¥

Kubernete
Programming
with Go

Programming Kubernetes Clients

and Operators Using Go and
the Kubernetes AP

Philippe Martin

Apress:

Kubernetes Programming
with Go

Programming Kubernetes Clients
and Operators Using
Go and the Kubernetes API

Philippe Martin

Apress®

Kubernetes Programming with Go: Programming Kubernetes Clients and Operators
Using Go and the Kubernetes API

Philippe Martin
Blanquefort, France

ISBN-13 (pbk): 978-1-4842-9025-5 ISBN-13 (electronic): 978-1-4842-9026-2
https://doi.org/10.1007/978-1-4842-9026-2

Copyright © 2023 by Philippe Martin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi

Development Editor: James Markham

Coordinating Editor: Divya Modi

Copy Editor: Kim Burton Wiseman

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book's product page, located at https://github.com/Apress/Kubernetes-Programming-
with-Go-by-Philippe-Martin. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9026-2

To Mélina and Elsa, my constant source of truth

Table of Contents

About the AUROFc.ccccemmisemnmssnssssnssssssssss s an s e na s na s annnnnnnnnnn xiii
About the Technical REVIEWEI'Sccccussssssssssanssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnssas XV
Acknowledgments.......cccccrrmisssssmssnmmmmsmssssssssssnnsseesssssssssssnnnnseesssssssssnnnnnssssssssssnnnnns XVii
INtroduction ... ———————————————————__ Xix
Chapter 1: Kubernetes API Introduction..........cccceeemmmmnnmmsssssssssssnmsmmsssssssssssssssnssssnnes 1
Kubernetes Platform at @ GIanCecovceeverres s 1
OPENAPI SPECITICALION......ceerrerrriiriere s r e e s a e e nne s 3
VErbs and KIScccorrmiicinirrnisssise s 5
GrOUP-VErSION-RESOUICE ...euerverrrersersersesersersersessssessessesssssssessessessessssessessessssessessessessssessessesssssssessens 6
SUD-TESOUICES......ceeeeeeereecrercse e e e e r e e e e e e e e Re e e e e e nnnnnas 8
Official APl Reference DOCUMENTAtioNccoveerrrenerencrnesere s 9
The Deployment DOCUMENTALIONcccccrrerererereserere s 10
Operations DoCUMENALION ... e 12

The Pod DOCUMENTALION ..o e 14
One-Page Version of the Documentation............coccvvenreseresc s 15
(0] U 110 o SRS 16
Chapter 2: Kubernetes APl Operationscccuseemmmssssssnmmssssssnmsssssssssssssssnssssssssnnsnss 17
EXamining REQUESESccvvvererieririere s se e s e s st se s sae st s s naesnes 17
MaKING REQUESTS ...uerverreererereesersersessessssessessesssssssessessesssssssessessssessessesasssssessessesssssssessessesssnensesaes 18
USING KUDEC @S @ PIOXY ..vevvceruerrererserersessesessessessessssessessesssssssessessessssessessesssssssessessesssssnsessens 18
Creating @ RESOUICEc..cvveiiriererresesserersessesesessessesessessessessessssessessessssessessessessssessessesssnsnsessens 19
Getting Information ADOUL @ RESOUICE........cccvvererrererrerierserresessessessesessessessessesessessessessssensessens 20
Getting the List 0f RESOUICESevvveervereriererseresesessessessessesessessessessssessessesssssssessessesssssnsessens 20

TABLE OF CONTENTS

Filtering the Result 0f @ LiStcccccocvvriininirirsn s se s s s sneas 21
Deleting @ RESOUICEcceveriiriincie s s sa e s nn e s s 26
Deleting a Collection 0f RESOUICES.......uceverrrrerrererseresseressessssessessesssssssessessessssessessessssessesseses 26
UPdating @ RESOUICEc.ccevuerieriirieene s s s s ses s s s s ss e s s ss e sre s s sn e s s s e s saesae s s 27
Managing Conflicts When Updating @ RESOUICE...........ccvverrererrerserersesensersersessssessessessssessessees 28
Using a Strategic Merge Patch to Update @ RESOUICE...........ccvvererrerenserserensssensesersessssensessens 32
ApplYing RESOUICES SBIVEI-SIUB......eitrrererrererrerierersesessessessessssesessessssessessessesessessessesssessesaes 38
WatChing RESOUICESciciriiie it e e e s a e s e n e s n e s e n 44
Filtering During @ WatCh SESSION.........ccvierrrrierierenersereresss s e ssessssessessessssessesseses 45
Watching After Listing RESOUICES.........vcvveriiereriinies e ss e s se s sne s sneas 45
Restarting @ watch REQUESTcevririier e e 46
Allowing Bookmarks to Efficiently Restart a watch Request..........cccccvcvvninnnininsenneniennen, 47
Paginating RESUILS........ccooereriiriir s e a e s e s 50
Getting Results in Various FOrMatS..........coccoreirninnicrire s sesessesessenens 52
Getting Results as @ TaDIEc.covecrccc e e 52
Using the YAML FOrmMatccocoeviininienn s s e s e s s s s snessessssensesnens 54
Using the Protobuf FOrmat ... s sessesnens 54

{0 0 e 11 0 o TSR 55
Chapter 3: Working with APl Resources in Go.......ccccceernssssssssssnssmmssssssssssssssssessssssns 57
API Library Sources and IMpPOrtccoveernnnmnnnmnnsssesssessss s ssssesssssssssssssessssssssssssnses 57
Content 0f @ PACKAGEccovceriieririsirne s 58
1377 0T 1 o 58
(=T8T ES] (=] o OSSOSO 59
(00T OSSR 60
generated.pb.go and generated.proto..........cccverererrsnen s 60
types_swagger_doCc_generated.gocccvererrrereresmssesesesessese e s s nnes 60
2Z_generated.deePCOPY.00.....cuerrrerererresessere s s e s e e s e sse e e e s e e e e re e e e e nnas 61
SPecCific CONENT IN COTE/VT ... ne e 61
00 LT o T T =T T RS 61
RESOUICELIST.....ccciuiviuecireririssee e 62
1 R 64

TABLE OF CONTENTS

TOIBIALION......ceeecc iR 65
WEll-KNOWN LADEIS ..o s s s 66
Writing Kubernetes RESOUICES iN GOc.ccceurererererenerinreresesese e e sessesessesessesessssessssesessssesenses 67
IMporting the PACKAQEccccveririisircre sttt sn e s 67
The TypeMeta Fields.......ccovicirrre e e 68
The ObjectMeta Fields........cocciciiinrrrr e s 69
SPEC AN STALUS ...t e e p e e 76
Comparison with Writing YAML Manifests.........cccuevmrenrienninnnniensse s seses e sessesesessesenns 76

A Complete EXAMPI ...t s p s e s e e s e e 78
{00 0 e 11 0 o OSSR 83
Chapter 4: Using COMMON TYPES ...ueeerrrssssnnnssssssnnnssssssnsnssssssssnssssssnnnssssssnnnsssssnnnnsssss 85
0] 11 £ OSSOSO 85
Getting the Reference of @ VAUccvvevvesrcce e 85
Dereferencing @ POINTEN........c.cccvicvnesnesesese e 86
Comparing Two ReferenCed ValUEScccoveeerncernessnesess s s e sens 86

L0 T 1= 87
Parsing a String as QUaNtitycccovcrvninninsr e e 87
Using an inf.Dec as @ QUANTIY........c.ccvcrirnrrini e s nnens 88
Using a Scaled Integer as @ QUANTILY.........cccverierenenrriene e nnens 89
Operations 0N QUANTIHIEScvvcevierevrseriere s sa e e s sre e senaenne e 90

T 0 3 141 O 90
L 1S 92
FacCtory MEthods........ccocieriircrres e s 92
0Perations 0N TIME......ccuccciirerirc e e e e et 92

{0 e 11 0 o TS STR 93
Chapter 5: The APl MaChiNeryuuceeeeemmmmessssssssssssnnsssssssssssssssnssssssssssssssssnnsssssssssnns 95
The SChemM@ PACKAGE.......c.cccurrererrrerrreerresesessesessese s s sessssesss e e e sesssssssssssssnsssssssssssssssnsssnses 96
SCNBIME ...ttt b e R e R e e R R e p e Re e 97
INIGTALIZALION ... —————— 98
=T o] o o OSSOSO 100

vii

TABLE OF CONTENTS

(00 01T £] R 101
SEHANIZALION.......coeieiricecre s 103
L3 1 0 o O 105
KiNd 10 RESOUICEcoueeeeceircereses e s sre s 106
ReSOUICE 10 KiNd ..o 107
FiNAING RESOUICEScveiueieirere st s s 107
The DefaultRESTMapper Implementation...........ccccorecrnvevniennescrsce s 107

{0 0 e 11 0 o ST 108
Chapter 6: The Client-go Library.......cccccccmmmrmmmsssssssssssmsmssssssssssssssnssssssssssssssssssssnnss 109
Connecting t0 the CIUSIEN.........ccuc e 110
In-cluster Configuration...........coovcererernsenesese s 110
Out-of-Cluster Configurationccvverrenrnsnnnsse s srenes 110
GEtting @ ClIENTSEL........ccoeceerrcrire e 115
USING the CIIENTSEL......ccceecererirrir e s r e s sae s ae e e e nne 116
Examining the REQUESTSc.ccv i sn e s s a e s 119
Creating @ RESOUICE......c..cccvuruerirecrir e rer et a s s se et b e se e e b et ne s 120
Getting Information ADOUL @ RESOUICEccueeererererereree e 122
Getting LiSt Of RESOUICEScoereerrreresesesrese s esesss e s sesse e e e sesse e s e sssssessssessssssessssenns 123
Filtering the Result 0f @ LiSt........cccovicrninneninese e sssse s 125
Setting LabelSelector Using the Labels PacKageccoverernvenrnesesnsesnsesssesesssesessesenns 125
Setting Fieldselector Using the Fields Packagecccevevernsesnesennsennsesssesesssesesesens 128
Deleting @ RBSOUICEccurerreririereresiesessesse e sssses e saesssss s e ssesaesessessesaessssessessesssssssessessesssssnsesnens 130
Deleting a Collection 0f RESOUICEScuvvererrerersersererssssssessessessssessessesssssssessessessssessessesssssnsesaens 133
UpPdating @ RESOUICE.......cccciirriirirc e re e s s p e nn 134
Using a Strategic Merge Patch to Update a RESOUICEcccovecrercnereser e 135
Applying Resources Server-side with Patch............ccoovevninnncnncs s 138
Server-side Apply Using Apply Configurations...........c.cuceevnsennenmnnsennsessnesessse s sessesenns 140
Building an ApplyConfiguration from Scratch...........ccouvvrennncninrsnesse e 142
Building an ApplyConfiguration from an Existing RESOUICEc.ccevrerererernsesenenesnsesennes 143

viil

TABLE OF CONTENTS

WatChing RESOUICESocuiiiiriiiiriiir e s a e s e s s n e s ae s 145
Errors @nd STAtUSESccceererrrererererrsnesesese s ss e se s e e sesssssssssssesssssnsaes 149
Definition of the metav1.Status STrUCIUre ... 149
Error Returned by Clientset Operations............cocococerrnnenesesnnssssesese s sessssssssssesens 153
RESTCIENL......cvetiteeeeseeecseeseesssss s se e b e g e e 154
BUldiNg the REQUESTceeeeeeeeerecr e 154
Executing the REQUEST........com e 161
EXPIOiting the RESUIL.........cceeeeeee e 161
Getting Result @S @ TADIE.........ccveeerrrererererese s 162
DISCOVEIY ClIENTcceeeeeeieecircsir e e nr s 164
R 12T o] 1 165
PriOFtYRESTIMADPET.c.ciieriiiccire s 165
DeferredDiSCOVEryRESTMAPPETccovvieererisissssse s s ssssssens 167

0] T 11T (0] o T 167
Chapter 7: Testing Applications Using Client-g0ccceusssennmnsssssnnsssssssnssssssssnns 169
FaAKE ClIENTSELcoveereececrirer e 170
Checking the Result of the FUNCLION...........cccoveiriescrrr s 171
ReaCting 10 ACHIONS........coueocrecercrer et 173
Checking the ACHIONS ... 177

L LN) 1T | T 185
FakeDiSCOVErY ClIENT.........cccoveeerererese s s nesss s 188
Stubbing the SErverVersion..........ccvirenrnssnsesrse s s ssssesenses 189
ACHIONS.....ecueereeerreerrsse s e s e s e s e e e e e R e e e e s Re e R nRe e e e e nRe e s 190
MOCKING RESOUICESvcuerveeerrnscsrssesessesesrsesessesessssessssesessesesssssssssesesssssssssssssssssssssssssnssssnsssnnes 190

[0 1 e [T SOOI 191
Chapter 8: Extending Kubernetes APl with Custom Resources Definitions.......... 193
Performing OPerations iN GO........ccuceveverrerierenensenrese s s s s s s s s e s e ssesreses e saesnesassessesnens 194
The CustomResourceDefinition in Detail............ccocoeevrinnnnn s 195
Naming the RESOUICEcccevverieereiirir s e e s a e s s ae s s 196
Definition of the ReSOUrCe VEISIONS..........cucerinernnmsnisessse s 197
Converting BEtWEEN VEISIONS........ccvvverrerernerseresssssssesessessssessessesssssssessessesssssssessesssssssesseses 198

TABLE OF CONTENTS

Schema 0f the RESOUICE ... s 199
Deploying a Custom Resource Definition..........ccccvevvrienresnnscrnesne s sens 201
Additional Printer COIUMNSccoveereerecrree s e 204
{0 0 e 11 0 207
Chapter 9: Working with Custom ReSOUrCEeScussemmrrsssssnnnssssssnnssssssssnsssssssnnnss 209
Generating @ ClIENTSEL........coucciecre e 209
USING EEPCOPY-UBN....coveerrrrirrrreerresesrsesessesesrsesessesessa e ses s sssesss e ssssessssesessasessasssssssssnsanes 211
USING ClIENT=0BNvveeeccrtreir e s 213
Using the Generated ClientSet..........ccveiiiirninnesnese s 216
Using the Generated fake ClIENTSELccovcvvvernennes s 217
Using the Unstructured Package and Dynamic Client..........ccccocvvvverennnnsensenesensessesesessensenaens 217
The UnStructured TYPE......cocvceiiererirer e e s e 217
The UnStructuredList TYPEcovvvercrere sttt sr e 221
Converting Between Typed and Unstructured ODJECESccccveerrervrerserieresensensesesessesesaens 223
The DYNAMIC CHENL.........ccvcerererirrerie et sa e sae e s s s a e ne s nnes 223

0] T 111 (0] o P 229
Chapter 10: Writing Operators withthe Controller-Runtime Library.......cccccuseennns 231
THE MANAGETc.veiveieirere s s e e e E e e R e e e e R R e e e e e ne e 232
T3] 110 TR 235
Creating @ CONTIOIIEN........ ..o 236
WatChing RESOUICESccvceririirsire ettt s bt b 237

A First EXAMPIE.....coeoiiirrccneresir st s 241
Using the Controller BUIIAEN ... s 244

A Second Example Using the ControllerBUilder............ccovevreenerenernserenesesese e 245
Injecting Manager Resources into the ReCONCIIErcccoreeerercrnecnrese e 247

(UL T (TN 8 1T | SR 250
Getting Information ADOUL @ RESOUICE........ccerrerererererreserrssesesss s e e e sssessnnes 250
LiSTING RESOUICES ...cveuerreuerenscsesseessssesessesessesesessssessssessasesssssssssssssssssssssssssssssssssssnsssssssnsssnnes 251
Creating @ RESOUICEccoverrreernsesesesesse e ses e ses e s ses e s s e sessssnssssnssssesesssssssssensnns 254
Deleting @ RESOUICEccoveerrrereresesrenesrsesessesessssessssesessesesssssssssesessesessssnssssssssssssssssssssnsnsnnes 254

TABLE OF CONTENTS

Deleting a Collection 0f RESOUICES......cuceveverrerrerersesersersessessssessessessssessessesssssssessesasssssessesses 255
UPdating @ RESOUICEcccuevueriiriiriiereresses s s s see s s s e s s se e s sne s se s s e sae s ssessnesnesaensnns 256
PatChing @ RESOUICE...........coerieriie ettt a e s s s 256
Updating the Status 0f @ RESOUICEc.evvrervererererserere s sese s sss s saeses e ssessesssssssessees 259
Patching the Status 0f @ RESOUICEccccveververrererinsersere e sessese s s sessessessesessessesassessessesaes 260

[T o111 o OSSO OR S S RPRSSN 261
VBIDOSITYcveieiiere e e r e nn 262
Predefined VAlUES.........cococeeceeeeee e 262
(0T To[<] g Uy OSSOSO 262
Getting the Logger from CONeXtcccoreirrinniesnesc e ssenes 263
XY=)3T 263
{0 e 11 0 T 265
Chapter 11: Writing the Reconcile LOOPccuuussmmmmenmmmmsmmssssssssssssssssssssssssssssssnnnss 267
Writing the ReconCile FUNCHONoccvieincsree e s 268
Checking Whether the Resource EXistS.........couvvnenninnnsennesssse s sesennes 268
Implementing the ReConCiled RESOUICE..........cucevrrerereserinsesese s sranes 268
Simple Implementation EXample.........ccovvvienninnnnnnesse s 270

0] T 111 (0] o 275

The enVEeSt PACKAQE.cccrirne e e s e s 277
Installing enviest BiNArIES ... e 277
USING BNVEEST.....cicece e e s e e e e 278

Defining @ ginKgO SUILE.......ccourieireeircccrr e 279

WIItING The TESTS ... 283
L] S TR 284
L] 2T 285
L] TR 285
L] O TR 285

{0 e 11 0 290

xi

TABLE OF CONTENTS

Chapter 13: Creating an Operator with Kubebuilderccccevvssemmrrnsssnnnnssssssnnns 291
Installing KUDEDUIIARTcoueiiirererr e 291
Creating @ ProjECt ... s 291
Adding a Custom Resource t0 the Projectcccueverenernsmsnsesmsssssessesesssesssesessesessssessssessnnes 293
Building and Deploying ManifestS.........couumenrinmmnsesnessnese s sssss e sessssesenns 295
Running the Manager LOCAIIYc.cccvvurrrierenenrerrenesesessese e sessessessessssessessesssssssessessesssssssensens 295
Personalizing the CUSTOM RESOUICEccvverrerrerersererenssssessessessssessessesssssssessessessssessessesssssssessens 296

Editing the GO SIIUCTUIES......cvceverererrere et s s s sr e sae e e s snennes 297
Enabling the Status SUDIESOUICEcvcevevirrerrererrn e sessesse e s s sse e s ssesaesesessesaes 297
Defining Printer COIUMNS........ccveverirreriereressese s e s sse e sas e ssessessssessesaessssessessesasssssessesaes 297
Regenerating the FileS.........cciiiiiniiniin e s s sse s 298
Implementing the Reconcile FUNCLION ... seenens 299
Adding RBAC ANNOTALIONSccceriiiiriiicner st se e e nne s 299
Deploying the Operator 0n the CIUSTETcccoiieeresrrerere s 300
Creating a New Version of the RESOUICE.........c.cuccvvermresernsesnnese s ss s s 301
Defining @ NEW VEISIONccceiineiinernesssessns e ss s se e e se s s ssssesssssssssssessnses 302
Implementing Hub and Convertibleccccvvvnenncsnnsesese e 303
Setting Up the WeDNOOK ...t 305
Updating Kustomization FileSccuvererinernsennessnsse s s ssssssessnses 306
USING Various VEISIONSccceerunerinsessssensssesessssessssessssesessssessssssessssesesssssssssssssssssssssssssnsssanes 306

0] T 111 (0] o S 308
INA@X . eeeiiienisiessnies s s ————————————————_ 309

xii

About the Author

Philippe Martin has been working with Kubernetes for
five years, first by creating an Operator to deploy video
CDNs into the cloud, later helping companies deploy their
applications into Kubernetes, then writing a Client to help
developers work in a Kubernetes environment. Philippe
has passed the CKAD, CKA, and CKS certifications. He has
extensive experience with distributed systems and open-
source software: he started his career 20 years ago creating
thin clients based on the Linux kernel and open-source

components. He is currently working at Red Hat on the
Development Tools team.

Philippe has been active in the development of Kubernetes, especially its
documentation, and participates in the translation of the official documentation into
French, has edited two reference books about the Kubernetes API and kubectl, and is
responsible for the French translation of the Kubernetes Dashboard. He participated in
Google Season of Docs to create the new Kubernetes API Reference section of the official
documentation and is maintaining it.

xiii

About the Technical Reviewers

Bartosz Majsak writes code for fun and profit while proudly
wearing a red fedora (also known as the Red Hat). He has
been long-time open-source contributor and Java developer
turned into Golang aficionado. Bartosz is overly enthusiastic
about coffee, open source, and speaking at conferences,

not necessarily in that order. One thing that perhaps proves
he is not a total geek is his addiction to alpine skiing (and

running).

Prasanth is a Blockchain Certified Professional, Professional
Scrum Master, and Microsoft Certified Trainer who is
passionate about helping others learn how to use and gain
benefits from the latest technologies. He is a thought leader
and practitioner in Blockchain, Cloud, and Scrum. He also
handles the Agile Methodology, Cloud, and Blockchain
technology community initiatives within TransUnion
through coaching, mentoring, and grooming techniques.

Prasanth is an adjunct professor and a technical speaker.
He was selected as a speaker at the China International
Industry Big Data Expo 2018 by the Chinese government and also was invited to the
International Blockchain Council by the Government of Telangana and Goa. In addition,
he received accolades from the Chinese government for his presentation at China
International Industry Big Data Expo 2018. Prasanth has published his Patent, entitled
“Digital Educational Certificate Management System Using IPFS-Based Blockchain.”

To date, he has interacted extensively, reaching more than 50,000 students,
mostly within the technical domain. Prasanth is a working group member of the
CryptoCurrency Certification Consortium, the Scrum Alliance, the Scrum Organization,
and the International Institute of Business Analysis.

Acknowledgments

I would like to thank the whole Anevia “CDN” team who started working with me on
Kubernetes back in 2018: David, Ansou, Hossam, Yassine, Etienne, Jason, and Michaél.
Special thanks to Damien Lucas for initiating this project and for having trusted us with
this challenge.

My discovery of Kubernetes has been much easier and pleasant thanks to the TGIK
channel and its numerous episodes, hosted by Joe Beda, Kris Nova, and many others.
Plus, thanks to all the Kubernetes community for such a great ecosystem!

Xvii

Introduction

Back in 2017, I was working for a company building video streaming software. At the end
of that year, a small team, including me, got assigned a new job to work on deploying

the Video CDN developed by the company on Kubernetes. We decided to explore the
concept of Custom Resources and Operators to deploy this CDN.

The current Kubernetes release was 1.9, the concept of Custom Resource Definition
had just been released in 1.7, and the sample-controller repository was the only
documentation we knew of to help build an Operator. The Kubernetes ecosystem,
being especially lively, had tools appearing in the following months, specifically the
Kubebuilder SDK. Thus, our project was launched.

From that moment on, I spent numerous days exploring how to build Operators and
other programs interacting with the Kubernetes API. But the damage was done: I had
started to learn Kubernetes programming from specific to general, and it took me a long
time to fully understand the innards of the Kubernetes API.

I have written this book in the hope that it can teach new Kubernetes developers how
to program, from general to specific, with the Kubernetes APIin Go.

Chapters at a Glance

The target reader for this book has some experience working with REST APIs, accessing
them either by HTTP or using clients for specific languages; and has some knowledge of
the Kubernetes platform, essentially as a user—for example, some experience deploying
such APIs or frontend applications with the help of YAML manifests.

o Chapter 1 of the book explores the Kubernetes API and how it
implements the principles of REST. It especially focuses on the
Group-Version-Resource organization and the Kind concept
proposed by the API.

o Chapter 2 continues by covering the operations proposed by the API
and the details of each operation, using the HTTP protocol.

Xix

INTRODUCTION

o Chapters 3 to 5 describe the common and “low-level” Go libraries to
work with the Kubernetes API: the API and API Machinery Libraries.

o Chapters 6 and 7 cover the Client-go Library—the high-level library
to work with the Kubernetes API in Go—and how to unit test code
using this library.

At this point in the book, the reader should be comfortable with building Go
applications working with native resources of the Kubernetes API.

o Chapters 8 and 9 introduce the concept of Custom Resources and
how to work with them in Go.

o Chapters 10 to 12 cover the implementation of Kubernetes Operators
using the controller-runtime library.

o Chapter 13 explores the Kubebuilder SDK, a tool to help develop and
deploy Kubernetes Operators.

By the end of the book, the reader should be able to start building Kubernetes
operators in Go and have a very good understanding of what happens behind the scenes.

CHAPTER 1

Kubernetes API
Introduction

Kubernetes is a platform to orchestrate containers operating in the declarative mode.
There are one-thousand-and-one ways to describe how the Kubernetes platform is
constructed. This book focuses on programming with the platform.

The entry point of the Kubernetes platform is the API. This chapter explores the
Kubernetes architecture by highlighting the central role of the Kubernetes API. It then
focuses on the HTTP REST nature of the Kubernetes API, and on the extensions added to
organize the many resources managed by it.

Finally, you will learn how to navigate the reference documentation effectively to be
able to extract the maximum quantity of useful information daily.

Kubernetes Platform at a Glance

On one side of the chain, the user declares the high-level resources to build applications
to deploy: Deployments, Ingresses, and so on.

In the middle, controllers are activated to transform these resources into low-level
resources (Pods), and the scheduler distributes these resources into nodes. On the other
side of the chain, the node agents deploy the low-level resources onto nodes.

The main elements of the Kubernetes platform (commonly called the control-plane)
are highlighted in Figure 1-1 and described in the following:

1. The API server - this is the central point on the control-plane; the
user and the various pieces of the control-plane contact this API to
create, get, delete, update, and watch resources.

2. The etcd database - this is only accessible by the API Server, is
used to persist the data relative to resources.

© Philippe Martin 2023
P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_1

https://doi.org/10.1007/978-1-4842-9026-2_1

CHAPTER 1

3.

