met‐
rics. Instead, it provides support for writing to remote endpoints, and there are a
number of solutions that can be used for this kind of integration. The questions you
have to answer when providing a metrics solution as a part of your application plat‐
form are around data retention. Do you offer long-term storage only in production?
If so, what retention period at the Prometheus layer do you offer in nonprod environ‐
ments? How will you expose the metrics in long-term storage to users? Projects such
as Thanos and Cortex offer tool stacks to help solve these problems. Just keep in
mind how your platform tenants will be able to leverage these systems and let them
know what retention policies they can expect.

Pushing Metrics
Not every workload is a good fit for the scraping model. In these cases the Prome‐
theus Pushgateway may be used. For example, a batch workload that shuts down
when it has finished its work may not give the Prometheus server the chance to col‐
lect all metrics before it disappears. For this situation, the batch workload can push its
metrics to the Pushgateway which, in turn, exposes those metrics for the Prometheus
server to retrieve. So if your platform will support workloads that call for this sup‐
port, you will likely need to deploy the Pushgateway as a part of your metrics stack
and publish information for tenants to leverage it. They will need to know where it is
in the cluster and how to use its REST-like HTTP API. Figure 9-2 illustrates an
ephemeral workload leveraging a Prometheus client library that supports pushing
metrics to a Pushgateway. Those metrics are then scraped by a Prometheus server.

Figure 9-2. Pushgateway for ephemeral workload.

Custom Metrics
Prometheus metrics can be exposed natively by an application. Many applications
that are developed expressly to run on Kubernetes-based platforms do just this. There

Metrics | 253

https://oreil.ly/wcaVl
https://thanos.io
https://cortexmetrics.io
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway

are several officially supported client libraries as well as a number of community-
supported libraries. Using these, your application developers will likely find it trivial
to expose custom Prometheus metrics for scraping. This is covered in depth in Chap‐
ter 14.

Alternatively, exporters can be used when Prometheus metrics are not natively sup‐
ported by an app or system. Exporters collect data points from an application or sys‐
tem, then expose them as Prometheus metrics. A common example of this is the
Node Exporter. It collects hardware and operating system metrics, then exposes those
metrics for a Prometheus server to scrape. There are community-supported exporters
for a wide range of popular tools, some of which you may find useful.

Once an application that exposes custom metrics is deployed, the next matter is
adding the application to the scrape configuration of a Prometheus server. This is
usually done with a ServiceMonitor custom resource used by the Prometheus Opera‐
tor. The Prometheus Operator is covered further in “Metrics Components” on page
260, but for now it is enough to know that you can use a custom Kubernetes resource
to instruct the operator to auto-discover Services based on their Namespace and
labels.

In short, instrument the software you develop in-house where possible. Develop or
leverage exporters where native instrumentation is not feasible. And collect the
exposed metrics using convenient auto-discovery mechanisms to provide visibility
into your systems.

While the use of labels in the Prometheus data model is powerful,
with power comes responsibility. You can shoot yourself in the foot
with them. If you overuse labels, the resource consumption of your
Prometheus servers can become untenable. Familiarize yourself
with the impact of high cardinality of metrics and check out the
instrumentation guide in the Prometheus docs.

Organization and Federation
Processing metrics can be particularly compute-intensive, so subdividing this compu‐
tational load can help manage resource consumption for Prometheus servers. For
example, use one Prometheus server to collect metrics for the platform and use other
Prometheus servers to collect custom metrics from applications or node metrics. This
is particularly applicable in larger clusters where there are far more scrape targets and
much larger volumes of metrics to process.

However, doing this will fragment the locations in which you can see this data. One
way to solve this is through federation. Federation, in general, refers to consolidating
data and control into a centralized system. Prometheus federation involves collecting
important metrics from various Prometheus servers into a central Prometheus server.

254 | Chapter 9: Observability

https://oreil.ly/t9SLv
https://oreil.ly/JO8sO
https://oreil.ly/RAskV

This is accomplished using the same scraping model used to collect metrics from
workloads. One of the targets that a Prometheus server can scrape metrics from is
another Prometheus server.

This can be done within a single Kubernetes cluster, among several Kubernetes clus‐
ters, or both. This provides a very flexible model in that you can organize and consol‐
idate your metrics systems in ways that suit the patterns you use to manage your
Kubernetes clusters. This includes federating in layers or tiers. Figure 9-3 shows an
example of a global Prometheus server scraping metrics from Prometheus servers in
different datacenters which, in turn, scrape metrics from targets within their cluster.

Figure 9-3. Prometheus federation.

While Prometheus federation is powerful and flexible, it can be complex and burden‐
some to manage. A relatively recent development that offers a compelling way to col‐
lect metrics from all your Prometheus servers is Thanos, an open source project that
builds federation-like capabilities on top of Prometheus. It is supported by the Prom‐
etheus Operator and can be layered onto existing Prometheus installations. Cortex is
another promising project in this capacity. Both Thanos and Cortex are incubating
projects in the CNCF.

Carefully plan out the organization and federation of your Prometheus servers to
support scaling and expanding your operations as platform adoption grows. Give
careful consideration to the consumption model for tenants. Avoid making them use
a multitude of different dashboards to access metrics for their workloads.

Alerts
Prometheus uses alerting rules to generate alerts from metrics. When an alert is trig‐
gered, the alert will usually be sent to a configured Alertmanager instance. Deploying
Alertmanager and configuring Prometheus to send alerts to it is somewhat trivial
when using the Prometheus Operator. Alertmanager will process the alert and inte‐
grate with messaging systems to make your engineers aware of issues. Figure 9-4
illustrates the use of distinct Prometheus servers for the platform control plane and

Metrics | 255

https://thanos.io
https://cortexmetrics.io

tenant applications. They both use a common Alertmanager to process alerts and
notify receivers.

Figure 9-4. Alerting components.

In general, be careful not to over alert. Excessive critical alerts will burn out your on-
call engineers and the noise of false positives can drown out actual critical events. So
take the time to tune your alerts to be useful. Add useful descriptions to the annota‐
tions on the alerts so that when engineers are alerted to a problem, they have some
useful context to understand the situation. Consider including links to runbooks or
other docs that can aid the resolution of the alerted incident.

In addition to alerts for the platform, consider how to expose alerting for your ten‐
ants so that they may set up alerts on the metrics for their application. This involves
giving them ways to add alerting rules to Prometheus, which is covered more in
“Metrics Components” on page 260. It also includes setting up the notification mech‐
anisms through Alertmanager so that application teams are alerted according to the
rules they set.

Dead man’s switch
One alert in particular is worth addressing as it is universally applicable and particu‐
larly critical. What happens if your metrics and alerting systems go down? How will
you get an alert of that event? In this case you need to set up an alert that fires period‐
ically under normal operating conditions and that, if those alerts stop, fires a critical
alert to let on-call know your metrics and/or alerting systems are down. PagerDuty
has an integration they call Dead Man’s Snitch that provides this feature. Alternatively,

256 | Chapter 9: Observability

https://oreil.ly/zDJJE

you could set up a custom solution with webhook alerts to a system you install.
Regardless of the implementation details, ensure you are notified urgently if your
alerting system goes offline.

Showback and Chargeback
Showback is a term commonly used to describe resource usage by an organizational
unit or its workloads. Chargeback is the association of costs with that resource usage.
These are perfect examples of meaningful, actionable expressions of metrics data.

Kubernetes offers the opportunity to dynamically manage compute infrastructure
used by app development teams. If this readily available capacity is not managed well,
you may find cluster sprawl and poor utilization of resources. It is greatly advanta‐
geous to the business to streamline the process of deploying infrastructure and work‐
loads for efficiency. However, this streamlining can also lead to waste. For this reason,
many organizations make their teams and lines of business accountable for the usage
with showback and chargeback.

In order to make it possible to collect relevant metrics, workloads need to be labeled
with something useful like a “team” or “owner” name or identifier. We recommend
establishing a standardized system for this in your organization and use admission
control to enforce the use of such a label on all Pods deployed by platform tenants.
There are occasionally other useful methods of identifying workloads, such as by
Namespace, but labels are the most flexible.

There are two general approaches to implementing showback:

Requests
Requests are based on the resources a team reserves with the resource requests
that are defined for each container in a Pod.

Consumption
Consumption is based on what a team actually consumes through resource
requests or actual usage, whichever is higher.

Showback by requests
The requests-based method leverages the aggregate resource requests defined by a
workload. For example, if a Deployment with 10 replicas requests 1 CPU core per
replica, it is considered to have used 10 cores per unit of time that it was running. In
this model, if a workload bursts above its requests and uses 1.5 cores per replica on
average, it would have gotten those resources for free; those additional 5 cores con‐
sumed above its resource requests are not attributed to the workload. This approach
is advantageous in that it is based on what the scheduler can assign to nodes in the
cluster. The scheduler considers resource requests as reserved capacity on a node. If a
node has spare resources that aren’t being used, and a workload bursts to use that

Metrics | 257

otherwise unused capacity, that workload got those resources for free. The solid line
in Figure 9-5 indicates the CPU resources attributed to a workload using this method.
Consumption that bursts above requests is not attributed.

Figure 9-5. Showback based on CPU requests.

Showback by consumption
In a consumption-based model, a workload would be assigned the usage of its
resource requests or its actual usage, whichever is higher. With this approach, if a
workload commonly and consistently used more than its requested resources, it
would be shown to have used those resources it actually consumed. This approach
would remove the possible incentive to game the system by setting resource requests
low. This could be more likely to lead to resource contention on overcommitted
nodes. The solid line in Figure 9-6 indicates the CPU resources attributed to a work‐
load using this consumption-based method. In this case, consumption that bursts
above requests is attributed.

258 | Chapter 9: Observability

Figure 9-6. Showback based on CPU consumption when bursting above requests.

In “Metrics Components” on page 260, we will cover kube-state-metrics, a platform
service that exposes metrics related to Kubernetes resources. If you use kube-state-
metrics as a part of your metrics stack, you will have the following metrics available
for resource requests:

• CPU: kube_pod_container_resource_requests
• Memory: kube_pod_container_resource_requests_memory_bytes

Resource usage can be obtained with the following metrics:

• CPU: container_cpu_usage_seconds_total
• Memory: container_memory_usage_bytes

Lastly for showback, you should decide whether to use CPU or memory for deter‐
mining showback for a workload. For this, calculate the percentage of total cluster
resource consumed by a workload for both CPU and memory. The higher value
should apply because if a cluster runs out of CPU or memory it cannot host more
workloads. For example, if a workload uses 1% of cluster CPU and 3% of cluster
memory, it is effectively using 3% of the cluster since a cluster without any more
memory cannot host any more workloads. This will also help inform whether you
should employ different node profiles to match the workloads they host, which is dis‐
cussed in “Infrastructure” on page 35.

Metrics | 259

Chargeback
Once we solve showback, chargeback becomes possible because we have metrics to
apply costs to. Costs for machines will usually be pretty straightforward if using a
public cloud provider. It may be a little more complicated if you are buying your own
hardware, but somehow or another you need to come up with two cost values:

• Cost per unit of time for CPU
• Cost per unit of time for memory

Apply these costs to the showback value determined and you have a model for inter‐
nally charging your platform tenants.

Network and storage
So far we’ve looked at showback and chargeback for the compute infrastructure used
by workloads. This covers a majority of use cases we have seen in the field. However,
there are workloads that consume considerable networking bandwidth and disk stor‐
age. This infrastructure can contribute significantly to the true cost of running some
applications and should be considered in those cases. The model will be largely the
same: collect the relevant metrics and then decide whether to charge according to
resources reserved, consumed, or a combination of both. How you collect those met‐
rics will depend on the systems used for this infrastructure.

At this point we have covered how Prometheus works and the general topics you
should grasp before diving into the details of the deployed components. Next is a tour
of those components that are commonly used in a Prometheus metrics stack.

Metrics Components
In this section we will examine the components in a very commonly used approach
to deploying and managing a metrics stack. We’ll also cover some of the management
tools at your disposal and how all the pieces fit together. Figure 9-7 illustrates a com‐
mon configuration of components in a Prometheus metrics stack. It does not include
the Prometheus Operator, which is a utility for deployment and management of this
stack, rather than a part of the stack itself. The diagram does include some autoscal‐
ing components to illustrate the role of Prometheus Adapter, even though autoscaling
is not covered here. See Chapter 13 for details on that topic.

260 | Chapter 9: Observability

Figure 9-7. Common components in a Prometheus metrics stack.

Prometheus Operator
The Prometheus Operator is a Kubernetes operator that helps deploy and manage the
various components of a Kubernetes metrics system for the platform itself as well as
the tenant workloads. For more information about Kubernetes operators in general,
see “The Operator Pattern” on page 317. The Prometheus Operator uses several cus‐
tom resources that represent Prometheus servers: Alertmanager deployments, scrape
configurations that inform Prometheus of the targets to scrape metrics from, and
rules for recording metrics and alerting on them. This greatly reduces the toil in
deploying and configuring Prometheus servers in your platform.

These custom resources are very useful to platform engineers but can also provide a
very important interface for your platform tenants. If they require a dedicated Prom‐
etheus server, they can achieve that by submitting a Prometheus resource to their
Namespace. If they need to add alerting rules to an existing Prometheus server, they
can do so with a PrometheusRule resource.

The related kube-prometheus project is a great place to start with using the Prome‐
theus Operator. It provides a collection of manifests for a complete metrics stack. It

Metrics | 261

https://oreil.ly/k1lMx
https://oreil.ly/DITxj

includes Grafana dashboard configurations for useful visualization out of the box,
which is very handy. But treat it as a place to start and understand the system so you
can mold it to fit your requirements so that, once in production, you have confidence
that you have comprehensive metrics and alerting for your systems.

The rest of this section covers the components you will get with a kube-prometheus
deployment so you can clearly understand and customize these components for your
needs.

Prometheus servers
With the Prometheus Operator in your clusters, you can create Prometheus custom
resources that will prompt the operator to create a new StatefulSet for a Prometheus
server. Example 9-4 is an example manifest for a Prometheus resource.

Example 9-4. Sample Prometheus manifest

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
 name: platform
 namespace: platform-monitoring
 labels:
 monitor: platform
 owner: platform-engineering
spec:
 alerting:
 alertmanagers:
 - name: alertmanager-main
 namespace: platform-monitoring
 port: web
 image: quay.io/prometheus/prometheus:v2.20.0
 nodeSelector:
 kubernetes.io/os: linux
 replicas: 2
 resources:
 requests:
 memory: 400Mi
 ruleSelector:
 matchLabels:
 monitor: platform
 role: alert-rules
 securityContext:
 fsGroup: 2000
 runAsNonRoot: true
 runAsUser: 1000
 serviceAccountName: platform-prometheus
 version: v2.20.0
 serviceMonitorSelector:

262 | Chapter 9: Observability

 matchLabels:
 monitor: platform

Informs the configuration of Prometheus for where to send alerts.

The container image to use for Prometheus.

Informs the Prometheus Operator which PrometheusRules apply to this Prome‐
theus server. Any PrometheusRule created with the labels shown here will be
applied to this Prometheus server.

This does the same for ServiceMonitors as the ruleSelector does for Prome‐
theusRules. Any ServiceMonitor resources that have this label will be used to
inform the scrape config for this Prometheus server.

The Prometheus custom resource allows platform operators to readily deploy Prome‐
theus servers to collect metrics. As mentioned in “Organization and Federation” on
page 254, it may be useful to divide metrics collection and processing load among
multiple deployments of Prometheus within any given cluster. This model is enabled
by the ability to spin up Prometheus servers using a custom Kubernetes resource.

In some use cases, the ability to spin up Prometheus servers with the Prometheus
Operator is also helpful to expose to platform tenants. A team’s applications may emit
a large volume of metrics that will overwhelm existing Prometheus servers. And you
may want to include a team’s metrics collection and processing in its resource budget,
so having a dedicated Prometheus server in their Namespace may be a useful model.
Not every team will have an appetite for this approach where they deploy and manage
their own Prometheus resources. Many may require further abstraction of the details,
but it is an option to consider. If using this model, don’t discount the added complex‐
ity this will introduce for dashboards and alerting for the metrics gathered, as well as
for federation and long-term storage.

Deploying Prometheus servers is one thing, but ongoing management of configura‐
tion for them is another. For this, the Prometheus Operator has other custom resour‐
ces, the most common being the ServiceMonitor. When you create a ServiceMonitor
resource, the Prometheus Operator responds by updating the scrape configuration of
the relevant Prometheus server. Example 9-5 shows a ServiceMonitor that will create
a scrape configuration for Prometheus to collect metrics from the Kubernetes API
server.

Example 9-5. Example manifest for a ServiceMonitor resource

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:

Metrics | 263

 labels:
 k8s-app: apiserver
 monitor: platform
 name: kube-apiserver
 namespace: platform-monitoring
spec:
 endpoints:
 - bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
 interval: 30s
 port: https
 scheme: https
 tlsConfig:
 caFile: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 serverName: kubernetes
 jobLabel: component
 namespaceSelector:
 matchNames:
 - default
 selector:
 matchLabels:
 component: apiserver
 provider: kubernetes

This is the label that is referred to in Example 9-1 of a Prometheus manifest by
the serviceMonitorSelector.

The endpoints provide configuration about the port to use and how to connect
to the instances that Prometheus will scrape metrics from. This example instructs
Prometheus to connect using HTTPS and provides a Certificate Authority and
server name to verify the connection endpoint.

In Prometheus terms, a “job” is a collection of instances of a service. For example,
an individual apiserver is an “instance.” All the apiservers in the cluster collec‐
tively comprise a “job.” This field indicates which label contains the name that
should be used for the job in Prometheus. In this case the job will be apiserver.

The namespaceSelector instructs Prometheus in which Namespaces to look for
Services to scrape metrics for this target.

The selector enables service discovery by way of labels on a Kubernetes Service.
In other words, any Service (in the default Namespace) that contains the speci‐
fied labels will be used to find the targets to scrape metrics from.

Scrape configurations in a Prometheus server may also be managed with PodMonitor
resources for monitoring groups of Pods (as opposed to Services with the ServiceMo‐
nitor), as well as Probe resources for monitoring Ingresses or static targets.

264 | Chapter 9: Observability

The PrometheusRule resource instructs the operator to generate a rule file for Prome‐
theus that contains rules for recording metrics and alerting upon metrics.
Example 9-6 shows an example of a PrometheusRule manifest that contains a record‐
ing rule and an alerting rule. These rules will be put in a ConfigMap and mounted
into the Prometheus server’s Pod/s.

Example 9-6. Example manifest for a PrometheusRule resource

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 labels:
 monitor: platform
 role: alert-rules
 name: sample-rules
 namespace: platform-monitoring
spec:
 groups:
 - name: kube-apiserver.rules
 rules:
 - expr: |
 sum by (code,resource) (rate(
 apiserver_request_total{job="apiserver",verb=~"LIST|GET"}[5m]
))
 labels:
 verb: read
 record: code_resource:apiserver_request_total:rate5m
 - name: kubernetes-apps
 rules:
 - alert: KubePodNotReady
 annotations:
 description: Pod {{ $labels.namespace }}/{{ $labels.pod }} has been in a
 non-ready state for longer than 15 minutes.
 summary: Pod has been in a non-ready state for more than 15 minutes.
 expr: |
 sum by (namespace, pod) (
 max by(namespace, pod) (
 kube_pod_status_phase{job="kube-state-metrics", phase=~"Pending|Unknown"}
) * on(namespace, pod) group_left(owner_kind) topk by(namespace, pod) (
 1, max by(namespace, pod, owner_kind) (kube_pod_owner{owner_kind!="Job"})
)
) > 0
 for: 15m
 labels:
 severity: warning

This is the label that is referred to in Example 9-1 of a Prometheus manifest by
the ruleSelector.

Metrics | 265

This is an example of a recording rule for the total LIST and GET requests to all
Kubernetes API server instances over a 5-minute period. It uses an expression on
the apiserver_request_total metric exposed by the API server and stores a
new metric called code_resource:apiserver_request_total:rate5m.

Here is an alerting rule that will prompt Prometheus to send a warning alert if
any Pod gets stuck in a not ready state for more than 15 minutes.

Using the Prometheus Operator and these custom resources to manage Prometheus
servers and their configurations has proven to be a very useful pattern and has
become very prevalent in the field. If you are using Prometheus as your primary met‐
rics tool, we highly recommend it.

Alertmanager
The next major component is Alertmanager. This is a separate, distinct workload that
processes alerts and routes them to receivers that constitute the communication
medium to the on-call engineers. Prometheus has alerting rules that prompt Prome‐
theus to fire off alerts in response to measurable conditions. Those alerts get sent to
Alertmanager, where they are grouped and deduplicated so that humans don’t receive
a flood of alerts when outages occur that affect multiple replicas or components.
Then notifications are sent via the configured receivers. Receivers are the supported
notification systems, such as email, Slack, or PagerDuty. If you want to implement an
unsupported or custom notification system, Alertmanager has a webhook receiver
that allows you to provide a URL to which Alertmanager will send a POST request
with a JSON payload.

When using the Prometheus Operator, a new Alertmanager can be deployed with a
manifest, as shown in Example 9-7.

Example 9-7. Example manifest for an Alertmanager resource

apiVersion: monitoring.coreos.com/v1
kind: Alertmanager
metadata:
 labels:
 alertmanager: main
 name: main
 namespace: platform-monitoring
spec:
 image: quay.io/prometheus/alertmanager:v0.21.0
 nodeSelector:
 kubernetes.io/os: linux
 replicas: 2
 securityContext:
 fsGroup: 2000

266 | Chapter 9: Observability

 runAsNonRoot: true
 runAsUser: 1000
 serviceAccountName: alertmanager-main
 version: v0.21.0

Multiple replicas may be requested to deploy Alertmanager in a highly available
configuration.

While this custom resource gives you very convenient methods to deploy Alertman‐
ager instances, it is very rarely necessary to deploy multiple Alertmanagers in a clus‐
ter, especially since it can be deployed in a highly available configuration. You could
consider a centralized Alertmanager for multiple clusters, but having one per cluster
is wise since it reduces external dependencies for any given cluster. Leveraging a com‐
mon Alertmanager for a cluster provides the opportunity for tenants to leverage a
single PrometheusRule resource to configure new alerting rules for their app. In this
model, each Prometheus server is configured to send alerts to the cluster’s
Alertmanager.

Grafana
For platform operators to be able to reason about what is happening in a complex
Kubernetes-based platform, it is crucial to build charts and dashboards from the data
stored in Prometheus. Grafana is an open source visualization layer that has become
the default solution for viewing Prometheus metrics. The kube-prometheus project
provides a variety of dashboards to use as a basis and starting point, not to mention
many others available in the community. And, of course, you have the freedom to
build your own charts to display the time series data from any system you manage as
a part of your platform.

Visualizing metrics is also critical for application teams. This is relevant to how you
deploy your Prometheus servers. If you are leveraging multiple Prometheus instances
in your cluster, how will you expose the metrics gathered to the tenants of the plat‐
form? On one hand, adding a Grafana dashboard to each Prometheus server may be
a useful pattern. This could provide a convenient separation of concerns. However,
on the other hand, if users find they have to routinely log in to multiple distinct dash‐
boards, that may be cumbersome. In this case you have two options:

• Employ federation to collect metrics from different servers into a single server
and then add a dashboard to that for a single place to access metrics for a set of
systems. This is the approach used with projects such as Thanos.

• Add multiple data sources to a single Grafana dashboard. In this case a single
dashboard exposes metrics from several Prometheus servers.

The choice boils down to whether you prefer the complexity to be in federating
Prometheus instances or in managing more complex Grafana configurations. There

Metrics | 267

https://grafana.com

is the additional resource consumption to consider with the federation server option,
but if that is palatable, it is mostly a matter of preference.

If you are using a single Prometheus server for a cluster and your platform operators
and tenants are going to the same place to get metrics, you will need to consider per‐
missions around viewing and editing dashboards. You will likely need to configure
the organizations, teams, and users appropriately for your use case.

Node exporter
Node exporter is the node agent that usually runs as a Kubernetes DaemonSet and
collects machine and operating system metrics. It gives you the host-level CPU, mem‐
ory, disk I/O, disk space, network stats, and file descriptor information, to name just a
few of the metrics it collects by default. As mentioned earlier, this is one of the most
common examples of an exporter. Linux systems don’t export Prometheus metrics
natively. The node exporter knows how to collect those metrics from the kernel and
then exposes them for scraping by Prometheus. It is useful any time you want to
monitor the system and hardware of Unix-like machines with Prometheus.

kube-state-metrics
kube-state-metrics provides metrics related to a range of Kubernetes resources. It is
essentially an exporter for information about resources collected from the Kubernetes
API. For example, kube-state-metrics exposes Pod start times, status, labels, priority
class, resource requests, and limits; all the information that you would normally use
kubectl get or kubectl describe to collect. These metrics can be useful to detect
critical cluster conditions, such as Pods stuck in crash loops or Namespaces nearing
their resource quotas.

Prometheus adapter
Prometheus adapter is included here because it is a part of the kube-prometheus
stack. However, it is not an exporter, nor is it involved in the core functionality of
Prometheus. Instead, Prometheus adapter is a client of Prometheus. It retrieves met‐
rics from the Prometheus API and makes them available through the Kubernetes
metrics APIs. This enables autoscaling functionality for workloads. Refer to Chap‐
ter 13 for more information on autoscaling.

As you can see, there are many components to a production-grade metrics and alert‐
ing system. We’ve looked at how to accomplish this with Prometheus and the patterns
demonstrated with the kube-prometheus stack including the Prometheus Operator to
alleviate toil in managing these concerns. Now that we’ve covered logging and met‐
rics, let’s take a look at tracing.

268 | Chapter 9: Observability

https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kube-state-metrics
https://github.com/DirectXMan12/k8s-prometheus-adapter

Distributed Tracing
Tracing in general refers to a specialized kind of event capturing that follows an exe‐
cution path. While tracing can be applicable to a single piece of software, in this sec‐
tion we’re dealing with distributed tracing that spans multiple workloads and traces
requests in microservice architectures. Organizations that have embraced distributed
systems benefit greatly from this technology. In this section, we’ll discuss how to
make distributed tracing available as a platform service for your application teams.

An important distinction between distributed tracing compared to logging and met‐
rics is that the tracing technology between the applications and platform must be
compatible. As long as an app logs to stdout and stderr, the platform services to
aggregate logs don’t care how logs are written inside the app. And common metrics
like CPU and memory consumption can be gathered from workloads without speci‐
alized instrumentation. However, if an application is instrumented with a client
library that is incompatible with the tracing system offered by the platform, tracing
will not work at all. For this reason, close collaboration between platform and appli‐
cation development teams is critical in this area.

In covering the topic of distributed tracing, we will first look at the OpenTracing and
OpenTelemetry specifications along with some of the terminology that is used when
discussing tracing. We’ll then cover the components that are common with the popu‐
lar projects used for tracing. After that, we’ll touch on the application instrumenta‐
tion necessary to enable tracing as well as the implications of using a service mesh.

OpenTracing and OpenTelemetry
OpenTracing is an open source specification for distributed tracing that helps the
ecosystem converge on standards for implementations. The spec revolves around
three concepts that are important in understanding tracing:

Trace
When an end user of a distributed application makes a request, that request tra‐
verses distinct services that process the request and participate in satisfying the
client request. The trace represents that entire transaction and is the entity that
we are interested in analyzing. A trace consists of multiple spans.

Span
Each distinct service that processes a request represents a span. The operations
that occur within the workload boundaries constitute a single span that are part
of a trace.

Tag
Tags are metadata that are attached to spans to contextualize them within a trace
and provide searchable indexes.

Distributed Tracing | 269

https://opentracing.io

When traces are visualized, they will generally include each individual trace and read‐
ily indicate which components in a system are impacting performance the most. They
will also help track down where errors are occurring and how they are affecting other
components of an application.

Recently, the OpenTracing project merged with OpenCensus to form OpenTelemetry.
At the time of this writing, OpenTelemetry support is still experimental in Jaeger,
which is a fair barometer of adoption, but it is reasonable to expect OpenTelemetry to
become the de facto standard.

Tracing Components
To offer distributed tracing as a platform service, there needs to be a few platform
components in place. The patterns we’ll discuss here are applicable to open source
projects such as Zipkin and Jaeger, but the same models will often apply for other
projects and commercially supported products that implement the OpenTracing
standards.

Agent
Each component in a distributed application will output a span for each request pro‐
cessed. The agent acts as a server to which the application can send the span informa‐
tion. In a Kubernetes-based platform it will usually be a node agent that runs on each
machine in the cluster and receives all spans for workloads on that node. The agent
will forward batched spans to a central collector.

Collector
The collector processes the spans and stores them in the backend database. It is
responsible for validating, indexing, and performing any transformations before per‐
sisting the spans to storage.

Storage
The supported databases vary from project to project, but the usual suspects are Cas‐
sandra and Elasticsearch. Even when sampling, distributed tracing systems collect
very large amounts of data. The databases used need to be able to process and quickly
search these large volumes of data to produce useful analysis.

API
As you might expect, the next component is an API that allows clients to access the
stored data. It exposes the traces and their spans to other workloads or visualization
layers.

270 | Chapter 9: Observability

https://opentelemetry.io
https://zipkin.io
https://www.jaegertracing.io
https://cassandra.apache.org
https://cassandra.apache.org
https://www.elastic.co/elasticsearch

User interface
This is where the rubber hits the road for your platform tenants. This visualization
layer queries the API and reveals the data to app developers. It is where engineers can
view the data collected in useful charts to analyze their systems and distributed
applications.

Figure 9-8 illustrates these tracing components, their relationships to one another,
and the common deployment methods.

Figure 9-8. Components of a tracing platform service.

Distributed Tracing | 271

Application Instrumentation
In order for these spans to get collected and correlated together into traces, the appli‐
cation has to be instrumented to deliver this information. For this reason, it is crucial
to get buy-in from your application development teams. The best tracing platform
service in the world is useless if the applications are not delivering the raw data
needed. Chapter 14 goes into this topic in more depth.

Service Meshes
If using a service mesh, you will likely want your mesh data included in your traces.
Service meshes implement proxies for requests going to and from your workloads,
and getting timing trace spans on those proxies helps you understand how they affect
performance. Note that your application will still need to be instrumented, even if
using a service mesh. The request headers need to be propagated from one service
request to the next through a trace. Service meshes are covered in detail in Chapter 6.

Summary
Observability is a core concern in platform engineering. It’s fair to say that no applica‐
tion platform could be considered production-ready without observability solved. As
a baseline, make sure you are able to reliably collect logs from your containerized
workloads and forward them to your logging backend along with the audit logs from
the Kubernetes API server. Also consider metrics and alerting a minimum require‐
ment. Collect the metrics exposed by the Kubernetes control plane, surface them in a
dashboard, and alert on them. Work with your application development teams to
instrument their applications to expose metrics where applicable and collect those,
too. Finally, if your teams have embraced microservice architectures, work with your
app dev teams to instrument their apps for tracing and install the platform compo‐
nents to leverage that information as well. With these systems in place you will have
the visibility to troubleshoot and refine your operations to improve performance and
stability.

272 | Chapter 9: Observability

CHAPTER 10

Identity

Establishing the identity of both users and application workloads is a key concern
when designing and implementing a Kubernetes platform. No one wants to be in the
news for having their systems breached. So it’s vital that we ensure that only the
appropriately privileged entities (human or application) can access particular systems
or take certain actions. For this we need to ensure that there are both Authentication
and Authorization systems implemented. As a refresher:

• Authentication is the process of establishing the identity of an application or user.
• Authorization is the process of determining what actions an application or user

are able to do, after they have been authenticated.

This chapter is solely focused on authentication. That’s not to say that authorization is
not important, and we will touch on it briefly where appropriate. For more informa‐
tion you should definitely research Role Based Access Control (RBAC) in Kubernetes
(there are many great resources available) and ensure that you have a solid strategy
for implementing it for your own applications, so that you understand the permis‐
sions that are required by any external applications that you might deploy.

Establishing identity for the purposes of authentication is a key requirement of
almost every distributed system. A simple example of this that everyone has used is a
username and password. Together, the information identifies you as a user of the sys‐
tem. In this context then, identity needs to have a couple of properties:

• It needs to be verifiable. If a user enters their username and password, we need to
be able to go to a database or source of truth and compare the values to make
sure they’re correct. In the case of a TLS certificate that might be presented, we
need to be able to verify that certificate against a trusted issuing Certificate
Authority (CA).

273

• It needs to be unique. If an identity provided to us is not unique, we cannot
specifically identify the bearer. However, we need to maintain uniqueness only
within our desired scope—for example, a username or email address.

Establishing identity is also a crucial precursor to handling authorization concerns.
Before we can determine what scope of resource access should be granted, we need to
uniquely identify the entity that is authenticating to the system.

Kubernetes clusters commonly serve multiple tenants where many users and teams
are deploying and operating multiple applications in a single cluster. Solving for ten‐
ancy in Kubernetes presents challenges (many covered in this book), of which one is
identity. Given the matrix of privileges and resources that must be considered, we
must solve for many deployment and configuration scenarios. Development teams
should have access to their applications. Operations teams should have access to all
applications and might need access to platform services. Application-to-application
communication should be limited among applications. Then the list goes on. What
about shared services? Security teams? Deployment tooling?

These are all common concerns and add significant complexity to cluster configura‐
tion and maintenance. Remember, we have to keep these privileges updated somehow
as well. These things are easy to get wrong. But the good news is that Kubernetes has
capabilities that allow us to integrate with external systems and to model identity and
access controls in a secure fashion.

In this chapter we’ll begin by discussing user identity and the different methods for
authenticating users to Kubernetes. We’ll then move on to options and patterns for
establishing application identity within a Kubernetes cluster. We’ll see how to authen‐
ticate applications to the Kubernetes API server (for writing tools that interact
directly with Kubernetes, such as operators). We’ll also cover how to establish unique
application identities to enable those applications to authenticate to each other within
the cluster, in addition to authenticating to external services like AWS.

User Identity
In this section we’ll cover the methods and patterns for implementing a robust system
of user identity across your Kubernetes cluster(s). In this context we’re defining a user
as a human who will be interacting with the cluster directly (either through the
Kubectl CLI or the API). The properties of identity (described in the previous sec‐
tion) are common to user and application identity, but some of the methods will dif‐
fer. For example, we always want our identities to be verifiable and unique; however,
these properties will be achieved in different ways for a user utilizing OpenID Con‐
nect (OIDC) versus an application using service account tokens.

274 | Chapter 10: Identity

Authentication Methods
There are a number of different authentication methods available to Kubernetes oper‐
ators, and each have their own strengths and weaknesses. In keeping with the core
theme of this book, it’s essential to understand your specific use cases, evaluate what’s
going to work for you, integrate with your systems, provide the user experience (UX),
and deliver the security posture that your organization requires.

In this section we’ll cover each method of establishing user identity and their trade-
offs while describing some commonly used patterns we’ve implemented in the field.
Some of the methods described here are platform-specific and tied to functionality
available in certain cloud vendors, while others are platform-agnostic. How well a
system integrates into your existing technology landscape is definitely going to be a
factor in determining whether to adopt it. The trade-off is between extra functionality
available in new tooling versus the ease-of-maintenance of integrations with the
incumbent stack.

In addition to providing identity, some of the methods described may also provide
encryption. For example, the flow described for the public key infrastructure (PKI)
method provides certificates that could be used in Mutual Transport Layer Security
(mTLS) communication. However, encryption is not the focus of this chapter and is
an incidental benefit from those methods of identity grants.

Shared secrets
A shared secret is a unique piece (or set) of information that is held by the calling
entity and the server. For example, when an application needs to connect to a MySQL
database, it can use a username and password combination to authenticate. This
method necessitates that both parties have access to that combination in some form.
You must create an entry in MySQL with that information, and then distribute the
secret to any calling application that may need it. Figure 10-1 shows this pattern, with
the backend application storing valid credentials that need to be presented by the
frontend to gain access.

Figure 10-1. Shared secrets flow.

Kubernetes provides two options that allow you to utilize a shared secret model to
authenticate to the API server. In the first method you can give the API server a list of
comma-separated values (CSV) mapping usernames (and optionally, groups) to static
tokens. When you want to authenticate to the API server, you can provide the token

User Identity | 275

as a Bearer token within the HTTP Authorization header. Kubernetes will treat the
request as coming from the mapped user and act accordingly.

The other method is to supply the API server with a CSV of username (and option‐
ally, groups) and password mappings. With this method configured, users can supply
the credentials base64-encoded in the HTTP Basic Authorization header.

Kubernetes has no resource or object called User or Group. These
are just predefined names for the purposes of identification within
RBAC RoleBindings. The user can be mapped from a static file to
token or password (as described previously), can be pulled from
the CN of an x509 cert, or can be read as a field from an OAuth
request, etc. The method of determining the user and group is
entirely dependent on the authentication method in use, and
Kubernetes has no way to define or manage them internally. In our
opinion this pattern is a strength of the API because it allows us to
plug in a variety of different implementations and delegate those
concerns to systems specifically designed to handle them.

Both of these methods have serious weaknesses and are not recommended. Some of
these weaknesses are due to the Kubernetes-specific implementation, and some are
inherent to the shared secret model, which we’ll discuss shortly. In Kubernetes, the
main issues are:

• Static token and/or password files must be stored (in plain text) somewhere
accessible to the API server. This is less of a risk than it initially seems, because if
someone was able to compromise an API server and gain access to that node you
would have greater things to worry about than an unencrypted password file.
However, Kubenetes installations are mostly automated, and all assets required
for setup should be stored in a repository. This repository must be secured, audi‐
ted, and updated. This opens another potential area for carelessness or bad prac‐
tices to leak credentials.

• Both the static tokens and the username/password combinations have no expira‐
tion date. If any credentials are compromised, the breach must be identified
quickly and remediated by removing the relevant credentials and restarting the
API server.

• Any modifications to these credential files require that the API server is restarted.
In practice (and in isolation) this is fairly trivial. However, many organizations
are rightly moving away from manual intervention into their running software
and servers. Changing configurations is now mostly a rebuild and redeploy pro‐
cess versus simply SSH’ing into the machines (cattle over pets). Therefore,

276 | Chapter 10: Identity

modifying API server configurations and restarting the processes is likely a more
involved action.

Outside of the Kubernetes-specific disadvantages just described, the shared secrets
model suffers from another drawback. If I am an untrusted entity, how can I authen‐
ticate to a secret store in the first place to receive an appropriate identity? We’ll look
more at this secure introduction problem and how to solve it in “Application/Work‐
load Identity” on page 288.

Public key infrastructure

This section assumes you are already familiar with PKI concepts.

The PKI model uses certificates and keys to uniquely identify and authenticate users
to Kubernetes. Kubernetes makes extensive use of PKI to secure communications
between all of the core components of the system. It’s possible to configure the Certif‐
icate Authorities (CA) and certificates in multiple ways, but we will demonstrate it
using kubeadm, the method most commonly seen in the field (and the de facto instal‐
lation method for upstream Kubernetes).

After installing a Kubernetes cluster, you typically get a kubeconfig file with the
kubernetes-admin user details. This file is essentially the root key to the cluster. Usu‐
ally, this kubeconfig file is called admin.conf and is similar to this:

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: <.. SNIP ...>
 server: https://127.0.0.1:32770
 name: kind-kind
contexts:
- context:
 cluster: kind-kind
 user: kind-kind
 name: kind-kind
current-context: kind-kind
kind: Config
preferences: {}
users:
- name: kind-kind
 user:
 client-certificate-data: <.. SNIP ...>
 client-key-data: <.. SNIP ...>

User Identity | 277

To determine the user that this will authenticate us to the cluster with, we need to first
base64 decode the client-certificate-data field and then display the contents
using something like openssl:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 2587742639643938140 (0x23e98238661bcd5c)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=kubernetes
 Validity
 Not Before: Jul 25 19:48:42 2020 GMT
 Not After : Jul 25 19:48:44 2021 GMT
 Subject: O=system:masters, CN=kubernetes-admin
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 <.. SNIP ...>
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Client Authentication
 Signature Algorithm: sha256WithRSAEncryption
 <.. SNIP ...>

We see from the certificate that it was issued by the Kubernetes CA, and identifies the
User as kubernetes-admin (the subject CN field) in the system:masters group. When
using x509 certificates, any Organizations (O=) present are treated by Kubernetes as
groups that the user should be considered part of. We will discuss some advanced
methods around user and group configuration and permissions later in this chapter.

In the preceding example we saw the default configuration for the kubernetes-admin
user, a reserved default name that enables cluster-wide administrative privileges. It
would also be useful to see how to configure the provisioning of certificates to iden‐
tify other regular system users who can then be given appropriate permissions using
the RBAC system. Provisioning and maintaining a large set of certificate artifacts is
an arduous task, but one that Kubernetes can help us with by using some built-in
resources.

In order for the CSR flow described next to function correctly, the controller-
manager needs to be configured with the --cluster-signing-cert-file and --
cluster-signing-key-file parameters as shown here:

spec:
 containers:
 - command:
 - kube-controller-manager

278 | Chapter 10: Identity

 - --cluster-signing-cert-file=/etc/kubernetes/pki/ca.crt
 - --cluster-signing-key-file=/etc/kubernetes/pki/ca.key
 # Additional flags removed for brevity
 image: k8s.gcr.io/kube-controller-manager:v1.17.3

Any entity with appropriate RBAC permissions can submit a Certificate Signing
Request object to the Kubernetes API. If a user should be able to self submit, this
means we need to provide a mechanism for the user to submit those requests. One
way of doing this is to explicitly configure permissions to allow the system:anony
mous User and / or system:unauthenticated group to submit and retrieve CSRs.

Without this, any unauthenticated user would by definition be unable to initiate the
process that would allow them to become authenticated. We should definitely be
wary of this approach, though, as we never want to give unauthenticated users any
access to the Kubernetes API server. A common way of providing self-service for
CSRs is therefore to provide a thin abstraction or portal on top of Kubernetes that
will run with the appropriate permissions. Users can log in to the portal using some
other credentials (usually SSO) and initiate this CSR flow (as shown in Figure 10-2).

Figure 10-2. CSR flow.

In this flow the user could generate a private key locally and then submit this through
the portal. Or, the portal could generate private keys for each user and return them
with the approved certificate to the user. Generation can be done using openssl or
any number of other tools/libraries. The CSR should contain the metadata the user
wants encoded into their x509 certificate, including their user name and any addi‐
tional groups they should be part of. The following example creates a certificate
request that identifies the user as john:

User Identity | 279

$ openssl req -new -key john.key -out john.csr -subj "/CN=john"
$ openssl req -in john.csr -text
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: CN=john
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (1024 bit)
 Modulus:
 <.. SNIP ...>
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha256WithRSAEncryption
 <.. SNIP ...>

After generating the CSR we can submit it to the cluster via our portal in a Certifica‐
teSigningRequest resource. Following is an example of the request as a YAML object,
but our portal would likely programatically apply this via the Kubernetes API rather
than constructing the YAML manually:

cat <<EOF | kubectl apply -f -
apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
 name: john
spec:
 request: $(cat john.csr | base64 | tr -d '\n')
 usages:
 - client auth
EOF

This creates a CSR object in Kubernetes with a pending state, awaiting approval. This
CSR object contains the (base64-encoded) signing request and the username of the
requestor. If using a Service Account token to authenticate to the Kubernetes API (as
a Pod would in an automated flow), then the username will be the Service Account
name. In the following example, I was authenticated to the Kubernetes API as the
kubernetes-admin user and it appears in the Requestor field. If using a portal we’d
see the Service Account assigned to that portal component.

$ kubectl get csr
NAME AGE REQUESTOR CONDITION
my-app 17h kubernetes-admin Pending

While the request is pending, the user has not been granted any certificate. The next
stage involves a cluster administrator (or a user with appropriate permissions)
approving the CSR. This may also be automated if the user’s identity can be progra‐
matically determined. Approval will issue a certificate back to the user that can be
used to assert identity on that Kubernetes cluster. For this reason, it’s important to

280 | Chapter 10: Identity

perform verification that the submitter of the request is who they claim to be. This
could be achieved by adding some additional identifying metadata to the CSR and
having an automated process validate the information against the claimed identity, or
by having an out-of-band process to verify the user’s identity.

Once the CSR has been approved, the certificate (in the status field of the CSR) can
be retrieved and used (in conjunction with their private key) for TLS communica‐
tions with the Kubernetes API. In our portal implementation, the CSR would be
pulled by the portal system and made available for the requesting user once they log
back in and recheck the portal:

apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
 name: my-app
Additional fields removed for brevity
status:
 certificate: <.. SNIP ...>
 conditions:
 - lastUpdateTime: "2020-03-04T15:45:30Z"
 message: This CSR was approved by kubectl certificate approve.
 reason: KubectlApprove
 type: Approved

When decoding the certificate we can see that it contains the relevant identity infor‐
mation (john) in the CN field:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 66:82:3f:cc:10:3f:aa:b1:df:5b:c5:42:cf:cb:5b:44:e1:45:49:7f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=kubernetes
 Validity
 Not Before: Mar 4 15:41:00 2020 GMT
 Not After : Mar 4 15:41:00 2021 GMT
 Subject: CN=john
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 <.. SNIP ...>
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Extended Key Usage:
 TLS Web Client Authentication
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Subject Key Identifier:
 EE:8E:E5:CC:98:41:78:4A:AE:32:75:52:1C:DC:DD:D0:9B:95:E0:81

User Identity | 281

 Signature Algorithm: sha256WithRSAEncryption
 <.. SNIP ...>

Finally, we can craft a kubeconfig containing our private key and the approved certifi‐
cate that will allow us to communicate with the Kubernetes API server as the john
user. The certificate we get back from the preceding CSR process goes into the
client-certificate-data field shown here in the kubeconfig:

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: <.. SNIP ...>
 server: https://127.0.0.1:32770
 name: kind-kind
contexts:
- context:
 cluster: kind-kind
 user: kind-kind
 name: kind-kind
current-context: kind-kind
kind: Config
preferences: {}
users:
- name: kind-kind
 user:
 client-certificate-data: <.. SNIP ...>
 client-key-data: <.. SNIP ...>

We have seen implementations of this model in the field whereby an automated sys‐
tem provisions certificates based on some verifiable SSO credentials or other authen‐
tication method. When automated, these systems can be successful, but we do not
recommend them. Relying on x509 certificates as a primary authentication method
for users of Kubernetes introduces a number of issues:

• Certificates provisioned through the Kubernetes CSR flow cannot be revoked
prior to their expiry. There is currently no support for certificate revocation lists
of Online Certificate Status Protocol (OSCP) stapling in Kubernetes.

• Additional PKI needs to be provisioned, supported, and maintained, in addition
to creating and maintaining a component responsible for provisioning certifi‐
cates based on external authentication.

• x509 certificates have expiry timestamps, and these should be kept relatively
short to reduce the risk should a pair (key/cert) be compromised. This short life
span means that there is a high churn in certificates, and these must be dis‐
tributed out to users regularly to ensure that consistent access to the cluster is
maintained.

• There needs to be a way to verify the identity of anyone requesting a certificate.
In an automated system, you can engineer ways of doing this via externally

282 | Chapter 10: Identity

verifiable metadata. In the absence of such metadata, out-of-band verification is
often too time-consuming to be practical, especially given the short life span of
certificates as noted previously.

• Certificates are are localized to one cluster. In the field we see many (10s–100s)
Kubernetes clusters across projects and groups. Requiring unique credentials for
each cluster multiplies the complexity of storing and maintaining the relevant
credentials. This leads to a degraded user experience.

Remember that even when not using certificates as the primary
authentication method, you should still keep the admin.conf kube‐
config somewhere secure. If for whatever reason other authentica‐
tion methods become unavailable, this can act as an admin break-
glass solution to access the cluster.

OpenID Connect (OIDC)
In our opinion, the best choice when setting up user authentication and identity with
Kubernetes is to integrate with an existing Single Sign-On system or provider. Almost
every organization already has a solution such as Okta, Auth0, Google, or even inter‐
nal LDAP/AD that provides a single place for users to authenticate and gain access to
internal systems. For something like authentication (where security is a strong fac‐
tor), outsourcing the complexity is a solid choice unless you have very specialized
requirements.

These systems have many advantages. They are built on well-understood and widely
supported standards. They consolidate all management of user accounts and access to
a single well-secured system, making maintenance and removal of accounts/access
straightforward. Additionally, when using the common OIDC framework, they also
allow users to access downstream applications without exposing credentials to those
systems. Another advantage is that many Kubernetes clusters across multiple envi‐
ronments can leverage a single identity provider, reducing variance between cluster
configurations.

Kubernetes supports OIDC directly as an authentication mechanism (as shown in
Figure 10-3). If your organization is using an identity provider that natively exposes
the relevant OIDC endpoints, then configuring Kubernetes to take advantage of this
is straightforward.

User Identity | 283

Figure 10-3. OIDC flow. Reproduced from the official Kubernetes documentation.

However, there are several scenarios where some extra tooling may be required or
desired to provide additional functionality or improve user experience. Firstly, if your
organization has multiple identity providers it is necessary to utilize an OIDC aggre‐
gator. Kubernetes only supports defining a single identity provider in its configura‐
tion options, and an OIDC aggregator is capable of acting as a single intermediary to
multiple other providers (either OIDC or other methods). We have used Dex (a sand‐
box project within the Cloud Native Computing Foundation) with success many
times before, although other popular options like Keycloak and UAA offer similiar
functionality.

Remember that authentication is in the critical path to cluster
access. Dex, Keycloak, and UAA are all configurable to variable
degrees and you should optimize for availability and stability when
implementing these solutions. These tools are additional mainte‐
nance burdens and must be configured, updated, and secured. In
the field we always try to emphasize the need to understand and
own any additional complexity that is introduced to your environ‐
ment and clusters.

While configuring the API server to utilize OIDC is straightforward, attention must
be given to providing a seamless user experience for the users of the cluster. OIDC

284 | Chapter 10: Identity

https://oreil.ly/VZCz5
https://oreil.ly/_maX6
https://oreil.ly/_maX6

solutions will return a token identifying us (given a successful login); however, we
require a properly formatted kubeconfig in order to access and perform operations
on the cluster. When we hit this use case in the field early on, our colleagues devel‐
oped a simple web UI called Gangway to automate the process of logging in through
an OIDC provider and generating a conformant kubeconfig from the returned token
(complete with relevant endpoints and certificates).

Despite OIDC being our preferred method of authentication, it does not suit all cases,
and secondary methods may be required. OIDC (as defined in the specification)
requires users to log in directly through the web interface of the identity provider.
This is for obvious reasons, to ensure the user is actually providing the credentials
only to the trusted provider and not to the consuming application. This requirement
can cause issues in the case where robot users require access to the system. This is
common for automated tooling like CI/CD systems and others who are unable to
respond to the web-based credential challenge.

