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Preface

Kubernetes is not secure by default. Existing approaches to enterprise and cloud secu‐
rity are challenged by the dynamic nature of Kubernetes and the goal of increased
organizational agility that often comes with using it. Successfully securing, observing,
and troubleshooting mission-critical microservices in this new environment requires
a holistic understanding of a breadth of considerations. These include organizational
challenges, how new cloud native approaches can help meet the challenges, and the
new best practices and how to operationalize them.

While there is no shortage of resources on Kubernetes, navigating through them and
formulating a comprehensive security and observability strategy can be a daunting
task and in many cases leads to gaps that significantly undermine the desired security
posture.

That’s why we wrote this book—to guide you toward a holistic security and observa‐
bility strategy across the breadth of these considerations and to give you best practi‐
ces and tools to help you as you move applications to Kubernetes.

Over our years of working at Tigera and building Calico, a networking and security
tool for Kubernetes, we have gotten to see the user journey up close. We have seen
many users focus on getting their workloads deployed in Kubernetes without think‐
ing through their security or observability strategy, and then struggle as they try to
understand how to secure and observe such a complex distributed system. Our goal
with this book is to help minimize this pain as much as possible by sharing with you
what we’ve learned. We mention a number of tool examples throughout, and Calico is
among them. We believe that Calico is an excellent and popular option, but there are
many good tools, like Weave Net, VMware Tanzu, Aqua Security, and Datadog, to
choose from. Ultimately, only you can decide which is best for your needs.
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The Stages of Kubernetes Adoption
Any successful Kubernetes adoption journey follows three distinct stages:

The learning stage
As a new user, you begin by learning how Kubernetes works, setting up a sand‐
box environment, and starting to think about how you can use Kubernetes in
your environment. In this stage you want to leverage the online Kubernetes
resources available and use open source technologies.

The pilot/pre-production stage
Once you familiarize yourself with Kubernetes and understand how it works, you
start thinking about a high-level strategy to adopt Kubernetes. In this stage you
typically do a pilot project to set up your cluster and onboard a couple of applica‐
tions. As you progress in this stage, you will have an idea about which platforms
you’re going to use and whether they will be on-premise or in the cloud. If you
choose cloud, you will decide whether to host the cluster yourself or leverage a
managed Kubernetes service from a cloud provider. You also need to think about
strategies to secure your applications. By this time, you would have realized that
Kubernetes is different due to its declarative nature. This means that the platform
abstracts a lot of details about the network, infrastructure, host, etc., and there‐
fore makes it very easy for you to use the platform for your applications. Because
of this, the current methods you use to secure your applications, infrastructure,
and networks simply do not work, so you now need to think about security that
is native to Kubernetes.

The production stage
By this point, you have completed your pilot project and successfully onboarded
a few applications. Your focus is on running mission-critical applications in pro‐
duction and on considering whether to migrate most of your applications to
Kubernetes. In this stage you need to have detailed plans for security, compliance,
troubleshooting, and observability in order to safely and efficiently move your
applications to production and realize all the benefits of the Kubernetes platform.

The popularity and success of Kubernetes as a platform for
container-based applications has many people eager to adopt it. In
the past couple of years, there has been an effort by managed
Kubernetes service providers to innovate and make adoption eas‐
ier. New users may be tempted to go past the learning and pilot
stages in order to get to the production stage quickly. We caution
against skipping due diligence. You must consider security and
observability as critical first steps before you onboard mission-
critical applications to Kubernetes; your Kubernetes adoption is
incomplete and potentially insecure without them.
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Who This Book Is For
This book is for a broad range of Kubernetes practitioners who are in the pilot/pre-
production stage of adoption. You may be a platform engineer or part of the security
or DevOps team. Some of you are the first in your organization to adopt Kubernetes
and want to do security and observability right from the start. Others are helping to
establish best practices within an organization that has already adopted Kubernetes
but has not yet solved the security and observability challenges Kubernetes presents.
We assume you have basic knowledge of Kubernetes—what it is and how to use it as
an orchestration tool for hosting applications. We also assume you understand how
applications are deployed and their distributed nature in a Kubernetes cluster.

Within this broad audience, there are many different roles. Here is a nonexhaustive
list of teams that help design and implement Kubernetes-based architectures that will
find value in this book. Please note that the role names may be different in your orga‐
nization, so please look at the responsibilities for each to identify the corresponding
role in your organization. We will use these names throughout the book to help you
understand how a concept impacts each role.

The Platform Team
The platform engineering team is responsible for the design and implementation of
the Kubernetes platform. Many enterprises choose to implement a container as a ser‐
vice platform (CaaS) strategy. This is a platform that is used across the enterprise to
implement container-based workloads. The platform engineering team is responsible
for the platform components and provides them as a service to application teams.
This book helps you understand the importance of securing the platform and best
practices to help secure the platform layer—that way you can provide application
teams a way to onboard applications on a secure Kubernetes platform. It will also help
you learn how to manage the security risk of new applications to the platform.

The Networking Team
The networking team is responsible for integrating Kubernetes clusters in an enter‐
prise network. We see these teams play different roles in an on-premise deployment
of Kubernetes and in a cloud environment where Kubernetes clusters are self-hosted
or leverage a managed Kubernetes service. You will understand the importance of
network security and how to build networks with a strong security posture. Best
practices for exposing applications outside the Kubernetes platform as well as net‐
work access for applications to external networks are examples of topics covered in
this book. You will also learn how to collaborate with other teams to implement net‐
work security to protect elements external to Kubernetes from workloads inside
Kubernetes.
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The Security Team
The security team in enterprises is the most impacted by the movement toward cloud
native applications. Cloud native applications are those designed for cloud environ‐
ments and are different from traditional applications. As an example, these applica‐
tions are distributed across the infrastructure in your network. This book will help
you understand details about how to secure a Kubernetes platform that is used to host
applications. It will provide you a complete view of how to secure mission-critical
workloads. You will learn how to collaborate with various teams to effectively imple‐
ment security in the new and different world of Kubernetes.

The Compliance Team
The compliance team in an enterprise is responsible for ensuring operations and pro‐
cesses in an organization to meet the requirements of compliance standards adopted
by an organization. You will understand how to implement various compliance
requirements and how to monitor ongoing compliance in a Kubernetes-based plat‐
form. Note that we will not cover detailed compliance requirements and various
standards, but we will provide you with strategies, examples, and tools to help you
meet compliance requirements.

The Operations Team
The operations team is the team of developers/tools/operations engineers responsible
for building and maintaining applications. They are also known as DevOps or site
reliability engineers (SREs). They ensure that applications are onboarded and meet
the required service level agreements (SLAs). In this book you will learn about your
role in securing the Kubernetes cluster and collaboration with the security team. We
will cover the concept of shift-left security, which says security needs to happen very
early in the application development life cycle. Observability in a Kubernetes plat‐
form means the ability to infer details about the operation of your cluster by viewing
data from the platform. This is the modern way of monitoring a distributed applica‐
tion, and you will learn how to implement observability and what its importance to
security is.

What You Will Learn
In this book you will learn how to think about security as you implement your Kuber‐
netes strategy, from building applications to building infrastructure to hosting appli‐
cations to deploying applications to running applications. We will present security
best practices for each of these with examples and tools to help you secure your
Kubernetes platform. We will cover how to implement auditing, compliance, and
other enterprise security controls like encryption.
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You will also learn best practices with tools and examples that show you how to
implement observability and demonstrate its relevance to security and troubleshoot‐
ing. This enhanced visibility into your Kubernetes platform will drive actionable
insights relevant to your unique situation.

By the end of the book, you will be able to implement these best practices for security
and observability for your Kubernetes clusters.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/tigera/k8s-security-observability-book.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
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books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubernetes Security and
Observability by Brendan Creane and Amit Gupta (O’Reilly). Copyright 2022 O’Reilly
Media, 978-1-098-10710-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/KSO.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/KSO
mailto:bookquestions@oreilly.com
http://oreilly.com


Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
It was a great experience writing this book and it would not have been possible
without the help, support and guidance of several people. Firstly, we want to thank
the community, developers and maintainers of Project Calico, your innovation and
contributions to Kubernetes and Kubernetes security and observability, have enabled
us to write this book. The amazing engineering and the security research teams at
Tigera have built products to address the complex challenges for security and observ‐
ability, and this enabled us to get a clear understanding of the challenges facing the
users. This was very helpful as we wrote this book to guide users to a holistic security
and observability solution.

We also wanted to thank the reviewers who provided their opinions and subject mat‐
ter expertise. Their comments and guidance have greatly enriched the content of this
book. Special mention to Manish Sampat, Alex Pollitt, Virginia Wilson, Seth Vargo,
Tim Mackey, Ian Lewis, Puja Absassi, and Jose Ruiz—you are awesome!

Finally, we want to thank everyone in the community that is contributing to Kuber‐
netes security and observability. It is amazing to see the innovation in this area, and
we are thrilled to be involved with Kubernetes security and observability.

Preface | xv

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia




CHAPTER 1

Security and Observability Strategy

In this chapter, we will cover a high-level overview of how you can build a security
and observability strategy for your Kubernetes implementation. Subsequent chapters
will cover each of these concepts in more detail. You need to think about a security
strategy when you are in the pilot/pre-production phase of your Kubernetes journey,
so if you are part of the security team, this chapter is very important. If you are part
of the network, platform, or application team, this chapter shows how you can be a
part of the security strategy and discuss the importance of collaboration between the
security, platform, and application teams.

We will cover the following concepts that will guide you with your security and
observability strategy:

• How securing Kubernetes is different from traditional security methods
• The life cycle of deploying applications (workloads) in a Kubernetes cluster and

best practices for each stage
• How you should implement observability to help with security
• Well-known security frameworks and how to use them in your security strategy

Security for Kubernetes: A New and Different World
In this section we’ll highlight how Kubernetes is different and why traditional security
methods do not work in a Kubernetes implementation.

As workloads move to the cloud, Kubernetes is the most common orchestrator for
managing them. The reason Kubernetes is popular is its declarative nature: It
abstracts infrastructure details and allows users to specify the workloads they want to
run and the desired outcomes. The application team does not need to worry about

1



how workloads are deployed, where workloads are run, or other details like network‐
ing; they just need to set up configurations in Kubernetes to deploy their applications.

Kubernetes achieves this abstraction by managing workload creation, shutdown, and
restart. In a typical implementation, a workload can be scheduled on any available
resource in a network (physical host or virtual machine) based on the workload’s
requirements. A group of resources that a workload runs on is known as a Kubernetes
cluster. Kubernetes monitors the status of workloads (which are deployed as pods in
Kubernetes) and takes corrective action as needed (e.g., restarting unresponsive
nodes). It also manages all networking necessary for pods and hosts to communicate
with each other. You have the option to decide on the networking technology by
selecting from a set of supported network plug-ins. While there are some configura‐
tion options for the network plug-in, you will not be able to directly control network‐
ing behavior (either for IP address assignment or in typical configurations where the
node is scheduled).

Kubernetes is a different world for security teams. Their traditional method would be
to build a “network of machines” and then onboard workloads (applications). As a
part of onboarding, the process was to assign IPs, update networking as needed, and
define and implement network access control rules. After these steps, the application
was ready for users. This process ensured that security teams had a lot of control and
could onboard and secure applications with ease. The applications were easy to
secure, as applications were static in terms of assigned IPs, where they were deployed,
etc.

In the Kubernetes world, workloads are built as container images and are deployed in
a Kubernetes cluster using a configuration file (yaml). This is typically integrated in
the development process, and most development teams use continuous integration
(CI) and continuous delivery (CD) to ensure speedy and reliable delivery of software.
What this means is that the security team has limited visibility into the impact of each
application change on the security of the cluster. Adding a security-review step to this
process is counterproductive, as the only logical place to add that is when the code is
being committed. The development process after that point is automated, and dis‐
rupting it would conflict with the CI/CD model. So how can you secure workloads in
this environment?

In order to understand how to secure workloads in Kubernetes, it is important to
understand the various stages that are part of deploying a workload.
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Deploying a Workload in Kubernetes:
Security at Each Stage
In the previous section, we described the challenge of securing applications that are
deployed using the CI/CD pipeline. This section describes the life cycle of workload
deployment in a Kubernetes cluster and explains how to secure each stage. The three
stages of workload deployment are the build, deploy, and runtime stages. Unlike tra‐
ditional client-server applications where an application existed on a server (or a clus‐
ter of servers), applications in a Kubernetes deployment are distributed, and the
Kubernetes cluster network is used by applications as a part of normal operation.
Here are a few things to consider because of this configuration:

• You need to consider security best practices as workloads and infrastructure are
built. This is important due to the fact that applications in Kubernetes are
deployed using the CI/CD pipeline.

• You need to consider security best practices when a Kubernetes cluster is
deployed and applications are onboarded.

• Finally, applications use the infrastructure and the Kubernetes cluster network
for normal operation, and you need to consider security best practices for appli‐
cation runtime.

Figure 1-1 illustrates the various stages and aspects to consider when securing work‐
loads in a Kubernetes environment.

Figure 1-1. Workload deployment stages and security at each stage
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The boxes below each stage describe various aspects of security that you need to con‐
sider for that stage:

• The build stage is where you create (build) software for your workload (applica‐
tion) and build the infrastructure components (host or virtual machines) to host
applications. This stage is part of the development cycle, and in most cases the
development team is responsible for it. In this stage you consider security for the
CI/CD pipeline, implement security for image repositories, scan images for vul‐
nerabilities, and harden the host operating system. You need to ensure that you
implement best practices to secure the image registry and avoid compromising
the images in the image registry. This is generally implemented by securing
access to the image registry, though a lot of users have private registries and do
not allow images from public registries. Finally, you need to consider best practi‐
ces for secrets management; secrets are like passwords that allow access to
resources in your cluster. We will cover these topics in detail in Chapter 3. We
recommend that when you consider security for this stage, you should collabo‐
rate with the security team so that security at this stage is aligned with your over‐
all security strategy.

• The next stage, deploy, is where you set up the platform that runs your Kuber‐
netes deployment and deploy workloads. In this stage you need to think about
the security best practices for configuring your Kubernetes cluster and providing
external access to applications running inside your Kubernetes cluster. You also
need to consider security controls like policies to limit access to workloads (pod
security policies), network policies to control applications’ access to the platform
components, and role-based access control (RBAC) for access to resources (for
example, service creation, namespace creation, and adding/changing labels to
pods). In most enterprises the platform team is responsible for this stage. As a
member of the platform team, you need to collaborate with both the develop‐
ment and the security teams to implement your security strategy.

• The final stage is the runtime stage, where you have deployed your application
and it is operational. In this stage you need to think about network security,
which involves controls using network policy, threat defense (using techniques to
detect and prevent malicious activity in the cluster), and enterprise security con‐
trols like compliance, auditing, and encryption. The security team is responsible
for this stage of the deployment. As a member of the security team, you need to
collaborate with the platform and development teams as you design and imple‐
ment runtime security. Collaboration between teams (development, platform,
and security) is very important for building an effective security strategy. We rec‐
ommend that you ensure all these teams are aligned.
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Note that unlike with traditional security strategies, where security is enforced at a
vantage point (like the perimeter), in the case of a Kubernetes cluster, you need to
implement security at each stage. In addition, all teams involved (application, plat‐
form, and security) play a very important role in implementing security, so the key to
implementing a successful strategy is collaboration between teams. Remember, secu‐
rity is a shared responsibility. Let’s explore each stage and the techniques you can use
to build your strategy.

Build-Time Security: Shift Left
This section will guide you through various aspects of build-time security with
examples.

Image scanning
During this stage, you need to ensure that applications do not have any major
unpatched issues that are disclosed as common vulnerability enumerations (CVEs) in
the National Vulnerability Database, and that the application code and dependencies
are scanned for exploits and vulnerable code segments. The images that are built and
delivered as containers are then scanned for unpatched critical or major vulnerabili‐
ties disclosed as CVEs. This is usually done by checking the base image and all its
packages against a database that tracks vulnerable packages. In order to implement
scanning, there are several tools, both open source and commercial, that are available
to you. For example, Whitesource, Snyk, Trivy, Anchor, and even cloud providers like
Google offer scanning of container images. We recommend that you select a scanning
solution that understands how containers are built and scans not only the operating
system on the host but also base images for containers. Given the dynamic nature of
Kubernetes deployments, it is very important for you to secure the CI/CD pipeline;
code and image scanning needs to be a part of the pipeline, and images being deliv‐
ered from the image registry must be checked for compromise. You need to ensure
access to the registry is controlled to avoid compromise. The popular term to
describe this stage is shifting security left toward the development team, also known as
shift-left security.

Host operating system hardening
Here you must ensure that the application being deployed is restricted to having the
required privileges on the host where it is deployed. To achieve this, you should use a
hardened host operating system that supports controls to enable restricting applica‐
tions to only necessary privileges like system calls and file system access. This allows
you to effectively mitigate attacks related to privilege escalation, where a vulnerability
in the software being deployed in a container is used to gain access to the host operat‐
ing system.
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Minimizing the attack surface: Base container images
We recommend you review the composition of the container image and minimize
software packages that make up the base image to include only packages that are
absolutely necessary for your application to run. In Dockerfile-based container
images, you can start with a parent image and then add your application to the image
to create a container image. For example, you could start by building a base image in
Docker using the FROM scratch directive, which will create a minimal image. You can
then add your application and required packages, which will give you complete con‐
trol of the composition of your container images and also help with CVE manage‐
ment, as you do not need to worry about patching CVEs in packages in a container
image that aren’t required by your application. In case building a scratch image is not
a viable option, you can consider starting with a distroless image (a slimmed-down
Linux distribution image) or an Alpine minimal image as the base images for your
container.

These techniques will help you design and implement your build-time security strat‐
egy. As a part of the development team, you will be responsible for designing and
implementing build-time security in collaboration with the platform and security
teams to ensure it is aligned with the overall security strategy. We caution against
believing the myth that shift-left security can be your whole security strategy. It is
incorrect, and a naive approach to securing workloads. There are several other
important aspects, such as deploy and runtime security, that need to be considered as
part of your security strategy as well.

Deploy-Time Security
The next stage in securing workloads is to secure the deployment. To accomplish this,
you have to harden your Kubernetes cluster where the workloads are deployed. You
will need a detailed review of the Kubernetes cluster configuration to ensure that it is
aligned with security best practices. Start by building a trust model for various com‐
ponents of your cluster. A trust model is a framework where you review a threat pro‐
file and define mechanisms to respond to it. You should leverage tools like role-based
access control (RBAC), label taxonomies, label governance, and admission controls to
design and implement the trust model. These are mechanisms to control access to
resources and controls and validation applied at resource creation time. These topics
are covered in detail in Chapters 3, 4, and 7. The other critical components in your
cluster are the Kubernetes datastore and Kubernetes API server, and you need to pay
close attention to details like access control and data security when you design the
trust model for these components. We recommend you use strong credentials, public
key infrastructure (PKI) for access, and transport layer security (TLS) for data in
transit encryption. Securing the Kubernetes APT and the datastore is covered in
detail in Chapter 2.
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You should think of the Kubernetes cluster where mission-critical workloads are
deployed as an entity and then design a trust model for the entity. This requires you
to review security controls at the perimeter, which will be challenging due to the
Kubernetes deployment architectures; we will cover this in the next section. For now,
let’s assume the current products that are deployed at the perimeter, like web access
control gateways and next-generation firewalls, are not aware of Kubernetes architec‐
ture. We recommend you tackle this by building integrations with these devices,
which will make them aware of the Kubernetes cluster context so they can be effective
in applying security controls at the perimeter. This way you can create a very effective
security strategy where the perimeter security devices work in conjunction with secu‐
rity implemented inside your Kubernetes cluster. As an example, say you need to
make these devices aware of the identity of your workloads (IP address, TCP/UDP
port, etc.). These devices can effectively protect the hosts that make up your Kuber‐
netes cluster, but in most cases they cannot distinguish between workloads running
on a single host. If you’re running in a cloud provider environment, you can use secu‐
rity groups, which are virtual firewalls that allow access control to a group of nodes
(such as EC2 instances in Amazon Web Services) that host workloads. Security
groups are more aligned with the Kubernetes architecture than traditional firewalls
and security gateways; however, even security groups are not aware of the context for
workloads running inside the cluster.

To summarize, when you consider deploy-time security, you need to implement a
trust model for your Kubernetes cluster and build an effective integration with perim‐
eter security devices that protect your cluster.

Runtime Security
Now that you have a strategy in place to secure the build and deploy stages, you need
to think about runtime security. The term runtime security is used for various aspects
of securing a Kubernetes cluster, for example on a host running software, but any
configuration that protects the host and workloads from unauthorized activity (e.g.,
system calls, file access) is also called runtime security. Chapter 4 will cover host and
workload runtime security in detail. In this section we will focus on the security best
practices needed to ensure the secure operation of the Kubernetes cluster network.
Kubernetes is an orchestrator that deploys workloads and applications across a net‐
work of hosts. You must consider network security as a very important aspect of run‐
time security.

Kubernetes promises increased agility and the more efficient use of compute
resources, compared with the static partitioning and provisioning of servers or VMs.
It does this by dynamically scheduling workloads across the cluster, taking into
account the resource usage on each node, and connecting workloads on a flat net‐
work. By default, when a new workload is deployed, the corresponding pod could be
scheduled on any node in the cluster, with any IP address within the pod IP address.
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If the pod is later rescheduled elsewhere, then it will normally get a different IP
address. This means that pod IP addresses need to be treated as ephemeral. There is
no long-term or special meaning associated with pod IP addresses or their location
within the network.

Now consider traditional approaches to network security. Historically, in enterprise
networks, network security was implemented using security appliances (or virtual
versions of appliances) such as firewalls and routers. The rules enforced by these
appliances were often based on a combination of the physical topology of the net‐
work and the allocation of specific IP address ranges to different classes of workloads.

As Kubernetes is based on a flat network, without any special meaning for pod IP
addresses, very few of these traditional appliances are able to provide any meaningful
workload-aware network security and instead have to treat the whole cluster as a sin‐
gle entity. In addition, in the case of east-west traffic between two pods hosted on the
same node, the traffic does not even go via the underlying network. So these applian‐
ces won’t see this traffic at all and are essentially limited to north-south security,
which secures traffic entering the cluster from external sources and traffic originating
inside the cluster headed to sources outside the cluster.

Given all of this, it should be clear that Kubernetes requires a new approach to net‐
work security. This new approach needs to cover a broad range of considerations,
including:

• New ways to enforce network security (which workloads are allowed to talk to
which other workloads) that do not rely on special meanings of IP addresses or
network topology and that work even if the traffic does not traverse the underly‐
ing network; the Kubernetes network policy is designed to meet these needs.

• New tools to help manage network policies that support new development pro‐
cesses and the desire for microservices to bring increased organizational agility,
such as policy recommendations, policy impact previews, and policy staging.

• New ways to monitor and visualize network traffic, covering both cluster-scoped
holistic views (e.g., how to easily view the overall network and the cluster’s net‐
work security status) and targeted topographic views to drill down across a
sequence of microservices to help troubleshoot or diagnose application issues.

• New ways of implementing intrusion detection and threat defense, including pol‐
icy violation alerting, network anomaly detection, and integrated threat feeds.

• New remediation workflows, so potentially compromised workloads can be
quickly and safely isolated during forensic investigation.
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• New mechanisms for auditing configuration and policy changes for compliance.
• New mechanisms for auditing configuration and policy changes, and also

Kubernetes-aware network flow logs to meet compliance requirements (since tra‐
ditional network flow logs are IP-based and have little long-term meaning in the
context of Kubernetes).

We will review an example of a typical Kubernetes deployment in an enterprise to
understand these challenges. Figure 1-2 is a representation of a common deployment
model for Kubernetes and microservices in a multicloud environment. A multicloud
environment is one where an enterprise deploys Kubernetes in more than one cloud
provider (Amazon Web services, Google Cloud, etc.). A hybrid cloud environment is
one where an enterprise has a Kubernetes deployment in at least one cloud provider
environment and a Kubernetes deployment on-premise in its datacenter. Most enter‐
prises have a dual cloud strategy and will have clusters running in Amazon Web Serv‐
ices (AWS), Microsoft Azure, or Google Cloud; more enterprises also have some
legacy applications running in their datacenters. Workloads in the datacenter will
likely be behind a security gateway that filters traffic coming in through the perime‐
ter. Microservices running in these Kubernetes deployments are also likely to have
one or more dependencies on:

• Other cloud services like AWS RDS or Azure DB
• Third-party API endpoints like Twilio
• SaaS services like Salesforce or Zuora
• Databases or legacy apps running inside the datacenter

Workloads in the datacenter will likely be behind a security gateway that filters traffic
coming in through the perimeter.

Observability in Kubernetes is the ability to derive actionable insights about the state
of Kubernetes from metrics collected (more on this later). While observability has
other applications, like monitoring and troubleshooting, it is important in the context
of network security too. Observability concepts applied to flow logs correlated with
other Kubernetes metadata (pods labels, policies, namespaces, etc.) are used to moni‐
tor (and then secure) communications between pods in a Kubernetes cluster, detect
malicious activity by comparing IP addresses with known malicious IP addresses, and
use machine learning–based techniques to detect malicious activity. These topics are
covered in the next section. As you can see in Figure 1-2, the Kubernetes deployment
poses challenges due to silos of data in each cluster and the potential loss of visibility
from associating a workload in one cluster to a workload in another cluster or to an
external service.
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Figure 1-2. Example of a Kubernetes deployment in an enterprise

As shown in Figure 1-2, the footprint of a microservices application typically extends
beyond the virtual private cloud (VPC) boundaries, and securing these applications
requires a different approach from the traditional perimeter security approach. It is a
combination of network security controls, observability, threat defense, and enter‐
prise security controls. We will cover each of these next.

Network security controls
Native security controls available from cloud providers (for example, AWS Security
Groups or Azure Network Security Groups) or security gateways (for example, next-
generation firewalls) on the perimeter of the VPC or datacenter do not understand
the identity of a microservice inside a Kubernetes cluster. For example, you cannot
filter traffic to or from a Kubernetes pod or service with your security group rules or
firewall policies. Additionally, by the time traffic from a pod hits a cloud provider’s
network or a third-party firewall, the traffic (depending on the cloud provider’s archi‐
tecture) has a source network address translation (SNAT) applied to it. In other
words, the source IP address of traffic from all workloads on the node is set to the
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node IP, so any kind of allow/deny policies, at best, will have node-level (the node’s IP
address) granularity.

Kubernetes workloads are highly dynamic and ephemeral. Let’s say a developer com‐
mits a new check-in for a particular workload. The automated CI/CD workflow will
kick in, build a new version of the pod (container), and start deploying this new ver‐
sion of the workload in Kubernetes clusters. Kubernetes orchestrator will do a rolling
upgrade and deploy new instances of the workload. All of this happens in an automa‐
ted fashion, and there is no room for manual or out-of-band workflows to reconfig‐
ure the security controls for the newly deployed workload.

You need a new security architecture to secure workloads running in a multi- or
hybrid cloud infrastructure. Just like your workload deployment in a Kubernetes clus‐
ter, the security of the workload has to be defined as code, in a declarative model.
Security controls have to be portable across Kubernetes distributions, clouds, infra‐
structures, and/or networks. These security controls have to travel with the work‐
loads, so if a new version of the workload is deployed in a VPC for Amazon Elastic
Kubernetes Service (EKS), instead of on-premise clusters, you can be assured that the
security controls associated with the service will be seamlessly enforced without you
having to rework any network topology, out-of-band configuration of security
groups, or VPC/perimeter firewalls.

Network security controls are implemented by using a network policy solution that is
native to Kubernetes and provides granular access controls. There are several well-
known implementations of network policy (such as Calico, Weave Net, Kube-router,
Antrea) that you can use. In addition to applying policy at Layer 3/Layer 4 (TCP/IP),
we recommend you look at solutions that support application layer policy (such as
HTTP/HTTPS). We also recommend picking a solution that is based on the popular
proxy Envoy, as it is widely deployed for application-layer policy. Kubernetes sup‐
ports deploying applications as microservices (small components serving a part of the
application functionality) over a network of nodes. The communication between
microservices relies on application protocols such as HTTP. Therefore, there is a need
for granular application controls that can be implemented by application layer policy.
For example, in a three-tier application, the frontend microservice may only be
allowed to use HTTP GET-based requests with the backend database microservice
(read access) and not allowed to use HTTP POST with the backend database micro‐
service (write access). All these requests can end up using the same TCP connection,
so it is essential to add a policy engine that supports application-level controls as
described here.
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Enterprise security controls
Now that you have the strategy for network access controls and observability defined,
you should consider additional security controls that are important and prevalent in
enterprises. Encryption of data in transit is a critical requirement for security and
compliance. There are several options to consider for encryption using traditional
approaches, like TLS-based encryption in your workloads; mutual TLS, which is part
of a service mesh platform; or a VPN-based approach like Wireguard (which offers a
crypto key–based VPN).

We recommend that you leverage the data collection that is part of your observability
strategy to build the reports needed to help with compliance requirements for
standards like PCI, HIPAA, GDPR, and SOC 2. You should also consider the ability
to ensure continuous compliance, and you can leverage the declarative nature of
Kubernetes to help with the design and implementation of continuous compliance.
For example, you can respond to a pod failing a compliance check by using the pod’s
compliance status to trigger necessary action to correct the situation (trigger an
image update).

Threat defense
Threat defense in a Kubernetes cluster is the ability to look at malicious activity in the
cluster and then defend the cluster from it. Malicious activity allows an adversary to
gain unauthorized access and manipulate or steal data from a Kubernetes cluster. The
malicious activity can occur in many forms, such as exploiting an insecure configura‐
tion or exploiting a vulnerability in the application traffic or the application code.

When you build your threat defense strategy, you must consider both intrusion
detection and prevention. The key to intrusion detection is observability; you need to
review data collected to scan for known threats. In a Kubernetes deployment, data
collection is very challenging due to the large amount of data you need to inspect. We
have often heard this question: “Do I need a Kubernetes cluster to collect data to
defend a Kubernetes cluster?” The answer is “no.” We recommend you align your
observability strategy with intrusion detection and leverage smart aggregation to col‐
lect and inspect data. For example, you can consider using a tool that aggregates data
as groups of “similar” pods talking to each other on a given destination port and pro‐
tocol, instead of using the traditional method of aggregating by the five-tuple (source
IP, source port, destination IP, destination port, protocol). This approach will help
significantly reduce data collected without sacrificing effectiveness. Remember, sev‐
eral pods running the same container image and deployed in the same way will gen‐
erate identical network traffic for a transaction. You may ask, “What if only one
instance is infected? How can I detect that?” That’s a good question. There are a few
ways. You could pick a tool that supports machine learning based on various metrics
collected like connections, bytes, and packets to detect anomalous workloads.
Another approach is to have a tool that can detect and match known malicious IPs

12 | Chapter 1: Security and Observability Strategy



and domains from well-known threat feeds as a part of collection, or log unaggrega‐
ted network flows for traffic denied by policy. These are simple techniques that will
help you build a strategy. Note that threat defense techniques evolve, and you will
need a security research team to work with you to help understand your application
and build a threat model to implement your threat defense strategy.

Observability
Observability is very useful for monitoring and securing a distributed system like
Kubernetes. Kubernetes abstracts a lot of details, and in order to monitor a system
like it, you cannot collect and independently baseline and monitor individual metrics
(such as a single network flow, a pod create/destroy event, or a CPU spike on one
node). What is needed is a way to monitor these metrics in the context of the Kuber‐
netes. For example, a pod associated with a service or a deployment is restarted and
running as a different binary as compared to its peers, or a pod activity (network, file‐
system, kernel system calls) is different from other pods in the deployment. This
becomes even more complex when you consider an application that comprises sev‐
eral services (microservices) that are in turn backed by several pods.

Observability is useful in troubleshooting and monitoring the security of workloads
in Kubernetes. As an example, observability in the context of a service in Kubernetes
will allow you to do the following:

• Visualize your Kubernetes cluster as a service graph, which shows how pods are
associated with services and the communication flows between services

• Overlay application (Layer 7) and network traffic (Layer 3/Layer 4) on the service
graph as separate layers that will allow you to easily determine traffic patterns
and traffic load for applications and for the underlying network

• View metadata for the node where a pod is deployed (e.g., CPU, memory, or host
OS details).