KUBERNETES API INTRODUCTION

The Controller manager - this runs the controllers that transform
high-level resources declared by the user into low-level resources
to be deployed on nodes. The controllers are connected to the API
Server, watching for high-level resources and creating, deleting,
and updating low-level resources to satisfy the specifications
declared in high-level resources.

Scheduler - this distributes the low-level resources on the various
nodes. The Scheduler is connected to the API Server to watch for
unaffected resources and connect them to nodes.

Kubelet - this is an agent running on all nodes of the cluster,

and each agent manages the workloads affected to its node. The
kubelet is connected to the API Server to watch for Pods resources
affected to its node and to deploy the associated containers using
the local container runtime.

Kube proxy - this is an agent running on all nodes of the cluster,
and each agent manages the network configurations affected to
its node. The kube proxy is connected to the API Server to watch
for Service resources and to configure associated network rules on
its node.

CHAPTER 1 KUBERNETES API INTRODUCTION

Kubectl m

- - (b}
;fe‘?fes \Na‘c“ §.
o NJ6r Controllers -
&, Sk
o oz, APl Server | ea® £
%y L0 §
$’5’\é\ ’
Kubelet g
=
Scheduler
ooa Kube-proxy

S

Figure 1-1. The architecture of Kubernetes

OpenAPI Specification

The Kubernetes API is an HTTP REST API. The Kubernetes team provides a specification
for this API in the OpenAPI format, either in v2 format at https://github.com/
kubernetes/kubernetes/tree/master/api/openapi-spec or in Kubernetes v1.24,

in v3 format, at https://github.com/kubernetes/kubernetes/tree/master/api/
openapi-spec/v3.

These specifications also are accessible from the API Server at these paths:
/openapi/v2 and /openapi/v3.

An OpenAPI specification is made up of various parts and, among these, are a list of
paths and a list of definitions. The paths are the URLs you use to request this API, and
for each path, the specification gives the distinct operations such as get, delete, or post.
Then for each operation, the specification indicates what are the parameters and body
format for the request, and what are the possible response codes and associated body
format for the response.

https://github.com/kubernetes/kubernetes/tree/master/api/openapi-spec
https://github.com/kubernetes/kubernetes/tree/master/api/openapi-spec
https://github.com/kubernetes/kubernetes/tree/master/api/openapi-spec/v3
https://github.com/kubernetes/kubernetes/tree/master/api/openapi-spec/v3

CHAPTER 1 KUBERNETES API INTRODUCTION

The parameters and bodies for requests and responses can be either simple types
or, more generally, structures containing data. The list of definitions includes data
structures that help build the parameters and bodies for the operations’ requests and
responses.

Figure 1-2 is a simplified view of a specification for a User API. This API can accept
two different paths: /user/{userld} and /user. The first path, /user/{userld}, can accept
two operations, get and delete, respectively, to receive information about a specific user,
given its user ID; and to delete information about a specific user, given its user ID. The
second path, /user, can accept a single operation, post, to add a new user, given its
information.

In this AP], a definition of a structure User is given, describing the information for a
user: its ID, first name, and last name. This data structure is used in the response body of
the get operation on the first path, and in the request body of the post operation on the
second path.

CHAPTER 1

KUBERNETES API INTRODUCTION

paths:
luser/{userld}:
get:
parameters:
userld: integer
requestBody: (empty)
responses:
200:
User
delete:
parameters:
userld: integer
requestBody: (empty)
responses:
204: (empty)
luser:
post:
parameters: (empty)
requestBody: User
responses:
200:
User
definitions:
User:
ID: integer
FirstName: string
LastName: string

Figure 1-2. A simplified user API specification

Verbs and Kinds

The Kubernetes API adds two concepts to this specification: the Kubernetes API Verbs

and the Kubernetes Kinds.

CHAPTER 1 KUBERNETES API INTRODUCTION

The Kubernetes API Verbs are mapped directly to the operations in the OpenAPI
specification. The defined verbs are get, create, update, patch, delete, list, watch, and
deletecollection. The correspondence with the HTTP verbs can be found in Table 1-1.

Table 1-1. Correspondence Between
Kubernetes API Verbs and HTTP Verbs

Kubernetes API Verb HTTP Verb

get GET
create POST
update PUT
patch PATCH
delete DELETE
list GET
watch GET
deletecollection DELETE

The Kubernetes Kinds are a subset of the definitions in the OpenAPI specification.
When requests are made to the Kubernetes API, data structures are exchanged through
the bodies of requests and responses. These structures share common fields, apiVersion
and kind, to help the participants of the request recognize these structures.

If you wanted to make your User API manage this Kind concept, the User structure
would contain two additional fields, apiVersion and kind—for example, with values v1
and User. To determine whether a definition in the Kubernetes OpenAPI specification
is a Kubernetes Kind, you can look at the x-kubernetes-group-version-kind field of the
definition. If this field is defined, the definition is a kind, and it gives you the values of the
apiVersion and kind fields.

Group-Version-Resource

The Kubernetes API is a REST API, and as a result of that it manages Resources, and the
paths to manage these resources follow the REST naming conventions—that is, by using
a plural name to identify a resource and by grouping these resources.

CHAPTER 1 KUBERNETES API INTRODUCTION

Because the Kubernetes API manages hundreds of resources, they are grouped
together, and because the API evolves, the resources are versioned. For these reasons,
each resource belongs to a given Group and Version, and each resource is uniquely
identified by a Group-Version-Resource, commonly known as GVR.

To find the various resources in the Kubernetes API, you can browse the OpenAPI
specification to extract the distinct paths. Legacy resources (e.g., pods or nodes) will
have been introduced early in the Kubernetes API and all belong to the group core and
the version vl1.

The paths to manage legacy resources cluster-wide follow the format /api/
vl/<plural_resource_name>—for example, /api/vl/nodes to manage nodes. Note
that the core group is not represented in the path. To manage resources in a given
namespace, the path format is /api/vl/namespaces/<namespace_name>/<plural_
resource_name>—for example, /api/vl/namespaces/default/pods to manage pods in
the default namespace.

Newer resources are accessible through paths following the format
/apis/<group>/<version>/<plural_resource_name> or /apis/<group>/<version>/
namespaces/<namespace_name>/<plural_resource_name>.

To summarize, the formats of the various paths to access resources are:

e /api/vl/<plural_name> - to access legacy non-namespaced
resources

Ex: /api/vl/nodes to access non-namespaced nodes resources
or

To access legacy namespaced resources cluster-wide

Ex: /api/v1/pods to access pods across all namespaces

e /api/vl/namespaces/<ns>/<plural_name> - to access legacy
namespaced resources in a specific namespace

Ex: /api/vl/namespaces/default/pods to access pods in the default
namespace

e /apis/<group>/<version>/<plural_name> - to access non-
namespaced resources in specific group and version

Ex: /apis/storage.k8s.io/v1/storageclasses to access non-
namespaced storageclasses (group storage.k8s.io, version v1)

CHAPTER 1 KUBERNETES API INTRODUCTION

or
To access namespaced resources cluster-wide

Ex: /apis/apps/vl/deployments to access deployments across all

namespaces

e /apis/<group>/<version>/namespaces/<ns>/<plural_name> - to
access namespaced resources in a specific namespace

Ex: /apis/apps/vl/namespaces/default/deployments to access
deployments (group apps, version v1) in the default namespace

Sub-resources

Following the REST API convention, the resources can have sub-resources. A sub-
resource is a resource that belongs to another and can be accessed by specifying its
name after the name of the resource, as follows:

e /api/vl/<plural>/<res-name>/<sub-resource>
Ex: /api/vl/nodes/nodel/status

e /api/vl/namespaces/<ns>/<plural>/<res-name>/<sub-resource>
Ex: /api/vl/namespaces/nsl/pods/pod1/status

e /apis/<group>/<version>/<plural>/<res-name>/<sub-resource>
Ex: /apis/storage.k8s.io/v1/volumeattachments/volattl/status

e /apis/<grp>/<v>/namespaces/<ns>/<plural>/<name>/<sub-res>
Ex: /apis/apps/vl/namespaces/nsl/deployments/depl/status

Most Kubernetes resources have a status sub-resource. You can see, when writing
operators, that the operator needs to update the status sub-resource to be able to
indicate the state of this resource observed by the operator. The operations that can
be executed in the status sub-resource are get, patch, and update. The Pod has more
sub-resources, including attach, binding, eviction, exec, log, portforward, and proxy.
These sub-resources are useful for getting information about a specific running pod, or

executing some specific operation on a running pod, and so on.

CHAPTER 1 KUBERNETES API INTRODUCTION

The resources that can Scale (i.e., deployments, replicasets, etc.) have a scale sub-

resource. The operations that can be executed in the scale sub-resource are get, patch,
and update.

Official APl Reference Documentation

The official reference documentation of the API can be found at https://kubernetes.
io/docs/reference/kubernetes-api/. The resources managed by the API are first
grouped together by category (i.e., workloads, storage, etc.), and for each category, you
can obtain a list of resource names with a short description (Figure 1-3).

kubernetes Documentation Kubernetes Blog Training
Kubernetes API
Q, Search
Kubernetes' APl is the application that serves Kubernetes functionality through a RESTful interface and stores the state of the
AP| Overview o cluster.

API Access Control Kubernetes resources and “records of intent” are all stored as AP objects, and maodified via RESTful calls to the API. The API

allows configuration to be managed in a declarative way. Users can interact with the Kubernetes API directly, or via tools like
kubectl . The core Kubernetes APl is flexible and can also be extended to support custom resources,

Well-Known Labels,
Annotations and Taints
Kubernetes API
Workload Resources
Workload Resources
Service Resources

Config and Storage .
Resources Service Resources

Authentication Resources

Authorization Resources Config and Storage Resources
Policy Resources

Extend Resources Authentication Resources

Cluster Resources

Common Definitions Authorization Resources
Common Parameters

Kubernetes Issues and Policy Resources

Security

Mode Reference Information Extend Resources

Ports and Protocols
Sstupitocts Cluster Resources
Command line tool (kubectl)

SEEILEES Common Definitions
Configuration APls
Scheduling

ulng Common Parameters
Other Tools

Figure 1-3. The Kubernetes resources grouped by category

Note that these categories are not part of the Kubernetes API definition but are used

in this website to help inexperienced users find their way into the multitude of available
resources.

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

CHAPTER 1 KUBERNETES API INTRODUCTION

To be precise, the name displayed is not the resource name in the REST sense, but
the associated principal kind, as shown in Figure 1-4. For example, when managing
Pods, the resource name used in the REST paths is pods (i.e., lowercase and plural), and
the definition used to exchange information about Pods during HTTP requests is named
Pod (i.e., uppercase and singular). Note that other kinds can be associated with the same
resource. In the example in this chapter, the PodList kind (used to exchange information
about Lists of Pods) also exists.

kubernetes Documentation Kubernetes Blog Training

Kubernetes Documentation / Reference / Kubernetes APl / Workload Resources

Q, Search

Workload Resources
Home
Getting started
Concepts Pod

Pod Is a collection of containers that can run on a host.

Tasks
Tutorials
Reforere PodTemplate

PodTemplate describes a template for creating copies of a predefined pod.
Kubernetes AP

Workload Resources L
ReplicationController
ReplicationCentroller represents the configuration of a replication controller,

Pod

ReplicaSet
ReplicaSet ensures that a specified number of pod replicas are running at any given time.

Deployment
Deployment enables declarative updates for Pods and ReplicaSets.

StatefulSet
StatefulSet represents a set of pods with consistent identities.

ControllerRevision
ControllerRevision implements an immutable snapshot of state data,

yila DaemonSet
Service Resources DaemonSet represents the configuration of a daemon set.

Figure 1-4. The resources for a specific category, with a short description

The Deployment Documentation

Let’s explore the reference page for the Deployment available at this address:
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/
deployment-v1/. The title of the page, Deployment, is the principal kind associated with
the deployments resource shown in Figure 1-5.

10

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/deployment-v1/
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/deployment-v1/

CHAPTER 1 KUBERNETES API INTRODUCTION

kubernetes Documentation Kubernetes Blog

Kubernetes Documentation / Reference / Kubernetes APl / Workload Resources / Deployment

Q, Search

Deployment
Home p y
Getting started apiversion: apps/vi
Concepts import "kés.io/api/appssvi”
Tasks
Tutorials
Reference Deployment

Kubernetes API

Deployment enables declarative updates for Pods and ReplicaSets.
Workload Resources

Pod

apiVersion: appsivi
PodTemplate

kind: Deployment

Replicatio

.

ReplicaSet

metadata (ObjecthMeta)

Deployment
D Standard object's metadata. More info: https./gitk8s.io/community/contributors/devel/sig-architecture/api-

CratefiiCer)
StatefulSet conventions.md#metadata

spec (DeploymentSpec)

Specification of the desired behavior of the Deployment.

status (DeploymentStatus)

Most recently observed status of the Deployment.

DeploymentSpec

Contribute DeploymentSpec is the specification of the desired behavior of the Deployment.

» selector (1 abelSelector), reauired

Figure 1-5. The Deployment documentation page

The apiVersion indicated in the header can help you write a YAML manifest for a
Deployment resource because you need to specify, for each resource in a Kubernetes
manifest, the apiVersion and kind.

In this case, you know the manifest for a deployment will start with the following:

apiVersion: apps/vi
kind: Deployment

The next header line indicates the import to use when writing Go code. In Chapter 3,
you will see how to use this import when describing resources in Go.

After the header, a list of structure definitions is described, also accessible from the
table of contents for the Deployment documentation page in Figure 1-6. The first one is
the principal kind of the resource, optionally followed by structure definitions that are
used in fields of the first kind.

11

CHAPTER 1 KUBERNETES API INTRODUCTION

deletecollection delete collection of

Jeployment

Figure 1-6. Table of contents for the Deployment documentation page

For example, the Deployment kind contains a spec field, of type DeploymentSpec,
which is described later. Note that DeploymentSpec is not a structure directly
exchanged during HTTP requests, and for that, it is not a kind and does not contain kind
or apiVersion fields.

Following the principal kind, and its associated definitions, other kinds associated
with the resource are displayed. In this case, the DeploymentList kind.

Operations Documentation

The next subject in the API Documentation for a resource is the list of possible
operations on this resource or its sub-resources, also accessible from the table of
contents page (see Figure 1-6). By examining the details for the create operation to
Create a Deployment, as shown in Figure 1-7, you can see the HTTP Request verb and
path to use, the parameters to pass during the request, and the possible responses. The
HTTP verb to use for the request is POST and the path is /apis/apps/vl/namespaces/
{namespace}/deployments.

12

CHAPTER 1 KUBERNETES API INTRODUCTION

kubernetes
create create a Deployment
Q, Searc
HTTP Request
Home POST /apis/apps/v1/namespaces/{namespace}/deployments
Getting started
Concepts Parameters
Tasks . ;)
* namespace (in path): string, required
Tutorials
Reference namespace
Kubernetes API + body: Deployment, required

Workload Resources

Pod

« dryRun (in query): string
PodTemplate dryRun

ReplicationController

fieldManager (in query): string

ReplicaSet X
fieldManager

Deployment

fieldValidation (in query): string

fieldValidation

* pretty (in query): string

Cronjob pretty

zontalPodAutoscaler

Response

200 (Deployment): OK

201 (Deployment): Created
Contribute 202 (Deployment): Accepted

401: Unauthorized
Figure 1-7. Details for a “create” Deployment operation

The {namespace} part of the path indicates a path parameter, which is to be
replaced by the name of the namespace on which you want to create the deployment.
You can specify the query parameters: dryRun, fieldManager, fieldValidation, and
pretty. These parameters will follow the path with the format path?dryRun=All.

The body of the request must be a Deployment kind. When using kubectl, you are
writing Kubernetes Manifests that contain this body. In Chapter 3, you will see how to
build the body in Go. The possible HTTP codes for the responses are: 200, 201, 202, and
401; and for the 2xx codes, the response body will contain a Deployment kind.

13

CHAPTER 1 KUBERNETES API INTRODUCTION

The Pod Documentation

Some structures contain many fields. For them, the Kubernetes API documentation
categorizes the fields. An example is the documentation of the Pod resource.

The documentation page for the Pod resource first contains the description for the
principal kind, Pod, followed by the description of the PodSpec structure. The PodSpec
structure contains about 40 fields. To help you understand the relationships between
these fields and to simplify their exploration, they are arranged into categories. The
PodSpec fields’ categories are the following: Containers, Volumes, Scheduling, Lifecycle,
and so on.

Additionally, for fields containing nested fields, descriptions of them are generally
displayed inline to avoid a back and forth between structure descriptions. For complex
structures, however, the description is reported subsequently on the page, and a link is
present next to the field name to be able to access it easily.

This is always the case for the Spec and Status structures because they are very
commonly found in almost all the resources. In addition, this is the case for some
structures used in the Pod kind—for example, Container, EphemeralContainer,
LifecycleHandler, NodeAffinity, and so on.

Some structures used in several resources are placed in the Common Definitions
section, and a link is present next to the field name to access it easily. In Figure 1-8, you
can see the Containers category inside the description of the PodSpec structure.

14

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/

CHAPTER 1 KUBERNETES API INTRODUCTION

PodSpec

PodSpec is a description of a pod.

Containers
« containers ([JContainer), required
Patch strategy: merge on key name

List of containers belonging to the pod. Containers cannot currently be added or removed. There must be at least one
container in a Pod. Cannot be updated.

* initContainers ([JContainer)
Patch strategy: merge on key name

List of initialization containers belonging to the pod. Init containers are executed in order prior to containers being
started. If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy. The
name for an init container or normal container must be unique among all containers. Init containers may not have
Lifecycle actions, Readiness probes, Liveness probes, or Startup probes. The resourceRequirements of an init container
are taken into account during scheduling by finding the highest request/limit for each resource type, and then using the
max of of that value or the sum of the normal containers. Limits are applied to init containers in a similar fashion. Init
containers cannot currently be added or removed. Cannot be updated. More info:
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

+ imagePullSecrets ([JLocalObjectReference)
Patch strategy: merge on key name

ImagePullSecrets is an optional list of references to secrets in the same namespace to use for pulling any of the images
used by this PodSpec. If specified, these secrets will be passed to individual puller implementations for them to use. For
example, in the case of docker, only DockerConfig type secrets are honored. More info:
https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod

Figure 1-8. Extract of the PodSpec structure documentation

You also can see that the fields, containers and initContainers, are of the same
type as Container, which is described later on the page and is accessible with a link.
The imagePullSecrets field is of type LocalObjectReference, which is described in the
Common Definitions section and also is accessible through a link.

One-Page Version of the Documentation

Another version of the API Reference documentation exists and is presented on a single
page. This version covers all the versions of the resources served by a Kubernretes
version (not just the latest one). This version (if you want, change the last part of the path
to navigate to another Kubernetes version) can be found at the following URL:
https://kubernetes.io/docs/reference/generated/kubernetes-api/vi.24/

15

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/

CHAPTER 1 KUBERNETES API INTRODUCTION

Conclusion

In this chapter, you have been able to discover the architecture of the Kubernetes
platform, and that the API Server plays a central role. The Kubernetes API is an HTTP
REST AP], and the resources are categorized into various versioned groups.

Kinds are specific structures used to exchange data between the API server and the
clients. You can browse, using the official Kubernetes website, the API specifications
in a human-readable form to discover the structure of the various resources and
kinds, the different operations available for each resource and sub-resource, and their
associated verbs.

16

CHAPTER 2

Kubernetes APl Operations

The previous chapter described that the Kubernetes API follows REST principles and
enables users to manipulate resources.

In this chapter, you will learn how to perform various operations by making HTTP
requests directly. During your daily work, you probably will not have to interact directly
with the HTTP layer, but it is important to understand how the API works at this level so
that you can understand how to use more easily it with a higher-level library.

Examining Requests

Before starting to write your own HTTP requests, you can examine with kubectl which
requests are used when executing kubectl commands. This can be achieved by using
the verbose flag, -v, with a value greater than or equal to 6. Table 2-1 shows which
information is displayed at each level.

For example, if you want to know the URL that is called when getting pods for all
namespaces, you can use the following command:

$ kubectl get pods --all-namespaces -v6

loader.go:372] Config loaded from file: /home/user/.kube/config
round_trippers.go:553] GET https://192.168.1.194:6443/api/v1/pods?1imit=500
200 OK in 745 milliseconds

17
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_2

https://doi.org/10.1007/978-1-4842-9026-2_2

CHAPTER 2 KUBERNETES API OPERATIONS

In the output of the command, you can see that the path used is /api/v1l/pods. Or,
when getting pods in a specific namespace, you can see that the path used is /api/v1/
namespaces/default/pods:

$ kubectl get pods --namespace default -v6

loader.go:372] Config loaded from file: /home/user/.kube/config
round_trippers.go:553] GET https://192.168.1.194:6443/api/vi/namespaces/
default/pods?1imit=500 200 OK in 138 milliseconds

Table 2-1. Verbosity Levels

Level Method Request Events Request Response Response Curl Body

and URL timing timing headers status headers cmd length
-v6 yes yes - - - - - 0
-v7 yes - - yes yes - - 0
-v8 yes - - yes yes yes - <1024
-v9 yes yes yes - - yes yes <
10240
-v10 vyes yes yes - - yes yes oo

Making Requests

This section examines all the possible operations you can do with Kubernetes resources.

Using kubectl as a Proxy

You must be authenticated to make requests to the Kubernetes API of a cluster, unless
your cluster accepts unauthentified requests, which is unlikely.

A way to run authenticated HTTP requests is to use kubectl as a proxy to make it deal
with the authentication. For this, the kubectl proxy command can be used:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

18

CHAPTER 2 KUBERNETES API OPERATIONS

On a new terminal, you can now run your HTTP requests without any
authentication. Next, a HOST variable to access the proxy is defined:

$ HOST=http://127.0.0.1:8001

Creating a Resource

You can create a new resource by first creating a Kubernetes manifest describing this
resource—for example, to create a Pod, you can write:

$ cat > pod.yaml <<EOF
apiVersion: vi
kind: Pod
metadata:

name: nginx
spec:

containers:

- image: nginx

name: nginx

EOF

You then need to pass the resource description into the body of a POST request (note
that the -X POST flag can be omitted because the --data-binary flag is being used). For
example, to create a pod resource use:

$ curl $HOST/api/vi/namespaces/projecti/pods
-H "Content-Type: application/yaml"
--data-binary @pod.yaml

This is equivalent to running the kubectl command:
$ kubectl create --namespace projecti -f pod.yaml -o json

Note that the namespace is not indicated in the pod.yaml file. If you add it, you must
specify the same namespace in the YAML file and in the path, or you will get an error—
that is, the namespace of the provided object does not match the namespace sent on the
request.

19

CHAPTER 2 KUBERNETES API OPERATIONS

Getting Information About a Resource

You can obtain information about a specific resource using a GET request and passing its
name as a parameter (and its namespace if it is a namespaced resource) in the path. In
this example, you will request the information for the pod named nginx in the projectl
namespace:

$ curl -X GET
$HOST/api/v1/namespaces/projecti/pods/nginx

This will return information about the resource in the JSON format, using the kind
associated with this resource as a structure; in this example, it is a Pod kind. This is
equivalent to running the kubectl command:

$ kubectl get pods --namespace projectl nginx -o json

Getting the List of Resources

For namespaced resources, you can get the list of resources either cluster-wide or in a
specific namespace. For non-namespaced resources, you can get the list of resources. In
any case, you will use a GET request.

Cluster-wide

To get the list of resources cluster-wide, for namespaced or non-namespaced resources;
for example, for the pod resource, use the following:

$ curl $HOST/api/vi/pods

This will return information about the list of pods in all namespaces, using a PodList
kind. This is equivalent to running the kubectl command:

$ kubectl get pods --all-namespaces -o json

In a Specific namespace

To get the list of resources in a specific namespace, you need to indicate the namespace
in the path; for example, for the pod resource, use this:

$ curl $HOST/api/vi/namespaces/projecti/pods

20

CHAPTER 2 KUBERNETES API OPERATIONS

This will return information about the list of pods in the projectl namespace, using a
PodList kind. This is equivalent to running the kubectl command:

$ kubectl get pods --namespace projectl -o json

Filtering the Result of a List

When running a list request, you get as a result the complete list of resources of this kind,
in the specified namespace or cluster-wide, depending on your request.

You may want to filter the result. The most common way to filter resources in
Kubernetes is to use labels. For this, resources need to have defined labels; then, during
a list request, you can define some label selectors. It also is possible to filter resources
based on a limited set of fields by using field selectors.

Using Label Selectors

All Kubernetes resources can define labels. For example, when creating pods, you can
define some labels with kubectl:

$ kubectl run nginxi --image nginx --labels mylabel=foo
$ kubectl run nginx2 --image nginx --labels mylabel=bar

This results in pods with labels defined in the metadata part of the resource:

$ kubectl get pods nginxi -o yaml
apiVersion: vi
kind: Pod
metadata:
labels:
mylabel: foo
name: nginxi

[...]

$ kubectl get pods nginx2 -o yaml
apiVersion: vi
kind: Pod
metadata:
labels:

21

CHAPTER 2 KUBERNETES API OPERATIONS

mylabel: bar
name: nginx2

[...]

Now, when running a list request, you can define some label selectors to filter these
resources by using the labelSelector query parameter, which can contain a comma-
separated list of selectors.

o Select all the resources defining a specific label, no matter its value;
for example, the mylabel label:

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel
o Select all resources not defining a specific label; for example, the

mylabel label:

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=\!mylabel

Note the exclamation point (!) before the label name—the backslash character (\)
is being used because the exclamation point is a special character for the shell.

o Select all resources defining a label with a specific value; for example,
mylabel having the value foo:

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel==foo

or

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel=foo

o Select all resources defining a label with a value different from a
specific one; for example, the label mylabel having a value different

from foo:

22

CHAPTER 2 KUBERNETES API OPERATIONS

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel\!=foo

Note the exclamation point (!) before the equal sign (=)—the backslash character
(\) is being used because the exclamation point is a special character for the shell.

o Select all resources defining a label with a value in a set of values; for
example, the label mylabel having one of the values foo or baz:

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel+in+(foo,baz)

Note the plus characters (+) that encodes spaces in the URL. The original selector
being: mylabel in (foo,baz).

o Select all resources defining a label with a value not in a set of
values; for example, the label mylabel having a value different from
foo or baz:

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel+notin+(foo,baz)

Note the plus characters (+) that encodes spaces in the URL. The original selector
being: mylabel not in (foo,baz).