In these cases, we have seen a couple of different models/solutions:

• In cases where robot users are tied to centrally managed accounts, it’s possible to
implement a kubectl authentication plug-in that would log in to the external sys‐
tem and receive a token in response. Kubernetes can be configured to verify this
token via the webhook token authenticator method. This method will likely
require some custom coding to create the token generator/webhook server.

• For other cases, we have seen users fall back to using a certificate-based auth for
robot accounts that don’t need to be centrally managed. This of course means
you need to manage certificate issuance and rotation, but it doesn’t require any
custom components.

• Another manual but effective alternative solution is to create a Service Account
for the tool and utilize the token generated for API access. If the tool is running
in cluster it can use the credential directly mounted into the Pod. If the tool is
outside the cluster we can manually copy and paste the token into a secure loca‐
tion accessible by the tool and utilize that when making kubectl or API calls. Ser‐
vice Accounts are covered in more detail in “Service Account Tokens (SAT)” on
page 293.

Implementing Least Privilege Permissions for Users
Now that we’ve seen the different ways it’s possible to implement identity and authen‐
tication, let’s turn to the related topic of authorization. It’s out of scope for this book
to go deep into how you should be configuring RBAC across your clusters. This will
likely vary significantly between applications, environments, and teams. However, we
do want to describe a pattern we’ve implemented successfully in the field around the
principle of least privilege when designing administrative access roles.

User Identity | 285

Whether you have chosen to go with a cluster-per-team approach, or a multitenant
cluster approach, you will likely have super-admin users on the operations team who
are responsible for configuring, upgrading, and maintaining the environment. While
individual teams should have restricted permissions based on the access they require,
these admins will have full reign over the entire cluster and therefore greater potential
to accidentally perform destructive actions.

In an ideal world, all cluster access and operations would be performed by an auto‐
mated process—GitOps or something similar, perhaps. However, practically speak‐
ing, we regularly see users individually accessing clusters and found the following
pattern to be an effective way to limit potential issues. It is tempting to bind an
administrator role to a particular operator’s username/identity directly, only for them
to delete something important while mistakenly having loaded the wrong kubeconfig,
for example. It should never happen until it does!

Kubernetes supports the concept of impersonation, and with this we can create an
experience that behaves closely to sudo on Linux systems by restricting the default
permissions of the user and requiring them to elevate permissions to perform sensi‐
tive commands. Practically speaking, we want to enable these users to view every‐
thing by default but deliberately elevate their privileges to be able to write. This model
significantly reduces the chances of the preceding scenario occurring.

Let’s work through how you might implement the privilege elevation pattern just
described. We’ll assume that our operations team’s user identities are all part of an
ops-team group in Kubernetes. As mentioned earlier, Kubernetes has no defined con‐
cept of a group per se, so we mean that those users all have additional attributes in
their Kubernetes identity (x509 cert, OIDC claim, etc.) that identify them as being
part of the group.

We create the ClusterRoleBinding that allows users in the ops-team group access to
the view built-in ClusterRole, which is what gives us our default read-only access:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: cluster-admin-view
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: view
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: ops-team

Now we create a ClusterRoleBinding to allow our cluster-admin user to have
cluster-admin ClusterRole permissions on the cluster. Remember, we’re not binding

286 | Chapter 10: Identity

this ClusterRole directly to our ops-team group. No user can directly identify as the
cluster-admin user; this will be a user that is impersonated and their permissions
assumed by another authenticated user:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: cluster-admin-crb
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: cluster-admin

Finally, we create a ClusterRole called cluster-admin-impersonator that allows the
impersonation of the cluster-admin user, and a ClusterRoleBinding that binds that
capability to everyone in the ops-team group:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cluster-admin-impersonator
rules:
- apiGroups: [""]
 resources: ["users"]
 verbs: ["impersonate"]
 resourceNames: ["cluster-admin"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: cluster-admin-impersonate
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin-impersonator
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: ops-team

Now let’s use a kubeconfig for a user (john) in the ops-team group to see how the
elevation of privileges works in practice:

$ kubectl get configmaps
No resources found.

$ kubectl create configmap my-config --from-literal=test=test
Error from server (Forbidden): configmaps is forbidden: User "john"

User Identity | 287

cannot create resource "configmaps" in API group "" in the namespace "default"

$ kubectl --as=cluster-admin create configmap my-config --from-literal=test=test
configmap/my-config created

We used the preceding setup for admin users, although implementing something
similiar for every user (having a team-a group, a team-a view role, and a team-a
admin user) is a solid pattern that removes a lot of the potential for costly mistakes.
Additionally, one of the great things about the impersonation approach just described
is that all of this is played out in the Kubernetes audit logs, so we can see the original
user log in, impersonate the cluster-admin, and then take action.

Application/Workload Identity
In the previous section, we saw the main methods and patterns for establishing the
identity of human users of Kubernetes, and how they can authenticate to the cluster.
In this section, we’re going to take at look how we can establish identity for our work‐
loads that run in the cluster. There are three main use cases we’ll be examining:

• Workloads identifying themselves to other workloads within the cluster, to
potentially establish a mutual authentication between them for additional
security.

• Workloads identifying themselves to obtain appropriate access to the Kubernetes
API itself. This is a common use case for custom controllers that need to watch
and act on Kubernetes resources.

• Workloads identifying themselves and authenticating to external services. This
could be anything outside of the cluster but will be primarily cloud vendor serv‐
ices running on AWS, GCP, etc.

In “Network Identity” on page 289, we’ll look at two of the most popular Container
Networking Interface (CNI) tools (Calico and Cilium) and see how they can assign
identity and restrict access, primarily for the first use case we just described.

Secondly, we’ll move on to service account tokens (SAT) and projected service
account tokens (PSAT). These are flexible and important Kubernetes primitives that
enable workload-to-workload identity (the first use case) in addition to being the pri‐
mary mechanism for workloads identifying to the Kubernetes API itself (the second
use case).

Next we’ll cover options where an application’s identity is provided by the platform
itself. The most common use case we see in the field is workloads that need access to
AWS services, and we’ll look at the three main methods that are possible today.

Lastly, we’ll extend the concept of platform-mediated identity to consider tooling that
aims to provide a consistent model of identity across multiple platforms and environ‐

288 | Chapter 10: Identity

ments. The flexibility of this approach can be used to cover all of the use cases we
mentioned, and we’ll show how this can be a very powerful capability.

Before implementing any of the patterns described in this section you should defi‐
nitely evaluate your requirements as they relate to establishing workload-to-workload
identity. Often, establishing this capability is an advanced-level activity, and the
majority of organizations may not need to solve this topic, at least initially.

Shared Secrets
Most of the discussion around shared secrets for user identity also applies to applica‐
tion identity; however, there are some additional nuances and guidance based on field
experience.

Once we have secrets in place that are known by the client and the server, how do we
safely rotate them upon expiry? Ideally we want these secrets to have a fixed life span
to mitigate the potential damage caused if one were to be compromised. Additionally,
because they are shared, they need to be redistributed to both the client application
and the server. Hashicorp’s Vault is a prominent example of an enterprise secret store
and features integrations with many tools that get close to the goal of solving this re-
syncing problem. However, Vault also suffers from the secure introduction problem
we first encountered in “User Identity” on page 274.

This is the problem we have when trying to ensure that a shared secret is securely
distributed to both the client and the serving entity before we have any model of iden‐
tity and authentication established (the chicken and the egg). Any attempt to initially
seed a secret between two entities could be compromised, breaking our guarantee of
identity and unique authentication.

Despite the flaws already discussed, shared secrets have one strong advantange in that
it is a model that is well supported and understood by almost all users and applica‐
tions. This makes it a strong choice for cross-platform operability. We will see how to
solve the secure introduction problem for Vault and Kubernetes with more advanced
methods of authentication later in this chapter. Once Vault is securely configured
with those methods, it is a fine choice (and one we have implemented many times) as
many of the issues with shared secrets are mitigated.

Network Identity
Network primitives like IP addresses, VPNs, firewalls, etc., have historically been
used as a form of identity for controlling which applications have access to what serv‐
ices. However, in a cloud native ecosystem these methods are breaking down and
paradigms are changing. In our experience it is important to educate teams across the
organization (especially networking and security) on these changes and how practices
can (and should) adapt to embrace and accommodate them. Too often this is met

Application/Workload Identity | 289

with resistance around concerns over security and/or control. In reality it’s possible to
achieve almost any posture if required, and time should be taken to understand the
actual requirements of the teams, rather than getting stuck in implementation details.

In container-based environments, workloads share networking stacks and underlying
machines. Workloads are increasingly ephemeral and move between nodes often.
This results in a constant churn of IP addresses and network changes.

In a multicloud and API-driven world, the network is no longer a primary boundary.
Calls commonly occur to external services across multiple providers, each of which
may need a way to prove identity of our calling applications.

Existing traditional (platform level) network primitives (host IP addresses, firewalls,
etc.) are no longer suitable for establishing workload identity and, if used at all,
should be used only as an additional layer of defense in depth. This is not to say that
network primitives in general are bad but that they must have additional workload
context to be effective. In this section we’ll look at how CNI options provide degrees
of identity for Kubernetes clusters and how best to leverage them. CNI providers are
able to contextualize requests and provide identity by combining network primitives
and metadata retrieved from the Kubernetes API. We’ll take a brief look at some of
the most popular CNI implementations and see what capabilities can they can
provide.

Calico
Calico provides network policy enforcement at layers 3 (Network) and 4 (Transport)
of the OSI Model, enabling users to restrict communication between Pods based on
their Namespace, labels, and other metadata. This enforcement is all enabled by mod‐
ifying the network configuration iptables/ipvs) to allow/disallow IP addresses.

Calico also supports making policy decisions based on Service Accounts using a com‐
ponent called Dikastes when used in combination with Envoy proxy (either stand‐
alone Envoy or deployed as part of a service mesh like Istio). This approach enables
enforcement at layer 7 (Application), based on attributes of the application protocol
(headers, etc.) and relevant cryptographic identities (certificates, etc.).

By default, Istio (Envoy) will only perform mTLS and ensure that workloads present
certificates signed by the Istio CA (Citadel). Dikastes runs as a sidecar alongside
Envoy as a plug-in, as we can see in the architecture diagram in Figure 10-3. Envoy
verifies the CA before consulting Dikastes for a decision on whether to admit or
reject the request. Dikastes makes this decision based on user-defined Calico Net‐
workPolicy or GlobalNetworkPolicy objects:

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
 name: summary

290 | Chapter 10: Identity

https://www.projectcalico.org
https://www.envoyproxy.io
https://istio.io

spec:
 selector: app == 'summary'
 ingress:
 - action: Allow
 source:
 serviceAccounts:
 names: ["customer"]
 NamespaceSelector: app == 'bank'
 egress:
 - action: Allow

The preceding rule is specifying that the policy be applied to any Pods with the label
app: summary and restricts access to Pods calling from the customer Service Account
(in Namespaces with the label app: bank). This works because the Calico control
plane (the Felix node agent) computes rules by reconciling Pods that are running
under a specific Service Account with their IP addresses and subsequently syncing
this information to Dikastes via a Unix socket.

This out-of-band verification is important as it mitigates a potential attack vector in
an Istio environment. Istio stores each Service Account’s PKI assets in a Secret in the
cluster. Without this additional verification, an attacker who was able to steal that
Secret would be able to masquerade as the asserted Service Account (by presenting
those PKI assets), even though it may not be running as that account.

Figure 10-4. Architecture diagram using Dikastes with Envoy.

If your team is leveraging Calico already, then Dikastes can provide an extra layer of
defense in depth and should definitely be considered. However, it requires Istio or
some other mesh solution (e.g., standalone Envoy) to be available and running in the
environment to validate the identity presented by the workload. These claims are not
independently cryptographically verifiable, relying on the mesh to be present with
every connected Service. This in itself adds a nontrivial level of complexity, and the
trade-offs should be carefully evaluated. One strength of this approach is that Calico
and Istio are both cross-platform, so this setup could be used to establish identity for

Application/Workload Identity | 291

applications running both on and off Kubernetes within an environment (whereas
some options we’ll see are Kubernetes-only).

Cilium
Like Calico, Cilium also provides network policy enforcement at layers 3 and 4, ena‐
bling users to restrict communication between Pods based on their Namespace and
other metadata (labels, for example). Cilium also supports (without additional tool‐
ing) the ability to apply policy at layer 7 and restrict access to Services via Service
Accounts.

Unlike Calico, enforcement in Cilium is not based on IP address (and updating node
networking configurations). Instead, Cilium calculates identities for each unique
Pod/endpoint (based on a number of selectors) and encodes these identities into each
packet. It then enforces whether packets should be allowed based on these identities
using eBPF kernel hooks at various points in the datapath.

Let’s briefly explore how Cilium calculates identities for an endpoint (Pod). The out‐
put of listing Cilium endpoints for an application is shown in the following code. We
have omitted the list of labels in the snippet but have added an additional label to the
last Pod in the list (deathstar-657477f57d-zzz65) that is not present on the other
four Pods. As a result of this, we can see that the last Pod is therefore assigned a differ‐
ent identity to the previous four. Aside from that single differing label, all the Pods in
the Deployment share a Namespace, Service Account, and several other arbitrary
Kubernetes labels.

$ kubectl exec -it -n kube-system cilium-oid9h -- cilium endpoint list
NAMESPACE NAME ENDPOINT ID IDENTITY ID
default deathstar-657477f57d-jpzgb 1474 1597
default deathstar-657477f57d-knxrl 2151 1597
default deathstar-657477f57d-xw2tr 16 1597
default deathstar-657477f57d-xz2kk 2237 1597
default deathstar-657477f57d-zzz65 1 57962

If we removed the divergent label, the deathstar-657477f57d-zzz65 Pod would be
reassigned the same identity as its four peers. This level of granularity gives us a lot of
power and flexibility when assigning identities to individual Pods.

Cilium implements the Kubernetes-native NetworkPolicy API, and like Calico also
exposes more fully featured capabilities in the form of CiliumNetworkPolicy and Cil‐
iumClusterwideNetworkPolicy objects:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "k8s-svc-account"
spec:
 endpointSelector:
 matchLabels:

292 | Chapter 10: Identity

https://docs.cilium.io
https://oreil.ly/Jl9yw

 io.cilium.k8s.policy.serviceaccount: leia
 ingress:
 - fromEndpoints:
 - matchLabels:
 io.cilium.k8s.policy.serviceaccount: luke
 toPorts:
 - ports:
 - port: '80'
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/public$"

In this example, we are using special io.cilium.k8s.policy.* label selectors to tar‐
get specific Service Accounts in the cluster. Cilium then uses its registry of identities
(that we saw previously) to restrict/allow access as necessary. In the policy shown, we
are restricting access to the path /public on port 80 for Pods with the leia Service
Account. We are allowing access only from Pods with the luke Service Account.

Like Calico, Cilium is cross-platform so can be used across Kubernetes and non-
Kubernetes environments. Cilium is required to be present with every connected Ser‐
vice for identities to be verifiable, so the overall complexity of your networking setup
can increase with this approach. However, Cilium doesn’t require a service mesh
component to operate.

Service Account Tokens (SAT)

Service Accounts are primitives in Kubernetes that provide identity
for groups of Pods. Every Pod runs under a Service Account. If a
Service Account is not pre-created by an administrator and
assigned to a Pod, they are assigned a default Service Account for
the Namespace they reside in.
Service Account tokens are JSON Web Tokens (JWT) that are cre‐
ated as Kubernetes Secrets. Each Service Account (including the
default Service Account) has a corresponding Secret that contains
the JWT. Unless otherwise specified, these tokens are mounted into
each Pod running under that Service Account and can be used to
make requests to the Kubernetes API (and as this section shows,
other services).

Kubernetes Service Accounts provide a way of assigning identity to a set of work‐
loads. Role-Based Access Control (RBAC) rules then can be applied within the cluster
to limit the scope of access for a specific Service Account. Service Accounts are the
way that Kubernetes itself usually authenticates in-cluster access to the API:

Application/Workload Identity | 293

apiVersion: v1
kind: ServiceAccount
metadata:
 name: default
 namespace: default
secrets:
- name: default-token-mf9v2

When a Service Account is created, an associated Secret is also created containing a
unique JWT identifying the account:

apiVersion: v1
data:
 ca.crt: <.. SNIP ...>
 namespace: ZGVmYXVsdA==
 token: <.. SNIP ...>
kind: Secret
metadata:
 annotations:
 kubernetes.io/service-account.name: default
 kubernetes.io/service-account.uid: 59aee446-b36e-420f-99eb-a68895084c98
 name: default-token-mf9v2
 namespace: default
type: kubernetes.io/service-account-token

By default, Pods will automatically get the default Service Account token for their
Namespace mounted if they do not specify a specific Service Account to use. This can
(and should) be disabled to ensure that all Service Account tokens are explicitly
mounted to Pods and their access scopes are well understood and defined (rather
than falling back and assuming a default).

To specify a Service Account for a Pod, use the serviceAccountName field in the Pod
spec:

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 serviceAccountName: my-pod-sa
Additional fields removed for brevity

This will cause the Service Account’s Secret (containing the token) to be mounted
into the Pod at /var/run/secrets/kubernetes.io/serviceaccount/. The applica‐
tion can retrieve the token and use it in a request to other applications/services in the
cluster.

The destination application can verify the provided token by calling the Kubernetes
TokenReview API:

curl -X "POST" "https://<kubernetes API IP>:<kubernetes API Port>\
/apis/authentication.k8s.io/v1/tokenreviews" \

294 | Chapter 10: Identity

https://oreil.ly/kX5mI

 -H 'Authorization: Bearer <token>' \
 -H 'Content-Type: application/json; charset=utf-8' \
 -d $'{
 "kind": "TokenReview",
 "apiVersion": "authentication.k8s.io/v1",
 "spec": {
 "token": "<token to verify>"
 }
}'

This token is the Secret mounted into the destination application’s Pod, allowing
it to communicate with the API server.

This token is the one the calling application has presented as proof of identity.

The Kubernetes API will respond with metadata about the token to be verified, in
addition to whether or not it has been authenticated:

{
 "kind": "TokenReview",
 "apiVersion": "authentication.k8s.io/v1",
 "metadata": {
 "creationTimestamp": null
 },
 "spec": {
 "token": "<token to verify>"
 },
 "status": {
 "authenticated": true,
 "user": {
 "username": "system:serviceaccount:default:default",
 "uid": "4afdf4d0-46d2-11e9-8716-005056bf4b40",
 "groups": [
 "system:serviceaccounts",
 "system:serviceaccounts:default",
 "system:authenticated"
]
 }
 }
}

The preceding flow is shown in Figure 10-5.

Application/Workload Identity | 295

Figure 10-5. Service Account tokens.

Service Account tokens have been part of Kubernetes since very early on and provide
a tight integration with the platform in a consumable format (JWT). We as operators
also have a fairly tight control on their validity as tokens are invalidated if the Service
Account or Secret is deleted. However, they have some features that make their use as
identifiers suboptimal. Most importantly, the tokens are scoped to a specific Service
Account, so are unable to validate anything with a more granular scope, for example a
Pod or a single container. We also need to add functionality to our applications if we
want to use and verify tokens as a form of client identity. This involves calling the
TokenReview API with some custom component.

Tokens are also scoped to a single cluster, so we’re not able to use Service Account
tokens issued by one cluster as identity documents for services calling from other
clusters without exposing each cluster’s TokenReview API and encoding some addi‐
tional metadata about the cluster where the request originated. All of this adds signif‐
icant complexity to the setup, so we’d recommend not going down this path as a
method of cross-cluster service identity/authentication.

To ensure that permissions can be granted to applications in an
appropriately granular way, unique Service Accounts should be cre‐
ated for each workload that requires access to the Kubernetes API
server. Additionally, if a workload does not require access to the
Kubernetes API server, disable the mounting of a Service Account
token by specifying the automountServiceAccountToken: false
field on the ServiceAccount object.
For example, this can be set on the default Service Account for a
Namespace to disable the auto-mounting of the credential token.
This field can also be set on the Pod object, but note that the Pod
field takes precedence if it’s set in both places.

296 | Chapter 10: Identity

Projected Service Account Tokens (PSAT)
Beginning with Kubernetes v1.12 there is an additional method of identity available
that builds on the ideas in service account tokens but seeks to address some of the
weaknesses (such as lack of TTL, wide scoping, and persistence).

In order for the PSAT flow to function correctly, the Kubernetes API server needs to
be configured with the parameter keys shown here (all are configurable, though):

spec:
 containers:
 - command:
 - kube-apiserver
 - --service-account-signing-key-file=/etc/kubernetes/pki/sa.key
 - --service-account-key-file=/etc/kubernetes/pki/sa.pub
 - --service-account-issuer=api
 - --service-account-api-audiences=api
 # Additional flags removed for brevity
 image: k8s.gcr.io/kube-apiserver:v1.17.3

The flow for establishing and verifying identity is similar to the SAT method. How‐
ever, instead of having our Pod/application read the automounted Service Account
token, you instead mount a projected Service Account token as a Volume. This also
injects a token into the Pod, but you can specify a TTL and custom audience for the
token:

apiVersion: v1
kind: Pod
metadata:
 name: test
 labels:
 app: test
spec:
 serviceAccountName: test
 containers:
 - name: test
 image: ubuntu:bionic
 command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']
 volumeMounts:
 - mountPath: /var/run/secrets/tokens
 name: app-token
 volumes:
 - name: app-token
 projected:
 sources:
 - serviceAccountToken:
 audience: api
 expirationSeconds: 600
 path: app-token

Application/Workload Identity | 297

The audience field is important because it prevents destination applications
using the token from the calling application and attempting to masquerade as the
calling application. The audience should always be scoped correctly depending
on the destination application. In this case, we are scoping to communicate with
the API server itself.

When using PSAT, a designated Service Account must be created
and used. Kubernetes does not mount PSATs for Namespace
default Service Accounts.

The calling application can read the projected token and use that in requests within
the cluster. Destination applications can verify the token by calling the TokenReview
API and passing the received token. With the PSAT method, the review will also ver‐
ify that the TTL has not expired and will return additional metadata about the pre‐
senting application, including specific Pod information. This provides a tighter scope
than regular SATs (which only assert a Service Account).

// Additional fields removed for brevity
"extra": {
 "authentication.kubernetes.io/pod-name": ["test"],
 "authentication.kubernetes.io/pod-uid":
 ["8b9bc1be-c71f-4551-aeb9-2759887cbde0"]
}

As shown in Figure 10-6, there is no real difference between the SAT and PSAT flows
themselves (aside from the server verifying the audience field), only in the validity
and granularity of the identity asserted by the token. The audience field is important
as it identifies the intended recipient of the token. In keeping with the JWT official
specification, the API will reject a token whose audience does not match the audience
specified in the API server configuration.

Figure 10-6. Projected Service Account tokens.

298 | Chapter 10: Identity

https://oreil.ly/gKlA7
https://oreil.ly/gKlA7

Projected Service Account tokens are a relatively recent but incredibly strong addi‐
tion to Kubernetes’ feature set. On their own they provide tight integration with the
platform itself, they provide configurable TTLs, and they have a tight scope (individ‐
ual Pods). They can also be used as building blocks to construct even more robust
patterns (as we’ll see in later sections).

Platform Mediated Node Identity
In cases where all workloads are running on a homogeneous platform (for example,
AWS), it is possible for the platform itself to determine and assign identities to work‐
loads because of the contextual metadata they possess about the workload.

Identity is not asserted by the workload itself but is determined based on its proper‐
ties by an out-of-band provider. The provider returns the workload a credential to
prove identity that may be used to communicate with other services on the platform.
It then becomes trivial for the other services to verify that credential because they too
are on the same underlying platform.

On AWS, an EC2 instance may request credentials to connect to a different service
like an S3 bucket. The AWS platform inspects the metadata of the instance and can
provide role-specific credentials back to the instance with which to make the connec‐
tion, as shown in Figure 10-7.

Figure 10-7. Platform mediated identity.

Remember that the platform still has to perform authorization on
the request to ensure that the identity being used has the appropri‐
ate permissions. This method is only being used to authenticate the
request.

Many cloud vendors expose functionality described in this section. We’re choosing to
focus on tooling that applies to and integrates with Amazon Web Services (AWS)
because it is the vendor we most commonly see in the field.

Application/Workload Identity | 299

AWS platform authentication methods/tooling
AWS provides a strong identity solution at the node level via the EC2 metadata API.
This is an example of a platform-mediated system, whereby the platform (AWS) is
able to determine the identity of a calling entity based on a number of intrinsic prop‐
erties without the entity asserting any credentials/identity claim itself. The platform
can then deliver secure credentials to the instance (in the form of a role, for example)
that allows it to access any services defined by the relevant policies. As a whole this is
referred to as Identity and Access Management (IAM).

This model underpins how AWS (and many other vendors) provide secure access to
their own cloud services. However, with the rise of containers and other multitenant
application models, this per-node identity/authentication system breaks down and
requires additional tooling and alternative approaches.

In this section we’ll look at the three main tooling options we encounter in the field.
We’ll cover kube2iam and kiam, two separate tools that share the same approximate
implementation model (and therefore have similar advantages and disadvantages).
We’ll also describe why we don’t recommend those tools today and why you should
consider a more integrated solution such as the final option we cover, IAM Roles for
Service Accounts (IRSA).

kube2iam. kube2iam is an open source (OSS) tool that acts as a proxy between run‐
ning workloads and the AWS EC2 metadata API. The architecture is shown in
Figure 10-8.

kube2iam requires that every node in the cluster be able to assume
a superset of all the roles that Pods may require. This security
model means that the scope of access provided should a container
breakout occur is potentially huge. For this reason it is strongly
advised not to use kube2iam. We are discussing it here as we regu‐
larly encounter it in the field and want to ensure that you are aware
of the limitations of the implementation before diving in.

Figure 10-8. kube2iam architecture and data flow.

300 | Chapter 10: Identity

https://github.com/jtblin/kube2iam

kube2iam Pods run on every node via a DaemonSet. Each Pod injects an iptables rule
to capture outbound traffic to the metadata API and redirect it to the running
instance of kube2iam on that node.

Pods that want to interact with AWS APIs should specify the role they want to assume
as an annotation in the spec. For example, in the following Deployment spec you can
see the role is specified in the iam.amazonaws.com/role annotation:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 template:
 metadata:
 annotations:
 iam.amazonaws.com/role: <role-arn>
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.1
 ports:
 - containerPort: 80

kiam. Like kube2iam, kiam is an open source (OSS) tool that acts as a proxy to the
AWS EC2 metadata API, although its architecture (and as a result, its security model)
are different and slightly improved, as shown in Figure 10-9.

While safer than kube2iam, kiam also introduces a potentially seri‐
ous security flaw. This section describes a mitigation of the flaw,
but you should still use caution and understand the attack vector
when using kiam.

Figure 10-9. kiam architecture and data flow.

Application/Workload Identity | 301

https://github.com/uswitch/kiam

kiam has both server and agent components. The agents run as a DaemonSet on
every node in the cluster. The server component can (and should) be restricted to the
either the control-plane nodes or a subset of cluster nodes. Agents capture EC2 meta‐
data API requests and forward them to the server components to complete the appro‐
priate authentication with AWS. Only the server nodes require access to assume AWS
IAM roles (again, a superset of all roles that Pods may require), as shown in
Figure 10-10.

Figure 10-10. kiam flow.

In this model, there should be controls in place to ensure that no workloads are able
to run on the server nodes (and thereby obtain unfettered AWS API access). Assump‐
tion of roles is achieved (like kube2iam) by annotating Pods with the desired role:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 template:
 metadata:
 annotations:
 iam.amazonaws.com/role: <role-arn>
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.1

302 | Chapter 10: Identity

 ports:
 - containerPort: 80

While the security model is better than kube2iam, kiam still has a potential attack
vector whereby if a user is able to directly schedule a Pod onto a node (by populating
its nodeName field, bypassing the Kubernetes scheduler and any potential guards) they
would have unrestricted access to the EC2 metadata API.

The mitigation for this issue is to run a mutating or validating admission webhook
that ensures the nodeName field is not prepopulated on Pod create and update requests
to the Kubernetes API.

kiam provides a strong story for enabling individual Pods to access AWS APIs, using
a model that existing AWS users will be familiar with (role assumption). This is a via‐
ble solution in many cases, provided the preceding mitigation is put in place prior to
use.

IAM Roles for Service Accounts (IRSA). Since late 2019, AWS has provided a native inte‐
gration between Kubernetes and IAM called IAM Roles for Service Accounts (IRSA).

At a high level, IRSA exposes a similiar experience to kiam and kube2iam, in that
users can annotate their Pods with an AWS IAM role they want it to assume. The
implementation is very different, though, eliminating the security concerns of the
earlier approaches.

AWS IAM supports federating identity out to a third-party OIDC provider, in this
case the Kubernetes API server. As you saw already with PSATs, Kubernetes is capable
of creating and signing short-lived tokens on a per-Pod basis.

AWS IRSA combines these features with an additional credential provider in their
SDKs that calls sts:AssumeRoleWithWebIdentity, passing the PSAT. The PSAT and
desired role need to be injected as environment variables within the Pod (there is a
webhook that will do this automatically based on the serviceAccountName desired):

apiVersion: apps/v1
kind: Pod
metadata:
 name: myapp
spec:
 serviceAccountName: my-serviceaccount
 containers:
 - name: myapp
 image: myapp:1.2
 env:
 - name: AWS_ROLE_ARN
 value: "arn:aws:iam::123456789012:role/\
 eksctl-irptest-addon-iamsa-default-my-\
 serviceaccount-Role1-UCGG6NDYZ3UE"
 - name: AWS_WEB_IDENTITY_TOKEN_FILE

Application/Workload Identity | 303

https://oreil.ly/dUoJJ

 value: /var/run/secrets/eks.amazonaws.com/serviceaccount/token
 volumeMounts:
 - mountPath: /var/run/secrets/eks.amazonaws.com/serviceaccount
 name: aws-iam-token
 readOnly: true
 volumes:
 - name: aws-iam-token
 projected:
 defaultMode: 420
 sources:
 - serviceAccountToken:
 audience: sts.amazonaws.com
 expirationSeconds: 86400
 path: token

Kubernetes does not natively expose a .well-known OIDC endpoint, so there is some
additional work required to configure this at a public location (static S3 bucket) so
that AWS IAM can verify the token using Kubernetes’ public Service Account signing
key.

Once verified, AWS IAM responds to the application’s request, exchanging the PSAT
for the desired IAM role credentials as shown in Figure 10-11.

Figure 10-11. IAM roles for Service Accounts.

Although the setup for IRSA is a little clunky, it possesses the best security model of
all approaches to Pod IAM Role assumption.

304 | Chapter 10: Identity

IRSA is a strong choice for organizations already leveraging AWS services as it uses
patterns and primitives that will be familiar with your operations and development
teams. The model employed (mapping Service Accounts to IAM roles) is also a
straightforward one to understand with a strong security model.

The main downside is that IRSA can be somewhat cumbersome to deploy and config‐
ure if you are not utilizing the Amazon Elastic Kubernetes Service (EKS). However,
recent additions to Kubernetes itself will alleviate some of the technical challenges
here, such as exposing Kubernetes itself as an OIDC provider.

As we saw in this section, mediating identity through a common platform (AWS in
this case) has many strengths. In the next section we’ll dive into tooling that is aiming
to implement this same model but capable of spanning multiple underlying platforms.
This brings the control of a centralized identity system with the flexibility of running
it for any workload across any cloud or platform.

Cross-platform identity with SPIFFE and SPIRE
Secure Production Identity Framework for Everyone (SPIFFE) is a standard that
specifies a syntax for identity (SPIFFE Verifiable Identity Document, SVID) that can
leverage existing cryptographic formats such as x509 and JWT. It also specifies a
number of APIs for providing and consuming these identities. A SPIFFE ID takes the
form spiffe://trust-domain/hierarchical/workload, where all sections after the
spiffe:// are arbitrary string identifiers that can be used in multiple ways (although
creating some kind of hierarchy is most common).

SPIFFE Runtime Environment (SPIRE) is the reference implementation of SPIFFE
and has a number of SDKs and integrations to allow applications to make use of
(both providing, and consuming) SVIDs.

This section will assume use of SPIFFE and SPIRE together unless otherwise noted.

Architecture and concepts. SPIRE runs a server component that acts as a signing
authority for identities and maintains a registry of all workload identities and the
conditions required for an identity document to be issued.

SPIRE agents run on every node as a DaemonSet where they expose an API for work‐
loads to request identity via a Unix socket. The agent is also configured with read-
only access to the kubelet to determine metadata about Pods on the node. The SPIRE
architecture is shown in Figure 10-12.

Application/Workload Identity | 305

Figure 10-12. SPIRE Architecture. Reproduced from the official SPIRE documentation.

When agents come online they verify and register themselves to the server by a pro‐
cess called node attestation (as shown in Figure 10-13). This process utilizes environ‐
mental context (for example, the AWS EC2 metadata API or Kubernetes PSATs) to
identify a node and assign it a SPIFFE ID. The server then issues the node an identity
in the form of an x509 SVID. Following is an example registration for a node:

/opt/spire/bin/spire-server entry create \
 -spiffeID spiffe://production-trust-domain/nodes \
 -selector k8s_psat:cluster:production-cluster \
 -selector k8s_psat:agent_ns:spire \
 -selector k8s_psat:agent_sa:spire-agent \
 -node

This tells the SPIRE server to assign the SPIFFE ID spiffe://production-trust-
domain/nodes to any node where the agent Pod satisfies the selectors specified; in this
case, we are selecting when the Pod is running in the SPIRE Namespace on the
production-cluster under the spire-agent Service account (verified via the PSAT).

Figure 10-13. Node attestation. Reproduced from the official SPIRE documentation.

When workloads come online they call the node-local workload API to request an
SVID. The SPIRE agent uses information available to it on the platform (from the

306 | Chapter 10: Identity

https://oreil.ly/6VY4A
https://oreil.ly/Q5eEW

kernel, kubelet, etc.) to determine the properties of the calling workload. This process
is referred to as workload attestation (as shown in Figure 10-14). The SPIRE server
then matches the properties against known workload identities based on their selec‐
tors and returns an SVID to the workload (via the agent) that can be used for authen‐
tication against other systems:

/opt/spire/bin/spire-server entry create \
 -spiffeID spiffe://production-trust-domain/service-a \
 -parentID spiffe://production-trust-domain/nodes \
 -selector k8s:ns:default \
 -selector k8s:sa:service-a \
 -selector k8s:pod-label:app:frontend \
 -selector k8s:container-image:docker.io/johnharris85/service-a:v0.0.1

This tells the SPIRE server to assign the SPIFFE ID spiffe://production-trust-
domain/service-a to any workload that:

• Is running on a node with ID spiffe://production-trust-domain/nodes.
• Is running in the default Namespace.
• Is running under the service-a Service Account.
• Has the Pod label app: frontend.
• Was built using the docker.io/johnharris85/service-a:v0.0.1 image.

Figure 10-14. Workload attestation. Reproduced from the official SPIRE documentation.

Note that the workload attestor plug-in can query the kubelet (to
discover workload information) using its Service Account. The
kubelet then uses the TokenReview API to validate bearer tokens.
This requires reachability to the Kubernetes API server. Therefore,
API server downtime can interrupt workload attestation.

Application/Workload Identity | 307

https://oreil.ly/Eh7Xl

The --authentication-token-webhook-cache-ttl kubelet flag controls how long
the kubelet caches TokenReview responses and may help to mitigate this issue. A
large cache TTL value is not recommended, however, as that can impact permission
revocation. See the SPIRE workload attestor documentation for more details.

The patterns described in this section have significant advantages when trying to
build a robust identity system for your workloads, both on and off Kubernetes. The
SPIFFE specification leverages well-understood and widely supported cryptographic
standards in x509 and JWT, and the SPIRE implementation also supports many dif‐
ferent methods of application integrations. Another key property is the ability to
scope identity to a very granular level by combining projected service account tokens
with its own selectors to identify individual Pods. This can be especially useful in sce‐
narios where sidecar containers are present in a Pod and each container needs vary‐
ing levels of access.

This approach is also undeniably the most labor-intensive and requires expertise in
the tooling and effort to maintain another component in the environment. There may
also be work required to register each workload, although this could be automated
(and work is already underway in the community around the area of automated reg‐
istration of workloads).

SPIFFE/SPIRE have a number of integration points with workload applications.
Which integration point is appropriate will depend on the desired level of coupling to
the platform and the amount of control users have over the environment.

Direct application access. SPIRE provides SDKs for Go, C, and Java for applications to
directly integrate with the SPIFFE workload API. These wrap existing HTTP libraries
but provide native support for obtaining and verifying identities. Following is an
example in Go calling a Kubernetes Service service-b and expecting a specific
SPIFFE ID to be presented (through an x509 SVID):

err := os.Setenv("SPIFFE_ENDPOINT_SOCKET",
 "unix:///run/spire/sockets/agent.sock")
conn, err := spiffe.DialTLS(ctx, "tcp", "service-b",
 spiffe.ExpectPeer("spiffe://production-trust-domain/service-b"))
if err != nil {
 log.Fatalf("Unable to create TLS connection: %v", err)
}

The SPIRE agent also exposes a gRPC API for those users who want a tighter integra‐
tion with the platform but are working in a language without SDK availability.

Direct integration (as described in this subsection) is not a recommended approach
for end-user applications for the following reasons:

• It tightly couples the application with the platform/implementation.
• It requires mounting the SPIRE agent Unix socket into the Pod.

308 | Chapter 10: Identity

https://oreil.ly/Pn1ZP
https://grpc.io/about

• It’s not easily extensible.

The main area where using these libraries directly is appropriate is if building out
some intermediate platform tooling that wraps or extends some of the existing func‐
tionality of the toolset.

Sidecar proxy. SPIRE natively supports the Envoy SDS API for publishing certificates
to be consumed by an Envoy proxy. Envoy can then use the SVID x509 certificate to
establish TLS connections with other Services and use the trust bundle to verify
incoming connections.

Envoy also supports verifying that only specific SPIFFE IDs (encoded into the SVID)
should be able to connect. There are two methods to implement this verification:

• By specifying a list of verify_subject_alt_name values in the Envoy
configuration.

• By utilizing Envoy’s External Authorization API to delegate admission decisions
to an external system (for example, Open Policy Agent). Following is an example
of a Rego policy to achieve this:

package envoy.authz

import input.attributes.request.http as http_request
import input.attributes.source.address as source_address

default allow = false

allow {
 http_request.path == "/api"
 http_request.method == "GET"
 svc_spiffe_id == "spiffe://production-trust-domain/frontend"
}

svc_spiffe_id = client_id {
 [_, _, uri_type_san] := split(
 http_request.headers["x-forwarded-client-cert"], ";")
 [_, client_id] := split(uri_type_san, "=")
}

In this example, Envoy verifies the request’s TLS certificate against the SPIRE trust
bundle, then delegates authorization to Open Policy Agent (OPA). The Rego policy
inspects the SVID and allows the request if the SPIFFE ID matches spiffe://
production-trust-domain/frontend. The architecture for this flow is shown in
Figure 10-15.

Application/Workload Identity | 309

This approach inserts OPA into the critical request path, so that
should be taken into consideration when designing the flow/
architecture.

Figure 10-15. SPIRE with Envoy.

Service mesh (Istio). Istio’s CA creates SVIDs for all Service Accounts, encoding a
SPIFFE ID in the format spiffe://cluster.local/ns/<namespace>/sa/<ser

vice_account>. Therefore, Services in an Istio mesh can leverage SPIFFE-aware
endpoints.

While service meshes are out of scope for this chapter, many
attempt to address the issue of identity and authentication. Most of
these attempts include or build on the methods and tooling
detailed in this chapter.

Other application integration methods. In addition to the primary methods just dis‐
cussed, SPIRE also supports the following:

• Pulling SVIDs and trust bundles directly to a filesystem, enabling applications to
detect changes and reload. While this enables applications to be somewhat
agnostic to SPIRE, it also opens an attack vector for certificates to be stolen from
the filesystem.

• Nginx module that allows for certificates to be streamed from SPIRE (similiar to
the Envoy integration described earlier). There are custom modules for Nginx
that enable users to specify the SPIFFE IDs that should be allowed to connect to
the server.

Integration with secrets store (Vault). SPIRE can be used to solve the secure introduc‐
tion problem when an application needs to obtain some shared secret material from
HashiCorp Vault. Vault can be configured to authenticate clients using OIDC federa‐
tion with the SPIRE server as an OIDC provider.

310 | Chapter 10: Identity

https://www.vaultproject.io

Roles in Vault can be bound to specific subjects (SPIFFE IDs) so that when a work‐
load requests a JWT SVID from SPIRE, that is valid to obtain a role and therefore
accessor credentials to Vault.

Integration with AWS. SPIRE can also be used to establish identity and authenticate to
AWS services. This process utilizes the same OIDC federation idea in the AWS IRSA
and Vault sections. Workloads request JWT SVIDs that are then verified by AWS by
validating against the federated OIDC provider (SPIRE server). The downside of this
approach is that SPIRE must be publicly accessible for AWS to discover the JSON
Web Key Set (JWKS) material required to validate the JWTs.

Summary
In this chapter we have dived into the patterns and tooling that we have successfully
seen and implemented in the field.

Identity is a multilayered topic, and your approach will evolve over time as you
become more comfortable with the complexity of the different patterns and how that
fits with each individual organization’s requirements. Typically on the user identity
side you will already have a third-party SSO of some kind, but directly integrating
this into Kubernetes via OIDC might seem nontrivial. In these situations we’ve seen
Kubernetes sit outside of the main organizational identity strategy. Depending on
requirements this may be fine, but integrating directly will give greater visibility and
control over environments, especially those with multiple clusters.

On the workload/application side we have often experienced this being treated as an
afterthought (beyond default Service Accounts). Again, depending on internal
requirements this may be fine. It’s definitely true that implementing a robust solution
for workload identity both in-cluster and cross-platform introduces (in some cases)
significant complexity and requires deeper knowledge of external tooling. However,
when organizations reach a level of maturity with Kubernetes, we think implement‐
ing the patterns described in this chapter can significantly increase the security pos‐
ture of your Kubernetes environments and provide additional layers of defense in
depth should breaches occur.

Summary | 311

CHAPTER 11

Building Platform Services

Platform services are those components that are installed in order to add features to
the application platform. They are usually deployed as containerized workloads into
some *-system Namespace and are maintained by the platform engineering team.
These platform services are distinct from the workloads managed by platform ten‐
ants, which are maintained by the application development teams.

The cloud native ecosystem is rich with projects you can use as part of your applica‐
tion platform. Additionally, there are throngs of vendors that will be happy to provide
platform service solutions. Use these wherever they pass the cost benefit analysis.
They may even take you all the way to your app platform destination. But we have
found that it’s common for enterprise users of Kubernetes-based platforms to build
custom components. You may have to integrate your Kubernetes-based platform with
some existing in-house system. You may have some unique, sophisticated workload
requirements to meet. You may have some edge cases to account for that are uncom‐
mon or specific to your business needs. Whatever the circumstance, this chapter
addresses the details of extending your application platform with custom solutions to
fill these gaps.

Central to this notion of building custom platform services is the effort to remove
human toil. There is more to this than just automation. Automation is the keystone,
but integration of automated components is the mortar. Smooth, reliable interaction
of systems is both challenging and critical. This concept of API-driven software is
powerful because it fosters integration of software systems. This is part of why Kuber‐
netes has achieved such wide adoption: it enables API-driven behavior for your entire
platform without the need to build and expose an API for every piece of software you
add to your platform. This software can leverage the Kubernetes API by either
managing core resources or adding custom resources to represent the state of new
objects. If we follow these patterns of integrated automation as we build our platform

313

services, we stand to remove tremendous human toil. And if we succeed in this
effort, we will open up greater opportunities for innovation, development, and
advancement.

In this chapter we are addressing how to extend the Kubernetes control plane. We are
taking the effective engineering patterns used by Kubernetes and using those same
patterns to build upon those systems. We will spend much of this chapter exploring
Kubernetes operators, their design pattern and use cases, and how to develop them.
However, it’s important that we first take a tour of the points of extension of Kuber‐
netes so that we can maintain a holistic view of building platform services. It’s impor‐
tant that we have a clear context and apply solutions that are harmonious with the
broader system. Finally, we will examine how we may extend possibly the most
important Kubernetes controller in the ecosystem: the scheduler.

Points of Extension
Kubernetes is a wonderfully extensible system. This is certainly one of its most pow‐
erful features. A common critical error in software development is attempting to add
features to meet every imaginable use case. The system can quickly become a maze of
options with unclear paths to outcomes. Furthermore, it often becomes unstable as
internal dependencies grow and brittle connections between components of the sys‐
tem erode reliability. There is good reason behind the central tenets of the Unix phi‐
losophy to do one thing well and make it interoperable. Kubernetes could never
provide for every possible requirement users might encounter while orchestrating
their containerized workloads. That would be an impossible system to build. The core
functions it does provide are challenging enough. As it is, Kubernetes is a relatively
complex distributed software system, even with a pretty narrow set of concerns. It
could never meet every requirement, and it doesn’t need to since it offers points of
extension that allow specialized needs to be met by specialized solutions that may be
readily integrated. It can be extended and customized to meet virtually any require‐
ments you may have.

The context of what we are calling plug-in extensions that satisfy defined interfaces
with Kubernetes are largely covered elsewhere in this book, as are some of the popu‐
lar webhook extension solutions. We present a quick review of these here to paint a
picture around the operator extension topic, which is where we will spend considera‐
ble time in this chapter.

Plug-in Extensions
This is a broad class of extensions that generally help integrate Kubernetes with adja‐
cent systems that are important, and often essential, to running workloads on Kuber‐
netes. They are specifications that third parties can use to implement solutions, rather
than implementations themselves:

314 | Chapter 11: Building Platform Services

Network
The Container Network Interface (CNI) defines the interface that must be satis‐
fied by a plug-in to provide a network for containers to connect to. There are
many plug-ins that exist to fulfill this requirement but they all must satisfy the
CNI. This topic is covered in Chapter 5.

Storage
The Container Storage Interface (CSI) provides a system for exposing storage
systems to containerized workloads. Again, there are many different volume
plug-ins that expose storage from different providers. This topic is explored in
Chapter 4.

Container Runtime
The Container Runtime Interface (CRI) defines a standard for the operations that
need to be exposed by a container runtime such that the kubelet does not care
what runtime is in use. Docker has historically been the most popular, but there
are now others with their own strengths that have become popular. We discuss
this topic in detail in Chapter 3.

Devices
The Kubernetes device plug-in framework allows workloads to access devices on
underlying nodes. The most common example of this we have found in the field
is for graphics processing units (GPUs) used by compute-intensive workloads.
Node pools are often added to clusters for nodes that have these specialized devi‐
ces, allowing workloads to be assigned to them. See Chapter 2 for more on this
topic.

The development of these plug-ins is usually carried out by vendors that either sup‐
port or sell products that are integrated. It is very rare in our experience to find plat‐
form developers building custom solutions in this area. Instead, it is generally a
matter of evaluating the available options and leveraging those that meet your
requirements.

Webhook Extensions
Webhook extensions act as a backend server for the Kubernetes API server to call to
fulfill custom renditions of core API functionality. There are several steps that each
request goes through when it arrives at the API server. The client is authenticated to
ensure they are permitted access (AuthN). The API checks to ensure the client is
authorized to perform the action they are requesting (AuthZ). The API server muta‐
tes the resource as called for by enabled admission plug-ins. The resource schema is
validated, and any specialized or custom validation is performed by validating admis‐
sion control. Figure 11-1 illustrates the relationship between the clients, the Kuber‐
netes API, and the webhook extensions leveraged by the API.

Points of Extension | 315

Authentication extensions
Authentication extensions, such as OpenID Connect (OIDC), provide the opportu‐
nity to offload the task of authenticating requests to the API server. This topic is cov‐
ered in depth in Chapter 10.

You can also have the API server call out to a webhook to authorize actions that can
be taken on resources by authenticated users. This is an uncommon implementation
since Kubernetes has a capable Role-Based Access Control system built in. However,
if you find this system inadequate for any reason you have this option available to
you.

Admission control
Admission control is a particularly useful and widely used extension point. If in use,
when a request is sent to the API server to perform an action, the API server calls any
applicable admission webhooks according to the validating and mutating admission
webhook configs. This topic is covered in Chapter 8.

Figure 11-1. Webhook extensions are backend servers leveraged by the Kubernetes API
server.

Operator Extensions
Operators are clients of, as opposed to backend webhooks for, the API server. As
shown in Figure 11-2, software operators interact as clients of the Kubernetes API,
just like human operators. These software operators are often called Kubernetes Oper‐
ators and follow the officially documented operator pattern. Their primary purpose is
to relieve toil from human operators and perform operations on their behalf. These
operator extensions follow the same engineering principles as the core Kubernetes
control plane components. When developing operator extensions as platform serv‐
ices, think of them as custom extensions of the control plane for your application
platform.

316 | Chapter 11: Building Platform Services

https://oreil.ly/HLXtJ

Figure 11-2. Operator extensions are clients of the Kubernetes API server.

The Operator Pattern
You could say that the operator pattern boils down to extending Kubernetes with
Kubernetes. We create new Kubernetes resources and develop Kubernetes controllers
to reconcile the state defined in them. We use Kubernetes resources called Custom
Resource Definitions (CRDs) to define our new resources. These CRDs create new
API types and tell the Kubernetes API how to validate these new objects. Then, we
take the very same principles and designs that make Kubernetes controllers so effec‐
tive and use those principles to build software extensions to the system. These are the
two core mechanisms that we employ when building operators: custom resources and
controllers.

The notion of an operator was introduced in November 2016 by Brandon Phillips,
one of the founders of CoreOS. This early definition of an operator was that an oper‐
ator was an app-specific controller that managed a complex stateful application. This
is still a very useful definition but has broadened somewhat over the years to where
the Kubernetes docs now classify any controller that uses CRDs as an operator. This
more general definition is the one we will use as it applies to building platform serv‐
ices. Your platform services may not be “complex stateful applications” but still can
benefit from using this powerful operator pattern.

The following section will look at Kubernetes controllers, which provide a model for
the functionality we will use in our custom controllers. Then we will examine the cus‐
tom resources that store the desired and existing state our controllers reconcile for us.

Kubernetes Controllers
Kubernetes’ core features and functionality are provided by controllers. They watch
resource types and respond to creation, mutation, and deletion of resources by fulfill‐
ing that desired state. For example, there is a controller that comes bundled with the
kube-controller-manager that watches for ReplicaSet resource types. When a

The Operator Pattern | 317

ReplicaSet is created, the controller creates a number of identical Pods—as many as
were defined by the replicas field in the ReplicaSet. Then at some point later, if you
change that value, the controller will create or delete Pods to satisfy the new desired
state.