• View metrics related to the operation of a pod, traffic load, application latency
(e.g., HTTP duration), network latency (network round-trip time), or pod opera‐
tion (e.g., RBAC policies, service accounts, or container restarts)

• View DNS activity (DNS response codes, latency, load) for a given service (pods
backing the service)

• Trace a user transaction that needs communication across multiple services; this
is also known as distributed tracing

• View network communication of a given service to external entities
• View Kubernetes activity logs (e.g., audit logs) for pods and resources associated

with a given service.
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We will cover the details of observability and examples of how it can help security in
subsequent chapters. For this discussion, we will cover a brief description of how you
can use observability as a part of your security strategy.

Network traffic visibility
As mentioned, a solution that provides network flows aggregated at a service level
with context like namespaces, labels, service accounts, or network policies is required
to adequately monitor activity and access controls applied to the cluster. For example,
there is a significant difference between reporting that IP1 communicated with IP2
over port 8080 and reporting that pods labeled “frontend” communicated with pods
labeled “backend” on certain ports or traffic patterns between deployments of pods in
a Kubernetes cluster. This reporting will allow you to review communication from
external entities and apply IP address–based threat feeds to detect activity from
known malicious IP addresses or even traffic from unexpected geographical loca‐
tions. We will cover details for these concepts in Chapter 11.

DNS activity logs
Domain Name System (DNS) is a system used to translate domain names into IP
addresses. In your Kubernetes cluster, it is critical to review DNS activity logs to
detect unexpected activity, for example queries to known malicious domains, DNS
response codes like NXDOMAIN, and unexpected increases in bytes and packets in
DNS queries. We will cover details for these concepts in Chapter 11.

Application traffic visibility
We recommend you review application traffic flows for suspicious activity like unex‐
pected response codes and rare or known malicious HTTP headers (user-agent,
query parameters). HTTP is the most common protocol used in Kubernetes deploy‐
ments, so it is important to work with your security research team to monitor HTTP
traffic for malicious traffic. In case you use other application protocols (e.g., Kafka,
MySQL), you need to do the same for those as well.

Kubernetes activity logs
In addition to network activity logs, you must also monitor Kubernetes activity logs
to detect malicious activity. For example, review access-denied logs for resources
access and service account creation/modification. Review namespace creation/modi‐
fication logs for unexpected activity. And review the Kubernetes audit logs which
record requests to the Kubernetes API.
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Machine learning/anomaly detection
Machine learning is a technique where a system is able to derive patterns from data
over a period of time. The output is a machine learning model, which can then be
used to make predictions and detect deviations in real data based on the prediction.
We recommend you consider applying machine learning–based anomaly detection to
various metrics to detect strange activity. A simple and effective way is to apply a
machine learning technique known as baselining to individual metrics. This way you
do not need to worry about applying rules and thresholds for each metric; the system
does that for you and reports deviations as anomalies. Applying machine learning
techniques to network traffic is a relatively new area and is gaining traction with
security teams. We will cover this topic in detail in Chapter 6.

There are many solutions that you can choose for your observability strategy for
Kubernetes (Datadog, Calico Enterprise, cloud provider–based solutions from Goo‐
gle, AWS, Azure).

Security Frameworks
Finally, we want to make you aware of security frameworks that provide the industry
a common methodology and terminology for security best practices. Security frame‐
works are a great way to understand attack techniques and best practices to defend
and mitigate attacks. You should use them to build and validate your security strategy.
Please note these frameworks may not be specific to Kubernetes, but they provide
insights into techniques used by adversaries in attacks, and security researchers will
need to review and see if they are relevant to Kubernetes. We will review two well-
known frameworks—MITRE and Threat Matrix for Kubernetes.

MITRE
MITRE is a knowledge base of adversary tactics and techniques based on real-world
observations of cyberattacks. The MITRE ATT&CK® Matrix for Enterprise is useful
because it provides the tactics and techniques categorized for each stage of the cyber‐
security kill chain. The kill chain is a description of the stages in a cyberattack and is
useful for building an effective defense against an attack. MITRE also provides an
attack matrix tailored for cloud environments like AWS, Google Cloud, and Micro‐
soft Azure.
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Figure 1-3 describes the MITRE ATT&CK® Matrix for AWS. We recommend that you
review each of the stages described in the attack matrix as you build your threat
model for securing your Kubernetes cluster.

Figure 1-3. Attack matrix for cloud environments in AWS

Threat matrix for Kubernetes
The other framework is a threat matrix that is a Kubernetes-specific application of the
generic MITRE attack matrix. It was published by the Microsoft team based on secu‐
rity research and real-world attacks. This is another excellent resource to use to build
and validate your security strategy.

Figure 1-4 provides the stages that are relevant to your Kubernetes cluster. They map
to the various stages we discussed in this chapter. For example, you should consider
the compromised images in the registry in the initial access stage, the access cloud
resources in the privilege escalation stage, and the cluster internal network in the lat‐
eral movement stage for build, deploy, and runtime security, respectively.
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Figure 1-4. Threat matrix for Kubernetes

Security and Observability
In a dynamic environment like Kubernetes, a secure deployment of your applications
can be achieved by thinking about security and observability together. As an example,
you need to “observe” your cluster to find the optimal way to implement controls to
secure the cluster. Kubernetes as an orchestration engine has strong adoption due to
the fact that it is declarative in nature, allowing users to specify higher-level out‐
comes. Kubernetes also has built-in capabilities to ensure that your cluster operates as
per the specifications. It does this by monitoring the various attributes and taking
action (e.g., a pod restart) if the attribute deviates from the specified value for a
period of time. These aspects of Kubernetes make it difficult to implement the visibil‐
ity and controls needed to secure a cluster. The controls you implement need to be
aligned with Kubernetes operations. Therefore, before you think of adding any con‐
trols to Kubernetes, it is important to understand the context—for example, you can‐
not isolate a pod by applying a policy that does not allow it to communicate with
anything else. Kubernetes will detect that the pod is not able to communicate with the
other elements (e.g., API server), determine that the pod is not operating as specified,
and restart and spin up the pod somewhere else in the cluster.
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What you have to do is first understand how the pod operates and understand what
its expected operation is and then apply controls or detect unexpected events. After
that, you determine if the unexpected event is an operations issue or a security issue
and then apply the required remediation. In order to do this, observability and secu‐
rity go hand in hand: You observe to understand what is expected and apply controls
to ensure expected operation, then observe to detect unexpected events and analyze
them, and then add necessary controls to remediate any issue due to the event. There‐
fore, you need a holistic approach for security and observability when you think
about securing your clusters.

Conclusion
By now you should have a high-level overview of what Kubernetes security and
observability entails. These are the foundational concepts that underpin this entire
book. In short:

• Security for Kubernetes is very different from traditional security and requires a
holistic security and observability approach at all the stages of workload deploy‐
ment—build, deploy, and runtime.

• Kubernetes is declarative and abstracts the details of workload operations, which
means workloads can be running anywhere over a network of nodes. Also, work‐
loads can be ephemeral, where they are destroyed and re-created on a different
node. Securing such a declarative distributed system requires that you think
about security at all stages.

• We hope you understand the importance of collaboration between the applica‐
tion, platform, and security teams when designing and implementing a holistic
security approach.

• MITRE and the Threat Matrix for Kubernetes are two security frameworks that
are widely adopted by security teams.

It’s important that you take in all of this together, because a successful security and
observability strategy is a holistic one. In the next chapter, we will cover infrastruc‐
ture security.
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CHAPTER 2

Infrastructure Security

Many Kubernetes configurations are insecure by default. In this chapter we will
explore how to secure Kubernetes at the infrastructure level. It can be made more
secure through the combination of host hardening to make the servers or VMs
Kubernetes is hosted on more secure, cluster hardening to secure the Kubernetes
control plane components, and network security to integrate the cluster with the sur‐
rounding infrastructure. Please note that the concepts discussed in this chapter apply
to self-hosted Kubernetes clusters as well as managed Kubernetes clusters.

Host hardening
This covers the choice of operating system, avoiding running nonessential pro‐
cesses on the hosts, and host-based firewalling.

Cluster hardening
This covers a range of configuration and policy settings needed to harden the
control plane, including configuring TLS certificates, locking down the Kuber‐
netes datastore, encrypting secrets at rest, credential rotation, and user authenti‐
cation and access control.

Network security
This covers securely integrating the cluster with the surrounding infrastructure,
and in particular which network interactions between the cluster and the sur‐
rounding infrastructure are allowed, for control plane, host, and workload traffic.

Let’s look at the details for each of these aspects and explore what is needed to build a
secure infrastructure for your Kubernetes cluster.

19



Host Hardening
A secure host is an important building block for a secure Kubernetes cluster. When
you think of a host, it is in the context of workloads that make up your Kubernetes
cluster. We will now explore techniques to ensure a strong security posture for the
host.

Choice of Operating System
Many enterprises standardize on a single operating system across all of their infra‐
structure, which means the choice may have already been made for you. However, if
there is flexibility to choose an operating system, then it is worth considering a 
modern immutable Linux distribution specifically designed for containers. These dis‐
tributions are advantageous for the following reasons:

• They often have newer kernels, which include the latest vulnerability fixes as well
as up-to-date implementations of newer technologies such as eBPF, which can be
leveraged by Kubernetes networking and security monitoring tools.

• They are designed to be immutable, which brings additional benefits for security.
Immutability in this context means that the root filesystem is locked and cannot
be changed by applications. Applications can only be installed using containers.
This isolates applications from the root filesystem and significantly reduces the
ability for malicious applications to compromise the host.

• They often include the ability to self-update to newer versions, with the upstream
versions being geared up for rapid releases to address security vulnerabilities.

Two popular examples of modern immutable Linux distributions designed for con‐
tainers are Flatcar Container Linux (which was originally based on CoreOS Container
Linux) and Bottlerocket (originally created and maintained by Amazon).

Whichever operating system you choose, it is good practice to monitor upstream
security announcements so you know when new security vulnerabilities are identified
and disclosed and to make sure you have processes in place to update your cluster to
a newer version to address critical security vulnerabilities. Based on your assessment
of these vulnerabilities, you will want to make a decision on whether to upgrade your
cluster to a new version of the operating system. When you consider the choice of the
operating system, you must also take into account shared libraries from the host
operating system and understand their impact on containers that will be deployed on
the host.

Another security best practice is to ensure that application developers do not depend
on a specific version of the operating system or kernel, as this will not allow you to
update the host operating system as needed.
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Nonessential Processes
Each running host process is a potential attack vector for hackers. From a security
perspective, it is best to remove any nonessential processes that may be running by
default. If a process isn’t needed for the successful running of Kubernetes, manage‐
ment of your host, or security of your host, then it is best not to run the process. How
you disable the process will depend on your particular setup (e.g., systemd configura‐
tion change or removing the initialization script from /etc/init.d/).

If you are using an immutable Linux distribution optimized for containers, then non‐
essential processes will have already been eliminated and you can only run additional
processes/applications as containers.

Host-Based Firewalling
To further lock down the servers or VMs Kubernetes is hosted on, the host itself can
be configured with local firewall rules to restrict which IP address ranges and ports
are allowed to interact with the host.

Depending on your operating system, this can be done with traditional Linux admin
tools such as iptables rules or firewalld configuration. It is important to make sure
any such rules are compatible with both the Kubernetes control plane and whichever
Kubernetes network plug-in you plan to use so they do not block the Kubernetes con‐
trol plane, pod networking, or the pod network control plane. Getting these rules
right, and keeping them up to date over time, can be a time-consuming process. In
addition, if using an immutable Linux distribution, you may not easily be able to
directly use these tools.

Fortunately, some Kubernetes network plug-ins can help solve this problem for you.
For example, several Kubernetes network plug-ins, like Weave Net, Kube-router, and
Calico, include the ability to apply network policies. You should review these plug-ins
and pick one that also supports applying network policies to the hosts themselves
(rather than just to Kubernetes pods). This makes securing the hosts in the cluster
significantly simpler and is largely operating system independent, including working
with immutable Linux distributions.

Always Research the Latest Best Practices
As new vulnerabilities or attack vectors are identified by the security research com‐
munity, security best practices evolve over time. Many of these are well-documented
online and are available for free.

For example, the Center for Internet Security maintains free PDF guides with com‐
prehensive configuration guidance to secure many of the most common operating
systems. Known as CIS Benchmarks, they are an excellent resource for making sure
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you are covering the many important actions required to secure your host operating
system. You can find an up-to-date list of CIS Benchmarks on their website. Please
note there are Kubernetes-specific benchmarks, and we will discuss them later in this
chapter.

Cluster Hardening
Kubernetes is insecure by default. So in addition to hardening the hosts that make up
a cluster, it is important to harden the cluster itself. This can be done through a com‐
bination of Kubernetes component and configuration management, authentication
and role-based access control (RBAC), and keeping the cluster updated with the latest
versions of Kubernetes to ensure the cluster has the latest vulnerability fixes.

Secure the Kubernetes Datastore
Kubernetes uses etcd as its main datastore. This is where all cluster configuration and
desired state is stored. Having access to the etcd datastore is essentially equivalent to
having root login on all your nodes. Almost any other security measures you have put
in place within the cluster become moot if a malicious actor gains access to the etcd
datastore. They will have complete control over your cluster at that point, including
the ability to run arbitrary containers with elevated privileges on any node.

The main way to secure etcd is to use the security features provided by etcd itself. 
These are based around x509 Public Key Infrastructure (PKI), using a combination of
keys and certificates. They ensure that all data in transit is encrypted with TLS and all
access is restricted with strong credentials. It is best to configure etcd with one set of
credentials (key pairs and certificates) for peer communications between the different
etcd instances, and another set of credentials for client communications from the
Kubernetes API. As part of this configuration, etcd must also be configured with the
details of certificate authority (CA) used to generate the client credentials.

Once etcd is configured correctly, only clients with valid certificates can access it. You
must then configure the Kubernetes API server with the client certificate, key, and
certificate authority so it can access etcd.

You can also use network-level firewall rules to restrict etcd access so it can only be
accessed from Kubernetes control nodes (hosting the Kubernetes API server).
Depending on your environment you can use a traditional firewall, virtual cloud fire‐
wall, or rules on the etcd hosts themselves (for example, a networking policy imple‐
mentation that supports host endpoint protection) to block traffic. This is best done
in addition to using etcd’s own security features as part of an in-depth defense strat‐
egy, since limiting access with firewall rules does not address the security need for
Kubernetes’ sensitive data to be encrypted in transit.
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In addition to securing etcd access for Kubernetes, it is recommended to not use the
Kubernetes etcd datastore for anything other than Kubernetes. In other words, do not
store non-Kubernetes data within the datastore and do not give other components
access to the etcd cluster. If you are running applications or infrastructure (within the
cluster or external to the cluster) that uses etcd as a datastore, the best practice is to
set up a separate etcd cluster for that. The arguable exception would be if the applica‐
tion or infrastructure was sufficiently privileged that a compromise to its datastore
would also result in a complete compromise of Kubernetes. It is also very important
to maintain backups of etcd and secure the backups so that it is possible to recover
from failures like a failed upgrade or a security incident.

Secure the Kubernetes API Server
One layer up from the etcd datastore, the next set of crown jewels to be secured is the
Kubernetes API server. As with etcd, this can be done using x509 PKI and TLS. The
details of how to bootstrap a cluster in this way vary depending on the Kubernetes
installation method you are using, but most methods include steps that create the
required keys and certificates and distribute them to the other Kubernetes cluster
components. It’s worth noting that some installation methods may enable insecure
local ports for some components, so it is important to familiarize yourself with the
settings of each component to identify potential unsecured traffic so you can take
appropriate action to secure them.

Encrypt Kubernetes Secrets at Rest
Kubernetes can be configured to encrypt sensitive data it stores in etcd, such as
Kubernetes secrets. This keeps the secrets safe from any attacker that may gain access
to etcd or to an offline copy of etcd such as offline backup.

By default, Kubernetes does not encrypt secrets at rest, and when encryption is
enabled, it only encrypts when a secret is written to etcd. Therefore, when enabling
encryption at rest, it is important to rewrite all secrets (through standard kubectl
apply or update commands) to trigger their encryption within etcd.

Kubernetes supports a variety of encryption providers. It is important to pick the rec‐
ommended encryption based on encryption best practices. The mainline recom‐
mended choice is AES-CBC with PKCS #7–based encryption. This provides very
strong encryption using 32-byte keys and is relatively fast. There are two different
providers that support this encryption:
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• The local provider that runs entirely with Kubernetes and uses locally configured
keys

• The KMS provider that uses an external key management service (KMS) to man‐
age the keys

The local provider stores its keys on the API server’s local disk. This therefore has the
limitation that if the API server host is compromised, then all of your secrets become
compromised. Depending on your security posture, this may be acceptable.

The KMS provider uses a technique called envelope encryption. With envelope
encryption, each secret is encrypted with a dynamically generated data encryption
key (DEK). The DEK is then encrypted using a key encryption key (KEK) provided
by the KMS, and the encrypted DEK is stored alongside the encrypted secret in etcd.
The KEK is always hosted by the KMS as the central root of trust and is never stored
within the cluster. Most large public cloud providers offer a cloud-based KMS service
that can be used as the KMS provider in Kubernetes. For on-prem clusters there are
third-party solutions, such as HashiCorp’s Vault, which can act as the KMS provider
for the cluster. Because the detailed implementations vary, it is important to evaluate
the mechanism through which the KMS authenticates the API server and whether a
compromise to the API server host could in turn compromise your secrets and there‐
fore offer only limited benefits compared with a local encryption provider.

If exceptionally high volumes of encrypted storage read/writes are anticipated, then
using the secretbox encryption provider could potentially be faster. However, secret‐
box is a newer standard and at the time of writing has had less review than other
encryption algorithms. It therefore may not be considered acceptable in environ‐
ments that require high levels of review. In addition, secretbox is not yet supported by
the KMS provider and must use a local provider, which stores the keys on the API
server.

Encrypting Kubernetes secrets is the most common must-have encryption at-rest
requirement, but note that you can also configure Kubernetes to encrypt storage of
other Kubernetes resources if desired.

It’s also worth noting there are third-party secret management solutions that can be
used if you have requirements beyond the capabilities of Kubernetes secrets. One
such solution, already mentioned as a potential KMS provider for envelope encryp‐
tion in Kubernetes, is HashiCorp’s Vault. In addition to providing secure secrets man‐
agement for Kubernetes, Vault can be used beyond the scope of Kubernetes to
manage secrets more broadly across the enterprise if desired. Vault was also a very
popular choice for plugging the major gap in earlier Kubernetes versions, which did
not support the encryption of secrets at rest.
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Rotate Credentials Frequently
Rotating credentials frequently makes it harder for attackers to make use of any com‐
promised credential they may obtain. It is therefore a best practice to set short life‐
times on any TLS certificates or other credentials and automate their rotation. Most
authentication providers can control how long issued certificates or service tokens are
valid for, and it is best to use short lifetimes whenever possible, for example rotating
keys every day or more frequently if they are particularly sensitive. This needs to
include any service tokens used in external integrations or as part of the cluster boot‐
strap process.

Fully automating the rotation of credentials may require custom DevOps develop‐
ment work, but normally represents a good investment compared with attempting to
manually rotate credentials on an ongoing basis.

When rotating keys for Kubernetes secrets stored at rest (as discussed in the previous
section), local providers support multiple keys. The first key is always used to encrypt
any new secret writes. For decryption, the keys are tried in order until the secret is
successfully decrypted. As keys are encrypted only on writes, it is important to
rewrite all secrets (through standard kubectl apply or update commands) to trigger
their encryption with the latest keys. If the rotation of secrets is fully automated, then
the write will happen as part of this process without requiring a separate step.

When using a KMS provider (rather than a local provider), the KEK can be rotated
without requiring reencryption of all the secrets, which can reduce the performance
impact of reencrypting all secrets if you have a large number of sizable secrets.

Authentication and RBAC
In the previous sections we primarily focused on securing programmatic/code access
within the cluster. Equally important is to follow best practices for securing user
interactions with the cluster. This includes creating separate user accounts for each
user and using Kubernetes RBAC to grant users the minimal access they need to per‐
form their role, following the principle of least privilege access. Usually it is better to
do this using groups and roles, rather than assigning RBAC permissions to individual
users. This makes it easier to manage privileges over time, both in terms of adjusting
privileges for different groups of users when requirements change and for reducing
the effort required to periodically review/audit the user privileges across the cluster to
verify they are correct and up to date.

Kubernetes has limited built-in authentication capabilities for users, but can be inte‐
grated with most external enterprise authentication providers, such as public cloud
provider IAM systems or on-prem authentication services, either directly or through
third-party projects such as Dex (originally created by CoreOS). It is generally recom‐
mended to integrate with one of these external authentication providers rather than
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using Kubernetes basic auth or service account tokens, since external authentication
providers typically have more user-friendly support for rotation of credentials,
including the ability to specify password strength and rotation frequency timeframes.

Restricting Cloud Metadata API Access
Most public clouds provide a metadata API that is accessible locally from each
host/VM instance. The APIs provide access to the instance’s cloud credentials, IAM
permissions, and other potentially sensitive information about the instance. By
default, these APIs are accessible by the Kubernetes pods running on an instance.
Any compromised pod can use these credentials to elevate its intended privilege level
within the cluster or to other cloud provider–hosted services the instance may have
privileges to access.

To address this security issue, the best practice is to:

• Provide any required pod IAM credentials following the cloud provider’s recom‐
mended mechanisms. For example, Amazon EKS allows you to assign a unique
IAM role to a service account, Microsoft Azure’s AKS allows you to assign a man‐
aged identity to a pod, and Google Cloud’s GKE allows you to assign IAM per‐
missions via Workload Identity.

• Limit the cloud privileges of each instance to the minimum required to reduce
the impact of any compromised access to the metadata API from the instance.

• Use network policies to block pod access to the metadata API. This can be done
with per-namespace Kubernetes network policies, or preferably with extensions
to Kubernetes network policies such as those offered by Calico, which enable a
single network policy to apply across the whole of the cluster (without the need
to create a new Kubernetes network policy each time a new namespace is added
to the cluster). This topic is covered in more depth in the Default Deny and
Default App Policy section of Chapter 7.

Enable Auditing
Kubernetes auditing provides a log of all actions within the cluster with configurable
scope and levels of detail. Enabling Kubernetes audit logging and archiving audit logs
on a secure service is recommended as an important source of forensic details in the
event of needing to analyze a security breach.

The forensic review of the audit log can help answer questions such as:

• What happened, when, and where in the cluster?
• Who or what initiated it and from where?
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In addition, Kubernetes audit logs can be actively monitored to alert on suspicious
activity using your own custom tooling or third-party solutions. There are many
enterprise products that you can use to monitor Kubernetes audit logs and generate
alerts based on configurable match criteria.

The details of what events are captured in Kubernetes audit logs are controlled using
policy. The policy determines which events are recorded, for which resources, and
with what level of detail.

Each action being performed can generate a series of events, defined as stages:

RequestReceived
Generated as soon as the audit handler receives the request

ResponseStarted
Generated when the response headers are sent, but before the response body is
sent (generated only for long-running requests such as watches)

ResponseComplete
Generated when the response body has been completed

Panic
Generated when a panic occurs

The level of detail recorded for each event can be one of the following:

None
Does not log the event at all

Metadata
Logs the request metadata (user, timestamp, resource, verb, etc.) but not the
request details or response body

Request
Logs event metadata and the request body but not the response body

RequestResponse
Logs the full details of the event, including the metadata and request and
response bodies

Kubernetes’ audit policy is very flexible and well documented in the main Kubernetes
documentation. Included here are just a couple of simple examples to illustrate.

To log all requests at the metadata level:

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
- level: Metadata
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To omit the RequestReceived stage and to log pod changes at the RequestResponse
level and configmap and secrets changes at the metadata level:

apiVersion: audit.k8s.io/v1 # This is required.
kind: Policy
omitStages:
  - "RequestReceived"
rules:
  - level: RequestResponse
    resources:
    - group: ""
      resources: ["pods"]
  - level: Metadata
    resources:
    - group: "" # core API group
      resources: ["secrets", "configmaps"]

This second example illustrates the important consideration of sensitive data in audit
logs. Depending on the level of security around access to the audit logs, it may be
essential to ensure the audit policy does not log details of secrets or other sensitive
data. Just like the practice of encrypting secrets at rest, it is generally a good practice
to always exclude sensitive details from your audit log.

Restrict Access to Alpha or Beta Features
Each Kubernetes release includes alpha and beta features. Whether these are enabled
can be controlled by specifying feature gate flags for the individual Kubernetes com‐
ponents. As these features are in development, they can have limitations or bugs that
result in security vulnerabilities. So it is a good practice to make sure that all alpha
and beta features you do not intend to use are disabled.

Alpha features are normally (but not always) disabled by default. They might be
buggy, and the support for the feature could radically change without backward com‐
patibility, or be dropped in future releases. They are generally recommended for test‐
ing clusters only, not production clusters.

Beta features are normally enabled by default. They can still change in non-
backward-compatible ways between releases, but they are usually considered reasona‐
bly well tested and safe to enable. But as with any new feature, they are inherently
more likely to have vulnerabilities because they have been used less and had less
review.

Always assess the value an alpha or beta feature may provide against the security risk
it represents, as well as the potential ops risk of non-backward-compatible changes of
the features between releases.
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Upgrade Kubernetes Frequently
It is inevitable that new vulnerabilities will be discovered over time in any large soft‐
ware project. The Kubernetes developer community has a good track record of
responding to newly discovered vulnerabilities in a timely manner. Severe vulnerabil‐
ities are normally fixed under embargo, meaning that the knowledge of the vulnera‐
bility is not made public until the developers have had time to produce a fix. Over
time, the number of publicly known vulnerabilities for older Kubernetes versions
grows, which can put older clusters at greater security risk.

To reduce the risk of your clusters being compromised, it is important to regularly
upgrade your clusters, and to have in place the ability to urgently upgrade if a severe
vulnerability is discovered.

All Kubernetes security updates and vulnerabilities are reported (once any embargo
ends) via the public and free-to-join kubernetes-announce email group. Joining this
group is highly recommended for anyone wanting to keep track of known vulnerabil‐
ities so they can minimize their security exposure.

Use a Managed Kubernetes Service
One way to reduce the effort required to act on all of the advice in this chapter is to
use one of the major public cloud managed Kubernetes services, such as EKS, AKS,
GKE, or IKS. Using one of these services moves security from being 100% your own
responsibility to being a shared responsibility model. Shared responsibility means
there are many elements of security that the service includes by default, or can be
easily configured to support, but that there are elements you still have to take respon‐
sibility for yourself in order to make the whole truly secure.

The details vary depending on which public cloud service you are using, but there’s
no doubt that all of them do significant heavy lifting, which reduces the effort
required to secure the cluster compared to if you are installing and managing the
cluster yourself. In addition, there are plenty of resources available from the public
cloud providers and from third parties that detail what you need to do as part of the
shared responsibility model to fully secure your cluster. For example, one of these
resources is CIS Benchmarks, as discussed next.

CIS Benchmarks
As discussed earlier in this chapter, CIS maintains free PDF guides with comprehen‐
sive configuration guidance to secure many of the most common operating systems.
These guides, known as CIS Benchmarks, can be an invaluable resource to help you
with host hardening.
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In addition to helping with host hardening, there are also CIS Benchmarks for
Kubernetes itself, including configuration guidance for many of the popular managed
Kubernetes services, which can help you implement much of the guidance in this
chapter. For example, the GKE CIS Benchmark includes guidance on ensuring the
cluster is configured with autoupgrade of nodes, and for using managing Kubernetes
authentication and RBAC with Google Groups. These guides are highly recom‐
mended resources to keep up to date with the latest practical advice on the steps
required to secure Kubernetes clusters.

In addition to the guides themselves, there are third-party tools available that can
assess the status of a running cluster against many of these benchmarks. One popular
tool is kube-bench, an open source project originally created by the team at Aqua
Security. Or if you prefer a more packaged solution, then many enterprise products
have CIS Benchmark and other security compliance tooling and alerting built into
their cluster management dashboards. Having these kinds of tools in place, ideally
running automatically at regular intervals, can be valuable for verifying the security
posture of a cluster and ensuring that careful security measures that might have been
put in place at cluster creation time are not accidentally lost or compromised as the
cluster is managed and updated over time.

Network Security
When securely integrating the cluster with the surrounding infrastructure outside the
scope of the cluster, network security is the primary consideration. There are two
aspects to consider: how to protect the cluster from attack from outside the cluster
and how to protect the infrastructure outside of the cluster from any compromised
element inside the cluster. This applies at both the cluster workload level (i.e., Kuber‐
netes pods) and the cluster infrastructure level (i.e., the Kubernetes control plane and
the hosts on which the Kubernetes cluster is running).

The first thing to consider is whether or not the cluster needs to be accessible from
the public internet, either directly (e.g., one or more nodes have public IP addresses)
or indirectly (e.g., via a load balancer or similar that is reachable from the internet). If
the cluster is accessible from the internet, then the number of attacks or probes from
hackers is massively increased. So if there is not a strong requirement for the cluster
to be accessible from the internet, then it is highly recommended to not allow any
access at a routability level (i.e., ensuring there is no way of packets getting from the
internet to the cluster). In an enterprise on-prem environment, this may equate to the
choice of IP address ranges to use for the cluster and their routability within the
enterprise network. If using a public cloud managed Kubernetes service, you may
find these settings can be set only at cluster creation. For example, in GKE, whether
the Kubernetes control plane is accessible from the internet can be set at cluster
creation.
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Network policy within the cluster is the next line of defense. Network policy can be
used to restrict both workload and host communications to/from the cluster and the
infrastructure outside of the cluster. It has the strong advantage of being workload
aware (i.e., the ability to limit communication of groups of pods that make up an
individual microservices) and being platform agnostic (i.e., the same techniques and
policy language can be used in any environment, whether on-prem within the enter‐
prise or in public cloud). Network policy is discussed in depth later in a dedicated
chapter.

Finally, it is highly recommended to use perimeter firewalls, or their cloud equiva‐
lents such as security groups, to restrict traffic to/from the cluster. In most cases these
are not Kubernetes workload aware, so they don’t understand individual pods and are
therefore usually limited in granularity to treating the whole of the cluster as a single
entity. Even with this limitation they add value as part of a defense strategy, though
on their own they are unlikely to be sufficient for any security-conscious enterprise.

If stronger perimeter defense is desired, there are strategies and third-party tools that
can make perimeter firewalls or their cloud equivalents more effective:

• One approach is to designate a small number of specific nodes in the cluster as
having a particular level of access to the rest of the network, which is not granted
to the rest of the nodes in the cluster. Kubernetes taints can then be used to
ensure that only workloads that need that special level of access are scheduled to
those nodes. This way perimeter firewall rules can be set based on the IP
addresses of the specific nodes to allow desired access, and all other nodes in the
cluster are denied access outside the cluster.

• In an on-prem environment, some Kubernetes network plug-ins allow you to use
routable pod IP addresses (nonoverlay networks) and control the IP address
ranges that the group of pods backing a particular microservice use. This allows
perimeter firewalls to act on IP address ranges in a similar way as they do with
traditional non-Kubernetes workloads. For example, you need to pick a network
plug-in that supports nonoverlay networks on-prem that are routable across the
broader enterprise networks and that has flexible IP address management capa‐
bilities to facilitate such an approach.

• A variation of the previous is useful in any environment where it is not practical
to make pod IP addresses routable outside of the cluster (e.g., when using an
overlay network). In this scenario, the network traffic from pods appears to come
from the IP address of the node as it uses source network address translation
(SNAT). In order to address this, you can use a Kubernetes network plug-in that
supports fine-grained control of egress NAT gateways. The egress NAT gateway
feature supported by some Kubernetes network plug-ins allows this behavior to
be changed so that the egress traffic for a set of pods is routed via specific gate‐
ways within the cluster that perform the SNAT, so the traffic appears to be
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coming from the gateway, rather than from the node hosting the pod. Depending
on the network plug-in being used, the gateways can be allocated to specific IP
address ranges or to specific nodes, which in turn allows perimeter firewall rules
to act more selectively than treating the whole of the cluster as a single entity.
There are a few options that support this functionality: Red Hat’s OpenShift
SDN, Nirmata, and Calico all support egress gateways.