You can combine several selectors by separating them with a comma. This will act as
an AND operator. For example, to select all resources with a label mylabel defined and a
label otherlabel being equal to bar, you can use the following label selector:

$ curl $HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel,otherlabel==bar

23

CHAPTER 2 KUBERNETES API OPERATIONS

Using Field Selectors

You can filter resources using a limited set of fields. For all resources, you can filter on the
metadata.name field; and for all namespaced resources, you can filter on the metadata.
namespace field.

Here is the list of additional fields available for filtering, depending on resources, for
Kubernetes 1.23:

core.event:

involvedObject.apiVersion
involvedObject.fieldPath
involvedObject.kind
involvedObject.name
involvedObject.namespace
involvedObject.resourceVersion
involvedObject.uid
reason
reportingComponent
source
type
core.namespace:
status.phase
core.node:
spec.unschedulable
core.pod:
spec.nodeName
spec.restartPolicy
spec.schedulerName

spec.serviceAccountName

24

CHAPTER 2 KUBERNETES API OPERATIONS

status.nominatedNodeName
status.phase
status.podIP
core.replicationcontroller:
status.replicas
core.secret:
type
apps.replicaset:
status.replicas
batch.job:

status.successful
certificates.certificatesigningrequest:

spec.signerName

Now, when running a list request, you can indicate some field selectors to filter
these resources by using the fieldSelector parameter, which can contain a comma-
separated list of selectors.

o Select all resources for which a field has a specific value; for example,
the field status.phase having the value Running:

$ curl $HOST/api/vi/namespaces/default/pods?
fieldSelector=status.phase==Running

or
$ curl $HOST/api/vi/namespaces/default/pods?

fieldSelector=status.phase=Running

o Select all resources for which a field has a value different from a
specific one; for example, the field status.phase having a value
different from Running:

$ curl $HOST/api/vi/namespaces/default/pods?
fieldSelector=status.phase\!=Running

25

CHAPTER 2 KUBERNETES API OPERATIONS

Note the exclamation point (!) before the equal sign (=)—the backslash character
(\) is being used because the exclamation point is a special character for the shell.

You can combine several selectors by separating them with a comma. This will act
as an AND operator. For example, to select all pods with a phase being equal to Running
and a restart policy not being Always, you can use this field selector:

$ curl $HOST/api/vi/namespaces/default/pods?
fieldSelector=status.phase==Running,
spec.restartPolicy\!=Always

Deleting a Resource

To delete a resource, you need to specify its name (and namespace for namespaced
resources) in the path and use a DELETE request. For example, to delete a pod, use the
following:

$ curl -X DELETE
$HOST/api/vi/namespaces/projectl/pods/nginx

This will return the information about the deleted resource in the JSON format, using
the kind associated with the resource—in this case, a Pod kind.

This is equivalent to running the kubectl command (except that you cannot get
information about the deleted resource, only its name with the -o name flag):

$ kubectl delete pods --namespace projecti nginx

Deleting a Collection of Resources

It also is possible to delete a collection of a given resource in a specific namespace, using
a DELETE request; and, for namespaced resources, indicating the namespace in the path:

$ curl -X DELETE
$HOST/api/v1/namespaces/projecti/pods

26

CHAPTER 2 KUBERNETES API OPERATIONS

This will return the information about the deleted resources in the JSON format,
using the List kind associated with the resource; in this example, the PodList kind.

This is equivalent to running the kubectl command (except that you cannot get
information about the deleted resources, only their names with the -o name flag):

$ kubectl delete pods --namespace projecti --all

Note that it is not possible to delete all resources of a specific kind from all
namespaces in a single request the way you could do it with the kubectl
command: kubectl delete pods --all-namespaces --all.

Updating a Resource

It is possible to replace the complete information about a specific resource by using a
PUT request and specifying the name (and namespace for namespaced resources) in the
path and the new resource information in the body of the request.

To illustrate, you can first define a new deployment, with the following command:

$ cat > deploy.yaml <<EOF
apiVersion: apps/vi
kind: Deployment
metadata:

name: nginx

spec:
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- image: nginx
name: nginx
EOF

27

CHAPTER 2 KUBERNETES API OPERATIONS
Then, you can create this deployment in the cluster using the following:

$ curl
$HOST/apis/apps/vi/namespaces/project1/deployments
-H "Content-Type: application/yaml"
--data-binary @deploy.yaml

Next, you can create an updated manifest for the deployment; for example, by
updating the image of the container with the following command (this will replace the
image name nginx with nginx:latest):

$ cat deploy.yaml |
sed 's/image: nginx/image: nginx:latest/' >
deploy2.yaml

Finally, you can use the following request to update the deployment into the cluster:

$ curl -X PUT
$HOST/apis/apps/vi/namespaces/projecti/deployments/nginx
-H "Content-Type: application/yaml"
--data-binary @deploy2.yaml

This is equivalent to running the kubectl command:

$ kubectl replace --namespace project1
-f deploy2.yaml -o json

Managing Conflicts When Updating a Resource

When updating a resource with the previous technique, if another participant makes a
modification on the resource between the time you create it and the time you update it,
then the modifications made by the other participant will be lost when you update the
resource.

To avoid this risk of conflict, you can first read the resource information (using a GET
request) to find the value of the resourceVersion field in the metadata of the resource,
then indicate this resourceVersion in the specifications of the resource you want
to update.

By sending the PUT request with this resourceVersion, the API server will compare
the resourceVersion values of the received resource and the current one. If the values

28

CHAPTER 2 KUBERNETES API OPERATIONS

differ (because another participant has modified the resource in the meantime), the API
server will reply with an error: Operation cannot be fulfilled on [...]: the object has been
modified; please apply your changes to the latest version and try again.

To illustrate, let’s create the deployment (be sure to delete it before doing this if you
have created it from the previous section):

$ curl
$HOST/apis/apps/vi/namespaces/projecti/deployments
-H "Content-Type: application/yaml"
--data-binary @deploy.yaml

You will receive a response, indicating the resourceVersion of the resource you have
created; in this example, it is 668867:

{
"kind": "Deployment",
"apiVersion": "apps/v1i",
"metadata": {
"name": "nginx",
"namespace": "project1i",
"uid": "99d3aleb-176c-40de-89ec-74313169fe60",
"resourceVersion": "668867",
"generation": 1,
[...]
}

After waiting a few seconds, you can execute a GET request to find the latest version,
and you will receive the following response:

$ curl $HOST/apis/apps/vi/namespaces/projecti/deployments/nginx

{
"kind": "Deployment",
"apiVersion": "apps/v1i",

"metadata": {
"name": "nginx",
"namespace": "project1i",

"uid": "99d3aleb-176c-40de-89ec-74313169fe60",
"resourceVersion": "668908",

29

CHAPTER 2 KUBERNETES API OPERATIONS

"generation": 1,
[...]
}

You can see that the resourceVersion has been incremented and is now 668908.
This happens because the Deployment controller has updated the resource on its own.

Now, if you add the first received version to your YAML manifest and try to update
the deployment, you get an error indicating that a conflict has been detected:

$ cat > deploy2.yaml <<EOF
apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx
resourceVersion: "668867"
spec:
selector:
matchlLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- image: nginx
name: nginx
EOF

$ curl -X PUT
$HOST/apis/apps/vi/namespaces/projecti/deployments/nginx
-H "Content-Type: application/yaml”
--data-binary @deploy2.yaml
{
"kind": "Status",
"apiVersion": "v1",
"metadata": {

30

CHAPTER 2 KUBERNETES API OPERATIONS

1

"status": "Failure",

"message": "Operation cannot be fulfilled on deployments.apps \"nginx\":
the object has been modified; please apply your changes to the latest
version and try again",

"reason": "Conflict",

"details": {

"name": "nginx",
"group": "apps",
"kind": "deployments"

}J

"code": 409

Now, if you update the YAML manifest with the latest resourceVersion by using the
following command and running the PUT command again, the operation will succeed:

$ sed -i 's/668867/668908/' deploy2.yaml

$ curl -X PUT
$HOST/apis/apps/vi/namespaces/projecti/deployments/nginx
-H "Content-Type: application/yaml"
--data-binary @deploy2.yaml
{
"kind": "Deployment",
"apiVersion": "apps/vi",

"metadata": {
“name": "nginx",
"namespace": "project1i",

"uid": "99d3aleb-176c-40de-89ec-74313169fe60",
"resourceVersion": "671623",
"generation": 2,

[...]

31

CHAPTER 2 KUBERNETES API OPERATIONS

Using a Strategic Merge Patch to Update a Resource

When modifying a resource, instead of sending the complete description of it, it is
possible to send only the parts that you want to modify by using a Patch.

This is possible using a PATCH request with an application/strategic-merge-
patch+json content-type and specifying the name (and namespace for namespaced
resources) in the path and the patch information in the body of the request.

A patch information is an extract of a YAML manifest, which contains only the fields
that you want to update. Doing this, the fields you specified in the path will be updated,
and the fields not specified in the patch will remain untouched.

To illustrate, you can first create a file containing the patch information using the
following:

$ cat > deploy-patch.json <<EOF

{
"spec”:{
"template":{
"spec":{

"containers":[{
"name":"nginx",
"image":"nginx:alpine"

1

111}
EOF

Then, you can apply this patch to the resource with the following request:

Note the specific Content-Type header to use—application/strategic-merge-
patch+json.

$ curl -X PATCH
$HOST/apis/apps/vi/namespaces/projecti/deployments/nginx
-H
"Content-Type: application/strategic-merge-patch+json"
--data-binary @deploy-patch.json

32

CHAPTER 2 KUBERNETES API OPERATIONS

This is equivalent to running the kubectl command:

$ kubectl patch deployment nginx --namespace projecti
--patch-file deploy-patch.json
--type=strategic
-0 json

When a field is a single value (either a simple value like a string, or an object with
several fields), the value of the patch replaces the existing value.

Note that if a field is not present in the patch, the original value will not be deleted
but will remain untouched.You can specify a value of null for a field to delete it
from the result.

Patching Array Fields

When a field contains an array of values, the behavior is different from the one for
single values.

The default behavior depends on the Patch strategy defined for this field in the
Kubernetes API specification. For example, you can see in Figure 2-1 that the env field of
a container structure has a Patch strategy of Merge on the key name. Another possible
value for the Patch strategy is Replace.

« E0enwar)

Patch strategy: merge on key name
List of environment variables to set in the container. Cannot be updated.
EnvVar represents an environment variable present in a Container.
o env.name (string), required
Name of the environment variable. Must be a C_IDENTIFIER.

o env.value (string)

Figure 2-1. Patch strategy of env field in a container

When the Patch strategy of a field is Replace, the resulting array is the one contained
in the patch, and the values present in the original array are not considered.

33

CHAPTER 2 KUBERNETES API OPERATIONS

When the Patch strategy of a field is Merge on a specific key, the original array and
the patch array will be merged. The elements contained in the patch array, but not
present in the original array, will be added to the result, and the elements present in both
the original and patch arrays will pick up the value of the patch element (elements are
the same in both the original and the patch if their key has the same value).

Note that the elements present in the original array, but not present in the patch,
will remain untouched.

To illustrate, consider an existing deployment with a container that defines these
environment variables, and a patch defining these values:

Original Patch

env: env:

- name: key1 - name: key1
value: valuel value: valuelbis

- name: key2 - name: key3
value: value2 value: value3

By applying the patch to the existing deployment, the resulting list of environment
variables will be the following:

Result for Merge strategy
env:
- name: key1
value: valueibis
- name: key2
value: value2
- name: key3
value: value3

Special Directives

It is possible to override these default behaviors by using special Directives in the patch
information.

34

CHAPTER 2 KUBERNETES API OPERATIONS

replace Directive

You can use a replace directive either for an object or for an array. When used with an
object, the original object will be replaced with the patch object. This means that the fields
not in the patch will not be, this time, present in the result; and the arrays of this object
will be the exact same arrays of the patch, for which no merge operation will occur.

To declare this directive for an object, you need to add a field $patch with the value
replace to the object. For example, the following patch will replace the securityContext
for the nginx container with a securityContext containing only the field runAsNonRoot:

{
"spec":{
"template":{
"spec":{
"containers":[{

"name" :"nginx",

"securityContext": {
"$patch": "replace",
"runAsNonRoot": false

P

When used with an array, the original array will be replaced by the patch array.

To declare this directive for an array, you need to add an object to this array with
a single field $patch of value replace. For example, the following patch will set the
environment variables for the container nginx to the single variable, keyl, regardless of

the number of variables defined previously.

{
"spec”:{
"template":{
"spec":{
"containers":[{
"name":"nginx",
"env": [
{ "$patch": "replace"},
{ "name": "key1", "value": "value1" }
]
I

35

CHAPTER 2 KUBERNETES API OPERATIONS

delete Directive

You can use a delete directive either for an object or for an object element of an array.
Using this directive for an object is like declaring the value of this object to null. For
example, this patch will delete the field securityContext from the container nginx:

{
"spec":{
"template":{
"spec":{

"containers":[{
"name":"nginx",
"securityContext": {

"$patch": "delete"

}
333

To delete an element from a list, you need to add the directive to the element you
want to delete. You will need to indicate the key field (the key indicated for the Merge
patch strategy). For example, you can use this patch to delete the environment variable
named keyl:

{
"spec":{
"template":{
"spec":{
"containers":|
{
"name" :"nginx",
"env": [{
"name": "key1",
"$patch": "delete"
}
128338

36

CHAPTER 2 KUBERNETES API OPERATIONS

deleteFromPrimitiveList Directive

The delete directive is only usable for deleting objects from an array. You can use

the deleteFromPrimitiveList directive to delete primitive elements from an array by
prefixing the field name containing the array with $deleteFromPrimitiveList/. For
example, to delete the --debug argument from a list of the args for the nginx container,
you can use the following patch:

{
"spec”:{
"template":{
"spec":{
"containers":[
{
"name":"nginx",
"$deleteFromPrimitiveList/args": [
"--debug"
]
128338

Note that this directive does not work correctly for Kubernetes 1.24 and earlier
versions because it keeps the specified values only, instead keeping the other
values only.

setElementOrder Directive

The setElementOrder directive can be used to sort elements of an array into a different
order by prefixing the field name containing the array to sort with $setElementOrder/.
For example, to reorder initContainers of a deployment, you can use this patch:

{
"spec":{
"template":{
"spec":{
"$setElementOrder/initContainers":|[

37

CHAPTER 2 KUBERNETES API OPERATIONS

{ "name": "init2"},
{ "name": "init1"}

1311}

Applying Resources Server-side

As you have seen in the previous sections, you can update resources, but in case of
conflicts, you need to write specific directives to indicate how to resolve conflicts. The
Kubernetes API has introduced the Server-side Apply as a Beta feature in Kubernetes
1.16, and it has been a stable feature since Kubernetes 1.22.

The Server-side Apply operation is like the Update command, with the difference
that you can use this command even if the resource does not exist in the cluster, and you
must provide a field manager when executing the command.

The Server-side Apply operation can be executed using a PATCH request with an
application/apply-patch+yaml content-type and specifying the name (and namespace
for namespaced resources) in the path and the patch information in the body of the
request.

On its side, the Kubernetes API will save in a dedicated field (.metadata.managedFields)
of the resource the list of Apply operations accomplished in this resource.

For each Apply operation saved, each field set by it is marked as “owned” by the
field manager provided during the operation. If an Apply operation updates a field that
is owned by another field manager, because of a previous Apply operation covering this
field, a conflict is raised.

It is possible to force an Apply operation so that the conflicting fields are established
with the new value and the ownership is transferred to the new field manager for them.
The ownership is set in objects or primitive elements, as well as in the elements of arrays.

For example, a field manager can define a set of environment variables for a
container, and another field manager can define a distinct set of environment variables
for the same container of a Pod. Each field manager owns its environment variables. If
the first field manager runs a new Apply operation by removing some of its environment
variables, these will be removed from the total list, but environment variables of the
other field manager will not be affected.

38

CHAPTER 2 KUBERNETES API OPERATIONS

To illustrate this example, you can create the following YAML manifest for a
Deployment that defines three environment variables for the Pod’s container:

deploy.yaml
apiVersion: apps/vi
kind: Deployment
metadata:

name: nginx
spec:

selector:

matchlLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

- image: nginx
name: nginx
env:

- name: keyl
value: valuel

- name: key2
value: value2

- name: key3
value: value3

Then, you can apply this manifest by using the Server-side Apply operation (note the
content-type header is set to application/apply-patch+yaml and the query parameter
fieldManager is set to manager1):

$ curl -X PATCH
$HOST/apis/apps/vi/namespaces/projecti/deployments/
nginx?fieldManager=manageri
-H
"Content-Type: application/apply-patch+yaml”
--data-binary @deploy.yaml
39

CHAPTER 2 KUBERNETES API OPERATIONS

This command will create the Deployment. You can examine the .metadata.
managedFields of the Deployment resource created with this command (jq is used to
get an indented form of the JSON):

$ kubectl get deploy nginx -o jsonpath={.metadata.managedFields} | jq
[{
"apiVersion": "apps/v1i",
"fieldsType": "FieldsVi",
"fieldsV1i": {
"fispec": {
"f:template": {
"fispec": {
"f:containers": {
"k:{\"name\":\"nginx\"}": {
" A, o
“f:image": {}, @
"f:name": {} ©
"frenv": {
"k:{\"name\":\"key1\"}": {
".": {}, "f:iname": {}, "f:value": {} O
})
"k:{\"name\":\"key2\"}": {
""" {}, "finame": {}, "f:value": {} @
})
"k:{\"name\":\"key3\"}": {
"' {}, "finame": {}, "f:value": {} @
133338338
"manager": "manager1i", @
"operation": "Apply", ©
"time": "2022-07-14T16:46:48Z"
})
{
"apiVersion": "apps/v1i",
"fieldsType": "FieldsV1i",
"fieldsvi": {
"fistatus": {

40

CHAPTER 2 KUBERNETES API OPERATIONS

"f:availableReplicas": {},
"f:observedGeneration": {},
"f:readyReplicas": {},
"f:replicas": {},
"f:updatedReplicas": {}

}
}s
"manager”: "kube-controller-manager", ©
"operation": "Update", {10}

"subresource": "status",
"time": "2022-07-14T16:46:52Z"

1]

You can see in the managedFields (abbreviated for clarity) that your operation
has been saved as an Apply operation, ®, by the manager, managerl @; and that this
manager owns the element of container with the name nginx @—the fields image @,
name ©, and the elements of env with name keyl @, key2 ©, and key3 O.

A Manager is any program used to edit a resource; for example, kubectl when used
with an edit or apply command, or a controller or operator managing these resources.
You also can see that a second operation of type Update ® has been saved and is owned
by the kube-controller-manager ® because the Deployment controller set some values
in the status of the Deployment resource when you created it.

Now, a second manager, manager2, would like to update the environment variable,
key2. It can do so by creating the following and running the command (note that the
force query parameter is set to true):

-- patch.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx
spec:
template:
spec:
containers:
- name: nginx

41

CHAPTER 2 KUBERNETES API OPERATIONS

env:
- name: key2
value: value2bis

$ curl -X PATCH
"$HOST/apis/apps/v1/namespaces/project1/deployments/nginx?fieldManager=mana
ger2&force=true"

-H "Content-Type: application/apply-patch+yaml”

--data-binary @patch.yaml

With this operation, manager2 ® now owns the nginx element of container @ and
the key2 element of env @.

{
"apiVersion": "apps/v1i",
"fieldsType": "FieldsVi",
"fieldsvi": {
"fispec": {
"f:template": {
"fispec": {
"f:containers": {
"k:{\"name\":\"nginx\"}": {
" {}, ©
"frenv": {
"k:{\"name\":\"key2\"}": {
" {}, "finame": {}, "f:value": {} ®
}
b
"finame": {}
P
"manager": "manager2", ©
"operation": "Apply",
"time": "2022-06-15T17:21:16Z"

b

42

CHAPTER 2 KUBERNETES API OPERATIONS

Finally, the first manager, manager1, decides to keep only the keyl environment
variable, removing the environment variables key2 and key3 from the initial manifest.
For this, it will create the following patch and run the command (note that the force
query parameter is not specified):

-- patch2.yaml
apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx
spec:
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:

- image: nginx
name: nginx
env:

- name: keyl
value: valuel

$ curl -X PATCH
"$HOST/apis/apps/vl/namespaces/project1/deployments/
nginx?fieldManager=manager1"”
-H "Content-Type: application/apply-patch+yaml”
--data-binary @patch2.yaml

You can see in the resulting deployment that the following is true:
o The key?2 is still present because it is owned by manager2.

o The key3 is not present anymore because it was owned by
managerl.

43

CHAPTER 2 KUBERNETES API OPERATIONS

$ kubectl get deployments.apps nginx -o yaml
[...]
spec:
containers:
- env:
- name: key1
value: valuel
- name: key2
value: value2bis
image: nginx
name: nginx

Watching Resources

The Kubernetes API lets you watch resources. This means that your request will not
terminate immediately, but it will instead be a long-running request that will send
aJSON stream as a response, adding JSON objects to the stream when the watched
resources change. A JSON stream is a series of JSON objects separated by new lines—for
example:

{ "type": "ADDED", "object": ... }
{ "type": "DELETED", "object": ... }
The request for watching resources is like the one used to list resources with a watch

parameter added as a query parameter. For example, to watch the pods of the projectl
namespace, you can send this request:

$ curl "$HOST/api/vi/namespaces/projecti/pods?watch=true"

Each JSON object of the stream is called, in Kubernetes terminology, a Watch Event,
and it will contain two fields: type and object. The value for the type can be ADDED,
MODIFIED, DELETED, BOOKMARK, or ERROR. For each type, the object is as
described in Table 2-2.

44

CHAPTER 2 KUBERNETES API OPERATIONS

Table 2-2. Object Description for Each Type of Watch Event

Type value Object description

ADDEDMODIFIED The new state of the resource, using its kind (e.g., Pod).

DELETED The state of the resource immediately before it is deleted, using
its kind (e.g., Pod).

BOOKMARK The resource version, using its kind (e.g., Pod), with only the

resourceVersion field set. Later in this chapter, you will see in which
circumstances this type is used.

ERROR An object that describes the error.

When this request is executed, you will immediately get a series of ADDED JSON
objects, describing all the resources present in the cluster at the time of the request;
eventually, this is followed by other events when the resources are created, modified,
or deleted in the cluster. This is equivalent to running the kubectl command, with the
difference that the type field will not be given and the object’s content will be given
directly:

$ kubectl get pods --namespace projectl --watch -o json

Filtering During a Watch Session

Itis possible to filter the results returned by a watch request by using either label
selectors or field selectors, using the same labelSelectors and fieldSelectors as
discussed earlier in the Filtering the Result of a List section.

Watching After Listing Resources

Instead of getting the resources present at the time of the request as part of the watch
response, you could first run a list request to find the list of present resources, then run
a watch request to obtain the modifications on these resources. By doing this, there is a
risk that some modifications may happen between the list request and the start of the
watch request, and that you do not get informed about these modifications.

45

CHAPTER 2 KUBERNETES API OPERATIONS

For this scenario, you can use the resourceVersion value returned by the list request
to indicate at which point in time you want to start your watch request. (Note: You need
to get the resourceVersion into the List structure, not from an item.)

As an example, you can first get the list of pods by using the command:

curl $HOST/api/vi/pods

"kind": "PodList",

"apiVersion": "v1",
"metadata": {
"resourceVersion": "2433789"

1

"items": [...]

As a response to this first request, you get a resourceVersion and a list of resources
present at the time of the request in the items field. Then, you can execute the watch
request by specifying this resourceVersion:

$ curl "$HOST/api/vi/namespaces/default/pods?watch=true8resourceVersio
n=2433789"

As aresult, you will not receive data immediately in the response body that describes
the resources present in the cluster; you will receive data only when some resources are
modified, added, or deleted.

Restarting a watch Request

The watch request may be interrupted, and you may want to restart it from the last
modification received (or a previous one) during the process.

For this, each resource part of a DELETE, ADDED, or MODIFIED JSON object in
the watch response contains a resourceVersion, and you can use this to execute a new
watch request starting just after the specified modification. For example, you can start a
watch request that is interrupted after a few modifications:

$ curl "$HOST/api/vi/namespaces/default/pods?watch=true"
{"type":"ADDED", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{

46

CHAPTER 2 KUBERNETES API OPERATIONS

"resourceVersion":"2435623", ...}, ...}}
{"type":"ADDED", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"resourceVersion":"2354893", ...}, ...}}
{"type":"MODIFIED", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"resourceVersion":"2436655", ...}, ...}}
{"type" :"DELETED", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"resourceVersion":"2436677", ...}, ...}}

Then, you can restart the watch request by beginning at any time during the previous
request or starting after the latest modification:

$ curl "$HOST/api/vi/namespaces/default/pods?watch=true8resourceVersio
n=2436677"

Or begin after a previous modification. In this way, you will receive the latest
modification again:

$ curl "$HOST/api/vi/namespaces/default/pods?watch=truedresourceVersio
n=2436655"
{"type" :"DELETED", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"resourceVersion":"2436677", ...}, ...}}

Allowing Bookmarks to Efficiently Restart
a watch Request

As a previous section has shown, it is possible to execute a watch session on a subset of
resources by using label or field selectors. For example, this request will watch pods with
a specific label, mylabel, being equal to foo:

$ curl "$HOST/api/vi/namespaces/projecti/pods?
labelSelector=mylabel==foo8watch=true"

With this request, you will get events for pods matching your selectors only, not for
other pods of the same namespace that do not match your request.