This watch mechanism is central to the functionality of all Kubernetes controllers. It
is an etcd feature that is exposed by the Kubernetes API server to the controllers that
need to respond to changes in resources. The controllers hold a connection open with
the API server, which allows the API server to notify the controller when a change
has occurred to a resource it cares about or manages.

This enables very powerful behavior. The user can declare the desired state of the sys‐
tem by submitting resource manifests. The controllers responsible for fulfilling the
desired state are notified and begin working to make the existing state match the
declared, desired state. Furthermore, in addition to users submitting manifests, con‐
trollers can also do the same which, in turn, triggers operations in other controllers.
In this way you end up with a system of controllers that can provide sophisticated
functionality that is stable and reliable.

One important feature of these controllers is that if they cannot fulfill the desired
state due to some impediment, they will continue to try on an infinite loop. The dura‐
tion between attempts to fulfill desired state may increase over time so that undue
load is not placed on the system, but try it will. This provides a self-healing behavior
that is incredibly important in complex distributed systems such as this.

For example, the scheduler is responsible for assigning Pods to nodes in the cluster.
The scheduler is just another Kubernetes controller, just with a particularly important
and involved task. If there are insufficient compute resources available for one or
more Pods, they will go into a “Pending” state and the scheduler will continue to
attempt to schedule the Pod at some interval. As such, if compute resources free up or
are added at any point, the Pod will be scheduled and run. So if another batch work‐
load completes and resources free up, or if a cluster autoscaler adds some worker
nodes, the Pending Pod will be assigned with no further action required from a
human operator.

In following the operator pattern to build extensions to your application platform, it’s
essential to use these design principles used by Kubernetes controllers: (1) watch
resources in the Kubernetes API to get notified when changes to their desired state
occur, and (2) work to reconcile existing and desired state on a nonterminating loop.

Custom Resources
One of the most important features of the Kubernetes API is the ability to extend the
resource types it will recognize. If you submit a valid CRD you will immediately have
a new custom API type at your disposal. The CRD contains all the fields that you will

318 | Chapter 11: Building Platform Services

need in your custom resource both in the spec where you will provide the desired
state for your resource and in the status where you can record important informa‐
tion about the observed, existing state.

Before diving further into this topic, let’s briefly review Kubernetes resources. We are
going to be talking a lot about resources in this chapter, so it’s important to ensure
we’re crystal clear on this topic. When we talk about resources in Kubernetes, we are
referring to the objects that are used to record state. An example of a common
resource is the Pod resource. When you create a Pod manifest, you are defining the
attributes of what will become a Pod resource. When you submit that to the API
server with kubectl apply -f pod.yaml or similar, you are creating an instance of
the Pod API type. On one hand you have the API type, or “kind,” which refers to the
definition and form of the object as provided in a CRD. On the other hand we have
the resource that is an instantiation or instance of that kind. The Pod is an API type
or kind. A Pod you create with the name “my-app” is a Kubernetes resource.

Unlike a relational database where relationships between objects are recorded and
linked by foreign keys in the database itself, each object in the Kubernetes API exists
independently. Relationships are established using labels and selectors, and it is the
job of the controllers to manage relationships defined this way. You cannot query etcd
for related objects the way you can with structured query language (SQL). So when
we talk about resources, we’re talking about actual instances of Namespaces, Pods,
Deployments, Secrets, ConfigMaps, etc. When we talk about custom resources, we’re
referring to user-defined resources that have been added and defined with CRDs.
When you create a CRD, you define new API types that allow you to create and man‐
age custom resources as you would other core Kubernetes resources.

CRDs use the Open API v3 schema specification for defining fields. This allows for
features like setting fields as optional or required as well as setting default values. This
will provide validation instructions for the API server when it receives a request to
create or update one of your custom resources. In addition, you can group your APIs
for improved logical organization and, very importantly, version your API types as
well.

To illustrate what a CRD is and what a manifest for the resulting custom resource
looks like, let’s look at a fictional example of a custom WebApp API type. In this
example, a WebApp resource includes the desired state for a web application that
consists of the following six Kubernetes resources:

Deployment
A stateless application that provides a user interface for clients, processes
requests, and stores data in a relational database

The Operator Pattern | 319

StatefulSet
The relational database that provides the persistent data store for the web
application

ConfigMap
Contains the config file for the stateless application, which is mounted into each
Pod of the Deployment

Secret
Contains credentials for the application to connect to its database

Service
Routes traffic to the Deployment’s backend Pods

Ingress
Contains routing rules for the Ingress controller to properly route client requests
into the cluster

The creation of a WebApp resource would prompt a WebApp Operator to create
these various child resources. These created resources would constitute a complete,
functioning instance of the web application that serves clients that are end users and
customers of the business.

Example 11-1 illustrates what a CRD might look like to define a new WebApp API
type.

Example 11-1. WebApp CRD manifest

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: webapps.workloads.apps.acme.com
spec:
 group: workloads.apps.acme.com
 names:
 kind: WebApp
 listKind: WebAppList
 plural: webapps
 singular: webapp
 scope: Namespaced
 versions:
 - name: v1alpha1
 schema:
 openAPIV3Schema:
 description: WebApp is the Schema for the webapps API
 properties:
 apiVersion:
 description: 'APIVersion defines the versioned schema of this
 representation of an object. Servers should convert recognized

320 | Chapter 11: Building Platform Services

 schemas to the latest internal value, and may reject unrecognized
 values.'
 type: string
 kind:
 description: 'Kind is a string value representing the REST resource this
 object represents. Servers may infer this from the endpoint the client
 submits requests to. Cannot be updated. In CamelCase.'
 type: string
 metadata:
 type: object
 spec:
 description: WebAppSpec defines the desired state of WebApp
 properties:
 deploymentTier:
 enum:
 - dev
 - stg
 - prod
 type: string
 webAppHostname:
 type: string
 webAppImage:
 type: string
 webAppReplicas:
 default: 2
 type: integer
 required:
 - deploymentTier
 - webAppHostname
 - webAppImage
 type: object
 status:
 description: WebAppStatus defines the observed state of WebApp
 properties:
 created:
 type: boolean
 type: object
 type: object
 served: true
 storage: true

The name of the custom resource definition, as distinct from the name of the cus‐
tom resource itself.

The name of the custom resource, as distinct from the definition. This includes
the variations of the name such as the plural version.

The deploymentTier field must contain one of the values listed under enum. This
validation will be carried out by the API server when it receives requests to create
or update an instance of this custom resource.

The Operator Pattern | 321

The webAppReplicas field includes a default value that will be applied if the field
is not provided.

The required fields are listed here. Note that webAppReplicas is not included and
that it has a default value.

Now let’s examine what a manifest for a WebApp would look like. Before submitting
the manifest shown in Example 11-2 to the API server, you must first create the CRD
shown in Example 11-1 so that Kubernetes has an API for it. Otherwise, it will not
recognize what you are trying to create.

Example 11-2. An example of a manifest for a WebApp resource

apiVersion: workloads.apps.acme.com/v1alpha1
kind: WebApp
metadata:
 name: webapp-sample
spec:
 webAppReplicas: 2
 webAppImage: registry.acme.com/app/app:v1.4
 webAppHostname: app.acme.com
 deploymentTier: dev

This manifest specifies the default value for an optional field, which is unneces‐
sary but fine to do if explicitness is desired.

One of the permitted values for this field is used. Any value that is not permitted
would prompt the API server to reject the request with an error.

When this WebApp manifest is submitted to the Kubernetes API, the WebApp Oper‐
ator will be notified via its watch that a new instance of the WebApp kind has been
created. It will fulfill the desired state expressed in the manifest by calling the API
server to create the various child resources needed to spin up an instance of the web
application.

While the custom resource model is powerful, do not overuse it.
Do not use custom resources as the primary data store for an end-
user application. Kubernetes is a container orchestration system.
etcd should be storing the state of your software deployments, not
the internal persistent data for your application. Doing so will put
significant load on your cluster’s control plane. Stick with relational
databases, object stores, or whatever data store makes sense for
your application. Leave the control plane to manage software
deployments.

322 | Chapter 11: Building Platform Services

Operator Use Cases
When developing a Kubernetes-based platform, operators offer a compelling model
for adding features to that platform. If you can represent the state of the system you
need to implement in the fields of a custom resource, and if you can yield value from
reconciling changes using a Kubernetes controller, an operator is often a great option.

In addition to platform features, operators may be used to facilitate the management
of software deployments on your platform. They can provide the convenience of a
generalized abstraction or can be custom-built for the needs of a particular sophisti‐
cated application. In either case, using software to manage software deployments is
very useful.

In this section we’re going to discuss the three general operator categories that you
may consider using with your platform:

• Platform utilities
• General-purpose workload operators
• App-specific operators

Platform Utilities
Operators can be extremely useful in developing your platform. They allow you to
add features to your cluster and build out functionality on top of Kubernetes in a way
that leverages and integrates with the control plane seamlessly. There is a wealth of
open source projects that utilize operators to provide platform services atop Kuber‐
netes. These projects are already available and don’t require you develop them. The
reason we bring them up in a chapter about building them is that they help build a
good mental model for how they work. Should you find yourself having to develop
custom platform utilities, looking at existing successful projects will be helpful:

• The Prometheus Operator allows you to provide metrics collection, storage, and
alerting platform services on your platform. In Chapter 9 we delve into the value
that can be derived from this project.

• cert-manager provides certificate management as a service functionality. It
removes significant toil and potential for downtime by offering x509 certificate
creation and renewal services.

• Rook is storage operator that integrates with providers like Ceph to manage
block, object, and filesystem storage as a service.

Operator Use Cases | 323

https://oreil.ly/ClgDL
https://cert-manager.io
https://rook.io
https://ceph.io

These open source solutions are examples of what is available in the community.
There are also countless vendors that can provide and support similar platform utilit‐
ies. However, when a solution is not available or not a good fit, enterprises sometimes
build their own custom platform utilities.

A common example of a custom platform utility we see in the field is a Namespace
operator. We have found it quite common for organizations to have a standard set of
resources that are created with each Namespace, such as ResourceQuotas, Limit‐
Ranges, and Roles. And it has been a useful pattern to use a controller to take care of
the routine tedium of creating these resources for each Namespace. In a later section,
we will use this Namespace operator idea as an example to illustrate some implemen‐
tation details when building operators.

General-Purpose Workload Operators
Application developers’ core competency and concern is to add stability and features
to the software they build. It is not writing YAML for deployment to Kubernetes.
Learning how to properly define resource limits and requests, learning how to mount
a ConfigMap volume or Secret as an environment variable, learning how to use label
selectors to associate Services with Pods—none of these things add features or stabil‐
ity to their software.

In an organization that has developed common patterns for deployed workloads, the
model of abstracting the complexity in a general-purpose manner has considerable
promise. This is especially relevant in organizations that have embraced microservice
architectures. In these environments there may be a considerable number of distinct
pieces of software that are deployed with different functionality, but with very similar
patterns of deployment.

For example, if your company has a large number of workloads that consist of a
Deployment, Service, and Ingress resource, there are likely patterns that can be enco‐
ded into an operator that can abstract much of the resource manifests for these
objects. In each case the Service references labels on the Pods of a Deployment. In
each case the Ingress references the Service name. All these things can easily be han‐
dled by an operator—getting these details right is the definition of toil.

App-Specific Operators
This type of operator hits at the core of what a Kubernetes operator is: custom resour‐
ces in conjunction with a custom Kubernetes controller for managing a complex
stateful application. They are purpose-built to manage a particular application. Popu‐
lar examples of this model are the various database operators in the community. We
have operators for Cassandra, Elasticsearch, MySQL, MariaDB, PostgreSQL, Mon‐
goDB and many more. Commonly, they handle initial deployment as well as day 2
management concerns such as configuration updates, backups, and upgrades.

324 | Chapter 11: Building Platform Services

Operators for popular community- or vendor-supported projects have gained in pop‐
ularity over the past few years. The area where this is approach is still in its infancy is
in internal enterprise applications. In cases where your organization internally devel‐
ops and maintains a sophisticated stateful application, an app-specific operator may
be beneficial. For example, if your company maintains something like an ecommerce
website, transaction processing app, or inventory management system that delivers
critical business functionality, you may want to consider this option. There is tremen‐
dous opportunity for reducing human toil in the deployment and day 2 management
of these kinds of workloads, especially when they are deployed widely and updated
frequently.

This isn’t to say that these app-specific operators are the universally right choice for
managing your workloads. For simpler use cases, they are likely to be severe overkill.
Production-ready operators are not trivial to develop, so weigh the trade-offs. How
much time do you spend in routine toil managing deployment and day 2 concerns for
an application? Is the engineering cost of building an operator likely to be less than
that routine toil over the long term? Could simpler, existing tools such as Helm or
Kustomize provide enough automation to sufficiently alleviate toil?

Developing Operators
Taking on the task of developing Kubernetes operators is not trivial, especially if tack‐
ling a full-featured, app-specific operator. The engineering investment to get one of
these more involved projects into production can be considerable. As with other
types of software development, if getting started in this area, begin with less involved
projects while you become familiar with useful patterns and successful strategies. In
this section we’ll discuss some tools and design strategies that will help make develop‐
ing operators a more efficient and successful endeavor.

We will cover some specific projects you can leverage to help in development of such
tools. And then we’ll break down the process of designing and implementing this
kind of software in detail. We’ll include some code snippets to illustrate the concepts
and best practices.

Operator Development Tooling
If you have a compelling use case for a custom Kubernetes operator, there are a cou‐
ple of community projects that can be very helpful in your endeavor. If you are—or
have on staff—an experienced Go programmer that is familiar with the Kubernetes
client-go library and with developing Kubernetes operators, you can certainly write
your operators from scratch. However, there are common components to every oper‐
ator, and using tools to generate boilerplate source code and utilities are expediencies
that even seasoned operator developers commonly use. They just save time. Software
development kits (SDKs) and frameworks can be helpful when they fit the pattern of

Developing Operators | 325

software you’re developing. However, they can be a nuisance if they make assump‐
tions that don’t suit your purpose. If your project fits the standard model of using one
or more custom resources to define configuration, and custom controllers to imple‐
ment behavior associated with these objects, it is likely the tools we discuss here will
be useful.

Kubebuilder
Kubebuilder can be described as an SDK for building Kubernetes APIs. This is an apt
description but is not exactly what you might expect. Using kubebuilder begins with
the command-line tool that you use to generate boilerplate. It stamps out the source
code, a Dockerfile, a Makefile, sample Kubernetes manifests—all the things you need
to write for every such project. As such, it saves a ton of time in getting a project
started.

Kubebuilder also leverages a collection of tools in a related project called controller-
runtime. The required imports and common implementations are included in the
source code generated by the CLI. These help with much of the routine heavy lifting
of running a controller and interacting with the Kubernetes API. It helps with setting
up shared caches and clients to provide efficient interaction with the API server. The
cache allows your controller to list and get objects without new requests to the API
server for each query, which eases load on the API server and speeds up reconcilia‐
tion. Controller-runtime also provides mechanisms for triggering reconcile requests
in response to events such as resource changes. These reconciliations will be triggered
by default for the parent custom resource. They can—and usually should—also be
triggered when changes occur to child resources created by the controller and func‐
tions are available to do so. If running your controller in highly available (HA) mode,
controller-runtime provides the opportunity to enable leader election to ensure just
one controller is active at any given time. Furthermore, controller-runtime includes a
package to implement webhooks, which are often used for admission control. Lastly,
the library includes facilities to write structured logs and expose Prometheus metrics
for observability.

Kubebuilder is a great choice if you are a Go programmer with Kubernetes experi‐
ence. It is even a good choice if you are an experienced software developer but are
new to the Go programming language. But it is exclusively for Go—it doesn’t cater to
other languages.

326 | Chapter 11: Building Platform Services

If you are going to be developing tools for Kubernetes, you should
strongly consider learning Go if you don’t know it already. You can
certainly use other languages. Kubernetes offers a REST API, after
all. And there are officially supported client libraries for Python,
Java, C#, JavaScript, and Haskell, not to mention many other
community-supported libraries. If you have important reasons for
using these, you can certainly be successful. However, Kubernetes
itself is written in Go, and the ecosystem for that language in the
world of Kubernetes is rich and well-supported.

One of the features of Kubebuilder that make it such a time-saver is its generation of
CRDs. Writing a CRD manifest by hand is no joke. The OpenAPI v3 spec that is used
to define these custom APIs is pretty detailed and involved. The Kubebuilder CLI will
generate the files where you will define the fields for your custom API types. You add
the various fields to the struct definitions and tag them with special markers that pro‐
vide metadata such as default values. Then you can use a make target to generate the
CRD manifests. It is very handy.

On the subject of make targets, in addition to generating CRDs, you can generate the
RBAC and sample custom resource manifests, install the custom resources in your
development cluster, build and publish images for your operator, and run your con‐
troller locally against a cluster during development. Having conveniences for all these
tedious, time-consuming tasks really is a productivity boost, especially early in the
project.

For these reasons, we prefer and recommend Kubebuilder for building operators. It
has been adopted and used with success in a variety of projects.

Metacontroller
If your comfort with a particular programming language besides Go compels you to
stick with it, another useful option to aid in developing operators is Metacontroller.
This is an entirely different approach to developing and deploying operators, but it is
one that is worth considering if you want to use a variety of languages and expect to
deploy a number of custom in-house operators with your platform. Engineers experi‐
enced in programming Kubernetes will also sometimes use Metacontroller for proto‐
typing and then use Kubebuilder for the final project once design and
implementation details have been established. And this alludes to one of the strengths
of Metacontroller: once you have the Metacontroller add-on installed in your cluster,
it is fast to get going.

That is essentially what Metacontroller is: a cluster add-on that abstracts away the
interaction with the Kubernetes API. Your job is to write the controller webhook that
contains your controller’s logic. Metacontroller calls this the lambda controller. Your
lambda controller makes decisions about what to do with the resources it cares about.

Developing Operators | 327

Metacontroller watches the resources under management and alerts your controller
with an HTTP call when there is a change it needs to make a decision about. Meta‐
controller itself uses custom resources that define the characteristics of your web‐
hook, e.g., its URL and the resources it manages. As such, once Metacontroller is
running in your cluster, adding a controller consists of deploying your lambda
controller webhook and adding a Metacontroller custom resource; e.g., composite
controller resource. And all your new controller need do is expose an endpoint that
will accept requests from Metacontroller, parse JSON payloads that contain the
Kubernetes resource object in question, and then return a response to Metacontroller
with any changes to be sent to the Kubernetes API. Figure 11-3 illustrates how these
components interact when using Metacontroller.

Figure 11-3. Metacontroller abstracts the Kubernetes API for your lambda controller.

What Metacontroller does not help with is the creation of any CRDs you may need to
add to your cluster. You are on your own there. If you are writing a controller that
responds to changes in core Kubernetes resources, this won’t be an issue. But if you’re
developing custom resources, this is an area where Kubebuilder has a significant
advantage.

Operator Framework
The Operator Framework is a collection of open source tools that originated at Red
Hat and are now under the CNCF umbrella as an incubating project. This framework
facilitates the development of operators. It includes the Operator SDK, which offers
similar functionality to Kubebuilder when developing operators using Go. Like Kube‐
builder, it provides a CLI to generate boilerplate for projects. Also like Kubebuilder, it
uses the controller-runtime tools to help integrate with the Kubernetes API. In addi‐
tion to Go projects, the Operator SDK allows developers to use Helm or Ansible to

328 | Chapter 11: Building Platform Services

manage operations. The framework also includes the Operator Lifecycle Manager,
which is what it sounds like: an operator for your operators. It provides abstractions
for installing and upgrading your operators. The project also maintains an operator
hub, which offers a way for users to discover operators for software they use. We have
not encountered platform teams using these tools in the field. Being a Red Hat-
maintained project, it is likely more common among users of OpenShift, a Red Hat
Kubernetes-based offering.

Data Model Design
Just as you might begin the design of a web application by defining the database
schema the app will use to persist data, a great place to start when building an opera‐
tor is the data model for the custom resources your operator will use. In fact, you will
probably have some idea of what fields your custom resource will need in its spec
before you get started. As soon as you recognize a problem to solve or gap to fill, the
attributes of the object that defines desired state will begin to take shape.

In the example from earlier in this chapter, the Namespace operator, it could begin as
an operator that will create a variety of resources: LimitRange, ResourceQuota, Roles,
and NetworkPolicies to go along with a new Namespace for an app dev team. You
may want to bind a team lead to the namespace-admin Role right away and then hand
off management of the Namespace to that person. This would naturally lead you to
add an adminUsername field to the spec of the custom resource. The custom resource
manifest might look something like Example 11-3.

Example 11-3. An example of a manifest for an AcmeNamespace resource

apiVersion: tenancy.acme.com/v1alapha1
kind: AcmeNamespace
metadata:
 name: team-x
spec:
 namespaceName: app-y
 adminUsername: sam

An arbitrary name for the Namespace—in this case it will host a workload,
“app-y.”

This username would correspond to that which is used by the company’s identity
provider, usually an Active Directory system or similar.

Submitting the manifest in Example 11-3 would result in the username sam being
added to the subjects of a RoleBinding to the namespace-admin Role in the manner
shown in Example 11-4.

Developing Operators | 329

Example 11-4. Example of a Role and Rolebinding created for the team-x
AcmeNamespace

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: namespace-admin
 namespace: app-y
rules:
- apiGroups:
 - "*"
 resources:
 - "*"
 verbs:
 - "*"

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: namespace-admin
 namespace: app-y
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: namespace-admin
subjects:
- kind: User
 name: sam
 namespace: app-y

The adminUsername provided in the AcmeNamespace manifest would get inser‐
ted here to be bound to the namespace-admin Role.

When thinking about the behavior you want, having Sam bound to the namespace-
admin Role, the data needed to accomplish this becomes pretty clear: Sam’s username
and the name of the Namespace. So start with the obvious pieces of data that you will
need to provide functionality and define fields in the spec for your CRD from that.
What that would look like as part of a Kubebuilder project would be similar to what is
shown in Example 11-5.

Example 11-5. Type definition for the AcmeNamespaceSpec

// api/v1alpha1/acmenamespace_types.go

...

// AcmeNamespaceSpec defines the desired state of AcmeNamespace
type AcmeNamespaceSpec struct {

330 | Chapter 11: Building Platform Services

 // The name of the namespace
 NamespaceName string `json:"namespaceName"`

 // The username for the namespace admin
 AdminUsername string `json:"adminUsername"`
...

This is the source code from which Kubebuilder will generate your CRD manifest and
the sample AcmeNamespace manifest to use for testing and demonstration.

Now that we have a data model that we think will allow us to adequately manage state
for the behavior we want, it’s time to start writing the controller. It’s probable we will
find our data model inadequate as we develop and find there are additional fields that
will be necessary to bring about our desired outcomes. But this is a useful place to
start for now.

Logic Implementation
The logic is implemented in our controller. The primary job of the controller is to
manage one or more custom resources. The controller will keep a watch on those
custom resources under management. This part is trivial to implement when using
tools like Kubebuilder and Metacontroller. It is pretty straightforward even if just
using the client-go library, the GitHub repo for which has excellent code examples to
refer to. With a watch on its custom resource/s, your controller will be notified of any
changes to resources of this type. The job of your controller at this point is as follows:

• Gather an accurate picture of the existing state of the system
• Examine the desired state of the system
• Take the required actions to reconcile the existing state with desired state

Existing state
There are essentially three places your controller may gather existing state informa‐
tion from:

• The status of your custom resource
• Other related resources in the cluster
• Relevant conditions outside the cluster or in other systems

The status field provides a place for controllers in Kubernetes to record observed,
existing state. For example, Kubernetes uses a status.phase field on some resources,
such as Pods and Namespaces, to keep track of whether the resource is Running (for
Pods) or Active (for Namespaces).

Developing Operators | 331

Let’s go back to the example of a Namespace operator. The controller is notified of a
new AcmeNamespace resource along with the spec for it. The controller cannot
assume it is a new resource and just robotically create the child Namespace and Role
resources. What if it’s a preexisting resource that has simply been updated with some
change? Attempting to create the child resources again will get an error from the
Kubernetes API. However, to follow the preceding Kubernetes example, if we include
a phase field in the status of our CRD, the controller can check it to evaluate existing
state. When it is first created, the controller will find the status.phase field empty.
This will tell the controller it is a new resource creation, and should go ahead with
creating all child resources. Once all children are created with successful responses
from the API, the controller can populate the status.phase field with a value of Cre
ated. Then if the AcmeNamespace resource is later changed, when the controller is
notified, it can see from this field that it has been previously created and move on to
other reconciliation steps.

The use of the status.phase field to determine existing state as described so far has
one critical flaw. It assumes the controller itself will never fail. What if a problem is
encountered while creating the child resources? Say, for example, the controller gets
notified of a new AcmeNamespace, creates the child Namespace, but then goes down
before it can create the associated Role resources. When the controller comes back
up, it will find the AcmeNamespace resource without Created in the status.phase
field, attempt to create the child Namespace, and fail without a satisfactory way to
reconcile the situation. In order to prevent this, the controller can add a CreationIn
Progress value to the status.phase as the very first step when it finds a new Acme‐
Namespace has been created. This way, if that failure during creation occurs, when
the controller comes back up and sees the CreationInProgress phase, it will know
that existing state cannot be accurately determined from the status alone. This is
where it will need to look to other related resources in the cluster to determine exist‐
ing state.

When existing state cannot be ascertained from the AcmeNamespace status, it can
query the API server—or preferably the local cache of objects in the API server—for
conditions it cares about. If it finds the phase of an AcmeNamespace set to Creation
InProgress it can start querying the API server for the existence of child resources it
expects to be there. In the failure example we’re using, it would query for a child
Namespace, find it exists, and move on. It would query for the Role resource, find it
doesn’t exist, and proceed with creating those resources. In this manner our controller
can be tolerant of failure. And we should always assume failure will occur and
develop controller logic accordingly.

Furthermore, sometimes our controller will be interested in existing state outside the
cluster. Cloud infrastructure controllers are a good example of this. The status of
infrastructure systems must be queried from cloud provider APIs outside the cluster.

332 | Chapter 11: Building Platform Services

What this existing state may be will be highly dependent on the purpose of the opera‐
tor in question and will usually be clear.

Desired state

The desired state for a system is expressed in the spec for the relevant resources. In
our Namespace operator, the desired state provided by the namespaceName informs
the controller what the metadata.name field should be for the resulting Namespace.
The adminUsername field determines what the namespace-admin RoleBinding’s sub
jects[0].name should be. These are examples of direct mappings of desired state to
fields in child resources. Often, the implementation is less direct.

We saw an example of this with the use of the deploymentTier field in the AcmeStore
example earlier in this chapter. It allowed a user to specify a single variable that
informed the controller logic on what default values to use. We can apply a very simi‐
lar idea to the Namespace operator. Our new, modified AcmeNamespace manifest
could look like Example 11-6.

Example 11-6. The AcmeNamespace manifest with new fields added

apiVersion: tenancy.acme.com/v1alapha1
kind: AcmeNamespace
metadata:
 name: team-x
spec:
 namespaceName: app-y
 adminUsername: sam
 deploymentTier: dev

New addition to the data model for the AcmeNamespace API type.

This will prompt the controller to create a ResourceQuota that could look like
Example 11-7.

Example 11-7. The ResourceQuota created for the team-x AcmeNamespace

apiVersion: v1
kind: ResourceQuota
metadata:
 name: dev
spec:
 hard:
 cpu: "5"
 memory: 10Gi
 pods: "10"

Developing Operators | 333

Whereas the default ResourceQuota for deploymentTier: prod may look like
Example 11-8.

Example 11-8. An alternative ResourceQuota created when deploymentTier: prod is
given in the AcmeNamespace

apiVersion: v1
kind: ResourceQuota
metadata:
 name: prod
spec:
 hard:
 cpu: "500"
 memory: 200Gi
 pods: "100"

Reconciliation
In Kubernetes, reconciliation is the process of altering the existing state to match the
desired state. This can be as simple as the kubelet requesting the container runtime
stop containers associated with a deleted Pod. Or it can be more complex, such as an
operator creating an array of new resources in response to a custom resource that
represents a stateful application. These are examples of reconciliation triggered by
creating or deleting the resources that express desired state. But very often the recon‐
ciliation involves a response to a mutation.

A simple mutation example is if you update the number of replicas on a Deployment
resource from 5 to 10. The existing state is 5 Pods for a workload. The desired state is
10 Pods. The reconciliation performed by the Deployment controller in this case
involves updating the replicas on the relevant ReplicaSet. The ReplicaSet controller
then reconciles state by creating 5 new Pod resources which are, in turn, scheduled by
the scheduler, which prompts the applicable kubelets to request new containers from
the container runtime.

Another mutation example that is a little more involved is if you change the image in
a Deployment spec. This is usually to update the version of a running application. By
default, the Deployment controller will perform a rolling update as it reconciles state.
It will create a new ReplicaSet for the new version of the app, increment the replicas
on the new ReplicaSet, and decrement the replicas on the old ReplicaSet so that the
Pods are replaced one at a time. Once all new image versions are running with the
desired number of replicas, reconciliation is complete.

What reconciliation looks like for a custom controller managing a custom resource is
going to vary greatly according to what the custom resource represents. But one thing
that should remain constant is that if reconciliation is not successful due to a condi‐
tion that is beyond the domain of the controller, it should retry indefinitely. Generally

334 | Chapter 11: Building Platform Services

speaking, the reconciliation loop should implement increasing delays between itera‐
tions. For example, if it is reasonable to expect other systems in the cluster to be
actively reconciling state that is preventing a controller from completing its opera‐
tions, you may retry 1 second later. However, for the sake of preventing gratuitous
resource consumption, it is recommended to exponentially increase the delay
between each iteration until it reaches some reasonable limit of, say, 5 minutes. At
that point, the controller will retry reconciliation once every 5 minutes. This allows
for unattended resolving of systems while limiting resource consumption and net‐
work traffic in circumstances that aren’t resolving quickly.

Implementation details
In broad terms, to implement initial controller functionality for the Namespace oper‐
ator, we want to be able to:

• Write or generate a concise AcmeNamespace manifest like the earlier example
• Submit the manifest to the Kubernetes API
• Have a controller respond by creating a Namespace, ResourceQuota, LimitRange,

Roles, and a RoleBinding.

In a kubebuilder project, the logic to create these resources will live in a Reconcile
method. The initial implementation of creating a Namespace with the controller
could look like Example 11-9.

Example 11-9. The Reconcile method for the AcmeNamespace controller

// controllers/acmenamespace_controller.go

package controllers

import (
 "context"

 "github.com/go-logr/logr"
 corev1 "k8s.io/api/core/v1"
 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
 "k8s.io/apimachinery/pkg/runtime"
 ctrl "sigs.k8s.io/controller-runtime"
 "sigs.k8s.io/controller-runtime/pkg/client"

 tenancyv1alpha1 "github.com/lander2k2/namespace-operator/api/v1alpha1"
)

...

func (r *AcmeNamespaceReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
 ctx := context.Background()

Developing Operators | 335

 log := r.Log.WithValues("acmenamespace", req.NamespacedName)

 var acmeNs tenancyv1alpha1.AcmeNamespace
 r.Get(ctx, req.NamespacedName, &acmeNs)

 nsName := acmeNs.Spec.NamespaceName
 adminUsername := acmeNs.Spec.AdminUsername

 ns := &corev1.Namespace{
 ObjectMeta: metav1.ObjectMeta{
 Name: nsName,
 Labels: map[string]string{
 "admin": adminUsername,
 },
 },
 }

 if err := r.Create(ctx, ns); err != nil {
 log.Error(err, "unable to create namespace")
 return ctrl.Result{}, err
 }

 return ctrl.Result{}, nil
}
...

The variable that will represent the AcmeNamespace object that has been created,
updated, or deleted.

Fetching the content of the AcmeNamespace object from the request. Error
catching omitted for brevity.

Creating the new Namespace object.

Creating the new Namespace resource in the Kubernetes API.

This simplified snippet demonstrates the controller creating the new Namespace.
Adding the Role and RoleBinding for the Namespace admin to the controller would
look similar, as shown in Example 11-10.

Example 11-10. The creation of the Role and RoleBinding by the AcmeNamespace
controller

// controllers/acmenamespace_controller.go
...
 role := &rbacv1.Role{
 ObjectMeta: metav1.ObjectMeta{
 Name: "namespace-admin",
 Namespace: nsName,

336 | Chapter 11: Building Platform Services

 },
 Rules: []rbacv1.PolicyRule{
 {
 APIGroups: []string{"*"},
 Resources: []string{"*"},
 Verbs: []string{"*"},
 },
 },
 }

 if err := r.Create(ctx, role); err != nil {
 log.Error(err, "unable to create namespace-admin role")
 return ctrl.Result{}, err
 }

 binding := &rbacv1.RoleBinding{
 ObjectMeta: metav1.ObjectMeta{
 Name: "namespace-admin",
 Namespace: nsName,
 },
 RoleRef: rbacv1.RoleRef{
 APIGroup: "rbac.authorization.k8s.io",
 Kind: "Role",
 Name: "namespace-admin",
 },
 Subjects: []rbacv1.Subject{
 {
 Kind: "User",
 Name: adminUsername,
 Namespace: nsName,
 },
 },
 }

 if err := r.Create(ctx, binding); err != nil {
 log.Error(err, "unable to create namespace-admin role binding")
 return ctrl.Result{}, err
 }

 return ctrl.Result{}, nil
}
...

At this point we are able to submit an AcmeNamespace manifest to the API and our
Namespace operator will create the Namespace, a Role for the Namespace admin, and
a RoleBinding to the username we provided. As we discussed earlier, this will work
fine when we create a new AcmeNamespace but will break when it tries to reconcile it
at any other time in the future. This would occur if the AcmeNamespace was changed
in any way. It would also happen if the controller restarted for any reason. When the
controller restarts, it must re-list and reconcile all existing resources in case

Developing Operators | 337

something changed. So at this point, simply restarting our controller will break it.
Let’s fix that by adding a simple use of the status field. First, Example 11-11 shows the
addition of the field to AcmeNamespaceStatus.

Example 11-11. Adding a field to the status of the AcmeNamespace

// api/v1alpha1/acmenamespace_types.go

// AcmeNamespaceStatus defines the observed state of AcmeNamespace
type AcmeNamespaceStatus struct {

 // Tracks the phase of the AcmeNamespace
 // +optional
 // +kubebuilder:validation:Enum=CreationInProgress;Created
 Phase string `json:"phase"`
}

// +kubebuilder:object:root=true
// +kubebuilder:subresource:status
...

Now we can leverage this field in our controller as shown in Example 11-12.

Example 11-12. Using the new status field in the AcmeNamespace controller

// controllers/acmenamespace_controller.go
...

const (
 statusCreated = "Created"
 statusInProgress = "CreationInProgress"
)

...

func (r *AcmeNamespaceReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
 ...

 switch acmeNs.Status.Phase {
 case statusCreated:
 // do nothing
 log.Info("AcmeNamespace child resources have been created")
 case statusInProgress:
 // TODO: query and create as needed
 log.Info("AcmeNamespace child resource creation in progress")
 default:
 log.Info("AcmeNamespace child resources not created")

 // set status to statusInProgress
 acmeNs.Status.Phase = statusInProgress

338 | Chapter 11: Building Platform Services

 if err := r.Status().Update(ctx, &acmeNs); err != nil {
 log.Error(err, "unable to update AcmeNamespace status")
 return ctrl.Result{}, err
 }

 // create namespace, role and role binding
 ...

 // set status to statusCreated
 acmeNs.Status.Phase = statusCreated
 if err := r.Status().Update(ctx, &acmeNs); err != nil {
 log.Error(err, "unable to update AcmeNamespace status")
 return ctrl.Result{}, err
 }
 }

 return ctrl.Result{}, nil
}

...

Now we have a controller that can restart safely. It also now has the beginnings of a
system to examine existing state using the custom resource’s status and to carry out
reconciliation steps based on that existing state.

One other thing we should usually do is set ownership for the child resources. If we
set the AcmeNamespace resource as the owner of the Namespace, Role, and Role‐
Binding, that allows us to delete all the children by simply deleting the owner Acme‐
Namespace resource. This ownership will be managed by the API server. Even if the
controller is not running, if the owner AcmeNamespace resource is deleted, the chil‐
dren will be deleted, too.

This raises the question of scoping for our AcmeNamespace API type. When using
Kubebuilder, it will default to Namespaced scoping. However, a Namespace-scoped
API type cannot be an owner of a cluster-scoped resource, such as a Namespace.
With Kubebuilder we can use convenient markers to generate the CRD manifest with
the proper scoping for this usage, as shown in Example 11-13.

Example 11-13. Updated API definition in a Kubebuilder project

// api/v1alpha1/acmenamespace_types.go
package v1alpha1

import (
 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
)

// EDIT THIS FILE! THIS IS SCAFFOLDING FOR YOU TO OWN!

Developing Operators | 339

// NOTE: json tags are required. Any new fields you add must have json tags
// for the fields to be serialized.

// AcmeNamespaceSpec defines the desired state of AcmeNamespace
type AcmeNamespaceSpec struct {

 // The name of the namespace
 NamespaceName string `json:"namespaceName"`

 // The username for the namespace admin
 AdminUsername string `json:"adminUsername"`
}

// AcmeNamespaceStatus defines the observed state of AcmeNamespace
type AcmeNamespaceStatus struct {

 // Tracks the phase of the AcmeNamespace
 // +optional
 // +kubebuilder:validation:Enum=CreationInProgress;Created
 Phase string `json:"phase"`
}

// +kubebuilder:resource:scope=Cluster
// +kubebuilder:object:root=true
// +kubebuilder:subresource:status

// AcmeNamespace is the Schema for the acmenamespaces API
type AcmeNamespace struct {
 metav1.TypeMeta `json:",inline"`
 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec AcmeNamespaceSpec `json:"spec,omitempty"`
 Status AcmeNamespaceStatus `json:"status,omitempty"`
}

// +kubebuilder:object:root=true

// AcmeNamespaceList contains a list of AcmeNamespace
type AcmeNamespaceList struct {
 metav1.TypeMeta `json:",inline"`
 metav1.ListMeta `json:"metadata,omitempty"`
 Items []AcmeNamespace `json:"items"`
}

func init() {
 SchemeBuilder.Register(&AcmeNamespace{}, &AcmeNamespaceList{})

This marker will set the correct scoping on the CRD when the manifest is gener‐
ated with make manifests.

This will generate a CRD that looks like Example 11-14.

340 | Chapter 11: Building Platform Services

Example 11-14. Cluster scoped CRD for AcmeNamespace API type

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: (devel)
 creationTimestamp: null
 name: acmenamespaces.tenancy.acme.com
spec:
 group: tenancy.acme.com
 names:
 kind: AcmeNamespace
 listKind: AcmeNamespaceList
 plural: acmenamespaces
 singular: acmenamespace
 scope: Cluster
 subresources:
 status: {}
 validation:
 openAPIV3Schema:
 description: AcmeNamespace is the Schema for the acmenamespaces API
 properties:
 apiVersion:
 description: 'APIVersion defines the versioned schema of this
 representation of an object. Servers should convert recognized
 schemas to the latest internal value, and may reject unrecognized
 values.'
 type: string
 kind:
 description: 'Kind is a string value representing the REST resource this
 object represents. Servers may infer this from the endpoint the client
 submits requests to. Cannot be updated. In CamelCase.'
 type: string
 metadata:
 type: object
 spec:
 description: AcmeNamespaceSpec defines the desired state of AcmeNamespace
 properties:
 adminUsername:
 description: The username for the namespace admin
 type: string
 namespaceName:
 description: The name of the namespace
 type: string
 required:
 - adminUsername
 - namespaceName
 type: object
 status:
 description: 'AcmeNamespaceStatus defines the observed state of

Developing Operators | 341

 AcmeNamespace'
 properties:
 phase:
 description: Tracks the phase of the AcmeNamespace
 enum:
 - CreationInProgress
 - Created
 type: string
 type: object
 type: object
 version: v1alpha1
 versions:
 - name: v1alpha1
 served: true
 storage: true
status:
 acceptedNames:
 kind: ""
 plural: ""
 conditions: []
 storedVersions: []

Resource scoping properly set.

Now we can set the AcmeNamespace as an owner for all child resources. This will
introduce an ownerReferences field into the metadata for each child resource. At this
point our Reconcile method looks like Example 11-15.

Example 11-15. Setting ownership for child resources of the AcmeNamespace

func (r *AcmeNamespaceReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) {
 ctx := context.Background()
 log := r.Log.WithValues("acmenamespace", req.NamespacedName)

 var acmeNs tenancyv1alpha1.AcmeNamespace
 if err := r.Get(ctx, req.NamespacedName, &acmeNs); err != nil {
 if apierrs.IsNotFound(err) {
 log.Info("resource deleted")
 return ctrl.Result{}, nil
 } else {
 return ctrl.Result{}, err
 }
 }

 nsName := acmeNs.Spec.NamespaceName
 adminUsername := acmeNs.Spec.AdminUsername

 switch acmeNs.Status.Phase {
 case statusCreated:
 // do nothing
 log.Info("AcmeNamespace child resources have been created")

342 | Chapter 11: Building Platform Services

 case statusInProgress:
 // TODO: query and create as needed
 log.Info("AcmeNamespace child resource creation in progress")
 default:
 log.Info("AcmeNamespace child resources not created")

 // set status to statusInProgress
 acmeNs.Status.Phase = statusInProgress
 if err := r.Status().Update(ctx, &acmeNs); err != nil {
 log.Error(err, "unable to update AcmeNamespace status")
 return ctrl.Result{}, err
 }

 ns := &corev1.Namespace{
 ObjectMeta: metav1.ObjectMeta{
 Name: nsName,
 Labels: map[string]string{
 "admin": adminUsername,
 },
 },
 }

 // set owner reference for the namespace
 err := ctrl.SetControllerReference(&acmeNs, ns, r.Scheme)
 if err != nil {
 log.Error(err, "unable to set owner reference on namespace")
 return ctrl.Result{}, err
 }

 if err := r.Create(ctx, ns); err != nil {
 log.Error(err, "unable to create namespace")
 return ctrl.Result{}, err
 }

 role := &rbacv1.Role{
 ObjectMeta: metav1.ObjectMeta{
 Name: "namespace-admin",
 Namespace: nsName,
 },
 Rules: []rbacv1.PolicyRule{
 {
 APIGroups: []string{"*"},
 Resources: []string{"*"},
 Verbs: []string{"*"},
 },
 },
 }

 // set owner reference for the role
 err = ctrl.SetControllerReference(&acmeNs, role, r.Scheme)
 if err != nil {
 log.Error(err, "unable to set owner reference on role")

Developing Operators | 343

 return ctrl.Result{}, err
 }

 if err := r.Create(ctx, role); err != nil {
 log.Error(err, "unable to create namespace-admin role")
 return ctrl.Result{}, err
 }

 binding := &rbacv1.RoleBinding{
 ObjectMeta: metav1.ObjectMeta{
 Name: "namespace-admin",
 Namespace: nsName,
 },
 RoleRef: rbacv1.RoleRef{
 APIGroup: "rbac.authorization.k8s.io",
 Kind: "Role",
 Name: "namespace-admin",
 },
 Subjects: []rbacv1.Subject{
 {
 Kind: "User",
 Name: adminUsername,
 Namespace: nsName,
 },
 },
 }

 // set owner reference for the role binding
 err = ctrl.SetControllerReference(&acmeNs, binding, r.Scheme);
 if err != nil {
 log.Error(err, "unable to set reference on role binding")
 return ctrl.Result{}, err
 }

 if err := r.Create(ctx, binding); err != nil {
 log.Error(err, "unable to create role binding")
 return ctrl.Result{}, err
 }

 // set status to statusCreated
 acmeNs.Status.Phase = statusCreated
 if err := r.Status().Update(ctx, &acmeNs); err != nil {
 log.Error(err, "unable to update AcmeNamespace status")
 return ctrl.Result{}, err
 }
 }

 return ctrl.Result{}, nil
}
...

344 | Chapter 11: Building Platform Services

Check to see if resource was not found so we don’t try to reconcile when the
AcmeNamespace has been deleted.

Set owner reference on Namespace.

Set owner reference on Role.

Set owner reference on RoleBinding.

Notice that we had to add the error checking to see if the AcmeNamespace resource
was found. This is because when it is deleted, normal reconciliation will fail due to
there no longer being desired state to reconcile. And, in this case, we put an owner
reference on the child resources so the API server takes care of reconciling state for
deletion events.

This illustrates the point that reconciliation must not make assumptions about exist‐
ing state. Reconciliation is triggered when:

• The controller starts or restarts
• A resource is created
• A change is made to a resource, including changes made by the controller itself
• A resource is deleted
• A periodic resync with the API is carried out to ensure an accurate view of the

system

To this end, make sure your reconciliation doesn’t make assumptions about the event
that triggered reconciliation. Use the status field, determine relevant conditions in
other resources as needed, and reconcile accordingly.

Admission webhooks
If you find your custom resource requires defaults or validation that cannot be imple‐
mented using the OpenAPI v3 spec in the CRD that creates your new API type, you
can turn to validating and mutating admission webhooks. The Kubebuilder CLI has a
create webhook command that caters specifically to these use cases by generating
boilerplate to get you going faster.

An example of where a validating webhook may be useful with our Namespace opera‐
tor example and its AcmeNamespace resource, is in validating the adminUsername
field. As a convenience, your webhook could call out to your corporate identity pro‐
vider to ensure the username provided is valid, preventing mistakes that require
human intervention to correct.

Developing Operators | 345

A defaulting example could be to default the deploymentTier to the most common,
least expensive dev option. This is particularly useful for maintaining backward com‐
patibility with existing resource definitions when you make a change that adds new
fields to a custom resource data model.

Admission webhooks are not often included in a prototype or pre-alpha release of an
operator, but commonly come into play when refining the user experience for a stable
release of a project. Chapter 8 covers the subject of admission control in depth.

Finalizers
We have looked at examples of a custom resource being set as the owner of child
resources to ensure they will be deleted when the parent custom resource is removed.
However, this mechanism is not always sufficient. If the custom resource has relation‐
ships with other resources in the cluster where an ownership is not appropriate, or if
conditions outside the cluster need to be updated when your custom resource is
deleted, finalizers will likely be important to use.

Finalizers are added to the metadata of a resource as shown Example 11-16.

Example 11-16. AcmeNamespace manifest with a finalizer

apiVersion: tenancy.acme.com/v1alapha1
kind: AcmeNamespace
metadata:
 name: team-x
 finalizers:
 - namespace.finalizer.tenancy.acme.com
spec:
 namespaceName: app-y
 adminUsername: sam

String value used as a finalizer.

The string value used as your finalizer is not important to anything else in the system
besides your controller. Just use a value that will safely be unique in case other con‐
trollers need to apply finalizers to the same resource.

When any finalizers are present on a resource, the API server will not delete the
resource. If a delete request is received, it will instead update the resource to add a
deletionTimestamp field to its metadata. This update to the resource will trigger a
reconciliation in your controller. A check for this deletionTimestamp will need to be
added to your controller’s Reconcile method so that any pre-delete operations can be
completed. Once complete, your controller can remove the finalizer. This will inform
the API server that it may now delete the resource.

346 | Chapter 11: Building Platform Services

Common examples of pre-delete operations are in systems outside the cluster. In the
Namespace operator example, if there are corporate chargeback systems that track
Namespace usage and need to be updated when Namespaces are deleted, a finalizer
could prompt your operator to update that external system before removing the
Namespace. Other common examples are when a workload uses managed services,
such as databases or object storage, as a part of the application stack. When an
instance of the application is deleted, these managed service instances will likely need
to be cleaned up as well.

Extending the Scheduler
The scheduler delivers core functionality in Kubernetes. A huge part of the value
proposition of Kubernetes is the abstraction of pools of machines on which to run
workloads. It is the scheduler that makes the determination of where Pods will run. It
is fair to say that, together with the kubelet, these two controllers form the heart of
Kubernetes around which all else is built. The scheduler is a cornerstone platform
service for your application platform. In this section we will explore customizing,
extending, and replacing the behavior of the scheduler.

It’s helpful to keep in mind the parallels between core control plane components, like
the scheduler, and the custom operators we have examined so far in this chapter. In
both cases we are dealing with Kubernetes controllers managing Kubernetes resour‐
ces. With our custom operators, we develop entirely new custom controllers, whereas
the scheduler is a core controller deployed with every Kubernetes cluster. With our
custom operators, we design and create new custom resources, whereas the scheduler
manages the core Pod resource.

We have found it uncommon for users of Kubernetes to find a need to extend the
scheduler or modify its behavior. However, considering how important it is to a clu‐
ster’s function, it is prudent to both understand how the scheduler reaches scheduling
decisions it makes and how to modify those decisions if the need arises. It bears
repeating one more time: a large part of the genius of Kubernetes is its extensibility
and modularity. If you find the scheduler doesn’t meet your needs, you can modify or
augment its behavior, or replace it altogether.

In exploring this topic, we’re going to examine how the scheduler determines where
to assign Pods so that we can understand what goes into each scheduling decision,
and then see how we can influence those decisions with scheduling policies. We’re
also going to address the option of running multiple schedulers and even writing
your own custom scheduler.

Extending the Scheduler | 347

Predicates and Priorities
Before we look at how to extend or modify the scheduler, we first need to understand
how the scheduler makes its decisions. The scheduler uses a two-step process to
determine which Node a Pod will get scheduled to.

The first is filtering. In this step, the scheduler filters out Nodes that are ineligible to
host a Pod using a number of predicates. For example, there is a predicate that checks
to see if the Pod being scheduled tolerates a Node’s taints. The control plane nodes
commonly use a taint to ensure regular workloads don’t get scheduled there. If a Pod
has no tolerations, any tainted Nodes will be filtered out as ineligible targets for a Pod.
Another predicate checks to ensure the Node has sufficient CPU and memory resour‐
ces for any Pod that requests values for these resources. As you’d expect, if the Node
has insufficient resources to satisfy the Pod spec, it is filtered out as an eligible host.
When all predicates have checked for Node eligibility, the filtering step is complete.
At this point if there are no eligible Nodes, the Pod will remain in a Pending state
until conditions change, such as a new eligible Node being added to the cluster. If the
list of Nodes consists of a single Node, scheduling may occur at this point. If there are
multiple eligible Nodes, the scheduler proceeds to the second step.