• Finally, some firewalls support some plug-ins or third-party tools that allow the
firewall to be more aware of Kubernetes workloads, for example, by automatically
populating IP address lists within the firewall with pod IP addresses (or node IP
addresses of the nodes hosting particular pods). Or in a cloud environment, there
are automatic programming rules that allow security groups to selectively act on
traffic to/from Kubernetes pods, rather than operating only at the node level.
This integration is very important for your cluster to help complement the secu‐
rity provided by firewalls. There are several tools in the market that allow this
type of integration. It is important to choose a tool that supports these integra‐
tions with major firewall vendors and is native to Kubernetes.

In the previous section we discussed the importance of network security and how you
can use network security to secure access to your Kubernetes cluster from traffic orig‐
inating outside the cluster and also how to control access for traffic originating from
within the cluster destined to hosts outside the cluster.

Conclusion
In this chapter we discussed the following key concepts, which you should use to
ensure you have a secure infrastructure for your Kubernetes cluster.

• You need to ensure that the host is running an operating system that is secure
and free from critical vulnerabilities.

• You need to deploy access controls on the host to control access to the host oper‐
ating system and deploy controls for network traffic to and from the host.

• You need to ensure a secure configuration for your Kubernetes cluster; securing
the datastore and API server are key to ensuring you have a secure cluster
configuration.

• Finally, you need to deploy network security to control network traffic that origi‐
nates from pods in the cluster and is destined to pods in the cluster.
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CHAPTER 3

Workload Deployment Controls

With contributions from Manoj Ahuje,
Senior Threat Intelligence Research Engineer at Tigera

Once you decide on a strategy for infrastructure security, next in line is workload
deployment controls. In this chapter we will look at image building and scanning
strategy, CI/CD (integrating image scanning into builds), and Kubernetes role-based
access control (RBAC), which is a widely used authorization system that allows you
to define access control based on user roles, and secrets management for your
applications.

Image Building and Scanning
In this section we will explore best practices for image building and scanning. These
include choosing a base image to reduce attack surface and using scratch images and
image hardening best practices to deter adversaries. Image scanning dives into the
nuances of choosing an image scanning solution, privacy concerns, and an overview
of container threat analysis solutions.

Choice of a Base Image
As discussed in the previous chapter, you can choose modern Linux distributions like
Bottlerocket as base images for containers. The minimal version of traditional Linux
distributions, like Ubuntu, Red Hat, and Alpine, are available too.

Though it’s a good starting point to begin with a minimal image, the minimal image
approach doesn’t stop vulnerabilities being discovered in OS packages that are
present in the OS. In this case distroless or scratch images turn out to be a better
option. These types of images only contain the application and its specific runtime
dependencies.
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Here are the benefits of distroless or scratch images:

• This strategy reduces size, attack surface, and vulnerabilities significantly, which
results in better security posture.

• Distroless images are production ready. Kubernetes itself uses distroless images
for various components like kublet, scheduler, etc.

• In case you are going for a scratch base image for your application, a multistage
Dockerfile can be used to build a scratch image. The first stage involves building
your application. The second stage involves moving runtime dependencies and
applications to scratch.

The most popular example of a distroless image project is distroless from Google,
which provides images for various runtimes like Java, Python, or C++.

A scratch image starts with the Dockerfile instruction FROM:scratch, which signifies
an empty filesystem. The following instruction in Dockerfile creates the first filesys‐
tem layer of the container image. Here, the first filesystem layer needs to be compiled
with the application and dependencies. Since it’s nonproductive and nonintuitive to
build applications outside of the container, Docker introduced multistage builds.
With a multistage build, multiple FROM instructions are allowed in a Dockerfile.
Each FROM instruction creates a separate stage, and the filesystem artifact from a
previous stage can be copied in a later stage of the build. This mechanism enabled
developers to build and compile applications in an earlier stage (builder image) with
all dependencies available, and eventually only copy the filesystem artifacts required
to run the production application in a later stage. The last stage of the build can be a
scratch image where only application binaries and dependencies are required to be
present on the resulting image.

Following is an example of a scratch-based image for a bash script, where the goal is
to run a script within a container. Here you can create a two-stage Dockerfile where
the second stage is a scratch image containing only the dependencies for the script.

You can use this template to containerize even complex applications built with
Node.js, Python, and Go. Go additionally provides an option to compile all the run‐
time libraries into the binary. In the following example, you can use Alpine as the
base image to construct a scratch image for a container that runs a script:
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# use alpine 3 as base image
FROM alpine:3 as builder

# upgrade all alpine packages
RUN apk update && apk upgrade

# add your script into container fs
ADD your_init_script.sh your_init_script.sh
RUN chmod u+x your_init_script.sh

# stage 2
FROM scratch

# shell
COPY --from=builder /bin/sh /bin/sh

# dependent linux shared libraries
COPY --from=builder /lib/ld-musl-x86_64.so.1 /lib/ld-musl-x86_64.so.1

ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin

ENTRYPOINT ["./your_init_script.sh"]
In this example, only two files are copied into scratch images (second stage). 
Hence, the alpine base image containing more than five thousand files is minimized 
to two files, reducing the attack surface significantly.

Now that we have reviewed how to choose a base image for your container, let’s
explore container image hardening.

Container Image Hardening
Container image hardening is the process of building images to reduce security weak‐
nesses and attack surface. At the same time, it is used to add defensive layers to run
applications securely within the container.

If you use a nonhardened container image, it can be prone to abuse, information dis‐
closure, or easier privilege escalation to the container host. You should leverage the
following tools and best practices to build hardened container images for your
applications:

• Only use base images from trusted sources, such as official Ubuntu and Red Hat
release channels, and double-check the image hash with released information, as
it’s relatively easy to embed malicious code like cryptominers into an image and
make that image available on a repository like Docker Hub.

• Minimize your base images to only contain runtime dependencies for your
application.
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• Follow the principle of least privilege access and run containers with the mini‐
mum required permissions. For example, run containers as nonroot unless root
privileges are necessary. This makes it difficult for the attackers to escape the
container and provides protection from vulnerabilities like CVE-2020-15257,
where the root user was able to escape the container.

• Do not use tags for Docker images; rather, pin the base image version in the
Dockerfile (i.e., ubuntu:20.08). Mutable tags like latest or master are updated con‐
stantly with features and fixes, which can cause issues while scanning images as a
part of your CI/CD pipeline. Additionally, they can cause stability issues for an
application (where the underlying dependant library is updated/removed or
changed).

• Compress Docker image layers into one single layer. Container images built with
tools like Docker or buildah often have multiple layers. These layers show a
development history and sometimes end up leaking sensitive information. The
best way to compress existing layers is to use a multistage build; there is also an
experimental Docker feature (i.e., option --squash available in Docker API
1.25+).

• Use container image signing to trust the image. Natively, Kubernetes doesn’t have
container image verification. Docker Notary can be used to sign images, and by
using the Kubernetes admission controller, it is possible to verify an image signa‐
ture and determine if an image was tampered with by a malicious actor (e.g., if
the image is changed while it is seated at the registry).

In the next section, we will review container image scanning.

Container Image Scanning Solution
Container image scanning tools examine the container filesystem to get the metadata
to know if there are vulnerable components present in the image. There are many
open source and commercial enterprise solutions available in the market that you can
use for this purpose. They come with CI/CD integrations and a rich set of scanning
features. The solution you choose should answer some of these basic questions:

• Can the image scanner scan OS packages present in a container image for your
selected base image?

• Can it scan your application dependencies (does it understand languages used by
your application, e.g., Go, Python, Node.js)?

• Can the image scanner detect sensitive files present in the filesystem (certificates,
passwords)?

• What is the false positive rate?
• Can it scan binaries (.elf or .exe)?
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• What data will be collected by the scanning solution? Does the scanning solution
upload your image to its SaaS service, or does the solution only collect package
metadata? It is important to understand this due to the risk of data exposure.

• Where will the collected data be stored? On-prem or cloud SaaS? Please review
this and choose the option that works with the guidelines set by your security/
compliance teams.

• Does the image scanner have an integration with your CI/CD system?

Most scanners collect metadata from filesystems and try to match it with vulnerabil‐
ity information gathered from sources such as the National Vulnerability Database or
private intelligence sources to determine the presence of vulnerability. Please note
that you should expect both false positives and negatives as a part of scanning. For
images with confirmed vulnerabilities, the application and the security team need to
work together to analyze the impact and the risk of the CVE to your operation.
Remediation steps involve implementing workarounds and patching the image when
an update is available.

Many public cloud providers and container registry service providers offer container
scanning services. However, there are limitations to the OS versions they support,
and most of them don’t scan application dependencies. Here the open source world
has more to offer. Notable examples of open source tools that can scan application
dependencies are Anchore, which lets users define policy, and Trivy, which is easy to
integrate in CI.

Privacy Concerns
Security vulnerabilities and associated information in your product is highly classi‐
fied data, and in the wrong hands it could be a big liability to the organization. That’s
why before you choose any solution, it’s good practice to verify what data is being col‐
lected by a scanning solution and where that data is stored (e.g., within the enterprise
on-premise or in the cloud as a part of an SaaS service). If you are buying a commer‐
cial solution, it is important to check the contract to know the clauses for damages in
case of data breach. Often these clauses can help you understand how serious an
organization is about data security. In case you are using an open source solution,
please review the documentation to understand the risks of data leakage.

Container Threat Analysis
In addition to traditional image scanning, the area of container threat analysis using
sandbox-based solutions is gaining popularity. It is a relatively new area, and we rec‐
ommend you watch it. These sandbox-based solutions can run Docker images and
monitor for container system calls, processes, memory, network traffic (HTTP, DNS,
SSL, TCP), and overall behavior of the container, using machine learning and other

Image Building and Scanning | 37

https://oreil.ly/QNdyU
https://oreil.ly/CYP4B


techniques to determine any malicious activity. Additionally, they can scan container
filesystems to check for vulnerabilities as well as malicious binaries. These can be
used to detect advanced persistent threats (APTs) and malware.

CI/CD
In this section we will cover various strategies to integrate image scanning solutions
into your CI/CD pipeline, best practices to secure your CI/CD pipelines, and tech‐
niques to implement organizational policies for CI/CD and vulnerability scanning.

Continuous integration (CI) is a development practice in which each developer’s
check-in is verified by an automated build, allowing teams to detect problems early.
And continuous deployment (CD) is the extension of CI where changes are released
for downstream consumers once they pass all release checks.

Integrating security at each step of the development and release process is the goal of
CI/CD, which is an integral part of shift-left strategy in DevOps processes. By inte‐
grating image scanning into your CI/CD pipeline (see Figure 3-1), development
teams can have a verdict available as soon as a check-in from a developer is commit‐
ted to the repository. The main advantage of this approach is that new security vul‐
nerabilities or threats can be detected at build time. Once an issue is found, all
stakeholders and DevOps teams can be notified, typically by failing the CI job. Then
respective teams can start working on remediation immediately.

Figure 3-1. Integrating image scanning into the CI/CD process
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As shown in Figure 3-1, the scanning should be integrated at each step of the devel‐
opment cycle, from the developer check-in to continuous delivery to production. The
rest of this section will be focused on the CI part of the integration to show the
granularity of the image scanning process. The following strategies can be applied to
each step shown in Figure 3-1 (i.e., code, build [CI], and CD pipeline).

The choice of the specific CI/CD build infrastructure is secondary and can be chosen
according to wider requirements. Popular CI/CD providers include but are not limi‐
ted to Jenkins, Semaphore, and CircleCI. There are four main ways to integrate image
scanning into your CI/CD pipeline and build infrastructure, as shown in Figure 3-2.

Figure 3-2. Image scanning integrated as a part of the image registry

Scan Images by Registry Scanning Services
As illustrated in Figure 3-2, in this approach as soon as a check-in is available from
the developer, CI builds and pushes images to the registry. Then images are periodi‐
cally scanned by the services integrated within the registry. There are many down‐
sides to this approach; registry providers usually limit themselves to scanning the
operating system package layer (e.g., GCR and Quay). Since they show limited infor‐
mation, using vulnerability whitelisting, classification, and tracking timelines to fix
various issues can be really cumbersome. Also, most of the time there is no option to
write policy tailored to your organization’s needs.

When the image scanner finds an issue, the image may have already been consumed
or delivered using CD. The registry doesn’t keep track of which consumed images
consumed and who deployed them. Users using those images may be at risk of com‐
promise and not even know about the vulnerabilities identified by the registry scan‐
ning service. Vulnerability remediation only comes after notification, which can be an
alert or email to the development team and other stakeholders. It can be anything
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from a simple update from the upstream provider to complex code and a configura‐
tion fix. This kind of remediation effort tends to lag behind the development process.

Figure 3-3 shows how images are built and scanned as a part of the CI process, but
images are pushed to the internal registry without considering a verdict from the
scanner. If you are an agile DevOps team, you may be building and pushing images to
your internal registry every day or every hour as soon as a check-in is available on
multiple branches. In this case, you don’t want every build to be failing as a part of CI
if there is a vulnerability present in the image. Rather, you would get a notification for
a vulnerability, and the developer can fix that vulnerability before CD kicks in.

Figure 3-3. Image scanning as a part of the build process

Scan Images After Builds
The drawback of the approach is that even though every image is scanned right after
it is built, there is no mechanism to force developers to fix found issues immediately.
Additionally, images are available for internal consumption from the registry even if
vulnerability is detected, and therefore it could be a weak link in the organization,
which can lead to the compromise.

As illustrated in Figure 3-4, a CI job kicks in with a check-in from the developer,
which builds and subsequently scans the images. Once the scan is complete, a verdict
from the image scanner is evaluated. If it passes, then images are pushed to the regis‐
try for internal consumption. If it fails, the developer needs to remediate the issue
immediately, as they won’t have the latest build available with their changes.
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Figure 3-4. Image scanning inline as a part of the CI/CD process

Inline Image Scanning
This pipeline can be difficult to manage initially, depending on the size and velocity
of your organization, but once it is mastered, the organization gets much better con‐
trol over its security posture. The same pipeline design can be utilized in your CD
jobs so that your applications are the most secure at the time of release/deployment.

Kubernetes admission controllers can intercept pod creation requests from the
Kubernetes API (see Figure 3-5). This mechanism can be used as a last-minute check
by triggering a CI job to scan an image that is being deployed on the cluster. Depend‐
ing on the verdict of the scan, the admission controller can admit or kick out the pod.

Figure 3-5. Image scanning as a part of pod creation

CI/CD | 41



Kubernetes Admission Controller
This method usually needs a custom or off-the-shelf admission controller that is able
to talk to admission servers that respond with a verdict for the scan performed. From
a fault tolerance point of view, it’s worth noting that if the admission server fails for
some reason, then it can impact pod creation in the entire cluster. Whether you want
the admission controller to “fail open” (i.e., go ahead with pod creation) or “fail close”
(i.e., prevent all pod creation) in the event of admission server failure is the organiza‐
tion’s decision; weigh the security risks against the fault tolerance risks.

Since admission controllers are a last-minute check, usually development teams are
unaware of the found security vulnerabilities until they look at what is being scanned
and rejected at the moment. So it is recommended that this approach be used in com‐
bination with earlier methods as a part of your defense strategy.

Securing the CI/CD Pipeline
CI/CD pipelines’ autonomous nature and minimum human interaction makes
CI/CD an attractive target for attackers. Additionally, the development environment
can be overly permissive with a minimum focus on security. Following are the best
practices to secure your CI/CD pipelines.

Zero-trust policy for CI/CD environment
Every connection to and from your CI/CD pipeline needs to be scrutinized with a
zero-trust policy in place for underlying hosts, infrastructure, and any supporting
processes according to your threat model. This will ensure that egress and ingress
access to the CI/CD pipeline is managed through a secure policy.

Secure secrets
Review each secret required by your CI/CD pipeline and make sure passwords, access
tokens, and encryption keys are called only when required. The design of secrets
management needs to consider fine-grained access to secrets, secret usage and
changelog capabilities, automated secret rotation, and deactivation and deprecation.
We will discuss more about secrets management in the upcoming section of this
chapter to help you choose the right strategy.

Access control
Tight access control to CI/CD resources and the separation of user responsibilities is
the key to a secure CI/CD pipeline, whether you have a role-based, time-based, or
task-based approach. Access control needs to segment the access to the pipeline so
that in case of compromise, the blast radius is reduced significantly. Also, use a strong
authentication mechanism with two-factor authentication enabled by default.
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Audit and monitoring
Access to CI/CD resources needs continuous auditing and monitoring to determine
excessive access, access deprecation in case a user leaves the organization or changes
job roles, abuse, or suspicious user behavior.

Organization Policy
To tackle challenges presented by CI/CD pipelines and scanning, a global organiza‐
tion policy is required. The policy needs to call out access requirements to CI/CD
resources, separation of user responsibilities, secret management, logging and moni‐
toring requirements, and audit policy.

Vulnerability scans can overwhelm teams initially. Hence, development, DevOps, and
security teams need clear directives on product vulnerability discovery and assess‐
ment, risk, remediation, and timelines to close the issues based on the organization’s
threat model.

Vulnerability scanning solutions can have codified policies where images can be
admitted or rejected based on scan results and the risk tolerance of the organization.

The process to build an effective policy needs to be iterative and based on continuous
feedback to achieve a tailored policy, balancing security and performance according
to your industry, size, workflows, and compliance requirements.

Secrets Management
A secret can be anything that is used to authenticate and authorize users, groups, or
entities. It can be a username/passwords, API token, or TLS certificate. When an
application or microservice is moved to Kubernetes, the early design choice develop‐
ers need to make is where to store these secrets and how to retrieve them and make
them available in an application as needed without compromising the security pos‐
ture of the application. Following are the top methods to achieve this objective.

etcd to Store Secrets
A common scenario for an application moving to Kubernetes is to store a secret in a
Base64-encoded format in etcd as a key-value pair. Etcd is a supported datastore in
Kubernetes deployments. These secrets can be made available inside the container as
a volume mount or an environment variable from within Kubernetes deployment
specs. Since environment variables are stored in memory, it’s hard to extract secrets,
compared with volume mounts, which store secrets on a container filesystem. The
access to etcd is backed by Kubernetes RBAC, which brings needed security and
flexibility.
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Etcd provides strong concurrency primitives, linearizable reads, and APIs to manage
secrets at scale. The downside of this approach is secrets are stored in plain text
(Base64 encoding) and are retrieved and sent in plain text unless etcd is configured to
encrypt communication using TLS. In Chapter 2, you learned the strategy to encrypt
data at rest, where secrets can be encrypted while they are stored in etcd.

Additionally, secrets stored in etcd are not versioned or recoverable once deleted, and
access to etcd is not audited, so anyone who has access to etcd can access all secrets.
Since etcd is a Kubernetes datastore, the broader secrets management requirements of
the organization are not fulfilled.

Secrets Management Service
To solve the organization’s encryption and secrets management requirement, secrets
management services can be utilized from cloud providers. All major public cloud
providers provide secrets management services.

The most popular cloud providers’ secrets management services are AWS Secrets
Manager, Google Secret Manager, and Azure Key Vault.

A notable third-party example is HashiCorp Vault, which can be used as a centralized
secrets manager. It provides many features to fulfill an organization’s end-to-end
secrets management requirements (key management, encryption, rotation, PKI, stor‐
age, replication, revocation, logging, monitoring, audit, etc.). This tool can be used in
conjunction with a cloud provider’s secrets management services—for example, when
the vault is initialized, initial keys can be encrypted and stored into Cloud KMS so
that the operator won’t have to handle plain-text keys.

Kubernetes Secrets Store CSI Driver
The secret store Container Storage Interface (CSI) driver integrates external secret
stores like Azure, GCP, AWS, and Vault from HashiCorp into Kubernetes using CSI,
which is generally available since version 1.13.

In a nutshell, the CSI driver authenticates with your secret store service using volume
attributes and mounts needed secrets into the pod seamlessly. This approach avoids
the use of the Kubernetes etcd datastore and allows you to scale and manage the
organization’s secrets effectively.

Secrets Management Best Practices
Following are the best practices to consider when managing secrets in Kubernetes.
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Avoid secrets sprawl
The main motive of secrets management is to avoid secrets sprawl, where your appli‐
cation secrets are spread across places like config files, yamls, and Git repositories.
This is usually a sign of the lack of a secrets management workflow in the organiza‐
tion. The only way to mitigate secrets sprawl is to have a centralized secrets manage‐
ment strategy in place, one where credentials can be stored and retrieved securely
from a single point and used by the entire organization with proper authorization,
logging, and monitoring mechanisms in place.

Use anti-affinity rules
Ideally, a secrets management solution should be a single process on a small number
of dedicated VMs or dedicated hosts. Since you may need to run this solution on
Kubernetes as a microservice, it will be a process running in a dedicated pod. But the
issue becomes on which nodes these pods should be running. Here anti-affinity helps
by distributing pods on required nodes, which are classified to run a secrets manage‐
ment solution.

Data encryption (transit and rest)
By default, Kubernetes insecurely stores and transmits secrets. It is paramount to con‐
figure or have a solution that can use end-to-end TLS encryption where secrets are
encrypted in transit. At the same time, have a mechanism in place to store secrets in
encrypted form. See Chapter 2 for options on how to achieve this.

Use automated secret rotation
Organizations follow different time frames for different secrets for rotation, but with
the advent of automated secret rotation, you can do it daily or even on an hourly
basis. Cloud secrets management services and external third-party solutions both can
help to rotate and manage secrets in an automated fashion.

Ephemeral or dynamic secret
Ephemeral or dynamic secrets are temporary, on-demand generated secrets that typi‐
cally have a short time to live and are destroyed after that time interval. These secrets
can be made available to the class of the application or to the operations team as
needed. If a secret is discovered by an attacker (for example, if leaked via debug logs,
application code, or accidentally exposed via GitHub), the secrets would have been
changed in a short window of time, protecting applications. Additionally, they can
help trace the attacker’s footsteps in the infrastructure, since it becomes easy to deter‐
mine the time frame in which the secret was discovered by the attacker. HashiCorp
Vault and CyberArk Conjur are some of the third-party secrets providers that provide
such features.
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Enable audit log
Having an audit log in your secrets management solution provides visibility into
secrets and their uses by the organization. An audit log can be critical for determining
intentional or unintentional compromises, the blast radius of the attack, and related
forensic steps.

Store secrets in container memory
When a containerized application receives a secret, don’t store the secret on disk (or
in volumeMount available in the host). Rather, store it in memory so that in case of a
compromise, those secrets are not easily available to the attacker.

Secret zero problem
Many secrets management solutions follow envelope encryption where DEKs are
protected by a KEK. The KEK is considered secret zero. If an attacker compromises
the KEK, then they can decrypt the DEK and subsequently the data encrypted by the
DEK. The combination of cloud providers’ IAM and KMS can be used to help protect
secret zero. (Though, of course, these in turn effectively have their own secret zero
further up the trust chain, which you must treat as highly sensitive.)

Use your Certificate Authority
As part of defense-in-depth, end-to-end TLS implementation can be done using a
custom Certificate Authority (CA). Here an organization can choose to sign its certif‐
icate using its own CA. In this case, the service can only be accessed by presenting a
certificate signed by the organization.

Authentication
Once you are ready with your hardened images, CI/CD pipeline, and secrets manage‐
ment strategy, it’s time for Kubernetes’ authentication and authorization strategy.
Kubernetes allows numerous authentication mechanisms; in simplest form; authenti‐
cation is done with certificates, tokens, or basic authentication (username and pass‐
word). Additionally, webhooks can be used to verify bearer tokens, and external
OpenID providers can be integrated.

Let’s take a closer look at each authentication method available in Kubernetes. Con‐
figuration for authentication methods is out of scope for this book.

X509 Client Certificates
There are two ways to sign a client certificate so that it can be used to authenticate
with the Kubernetes API. First is internally signing the certificate using the Kuber‐
netes API. It involves the creation of a certificate signing request (CSR) by a client.
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Administrators can approve or deny the CSR. Once approved, the administrator can
extract and provide a signed certificate to the requesting client or user. This method
cannot be scaled for large organizations as it requires manual intervention.

The second method is to use enterprise PKI, which can sign the client-submitted
CSR. Additionally, the signing authority can send signed certificates back to clients.
This approach requires the private key to be managed by an external solution.

Bearer Token
Kubernetes service accounts use bearer tokens to authenticate with Kubernetes API.
The simplest way to use a bearer token is to create a new service account. Kubernetes
API automatically issues a random token associated with the service account, which
can be retrieved and used to authenticate that account.

Bearer tokens can be verified using a webhook, which involves API configuration
with option --authentication-token-webhook-config-file, which includes the
details of the remote webhook service.

Kubernetes internally uses Bootstrap and Node authentication tokens to initialize the
cluster. Also, there'’s a less secure option available using a static token file that can be
provided using the --token-auth-file option while configuring Kubernetes API.

OIDC Tokens
The OpenID Connect protocol is built by expanding the existing OAuth2 protocol.
Kubernetes does not provide an OpenID Connect identity provider. You can use
identity providers like Google or Azure or run your own identity provider using dex,
keycloak, or UAA. These external identity providers can easily be integrated with
your authentication workflows as required, as well as support native identity provider
capabilities (e.g., enterprise using lightweight directory access protocol).

Authentication Proxy
A proxy can be used to establish a trust connection with Kubernetes API. Kubernetes
API can identify users from request headers such as X-Remote-User, which is set by
authentication proxy as it authenticates users on behalf of the Kubernetes API.
Authentication proxy can authenticate users as needed according to your workflow.

Anonymous Requests
If a request to Kubernetes API is not rejected by any configured authentication
method, then it is treated as an anonymous request (i.e., a request without a bearer
token).
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It is important to note that for Kubernetes version 1.6 and above, anonymous access
is enabled by default for an authorization mode other than AlwaysAllow. It can be
disabled by adding the option --anonymous-auth=false while configuring Kuber‐
netes API.

User Impersonation
This is a subtle authentication mechanism where a user with certain access to Kuber‐
netes can impersonate another user by setting additional headers in the request to
Kubernetes API with the details of the impersonated user.

This mechanism allows Kubernetes API to process requests as per the impersonated
user’s privileges and context. Additionally, Kubernetes API can log who has imperso‐
nated whom and other relevant details from a request as necessary, which can be use‐
ful during monitoring and audit.

Authorization
In this section we will cover available authorization methods, RBAC in Kubernetes,
namespaced RBAC, and caveats.

Kubernetes has multiple authorization mechanisms such as Node, ABAC, RBAC, and
AlwaysDeny/AlwaysAllow, though RBAC is the industry standard in Kubernetes.

Node
Node authorization is used by Kubernetes internally. It’s a special-purpose authoriza‐
tion mode that specifically authorizes API requests made by kubelets. It enables read,
write, and auth-related operations by kubelet. In order to successfully make a request,
kubelet must use a credential that identifies it as being in the system:nodes group.

ABAC
Kubernetes defines attribute-based access control (ABAC) as “an access control para‐
digm whereby access rights are granted to users through the use of policies which
combine attributes together.” ABAC can be enabled by providing a .json file to
--authorization-policy-file and --authorization-mode=ABAC options in Kuber‐
netes API configurations. The .json file needs to be present before Kubernetes API
can be invoked.

AlwaysDeny/AlwaysAllow
The  AlwaysDeny  or  AlwaysAllow  authorization  mode  is  usually  used  in  develop‐
ment  environments  where  all  requests  to  the  Kubernetes  API  need  to  be  allowed
or denied. AlwaysDeny or AlwaysAllow mode can be enabled using option
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--authorization-mode=AlwaysDeny/AlwaysAllow while configuring Kubernetes
API. This mode is considered insecure and hence is not recommended in production
environments.

RBAC
Role-based access control is the most secure and recommended authorization mecha‐
nism in Kubernetes. It is an approach to restrict system access based on the roles of
users within your cluster. It allows organizations to enforce the principle of least priv‐
ileges. Kubernetes RBAC follows a declarative nature with clear permissions (opera‐
tions), API objects (resources), and subjects (users, groups, or ServiceAccounts)
declared in authorization requests. Applying an RBAC in Kubernetes is a two-step
process. First is to create a Role or ClusterRole. The latter is a global object where the
former is a namespace object. A Role or ClusterRole is made up of verbs, resources,
and subjects, which provide a capability (verb) on a resource, as shown in Figure 3-6.
The second step is to create a ClusterRoleBinding where the privileges defined in step
1 are assigned to the user or group.

Let’s take an example where a dev-admins group needs to have read access to all the
secrets in the cluster. Step 1 is to create a ClusterRole secret-reader, which allows the
reading of the secrets via various operations (get, list), and step 2 is binding it to a
subject (i.e., users, groups, or ServiceAccounts) to provide access. In this case the
group dev-admins allows group users to read secrets globally.

Figure 3-6 is an example of how you can create a ClusterRole that allows you to
define access to resources. The example on the right shows how you can bind the
ClusterRole to a group of users.

Figure 3-6. Kubernetes role and role binding
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Figure 3-7 shows an overview of RBAC; you can use any combination of operation,
resource, or subject as required.

Apart from these resources, there are Kubernetes nonresources like /healths
or /version APIs that can be controlled using RBAC as well if needed.

Figure 3-7. RBAC for Kubernetes resources

Namespaced RBAC
In earlier examples you saw an RBAC that was applied globally in the cluster. It is
possible to apply a similar RBAC to namespaces where resources within a namespace
can be subject to this RBAC policy. The namespaced resources Role and RoleBinding
should be used for configuring a namespace policy.

There are few caveats you should be aware of while using namespaced RBAC:

• Roles and RoleBindings are the only namespaced resources.
• ClusterRoleBindings (global resource) cannot be used with Roles, which is a

namespaced resource.
• RoleBindings (namespaced resource) cannot be used with ClusterRoles, which

are global resources.
• Only ClusterRoles can be aggregated.

Privilege Escalation Mitigation
Kubernetes RBAC reduces an attacker’s ability to escalate their own privileges by edit‐
ing roles or role bindings. This behavior is enforced at the API level in Kubernetes
and even applies when the RBAC authorizer is not in use:

• If user user-no-secret doesn’t have the ability to list secrets cluster-wide, they can‐
not create a ClusterRole or ClusterRoleBinding containing that permission.

• For user user-no-secret to get a list of secret privileges, they will need one of the
following:
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— Grant them a role that allows them to create/update Roles, ClusterRoles, Role‐
Bindinsg, or ClusterRoleBindings.

— Provide them explicit permission with the verb escalate on these resources.

Conclusion
In this chapter we covered the following key concepts that will help you understand
security tools and best practices to build and deploy workloads:

• It is insufficient to use available base images from Docker as they are for your
containers; you must spend time ensuring that your container images are hard‐
ened and built with security in mind. Just like in software development, finding
vulnerabilities at build time is far cheaper than finding vulnerabilities after soft‐
ware is deployed.

• There are several ways to add image scanning to your CI/CD process. We
explored various well-known approaches like registry scan, build time or inline
scan, and using Kubernetes admission controller to help you add image scanning
to your CI/CD pipelines. We also looked at securing CI/CD pipelines and adding
organization policy to effectively craft a workflow for your organization.

• We covered the approaches and best practices to secret management.
• Finally, we covered available Kubernetes authentication and authorization mech‐

anisms. We recommend you use RBAC to mitigate privilege escalation.
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CHAPTER 4

Workload Runtime Security

With contributions from Manoj Ahuje,
Senior Threat Intelligence Research Engineer at Tigera

This chapter talks about pod security policies (PSP), a feature that
has been deprecated in Kubernetes v1.25 (October 2022) and
replaced with pod security admission (PSA). We’ve left the sections
of this chapter that discuss PSP intact, as we recognize that not all
developers will be moving to v1.25 right away. For more informa‐
tion, see Kubernetes’s updated documentation on pod security
policies.

Kubernetes’ default pod provisioning mechanism has a wide attack surface that can
be used by adversaries to exploit the cluster or escape the container. In this chapter
you will learn how to implement pod security policies (PSPs) to limit the attack sur‐
face of the pods and how to monitor processes (e.g., process privileges), file access,
and runtime security for your workloads. Here are a few specifics of what we will
discuss:

• We will cover the implementation details of PSPs, like pod security contexts, and
also explain the limitations of PSPs. Note PSPs are deprecated as of Kubernetes
v1.21; however, we will cover this topic in this chapter as we are aware that PSPs
are widely used.

• We will discuss process monitoring, which focuses on the need for Kubernetes-
native monitoring to detect suspicious activities. We will cover runtime monitor‐
ing and enforcement using kernel security features like seccomp, SELinux, and
AppArmor to prevent containers from accessing host resources.