47

CHAPTER 2 KUBERNETES API OPERATIONS

When restarting a watch request, you will be able to use the resourceVersion of
a pod that matches the selectors; however, lots of events on other pods could have
happened after this one. The API server will have to execute the filtering of all pods’
events that have been created in the meantime at the point where you restart the watch
on this old resourceVersion.

Likewise, because the API server is caching these events for a limited time, there
is more risk that the old resourceVersion is no longer available, compared to the
most recent.

For this, you can use the allowWatchBookmarks parameter to ask the API server to
send BOOKMARK events regularly that contain the latest resourceVersion; these may
be resource versions that are separate from your selection.

The BOOKMARK event may contain an object of the kind of your request (e.g., a Pod
kind if you are watching for pods), but that includes only the resourceVersion field.

{"type": "BOOKMARK",
"object":{

"kind":"Pod",

"apiVersion":"v1",

"metadata”:{
"resourceVersion":"2525115",
"creationTimestamp":null

2

"spec":{
"containers":null

2

"status":{}

To illustrate, here is a little experiment. First create two (2) pods and watch pods
with a selector that will only match the first one. You will get an ADDED event for the
matching pod, and, after a while, you should get a BOOKMARK event (but it is not
guaranteed). If, in the meantime, there was no activity on the pods of the namespace, the
resourceVersion should be the same.

$ kubectl run nginxl --image nginx --labels mylabel=foo
$ kubectl run nginx2 --image nginx --labels mylabel=bar

48

CHAPTER 2 KUBERNETES API OPERATIONS

$ curl "$HOST/api/vi/namespaces/default/pods?
labelSelector=mylabel==foo&
watch=trued
allowlatchBookmarks=true"
{"type":"ADDED", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"name":"nginx1","resourceVersion":"2520070", ...}, ...}}
{"type": "BOOKMARK", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"resourceVersion":"2520070", ...}, ...}}

From another terminal, let’s delete the nonmatching pod, nginx2, with the
command:

$ kubectl delete pods nginx2

You should not receive any event for this change because the pod does not match the
request selector, but after a while, you should receive a new BOOKMARK event—this
time with a new resourceVersion:

{"type": "BOOKMARK", "object":{
"kind":"Pod","apiVersion":"v1", "metadata":{
"resourceVersion":"2532566", ...}, ...}}

At this point, you can stop the watch request from your first terminal.
Next, you can make some modifications on the pods of the namespace—for example,
by deleting the nginx1 pod and recreating the nginx2 pod:

$ kubectl delete pods nginxi
$ kubectl run nginx2 --image nginx --labels mylabel=bar

Now, you can restart the watch request using the resourceVersion, 2532566, to
restart the request when it has stopped:

curl "$HOST/api/v1/namespaces/default/pods?
labelSelector=mylabel==foo&
watch=trued
allowhatchBookmarks=true&
resourceVersion=2532566"

49

CHAPTER 2 KUBERNETES API OPERATIONS

As aresult, you can see that you are getting events for the modifications and deletion
of nginx1 sent when you deleted this pod. You have not lost any event, and you have
used a most recent resourceVersion, which is more efficient for the API Server.

Paginating Results

When you execute a list request, it is possible that the result will contain many elements.
In this case, it is preferable to paginate the result by making several requests, and each
response will send a limited number of elements.

For this case, the limit and continue query parameters are used. The first list request
needs to specify the limit parameter to indicate the maximum number of elements to
return. The response will contain a continue field in the metadata of the List structure that
contains an opaque token to use in the next request to obtain the next chunk of elements.

$ curl "$HOST/api/vi/pods?limit=1"

{
"kind": "PodList",
"apiVersion": "
"metadata": {
"resourceVersion": "2931316",

"continue": <continue token 1>,

Vl" ,

"remainingItemCount": 10
}s
"items": [{ ... }]
}

$ curl "$HOST/api/vi/pods?limit=1&continue=<continue_token_1>"
{
"kind": "PodList",
"apiVersion": "v1",
"metadata": {
"resourceVersion": "2931316",
"continue": <continue token 2>,
"remainingItemCount": 9

}s
"items": [{ ... }]

50

CHAPTER 2 KUBERNETES API OPERATIONS

Note that you do not need to use the same limit value for each chunk. You could
make the first request with a limit of 1, the second one with a limit of 4, and the
third one with a limit of 6.

Consistency of the Full List

Note that the resourceVersion in the List structures in both responses are the same (i.e.,
“resourceVersion”: “2931316” in the example). When you run the first request, the
full response is cached on the server, and you are guaranteed to get a consistent result
for the next chunks, independent of the time you get to make the following requests,
as well as the modifications made on the resources in the meantime. The resources
created, modified, or deleted in the period in-between will not affect the results of the
next chunks.

Nevertheless, it is possible that the cache will expire before you can run all the
requests. In this case, you will receive an error response with a code 410 and a new
continue value. Thus, you have two choices:

1. Start a new List request without the continue parameter to restart
the complete list session from the beginning.

2. Make a new request with the returned continue value, but in
an inconsistent way—that is, the resources added, modified, or
deleted since the time the first chunk was returned will influence
the responses.

Detecting the Last Chunk

You can see from the metadata of the response that the remainingItemCount indicates
the number of elements remaining to complete the full response. Note, however, that
this information is available only for requests without selectors (either labels or fields
selectors).

When running a paginated List request without selectors, the server can know the
number of elements in the full list and is able to indicate the number of remaining
elements after each request. The server also is able to indicate, when sending the last
elements of the full list, that this is the last chunk, by replying with an empty continue
field in the metadata of the List structure.

51

CHAPTER 2 KUBERNETES API OPERATIONS

When running a paginated List request with selectors, the server is unable to know
in advance the number of elements in the full list. For this reason, it does not send the
number of remaining elements after a request, and it sends a continue nonempty value
even if it happens that the next chunk is empty.

You will need to check whether the returned list is empty or contains less elements
than requested in the limit field so that you can detect the last chunk.

Getting Results in Various Formats

The Kubernetes API can return the data in various formats. You can ask which format
you wish to receive by specifying the Accept header in the HTTP request.

Getting Results as a Table

The kubectl client (and other clients) displays lists of resources in a tabular format.
When running a List request, you can ask the API Server to give you the necessary
information to build this tabular representation by using the Accept header to indicate
this specific format:

$ curl $HOST/api/vi/pods
-H 'Accept: application/jsonjas=Table;g=meta.k8s.iojv=v1'
{

"kind": "Table",

"apiVersion": "meta.k8s.io/v1",

"metadata": {

"resourceVersion": "2995797"
}J
"columnDefinitions": [{ ... }, { ... }, { ... } 1,

"rows": [{ ... }, { ... } 1]

This helps clients display information in a tabular format for any resource, including
custom resources, because a custom resource definition will contain information about

which field of the resource to display in which column.

52

CHAPTER 2 KUBERNETES API OPERATIONS

The kind of the response will always be Table for any resource requested. A first field,
columnDefinitions, describes each column of the table and a second field, rows, gives
the column values for each resource of the result.

Column Definitions

A column definition includes the name, type, format, description, and priority
fields. The name is intended to be the title of the column. The type is an OpenAPI type
definition for this column (e.g., integer, number, string, or boolean).

The optional format is an OpenAPI modifier for the type of the columns, giving more
information on the formatting. Formats for integer type are int32 and int64, formats for
number type are float and double, and formats for string type are byte, binary, data,
date-time, password. and name. The name format value is not part of the OpenAPI
specification and is specific to the Kubernetes API. It indicates to the client the primary
column that contains the resource name.

The priority field is an integer indicating the importance of a column relative to the
other ones. Columns with higher values may be omitted when space is limited.

Row Data

A row includes the cells, conditions, and object fields.

The cells field is an array the same length of the columnDefinitions array and
contains values for the resource displayed in the current row. The JSON type and
optional format of each element of the array are inferred from the type and format of the
corresponding column definition.

The conditions field gives specific attributes for displaying the row. The only defined
value as of Kubernetes 1.23 is 'Completed’, indicating the resource displayed in the row
has run to completion and can be given less visual priority.

The object field contains, by default, the metadata of the resource displayed in this
column. You can add an includeObject query parameter to the List request to either
require no information about the object (2includeObject=None), or the complete object
(2includeObject=0bject). The default value for this query parameter is Metadata,
which requires metadata of the resource only. For example, use the following to return
no object information as part of the row data:

$ curl $HOST/api/vi/pods?includeObject=None
-H 'Accept: application/json;as=Table;g=meta.k8s.io;v=v1'

53

CHAPTER 2 KUBERNETES API OPERATIONS

Using the YAML Format

Earlier in the Creating a Resource section you saw that it is possible to use the YAML
format to describe the resource to create using the Content-Type: application/yaml
header. If you do not specify this header, you will need to describe the resource in the
JSON format.

It also is possible to obtain the response of requests in YAML format using the
Accept: application/yaml header. This is valid for Get and List requests, but also can be
used for requests creating or updating resources that return the new value of them. For
example, to get the list of all pods in YAML format use this:

$ curl $HOST/api/vi/pods -H 'Accept: application/yaml’
kind: PodList
metadata:
resourceVersion: "3009983"
items:

[...]

Or, to create a new Pod and get the created Pod in YAML format, use the following:

$ curl $HOST/api/vi/namespaces/default/pods
-H "Content-Type: application/yaml"
-H "Accept: application/yaml'
--data-binary @pod.yaml

Note that it is not possible to get the result of a Watch request in the YAML format.

Using the Protobuf Format

The Protobuf format also can be used to send data to the API Server or to receive data
from it. For this, you need to use the type application/vnd.kubernetes.protobuf for the
Content-Type or Accept.

The Kubernetes team discourages the use of the Protobuf format outside of the
Kubernetes control plane because they do not guarantee that the Protobuf messages will
be as stable as the JSON messages.

54

https://github.com/kubernetes/client-go/issues/76

CHAPTER 2 KUBERNETES API OPERATIONS

If you decide to use the Protobuf format, you need to know that the API Server does
not exchange pure Protobuf data, but it adds a header to it to check the compatibility
between Kubernetes versions.

The apimachinery library contains Go code to help developers serialize data in
various formats, including Protobuf. Chapter 5 describes how to use this library.

Conclusion

This chapter has discussed how to run kubectl to help understand the HTTP requests
executed underneath it. Then, it has shown how to create, update, apply, delete, get, list,
and watch resources in detail using various HTTP operations. To finish, the chapter has
described how to get the results of these operations in several formats: JSON, YAML, and
Protobuf, or as a Table.

55

https://github.com/kubernetes/apimachinery

CHAPTER 3

Working with API
Resources in Go

The first two chapters of this book have described how the Kubernetes API is designed,
and how to access it using HTTP requests. Specifically, you have seen that resources
managed by the API are organized into Group-Version-Resources, and that objects
exchanged between the client and the API Server are defined as Kinds by the Kubernetes
API. The chapter also shows that this data can be encoded in JSON, YAML, or Protobuf
during the exchange, depending on the HTTP headers the client has set.

In the next chapters, you will see how to access this API using the Go language.

The two important Go libraries needed to work with the Kubernetes API are the
apimachinery and the api.

The API Machinery is a generic library that takes care of serializing data between Go
structures and objects written in the JSON (or YAML or Protobuf) format. This makes it
possible for developers of clients, but also API Servers, to write data using Go structures
and transparently use these resources in JSON (or YAML or Protobuf) during the HTTP
exchanges.

The API Machinery Library is generic in the sense that it does not include any
Kubernetes API resource definitions. It makes the Kubernetes API extendable and makes
the API Machinery usable for any other API that would use the same mechanisms—that
is, Kinds and Group-Version-Resources.

The API Library, for its part, is a collection of Go structures that are needed to work
in Go with the resources defined by the Kubernetes API.

API Library Sources and Import

The sources of the API Library can be accessed from https://github.com/kubernetes/
api. If you want to contribute to this library, note that the sources are not managed from

57
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_3

https://github.com/kubernetes/apimachinery
https://github.com/kubernetes/api
https://github.com/kubernetes/api
https://github.com/kubernetes/api
https://doi.org/10.1007/978-1-4842-9026-2_3

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

this repository, but from the central one, https://github.com/kubernetes/kubernetes,
in the staging/src/k8s.io/api directory, and the sources are synchronized from the
kubernetes repository to the api repository.

To import packages of the API Library into the Go sources, you will need to use the
k8s.io/api prefix—for example:

import "k8s.io/api/core/v1i"

The packages into the API Library follow the Group-Version-Resource structure of
the API. When you want to use structures for a given resource, you need to import the
package related to the group and version of the resource by using this pattern:

import "k8s.io/api/<groups/<versions"

Content of a Package

Let’s examine the files included in a package—for example, the k8s.io/api/apps/vl
package.

types.go

This file can be considered the main file of the package because it defines all the Kind
structures and other related substructures. It also defines all the types and constants for
enumeration fields found in these structures. As an example, consider the Deployment
Kind; the Deployment structure is first defined as follows:

type Deployment struct {
metavi.TypeMeta
metav1i.ObjectMeta
Spec DeploymentSpec
Status DeploymentStatus

Then, the related substructures, DeploymentSpec and DeploymentStatus, are

defined using this:

type DeploymentSpec struct {

58

https://github.com/kubernetes/kubernetes

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

Replicas *int32

Selector *metavl.LabelSelector

Template vl.PodTemplateSpec

Strategy DeploymentStrategy

[...]
}
type DeploymentStatus struct {

ObservedGeneration int64

Replicas int32

[...]

Conditions []DeploymentCondition
}

Then, continue in the same way for every structure used as a type in a previous

structure.

The DeploymentConditionType type, used in the DeploymentCondition structure
(not represented here), is defined, along with the possible values for this enumeration:

type DeploymentConditionType string

const (
DeploymentAvailable DeploymentConditionType = "Available"
DeploymentProgressing DeploymentConditionType = "Progressing"
DeploymentReplicaFailure DeploymentConditionType = "ReplicaFailure"

You can see that every Kind embeds two structures: metavl.TypeMeta and
metavl.ObjectMeta. It is mandatory for them to be recognized by the API Machinery.
The TypeMeta structure contains information about the GVK of the Kind, and the
ObjectMeta contains metadata for the Kind, like its name.

register.go

This file defines the group and version related to this package and the list of Kinds in this
group and version. The public variable, SchemeGroupVersion, can be used when you
need to specify the group and version of a resource from this group-version.

59

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

It also declares a function, AddToScheme, that can be used to add the group,
version, and Kinds to a Scheme. The Scheme is an abstraction used in the API Machinery
to create a mapping between Go structures and Group-Version-Kinds. This will be
discussed further in Chapter 5, The API Machinery.

doc.go

This file and the following ones contain advanced information that you will not need to
comprehend to start writing your first Kubernetes resources in Go, but they will help you
understand how to declare new resources with Custom Resource Definitions in the next
chapters.

The doc.go file contains the following instructions to generate files:

// +k8s:deepcopy-gen=package
// +k8s:protobuf-gen=package
// +k8s:openapi-gen=true

The first instruction is used by the deepcopy-gen generator to generate the zz_
generated.deepcopy.go file. The second instruction is used by the go-to-protobuf
generator to generate these files: generated.pb.go and generated.proto. The third
instruction is used by the genswaggertypedocs generator to generate the types_
swagger_doc_generated.go file.

generated.pb.go and generated.proto

These files are generated by the go-to-protobuf generator. They are used by the API
Machinery when serializing the data to and from the Protobuf format.

types_swagger_doc_generated.go

This file is generated by the genswaggertypedocs generator. It is used during the
generation of the complete swagger definition of the Kubernetes API.

60

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

zz_generated.deepcopy.go

This file is generated by the deepcopy-gen generator. It contains the generated
definition of the DeepCopyObject method for each type defined in the package. This
method is necessary for the structures to implement the runtime.Object interface,
which is defined in the API Machinery Library, and the API Machinery expects that all
Kind structures will implement this runtime.Object interface.

The interface is defined in this file as follows:

type Object interface {
GetObjectKind() schema.ObjectKind
DeepCopyObject() Object

The other necessary method, GetObjectKind, is automatically added to structures
that embed the TypeMeta structure—this is the case for all Kind structures. The
TypeMeta structure has the method that is defined as follows:

func (obj *TypeMeta) GetObjectKind() schema.ObjectKind {
return obj

}

Specific Content in core/v1

The core/v1 package defines, in addition to defining the structures for the Core
resources, utility methods for specific types that can be useful when you incorporate
these types into your code.

ObjectReference

An ObjectReference can be used to refer to any object in a unique way. The structure is
defined as follows:

type ObjectReference struct {

APIVersion string
Kind string
Namespace string

61

https://github.com/kubernetes/apimachinery/blob/master/pkg/runtime/interfaces.go

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

Name string
uID types.UID
ResourceVersion string
FieldPath string

Three methods are defined for this type:

o SetGroupVersionKind(gvk schema.GroupVersionKind) - this
method will set the fields APIVersion and Kind based on the values
of the GroupVersionKind value passed as a parameter.

o GroupVersionKind() schema.GroupVersionKind - this method will
return a GroupVersionKind value based on the fields APIVersion
and Kind of the ObjectReference.

o GetObjectKind() schema.ObjectKind - this method will cast
the ObjectReference object as an ObjectKind. The two previous
methods implement this ObjectKind interface. Because the
DeepCopyObject method on ObjectReference also is defined, the
ObjectReference will respect the runtime.Object interface.

ResourcelList

The ResourcelList type is defined as a map, the keys of which are ResourceName, and
values are Quantity. This is used in various Kubernetes resources to define the limits
and requests of resources.

In YAML, an example of usage is when you are defining the requests and limits of
resources for a container, as follows:

apiVersion: vi
kind: Pod
metadata:

name: mypod
spec:

containers:

- hame: runtime

resources:

62

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

requests:
memoxry: "64Mi"
cpu: "250m"
limits:

memory: "128Mi"
cpu: "500m"

In Go, you can write the requests part as:

requests := corevl.Resourcelist{
corevi.ResourceMemory:
*resource.NewQuantity(64*1024*1024, resource.BinarySI),
corevi.ResourceCPU:
*resource.NewMilliQuantity (250, resource.DecimalSI),

The next chapter describes, in more detail, how to define quantities using the
resource.Quantity type. The following methods exist for the ResourceList type:

e Cpu() *resource.Quantity - returns the quantity for the CPU key of
the map, in decimal format (1, 250 m, etc.)

e Memory() *resource.Quantity - returns the quantity for the
Memory key of the map, in binary format (512 Ki, 64 Mj, etc.)

o Storage() *resource.Quantity - returns the quantity for the
Storage key of the map, in binary format (512 Mi, 1 Gi, etc.)

o Pods() *resource.Quantity - returns the quantity for the Pods key
of the map, in decimal format (1, 10, etc.)

o StorageEphemeral() *resource.Quantity - returns the quantity for
the StorageEphemeral key in the map, in binary format (512 Mi, 1
Gi, etc.)

For each of these methods, if the key is not defined in the map, a Quantity with a

Zero value will be returned.

Another method, internally used by the previous ones, could be employed to get

quantities in nonstandard format:

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

o Name(name ResourceName, defaultFormat resource.Format)

*resource.Quantity - this returns the quantity for the Name key, in

defaultFormat format.

The defined enumeration values for the ResourceName

type are ResourceCPU, ResourceMemory, ResourceStorage,

ResourceEphemeralStorage, and ResourcePods.

Taint

The Taint resource is meant to be applied to Nodes to ensure that pods that do not

tolerate these taints are not scheduled to these nodes. The Taint structure is defined as

follows:

type Taint struct {

Key string
Value string
Effect TaintEffect
TimeAdded *metavl.Time

The TaintEffect enumeration can get the following values:

TaintEffectNoSchedule
TaintEffectPreferNoSchedule
TaintEffectNoExecute

"NoSchedule"
"PreferNoSchedule"
"NoExecute"

The well-known Taint keys, used by the control-plane under special conditions, are

defined as follows in this package:

TaintNodeNotReady

= "node.kubernetes.io/not-ready"

TaintNodeUnreachable

= "node.kubernetes.io/unreachable"

TaintNodeUnschedulable

= "node.kubernetes.io/unschedulable"

TaintNodeMemoryPressure

= "node.kubernetes.io/memory-pressure’

TaintNodeDiskPressure

64

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

= "node.kubernetes.io/disk-pressure"
TaintNodeNetworkUnavailable

="node.kubernetes.io/network-unavailable"
TaintNodePIDPressure

= "node.kubernetes.io/pid-pressure”
TaintNodeOutOfService

= "node.kubernetes.io/out-of-service"

The following two methods are defined on a Taint:

e MatchTaint(taintToMatch *Taint) bool - this method will return
true if the two taints have the same key and effect values.

o ToString() string - this method will return a string
representation of the Taint in this format: <key>=<value>:<effect>,
<key>=<value>:, <key>:<effect>, or <key>.

Toleration

The Toleration resource is intended to be applied to Pods to make it tolerate taints in
specific nodes. The Toleration structure is defined as follows:

type Toleration struct {

Key string

Operator TolerationOperator

Value string

Effect TaintEffect

TolerationSeconds *int64
}

The TolerationOperator enumeration can get the following values:

TolerationOpExists = "Exists"
TolerationOpEqual = "Equal”

The TaintEffect enumeration can get these values:

TaintEffectNoSchedule = "NoSchedule"
TaintEffectPreferNoSchedule = "PreferNoSchedule"
TaintEffectNoExecute = "NoExecute"

65

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

The following two methods are defined on a Toleration structure:

e MatchToleration(tolerationToMatch *Toleration) bool - this
method returns true if the two tolerations have the same values for
Key, Operator, Value, and Effect.

o ToleratesTaint(taint *Taint) bool - this method returns true if
the toleration tolerates the Taint. The rules for a toleration to tolerate
a taint are as follows:

o Effect: For an empty Toleration effect, all Taint effects will match;
otherwise, Toleration and Taint effects must match.

o Operator: If TolerationOperator is Exists, all Taint values will
match; otherwise, TolerationOperator is Equal and Toleration
and Taint values must match.

o Key: For an empty Toleration Key, TolerationOperator must be
Exists, and all Taint keys (with any value) will match; otherwise,
Toleration and Taint keys must match.

Well-Known Labels

The control-plane adds labels on nodes; well-known keys that are used and their usage
can be found in the file well_known_labels.go of the core/v1 package. The following are
the most well-known.

The kubelet running on the node populates these labels:

LabelOSStable = "kubernetes.io/o0s"
LabelArchStable = "kubernetes.io/arch"
LabelHostname = "kubernetes.io/hostname"

When the node is running on a cloud provider, these labels can be set, representing
the instance type of the (virtual) machine, its zone, and its region:

LabelInstanceTypeStable
= "node.kubernetes.io/instance-type"
LabelTopologyZone

66

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

= "topology.kubernetes.io/zone"
LabelTopologyRegion
= "topology.kubernetes.io/region"

Writing Kubernetes Resources in Go

You will need to write Kubernetes resources in Go to create or update resources into the
cluster, either using an HTTP request or, more generally, using the client-go library. The
client-go library is discussed in a future chapter; but for now, let’s focus on writing the
resources in Go.

To create or update a resource, you will need to create the structure for the Kind
associated with the resource. For example, to create a deployment, you will need to
create a Deployment kind; and for this, initiate a Deployment structure, which is
defined in the apps/v1 package of the API Library.

Importing the Package

Before you can work with the structure, you need to import the package that defines this
structure. As was seen at the beginning of the chapter, the pattern for the package name
is k8s.io/api/<group>/<version>. The last part of the path is a version number, but you
should not confuse it with a version number of a Go module.

The difference is that when you are importing a specific version of a Go module
(e.g., k8s.io/klog/v2), you will use the part before the version as a prefix to access
symbols of the package, without defining any aliases. The reason is that in the library,
the v2 directory does not exist but represents a branch name, and the files going into the
package start with the line package klog, not package v2.

On the contrary, when working with the Kubernetes API Library, the version
number is the real name of a package in it, and the files into this package really start with
package v1.

If you do not define an alias for the import, you would have to use the version name
to use symbols from this package. But the version number alone is not meaningful when
reading the code, and if you include several packages from the same file, you would end
up with several vl package names, which is not possible.

67

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

The convention is to define an alias with the group name or, if you want to work with
several versions of a same group, or if you want to make it clearer that the alias refers to
an API group/version, you can create an alias with the group/version:

import (
corevl "k8s.io/api/core/v1"
appsvl "k8s.io/api/apps/v1"

You can now instantiate a Deployment structure:
myDep := appsvi.Deployment{}

To compile your program, you will need to fetch the library. For this, use:
$ go get k8s.io/api@latest

Or, if you want to use a specific version of the Kubernetes API (e.g., Kubernetes
1.23) use:

$ go get k8s.io/api@v0.23

All structures related to Kinds first embed two generic structures: TypeMeta and
ObjectMeta. Both are declared in the /pkg/apis/meta/v1 package of the API machinery
library.

The TypeMeta Fields

The TypeMeta structure is defined as follows:

type TypeMeta struct {
Kind string
APIVersion string

You generally will not have to set values for these fields yourself because the API
Machinery infers these values from the type of the structure by maintaining a Scheme—
that is, a mapping between Group-Version-Kinds and Go structures. Note that the
APIVersion value is another way to write the Group-Version as a single field that
contains <group>/<version> (or only v1 for the legacy core group).

68

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

The ObjectMeta Fields

The ObjectMeta structure is defined as follows (deprecated fields as well as internal

fields have been removed):

Type ObjectMeta {

Name string
GenerateName string

Namespace string

uID types.UID
ResourceVersion string

Generation int64

Labels map[string]string
Annotations map[string]string
OwnerReferences []JOwnerReference

[...]

The package /pkg/apis/meta/v1 of the API Machinery Library defines Getters
and Setters for fields of this structure. As the ObjectMeta is embedded in the resource
structures, you can use these methods in the resources objects themselves.

Name

The most important information of this structure is the name of the resource. You
can either use the Name field to specify the exact name of the resource or use the
GenerateName field to request that the Kubernetes API selects a unique name for you; it
is built by adding a suffix to the GenerateName value to make it unique.