The second step is scoring. This step uses priorities to determine which Node is the
best fit for a particular Pod. One priority that helps to score a Node higher is the pres‐
ence of a container image that is being used by the Pod. Another priority that will
score a Node higher is the lack of any Pods that share the same Service as the Pod
being scheduled. That is to say that the scheduler will attempt to distribute the Pods
that share a Service across multiple Nodes for improved Node failure tolerance. The
scoring step is also where preferred... affinity rules on Pods are implemented. At
the end of the scoring step, each eligible Node has a score associated. The highest
scoring Node is deemed the best fit for the Pod and it is scheduled there.

Scheduling Policies
Scheduling policies are used to configure the predicates and priorities the scheduler is
to use. You can write a config file containing a scheduling policy to disk on the con‐
trol plane nodes and provide the scheduler the --policy-config-file flag, but the
preferred method is to use a ConfigMap. Provide the scheduler the --policy-
configmap flag and thereafter you can update the scheduling policy via the API
server. Note that if you go with the ConfigMap method, you will likely need to update
the system:kube-scheduler ClusterRole to add a rule for getting ConfigMaps.

348 | Chapter 11: Building Platform Services

At the time of this writing, both the --policy-config-file and
--policy-configmap flags for the scheduler still work, but they are
marked as deprecated in the official documentation. For this rea‐
son, if you are implementing new custom scheduling behavior, we
recommend using the scheduling profiles discussed in the next sec‐
tion rather than the policies discussed here.

For example, the policy ConfigMap in Example 11-17 will make a Node eligible for
selection with a nodeSelector by a Pod only if it has a label with the key:
selectable.

Example 11-17. An example ConfigMap defining a scheduling policy

apiVersion: v1
kind: ConfigMap
metadata:
 name: scheduler-policy-config
 namespace: kube-system
data:
 policy.cfg: |+
 apiVersion: v1
 kind: Policy
 predicates:
 - name: "PodMatchNodeSelector"
 argument:
 labelsPresence:
 labels:
 - "selectable"
 presence: true

The filename the scheduler will expect to use for policies.

The predicate name that implements nodeSelectors.

The label key you wish to use for adding a constraint to selection. In this exam‐
ple, if a node does not have this label key present, it will not be selectable by a
Pod.

This indicates the provided label must be present. If false it would need to be
absent. If using the example configuration of presence: true, a Node without
the label selectable: "" will not be eligible for selection by a Pod.

With this scheduling policy in place, a Pod defined with the manifest in
Example 11-18 would be scheduled to an eligible Node only with both the device:
gpu and the selectable: "" labels present.

Extending the Scheduler | 349

Example 11-18. A Pod manifest using the nodeSelector field to direct scheduling

apiVersion: v1
kind: Pod
metadata:
 name: terminator
spec:
 containers:
 - image: registry.acme.com/skynet/t1000:v1
 name: terminator
 nodeSelector:
 device: gpu

Scheduling Profiles
Scheduling profiles allow you to enable or disable plug-ins that are compiled into the
scheduler. You can specify a profile by passing a filename to the --config flag when
running the scheduler. These plug-ins implement the various extension points that
include—but are not limited to—the filter and scoring steps we covered earlier. In
our experience it is rarely necessary to customize the scheduler in this way. But
should you find a need for it, the Kubernetes documentation provides instructions.

Multiple Schedulers
It should be noted that you are not limited to one scheduler. You can deploy any
number of schedulers that are either Kubernetes schedulers with different policies
and profiles, or even custom-built schedulers. If running multiple schedulers you can
supply the schedulerName in the spec for a Pod, which will determine which schedu‐
ler carries out the scheduling for that Pod. Given the added complexity of following
this multischeduler model, consider using dedicated clusters for workloads with such
specialized scheduling requirements.

Custom Scheduler
In the unlikely event that you are unable to use the Kubernetes scheduler, even with
the use of policies and profiles, you have the option to develop and use your own
scheduler. This would entail developing a controller that watches Pod resources and
whenever a new Pod is created, determine where the Pod should run and update the
nodeName field for that Pod. While this is a narrow scope, this is not a simple exercise.
As we have seen in this section, the core scheduler is a sophisticated controller that
routinely evaluates numerous complex factors into account when making scheduling
decisions. If your requirements are specialized enough to demand a custom schedu‐
ler, it’s likely you will have to spend considerable engineering effort to refine its
behavior. We recommend proceeding with this approach only if you have exhausted

350 | Chapter 11: Building Platform Services

your options with the existing scheduler and have deep Kubernetes expertise to tap
into for the project.

Summary
It’s important to understand the points of extension available with Kubernetes and
how best to add the platform services required to meet your tenants’ needs. Study the
operator pattern and the use cases for Kubernetes operators. If you find a compelling
need to build an operator, decide what development tooling and language you will
use, design your custom resource’s data model, and then build a Kubernetes control‐
ler to manage that custom resource. Finally, if the default scheduler behavior does not
meet your requirements, look into scheduling policies and profiles to modify its
behavior. In extreme edge cases, you have the option to develop your own custom
scheduler to replace, or run in conjunction with, the default scheduler.

Using the principles and practices laid out in this chapter, you are no longer con‐
strained by the utilities and software provided by the community or your company’s
vendors. If you encounter important requirements for which there is no existing solu‐
tion, you have at your disposal the tools and guidelines to add any specialized plat‐
form services your business needs may require.

Summary | 351

CHAPTER 12

Multitenancy

When building a production application platform atop Kubernetes, you must con‐
sider how to handle the tenants that will run on the platform. As we’ve discussed
throughout this book, Kubernetes provides a set of foundational features you can use
to implement many requirements. Workload tenancy is no different. Kubernetes
offers various knobs you can use to ensure tenants can safely coexist on the same
platform. With that said, Kubernetes does not define a tenant. A tenant can be an
application, a development team, a business unit, or something else. Defining a ten‐
ant is up to you and your organization, and we hope this chapter will help you with
that task.

Once you establish who your tenants are, you must determine whether multiple ten‐
ants should run on the same platform. In our experience helping large organizations
build application platforms, we’ve found that platform teams are usually interested in
operating a multitenant platform. With that said, this decision is firmly rooted in the
nature of the different tenants and the trust that exists between them. For example, an
enterprise offering a shared application platform is a different story than a company
offering containers-as-a-service to external customers.

In this chapter, we will first explore the degrees of tenant isolation you can achieve
with Kubernetes. The nature of your workloads and your specific requirements will
dictate how much isolation you need to provide. The stronger the isolation, the
higher the investment you need to make in this area. We will then discuss Kubernetes
Namespaces, an essential building block that enables a large portion of the multite‐
nancy capabilities in Kubernetes. Finally, we will dig into the different Kubernetes fea‐
tures you can leverage to isolate tenants on a multitenant cluster, including Role-
Based Access Control (RBAC), Resource Requests and Limits, Pod Security Policies,
and others.

353

Degrees of Isolation
Kubernetes lends itself to various tenancy models, each with pros and cons. The most
critical factor that determines which model to implement is the degree of isolation
demanded by your workloads. For example, running untrusted code developed by
different third parties usually requires more robust isolation than hosting your
organization’s internal applications. Broadly speaking, there are two tenancy models
you can follow: single-tenant clusters and multitenant clusters. Let’s discuss the
strengths and weaknesses of each model.

Single-Tenant Clusters
The single-tenant cluster model (depicted in Figure 12-1) provides the strongest iso‐
lation between tenants, as there is no sharing of cluster resources. This model is
rather appealing as you do not have to solve the complex multitenancy problems that
can otherwise arise. In other words, there is no tenant isolation problem to solve.

Figure 12-1. Each tenant runs in a separate cluster (CP represents a control plane node).

Single-tenant clusters can be viable if you have a small number of tenants. However,
the model can suffer from the following downsides:

Resource overhead
Each single-tenant cluster has to run its own control plane, which in most cases,
requires at least three dedicated nodes. The more tenants you have, the more
resources dedicated to cluster control planes—resources that you could otherwise
use to run workloads. In addition to the control plane, each cluster hosts a set of
workloads to provide platform services. These platform services also incur over‐
head as they could otherwise be shared among different tenants in a multitenant
cluster. Monitoring tools, policy controllers (e.g., Open Policy Agent), and
Ingress controllers are good examples.

Increased management complexity
Managing a large number of clusters can become a challenge for platform teams.
Each cluster needs to be deployed, tracked, upgraded, etc. Imagine having to

354 | Chapter 12: Multitenancy

remediate a security vulnerability across hundreds of clusters. Investing in
advanced tooling is necessary for platform teams to do this effectively.

Even with the drawbacks just mentioned, we have seen many successful implementa‐
tions of single-tenant clusters in the field. And with cluster life cycle tooling such as
Cluster API reaching maturity, the single-tenant model has become easier to adopt.
With that said, most of our focus in the field has been helping organizations with
multitenant clusters, which we’ll discuss next.

Multitenant Clusters
Clusters that host multiple tenants can address the downsides of single-tenant clus‐
ters we previously discussed. Instead of deploying and managing one cluster per ten‐
ant, the platform team can focus on a smaller number of clusters, which reduces the
resource overhead and management complexity (as seen in Figure 12-2). With that
said, there is a trade-off being made. The implementation of multitenant clusters is
more complicated and nuanced, as you have to ensure that tenants can coexist
without affecting each other.

Figure 12-2. A single cluster shared by multiple tenants (CP represents a control plane
node).

Multitenancy comes in two broad flavors, soft multitenancy and hard multitenancy.
Soft multitenancy, sometimes referred to as “multiteam,” assumes that some level of
trust exists between the tenants on the platform. This model is usually viable when
tenants belong to the same organization. For example, an enterprise application plat‐
form hosting different tenants can generally assume a soft multitenancy posture. This
is because the tenants are incentivized to be good neighbors as they move their orga‐
nization toward success. Nevertheless, even though the intent is positive, tenant isola‐
tion is still necessary given that unintentional issues can arise (e.g., vulnerabilities,
bugs, etc.).

On the other hand, the hard multitenancy model establishes that there is no trust
between tenants. From a security point of view, the tenants are even considered
adversaries to ensure the proper isolation mechanisms are put in place. A platform
running untrusted code that belongs to different organizations is a good example. In

Degrees of Isolation | 355

https://oreil.ly/8QRz7

this case, strong isolation between tenants is critical to ensure they can share the clus‐
ter safely.

Building on our housing analogy theme from Chapter 1, we can say that the soft mul‐
titenancy model is equivalent to a family living together. They share the kitchen, liv‐
ing room, and utilities, but each family member has their own bedroom. In contrast,
the hard multitenancy model is better represented by an apartment building. Multiple
families share the building, but each family lives behind a locked front door.

While the soft and hard multitenancy models can help guide conversations about
multitenant platforms, the implementation is not as clear-cut. The reality is that mul‐
titenancy is best described as a spectrum. On the one end, we have no isolation at all.
Tenants are free to do anything on the platform and consume all its resources. On the
other end, we have full tenant isolation, where tenants are strictly controlled and iso‐
lated across all layers of the platform.

As you can imagine, establishing a production multitenant platform with no tenant
isolation is not viable. At the same time, building a multitenant platform with com‐
plete tenant isolation can be a costly (or even futile) endeavor. Thus, it is important to
find the sweet spot in the multitenancy spectrum that will work for your workloads
and organization as a whole.

To determine the isolation required for your workloads, you must consider the differ‐
ent layers where you can apply isolation in a Kubernetes-based platform:

Workload plane
The workload plane consists of the nodes where the workloads get to run. In a
multitenant scenario, workloads are typically scheduled across the shared pool of
nodes. Isolation at this level involves fair sharing of node resources, security and
network boundaries, etc.

Control plane
The control plane encompasses the components that make up a Kubernetes clus‐
ter, such as the API server, the controller manager, and the scheduler. There are
different mechanisms available in Kubernetes to segregate tenants at this level,
including authorization (i.e., RBAC), admission control, and API priority and
fairness.

Platform services
Platform services include centralized logging, monitoring, ingress, in-cluster
DNS, and others. Depending on the workloads, these services or capabilities
might also require some level of isolation. For example, you might want to pre‐
vent tenants from inspecting each other’s logs or discovering each other’s services
via the cluster’s DNS server.

356 | Chapter 12: Multitenancy

Kubernetes provides different primitives you can use to implement isolation at each
of these layers. Before digging into them, we will discuss the Kubernetes Namespace,
the foundational boundary that allows you to segregate tenants on a cluster.

The Namespace Boundary
Namespaces enable a number of different capabilities in the Kubernetes API. They
allow you to organize your cluster, enforce policy, control access, etc. More impor‐
tantly, they are a critical building block when implementing a multitenant Kubernetes
platform, as they provide the foundation to onboard and isolate tenants.

When it comes to tenant isolation, however, it is important to keep in mind that the
Namespace is a logical construct in the Kubernetes control plane. Without additional
policy or configuration, the Namespace has no implications on the workload plane.
For example, workloads that belong to different Namespaces are likely to run on the
same node unless advanced scheduling constraints are put in place. In the end, the
Namespace is merely a piece of metadata attached to resources in the Kubernetes
API.

Having said that, many of the isolation mechanisms that we will explore in this chap‐
ter hinge on the Namespace construct. RBAC, resource quotas, and network policies
are examples of such mechanisms. Thus, one of the first decisions to make when
designing your tenancy strategy is establishing how to leverage Namespaces. When
helping organizations in the field, we have seen the following approaches:

Namespace per team
In this model, each team has access to a single Namespace in the cluster. This
approach makes it simple to apply policy and quota to specific teams. However, it
can be challenging for teams to exist within a single Namespace if they own many
services. Overall, we find that this model can be viable for small organizations
that are getting started with Kubernetes.

Namespace per application
This approach provides a Namespace for each application in the cluster, making
it easier to apply application-specific policy and quota. The downside is that this
model usually results in tenants having access to multiple Namespaces, which can
complicate the tenant onboarding process and the ability to apply tenant-level
policy and quota. With that said, this approach is perhaps the most viable for
large organizations and enterprises building multitenant platforms.

Namespace per tier
This pattern establishes different runtime tiers (or environments) using Name‐
spaces. We usually avoid this approach, as we prefer to use separate clusters for
development, staging, and production tiers.

The Namespace Boundary | 357

The approach to use largely depends on your isolation requirements and the struc‐
ture of your organization. If you are leaning toward the Namespace per team model,
remember that all resources in the Namespace are accessible by all team members or
workloads in the Namespace. For example, assuming Alice and Bob are on the same
team, there’s no way to prevent Alice from looking at Bob’s Secrets if they are both
authorized to get Secrets in the team’s Namespace.

Multitenancy in Kubernetes
Up to this point, we have discussed the different tenancy models you can implement
when building a Kubernetes-based platform. In the rest of this chapter, we will focus
on multitenant clusters and the various Kubernetes capabilities you can leverage to
safely and effectively host your tenants. As you read through these sections, you will
find that we have covered some of these capabilities in other chapters. In those cases,
we will brush up on them once more, but we will focus on the multitenancy aspect of
them.

First, we will focus on the isolation mechanisms available in the control plane layer.
Mainly, RBAC, resource quotas, and validating admission webhooks. We will then
move onto the workload plane, where we will discuss resource requests and limits,
Network Policies, and Pod Security Policies. Finally, we will touch on monitoring and
centralized logging as example platform services that you can design with multite‐
nancy in mind.

Role-Based Access Control (RBAC)
When hosting multiple tenants in the same cluster, you must enforce isolation at the
API server layer to prevent tenants from modifying resources that do not belong to
them. The RBAC authorization mechanism enables you to configure this policy. As
we discussed in Chapter 10, the API server supports different mechanisms to estab‐
lish a user’s or tenant’s identity. Once established, the tenant’s identity is passed on to
the RBAC system, which determines whether the tenant is authorized to perform the
requested action.

As you onboard tenants onto the cluster, you can grant them access to one or more
Namespaces in which they can create and manage API resources. To authorize each
tenant, you must bind Roles or ClusterRoles with their identities. The binding is
achieved with the RoleBinding resource. The following snippet shows an example
RoleBinding that grants the app1-viewer Group view access to the app1 Namespace.
Unless you have a good use case, avoid using ClusterRoleBindings for tenants, as it
authorizes the tenant to leverage the bound role across all Namespaces.

358 | Chapter 12: Multitenancy

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: viewers
 namespace: app1
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: view
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: app1-viewer

You’ll notice in the example that the RoleBinding references a ClusterRole named
view. This is a built-in role that is available in Kubernetes. Kubernetes provides a set
of built-in roles that cover common use cases:

view
The view role grants tenants read-only access to Namespace-scoped resources.
This role can be bound to all the developers in a team, for example, as it allows
them to inspect and troubleshoot their resources in production clusters.

edit
The edit role allows tenants to create, modify, and delete Namespace-scoped
resources, in addition to viewing them. Given this role’s abilities, binding of this
role is highly dependent on your approach to application deployment.

admin
In addition to viewing and editing resources, the admin role can create Roles and
RoleBindings. This role is usually bound to the tenant administrator to delegate
Namespace-management concerns.

These built-in roles are a good starting point. With that said, they can be considered
too broad, as they grant access to a vast number of resources in the Kubernetes API.
To follow the principle of least privilege, you can create tightly scoped roles that allow
the minimum set of resources and actions required to get the job done. However,
keep in mind that this can result in management overhead as you potentially need to
manage many unique roles.

In most Kubernetes deployments, tenants are typically authorized
to list all Namespaces on the cluster. This is problematic if you
need to prevent tenants from knowing what other Namespaces
exist, as there is currently no way of achieving this using the Kuber‐
netes RBAC system. If you do have this requirement, you must
build a higher-level abstraction to handle it (OpenShift’s Project
resource is an example abstraction that addresses this).

Multitenancy in Kubernetes | 359

https://oreil.ly/xIAT8

RBAC is a must when running multiple tenants in the same cluster. It provides isola‐
tion at the control plane layer, which is necessary to prevent tenants from viewing
and modifying each other’s resources. Make sure to leverage RBAC when building a
multitenant Kubernetes-based platform.

Resource Quotas
As a platform operator offering a multitenant platform, you need to ensure that each
tenant gets an appropriate share of the limited cluster resources. Otherwise, nothing
prevents an ambitious (or perhaps malicious) tenant from consuming the entire clus‐
ter and effectively starving the other tenants.

To place a limit on resource consumption, you can use the resource quotas feature of
Kubernetes. Resource quotas apply at the Namespace level, and they can limit two
kinds of resources. On one hand, you can control the amount of compute resources
available to a Namespace, such as CPU, memory, and storage. On the other hand, you
can limit the number of API objects that can be created within a Namespace, such as
the number of Pods, Services, etc. A common scenario that calls for limiting API
objects is to control the number of LoadBalancer Services in cloud environments,
which can get expensive.

Because quotas apply at the Namespace level, your Namespace strategy impacts how
you configure quotas. If tenants get access to a single Namespace, applying quotas to
each tenant is straightforward, as you can create a ResourceQuota for each tenant in
their Namespace. The story is more complicated when tenants have access to multiple
Namespaces. In this case, you need extra automation or an additional controller to
enforce quota across different Namespaces. (The Hierarchical Namespace Controller
is an attempt at addressing this issue).

To further explore ResourceQuotas, let’s explore them in action. The following exam‐
ple shows a ResourceQuota that limits the Namespace to consume up to 1 CPU and
512 MiB of memory:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: cpu-mem
 namespace: app1
spec:
 hard:
 requests.cpu: "1"
 requests.memory: 512Mi
 limits.cpu: "1"
 limits.memory: 512Mi

360 | Chapter 12: Multitenancy

https://oreil.ly/PyPDK

As Pods in the app1 Namespace start to get scheduled, the quota is consumed accord‐
ingly. For example, if we create a Pod that requests 0.5 CPUs and 256 MiB, we can see
the updated quota as follows:

$ kubectl describe resourcequota cpu-mem
Name: cpu-mem
Namespace: app1
Resource Used Hard
-------- ---- ----
limits.cpu 500m 1
limits.memory 512Mi 512Mi
requests.cpu 500m 1
requests.memory 512Mi 512Mi

Attempts to consume resources beyond the configured quota are blocked by an
admission controller, as shown in the following error message. In this case, we were
trying to consume 2 CPUs and 2 GiB of memory but were limited by the quota:

$ kubectl apply -f my-app.yaml
Error from server (Forbidden):
 error when creating "my-app.yaml": pods "my-app" is forbidden:
 exceeded quota: cpu-mem,
 requested: limits.cpu=2,limits.memory=2Gi,
 requests.cpu=2,requests.memory=2Gi,
 used: limits.cpu=0,limits.memory=0,
 requests.cpu=0,requests.memory=0,
 limited: limits.cpu=1,limits.memory=512Mi,
 requests.cpu=1,requests.memory=512Mi

As you can see, ResourceQuotas give you the ability to control how tenants consume
cluster resources. They are critical when running a multitenant cluster, as they ensure
tenants can safely share the cluster’s limited resources.

Admission Webhooks
Kubernetes has a set of built-in admission controllers that you can use to enforce pol‐
icy. The ResourceQuota functionality we just covered is implemented using an
admission controller. While the built-in controllers help solve common use cases, we
typically find that organizations need to extend the admission layer to isolate and
limit tenants further.

Validating and mutating admission webhooks are the mechanisms that enable you to
inject custom logic into the admission pipeline. We will not dig into the implementa‐
tion details of these webhooks, as we have already covered them in Chapter 8.
Instead, we will explore some of the multitenancy use cases we’ve solved in the field
with custom admission webhooks:

Multitenancy in Kubernetes | 361

Standardized labels
You can enforce a standard set of labels across all API objects using a validating
admission webhook. For example, you could require all resources to have an
owner label. Having a standard set of labels is useful, as labels provide a way to
query the cluster and even support higher-level features, such as network policies
and scheduling constraints.

Require fields
Like enforcing a standard set of labels, you can use a validating admission web‐
hook to mark fields of certain resources as required. For example, you can
require all tenants to set the https field of their Ingress resources. Or perhaps
require tenants to always set readiness and liveness probes in their Pod
specifications.

Set guardrails
Kubernetes has a broad set of features that you might want to limit or even dis‐
able. Webhooks allow you to set guardrails around specific functionality. Exam‐
ples include disabling specific Service types (e.g., NodePorts), disallowing node
selectors, controlling Ingress hostnames, and others.

MultiNamespace resource quotas
We have experienced cases in the field where organizations needed to enforce
resource quotas across multiple Namespaces. You can use a custom admission
webhook/controller to implement this functionality, as the ResourceQuota object
in Kubernetes is Namespace-scoped.

Overall, admission webhooks are a great way to enforce custom policy in your multi-
tenant clusters. And the emergence of policy engines such as Open Policy Agent
(OPA) and Kyverno make it even simpler to implement them. Consider leveraging
such engines to isolate and limit tenants in your clusters.

API Priority and Fairness
The API Priority and Fairness feature in Kubernetes is another mechanism you can
leverage to isolate tenants at the control plane layer. This feature prevents the API
server from being overloaded by limiting the number of concurrent requests it han‐
dles according to a configurable policy.

The API server sits at the heart of control plane functionality. If one tenant overloads
it, this is likely to have significant consequences for other tenants. The API Priority
and Fairness capability can thwart any attempt from a malicious tenant or buggy API
client from causing this overload. Instead, the client’s requests are queued or rejected
according to the configured policy.

362 | Chapter 12: Multitenancy

https://www.openpolicyagent.org
https://www.openpolicyagent.org
https://github.com/kyverno/kyverno
https://oreil.ly/lA7jy

The API Priority and Fairness feature is relatively new. As of this writing, the feature
is in alpha and we have yet to see it implemented in the field. Thus, we would recom‐
mend holding off on enabling it unless you have a strong reason to use it. Even then,
if you find you need this capability, we would encourage you to evaluate whether run‐
ning multiple clusters instead of leveraging this capability would result in a simpler
implementation.

Resource Requests and Limits
Kubernetes schedules workloads onto a shared pool of cluster nodes. Commonly,
workloads from different tenants get scheduled onto the same node and thus share
the node’s resources. Ensuring that the resources are shared fairly is one of the most
critical concerns when running a multitenant platform. Otherwise, tenants can nega‐
tively affect other tenants that are colocated on the same node.

Resource requests and limits in Kubernetes are the mechanisms that isolate tenants
from one another when it comes to compute resources. Resource requests are gener‐
ally fulfilled at the Kubernetes scheduler level (CPU requests are also reflected at run‐
time, as we will see later). In contrast, resource limits are implemented at the node
level using Linux control groups (cgroups) and the Linux Completely Fair Scheduler
(CFS).

While requests and limits provide adequate isolation for produc‐
tion workloads, it should be known that this isolation is not as
strict as that provided by a hypervisor. Completely removing noisy
neighbor symptoms from workloads can be challenging in contain‐
erized environments. Be sure to experiment and understand the
implication of multiple workloads under load on a given Kuber‐
netes node.

In addition to providing resource isolation, resource requests and limits determine a
Pod’s Quality of Service (QoS) class. The QoS class is important because it determines
the order in which the kubelet evicts Pods when a node is running low on resources.
Kubernetes offers the following QoS classes:

Guaranteed
Pods with CPU limits equal to CPU requests and memory limits equal to mem‐
ory requests. This must be true across all containers. The kubelet seldom evicts
Guaranteed Pods.

Burstable
Pods that do not qualify as Guaranteed and have at least one container with CPU
or memory requests. The kubelet evicts Burstable Pods based on how many

Multitenancy in Kubernetes | 363

resources they are consuming above their requests. Pods bursting higher above
their requests are evicted before Pods bursting closer to their requests.

BestEffort
Pods that have no CPU or memory limits or requests. These Pods run on a “best
effort” basis. They are the first to be evicted by the kubelet.

Pod eviction is a complex process. In addition to using QoS classes
to rank Pods, the kubelet also considers Pod priorities when mak‐
ing eviction decisions. The Kubernetes documentation has an
excellent article that discusses “Out of Resource” handling in
greater detail.

Now that we know that resource requests and limits provide tenant isolation and
determine a Pod’s QoS class, let’s dive into the details of resource requests and limits.
Even though Kubernetes supports requesting and limiting different resources, we will
focus our discussion on CPU and memory, the essential resources that all workloads
need at runtime. Let’s discuss memory requests and limits first.

Each container in a Pod can specify memory requests and limits. When memory
requests are set, the scheduler adds them up to get the Pod’s overall memory request.
With this information, the scheduler finds a node with enough memory capacity to
host the Pod. If none of the cluster nodes have enough memory, the Pod remains in a
pending state. Once scheduled, though, the containers in the Pod are guaranteed the
requested memory.

A Pod’s memory request represents a guaranteed lower bound for the memory
resource. However, they can consume additional memory if it’s available on the node.
This is problematic because the Pod uses memory that the scheduler can assign to
other workloads or tenants. When a new Pod is scheduled onto the same node, the
Pods may fight over the memory. To honor the memory requests of both Pods, the
Pod consuming memory above its request is terminated. Figure 12-3 depicts this
process.

Figure 12-3. Pod consuming memory above its request is terminated to reclaim memory
for the new Pod.

364 | Chapter 12: Multitenancy

https://oreil.ly/LuCD9

In order to control the amount of memory that tenants can consume, we must
include memory limits on the workloads, which enforce an upper bound on the
amount of memory available to a given workload. If the workload attempts to con‐
sume memory above the limit, the workload is terminated. This is because memory is
a noncompressible resource. There is no way to throttle memory, and thus the pro‐
cess must be terminated when the node’s memory is under contention. The following
snippet shows a container that was out-of-memory killed (OOMKilled). Notice the
“Reason” in the “Last State” section of the output:

$ kubectl describe pod memory
Name: memory
Namespace: default
Priority: 0
... <snip> ...
Containers:
 stress:
 ... <snip> ...
 Last State: Terminated
 Reason: OOMKilled
 Exit Code: 1
 Started: Fri, 23 Oct 2020 10:11:51 -0400
 Finished: Fri, 23 Oct 2020 10:11:56 -0400
 Ready: True
 Restart Count: 1
 Limits:
 memory: 100Mi
 Requests:
 memory: 100Mi

A common question we encounter in the field is whether one should allow tenants to
set memory limits higher than requests. In other words, whether nodes should be
oversubscribed on memory. This question boils down to a trade-off between node
density and stability. When you oversubscribe your nodes, you increase node density
but decrease workload stability. As we’ve seen, workloads that consume memory
above their requests get terminated when memory comes under contention. In most
cases, we encourage platform teams to avoid oversubscribing nodes, as they typically
consider stability more important than tightly packing nodes. This is especially the
case in clusters hosting production workloads.

Now that we’ve covered memory requests and limits, let’s shift our discussion to CPU.
In contrast to memory, CPU is a compressible resource. You can throttle processes
when CPU is under contention. For this reason, CPU requests and limits are some‐
what more complex than memory requests and limits.

CPU requests and limits are specified using CPU units. In most cases, 1 CPU unit is
equivalent to 1 CPU core. Requests and limits can be fractional (e.g., 0.5 CPU) and
they can be expressed using millis by adding an m suffix. 1 CPU unit equals 1000m
CPU.

Multitenancy in Kubernetes | 365

When containers within a Pod specify CPU requests, the scheduler finds a node with
enough capacity to place the Pod. Once placed, the kubelet converts the requested
CPU units into cgroup CPU shares. CPU shares is a mechanism in the Linux kernel
that grants CPU time to cgroups (i.e., the processes within the cgroup). The following
are critical aspects of CPU shares to keep in mind:

• CPU shares are relative. 1000 CPU shares does not mean 1 CPU core or 1000
CPU cores. Instead, the CPU capacity is proportionally divided among all
cgroups according to their relative shares. For example, consider two processes in
different cgroups. If process 1 (P1) has 2000 shares, and process 2 (P2) has 1000
shares, P1 will get twice the CPU time as P2.

• CPU shares come into effect only when the CPU is under contention. If the CPU
is not fully utilized, processes are not throttled and can consume additional CPU
cycles. Following the preceding example, P1 will get twice the CPU time as P2
only when the CPU is 100% busy.

CPU shares (CPU requests) provide the CPU resource isolation necessary to run dif‐
ferent tenants on the same node. As long as tenants declare CPU requests, the CPU
capacity is shared according to those requests. Consequently, tenants are unable to
starve other tenants from getting CPU time.

CPU limits work differently. They set an upper bound on the CPU time that each
container can use. Kubernetes leverages the bandwidth control feature of the Com‐
pletely Fair Scheduler (CFS) to implement CPU limits. CFS bandwidth control uses
time periods to limit CPU consumption. Each container gets a quota within a config‐
urable period. The quota determines how much CPU time can be consumed in every
period. If the container exhausts the quota, the container is throttled for the rest of
the period.

By default, Kubernetes sets the period to 100 ms. A container with a limit of 0.5 CPUs
gets 50 ms of CPU time every 100 ms, as depicted in Figure 12-4. A container with a
limit of 3 CPUs gets 300 ms of CPU time in every 100 millisecond period, effectively
allowing the container to consume up to 3 CPUs every 100 ms.

Figure 12-4. CPU consumption and throttling of a process running in a cgroup that has
a CFS period of 100 milliseconds and a CPU quota of 50 milliseconds.

366 | Chapter 12: Multitenancy

Due to the nature of CPU limits, they can sometimes result in surprising behavior or
unexpected throttling. This is usually the case in multithreaded applications that can
consume the entire quota at the very beginning of the period. For example, a con‐
tainer with a limit of 1 CPU will get 100 ms of CPU time every 100 ms. Assuming the
container has 5 threads using CPU, the container consumes the 100 ms quota in 20
ms and gets throttled for the remaining 80 ms. This is depicted in Figure 12-5.

Figure 12-5. Multithreaded application consumes the entire CPU quota in the first 20
milliseconds of the 100-millisecond period.

Enforcing CPU limits is useful to minimize the variability of an application’s perfor‐
mance, especially when running multiple replicas across different nodes. This varia‐
bility in performance stems from the fact that, without CPU limits, replicas can burst
and consume idle CPU cycles, which might be available at different times. By setting
the CPU limits equal to the CPU requests, you remove the variability as the work‐
loads get precisely the CPU they requested. (Google and IBM published an excellent
whitepaper that discusses CFS bandwidth control in more detail.) In a similar vein,
CPU limits play a critical role in performance testing and benchmarking. Without
any CPU limits, your benchmarks will produce inconclusive results, as the CPU
available to your workloads will vary based on the nodes where they got scheduled
and the amount of idle CPU available.

If your workloads require predictable access to CPU (e.g., latency-sensitive applica‐
tions), setting CPU limits equal to CPU requests is helpful. Otherwise, placing an
upper bound on CPU cycles is not necessary. When the CPU resources on a node are
under contention, the CPU shares mechanism ensures that workloads get their fair
share of CPU time, according to their container’s CPU requests. When the CPU is
not under contention, the idle CPU cycles are not wasted as workloads opportunisti‐
cally consume them.

Multitenancy in Kubernetes | 367

https://oreil.ly/39Pu7

Linux Kernel Bug Impacting Kubernetes CPU Limits
Another issue with CPU limits is a Linux kernel bug that throttles containers unnec‐
essarily. This has a significant impact on latency-sensitive workloads, such as web
services. To avoid this issue, Kubernetes users resorted to different workarounds,
including:

• Removing CPU limits from Pod specifications
• Disabling enforcement of CPU limits by setting the kubelet flag --cpu-cfs-
quota=false

• Reducing the CFS period to 5–10ms by setting the kubelet flag --cpu-cfs-
quota-period

Depending on your Linux kernel version, you might not have to implement these
workarounds, as the bug has been fixed in version 5.4 of the Linux kernel and back‐
ported to versions 4.14.154+, 4.19.84+, and 5.3.9+. If you need to enforce CPU limits,
consider upgrading your Linux kernel version to avoid this bug.

Network Policies
In most deployments, Kubernetes assumes all Pods running on the platform can
communicate with each other. As you can imagine, this stance is problematic for
multitenant clusters, where you might want to enforce network-level isolation
between the tenants. The NetworkPolicy API is the mechanism you can leverage to
ensure tenants are isolated from each other at the network layer.

We explored Network Policies in Chapter 5, where we discussed the role of the Con‐
tainer Networking Interface (CNI) plug-ins in enforcing network policies. In this sec‐
tion, we will discuss the default deny-all network policy model, a common approach
to Network Policy, especially in multitenant clusters.

As a platform operator, you can establish a default deny-all network policy across the
entire cluster. By doing so, you take the strongest stance regarding network security
and isolation, given that tenants are fully isolated as soon as they are onboarded onto
the platform. Furthermore, you drive tenants to a model where they have to declare
their workloads’ network interactions, which improves their applications’ network
security.

When it comes to implementing a default deny-all policy, you can follow two differ‐
ent paths, each with its pros and cons. The first approach leverages the NetworkPolicy
API available in Kubernetes. Because this is a core API, this implementation is
portable across different CNI plug-ins. However, given that the NetworkPolicy object
is Namespace-scoped, it requires you to create and manage multiple default deny-all

368 | Chapter 12: Multitenancy

https://oreil.ly/EPWrm
https://oreil.ly/xekUx

NetworkPolicy resources, one per Namespace. Additionally, because tenants need the
authorization to create their own NetworkPolicy objects, you must implement addi‐
tional controls (usually via admission webhooks, as discussed earlier) to prevent ten‐
ants from modifying or deleting the default deny-all policy. The following snippet
shows a default deny-all NetworkPolicy object. The empty Pod selector selects all the
Pods in the Namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-all
 namespace: tenant-a
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress

The alternative approach is to leverage CNI plug-in-specific Custom Resource Defi‐
nitions (CRDs). Some CNI plug-ins, such as Antrea, Calico, and Cilium, provide
CRDs that enable you to specify cluster-level or “global” network policy. These CRDs
help you reduce the implementation and management complexity of the default
deny-all policy, but they tie you to a specific CNI plug-in. The following snippet
shows an example Calico GlobalNetworkPolicy CRD that implements the default
deny-all policy:

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
 name: default-deny
spec:
 selector: all()
 types:
 - Ingress
 - Egress

Typically, default deny-all network policy implementations make
exceptions to allow fundamental network traffic, such as DNS
queries to the cluster’s DNS server. Additionally, they are not
applied to the kube-system Namespace and any other system-level
Namespaces to prevent breaking the cluster. The YAML snippets in
the preceding code do not address these concerns.

As with most choices, whether to use the built-in NetworkPolicy object or a CRD
results in a trade-off between portability and simplicity. In our experience, we’ve
found that the simplicity gained by leveraging the CNI-specific CRD is usually worth
the trade-off, given that switching CNI plug-ins is an uncommon event. With that
said, you might not have to make this choice in the future, as the Kubernetes

Multitenancy in Kubernetes | 369

Networking Special Interest Group (sig-network) is looking at evolving the Network‐
Policy APIs to support cluster-scoped network policies.

Once the default deny-all policy is in place, tenants are responsible for poking holes
in the network fabric to ensure their applications can function. They achieve this
using the NetworkPolicy resource, in which they specify ingress and egress rules that
apply to their workloads. For example, the following snippet shows a NetworkPolicy
that could be applied to a web service. It allows Ingress or incoming traffic from the
web frontend, and it allows Egress or outgoing traffic to its database:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: webservice
 namespace: reservations
spec:
 podSelector:
 matchLabels:
 role: webservice
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: TCP
 port: 8080
 egress:
 - to:
 - podSelector:
 role: database
 ports:
 - protocol: TCP
 port: 3306

Enforcing a default deny-all network policy is a critical tenant isolation mechanism.
As you build your platform atop Kubernetes, we strongly encourage you to follow
this pattern, especially if you plan to host multiple tenants.

Pod Security Policies
Pod Security Policies (PSPs) are another important mechanism to ensure tenants can
coexist safely on the same cluster. PSPs control critical security parameters of Pods at
runtime, such as their ability to run as privileged, access host volumes, bind to the
host network, and more. Without PSPs (or a similar policy enforcement mechanism),
workloads are free to do virtually anything on a cluster node.

370 | Chapter 12: Multitenancy

https://oreil.ly/jVP_f

Kubernetes enforces most of the controls implemented via PSPs using an admission
controller. (The rule that requires a nonroot user is sometimes enforced by the kube‐
let, which verifies the runtime user of the container after downloading the image.)
Once the admission controller is enabled, attempts to create a Pod are blocked unless
they are allowed by a PSP. Example 12-1 shows a restrictive PSP that we typically
define as the default policy in multitenant clusters.

Example 12-1. Sample restrictive PodSecurityPolicy

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: default
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: |
 'docker/default,runtime/default'
 apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
 seccomp.security.alpha.kubernetes.io/defaultProfileName: 'runtime/default'
 apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default'
spec:
 privileged: false
 allowPrivilegeEscalation: false
 requiredDropCapabilities:
 - ALL
 volumes:
 - 'configMap'
 - 'emptyDir'
 - 'projected'
 - 'secret'
 - 'downwardAPI'
 - 'persistentVolumeClaim'
 hostNetwork: false
 hostIPC: false
 hostPID: false
 runAsUser:
 rule: 'MustRunAsNonRoot'
 seLinux:
 rule: 'RunAsAny'
 supplementalGroups:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 fsGroup:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 readOnlyRootFilesystem: false

Multitenancy in Kubernetes | 371

Disallow privileged containers.

Control the volume types that Pods can use.

Prevent Pods from binding to the underlying host’s network stack.

Ensure that containers run as a nonroot user.

This policy assumes the nodes are using AppArmor rather than SELinux.

Specify the allowed group IDs that containers can use. The root gid (0) is
disallowed.

Control the group IDs applied to volumes. The root gid (0) is disallowed.

The existence of a PSP that allows the Pod is not enough for the Pod to be admitted.
The Pod must be authorized to use the PSP as well. PSP authorization is handled
using RBAC. Pods can use a PSP if their Service Account is authorized to use it. Pods
can also use a PSP if the actor creating the Pod is authorized to use the PSP. However,
given that Pods are seldom created by cluster users, using Service Accounts for PSP
authorization is the more common approach. The following snippet shows a Role
and RoleBinding that authorizes a Service Account to use a specific PSP named
sample-psp:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: sample-psp
rules:
- apiGroups: ['policy']
 resources: ['podsecuritypolicies']
 resourceNames: ['sample-psp']
 verbs: ['use']

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: sample-psp
subjects:
- kind: ServiceAccount
 name: my-app
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: sample-psp

In most cases, the platform team is responsible for creating and managing the PSPs
and enabling tenants to use them. As you design the policies, always follow the

372 | Chapter 12: Multitenancy

principle of least privilege. Only allow the minimum set of privileges and capabilities
required for Pods to complete their work. As a starting point, we typically recom‐
mend creating the following policies:

Default
The default policy is usable by all tenants on the cluster. It should be a restrictive
policy that blocks all privileged operations, drops all Linux capabilities, disallows
running as the root user, etc. (See Example 12-1 for the YAML definition of this
policy.) To make it the default policy, you can authorize all Pods in the cluster to
use this PSP using a ClusterRole and ClusterRoleBinding.

Kube-system
The kube-system policy is for the system components that exist within the kube-
system Namespace. Due to the nature of these components, this policy needs to
be more permissive than the default policy. For example, it must allow Pods to
mount hostPath volumes and run as root. In contrast to the default policy, the
RBAC authorization is achieved using a RoleBinding scoped to all Service
Accounts in the kube-system Namespace.

Networking
The networking policy is geared toward the cluster’s networking components,
such as the CNI plug-in. These Pods require even more privileges to manipulate
the networking stack of cluster nodes. To isolate this policy to networking Pods,
create a RoleBinding that authorizes only the networking Pods Service Accounts
to use the policy.

With these policies in place, tenants can deploy unprivileged workloads into the clus‐
ter. If there is a workload that needs additional privileges, you must determine
whether you can tolerate the risk of running that privileged workload in the same
cluster. If so, create a different policy tailored to that workload. Grant the privileges
required by the workload and only authorize that workload’s Service Account to use
the PSP.

PSPs are a critical enforcement mechanism in multitenant platforms. They control
what tenants can and cannot do at runtime, as they run alongside other tenants on
shared nodes. When building your platform, you should leverage PSPs to ensure ten‐
ants are isolated and protected from each other.

The Kubernetes community is discussing the possibility of remov‐
ing the PodSecurityPolicy API and admission controller from the
core project. If removed, you can leverage a policy engine such as
Open Policy Agent or Kyverno to implement similar functionality.

Multitenancy in Kubernetes | 373

https://oreil.ly/ayN8j
https://oreil.ly/wrz23
https://oreil.ly/v7C2H

Multitenant Platform Services
In addition to isolating the Kubernetes control plane and workload plane, you can
enforce isolation in the different services you offer on the platform. These include
services such as logging, monitoring, ingress, etc. A significant determining factor in
implementing this isolation is the technology you use to provide the service. In some
cases, the tool or technology might support multitenancy out of the box, vastly sim‐
plifying your implementation.

Another important consideration to make is whether you need to isolate tenants at
this layer. Is it okay for tenants to look at each other’s logs and metrics? Is it accepta‐
ble for them to freely discover each other’s services over DNS? Can they share the
ingress data path? Answering these and similar questions will help clarify your
requirements. In the end, it boils down to the level of trust between the tenants you
are hosting on the platform.

A typical scenario we run into when helping platform teams is multitenant monitor‐
ing with Prometheus. Out of the box, Prometheus does not support multitenancy.
Metrics are ingested and stored in a single time-series database, which is accessible by
anyone who has access to the Prometheus HTTP endpoint. In other words, if the
Prometheus instance is scraping metrics from multiple tenants, there’s no way to pre‐
vent different tenants from seeing each other’s data. To address this issue, we need to
deploy separate Prometheus instances per tenant.

When approaching this problem, we typically leverage the prometheus-operator. As
discussed in Chapter 9, the prometheus-operator allows you to deploy and manage
multiple instances of Prometheus using Custom Resource Definitions. With this
capability, you can offer a monitoring platform service that can safely support various
tenants. Tenants are completely isolated as they get a dedicated monitoring stack that
includes Prometheus, Grafana, Alertmanager, etc.

Depending on the platform’s target user experience, you can either allow tenants to
deploy their Prometheus instance using the operator, or you can automatically create
an instance when you onboard a new tenant. When the platform team has the
capacity, we recommend the latter, as it removes the burden from the platform ten‐
ants and provides an improved user experience.

Centralized logging is another platform service that you can implement with multi-
tenancy in mind. Typically, this involves sending logs for different tenants to different
backends or datastores. Most log forwarders have routing features that you can use to
implement a multitenant solution.

In the case of Fluentd and Fluent Bit, you can leverage their tag-based routing fea‐
tures when configuring the forwarder. The following snippet shows a sample Fluent
Bit output configuration that routes Alice’s logs (Pods in the alice-ns Namespace) to
one backend and Bob’s logs (Pods in the bob-ns Namespace) to another backend:

374 | Chapter 12: Multitenancy

https://oreil.ly/j38-Q

[OUTPUT]
 Name es
 Match kube.var.log.containers.**alice-ns**.log
 Host alice.es.internal.cloud.example.com
 Port ${FLUENT_ELASTICSEARCH_PORT}
 Logstash_Format On
 Replace_Dots On
 Retry_Limit False

[OUTPUT]
 Name es
 Match kube.var.log.containers.**bob-ns**.log
 Host bob.es.internal.cloud.example.com
 Port ${FLUENT_ELASTICSEARCH_PORT}
 Logstash_Format On
 Replace_Dots On
 Retry_Limit False

In addition to isolating the logs at the backend, you can also implement rate-limiting
or throttling to prevent one tenant from hogging the log forwarding infrastructure.
Both Fluentd and Fluent Bit have plug-ins you can use to enforce such limits. Finally,
if you have a use case that warrants it, you can leverage a logging operator to support
more advanced use cases, such as exposing the logging configuration via a Kuber‐
netes CRD.

Multitenancy in the platform services layer is sometimes overlooked by platform
teams. As you build your multitenant platform, consider your requirements and their
implications on the platform services you want to offer. In some cases, it can drive
decisions around approaches and tooling that are fundamental to your platform.

Summary
Workload tenancy is a crucial concern you must consider when building a platform
atop Kubernetes. On one hand, you can operate single-tenant clusters for each of
your platform tenants. While this approach is viable, we discussed its downsides,
including resource and management overhead. The alternative is multitenant clus‐
ters, where tenants share the cluster’s control plane, workload plane, and platform
services.

When hosting multiple tenants on the same cluster, you must ensure tenant isolation
such that tenants cannot negatively affect each other. We discussed the Kubernetes
Namespace as the foundation upon which we can build the isolation. We then dis‐
cussed many of the isolation mechanisms available in Kubernetes that allow you to
build a multitenant platform. These mechanisms are available in different layers,
mainly the control plane, the workload plane, and the platform services.

Summary | 375

The control plane isolation mechanisms include RBAC to control what tenants can
do, resource quotas to divvy up the cluster resources, and admission webhooks to
enforce policy. On the workload plane, you can segregate tenants by using Resource
Requests and Limits to ensure fair-sharing of node resources, Network Policies to
segment the Pod network, and Pod Security Policies to limit Pods capabilities. Finally,
when it comes to platform services, you can leverage different technologies to imple‐
ment multitenant offerings. We explored monitoring and centralized logging as
example platform service that you can build to support multiple tenants.

376 | Chapter 12: Multitenancy

CHAPTER 13

Autoscaling

The ability to automatically scale workload capacity is one of the compelling benefits
of cloud native systems. If you have applications that encounter significant changes in
capacity demands, autoscaling can reduce costs and reduce engineering toil in man‐
aging those applications. Autoscaling is the process whereby we increase and decrease
the capacity of our workloads without human intervention. This begins with leverag‐
ing metrics to provide an indicator for when application capacity should be scaled. It
includes tuning settings that respond to those metrics. And it culminates in systems
to actually expand and contract the resources available to an application to accom‐
modate the work it must perform.

While autoscaling can provide wonderful benefits, it’s important to recognize when
you should not employ autoscaling. Autoscaling introduces complexity into your
application management. Besides initial setup, you will very likely need to revisit and
tune the configuration of your autoscaling mechanisms. Therefore, if an application’s
capacity demands do not change markedly, it may be perfectly acceptable to provi‐
sion for the highest traffic volumes an app will handle. If your application load alters
at predictable times, the manual effort to adjust capacity at those times may be trivial
enough that investing in autoscaling may not be justified. As with virtually all tech‐
nology, leverage them only when the long-term benefit outweighs the setup and
maintenance of the system.

We’re going to divide the subject of autoscaling into two broad categories:

Workload autoscaling
The automated management of the capacity for individual workloads

Cluster autoscaling
The automated management of the capacity of the underlying platform that hosts
workloads

377

As we examine these approaches, keep in mind the common primary motivations for
autoscaling:

Cost management
This is most relevant when you are renting your servers from a public cloud pro‐
vider or being charged internally for your usage of virtualized infrastructure.
Cluster autoscaling allows you to dynamically adjust the number of machines
you pay for. In order to achieve this elasticity in your infrastructure you will need
to leverage workload autoscaling to manage the capacity of the relevant applica‐
tions within the cluster.

Capacity management
If you have a static set of infrastructure to leverage, autoscaling gives you an
opportunity to dynamically manage the allocation of that fixed capacity. For
example, an application that provides services to your business’s end users will
often have days and times when it is busiest. Workload autoscaling allows an
application to dynamically expand its capacity and consume large amounts of a
cluster when needed. It also allows it to contract and make room for other work‐
loads. Perhaps you have batch workloads that can take advantage of the unused
compute resources during off hours. Cluster autoscaling can remove considera‐
ble human toil in managing compute infrastructure capacity since the number of
machines used by your clusters is adjusted without human intervention.

Autoscaling is compelling for applications that fluctuate in load and traffic. Without
autoscaling, you have two options:

• Chronically overprovision your application capacity, incurring additional cost to
your business.

• Alert your engineers for manual scaling operations, incurring additional toil in
your operations.

In this chapter, we will first explore how to approach autoscaling, and how to design
software to leverage these systems. Then we will dive into details of specific systems
we can use to autoscale our applications in Kubernetes-based platforms. This will
include horizontal and vertical autoscaling, including the metrics we should use to
trigger scaling events. We will also look at scaling workloads in proportion to the
cluster itself, as well as an example of custom autoscaling you might consider. Finally,
in “Cluster Autoscaling” on page 389, we will address the scaling of the platform itself
so that it can accommodate significant changes in demand from the workloads it
hosts.

Types of Scaling
In software engineering, scaling generally falls into two categories:

378 | Chapter 13: Autoscaling

Horizontal scaling
This involves changing the number of identical replicas of a workload. This is
either the number of Pods for a particular application or the number of nodes in
a cluster that hosts applications. Future references to horizontal scaling will use
the terms “out” or “in” when referring to increasing or decreasing the number of
Pods or nodes.