• We will cover both detection and runtime defense against vulnerabilities, work‐
load isolation, and a blast radius containment.
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Pod Security Policies
Kubernetes provides a way to securely onboard your pods and containers by using
PSPs. They are a cluster-scoped resource that checks for a set of conditions before a
pod is admitted and scheduled to run in a cluster. This is achieved via a Kubernetes
admission controller, which evaluates every pod creation request for compliance with
the PSP assigned to the pod.

Please note that PSPs are deprecated with Kubernetes release 1.21 and are scheduled
to be removed in release 1.25. They are widely used in production clusters, though,
and therefore this section will help you understand how they work and what best
practices are for implementing PSPs.

PSPs let you enforce rules with controls like pods should not run as root or pods should
not use host network, host namespace, or run as privileged. The policies are enforced at
pod creation time. By using PSPs you can make sure pods are created with the mini‐
mum privileges needed for operation, which reduces the attack surface for your appli‐
cation. Additionally, this mechanism helps you to be compliant with various
standards like PCI, SOC 2, or HIPAA, which mandates the use of principle of least
privilege access. As the name suggests, the principle requires that any process, user,
or, in our case, workload be granted the least amount of privileges necessary for it to
function.

Using Pod Security Policies
Kubernetes PSPs are recommended but implemented via an optional admission con‐
troller. The enforcement of PSPs can be turned on by enabling an admission control‐
ler. That means the Kubernetes API server manifest should have a PodSecurityPolicy
plug-in in its --enable-admission-plugins list. Many Kubernetes distros do not sup‐
port or by default disable PSPs, so it’s worth checking while choosing the Kubernetes
distros.

Once the PSPs are enabled, it’s a three-step process to apply PSPs, as shown in
Figure 4-1. A best practice is to apply PSPs to groups rather than individual service
accounts.
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Figure 4-1. Process to apply PSPs

Step 1 is to create a PSP. Step 2 is to create ClusterRole with the use verb, which
authorizes pod deployment controllers to use the policies. Then step 3 is to create
ClusterRoleBindings, which is used to enforce policy for the groups (i.e., sys‐
tem:authenticated or system:unauthenticated) or service accounts.

A good starting point is the PSP template from the Kubernetes project:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: restricted
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: |
    'docker/default,runtime/default'
    apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
    seccomp.security.alpha.kubernetes.io/defaultProfileName:  'runtime/default'
    apparmor.security.beta.kubernetes.io/defaultProfileName:  'runtime/default'
spec:
  privileged: false
  # Required to prevent escalations to root.
  allowPrivilegeEscalation: false
  # This is redundant with non-root + disallow privilege escalation,
  # but we can provide it for defense in depth.
  requiredDropCapabilities:
    - ALL
  # Allow core volume types.
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    # Assume that persistentVolumes set up by the cluster admin are safe to use.
    - 'persistentVolumeClaim'
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  hostNetwork: false
  hostIPC: false
  hostPID: false
  runAsUser:
    # Require the container to run without root privileges.
    rule: 'MustRunAsNonRoot'
  seLinux:
    # This policy assumes the nodes are using AppArmor rather than SELinux.
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'MustRunAs'
    ranges:
      # Forbid adding the root group.
      - min: 1
        max: 65535
  fsGroup:
    rule: 'MustRunAs'
    ranges:
      # Forbid adding the root group.
      - min: 1
        max: 65535
  readOnlyRootFilesystem: false

In the following example, you apply this policy to all authenticated users using
Kubernetes role-based access control:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole  Policy
metadata:
  name: psp-restricted
rules:
- apiGroups:
  - policy
  resourceNames:
  - restricted
  resources:
  - podsecuritypolicies
  verbs:
  - use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: psp-restricted-binding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: psp-restricted
subjects:
  - apiGroup: rbac.authorization.k8s.io
    kind : Group
    name: system:authenticated
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Pod Security Policy Capabilities
Let’s focus on the capabilities provided by PSPs that you can utilize as required by
your use case and internal threat model. You can follow the example PSP template we
just discussed to build your own PSPs. In this template most of the PSP capabilities
are utilized to formulate a restrictive policy.

To explain the impact of a capability, let’s take a look at an example where you see
capabilities granted to the pod created with privileged:true and with privileged:false. 
A Linux utility capsh can be used to evaluate the permissions of containerized root
users. As you can see in Figure 4-2, the privileged pod has a plethora of capabilities in
its Linux namespace, which translates to a wider attack surface for an attacker to
escape your container.

Figure 4-2. Pod capabilities for default and privileged pods

Table 4-1 summarizes the capabilities for pods as described in the Kubernetes PSP
documentation.

Table 4-1. Pod capabilities

Field Uses
privileged Allow containers to gain capabilities that include access to host mounts,

filesystem to change settings, and many more. You can check capabilities with
command capsh --print.

hostPID, hostIPC Give container access to host namespaces where process and Ethernet
interfaces are visible to it.

hostNetwork, hostPorts Give container IP access to the host network and ports.
volumes Allow volumes types like configMap, emtyDir, or secret.
allowedHostPaths Allow the whitelisting of host paths that can be used by hostPath volumes

(i.e., /tmp).
allowedFlexVolumes Allow specific FlexVolume drivers (i.e., azure/kv).
fsGroup Set a GID or range of GID that owns the pod’s volumes.
readOnlyRootFilesystem Set the container’s root filesystem to read-only.
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Field Uses
runAsUser, runAsGroup,
supplementalGroups

Define containers UID and GID. Here you can specify non-root user or groups.

allowPrivilegeEscalation,
defaultAllowPrivilegeEscalation

Restrict privilege escalation by process.

defaultAddCapabilities,
requiredDropCapabilities,
allowedCapabilities

Add or drop Linux capabilities as needed.

SELinux Define the SELinux context of the container.
allowedProcMountTypes Allowed proc mount types by container.
forbiddenSysctls,allowedUnsafeSysctls Set the sysctl profile used by the container.
annotations Set the AppArmor and seccomp profiles used by containers.

AppArmor and seccomp profiles are used with PSP annotation where you can use the
runtime’s (Docker, CRI) default profile or choose a custom profile loaded on the host
by you. You will see more about these defenses in “Process Monitoring” on page 60.

Pod Security Context
Unlike PSPs, which are defined cluster-wide, a pod securityContext can be defined at
runtime while creating a deployment or pod. Here is a simple example of pod securi‐
tyContext in action, where the pod is created with the root user (uid=0) and allows
only four capabilities:

kind: Pod
apiVersion: v1
metadata:
  name: attacker-privileged-test
  namespace: default
  labels:
    app: normal-app
spec:
  containers:
  - name: attacker-container
    image: alpine:latest
    args: ["sleep", "10000"]
    securityContext:
      runAsUser: 0
      capabilities:
        drop:
          - all
        add:
          - SYS_CHROOT
          - NET_BIND_SERVICE
          - SETGID
          - SETUID
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This code snippet shows how you can create a pod running a root but limited to a
subset of capabilities by specifying a security context. Figure 4-3 shows commands
you can run to verify that the pod runs as root with the limited set of capabilities.

Figure 4-3. Four allowed pod capabilities

Pod securityContext, as shown in Figure 4-3, can be used without enabling PSPs
cluster-wide, but once the PSPs are enabled, you need to define securityContext to
make sure pods are created properly. Since the securityContext has a PSP construct,
all the PSPs’ capabilities apply to securityContext.

Limitations of PSPs
Some of the limitations of PSPs include:

• PodSecurityPolicySpec has references to allowedCapabilities, privileged, or host‐
Network. These enforcements can work only on Linux-based runtimes.

• If you are creating a pod using controllers (e.g., replication controller), it’s worth
checking if PSPs are authorized for use by those controllers.

• Once PSPs are enabled cluster-wide and a pod doesn’t start because of an incor‐
rect PSP, it becomes hectic to troubleshoot the issue. Moreover, if PSPs are
enabled cluster-wide in production clusters, you need to test each and every
component in your cluster, including dependencies like mutating admission con‐
trollers and conflicting verdicts.

• Azure Kubernetes Service (AKS) has deprecated support for PSPs and preferred
OPA Gatekeeper for policy enforcement to support more flexible policies using
the OPA engine.

• PSP are deprecated and scheduled to be removed by Kubernetes v1.25.
• Kubernetes can have edge cases where PSPs can be bypassed (e.g., TOB-

K8S-038).

Now that you understand PSPs, best practices to implement them, and the limitations
of PSPs, let’s look at process monitoring.
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Process Monitoring
When you containerize a workload and run it on a host with an orchestrator like
Kubernetes, there are a number of layers you need to take into consideration for
monitoring a process inside a container. These start with container process logs and
artifacts, filesystem access, network connections, system calls required, kernel per‐
mission (specialized workload), Kubernetes artifacts, and cloud infrastructure arti‐
facts. Usually your organization’s security posture depends on how good your
solutions are in stitching together these various log contexts. And this is where the
traditional monitoring system fails measurably and a need for Kubernetes’ native
monitoring and observability arises. Traditional solutions, like endpoint detection
and response (EDR) and endpoint protection systems, have the following limitations
when used in Kubernetes clusters:

• They are not container aware.
• They are not aware of container networking and typically see activity from the

host perspective, which can lead to false negatives on attackers’ lateral
movements.

• They are blind to traffic between containers and don’t have any sight of underlays
like IPIP or VXLAN.

• They are not aware of process privileges and file permissions of containers
accessing the underlying host.

• They are not aware of the Kubernetes container runtime interface (CRI) or its
intricacies and security issues, which can lead to containers being able to access
resources on the host. This is also known as privilege escalation.

In the following sections, we will go over various techniques you can use for process
monitoring. First we look at monitoring using various logs available in Kubernetes;
then we explore seccomp, SELinux, and AppArmor features that allow you to control
what a process can access (e.g., system calls, filesystem, etc.)

Kubernetes Native Monitoring
As shown in Figure 4-4, each layer leading up to your containerized application pro‐
cess introduces monitoring and logging requirements and a new attack surface that is
different from what traditional IT security practitioners are used to for monitoring
networks and applications. The challenge is to reduce this monitoring overhead, as it
can get really expensive for the storage and compute resources. The topic of metric
collection and how to do this efficiently is covered in detail in Chapter 5.
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Figure 4-4. Kubernetes native monitoring

In order to build defenses in each layer, the following are some options you should
consider incorporating while choosing solutions:

• Ability to block processes spawned by each container or Kubernetes orchestra‐
tion creating containers.

• Monitor kernel system calls used by each container process and ability to filter,
block, and alert on suspicious calls to prevent containers accessing host
resources.

• Monitor each network connection (socket) originated by a container process and
ability to enforce network policy.

• Ability to isolate a container using network policy (or a node running this con‐
tainer) and pause it to investigate suspicious activities and collect forensics data
in Kubernetes. The pause command for Docker-based containers suspends pro‐
cesses in a container to allow for detailed analysis. Note that pausing a container
will cause the container to suspend normal operation and should be used as a
response to an event (e.g., security incident).

• Monitor filesystem reads and writes to know filesystem changes (binaries, pack‐
ages) and additional isolation through mandatory access control (MAC) to pre‐
vent privilege escalations.

• Monitor the Kubernetes audit log to know what Kubernetes API requests clients
are making and detect suspicious activity.
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• Enable a cloud provider’s logging for your infrastructure and ability to detect sus‐
picious activity in the cloud provider’s infrastructure.

There are many enterprise and open source solutions (e.g., Falco) that target groups
of layers using various tools and mechanisms (like ebpf, kprobes, ptrace, tracepoints,
etc.) to help build defense at various layers. You should look at their threat model and
choose solutions that fulfill their requirements.

In the next section you will see some of the mechanisms that are offered by Kuber‐
netes by bringing Linux defenses closer to the container, which will help you in moni‐
toring and reducing the attack surface at various layers. The previous section focused
on monitoring to allow you to detect unintended (malicious) behavior. The following
mechanisms allow you to set controls to prevent unintended (malicious) behavior.

Kernel security features like seccomp, AppArmor, and SELinux can control what sys‐
tem calls are required for your containerized application, virtually isolate and cus‐
tomize each container for the workload it is running, and use MAC to provide access
to resources like volume or filesystem that prevent container breakouts efficiently.
Just using the feature with default settings can tremendously reduce the attack surface
throughout your cluster. In the following sections you will look at each defense in
depth and how it works in the Kubernetes cluster so that you can choose the best
option for your threat model.

Seccomp
Seccomp is a Linux kernel feature that can filter system calls executed by the con‐
tainer on a granular basis. Kubernetes lets you automatically apply seccomp profiles
loaded onto a node by Kubernetes runtimes like Docker, podman, or CRI-O. A sim‐
ple seccomp profile consists of a list of syscalls and the appropriate action to take
when a syscall is invoked. This action reduces the attack surface to only allowed sys‐
calls, reducing the risk of privilege escalation and container escape.

In the following seccomp profile, a default action is SCMP_ACT_ERRNO, which denies a
system call. But defaultAction for syscall chmod is overwritten with SCMP_ACT_ALLOW.
Usually seccomp profiles are loaded into the directory /var/lib/kubelet/seccomp on all
nodes by your runtimes. You can add your custom profile at the same place:

{
    "defaultAction": "SCMP_ACT_ERRNO",
    "architectures": [
        "SCMP_ARCH_X86_64",
        "SCMP_ARCH_X86",
        "SCMP_ARCH_X32"
    ],
    "syscalls": [
        {
            "names": [
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                "chmod",
            ],
            "action": "SCMP_ACT_ALLOW"
        }
    ]
}

To find the system calls used by your application, you can use strace as shown in the
next example. For this example, you can list syscalls used by curl utility as follows:

$ strace -c -S name curl -sS google.com

% time     seconds  usecs/call     calls    errors syscall
------ ----------- ----------- --------- --------- ----------------
  4.56    0.000242           6        43        43 access
  0.06    0.000003           3         1           arch_prctl
  1.28    0.000068          10         7           brk
  0.28    0.000015          15         1           clone
  4.62    0.000245           5        48           close
  1.38    0.000073          73         1         1 connect
  0.00    0.000000           0         1           execve
  0.36    0.000019          10         2           fcntl
  4.20    0.000223           5        48           fstat
  0.66    0.000035           3        11           futex
  0.23    0.000012          12         1           getpeername
  0.13    0.000007           7         1           getrandom
  0.19    0.000010          10         1           getsockname
  0.24    0.000013          13         1           getsockopt
  0.15    0.000008           4         2           ioctl
 13.96    0.000741           7       108           mmap
 11.94    0.000634           7        85           mprotect
  0.32    0.000017          17         1           munmap
 11.02    0.000585          13        45         1 openat
  0.11    0.000006           6         1           pipe
 19.50    0.001035         115         9           poll
  0.08    0.000004           4         1           prlimit64
  5.43    0.000288           6        45           read
  0.41    0.000022          22         1           recvfrom
 11.47    0.000609          17        36           rt_sigaction
  0.08    0.000004           4         1           rt_sigprocmask
  1.00    0.000053          53         1           sendto
  0.06    0.000003           3         1           set_robust_list
  0.04    0.000002           2         1           set_tid_address
  2.22    0.000118          30         4           setsockopt
  1.60    0.000085          43         2           socket
  0.08    0.000004           4         1         1 stat
  2.35    0.000125          21         6           write
------ ----------- ----------- --------- --------- ----------------
100.00    0.005308                   518        46 total

The default seccomp profiles provided by the Kubernetes runtime contain a list of
common syscalls that are used by most of the applications. Just enabling this feature

Pod Security Policies | 63



forbids the use of dangerous system calls, which can lead to a kernel exploit and a
container escape. The default Docker runtime seccomp profile is available for your
reference.

At the time of writing, the Docker/default profile was deprecated,
so we recommend you use runtime/default as the seccomp profile
instead.

Table 4-2 shows the options for deploying seccomp profile in Kubernetes via PSP
annotations.

Table 4-2. Seccomp options

Value Description
runtime/default Default container runtime profile
unconfined No seccomp profile—this option is default in Kubernetes
localhost/<path> Your own profile located on node, usually in /var/lib/kubelet/seccomp directory

SELinux
In the recent past, every container runtime breakout (container escape or privilege
escalation) was some kind of filesystem breakout (i.e., CVE-2019-5736,
CVE-2016-9962, CVE-2015-3627, and more). SELinux mitigates these issues by pro‐
viding control over who can access the filesystem and the interaction between
resources (i.e., user, files, directories, memory, sockets, and more). In the cloud com‐
puting context, it makes sense to apply SELinux profiles to workloads to get better
isolation and reduce attack surface by limiting filesystem access by the host kernel.

SELinux was originally developed by the National Security Agency in the early 2000s
and is predominantly used on Red Hat- and centOS-based distros. The reason SELi‐
nux is effective is it provides a MAC, which greatly augments the traditional Linux
discretionary access control (DAC) system.

Traditionally with the Linux DAC, users have the ability to change permissions on
files, directories, and the process owned by them. And a root user has access to every‐
thing. But with SELinux (MAC), each OS resource is assigned a label by the kernel,
which is stored as extended file attributes. These labels are used to evaluate SELinux
policies inside the kernel to allow any interaction. With SELinux enabled, even a root
user in a container won’t be able to access a host’s files in a mounted volume if the
labels are not accurate.

SELinux operates in three modes: Enforcing, Permissive, and Disabled. Enforcing
enables SELinux policy enforcement, Permissive provides warnings, and Disabled is
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to no longer use SELinux policies. The SELinux policies themselves can be further
categorized into Targeted and Strict, where Targeted policies apply to particular pro‐
cesses and Strict policies apply to all processes.

The  following  is  the  SELinux  label  for  Docker  binaries  on  a  host,  which  con‐
sists of <user:role:type:level>. Here you will see the type, which is
container_runtime_exec_t:

$ ls -Z /usr/bin/docker*
-rwxr-xr-x. root root system_u:object_r:container_runtime_exec_t:s0
/usr/bin/docker
-rwxr-xr-x. root root system_u:object_r:container_runtime_exec_t:s0
/usr/bin/docker-current
-rwxr-xr-x. root root system_u:object_r:container_runtime_exec_t:s0
/usr/bin/docker-storage-setup

To further enhance SELinux, multicategory security (MCS) is used to allow users to
label resources with a category. So a file labeled with a category can be accessed by
only users or processes of that category.

Once SELinux is enabled, a container runtime like Docker, podman, or CRI-O picks a
random MCS label to run the container. These MCS labels consist of two random
numbers between 1 and 1023, and they are prefixed with the character “c” (category)
and a sensitivity level (i.e., s0). So a complete MCS label looks like “s0:c1,c2.” As
shown in Figure 4-5, a container won’t be able to access a file on a host or Kubernetes
volume unless it is labeled correctly as needed. This provides an important isolation
between resource interaction, which prevents many security vulnerabilities targeted
toward escaping containers.

Figure 4-5. SELinux enforcing filesystem access

Next is an example of a pod deployed with SELinux profile; this pod won’t be able to
access any host volume mount files unless they are labeled so:c123,c456 on host. Even
though you see the entire host, the filesystem is mounted on the pod:
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apiVersion: v1
metadata:
  name: pod-se-linux-label
  namespace: default
  labels:
    app: normal-app
spec:
  containers:
  - name: app-container
    image: alpine:latest
    args: ["sleep", "10000"]
    securityContext:
      seLinuxOptions:
        level: "s0:c123,c456"
  volumes:
    - name: rootfs
      hostPath:
        path: /

Table 4-3 lists the CVEs pertaining to container escape that are prevented just by ena‐
bling SELinux on hosts. Though SELinux policies can be challenging to maintain,
they are critical for a defense-in-depth strategy. Openshift, a Kubernetes distribution,
comes with SELinux enabled in its default configuration with targeted policies; for
other distros it’s worth checking the status.

Table 4-3. CVEs related to container escape

CVE Description Blocked by SELinux
CVE-2019-5736 Allows attackers to overwrite host runc binary and consequently obtain host root

access
Yes

CVE-2016-9962 RunC exec vulnerability Yes
CVE-2015-3627 Insecure file-descriptor exploitation Yes

Kubernetes provides the following options to enforce SELinux in PSPs:

Value Description
MustRunAs Need to have seLinuxOptions configured as shown in Figure 4-5.
RunAsAny No defaults are provided in PSP (can be optionally configured on pod and deployments)

AppArmor
Like SELinux, AppArmor was developed for Debian and Ubuntu operating systems.
AppArmor works in a similar way to SELinux, where an AppArmor profile defines
what a process has access to. Let’s look at an example of an AppArmor profile:

#include <tunables/global>
/{usr/,}bin/ping flags=(complain) {
  #include <abstractions/base>
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  #include <abstractions/consoles>
  #include <abstractions/nameservice>

  capability net_raw,
  capability setuid,
  network inet raw,

  /bin/ping mixr,
  /etc/modules.conf r,

  # Site-specific additions and overrides. See local/README for details.
  #include <local/bin.ping>
}

Here a ping utility has only three capabilities (i.e., net_raw, setuid, and inet raw and
read access to /etc/modules.conf). With these permissions a ping utility cannot mod‐
ify or write to the filesystem (keys, binaries, settings, persistence) or load any mod‐
ules, which reduces attack surface for the ping utility to perform any malicious
activity in case of a compromise.

By default, your Kubernetes runtime like Docker, podman, or CRI-O provides an
AppArmor profile. Docker’s runtime profile is provided for your reference.

Since AppArmor is much more flexible and easy to work with, we recommend having
a policy per microservice. Kubernetes provides the following options to enforce these
policies via PSP annotations:

Value Description
runtime/default Runtime’s default policy
localhost/<profile_name> Apply profile loaded on host, usually in directory /sys/kernel/security/apparmor/profiles
unconfined No profile will be loaded

Sysctl
Kubernetes sysctl allows you to use the sysctl interface to use and configure kernel
parameters in your cluster. An example of using sysctls is to manage containers with
resource-hungry workloads that need to handle a large number of concurrent con‐
nections or need a special parameter set (i.e., IPv6 forwarding) to run efficiently. In
such cases, sysctl provides a way to modify kernel behavior only for those workloads
without affecting the rest of the cluster.

The sysctls are categorized into two buckets: safe and unsafe. Safe sysctl only affects
the containers, but unsafe sysctl affects the container and node it is running on. Sysctl
lets administrators set both the sysctl buckets at their discretion.
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Let’s take an example where a containerized web server needs to handle a high num‐
ber of concurrent connections and needs to set the net.core.somaxconn value to a
higher number than the kernel default. In this case it can be set as follows:

apiVersion: v1
kind: Pod
metadata:
  name: sysctl-example
spec:
  securityContext:
    sysctls:
    - name: net.core.somaxconn
      value: "1024"

Please note that we recommend that you use node affinity to schedule workloads on
nodes that have the sysctl applied, in case you need to use a sysctl that applies to the
node. The following example shows how PSPs allow sysctls to be forbidden or
allowed:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: sysctl-psp
spec:
  allowedUnsafeSysctls:
  - kernel.msg*
  forbiddenSysctls:
  - kernel.shm_rmid_forced

Conclusion
In this chapter we covered tools and best practices for defining and implementing
your workload runtime security. The most important takeaways are:

• Pod security policies are an excellent way to enable workload controls at work‐
load creation time. They have limitations but can be used effectively.

• You need to pick a solution that is native to Kubernetes for monitoring processes
and implement controls based on your threat model for your workloads.

• We recommend you review the various security options that are available in the
Linux kernel and leverage the right set of features based on your use case.
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CHAPTER 5

Observability

In this chapter we will discuss the difference between monitoring and observability in
the context of Kubernetes deployments. We will explain best practices and tools for
implementing observability in your Kubernetes cluster. In the next chapter we will
cover how you can use observability to secure your cluster.

Observability has been a topic of discussion recently in the Kubernetes community
and has garnered a lot of interest. We begin by understanding the difference between
monitoring and observability. We then look at why observability is critical to security
in a distributed application like Kubernetes, and review tools and reference imple‐
mentations for observability. While observability is a broad topic and applies to sev‐
eral areas, we will keep the discussion focused on Kubernetes in this chapter. Let’s
start by looking at monitoring and observability and how they are different.

Monitoring
Monitoring is a known set of measurements in a system that are used to alert for
deviations from a normal range. The following are examples of types of data you can
monitor in Kubernetes:

• Pod logs
• Network flow logs
• Application flow logs
• Audit logs
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Examples of metrics you can monitor include the following:

• Connections per second
• Packets per second, bytes per second
• Application (API) requests per second
• CPU and memory utilization

These logs and metrics can help you identify known failures and provide more infor‐
mation about the symptom to help you remediate the issue.

In order to monitor your Kubernetes cluster, you use techniques like polling and
uptime checks depending on the SLAs you need to maintain for their cluster. The fol‐
lowing are examples of metrics you could monitor for SLAs:

• Polling of application/API endpoints
• Application response codes (e.g., HTTP or database error codes)
• Application response time (e.g., HTTP duration, database transaction time)
• Node availability for scale-out use cases
• Memory/CPU/disk/IO resources on a node

The other important part of monitoring is alerting. You need an alerting system as
part of your monitoring solution that generates alerts for any metric that violates the
specified threshold. Tools like Grafana, Prometheus, OpenMetrics, OpenTelemetry,
and Fluentd are used as monitoring tools to collect logs and metrics, and generate
reports, dashboards, and alerts for Kubernetes clusters. Kubernetes offers several inte‐
grations to tools like Opsgenie, PagerDuty, Slack, and JIRA for alert forwarding and
management.

Monitoring your production Kubernetes cluster has the following issues:

Amount of log data
In a system like Kubernetes, a node has several pods that run on the host, and
each pod comes with its own logs, its own network identity, and its own
resources. This means you have logs from the application operation, network
flow logs, Kubernetes activity (audit) logs, and application flow logs for each pod.
In a non-Kubernetes environment, you typically had an application running on a
node and so it would be just one set of logs as opposed to one set of logs per pod
running on the node. This multiplies the amount of log data that needs to be col‐
lected/inspected. In addition to the per-pod logs, you also need to collect cluster
logs from Kubernetes. Typically these are also known as audit logs that provide
visibility into Kubernetes cluster activity. The number of logs in the system will
make monitoring very resource-intensive and expensive to maintain. Your log
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collection cluster should not be more expensive to operate than the cluster run‐
ning your applications!

Monitoring distributed applications
In a Kubernetes cluster, applications are distributed across the Kubernetes cluster
network. An application that needs more than one pod (e.g., a deployment set or
a service) will have logs for each pod that need to be examined in addition to the
context of the set of pods (e.g., scale out, error handling, etc.). We have multiple
pods that need to be considered as a group before we generate an alert for the
application. Please note the goal is to monitor the application and generate alerts
for the application, and generating alerts for pods that are a part of the applica‐
tion independently does not provide an accurate representation of the state of the
application. There is also the case of the microservices application, where a single
application is deployed as a set of services known as microservices, and each
microservice is responsible for a part of the functionality of the application. In
this case, you need to monitor each microservice as an entity (note a microser‐
vice is a set of one or more pods) and then understand which microservices
impact any given application transaction. Only then can you report an alert for
the application.

Declarative nature of Kubernetes
As we have covered, Kubernetes is declarative and allows you to specify exactly
how you want pods to be created and run in the cluster. Kubernetes allows you to
specify resource limits for memory, CPU, storage, etc., and you can also create
custom resources and specify limits for these resources. The scheduler will find a
node that has the required resources and schedule a pod on the node. Kubernetes
also monitors usage for pods and will terminate pods that consume more
resources than those allocated to them. In addition, Kubernetes provides detailed
metrics that can be used to monitor pods and cluster state. For example, you can
use a tool like Prometheus that can monitor pods and cluster state and use the
metrics, and you can automatically scale pods or other cluster resources with a 
mechanism known as the Horizontal Pod Autoscaler. What this means is that
Kubernetes as a part of its operation is monitoring and making changes to the
cluster to maintain operations as per the configured specification. In this sce‐
nario, an alert from monitoring a single metric can be a result of Kubernetes
making changes to adapt to the load in the cluster, or it could be a real issue. You
need to be able to distinguish between the two scenarios to be able to accurately
monitor your application.

Now that we understand monitoring and how it can be implemented and the chal‐
lenges with using monitoring for a Kubernetes cluster, let’s look at observability and
how it can help overcome these challenges.
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Observability
Observability is defined as the ability to understand the internal state of a system by
only looking at external outputs of the system. Observability Engineering by Charity
Majors et al. (O’Reilly) is an excellent resource to learn more about observability. The
book’s second chapter discusses monitoring and observability and is very relevant to
this discussion.

Observability builds on monitoring and enables you to gain insights about the inter‐
nal state of your application. For example, in a Kubernetes cluster an unexpected pod
restart event may have limited to no impact on services as other instances of the pod
may be adequate to handle the load at the time of the restart. A monitoring system
will generate an alert that an unexpected pod restart occurred, and an observability
system will generate a medium-priority event with the context that an unexpected
pod restart occurred but had no impact on the system if there is no other event like
application errors at the time of the pod restart. Another example is when an event is
generated at the application layer (e.g., duration for HTTP request is larger than the
norm). In this scenario, the observability system will provide context for the reason of
degradation in application response time (e.g., network layer issue, retransmits, appli‐
cation pod restarts due to resource or other application issues, a Kubernetes infra‐
structure issue like DNS latency or API server load). As explained previously, an
observability system can look at multiple events that impact application state and
report application status after considering all of them. Now let’s look at how you can
implement observability in a Kubernetes system.

How Observability Works for Kubernetes
The declarative nature of Kubernetes helps a lot in implementing an observability
system. We recommend that you build a system that is native to Kubernetes and is
able to understand operations in a cluster. For example, a system that understands
Kubernetes will monitor a pod (e.g., restarts, out of memory, network activity, etc.)
but also understand if a pod is a standalone instance or part of a deployment, replica
set, or service. It will also know how critical the pod is to the service or deployment
(e.g., how the service is configured for scalability and high availability). So when it
reports any event related to the pod, it will provide all this context and help you easily
make a decision about how you need to respond to the event.

Another thing to remember is that in Kubernetes you can deploy applications as pods
that are a part of higher-level constructs like a deployment or a service. In order to
appreciate the complexity in implementing observability for these constructs, we will
use an example to explain them. When you configure a service, Kubernetes manages
all pods associated with the service and ensures that traffic is delivered to available
pods that are a part of the service. Let’s take a look at an example of service definition
from the Kubernetes documentation:
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apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376

In this example all pods that have the label MyApp and listen on TCP port 9376
become part of the service, and all traffic destined to the service is redirected to these
pods. We cover this concept in detail in Chapter 8. So in this scenario, the observabil‐
ity solution should also work to provide insights at the service level. Monitoring a
pod in this case is not sufficient. What is needed is that the observability aggregates
metrics across all pods in a service and uses the aggregated information for more ana‐
lytics and alerts.

Now let’s look at an example of deployments in Kubernetes. Deployments allow you
to manage pods and replica sets (replicas of a pod, typically used for scaling and high
availability). The following is an example configuration for a deployment in
Kubernetes:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
        ports:
        - containerPort: 80

This configuration will create a deployment for nginx with three replica pods with the
configured metadata and specification. Kubernetes has a deployment controller to
ensure that all pods and replicas that are a part of the deployment are available. There
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are several other benefits, like rolling updates, autoscaling, etc., that can be achieved
by using the deployment resource in Kubernetes. In such a scenario for observability,
the tool you use should look at the activity of all pods (replicas) in a deployment as an
aggregate (e.g., all traffic to/from pods in a deployment, pod restarts and their effect
on a deployment, etc.). Monitoring and alerting for each pod will not be sufficient to
understand how the deployment is operating.

In both these examples it is clear that the collection of metrics needs to be in the con‐
text of Kubernetes. Instead of collecting all data and metrics at a pod-level granularity,
the collection engine should collect data at a deployment- or service-level granularity
when applicable to deliver an accurate representation of the state of the deployment
or service. Remember, Kubernetes abstracts pod-level details, and so we need to focus
on measuring and alerting at a higher level than pods. Aggregation of data at a
deployment and service level will reduce the number of logs you need to collect all
the time and address the concern of the costs associated with a large number of logs.
Please note the tool needs to have the ability to drill down and capture pod-level
details when the operator needs to analyze an issue. We will cover this later in this
chapter when we discuss data collection.

Now that we understand how we can leverage the declarative nature of Kubernetes to
help with observability and reduce the amount of log data we need to collect and gen‐
erate relevant alerts, let’s explore the distributed nature of Kubernetes and its impact
on observability.