You can use the methods GetName() string and SetName(name string) on a
resource object to access the Name field of its embedded ObjectMeta, for example:

configmap := corevi.ConfigMap{}
configmap.SetName("config")

Namespace

Namespaced resources need to be placed into a specific namespace. You might think
that you need to indicate this namespace in the Namespace field but, when you create or

69

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

update a resource, you will define the namespace on which to place the resource as part
of the request path. Chapter 2 has shown that the request to create a pod in the projectl
namespace is:

$ curl $HOST/api/vi/namespaces/projecti/pods

If you specify a namespace in the Pod structure different from projectl, you will get
an error: “the namespace of the provided object does not match the namespace sent on
the request.” For these reasons, when creating a resource, it is not necessary to set the
Namespace field.

UID, ResourceVersion, and Generation

The UID is a unique identifier across past, present and future resources in a cluster. It is
set by the control plane and is never updated during the lifetime of a resource. It must
be used to reference a resource, rather than its kind, name, and namespace, which could
describe various resources across time.

The ResourceVersion is an opaque value representing the version of the resource.
The ResourceVersion changes every time a resource is updated.

This ResourceVersion is used for Optimistic concurrency control: if you get a
specific version of a resource from the Kubernetes API, modify it then send it back to the
API to update it; the API will check that the ResourceVersion of the resource you are
sending back is the last one. If another process modified the resource in the meantime,
the ResourceVersion will have been modified, and your request will be rejected; in this
case, it is your responsibility to read the new version and update it again. This is different
from a Pessimist concurrency control where you would need to acquire a lock before
reading the resource and release it after updating it.

The Generation is a sequence number that can be used by the resource’s controller
to indicate the version of the desired state (the Spec). It will be updated only when the
Spec part of the resource is updated, not the other parts (labels, annotations, status).
The controller generally uses an ObservedGeneration field in the Status part to indicate
which generation was processed last and is reflected in the status.

Labels and Annotations

Labels and annotations are defined in Go as a map in which the keys and values are
strings.

70

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

Even if labels and annotations have very different usage, they can be populated the
same way. We will discuss in the present section how to populate the labels field, but
this is also applicable to annotations.

If you know the keys and values you want to add as labels, the simplest way to write
the labels’ field is to directly write the map, for example:

mylabels := map[string]string{
"app.kubernetes.io/component”: "my-component”,
"app.kubernetes.io/name": "a-name",

You can also add labels to an existing map, for example:
mylabels["app.kubernetes.io/part-of"] = "my-app"

If you need to build the labels field from dynamic values, the labels package
provided in the API Machinery Library provides a Set type that may be helpful.

import "k8s.io/apimachinery/pkg/labels"
mylabels := labels.Set{}

Functions and methods are provided to manipulate this type:

e The function ConvertSelectorToLabelsMap transforms a selector
string into a Set.

e The function Conflicts checks that two Sets do not have conflicting
labels. Conflicting labels are labels that have the same key but
different values.

e The function Merge will merge two Sets into a single Set. If there are
conflicting labels between the two sets, the label in the second set
will be used in the resulting Set,

o The function Equals checks that the two Sets have the same keys
and values.

e The method Has indicates whether a Set contains a key.

e The method Get returns the value for a given key in the Set, or an
empty string if the key is not defined in the Set.

71

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

You can instantiate a Set with values, and you can populate it with individual values
the same as you do with a map:

mySet := labels.Set{
"app.kubernetes.io/component”: "my-component”,
"app.kubernetes.io/name": "a-name",

}
mySet["app.kubernetes.io/part-of"] = "my-app"

You can use the following methods to access the labels and annotations of a

resource:
o Getlabels() map[string]string
o SetlLabels(labels map[string]string)
o GetAnnotations() map[string]string

o SetAnnotations(annotations map[string]string)

OwnerReferences

An OwnerReference is set on a Kubernetes resource when you want to indicate that
this resource is owned by another one, and you want this resource to be collected by the
garbage collector when the owner does not exist anymore.

This is used widely when developing controllers and operators. A controller or
operator creates some resources to implement the specifications described by another
resource, and it places an OwnerReference into the created resources, pointing to the
resource giving the specifications.

For example, the Deployment controller creates ReplicaSet resources based on
specifications found in a Deployment resource. When you delete the Deployment,
the associated ReplicaSet resources are deleted by the garbage collector without any
intervention from the controller.

The OwnerReference type is defined as follows:

type OwnerReference struct {

APIVersion string
Kind string
Name string
uID types.UID

72

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

Controller *bool
BlockOwnerDeletion *bool

To know the UID of the object to reference, you need to get the object from the
Kubernetes API, using a get (or list) request.

Setting APIVersion and Kind

Using the Client-go Library (Chapter 4 shows how to use it), the APIVersion and Kind
will not be set; you will need to set them on the referenced object before copying it, or set
it directly into the ownerReference:

import (
corevl "k8s.io/api/core/v1"
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"

)

// Get the object to reference
pod, err := clientset.CoreVi().Pods(myns).
Get(context.TODO(), mypodname, metavi.GetOptions{})
If err != nil {
return err

}

// Solution 1: set the APIVersion and Kind of the Pod
// then copy all information from the pod

pod.SetGroupVersionKind(
corevl.SchemeGroupVersion.WithKind("Pod"),
)
ownerRef := metavi.OwnerReference{
APIVersion: pod.APIVersion,

Kind: pod.Kind,
Name: pod.GetName(),
UID: pod.GetUID(),

}

// Solution 2: Copy name and uid from pod

73

CHAPTER 3 WORKING WITH API RESOURCES IN GO
// then set APIVexrsion and Kind on the OwnerReference

ownerRef := metavi.OwnerReference{
Name: pod.GetName(),
UID: pod.GetUID(),
}
ownerRef.APIVersion, ownerRef.Kind =
corevl.SchemeGroupVersion.WithKind("Pod").
ToAPIVersionAndKind()

The APIVersion contains the same information as the Group and Version. You
can get the information from the SchemeGroupVersion variable of type schema.
GroupVersion, which is defined in the package of the API library related to the resource
(here k8s.io/api/core/v1 for the Pod resource). You can then add the Kind to create a
schema.GroupVersionKind.

For the first solution, you can use the method SetGroupVersionKind on the
referenced object to set the APIVersion and Kind from the GroupVersionKind. For the
second solution, use the ToAPIVersionAndKind method on the GroupVersionKind
to get the corresponding APIVersion and Kind values before moving them to the
OwnerReference.

Chapter 5 describes the API Machinery Library and all the types and methods
related to Group, Version, and Kinds. The OwnerReference structure also contains two
optional boolean fields: Controller and BlockOwnerDeletion.

Setting Controller

The Controller field indicates whether the referenced object is the managing Controller
(or Operator). A controller, or operator, must set this value to true on the owned resource
to indicate that it is managing this owned resource.

The Kubernetes API will refuse to add two OwnerReferences with the Controller set
to true on the same resource. This way, it is not possible that a resource is managed by
two different controllers.

Note that this is different from being owned by various resources. A resource can
have different owners; and in this case, the resource will be deleted when all its owners
have been deleted, independent of which owner is the Controller, if any.

This uniqueness of controllers is useful for those that can “adopt” resources. For
example, a ReplicaSet can adopt an existing pod that matches the selectors of the

74

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

ReplicaSet, but only if the Pod is not already controlled by another ReplicaSet or
another controller.

The value of this field is a pointer to a boolean value. You can either declare a
boolean value and affect its address when setting the Controller field, or use the BoolPtr
function from the Kubernetes Utils Library:

// Solution 1: declare a value and use its address
controller := true
ownerRef.Controller = &controller

// Solution 2: use the BoolPtr function
import (
"k8s.io/utils/pointer"

)

ownerRef.Controller = pointer.BoolPtr(true)

Setting BlockOwnerDeletion

The OwnerReference is useful for a controller or other process to not have to take care
about deletion of owned resources: when the owner is deleted, the owned will be deleted
by the Kubernetes Garbage Collector.

This behavior is configurable. When using the Delete operation on a resource, you
can use the Propagation Policy option:

e Orphan: To indicate to the Kubernetes API to orphan the owned
resources, so they will not be deleted by the garbage collector.

e Background: To indicate to the Kubernetes API to return from the
DELETE operation immediately after the owner resource is deleted,
and not wait for owned resources to be deleted by the garbage
collector.

o Foreground: To indicate to the Kubernetes API to return from the
DELETE operation after the owner and the owned resources with
BlockOwnerDeletion set to true are deleted. The Kubernetes API
will not wait for other owned resources to be deleted.

So, if you are writing a controller or another process that needs to wait for all the
owned resources to be deleted, the process will need to set the BlockOwnerDeletion

75

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

field to true on all the owned resources and to use the Foreground propagation policy
when deleting the owner resource.

Spec and Status

After the common Type and Metadata, resource definitions are generally composed of
two parts: the Spec and the Status.

Note that it is not true for all resources. For example, the core ConfigMap and Secret
resources, to name a couple, do not contain Spec and Status parts. More generally,
resources containing configuration data, which are not managed by any controller, do
not contain these fields.

The Spec is the part that the user will define, which indicates the desired state by the
user. The Spec will be read by the Controller managing this resource, which will create,
update, or delete resources on the cluster according to the Spec, and retrieve the status
of its operations into the Status part of the resource. This process used by a controller to
read the Spec, apply to the cluster and retrieve the Status is called the Reconcile Loop.

Comparison with Writing YAML Manifests

When you write a Kubernetes manifest to be used with kubectl:
¢ The manifest starts with apiVersion and kind.
o The metadata field contains all the metadata for the resource.
e The Spec and Status fields (or others) follow.
When you write a Kubernetes structure in Go, the following occur:

o The type of the structure determines the apiVersion and Kind; there
is no need to specify them.

e The metadata can be defined either by embedding the metavl.
ObjectMeta structure, or by using metadata setters on the resource.

e The Spec and Status fields (or others) follow, using their own Go
structures or other types.

As an example, here are the ways to define a Pod with a YAML manifest vs. Go.
In YAML:

76

CHAPTER 3

apiVersion: vi
kind: Pod
metadata:

name: nginx

labels:

- component: my-component,
spec:

containers:

- image: nginx

name: nginx

In Go, when you are using setters for metadata:

pod := corevil.Pod{
Spec: corevi.PodSpec{
Containers: []corevi.Container{
{
Name: "runtime",
Image: "nginx",
}J
b
})

}
pod.SetName("my-pod")

pod.SetlLabels(map[string]string{
"component": "my-component",

1)

WORKING WITH API RESOURCES IN GO

Oz, in Go, when you are embedding the metavl.ObjectMeta structure into the Pod

structure:

pod2 := corevi.Pod{
ObjectMeta: metavi.ObjectMeta{
Name: "nginx",
Labels: map[string]string{
"component": "mycomponent",

b
1

77

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

Spec: corevi.PodSpec{
Containers: []corevi.Container{

{

Name: "runtime",
Image: "nginx",
})
b
b

A Complete Example

This complete example uses the concepts learned up to this point to create a Pod on the
cluster using a POST request.

O Build a Pod object using a Go structure, as has been shown
earlier in this chapter

@ Serialize the Pod object in JSON using a serializer (see Chapter
5 for more about this)

® Build an HTTP POST request with the body that contains the
Pod to create, serialized in JSON

O Call the Kubernetes API with the request built

© Get the body from the response

® Depending on the response status code:
If the request returns a 2xx status code:

@ Deserialize the response body as a Pod Go structure

O Display the created Pod object as JSON for information;
otherwise:

O Deserialize the response body as a Status Go structure

@ Display the Status object as JSON for information:

78

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

package main

import (

)

n bytes n
"encoding/json"
II_Fm_tII

io
"net/http"

corevl "k8s.io/api/core/v1"

metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/runtime”
"k8s.io/apimachinery/pkg/runtime/schema”
"k8s.io/apimachinery/pkg/runtime/serializer/json"

func createPod() error {

pod := createPodObject() @

serializer := getJSONSerializer()
postBody, err := serializePodObject(serializer, pod) @
if err != nil {

return err

}

reqCreate, err := buildPostRequest(postBody) ©
if err != nil {
return err

}

client := 8http.Client{}
resp, err := client.Do(reqCreate) @
if err != nil {

return err

}
defer resp.Body.Close()

79

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

body, err := io.ReadAll(resp.Body) @
if err != nil {
return err

}

if resp.StatusCode < 300 { ®
createdPod, err := deserializePodBody(serializer, body) @
if err != nil {

return err
}
json, err := json.MarshalIndent(createdPod, "", " ")
if err != nil {
return err
}
fmt.Printf("%s\n", json) @
} else {

status, err := deserializeStatusBody(serializer, body) ©
if err != nil {

return err
}
json, err := json.MarshalIndent(status, "", " ")
if err != nil {
return err
}
fmt.Printf("%s\n", json) ®
}
return nil

}

func createPodObject() *corevi.Pod { @
pod := corevi.Pod{
Spec: corevil.PodSpec{
Containers: []corevi.Container{
{
Name: "runtime",
Image: "nginx",

80

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

b
})
})
}

pod.SetName("my-pod")

pod.SetLabels(map[string]string{
"app.kubernetes.io/component”:
"app.kubernetes.io/name": "a-name",

"my-component”,

1)

return &pod

func serializePodObject(@
serializer runtime.Serializer,
pod *corevi.Pod,
) (
io.Reader,
error,
) {
var buf bytes.Buffer
err := serializer.Encode(pod, 8buf)
if err !'= nil {
return nil, err

}

return &buf, nil

func buildPostRequest(©
body io.Reader,

) (

*http.Request,
error,

) {

reqCreate, err := http.NewRequest(
"POST",

81

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

"http://127.0.0.1:8001/api/v1/namespaces/default/pods",
body,
)
if err !'= nil {
return nil, err
}
reqCreate.Header.Add(
"Accept",
"application/json",
)
reqCreate.Header.Add(
"Content-Type",
"application/json",
)

return reqCreate, nil

}

func deserializePodBody(@
serializer runtime.Serializer,
body []byte,

) (
*corevl.Pod,
error,

) {
var result corevi.Pod
_, _, err := serializer.Decode(body, nil, & result)
if err !'= nil {

return nil, err

}
return &result, nil

}

func deserializeStatusBody(©
serializer runtime.Serializer,
body []byte,

) (

82

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

*metavi.Status,
error,
) {
var status metavl.Status
_, _, err := serializer.Decode(body, nil, & status)
if err != nil {
return nil, err

}

return & status, nil

func getJSONSerializer() runtime.Serializer {
scheme := runtime.NewScheme()
scheme.AddKnownTypes (
schema.GroupVersion{
Group: "",
Version: "vi",
b
&corevi.Pod{},
dmetavi.Status{},
)

return json.NewSerializerWithOptions(
json.SimpleMetaFactory{},

nil,
scheme,
json.SerializerOptions{},
)
}
Conclusion

In this chapter, you have discovered a first library to work with Kubernetes in Go—the
API Library. It is essentially a collection of Go structures to declare Kubernetes resources.
The chapter also has explored the definition of the metadata fields common to all
resources, defined in the API Machinery Library.

83

CHAPTER 3 WORKING WITH APl RESOURCES IN GO

At the end of the chapter, there is an example of a program for building a Pod
definition using the API Library and then creating this Pod in the cluster by calling the
API Server using an HTTP request.

The next chapters explores other fundamental libraries—the API Machinery and the
Client-go—with which you will no longer need to build HTTP requests.

84

CHAPTER 4

Using Common Types

The previous chapter describes how to define a Kubernetes resource using Go structures.
Particularly, it explains the content of packages of the Kubernetes API Library, and the
common fields of every resource associated with a Kubernetes Kind.

This chapter examines common types that can be used in various places when
defining Kubernetes resources.

Pointers

Optional values in Go structures generally are declared as a pointer to a value. Thus, if
you do not want to specify the optional value, you just need to keep it as a nil pointer,
and if you need to specify a value, you have to create the value and pass its reference.

The pointer package of the Kubernetes Utils library defines utility functions to
declare such optional values.

import (
"k8s.io/utils/pointer”

Getting the Reference of a Value

The Int, Int32, Int64, Bool, String, Float32, Float64, and Duration functions accept a
parameter of the same type and return a pointer to the value passed as parameter. For
example, the Int32 function is defined as follows:

func Int32(i int32) *int32 {

return &i
Then, you can use it this way:
85
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_4

https://doi.org/10.1007/978-1-4842-9026-2_4

CHAPTER 4 USING COMMON TYPES

spec := appsvi.DeploymentSpec{
Replicas: pointer.Int32(3),
[...]

Dereferencing a Pointer

The other way you can get the value referenced by the pointer, or a default value if the
pointer is nil.

The IntDeref, Int32Deref, Int64Deref, BoolDeref, StringDeref, Float32Deref,
Float64Deref, and DurationDeref functions accept a pointer and a default value as a
parameter of the same type, and it returns the referenced value if the pointer is not nil, or
the default value otherwise. For example, the Int32Deref function is defined as follows:

func Int32Deref(ptr *int32, def int32) int32 {
if ptr != nil {
return *ptr

}

return def

Then, you can use it this way:

replicas := pointer.Int32Deref(spec.Replicas, 1)

Comparing Two Referenced Values

It can be useful to compare two pointer values, considering that they are equal if they are
both nil, or if they reference two equal values.

The Int32Equal, Int64Equal, BoolEqual, StringEqual, Float32Equal,
Float64Equal, and DurationEqual functions accept two pointers of the same type, and
return true if the two pointers are nil, or if they reference equal values. For example, the
Int32Equal function is defined as follows:

func Int32Equal(a, b *int32) bool {
if (a == nil) != (b == nil) {
return false

86

CHAPTER 4 USING COMMON TYPES

}
if a == nil {
return true

}

return *a == *b

Then, you can use it this way:

eq := pointer.Int32Equal(
specl.Replicas,
spec2.Replicas,

Note that to test the equality of an optional value, also considering its default value,

you should instead use the following:

isOne := pointer.Int32Deref(spec.Replicas, 1) == 1

Quantities

Quantity is a fixed-point representation of a number and is used to define quantities
of resources to allocate (i.e., memory, cpu, etc.). The smallest value the Quantity can
represent is one nano (107°).

Internally, a Quantity is represented either by an Integer (on 64 bits) and a Scale,
or, if the int64 is not large enough to support it, by an inf.Dec value (as defined by the
package at https://github.com/go-inf/inf).

import (
"k8s.io/apimachinery/pkg/api/resource”

Parsing a String as Quantity

A first way to define a Quantity is to parse its value from a string by using one of the

following functions:

87

https://github.com/go-inf/inf

CHAPTER 4 USING COMMON TYPES

o func MustParse(str string) Quantity - parses a quantity from
the string, or panics if the string does not represent a quantity. It is
to be used when you are applying a hard-coded value that you know
is valid.

o func ParseQuantity(str string) (Quantity, error) - parses
a quantity from the string or return an error if the string does not
represent a quantity. It is to be used when you are not sure the value
is valid.

The Quantity can be written using a sign, a digit number, and a suffix. The sign and
suffix are optional. The suffix can be either a binary, a decimal, or a decimal exponent.

The defined binary suffixes are Ki (2'°), Mi (2%), Gi (2%°), Ti (2%°), Pi (2%°), and Ei (2%).
The defined decimal suffixes are n (107°), u (10-%), m (1073), "" (10°), k (10%), M (109), G
(10°), T(10'?), P(10%), and E(10'®). The decimal exponent suffix is written with an e or E
sign followed by the decimal exponent—for example, E2 to represent 102

The suffix format (either binary, decimal, or exponent decimal) is saved in the
Quantity and is used when serializing the quantity.

Using these functions, the way the Quantity is represented internally (either a scaled
integer or an inf.Dec) will be decided depending on whether the parsed value can be
represented as a scaled integer or not.

Using an inf.Dec as a Quantity

Use the following to use an inf.Dec as a Quantity:

o func NewDecimalQuantity(b inf.Dec, format Format)
*Quantity - declares a Quantity by giving an inf.Dec value, and by
indicating with which suffix format you want it to be serialized.

o func (q *Quantity) ToDec() *Quantity - forces a Quantity—
previously defined by parsing a string or using a new function to
initialize it—to be stored as an inf.Dec.

o func (q *Quantity) AsDec() *inf.Dec - gets a representation
of the Quantity as inf.Dec without modifying the internal
representation.

88

CHAPTER 4 USING COMMON TYPES

Using a Scaled Integer as a Quantity

Use the following to use a scaled integer as a Quantity:

func NewScaledQuantity(value int64, scale Scale)
*Quantity - declares a Quantity by giving an int64 value and a scale.
The format of the suffix will be the decimal format.

func (q *Quantity) SetScaled(value int64, scale Scale) -
overrides a Quantity value with a scaled integer. The format of the
suffix will remain unchanged.

func (q *Quantity) ScaledValue(scale Scale) int64 -getsa
representation of the Quantity as an integer, considering the given
scale, without modifying the internal representation.

func NewQuantity(value int64, format Format) *Quantity -
declares a Quantity by giving an int64 value, the scale being fixed to 0,
and a suffix format is to be used during serialization.

func (q *Quantity) Set(value int64) - overrides a Quantity
value with an integer and a scale fixed to 0. The format of the suffix
will remain unchanged.

func (q *Quantity) Value() int64 - gets a representation of
the Quantity as an integer with a scale to 0, without modifying the
internal representation.

func NewMilliQuantity(value int64, format Format)
*Quantity - declares a Quantity by giving an int64 value, the scale
being fixed to —3 and a suffix format to be used during serialization.

func (q *Quantity) SetMilli(value int64) - overrides a
Quantity value with an integer and a scale fixed to —3. The format of
the suffix will remain unchanged.

func (q *Quantity) MillivValue() int64 - gets a representation of
the Quantity as an integer with a scale to —3 without modifying the
internal representation.

89

CHAPTER 4 USING COMMON TYPES

Operations on Quantities

The following are the ways to make operations on the Quantity:

o func (q *Quantity) Add(y Quantity) - adds the y Quantity to the
q Quantity.

o func (q *Quantity) Sub(y Quantity) - subtracts the y Quantity
from the q Quantity.

o func (q *Quantity) Cmp(y Quantity) int - comparesthe qandy
quantities. Return 0 if both quantities are equal, 1 if q is greater than
y, and —1if qisless thany.

o func (g *Quantity) CmpInt64(y int64) int - comparesq
Quantity with the y integer. Return 0 if both quantities are equal, 1 if
q is greater thany, and —1 if q is less than y.

o func (q *Quantity) Neg() - makes q the negative value of itself.

o func (q Quantity) Equal(v Quantity) bool - tests to see whether
q and v quantities are equal.

IntOrString

Some fields of Kubernetes resources accept either an integer value or a string value. For
example, a port can be defined with the port number or a IANA service name (as defined
in https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml).

Another example is fields that can accept either an integer or a percentage.

import (
"k8s.io/apimachinery/pkg/util/intstr"

The IntOrString structure is defined as follows:

type IntOrString struct {

Type Type
IntVal int32

90

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

CHAPTER 4 USING COMMON TYPES

Strval string

The Type can be either Int or String.

Because all the fields of the structure are public, you can create a value or extract

information from it by accessing its fields directly. For convenience, these functions are

useful for creating and manipulating IntOrString values:

func FromInt(val int) IntOrString - declares an IntOrString
containing an integer value.

func FromString(val string) IntOrString - declaresan
IntOrString containing a string value.

func Parse(val string) IntOrString - declares an IntOrString,
trying first to extract an integer from the string before storing it as

a string.

func (intstr *IntOrString) String() string - returnsthe
IntOrString value as a string, converting it using Itoa if the value is
stored as an integer.

func (intstr *IntOrString) IntValue() int - returnsthe
IntOrString value as an integer. If stored as a string, return its
converted value using Atoi or 0 if parsing fails.

func ValueOrDefault(intOrPercent *IntOrString, defaultValue
IntOrString) *IntOrString - returns the intOrPercent value if not
nil, or the defaultValue.

func GetScaledValueFromIntOrPercent(intOrPercent
*IntOrString, total int, roundUp bool) (int, error) - this
function can be used for IntOrString values expected to contain
either an integer or a percentage. If the value is an integer, it is
returned as is.

If the value is a string representing a percentage (a number followed by a % sign),

the function returns the percentage of the total value, rounding the result up or down

depending on roundUp. If the string is not parseable as a percentage, the function

returns an error.

91

CHAPTER 4 USING COMMON TYPES

Time

The Time type defined in the APT Machinery Library is used for all fields of Kubernetes

resources declaring a time. It is a wrapper around the Go time.Time type, and it provides

factories wrapping the time.Time factories.

import (
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"

Factory Methods

The available factory methods are the following:

func NewTime(time time.Time) Time - returns a metavl.Time
value wrapping that is the provided time.Time value.

func Date(year int, month time.Month, day, hour, min, sec,
nsec int, loc *time.Location) Time - returns a metavl.Time
value based on the various elements of the time (e.g., year, month,
day, hour, minutes, seconds, nanoseconds, location). It is a wrapper
around the time.Date function.

func Now() Time - returns a metavl.Time value containing the
current local time. It is a wrapper around the time.Now function.

func Unix(sec int64, nsec int64) Time - returns a metavl.Time
value corresponding to the given Unix time expressed in seconds and
nanoseconds. It is a wrapper around the time.Unix function.

Operations on Time

Use the following to define the Time operations:

92

func (t *Time) DeepCopyInto(out *Time) - returns a copy of the
metavl.Time value.

func (t *Time) IsZero() bool - returns true if the metavl.Time
value represents the zero time instant, January 1, year 1, 00:00:00
UTC. Itis a wrapper around the time.IsZero method.

CHAPTER 4 USING COMMON TYPES

e func (t *Time) Before(u *Time) bool - returns true if the
metavl.Time instant t is before u. It is a wrapper around the time.

Before method.

o func (t *Time) Equal(u *Time) bool - returns true if the
metavl.Time instant t is equal to u. It is a wrapper around the time.

Equal method.

o func (t Time) Rfc3339Copy() Time - returns a copy of the metavl.
Time t value, removing its nanosecond precision.

Conclusion

This chapter covered common types used when defining Kubernetes resources in Go.
Pointer values are used to specify optional values, quantities are used to specify memory
and CPU quantities, the IntOrString type is used for values writeable either as integers
or strings (e.g., ports that can be defined either by number or by name), and Time—a
serializable type wrapping the Go Time type.