Vertical scaling
This involves altering the resource capacity of a single instance. For an applica‐
tion, this is changing the resource requests and/or limits for the containers of the
application. For nodes of a cluster, this generally involves changing the amount of
CPU and memory resources available. Future references to vertical scaling will
use the terms “up” or “down” to refer to these changes.

In systems that have a need to dynamically scale, i.e., have frequent, significant
changes in load, prefer horizontal scaling where possible. Vertical scaling is limited by
the largest machine you have available to use. Furthermore, increasing capacity with
vertical scaling involves a restart for the application. Even in virtualized environments
where dynamic scaling of machines is possible, Pods will need to be restarted as
resource requests and limits cannot be dynamically updated at this time. Compare
this with horizontal scaling, where existing instances need not restart and capacity is
dynamically increased by adding replicas.

Application Architecture
The topic of autoscaling is particularly important to service-oriented systems. One of
the benefits of decomposing applications into distinct components is the ability to
scale different parts of an application independently. We were doing this with n-tier
architectures well before cloud native emerged. It became commonplace to separate
web applications from their relational databases and scale the web app independently.
With microservice architecture we can extend this further. For example, an enterprise
website may have a service that powers its online store, which is distinct from a ser‐
vice that serves blog posts. When there is a marketing event, the online store can be
scaled while the blog service is not affected and may remain unchanged.

With this opportunity to scale different services independently, you are able to more
efficiently utilize the infrastructure used by your workloads. However, you introduce
the management overhead of scaling many distinct workloads. Automating this scal‐
ing process becomes very imporant. At a certain point, it becomes essential.

Autoscaling lends itself well to smaller, more nimble workloads that have tiny image
sizes and fast startup times. If the time required to pull a container image onto a
given node is short, and if the time it takes for the application to start once the con‐
tainer is created is also short, the workload can respond to scaling events quickly.

Application Architecture | 379

Capacity can be adjusted much more readily. Applications with image sizes over a
gigabyte and startup scripts that run for minutes are far less suited to responding to
changes in load. Workloads like this are not good candidates for autoscaling, so keep
this in mind when designing and building your apps.

It’s also important to recognize that autoscaling will involve stopping instances of the
app. This doesn’t apply when workloads scale out, of course. However, that which
scales out, must scale back in. That will involve stopping running instances. And with
vertically scaled workloads, restarts are required to update resource allocations. In
either case, your application’s ability to gracefully shut down will be important. Chap‐
ter 14 covers this topic in detail.

Now that we’ve addressed the design concerns to keep in mind, let’s dive into the
details of autoscaling workloads in Kubernetes clusters.

Workload Autoscaling
This section will focus on autoscaling application workloads. This involves monitor‐
ing some metric and adjusting workload capacity without human intervention. While
this sounds like a set-it-and-forget-it operation, don’t treat it that way, especially in
initial stages. Even after you load test your autoscaling configurations, you need to
ensure the behavior you get in production is what you intended. Load tests don’t
always mimic production conditions accurately. So once in production, you will want
to check in on the application to verify that it is scaling at the right thresholds and
your objectives for efficiency and end-user experience are being met. Strongly con‐
sider setting alerts so that you get notified of significant scaling events to review and
tweak its behavior as needed.

Most of this section will address the Horizontal Pod Autoscaler and the Vertical Pod
Autoscaler. These are the most common tools used for autoscaling workloads on
Kubernetes. We’ll also dig into the metrics your workload uses to trigger scaling
events and when you should consider custom application metrics for this purpose.
We’ll also look at the Cluster Proportional Autoscaler and the use cases where that
makes sense. Lastly, we’ll touch on custom methods beyond these particular tools you
might consider.

Horizontal Pod Autoscaler
The Horizontal Pod Autoscaler (HPA) is the most common tool used for autoscaling
workloads in Kubernetes-based platforms. It is natively supported by Kubernetes with
the HorizontalPodAutoscaler resource and a controller bundled into the kube-
controller-manager. If you are using CPU or memory consumption as a metric for
autoscaling your workload, the barrier to entry is low for using the HPA.

380 | Chapter 13: Autoscaling

In this case, you can use the Kubernetes Metrics Server to make the PodMetrics avail‐
able to the HPA. The Metrics Server collects CPU and memory usage metrics for
containers from the kubelets in the cluster and makes them available through the
resource metrics API in PodMetrics resources. The Metrics Server leverages the
Kubernetes API aggregation layer. Requests for resources in the API group and ver‐
sion metrics.k8s.io/v1beta1 will be proxied to the Metrics Server.

Figure 13-1 illustrates how the components carry out this function. The Metrics
Server collects resource usage metrics for the containers on the platform. It gets this
data from the kubelets running on each node in the cluster and makes that data avail‐
able to clients that need to access it. The HPA controller queries the Kubernetes API
server to retrieve that resource usage data every 15 seconds, by default. The Kuber‐
netes API proxies the requests to the Metrics Server, which serves the requested data.
The HPA controller maintains a watch on the HorizontalPodAutoscaler resource type
and uses the configuration defined there to determine if the number of replicas for an
application is appropriate. Example 13-1 demonstrates how this determination is
made. The app is most commonly defined with a Deployment resource, and, when
the HPA controller determines that the replica count needs to be adjusted, it updates
the relevant Deployment through the API server. Subsequently, the Deployment con‐
troller responds by updating the ReplicaSet, which leads to a change in the number of
Pods.

Figure 13-1. Horizontal Pod autoscaling.

The desired state for an HPA is declared in the HorizontalPodAutoscaler resource, as
demonstrated in the following example. The targetCPUUtilizationPercentage is
used to determine replica count for the target workload.

Workload Autoscaling | 381

https://oreil.ly/S0vbj
https://oreil.ly/eXDcl

Example 13-1. An example of Deployment and HorizontalPodAutoscaler manifests

apiVersion: apps/v1
kind: Deployment
metadata:
 name: sample
spec:
 selector:
 matchLabels:
 app: sample
 template:
 metadata:
 labels:
 app: sample
 spec:
 containers:
 - name: sample
 image: sample-image:1.0
 resources:
 requests:
 cpu: "100m"

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: sample
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: sample
 minReplicas: 1
 maxReplicas: 3
 targetCPUUtilizationPercentage: 75

A resources.requests value must be set for the metric being used.

The replicas will never scale in below this value.

The replicas will never scale out beyond this value.

The desired CPU utilization. If the actual utilization goes significantly beyond
this value, the replica count will be increased; if significantly below, decreased.

If you have a use case to use multiple metrics, e.g., CPU and mem‐
ory, to trigger scaling events, you can use the autoscaling/
v2beta2 API. In this case, the HPA controller will calculate the
appropriate number of replicas based on each metric individually,
and then apply the highest value.

382 | Chapter 13: Autoscaling

This is the most common and readily used autoscaling method, is widely applicable,
and is relatively uncomplicated to implement. However, it’s important to understand
the limitations of this method:

Not all workloads can scale horizontally
For applications that cannot share load among distinct instances, horizontal scal‐
ing is useless. This is true for some stateful workloads and leader-elected applica‐
tions. For these use cases you may consider vertical Pod autoscaling.

The cluster size will limit scaling
As an application scales out, it may run out of capacity available in the worker
nodes of a cluster. This can be solved by provisioning sufficient capacity ahead of
time, using alerts to prompt your platform operators to add capacity manually, or
by using cluster autoscaling, which is discussed in another section of this chapter.

CPU and memory may not be the right metric to use for scaling decisions
If your workload exposes a custom metric that better identifies a need to scale, it
can be used. We will cover that use case later in this chapter.

Avoid autoscaling your workload based on a metric that does not
always change in proportion to the load placed on the application.
The most common autoscaling metric is CPU. However, if a partic‐
ular workload’s CPU doesn’t change significantly with added load,
and instead consumes memory in more direct proportion to
increased load, do not use CPU. A less obvious example is if a
workload consumes added CPU at startup. During normal opera‐
tion, CPU may be a perfectly useful trigger for autoscaling. How‐
ever, a startup CPU spike will be interpreted by the HPA as a
trigger for a scaling event even though traffic has not induced the
spike. There are ways to mitigate this with kube-controller-
manager flags such as --horizontal-pod-autoscaler-cpu-

initialization-period, which will provide a startup grace
period, or the --horizontal-pod-autoscaler-sync-period,
which allows you to increase the time between scaling evaluations.
But note that these flags are set on the kube-controller-manager.
These will affect all HPAs across the entire cluster, which will
impact workloads that do not have high startup CPU consumption.
You could wind up reducing the responsiveness of the HPA for
workloads cluster-wide. If you find your team employing work‐
arounds to make CPU consumption work as a trigger for your
autoscaling needs, consider using a more representative custom
metric. Perhaps number of HTTP requests received would make a
better measuring stick, for example.

Workload Autoscaling | 383

That wraps up the Horizontal Pod Autoscaler. Next, we’ll look at another form of
autoscaling available in Kubernetes: vertical Pod autoscaling.

Vertical Pod Autoscaler
For reasons covered earlier in “Types of Scaling” on page 378, vertically scaling work‐
loads is a less common requirement. Furthermore, automating vertical scaling is
more complex to implement in Kubernetes. While the HPA is included in core
Kubernetes, the VPA needs to be implemented by deploying three distinct controller
components in addition to the Metrics Server. For these reasons, the Vertical Pod
Autoscaler (VPA) is less commonly used than the HPA.

The VPA consists of three distinct components:

Recommender
Determines optimum container CPU and/or memory request values based on
usage in the PodMetrics resource for the Pod in question.

Admission plug-in
Mutates the resource requests and limits on new Pods when they are created
based on the recommender’s recommendation.

Updater
Evicts Pods so that they may have updated values applied by the admission
plug-in.

Figure 13-2 illustrates the interaction of components with the VPA.

Figure 13-2. Vertical Pod autoscaling.

384 | Chapter 13: Autoscaling

https://oreil.ly/TxeiY
https://oreil.ly/TxeiY

The desired state for a VPA is declared in the VerticalPodAutoscaler resource as
demonstrated in Example 13-2.

Example 13-2. A Pod resource and the VerticalPodAutoscaler resource that configures
vertical autoscaling

apiVersion: v1
kind: Pod
metadata:
 name: sample
spec:
 containers:
 - name: sample
 image: sample-image:1.0
 resources:
 requests:
 cpu: 100m
 memory: 50Mi
 limits:
 cpu: 100m
 memory: 50Mi

apiVersion: "autoscaling.k8s.io/v1beta2"
kind: VerticalPodAutoscaler
metadata:
 name: sample
spec:
 targetRef:
 apiVersion: "v1"
 kind: Pod
 name: sample
 resourcePolicy:
 containerPolicies:
 - containerName: '*'
 minAllowed:
 cpu: 100m
 memory: 50Mi
 maxAllowed:
 cpu: 1
 memory: 500Mi
 controlledResources: ["cpu", "memory"]
 updatePolicy:
 updateMode: Recreate

The VPA will maintain the requests:limit ratio when updating values. In this
guaranteed QOS example, any change to requests will result in an identical
change to the limits.

This scaling policy will apply to every container—just one in this example.

Workload Autoscaling | 385

Resources requests will not be set below these values.

Resources requests will not be set above these values.

Specifies the resources being autoscaled.

There are three updateMode options. Recreate mode will activate autoscaling.
Initial mode will apply admission control to set resource values when created,
but will never evict any Pods. Off mode will recommend resource values but
never automatically change them.

We very rarely see the VPA in full Recreate mode in the field. However, using it in
Off mode can also be valuable. While comprehensive load testing and profiling of
applications is recommended and preferable before they go to production, that’s not
always the reality. In corporate environments with deadlines, workloads are often
deployed to production before the resource consumption profile is well understood.
This commonly leads to overrequested resources as a safety measure, which often
results in poor utilization of infrastructure. In these cases, the VPA can be used to
recommend values that are then evaluated and manually updated by engineers once
production load has been applied. This gives them peace of mind that workloads will
not be evicted at peak usage times, which is particularly important if an app does not
yet gracefully shut down. But, because the VPA recommends values, it saves some of
the toil in reviewing resource usage metrics and determining optimum values. In this
use case, it is not an autoscaler, but rather a resource tuning aid.

To get recommendations from a VPA in Off mode, run kubectl describe vpa <vpa
name>. You will get an output similar to Example 13-3 under the Status section.

Example 13-3. Vertical Pod Autoscaler recommendation

 Recommendation:
 Container Recommendations:
 Container Name: coredns
 Lower Bound:
 Cpu: 25m
 Memory: 262144k
 Target:
 Cpu: 25m
 Memory: 262144k
 Uncapped Target:
 Cpu: 25m
 Memory: 262144k
 Upper Bound:
 Cpu: 427m
 Memory: 916943343

386 | Chapter 13: Autoscaling

It will provide recommendations for each container. Use the Target value as a base‐
line recommendation for the CPU and memory requests.

Autoscaling with Custom Metrics
If CPU and memory consumption are not good metrics by which to scale a particular
workload, you can leverage custom metrics as an alternative. We can still use tools
like the HPA. However, we will change the source of metrics used to trigger the
autoscaling. The first step is to expose the appropriate custom metrics from your
application. Chapter 14 addresses how to go about doing this.

Next, you will need to expose the custom metrics to the autoscaler. This will require a
custom metrics server that will be used instead of the Kubernetes Metrics Server that
we looked at earlier. Some vendors, such as Datadog, provide systems to do this in
Kubernetes. You can also do it with Prometheus, assuming you have a Prometheus
server that is scraping and storing the app’s custom metrics, which is covered in
Chapter 10. In this case, we can use the Prometheus Adapter to serve the custom
metrics.

The Prometheus Adapter will retrieve the custom metrics from Prometheus’ HTTP
API and expose them through the Kubernetes API. Like the Metrics Server, the
Prometheus Adapter uses Kubernetes API aggregation to instruct Kubernetes to
proxy requests for metrics APIs to the Prometheus Adapter. In fact, in addition to the
custom metrics API, the Prometheus Adapter implements the resource metrics API
that allows you to entirely replace the Metrics Server functionality with the Prome‐
theus Adapter. Additionally, it implements the external metrics API that offers the
opportunity to scale an application based on metrics external to the cluster.

When leveraging custom metrics for horizontal autoscaling, Prometheus scrapes
those metrics from your app. The Prometheus Adapter gets those metrics from
Prometheus and exposes them through the Kubernetes API server. The HPA queries
those metrics and scales your application accordingly, as shown in Figure 13-3.

While leveraging custom metrics in this way introduces some added complexity, if
you are already exposing useful metrics from your workloads and using Prometheus
to monitor them, replacing Metrics Server with the Prometheus Adapter is not a huge
leap. And the additional autoscaling opportunities it opens up make it well worth
considering.

Workload Autoscaling | 387

https://oreil.ly/vDgk3

Figure 13-3. Horizontal Pod autoscaling with custom metrics.

Cluster Proportional Autoscaler
The Cluster Proportional Autoscaler (CPA) is a horizontal workload autoscaler that
scales replicas based on the number of nodes (or a subset of nodes) in the cluster. So,
unlike the HPA, it does not rely on any of the metrics APIs. Therefore, it does not
have a dependency on the Metrics Server or Prometheus Adapter. Also, it is not con‐
figured with a Kubernetes resource, but rather uses flags to configure target work‐
loads and a ConfigMap for scaling configuration. Figure 13-4 illustrates the CPA’s
much simpler operational model.

Figure 13-4. Cluster proportional autoscaling.

The CPA has a narrower use case. Workloads that need to scale in proportion to the
cluster are generally limited to platform services. When considering the CPA, evalu‐
ate whether an HPA would provide a better solution, especially if you are already lev‐
eraging the HPA with other workloads. If you are already using HPAs, you will have
the Metrics Server or Prometheus Adapter already deployed to implement the neces‐
sary metrics APIs. So deploying another autoscaler, and the maintenance overhead
that goes with it, may not be the best option. Alternatively, in a cluster where HPAs

388 | Chapter 13: Autoscaling

https://oreil.ly/2ATBG

are not already in use, and the CPA provides the functionality you need, it becomes
more attractive due to its simple operational model.

There are two scaling methods used by the CPA:

• The linear method scales your application in direct proportion to how many
nodes or cores are in the cluster.

• The ladder method uses a step function to determine the proportion of
nodes:replicas and/or cores:replicas.

We have seen the CPA used with success for services like cluster DNS where clusters
are allowed to scale to hundreds of worker nodes. In cases such as this, the traffic and
demand for a service at 5 nodes is going to be drastically different than at 300 nodes,
so this approach can be quite useful.

Custom Autoscaling
On the subject of workload autoscaling, so far we’ve discussed some specific tools
available in the community: the HPA, VPA, and CPA along with the Metrics Server
and Prometheus Adapter. But autoscaling your workloads is not limited to this tool
set. Any automated method you can employ that implements the scaling behavior
you require falls into the same category. For example, if you know the days and times
when traffic increases for your application, you can implement something as simple
as a Kubernetes CronJob that updates the replica count on the relevant Deployment.
In fact, if you can leverage a simple, straightforward method such as this, lean toward
the simpler solution. A system with fewer moving parts is less likely to produce unex‐
pected results.

This wraps up the approaches to autoscaling workloads. We’ve looked at several ways
to approach this using core Kubernetes, community-developed add-on components,
and custom solutions. Next, we’re going to look at autoscaling the substrate that hosts
these workloads: the Kubernetes cluster itself.

Cluster Autoscaling
The Kubernetes Cluster Autoscaler (CA) provides an automated solution for hori‐
zontally scaling the worker nodes in your cluster. It provides a solution to one of the
limitations of HPAs and can alleviate significant toil around capacity and cost man‐
agement for your Kubernetes infrastructure.

As platform teams adopt your Kubernetes-based platform, you will need to manage
the clusters’ capacity as new tenants are onboarded. This can be a manual, routine
review process. It can also be alert-driven, whereby you use alerting rules on usage
metrics to notify you of situations where workers need to be added or removed. Or

Cluster Autoscaling | 389

https://oreil.ly/Q5Xdp

you can fully automate the operation such that you can simply add and remove ten‐
ants and let the CA manage the cluster scaling to accommodate.

Furthermore, if you are leveraging workload autoscaling with significant fluctuation
in resource consumption, the story for CA becomes even more compelling. As load
increases on an HPA-managed workload, its replica count will increase. If you run
out of compute resources in your cluster, some of the Pods will not be scheduled and
remain in a Pending state. CA looks for this exact condition, calculates the number of
nodes needed to satisfy the shortage, and adds new nodes to your cluster. The dia‐
gram in Figure 13-5 shows the cluster scaling out to accommodate a horizontally
scaling application.

Figure 13-5. Cluster Autoscaler scaling out nodes in response to Pod replicas scaling out.

On the other side of the coin, when load reduces and the HPA scales in the Pods for
an application, the CA will look for nodes that have been underutilized for an exten‐
ded period. If the Pods on the underutilized nodes can be rescheduled to other nodes
in the cluster, the CA will deprovision the underutilized nodes to scale the cluster in.

One thing to keep in mind when you invoke this dynamic management of worker
nodes is that it will inevitably shuffle the distribution of Pods across your nodes. The
Kubernetes scheduler will generally spread Pods evenly around your worker nodes
when they are first created. However, once a Pod is running, the scheduling decision
that determined its home will not be reevaluated unless it is evicted. So when a partic‐
ular application horizontally scales out and then back in, you may end up with Pods

390 | Chapter 13: Autoscaling

unevenly spread across your worker nodes. In some cases you may end up with many
replicas for a Deployment clustered on just a few nodes. If this presents a threat to a
workload’s node failure tolerance, you can use the Kubernetes descheduler to evict
them according to different policies. Once evicted, the Pods will be rescheduled. This
will help rebalance their distribution across nodes. We have not found many cases
where there was a genuine compelling need to do this, but it is an available option.

As you might imagine, there are infrastructure management concerns to plan for if
you are considering cluster autoscaling. Firstly, you will need to use one of the sup‐
ported cloud providers that are documented in the project repo. Next you will have to
give permissions to CA to create and destroy machines for you.

These infrastructure management concerns change somewhat if you use the CA with
the Cluster API project. Cluster API uses its own Kubernetes operators to manage
cluster infrastructure. In this case, instead of connecting directly with the cloud pro‐
vider to add and remove worker nodes, CA offloads this operation to Cluster API.
The CA simply updates the replicas in a MachineDeployment resource, which is rec‐
onciled by Cluster API controllers. This removes the need to use a cloud provider
that’s compatible with CA (however, you will need to check whether there is a Cluster
API provider for your cloud provider). The permissions issue is also offloaded to
Cluster API components. This is a better model in many ways. However, Cluster API
is commonly implemented using management clusters. This introduces external
dependencies for cluster autoscaling that should be considered. This topic is covered
further in “Management clusters” on page 33.

The scaling behavior of CA is quite configurable. The CA is configured using flags
that are documented in the project’s FAQ on GitHub. Example 13-4 shows a CA
Deployment manifest for AWS and includes examples of how to set some common
flags.

Example 13-4. CA Deployment manifest targeting an Amazon Web Services autoscaling
group

apiVersion: apps/v1
kind: Deployment
metadata:
 name: aws-cluster-autoscaler
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: "aws-cluster-autoscaler"
 template:
 metadata:
 labels:
 app.kubernetes.io/name: "aws-cluster-autoscaler"
 spec:

Cluster Autoscaling | 391

https://github.com/kubernetes-sigs/descheduler
https://github.com/kubernetes-sigs/cluster-api
https://oreil.ly/DzQ0J

 containers:
 - name: aws-cluster-autoscaler
 image: "us.gcr.io/k8s-artifacts-prod/autoscaling/cluster-autoscaler:v1.18"
 command:
 - ./cluster-autoscaler
 - --cloud-provider=aws
 - --namespace=kube-system
 - --nodes=1:10:worker-auto-scaling-group
 - --logtostderr=true
 - --stderrthreshold=info
 - --v=4
 env:
 - name: AWS_REGION
 value: "us-east-2"
 livenessProbe:
 httpGet:
 path: /health-check
 port: 8085
 ports:
 - containerPort: 8085

Configures the supported cloud provider; AWS in this case.

This flag configures the CA to update an AWS autoscaling group called worker-
auto-scaling-group. It allows CA to scale the number of machines in this group
between 1 and 10.

Cluster autoscaling can be extremely useful. It unlocks one of the compelling benefits
offered by cloud native infrastructure. However, it introduces nontrivial complexity.
Ensure you load test and understand well how the system will behave before you rely
on it to autonomously manage the scaling of business-critical platforms in produc‐
tion. One important consideration is to clearly understand the upper limits that you
will be reaching with your cluster. If your platform hosts significant workload
capacity and you allow your cluster to scale to hundreds of nodes, understand where
it will scale to before components of the platform start to introduce bottlenecks. More
discussion around cluster sizing can be found in Chapter 2.

Another consideration with cluster autoscaling is the speed at which your clusters
will scale when the need arises. This is where overprovisioning may help.

392 | Chapter 13: Autoscaling

Cluster Overprovisioning
It’s important to remember that Cluster Autoscaler responds to Pending Pods that
couldn’t be scheduled due to insufficient compute resources in the cluster. So at the
moment the CA takes action to scale out the cluster nodes, your cluster is already full.
This means that, if not managed properly, your scaling workloads could suffer from a
shortage of capacity for the time it takes for new nodes to become available for sched‐
uling. This is where cluster-overprovisioner can help.

First it’s important to understand how long it takes for new nodes to spin up, join the
cluster, and become ready to accept workloads. Once this is understood, you can
address the best solution for your situation:

• Set the target utilization in your HPAs sufficiently low so that your workloads are
scaled out well before the application is at full capacity. This could provide the
buffer that allows for time to provision nodes. It relieves the need for overprovi‐
sioning the cluster, but if you need to account for particularly sharp increases in
load, you may need to set that target utilization too low to guard against capacity
shortages. This leads to a situation where you have chronically overprovisioned
workload capacity to account for rare events.

• Another solution is to use cluster overprovisioning. With this method, you put
empty nodes on standby to provide the buffer for workloads that are scaling out.
This will relieve the need to set target utilization on HPAs artificially low in prep‐
aration for high load events.

Cluster overprovisioning works by deploying Pods that do the following:

• Request enough resources to reserve virtually all resources for a node
• Consume no actual resources
• Use a priority class that causes them to be evicted as soon as any other Pod

needs it

With the resource requests on the overprovisioner Pod set to reserve an entire node,
you can then adjust the number of standby nodes with the number of replicas on the
overprovisioner Deployment. Overprovisioning for a particular event or marketing
campaign can be achieved by simply increasing the number of replicas on the over‐
provisioner Deployment.

Figure 13-6 illustrates what this looks like. This illustration shows just a single Pod
replica, but it can be as many as you need to provide adequate buffer for scaling
events.

Cluster Autoscaling | 393

https://oreil.ly/vXij5

Figure 13-6. Cluster overprovisioning.

The node occupied by the overprovisioner Pod is now on standby for whenever it
becomes needed by another Pod in the cluster. You can accomplish this by creating a
priority class with value: -1 and then applying this to the overprovisioner Deploy‐
ment. This will make all other workloads a higher priority by default. Should a Pod
from another workload need the resources, the overprovisioner Pod will be immedi‐
ately evicted, making way for the scaling workload. The overprovisioner Pod will go
into a Pending state, which will trigger the Cluster Autoscaler to provision a new
node to sit on standby, as shown in Figure 13-7.

Figure 13-7. Scaling out with cluster-overprovisioner.

394 | Chapter 13: Autoscaling

With Cluster Autoscaler and cluster-overprovisioner, you have effective mechanisms
to horizontally scale your Kubernetes clusters, which dovetails very nicely with hori‐
zontally scaling workloads. We haven’t covered vertically scaling clusters here because
we have not found a use for it that isn’t solved by horizontal scaling.

Summary
If you have applications that are subject to significant changes in capacity require‐
ments, lean toward using horizontal scaling, if possible. Develop the apps that you
will autoscale to play nicely with being stopped and started frequently and expose
custom metrics if CPU or memory are not good metrics to trigger scaling. Test your
autoscaling to ensure it behaves as you expect to optimize efficiency and end-user
experience. If your workloads will scale beyond the capacity of your cluster, consider
autoscaling the cluster itself. And if your scaling events are particularly sharp, con‐
sider putting nodes on standby with cluster-overprovisioner.

Summary | 395

CHAPTER 14

Application Considerations

Kubernetes is rather flexible when it comes to the type of applications it can run and
manage. Barring operating system and processor type limitations, Kubernetes can
essentially run anything. Large monoliths, distributed microservices, batch work‐
loads, you name it. The only requirement that Kubernetes imposes on workloads is
that they are distributed as container images. With that said, there are certain steps
you can take to make your applications better Kubernetes citizens.

In this chapter, we will pivot our discussions to focus on the application instead of the
platform. If you are part of a platform team, don’t skip this chapter. While you might
think it only applies to developers, it also applies to you. As a platform team member,
you will most likely get to build applications to provide custom services on your plat‐
form. Even if you don’t, the discussions in this chapter will help you better align with
development teams consuming the platform, and even educate those teams that
might be unfamiliar with container-based platforms.

This chapter covers various considerations you should make when running applica‐
tions on Kubernetes. Mainly:

• Deploying applications onto the platform, and mechanisms to manage deploy‐
ment manifests, such as templating and packaging.

• Approaches to configure applications, such as using Kubernetes APIs (Config‐
Maps/Secrets), and integrating with external systems for config and secret
management.

• Kubernetes features that improve the availability of your workloads, such as pre-
stop container hooks, graceful termination, and scheduling constraints.

• State probes, a feature of Kubernetes that enables you to surface application
health information to the platform.

397

• Resource requests and limits, which are critical to ensure your applications run
properly on the platform.

• Logs, metrics, and tracing as mechanisms to debug, troubleshoot, and operate
your workloads effectively.

Deploying Applications to Kubernetes
Once your application is containerized and available in a container image registry,
you are ready to deploy it onto Kubernetes. In most cases, deploying the application
involves writing YAML manifests that describe the Kubernetes resources required to
run the app, such as Deployments, Services, ConfigMaps, CRDs, etc. Then, you send
the manifests to the API server, and Kubernetes takes care of the rest. Using raw
YAML manifests is a great way to get started, but it can quickly become impractical,
especially when deploying the application onto different clusters or environments.
You will most likely encounter questions similar to the following:

• How do I provide different credentials when running in staging versus
production?

• How can I use a different image registry when deploying in various datacenters?
• How do I set different replica counts in development versus production?
• How can I ensure all port numbers match up across the different manifests?

The list goes on and on. And while you could have multiple sets of manifests to solve
for each of these concerns, the permutations make it rather challenging to manage. In
this section, we will discuss approaches you can take to address the issue of manifest
management. Mainly, we will cover templating manifests and packaging applications
for Kubernetes. We will not, however, discuss the gamut of tools available in the com‐
munity. More often than not, we find that teams get stuck in analysis paralysis when
considering the different options. Our advice is to choose something and move on to
solving higher-value concerns.

Templating Deployment Manifests
Templating involves introducing placeholders in your deployment manifests. Instead
of hardcoding values in the manifests, the placeholders provide a mechanism for you
to inject values as necessary. For example, the following templated manifest enables
you to set replica counts to different values. Perhaps you need one replica in develop‐
ment, but five in production.

398 | Chapter 14: Application Considerations

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: nginx
 name: nginx
spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx
 name: nginx

Packaging Applications for Kubernetes
Creating self-contained software packages is another mechanism you can use to
deploy your application while addressing the manifest management. Packaging solu‐
tions usually build upon templating, but they introduce additional functionality that
can be useful, such as the ability to push the package to OCI-compatible registries,
life cycle management hooks, and more.

Packages are a great mechanism to consume software maintained by a third party or
deliver software to third parties. If you’ve used Helm to install software into a Kuber‐
netes cluster, you’ve already leveraged the benefits of packaging. If you are unfamiliar
with Helm, the following snippet gives you an idea of what it takes to install a
package:

$ helm repo add hashicorp https://helm.releases.hashicorp.com
"hashicorp" has been added to your repositories

$ helm install vault hashicorp/vault

As you can see, packages can be a great way to deploy and manage software on
Kubernetes. With that said, packages can fall short when it comes to complex applica‐
tions that require advanced life cycle management. For such applications, we find
operators to be a better solution. We discuss operators extensively in Chapter 2. Even
though the chapter focuses on platform services, the concepts discussed apply when
building operators for complex applications.

Deploying Applications to Kubernetes | 399

Ingesting Configuration and Secrets
Applications typically have configuration that tells them how to behave at runtime.
Configuration commonly includes logging levels, hostnames of dependencies (e.g.,
DNS record for a database), timeouts, and more. Some of these settings can contain
sensitive information, such as passwords, that we usually call secrets. In this section,
we will discuss the different methods you can use to configure applications on a
Kubernetes-based platform. First, we will review the ConfigMap and Secret APIs
available in core Kubernetes. Then, we will explore an alternative to the Kubernetes
API, mainly integrating with an external system. Finally, we will provide guidance on
these approaches based on what we’ve seen work best in the field.

Before digging in, it is worth mentioning that you should avoid bundling configura‐
tion or secrets inside your application’s container image. The tight coupling between
the application binary and its configuration defeats the purpose of runtime configu‐
ration. Furthermore, it poses a security problem in the case of secrets, as the image
might be accessible to actors that should otherwise not have access to the secrets.
Instead of including config in the image, you should leverage platform features to
inject configuration at runtime.

Kubernetes ConfigMaps and Secrets
ConfigMaps and Secrets are core resources in the Kubernetes API that enable you to
configure your applications at runtime. As with any other resource in Kubernetes,
they are created via the API server and are usually declared in YAML, such as the fol‐
lowing example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-config
data:
 debug: "false"

Let’s discuss how you can consume ConfigMaps and Secrets in your applications.

The first method is to mount ConfigMaps and Secrets as files in the Pod’s filesystem.
When building your Pod specification, you can add volumes that reference Config‐
Maps or Secrets by name and mount them into containers at specific locations. For
example, the following snippet defines a Pod that mounts the ConfigMap named my-
config into the container named my-app at /etc/my-app/config.json:

400 | Chapter 14: Application Considerations

apiVersion: v1
kind: Pod
metadata:
 name: my-app
spec:
 containers:
 - image: my-app
 name: my-app:v0.1.0
 volumeMounts:
 - name: my-config
 mountPath: /etc/my-app/config.json
 volumes:
 - name: my-config
 configMap:
 name: my-config

Leveraging volume mounts is the preferred method when it comes to consuming
ConfigMaps and Secrets. The reason is that the files in the Pod are dynamically upda‐
ted, which allows you to reconfigure applications without restarting the app or re-
creating the Pod. With that said, this is something that the application must support.
The application must watch the configuration files on disk and apply new configura‐
tion when the files change. Many libraries and frameworks make it easy to implement
this functionality. When this is not possible, you can introduce a sidecar container
that watches the config files and signals the main process (with a SIGHUP, for exam‐
ple) when new configuration is available.

Consuming ConfigMaps and Secrets via environment variables is another method
you can use. If your application expects configuration through environment vari‐
ables, this is the natural approach to follow. Environment variables can also be helpful
if you need to provide settings via command-line flags. In the following example, the
Pod sets the DEBUG environment variable using a ConfigMap named my-config,
which has a key called debug that contains the value:

apiVersion: v1
kind: Pod
metadata:
 name: my-app
spec:
 containers:
 - name: my-app
 image: my-app:v0.1.0
 env:
 - name: DEBUG
 valueFrom:
 configMapKeyRef:
 name: my-config
 key: debug

Ingesting Configuration and Secrets | 401

One of the downsides of using environment variables is that changes to the Config‐
Maps or Secrets are not reflected in the running Pod until it restarts. This might not
be a problem for some applications, but you should keep it in mind. Another down‐
side, mainly for Secrets, is that some applications or frameworks may dump the envi‐
ronment details into logs during startup or when they crash. This poses a security risk
as secrets can be leaked into logfiles inadvertently.

These first two ConfigMap and Secret consumption methods rely on Kubernetes
injecting the configuration into the workload. Another option is for the application to
communicate with the Kubernetes API to get its configuration. Instead of using con‐
fig files or environment variables, the application reads ConfigMaps and Secrets
straight from the Kubernetes API server. The app can also watch the API so that it
can act whenever the configuration changes. Developers can use one of the many
Kubernetes libraries or SDKs to implement this functionality or leverage application
frameworks that support this capability, such as Spring Cloud Kubernetes.

While leveraging the Kubernetes API for application configuration can be conve‐
nient, we find that there are important downsides you should consider. First, the need
to connect to the API server to get configuration creates a tight coupling between the
application and the Kubernetes platform. This coupling raises some interesting ques‐
tions. What happens if the API server goes down? Will your application experience
downtime when your platform team upgrades the API server?

Second, for the application to get its configuration from the API, it needs credentials,
and it needs to have the right permissions. These requirements increase your deploy‐
ment complexity, as you now have to provide a Service Account and define RBAC
roles for your workload.

Last, the more applications using this method to get config, the more undue load is
imposed on the API server. Since the API server is a critical component of the clu‐
ster’s control plane, this approach to app configuration can be at odds with the overall
scalability of the cluster.

Overall, when it comes to consuming ConfigMaps and Secrets, we prefer using vol‐
ume mounts and environment variables over integrating with the Kubernetes API
directly. In this way, the applications remain decoupled from the underlying platform.

Injecting Workload Metadata
There are certain scenarios where workloads need to get information about them‐
selves. Perhaps they need the Namespace they’re running in, their labels, or their
resource limits. Kubernetes provides the Downward API, which allows you to inject
Pod metadata without the workload having to interact or know about Kubernetes.
Similar to ConfigMaps and Secrets, you can provide the metadata via environment
variables or volume mounts.

402 | Chapter 14: Application Considerations

The following example shows the Downward API in action. In this case, the Pod
needs to know its memory limit, which is made available as an environment variable
named MEM_LIMIT:

apiVersion: v1
kind: Pod
metadata:
 name: my-app
spec:
 containers:
 - name: my-app
 image: my-app:0.1.0
 command: ["my-app"]
 env:
 - name: MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: my-app
 resource: limits.memory

Obtaining Configuration from External Systems
ConfigMaps and Secrets can be convenient when it comes to configuring applica‐
tions. They are built into the Kubernetes API and are readily available for you to con‐
sume. With that said, configuration and secrets have been a concern that application
developers had faced well before Kubernetes existed. While Kubernetes provides fea‐
tures to solve this concern, nothing is stopping you from using external systems
instead.

One of the most prevalent examples of an external configuration or secrets manage‐
ment system we run into in the field is HashiCorp Vault. Vault provides advanced
secret management functionality that is unavailable in Kubernetes Secrets. For exam‐
ple, Vault provides dynamic secrets, secret rotation, time-based tokens, and more. If
your application is already leveraging Vault, you can continue to do so when running
your application on Kubernetes. Even if not yet using Vault, it is worth evaluating as a
more robust alternative to Kubernetes Secrets. We discussed secret management con‐
siderations and the Vault integration with Kubernetes extensively in Chapter 7. If you
want to learn more about secret management in Kubernetes and the lower-level
details of the Vault integration, we recommend you check out that chapter.

When leveraging an external system for configuration or secrets, we find that offload‐
ing the integration (as much as possible) to the platform is beneficial. Integrations
with external systems such as Vault can be offered as a platform service to expose
Secrets as volumes or environment variables in Pods. The platform service abstracts
the external system and enables your application to consume the Secret without
worrying about the implementation details of the integration. Overall, leveraging

Ingesting Configuration and Secrets | 403

https://www.vaultproject.io

such a platform service reduces the application’s complexity and results in standardi‐
zation across your applications.

Handling Rescheduling Events
Kubernetes is a highly dynamic environment where workloads are moved around for
different reasons. Cluster nodes can come and go; they can run out of resources or
even fail. Platform teams can drain, cordon, or remove nodes to perform cluster life
cycle operations (e.g., upgrades). These are examples of situations in which your
workload might be killed and rescheduled, and there are many others.

Regardless of the reason, the dynamic nature of Kubernetes can impact your applica‐
tion’s availability and operation. Even though the application’s architecture has the
highest bearing in determining the impact of disturbances, there are features in
Kubernetes you can leverage to minimize that impact. We will explore these features
in this section. First, we will dig into pre-stop container life cycle hooks. As indicated
by the name, these hooks enable you to act before Kubernetes stops your containers.
We will then discuss how you can shut down containers gracefully, which involves
handling signals from within the application in response to shutdown events. Finally,
we will review Pod anti-affinity rules, a mechanism you can use to spread your appli‐
cation across failure domains. As mentioned before, these mechanisms can help mini‐
mize the impact of disturbances but cannot eliminate the potential for failure. Keep
that in mind as you read through this section.

Pre-stop Container Life Cycle Hook
Kubernetes can terminate workloads for any number of reasons. If you need to per‐
form an action before your container is terminated, you can leverage the pre-stop
container life cycle hook. Kubernetes provides two types of hooks. The exec life cycle
hook runs a command within the container, while the HTTP life cycle hook issues an
HTTP request against an endpoint you specify (typically the container itself). Which
hook to use depends on your specific requirements and what you are trying to
achieve.

The pre-stop hook in the Contour Ingress controller is a great example that showca‐
ses the power of pre-stop hooks. To avoid dropping in-flight client requests, Contour
includes a container pre-stop hook that tells Kubernetes to execute a command
before stopping the container. The following snippet from the Contour Deployment
YAML file shows the pre-stop hook configuration:

404 | Chapter 14: Application Considerations

https://projectcontour.io

<... snip ...>
 spec:
 containers:
 - command:
 - /bin/contour
 args:
 - envoy
 - shutdown-manager
 image: docker.io/projectcontour/contour:main
 lifecycle:
 preStop:
 exec:
 command:
 - /bin/contour
 - envoy
 - shutdown
<... snip ...>

Container pre-stop hooks enable you to take action before Kubernetes stops your
container. They allow you to run commands or scripts that exist within the container
but are otherwise not part of the running process. One key consideration to keep in
mind is that these hooks are executed only in the face of planned life cycle or re-
scheduling events. The hooks will not run if a node fails, for example. Furthermore,
any action performed as part of the pre-stop hook is governed by the Pod’s graceful
shutdown period, which we will discuss next.

Graceful Container Shutdown
After executing pre-stop hooks (when provided), Kubernetes initiates the container
shutdown process by sending a SIGTERM signal to the workload. This signal lets the
container know that it is being stopped. It also starts running down the clock of the
termination shutdown period, which is 30 seconds by default. You can tune this
period using the terminationGracePeriodSeconds field of the Pod specification.

During the graceful termination period, the application can complete any necessary
actions before shutting down. Depending on the application, these actions can be
persisting data, closing open connections, flushing files to disk, etc. Once done, the
application should exit with a successful exit code. The graceful termination is illus‐
trated in Figure 14-1, where we can see the kubelet sending the SIGTERM signal and
waiting for the container(s) to terminate within the grace period.

If the application shuts down within the termination period, Kubernetes completes
the shutdown process and moves on. Otherwise, it forcefully stops the process by
sending a SIGKILL signal. Figure 14-1 also shows this forceful termination toward
the bottom right of the diagram.

Handling Rescheduling Events | 405

Figure 14-1. Application termination in Kubernetes. The kubelet first sends a SIGTERM
signal to the workload and waits up to the configured graceful termination period. If the
process is still running after the period expires, the kubelet sends a SIGKILL to terminate
the process.

For your application to terminate gracefully, it must handle the SIGTERM signal.
Each programming language or framework has its own way of configuring signal
handlers. Some application frameworks might even take care of it for you. The fol‐
lowing snippet shows a Go application that configures a SIGTERM signal handler,
which stops the application’s HTTP server upon receipt of the signal:

func main() {
 // App initialization code here...
 httpServer := app.NewHTTPServer()

 // Make a channel to listen for an interrupt or terminate signal
 // from the OS.

 // Use a buffered channel because the signal package requires it.
 shutdown := make(chan os.Signal, 1)
 signal.Notify(shutdown, os.Interrupt, syscall.SIGTERM)

406 | Chapter 14: Application Considerations

 // Start the application and listen for errors
 errors := make(chan error, 1)
 go httpServer.ListenAndServe(errors)

 // Block main and waiting for shutdown.
 select {
 case err := <-errors:
 log.Fatalf("http server error: %v", err)

 case <-shutdown:
 log.Printf("shutting down http server")
 httpServer.Shutdown()
 }
}

When running your applications on Kubernetes, we recommend you configure signal
handlers for the SIGTERM signal. Even if there are no shutdown actions to take, han‐
dling the signal makes your workload a better Kubernetes citizen, as it reduces the
time it takes to stop the application and thus free up the resources for other
workloads.

Satisfying Availability Requirements
Container pre-stop hooks and graceful termination are concerned with a single
instance or replica of your application. If your application is horizontally scalable,
you will most likely have multiple replicas running in the cluster to satisfy availability
requirements. Running more than one instance of your workload can provide
increased fault tolerance. For example, if a cluster node fails and takes one of the
application instances with it, the other replicas can pick up the work. With that said,
having multiple replicas does not help if they are running in the same failure domain.

One way to ensure your Pods are spread across failure domains is by using Pod anti-
affinity rules. With Pod anti-affinity rules, you tell the Kubernetes scheduler that you
want to schedule your Pods according to constraints you define in the Pod definition.
More specifically, you ask the scheduler to avoid placing your Pod on nodes that are
already running a replica of your workload. Consider a web server that has three rep‐
licas. To ensure the three replicas are not placed in the same failure domain, you can
use Pod anti-affinity as in the following snippet. In this case, the anti-affinity rule tells
the scheduler that it should prefer placing Pods across zones, as determined by the
zone label on cluster nodes:

... <snip> ...
 affinity:
 PodAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: "app"

Handling Rescheduling Events | 407

 operator: In
 values:
 - my-web-server
 topologyKey: "zone"
... <snip> ...

In addition to Pod anti-affinity, Kubernetes provides Pod Topology Spread Con‐
straints, which are an improvement to Pod anti-affinity rules when it comes to
spreading Pods across failure domains. The problem with anti-affinity rules is that
there is no way to guarantee Pods are spread evenly across the domains. You can
either “prefer” scheduling them based on the topology key, or you can guarantee a
single replica per failure domain.

The Pod Topology Spread Constraints provide a way for you to tell the scheduler to
spread your workload. Similar to Pod anti-affinity rules, they are only evaluated
against new Pods that need scheduling, and thus they are not retroactively enforced.
The following snippet shows an example Pod Topology Spread Constraint that results
in Pods spread across zones (based on the zone label of nodes). If the constraint can‐
not be satisfied, Pods will not be scheduled.

... <snip> ...
spec:
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: zone
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 foo: bar
... <snip> ...

When running multiple instances of an application, you should leverage these Pod
placement features to improve the application’s tolerance of infrastructure failure.
Otherwise, you risk Kubernetes scheduling your workload in a way that does not ach‐
ieve the failure tolerance you are looking for.

State Probes
Kubernetes uses many signals to determine the state and health of applications run‐
ning on the platform. When it comes to health, Kubernetes treats workloads as opa‐
que boxes. It knows whether the process is up or not. While this information is
helpful, it is typically not enough to run and manage applications effectively. This is
where probes come in. Probes provide Kubernetes with increased visibility of the
application’s condition.

408 | Chapter 14: Application Considerations

Kubernetes provides three probe types: liveness, readiness, and startup probes. Before
discussing each type in detail, let’s review the different probing mechanisms that are
common to all probe types:

Exec
The kubelet executes a command inside the container. The probe is deemed suc‐
cessful if the command returns a zero exit code. Otherwise, the kubelet considers
the container unhealthy.

HTTP
The kubelet sends an HTTP request to an endpoint in the Pod. As long as the
HTTP response code is greater than or equal to 200 and less than 400, the probe
is deemed successful.

TCP
The kubelet establishes a TCP connection with the container on a configurable
port. The container is deemed healthy if the connection is established
successfully.

In addition to sharing the probing mechanisms, all probes have a common set of
parameters that you can use to tune the probe according to your workload. These
parameters include success and failure thresholds, timeout periods, and others. The
Kubernetes documentation describes each setting in detail, so we will not dive into
them here.

Liveness Probes
Liveness probes help Kubernetes understand the health of Pods on the cluster. At the
node level, the kubelet continuously probes Pods that have the liveness probe config‐
ured. When the liveness probe exceeds the failure threshold, the kubelet deems the
Pod unhealthy and restarts it. Figure 14-2 shows a flowchart that depicts an HTTP
liveness probe. The kubelet probes the container every 10 seconds. If the kubelet
finds that the last 10 probes have failed, it restarts the container.

Figure 14-2. Flowchart that shows an HTTP-based liveness probe with a period of 10
seconds. If the probe fails 10 times consecutively, the Pod is deemed unhealthy and the
kubelet restarts it.

State Probes | 409

Given that liveness probe failures result in container restarts, we
typically suggest that liveness probe implementations should not
check for the workload’s external dependencies. By keeping the liv‐
eness probe local to your workload and not checking external
dependencies, you prevent cascading failures that could otherwise
occur. For example, a service that interacts with a database should
not perform a “database availability” check as part of its liveness
probe, as restarting the workload will most likely not fix the prob‐
lem. If the app detects an issue with the database, the app can enter
a read-only mode or gracefully disable the functionality that
depends on the database. Another option is for the app to fail its
readiness probe, which we discuss next.

Readiness Probes
The readiness probe is perhaps the most common and most important probe type in
Kubernetes, especially for services that handle requests. Kubernetes uses readiness
probes to control whether to route Service traffic to Pods. Thus, readiness probes
provide a mechanism for the application to tell the platform that they’re ready to
accept requests.

As with liveness probes, the kubelet is responsible for probing the application and
updating the Pod’s status according to the probe results. When the probe fails, the
platform removes the failing Pod from the list of available endpoints, effectively
diverting traffic to other replicas that are ready. Figure 14-3 shows a flowchart that
explains an HTTP-based readiness probe. The probe has a 5-second initial delay and
a probing period of 10 seconds. On startup, the application begins receiving traffic
only when the readiness probe succeeds. Then, the platform stops sending traffic to
the Pod if the probe fails twice consecutively.

When deploying service-type workloads, make sure that you configure a readiness
probe to avoid sending requests to replicas that cannot handle them. The readiness
probe is not only critical when the Pod is starting up but also important during the
lifetime of the Pod to prevent routing clients to replicas that have become unready.

410 | Chapter 14: Application Considerations

Figure 14-3. Flowchart that shows an HTTP-based readiness probe with a period of 10
seconds. If the probe fails twice consecutively, the Pod is deemed not ready and it is taken
out of the set of ready endpoints.

Startup Probes
Liveness and readiness probes have been available since the first version of Kuber‐
netes. As the system gained popularity, the community identified a need to imple‐
ment an additional probe, the startup probe. The startup probe provides extra time
for slow-starting applications to initialize. Similar to liveness probes, failed startup
probes result in the container being restarted. Unlike liveness probes, however,
startup probes are executed only until they succeed, at which point the liveness and
readiness probes take over.

If you are wondering why a liveness probe is not enough, let’s consider an application
that takes, on average, 300 seconds to initialize. You could indeed use a liveness probe
that waits 300 seconds before stopping the container. During startup, this liveness
probe would work. But what about later on when the application is running? If the
application entered an unhealthy state, the platform would wait 300 seconds before
restarting it! This is the problem that the startup probe solves. It looks after the work‐
load during startup but then gets out of the way. Figure 14-4 shows a flowchart that
walks through a startup probe like the one we just discussed. It has a failure threshold
of 30 times and a probing period of 10 seconds.

State Probes | 411

Figure 14-4. Flowchart that shows an HTTP-based startup probe with a period of 10
seconds. If the probe returns a successful response, the startup probe is disabled and the
liveness/readiness probes are enabled. Otherwise, if the probe fails 30 times consecutively,
the kubelet restarts the Pod.

While startup probes can be useful for certain applications, we usually recommend
avoiding them unless absolutely necessary. We find liveness and readiness probes to
be appropriate most of the time.

Implementing Probes
Now that we have covered the different probe types, let’s dive into how you should
approach them in your application, specifically liveness and readiness probes. We
know that failed liveness probes result in the platform restarting the Pod, while failed
readiness probes prevent traffic from being routed to the Pod. Given these different
outcomes, we find that most applications that leverage both liveness and readiness
probes should configure different probe endpoints or commands.

Ideally, the liveness probe fails only when there is a problem that requires a restart,
such as a deadlock or some other condition that permanently prevents the app from
making progress. Applications that expose an HTTP server commonly implement a
liveness endpoint that unconditionally returns a 200 status code. As long as the
HTTP server is healthy and the app can respond, there’s no need to restart it.