In a microservices-based application deployment, a single application comprises sev‐
eral microservices that are deployed in a Kubernetes cluster. This means that in order
to service a single transaction from the user, one or more services need to interact
with each other, resulting in one or more subtransactions. A great example of a
sample microservices application is the Google online boutique demo microservices
application. Figure 5-1 shows the architecture for this application.

Figure 5-1 shows how an online boutique application can be deployed as microser‐
vices in Kubernetes. There are 11 microservices, each responsible for some aspect of
the application. We encourage you to review this application as we will use it to
demonstrate how you can implement observability later in the chapter. If you look at
the checkout transaction, a user makes a request to the frontend service, which then
makes a request to the checkout service. The checkout service needs to interact with
several services (e.g., PaymentService, Shipping Service, CurrencyService, EmailSer‐
vice, ProductCatalog Service, CartService) to complete the transaction. So in this sce‐
nario if we see our HTTP application log indicate a larger-than-expected duration for
the checkout process API response time, we will need to review each of the subtran‐
sactions and see if there is an issue with each one and what the issue is (an application
issue, network issue, etc.). Another thing that makes this complicated is the fact that
each subtransaction is asynchronous and each microservice is serving several
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independent transactions simultaneously. In such a scenario you need to use a techni‐
que known as distributed tracing to trace the flow of a single transaction across a set
of microservices. Distributed tracing can happen by instrumenting the application or
instrumenting the kernel. We will cover distributed tracing later in the chapter.

Figure 5-1. Architecture of the Google microservices demo application

Now that we understand observability and how you should think about it for a
Kubernetes cluster, let’s look at the components for an observability tool for Kuber‐
netes. Figure 5-2 shows a block diagram of the various components of an observabil‐
ity tool for Kuebrnetes.

Figure 5-2. Components of an observability tool for Kubernetes
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Figure 5-2 shows that you need the following components for your observability
implementation:

Telemetry collection
As mentioned, your observability solution needs to collect telemetry data from
various sensors in your cluster. It needs to be distributed and Kubernetes-native.
It must support sensors across all layers, from L3 to L7. It also needs to collect
information about Kubernetes infrastructure (e.g., DNS and API server logs) and
Kubernetes activity (these are known as audit logs). As described, this informa‐
tion must be collected in the context of deployments and services.

Analytics and visibility
In this layer, the system must provide visualizations that are specific to Kuber‐
netes operations (e.g., service graph, Kubernetes platform view, application
views). We will cover some common visualizations that are native to Kubernetes.
We recommend you pick a solution that leverages machine learning techniques
for baselining and reporting anomalies. Finally, the system needs to support the
ability for operators to enable pod-to-pod packet capture (note that this is not the
same as enabling packet capture on the host interface, as the pod-level visibility is
lost). We will cover this in the next section.

Security and troubleshooting applications
The observability system you implement must support distributed tracing as
described in the previous section to help troubleshoot applications. We also rec‐
ommend the use of advanced machine learning techniques to understand Kuber‐
netes cluster behavior and predict performance or security concerns. Please note
that this is a new area and there is ongoing innovation in it.

Now that we have covered what is needed to implement observability in a Kubernetes
cluster, let’s review each of the components in detail.

Implementing Observability for Kubernetes
In this section we will review each component needed to build an effective observa‐
bility system in Kubernetes.

You should think of log collection as a set of sensors that are distributed in your clus‐
ter. You need to ensure that the sensors are efficient and do not interfere with system
operation (e.g., adding latency). We will cover methods of collection later in this sec‐
tion that will show how you can efficiently collect metrics. You should consider
deploying sensors (or collecting information) across all the layers of the stack, as
shown in Figure 5-2. Kubernetes audit logs are an excellent source of information to
understand the complete life cycle of various Kubernetes resources. In addition to
audit logs, Kubernetes provides a variety of options for monitoring. Next you need to
focus on traffic flow logs (Layer 3/Layer 4) to understand the operation of the Kuber‐
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netes cluster network. Given the declarative nature of Kubernetes, it is important to
collect logs related to application flows (e.g., HTTP or MySQL), where the logs pro‐
vide visibility into the application behavior (e.g., response time, availability, etc.) as
seen by the user. In order to help with troubleshooting, you should also collect logs
related to Kubernetes cluster infrastructure (e.g., API server, DNS). Some advanced
troubleshooting systems also collect information from the Linux kernel that is a result
of activity by a pod (e.g., process information, socket stats for a flow initiated by a
pod) and provide a way to enable packet capture (raw packets) for pod-to-pod traffic.
The following describes what you should collect for each:

Kubernetes audit logs
Kubernetes provides the ability to collect and monitor activity. Here is an excel‐
lent guide that explains how you can control what to collect and also mechanisms
for logging and alerting. We suggest you review what you need to collect and set
the audit policy carefully—we recommend against just collecting everything. For
example, you should log API requests, usernames, RBAC, decisions, request
verbs, the client (user-agent) that made the request, and response codes for API
requests. We will show a sample Kubernetes activity dashboard in the visualiza‐
tion section.

Network flow logs
Network flow logs (Layer 3/Layer 4) are key to understanding the Kubernetes
cluster network operation. Typically these include the five-tuple (source and des‐
tination IP addresses/ports and port). It is also important to collect Kubernetes
metadata associated with pods (source and destination namespaces, pod names,
labels associated with pods, host on which the pods were running) and aggregate
bytes/packets for each flow. Note this can result in a large amount of flow data, as
there could be a large number of pods on a node. We will address this in the fol‐
lowing section about aggregation at collection time.

DNS flow logs
Along with the API server, the DNS server is a critical part of the Kubernetes
cluster and is used by applications to resolve domain names in order to connect
other services/pods as a part of normal operation. An issue with the DNS server
can impact several applications in the cluster. It is important to collect informa‐
tion from the client’s perspective. You should log DNS requests by pods that cap‐
ture request count, latency, which DNS server was used to resolve the request, the
DNS response code, and the response. This should be collected with Kubernetes
metadata (e.g., namespace, pod name, labels, etc.), as this will help associate the
DNS issue with a service and facilitate further troubleshooting.

Application logs
As explained, the collection of application logs (HTTP, MySQL) is very impor‐
tant in a declarative system like Kubernetes. These logs provide a view into the
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user experience (e.g., response time or availability). The logs will be application-
specific information but must include response codes (status), response time, and
other application-specific context. For example, for HTTP requests, you should
log domains (part of the URL), user agent, number of requests, HTTP response
codes, and in some cases complete URL paths. Again, logs should include Kuber‐
netes metadata (e.g., namespace, service, labels, pod names, etc.).

Process information and socket stats
As mentioned, these stats are not part of typical observability implementations,
but we recommend that you consider collecting these stats as they provide a
more comprehensive view of the Kubernetes cluster operation. For example, if
you can get information about processes (that run in a pod), this can be an excel‐
lent way to correlate with application performance data (e.g., co-relating memory
usage, or garbage collection events in a Java-based application to response time
and network activity initiated by the process). Socket stats are details of a TCP
flow between two endpoints (e.g., network round-trip time, TCP congestion win‐
dows, TCP retransmits, etc.). These stats when associated with pods can provide
a view into the impact of the underlying network on pod-to-pod communication.

Now that we have covered what you need to collect for a complete observability solu‐
tion, let’s look at the tools and techniques available to implement collection.
Figure 5-3 is an example reference implementation to show how you can implement
collection on a node in your Kubernetes cluster.

Figure 5-3 shows a node in your Kubernetes cluster that has applications deployed as
services, deployments, and pods in namespaces as you would see in a typical Kuber‐
netes cluster. In order to facilitate collection, a few components are added as shown in
the observability components section, and it shows a few additions to the Linux ker‐
nel to facilitate collection. Let’s explore the functions of each of these components.
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Figure 5-3. Reference implementation for collection on a node

Linux Kernel Tools
The Linux kernel offers several options that you can use to help with data collection.
It is very important that the tool you use leverages these tools instead of focusing on
processing raw logs that are generated by other tools:

eBPF programs and kprobes
eBPF stands for extended Berkley Packet Filter. It is an exciting technology that
can be used for collection and observability. It was originally designed for packet
filtering, but was then extended to allow adding programs to various hooks in the
kernel to be used as trace points. In case you are using an eBPF-based dataplane,
the eBPF programs that are managing the packet path will also provide packet
and flow information. We recommend reading Brendan Gregg’s blog post “Linux
Extended BPF (eBPF) Tracing Tools” to understand how to use eBPF for perfor‐
mance and tracing. In the context of this discussion, you can attach an eBPF pro‐
gram to a kernel probe (kprobe), which is essentially a trace point that is
triggered and executes the program whenever the code executes the function for
which the kprobe is registered. The kernel documentation for kprobes provides
more details. This is a great way to get information from the Linux kernel for
observability.
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NFLOG and conntrack
If you are using the standard Linux networking dataplane (iptables-based), there
are tools available to track packets and network flows. We recommend using
NFLOG, which is a mechanism to be used in conjunction with iptables to log
packets. You can review the details in the iptables documentation; at a high level
NFLOG can be set as a target for an iptables rule, and it will log packets via a
netlink socket on a multicast address that a user space process can subscribe to
and collect packets from. Conntrack is another module used in conjunction with
iptables to query the connection state of a packet or a flow, and it can be used to
update statistics for a flow.

We recommend you review options (e.g., Net Filter) that the Linux kernel provides
and leverage them in sensors that are used to collect information. This is very impor‐
tant as it will be an efficient way to collect data, since these options provided by the
Linux kernel are highly optimized.

Observability Components
Now that we understand how to collect data from the Linux kernel, let’s look at how
this data needs to be processed in user space to ensure we have an effective observa‐
bility solution:

Log collector
This is a very important component in the system. The goal of this component is
to add context from the Kubernetes cluster to the data collected from other sen‐
sors—for example, to add pod metadata (name, namespace, label, etc.) to source
and destination IP addresses, respectively, from a network flow. This is how you
can add Kubernetes context to raw network flow logs. Likewise, any data you col‐
lect from kernel probes can also be enriched by adding relevant Kubernetes
metadata. This way you can have log data that associates activity in the kernel to
objects in your Kubernetes cluster (e.g., pods, services, deployments). It is critical
for you to be able derive insights about your Kubernetes cluster operation. Please
note that this component is something you need to implement, or you must
ensure that the tool you choose for observability has this functionality. It is a crit‐
ical part of your observability implementation.

Envoy (proxy)
We discussed the importance of having a collection of application-specific data,
and for this we recommend that you use Envoy, a well-known proxy that is used
to analyze application protocols and log application transaction flows (e.g.,
HTTP transactions on a single HTTP connection). Please note that Envoy can be
used as a sidecar pattern where it attaches to every pod as a sidecar and tracks
packets to/from the pod. It can also be deployed as a daemonset (a transparent
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proxy) where you can use the dataplane to redirect traffic to pass through an
envoy instance running on the host. We strongly recommend using Envoy with
this latter configuration, as using the sidecar pattern has security concerns and
can be disruptive to applications. In the context of this discussion, the Envoy dae‐
monset will be the source of application flow logs to the log collector. The log col‐
lector can now use the pod metadata (name, namespace, labels, deployments,
services, IP addresses) to correlate this data with the data received from the ker‐
nel and further enrich it with application data.

Fluentd
Note that the data collection discussed so far is processed by the log collector on
every node in the cluster. You need to implement a mechanism to send the data
from all nodes to a datastore or security information and event management
(SIEM), where it can be picked up by analytics and visualization tools. Fluentd is
an excellent option to send collected data to the datastore of your choice. It offers
excellent integrations and is a tool that is Kubernetes native. There are other
options available, but we recommend you use Fluentd for shipping collected log
data to a data store.

Prometheus
We’ve discussed how you collect flow logs; now we need a component for the col‐
lection of metrics and alerting. Prometheus, a Kubernetes-native tool, is a great
choice for metrics collection and alerting. It’s deployed as endpoints that scrape
metrics and send them to a time-series database that’s a part of the Prometheus
server for analysis and query. You can also define alerts for data sent to the Prom‐
etheus server. It’s a widely used option and has integrations to dashboards and
alerting tools. We recommend you consider it as an option for your cluster.

We hope that this discussion has given you an idea of how you can implement data
collection for your Kubernetes cluster. Now let’s look at aggregation and correlation.

Aggregation and Correlation
In the previous section we covered data collection and discussed how you can collect
data from various sources in your cluster (API server, network flows, kernel probes,
application flows). This is very useful, but we still need to address the concern of data
volume if we keep the collection at pod-level granularity. Another thing to note is that
the data volume concern multiples if we keep data from various sources separate and
then associate it at query time. You can say that it’s better to keep as much raw data as
possible, and there are efficient tools to query and aggregate data after collection (off‐
line), so why not use that approach? Yes, that is a valid point, but there are a couple of
things to think about. The large volume of data would mean aggregation and query
time joins of data will be resource-intensive (it can very well be more expensive to
operate your data collection system than your Kubernetes cluster!). Also, given the
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ephemeral nature of Kubernetes (pod life cycles can be very short), the latency in ana‐
lyzing data offline prevents any kind of reasonable response to data collected to miti‐
gate the issue reported by the data. In some cases, if correlation is not done at
collection time, it will not be possible to associate two different collections. For exam‐
ple, you cannot collect a list of policies and a list of flows and then associate the policy
with a flow offline without rerunning the policy evaluation.

We also discussed the declarative nature of Kubernetes and how a deployment and a
service are higher-level constructs than a pod. In such a scenario, we recommend that
you consider the aggregation of data at a deployment or a service level. This means
data from all pods for a service is aggregated; you would collect data between deploy‐
ments and data to services as a default option. This will give you the right level of
granularity. You can provide an option to reduce the aggregation to collect pod-level
data as a drill-down action or in response to an event. This way you can address the
concern about large amounts of log data collected and the associated processing cost.
Also, the data collection is more Kubernetes-native as Kubernetes monitors deploy‐
ments/services as a unit and makes adjustments to ensure the deployment/service is
operating as per the specification.

In the data collection section we discussed the log collector component that receives
data from various sources. It could be used as a source to correlate data at collection
time, so you don’t have to do any additional correlation after data collection, and you
also benefit from not having to collect redundant data for each source. For example, if
the kprobe in the kernel collects socket data for five-tuple (IP addresses, ports, proto‐
col), and the NFLOG provides other information like bytes and packets for the same
five-tuple, the log collector can create a single log with the five-tuple, the Kubernetes
metadata, the network flow data, and the socket statistics. This will provide logs with
very high context and low occupancy for collection and processing.

Now let’s go back to the Google online boutique example and see a sample of what a
log will look like with aggregation and correlation of kernel and network flow data.
The sample log is generated using the collection and aggregation concepts described
previously for a transaction between the frontend service and the currencyservice of
the application. It is a gRPC-based transaction:

{
   "_id": "YTBT5HkBf0waR4u9Z0U3",
   "_score": 3,
   "_type": "_doc",
   "start_time": 1623033303,
   "end_time": 1623033334,
   "source_ip": "10.57.209.32",
   "source_name": "frontend-6f794fbff7-58qrq",
   "source_name_aggr": "frontend-6f794fbff7-*",
   "source_namespace": "onlinebotique",
   "source_port": null,
   "source_type": "wep",

82 | Chapter 5: Observability



   "source_labels": [
       "app=frontend",
       "pod-template-hash=6f794fbff7"
   ],
   "dest_ip": "10.57.209.29",
   "dest_name": "currencyservice-7fd6c64-t2zvl",
   "dest_name_aggr": "currencyservice-7fd6c64-*",
   "dest_namespace": "onlinebotique",
   "dest_service_namespace": "onlinebotique",
   "dest_service_name": "currencyservice",
   "dest_service_port": "grpc",
   "dest_port": 7000,
   "dest_type": "wep",
   "dest_labels": [
       "app=currencyservice",
       "pod-template-hash=7fd6c64"
   ],
   "proto": "tcp",
   "action": "allow",
   "reporter": "src",
   "policies": [
       "1|platform|platform.allow-kube-dns|pass",
       "2|__PROFILE__|__PROFILE__.kns.hipstershop|allow",
       "0|security|security.pass|pass"
   ],
   "bytes_in": 68437,
   "bytes_out": 81760,
   "num_flows": 1,
   "num_flows_started": 0,
   "num_flows_completed": 0,
   "packets_in": 656,
   "packets_out": 861,
   "http_requests_allowed_in": 0,
   "http_requests_denied_in": 0,
   "process_name": "wrk:worker_0",
   "num_process_names": 1,
   "process_id": "26446",
   "num_process_ids": 1,
   "tcp_mean_send_congestion_window": 10,
   "tcp_min_send_congestion_window": 10,
   "tcp_mean_smooth_rtt": 9303,
   "tcp_max_smooth_rtt": 13537,
   "tcp_mean_min_rtt": 107,
   "tcp_max_min_rtt": 107,
   "tcp_mean_mss": 1408,
   "tcp_min_mss": 1408,
   "tcp_total_retransmissions": 0,
   "tcp_lost_packets": 0,
   "tcp_unrecovered_to": 0,
   "host": "gke-v2y0ly8k-logging-default-pool-e0c7499d-76z8",
   "@timestamp": 1623033334000
}
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This is an example of a flow log from Calico Enterprise. There are a few things
to note about the log: It aggregates data from all pods backing the frontend service
(frontend-6f794fbff7-*) and all pods belonging to the currencyservice
(currencyservice-7fd6c64-*). The data from the kprobe and socket statistics are
aggregated as mean, min, and max for each metric for the data between services. The
process ID and the process name received from the kernel are correlated with the
other data, and we also see the network policy action and the network policies
impacting the flow correlated with other data. This is an example of what you want to
achieve for data collection in your Kubernetes cluster!

Now that we have covered how to collect, aggregate, and correlate data in a
Kubernetes-native manner, let’s explore visualization of data.

Visualization
There are some great tools that support the visualization of the data collected. For
example, Prometheus offers an integration with Grafana that provides very good
dashboards to visualize data. There are also some commercial tools like Datadog,
New Relic, and Calico Enterprise that support the collection and visualization of data.
We will cover a few common visualizations that are useful for Kubernetes clusters.

Service Graph
This is a representation of your Kubernetes cluster as a graph showing services in a
Kubernetes cluster and interactions between them. If we go back to the Google
microservices online boutique example, Figure 5-4 shows the online boutique appli‐
cation implemented and represented as a service graph.

Figure 5-4 is a visualization of the online boutique namespace as a service graph, with
the nodes representing services and pods backing a service or a group of pods either
standalone or as a part of a deployment. The edges show network activity and policy
action. The graph is interactive and allows you to pick a service (e.g., frontend ser‐
vice) and allows the viewing of detailed logs collected for the service. Figure 5-5
shows a summarized view of all collected data for the service selected (frontend).

Figure 5-5 shows a detailed view of the frontend service as a drill-down—it shows
information from all sources in one view, so it’s very easy to analyze the operation of
the service.

Service graph is a very common pattern to represent Kubernetes cluster topology.
There are several tools that provide this view, such as Kiali, Datadog, and Calico
Enterprise.
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Figure 5-4. Service graph representation of the online boutique application

Figure 5-5. Detailed view of the frontend microservice

Visualization of Network Flows
Figure 5-6 shows a common pattern used to visualize flows. This is ring-based visual‐
ization, where each ring represents an aggregation level. In the example shown in
Figure 5-5, the outermost ring represents a namespace and all flows within the name‐
spaces. Selecting a ring in the middle shows all flows for a service, and selecting the
innermost ring shows all flows for pods backing the service. The panel on the right is
a selector to enable more-granular views using filtering and details like flows and pol‐
icy action for the selection. This is an excellent way to visualize network flows in your
cluster.
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Figure 5-6. Network flow visualization

In this section we have covered some common visualization patterns and tried to
show how they can be applied to Kubernetes. Please note that there are several visual‐
izations that can be applied to Kubernetes; these are examples to show how you can
represent data collected in a Kubernetes cluster.

Now that we have covered data collection, aggregation, correlation, and visualization,
let’s explore some advanced topics to utilize the data collected to derive insights into
the operation of the Kubernetes cluster.

Analytics and Troubleshooting
In this section we will explore analytics applications that leverage the collection,
aggregation, and correlation components to help provide additional insights. Note
that there are many applications that can be built to leverage the context-rich data in
a Kubernetes cluster. We cover some applications as examples.

Distributed Tracing
We explained distributed tracing before and discussed its importance in a
microservices-based architecture, where it is critical to trace a single user request
across multiple transactions that need to happen between various microservices.
There are two well-known approaches to implementing distributed tracing,
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Instrument transaction request headers
In this method the HTTP headers are instrumented with a request ID, and the
request ID is preserved in headers across calls to various other services. Envoy is
a very popular tool used to implement distributed tracing. It supports integra‐
tions with other well-known application tracers like Lightstep and AWS X-Ray.
We recommend that you use Envoy if you are fine with instrumenting applica‐
tions to add and preserve the request ID across calls between microservices.

eBPF and kprobes
In the method described for using Envoy, there is a change required to the appli‐
cation traffic. It is possible to implement distributed tracing for service-to-service
calls using eBPF and Linux kernel probes. You can attach eBPF programs to
kprobes/uprobes and other trace points in the kernel and build a distributed trac‐
ing application. Note the detailed implementation of such an application is
beyond the scope of this book, but we wanted to mention this as an option for
distributed tracing in case you are wary of altering application traffic.

Now that we have covered distributed tracing, let’s look at how you can implement
packet capture in your Kubernetes cluster.

Packet Capture
In your Kubernetes cluster we recommend that you implement or pick a tool that
supports raw packet captures between pods. The tool should support a selector-based
packet capture (e.g., pod labels) and role-based access control to enable and view
packet captures. This is a simple yet very effective feature that can be used as a
response action to an event (e.g., increased application latency) to analyze raw packet
flows to understand the issue and find the root cause. In order to implement raw
packet captures, we recommend using libpcap, which supports the ability to capture
packets on an interface on Linux systems.

Conclusion
In this chapter we covered what observability is and how to implement it for your
Kubernetes cluster. The following are the highlights of this chapter:

• Monitoring needs to be a part of your observability strategy; monitoring alone is
not sufficient.

• It is important to leverage the declarative nature of Kubernetes when you imple‐
ment an observability solution.

• The key components for implementing observability for your Kubernetes cluster
are log collection, log aggregation and correlation, visualization, distributed trac‐
ing, and analytics.
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• You must implement your observability using a tool that is native to Kubernetes.
• You should use tools available in the Linux kernel to drive efficient collection and

aggregation of data (e.g., NFLOG, eBPF-based probes).
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CHAPTER 6

Observability and Security

This chapter will explain how an observability platform can help improve the security
of your Kubernetes cluster. We will cover the following topics:

Alerting
In Chapter 5 we covered best practices for implementing log collection. In this
chapter, we will focus on how to build a system that helps generate high-fidelity
alerts. We will also discuss the use of machine learning for anomaly detection.

Security operations center
We will review a reference implementation of a security operations center (SOC)
and how observability can help you build an SOC for your Kubernetes cluster.

Behavioral analytics
We will cover the concept of user and entity behavior analytics (UEBA) and how
to implement it in your Kubernetes cluster.

Alerting
In the previous chapter we discussed how to implement logging for your Kubernetes
cluster. An effective alerting system must include the following:

• The system should be able to automatically run queries across various log data
sources (e.g., Kubernetes activity logs, network logs, application logs, DNS logs,
etc.).

• The system must be able to support a state machine that is used to generate
events for a specified number of threshold violations in a specified duration. The
system must also support setting a time period for the query (known as look‐
back). We will cover an example in the next section.
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• The system must be able to export actionable alerts to external security, informa‐
tion, and event management (SIEM) so that they can be a part of the incident
response process in an enterprise.

Alerting systems are available from major cloud providers that can help you define
alerts on logs collected in the cloud provider environment. Google Cloud has an
excellent resource to learn about its alerting capabilities. Amazon Web Services
(AWS) also has similar alerting capabilities. These alerts work on logs collected in the
cloud provider’s logging system and allow you to define rules to trigger alerts based
on thresholds. For example, the number of API calls to an API endpoint in a given
time period can be an indicator of a potential denial of service (DoS) attack. While
these systems are good for general logging and alerting, a log collection system that is
native to Kubernetes, like the one we covered in Chapter 5, is necessary to detect
security-based events in your Kubernetes cluster, as it correlates data at the time of
collection and makes it easy to define alerts on one log source. Also, an alerting sys‐
tem native to Kubernetes will help you define alerts using Kubernetes constructs like
deployments, labels, etc., as it will be able to enhance log data with the right context
so queries are simple. (For example, you do not need to join a set of labels to services
and labels to IPs in network flow logs to query network activity for a service.)

Figures 6-1 and 6-2 show you an example of how you can define an alert to detect
lateral movement in your Kubernetes cluster.

Figure 6-1. Configuring an alert operation

Figure 6-1 shows how you can configure the operation of an alert and metadata like
name, description, severity, and time period to poll for the data and the lookback
period, which is how far back the system will look when querying the data. You can
also define thresholds for occurrences of threshold violations before an alert is trig‐
gered. It is also important to be able to configure the format of the output; in this
example the data will be aggregated by the source of the traffic (namespace and
deployment) when the alert is reported. The output alert data helps facilitate the
management of the alert by downstream systems (e.g., SIEM).
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Figure 6-2. Query configuration for an alert

Figure 6-2 shows an example of query configuration for the alert. The things to note
in the query are the ability to use Kubernetes metadata (e.g., labels) with network
flow activity (e.g., destination, protocol) and policy verdict (e.g., action) in a single
query. This gives you a lot of flexibility in defining alerts that are effective in your
Kubernetes cluster. Please note that this is a representative example of how you
should think about building an effective alerting system. In addition to the cloud pro‐
vider’s alerting systems, there are several other tools like Datadog, Sysdig, and Calico
Enterprise that provide Kubernetes-native alerting systems.

The alerting systems we covered previously are great at detecting and reporting alerts
when your system has predictable behavior and you can easily define thresholds for
normal activity of the system. It would be great for an alerting system to be able to
“learn” the behavior of the system and be able to dynamically define thresholds; this
will help generate high-fidelity alerts and reduce false positives due to thresholds not
changing with the state of the system. Let’s explore how machine learning can be used
to help with this issue.
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Machine Learning
Machine learning fundamentals and how it works are outside the scope of this book.
In this section we will review a few concepts of machine learning that will show us
how it can help with learning the behavior of a given metric and alerting on devia‐
tions from the expected behavior. Before we do that, let’s review the high-level tech‐
niques in machine learning:

Supervised learning
This is a technique where the system is trained by labeling test data over a period
of time. It allows the system to use the learnings to classify new data and predict
outcomes.

Unsupervised learning
This is a technique where algorithms are used to detect and classify patterns in
data that is not labeled. Please note that there are many resources to understand
these concepts; one example is Julianna Delua’s“Supervised vs. Unsupervised
Learning: What’s the Difference?”. Given the ephemeral nature of entities (e.g.,
pods) in a Kubernetes cluster and our goal of detecting anomalies in the data
generated from that activity, we recommend using the technique of unsupervised
learning for detecting anomalies.

Baselining
Baselining is a technique used to build a model in machine learning that can con‐
tinuously predict values for a given metric (e.g., connections per second) and
detect anomalies (deviations) from the expected value. CMU ML’s blog post “3–
Baselines” is a great resource for understanding how baselines work and the dif‐
ferent types of models that can be built using baselining. As mentioned in the
blog, it is possible to create simple models that are very effective in achieving
human-level performance. This is exactly what we want in our alerting system:
The system should automatically define thresholds and alert on deviations from
the baseline.

Now that we understand the high-level techniques we should use, let’s look at some
example machine learning jobs that help with implementing observability and secur‐
ing a Kubernetes cluster. In a dynamic environment like Kubernetes, where work‐
loads are ephemeral and can be restarted/scheduled on a different node, it is not
practical in most cases to use a rule-based engine to detect anomalies. What is needed
is the anomaly-detection engine layered over a machine learning engine that reports
deviations from the baseline for any given metric.
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Examples of Machine Learning Jobs
How to create a machine learning model is outside the scope of this book; you should
have the data science team build models for your deployments. Major cloud provid‐
ers like Google Cloud offer a service to build machine learning models for Kuber‐
netes workloads that can help the data science team implement the right ML model.
The following are some examples of ML jobs that are effective to detect anomalous
events in your cluster:

IP sweep detection
The job looks for pods in your cluster that are sending packets to many destina‐
tions. This may indicate an attacker has gained control of a pod and is gathering
reconnaissance on what else they can reach. The job compares pods both with
other pods in their replica set and with other pods in the cluster generally.

Port scan detection
The job looks for pods in your cluster that are sending packets to one destination
on multiple ports. This may indicate an attacker has gained control of a pod and
is gathering reconnaissance on what else they can reach. The job compares pods
both with other pods in their replica set and with other pods in the cluster
generally.

Service bytes anomaly
The job looks for services that receive/send an anomalously high amount of data.
This could indicate a denial of service attack, data exfiltrating, or other attacks.
The job looks for services that are unusual with respect to their replica set, and
replica sets that are unusual with respect to the rest of the cluster.

Process restarts anomaly
The job looks for pods with an excessive number of the process restarts. This
could indicate problems with the processes, such as resource problems or attacks.
The job looks for pods that are unusual with respect to their process restart
behavior.

DNS latency anomaly
The job looks for the clients that have too-high latency of DNS requests. This
could indicate a denial of service attack.

L7 latency anomaly
The job looks for the pods that have too-high latency of L7 requests. All HTTP
requests are measured here. This anomaly could indicate a denial of service
attack or other attacks.

HTTP connection spike anomaly
The job looks for services that get too many HTTP inbound connections. This
anomaly could indicate a denial of service attack.
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This list gives you examples of jobs you can use to detect anomalies. You can use this
resource offered by Google Cloud to build a machine learning job for your Kuber‐
netes cluster. Note the descriptions of each job rely on a set of context-rich logs that
are native to Kubernetes (e.g., comparing pods to other pods in a replica set, using
bytes sent to/from a service).

Now that we have covered how to build an effective alerting system to detect and
report anomalies, let’s look at an example implementation of a security operations
center for your Kubernetes cluster.

Security Operations Center
In this section we will review a reference implementation for a security operations
center (SOC) for a SaaS service based on Kubernetes. An SOC is used to detect and
respond to security events; we will explore how to leverage observability when you
implement an SOC for your Kubernetes-based services. Note this is a sample and
should be used as an example to guide your implementation. When you implement
this in production, you should use these concepts but will need to design and imple‐
ment an SOC suited to your use case. Figure 6-3 shows an SOC implementation for
your service hosted in Google Cloud.

Figure 6-3. Sample implementation of an SOC in Google Cloud
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Figure 6-3 shows a set of Kubernetes clusters running in Google Cloud with a name‐
space representing a tenant. Each tenant cluster can be deployed in Google Kuber‐
netes Engine (GKE) or as an upstream Kubernetes cluster in Google Cloud. There is
an ingress representing how the service is accessed by external entities. The details of
the workload deployment and provisioning are omitted from the figure, as we want
to focus on how you can secure the service. In order to secure the service, you need
logging and monitoring and alerting. This can be achieved by using the Google
Cloud operations suite, which provides capabilities to support logging and monitor‐
ing and alerting. In case you are using GKE, Google Cloud’s blog describes how to
leverage these services to detect and manage alerts for your Kubernetes clusters. As
mentioned before, you need to leverage ML for baselining and to improve the quality
of alerts. Google offers a set of ML services known as AI Hub. Note you still need to
build ML models that are relevant and effective for your SaaS service (see the example
ML jobs earlier in this chapter). You can then use well-known tools like OpsGenie to
route alerts for alert management to SIEM, Slack, PagerDuty, JIRA, and other tools.
These alerts will then trigger the remediation workflows as defined by the security
team. Note we have used Google Cloud as an example, but you can use the previously
mentioned approach to build an SOC for AWS and Azure. These cloud providers also
have a similar set of services available to users.

The previously mentioned approach is very effective in case you are using only one
cloud provider and do not have any workloads running on-premise or in other cloud
provider environments. Also, all the services mentioned earlier will increase the cost
of deployment, and you also need to delegate some of your DevOps/DevSecOps
resources to implement and manage these services. Therefore, we recommend that
you build your SOC using a tool that is agnostic to any cloud provider and can be
used across cloud providers/on-premise environments.

Figure 6-4 shows how you can replace some of the cloud provider–specific compo‐
nents and create an SOC using a Kubernetes-native observability and security plat‐
form. You can build the platform yourself or you can choose to use products that
offer these platforms, such as Datadog, VMware, and Calico Enterprise. When you
choose products, keep in mind the concepts covered in the previous section about
alerting, and ensure that the platform supports integrations to your remediation/
management systems.