93

CHAPTER 5

The API Machinery

The previous chapters explored how the Kubernetes API works at the HTTP level. They
also explored the Kubernetes API Library, which defines the resources served by the

Kubenretes API in Go.
This chapter explores the Kubernetes API Machinery Library, which provides utilities

for working with API objects that follow the Kubernetes API object conventions. These

conventions include:

The API objects embed a common metadata structure, TypeMeta,
containing two fields: APIVersion and Kind.

The API objects are provided in a separate package.
The API objects are versioned.

Conversion functions are provided to convert between versions.

The API Machinery will provide the following utilities:

A Scheme abstraction, used to:

o Register the API objects as Group-Version-Kinds
o Convert between API Objects of different versions
o Serialize/deserialize API Objects

A RESTMapper, mapping between API Objects (based on embedded
APIVersion and Kind) and resource names (in the REST sense).

This chapter details the functions provided by the API Machinery.

© Philippe Martin 2023
P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_5

95

https://doi.org/10.1007/978-1-4842-9026-2_5

CHAPTER 5 THE APl MACHINERY

The Schema Package

The schema package of the API Machinery Library defines useful structures and
functions to work with Group, Versions, Kinds, and Resources.

import (
"k8s.io/apimachinery/pkg/runtime/schema”

The structures GroupVersionResource, GroupVersionKind, GroupVersion,
GroupResource, and GroupKind are defined, with methods to pass from one to
another.

Also, functions to convert between GroupVersionKind and (apiVersion, kind) are
provided: ToAPIVersionAndKind and FromAPIVersionAndKind.

96

CHAPTER 5 THE APl MACHINERY

api machinery Schema

Group Version Group Resource
s ¢ F S
% S > &
% g g /s
2 2 § S

5 = S

i I E

= = :

| |5 Group Version Resource

= o

5

1Y
NS’
W Group Kind
Group Version Kind /‘;“gs
P o®
To API Version \From APl Version
and Kind and Kind
api Version string
Kind string

Figure 5-1. GVK and GVR related structures and methods

Scheme

A Scheme is an abstraction used to register the API objects as Group-Version-Kinds,
convert between API Objects of various versions, and serialize/deserialize API Objects.
The Scheme is a structure provided by the API Machinery in the runtime package. All

the fields of this structure are unexported.

97

CHAPTER 5 THE APl MACHINERY

Initialization

The Scheme structure can be initialized with the NewScheme function:

import (
"k8s.io/apimachinery/pkg/runtime"

)

Scheme := runtime.NewScheme()

After the structure is initialized, you can register new API objects with the
AddKnownTypes method as follows:

func (s *Scheme) AddKnownTypes(gv schema.GroupVersion, types ...Object)

For example, to register the Pod and ConfigMap objects into the core/v1 group, you
could use:

import (
corevl "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/runtime”
"k8s.io/apimachinery/pkg/runtime/schema"”

)

Scheme := runtime.NewScheme()

func init() {
Scheme . AddKnownTypes (
schema.GroupVersion{
Group: "",
Version: "vi",
}’

&corevi.Pod{},
8corevi.ConfigMap{},

98

CHAPTER 5 THE APl MACHINERY

By doing this, the API Machinery will be able to know that the Group-Version-Kind
core-v1-Pod to be used when executing requests related to pods must be the corevl.
Pod structure, and the core-v1-ConfigMap to be used when executing requests related to
configmaps must be the corevl.ConfigMap structure.

It has been shown that the API objects can be versioned. You can register a same
kind for various versions this way—for example, use the following to add the vl and
vlbetal versions of the Deployment object:

import (
appsvl "k8s.io/api/apps/v1"
appsvibetal "k8s.io/api/apps/vibeta1l”
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/runtime/schema”

)

Scheme := runtime.NewScheme()

func init() {
Scheme . AddKnownTypes (
schema.GroupVersion{
Group: "apps",

Version: "vi1",

}s
8appsvi.Deployment{},

)
Scheme . AddKnownTypes (
schema.GroupVersion{
Group: "apps",
Version: "vibeta1l",

}s
8appsvibetal.Deployment{},

It is advisable to initialize the Scheme structure and to add known types to it at the
very beginning of the execution—for example, using the init functions.

99

CHAPTER 5 THE APl MACHINERY

Mapping

After initialization, you can use various methods on the structure to map between Goup-
Version-Kinds and Go Types:

o KnownTypes(gv schema.GroupVersion) map[string]reflect.
Type - gets all the Go types registered for a specific Group-Version—
here apps/vl:

types := Scheme.KnownTypes(schema.GroupVersion{
Group: "apps",
Version: "v1",

1)
-> ["Deployment": appsvi.Deployment]

o VersionsForGroupKind(gk schema.GroupKind) []schema.
GroupVersion - gets all the Group-Versions registered for a specific
Kind—here the Deployment:

groupVersions := Scheme.VersionsForGroupKind(
schema.GroupKind{

Group: "apps",

Kind: "Deployment",
1)

-> ["apps/vi

apps/vibeta1l"]

e ObjectKinds(obj Object) ([]schema.GroupVersionKind, bool,
error) - gets all the possible Group-Version-Kinds for a given
object—here an appsvl.Deployment:

gvks, notVersioned, err := Scheme.ObjectKinds(&appsvi.
Deployment{})

-> ["apps/v1 Deployment"]

o New(kind schema.GroupVersionKind) (Object, error) - builds
an object, given a Group-Version-Kind:

100

CHAPTER 5 THE APl MACHINERY

obj, err := Scheme.New(schema.GroupVersionKind{
Group: "apps",
Version: "vi",
Kind: "Deployment”,

1)

o This method returns a value of type runtime.Object, which is an
interface implemented by all the API objects. The concrete type of
the value will be the object mapping the Group-Version-Kind—here
appsvl.Deployment.

Conversion

The Scheme structure registers Kinds by Group-Version. By providing to the Scheme
conversion functions between kinds of the same Group and different Versions, it is then
possible to convert between any kinds of the same Group.

It is possible to define conversion functions of two levels: conversion functions and
generated conversion functions. Conversion functions are functions written by hand,
when generated conversion functions are generated using the conversion-gen tool.

When converting between two versions, the conversion function, if it exists, will take
priority over the generated conversion function.

Adding Conversion Functions

These two methods add a conversion function between a and b, which are two objects of
types belonging to the same Group.

AddConversionFunc(

a, b interface{},

fn conversion.ConversionFunc,
) error

AddGeneratedConversionFunc(

a, b interface{},

fn conversion.ConversionFunc,
) error

101

CHAPTER 5 THE APl MACHINERY

The a and b values must be pointers to structures and can be nil pointers. The
signature of the conversion function is defined as follows:

type ConversionFunc func(
a, b interface{},
scope Scope,

) error

Here is an example, to add a conversion function between apps/vl and apps/
vlbetal deployments:

Scheme.AddConversionFunc(
(*appsvi.Deployment)(nil),
(*appsvibetal.Deployment)(nil),
func(a, b interface{}, scope conversion.Scope) error{
videploy := a.(*appsvi.Deployment)
vibetaldeploy := b.(*appsvibetal.Deployment)
// make conversion here
return nil

1)

As for registering known types to the scheme, the recommendation is to register conversion
functions at the very beginning of the execution—for example, using init functions.

Converting

Once conversion functions have been registered, it is possible to convert between two
versions of the same kind with the Convert function.

Convert(in, out interface{}, context interface{}) error
This example defines a vl.Deployment, then converts it to the vlbetal version:

videployment := appsvi.Deployment{

[...]
}

videployment.SetName("myname™)

var vibetaiDeployment appsvibetal.Deployment
scheme.Convert(8videployment, &vibetaiDeployment, nil)

102

CHAPTER 5 THE APl MACHINERY

Serialization

Packages of the API Machinery Library provide serializers for various formats: JSON,
YAML, and Protobuf. These serializers implement the Serializer interface, which
embeds the Encoder and Decoder interfaces. First, you can see how to instantiate
serializers for different formats, then how to use them to encode and decode API objects.

JSON and YAML Serializer

The json package provides a serializer for both JSON and YAML formats.

import (
"k8s.io/apimachinery/pkg/runtime/serializer/json"

The NewSerializerWithOptions function is used to create a new serializer.

NewSerializerWithOptions(
meta MetaFactory,
creater runtime.ObjectCreater,
typer runtime.ObjectTyper,
options SerializerOptions,

) *Serializer

The options give the possibility to choose between a JSON and a YAML serializer
(Yaml field) to choose a human-readable output for a JSON output (Pretty field) and to
check for duplicate fields in JSON and YAML (Strict fields).

type SerializerOptions struct {
Yaml bool
Pretty bool
Strict bool

The Scheme can be used for creator and typer because it implements these two
interfaces, and the SimpleMetaFactory structure can be used as meta.

serializer := jsonserializer.NewSerializerWithOptions(
jsonserializer.SimpleMetaFactory{},
Schenme,

103

CHAPTER 5 THE APl MACHINERY

Scheme,
jsonserializer.SerializerOptions{
Yaml: false, // or true for YAML serializer
Pretty: true, // or false for one-line JSON
Strict: false, // or true to check duplicates
1
)

Protobuf Serializer
The protobuf package provides a serializer for a Protobuf format.

import (
"k8s.io/apimachinery/pkg/runtime/serializer/protobuf"

The NewSerializer function is used to create a new serializer.

NewSerializer(
creater runtime.ObjectCreater,
typer runtime.ObjectTyper,

) *Serializer

The Scheme can be used for creator and typer because it implements these two

interfaces.

serializer := protobuf.NewSerializer(Scheme, Scheme)

Encoding and Decoding

The various serializers implement the Serializer interface, which embeds the Decoder
and Encoder interfaces, defining the Encode and Decode methods.

o Encode(obj Object, w io.Writer) error - the Encode function
takes an API object as a parameter, encodes the object, and writes the

result using the writer.

104

CHAPTER 5 THE APl MACHINERY

e Decode(

data []byte,
defaults *schema.GroupVersionKind,
into Object,
) (
Object,
*schema.GroupVersionKind,
error,

)

- this function takes an array of bytes as a parameter and tries to decode
its content. If the content to decode does not specify apiVersion and
Kind, the default GroupVersionKind (GVK) will be used.

The result will be placed in the into object if not nil and if the concrete
type of into matches the content GVK (either the initial one, or the
defaults one). In any case, the result will be returned as an Object, and
the GVK applied to it will be returned as a GroupVersionKind structure.

RESTMapper

The API Machinery provides a concept of RESTMapper, used to map between REST
resources and Kinds.

import (
"k8s.io/apimachinery/pkg/api/meta"

The RESTMapping type provides the result of a mapping using the RESTMapper:

type RESTMapping struct {
Resource schema.GroupVersionResource
GroupVersionKind schema.GroupVersionKind
Scope RESTScope

As Chapter 1 discussed, a GVR (Group-Version-Resource, or Resource for short)
is used to build the path to which to make a request. For example, to get the list of
deployments in all namespaces, you will use the path /apis/apps/vl/deployments,

105

CHAPTER 5 THE APl MACHINERY

where apps is the Group, v1 is the Version, and deployments is the (plural) Resource
name. So, a resource managed by an API can be uniquely identified by its GVR.

When making requests to this path, generally you want to exchange data, either in
the request to create or update a resource, or in the response to get or list resources. The
format of this exchanged data is called the Kind (or GroupVersionKind), associated with
the resource.

The RESTMapping structure brings together a Resource and its associated
GroupVersionKind. The API machinery provides a RESTMapper interface, and a
default implementation, DefaultRESTMapper.

type RESTMapper interface {

RESTMapping(gk schema.GroupKind, versions ...string)
(*RESTMapping, error)

RESTMappings(gk schema.GroupKind, versions ...string)
([T*RESTMapping, error)

KindFor(resource schema.GroupVersionResource)
(schema.GroupVersionKind, error)

KindsFor(resource schema.GroupVersionResource)
([1schema.GroupVersionKind, error)

ResourceFor(input schema.GroupVersionResource)
(schema.GroupVersionResource, error)

ResourcesFor(input schema.GroupVersionResource)
([]schema.GroupVersionResource, error)

ResourceSingularizer(resource string)
(singular string, err error)

Kind to Resource

The RESTMapping and RESTMappings methods return an element or an array of
RESTMapping structures as a result, given a Group and Kind. An optional list of
versions indicates the preferred versions.

106

CHAPTER 5 THE APl MACHINERY

The RESTMappings method returns all matches, the RESTMapping method returns
a single match or an error if there are multiple matches. The resulting RESTMapping
elements will contain the fully qualified Kind (including the version) and the fully
qualified Resource.

To sum up, these methods are used to map a Kind to a Resource.

Resource to Kind

The KindFor and KindsFor methods return an element or an array of
GroupVersionKind, given a partial Group-Version-Resource. Partial means that you can
omit the group, the version, or both. The resource name can be the singular or the plural
name of the resource.

The KindsFor method returns all matches, the KindFor method returns a single
match or an error if there are multiple matches.

To sum up, these methods are used to map a Resource to a Kind.

Finding Resources

The ResourceFor and ResourcesFor methods return an element or an array of
GroupVersionResource, given a partial Group-Version-Resource. Partial means that
you can omit the group, the version, or both. The resource name can be the singular or
the plural name of the resource.

The ResourcesFor method returns all matches, the ResourceFor method returns a
single match or an error if there are multiple matches.

To sum up, these methods are used to find fully qualified resources based on a
singular or plural resource name.

The DefaultRESTMapper Implementation

The API Machinery provides a default implementation of a RESTMapper.

o NewDefaultRESTMapper(
defaultGroupVersions []schema.GroupVersion,
) *DefaultRESTMapper

107

CHAPTER 5 THE APl MACHINERY

- this factory method is used to build a new Default RESTMapper,
and accepts a list of default Group-Versions, which will be used to
find Resources or Kinds when the provided GVR is partial.

o Add(kind schema.GroupVersionKind, scope RESTScope) - this
method is used to add a mapping between a Kind and a Resource.
The resource name will be guessed from the Kind, by getting the
lowercase word, and by pluralizing it (adding “es” to words ending

with “s,” replacing terminal “y” with “ies” to words ending with “y,
and adding “s” to other words).

o AddSpecific(
kind schema.GroupVersionKind,
plural, singular schema.GroupVersionResource,
scope RESTScope)

- this method is used to add a mapping between a Kind and a
Resource, by giving the singular and plural names explicitly.

After creating a Default RESTMapper instance, you can use it as a RESTMapper by
calling the methods defined in the interface of the same name.

Conclusion

This chapter has explored the API Machinery, introducing the Scheme abstraction used
to serialize resources between Go and JSON or YAML, and to convert resources between
several versions. The chapter also covered the RESTMapper interface to help map
between resources and kinds.

The next chapter covers the Client-go Library, a high-level one used by developers to
call the Kubernetes API without needing to work with HTTP calls.

108

CHAPTER 6

The Client-go Library

The previous chapters explored the Kubernetes API Library, a collection of Go structures
to work with the objects of the Kubernetes API, and the API Machinery Library, which
provides utilities for working with the API objects that follow the Kubernetes API object
conventions. Specifically, you have seen that the API Machinery provides Scheme and
RESTMapper abstractions.

This chapter explores the Client-go Library, which is a high-level library that can
be used by developers to interact with the Kubernetes API using the Go language. The
Client-go Library brings together the Kubernetes API and the API Machinery libraries,
providing a Scheme preconfigured with Kubernetes API's objects and a RESTMapper
implementation for the Kubernetes API. It also provides a set of clients to use to execute
operations on the resources of the Kubernetes API in a simple way.

To use this library, you will need to import packages from it with the prefix k8s.io/
client-go. For example, to use the package kubernetes, let’s use the following:

import (
"k8s.io/client-go/kubernetes”

You also need to download a version of the Client-go Library. For this you can
employ the go get command to obtain the version you want to use:

$ go get k8s.io/client-go@v0.24.4

The version of the Client-go Library is aligned with the version of Kubernetes—
version 0.24.4 corresponds to version 1.24.4 of the server.

Kubernetes is backward-compatible so you can use older versions of Client-go with
newer versions of clusters, but you may well want to get a recent version to be able to use
a current feature, because only bug fixes are backported to previous client-go releases,
not new features.

109
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_6

https://doi.org/10.1007/978-1-4842-9026-2_6

CHAPTER6 THE CLIENT-GO LIBRARY

Connecting to the Cluster

The first step before connecting to the Kubernetes API Server is to have the configuration
connect to it—that is, the address of the server, its credentials, the connection
parameters, and so on.

The rest package provides a rest.Config structure, which contains all the
configuration information necessary for an application to connect to a REST API Server.

In-cluster Configuration

By default, a container running on a Kubernetes Pod contains all the information needed
to connect to the API Server:

e A token and the root certificate, provided by the ServiceAccount
used for the Pod, are available in this directory: /var/run/secrets/
kubernetes.io/serviceaccount/.

Note that it is possible to disable this behavior by setting
automountServiceAccountToken: false in the ServiceAccount
used by the Pod, or in the specifications of the Pod directly

e The environment variables, KUBERNETES_SERVICE_HOST
and KUBERNETES_SERVICE_PORT, defined in the container
environment, added by kubelet, define the host and port to which to
contact the API Server.

When an application is dedicated to run inside a Pod’s container, you can use
the following function to create an appropriate rest.Config structure, leveraging the
information just described:

import "k8s.io/client-go/rest"

func InClusterConfig() (*Config, error)

Out-of-Cluster Configuration

Kubernetes tools generally rely on the kubeconfig file—that is, a file that contains
connection configuration for one or several Kubernetes clusters.

110

CHAPTER 6 THE CLIENT-GO LIBRARY

You can build a rest.Config structure based on the content of this kubeconfig file by
using one of the following functions from the clientcmd package.

From kubeconfig in Memory

The RESTConfigFromKubeConfig function can be used to build a rest.Config structure
from the content of a kubeconfig file as an array of bytes.

func RESTConfigFromKubeConfig(
configBytes []byte,
) (*rest.Config, error)

If the kubeconfig file contains several contexts, the current context will be used,
and the other contexts will be ignored. For example, you can read the content of a
kubeconfig file first, then use the following function:

import "k8s.io/client-go/tools/clientcmd”

configBytes, err := os.ReadFile(
"/home/user/.kube/config",

)

if err != nil {
return err

}

config, err := clientcmd.RESTConfigFromKubeConfig(
configBytes,

)

if err != nil {
return err

}

From a kubeconfig on Disk

The BuildConfigFromFlags function can be used to build a rest.Config structure either
from the URL of the API Server, or based on a kubeconfig file given its path, or both.

func BuildConfigFromFlags (
masterUrl,

111

CHAPTER6 THE CLIENT-GO LIBRARY

kubeconfigPath string,
) (*rest.Config, error)

The following code allows you to get a rest.Config structure:
import "k8s.io/client-go/tools/clientcmd"”

config, err := clientcmd.BuildConfigFromFlags(

nn
)

"/home/user/.kube/config",

The following code gets the configuration from the kubeconfig, and overrides the
URL of the API Server:

config, err := clientcmd.BuildConfigFromFlags(
"https://192.168.1.10:6443",
"/home/user/.kube/config",

)

From a Personalized kubeconfig

The previous functions use an api.Config structure internally, representing the data in
the kubeconfig file (not to be confused with the rest.Config structure that contains the
parameters for the RESTHTTP connection).

If you need to manipulate this intermediary data, you can use the
BuildConfigFromKubeconfigGetter function accepting a kubeconfigGetter function as
an argument, which itself will return an api.Config structure.

BuildConfigFromKubeconfigGetter(
masterUrl string,
kubeconfigGetter KubeconfigGetter,
) (*rest.Config, error)

type KubeconfigGetter
func() (*api.Config, error)

For example, the following code will load the kubeconfig file with the clientcmd.
Load or clientcmd.LoadFromFile functions from the kubeconfigGetter function:

112

CHAPTER 6 THE CLIENT-GO LIBRARY

import (
"k8s.io/client-go/tools/clientcmd”
"k8s.io/client-go/tools/clientcmd/api”

)

config, err :=
clientcmd.BuildConfigFromKubeconfigGetter (

nn
)

func() (*api.Config, error) {

apiConfig, err := clientcmd.LoadFromFile(
"/home/user/.kube/config",

)

if err != nil {
return nil, nil

}

// TODO: manipulate apiConfig

return apiConfig, nil

1
)

From Several kubeconfig Files

The kubectl tool uses by default the $HOME/.kube/config kubeconfig file, and you can

specify another kubeconfig file path using the KUBECONFIG environment variable.
More than that, you can specify a list of kubeconfig file paths in this

environment variable, and the kubeconfig files will be merged into just one

before being used. You can obtain the same behavior with this function:

NewNonlInteractiveDeferredLoadingClientConfig.

func NewNonInteractiveDeferredLoadingClientConfig(
loader ClientConfigloader,
overrides *ConfigOverrides,

) ClientConfig

The type clientcmd.ClientConfigLoadingRules implements the
ClientConfigLoader interface, and you can get a value for this type using the following
function:

113

CHAPTER6 THE CLIENT-GO LIBRARY

func NewDefaultClientConfigloadingRules()
*ClientConfigloadingRules

This function will get the value of the KUBECONFIG environment variable, if it
exists, to obtain the list of kubeconfig files to merge, or will fallback on using the default
kubeconfig file located in $HOME/.kube/config.

Using the following code to create the rest.Config structure, your program will have
the same behavior as kubectl, as previously described:

import (
"k8s.io/client-go/tools/clientcmd"
)

config, err :=

clientcmd.NewNonInteractiveDeferredLoadingClientConfig(
clientcmd.NewDefaultClientConfigloadingRules(),
nil,

).ClientConfig()

Overriding kubeconfig with CLI Flags

It has been shown that the second parameter of this function,
NewNonlInteractiveDeferredLoadingClientConfig, is a ConfigOverrides structure. This
structure contains values to override some fields of the result of merging the kubeconfig files.

You can set specific values in this structure yourself, or, if you are creating a CLI using
the spf13/pflag library (i.e., github.com/spf13/pflag), you can use the following code to
automatically declare default flags for your CLI and bind them to the ConfigOverrides
structure:

import (
"github.com/spf13/pflag"
"k8s.io/client-go/tools/clientcmd"

)
var (

flags pflag.FlagSet

overrides clientcmd.ConfigOverrides

of = clientcmd.RecommendedConfigOverrideFlags("")
)

114

http://github.com/spf13/pflag

CHAPTER 6 THE CLIENT-GO LIBRARY

clientcmd.BindOverrideFlags(&overrides, &flags, of)
flags.Parse(os.Args[1:])

config, err :=

clientcmd.NewNonInteractiveDeferredLoadingClientConfig(
clientcmd.NewDefaultClientConfigloadingRules(),
&overrides,

).ClientConfig()

Note that you can declare a prefix for the added flags when calling the function
RecommendedConfigOverrideFlags.

Getting a Clientset

The Kubernetes package provides functions to create a clientset of the type kubernetes.
Clientset.

o func NewForConfig(c *rest.Config) (*Clientset, error) - The
NewForConfig function returns a Clientset, using the provided rest.
Config built with one of the methods seen in the previous section.

o func NewForConfigOrDie(c *rest.Config) *Clientset - this
function is like the previous one, but panics in case of error, instead
of returning the error. This function can be used with a hard-coded
config for which you will want to assert its validity.

e NewForConfigAndClient(
c *rest.Config,
httpClient *http.Client,
) (*Clientset, error)

— this NewForConfigAndClient function returns a Clientset, using the
provided rest.Config, and the provided http.Client.

The previous function NewForConfig uses a default HTTP Client
built with the function rest. HTTPClientFor. If you want to
personalize the HTTP Client before building the Clientset, you
can use this function instead.

115

CHAPTER6 THE CLIENT-GO LIBRARY

Using the Clientset

The kubernetes.Clientset type implements the interface kubernetes.Interface, defined
as follows:

type Interface interface {
Discovery() discovery.DiscoveryInterface
[...]
AppsVi() appsvi.AppsViInterface
AppsVibeta1() appsvibetal.AppsVibetalInterface
AppsVibeta2() appsvibeta2.AppsVibeta2Interface
[...]

CoreVi() corevi.CoreVilnterface

[...]

The first method Discovery() gives access to an interface that provides methods to
discover the groups, versions, and resources available in the cluster, as well as preferred
versions for resources. This interface also provides access to the server version and the
OpenAPI v2 and v3 definitions. This is examined in detail in the Discovery client section.

Apart from the Discovery() method, the kubernetes.Interface is composed of a
series of methods, one for each Group/Version defined by the Kubernetes API. When
you see the definition of this interface, it is possible to understand that the Clientset is a
set of clients, and each client is dedicated to its own Group/Version.

Each method returns a value that implements an interface specific to the Group/
Version. For example, the CoreV1() method of kubernetes.Interface returns a value,
implementing the interface corevl.CoreV1Interface, defined as follows:

type CoreViInterface interface {
RESTClient() rest.Interface
ComponentStatusesGetter
ConfigMapsGetter
EndpointsGetter

[...]

116

CHAPTER 6 THE CLIENT-GO LIBRARY

The first method in this CoreV1Interface interface is RESTClient() rest.Interface,
which is a method used to get a REST client for the specific Group/Version. This
low-level client will be used internally by the Group/Version client, and you can use
this REST client to build requests not provided natively by the other methods of this
interface: CoreV1Interface.

The interface rest.Interface implemented by the REST client is defined as follows:

type Interface interface {

GetRatelLimiter() flowcontrol.RateLimiter
Verb(verb string) *Request

Post() *Request

Put() *Request

Patch(pt types.PatchType) *Request

Get() *Request

Delete() *Request

APIVersion() schema.GroupVersion

As you can see, this interface provides a series of methods—Verb, Post, Put, Patch,
Get, and Delete—that return a Request object with a specific HTTP Verb. This is
examined further in the “How to Use These Request Objects to Complete Operations”
section.