In contrast to the liveness endpoint, the readiness endpoint can check for different
conditions within the application. For example, if the application warms internal
caches on startup, the readiness endpoint can return false unless the caches are warm.
Another example is service overload, a condition under which the app can fail the
readiness probe as a mechanism to shed load. As you can probably imagine, the
checked conditions vary from one application to the next. In general, however, they
are temporary conditions that resolve with the passing of time.

412 | Chapter 14: Application Considerations

To summarize, we typically recommend using readiness probes for workloads that
handle requests, given that readiness probes are meaningless in other application
types, such as controllers, jobs, etc. When it comes to liveness probes, we recommend
considering them only when restarting the application would help fix the problem.
Lastly, we tend to avoid startup probes unless absolutely necessary.

Pod Resource Requests and Limits
One of Kubernetes’ primary functions is to schedule applications across cluster
nodes. The scheduling process involves, among other things, finding candidate nodes
that have enough resources to host the workload. To place workloads effectively, the
Kubernetes scheduler first needs to know the resource needs of your application.
Typically, these resources encompass CPU and memory, but can also include other
resource types such as ephemeral storage and even custom or extended resources.

In addition to scheduling your applications, Kubernetes also needs resource informa‐
tion to guarantee those resources at runtime. After all, the platform has limited
resources that are shared across applications. Providing resource requirements is crit‐
ical to your application’s ability to use those resources.

In this section, we will discuss resource requests and resource limits, and how they
can impact your application. We will not dig into the details of how the platform
implements resource requests and limits, as we have already discussed it in
Chapter 12.

Resource Requests
Resource requests specify the minimum amount of resources your application needs
to run. In most cases, you should specify resource requests when deploying applica‐
tions to Kubernetes. By doing so, you ensure your workload will have access to the
requested resources at runtime. If you don’t specify resource requests, you might find
your application’s performance diminishes significantly when resources on the node
come under contention. You even risk the possibility of your application being termi‐
nated if the node needs to reclaim memory for other workloads. Figure 14-5 shows
the termination of an application because another workload with memory requests
starts consuming additional memory.

Pod Resource Requests and Limits | 413

Figure 14-5. Pod 1 and Pod 2 share the node’s memory. Each Pod is initially consuming
200 MiB out of the total 500 MiB. Pod 2 is terminated when Pod 1 needs to consume
additional memory, as Pod 2 does not have memory requests in its specification. Pod 2
enters a crash loop as it cannot allocate enough memory to start up.

One of the main challenges with resource requests is finding the right numbers to
use. If you are deploying an existing application, you might already have data you can
analyze to determine the app’s resource requests, such as the application’s actual uti‐
lization over time or perhaps the size of the VMs hosting it. When you don’t have
historical data, you will have to use an educated guess and gather data over time.
Another option is to use the Vertical Pod Autoscaler (VPA), which can suggest values
for CPU and memory requests and even adjust those values over time. For more
information about the VPA, see Chapter 13.

Resource Limits
Resource limits allow you to specify the maximum amount of resources your work‐
load can consume. You might be wondering why you would impose an artificial limit.
After all, the more resources available, the better. While this is true for some work‐
loads, having unbound access to resources can result in unpredictable performance,
as the Pod will have access to extra resources when available but will not when other
Pods need the resources on the node. It gets even worse with memory. Given that
memory is an incompressible resource, the platform has no other choice but to kill
Pods when it needs to reclaim memory that was opportunistically consumed.

An important consideration to make when setting resource limits is whether you
need to propagate those limits to the workload itself. Java applications are a good
example. If the application uses an older version of Java (JDK version 8u131 or ear‐
lier), you need to propagate the memory limit down to the Java Virtual Machine
(JVM). Otherwise, the JVM remains unaware of the limit and attempts to consume
more memory than allowed. In the case of Java, you can configure the memory set‐
tings of the JVM using the JAVA_OPTIONS environment variable. Another option,
although not always feasible, is to update the version of the JVM, as more recent ver‐
sions gained the ability to detect the memory limits within containers. If you are

414 | Chapter 14: Application Considerations

deploying an application that leverages a runtime, consider whether you need to
propagate the resource limits for the application to understand them.

Limits are also important if you are trying to run performance tests or benchmarks
against your workload. As you can imagine, it is likely that each test run will execute
against Pods scheduled on different nodes at different times. If resource limits are not
enforced on the workload, the test results can be highly variable as the workload
under test can burst above its resource requests when the nodes have idle resources.

Usually, you should set your resource limits equal to your resource requests, which
ensures your application will always have the same amount of resources, no matter
what’s happening with other Pods running beside it.

Application Logs
Application logs are critical to troubleshoot and debug applications both during
development and in production. Applications running on Kubernetes should, as
much as possible, log to the standard out and standard error streams (STDOUT/
STDERR). This not only removes complexity in the application but also is the least
complex solution from the platform’s perspective when it comes to shipping logs to a
central location. We covered this concern in Chapter 9, where we also discussed dif‐
ferent log processing strategies, systems, and tools. In this section, we will touch on
some of the considerations to make when thinking about application logs. The first
thing we’ll talk about is what you should log in the first place. Then, we will discuss
unstructured versus structured logs. Finally, we will touch on improving the useful‐
ness of logs by including contextual information in log messages.

What to Log
One of the first things to figure out when it comes to application logs is what to
include in the logs. While development teams typically have their own philosophy, we
have found that they tend to go overboard with logs. If you log too much, you run the
risk of having too much noise and missing out on important information. On the flip
side, if you log too little, it can become difficult to troubleshoot your application
effectively. As with most things, there’s a balance to strike here.

While working with application teams, we have found that a good rule of thumb that
helps determine whether to log something is to ask the question, Is this log message
actionable? If the answer is yes, this is a good indicator that it is worth logging that
message. Otherwise, it is an indicator that the log message might not be useful.

Application Logs | 415

Unstructured Versus Structured Logs
Application logs can be categorized as either unstructured or structured. Unstruc‐
tured logs are, as the name suggests, strings of text that lack a specific format. They
are arguably the most prevalent, as there is zero upfront planning that teams need to
make. While the team might have generic guidelines, developers get to log messages
in whatever format they like.

Structured logs, on the other hand, have predetermined fields that must be provided
when logging events. They are typically formatted as JSON lines or key-value lines
(e.g., time="2015-08-09T03:41:12-03:21" msg="hello world!" thread="13"

batchId="5"). The main benefit of structured logs is that they are written in a
machine-readable format, making them easier to query and analyze. With that said,
structured logs tend to be harder for humans to read, so you must carefully consider
this trade-off as you implement logging in your application.

Contextual Information in Logs
The primary purpose of logs is to provide insight into what happened within your
application at a certain point in time. Perhaps you are troubleshooting a production
issue in a live application, or maybe you are performing a root cause analysis to
understand why something happened. To be able to complete such tasks, you typi‐
cally need contextual information in log messages, in addition to what happened.

Let’s consider a payment application as an example. When the application request
serving pipeline encounters an error, in addition to logging the error itself, try to
include the context surrounding the error as well. For example, if an error occurs
because the payee was not found, include the payee name or ID, the user ID attempt‐
ing to make the payment, the payment amount, etc. Such contextual information will
improve your experience troubleshooting issues and will help you prevent such prob‐
lems in the future. Having said that, avoid including sensitive information in your
logs. You don’t want to leak a user’s password or credit card information.

Exposing Metrics
In addition to logs, metrics provide critical insight about how your application is
behaving. Once you have application metrics, you can configure alerts to let you
know when your application needs attention. Furthermore, by aggregating metrics
over time, you can discover trends, improvements, and regressions as you roll out
new versions of your software. This section discusses application instrumentation
and some of the metrics you can capture, including RED (Rate, Errors, Duration),
USE (Utilization, Saturation, Errors), and app-specific metrics. If you are interested
in the platform components that enable monitoring and more additional discussions
on metrics, check out Chapter 9.

416 | Chapter 14: Application Considerations

Instrumenting Applications
In most cases, the platform can measure and surface metrics about your application’s
externally visible behavior. Metrics such as CPU usage, memory usage, disk IOPS,
and others are readily available from the node that is running your application. While
these metrics are useful, instrumenting your application to expose key metrics from
within is worthwhile.

Prometheus is one of the most popular monitoring systems for Kubernetes-based
platforms that we run into in the field. We have extensively covered Prometheus and
its components in Chapter 9. In this section, we will focus our discussions on instru‐
menting apps for Prometheus.

Prometheus pulls metrics from your application using an HTTP request on a config‐
urable endpoint (typically /metrics). This means that your application must expose
this endpoint for Prometheus to scrape. More importantly, the endpoint’s response
must contain Prometheus-formatted metrics. Depending on the type of software you
want to monitor, there are two approaches you can take to expose metrics:

Native instrumentation
This option involves instrumenting your application using the Prometheus client
libraries so that metrics are exposed from within the application process. This is
an excellent approach when you have control over the source code of the
application.

Out-of-process exporter
This is an additional process running beside your workload that transforms pre‐
existing metrics and exposes them in a Prometheus-compatible format. This
approach is best suited for off-the-shelf software that you cannot instrument
directly and is typically implemented using the sidecar container pattern. Exam‐
ples include the NGINX Prometheus Exporter and the MySQL Server Exporter.

The Prometheus instrumentation libraries supports four metric types: Counters,
Gauges, Histograms, and Summaries. Counters are metrics that can only increase,
while Gauges are metrics that can go up or down. Histograms and Summaries are
more advanced metrics than Counters and Gauges. Histograms place observations
into configurable buckets that you can then use to compute quantiles (e.g., 95th per‐
centile) on the Prometheus server. Summaries are similar to Histograms, except that
they compute quantiles on the client side over a sliding time window. The Prome‐
theus documentation explains the metric types in more depth.

There are three primary things you must do to instrument an application with the
Prometheus libraries. Let’s work through an example of instrumenting a Go service.
First, you need to start an HTTP server to expose the metrics for Prometheus to
scrape. The library provides an HTTP handler that takes care of encoding the metrics
into the Prometheus format. Adding the handler would look something like this:

Exposing Metrics | 417

https://oreil.ly/g0ZCt
https://oreil.ly/SJOka
https://oreil.ly/epvwC
https://oreil.ly/epvwC

func main() {
 // app code...

 http.Handle("/metrics",
 promhttp.HandlerFor(
 prometheus.DefaultGatherer,
 promhttp.HandlerOpts{},
))

 log.Fatal(http.ListenAndServe("localhost:8080", nil))
}

Next, you need to create and register metrics. For example, if you wanted to expose a
Counter metric called items_handled_total, you would use code similar to the
following:

// create the counter
var totalItemsHandled = prometheus.NewCounter(
 prometheus.CounterOpts{
 Name: "items_handled_total",
 Help: "Total number of queue items handled.",
 },
)

// register the counter
prometheus.MustRegister(totalItemsHandled)

Finally, you need to update the metric according to what’s happening in the applica‐
tion. Continuing the Counter example, you would use the Inc() method of the
Counter to increment it:

func handleItem(item Item) {

 // item handling code...

 // increment the counter as we handle items
 totalItemsHandled.Inc()
}

Instrumenting an application using the Prometheus libraries is relatively simple. The
more complicated task is to determine the metrics that your application should
expose. In the following sections, we will discuss different methods or philosophies
you can use as a starting point to select metrics.

418 | Chapter 14: Application Considerations

USE Method
The USE method, proposed by Brendan Gregg, focuses on system resources. When
using this method, you capture Utilization, Saturation, and Errors (USE) for each of
the resources your application uses. These resources typically include CPU, memory,
disk, etc. They can also include resources that exist within the application software,
such as queues, thread pools, etc.

RED Method
In contrast to the USE method, the RED method focuses more on the services them‐
selves instead of the underlying resources. Initially proposed by Tom Wilkie, the RED
method captures the Rate, Errors, and Durations of requests that the service handles.
The RED method can be better suited for online services, as the metrics provide
insight into your users’ experience and how they perceive the service from their
standpoint.

The Four Golden Signals
Another philosophy you can adopt is to measure the four golden signals, as proposed
by Google in Site Reliability Engineering (O’Reilly). Google suggests you measure four
critical signals for every service: Latency, Traffic, Errors, and Saturation. You might
notice that these are somewhat similar to the metrics captured as part of the RED
method, with the addition of Saturation.

App-Specific Metrics
The USE method, RED method, and four golden signals capture generic metrics that
are applicable across most if not all applications. There is an additional class of met‐
rics that surface app-specific information. For example, how long does it take to add
an item to the shopping cart? Or how much time does it take to connect a customer
with an agent? Typically, these metrics are correlated with business key performance
indicators (KPIs).

Regardless of the method you choose, exporting metrics from your application is crit‐
ical to its success. Once you have access to those metrics, you can build dashboards to
visualize the behavior of your system, set up alerts to notify your on-call teams when
something goes wrong, and perform trend analysis to derive business intelligence
that can advance your organization.

Exposing Metrics | 419

http://www.brendangregg.com/usemethod.html
https://oreil.ly/sW3al
https://oreil.ly/iv1bJ

Instrumenting Services for Distributed Tracing
Distributed tracing enables you to analyze applications that are composed of multiple
services. They provide visibility into the execution flow of a request as it traverses the
different services that make up the application. As discussed in Chapter 9,
Kubernetes-based platforms can offer distributed tracing as a platform service using
systems such as Jaeger or Zipkin. However, similar to monitoring and metrics, you
must instrument services to take advantage of distributed tracing. In this section, we
will explore how to instrument services using Jaeger and OpenTracing. First, we will
discuss how to initialize a tracer. Then, we will dive into how to create spans within a
service. A span is a named, timed operation that is the building block of a distributed
trace. Finally, we will explore how to propagate tracing context from one service to
another. We will use Go and the Go libraries for examples, but the concepts are appli‐
cable to other programming languages.

Initializing the Tracer
Before being able to create spans within the service, you must initialize the tracer.
Part of the initialization involves configuring the tracer according to the environment
the application is running. The tracer needs to know the service name, the URL to
send trace information, etc. For these settings, we recommend using the Jaeger client
library environment variables. For example, you can set the service name using the
JAEGER_SERVICE_NAME environment variable.

In addition to configuring the tracer, you can integrate the tracer with your metrics
and logging libraries as you initialize the tracer. The tracer uses the metrics library to
emit metrics about what’s happening with the tracer, such as the number of traces and
spans sampled, the number of successfully reported spans, and others. On the other
hand, the tracer leverages the logging libraries to emit logs when it encounters errors.
You can also configure the tracer to log spans, which is rather useful in development.

To initialize a Jaeger tracer in a Go service, you would add code to your application
similar to the following. In this case, we are using Prometheus as the metrics library
and Go’s standard logging library:

package main

import (
 "log"

 jaeger "github.com/uber/jaeger-client-go"
 "github.com/uber/jaeger-client-go/config"
 "github.com/uber/jaeger-lib/metrics/prometheus"
)

func main() {
 // app initialization code...

420 | Chapter 14: Application Considerations

https://www.jaegertracing.io
https://zipkin.io
https://opentracing.io

 metricsFactory := prometheus.New()

 cfg := config.Configuration{}
 tracer, closer, err := cfg.NewTracer(
 config.Metrics(metricsFactory),
 config.Logger(jaeger.StdLogger),
)
 if err != nil {
 log.Fatalf("error initializing tracer: %v", err)
 }

 defer closer.Close()

 // continue main()...
}

Create a Prometheus metrics factory that Jaeger can use to emit metrics.

Create a default Jaeger configuration with no hardcoded configuration (use envi‐
ronment variables instead).

Create a new tracer from the configuration, and provide the metrics factory and
the Go standard library logger.

With the tracer initialized, we can start creating spans in our service.

Creating Spans
Now that we have a tracer, we can start creating spans within our service. Assuming
the service is somewhere in the middle of the request processing flow, the service
needs to deserialize the incoming span information from the previous service and
create a child span. Our example is an HTTP service, so the span context is propaga‐
ted via HTTP headers. The following code extracts the context from the headers and
creates a new span. Note that the tracer we initialized in the previous section must be
in scope:

package main

import (
 "github.com/opentracing/opentracing-go"
 "github.com/opentracing/opentracing-go/ext"
 "net/http"
)

func (s server) handleListPayments(w http.ResponseWriter, req *http.Request) {
 spanCtx, err := s.tracer.Extract(
 opentracing.HTTPHeaders,
 opentracing.HTTPHeadersCarrier(req.Header),
)

Instrumenting Services for Distributed Tracing | 421

 if err != nil {
 // handle the error
 }

 span := opentracing.StartSpan(
 "listPayments",
 ext.RPCServerOption(spanCtx),
)
 defer span.Finish()
}

Extract the context information from the HTTP headers.

Create a new span using the extracted span context.

As the service handles the request, it can add child spans to the span we just created.
As an example, let’s assume the service calls a function to perform a SQL query. We
can use the following code to create a child span for the function and set the opera‐
tion name to listPayments:

func listPayments(ctx context.Context) ([]Payment, error) {
 span, ctx := opentracing.StartSpanFromContext(ctx, "listPayments")
 defer span.Finish()

 // run sql query
}

Propagate Context
Up to this point, we’ve created spans within the same service or process. When there
are other services involved in processing a request, we need to propagate the trace
context over the wire for the service on the other end. As discussed in the previous
section, you can use HTTP headers to propagate the context.

The OpenTracing libraries provide helper functions you can use to inject the context
into HTTP headers. The following code shows an example that uses the Go standard
library HTTP client to create and send the request:

import (
 "github.com/opentracing/opentracing-go"
 "github.com/opentracing/opentracing-go/ext"

 "net/http"
)

// create an HTTP request
req, err := http.NewRequest("GET", serviceURL, nil)
if err != nil {
 // handle error
}

422 | Chapter 14: Application Considerations

// inject context into the request's HTTP headers
ext.SpanKindRPCClient.Set(span)
ext.HTTPUrl.Set(span, url)
ext.HTTPMethod.Set(span, "GET")
span.Tracer().Inject(
 span.Context(),
 opentracing.HTTPHeaders,
 opentracing.HTTPHeadersCarrier(req.Header),
)

// send the request
resp, err := http.DefaultClient.Do(req)

Adds a tag to mark the span as the client side of a service call.

Injects the span context into the request’s HTTP headers.

As we’ve discussed through these sections, instrumenting an application for tracing
involves initializing a tracer, creating spans within the service, and propagating the
span context to other services. There is additional functionality that you should
explore, including tagging, logging, and baggage. If the platform team offers tracing
as a platform service, now you have an idea of what it takes to take advantage of it.

Summary
There are multiple things you can do to make your applications run better in Kuber‐
netes. While most require investing time and effort to implement, we find that they
are critical to achieve production-grade outcomes for your applications. As you
onboard applications to your platform, make sure to consider the guidance provided
in this chapter, including injecting configuration and secrets at runtime, specifying
resource requests and limits, exposing application health information using probes,
and instrumenting applications with logs, metrics, and traces.

Summary | 423

CHAPTER 15

Software Supply Chain

Implementing a Kubernetes platform should never be the goal of your team or com‐
pany (assuming you are not a vendor or consultant!). This might seem a strange
claim for a book exclusively devoted to Kubernetes to make, but let’s step back a
moment. All companies are in the business of delivering their core-competency. This
might be an ecommerce platform, a SaaS monitoring system, or an insurance website.
Platforms like Kubernetes (and almost any other tooling) exist to enable the delivery
of core business value, a truth that is often forgotten by teams when designing and
implementing IT solutions.

With that sentiment in mind, this chapter will focus on the actual process of getting
code from developers to production on Kubernetes. To best cover each stage that we
think is relevant, we’ll follow the model of a pipeline that many are familiar with.

First we’ll look at some of the considerations when building container images (our
deployed assets) from source code. If you’re already utilizing Kubernetes or other
container platforms you’ll probably be familiar with some of the concepts in this sec‐
tion, but hopefully we’ll cover some questions that you may not have considered. If
you’re new to containers this will be a paradigm shift from the way that you currently
build software (WAR files, Go binaries, etc.) to thinking about the container image
and the nuances involved with building and maintaining them.

Once we have built our assets we need somewhere to store them. We’ll discuss con‐
tainer registries (e.g., DockerHub, Harbor, Quay) and the functionality that we think
is important when choosing one. Many of the attributes of container registries are
related to security, and we’ll discuss options like image scanning, updates, and
signing.

425

Finally, we’ll dedicate some time to reviewing continuous delivery and how those
practices and associated tooling intersect with Kubernetes. We’ll look at emerging
ideas like GitOps (deployments through syncing cluster state from git repositories)
and more traditional imperative pipeline approaches.

Even if you are not yet running Kubernetes, you will likely have considered and/or
solved for all of the high-level areas just mentioned (build, asset storage, deploy‐
ment). It’s reasonable that everyone has investments and expertise in existing tooling
and approaches, and we very rarely encounter a situation where an organization
wants to start afresh with its entire software supply chain. One of the things we’ll try
to emphasize in this chapter is that there are clean handoff points in the pipeline and
we can pick and choose the most effective approaches for each phase. As with many
of the topics covered in this book, it is entirely possible (and recommended) to enact
incremental positive change while remaining focused on delivering business value.

Building Container Images
Before containers we would package applications as a binary, compressed asset, or
raw source code for it to be deployed onto a server. This would either run standalone
or inside of an application server. Alongside the application itself we’d need to ensure
the environment contained the correct dependencies and configuration available for
it to run successfully in the environment we were deploying to.

In a container-based environment, the container image is the deployable asset. It con‐
tains not only the application binary itself but also the execution environment and
any associated dependencies. The image itself is a compressed set of filesystem layers
alongside some metadata, which together conform to the Open Container Initiative
(OCI) Image Specification. This is an agreed standard within the cloud native com‐
munity to ensure that image building can be implemented in many different ways
(we’ll see some of these in the following sections) while still producing an artifact that
is runnable by all the different container runtimes (more information on this can be
found in Chapter 3).

Typically, building a container image involves creating a Dockerfile that describes the
image and using Docker Engine to execute the Dockerfile. With that said, there is an
ecosystem of tools (each with their own approaches) that you can use to create con‐
tainer images in different scenarios. To borrow a concept from BuildKit (one such
tool, built by Docker) we can think about building in terms of frontend and backend.
The frontend is the method for defining the high-level process that should be used to
build the image, e.g., a Dockerfile or Buildpack (more on these later in this chapter).
The backend is the actual build engine that takes the definition generated by the front‐
end and executes commands on the filesystem to construct the image.

426 | Chapter 15: Software Supply Chain

In many cases the backend is the Docker daemon, which may not be suitable for all
cases. For example, if we want to run builds in Kubernetes we need either to run a
Docker daemon inside a container (Docker in Docker) or mount the Docker Unix
socket from the host machine into the build container. Both of these approaches have
drawbacks, and in the latter case exposes potential security issues. In response to
these issues, other build backends like Kaniko have emerged. Kaniko uses the same
frontend (a Dockerfile) but utilizes different techniques to create the image under the
hood, making it a solid choice for running in a Kubernetes Pod. When deciding how
you want to build images, you should answer the following questions:

• Can we run our builder as root?
• Are we OK mounting the Docker socket?
• Do we care about running a daemon?
• Do we want to containerize builds?
• Do we want to run them among workloads in Kubernetes?
• How much do we intend to leverage layer caching?
• How will our tooling choice affect distributing builds?
• What frontends or image definition mechanisms do we want to use? What is

supported?

In this section, we will first cover some of the patterns and antipatterns we’ve seen
when building container images (Cloud Native Buildpacks) that will hopefully help
you on your journey to build better container images. Then, we will review an alter‐
native method for building container images, and how all of these techniques can be
integrated into a pipeline.

One question that often comes up early on within organizations is, Who should be
responsible for building images? Early on as Docker was becoming popular it was
largely embraced as a developer-focused tool. In our experience, smaller organiza‐
tions still have developers responsible for writing Dockerfiles and defining the build
process for their application images. However, as organizations look to adopt con‐
tainers (and Kubernetes) at scale, having individual developers or development teams
all creating their own Dockerfiles becomes unsustainable. Firstly it creates extra work
for developers, which pulls them away from their core responsibility, and secondly, it
results in a huge variance in produced images with little to no standardization.

As a result, we are seeing a move toward abstracting the build process from develop‐
ment teams and instead moving the responsibility toward operations and platform
teams to implement source to image patterns and tooling that receive a code reposi‐
tory as an input and are capable of producing a container image ready to move
through the pipeline. We’ll discuss this pattern more in “Cloud Native Buildpacks” on
page 432. In the interim we have also commonly seen a pattern of platform teams

Building Container Images | 427

running workshops and/or assisting development teams with Dockerfile and image
creation. As organizations scale this can be an effective first step but is usually not
sustainable given the ratio of development teams to platform personnel.

The Golden Base Images Antipattern
In the field we have encountered several antipatterns that are usually the result of
teams not adjusting their thinking to embrace patterns that have emerged in the con‐
tainer and cloud native landscape. Maybe the most common of these is the concept of
pre-ordained, gold images. The scenario is that in a pre-container environment spe‐
cific base images (for example, a preconfigured CentOS base) would be approved for
use within an organization, and all applications going into production would have to
be based on that image. This approach is usually adopted for security reasons, as the
tools and libraries in the image have been well vetted. However, when moving to con‐
tainers, teams found themselves consigned to reinventing the wheel by pulling useful
upstream images from third parties and vendors and rebasing their applications and
configurations onto them.

This introduces a few related issues. Firstly, there is the additional work involved with
the initial conversion from the upstream image to an internal customized version.
Secondly, there is now an onus of maintenance placed on the internal platform team
to store and maintain these internal images. Because this situation can sprawl (given
how many images are in use in a typical environment), this approach usually ends up
resulting in a worse security posture as updates are performed infrequently (if at all)
given the extra work involved.

Our recommendation in this area is usually to partner with security teams and iden‐
tify what specific requirements the gold images are serving. Usually several of the fol‐
lowing will apply:

• Ensure specific agents/software is installed
• Ensure no vulnerable libraries are present
• Ensure user accounts have the correct permissions

By understanding the reasoning behind the restrictions, we can instead codify these
requirements into tooling that will sit in the pipeline and reject and/or alert on non-
compliant images and maintain the desired security posture, while still broadly allow‐
ing teams to reuse images (and the work that has gone into crafting them) from the
upstream community. We’ll take a deeper look at one example workflow in “Image
Registries” on page 434.

One of the more compelling reasons to specify a base OS is to ensure that operational
knowledge exists in the organization should troubleshooting be required. However,
when digging a little deeper this is not as useful as it may seem. Very rarely should it

428 | Chapter 15: Software Supply Chain

be necessary to exec into containers to troubleshoot specific issues, and even then the
differences between Linux-based operating systems are fairly trivial for the kinds of
support required. Additionally, more and more applications are being packaged in
ultra-lightweight scratch or distroless images to reduce the overhead inside the
container.

Attempting to refactor all upstream/vendor images onto your own base(s) should be
avoided for the reasons described in this section. However, we’re not asserting that
maintaining an internal set of curated base images is a bad idea. These can be great to
use as a foundation for your own applications, and we talk about some of the consid‐
erations when building these internal bases in the next section.

Choosing a Base Image
The base image of the container determines the bottom layers on which the applica‐
tion’s container image is to be built. The base image is critical as it usually contains
operating system libraries and tools that will be part of your application container
image. If you are not mindful when choosing a base image, it can be the source of
unnecessary libraries and tools that not only bloat your container image but also can
become security vulnerabilities.

Depending on your organization’s maturity and security posture, you might not have
a choice when it comes to base images. We have worked with many organizations that
have a dedicated team responsible for curating and maintaining a set of approved
base images that must be used across the organization. With that said, if you do have
a choice or you are part of the team that is vetting base images, consider the following
guidelines when evaluating base images:

• Ensure the images are published by a reputable vendor. You don’t want to use a
base image from a random DockerHub user. After all, these images will be the
foundation for most, if not all, your applications.

• Understand the update cycle and prefer images that are updated continuously. As
mentioned earlier, the base image typically contains libraries and tools that must
be patched whenever new vulnerabilities are discovered.

• Prefer images that have an open source build process or specification. This is typ‐
ically a Dockerfile that you can inspect to understand how the image is built.

• Avoid images that have unnecessary tools or libraries. Prefer minimal images that
provide a small footprint that your developers can build upon, when necessary.

Most of the time if you are building your own images we’ve seen scratch or distroless
to be a solid choice as both embody the preceding principles. The scratch image con‐
tains absolutely nothing, so with a simpler static binary scratch can be the leanest
possible image. However, you may encounter issues if you need root CA certificates

Building Container Images | 429

or some other assets. These can be copied in, but are something to think about. The
distroless base is what we’d recommend in most cases as they contain some sensible
users precreated (nonroot, nobody, etc.) and a set of minimal required libraries that
vary depending on the flavor of the base image chosen. Distroless has several
language-specific base variants for you to choose from.

In the next few sections we’ll continue to talk about best-practice patterns, starting
with the importance of specifying an appropriate user for your application to run
under.

Runtime User
Because of the container isolation model (mainly the fact that containers share the
underlying Linux kernel), the runtime user of a container has important implications
that some developers don’t think about. In most cases, when the container’s runtime
user is left unspecified, the process runs as the root user. This is problematic because
it increases the attack surface of the container. For example, if an attacker were to
compromise the application and escape the container, they could gain root access on
the underlying host.

When building your container image, it is critical for you to consider the runtime
user of the container. Does the application need to run as root? Does the application
depend on the contents of /etc/passwd? Do you need to add a nonroot user to the
container image? As you answer these questions, ensure that you specify the runtime
user in the container image’s configuration. If you are using a Dockerfile to build your
image, you can use the USER directive to specify the runtime user, as in the following
example, which runs the my-app binary with the user and group ID nonroot (which is
configured by default as part of the distroless set of images):

FROM gcr.io/distroless/base
USER nonroot:nonroot
COPY ./my-app /my-app
CMD ["./my-app", "serve"]

Even though you can specify the runtime user in your Kubernetes deployment mani‐
fests, defining it as part of the container image specification is valuable as it results in
a self-documenting container image. It also ensures that developers use the same user
and group ID as they work with the container in their local or development
environments.

Pinning Package Versions
If your application leverages external packages you will most likely install them using
a package manager such as apt, yum, or apk. As you build your container image, it is
important that you pin or specify the version of these packages. For example, the fol‐
lowing example shows an application that depends on imagemagick. The apk

430 | Chapter 15: Software Supply Chain

instruction in the Dockerfile pins imagemagick to the version that is compatible with
the application:

FROM alpine:3.12
<...snip...>
RUN ["apk", "add", "imagemagick=7.0.10.25-r0"]
<...snip...>

If you leave package versions unspecified, you risk getting different packages that
might break your application. Thus, always specify the versions of the packages you
install in your container image. By doing so, you ensure that your container image
builds are repeatable and produce container images with compatible package
versions.

Build Versus Runtime Image
In addition to packaging applications for deployment, development teams can also
leverage containers to build their applications. Containers can provide a well-defined
build environment that can be codified into a Dockerfile, for example. This is useful
as developers are not required to install the build tooling in their systems. More
importantly, containers can provide a standardized build environment across the
entire development team and their continuous integration (CI) systems.

While using containers to build applications can be useful, it is important to distin‐
guish between the build container image and the runtime image. The build image
contains all the tooling and libraries that are necessary to compile the application,
whereas the runtime image contains the application to be deployed. For example in a
Java application we might have a build image that contains the JDK, Gradle/Maven,
and all of our compilation and testing tooling. Then our runtime image can contain
only the Java runtime and our application.

Given that the application typically does not need the build tooling at runtime, the
runtime image should not contain these tools. This results in a leaner container
image that is faster to distribute and has a tighter attack surface. If you are using
docker to build images, you can leverage its multistage build feature to separate the
build from the runtime image. The following snippet shows a Dockerfile for a Go
application. The build stage uses the golang image, which includes the Go toolchain,
while the runtime stage uses the scratch base image and contains nothing more than
the application binary:

Build stage
FROM golang:1.12.7 as build

WORKDIR /my-app

COPY go.mod .
RUN go mod download

Building Container Images | 431

COPY main.go .
ENV CGO_ENABLED=0
RUN go build -o my-app

Deploy stage
FROM gcr.io/distroless/base
USER nonroot:nonroot
COPY --from=build --chown=nonroot:nonroot /my-app/my-app /my-app
CMD ["/my-app"]

The main golang image contains all the Go build tools, which are not required at
runtime.

We copy the go.mod file first and download so that we can cache this step if the
code changes but the dependencies don’t.

We can use distroless as a runtime image to take advantage of a minimal base
but with no unnecessary extra dependencies.

We want to run our apps as a nonroot user if possible.

Only the compiled file (my-app) is being copied from the build stage to the
deploy stage.

Containers run a single process and usually have no supervisor or
init system. For this reason you need to ensure that signals are han‐
dled correctly and orphaned processes are correctly reparented and
reaped. There are several minimal init scripts capable of fulfilling
these requirements and acting as a bootstrap for your application
instance.

Cloud Native Buildpacks
An additional method of building container images involves tooling that analyze the
application’s source code and automatically produce a container image. Similar to
application-specific build tools, this approach greatly simplifies the developer experi‐
ence as developers don’t have to create and maintain Dockerfiles. Cloud Native Build‐
packs is an implementation of such an approach, and the high-level flow is shown in
Figure 15-1.

432 | Chapter 15: Software Supply Chain

Figure 15-1. Buildpack flow.

Cloud Native Buildpacks (CNB) is a container-focused implementation of Build‐
packs, a technology that Heroku and Cloud Foundry have used for years to package
applications for those platforms. In the case of CNB, it packages applications into
OCI container images, ready to run on Kubernetes. To build the image, CNB analyzes
the application source code and executes the buildpacks accordingly. For example,
the Go buildpack is executed if there are Go files present in your source code. Simi‐
larly, the Maven (Java) buildpack is executed if CNB finds a pom.xml file. This all
happens behind the scenes, and developers can initiate this process using a CLI tool
called pack. The great thing about this approach is that the buildpacks are tightly
scoped, which enables building high-quality images that follow best practices.

In addition to improving the developer experience and lowering the barrier to plat‐
form adoption, platform teams can leverage custom buildpacks to enforce policy,
ensure compliance, and standardize the container images running in their platform.

Overall, providing a solution that builds container images from source code can be a
worthy endeavor. Furthermore, we find that the value of such a solution increases
with the size of the organization. At the end of the day, development teams want to
focus on building value in the application and not on how to containerize it.

Building Container Images | 433

Image Registries
If you are already using containers, then you’ll likely have a registry you prefer. It’s
one of the core requirements for utilizing Docker and Kubernetes because we need
somewhere to store the images we build on one machine and want to run on many
others (either standalone or in a cluster). As is the case for images, the OCI also
defines a standard spec for registry operations (to ensure interoperability), and there
are many proprietary and open source solutions available, most of which share a
common set of core features. Most image registries are comprised of three major
components: a server (for the user interface and API logic), a blob store (for the
images themselves), and a database (for user and image metadata). Usually, the stor‐
age backends are configurable, and this can impact how you design your registry
architecture. We’ll talk more about this in a minute.

In this section we’ll look at some of the most important features offered by registries
and some of the patterns for integrating them into your pipeline. We’re not going to
look deeply at any specific registry implementations, as functionality is generally simi‐
lar; however, there are scenarios where you may want to lean in a certain direction
based on your existing setup or requirements.

If you are already leveraging an artifact store like Artifactory or Nexus you may want
to take advantage of their image hosting capabilities for ease of management. Simi‐
larly, if your environments are heavily cloud-based there may be cost benefits to uti‐
lizing cloud provider registries like AWS Elastic Container Registry (ECR), Google
Container Registry (GCR), or Azure Container Registry (ACR).

Another key factor to consider when choosing a registry is the topology, architecture,
and failure domains of your environments and clusters. You may choose to place reg‐
istries in each failure domain to ensure high availability. When doing this you’ll need
to decide whether you want a centralized blob store or whether you want blob stores
in each region and set up image replication between the registries. Replication is a
feature of most registries that allows you to push an image to one of a set of registries
and have that image automatically pushed to the others in the set. Even if this is not
directly supported in your registry of choice, it is fairly trivial to set up basic replica‐
tion by using a pipeline tool (e.g., Jenkins) and webhooks that trigger on each image
push.

The decision of one versus many registries is also impacted by how much throughput
you need to support. In organizations with many thousands of developers triggering
code and image builds on every code commit, the number of concurrent operations
(pulls and pushes) can be significant. It is important to therefore understand that an
image registry, while playing only a limited role in the pipeline, is in the critical path
for not only production deployments but also development activities. It is a core

434 | Chapter 15: Software Supply Chain

component that must be monitored and maintained in the same way as other critical
components to achieve a high level of service availability.

Many registries are built with the intention of being easily run inside a cluster or con‐
tainerized environment. This approach (which we’ll cover again in “Continuous
Delivery” on page 439) has many advantages. Primarily, we are able to leverage all of
the primitives and conventions inside Kubernetes to keep the services running,
discoverable, and easily configurable. The obvious downside here is that we now have
a reliance on a service inside the cluster to provide images to start new services inside
that cluster. It’s more common to see registries run on a shared services cluster and
have a failover system to a backup cluster to ensure that some instance of the registry
will always be able to service requests.

We’ve also commonly seen registries run outside of Kubernetes and treated as more of
a standalone bootstrap component that is required by all clusters. This is usually the
case where an organization is already using an existing instance of Artifactory or
another registry and repurposes it for image hosting. Utilizing cloud registries is also
a common pattern here, although you also need to be aware of their availability guar‐
antees (as the same topology questions apply) and potential extra latency.

In the following subsections we’ll look at some of the most common concerns when
choosing and working with a registry. These concerns are all security related as secur‐
ing our software supply chain revolves around our deployed artifacts (images). First
we’ll look at vulnerability scanning and how to ensure that our images don’t contain
known security flaws. Then we’ll describe a commonly used quarantine flow that can
be effective at bringing external/vendor images into our environments. Finally, we’ll
discuss image trust and signing. This is an area that many organizations are interested
in but where the upstream tooling and approaches are still maturing.

Vulnerability Scanning
Scanning images for known vulnerabilities is a key competency of most image regis‐
tries. Usually the scanning itself along with the database of common vulnerabilities
and exposures (CVEs) are delegated to a third-party component. Clair is a popular
open source choice and, in many cases, is pluggable should you have specific
requirements.

Every organization will have its own requirements about what constitutes an accepta‐
ble risk when considering CVE scores. Registries will commonly expose controls that
allow you to disable the pulling of images that contain CVEs over a defined score
threshold. Additionally, the ability to add CVEs to an allowlist can be useful to bypass
issues that are flagged but not relevant in your environment, or for those CVEs that
are deemed acceptable risk and/or have no fixes released and available.

Image Registries | 435

This static scanning at initial pull time can be useful to begin with, but what happens
if vulnerabilities are discovered over time in the images we’re already using in the
environment? Scans can be scheduled to detect these changes, but then we need to
have a plan for updating and replacing the images. It can be tempting to automati‐
cally remediate (patch) and push out updated images, and there are solutions that will
always try to keep images up-to-date. However, this can be problematic as image
updates can introduce changes that may be incompatible and/or break the running
application. These automated image update systems may also work outside of your
designated deployment change process and could be hard to audit in the environ‐
ment. Even the blocking of image pulls (described previously) can cause issues. If a
core application’s image has a new CVE discovered and pulls are suddenly prohibited,
this could cause availability issues in the application if those workloads are scheduled
to new nodes and images are unavailable for pulling. As we’ve discussed many times
in this book, it’s imperative to understand the trade-offs that you encounter when
implementing each solution (in this case, security versus availability) and make
informed, well-documented decisions.

A more common model than the automatic remediation described briefly is to alert
and/or monitor on image vulnerability scans and bubble these up to operations and
security teams. The implementation of this alerting may differ depending on the
capabilities offered by your choice of registry. Some registries can be configured to
trigger a webhook call on completion of a scan with the payload including details of
the vulnerable images and discovered CVEs. Others may expose a scrapeable set of
metrics with image and CVE details that can be alerted on using standard tooling
(take a look at Chapter 9 for more details on metrics and alerting tools). While this
method requires more manual intervention, it allows good visibility into the security
state of images in your environment while also affording more control over how and
when they are patched.

Once we have CVE information for an image, then decisions about whether or not to
patch the image (and when) can be made based on the impact of the vulnerability. If
we need to patch and update the image we can trigger the update, testing, and
deployment via our regular deployment pipelines. This ensures that we have full
transparency and auditability and that those changes all go through our regular pro‐
cesses. We will discuss CI/CD and deployment models in more detail later in this
chapter.

While the static image vulnerability scanning covered in this subsection is a com‐
monly implemented part of an organization’s software supply chain, it is only one
layer of what should be a defense in depth strategy to container security. Images may
download malicious content post-deployment or containerized applications may be
compromised/hijacked at runtime. It’s essential therefore to implement some type of
runtime scanning. In a more naive form, this could take the form of periodic filesys‐
tem scanning on running containers to ensure that no vulnerable binaries and/or

436 | Chapter 15: Software Supply Chain

libraries are introduced post-deployment. However, for more robust protection it’s
necessary to limit the actions and behaviors that a container is capable of performing.
This eliminates the inevitable game of whack-a-mole that can occur with CVEs being
discovered and patched and instead focuses on the capabilities a containerized appli‐
cation should possess. Runtime scanning is a larger topic that we don’t have the space
to fully cover here, but you should look into tools like Falco and the Aqua Security
suite.

Quarantine Workflow
As mentioned, most registries provide a mechanism to scan images for known vul‐
nerabilities and restrict image pulls. However, there may be additional requirements
that images must satisfy before they can be used. We have also encountered the sce‐
nario where developers are unable to directly pull images from the public internet
and must use an internal registry. Both of these use cases can be solved by using a
multiregistry setup with a quarantine workflow pipeline described next.

First, we can provide developers with a self-service portal to request images. Some‐
thing like ServiceNow or a Jenkins job works fine here, and we’ve seen this many
times. Chatbots can also offer a more seamless integration for developers and are
gaining popularity. Once an image is requested, it is automatically pulled to a quaran‐
tine registry where checks can be run on the image and the pipeline can spin up envi‐
ronments to pull and verify the image meets specific criteria.

Once the checks pass, the image can be signed (this is optional, see “Image Signing”
on page 438 for more information) and pushed to an approved registry. The devel‐
oper can also be notified (either via the chatbot, or an updated ticket/job, etc.) that
the image has been approved (or rejected, and the reasoning). The whole flow can be
seen in Figure 15-2.

Figure 15-2. Quarantine flow.

Image Registries | 437

https://falco.org
https://github.com/aquasecurity
https://github.com/aquasecurity

This flow can be combined with admission controllers to ensure that only images that
are signed, or those that come from a specific registry, are allowed to be run on a
cluster.

Image Signing
The issue of supply chain security is becoming more prevalent as applications come
to rely on an increasing number of external dependencies, be those code libraries or
container images.

One of the security features often mentioned when discussing images is the notion of
signing. Very simply, the concept with signing is that an image publisher can crypto‐
graphically sign an image by generating a hash of the image and associating their
identity with it before pushing it to a registry. Users are then able to verify the authen‐
ticity of an image by validating the signed hash against the publisher’s public key.

This workflow is attractive because it means we can create an image at the start of our
software supply chain and sign it after each stage of the pipeline. Perhaps we can sign
it after testing has been completed, and again after it has been approved for deploy‐
ment by a release management team. Then at deploy time we are able to gate the
deployment of the image into production based on whether it has been signed by the
various parties that we specify. Not only do we ensure that it has passed those appro‐
vals, but we ensure that it is exactly the same image that is now being promoted to a
production environment. This high-level flow is shown in Figure 15-3.

Figure 15-3. Signing flow.

The primary project in this area is Notary, which was originally developed by Docker
and is built upon The Update Framework (TUF), a system designed to facilitate the
secure distribution of software updates.

Despite its benefits, we have not encountered much adoption of image signing in the
field for a couple of reasons. First, Notary has several components including a server
and multiple databases. These are additional components that need to be installed,
configured, and maintained. Not only that, but because the ability to sign and verify

438 | Chapter 15: Software Supply Chain

images is usually in the critical path for software deployment, the Notary system must
be configured for high availability and resilience.

Secondly, Notary requires each image be identified with a Globally Unique Name
(GUN), which includes the registry URL as part of the name. This makes signing
more problematic if you have multiple registries (e.g., caches, edge locations) as the
signatures are tied to the registry and cannot be moved/copied.

Finally, Notary and TUF require different sets of key pairs to be used across the sign‐
ing process. Each of the keys have different security requirements and can be chal‐
lenging to rotate in the case of a security breach. While it provides an academically
well-designed solution, the current Notary/TUF implementation posed too high of a
barrier to entry for many organizations that were only just getting comfortable with
some of the base technologies they were using. Thus, many weren’t ready to trade
more convenience and knowledge for the additional security benefits that the signing
workflow provided.

At the time of writing, there are efforts underway to develop and release a second ver‐
sion of Notary. This updated version should improve the user experience by solving
many of the issues just discussed, like reducing the complexity of key management
and eliminating the constraint that signatures are not transferable by bundling them
with the OCI images themselves.

There are already several existing projects that implement an admission webhook
that will check images to ensure they have been signed before allowing them to be
run in a Kubernetes cluster. Once the issues are addressed, we anticipate signing
becoming a more oft-implemented property of the software supply chain and these
signing admission webhooks to mature even further.

Continuous Delivery
In the previous sections we’ve discussed in detail the process of converting source
code into a container image. We also looked at where images are stored and the archi‐
tectural and procedural decisions we need to make around choosing and deploying
image registries. In this final section we’ll turn to examining the entire pipeline that
ties these early steps up with the actual deployment of the image to potentially multi‐
ple Kubernetes clusters across many environments (test, staging, production).

We’ll cover how to integrate the build process into the automated pipeline before
looking at imperative, push-driven pipelines that many folks will already be familiar
with. Lastly, we’ll take a look at some of the principles and tooling emerging in the
field of GitOps, a relatively new approach to deployments that leverages version con‐
trol repositories as the source of truth for the assets that should be deployed to our
environments.

Continuous Delivery | 439

It’s worth noting that continuous delivery is a huge area and is the sole subject of
many books. In this section we’re assuming some knowledge of CD principles, and
we’ll focus on how to implement those principles within Kubernetes and associated
tooling.

Integrating Builds into a Pipeline
For local development and testing phases, developers may build images with Docker
locally. However, anything beyond those early phases and organizations will want to
have builds performed as part of an automated pipeline triggered by the committing
of code into a central version control repository. We’ll talk later in this chapter about
more advanced patterns around the actual deployment of images into an environ‐
ment, but in this section want to focus purely on how the build phases can also be run
in cluster using cloud native pipeline automated tooling.

We typically want new image builds to be triggered with a code commit. Some pipe‐
line tools will intermittently poll a set of configured repositories and trigger a task run
when changes are detected. In other cases it might be possible to trigger a process to
begin by firing a webhook from the version control system. We’ll use a few examples
from Tekton, a popular open source pipeline tool that is designed to run on Kuber‐
netes to illustrate some concepts in this section. Tekton (and many other Kubernetes
native tools) utilize CRDs to describe components in the pipeline. In the following
code, we can see a (heavily edited) instance of a Task CRD that can be reused across
multiple pipelines. Tekton maintains a catalog of common actions (such as cloning a
git repository, as shown in the following snippet) that can be utilized in your own
pipelines:

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: git-clone
spec:
 workspaces:
 - name: output
 description: "The git repo will be cloned onto the \
 volume backing this workspace"
 params:
 - name: url
 description: git url to clone
 type: string
 - name: revision
 description: git revision to checkout (branch, tag, sha, ref…)
 type: string
 default: master
 <...snip...>
 results:
 - name: commit
 description: The precise commit SHA that was fetched by this Task

440 | Chapter 15: Software Supply Chain

 steps:
 - name: clone
 image: "gcr.io/tekton-releases/github.com/tektoncd/\
 pipeline/cmd/git-init:v0.12.1"
 script: |
 CHECKOUT_DIR="$(workspaces.output.path)/$(params.subdirectory)"
 <...snip...>
 /ko-app/git-init \
 -url "$(params.url)" \
 -revision "$(params.revision)" \
 -refspec "$(params.refspec)" \
 -path "$CHECKOUT_DIR" \
 -sslVerify="$(params.sslVerify)" \
 -submodules="$(params.submodules)" \
 -depth "$(params.depth)"
 cd "$CHECKOUT_DIR"
 RESULT_SHA="$(git rev-parse HEAD | tr -d '\n')"
 EXIT_CODE="$?"
 if ["$EXIT_CODE" != 0]
 then
 exit $EXIT_CODE
 fi
 # Make sure we don't add a trailing newline to the result!
 echo -n "$RESULT_SHA" > $(results.commit.path)

As mentioned in previous sections, there are many different ways of building OCI
images. Some of these require a Dockerfile, and some do not. You may also need to
perform additional actions as part of a build. Almost all pipeline tools expose the
notion of stages, steps, or tasks that allow users to configure discrete pieces of func‐
tionality that can be chained together. The following code snippet shows an example
Task definition that uses Cloud Native Buildpacks to build an image:

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: buildpacks-phases
 labels:
 app.kubernetes.io/version: "0.1"
 annotations:
 tekton.dev/pipelines.minVersion: "0.12.1"
 tekton.dev/tags: image-build
 tekton.dev/displayName: "buildpacks-phases"
spec:
 params:
 - name: BUILDER_IMAGE
 description: "The image on which builds will run \
 (must include lifecycle and compatible buildpacks)."
 - name: PLATFORM_DIR
 description: The name of the platform directory.
 default: empty-dir
 - name: SOURCE_SUBPATH
 description: "A subpath within the `source` input \

Continuous Delivery | 441

 where the source to build is located."
 default: ""

 resources:
 outputs:
 - name: image
 type: image

 workspaces:
 - name: source

 steps:
 <...snip...>
 - name: build
 image: $(params.BUILDER_IMAGE)
 imagePullPolicy: Always
 command: ["/cnb/lifecycle/builder"]
 args:
 - "-app=$(workspaces.source.path)/$(params.SOURCE_SUBPATH)"
 - "-layers=/layers"
 - "-group=/layers/group.toml"
 - "-plan=/layers/plan.toml"
 volumeMounts:
 - name: layers-dir
 mountPath: /layers
 - name: $(params.PLATFORM_DIR)
 mountPath: /platform
 - name: empty-dir
 mountPath: /tekton/home
 <...snip...>

We can then tie together this task (and others) with our input repository as part of a
Pipeline (not shown here). This involves mapping the workspace we cloned our git
repository into earlier with the workspace that our buildpack builder will use as a
source. We can also specify that the image be pushed to a registry at the end of the
process.