Now that we have reviewed how you build an SOC that is effective for your Kuber‐
netes cluster, let’s review another application of observability to secure your Kuber‐
netes cluster.
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Figure 6-4. SOC using a Kubernetes-native platform

User and Entity Behavior Analytics
User and entity behavior analytics (UEBA) is an area where you use ML- and AI-
based techniques to profile the behavior of a user or an entity (e.g., a pod, service, or
deployment) over time and detect anomalous behavior by the user/entity. Microsoft
Azure offers UEBA as a part of its cloud platform. Microsoft Azure’s blog post, Iden‐
tify Advanced Threats with User and Entity Behavior Analytics (UEBA) in Azure
Sentinel”, and an excellent resources that describes how you can use UEBA for secu‐
rity use cases. Note that anomalous behavior by an entity is not always suspicious
behavior; you need to map the behavior to frameworks like the MITRE attack frame‐
work or other indicators of compromise to confirm it is a security issue.

Let’s take a simple example of how you can implement UEBA for an entity in Kuber‐
netes, such as a service.

Figure 6-5 shows a service in your Kubernetes cluster and the various interactions of
the service we will consider when we profile the behavior of the service. As a part of
its normal operation, the service will interact with the Kubernetes API server and the
Kubernetes datastore. In addition, it will interact with the ingress resource to com‐
municate with entities external to the cluster and use cluster networking to interact
with other entities inside the cluster. The service will also use the DNS service in the
cluster for its operation.
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Figure 6-5. Profiling the behavior of a Kubernetes service

In order to build a profile for the service, we would need to consider the following
aspects of the service. These are known as features in machine learning.

• Service composition (number of endpoints such as pods, RBAC, policies)
• Filesystem activity, process information, and system call activity for the service
• Service accounts associated with the service
• Service life cycle operations (e.g., create, delete, scale up/down)
• Traffic to and from the service (network, application)
• DNS activity by pods in the service

The UEBA engine shown in Figure 6-5 will collect logs from various data sources
(network flow logs, application flow logs, Kubernetes audit logs, DNS activity logs,
process information, filesystem, syscall activity logs) and store them in the datastore.
These logs are aggregated and correlated by the analytics engine to generate correla‐
ted logs for the service across various features.
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The machine learning engine uses a complex model to baseline the behavior of the
service across various features. This is an advanced concept in machine learning
where the model considers each feature and interactions between features, among
other things, to build a profile for the service. This is best implemented by your data
science team. This profile is then used to predict anomalies and generate alerts for
deviations. There is a dashboard to allow SOC operators to review analyzed data and
use it for forensics or to hunt threats. Please note a security and observability plat‐
form built using the concepts described in Chapter 5 will help build an effective
UEBA system.

UEBA is an advanced technique and is complex to implement, but it is a very effec‐
tive way to quickly find out which entities in your cluster are potentially vulnerable.
This makes SOC operation very efficient and scalable. Once your deployment scales
up to several clusters (50+), it is not practical to use alerts/manual reviews of dash‐
boards to find real issues. UEBA will alert you to entities that are abnormal and need
immediate attention.

Conclusion
When you think about how you can use observability to help secure your cluster,
please consider the following:

• The alerting system you use must be Kubernetes-native and must support base‐
lining using ML so that you do not have to manually define thresholds for vari‐
ous features.

• It is recommended that you consider a Kubernetes-native platform that works
across your cloud and on-premise deployments to build your SOC.

• UEBA is an advanced concept and is complex to implement, but it can be very
effective in securing a Kubernetes cluster.
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CHAPTER 7

Network Policy

In this chapter, we will describe network policy and discuss its importance in securing
a Kubernetes cluster. We will review various network policy implementations and
tooling to support network policy implementations. We will also cover network pol‐
icy best practices with examples.

What Is Network Policy?
Network policy is the primary tool for securing a Kubernetes network. It allows you
to easily restrict the network traffic in your cluster so only the traffic that you want to
flow is allowed.

To understand the significance of network policy, let’s briefly explore how network
security was typically achieved prior to network policy. Historically in enterprise net‐
works, network security was provided by designing a physical topology of network
devices (switches, routers, firewalls) and their associated configuration. The physical
topology defined the security boundaries of the network. In the first phase of virtuali‐
zation, the same network and network device constructs were virtualized in the
cloud, and the same techniques for creating specific network topologies of (virtual)
network devices were used to provide network security. Adding new applications or
services often required additional network design to update the network topology
and network device configuration to provide the desired security.

In contrast, the Kubernetes network model defines a “flat” network in which, by
default, every pod can communicate directly with all other pods in the cluster. This
approach massively simplifies network design and allows new workloads to be sched‐
uled dynamically anywhere in the cluster with no dependencies on the network
design.
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In this model, rather than network security being defined by network topology
boundaries, it is defined using network policies that are independent of the network
topology. Network policies are further abstracted from the network by using label
selectors as their primary mechanism for defining which workloads can talk to which
workloads, rather than IP addresses or IP address ranges.

Network policy enforcement can be thought of as each pod being protected by its
own dedicated virtual firewall that is automatically programmed and updated in real
time based on the network policy that has been defined. Figure 7-1 shows network
policy enforcement at a pod using its dedicated virtual firewall.

Figure 7-1. Pod secured by a virtual firewall

Why Is Network Policy Important?
In an age where attackers are becoming more and more sophisticated, network secu‐
rity as a line of defense is more important than ever.

While you can (and should) use firewalls to restrict traffic at the perimeters of your
network (commonly referred to as north-south traffic), their ability to police Kuber‐
netes traffic is often limited to a granularity of the cluster as a whole, rather than to
specific groups of pods, due to the dynamic nature of pod scheduling and pod IP
addresses. In addition, the goal of most attackers once they gain a small foothold
inside the perimeter is to move laterally (east-west) to gain access to higher-value tar‐
gets, which perimeter-based firewalls can’t police against. With application architec‐
tures evolving from monoliths to microservices, the amount of east-west traffic, and
therefore attack surface for lateral movement, is continuing to grow.

Network policy, on the other hand, is designed for the dynamic nature of Kubernetes
by following the standard Kubernetes paradigm of using label selectors to define
groups of pods, rather than IP addresses. And because network policy is enforced
within the cluster itself, it can secure both north-south and east-west traffic.

Network policy represents an important evolution of network security, not just
because it handles the dynamic nature of modern microservices, but because it
empowers dev and DevOps engineers to easily define network security themselves,
rather than needing to learn low-level networking details. Network policy makes it
easy to define intent, such as only this microservice gets to connect to the database,
write that intent as code (typically in .yaml files), and integrate authoring of network
policies into Git workflows and CI/CD processes.
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Network Policy Implementations
Kubernetes defines a standard network policy API, so there’s a base set of features you
can expect on any cluster. But Kubernetes itself doesn’t do anything with the network
policy other than store it. Enforcement of network policies is delegated to network
plug-ins, allowing for a range of implementations. Most network plug-ins support the
mainline elements of Kubernetes network policies, though many do not implement
every feature of the specification. It’s worth noting that most implementations are
coupled with the network plug-in’s specific pod networking implementation. How‐
ever, some network policy implementations can enforce network policy on top of a
variety of different pod networking plug-ins. Figure 7-2 shows network policies
stored in the Kubernetes datastore being used by network plug-ins for enforcement.

Figure 7-2. Network policy that is stored in Kubernetes enforced by network plug-ins

There are a number of networking and network policy implementations to choose
from, as shown in Figure 7-3.

Figure 7-3. Adoption of top networking technology implementations

Network Policy Implementations | 101



No matter what network policy implementation you choose, we recommend using
one for the following reasons:

• It implements the complete Kubernetes network policy specification.
• In addition to supporting the Kubernetes network policy specification, its own

policy model provides additional capabilities, which can be used alongside
Kubernetes network policies to support additional enterprise security use cases.

• A few network plug-ins, like Weave Net, Kube-router, and Calico, can enforce
network policy on top of their own rich set of networking capabilities, or on top
of several other networking options, including the network plug-ins used by
Amazon’s Elastic Kubernetes Service (EKS), Azure Kubernetes Service (AKS),
and Google Kubernetes Engine (GKE). This makes them a particularly strong
choice as part of a multicloud strategy, because it gives you the flexibility to select
the best networking for your environment from a broad range of options with
the same rich set of network policy features available across all environments.

• The network policy can be applied to host endpoints/interfaces, allowing the
same flexible policy model to be used to secure Kubernetes nodes or noncluster
hosts/VMs.

• It supports network policy that is enforced both at the network/infrastructure
layer and at the layers above, including supporting L5–L7 match criteria with its
policy rules such as HTTP methods and paths. The multiple enforcement points
help protect your infrastructure from compromised workloads and protect your
workloads from compromised infrastructure. It also avoids the need for dual
provisioning of security at the application and infrastructure layers, or having to
learn different policy models for each layer.

• It needs to be production-grade, which means it must perform very well in clus‐
ters of any size, from single-node clusters to several-thousand-node clusters.

• It provides the ability for enterprises to add new capabilities and serves as a
building block for an enterprise-grade Kubernetes network security solution.

Network Policy Best Practices
In this section we’ll explore how to implement network policy with examples and
cover best practices for implementation. The following examples use the Calico net‐
work policy schema, which extends the Kubernetes network policy schema. We’re
using these examples due to our familiarity with Calico network policy, but these best
practices can be implemented with other available network policy models as well.
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Ingress and Egress
When people think about network security, the first thought is often of how to pro‐
tect your workloads from north-south external attackers. To help defend against this,
you can use network policy to restrict ingress traffic to any pods that are reachable
from outside the cluster.

However, when an attacker does manage to find a vulnerability, they often use the
compromised workload as the place from which to move laterally, probing the rest of
your network to exploit additional vulnerabilities that give them access to more val‐
uable resources or allow them to elevate privileges to mount more powerful attacks or
exfiltrate sensitive data.

Even if you have network policies to restrict ingress traffic on all pods in the cluster,
the lateral movement may target assets outside of the cluster, which are less well pro‐
tected. Consequently, the best practice is to always define both ingress and egress net‐
work policy rules for every pod in the cluster.

While this doesn’t guarantee an attacker cannot find additional vulnerabilities, it does
significantly reduce the available attack surface, making the attacker’s job much
harder. In addition, if combined with suitable alerting of policy violations, the time to
identify that a workload has been compromised can be massively reduced. To put this
into perspective, in the 2020 IBM Cost of a Data Breach Report, IBM reported that on
average it took enterprises 207 days to identify a breach, and a further 73 days to con‐
tain it! With correctly authored network policies and alerting of violations, the breach
can be prevented or reduced potentially to minutes or seconds and even opens the
possibility of automated responses to quarantine the suspect workload if desired.

Not Just Mission-Critical Workloads
Best practice already recommends ensuring every pod has a network policy that
restricts its ingress and egress traffic. What this means is that when you are thinking
about how to protect your mission-critical workloads, you really need to be protect‐
ing all workloads. If you don’t, then some seemingly unimportant, innocuous work‐
load could end up being used as the base for attacks across the rest of your network,
ultimately leading to the downfall of your most critical workloads.

Policy and Label Schemas
One of the strengths of Kubernetes labels and network policies is the flexibility in
how you can use them. However, as a result there are often multiple different ways of
labeling and writing policies that can achieve the same particular goal. So another
best practice is to consider standardizing the way you label your pods and write your
network policies using a consistent schema or design pattern. This can make
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authoring and understanding the intent of each network policy much more straight‐
forward, especially if your clusters are hosting a large number of microservices.

For example, you might say every pod will have an “app” label that identifies which
microservice it is, and every pod will have a single network policy applied to it using
that app label, with the policy defining ingress and egress rules for the microservices
it is expected to interact with, again using the app label:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
  name: back-end-policy
  namespace: production
spec:
  selector: app == 'back-end'
  ingress:
  - action: Allow
    protocol: TCP
    source:
      selector: app == 'front-end'
    destination:
      ports:
        - 80
  egress:
  - action: Allow
    protocol: TCP
    destination:
      selector: app == 'database'
      ports:
        - 80

Or you might decide to use permission-style labels in the policy rules so that rather
than listing the microservices that are allowed to access each service in its ingress
rules, any microservice that has the permission label is allowed:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
  name: database-policy
  namespace: production
spec:
  selector: app == 'database'
  ingress:
  - action: Allow
    protocol: TCP
    source:
      selector: database-client == 'true'
    destination:
      ports:
        - 80
  egress:
  - action: Deny
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This could make it easier for individual microservice teams to author their own net‐
work policies without needing to know the full list of other microservices that must
consume the service.

There are plenty of other ways you could go about it, and there is no right or wrong
here. But taking the time to define how to approach labeling and defining network
policies up front can make life significantly easier in the long run.

If you are not sure which approach will work best for you, then a simple “app”
approach is a good place to start. This can always be expanded later to include the
ideas of permission-style labels for microservices that have a lot of clients if maintain‐
ing the policy rules becomes time-consuming.

Default Deny and Default App Policy
The Kubernetes network policy specification allows all ingress pod traffic, unless
there is one or more network policy with an ingress rule that applies to the pod, and
then only the ingress traffic that is explicitly allowed by the policies is allowed. And
likewise for egress pod traffic. As a result, if you forget to write a network policy for a
new microservice, it will be left unsecured. And if you forget to write both ingress
and egress rules for the microservice, then it will be left partially unsecured.

Given this, a good practice is to put in place a “default deny policy” that prevents any
traffic that is not explicitly allowed by another network policy. The way this is nor‐
mally done is to have a policy that specifies it applies to all pods, with both ingress
and egress rules, but does not explicitly allow any traffic itself. As a result, if no other
network policy applies that explicitly allows the traffic, then the traffic will be denied:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny
  Namespace: my-namespace
spec:
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress

Since Kubernetes network policy is namespaced, the network policy mentioned pre‐
viously needs repeating for each namespace and ideally needs to be built into the
standard operating procedure for provisioning new namespaces in the cluster. Alter‐
natively, some network policy implementations go beyond Kubernetes network policy
and provide the ability to specify cluster-wide network policies (that are not limited
to a single namespace). The following example shows how to create a policy that
switches the whole cluster to default deny behavior, including any namespaces that
are created in the future:
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apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
  name: default-deny
spec:
  selector: all()
  types:
  - Ingress
  - Egress

However, it’s worth noting that this policy applies to all pods, not just application
pods, including control plane pods for Kubernetes. If you do not have the right net‐
work policies in place or failsafe ports configured before you create such a policy, you
can break your cluster in pretty bad ways.

A much less high-stakes best practice is to define a network policy that applies only to
pods, excluding control plane pods. As well as triggering default deny behavior, this
policy can include any rules that you want to apply to all application pods. For exam‐
ple, you could include a rule that allows all application pods to access kube-DNS.
This helps simplify any per-microservice policies that need writing so they can focus
solely on the desired per-microservice specific behaviors:

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
  name: default-app-policy
spec:
  namespaceSelector: has(projectcalico.org/name) &&
projectcalico.org/name not in {"kube-system", "calico-system"}
  types:
  - Ingress
  - Egress
  egress:
    - action: Allow
      protocol: UDP
      destination:
        selector: k8s-app == "kube-dns"
        ports:
        - 53

As this policy deliberately excludes control plane components, to secure the control
plane you can write specific policies for each control plane component. It is best to do
any such policy creation at cluster creation time before the cluster is hosting work‐
loads, since getting these policies wrong can leave your cluster in a broken state that
might result in a significant production outage. In addition, it is highly recommended
you always make sure you have in place the correct failsafe ports for the network
plug-in you are using before you start trying to create any policies for the control
plane.
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Policy Tooling
In this section we explore tools at your disposal to effectively add network policies to
your Kubernetes cluster.

Development Processes and Microservices Benefits
One of the advantages of network policy compared with traditional network security
controls is that defining network policy does not require networking or firewall
expertise. Network policies use the same concepts and paradigms as other Kubernetes
resources. In theory, any team that is familiar with deploying microservices in Kuber‐
netes can easily master network policies. As a result, network policy represents an
opportunity to adopt a shift-left philosophy for network security, where network
security is defined earlier in the development cycle, rather than being defined late in
the process. This is a great opportunity for the security and development teams to
collaborate to secure your Kubernetes cluster.

At the same time, many organizations are moving from monolith application archi‐
tectures to microservice architectures, often with one of the goals being to increase
development and organizational agility. In such an approach, each microservice is
typically maintained by a single development team, with that team having significant
expertise on the microservice, but not necessarily the whole of the application that
the microservice is a part of. The move to microservices complements the shift-left
opportunity of network policy. The team responsible for the development of a micro‐
service normally has a good understanding of which other microservices it consumes
and depends on. They may also have a good understanding of which microservices
consume their microservice.

When coupled with a well-defined, standardized approach to policy and label sche‐
mas, this puts them in a strong position to implement network policies for their
microservice as part of the development of the microservice. In this model, network
policy is treated as code built into and tested during the development process, just
like any other critical part of a microservice’s code.

An equally valid approach is to have development teams focus purely on the internals
of the microservices they are responsible for and leave responsibility for operating the
microservices with DevOps teams. However, the same ideas still apply. Such a
DevOps team typically needs a good understanding of the dependencies between the
microservices they are responsible for operating in order to manage the operation of
the application and life cycle of the microservices. Network security can be defined as
code by the DevOps team and tested just like they would any other operational code
or scripts they develop before using in production.
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The reality today, of course, is that many organizations are some way off from achiev‐
ing this nirvana of microservices, agility, and shift-left security. Network security may
come much later in the organization’s processes, or even as an afterthought on a sys‐
tem already in production. In such scenarios, defining network policies may be sig‐
nificantly more challenging, and getting network policies wrong could have
significant production impacts. The good news is that there are a range of tools to
help with network policy life cycle management to make this easier, including policy
recommendations, policy impact previews, and policy staging/audit modes.

Policy Recommendations
Policy recommendation tools are a great help in scenarios where the team responsible
for network security does not have a good, confident understanding of all the net‐
work dependencies between the applications or microservices they need to secure.
These tools also help you get started with authoring network policies the right way,
and make the creation of network policy significantly easier than writing it by hand.

The way recommendation tools usually work is to analyze the network traffic to and
from each microservices over a period of time. This means to get recommendations,
the microservice needs to be running in production, or a staging or test environment
that accurately reflects the production interactions between the microservice and the
rest of the application.

There are many policy recommendation tools available to choose from, often with
varying levels of sophistication, degrees of Kubernetes awareness, and policy schema
approaches. It is recommended that you use a Kubernetes-aware policy recommenda‐
tion engine built into your network policy solution.

Policy Impact Previews
Policy impact preview tools provide a way of sanity-checking a network policy before
it is applied to the cluster. Like policy recommendations, this is usually done by ana‐
lyzing the cluster’s historical network traffic over a period of time and calculating
which network flows would have been impacted by the new policy. An example is to
identify any flows that were previously allowed that would now be denied, and any
flows that were previously denied that would now be allowed.

Policy impact previews are a great help in any scenarios where you are not relying
completely on policy recommendations. For example, this could be if you are defin‐
ing network policies by hand or modifying a policy recommendation to align with a
particular standardized approach to policy and label schemas. Even if the team defin‐
ing the network policy for a microservice has high confidence in their understanding
of the microservice’s network dependencies, policy impact previews can be invaluable
to help catch any accidental mistakes, such as hard-to-spot typos, that might signifi‐
cantly impact legitimate network traffic.
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Policy impact preview tools are less common than policy recommendations. It is very
useful to use a tool that provides a visual representation of the impact based on analy‐
sis of the flow log data it collects over any desired time period. This will help in
reducing issues due to incorrectly authored policies or outages due to operator error.

Policy Staging and Audit Modes
Even less common than policy impact previews, but potentially even more valuable,
is support for policy staging, sometimes called policy audit mode.

Policy staging allows network policy changes to be applied to the cluster without
impacting network traffic. The staged policy then records the full details of all the
flows it would have interacted with, without actually impacting any of the flows. This
is incredibly useful in scenarios where a policy impact preview of an individual policy
against historical data may be overly simplistic given the complexity of the applica‐
tions running in the cluster. For example, this could be if multiple interdependent
policies need to be updated in unison, or if there’s a desire to monitor the policy
impact with live rather than historical network flows.

In order to make the task of authoring effective network policies less daunting, you
need to use policy recommendations and then stage policies to understand the
impact of the policy before you promote it for enforcement. This cycle of policy rec‐
ommendation (based on historical network flows), followed by staging (applying pol‐
icies to current and future network flows), followed by making desired adjustments
and then finally enforcing the policy is the best way to ensure the policy change
would do exactly what you want.

Conclusion
In this chapter we discussed the importance of network policy and various network
policy implementations and tooling to help you with implementation. The following
are some key aspects of network policy:

• Network policy should be used to secure a Kubernetes network, and it comple‐
ments the firewalls that are implemented at the perimeter of your cluster.

• It is recommended that you choose a Kubernetes-aware implementation that
extends the basic Kubernetes network policy.

• There are a lot of network policy implementations that offer tooling to help with
the implementation of network policy in a Kubernetes cluster.
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CHAPTER 8

Managing Trust Across Teams

In the previous chapter we explored how network policy represents an opportunity to
adopt a shift-left philosophy for network security, where security is defined by teams
earlier in the development cycle rather than being defined and maintained by a secu‐
rity team late in the process. This approach can bring a lot of benefits, but to be via‐
ble, there needs to be a corresponding degree of trust and split of responsibilities
between the teams involved.

In most organizations, it’s not practical to shift 100% of the responsibility for security
all the way to the left, with all other teams (platform, network, and security) washing
their hands of any responsibility for security. So for example, while the responsibility
for lower-level details of individual microservice security may be shifted left, the
security team may still be responsible for ensuring that your Kubernetes deployment
has a security posture that meets internal and external compliance requirements.

Some enterprises handle this by defining internal processes, for example, to ensure
the security team reviews all security changes before they are applied. The downside
of this approach is it can reduce agility, which is at odds with one of the motivations
for shifting left, that being to increase agility.

Fortunately, there are various types of guardrails that can be put in place across a
Kubernetes environment that reduce the need for these kinds of traditional process
controls. In this chapter we will explore some of these capabilities and how they can
be used to control the degree of trust being delegated from one team to another in the
context of a shift-left approach to security.
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Role-Based Access Control
Kubernetes role-based access control (RBAC) is the primary tool for defining the
scope of what individual users or groups of users are permitted to do in a Kubernetes
cluster. RBAC permissions are defined using roles and granted to users or groups of
users via role bindings. Each role includes a list of resources (specified by resource
type, cluster-wide, within a namespace, or even a specific resource instance) and the
permissions for each of the resources (e.g., get, list, create, update, delete, etc.).

Many Kubernetes resources are namespaced, including deployments, daemonsets,
pods, and Kubernetes network policies. This makes the namespace an ideal trust
boundary between teams. There are no set rules for how to use namespaces, but one
common practice is to use a namespace per microservice. RBAC can then be used to
grant permission to manage the resources in the namespace to the team responsible
for operating the corresponding microservice.

If security has been shifted left, this would normally include permissions to manage
the network policies that apply to the microservice, but not to manage any network
policies that apply to microservices they are not responsible for.

If default deny–style best practices are being followed for both ingress and egress traf‐
fic, then the team cannot forget to write network policies, because the microservice
will not work without them. In addition, since other teams will have defined equiva‐
lent network policies covering both ingress and egress traffic for the microservices
they are responsible for, traffic is allowed between two microservices only if both
teams have specified network policy that says the traffic is allowed. This further con‐
trols the degree of trust being delegated to each team.

Of course, depending on the degree to which security has been shifted left, the
responsibility for defining network policies may fall to a different team than the team
responsible for operating the microservice. Again, Kubernetes RBAC can be used to
easily reflect this split of responsibilities.

Limitations with Kubernetes Network Policies
There are a couple of limitations it is worth being aware of when using RBAC with
Kubernetes network policies in a shift-left environment:

• Default deny–style policies need to be created per namespace at the time the
namespace is provisioned. The team responsible for defining network policies for
the microservice would also have the ability to modify or delete this default pol‐
icy if they wanted to.

• Network policies are IP-based, and you cannot use fully qualified domain names
(FQDNs). This can be a limitation especially when defining policies to resources
external to the cluster.
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• Kubernetes RBAC controls access to resources but does not constrain the con‐
tents of resources. Of particular relevance in the context of network policies are
pod labels, since these are used as the primary mechanism for identifying other
microservices in network policy rules. So for example, if one team has written a
network policy for their microservice with a rule allowing traffic to it from pods
with a particular label, then in theory any team with permission to manage pods
could add that label to their pods and get access to the microservice. This expo‐
sure can be reduced by always using namespace sectors within policy rules and
being selective as to which teams have permissions to change namespace labels.

If standardized policy and label schemas have been defined and the teams are trusted
to follow them, then these limitations are more of a theoretical rather than practical
issue. However, for some organizations, they may represent genuine issues for their
security needs. These organizations may therefore want to leverage additional capa‐
bilities beyond Kubernetes RBAC and Kubernetes network policies. In particular,
they might consider:

• Richer network policy implementations that support additional network policy
types, match criteria, and non-namespaced network policies, which open up
more options for how to split responsibilities and RBAC across teams

• Admission controllers to enforce controls on a per-field level within resources,
for example to ensure a standardized network policy and label schemas are fol‐
lowed, including limiting teams to using particular labels

We will now review network policy implementations that extend the Kubernetes net‐
work policy and how you can use the same to manage trust.

Richer Network Policy Implementations
Some network policy implementations support both Kubernetes network policies and
their own custom network policy resources that can be used alongside or instead of
Kubernetes network policies. Depending on the implementation, these may open up
additional options for how to split responsibilities and use RBAC across teams. There
are vendors that offer richer network policy implementations that support the Kuber‐
netes network policy and add more features (e.g., Weave Net, Kube-router, Antrea,
Calico). We encourage you to review these and choose the best one that meets your
needs. In this section we will look at the concrete example using Calico, as it is the
most widely deployed container network plug-in.

Calico supports the Kubernetes network policy feature set, plus its own Calico net‐
work policy resources, which can be used alongside Kubernetes network policies.
There are two types of Calico network policies, both under the projectcalico.org/v3
API group:
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NetworkPolicy
These policies are namespaced (just like Kubernetes network policies).

GlobalNetworkPolicy
These policies apply across the whole of the cluster independent of namespace.

Both types of Calico network policy support a common set of capabilities beyond
Kubernetes network policies, including:

• A richer set of match criteria than Kubernetes network policies, for example with
the ability to match on Kubernetes service accounts.

• Explicit allow, deny, or log actions for policy rules, rather than Kubernetes net‐
work policy actions, which are implicitly always allow.

• Precedence ordering to define the evaluation order of the network policies if
multiple policies apply to the same workload. (Note that if you are just using
Kubernetes network policies, or Calico policies only with allow actions in them,
then evaluation order doesn’t make any difference to the outcome of the policies.
However, as soon as there are any policy rules with deny actions, ordering
becomes important.)

We want to mention that there are other network policy implementations that extend
the Kubernetes network policy, like Antrea, which offers ClusterNetworkPolicy (simi‐
lar to GlobalNetworkPolicy).

The following sample shows how you can implement network policies using Kuber‐
netes RBAC. In the example you can control network access based on the labels
assigned to a service account. In Kubernetes, pods have service accounts associated
with them, and therefore pods can be identified by service accounts. You should use
RBAC to control which users can assign labels to service accounts. The network pol‐
icy in the example uses the labels assigned to service accounts to control network
access. Pods with an intern service account can communicate only with pods with
service accounts labeled role == intern:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
  name: restrict-intern-access
  namespace: prod-engineering
spec:
  serviceAccountSelector: 'role == "intern"'
  ingress:
    - action: Allow
      source:
        serviceAccounts:
          selector: 'role == "intern"'
  egress:
    - action: Allow
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      destination:
        serviceAccounts:
          selector: 'role == "intern"'

This way you can extend the concept of RBAC, which controls service account access
to a Kubernetes resource for network access. It is a two-step process. RBAC is used to
control label assignment to service accounts, and a label-based service account selec‐
tor is used to control network access. These additional capabilities can be leveraged
alongside Kubernetes network policies to more cleanly split responsibilities between
higher-level cluster ops or security teams and individual microservice teams.

This could look like, for example:

• Giving the cluster ops or security team RBAC permissions to manage Calico net‐
work policies at the cluster-wide scope, so they can define basic higher-level rules
that set the overall security posture of the cluster. For example, a default deny–
style app policy (as discussed in Chapter 7) and policies can restrict cluster egress
to specific pods.

• Giving each microservice team RBAC permissions to define Kubernetes network
policies in the microservice’s namespaces, so they can define their own fine-
grained constraints for the microservices they are responsible for.

On top of this basic split in network policy RBAC permissions, the cluster ops or
security team can delegate different levels of trust to each microservice team by defin‐
ing rules using namespaces or service accounts labels, rather than simplifying match‐
ing on pod labels. For example, they could define policies to restrict cluster egress to
specific pods using service account labels and give the individual microservice teams
permissions to use, but not edit, any service accounts assigned to their namespace.
Through this mechanism some microservice teams may be granted permission to
selectively allow cluster egress from some of their pods, while not offering other
teams the same permissions.

Figure 8-1 provides a simplified illustration of how these ideas can be combined.

While these capabilities are reasonably powerful, in some organizations the required
split of responsibilities across teams may be more complex, particularly where there
are more layers of teams. For example, a compliance team, security team, cluster ops
team, and individual microservice teams all may have different levels of responsibil‐
ity. One way to more easily meet these requirements is to use a network policy imple‐
mentation that supports the notion of hierarchical network policies.
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Figure 8-1. An example of implementing trust boundaries with network policy

There are some commercial implementations that support hierarchical network pol‐
icy using policy tiers. A similar concept (hierarchical namespaces and policies) is also
being discussed in the Kubernetes community. RBAC for each tier can be defined to
restrict who can interact with the tier. In this model, network policies are layered in
tiers, which are evaluated in a defined order, with as many tiers as required to match
the organizational split of responsibilities. RBAC for each tier can be defined to
restrict who can interact with the tier. The network policies in each tier can make
allow or deny decisions (that terminate evaluation of any following policies) or pass
the decision on to the next tier in the hierarchy to be evaluated against the policies in
that tier.
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Figure 8-2 provides a simplified illustration of how these capabilities can be used to
split responsibilities across three distinct layers of responsibility within an
organization.

Figure 8-2. Implementing hierarchical network policies using tiers

Admission Controllers
We have already discussed the value of defining and following standardized network
policy and label schemas. The approaches for splitting responsibilities between teams
discussed earlier are oriented around resource- and namespace-level RBAC, with
teams having freedom to whatever they want within the resource and namespace
scopes they are allowed to manage. As such, they do not provide any guarantees that
any such schemas are being followed by all teams.

Kubernetes itself does not have a built-in ability to enforce restrictions at this granu‐
lar level, but it does support an Admission Controller API, which allows third-party
admission controllers to be plugged into the Kubernetes API machinery to perform
semantic validation of objects during create, update, and delete operations. You can
additionally use admission controllers, also known as mutating admission controllers,
for modifying objects that are admitted.
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For example, in the context of implementing network policy, admission controllers
can help with the following:

• Validate that network policies have both ingress and egress rules to comply with
the best practices the organization is trying to follow.

• Ensure every pod has a specific set of labels to comply with the labeling standards
the organization has defined.

• Restrict different groups of users to specific label values.

But admission controllers have security use cases beyond network policy too. For
example, Kubernetes services include support for specifying an arbitrary IP address
to be associated with the service using the service’s ExternalIP field. Without some
level of policing, this is a very powerful feature that could be used maliciously to
intercept pod traffic to an IP address and redirect it to the Kubernetes service by any‐
one with RBAC permissions to create and manage Kubernetes services. Policing this
with an admission controller might be essential depending on the level of trust within
the teams involved.

There are a few options for admission controller implementations, depending on the
skill sets and specific needs of the organization:

• Using a preexisting third-party admission controller that specializes in the spe‐
cific controls the organization needs, if one exists

• Writing a custom admission controller optimized for the organization’s needs
• Using a general-purpose admission controller with a rich policy model that can

map to a broad range of use cases

For many scenarios, choosing a general-purpose admission controller gives a good
balance of flexibility and coding complexity. For example, you might consider
Kyverno, which has a policy engine specifically designed for Kubernetes, or an admis‐
sion controller built around Open Policy Agent, where the policy model has flexible
matching and language capabilities defined using Rego.