The other methods in the CoreV1Interface are used to get specific methods for
each Resource of the Group/Version. For example, the ConfigMapsGetter embedded
interface is defined as follows:

type ConfigMapsGetter interface {
ConfigMaps(namespace string) ConfigMapInterface

Then, the interface ConfigMapInterface is returned by the method ConfigMaps and
is defined as follows:

type ConfigMapInterface interface {
Create(

117

CHAPTER6 THE CLIENT-GO LIBRARY

ctx context.Context,

configMap *vi1.ConfigMap,

opts metavi.CreateOptions,
) (*vi.ConfigMap, error)
Update(

ctx context.Context,

configMap *vi1.ConfigMap,

opts metavi.UpdateOptions,
) (*vi.ConfigMap, error)
Delete(

ctx context.Context,

name string,

opts metavi.DeleteOptions,
) error

[...]

You can see that this interface provides a series of methods, one for each Kubernetes
API Verb.

Each method related to an operation takes as a parameter an Option structure,
named after the name of the operation: CreateOptions, UpdateOptions,
DeleteOptions, and so on. These structures, and the related constants, are defined in
this package: k8s.io/apimachinery/pkg/apis/meta/vl.

Finally, to make an operation on a resource of a Group-Version, you can chain the
calls following this pattern for namespaced resources, where namespace can be the
empty string to indicate a cluster-wide operation:

clientset.
GroupVersion().
NamespacedResource(namespace).
Operation(ctx, options)

Then, the following is the pattern for non-namespaced resources:

clientset.
GroupVersion().
NonNamespacedResource() .

118

CHAPTER 6 THE CLIENT-GO LIBRARY
Operation(ctx, options)

For example, use the following to List the Pods of the core/v1 Group/Version in
namespace projectl:

podList, err := clientset.
CoreVi().
Pods("project1").
List(ctx, metavi.ListOptions{})

To get the list of pods in all namespaces, you need to specify an empty

namespace name:

podList, err := clientset.
CoreVi().
Pods("").
List(ctx, metavi.ListOptions{})

To get the list of nodes (which are non-namespaced resources) use this:

nodeslList, err := clientset.
CoreVi().
Nodes ().
List(ctx, metavi.ListOptions{})

The following sections describe in detail the various operations using the Pod
resource. You can apply the same examples by removing the namespace parameter
when working with non-namespaced resources.

Examining the Requests

If you want to know which HTTP requests are executed when calling client-go methods,
you can enable logging for your program. The Client-go Library uses the klog library
(https://github.com/kubernetes/klog), and you can enable the log flags for your
command with the following code:

import (
II_Flag"

119

https://github.com/kubernetes/klog

CHAPTER6 THE CLIENT-GO LIBRARY

"k8s.io/klog/v2"
)

func main() {
klog.InitFlags(nil)
flag.Parse()
[...]

Now, you can run your program with the flag -v <level>—for example, -v 6 to get
the URL called for every request. You can find more detail about the defined log levels in
Table 2-1.

Creating a Resource

To create a new resource in the cluster, you first need to declare this resource in memory
using the dedicated Kind structure, then use the Create method for the resource you
want to create. For example, use the following to create a Pod named nginx-pod in the
projectl namespace:

wantedPod := corevi.Pod{
Spec: corevi.PodSpec{
Containers: []corevi.Container{
{
Name: "nginx",
Image: "nginx",
})
})
1

}
wantedPod. SetName("nginx-pod")

createdPod, err := clientset.
CoreVi().
Pods("project1").
Create(ctx, 8wantedPod, vi.CreateOptions{})

120

CHAPTER 6 THE CLIENT-GO LIBRARY

The various options used to declare the CreateOptions structure, when creating a

resource, are:

DryRun - this indicates which operations on the API server-side
should be executed. The only available value is metavi.DryRunAll,
indicating execution of all the operations except persisting the
resource to storage.

Using this option, you can get, as result of the command, the exact
object that would have been created in the cluster without really
creating it, and check whether an error would occur during this

creation.

FieldManager - this indicates the name of the field manager for this
operation. This information will be used for future server-side Apply

operations.

FieldValidation - this indicates how the server should react
when duplicate or unknown fields are present in the structure. The
following are the possible values:

o metavi.FieldValidationIgnore to ignore all duplicate or
unknown fields

e metavi.FieldValidationWarn to warn when duplicate or
unknown fields are present

e metavi.FieldValidationStrict to fail when duplicate or
unknown fields are present

Note that using this method, you will not be able to define
duplicate or unknown fields because you are using a structure to
define the object.

In case of error, you can test its type with the functions defined in the package k8s.

io/apimachinery/pkg/api/errors. All the possible errors are defined in section “Errors

and Statuses’, and here are the possible errors specific to the Create operation:

IsAlreadyExists - this function indicates whether the request failed
because a resource with the same name already exists in the cluster:

if errors.IsAlreadyExists(err) {

121

CHAPTER6 THE CLIENT-GO LIBRARY

/1 ...

e IsNotFound - this function indicates whether the namespace you

specified in the request does not exist.

e IsInvalid - this function indicates whether the data passed into the
structure is invalid.

Getting Information About a Resource

To get information about a specific resource in the cluster, you can use the Get method
for the resource you want to get information from. For example, to get information about
the pod named nginx-pod in the projectl namespace:

pod, err := clientset.
CoreVi().
Pods("project1").
Get(ctx, "nginx-pod", metavi.GetOptions{})

The various options to declare it into the GetOptions structure, when getting
information about a resource are:

e ResourceVersion - to request a version of the resource not older than
the specified version.

If ResourceVersion is “0,” indicates to return any version of
the resource. You will generally receive the latest version of the
resource, but this is not guaranteed; receiving an older version
can happen on high availability clusters due to partitioning or

stale cache.

If the option is not set, you are guaranteed to receive the most
recent version of the resource.

The possible error specific to the Get operation is:

e IsNotFound - this function indicates that the namespace you
specified in the request does not exist, or that the resource with the

specified name does not exist.

122

CHAPTER 6 THE CLIENT-GO LIBRARY

Getting List of Resources

To get a list of resources in the cluster, you can use the List method for the resource you
want to list. For example, use the following to list the pods in the projectl namespace:

podList, err := clientset.
CoreVi().
Pods("project1").
List(ctx, metavi.ListOptions{})

Or, to get the list of pods in all namespaces, use:

podList, err := clientset.
CoreVi().
Pods("").
List(ctx, metavi.ListOptions{})

The various options to declare into the ListOptions structure, when listing resources
are the following:

e LabelSelector, FieldSelector - this is used to filter the list by label
or by field. These options are detailed in the “Filtering the Result of a
List” section.

e Watch, AllowWatchBookmarks - this is used to run a Watch
operation. These options are detailed in the “Watching Resources”
section.

e ResourceVersion, ResourceVersionMatch - this indicates which
version of the List of resources you want to obtain.

Note that, when receiving a response of a List operation, a
ResourceVersion value is indicated for the List element itself,
as well as ResourceVersion values for each element of the list.
The ResourceVersion to indicate in the Options refers to the
ResourceVersion of the List.

For a List operation without pagination (you can refer to the
“Paginating Results” and “Watching Resources” sections for the
behavior of these options in other circumstances):

123

CHAPTER6 THE CLIENT-GO LIBRARY

« When ResourceVersionMatch is not set, the behavior is the same
as for a Get operation:

ResourceVersion indicates that you should return a list that is
not older than the specified version.

If ResourceVersion is “0,” this indicates that it is necessary

to return to any version of the list. You generally will receive
the latest version of it, but this is not guaranteed; receiving an
older version can happen on high-availability clusters because
of a partitioning or a stale cache.

If the option is not set, you are guaranteed to receive the most
recent version of the list.

¢ When ResourceVersionMatch is set to metavl.
ResourceVersionMatchExact, the ResourceVersion value
indicates the exact version of the list you want to obtain.

Setting ResourceVersion to “0,” or not defining it, is invalid.

o When ResourceVersionMatch is set to metavl.
ResourceVersionMatchNotOlderThan, ResourceVersion
indicates you will obtain a list that is not older than the

specified version.

If ResourceVersion is “0,” this indicates a return any version
of the list. You generally will receive the latest version of the
list, but this is not guaranteed; receiving an older version can
happen on high-availability clusters because of a partitioning
or a stale cache.

Not defining ResourceVersion is invalid.

e TimeoutSeconds - this limits the duration of the request to the
indicated number of seconds.

e Limit, Continue - thisis used for paginating the result of the list.
These options are detailed in Chapter 2’s “Paginating Results”

section.

The following are the possible errors specific to the List operation:

124

CHAPTER 6 THE CLIENT-GO LIBRARY

o IsResourceExpired - this function indicates that the specified
ResourceVersion with a ResourceVersionMatch, set to metavl.
ResourceVersionMatchExact, is expired.

Note that, if you specify a nonexisting namespace for a List operation, you will not
receive a NotFound error.

Filtering the Result of a List

As described in Chapter 2’s “Filtering the Result of a List” section, it is possible to filter
the result of a List operation with labels selectors and field selectors. This section shows
how to use the fields and labels packages of the API Machinery Library to create a string
applicable to the LabelSelector and FieldSelector options.

Setting LabelSelector Using the Labels Package

Here is the necessary import information to use the labels package from the API
Machinery Library.

import (
"k8s.io/apimachinery/pkg/labels"

The package provides several methods for building and validating a LabelsSelector
string: using Requirements, parsing a labelSelector string, or using a set of key-
value pairs.

Using Requirements

You first need to create a labels.Selector object using the following code:
labelsSelector := labels.NewSelector()

Then, you can create Requirement objects using the labels.NewRequirement
function:

func NewRequirement(
key string,
op selection.Operator,

125

CHAPTER6 THE CLIENT-GO LIBRARY

vals []string,
opts ...field.PathOption,
) (*Requirement, error)

Constants for the possible values of op are defined in the selection package (i.e.,
k8s.io/apimachinery/pkg/selection). The number of values in the vals array of strings
depends on the operation:

o selection.In; selection.NotIn - the value attached to key must
equal one of (In)/must not equal one of (NotIn) the values defined
of vals.

vals must be non-empty.

e selection.Equals; selection.DoubleEquals; selection.
NotEquals - the value attached to key must equal (Equals,
DoubleEquals) or must not equal (NotEquals) the value defined
in vals.

vals must contain a single value.

e selection.Exists; selection.DoesNotExist - the key must be
defined (Exists) or must not be defined (DoesNotExist).

vals must be empty.

e selection.Gt; selection.Lt - the value attached to a key must be
greater than (Gt) or less than (Lt) the value defined in vals.

vals must contain a single value, representing an integer.

For example, to require that the value of the key mykey equals valuel, you can
declare a Requirement with:

reql, err := labels.NewRequirement(
"mykey",
selection.Equals,
[]string{"value1"},

After defining the Requirement, you can add the requirements to the selector using
the Add method on the selector:

126

CHAPTER 6 THE CLIENT-GO LIBRARY
labelsSelector = labelsSelector.Add(*reql, *req2)
Finally, you can obtain the String to be passed for the LabelSelector option with:

s := labelsSelector.String()

Parsing a LabelSelector String

If you already have a string describing the label selector, you can check its validity
with the Parse function. The Parse function will validate the string and return a
LabelSelector object. You can use the String method on this LabelSelector object to
obtain the string as validated by the Parse function.

As an example, the following code will parse, validate, and return the canonical form
of the label selector, “mykey = valuel, count < 5”:

selector, err := labels.Parse(
"mykey = valuei, count < 5",

)

if err != nil {
return err

}

s := selector.String()
// s = "mykey=valuel,count<5"

Using a Set of Key-value Pairs

The function ValidatedSelectorFromSet can be used when you only want to use the

Equal operation, for one or several requirements:

func ValidatedSelectorFromSet(
1s Set
) (Selector, error)

In this case, the Set will define the set of key-value pairs you want to check for

equality.
As an example, the following code will declare a label selector that requires the key,
keyl, to equal valuel and the key, key2, to equal value2:

set := labels.Set{

127

CHAPTER6 THE CLIENT-GO LIBRARY

"key1": "value1",
"key2": "value2",

}

selector, err = labels.ValidatedSelectorFromSet(set)
s = selector.String()
// s = "keyl=valuel,key2=value2"

Setting Fieldselector Using the Fields Package

Here is the necessary code to use to import the fields package from the APT Machinery
Library.

import (
"k8s.io/apimachinery/pkg/fields"

The package provides several methods for building and validating a FieldSelector
string: assembling one term selectors, parsing a fieldSelector string, or using a set of
key-value pairs.

Assembling One Term Selectors

You can create one term selectors with the functions OneTermEqualSelector and
OneTermNotEqualSelector, then assemble the selectors to build a complete field
selector with the function AndSelectors.

func OneTermEqualSelector(
k, v string,
) Selector

func OneTermNotEqualSelector(
k, v string,
) Selector

func AndSelectors(
selectors ...Selector,
) Selector

128

CHAPTER 6 THE CLIENT-GO LIBRARY

For example, this code builds a field selector with an Equal condition on the field
status.Phase and a NotEqual condition on the field spec.restartPolicy:

fselector = fields.AndSelectors(
fields.OneTermEqualSelector(
"status.Phase",
"Running",
)
fields.OneTermNotEqualSelector(
"spec.restartPolicy",
"Always",
)s
)

fs = fselector.String()

Parsing a FieldSelector String

If you already have a string describing the field selector, you can check its validity with
the ParseSelector or ParseSelectorOrDie functions. The ParseSelector function will
validate the string and return a fields.Selector object. You can use the String method
on this fields.Selector object to obtain the string, as validated by the ParseSelector
function.

As an example, this code will parse, validate, and return the canonical form of the
field selector “status.Phase = Running, spec.restartPolicy != Always”:

selector, err := fields.ParseSelector(
"status.Phase=Running, spec.restartPolicy!=Always",

)

if err != nil {
return err

}

s := selector.String()
// s = "spec.restartPolicy!=Always,status.Phase=Running"”

129

CHAPTER6 THE CLIENT-GO LIBRARY

Using a Set of Key-Value Pairs

The function SelectorFromSet can be used when you want to use only the Equal

operation, for one or several single selectors.
func SelectorFromSet(1ls Set) Selector

In this case, the Set will define the set of key-value pairs you want to check for
equality.

As an example, the following code will declare a field selector that requires the key,
keyl, to equal valuel and the key, key2, to equal value2:

set := fields.Set{
"field1": "value1",
"field2": "value2",

}

selector = fields.SelectorFromSet(set)
s = selector.String()
// s = "keyl=valuel,key2=value2"

Deleting a Resource

To delete a resource from the cluster, you can use the Delete method for the resource
you want to delete. For example, to delete a Pod named nginx-pod from the projectl
namespace use:

err = clientset.
CoreVi().
Pods("project1").
Delete(ctx, "nginx-pod", metavi.DeleteOptions{})

Note that it is not guaranteed that the resource is deleted when the operation
terminates. The Delete operation will not effectively delete the resource, but mark the
resource to be deleted (by setting the field .metadata.deletionTimestamp), and the
deletion will happen asynchronously.

The different options, to declare into the DeleteOptions structure, when deleting a

resource are:

130

CHAPTER 6 THE CLIENT-GO LIBRARY

e DryRun - this indicates which operations on the API server-side
should be executed. The only available value is metavl.DryRunAll,
indicating that it is to execute all the operations except (the operation
of) persisting the resource to storage. Using this option, you can get
the result of the command, without really deleting the resource, and
check whether an error would occur during this deletion.

o GracePeriodSeconds - this value is useful when deleting pods only.
This indicates the duration in seconds before the pod should be
deleted.

The value must be a pointer to a non-negative integer. The

value zero indicates delete immediately. If this value is nil, the
default grace period for the pod will be used, as indicated in the
TerminationGracePeriodSeconds field of the pod specification.

You can use the metavl.NewDeleteOptions function to create a
DeleteOptions structure with the GracePeriodSeconds defined:

err = clientset.

CoreVi().

Pods("project1").

Delete(ctx,
"nginx-pod",

*metavi.NewDeleteOptions(5),

e Preconditions - When you delete an object, you may want to be sure
to delete the expected one. The Preconditions field lets you indicate
which resource you expect to delete, either by:

° Indicating the UID, so if the expected resource is deleted
and another resource is created with the same name, the
deletion will fail, producing a Conflict error. You can use
the metavl.NewPreconditionDeleteOptions function
to create a DeleteOptions structure with the UID of the
Preconditions set:

uid := createdPod.GetUID()

131

CHAPTER6 THE CLIENT-GO LIBRARY

err = clientset.

CoreVi().

Pods("project1").

Delete(ctx,
"nginx-pod",
*metavi.NewPreconditionDeleteOptions(

string(uid),

)5

)

if errors.IsConflict(err) {
[...]
}

° Indicating the ResourceVersion, so if the resource is updated
in the meantime, the deletion will fail, with a Conflict error.
You can use the metavl.NewRVDeletionPrecondition
function to create a DeleteOptions structure with the
ResourceVersion of the Preconditions set:

rv := createdPod.GetResourceVersion()
err = clientset.
CoreVi().
Pods("project1").
Delete(ctx,
"nginx-pod",
*metavi.NewRVDeletionPrecondition(
TV,
)5
)

if errors.IsConflict(err) {

[...]

132

CHAPTER 6 THE CLIENT-GO LIBRARY

e OrphanDependents - this field is deprecated in favor of
PropagationPolicy. PropagationPolicy - this indicates whether
and how garbage collection will be performed. See also Chapter 3’s
“OwnerReferences” section. The acceptable values are:

o metavl.DeletePropagationOrphan - to indicate to the
Kubernetes API to orphan the resources owned by the resource
you are deleting, so they will not be deleted by the garbage
collector.

o metavi.DeletePropagationBackground - to indicate to the
Kubernetes API to return from the Delete operation immediately
after the owner resource is marked for deletion, not to wait for
owned resources to be deleted by the garbage collector.

o metavl.DeletePropagationForeground - to indicate to the
Kubernetes API to return from the Delete operation after the
owner and the owned resources with BlockOwnerDeletion set
to true are deleted. The Kubernetes API will not wait for other
owned resources to be deleted.

The following are the possible errors specific to the Delete operation:

e IsNotFound - this function indicates that the resource or the
namespace you specified in the request does not exist.

e IsConflict - this function indicates that the request failed because a
precondition is not respected (either UID or ResourceVersion)

Deleting a Collection of Resources

To delete a collection of resources from the cluster, you can use the DeleteCollection
method for the resource you want to delete. For example, to delete a collection of Pods
from the projectl namespace:

err = clientset.
CoreVi().
Pods("project1").
DeleteCollection(
ctx,
133

CHAPTER6 THE CLIENT-GO LIBRARY

metavi.DeleteOptions{},
metavi.ListOptions{},

)

Two sets of options must be provided to the function:

e The DeleteOptions, indicating the options for the Delete operation
on each object, as described in the “Deleting a Resource” section.

o The ListOptions, refining the collection of resources to delete, as
described in the “Getting List of Resources” section.

Updating a Resource

To update a resource in the cluster, you can use the Update method for the resource you
want to update. For example, use the following to update a Deployment in the projectl

namespace:

updatedDep, err := clientset.

AppsVi().
Deployments("project1").
Update(

ctx,

myDep,

metavl.UpdateOptions{},
)

The various options, to declare into the UpdateOptions structure when updating
aresource, are the same as the options in CreateOptions described in the “Creating a

Resource” section.
The possible errors specific to the Update operation are:

e IsInvalid - this function indicates that the data passed into the

structure is invalid.

o IsConflict - this function indicates that the ResourceVersion
incorporated into the structure (here myDep) is a version older than
the one in the cluster. More information is available to in Chapter 2’s
“Updating a Resource Managing Conflicts” section.

134

CHAPTER 6 THE CLIENT-GO LIBRARY

Using a Strategic Merge Patch to Update a Resource

You have seen in Chapter 2’s “Using a Strategic Merge Patch to Update a Resource”
section how patching a resource with a strategic merge patch works. To sum up, you
need to:

e Use the Patch operation
o Specify a specific value for the content-type header
o Passinto the body the only fields you want to modify

Using the Client-go Library, you can use the Patch method for the resource you want

to patch.

Patch(
ctx context.Context,
name string,
pt types.PatchType,
data []byte,
opts metavi.PatchOptions,
subresources ...string,
) (result *vi.Deployment, err error)

The patch type indicates whether you want to use a StrategicMerge patch (types.
StrategicMergePatchType) or a merge patch (types.MergePatchType). These
constants are defined in the k8s.io/apimachinery/pkg/types package.

The data field contains the patch you want to apply to the resource. You could
write this patch data directly, like was done in Chapter 2, or you can use the
following functions of the controller-runtime library to help you build this patch.

This library is explored in more depth in Chapter 10).

import "sigs.k8s.io/controller-runtime/pkg/client"”

func StrategicMergeFrom(

obj Object,

opts ...MergeFromOption,
) Patch

135

CHAPTER6 THE CLIENT-GO LIBRARY

The StrategicMergeFrom function accepts a first parameter of type Object,
representing any Kubernetes object. You will pass by this parameter the object you want
to patch, before any change.

The function then accepts a series of options. The only accepted option at this time
is the client.MergeFromWithOptimisticLock{} value. This value asks the library to add
the ResourceVersion to the patch data, so the server will be able to check whether the
resource version you want to update is the last one.

After you have created a Patch object by using the StrategicMergeFrom function,
you can create a deep copy of the object you want to patch, then modify it. Then, when
you are done updating the object, you can build the data for the patch with the dedicated
Data method of the Patch object.

As an example, to build patch data for a Deployment, containing the
ResourceVersion for optimistic lock, you can use the following code (createdDep is a
Deployment structure that reflects a Deployment created in the cluster):

patch := client.StrategicMergeFrom(
createdDep,
pkgclient.MergeFromWithOptimisticLock{},

)

updatedDep := createdDep.DeepCopy()
updatedDep.Spec.Replicas = pointer.Int32(2)

patchData, err := patch.Data(updatedDep)

// patchData = []byte({

// "metadata":{"resourceVersion":"4807923"},
// "spec":{"replicas":2}

/1'}7)

patchedDep, err := clientset.
AppsV1().Deployments("project1").Patch(
ctx,
"dep1",
patch.Type(),
patchData,
metavl.PatchOptions{},

136

CHAPTER 6 THE CLIENT-GO LIBRARY

Note that the MergeFrom and MergeFromWithOptions functions are also available,

if you prefer to execute a Merge Patch instead.

The Type method of the Patch object can be used to retrieve the patch type, instead

of using the constants in the type package. You can pass PatchOptions when calling the

patch operation. The possible options are:

DryRun - this indicates which operations on the API server -side
should be executed. The only available value is metavl.DryRunAll,
indicating execution of all the operations except persisting the
resource to storage.

Force - this option can be used only for Apply patch requests and
must be unset when working with StrategicMergePatch or MergePatch
requests.

FieldManager - this indicates the name of the field manager for
this operation. This information will be used for future server-side
Apply operations. This option is optional for StrategicMergePatch or
MergePatch requests.

FieldValidation - this indicates how the server should react
when duplicate or unknown fields are present in the structure. The
following are the possible values:

o metavi.FieldValidationIgnore - to ignore all duplicate or
unknown fields

e metavi.FieldValidationWarn - to warn when duplicate or
unknown fields are present

e metavi.FieldValidationStrict - to fail when duplicate or
unknown fields are present

Note that the Patch operation accepts a subresources parameter. This parameter

can be used to patch a subresource of the resource on which the Patch method is

applied. For example, to patch the Status of a Deployment, you can use the value

“status” for the subresources parameter.

The possible errors specific to the MergePatch operation are:

IsInvalid - this function indicates whether the data passed as a
patch is invalid.

137

CHAPTER6 THE CLIENT-GO LIBRARY

o IsConflict - this function indicates whether the ResourceVersion
incorporated into the patch (if you are using the Optimistic lock when
building the patch data) is a version older than the one in the cluster.
More information is available in Chapter 2’s “Updating a Resource
Managing Conflicts” section.

Applying Resources Server-side with Patch

Chapter 2’s “Applying Resources Server-side” section described how a Server-side Apply
patch works. To sum up, wee need to:

e Use the Patch operation

o Specify a specific value for the content-type header

o Passinto the body the only fields you want to modify
e Provide a fieldManager name

Using the Client-go Library, you can use the Patch method for the resource you want
to patch. Note that you also can use the Apply method; see the next section, “Applying
Resources Server-side with Apply.”

Patch(
ctx context.Context,
name string,
pt types.PatchType,
data []byte,
opts metavi.PatchOptions,
subresources ...string,
) (result *vi.Deployment, err error)

The Patch type indicates the type of patch, types.ApplyPatchType in this case,
defined in the k8s.io/apimachinery/pkg/types package.

The data field contains the patch you want to apply to the resource. You can use the
client.Apply value to build this data. This value implements the client.Patch interface,
providing the Type and Data methods.

138

CHAPTER 6 THE CLIENT-GO LIBRARY

Note that you need to set the APIVersion and Kind fields in the structure of the
resource you want to patch. Also note that this Apply operation also can be used to
create the resource.

The Patch operation accepts a subresources parameter. This parameter can be
used to patch a subresource of the resource on which the Patch method is applied. For
example, to patch the Status of a Deployment, you can use the value “status” for the
subresources parameter.

import "sigs.k8s.io/controller-runtime/pkg/client"”

wantedDep := appsvi.Deployment{
Spec: appsvil.DeploymentSpecq{
Replicas: pointer.Int32(1),
[...]