The flexibility of this approach (configurable task blocks) means that pipelines
become very powerful tools for defining a build flow on Kubernetes. We could add
testing and/or linting stages to the build, or some kind of static code analysis. We
could also easily add a signing step to our image (as described in “Image Signing” on
page 438) if desired. We can also define our own tasks to run other build tools such as
Kaniko or BuildKit (if not utilizing buildpacks as in this example).

442 | Chapter 15: Software Supply Chain

Push-Based Deployments
In the previous section we saw how to automate builds in a pipeline. In this section
we’ll see how this can be extended to actually perform the deployment to a cluster
and some of the patterns you’ll want to implement to make these types of automated
delivery pipelines easier.

Because of the flexibility of the task/step-based approach that we saw previously
(which is present in almost every tool), it is trivial to create a step at the end of the
pipeline that reads the tag of the newly created (and pushed) image and updates the
image for the Deployment. This could be achieved by updating the Deployment
directly in the cluster using kubectl set image, and several articles/tutorials still
demonstrate this approach. A better alternative is to have our pipeline write the
image tag change back into the YAML file describing the Deployment and then com‐
mitting this change back into version control. We can then trigger a kubectl apply
over the new version of the repository to enact the change. The latter approach is
preferred as we can keep our YAML as the approximate source of truth for our cluster
in that case (we’ll discuss more on this in “GitOps” on page 446) but the former is an
acceptable iterative step when migrating to this type of Kubernetes-native automated
pipeline.

Image Tagging and Metadata
The naming and/or versioning of images is a topic that comes up periodically with
clients, and we have seen some common patterns that work in most cases. When
building images out of development, using the git hash as a tag works well. These git
hashes are not human-readable, but with automation pipelines in place that’s not usu‐
ally a blocker and the hashes provide a nice trail back to the commit.

You will want to add more descriptive versioning tags (e.g., SemVer) as the pipeline
progresses so it becomes easier to see at a glance what versions are deployed in your
environments. Also consider using immutable tags (which most registries support) to
avoid writing over existing tags and ensure some consistency when pulling images
with the same tag to an environment.

It can also be really useful to add metadata (labels) to your images with contact data
for the image owner and perhaps information about the build. This metadata can be
reported on later on or utilized in other tooling, e.g., a policy tool that might allow
some image access based on specific labels.

Continuous Delivery | 443

When deploying applications to Kubernetes we have two distinct types of artifacts to
consider: the code and configuration required for the application and how to build it,
and the configuration for how to deploy it. We are often asked to weigh in on how
best to organize these artifacts, with some folks preferring to keep everything related
to an application together in a single tree, and others preferring to keep them
separate.

Our advice is usually to choose the latter route for the following reasons:

• Each concern is usually the responsibility of a separate domain or team in the
organization. While developers should be aware of how their applications will be
deployed and will have input into the process, the configuration around sizing,
environments, the injection of secrets, etc. mostly sit as responsibilities of the
platform or operations team.

• Security permissions and audit requirements are likely different for code reposi‐
tories versus those containing deployment pipeline artifacts, secrets, and envi‐
ronment configurations.

Once we have our deployment configurations in a separate repository, it’s easy to fol‐
low how the deployment pipeline might first checkout this repository, then run an
update of the image tag (using sed or something similar), and finally check the change
back in to git to ensure that is our source of truth. We can then run kubectl apply -
f over the changed manifests. This imperative (or push-based) model provides great
auditability as we can leverage the built-in reporting and logging capabilities pro‐
vided by our version control system and easily see the changes flow through our pipe‐
line, as shown in Figure 15-4.

Figure 15-4. Push-based deployments.

444 | Chapter 15: Software Supply Chain

Depending on the level of automation within your organization, you may want to
have promotions between environments handled by your pipelines, and even deploy‐
ments executed against different Kubernetes clusters. There are certainly ways to ach‐
ieve this with most tools, and some will have better native support for this than
others. However, this is an area where the imperative pipeline model described in this
subsection can be more challenging to implement because we have to keep an inven‐
tory (and credentials) for each of the clusters we want to use as a target.

Another challenge of this imperative (where we have a centralized tool pushing
changes out to our environments) is that if the pipeline is interrupted for some rea‐
son, we need to ensure that it is restarted or reconciled back to a healthy state. We
also need to maintain monitoring and alerting on our deployment pipelines (however
they are implemented) to make sure that we’re aware of deployment issues if they
arise.

Rollout Patterns
We mentioned briefly at the end of the previous section the need to monitor pipelines
to ensure that they successfully complete. However, when deploying new versions of
applications we also need a way to monitor their health and decide whether we need
to resolve issues or roll back to a previous working state.

There are several patterns that organizations may want to implement. There are
entire books dedicated to these patterns, but we’ll cover them briefly here to show
how you might implement them in Kubernetes:

Canary
Canary releases are where a new version of an application is deployed to the clus‐
ter and a small subset of traffic (based on metadata, users, or some other
attribute) is directed to the new version. This can be monitored closely to ensure
that the new version (Canary) behaves the same way as the previous version, or
at least does not result in an error scenario. The percentage of traffic can slowly
be increased over time as confidence increases.

Blue/green
This approach is similar to the Canary but involves more of a big bang cutover of
traffic. This could be achieved over multiple clusters (one on the old version,
blue, and one of the new version, green) or could be achieved in the same cluster.
The idea here is that we can test that deployment of the service works as intended
and perform some tests on the environment which is not user facing before cut‐
ting traffic across to the new version. If we see elevated errors, we can cut the
traffic back. There is additional nuance in this approach, of course, as your appli‐
cations may need to gracefully handle state, sessions, and other concerns.

Continuous Delivery | 445

A/B testing
Again similar to the Canary, we can roll out a version of the application that may
contain some different behavior that targets a subset of consumers. We can
gather metrics and analysis on the usage patterns of the new version to make
decisions about whether to roll back or forward, or expand the experiment.

These patterns move us toward the desired state of being able to decouple the deploy‐
ment of our applications from their release to consumers by giving us control about
when features and/or new versions are enabled. These practices are great at de-
risking the deployment of changes into our environments.

Most of these patterns are implemented via some kind of network traffic shifting. In
Kubernetes, we have some very rich networking primitives and capabilities that make
the implementation of these patterns possible. One open source tool that enables
these patterns (on top of various service mesh solutions) is Flagger. Flagger runs as a
controller within the Kubernetes cluster and watches for changes to the image field of
Deployment resources. It exposes many tweakable options to enable the preceding
patterns by programmatically configuring an underlying service mesh to appropri‐
ately shift traffic. It also adds the ability to monitor the health of newly rolled-out ver‐
sions and either continue or halt and revert the rollout process.

We definitely see the value of looking into Flagger and other solutions in this space.
However, we see these approaches more typically broached as part of a second or
third phase of an organization’s Kubernetes journey, given the additional complexity
they both depend on (service mesh is required to enable most patterns) and
introduce.

GitOps
So far we have looked at adding a push-based deployment stage into your delivery
pipelines for Kubernetes. An emerging alternative model in the deployment space is
GitOps. Rather than imperatively push out changes to the cluster, the GitOps model
features a controller that constantly reconciles the contents of a git repository with
resources running in the cluster, as shown in Figure 15-5. This model brings it closely
in line with the control-loop reonciliation experience that we get with Kubernetes
itself. The two primary tools in the GitOps space are ArgoCD and Flux, and both
teams are working together on a common engine to underpin their respective tools.

446 | Chapter 15: Software Supply Chain

Figure 15-5. GitOps flow.

There are a couple of major benefits to this model:

• It is declarative in nature, so that any issues with the deployment itself (tooling
going down, etc.) or deployments being deleted ad hoc will result in (attempted)
reconciliation to a good state.

• Git becomes our single source of truth, and we can leverage existing expertise
and familiarity with the tooling, in addition to getting a strong audit log of
changes by default. We can use a pull request workflow as a gate for changes to
our clusters and integrate with external tooling as required through the extension
points that most version control systems expose (webhooks, workflows, actions,
etc.).

However, this model is not without downsides. For those organizations that truly
want to use git as their single source of truth, this means keeping secret data in ver‐
sion control. Several projects have emerged over recent years to solve this problem,
with the most well-known of these being Bitnami’s Sealed Secrets. That project allows
encrypted versions of Secrets to be committed to a repository and then decrypted
once applied to the cluster (so as to be available to applications). We discuss this
approach more in Chapter 5.

We also need to ensure that we are monitoring the current health of state synchroni‐
zation. If the pipeline was push-based and fails, we’ll see a failure in the pipeline.
However, because the GitOps approach is declarative, we need to make sure we get
alerted if the observed state (in cluster) and the declared state (in git) remain diverged
for an extended period of time.

Continuous Delivery | 447

Increased embracing of GitOps is a trend we see in the field, although it’s definitely a
paradigm shift from more traditional push-based models. Not all applications deploy
cleanly as-is with a flat application of YAML resources, and it may be necessary to
build in ordering and some scripting initially as organizations transition to this
approach.

It’s also important to be cognizant of tools that may create, modify, or delete resources
as part of their life cycle as these sometimes require some massaging to fit into the
GitOps model. An example of this would be a controller that runs in the cluster and
watches for a specific CRD and then creates multiple other resources directly via the
Kubernetes API. If running in strict mode, GitOps tooling may delete those dynami‐
cally created resources as they are not in the single source of truth (the git repo). This
deletion of unknown resources may, of course, be desirable in most cases and is one of
the positive attributes of GitOps. However, you should absolutely be mindful of situa‐
tions where changes may intentionally occur out of band from the git repository that
may break the model and need to be worked around.

Summary
In this chapter we looked at the process of getting source code into a container and
deployed onto a Kubernetes cluster. Many of the stages and principles that you will
already be familiar with (build/test, CI, CD, etc.) still apply in a container/Kubernetes
environment but with different tooling. At the same time some concepts (like
GitOps) will likely be new, building on concepts that are present in Kubernetes itself
to enhance reliability and security within existing deployment patterns.

There are many tools in this space that can enable many different flows and patterns.
However, one of the key takeaways from this chapter should be the importance of
deciding how much (or little) to expose each part of this pipeline to different groups
in the organization. Maybe development teams are engaged with Kubernetes and
confident enough to write build and deployment artifacts (or at least have significant
input). Or maybe the desire is toward abstracting all the underlying details away from
development teams to ease scaling and standardization concerns, at the expense of
additional burden on the platform teams to put relevant foundations and automation
in place.

448 | Chapter 15: Software Supply Chain

CHAPTER 16

Platform Abstractions

Many times we have seen organizations adopt a build it and they will come approach
to designing and building a Kubernetes platform. However, this philosophy is usually
fraught with risk as it often fails to deliver on the key requirements of the many teams
(e.g., development, information security, networking, etc.) that will be interacting
with the platform, resulting in rework and additional effort. It’s important to bring
the other groups along on the journey and ensure that the platform constructed is fit
for purpose.

In this chapter we’ll cover some of the angles you should consider when designing the
onboarding and usage experience for other teams (specifically developers) to your
Kubernetes platform. First we’ll look at some of the more philosophical aspects and
ask the question, How much should developers know about Kubernetes? Then we’ll
move on to discuss how we can build a smooth onramp for developers to get started
deploying to Kubernetes and deploying clusters themselves. Finally, we’ll revisit the
complexity spectrum we mentioned in Chapter 1 and look at some of the levels of
abstractions we can put in place. Our objective is to strike a good balance between
complexity and flexibility when offering a Kubernetes platform to development teams
that have varying degrees of knowledge and desired engagement with the underlying
implementation.

Many of the areas in this chapter are covered elsewhere in the book, which we’ll call
out where appropriate. Here we aim to cover aspects from the specific stance of
increasing team collaboration and building a platform that serves the needs of every‐
one in the organization. Although on the surface this might seem a light topic, the
issues discussed within are often some of the hardest hurdles for many companies to
overcome and can make or break the successful adoption of a Kubernetes-based
application platform.

449

Platform Exposure
We’ve talked many times in this book about the need to evaluate your individual
requirements and ask questions in different areas when designing and implementing
a Kubernetes platform. One major question that will inform many choices is deciding
how much exposure you want development teams to have to the underlying Kuber‐
netes systems and resources. There are several factors that will impact this decision.

Kubernetes is a relatively new technology. In some cases the drive to adopt Kuber‐
netes will come from the infrastructure side of the house, to simplify infrastructure
usage and efficiency, or standardize workloads. In other cases the drive may be from
development teams that are keen to implement a new technology that they feel can
accommodate and accelerate their development and deployment of cloud native
applications. Wherever the drive is coming from, impact will be felt in the other
teams, whether it be adapting to a new paradigm, learning new tools, or just a change
in user experience when interacting with a new platform.

In some organizations, there is a strong requirement that development teams should
not be exposed to the underlying platform. The driver for this is the belief that devel‐
opers should focus on delivering business value and not be distracted by the imple‐
mentation details of the platform being developed. There is some value to this
approach, but in our experience, we don’t always completely agree with it. For exam‐
ple, it’s necessary for developers to have at least some understanding of the base plat‐
form in order to effectively develop applications that target it. This doesn’t mean
increasing the coupling of the application and the platform, but purely understanding
how to maximize the platform capabilities. Chapter 14 covers this application and
platform relationship in more detail.

For the approach of no developer exposure to be successful, there must be sufficient
capacity in the platform team. Firstly because they will be solely responsible for main‐
taining and supporting the environments, and secondly, that team will also be
responsible for building the necessary abstractions required for developers to seam‐
lessly interact with the platform. This point is important, as even when developers are
not directly exposed to Kubernetes, they will still need ways of analyzing application
performance, debugging issues, and troubleshooting. If giving developers kubectl
access to a cluster exposes too much underlying detail, there needs to be an inter‐
mediate layer that allows developers to own the application into production while
simultaneously not overwhelming them with implementation details. In Chapter 9
we cover many of the main ways to expose debugging tools to development teams in
an effective way.

Simply streamlining the troubleshooting experience for developers may not be
enough in some organizations. Deploying applications to Kubernetes can also be
complex, potentially requiring many components. Maybe an application needs a

450 | Chapter 16: Platform Abstractions

StatefulSet, PersistentVolumeClaim, Service, and ConfigMap to be successfully
deployed. When exposing these concepts to developers is not desirable, platform
teams may go a step further and create abstractions in this area. This could be
achieved through self-service pipelines or building custom resources (this is covered
in Chapter 11) to more simply encapsulate the required pieces. We’ll cover both of
these approaches later in this chapter.

A limiting factor when deciding how much of the platform to expose is the skillset
and experience of the teams creating the abstractions. For example, platform teams
will need to have some development skills and knowledge of Kubernetes API best
practices if they want to go down the custom resource route. If they don’t, you may be
limited in what abstractions you can build and as such have to expose more of the
platform internals to development teams.

In the next section we’ll look at some of the ways we’ve seen teams offer a self-service
model to developers (and other end users) in order to streamline and standardize the
deployment of both clusters and applications.

Self-Service Onboarding
Early on in an organization’s Kubernetes journey it’s likely that platform teams will be
responsible for the provisioning and configuration of clusters for all the teams that
need them. They’ll probably also be responsible for at least helping with the deploy‐
ment of applications to those clusters. Depending on the tenancy model adopted
(read more about workload tenancy in Chapter 12), there will be different require‐
ments in this setup process. In a single-tenant model, cluster provisioning and con‐
figuration may be more straightforward, with a set of common permissions, core
services (logging, monitoring, ingress, etc.), and access (e.g., Single Sign-On) setup.
However, in a multitenant cluster we may need to create multiple additional compo‐
nents (e.g., Namespaces, Network Policies, Quotas, etc.) for each team and applica‐
tion onboarded.

However, as the organization begins to scale, provisioning and configuring manually
is not sustainable. It represents repetitive toil for the platform team and blocks the
development teams waiting for manual tasks to complete. Once a base level of matur‐
ity has been reached, we usually see teams start to offer some kind of self-service
offering to their internal users. An effective way of providing this is through an exist‐
ing CI/CD tool or process like Jenkins or GitLab. Both tools allow the easy creation of
pipelines and provide the capability for additional customized inputs at execution
time.

The maturity of tools like kubeadm and Cluster API make the automation of cluster
creation relatively straightforward and consistent. Teams can expose tweakable
parameters like cluster name and sizing, for example, and the pipeline can invoke

Self-Service Onboarding | 451

those tools to provision clusters with sensible defaults before outputting appropriate
credentials or access to the requesting team. Like many things, this automation can be
as sophisticated as you choose to make it. We have seen pipelines that create load bal‐
ancers and DNS automatically based on the requesting user’s LDAP information,
including automatically tagging the underlying infrastructure with the relevant cost
centers. Sizing can be open to the user but constrained with certain ranges depending
on the team, environment, or project. We can even choose whether to provision in
the private or public cloud depending on the classification or security profile of the
application. There is a wide array of possibilities for platform teams to create a flexi‐
ble yet powerful automated provisioning process for development teams.

For multitenant scenarios we’ll not be creating clusters but rather creating Namespa‐
ces and all of the associated objects that allow us to provide a soft-isolation environ‐
ment for the new application. Again, we can use a similiar pipeline approach, but this
time allow development teams to choose the cluster (or clusters) where their applica‐
tion will be deployed to. At a base level we’ll want to generate the following:

Namespace
For the application to reside in and to provide the logical isolation for our other
components to build on.

RBAC
To ensure that only the appropriate authorized groups can access resources in
their own application’s Namespace.

Network policies
To ensure that the application is only allowed to communicate with itself or other
shared cluster services, but not other applications on the same cluster (if
required).

Quotas
To limit the amount of resources that one Namespace or application may con‐
sume in the cluster, reducing the potential for a noisy neighbor situation to arise.

Limit ranges
To set sensible defaults for specific objects created in the Namespace.

Pod Security Policies
To ensure workloads conform to sensible default security settings, such as not
running as a root user.

Not all of these are required or necessary in every scenario, although combined they
allow cluster administrators and platform teams to create a seamless onboarding
experience and deployment environment for new development teams without requir‐
ing manual intervention.

452 | Chapter 16: Platform Abstractions

As organizations mature in their usage and knowledge of Kubernetes, these pipelines
can be implemented in a Kubernetes native way using operators. For example, we
might define a Team resource in the following structure:

apiVersion: examples.namespace-operator.io/v1
kind: Team
metadata:
 name: team-a
spec:
 owner: Alice
 resourceQuotas:
 pods: "50"
 storage: "300Gi"

In this example we might define a specific Team that we want to be onboarded with an
owner (user) and some resource quotas. Our controller that lives in the cluster would
be responsible for reading this object and creating the relevant Namespace, RBAC
resources, and quotas and tying them together. This approach can be powerful
because it allows us to tie in closely with the Kubernetes API and expose a native way
of managing and reconciling resources. For instance, if a role were to be accidentally
deleted or a quota were to get modified, the controller would be able to automatically
remediate the situation. These higher-level types of resources (like a Team or Applica
tion) can be great for bootstrapping a cluster also, but just adding several team
objects and our controller we’re able to automate all of the relevant configuration
ready for use.

We can definitely dig deeper down this rabbit hole to produce a sophisticated auto‐
mation setup. For instance, let’s think about some of the observability tooling that
might need to be configured for new applications. Perhaps we could have our team
controller generate and submit customized dashboards for a new team or application
and have Grafana automatically reload them. We might dynamically add new alert
targets in Alertmanager for new teams or Namespaces. We can create very powerful
functionality behind these simpler, more user-friendly onboarding abstractions.

The Spectrum of Abstraction
In Chapter 1 we introduced the idea of a spectrum of abstraction. In Figure 16-1 we
have expanded on that original concept and added some concrete levels of abstrac‐
tion along the spectrum.

In the preceding sections we talked about some of the philosophical decisions and
organization constraints that might influence where on this spectrum you might land.
In this section we’ll walk through this more detailed spectrum from left (no abstrac‐
tions) to right (fully abstracted platform) and discuss some of the options and trade-
offs as we go.

The Spectrum of Abstraction | 453

Figure 16-1. Spectrum of abstraction.

Command-Line Tooling
By exposing the Kubernetes API through native command-line tooling we are at the
far-left end of the spectrum with no abstractions in place. In some organizations
kubectl will be the primary point of entry to Kubernetes for developers. This might
be due to constraints (lack of available support from the platform teams) or choice
(familiarity with and desire to work directly on Kubernetes from the developers).
There may still be some automation or guardrails in place on the cluster, but develop‐
ers will interact with it using native tooling.

There are some downsides to this approach (even if your development teams are a
little familiar with Kubernetes):

• The manual overhead of having to set up and configure the authentication meth‐
ods for potentially multiple clusters can be cumbersome. This includes switching
contexts between multiple clusters and ensuring that individuals are always tar‐
geting the intended cluster.

• The output format of kubectl commands can be cumbersome to view and work
with. By default we are given tabular output, but this can be marshaled into dif‐
ferent formats and piped to external tooling like jq to more concisely display the
information. However, this requires that developers know about kubectl’s
options and how to use them (in addition to the external tooling).

• Raw kubectl opens all the tweaks and knobs of Kubernetes to the user without
abstraction/mediation. As such we need to ensure not only that there are appro‐
priate RBAC rules in place to restrict unauthorized access, but also that there is a
layer of admission control vetting all the requests coming into the API server.

Various tools can enhance this experience. There are many kubectl plug-ins that can
provide a better user experience in the local shell, such as kubens and kubectx, that
provide better usability and visibility into Namespaces and contexts, respectively.
There are plug-ins that will aggregate logs from multiple Pods, or provide a terminal
UI for application health. While not advanced tools, they can remove common pain

454 | Chapter 16: Platform Abstractions

points and eliminate the need for developers to know the intricacies of some of the
underlying implementation details. These additional tools are useful helpers, but
we’re still exposing the Kubernetes API directly with barely any abstraction on top.

There are also plug-ins that tie into external auth systems to streamline the authenti‐
cation flow to abstract the complexity of kubeconfigs, certificates, tokens, etc., away
from the user. This is an area where we regularly see some augmentation of the
vanilla tooling, as enabling developers to have secure access to multiple clusters
(especially those that may come and go dynamically) can be challenging. In noncriti‐
cal environments, access may be based on key pairs (which must be generated, man‐
aged, and distributed), whereas in more stable environments access is likely to be
linked to a Single Sign-On system. We have developed command-line utilities for sev‐
eral clients to pull credentials from a central cluster registry based on a local user’s
login credentials.

Additionally, you may decide to go down the route of Airbnb. In a recent QCon talk,
Melanie Cebula shared Airbnb’s approach of building out more advanced toolsets
both as standalone binaries and kubectl plug-ins to interact with its clusters, hook
into image building, deployment, and more.

There is an additional class of tooling that allows developers a graphical interface to
interact with the cluster. Recent popular choices here are Octant and Lens. Rather
than sitting in the cluster as the Kubernetes dashboard does, these tools run locally on
a workstation and utilize a kubeconfig to access the cluster. These tools can be a great
onramp for developers newer to the platform who want to see a visual representation
of the cluster and their applications. Enhancing the client-side experience is the first
step that organizations can take to simplify developer interactions with Kubernetes.

Abstraction Through Templating
Deploying a single application to Kubernetes can require the creation of multiple
Kubernetes objects. For example, a simple Wordpress application may need the
following:

Deployment
For describing the image, commands, and properties of the Wordpress instance.

StatefulSet
For deploying MySQL as a datastore for Wordpress.

Services
To provide discovery and load balancing for both Wordpress and MySQL.

PVC
To dynamically create a Volume for the Wordpress data.

The Spectrum of Abstraction | 455

https://oreil.ly/OxTSc
https://octant.dev
https://k8slens.dev

ConfigMaps
To hold configuration for both Wordpress and MySQL.

Secrets
To hold admin credentials for both Wordpress and MySQL.

In this list we have nearly 10 different objects all to support an extremely small appli‐
cation. Not only that, but there are nuances and expert knowledge needed to config‐
ure them. For example, when using a StatefulSet we need to create a special headless
Service to front it. We want our developers to be able to deploy their application to
the cluster without having to know how to create and configure all of these different
Kubernetes object types themselves.

One of the ways we can ease the user experience when deploying these applications is
by only exposing a small set of inputs and generating the rest of the boilerplate
behind the scenes. This approach doesn’t require developers to know about all the
fields in all the objects, but it still exposes some of the underlying objects and uses
tools that are a level up from pure kubectl. The tools that have some maturity in this
area are templating tools like Helm and Kustomize.

Helm
Helm has become a popular tool in the Kubernetes ecosystem over the past couple of
years. We realize that it has capabilities over and above just templating, but in our
experience have found the templating use case (followed by editing and application of
manifests) more compelling over some of its life cycle management features.

Following is a snippet from the Wordpress Helm chart (package describing an appli‐
cation) describing a Service:

ports:
 - name: http
 port: {{ .Values.service.port }}
 targetPort: http

This template is not directly exposed to developers but is a template that will use an
injected or defined value from elsewhere. In the case of Helm, this can be passed on
the command line or more commonly through a values file:

Kubernetes configuration
For minikube, set this to NodePort, elsewhere use LoadBalancer or ClusterIP
##
service:
 type: LoadBalancer
 ## HTTP Port
 ##
 port: 80

456 | Chapter 16: Platform Abstractions

Charts contain a default Values.yaml file with sensible settings, but developers can
provide an override where they modify only the settings they need. This allows pow‐
erful customization via the templating without needing in-depth knowledge. Rather
than purely templating values, Helm also contains functionality for basic logic opera‐
tions, allowing a single tweak in the values file to generate or modify large sections in
the underlying templates.

For instance, in the example values file just shown, there is a type: Loadbalancer
declaration. This is injected directly into the template in several places, but it is also
responsible for triggering more complex templating through the use of conditionals
and built-in functions, as shown in the following code snippet:

spec:
 type: {{ .Values.service.type }}
 {{- if (or (eq .Values.service.type "LoadBalancer")
 (eq .Values.service.type "NodePort")) }}
 externalTrafficPolicy: {{ .Values.service.externalTrafficPolicy | quote }}
 {{- end }}
 {{- if (and (eq .Values.service.type "LoadBalancer")
 .Values.service.loadBalancerSourceRanges) }}
 loadBalancerSourceRanges:
 {{- with .Values.service.loadBalancerSourceRanges }}
{{ toYaml . | indent 4 }}
 {{- end }}
 {{- end }}

This inline logic may look complex and certainly has its detractors. However, the
complexity is owned by the creators of the charts, and not the end-user development
teams. The construction of the complex YAML structures in the template is keyed
from a single type key in the values file, which is the interface for the developer to
modify the configuration. The values file can be specified at runtime so different files
(with different configurations) can be used for different clusters, teams, or
environments.

Implementing Helm for configuring and deploying both third-party and internal
applications can be an effective first step to abstracting some of the underlying plat‐
form from developers and allowing them to focus more closely on only the options
they need. However, there are still some disadvantages. The interface (Values.yaml) is
still YAML and can be an unfriendly user experience if developers need to explore the
templates to understand the impact of a change (although good documentation can
mitigate this).

For those who want to go a step further, we’ve seen tools developed that will abstract
these tweakable items to a user interface. This allows a more native approach under
the hood, but the user experience can be customized depending on the requirements
of the audience. For example, workflows can be built into an existing deployment tool
(like Jenkins) or a ticketing type of service, but the underlying output can still be

The Spectrum of Abstraction | 457

Kubernetes manifests that are then applied to a cluster. While powerful, these models
can get complex to maintain, and the abstractions can eventually leak through to the
user.

An interesting take on this model that has recently appeared is the K8s Initializer by
Ambassador Labs. Using a browser-based UI workflow, the user is asked multiple
questions about the type of service they want to deploy and the target platform. The
site then outputs a downloadable package for the user to apply to the cluster with all
the customizations applied.

All the templating approaches have many of the same strengths and weaknesses. We
are still dealing with Kubernetes native objects that are applied to the cluster. For
example, when outputting our Helm files with completed values we’re still exposed to
Services, StatefulSets, and more. This isn’t a complete abstraction of the platform, so
developers are still required to have some level of underlying knowledge. However, on
the flip side, that’s also an advantage of this approach (either with Helm, or the more
abstracted approach from K8s Initializer). If upstream Helm charts or the Initializer
do not output exactly what we need, we still have the full flexibility to modify the
results before applying to the cluster.

Kustomize

Kustomize is a flexible tool that can be used standalone or as part of kubectl to apply
abitrary additions, deletions, and modifications to fields in any Kubernetes YAML
objects. It is not a templating tool but is useful when leveraged on a set of manifests
that have been templated by Helm as a method of modifying fields that Helm does
not otherwise expose.

For the reasons previously discussed, we have seen Helm as a templating tool piped
into something like Kustomize for additional customizations as a very powerful
abstraction that also allows full flexibility. This approach sits somewhere in the mid‐
dle of the spectrum and is often a sweet spot for organizations. In the next section
we’ll move further to the right on the abstraction spectrum and see how we can start
encapsulating underlying objects with custom resources tailored specifically to each
organization/use case.

Abstracting Kubernetes Primitives
As we’ve spoken about many times in this book, Kubernetes provides a set of primi‐
tive objects and API patterns. In combination these allow us to build higher-level
abstractions and custom resources to capture types and ideas that are not built in. In
late 2019 the social media company Pinterest published an interesting blog post
describing how it had created CRDs (and associated controllers) to model its internal
workloads as a way of abstracting Kubernetes native building blocks away from its
development teams. Pinterest summarized its rationale for this approach as such:

458 | Chapter 16: Platform Abstractions

https://app.getambassador.io/initializer
https://app.getambassador.io/initializer

On the other hand, the Kubernetes native workload model, such as deployment, jobs
and daemonsets, are not enough for modeling our own workloads. Usability issues are
huge blockers on the way to adopt Kubernetes. For example, we’ve heard service devel‐
opers complaining about missing or misconfigured Ingress messing up their end‐
points. We’ve also seen batch job users using template tools to generate hundreds of
copies of the same job specification and ending up with a debugging nightmare.

—Lida Li, June Liu, Rodrigo Menezes, Suli Xu, Harry Zhang, and Roberto Rodri‐
guez Alcala; “Building a Kubernetes platform at Pinterest”

In the following code snippet, PinterestService is an example of Pinterest’s custom
internal resources. The 25-line object creates multiple Kubernetes native objects that
would equate to more than 350 lines if created directly:

apiVersion: pinterest.com/v1
kind: PinterestService
metadata:
 name: exampleservice
 project: exampleproject
 namespace: default
spec:
 iamrole: role1
 loadbalancer:
 port: 8080
 replicas: 3
 sidecarconfig:
 sidecar1:
 deps:
 - example.dep
 sidecar2:
 log_level: info
 template:
 spec:
 initcontainers:
 - name: init
 image: gcr.io/kuar-demo/kuard-amd64:1
 containers:
 - name: init
 image: gcr.io/kuar-demo/kuard-amd64:1

This is an extension of the templating model we saw in the previous section where
only certain inputs are exposed to the end user. However, in this case we can con‐
struct an input object that makes sense in the context of the application (rather than a
relatively unstructured Values.yaml file) and be more intuitively understood by the
developers. While it’s still possible for leaky abstractions to occur with this approach,
it’s less likely as the platform team (creating the CRDs/operator) have full control of
how to create and modify the underlying resources rather than having to work within
the constraints of the existing objects as with the Helm approach. They also have the
ability (with the controller) to craft much more sophisticated logic through a general-
purpose programming language instead of being limited by Helm’s built-in functions.

The Spectrum of Abstraction | 459

https://oreil.ly/Ovmgh

However, as we discussed earlier, this comes with the trade-off that platform teams
must now have programming expertise. For more depth on creating platform services
and operators take a look at Chapter 11.

By utilizing an operator, we can also call out to external APIs to integrate richer func‐
tionality into our abstracted object types. For example, one client had an internal
DNS system that all applications needed to be registered with to work correctly and
be exposed to external clients. The incumbent flow would have developers visit a web
portal and manually add the location of their service and the ports they needed for‐
warded from their assigned DNS name. We have a couple of options to enhance the
developer experience.

If we’re utilizing native Kubernetes objects (like Ingress in this case), we can create an
operator that will read a special annotation on the applied Ingress and automatically
register the application with the DNS service. This might look like the following:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: my-app
 annotations:
 company.ingress.required: true
spec:
 rules:
 - host: "my-app"
 http:
 paths:
 - path: /
 backend:
 service:
 name: my-app
 port:
 number: 8000

Our controller would read the company.ingress.required: true annotation, and
depending on the name of the application, the Namespace or some other metadata
could go and register the appropriate DNS records, as well as potentially modifying
the host field depending on certain rules. While it reduces a lot of the manual work
(of creating the records) required by the developer, it still requires some knowledge/
creation of Kubernetes objects (in this case, the Ingress). In that way, it is more in line
with the level of abstraction described in the previous section.

Another option is to use a custom resource like the PinterestService. We have all
the information we need encapsulated there, and we can create the Ingress via our
operator, as well as configuring external services like the DNS system. We haven’t
leaked any of the underlying abstraction through to the developer and have full flexi‐
bility with our implementation.

460 | Chapter 16: Platform Abstractions

Supporting Differing Levels of Abstraction
When deciding on the right level of abstractions to offer with your organization, it’s
important to think about how you’ll document and support them. For instance, when
using something like Helm (or other templating tools) or an approach that distills
down to raw Kubernetes objects (Pods, PVCs, ConfigMaps, etc.) you are able to lever‐
age a huge amount of community resources when troubleshooting.

An example of this can be a status condition on a PVC describing why storage
couldn’t be bound, or perhaps an error message coming from Helm when trying to
install a Chart with a misconfigured template. Both of these occurrences can be easily
searched online due to the mature and extensive documentation and shared commu‐
nity experience with those commonly utilized tools and objects.

When fully abstracting away those objects (either behind pipelines where developers
don’t have raw debugging acccess or behind custom resource types like PinterestSer
vice), it can be a lot more difficult for development teams to tap into those shared
community sources if the scope of usage is very narrow (potentially just internal to
your organization). In these cases good documentation is essential, but also providing
a window to those underlying internals can be useful in break-glass situations.

The break-glass approach is especially powerful as it allows end users to experience a
default high level of abstraction, minimizing day-to-day friction, but be able to dive in
and choose to consume a different level of abstraction if required or desirable (based
on individual skillsets or knowledge). In our experience this model should be the
ideal model when designing platform abstractions.

Another relevant aspect here is the transferability of skills. As upstream Kubernetes
skills become more commonplace, it will be easier for those people to interact with
and troubleshoot the platform if the underlying internals are accessible or exposed. It
also may be more advantageous to have a more vanilla platform (or at least one where
the layers are accessible) to attract talent who may not want to get deeply ingrained in
any specific downstream platform/distribution for fear of narrowing their skillset.

Even with the custom resource and operator approach we’ve discussed in this section,
we are still exposing some of the core mechanics of the platform to development
teams. We need to specify valid Kubernetes metadata, API versions, and resource
types. We also expose YAML (unless we’re also providing a pipeline, wrapper, or UI to
build it) and the quirks associated with it. In the next (and final) section we’ll move
fully to the right on our abstraction spectrum and talk about some of the options that
allow developers to go directly from their application code to the platform and not
even necessarily know about Kubernetes at all.

The Spectrum of Abstraction | 461

Making Kubernetes Invisible
In previous sections we’ve been moving from left to right on the spectrum of abstrac‐
tion, starting with the least abstracted (raw kubectl access) and now ending with a
fully abstracted platform. In this section we’ll talk about cases and tooling where
developers don’t even know they’re using Kubernetes and whose only interface to the
platform (more or less) is committing/pushing code, allowing them to retain a fairly
narrow (and deep) focus without being exposed to platform nuances.

SaaS providers like Heroku and tools like Cloud Foundry popularized the developer-
focused push experience over 10 years ago. The concept is that the tooling (once con‐
figured) would provide a platform as a service (PaaS, now a nebulous term) that
contained all of the necessary complementary components for an application to func‐
tion (observability stacks, some form of routing/traffic management, software cata‐
logs, etc.) and would allow developers to simply push code to a source repository.
Specialized components within the platform would set appropriate resource limits,
provision (if necessary) environments for the code to run, and plumb together the
standard PaaS components to enable a streamlined end-user experience.

You might be thinking that there is some crossover with Kubernetes here, which also
provides us some primitives to enable some similar functionality. When the original
PaaS platforms were built, Docker and Kubernetes didn’t exist and the prevalence of
more rudimentary containerized workloads was very limited. Hence, these tools were
built from the ground up for a virtual machine–based environment. We are now
increasingly seeing these tools (and other new ones) be ported to or rewritten for
Kubernetes for exactly the reason we identified earlier. Kubernetes provides very
strong mechanical foundations, API conventions, and raw primitives to build these
higher-level platforms atop of it.

One of the criticisms that is often leveled at Kubernetes is that it introduces a non-
trivial amount of additional complexity into an environment, both for operations and
development teams (on top of the paradigm shift to containers that must also be
negotiated). However, this perspective misses one of the primary aims of Kubernetes
which (as cofounder Joe Beda has articulated many times) is to be a platform for
building platforms. Complexity will always exist somewhere, but through its architec‐
tural decisions and primitives, Kubernetes allows us to abstract the complexity to
platform developers, vendors, and the open source community for them to build
seamless development and deployment experiences upon Kubernetes.

We already mentioned Cloud Foundry, which is probably the most popular and suc‐
cessful open source PaaS (now ported to Kubernetes), and there are other fairly
mature options like Google App Engine (and some other serverless technologies) and
parts of RedHat OpenShift. In addition to these we’re seeing more platforms appear
as the space matures. One such popular platform is Backstage, originally created by
Spotify. Now a CNCF Sandbox project, it is a platform for building portals that

462 | Chapter 16: Platform Abstractions

https://backstage.io

provide tailored abstractions for developers to deploy and manage applications. Even
as we write this chapter, HashiCorp (developer of many cloud native OSS tools like
Vault and Consul) has just announced Project Waypoint, a new tool to separate end
users from the underlying deployment platforms and provide a high-level abstraction
for development teams. In their announcement blog post they wrote:

We built Waypoint for one simple reason: developers just want to deploy.
—Mitchell Hashimoto, “Announcing HashiCorp Waypoint”

Waypoint aims to encapsulate the build, deploy, and release stages of software devel‐
opment. With Waypoint the developers still have to create (or have help creating) a
configuration file that describes their process, akin to a Dockerfile except it describes
the full set of stages in a minimal way, soliciting only the essential inputs. An example
of this configuration is as follows:

project = "example-nodejs"

app "example-nodejs" {
 labels = {
 "service" = "example-nodejs",
 "env" = "dev"
 }

 build {
 use "pack" {}
 registry {
 use "docker" {
 image = "example-nodejs"
 tag = "1"
 local = true
 }
 }
 }

 deploy {
 use "kubernetes" {
 probe_path = "/"
 }
 }

 release {
 use "kubernetes" {
 }
 }
}

Note that Waypoint’s approach is still to push some complexity onto the developer
(writing this file); however, they have abstracted a huge number of decisions away.
Abstracting the platform doesn’t always mean that all complexity is removed from the
process, or that no one has to learn anything new. Instead, as in this case, we can

The Spectrum of Abstraction | 463

https://oreil.ly/ZhTJ4

introduce a new, simplified interface at the right level of abstraction that hits the sweet
spot of speed and flexibility. In Waypoint’s case even the underlying platform can be
switched out in the deploy and release stages to use something like Hashicorp’s own
Nomad, or some other orchestration engine. All of the underlying details and logic
are abstracted by the platform. As Kubernetes and these other platforms evolve and
become more stable and boring (some would argue we are nearly there), then the real
innovation will continue in the development of higher-level platforms to better
enable development teams to deliver more rapid business value.

Summary
In this chapter we’ve discussed the different layers of abstraction that platform teams
can offer to their users (usually development teams) and the common tools and pat‐
terns we’ve seen used to implement them. Probably more than any other area, this is
where organizational culture, history, tooling, skillsets, and more will all inform any
decisions and trade-offs that you choose, and almost every client we’ve worked with
has chosen to solve the issues described in this chapter in slightly different ways.

It’s also important to note that while we often have espoused the value of having
development teams not having to concern themselves too much with the underlying
deployment platform, that is not to say that this is always the right choice or that
developers should never understand where and how their applications are running.
This information is key to being able to leverage specific features of the platform, for
instance, or being able to debug issues with their software. As always, maintaining a
strong balance is often the most successful way forward.

464 | Chapter 16: Platform Abstractions

Index

A
A/B testing, 446
abstractions, 449

(see also platform abstractions)
considerations in application platform built

on Kubernetes, 15
developer, application platform on Kuber‐

netes, 20
spectrum of, 453

access control
configuring access to storage provider, 90
service mesh features, 169
webhooks

design considerations, 227
access modes for storage, 80
add-ons (cluster), 50-52
admin role, 359
admission control, 20, 219-241

admission webhooks, 345
centralized policy systems, 234-241
extensions, 316
in-tree admission controllers, 222
Kubernetes admission chain, 220-221
webhooks, 223-228, 361

configuring webhook admission control‐
lers, 225-227

writing a mutating webhook, 228-234
controller runtime, 231-234
plain HTTPS handler, 229-231

AdmissionReview objects, 224
Alertmanager, 266
alerts

from logs, 250
from metrics, 255-257

when alerting and metrics systems go
down, 256

allowed-ingress-pattern annotation, 238
Amazon Elastic File System (EFS), 81
Amazon Elastic Kubernetes Service (EKS), 305
Amazon S3, 82
Antrea, 126
API Priority and Fairness feature, 362
API server, 3, 356

access to resources through, 20
admission control and, 219, 454

in-tree admission controllers, 222
Kubernetes admission chain, 220
webhooks, 223

and different types of machines in a cluster,
42

application configurations
ConfigMaps and Secrets, 400
getting from the server, 402

application deployments and, 398
authentication to, 274

AWS IRSA, 303
Service Account for workloads, 296
using PSATs, 297
using shared secrets, 275

and Client API consumption of secrets, 195
controllers and, 318
custom resources and, 319
Endpoints resource updates, 137
horizontal Pod autoscaling, 381
Ingress controllers and, 157
installation of cluster add-ons, 51
IP address management for Services, 129

465

Kubebuilder facilitating interactions with,
326

in larger clusters, 40
load balancing, 44
multitenancy and

API Priority and Fairness, 362
enforcing policy using admission web‐

hooks, 361
preventing resource modification by ten‐

ants, 358
operator extensions and, 316
resource deletions and, 346
scheduling policy updates, 348
secret data moving through network, 190
service discovery through DNS, 148
submitting nonencoded string data to, 192
support for encrypting secrets at rest, 198
webhook extensions and, 315

app-specific metrics, 416
application architecture, autoscaling and, 379
application encryption, 190
application forwarding of logs, 245
application instrumentation for tracing, 272
application platforms

building on Kubernetes, 12-20
abstraction spectrum, 15
building blocks, 17-20
determining platform services, 16
starting from the bottom, 13

building platform services (see platform
services, building)

defining, 7-12
aligning your organizational needs, 10
approaches to, 8
disadvantages of prebuilt platforms, 8

application-specific operators, 324
application/workload identity, 288-311

network identity, 289-293
platform mediated Node identity, 299-311

AWS platform authentication methods/
tools, 300-305

cross-platform identity with SPIFFE and
SPIRE, 305-311

Projected Service Account tokens, 297-299
Service Account tokens, 293-296
shared secrets, 289

applications on Kubernetes, 397-423
application logs, 415-416
considerations, 397

deploying applications to Kubernetes,
398-399

exposing metrics, 416-419
app-specific metrics, 419
four golden signals, 419
instrumenting applications, 417-418
RED method, 419
USE method, 419

handling rescheduling events, 404-408
graceful container shutdown, 405
pre-stop container life cycle hook, 404
satisfying availability requirements, 407

ingesting configuration and secrets, 400-404
configuration from external systems, 403

instrumenting for distributed tracing,
420-423
creating spans, 421
initializing the tracer, 420
propagating context, 422

Pod resource requests and limits, 413-415
state probes, 408-413

implementing, 412
liveness probes, 409
readiness probes, 410
startup probes, 411

architecture and topology, 28-35
cluster federation, 32-35

federated software deployment, 35
management clusters, 33
observability, 34

cluster tiers, 29
etcd deployment models, 28
node pools, 31

attack vectors, new, understanding, 200
audit logs, 247-249

audit policy, 247
forwarding to a backend, 249

auditing secret interaction, 215
authentication, 273

(see also identity)
extensions, 316
methods of, 275-285

OpenID Connect, 283
public key infrastructure, 277-283
shared secrets, 275

methods provided by Vault, 207
requests to API server, 315

authorization, 20, 273
establishing identity before, 274

466 | Index

requests for secrets in Vault, 207
automation

in deployments, 26-27
infrastructure, 44-46
of infrastructure management, 36
integration of automated components, 313
triggering mechanisms for, 60

autoscaling, 377-395
application architecture, 379
for applications fluctuating in load and traf‐

fic, 378
cluster, 33, 377, 389-395

benefits and concerns with, 392
Cluster Autoscaler, 389-392
cluster overprovisioning, 393

of DNS server deployment, 152
primary motivations for, 378
types of scaling, 378
workload, 377, 380-389

Cluster Proportional Autoscaler, 388
custom autoscaling, 389
Horizontal Pod Autoscaler, 380-384
using custom metrics, 387
Vertical Pod Autoscaler, 384-387

autoscaling/v2beta2 API, 382
availability requirements, 407
availability zones (AZs), 43
AWS (Amazon Web Services), 299

Cluster Autoscaler Deployment manifest
targeting, 391

disk encryption, 189
Kubernetes built-in controller for, 132
SPIRE integration with, 311
VPC CNI, 108, 123

AWS Elastic Block Storage (EBS), 80, 89
encryption of, 189
offering EBS volumes to Pods dynamically,

86
AWS platform authentication methods/tooling,

300-305
IAM Roles for Service Accounts, 229, 303
kiam, 301
kube2iam, 300

Azure Disk Storage, 80
Azure File Share, 81
Azure, Kubernetes built-in controller for, 132

B
backup and recovery, storage considerations, 81

bare metal versus virtualized machines, 36
base images

choosing an image, 429
golden base image antipattern, 428

base64 encoded secret data, 192
Bearer tokens, 276
BGP (Border Gateway Protocol), 105, 108

MetalLB using BGP peer with network rout‐
ers, 133

use by Calico, 117
VXLAN and, 118

BGPPeer CRD, 119
Bitnami-labs/sealed-secrets, 211
block devices, 82
blue/green rollout pattern, 445
bootstrap utilities, 48
bootstrapping Kubernetes control plane, 48
Border Gateway Protocol (see BGP)
build container image versus runtime image,

431
build tools for container images, 69
building blocks, application platform on Kuber‐

netes, 17-20
authorization/admission control, 20
container networking, 18
container runtime, 18
developer abstractions, 20
IAAS/datacenter and Kubernetes, 18
identity, 19
observability, 20
secret management, 19
service routing, 19
software supply chain, 20
storage integration, 19

Buildpacks, 433

C
C#, 327
CA (see Cluster Autoscaler)
Calico, 112

absorbing kube-proxy responsibilities, 147
BGP routing protocol, 105
GlobalNetworkPolicy CRD, 369
identity, establishing, 290
network policy enforcement, 110
overview, 117
Pod CIDR, IP range values, 103
routing packets inside the cluster, 118

canary releases, 445

Index | 467

capacity management, 378
centralized policy systems for admission con‐

trol, 234-241
cert-manager controller, 166-168, 323
certificate management

Certificate Authority for TLS certificates,
190

in Istio, 175
in service meshes, 169, 184

certificates
authentication based on for robot accounts,

285
Certificate Signing Requests, 279-281
client-certificate-data, 278
provisioned through Kubernetes CSR flow,

281
required submission by webhooks, 224
root CA certificates, 429
workload, required by Istio and Envoy, 290
x509, issues with, 282

CertificateSigningRequest object, 280
CFS (Completely Fair Scheduler) bandwidth

control, 366
characteristic-based node pools, 31
chargeback, 257, 260
CI/CD (continuous integration/continuous

delivery), 20
add-on operators and, 51
continuous delivery, 439-448

GitOps, 446
integrating builds into a pipeline,

440-442
push-based deployments, 443-445
rollout patterns, 445-446

providing self-service onboarding, 451
using pipeline to install cluster add-ons, 51

CIDR (see Classless Inter-Domain Routing)
Cilium

absorbing kube-proxy responsibilities, 147
deploying to cluster, 115
identity, establishing, 292
overview, 120
Pod CIDR, IP range values, 103

CiliumClusterwideNetworkPolicy, 122, 292
CiliumNetworkPolicy, 122, 292
CiliumNode CRD, 121
Citadel, 175
Classless Inter-Domain Routing (CIDR)

in Cilium CNI plug-in, 121

in CNI Calico plug-in, 117
Service CIDR block, 129
setting up Pod CIDR, 103

Client API consumption of secrets, 195
client libraries, supported programming lan‐

guages, 327
CLIs (command-line interfaces)

Cilium CLI, 122
containerd CLI (ctr), using to inspect con‐

tainers, 74, 75
crictl, using to inspect containers, 74
using crictl with CRI-O, 76
using Docker CLI to inspect containers, 73

cloud computing
application/workload and network identity,

289
cloud provider registries, 434
difficulties with native routing to workload

IPs, 106
Kubernetes cloud provider controllers, 132
object stores, 82
security measures to protect hardware, 188

Cloud Foundry, 8, 462
Cloud Native Buildpacks (CNB), 432, 441
cloud provider integration, 6, 131
Cloud Provider Interface (CPI), 6
CloudFormation for AWS, 44
Cluster API, 33, 355, 451

Kubernetes operators, 45
using Cluster Autoscaler with, 391

Cluster Autoscaler (CA), 389-395
configurable scaling behavior, 391
Deployment manifest for AWS, 391

Cluster Discovery Service (CDS), 174
Cluster external traffic policy setting, 142
cluster federation, 32-35

federated software deployment, 35
management clusters, 33
observability, 34

Cluster Proportional Autoscaler (CPA), 152,
388

cluster tiers, 29
ClusterConfiguration, 199
ClusterFirstWithHostNet DNS policy, 164
ClusterIP Service, 128, 130

implementation details, 139
kube-proxy in IPVS mode, 146
Service definition exposing NGINX on, 129

ClusterIssuer resource, 167

468 | Index

ClusterRole, 286, 358
ClusterRoleBinding, 286, 358
clusters

autoscaling, 33, 389-395
cluster overprovisioning, 393

deploying service mesh to, 181
host/node network, Pod CIDR and, 103
large deployments, scalability issues with

Endpoints resource, 137
multicluster service mesh, 184
multitenant, 355
provisioning and configuration for teams,