While admission controllers are very powerful, it is generally recommended to
implement them only if you genuinely need them. For some organizations, using
admission controllers in this way is overkill, given the levels of responsibility and
trust across teams. For other organizations, they can be essential to meet internal
compliance requirements, and the case for using them will be very clear.
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Conclusion
Kuberentes security needs to be implemented by various teams and needs collabora‐
tion between teams. This chapter covered the following key concepts:

• You should use RBAC and network policy to define boundaries that will help you
manage activities across teams.

• You can extend the concept of RBAC to control network access by leveraging ser‐
vice accounts in network policy to help you manage trust.

• Admission controllers help to control access and implement trust boundaries
across various teams.

• Collaboration between the development, platform, and the security teams is
important to implement security.
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CHAPTER 9

Exposing Services to External Clients

In earlier chapters we explored how network policy is one of the primary tools for
securing Kubernetes. This is true for both pod-to-pod traffic within the cluster (east-
west traffic) and for traffic between pods and external entities outside of the cluster
(north-south traffic). For all of these traffic types, the best practice is the same: Use
network policy to limit which network connections are allowed to the narrowest
scope needed, so the only connections that are allowed are the ones you expect and
need for your specific applications or microservices to work.

In the case of pods that need to be accessed by external clients outside of the cluster,
this means restricting connections:

• To the specific port(s) that the corresponding microservice is expecting incoming
connections to

• From the specific clients that need to connect to the microservice

It’s not uncommon for a particular microservice to be consumed just within the
enterprise (whether on-prem or in a public cloud) by a limited number of clients. In
this case the Kubernetes network policy rules ideally should limit incoming connec‐
tions to just the IP addresses, or IP address range, associated with the clients. Even if
a microservice is being exposed to the public internet (for example, exposing the
frontend microservices for a publicly accessible SaaS or website), there are still cases
where access may need to be restricted to some extent. For example, it may be a
requirement to block access from certain geographies for compliance reasons, or it
may be desirable to block access from known bad actors or threat feeds.

Unfortunately, how you go about implementing this best practice needs to include the
consideration of which network plug-ins and Kubernetes primitives are used to
expose the microservice outside the cluster. In particular, in some cases the original
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client source IP address is preserved all the way to the pod, which allows Kubernetes
network policies to easily limit access to specific clients. In other cases the client
source IP gets obscured by network address translation (NAT) associated with net‐
work load balancing, or by connection termination associated with application layer
load balancing.

In this chapter we will explore different client source IP behaviors available across the
three main options for exposing an application or microservice outside of the cluster:
direct pod connections, Kubernetes services, and Kubernetes Ingress.

Understanding Direct Pod Connections
It’s relatively uncommon for pods to be directly accessed by clients outside of the
cluster rather than being accessed via a Kubernetes service or Kubernetes Ingress.
However, there are scenarios where this may be desired or required. For example,
some types of distributed data stores may require multiple pods, each with specific IP
addresses that can be configured for data distribution or clients to peer with.

Supporting direct connections to pod IP addresses from outside of the cluster 
requires a pod network that makes pod IP addresses routable beyond the boundary of
the cluster. This typically means using one of the following:

• A cloud provider network plug-in in public cloud clusters (e.g., the Amazon VPC
CNI plug-in, as used by default in EKS)

• A network plug-in that can use BGP to integrate with an on-prem enterprise net‐
work (e.g., Kube-router, Calico CNI plug-in).

In addition to the underlying networking supporting the connectivity, the clients
need a way of finding out the pod IP addresses. This may be done via DNS, explicit
configuration of the client, or some other third-party service discovery mechanism.

From a security point of view, connections from clients directly to pods are straight‐
forward: They have the original client source IP address in place all the way to the
pod, which means network policy can easily be used to restrict access to clients with
particular IP addresses or from particular IP address ranges.

Note though that in any cluster where pod IP addresses are routable beyond the
boundary of the cluster, it becomes even more important to ensure network policy
best practices are followed. Without network policy in place, pods that should only be
receiving east-west connections could be accessed from outside of the cluster without
the need for configuring a corresponding externally accessible Kubernetes service
type or Kubernetes Ingress.
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Understanding Kubernetes Services
Kubernetes services provide a convenient mechanism for accessing pods from out‐
side of the cluster using services of type NodePort or LoadBalancer or by explicitly
configuring an External IP for the service. By default, Kubernetes services are imple‐
mented by kube-proxy. Kube-proxy runs on every node in the cluster and is responsi‐
ble for intercepting connections to Kubernetes services and load-balancing them
across the pods backing the corresponding service. This connection handling has a
well-defined behavior for when source IP addresses are preserved and when they are
not, which we will look at now for each service type.

Cluster IP Services
Before we dig into exposing pods to external clients using Kubernetes services, it is
worth understanding how Kubernetes services behave for connections originating
from inside the cluster. The primary mechanism for service discovery and load bal‐
ancing of these connections within the cluster (i.e., pod-to-pod connectivity) makes
use of Kubernetes services of type Cluster IP. For Cluster IP services, kube-proxy is
able to use destination network address translation (DNAT) to map connections to
the service’s Cluster IP to the pods backing the service. This mapping is reversed for
any return packets on the connection. The mapping is done without changing the
source IP address, as illustrated in Figure 9-1.

Figure 9-1. Network path for a Kubernetes service advertising Cluster IP

Importantly, the destination pod sees the connection has originated from the IP
address of the client pod. This means that any network policy applied to the destina‐
tion pod behaves as expected and is not impacted by the fact that the connection was
load balanced via the service’s Cluster IP. In addition, any network policy egress rules
that apply to the client pod are evaluated after the mapping from Cluster IP to desti‐
nation pod has happened. This means that network policy applied to the client pod
also behaves as expected, independent of the fact that the connection was load bal‐
anced via the service’s cluster IP. (As a reminder, network policy rules match on pod
labels, not on service labels.)
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Node Port Services
The most basic way to access a service from outside the cluster is to use a Kubernetes
service of type NodePort. A node port is a port reserved on each node in the cluster
through which the service can be accessed. In a typical Kubernetes deployment, kube-
proxy is responsible for intercepting connections to node ports and load-balancing
them across the pods backing each service.

As part of this process, NAT is used to map the destination IP address and port from
the node IP and node port to the chosen backing pod and service port. However,
unlike connections to cluster IPs, where the NAT maps only the destination IP
address, in the case of node ports the source IP address is also mapped from the client
IP to the node IP.

If the source IP address was not mapped in this way, then any response packets on the
connection would flow directly back to the external client, bypassing the ability for
kube-proxy on the original ingress node to reverse the mapping of the destination IP
address. (It’s the node that performed the NAT that has the connection tracking state
needed to reverse the NAT.) As a result, the external client would drop the packets
because it would not recognize them as being part of the connection it made to the
node port on the original ingress node.

The process is illustrated in Figure 9-2.

Figure 9-2. Network path for a Kubernetes service using node ports

Since the NAT changes the source IP address, any network policy that applies to the
destination pod cannot match on the original client IP address. Typically this
means that any such policy is limited to restricting the destination protocol and port
and cannot restrict based on the external client’s IP address. This in turn means the
best practice of limiting access to the specific clients that need to connect to the
microservice cannot easily be implemented with Kubernetes network policy in this
configuration.
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Fortunately, there are a number of solutions that can be used to circumvent the limi‐
tations of this default behavior of node ports:

• Configuring the service with externalTrafficPolicy:local
• Using a network plug-in that supports node-port-aware network policy

extensions
• Using an alternative implementation for service load balancing in place of kube-

proxy that preserves client source IP addresses

We will cover each of these later in this chapter. But before that, to complete our pic‐
ture of how the default behavior of mainline Kubernetes services work, let’s look at
services of type LoadBalancer.

Load Balancer Services
Services of type LoadBalancer build on the behavior of node ports by integrating with
external network load balancers. The exact type of network load balancer depends on
which public cloud provider, or if on-prem, which specific hardware load balancer
integration, is integrated with your cluster.

The service can be accessed from outside of the cluster via a specific IP address on the
network load balancer, which by default will load-balance evenly across the nodes to
the service’s node port.

Most network load balancers are located at a point in the network where return traffic
on a connection will always be routed via the network load balancer, and therefore
they can implement their load balancing using only DNAT, leaving the client source
IP address unaltered by the network load balancer, as illustrated in Figure 9-3.

Figure 9-3. Network path for a Kubernetes service of type LoadBalancer
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However, because the network load balancer is load-balancing to the service’s node
port, and kube-proxy’s default node port behavior changes the source IP address as
part of its load balancing implementation, the destination pod still cannot match on
the original client source IP address. Just like with vanilla node port services, this in
turn means the best practice of limiting access to the specific clients that need to con‐
nect to the microservice cannot easily be implemented with Kubernetes network pol‐
icy in this configuration.

Fortunately, the same solutions that can be used to circumvent the limitations of the
default behavior of services of type NodePort can be used in conjunction with serv‐
ices of type LoadBalancer:

• Configuring the service with externalTrafficPolicy:local
• Using a network plug-in that supports node-port-aware network policy

extensions
• Using an alternative implementation for service load balancing in place of kube-

proxy that preserves client source IP addresses

Let’s look at each of those now.

externalTrafficPolicy:local
By default, the node port associated with a service is available on every node in the
cluster, and services of type LoadBalancer load-balance to the service’s node port
evenly across all of the nodes, independent of which nodes may actually be hosting
backing pods for the service. This behavior can be changed by configuring the service
with externalTrafficPolicy:local, which specifies that connections should only
be load balanced to pods backing the service on the local node.

When combined with services of type LoadBalancer, connections to the service are
only directed to nodes that host at least one pod backing the service. This reduces the
potential extra network hop between nodes associated with kube-proxy’s normal
node port handling. Perhaps more importantly, since each node’s kube-proxy is only
load-balancing to pods on the same node, kube-proxy does not need to perform
source network address translation as part of the load balancing, meaning that the cli‐
ent source IP address is preserved all the way to the pod. (As a reminder, kube-
proxy’s default handling of node ports on the ingress node normally needs to NAT
the source IP address so that return traffic flows back via the original ingress node,
since that is the node that has the required traffic state to reverse the NAT.)

Network flow is illustrated in Figure 9-4.
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Figure 9-4. Network path for a Kubernetes service leveraging the optimization to route
to the node backing the pod

As the original client source IP address is preserved all the way to the backing pod,
network policy applied to the backing pod is now able to restrict access to the service
to only the specific client IP addresses or address ranges that need to be able to access
the service.

Note that not all load balancers support this mode of operation. So it is important to
check whether this is supported by the specific public cloud provider, or if on-prem,
the specific hardware load balancer integration, that is integrated with your cluster.
The good news is that most of the large public providers do support this mode. Some
load balancers can even go a step further, bypassing kube-proxy and load-balancing
directly to the backing pods without using the node port.

Network Policy Extensions
Some Kubernetes network plug-ins provide extensions to the standard Kubernetes
network policy capabilities, which can be used to help secure access to services from
outside of the cluster.

There are many solutions that provide network policy extensions (e.g., Weave Net,
Kuberouter, Calico). Let’s look at Calico once again, as it’s our area of expertise. Calico
includes support for host endpoints, which allow network policies to be applied to the
nodes within a cluster, not just pods within the cluster. Whereas standard Kubernetes
network policy can be thought of as providing a virtual firewall within the pod net‐
work in front of every pod, Calico’s host endpoint extensions can be thought of as
providing a virtual firewall in front of every node/host, as illustrated in Figure 9-5.

In addition, Calico’s network policy extensions support the ability to specify whether
the policy rules applied to host endpoints apply before or after the NAT associated
with kube-proxy’s load balancing. This means that they can be used to limit which
clients can connect to specific node ports, unencumbered by whatever load-balancing
decisions kube-proxy may be about to make.
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Figure 9-5. Virtual firewall using host endpoint protection

Alternatives to kube-proxy
Kube-proxy provides the default implementation for Kubernetes services and is
included as standard in most clusters. However, some network plug-ins provide alter‐
native implementations of Kubernetes services to replace kube-proxy.

For some network plug-ins, this alternative implementation is necessary because the
particular way the plug-in implements pod networking is not compatible with kube-
proxy’s dataplane (which uses the standard Linux networking pipeline controlled by
iptables and/or IPVS). For other network plug-ins, the alternative implementation is
optional. For example, a CNI that implements a Linux eBPF dataplane will choose to
replace kube-proxy in favor of its native service implementation.

Some of these alternative implementations provide additional capabilities beyond
kube-proxy’s behavior. One such additional capability that is relevant from a security
perspective is the ability to preserve the client source IP address all the way to the
back pods when load-balancing from external clients.

For example, Figure 9-6 illustrates how an eBPF-based dataplane implements this
behavior.

Figure 9-6. Network path for a Kubernetes service with an eBPF-based implementation
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This allows the original client source IP address to be preserved all the way to the
packing pod for services of type NodePort or LoadBalancer, without requiring sup‐
port for externalTrafficPolicy:local in network load balancers or node selection
for node ports. This in turn means that network policy applied to the backing pod is
able to restrict access to the service to only the specific clients, IP addresses, or
address ranges that need to be able to access the service.

Beyond the security considerations, these alternative Kubernetes services implemen‐
tations (e.g., eBPF-based dataplanes) provide other advantages over kube-proxy’s
implementation, such as:

• Improved performance when running with very high numbers of services,
including reduced first packet latencies and reduced control plane CPU usage

• Direct server return (DSR), which reduces the number of network hops for
return traffic

We will look at DSR more closely next, since it does have some security implications.

Direct Server Return
DSR allows the return traffic from the destination pod to flow directly back to the
client rather than going via the original ingress node. There are several network plug-
ins that are able to replace kube-proxy’s service handling with their own implementa‐
tions that support DSR. For example, a eBPF dataplane that includes native service
handling and (optionally) can use DSR for return traffic is illustrated in Figure 9-7.

Figure 9-7. Network path for a Kubernetes service with direct server return
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Eliminating one network hop for the return traffic reduces:

• The overall latency for the service (since every network hop introduces latency)
• The CPU load on the original ingress node (since it is no longer dealing with

return traffic)
• The east-west network traffic within the cluster

For particularly network-intensive or latency-sensitive applications, this can be a big
win. However, there are also security implications of DSR. In particular, the underly‐
ing network may need to be configured with fairly relaxed reverse path filtering
(RPF) settings.

RPF is a network routing mechanism that blocks any traffic from a particular source
IP address where there is not a corresponding route to that IP address over the same
link. That is, if the router doesn’t have a route that says it can send traffic to a particu‐
lar IP address over the network link, then it will not allow traffic from that IP address
over the network link. RPF makes it harder for attackers to “spoof ” IP addresses—i.e.,
pretend to be a different IP address than what the device has been allocated.

In the context of DSR and Kubernetes services, Figure 9-7 illustrates a few key points:

• If the service is being accessed via a node port on Node 1, then the return traffic
from Node 2 will have the source IP address of Node 1. So the underlying net‐
work must be configured with relaxed RPF settings, otherwise the network will
filter out the return traffic because the network would not normally route traffic
to Node 1 via the network link to Node 2.

• If the service is being accessed via service IP advertisement (e.g., sending traffic
directly to a service’s cluster IP, external IP, or load balancer IP), then the return
traffic from Node 2 will have the source IP address of the service IP. In this case,
no relaxation of RPF is required, since the service IP should be advertised from
all nodes in the cluster, meaning the network will have routes to the service IP via
all nodes. We’ll cover service IP advertising in more detail later in this chapter.

As explained earlier, DSR is an excellent optimization that you can use, but you need
to review your use case and ensure that you are comfortable with disabling the RPF
check.

Limiting Service External IPs
So far in this chapter we have focused on how service types and implementations
impact how network policy can be used to restrict access to services to only the spe‐
cific client IP addresses or address ranges that need to be able to access each service.

130 | Chapter 9: Exposing Services to External Clients



Another important security consideration is the power associated with users who
have permissions to create or configure Kubernetes services. In particular, any user
who has RBAC permissions to modify a Kubernetes service effectively has control
over which pods that service is load balanced to. If used maliciously, this could mean
the user is able to divert traffic that was intended for a particular microservice to their
own malicious pods.

As Kubernetes services are namespaces resources, this rarely equates to a genuine
security issue for mainline service capabilities. For example, a user who has been
granted permissions to define services in a particular namespace will typically also
have permission to modify pods in that namespace. So for standard service capabili‐
ties such as handling of cluster IPs, node ports, or load balancers, the permissions to
define and modify services in the namespace doesn’t really represent any more trust
than having permissions to define or modify pods in the namespace.

There is one notable exception, though, which is the ability to specify external IPs for
services. The externalIP field in a service definition allows the user to associate an
arbitrary IP address with the service. Connections to this IP address received on any
node in the cluster are load balanced to the pods backing the service.

The normal use case is to provide an IP-oriented alternative to node ports that can be
used by external clients to connect to a service. This use case usually requires special
handling within the underlying network in order to route connections to the external
IP to the nodes in the cluster. This may be achieved by programming static routes
into the underlying network, or in a BGP-capable network, using BGP to dynamically
advertise the external IP. (See the next section for more details on advertising service
IP addresses.)

Like the mainline service capabilities, this use case is relatively benign in terms of the
level of trust for users. It allows them to offer an additional way to reach the pods in
the namespaces they have permission to manage, but does not interfere with traffic
destined to pods in other namespaces.

However, just like with node ports, connections from pods to external IPs are also
intercepted and load balanced to the service backing pods. As Kubernetes does not
police or attempt to provide any level of validation on external IP addresses, this
means a malicious user can effectively intercept traffic to any IP address, without any
namespace or other scope restrictions. This is an extremely powerful tool for a mali‐
cious user and represents a correspondingly large security risk.

If you are following the best practice of having default deny–style policies for both
ingress and egress traffic that apply across all pods in the cluster, then this signifi‐
cantly hampers the malicious user’s attempt to get access to traffic that should have
been between two other pods. However, although the network policy will stop them
from accessing the traffic, it doesn’t stop the service load balancing from diverting the
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traffic from its intended destination, which means that the malicious user can effec‐
tively block traffic between any two pods even though they cannot receive the traffic
themselves.

So in addition to following network policy best practices, it is recommended to use an
admission controller to restrict which users can specify or modify the externalIP
field. For users who are allowed to specify external IP addresses, it may also be desira‐
ble to restrict the IP address values to a specific IP address range that is deemed safe
(i.e., a range that is not being used for any other purpose). For more discussion of
admission controllers, see Chapter 8.

Advertising Service IPs
One alternative to using node ports or network load balancers is to advertise service
IP addresses over BGP. This requires the cluster to be running on an underlying net‐
work that supports BGP, which typically means an on-prem deployment with stan‐
dard top-of-rack routers.

For example, Calico supports advertising the service clusterIP, loadBalancerIP, or
externalIP for services configured with one. If you are not using Calico as your net‐
work plug-in, then MetalLB provides similar capabilities that work with a variety of
different network plug-ins.

Advertising service IPs effectively allows the underlying network routers to act as
load balancers, without the need for an actual network load balancer.

The security considerations for advertising service IPs are equivalent to those of nor‐
mal node port– or load balancer–based services discussed earlier in this chapter.
When using kube-proxy, the original client IP address is obscured by default, as illus‐
trated in Figure 9-8.

Figure 9-8. Network path for a Kubernetes service advertising Cluster IP via BGP
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This behavior can be changed using externalTrafficPolicy:local, which (at the
time of writing) is supported by kube-proxy for both loadBalancerIP and externalIP
addresses but not clusterIP addresses. However, it should be noted that when using
externalTrafficPolicy:local, the evenness of the load balancing becomes
topology-dependent. To circumvent this, pod anti-affinity rules can be used to ensure
even distribution of backing pods across your topology, but this does add some com‐
plexity to deploying the service.

Alternatively, a network plug-in with native service handling (replacing kube-proxy)
that supports source IP address preservation can be used. This combination can be
very appealing for on-prem deployments due to its operational simplicity and
removal of the need to build network load balancer appliances into the network
topology.

Understanding Kubernetes Ingress
Kubernetes Ingress builds on top of Kubernetes services to provide load balancing at
the application layer, mapping HTTP and HTTPS requests with particular domains
or URLs to Kubernetes services. Kubernetes Ingress can be a convenient way of
exposing multiple microservices via a single external point of contact, if for example
multiple microservices make up a single web application. In addition, they can be
used to terminate SSL/TLS (for receiving HTTPS encrypted connections from exter‐
nal clients) before load balancing to the backing microservices.

The details of how Kubernetes Ingress is implemented depend on which Ingress Con‐
troller you are using. The Ingress Controller is responsible for monitoring Kuber‐
netes Ingress resources and provisioning/configuring one or more ingress load
balancers to implement the desired load balancing behavior.

Unlike Kubernetes services, which are handled at the network layer (L3–L4), ingress
load balancers operate at the application layer (L5–L7). Incoming connections are
terminated at the load balancer so it can inspect the individual HTTP/HTTPS
requests. The requests are then forwarded via separate connections from the load bal‐
ancer to the chosen service. As a result, network policy applied to the pods backing a
service sees the ingress load balancer as the client source IP address, rather than the
original external client IP address. This means they can restrict access to only allow
connections from the load balancer, but cannot restrict access to specific external
clients.

To restrict access to specific external clients, the access control needs to be enforced
either within the application load balancer or in front of the application load balancer.
In case you choose an IP-based access control, it needs to happen before the traffic is
forwarded to the backing services. How you do this depends on the specific Ingress
Controller you are using.
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Broadly speaking, there are two types of ingress solutions:

In-cluster ingress
Ingress load balancing is performed by pods within the cluster itself.

External ingress
Ingress load balancing is implemented outside of the cluster by appliances or
cloud provider capabilities.

Now that we have covered Kubernetes Ingress, let’s review ingress solutions.

In-cluster ingress solutions
In-cluster ingress solutions use software application load balancers running in pods
within the cluster itself. There are many different Ingress Controllers that follow this
pattern. For example, the NGINX Ingress Controller instantiates and configures
NGINX pods to act as application load balancers.

The advantages of in-cluster ingress solutions are that:

• You can horizontally scale your Ingress solution up to the limits of Kubernetes.
• There are many different in-cluster Ingress Controller solutions, so you can

choose the Ingress Controller that best suits your specific needs— for example,
with particular load balancing algorithms, security options, or observability
capabilities.

To get your ingress traffic to the in-cluster Ingress pods, the Ingress pods are nor‐
mally exposed externally as a Kubernetes service, as illustrated in Figure 9-9.

Figure 9-9. An example of an in-cluster ingress implementation in a Kubernetes cluster

This means you can use any of the standard ways of accessing the service from out‐
side of the cluster. One common approach is to use an external network load balancer
or service IP advertisement, along with one of the following:

• A network plug-in with native Kubernetes service handling that always preserves
the original client source IP

• externalTrafficPolicy:local (and pod anti-affinity rules to ensure even load
balancing across the ingress pods) to preserve the original client source IP
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Network policy applied to the ingress pods can then restrict access to specific external
clients as described earlier in this chapter, and the pods backing any microservices
being exposed via Ingress can restrict connections to just those from the ingress pods.

External ingress solutions
External ingress solutions use application load balancers outside of the cluster, as
illustrated in Figure 9-10.

Figure 9-10. An example of an external ingress in a Kubernetes cluster

The exact details and features depend on which Ingress Controller you are using.
Most public cloud providers have their own Ingress Controllers that automate the
provisioning and management of the cloud provider’s application load balancers to
provide ingress.

Most application load balancers support a basic operation mode of forwarding traffic
to the chosen service backing pods via the node port of the corresponding service. In
addition to this basic approach of load balancing to service node ports, some cloud
providers support a second mode of application load balancing that load-balances
directly to the pods backing each service, without going via node ports or other kube-
proxy service handling. This has the advantage of eliminating the potential second
network hop associated with node ports load-balancing to a pod on a different node.

The main advantage of an external ingress solution is that the cloud provider handles
the operational complexity of the ingress for you. The potential downsides are as
follows:

• The set of features available is usually more limited, compared with the rich
range of available in-cluster ingress solutions. For example, if you require a spe‐
cific load balancing algorithm, security controls, or observability capabilities,
these may or may not be supported by the cloud provider’s implementation.

• The maximum supported number of services (and potentially the number of
pods backing the services) is constrained by cloud provider–specific limits. For
example, if you are operating at very high scales, with hundreds of pods backing
a service, you may exceed the application layer load balancer’s maximum limit of
IPs it can load balance to in this mode. In this case switching to an in-cluster
ingress solution is likely the better fit for you.
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• Since the application load balancer is not hosted within the Kubernetes cluster, if
you need to restrict access to specific external clients, you cannot use Kubernetes
network policy and instead must use the cloud provider’s specific mechanisms. It
is still possible to follow the best practices laid out at the start of this chapter, but
doing so will be cloud provider–specific and will likely introduce a little addi‐
tional operational complexity, compared with being able to use native Kubernetes
capabilities independent of the cloud provider’s capabilities and APIs.

In this section we covered how Kubernetes ingress works and the solutions available.
We recommend you review the sections and decide if the in-cluster ingress solution
works for you or if you should go with an external ingress solution.

Conclusion
In this chapter, we covered the topic of exposing Kubernetes services outside the clus‐
ter. The following are the key concepts covered:

• Kubernetes services concepts like direct pod connections, advertising service IPs,
and node ports are techniques you can leverage to expose Kubernetes services
outside the cluster.

• We recommend using an eBPF-based dataplane to optimize the ingress path to
route traffic to the pods hosting the service backend.

• An eBPF dataplane is an excellent alternative to the default Kubernetes services
implementation, kube-proxy, due to its ability to preserve source IP to the pod.

• The choice of a Kubernetes ingress implementation will depend on your use case.
We recommend that you consider an in-cluster ingress solution as it is more
native to Kubernetes and will give you more control than using an external
ingress solution.

We hope you are able to leverage these concepts based on your use case as you imple‐
ment Kubernetes services.
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CHAPTER 10

Encryption of Data in Transit

As you move mission-critical workloads to production, it is very likely that you will
need to encrypt data in transit. It is a very important requirement for certain types of
data to meet compliance requirements and also a good security practice.

Encryption of data in transit is a requirement defined by many compliance standards,
such as HIPAA, GDPR, and PCI. The specific requirements vary somewhat; for
example, PCI DSS (Payment Card Industry Data Security Standard) has rules around
encryption of cardholder data while in transit. Depending on the specific compliance
standard, you may need to ensure data in transit between the applications or micro‐
services hosted in Kubernetes is encrypted using a recognized strong encryption
algorithm.

And depending on the architecture of your application or microservices, it may be
that not all data being sent over the network is classified as sensitive, so theoretically
you might strictly only need to encrypt a subset of the data in transit. However, from
the perspective of operational simplicity and ease of compliance auditing, it often
makes sense to encrypt all data in transit between your microservices, rather than
trying to do it selectively.

Even if you do not have strong requirements imposed by external compliance stand‐
ards, it can still be a very good practice to encrypt data in transit. Without encryp‐
tion, malicious actors with network access could see sensitive information. How you
assess this risk may vary depending on whether you are using public cloud or on-
prem/private cloud infrastructure, and the internal security processes you have in
place as an organization. In most cases, if you are handling sensitive data, then you
should really be encrypting data in transit.
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If you are providing services that are accessed by clients on the public internet, then
the standard practice of using HTTPS applies to Kubernetes. Depending on your
microservice architecture, these HTTPS connections can be terminated on the desti‐
nation microservice, or they may be terminated by a Kubernetes Ingress solution,
either as in-cluster Ingress pods (e.g., when using the NGINX Ingress Controller) or
out-of-cluster application load balancers (e.g., when using the AWS Load Balancer
Controller). Note that if using an out-of-cluster application load balancer, it’s impor‐
tant to still make sure that the connection from the load balancer to the destination
microservice uses HTTPS to avoid an unencrypted network hop.

Within the cluster itself, there are three broad approaches to encrypting data in
transit:

• Build encryption capabilities into your application/microservices code.
• Use sidecar- or service mesh–based encryption to encrypt at the application layer

without needing code changes to your applications/microservices.
• Use network-level encryption, again without the need for code changes to your

applications/microservices.

We will now explore the pros and cons of each approach.

Building Encryption into Your Code
There are libraries to encrypt network connections for most programming languages,
so in theory you could choose to build encryption into your microservices as you
build them. For example, you could use HTTPS SSL/TLS or even mTLS (mutual TLS)
to validate the identity of both ends of the connection.

However, this approach has a number of drawbacks:

• In many organizations, different microservices are built using different program‐
ming languages, with each microservice development team using the language
that is most suited for that particular microservice and team’s expertise. For
example, a frontend web UI microservice might be written using Node.js, and a
middle-layer microservice might be written in Python or Golang. As each pro‐
gramming language has its own set of libraries available for encryption, this
means that the implementation effort increases, potentially with each microser‐
vices team having to implement encryption for their microservice rather than
being able to leverage a single shared implementation across all microservices.

• Building on this idea of not having a single shared implementation for encryp‐
tion, the same applies to configuration of the microservices, in particular, how
the microservice reads its credentials required for encryption.
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• In addition to the effort involved in developing and maintaining all this code, the
more implementations you have, the more likely it is that one of the implementa‐
tions will have bugs in it that lead to security flaws.

• It is not uncommon for older versions of encryption libraries to have known vul‐
nerabilities that are fixed in new versions. By the time a new version is released to
address any newly discovered vulnerability, the vulnerability is public knowledge.
This in turn increases the number of attacks targeted at exploiting the vulnerabil‐
ity. To mitigate against this, it is essential to update any microservices that use the
library as soon as possible. If you are running many microservices, this may rep‐
resent a significant development and test effort, since the code for each microser‐
vice needs to be updated and tested individually. On top of that, if you don’t have
a lot of automation built into your CI/CD process, then there may also be the
operational headache of updating each microservice version with the live cluster.

• Many microservices are based on third-party open source code (either in part or
for the whole of the microservice). Often this means you are limited to the spe‐
cific encryption options supported by the third-party code, and in many cases
the specific configuration mechanisms that the third-party code supports. You
also become dependent on the upstream maintainers of the third-party code to
keep the open source project up to date and address vulnerabilities as they are
discovered.

• Finally, it is important to note that there is often operational overhead when it
comes to provisioning encryption settings and credentials across disparate imple‐
mentations and their various configuration paradigms.

The bottom line, then, is that while it is possible to build encryption into each of your
microservices, the effort involved and the risk of unknowingly introducing security
flaws (due to code or design issues or outdated encryption libraries) can make this
approach feel pretty daunting and unattractive.

Sidecar or Service Mesh Encryption
An alternative architectural approach to encrypting traffic between microservices at
the application layer is to use the sidecar design pattern. The sidecar is a container
that can be included in every Kubernetes pod alongside the main container(s) that
implement the microservice. The sidecar intercepts connections being made to/from
the microservice and performs the encryption on behalf of the microservice, without
any code changes in the microservice itself. The sidecar can either be explicitly
included in the pod specification or it can be injected into the pod specification using
an admission controller at creation time.

Compared to building encryption into each microservice, the sidecar approach has
the advantage that a single implementation of encryption can be used across all

Sidecar or Service Mesh Encryption | 139



microservices, independent of the programming language the microservice might
have been written in. It means there is a single implementation to keep up to date,
which in turn makes it easier to roll out vulnerability fixes or security improvements
across all microservices with minimal effort.

You could in theory develop such a sidecar yourself. But unless you have some niche
requirement, it would usually be better to use one of the many existing free open
source implementations already available, which have had a significant amount of
security review and in-field hardening.

One popular example is the Envoy proxy, originally developed by the team at Lyft,
which is often used to encrypt microservice traffic using mTLS (mutual TLS). Mutual
TLS means that both the source and destination microservices provide credentials as
part of setting up the connection, so each microservice can be sure it is talking to the
other intended microservice. Envoy has a rich configuration model, but does not
itself provide a control or management plane, so you would need to write your own
automation processes to configure Envoy to work in the way you want it to.