451
replacement of, 55
single-tenant, 354
size of in etcd deployments, 28
sizing, 39
triggering mechanisms for builds, scaling,

and upgrades, 60
command-line interfaces (see CLIs)
command-line tooling, 454
common vulnerabilities and exposures (CVEs),

435
communication protocols supported by Serv‐

ices, 134
compute infrastructure, 41
compute-optimized nodes, 42
ConfigMaps, 195, 319, 320

consuming in applications, 400-402
downsides, 402
mounting as files in Pod filesystem, 400
using environment variables, 401

example defining a scheduling policy, 349
configuration management tools, 46
conmon process, 75
connection tracking (conntrack), 143
ConstraintTemplate CRDs, 236, 237, 240
container images

building, 426-433
build versus runtime image, 431
choosing a base image, 429
Cloud Native Buildpacks, 432
golden base image antipattern, 428
pinning package versions, 430
runtime user, 430

OCI image specification, 67-69
container log processing, 244-247
container networking, 18

Container Networking Interface (CNI), 6, 112,
315
binary and configuration, 113
CNI chaining, 148
CNI providers implementing network pol‐

icy, 110
identity for clusters, 290-293
installation, 114
plug-ins, 116-126

absorbing kube-proxy responsibilities,
147

AWS VPC CNI, 123
Calico, 117
Cilium, 120
leveraging plug-in-specific CRDS for

network policy, 369
Multus, 125
other, 126

plug-ins for Pod IPAM, 103
plug-ins offering network policy APIs, 111

Container Runtime Interface (CRI), 5, 6, 69-71,
315
containerd plug-in, 74

container runtimes, 18, 47, 63-78
choosing a runtime, 72-78

containerd, 74
CRI-O, 75
Docker, 73
Kata Containers, 76
Virtual Kubelet, using to surface alterna‐

tive runtimes, 77
configuring and running multiple, 76
OCI runtime specification, 65-67

container storage (see storage)
Container Storage Interface (CSI), 6, 87-89, 315

CSI Controller service, 88
integration of secret store, 208-210
Node plug-in, 89

containerd, 74
CRI plug-in, 70, 72
handling interaction between kubelet and

Kata Containers, 76
use by Docker, 73
using ctr CLI to inspect containers, 74

containers
containerized versus on host etcd deploy‐

ments, 29
graceful shutdown, 405
history of, 64

Index | 469

out-of-memory killed (OOMKilled), 365
pre-stop container life cycle hook, 404
runtime, 47

contextual information in logs, 416
Contour, 5
Contour Ingress controller, 155

container pre-stop hook, 404
proxying of TLS encrypted TCP connec‐

tions, 160
control groups (cgroups), 64
control plane, 356

components of, 49
Ingress controllers, 156
Istio interactions with, 175
service mesh upgrades, 182

control plane nodes, 42
in-place upgrades, 60
replacing, 58

controller manager, 3
controller runtime for mutating webhook,

231-234
controllers

Ingress (see Ingress; Ingress controllers)
LoadBalancer Service, 131

CoreDNS servers
autoscaling the deployment, 152
DNS-based service discovery, 148
effects of DNS cache on each node, 151

cost management, 378
CPU consumption

using as metric for workload autoscaling,
380

when not to use as workload autoscaling
metric, 383

CPU requests and limits, 363, 365
Linux kernel bug affecting CPU limits, 368

CRI (see Container Runtime Interface)
CRI-O, 75
crictl command-line tool, 74

using to inspect containers, 75
using with CRI-O, 76

cross-platform identity with SPIFFE and
SPIRE, 305-311

CrossSubnet IP-in-IP mode, 118
CSI Controller, 88
CSIDriver object, 91
CSINode objects, 90
CSRs (Certificate Signing Requests), 279-281
custom automation, 23

building to install and manage Kubernetes,
27

custom resource definitions (CRDs), 318-322
Calico's BGPPeer, 119
CNI plug-in-spacific, leveraging for net‐

work policy, 369
IPPools in Calico CNI plug-in, 117
for snapshots, 97

Cyberark, 203

D
data model design for operators, 329-331
data plane

Ingress controllers, 156
service mesh architecture, 179
service mesh upgrades, 183

database operators, 324
Dead Man's Snitch, 256
declarative model, secrets in, 210-215

multicluster deployment of sealed secrets,
215

renewing sealed secret keys, 214
sealed secrets controller, 211-214

dependencies
external dependencies on webhooks, 228
software, federation strategies and, 32

deployment models, 23-61
add-ons, 50-52
architecture and topology, 28-35

cluster federation, 32-35
cluster tiers, 29
etcd deployments, 28
node pools, 31

automation in, 26-27
custom automation, 27
prebuilt installers, 26

containerized components, 49
infrastructure, 35-46

bare metal versus virtualized machines,
36

cluster sizing, 39
compute infrastructure, 41
networking, 42

machine installations, 46-49
managed services versus roll your own,

24-26
deciding between, 25
managed Kubernetes services, 24
roll your own, 24

470 | Index

triggering mechanisms, 60
upgrades, 52-60

cluster replacement, 55
in-place, 59
node replacement, 57
strategies for, 55

Deployment resource, 381
deployments

deploying applications to Kubenetes,
398-399
common questions about, 398
packaging applications for Kubernetes,

399
templating deployment manifests, 398

push-based, 443-445
separating from releases, 446

descheduler, 391
Destination NAT (DNAT), 139
DestinationRule resource, 178
developer abstractions, 20
development clusters, 30
Dikastes, 290
disk encryption, 189
disk storage, 92
distributed system race, 145
distributed tracing, 269-272

instrumenting services for, 420-423
creating spans, 421
initializing the tracer, 420
propagating context, 422

OpenTracing and OpenTelemetry, 269
tracing components, 270

DNS (Domain Name System)
and role in Ingress, 165-166

Kubernetes and DNS integration, 166
wildcard DNS record, 165

auto-scaling DNS server deployment, 152
core-dns Pod not starting due to CNI issues,

114
DNS policy of Ingress controller, 164
service discovery over, 148
service performance, 151

DNS cache on each node, 151
Docker, 64

alternatives to, 5
Open Container Initiative, 65
using as container runtime, 72, 73

Dockerfiles, 426
dockershim, 73

Downward API, 402
dry runs, 224, 234
dual-stack, 109
dynamic provisioning, 81
dynamic routing, 104

E
eBPF (extended Berkeley Packet Filter), 147

eBPF data plane option in Calico, 120
maps, 120
use by Cilium, 120

edit role, 359
elastic network interface (ENI), 123
EmptyDir, 86
encapsulation and tunneling, 106-107

in Calico CNI plug-in, 118
in Cilium CNI plug-in, 122

encryption
application, 190
data within etcd, 197
disk, 189
encryption at rest, 189
envelope, 201
public and private keys, 211
static key, 198
workload traffic, 109

EncryptionConfiguration, 198
endpoints, 135-138

Cilium calculating identity for, 292
Endpoints controller, 136, 145
Endpoints Discovery Service (EDS) in

Envoy, 174
Endpoints resource, 135
EndpointSlices resource, 137

envelope encryption, 201
environment variables

consuming ConfigMaps and Secrets via, 401
for access to secrets, preferring volumes

over, 216
providing workload metadata via, 402
secret data injected into, 193
using for service discovery, 150

Envoy proxy, 173-175, 290
dynamic configuration via xDS APIs, 174
SDS API for publishing certificates, 309
use with Istio service mesh, 175-177

ephemeral data, storage of, 83
etcd, 49

deployment models, 28

Index | 471

containerized versus on host, 29
dedicated versus colocated, 28
network considerations, 28

etcd machines, 41
Events storage in, 249
in-place upgrades of nodes, 60
node replacements in dedicated cluster, 58
Secrets stored in, 196-197

events
Kubernetes Events, 249
namespace Events retrieved directly, 250
using to debug storage interaction with CSI,

96
Exec probing mechanism, 409
exporters, 254, 417
eXpress Data Path (XDP), 120
external traffic policy, 165

setting on NodePort and LoadBalancer, 141
external-dns controller, 166
ExternalName Service, 133

F
failures

failure modes for admission webhooks, 227
increasing application tolerance for, 407

fault tolerance for applications, 407
federated software deployment, 35
federation

cluster, 32-35
of metrics system, 254
of Prometheus instances, 267

file storage, 82
expanding the filesystem, 96

finalizers, 346
flannel, 112, 126
Flatcar Container Linux, 47
Fluent Bit, 246, 374
Fluentd, 246, 374
four golden signals, 419

G
Galley, 175
Gatekeeper, 235-240

ConstraintTemplate, 237
official documentation, 236
strengths and limitations, 240

Geneve tunneling protocol, 106
support by Cilium, 122

GitOps, 210, 446

GlobalNetworkPolicy, 120, 290
Go language, 220, 228, 327
golden base images antipattern, 428
Google Cloud, Kubernetes built-in controller

for, 132
Grafana, 267

H
hard multitenancy, 355
hardware nodes, specialized, 42
Hashicorp, Vault, 203
Haskell, 327
Headless Service, 133
Helm, 399, 456
Heroku, 7, 462
Hierarchical Namespace Controller, 360
Horizontal Pod Autoscaler (HPA), 380-384

avoiding faulty metrics for autoscaling, 383
HorizontalPodAutoscaler resource, 381
not all workloads scale horizontally, 383
replica count increase as load increases, 390

horizontal scaling, 379
Host header, routing based on, 153, 165
host network, binding Ingress controller to, 164
hostPath, 86
HTTP Authorization header, Bearer token in,

276
HTTP Basic Authorization header, 276
HTTP headers, injecting context into, 422
HTTP proxying, 157

with TLS, 158
HTTP requests, Ingress routing of, 153
HTTP, use as probing mechanism, 409

liveness probe, 409
readiness probe, 410
startup probe, 411

HTTPProxy custom resources, 155, 160
HTTPRouteGroup CRD, 171
HTTPS handler for mutating webhook,

229-231
hubble, 123
hypervisors, 196, 363

compute running atop in the cloud, 37
Kata Containers support for, 77
multitenancy security and, 39

I
IAAS/datacenter and Kubernetes, 18
IAM (see Identity and Access Management)

472 | Index

identity, 19, 273-311
application/workload, 288-311

network identity, 289-293
platform mediated Node identity,

299-311
Projected Service Account tokens,

297-299
Service Account tokens, 293-296
shared secrets, 289

establishing for authentication, 273
identity service providing IAM permissions,

90
service mesh features, 169
tenants, binding ClusterRoles, 358
user, 274-288

authentication methods, 275-285
least privilege permissions for users,

285-288
Identity and Access Management (IAM), 300

IAM Roles for Service Accounts (IRSA), 303
kiam, 301
kube2iam, 300

image index, 68
image registries, 434-439

cloud provider registries, 434
image signing, 438
quarantine workflow, 437
vulnerability scanning, 435

image tagging and metadata, 443
ImagePullSecrets, 220
ImageService, 70
impersonation, 286
in-place upgrades, 59
infrastructure, 35-46

automation strategies for, 44-46
infra management tools, 44
Kubernetes operators, 45

bare metal versus virtualized machines, 36
cluster sizing, 39
compute, 41
networking, 42

Ingress, 4, 127, 152-168
allowed-ingress-pattern annotation, 239
case for, 153
DNS and its role in, 165-166

Kubernetes and DNS integration, 166
wildcard DNS record, 165

handling TLS certificates, 166-168
Ingress API, 154

configuration collisions, avoiding, 155
Ingress controller deployment considera‐

tions, 162-165
binding to the host network, 164
dedicated Ingress nodes, 162
external traffic policy, 165
spreading controllers across failure

domains, 165
Ingress controllers, 19, 156

choosing a controller, 161
LimitNamespaceIngress, 238
not overwriting existing Ingress resources,

236
traffic patterns, 157

HTTP proxying, 157
HTTP proxying with TLS, 158
layer 3/4 proxying, 159

ingress-nginx controller, 5
injection integration, external secret store,

204-208
installers, prebuilt, 26
integration testing

of platform upgrades, 54
use of development tiers, 30

interfaces (Kubernetes), 5
IP address management (IPAM), 18, 102-104

Calico CNI plug-in, 117
CNI plug-in IPAM, IPv4 and IPv6, 109
in AWS VPC CNI, 123
in Cilium CNI plug-in, 121
Service, 129

IP addresses
masquerading and, 144
ready and not ready addresses for Pods, 136
virtual IP address (VIP), 128, 130

IPPools, 117
ipipMode set to CrossSubnet, 118

iptables
rules for NodeProxy and LoadBalancer

Services, 141
rules, ClusterIP Service example, 140
use by Calico, 120

iptables mode (kube-proxy), 139
performance concerns, 144

IPv4 and IPv6, 109
IPVS (IP Virtual Server) mode (kube-proxy),

145-147
IRSA (see IAM Roles for Service Accounts)
Issuer resource, 167

Index | 473

Istio, 175-179
network policy enforcement, 290
SPIFFE integration, 310
traffic management in, 177

istiod, 175

J
Jaeger, 420
Jaeger, initializing the tracer using, 420
Java, 327
Java applications, configuring memory limits

for, 414
JavaScript, 327
JSON

AdmissionReview objects, 224
use by Open Policy Agent, 235

JSON Web Key Set (JWKS), 311
JSON Web Tokens (JWT), 293, 298, 311
JSONPatch structure, 225

calculating diffs, 234

K
Kata Containers, 76
keys

envelope encryption, 201
static-key encryption, 198

kiam, 301
kube-apiserver, 49

EncryptionConfiguration for all nodes run‐
ning, 198

kube-controller-manager, 49
--cluster-cidr flag, 103
--node-cidr-mask-size-ipv4 flag, 103
--node-cidr-mask-size-ipv6 flag, 103

kube-dns, 134, 152
kube-prometheus project, 261
kube-proxy, 3, 138

Cilium replacement of, 122
configuring iptables rules for ClusterIP Ser‐

vice, 139
iptables mode, 139

performance concerns, 144
iptables rules for NodePort and LoadBa‐

lancer Services, 141
IPVS mode, 145-147

CluserIP Service, 146
NodePort and LoadBalancer Services,

146

opening and holding port for NodePort Ser‐
vice, 141

problem with rolling updates and Service
reconciliation, 145

running without, 147
Kube-Router, 105
kube-scheduler, 49
kube-state-metrics, 268
kube-system Namespace, 241
kube2iam, 300
kubeadm, 29, 48, 451

creating static manifests for control plane
components, 49

installation of cluster add-ons, 50
node replacements with, 59

Kubebuilder project, 231, 326
kubeconfig file, 277, 282, 285, 287
kubectl, 454

plug-ins, 454
KubeFed, 35
kubelet, 3, 47

dockershim, 73
handling of secrets, 192
interacting with CNI to attach network, 115
interaction with containerd, 74
interaction with CRI-O using CRI APIs, 75
interaction with Kata Containers through

containerd, 76
starting Pods, 70

KubeProxyReplacement setting, 122
Kubernetes

about, 1
core components, 2-3
extended functionality, 4
points of extension, 314-317
summary of, 7

Kubernetes API
aggregation layer, 381
using for service discovery, 150

Kubernetes Metrics Server, 381
Kubernetes Test Grid, 72
kubernetes-admin user details, 277
kubeseal utility, 211

kubeseal --fetch-cert command, 212
sealing a secret, 213

Kustomize, 458

L
labels

474 | Index

in Prometheus, 254
standardized for all API objects, 362

lambda controller, 327
large clusters, scalability issues with Endpoints,

137
larger clusters, benefits of, 40
layer 3/4 proxying, 159
layer 7 proxying, 159
layers (container image), 69
leaking secrets, 216
LimitNamespaceIngress object, 238
Linux

container runtime, 63
distributions used with Kubernetes, 47
kernel bug impacting CPU limits, 368
resource limits, 363

Linux Unified Key System (LUKS), 189
Listener Discovery Service (LDS), 174
Listeners (Envoy), 174
liveness probes, 409

failed, 412
recommended use, 413
startup probes and, 411

load balancers
external, using in front of NodePort Service,

131
multiple, Ingress removing need for, 153

load balancing, 44
by Services, 128
Services load balancing traffic across Pods,

135
LoadBalancer Service, 131

external traffic policy setting, 165
implementation details, 141

Local external traffic policy setting, 142, 165
Local Persistence Volume Static Provisioner, 86
log aggregation, centralizing, problems with,

246
logging, 20, 244-251

alerting on logs, 250
application logs, 415-416
centralized logging platform service, 374
container log processing, 244-247

application forwarding, 245
node agent forwarding, 245
sidecar processing, 245

Kubernetes audit logs, 247-249
Kubernetes Events, 249
security concerns, 251

logic implementation for operators, 331-347
admission webhooks, 345
desired state, 333
existing state, 331
finalizers, 346
implementation details, 335-345
reconciliation of existing and desired state,

334

M
MachineDeployment resource, 391
machines, 35

bare metal versus virtualized, 36
compute infrastructure, 41
installations, 46-49

machine images, 46
using config managment tools, 46
what to install, 47

managed Kubernetes services, using for deploy‐
ments, 24

management clusters, 33
masquerade, 144
maximum transmission unit (MTU), 107
media types for container image layers, 69
memory consumption

memory limit for a Pod, 403
using as metric for workload autoscaling,

380
memory requests and limits, 364
memory-optimized nodes, 42
Metacontroller, 327
metadata

image, 443
injecting workload metadata, 402

MetalLB, 132
metrics, 20, 243, 251-268

alerts from, 255-257
application, 416-419
components of the system, 260-268

Alertmanager, 266
Grafana, 267
kube-state-metrics, 268
Node exporter, 268
Prometheus adapter, 268
Prometheus Operator, 261
Prometheus servers, 262

CPU or memory consumption, using for
workload autoscaling, 380

custom, 253

Index | 475

using in workload autoscaling, 387
faulty, workload autoscaling based on, 383
image and CVE details, 436
long term storage, 253
multiple, workload autoscaling on, 382
organization and federation, 254
Prometheus, 251
pushing, 253
showback and chargeback, 257-260

Metrics Server, 381
collecting resource usage metrics for con‐

tainers, 381
microservices, 169

autoscaling and, 379
Microsoft Azure (see Azure)
mTLS (mutual TLS), 16, 169, 184

Certificate Authority for, in a service mesh,
184

use in Istio, 177
MultiNamespace resource quotas, 362
multitenancy, 353-376, 452

degrees of isolation for tenants, 354-357
multitenant clusters, 355
single-tenant clusters, 354

Kubernetes capabilities for, 358-375
admission webhooks, 361
multitenant platform services, 374-375
network policies, 368-370
Pod Security Policies, 370-373
resource quotas, 360
resource requests and limits, 363
role-based access control, 358-360

Namespace boundary, 357
Multus CNI plug-in, 125
mutating webhooks, 222, 225

called before validating webhooks, 227
writing, 228-234

controller runtime, 231-234
plain HTTPS handler, 229-231

MutatingWebhook (Vault), 204
MutatingWebhookConfiguration, 225

N
Namespace operator, 324
Namespace-scoped NetworkPolicy, 110
Namespace-scoped secrets, 192
NamespaceLifecycle controller, 221
Namespaces, 64, 452

multitenancy and, 357

resource quotas and, 360
targeting, admission controller webhooks,

227
native routing, 105, 107, 118, 122
network address translation (NAT)

conntrack table and, 143
Destination NAT (DNAT), 139

network file system (NFS), 80
network function virtualizations (NFVs), 125
network policies, 368-370, 452
networking

considerations, 102-112
encapsulation and tunneling, 106
encrypted workload traffic, 109
IP address management, 102-104
IPv4 and IPv6, 109
network policy, 110
summary of key concerns, 112
workload routability, 108

NetworkPolicy API, 4
Calico implementation of, 120
Cilium enforcement of, 122
Cilium implementation of, 292
leveraging to implement deny-all policy, 368

NetworkPolicy objects, 110, 290, 370
configuring Ingress/Egress rules, 110
default deny-all, 369
tenants specifying ingress and egress rules

in, 370
use cases, 111

networks
considerations in etcd deployment, 28
container network interface plug-in, 50
Container Networking Interface, 315

(see also Container Networking Inter‐
face)

identity, 289-293
making Pod IPs routable to larger networks,

105
networking infrastructure, 42

load balancing, 44
redundancy, 43
routability, 43

showback and chargeback for, 260
NGINX Ingress controller, 161
NGNIX

Endpoints resource for nginx Service, 135
Service definition exposing NGINX on

ClusterIP, 129

476 | Index

node agent forwarding of logs, 245
Node exporter, 254, 268
node orchestration, 306
Node plug-in (CSI), 89
node pools, 31

smaller clusters as alternative to, 41
node proxy, 180
Node Special Interest Group, 72
NodeLocal DNSCache, 151
NodePort Service, 130

external traffic policy setting, 165
implementation details, 141

nodes
CiliumNode object, 121
CSINode objects, 90
dedicated to running Ingress controller, 162
in-place upgrades, 59
replacement of, 57

Notary, 438

O
object storage, 82
observability, 20, 243-272

in cluster federation, 34
components of, 243
distributed tracing, 269-272

OpenTracing and OpenTelemetry, 269
tracing components, 270

metrics, 251-268
components of the system, 260-268
custom metrics, 253
long term storage, 253
organization and federation, 254
Prometheus, 251
pushing, 253
showback and chargeback, 257-260

service mesh features, 169
services in service mesh, 178
tooling for new applications, 453

OCI (Open Container Initiative), 65
image specification, 67-69, 426
runtime specification, 7, 65-67

onboarding, self-service, 451-453
Open Policy Agent (OPA), 155, 235

Rego language, 235
Open vSwitch, 126
OpenID Connect (OIDC), 283
OpenShift, 8
OpenTelemetry, 269

OpenTracing, 269, 420
helper functions inject context into HTTP

headers, 422
Operator Framework, 328
operator pattern, 317-322

custom resources, 318-322
operators (Kubernetes), 45, 453

developing, 325-347
data model design, 329-331
logic implementation, 331-347
tools for, 325-329

extensions, 316
Prometheus Operator, 261
use cases, 323-325

application-specific operators, 324
general-purpose workload operators,

324
platform utilities, 323

using for triggering mechanisms, 60
using to define cluster add-ons, 51
WebApp Operator, 320

organizational needs, aligning to application
platform, 10

P
package versions, pinning, 430
packaging applications for Kubernetes, 399
patch sets, generating, 230
patchOperation, 230
PatchResponseFromRaw, 234
performance

dedicating nodes to Ingress, 164
disk read/write, prioritization by etcd

machines, 41
DNS service, concerns with, 151
etcd deployments and, 28
high-performance SSD, 94
impact of node proxy on services, 180
impacts of multicluster service meshes, 184
improvements in Services with eBPF, 147
iptables mode in kube-proxy, concerns with,

144
IPVS mode in kube-proxy, 145
tracing impacts of system components, 270
use of Service to expose Ingress controller,

165
virtualization and, 37
webhook admission controllers, 228

permissions and privileges

Index | 477

application permissions, 296
implementing least privilege permissions for

users, 285-288
privilege elevation attacks, 286

PersistentClaimVolume objects, resizing, 96
PersistentVolume API, 83
PersistentVolumeClaim API, 83

allowing developers to create PVCs, 94
physical layer, security at, 188
Pilot, 175
ping, 134
PKI (see public key infrastructure)
platform abstractions, 449-464

platform exposure, 450
spectrum of abstractions, 453

abstracting Kubernetes primitives,
458-460

command-line tooling, 454
making Kubernetes invisible, 462-464
templating, 455-458

supporting different levels of abstraction,
461

platform mediated Node identity, 299-311
AWS platform authentication methods/

tools, 300-305
IAM Roles for Service Accounts, 303
kiam, 301
kube2iam, 300

cross-platform identity with SPIFFE and
SPIRE, 305-311

platform services, building, 313-351
developing operators, 325-347

data model design, 329-331
tools for, 325-329

extending the scheduler, 347-351
custom scheduler, 350
multiple schedulers, 350
predicates and priorities, 348
scheduling policies, 348
scheduling profiles, 350

operator pattern, 317-322
custom resources, 318-322

operator use cases, 323-325
application-specific operators, 324
platform utilities, 323

points of extension in Kubernetes, 314-317
admission control, 316
authentication, 316
operator, 316

plug-ins, 314
webhook, 315

plug-ins
extensions to Kubernetes, 314
interface/plug-in relationship, 5

Pod Security Policies (PSPs), 370-373, 452
PodSecurityPolicy API, 373
PSP controller, 222

PodMetrics, 381
Pods

anti-affinity rules, 165
environment variables enhancing service

discovery, 150
Events, 249
evictions, 364
Ingress controllers routing traffic directly

to, 157
inspecting using Docker CLI, 74
kubeadm and static Pods, 48
memory requests and limits, 364
networking, 101-126

CNI installation, 114
CNI plug-ins, 116-126
Container Networking Interface, 112
encapsulation and tunneling, 106
encrypted workload traffic, 109
IP address management, 102-104
IPv4 and IPv6, 109
network policy, 110
routing protocols, 104-106
workload routability, 108

Pod resource and VerticalPodAutoscaler,
385

Quality of Service (QoS) class, 363
readiness and readiness probes, 136
resource requests and limits, 413-415
Service backend pool, 128
Service Pod selector, 130

invalid selectors, 135
spreading across failure domains

anti-affinity rules, 407
Topology Spread Constraints, 408

vault-agent injection, 205
Virtual Kubelet running Pods, 77

policy engines, 362, 373
policy systems, centralized, for admission con‐

trol, 234-241
prebuilt installers, 26
predicates, 348

478 | Index

priorities, 348
privilege elevation attacks, 286
production clusters, 31
programming languages, 327
Projected Service Account tokens (PSAT), 288,

297-299
Prometheus, 34, 251-268

autoscaling with custom metrics from, 387
components of metrics stack, 260

Alertmanager, 266
Grafana, 267
kube-state-metrics, 268
Node exporter, 268
Prometheus adapter, 268
Prometheus servers, 262

critical metrics functions, 252
custom metrics, 253
Event exporters, 250
instrumenting applications for, 417-418
organization and federation of metrics, 254
Pushgateway, 253
tenants deploying multiple instances of, 374

Prometheus Adapter, 387
Prometheus Operator, 261, 323, 374
PrometheusRule resource, 265
proxies

data plane proxy in service mesh, 173-175
HTTP proxying by Ingress, 157
layer 3/4 proxying (TCP/UDP traffic), 159
node proxy in service mesh, 180
service mesh, 169
service mesh communication via, 127
sidecar proxy in service mesh, 180

proxy technologies, 127
PSPs (see Pod Security Policies)
public key infrastructure (PKI), 277-283
public/private key cryptography, 211-215
Python, 327

Q
Quality of Service (QoS) class (Pods), 363

R
RBAC (role-based access control), 192, 273, 452

multitenancy and, 358-360
PSP authorization, 372
RoleBindings, 276

readiness probes, 137, 410, 412
Recommender (VPA), 384

recommendations from, 386
reconciliation, 334, 345
RED (Rate, Errors, Duration) method, 416, 419
RedHat OpenShift, 8
redundancy in networking infrastructure, 43
Rego language, 235
rescheduling events, handling, 404-408

graceful container shutdown, 405
pre-stop container life cycle hook, 404

resizing PersistentClaimVolume objects, 96
resource overhead for service mesh, 183
resource-intensive webhooks, 228
resources

custom, 318-322
overhead for single-tenant clusters, 354
quotas on, 360, 452
requests and limits, 363, 413-415
required to run apps, manifests for, 398

reverse proxies, Ingress controllers paired with,
156

role-based access control (see RBAC)
role-based node pools, 32
RoleBindings, 276, 358, 372
Roles, 372
roll your own deployments, 24
rollout patterns, 445-446
Rook operator, 323
routability, 43
Route Discovery Service (RDS), 174
route reflectors, 119
routing

in AWS VPC CNI, 123
in Calico CNI plug-in, 117
in Cilium CNI plug-in, 120
limited capabilities of Services, 153
service (see service routing)
service mesh features, 169
workload routability, 108

routing protocols, 104-106
RPCs (remote procedure calls), interface com‐

mands issued as, 5
runc, 66
runtime image vulnerability scanning, 437
runtime user of a container, 430
RuntimeClass API, 76
RuntimeService, 70

S
sandbox (Pod), creating, 70

Index | 479

scalability
issues with Endpoints resource in large clus‐

ter deployments, 137
issues with iptables mode, 144

scaling
autoscaling, 377

(see also autoscaling)
less tuning for scale with smaller clusters, 40
types of, 378

scheduler, 3
extending, 347-351

custom scheduler, 350
multiple schedulers, 350
predicates and priorities, 348
scheduling policies, 348
scheduling profiles, 350

schemas
CRDs, use of Open API v3 schema, 319
for requests/responses between API server

and webhook server, 224
validation on submission of objects, 221

SCTP, support by Kubernetes services, 134
sealed-secret-controller, 211-214
SealedSecret object, 213

misunderstanding of scope, 215
Namespace used during encryption, 215

secret management, 19
secret store providers, making unknown to

application, 216
secretbox, 198, 200
SecretProviderClass, 209
secrets, 187

adding credentials in secret mounted into
CSI driver, 90

best practices, 215-217
consuming Kubernetes Secrets in applica‐

tions, 400-404
downsides, 402
mounting as files in Pod filesystem, 400
using environment variables, 401

in the declarative model, 210-215
multicluster deployment of sealed

secrets, 215
renewing sealed secret keys, 214
sealed secrets controller, 211-214
sealing secrets, 211

external providers of secret management,
203-210
CSI integration of secret store, 208-210

Cyberark, 203
injection integration, 204-208
Vault, 203

obtaining for applications via external sys‐
tems, 403

operational concerns, 187
protection of, 188-191

application encryption, 190
disk encryption, 189
transport security, 190

scope of, 192
Secret API, 191-203

consumption models for Secrets,
193-196

envelope encryption, 201
secret data in etcd, 196-197
Secret object, 191
static-key encryption, 198

Service Account Secret, 294
shared, 275, 289
targeting in webhook-enabled Namespace,

227
secrets-store-csi-driver, 208-210
security, 187

(see also secrets)
datacenter, Google's approach to, 188
logs, 251
vulnerability scanning of images, 435

Server Name Indication (SNI) TLS extension,
160

Service Account controller, 220
Service Account tokens (SAT), 288, 293-296
Service Accounts, 195

Calico's network policy enforcement based
on, 290

Cilium using to restrict Services access, 292
for robot users, 285
IAM Roles for, 303
using for PSP authorization, 372

Service API, 135
plug-ins implementing, 4

service discovery, 148-152
using DNS, 148
using environment variables, 150
using Kubernetes API, 150

service meshes, 127, 169-184
adopting a service mesh, 181-184

Certificate Authority for mTLS, 184
deploying to new or existing cluster, 181

480 | Index

handling upgrades, 182
multicluster service mesh, 184
prioritizing one of the pillars, 181
resource overhead, 183

data plane architecture, 179
data plane proxy, 173-175
deciding when to use, 169
features provided by, 169
introducing, pros and cons of, 16
in Kubernetes ecosystem, 179
on Kubernetes, 175-179
Service Mesh Interface, 6, 170-173
SPIFFE and SPIRE integration with Istio,

310
tracing and, 272

service routing, 19, 127-185
Ingress, 152-168

case for, 153
choosing an Ingress controller, 161
DNS and its role in, 165-166
handling TLS certificates, 166-168
Ingress API, 154
Ingress controller deployment consider‐

ations, 162-165
Ingress controllers, how they work, 156
Ingress traffic patterns, 157-161

Kubernetes Services, 128-152
service meshes, 169-184

ServiceMonitor, 263
services

determining for application platform, 16
multitenant platform services, 356, 374-375

Services, 127, 128-152
Cilium capabilities with, 122
communication protocols supported by, 134
endpoints, 135-138

Endpoints controller, 136
Endpoints resource, 135
EndpointSlices resource, 137
Pod readiness and readiness probes, 137

implementation details, 138-148
ClusterIP, 139
connection tracking (conntrack), 143
kube-proxy, 138
masquerade, 144
performance concerns with iptables

mode, 144
IP address management, 129
kube-proxy in IPVS mode, 145-147

ClusterIP, 146
NodePort and LoadBalancer, 146

limitations and downsides, 153
multiple ports and protocols, 134
problem with rolling updates and Service

reconciliation, 145
running without kube-proxy, 147
Service abstraction, 128
Service resource, 129
Service types, 130-133

ClusterIP, 130
ExternalName, 133
Headless, 133
LoadBalancer, 131
NodePort, 130

troubleshooting, 134
services, platform (see platform services, build‐

ing)
showback and chargeback, 257-260

chargeback, 260
network and storage, 260
showback by consumption, 258
showback by requests, 257

side effects, webhooks with, 228
sidecar proxy, 180
sidecars

log processing, 245
Vault injection architecture, 204

SIGTERM signal, application handling of, 406
single-tenant clusters, 354
smaller clusters, benefits of, 40
SMI (see service meshes, Service Mesh Inter‐

face)
snapshots of storage volumes, 97

security for, 189
soft multitenancy, 355
software supply chain, 20, 425-448

building container images, 426-433
build versus runtime image, 431
choosing a base image, 429
Cloud Native Buildpacks, 432
golden base image antipattern, 428
pinning package versions, 430
runtime user, 430

continuous delivery, 439-448
GitOps, 446
integrating builds into a pipeline,

440-442
push-based deployments, 443-445

Index | 481

rollout patterns, 445-446
image registries, 434-439

image signing, 438
quarantine workflow, 437
vulnerability scanning, 435

software-defined networks (SDNs), 101
SPIFFE and SPIRE, 305-311

architecture and concepts, 305
direct application access, 308
integration with AWS, 311
integration with secrets store (Vault), 310
integration with service mesh (Istio), 310
integration with sidecar proxy, 309
other application integration methods, 310

Spring Cloud Kubernetes, 195, 402
ssh access to server running etcd, attack on

secret data via, 196
staging clusters, 30
startup probes, 411
state

desired state for a system, 333
existing state of the sysem, 331
reconciliation of existing state to desired

state, 334, 345
state probes, 408-413

implementing, 412
liveness probes, 409
probing mechanisms common to, 409
readiness probes, 410
startup probes, 411

static provisioning, 81, 85
static routes, 104
static vulnerability scanning of images, 436
static-key encryption, 198
storage, 79-99

considerations, 80-83
access modes, 80
backup and recovery, 81
block devices, file, and object storage, 82
choosing a storage provider, 83
ephemeral data, 83
volume expansion, 81
volume provisioning, 81

CSI (Container Storage Interface), 87-89,
315

databases for tracing, 270
encryption of stored data, 189
implementing storage as a service, 89-99

consuming storage, 94

exposing storage options, 92
installation of the integration/driver, 90
resizing, 96
snapshots, 97

Kubernetes storage primitives, 83-87
persistent volumes and claims, 83
storage classes, 86

long term, for metrics, 253
persistent storage availability in cluster

replacement, 56
showback and chargeback for, 260

storage integration, 19
storage providers, 87
StorageClass API, 86

creating storage classes for storage options,
93

subdomain-based routing, 154
SVIDs (SPIFFE Verifiable Identity Documents),

305

T
Task CRD, 440, 441
TCP

DNS cache query upgraded to, 151
proxying by Ingress controllers, 159
support by Kubernetes Services, 134
using as probing mechanism, 409

TCPRoute CRD, 171
Tekton, 440
telnet, 134
templating, abstraction through, 455-458
tenancy models, 451
tenants, 353

(see also multitenancy)
degrees of isolation, 354

multitenant clusters, 355
single-tenant clusters, 354

listing all Namespaces on the cluster, 359
Terraform, 44
testing

cluster tier for, 29
conformance testing of container runtime,

72
early prerelease versions of platform, 27
integration testing of platform upgrades, 54

tiers (cluster), 29
TLS

API server calling webhooks over, 224
encryption over, 190

482 | Index

handling TLS certificates, 166-168
HTTP proxying with, 158
mTLS (mutual TLS), 177
proxying of TLS encrypted TCP connec‐

tions, 160
TLS passthrough, 161

TokenReview API, 203, 207, 298
tokens

for users and groups, 275
Projected Service Account, 297-299
Service Account, 293-296

tracing, 20, 243
distributed (see distributed tracing)

Traffic Access Control APIs, 171, 177
Traffic Metrics API, 172
Traffic Specs API, 171
Traffic Split API, 171
TrafficMetrics resource, 172
TrafficTarget, 171
transferability of skills, 461
transport security, 190

(see also TLS)
triggering mechanisms for automated installa‐

tions and management, 51, 60
tunneling protocols, 106

U
UDP

proxying by Ingress controllers, 159
support by Kubernetes Services, 134

Unix socket
CRI-O exposing the CRI over, 75
CSI Controller service exposing APIs over,

88
dockershim, using crictl with, 74
for containerd CRI plug-in, 70

Updater (VPA), 384
updates

Endpoints resources, 137
problem with rolling application updates

and Service reconciliation, 145
to iptables rules, 144

(see also iptables)
upgrades, 52-60

benefits of smaller clusters for, 41
handling for service mesh, 182
in-place, 59
integration testing, 54
planning for failures, 53

platform versioning, 52
strategies for, 55

cluster replacement, 55
node replacement, 57

upstream repository, 231
USE (Utilization, Saturation, Errors) method,

416, 419
user identity, 274-288

authentication methods, 275-285
OpenID Connect, 283
public key infrastructure, 277-283
shared secrets, 275

implementing least privilege permissions for
users, 285-288

user interface for tracing service, 271
username/password combinations, 276
utilities (platform), 323

V
validating admission controllers, 221
validating webhooks, 222, 224

marking required fields in resources, 362
ordering of calls to, 227

ValidatingWebhookConfiguration, 225
Vault, 203, 403

enterprise secret store, 289
injection integration of secret store, 204-208
SPIFFE and SPIRE integration, 310
vault-provider installation on hosts, 208

Velero, 82
versioning (platform), 52
Vertical Pod Autoscaler (VPA), 384-387

components, 384
configuring vertical autoscaling, 385
recommendations, 386

vertical scaling, 379
view role, 359
virtual IP address (VIP), 128, 130
Virtual Kubelet, 77
virtual machines (VMs), 6

use by Kata Containers, 76
VM-based runtimes, 72
VM-level isolation for workloads, 73

Virtual Private Clouds (VPCs), 56
AWS VPC CNI, 123

virtualization
bare metal versus virtualized machines, 36
trade-offs with, 37

VirtualService resource, 177

Index | 483

VolumeContentSnapshot, 97
volumes

expansion of, 81, 96
loss of data, 98
persistent volumes and claims, 83
preferring over environment variables for

access to secrets, 216
provisioning, 81
secrets consumed via, 194

VolumeSnapshot, 97
VPA (see Vertical Pod Autoscaler)
VSphereMachine objects, 232
vulnerability scanning by image registries, 435
VXLAN tunneling protocol, 106

support by Cilium, 122
use by Calico, 118

W
Weave, 126
WebApp CRD, 319-322

Kubernetes resources in, 319
manifest, 320

webhooks, 222, 223-228
admission, 345, 361
configuring webhook admission controllers,

225-227
design considerations for admission con‐

trollers, 227
extensions to Kubernetes, 315
sending logs to, 249
writing a mutating webhook, 228-234

wildcard DNS records, 165

worker nodes, 42
in-place upgrades, 60
replacing, 59

workflows, 457
workload orchestration, 307
workload plane, 356
workloads

autoscaling, 380-389
Cluster Proportional Autoscaler, 388
custom autoscaling, 389
Horizontal Pod Autoscaler, 380-384
using custom metrics, 387
Vertical Pod Autoscaler, 384-387

general-purpose workload operators, 324
identity, 288

(see also application/workload identity)
injecting workload metadata, 402
isolation guarantees, 73
isolation requirements, 356
memory limits on, 365
migrating between clusters, 56
routability, 108

X
x509 certificates, 278, 282
XDP (eXpress Data Path), 120
xDS APIs (Envoy), 173

Z
Zipkin, 420

484 | Index

About the Authors
Josh Rosso has been working with organizations to adopt Kubernetes since version
1.2 (2016). During this time he’s worked as an engineer and architect at CoreOS
(RedHat), Heptio, and now VMware. He’s been involved in architecture and engi‐
neering to help build compute platforms in financial institutions, establish edge com‐
pute to support 5G, and much more. He’s worked on environments ranging from
enterprise-managed bare metal to cloud-provider managed virtual machines.

Rich Lander was an early adopter of Docker and began running production work‐
loads using containers in 2015. He learned the value of container orchestration the
hard way and was running production applications on Kubernetes by version 1.3.
Rich took that experience and subsequently worked at CoreOS (RedHat), Heptio, and
VMware as a field engineer helping enterprises in manufacturing, retail, and various
other industries adopt Kubernetes and cloud native technologies.

Alexander Brand started working with Kubernetes in 2016, when he helped build
one of the first open source Kubernetes installers at Apprenda. Since then, Alexander
has worked at Heptio and VMware, designing and building Kubernetes-based plat‐
forms for organizations across multiple industry verticals, including finance, health‐
care, consumer, and more. As a software engineer at heart, Alexander has also
contributed to Kubernetes and other open source projects in the cloud native
ecosystem.

John Harris has been working with Docker since 2014, consulting with many of the
top Fortune 50 companies to help them successfully adopt container technologies
and patterns. He brings experience in cloud native architecture, engineering, and
DevOps practices to help companies of all sizes build robust Kubernetes platforms
and applications. Prior to working at VMware (via Heptio), he was an architect at
Docker advising some of its most strategic customers.

Colophon
The animal on the cover of Production Kubernetes is a common beaked whale, a name
given to a group of 22 whale species having a shared characteristic of a dolphin-like
beak. Little is known about most of these species due to their scarcity and tendency to
live in deep-ocean habitats off continental shelves.

Cuvier’s beaked whale, or goose-beaked whale, is the species most commonly
encountered by humans. Like the whale on the cover, male goose-beaked whales are a
dark gray with a lighter head; females tend to be orange-brown in color. These beaked
whales have a curved dorsal fin more closely resembling that of dophins than fellow
whales as well as a stunted beak. Males develop tusks that are used to ward off preda‐
tors and possibly compete for mates, which may be the reason male Cuvier’s beaked
whales in particular have distinguishing scars along their sides.

Beaked whales regularly dive to depths over 1,600 feet for more than an hour at a
time, using echolocation and their unique suction feeding technique, made possible
by specialized pairs of throat grooves, to hunt prey. Scientists have theorized that the
relatively larger spleens and livers in beaked whales could be adaptations to assist
with oxygen processing when deep diving. These deep foraging dives are typically fol‐
lowed by multiple shallow dives and extended periods of surface breathing.

Although little is known about the conservation status of most species of beaked
whales, four are classified by the IUCN as “lower risk, convervation dependant” due
to anthropogenic factors such as deep-sea fishing, biocontamination, and sonar.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Quadrupeds. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. A Path to Production
	Defining Kubernetes
	The Core Components
	Beyond Orchestration—Extended Functionality
	Kubernetes Interfaces
	Summarizing Kubernetes

	Defining Application Platforms
	The Spectrum of Approaches
	Aligning Your Organizational Needs
	Summarizing Application Platforms

	Building Application Platforms on Kubernetes
	Starting from the Bottom
	The Abstraction Spectrum
	Determining Platform Services
	The Building Blocks

	Summary

	Chapter 2. Deployment Models
	Managed Service Versus Roll Your Own
	Managed Services
	Roll Your Own
	Making the Decision

	Automation
	Prebuilt Installer
	Custom Automation

	Architecture and Topology
	etcd Deployment Models
	Cluster Tiers
	Node Pools
	Cluster Federation

	Infrastructure
	Bare Metal Versus Virtualized
	Cluster Sizing
	Compute Infrastructure
	Networking Infrastructure
	Automation Strategies

	Machine Installations
	Configuration Management
	Machine Images
	What to Install

	Containerized Components
	Add-ons
	Upgrades
	Platform Versioning
	Plan to Fail
	Integration Testing
	Strategies

	Triggering Mechanisms
	Summary

	Chapter 3. Container Runtime
	The Advent of Containers
	The Open Container Initiative
	OCI Runtime Specification
	OCI Image Specification

	The Container Runtime Interface
	Starting a Pod

	Choosing a Runtime
	Docker
	containerd
	CRI-O
	Kata Containers
	Virtual Kubelet

	Summary

	Chapter 4. Container Storage
	Storage Considerations
	Access Modes
	Volume Expansion
	Volume Provisioning
	Backup and Recovery
	Block Devices and File and Object Storage
	Ephemeral Data
	Choosing a Storage Provider

	Kubernetes Storage Primitives
	Persistent Volumes and Claims
	Storage Classes

	The Container Storage Interface (CSI)
	CSI Controller
	CSI Node

	Implementing Storage as a Service
	Installation
	Exposing Storage Options
	Consuming Storage
	Resizing
	Snapshots

	Summary

	Chapter 5. Pod Networking
	Networking Considerations
	IP Address Management
	Routing Protocols
	Encapsulation and Tunneling
	Workload Routability
	IPv4 and IPv6
	Encrypted Workload Traffic
	Network Policy
	Summary: Networking Considerations

	The Container Networking Interface (CNI)
	CNI Installation

	CNI Plug-ins
	Calico
	Cilium
	AWS VPC CNI
	Multus
	Additional Plug-ins

	Summary

	Chapter 6. Service Routing
	Kubernetes Services
	The Service Abstraction
	Endpoints
	Service Implementation Details
	Service Discovery
	DNS Service Performance

	Ingress
	The Case for Ingress
	The Ingress API
	Ingress Controllers and How They Work
	Ingress Traffic Patterns
	Choosing an Ingress Controller
	Ingress Controller Deployment Considerations
	DNS and Its Role in Ingress
	Handling TLS Certificates

	Service Mesh
	When (Not) to Use a Service Mesh
	The Service Mesh Interface (SMI)
	The Data Plane Proxy
	Service Mesh on Kubernetes
	Data Plane Architecture
	Adopting a Service Mesh

	Summary

	Chapter 7. Secret Management
	Defense in Depth
	Disk Encryption
	Transport Security
	Application Encryption

	The Kubernetes Secret API
	Secret Consumption Models
	Secret Data in etcd
	Static-Key Encryption
	Envelope Encryption

	External Providers
	Vault
	Cyberark
	Injection Integration
	CSI Integration

	Secrets in the Declarative World
	Sealing Secrets
	Sealed Secrets Controller
	Key Renewal
	Multicluster Models

	Best Practices for Secrets
	Always Audit Secret Interaction
	Don’t Leak Secrets
	Prefer Volumes Over Environment Variables
	Make Secret Store Providers Unknown to Your Application

	Summary

	Chapter 8. Admission Control
	The Kubernetes Admission Chain
	In-Tree Admission Controllers
	Webhooks
	Configuring Webhook Admission Controllers
	Webhook Design Considerations

	Writing a Mutating Webhook
	Plain HTTPS Handler
	Controller Runtime

	Centralized Policy Systems
	Summary

	Chapter 9. Observability
	Logging Mechanics
	Container Log Processing
	Kubernetes Audit Logs
	Kubernetes Events
	Alerting on Logs
	Security Implications

	Metrics
	Prometheus
	Long-Term Storage
	Pushing Metrics
	Custom Metrics
	Organization and Federation
	Alerts
	Showback and Chargeback
	Metrics Components

	Distributed Tracing
	OpenTracing and OpenTelemetry
	Tracing Components
	Application Instrumentation
	Service Meshes

	Summary

	Chapter 10. Identity
	User Identity
	Authentication Methods
	Implementing Least Privilege Permissions for Users

	Application/Workload Identity
	Shared Secrets
	Network Identity
	Service Account Tokens (SAT)
	Projected Service Account Tokens (PSAT)
	Platform Mediated Node Identity

	Summary

	Chapter 11. Building Platform Services
	Points of Extension
	Plug-in Extensions
	Webhook Extensions
	Operator Extensions

	The Operator Pattern
	Kubernetes Controllers
	Custom Resources

	Operator Use Cases
	Platform Utilities
	General-Purpose Workload Operators
	App-Specific Operators

	Developing Operators
	Operator Development Tooling
	Data Model Design
	Logic Implementation

	Extending the Scheduler
	Predicates and Priorities
	Scheduling Policies
	Scheduling Profiles
	Multiple Schedulers
	Custom Scheduler

	Summary

	Chapter 12. Multitenancy
	Degrees of Isolation
	Single-Tenant Clusters
	Multitenant Clusters

	The Namespace Boundary
	Multitenancy in Kubernetes
	Role-Based Access Control (RBAC)
	Resource Quotas
	Admission Webhooks
	Resource Requests and Limits
	Network Policies
	Pod Security Policies
	Multitenant Platform Services

	Summary

	Chapter 13. Autoscaling
	Types of Scaling
	Application Architecture
	Workload Autoscaling
	Horizontal Pod Autoscaler
	Vertical Pod Autoscaler
	Autoscaling with Custom Metrics
	Cluster Proportional Autoscaler
	Custom Autoscaling

	Cluster Autoscaling
	Cluster Overprovisioning

	Summary

	Chapter 14. Application Considerations
	Deploying Applications to Kubernetes
	Templating Deployment Manifests
	Packaging Applications for Kubernetes

	Ingesting Configuration and Secrets
	Kubernetes ConfigMaps and Secrets
	Obtaining Configuration from External Systems

	Handling Rescheduling Events
	Pre-stop Container Life Cycle Hook
	Graceful Container Shutdown
	Satisfying Availability Requirements

	State Probes
	Liveness Probes
	Readiness Probes
	Startup Probes
	Implementing Probes

	Pod Resource Requests and Limits
	Resource Requests
	Resource Limits

	Application Logs
	What to Log
	Unstructured Versus Structured Logs
	Contextual Information in Logs

	Exposing Metrics
	Instrumenting Applications
	USE Method
	RED Method
	The Four Golden Signals
	App-Specific Metrics

	Instrumenting Services for Distributed Tracing
	Initializing the Tracer
	Creating Spans
	Propagate Context

	Summary

	Chapter 15. Software Supply Chain
	Building Container Images
	The Golden Base Images Antipattern
	Choosing a Base Image
	Runtime User
	Pinning Package Versions
	Build Versus Runtime Image
	Cloud Native Buildpacks

	Image Registries
	Vulnerability Scanning
	Quarantine Workflow
	Image Signing

	Continuous Delivery
	Integrating Builds into a Pipeline
	Push-Based Deployments
	Rollout Patterns
	GitOps

	Summary

	Chapter 16. Platform Abstractions
	Platform Exposure
	Self-Service Onboarding
	The Spectrum of Abstraction
	Command-Line Tooling
	Abstraction Through Templating
	Abstracting Kubernetes Primitives
	Making Kubernetes Invisible

	Summary

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