Rather than writing this automation yourself, an alternative approach is to use one of
the many service mesh solutions that follow a sidecar model. For example, the Istio
service mesh provides a packaged solution using Envoy as the sidecar integrated with
the Istio control and management plane. Service meshes provide many features
beyond encryption, including service routing and visibility. While service meshes are
becoming increasingly popular, a widely acknowledged potential downside of their
richer feature set is it can introduce operational complexity, or make the service mesh
harder to understand at a nuts-and-bolts level with a greater number of moving parts.
Another downside is the security risk associated with the sidecar design pattern
where the sidecar is part of every application pod and there is additional complexity
of managing sidecars (for example, a CVE may require you to update sidecars, and
this is not a trivial update as it impacts all applications).

Network-Layer Encryption
Implementing encryption with the microservice or using a sidecar model is often
referred to as application-layer encryption. Essentially, the application (microservice
or sidecar) handles all of the encryption, and the network is just responsible for send‐
ing and receiving packets, without being aware the encryption is happening at all.

An alternative to application-layer encryption is to implement encryption within the
network layer. From the application’s perspective, it is sending unencrypted data, and
it is the network layer that takes responsibility for encrypting the packets before they
are transmitted across the network.
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One of the main standards for network-layer encryption that has been widely used
throughout the industry for many years is IPsec. Most IPsec implementations support
a broad range of encryption algorithms, such as AES encryption, with varying key
lengths. IPsec is often paired with IKE (Internet Key Exchange) as a mechanism for
managing and communicating the host credentials (certificates and keys) that IPsec
needs to work. There are a number of open source projects, such as the popular
strongSwan solution, that provide IKE implementations and make creating and man‐
aging IPsec networks easier.

Some enterprises choose to use solutions such as strongSwan as their preferred solu‐
tion for managing IPsec, which they then run Kubernetes on top of. In this case
Kubernetes is not really aware of IPsec. Even with projects such as strongSwan help‐
ing to make IPsec easier to set up and manage, many regard IPsec as being quite
heavyweight and tricky to manage from an overall operational perspective.

One alternative to IPsec is WireGuard. WireGuard is a newer encryption implemen‐
tation designed to be extremely simple yet fast, using state-of-the-art cryptography.
Architecturally, it is simpler, and initial testing indicates that it does outperform IPsec
in various circumstances. It should be noted though that development continues on
both WireGuard and IPsec, and in particular as advances are made to cryptographic
algorithms, the comparative performance of both will likely evolve.

Rather than setting up and managing IPsec or WireGuard yourself, an operationally
easier approach for most organizations is to use a Kubernetes network plug-in with
built-in support for encryption. There are a variety of Kubernetes network plug-ins
that support different types of encryption, with varying performance characteristics.

If you are running network-intensive workloads, then it is important to consider the
performance cost of encryption. This cost applies whether you are encrypting at the
application layer or at the network layer, but the choice of encryption technology can
make a significant difference to performance. For example, Figure 10-1 shows inde‐
pendent benchmark results for four popular Kubernetes network plug-ins (the most
recent benchmarks available at the time of writing, published in 2020).

Using a Kubernetes network plug-in that supports encryption is typically significantly
simpler from an operational standpoint, with many fewer moving parts than adopt‐
ing a service mesh, and significantly less effort than building encryption into your
application/microservice code. If your primary motivation for adopting a service
mesh is security through encryption, then using a Kubernetes network plug-in that
supports network-layer encryption along with Kubernetes network policies is likely
to be significantly easier to manage and maintain. Please note that we cover other
aspects of service mesh like observability in Chapter 5.
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Figure 10-1. Benchmark results for encryption in Kubernetes

Conclusion
In this chapter we presented various options to implement encryption of data in
transit and various approaches to implement encryption in a Kubernetes cluster. We
hope this enables you to pick the option most suited for your use case. Here are a few
things to remember:

• As you move mission-critical workloads to production, for certain types of data,
you will need to implement encryption for data in transit. We recommend imple‐
menting encryption of data in transit even if compliance requirements do not
require you to encrypt all data.

• We covered the well-known methods of how you can implement encryption:
application-layer encryption, sidecar-based encryption using a service mesh, and
network-layer encryption.

• Based on operational simplicity and better performance, we recommend
network-layer encryption.
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CHAPTER 11

Threat Defense and Intrusion Detection

In this chapter we will explore how you can implement threat defense for your
Kubernetes cluster. We have covered the stages of your Kubernetes deployment
(build, deploy, runtime) in earlier chapters. This chapter focuses on threat defense,
which is security for the runtime stage. We will cover the following concepts to help
you understand threat defense in a Kubernetes cluster and why you need it.

• Threat defense for a Kubernetes cluster, including why you need it and how it
differs from traditional security

• Intrusion detection for Kubernetes
• Advanced threat defense techniques

Let’s explore each of these in detail. We start with threat defense and why it is
important.

Threat Defense for Kubernetes (Stages of an Attack)
To understand threat defense, a great place to start is to review the cybersecurity kill
chain, which breaks down an attack into several stages. This is then used to build a
strategy to defend against the attack. The cyber kill chain has the following stages:

Reconnaissance
Adversaries probe the target and gather information.

Weaponization
The adversary creates a method to attack, which could be a new vulnerability,
a variant of an existing vulnerability, or a simple exploit of an insecure
configuration.
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Delivery
The adversary creates a method to deliver the vulnerability or exploit to the tar‐
get or a location that can be used to attack the target.

Exploitation
The adversary implements methods to trigger the attack.

Installation
The adversary installs the malware and typically software to create a backdoor to
communicate with the malware.

Command and Control
The adversary establishes a communication channel with the malicious software
to control the software.

Actions on Objective
The adversary achieves the intended outcome of the attack (e.g., stealing data,
encryption of data, etc.).

Several organizations have adapted this framework to incorporate real-world attacks
and more use cases. Microsoft has adapted it for Kubernetes as described in its blog
post “blog"Secure Containerized Environments with Updated Threat Matrix for
Kubernetes”. Let’s review the kill-chain stages (threat matrix) that are specific to
Kubernetes:

Initial access
The adversary uses various exposed interfaces in your Kubernetes deployments
(for example, Kubeflow) via stolen credentials, compromised images, or other
application vulnerabilities.

Execution
The adversary executes a malicious command or software in your cluster. There
are several ways this can happen; some known techniques are creating a new
container in your cluster, running an additional container in any pod as a sidecar,
and using a known application vulnerability to execute malicious commands.

Persistence
The adversary will try to persist the malicious software in the Kubernetes cluster
so it can be accessed at a later time. This is typically achieved by creating a writ‐
age storage path on the host, leveraging Kubernetes scheduled jobs (known as
cron jobs) to periodically run malicious software, or in some cases, compromis‐
ing the Kubernetes admission controller so requests to the API server can be
tampered with to carry out an attack. In this stage adversaries will also try to
establish a backdoor communication channel to their control server so they can
control the malicious software. This is known as a command-and-control server
(C&C server).
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Privilege escalation
The adversary gains privileged access by leveraging a resource in your cluster
that has privileged access. For example, they might run malicious software in a
container with privileged access by exploiting a vulnerability in the privileged
container.

Defense evasion
The adversary works to keep the attack undetected by using techniques like
clearing logs or deleting events, so detection systems using logs and events do not
detect the presence of malicious activity. Another technique that is used is to
exploit a vulnerability in only one pod of a Kubernetes deployment backed by
many pods, and use that to further the attack.

Credential access
The adversary works to get access to credentials (Kubernetes secrets) in your
cluster. In case you are using managed services, the cloud provider offers a token
to access cloud resources, and this token is accessible to certain privileged pods
and service accounts. The adversary will use impersonation or privilege escala‐
tion to gain access to the credentials and then use access to cloud resources to
further the attack.

Discovery
The adversary will work to do a reconnaissance of the cluster network to under‐
stand what is running in your cluster. This can be achieved by using tools for net‐
work mapping like Nmap on Linux systems, or access to the Kubenetes
dashboard. This stage is the precursor to an important stage of the attack where
adversaries can move around in your cluster to find what they are seeking.

Lateral movement
By the time the attack reaches this stage, the attack is fairly advanced, and the
adversary has an established presence; they now will use the installed malicious
software to access other pods and resources in the network. A couple of common
techniques are to spoof IP addresses or domain names of other pods and imper‐
sonate other pods to get past segmentation rules inside the cluster. The adversa‐
ries also look for other applications running inside the cluster, as they now have
access to them. During this stage the malicious software is communicating with
the command-and-control server to get instructions to further the attack. In this
stage adversaries rely on overloading well-known protocols like DNS or HTTP to
send command-and-control requests as a part of these protocols, which allows
them to bypass perimeter security–based controls as the traffic looks like a nor‐
mal DNS or HTTP request.
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Impact
This is the final stage of the attack, where the outcome is usually the stealing of
sensitive data. This is achieved by a technique called data exfiltration, encryption
of data for ransomware, or even using resources for cryptomining.

Threat defense comprises a set of techniques that help you defend against each of
these stages and enable you to defend against attacks. It can be overwhelming to
think about all these stages and techniques adversaries can use. We want to mention
that while adversaries need to succeed in most (if not all) of these stages to carry out a
successful attack, you only need to block them in any one stage to thwart the attack.
So the odds are in your favor. Understanding these stages and how they apply to
Kubernetes is a first step in building an effective defense mechanism. Adversaries are
always innovating, and therefore you should focus on all the stages and use tools and
techniques relevant to each stage to give yourself the greatest chance to successfully
thwart attacks.

In Chapter 2, we covered infrastructure security, showing you how to create secure
infrastructure for running your workloads. In Chapter 3, we covered best practices
and techniques you can use to securely deploy workloads. Chapter 4 covers security
policies you can apply to your workloads to secure the workload runtime environ‐
ment, and Chapter 6 covers how you can apply network policy to implement network
access control for your workloads. We recommend you review these chapters in the
context of the kill-chain stages described here. You will find that these techniques are
very effective with the initial access, privilege escalation, credential access, persis‐
tence, and execution stages.

We will now describe tools and techniques you can use to secure the other stages of
the kill chain. It is important to note that Kubernetes is a distributed system and its
cluster network is crucial to its operation; therefore, securing the network is a very
effective technique. For example, a successful privilege escalation or a successful
exploit of an application vulnerability is rendered ineffective if the adversary cannot
further the attack due to an inability to use the cluster network for discovery, com‐
mand and control, lateral movement, or data exfiltration. It is not enough to have
network segmentation based on IP addresses/ports, as adversaries will find ways to
further an attack even with techniques like network segmentation protecting your
cluster. For example, you need to allow HTTP traffic to your service and pods back‐
ing the service, so the attack can be a part of the HTTP header that triggers a privilege
escalation.

Now that we have covered concepts for threat defense, let’s explore intrusion
detection.
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Intrusion Detection
In this section we will cover intrusion detection and how it applies to Kubernetes
clusters. To understand this, we will review the various methods of intrusion and the
role of an intrusion detection system.

Intrusion Detection Systems
An intrusion detection system (IDS), as the name suggests, is a system that monitors
network activity, detects anomalous patterns, and reports suspicious behavior. These
systems also monitor violations to existing controls (like network policy, host harden‐
ing) and report these violations. The response actions for an IDS are the following:

Alerting
Generate an alert and send it to a SIEM for further analysis and action.

Intrusion prevention
The system takes action to prevent the intrusion by leveraging existing controls
(e.g., network policies, Kubernetes pod security policies, host hardening policies)
and redirecting the attack to canary resources especially set up to analyze these
types of attack. When an IDS is also able to prevent the intrusion, it is called an
intrusion prevention system (IPS).

A good intrusion detection system should be able to associate a set of related anoma‐
lies by tracking the behavior of a system. We recommend you review user and entity
behavior analytics (UEBA) and how it applies to security. Microsoft Azure UEBA is
an excellent resource for you to review. Please note that for Kubernetes, entity behav‐
ioral analytics is applicable. The details of how to implement it are outside the scope
of this book, but UEBA helps in reducing the number of alerts and generating high-
fidelity alerts. Please note that more alerts is not necessarily good; they cause down‐
stream systems (e.g., SIEMs) to be immune to alerts. Later we will review how to
leverage machine learning systems to generate high-fidelity alerts.

We will now review intrusion detection methods and how they apply to Kubernetes
clusters.

IP Address and Domain Name Threat Feeds
As explained in the cybersecurity kill chain, adversaries will often use malicious soft‐
ware to contact a server that is controlled by them. These servers are used to remotely
control the malicious software, get information about the system, download more
software, and further the attack. Security research teams around the world review
attacks and identify known C&C servers by IP address/domains. These are published
as threat feeds and as a part of the indicators of compromise and are regularly upda‐
ted. There are several well-known threat feeds both open source and commercial.
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STIX is a well-known standard to describe threat intelligence, and TAXII is the stan‐
dard to deliver the intelligence. You can find several open source engines that parse
the STIX and TAXII feeds and provide intelligence (e.g., AlienVault). Feodo tracker
and Snort are examples of open source feeds that provide IP address block lists.

Sometimes adversaries will use VPNs (virtual private networks), which are overlay
networks that run over physical networks and are useful to conceal a user’s location.
Tor is another well-known overlay network that is used for this purpose. Similar to
threat feeds for C&C servers, feeds are available for known VPNs and IPs from the
Tor network.

We will now cover how you can use these feeds in your Kubernetes cluster to imple‐
ment IDS/IPS. Figure 11-1 shows a sample implementation of applying suspicious IP
addresses and domains in your Kubernetes cluster.

Figure 11-1. Implementing IDS/IPS using threat feeds

Figure 11-1 shows what you need to implement support for threat feeds in your clus‐
ter and also describes the high-level workflow to achieve IDS/IPS capabilities. The
figure shows the following components as a part of your Kubernetes cluster.

Threat feed controller
This component is responsible for retrieving threat feeds from a configured source
(typically a URL). This can be implemented in many ways. For the purposes of this
discussion, we assume that is a pod that watches a configuration resource (example in
a moment) and reaches out to the specified URL and stores the threat feed data in the
Kubernetes datastore for other components. The following is an example of configu‐
ration for the threat feed controller:
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apiVersion: projectcalico.org/v3
kind: GlobalThreatFeed
metadata:
  name: sample-global-threat-feed
spec:
  content: IPSet
  pull:
    http:
      url: https://an.example.threat.feed/blacklist
  globalNetworkSet:
    labels:
      security-action: block

In this example, the threat feed controller is configured to pull the threat feed from
the specified URL and then stores the list of IP addresses as a custom Kubernetes
resource named globalnetworkset. This is then used by the network policy implemen‐
tation to enforce policies based on this resource. The following is an example of a pol‐
icy that can be defined using the globalnetworkset resource:

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
  name: default.blockthreats
spec:
  tier: default
  selector: all()
  types:
  - Ingress
  ingress:
  - action: Deny
    source:
      selector: security-action == 'block'

Network policy engine
This is the component that implements network policies in your cluster and is used to
define policies to block traffic to and from IP addresses that are a part of threat feeds.
Please note that an IP address list can contain a large number of IP addresses and can
change periodically. Therefore, the network policy implementation you choose
should scale based on this requirement. As a hint, we recommend you pick an engine
that supports the ipsets extension in an iptables-based dataplane, where matching sets
of IP addresses is optimized. If you are using an eBPF-based dataplane, please ensure
the implementation has support for eBPF maps to implement functionality equivalent
to ipsets.
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Log processing engine
This component is responsible for reporting flow logs from your cluster that contain
IP addresses that match any IP addresses that are part of the threat feed and generate
an alert. Please note this can be a resource-intensive operation, given the large
amount of flow data. One way to address this is to have the network policy engine
add an annotation to the flow log to name the feed that contained the IP address in
the flow log when the dataplane detects a match. It is very efficient to do this opera‐
tion inline instead of doing a match after data is collected.

Now that we understand the various components of the IDS, let’s review the step-by-
step operation:

1. The threat feed controller polls the threat feed periodically.
2. The threat feed controller processes the feed and creates the globalnetworkset

resource in the Kubernetes datastore for the threat feed.
3. The network policy engine and the log processing engine read the threat feed.
4. If a network policy is defined, the network policy engine implements the network

policy for the threat feed.
5. The log engine processes flow logs from the flow log datastore and generates

alerts for flows matching IP addresses in the threat feed.

In step 4, we are able to prevent an intrusion, and step 5 is where we can detect an
intrusion.

Special Considerations for Domain Name Feeds
As mentioned before, threat feeds can be a list of IP addresses or domain names. In
case of domain names, the network policy engine must support domain name–based
policies, and the log processing engine must support capturing domain names in flow
logs and matching domain names from feeds in a flow log.

Note that the technique described detects and enables controls to protect against
malicious activity, so it makes the implementation an intrusion prevention system.

Deep packet inspection
Deep packet inspection (DPI) is an intrusion detection technique where network
traffic is inspected and matched against known malicious network traffic patterns.
This requires inspection of the packet beyond Layer 3/Layer 4 and understanding of
application protocols (e.g., HTTP, MySQL, etc.). Similar to threat feeds for IP and
domains, signatures-based feeds are also available. OWASP Top 10 and SANs Top 25
are signatures for well-known application software risks and software vulnerabilities
that can be used to detect malicious traffic in network and application layers of the
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packet. When you think about implementing DPI in your cluster, you need to con‐
sider a few factors.

First, where should you implement DPI? One option is to implement it at the ingress,
which is the point where traffic enters/exits the cluster. Ingress is a resource in Kuber‐
netes that allows users to expose services to clients outside the cluster. This topic is
covered in depth in Chapter 8. For this discussion we assume that the services are
exposed as URLs. So in this case you would implement DPI at the ingress (e.g., load
balancers or on nodes for traffic going through node ports). This is a good option,
but in this scenario the limitation is that you can detect a malicious network flow, but
the information is not complete, as the detection is early in the cycle. You will not
have visibility into which pod the malicious flow was destined to, and will have to
review all possible destination pods and then co-relate the activity of each pod back‐
ing the service to understand the attack. Also, if the attack uses another mechanism
to trigger the exploit (e.g., an API server, a kube-proxy vulnerability, or a node OS
image vulnerability), the malicious flow originates inside the cluster and will not be
detected at the ingress. Therefore, it is better to implement DPI for the service inside
the cluster.

So if you choose the option to implement DPI inside the cluster for each service, you
need to consider that the amount of traffic inside the cluster is very large due to the
distributed nature of Kubernetes. This presents a challenge as DPI involves packet
parsing and can potentially impact latency for applications as well as increase the
resource utilization. In order to address the application latency challenge, we recom‐
mend you consider DPI as a mechanism to detect malicious activity and not prevent
the attack. This means the DPI engine does not need to be inline and can work with a
copy of each packet in the flow; the original packet flow is not impacted by this, and
hence there is no impact to latency-sensitive applications. There is still the concern
about resource utilization due to packet parsing. In order to address this, we recom‐
mend you use context in the Kubernetes cluster to select traffic for services that need
DPI. This could be as simple as labeling services that are critical and have compliance
requirements and enabling DPI using label-based selectors, or you can use DPI as a
response action to anomalous traffic that is identified by a SIEM or your logging and
alerting engine.

Another important consideration is that the DPI engine needs traffic to be unencryp‐
ted, so if you are using encryption for traffic inside the cluster (e.g., HTTPS), you
need to implement decryption along with your DPI engine or choose an encryption
technology like WireGuard, where you can implement DPI prior to encryption for
egress traffic and after decryption for ingress traffic. You should consider a proxy like
Envoy that allows traffic to be redirected to it, decrypted, inspected, encrypted, and
sent to its destination.
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Now that we have established that DPI needs to be implemented inside the cluster as
an IDS mechanism and needs to be selectively enabled to limit resource consump‐
tion, let’s explore a sample reference architecture for a DPI implementation for your
Kubernetes cluster. Figure 11-2 shows a reference implementation. Before we review
the reference implementation, we want to introduce some well-known IDS engines
that are available for you to integrate in your cluster. Snort and Suricata are a couple
of open source IDS engines that are available; however, you can choose any IDS
engine that is suitable for your use case, including implementing your own IDS
engine.

Figure 11-2. Implementation of DPI using Envoy

Figure 11-2 shows a Kubernetes cluster namespace that has a few microservices that
are part of an application. The figure shows Envoy is deployed as a daemonset on
every node. Envoy is a well-known proxy that is used in Kubernetes clusters to proxy
traffic for analysis and for additional controls. We recommend you use Envoy as a
transparent proxy, where it terminates connections destined to a pod backing a ser‐
vice and after analysis sends the traffic to the pod backing a service. In this case for
the second microservice, the DPI engine is implemented as an integration to Envoy,
and Envoy is configured to redirect traffic destined for pods backing the service to
itself. DPI is then performed, and Envoy takes care of completing the connection.
The transparent mode for Envoy means that the application sees no difference in the
packet (e.g., TCP/IP header). As discussed before, if a malicious flow is detected by
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the DPI engine, the resulting alert will show the pod that received the flow, and it is
then trivial to examine activity by that pod and co-relate it to the malicious flow. In
Figure 11-2, DPI is enabled for traffic destined to one service as an example. DPI can
be enabled for any service or a combination of pods; the approach is similar, but the
difference is in how Envoy is configured for traffic redirection.

We recommend that you use Envoy with your DPI engine, but there are other ways to
integrate a DPI engine in your Kubernetes cluster. For example, if you have a cluster
running an eBPF dataplane, you can get copies of the packet in the BPF program and
send them to the IDS engine for analysis. Likewise, if you are using VPP as the data‐
plane, it is also possible to integrate a DPI engine to inspect traffic.

You can choose the option that works for you, but it is important that you consider
integration of a DPI engine in your Kubernetes cluster for signature-based malware
detection. Next, let’s examine logging and visibility and its role in the threat defense
strategy.

Logging and visibility
A very important part of security is visibility of the activity in your cluster (e.g., pod
creation, Kubernetes resource access/changes, application activity, network activity).
This is achieved by enabling logging in your cluster. We cover log collection and met‐
rics collection in detail in Chapter 5. For this section we want to reiterate the follow‐
ing as key aspects of logging and visibility:

• Traditional logging for network flows with the five-tuple is insufficient. You need
to use a tool that supports Kubernetes context-rich logging where network flows
between pods, deployments, replica sets, and services are part of the log collected.

• Logs at collection time need to be annotated with Kubernetes metadata like
labels, policies in use, node information, and even process information (pro‐
cesses running in the container). This is important due to the ephemeral nature
of Kubernetes; all of these change, and it is difficult to associate a malicious net‐
work flow with Kubernetes metadata when the network flows and the Kubernetes
metadata are collected independent of each other.

• DNS activity logs are critical and must also be annotated with Kubernetes meta‐
data as described earlier for network flow logs.

• Application protocol–based flow logs (e.g., HTTP header, MySQL) are also criti‐
cal and again must be collected with Kubernetes metadata.

• Finally, Kubernetes audit logs (activity logs) are very important and must be col‐
lected, as these will help detect abnormal activity by malicious users (e.g.,
repeated denied access to a resource, creation of a service account, etc.).
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There are several tools and mechanisms available to you to implement log collection.
The cloud providers have logging capabilities (e.g., Stackdriver in Google, Cloud‐
Watch in AWS); you can also choose to implement logging using tools like Sysdig,
Datadog, and Calico Enterprise, which offer logging capabilities with Kubernetes
context. In addition to the log collection described earlier, the tool you choose must
support the following simple capabilities that are critical to your IDS strategy:

• The tool must support an alerting capability that allows you to query logs and set
up alerts for rule-based anomalies (e.g., excessive NXDOMAIN requests, imbal‐
ance in network throughput for a given protocol like HTTP or DNS between
inbound and outbound traffic, unexpected connections to certain pods from cer‐
tain namespaces, excessive network policy denied logs).

• The tools must support the baselining of various metrics (e.g., number of con‐
nections to a service, HTTP requests from a rare user-agent in the header) using
basic machine learning techniques and report anomalies as alerts.

• The tools must support forwarding logs and alerts to an external SIEM (like
Splunk, QRadar, Sumo Logic) or the cloud provider’s security center (Azure
Security Center).

The previous sections covered the collection and analysis of logs. While logging is
available in most Kubernetes environments, you need to ensure that the tool you
choose to implement logging is effective for your IDS strategy.

Advanced Threat Defense Techniques
In this section we will cover some advanced threat defense techniques you can use in
your cluster. These are techniques that are designed to be effective in a Kubernetes
environment, especially for detecting the lateral movement and exfiltration stages of
the attack life cycle.

Canary Pods/Resources
The use of honeypots is a well-known technique to detect bad actors within your
cluster and gain insight on what they are doing by exposing simulated or intention‐
ally vulnerable applications in your cluster and monitoring access to these applica‐
tions. These applications act as a canary to notify the blue team of the intrusion and
stall the attacker’s progress from reaching actual sensitive applications and data. Once
the blue team is aware of the situation, the attack can be traced back to the initial vec‐
tor. The attack can then be contained and even removed from the cluster.

Applying this technique in a Kubernetes environment works exceedingly well due to
the declarative nature of applying manifests to deploy workloads. Whether the cluster
is standalone or part of a complex pipeline, workload communications are defined by
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the application’s code. Any communication that’s not defined can be deemed suspi‐
cious at a minimum, and the source resource may have been compromised. By intro‐
ducing fake workloads and services around production workloads, when a workload
gets compromised, the attacker cannot differentiate between other real and fake
workloads. The asymmetric knowledge between the attacker and the cluster operator
makes it easy to detect lateral movement from compromised workloads.

Figure 11-3 shows an example of how this is achieved in a Kubernetes cluster.

Figure 11-3. Sample implementation of honeypots in a Kubernetes cluster

Calico Enterprise has a honeypots feature that provides a supplementary detection
method when strict network policies or monitoring is not feasible. Calico Enterprise
honeypots work by deploying canary workloads and services in sensitive namespaces
and monitoring for access. By leveraging Calico Enterprise’s monitoring and alerting
capabilities, any connections made to these canary workloads will generate an alert
and can be traced back to the source. Canary traffic should be inspected using a DPI
engine to provide signature-based detection to provide high-fidelity alerts and signif‐
icantly reduce false positives.

DNS-Based Attacks and Defense
When you look at activity in a Kubernetes cluster, DNS is critical to your applications
that are running. Kubernetes supports DNS as an infrastructure, and DNS support is
available for using DNS names for pods and services. CoreDNS is the recommended
DNS server for your Kubernetes cluster. Since DNS is critical to cluster operation,
DNS traffic needs to be allowed inside the cluster and even for external lookups. This
makes DNS an attractive option for adversaries to target. In this section we will cover
domain generation algorithm (DGA) attacks that are used by adversaries to establish
a connection to their command-and-control center and then for exfiltration of data.

Advanced Threat Defense Techniques | 155



Figure 11-4 shows how a domain generation attack works. The adversary first down‐
loads an exploit inside the cluster that uses a known seed and an algorithm to gener‐
ate domain names. The exploit then queries the algorithm-generated domain names.
The same algorithm is run to spin up a DNS server that responds to DNS queries,
and this cycle repeats till the client and the server domains match. Upon a successful
match, the cluster has established a successful connection to the command-and-
control server for the malware.

Figure 11-4. DGA-based attack

Since domain names are generated randomly using an algorithm and the queries are
legitimate DNS queries, it is not possible to detect these types of attacks using DNS
threat feeds or at the perimeter using DPI. Also, the fact that there is a relatively large
amount of DNS activity in the cluster means it is easy for the malware to hide its
activity inside the cluster. The way to detect these types of attacks is to use a machine
learning technique that can predict a malicious domain just by analyzing the domain
name. Another mechanism that can be effective is to use machine learning to baseline
the number of DNS responses that do not resolve to a valid server and report an
anomaly if there is an increase in such failed DNS queries.

You can implement a DGA detection mechanism by having the security research
team collaborate with the data science team to build this mechanism. Calico Enter‐
prise provides a DGA implementation integrated with its alerting engine.

Conclusion
In this chapter, we covered how you can implement threat defense in your Kuber‐
netes cluster. The following are the key takeaways from the chapter:

• The techniques presented are based on our current research, and this area is con‐
stantly evolving, with adversaries using newer techniques and security teams
working on solutions to counter these threats. We recommend your security
team focus on threats seen, analyze them to evaluate if they are applicable to
Kubernetes, and work on mitigation techniques.
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• Kubernetes is a new technology, and we are starting to see it become a focus area
for adversaries, so an effective threat defense strategy is required.

• It’s very important to understand the cybersecurity kill chain and how it applies
to Kubernetes in order to build an effective threat defense strategy.

• It is important for you to apply threat feeds and DPI-based techniques to traffic
inside your cluster to detect attacks that originate inside the cluster. It is not ade‐
quate to rely on these techniques being applied only at the perimeter, as traffic
originating inside the cluster may not traverse through devices at the perimeter.

• Honeypots and DGA-based attacks are examples of advanced threat defense
techniques for your Kubernetes cluster that you should implement to thwart
sophisticated attacks.
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Conclusion

We hope that the book helped you understand how observability and security for
Kubernetes deployments are different from traditional deployments. And we hope
that the book is a guide for you as you design and implement your security and
observability strategy, whether you are in the early stages of your journey or further
along in adopting Kubernetes. The key takeaway is that you need to think about secu‐
rity and observability at every stage of your journey; it should not be an afterthought
that is implemented once you have designed your deployment. We often hear folks
say, “I will not need to worry about security or observability for a while; let me first
get my workloads running in Kubernetes.” This line of thinking is not right, as the
right security implementation will likely alter the design and will likely cause an
untimely iteration to the design and delay the implementation. The following are
some of the characteristics that make Kubernetes different:

• Kubernetes is the most widely adopted orchestration engine for deploying
modern applications and is used both in public cloud and on-premise
deployments.

• Kubernetes is declarative in nature and enables users to specify outcomes for
their application deployments (e.g., scale, specifications, access, etc.).

• Kubernetes continuously monitors the status of the deployment and takes correc‐
tive action to ensure the deployment is operating as specified.

• Kubernetes abstracts the details of networking, IP addresses, etc., and instead
allows users to define identity using higher-level constructs like labels.

• Due to these characteristics, implementing observability and security for Kuber‐
netes needs a different approach.

These characteristics of Kubernetes have also altered the development process and
the teams involved. Previously, development teams built applications that would be
deployed on preprovisioned infrastructure. In today’s world, when you deploy an
application in the cloud, you first provision the infrastructure (e.g., hosts, VMs, etc.)
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that is required for your application and then deploy your application on the provi‐
sioned infrastructure. Also, the infrastructure is dynamic and adapts to the needs of
the application. The following lists the life cycle of an application in a Kubernetes
cluster and the role of various teams:

• The deployment of an application comprises the build stage (create the resources
needed for the application), the deploy stage (deploy the application using
Kubernetes), and the runtime stage (application operation post deployment).

• The teams that are responsible for successful deployment and operation of the
application are the operations team, the platform team, the networking team, the
security team, and the compliance team.

• In order to design an effective security and observability strategy for your appli‐
cation, you need to consider security and observability at all stages.

• Collaboration between the teams is critical to success as security is a joint respon‐
sibility of all the teams involved.

The following checklist is a good guide to ensure that you have an effective security
and observability implementation for your Kubernetes deployments:

• All images are scanned for known vulnerabilities prior to deployment and then
periodically scanned for vulnerabilities discovered post-deployment.

• All container images being deployed are built with minimal base OS components
(e.g., distroless or scratch images).

• The operating system on the host is an immutable Linux distribution that
reduces the attack surface area.

• The host OS and the pods deployed are configured with controls that only allow
required access (e.g., system calls, filesystem access).

• The Kubernetes cluster deployment is hardened with the encryption of secrets,
securing access to the API server and the data store.

• Deployment of workloads in your Kubernetes cluster is controlled by best practi‐
ces for RBAC and admission controllers to enforce policies.

• All access to services in your cluster is exposed to external clients using security
best practices.

• The Kubernetes cluster has an integration with a perimeter security device (fire‐
wall or a gateway) to enable the device to have visibility into traffic originating
from the cluster so it can add effective controls.

• You need to ensure that access control is in place for network traffic and applica‐
tion traffic using L3/L7 policies.
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• Ensure that you are using a tool native to Kubernetes to implement observability;
e.g., your tool needs to be aware that pods backing a service or a deployment are
identical and should be viewed as a unit to “observe” a service.

• Ensure that you implement machine learning to baseline behavior of various
entities in your cluster and build an anomaly detection system layered above that
to detect security incidents.

• Ensure that you implement threat defense features like IDS, IPS, and advanced
threat detection techniques in your cluster to detect malicious activity inside
your cluster.

• Ensure that you have implemented data in transit encryption for communication
inside the cluster as well as communication to external entities.

We wish you the best in your Kubernetes journey as you implement security and
observability for your workloads!
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