}
wantedDep. SetName("dep1")

wantedDep.APIVersion, wantedDep.Kind =
appsvil.SchemeGroupVersion.
WithKind("Deployment™).
ToAPIVersionAndKind()

patch := client.Apply
patchData, err := patch.Data(8wantedDep)

patchedDep, err := clientset.
AppsV1().Deployments("project1").Patch(
ctx,
"dep1",
patch.Type(),
patchData,
metavl.PatchOptions{
FieldManager: "my-program",
1
)

You can pass PatchOptions when calling the Patch operation. The following are the
possible options:

139

CHAPTER6 THE CLIENT-GO LIBRARY

e DryRun - this indicates which operations on the API Server-side
should be executed. The only available value is metavl.DryRunAll,
indicating the execution of all the operations except persisting the
resource to storage.

o Force - this option indicates force Apply requests. It means the field
manager for this request will acquire conflicting fields owned by
other field managers.

o FieldManager - this indicates the name of the field manager for this
operation. This option is mandatory for Apply Patch requests.

e FieldValidation - this indicates how the server should react when
duplicate or unknown fields are present in the structure. The possible

values are:

o metavi.FieldValidationIgnore - to ignore all duplicate or
unknown fields

e metavi.FieldValidationWarn - to warn when duplicate or
unknown fields are present

o metavi.FieldValidationStrict - to fail when duplicate or
unknown fields are present

The following are the possible errors specific to the ApplyPatch operation:

e IsInvalid - this function indicates whether the data passed as a
patch is invalid.

e IsConflict - this function indicates whether some fields modified
by the patch are in conflict because they are owned by another field
manager. To resolve this conflict, you can use the Force option so that
these fields will be acquired by the field manager of this operation.

Server-side Apply Using Apply Configurations

The previous section has shown how to execute a server-side Apply operation by using
the Patch method. The disadvantage is that the data must be passed in JSON format,

which can be error-prone.

140

CHAPTER 6 THE CLIENT-GO LIBRARY

Starting with Version 1.21, the Client-go Clientset provides an Apply method to
execute the server-side Apply operation using typed structures. The following is the
signature for the Apply method:

Apply(
ctx context.Context,
deployment *acappsvi.DeploymentApplyConfiguration,
opts metavi.ApplyOptions,

) (result *vi.Deployment, err error)

The ApplyOptions structure defines the following options:

o DryRun - this indicates which operations on the API Server-side
should be executed. The only available value is metavl.DryRunAll,
indicating execution of all the operations except persisting the
resource to storage.

e Force - this caller will reacquire the conflicting fields owned by other

managers.

o FieldManager - this is the name of the manager making the Apply
operation. This value is required.

This signature of Apply is like the signatures of the Create or Update operations,
except that a DeploymentApplyConfiguration object is expected, instead of a
Deployment object.

As seen in Chapter 2’s “Applying Resources Server-side” section, the Apply operation
permits several managers to work on the same resource, each manager owning a set of
values in the resource specification.

For this reason, the data passed for the operation will not define all the fields, but
only the fields the manager is responsible for. Some of the fields are required in the
structures of resource definitions; it is not possible to use these structures for the Apply
operation.

The Client-go Library introduces new structures, named Apply Configurations, in
the applyconfigurations directory of the library, with all fields being optional, using
pointers. This directory contains generated source code for all native resources of the
Kubernetes API, with the same structure of it. For example, to access the structures
needed to define the data for applying a Deployment from the apps/v1 group, you need
to import the following package:

141

CHAPTER6 THE CLIENT-GO LIBRARY

import (
acappsvl "k8s.io/client-go/applyconfigurations/apps/v1"

Note that, for the same reason as you want to define an alias for packages imported
from the Kubernetes API Library (because most packages are named v1), you will want
to use aliases when importing these packages. This book uses the same system as the API
Library, prefixing the alias with ac to indicate it comes from the applyconfigurations
directory.

Two possibilities are offered by the Client-go to build an ApplyConfiguration: from

scratch or from an existing resource.

Building an ApplyConfiguration from Scratch

The first way to build an ApplyConfiguration is to build it from scratch. You first
need to initialize the structure with the mandatory fields: kind, apiVersion, name, and
namespace (if the resource is namespaced); this is done with a helper function that is
provided by the related package. For example, for a Deployment resource:

deployiConfig := acappsvi.Deployment(
"deploy1”,
"default",

The implementation of this function uses the following:

func Deployment(
name string,
namespace string,

) *DeploymentApplyConfiguration {
b := 8DeploymentApplyConfiguration{}
b.WithName(name)
b.WithNamespace(namespace)
b.WithKind("Deployment")
b.WithAPIVersion("apps/v1")
return b

142

CHAPTER 6 THE CLIENT-GO LIBRARY

Then, you can specify the fields you want to manage. Helper functions in the form
WithField() are provided to establish specific fields. For example, if your program is
responsible only for setting the number of replicas for the deployment, the code will be:

deploy1Config.WithSpec(acappsvi.DeploymentSpec())
deploy1Config.Spec.WithReplicas(2)

Finally, you can call the Apply method. The complete code is the following:

import (
acappsvl "k8s.io/client-go/applyconfigurations/apps/v1"
)
deploy1Config := acappsvi.Deployment(
"deploy1"”,
"default",
)

deployiConfig.WithSpec(acappsvi.DeploymentSpec())
deploy1Config.Spec.WithReplicas(2)

result, err := clientset.AppsVi().
Deployments("default").Apply(
ctx,
deploy1Config,
metavi.ApplyOptions{
FieldManager: "my-manager",
Force: true,

b

Building an ApplyConfiguration from an Existing Resource

The second way to build an ApplyConfiguration is to start from an existing resource in
the cluster. Sometimes a program is not able to build the entire Apply Configuration in
one place. For example, imagine your program is responsible for defining a container
with a specific image for a Deployment in one place and also is responsible for setting
the number of replicas in another place.

143

CHAPTER6 THE CLIENT-GO LIBRARY

If the program defines the container and its image first, it will be marked
as the owner of the container and its image. Then, if the program builds an
ApplyConfiguration and sets only the number of replicas, without specifying the
container and its image, the server-side Apply operation will try to delete the container.
This is because the program designated the owner of this container, but it does not
specify it anymore in the ApplyConfiguration.

A possibility would be to use diverse manager names for the various parts of the program.
If you want to keep a single manager name, however, the packages in the applyconfigurations
directory provide an ExtractResource() helper function to assist you in this case.

These functions will get as parameter a resource read from the cluster (with a Get or
a List operation) and will build an ApplyConfiguration containing only the fields owned
by the specified fieldManager. For example, the signature for the ExtractDeployment
helper function is:

ExtractDeployment(
deployment *apiappsvi.Deployment,
fieldManager string,

) (*DeploymentApplyConfiguration, error)

The first steps are to read the deployment from the cluster, then extract the
ApplyConfiguration from it. At this point, it will contain all the fields managed by the
program (container and its image and the replicas). Then, you can specify the only fields
you want to modify—that is, the replicas for in this example:

gotDeploy1l, err := clientset.AppsVi().
Deployments("default").Get(

ctx,
"deploy1",
metavi.GetOptions{},
)
if err != nil {
return err
}
deployiConfig, err := acappsvi.ExtractDeployment(
gotDeploy1,
"my-manager",
)

144

CHAPTER 6 THE CLIENT-GO LIBRARY

if err != nil {
return err
}
If deployiConfig.Spec == nil {
deploy1Config.WithSpec(acappsvi.DeploymentSpec())
}
deployiConfig.Spec.WithReplicas(2)
result, err := clientset.AppsVi().
Deployments("default").Apply(
ctx,
deployiConfig,
metavi.ApplyOptions{
FieldManager: "my-manager",
Force: true,

}s

Watching Resources

Chapter 2’s “Watching Resources” section describes how the Kubernetes API can watch
resources. Using the Client-go Library, you can use the Watch method for the resource
you want to watch.

Watch(
ctx context.Context,
opts metavi.ListOptions,
) (watch.Interface, error)

This Watch method returns an object that implements the interface watch.Interface
and providing the following methods:

import "k8s.io/apimachinery/pkg/watch"

type Interface interface {
ResultChan() <-chan Event

Stop()

145

CHAPTER6 THE CLIENT-GO LIBRARY

The ResultChan method returns a Go channel (which you can only read) on which
you will be able to receive all the events.

The Stop method will stop the Watch operation and close the channel that was
received using ResultChan.

The watch.Event object, received using the channel, is defined as follows:

type Event struct {
Type EventType
Object runtime.Object

The Type field can get the values described earlier in Chapter 2’s Table 2-2, and you
can find constants for these various values in the watch package: watch.Added, watch.
Modified, watch.Deleted, watch.Bookmark, and watch.Error.

The Object field implements the runtime.Object interface, and its concrete type can
be different depending on the value of the Type.

For a Type, other than Error, the concrete type of the Object will be the type of
the resource you are watching (e.g., the Deployment type if you are watching for
deployments).

For the Error type, the concrete type generally will be metavl.Status, but it could
be any other type, depending on the resource you are watching. As an example, here is a
code for watching Deployments:

import "k8s.io/apimachinery/pkg/watch"

watcher, err := clientset.AppsVi().
Deployments("project1").
Watch(
ctx,
metavl.ListOptions{},
)
if err != nil {
return err

}

for ev := range watcher.ResultChan() {
switch v := ev.Object.(type) {
case *appsvl.Deployment:

146

CHAPTER 6 THE CLIENT-GO LIBRARY

fmt.Printf("%s %s\n", ev.Type, v.GetName())

case *metavi.Status:

fmt.Printf("%s\n", v.Status)
watcher.Stop()

The various options to be declared into the ListOptions structure, when watching

resources, are the following:

LabelSelector, FieldSelector - thisis used to filter the elements
watched by label or by field. These options are detailed in the
“Filtering the Result of a List” section.

Watch, AllowWatchBookmarks - the Watch option indicates that a
Watch operation is running. This option is set automatically when
executing the Watch method; you do not have to set it explicitly.

The AllowWatchBookmarks option asks the server to return
Bookmarks regularly. The use of bookmarks is described in
Chapter 2’s, “Allowing Bookmarks to Efficiently Restart a Watch
Request” section.

ResourceVersion, ResourceVersionMatch - this indicates at which
version of the List of resources you want to start the Watch operation.

Note that, when receiving a response of a List operation, a
ResourceVersion value is indicated for the list element itself,
as well as ResourceVersion values for each element of the list.
The ResourceVersion to indicate in the Options refers to the
ResourceVersion of the list.

The ResourceVersionMatch option is not used for Watch
operations. For a Watch operations do the following:

© When ResourceVersion is not set, the API will start the Watch
operation at the most recent list of resources. The channel
first receives ADDED events to declare the initial state of the
resource, followed by other events when changes occur on the
cluster.

147

CHAPTER6 THE CLIENT-GO LIBRARY

o

When ResourceVersion is set to a specific version, the API
will start the Watch operation at the specified version of the
list of resources. The channel will not receive ADDED events
to declare the initial state of the resource, but only events
when changes occur on the cluster after this version (which
can be events that occurred between the specified version and
the time you run the Watch operation).

A use case is to watch for the deletion of a specific resource.
For this, you can:

1. List the resources, including the one you want to delete, and
save the ResourceVersion of the received List.

2. Execute a Delete operation on the resource (the deletion
being asynchronous, the resource probably will not be deleted
when the operation terminates).

3. Start a Watch operation by specifying the ResourceVersion
received in Step 1. Even if the deletion occurs between Steps 2
and 3, you are guaranteed to receive the DELETED event.

When ResourceVersion is set to “0,” the API will start the
Watch operation at any list of resources. The channel first
receives ADDED events to declare the initial state of the
resource, followed by other events when changes occur on the
cluster after this initial state.

You have to take special care when using this semantic
because the Watch operation will generally start with the
most recent version; however, starting with an older version is

possible.

TimeoutSeconds - this limits the duration of the request to the
indicated number of seconds.

Limit, Continue - thisis used for paginating the result of a List
operation. These options are not supported for a Watch operation.

CHAPTER 6 THE CLIENT-GO LIBRARY

Note that, if you specify a nonexisting namespace for a Watch operation, you will not
receive a NotFound error.

Also note that, if you specify an expired ResourceVersion, you will not receive an
error when calling the Watch method, but will get an ERROR event containing a metavl.
Status object indicating a Reason with a value metavl.StatusReasonExpired.

The metavl.Status is the base object used to build the errors returned by calls using
the Clientset. You will be able to learn more in the “Errors and Statuses” section.

Errors and Statuses

As Chapter 1 has shown, the Kubernetes API defines Kinds for exchanging data with
the caller. For the moment, you should consider that Kinds are related to the resources,
either the Kind having the singular name of the resource (e.g., Pod), or the Kind for a
list of resources (e.g., PodList). When an API operation returns neither a resource nor
a list or resources, it uses a common Kind, metavl.Status, to indicate the status of the
operation.

Definition of the metav1.Status Structure

The metavl.Status structure is defined as follows:

type Status struct {

Status string

Message string

Reason StatusReason
Details *StatusDetails
Code int32

e Status - this indicates the status of the operation and is either
metavl.StatusSuccess or metavl.StatusFailure.

o Message - this is a free form human-readable description of the status
of the operation.

¢ Code - this indicates the HTTP status code returned for the operation.

149

CHAPTER6 THE CLIENT-GO LIBRARY

150

Reason - this indicates why the operation is in the Failure status.
A Reason is related to a given HTTP status code. The defined
Reasons are:

© StatusReasonBadRequest (400) - this request itself is invalid.
This is different from StatusReasonlInvalid, which indicates that
the API call could possibly succeed, but the data was invalid. A
request replying StatusReasonBadRequest can never succeed,
whatever the data.

° StatusReasonUnauthorized (401) - the authorization credentials
are missing, incomplete, or invalid.

© StatusReasonForbidden (403) - the authorization credentials
are valid, but the operation on the resource is forbidden for these
credentials.

© StatusReasonNotFound (404) - the requested resource or
resources cannot be found.

° StatusReasonMethodNotAllowed (405) - the operation requested
in the resource is not allowed because it id not implemented. A
request replying StatusReasonMethodNotAllowed can never
succeed, whatever the data.

© StatusReasonNotAcceptable (406) - none of the Accept types
indicated in the Accept header by the client is possible. A request
replying StatusReasonNotAcceptable can never succeed,
whatever the data.

© StatusReasonAlreadyExists (409) - the resource being created
already exists.

© StatusReasonConflict (409) - the request cannot be completed
because of a conflict—for example, because the operation tries
to update a resource with an older resource version, or because a
precondition in a Delete operation is not respected.

© StatusReasonGone (410) - an item is no longer available.

CHAPTER 6 THE CLIENT-GO LIBRARY

StatusReasonExpired (410) - the content has expired and is no
longer available—for example, when executing a List or Watch

operation with an expired resource version.

StatusReasonRequestEntityToolarge (413) - the request entity
is too large.

StatusReasonUnsupportedMediaType (415) - the

content type indicated in the Content-Type header

is not supported for this resource. A request replying
StatusReasonUnsupportedMediaType can never succeed,
whatever the data.

StatusReasonInvalid (422) - the data sent for a Create or
Update operation is invalid. The Causes field enumerates the
invalid fields of the data.

StatusReasonTooManyRequests (429) - the client should
wait at least the number of seconds specified in the field
RetryAfterSeconds of the Details field before performing an
action again.

StatusReasonUnknown (500) - the server did not indicate any
reason for the failure.

StatusReasonServerTimeout (500) - the server can be reached
and understand the request, but cannot complete the action in
areasonable time. The client should retry the request after the
number of seconds specified in the field RetryAfterSeconds of
the Details field.

StatusReasonInternalError (500) - an internal error occurred;
itis unexpected and the outcome of the call is unknown.

StatusReasonServiceUnavailable (503) - the request was valid,
but the requested service is unavailable at this time. Retrying the
request after some time might succeed.

StatusReasonTimeout (504) - the operation cannot be completed
within the time specified by the timeout in the request. If the
field RetryAfterSeconds of the Details field is specified, the

151

CHAPTER6 THE CLIENT-GO LIBRARY

152

client should wait this number of seconds before performing the

action again.

Details - these can contain more details about the reason,
depending on the Reason field.

The type StatusDetails of the Details field is defined as follows:

type StatusDetails struct {
Name string
Group string
Kind string
UID types.UID
Causes []StatusCause
RetryAfterSeconds int32

}

The Name, Group, Kind, and UID fields indicate, if specified,
which resource is impacted by the failure.

The RetryAfterSeconds field, if specified, indicates how
many seconds the client should wait before performing an

operation again.

The Causes field enumerates the causes of the failure. When
performing a Create or Update operation resulting in a failure
with a StatusReasonlInvalid reason, the Causes field enumerates
the invalid fields and the type of error for each field.

The StatusCause type of the Causes field is defined as follows:

type StatusCause struct {

Type CauseType
Message string
Field string

CHAPTER 6 THE CLIENT-GO LIBRARY

Error Returned by Clientset Operations

This chapter earlier contained a description of the various operations provided by the
Clientset that the operations generally return an error, and that you can use functions
from the errors package to test the cause of the error—for example, with the function
IsAlreadyExists.

The concrete type of these errors is errors.StatusError, defined as:

type StatusError struct {
ErrStatus metavi.Status

It can be seen that this type includes only the metav1.Status structure that has been
explored earlier in this section. Functions are provided for this StatusError type to
access the underlying Status.

o Is<ReasonValue>(err error) bool - one for each Reason value
enumerated earlier in this section, indicating whether the error is of a
particular status.

o FromObject(obj runtime.Object) error - When you are receiving
a metavl.Status during a Watch operation, you can build a
StatusError object using this function.

o (e *StatusError) Status() metavi.Status - returnsthe
underlying Status.

o ReasonForError(err error) metavi.StatusReason - returns the
Reason of the underlying Status.

o HasStatusCause(err error, name metavl.CauseType) bool - this
indicates whether an error declares a specific cause with the given
CauseType.

o StatusCause(err error, name metavi.CseType) (metavi.
StatusCause, bool) - returns the cause for the given causeType if it
exists, or false otherwise.

o SuggestsClientDelay(err error) (int, bool) - thisindicates
whether the error indicates a value in the RetryAfterSeconds field of
the Status and the value itself.

153

CHAPTER6 THE CLIENT-GO LIBRARY

RESTClient

Earlier in this chapter in the “Using the Clientset” section, you can get a REST client for
each group/version of the Kubernetes API. For example, the following code returns the
REST client for the Core/v1 group:

restClient := clientset.CoreVi().RESTClient()
The restClient object implements the interface rest.Interface, defined as:

type Interface interface {

GetRatelLimiter() flowcontrol.RatelLimiter
Verb(verb string) *Request

Post() *Request

Put() *Request

Patch(pt types.PatchType) *Request

Get() *Request

Delete() *Request

APIVersion() schema.GroupVersion

In this interface, you can see the generic method, Verb, and the helper methods
Post, Put, Patch, Get, and Delete returning a Request object.

Building the Request

The Request structure contains only private fields, and it provides methods to
personalize the Request. As shown in Chapter 1, the form of the path for a Kubernetes
resource or subresource (some segments may be absent depending on the operation
and resource) is the following:

/apis/<groups/<version»
/namespaces/<namesapce_name»
/<xesource»
/<resource_name»
/<subresource»

The following methods can be used to build this path. Note that the <group> and
<version> segments are fixed, as the REST client is specific to a group and version.

154

CHAPTER 6 THE CLIENT-GO LIBRARY

Namespace(namespace string) *Request;
NamespaceIfScoped(namespace string, scoped bool)

*Request - these indicate the namespace of the resource to query.
NamespacelfScoped will add the namespace part only if the request
is marked as scoped.

Resource(resource string) *Request - this indicates the resource
to query.

Name(resourceName string) *Request - this indicates the name of
the resource to query.

SubResource(subresources ...string) *Request - this indicates
the subresource of the resource to query.

Prefix(segments ...string) *Request; Suffix(segments
...string) *Request - add segments to the beginning or end

of the request path. The prefix segments will be added before the
“namespace” segment. The suffix segments will be added after the
subresource segment. New calls to these methods will add prefixes
and suffixes to the existing ones.

AbsPath(segments ...string) *Request - resets the prefix with the
provided segments.

The following methods complete the request with query parameters, body, and

headers:

Param(paramName, s string) *Request - adds a query parameter
with the provided name and value.

VersionedParams (

obj runtime.Object,

codec runtime.ParameterCodec,
) *Request

Adds a series of parameters, extracted from the object obj. The
concrete type of obj is generally one of the structures ListOptions,
GetOptions, DeleteOptions, CreateOptions, PatchOptions,
ApplyOptions, UpdateOptions, or TableOptions.

155

CHAPTER6 THE CLIENT-GO LIBRARY

The codec is generally the parameter codec provided by the scheme
package of the client-go library: scheme.ParameterCodec.
SpecificallyVersionedParams(

obj runtime.Object,

codec runtime.ParameterCodec,

version schema.GroupVersion,
) *Request

With VersionedParams, the object will be encoded using the group
and version of the REST Client. With SpecificallyVersionedParams,
you can indicate a specific group and version.

o SetHeader(key string, values ...string) *Request - setsvalues
for the specified header for the request. If the header with this key is
already defined, it will be overwritten.

o Body(obj interface{}) *Request - sets the body content of the
request, based on obj. The obj can be of different type:

e string - the file with the given name will be read and its content
used as body

o []byte - the data will be used for the body

e 1io0.Reader - the dataread from the reader will be used for
the body

e runtime.Object - the object will be marshaled and the result
used for the body. The Content-Type header will be set to indicate
in which type the object is marshaled (json, yaml], etc.).

Other methods can be used to configure the technical properties of the request:

o BackOff(manager BackoffManager) *Request - sets a Backoff
manager for the request. The default backoff manager is a rest.
NoBackoff manager provided by the rest package, which won’t wait
before to execute a new request after a failing request.

156

CHAPTER 6 THE CLIENT-GO LIBRARY

The rest package provides another backoff manager, rest.
URLBackoff, which will wait before to retry a new request on a
server which replied previously with a 5xx error.

You can build and use a rest. URLBackoff object with:

request.BackOff(&rest.URLBackoff{
Backoff: flowcontrol.NewBackOffWithJitter(
1*time.Second,
30*time.Second,
0.1,
)J
1)

If you get continuous 5xx errors calling the Kubernetes API, the
RESTClient will add exponential delays between the requests,
here 1 second, then 2 seconds, then 4 seconds, and so on, capping
the delays to 30 seconds, and adding a jitter of maximum 10% to
delays, until the server replies with a non-5xx status.

If you do not want to add jitter:

request.BackOff(&rest.URLBackoff{
Backoff: flowcontrol.NewBackOff(
1*time.Second,
30*time.Second,
)5
9

Note that, instead of using this code to declare an exponential backoff
for each requests, you can declare the environment variables KUBE_
CLIENT_BACKOFF_BASE=1 and KUBE_CLIENT_BACKOFF_
DURATION=30 to have a similar behavior (without adding jitter)
when running programs using the client-go library for all requests.

The parameter accepted by BackOff() being an interface, you
can write your own BackOff manager, by implementing the rest.
BackoffManager interface:

157

CHAPTER6 THE CLIENT-GO LIBRARY

158

type BackoffManager interface {

UpdateBackoff(
actualUrl *url.URL,
err error,
responseCode int,

)

CalculateBackoff(
actualUrl *url.URL,

) time.Duration

Sleep(d time.Duration)

For example, to implement a linear backoff on 5xx errors (working
when calling only one host):

type MyLinearBackOff struct {
next time.Duration

func (o *MyLinearBackOff) UpdateBackoff(
actualUrl *url.URL,
err error,
responseCode int,

) {
if responseCode > 499 {
o.next += 1 * time.Second
return
}
o.next =0
}

func (o *MyLinearBackOff) CalculateBackoff(
actualUrl *url.URL,

) time.Duration {
return o.next

}
func (o *MyLinearBackOff) Sleep(

CHAPTER 6 THE CLIENT-GO LIBRARY

d time.Duration,
) {
time.Sleep(d)

}

Throttle(limiter flowcontrol.RateLimiter) *Request -
throttling will limit the number of requests per second the
RESTClient can execute.

By default, a Token Bucket Rate Limiter is used, with a QPS of 5
queries/second and a Burst of 10.

This means that the RESTClient can make a maximum of 5
requests per second, plus a bonus (bucket) of 10 requests that it
can use at any time. The bucket can be refilled at the rate of QPS,
in this case the bucket is refilled with 5 tokens per second, the
maximal size of the bucket remaining 10.

You can build and use a flowcontrol.tokenBucketRateLimiter
object with:

request.Throttle(
flowcontrol.NewTokenBucketRatelLimiter (5.0, 10),

)

In this example, a Token Bucket Rate Limiter with a rate of 5.0
queries/second (QPS) and a burst of 10 will be used for the
Request.

Note that you can obtain the same behavior for all requests
by setting the QPS and Burst of the Config used to create the
RESTClient.

The default Rate Limiter for a Request is inherited from the Config
used to create the clientset. You can change the Rate Limiter for all
the requests by setting the Rate Limiter in the Config.

MaxRetries(maxRetries int) *Request - this indicates the number
of retries the RESTClient will perform when the Request receives a
response with a Retry-After header and a 429 status code (Too Many
Requests).

159

CHAPTER6 THE CLIENT-GO LIBRARY

160

The default value is 10, meaning that the Request will be
performed a maximum of 11 times before to return with an error.

Timeout(d time.Duration) *Request - this indicates the number of
seconds the RESTClient will wait for a response to the Request before
returning an error. The default Timeout for a Request is inherited
from the HTTPClient used to build the clientset.

WarningHandler (handler WarningHandler) *Request - the API
server can return Warnings for a Request using a specific header (the
“Warning” header). By default, the warnings with be logged, and the
rest package provides several built-in implementations of handlers:

e WarningLogger{} logs warnings (the default)
¢ NoWarning{} suppresses warnings

o NewWarningWriter() writes warnings to the provided writer.
Options can be specified:

o Deduplicate - true to write a given warning only once
e Color - true to write warning in Yellow color

You can write your own implementation of a WarningHandler by
implementing this interface:

type WarningHandler interface {
HandleWarningHeader (
code int,
agent string,
text string,

Note that you can set a default Warning Handler for all the
requests from all clients by calling the following global function:

rest.SetDefaultWarningHandler (1 WarningHandler)

CHAPTER 6 THE CLIENT-GO LIBRARY

Executing the Request

Once the Request is built, we can execute it. The following methods on a Request object

can be used:

Do(ctx context.Context) Result - this executes the Request and
return a Result object. We will see in the next section how to exploit
this Result object.

Watch(ctx context.Context) (watch.Interface, error) - this
executes a Watch operation on the requested location, and returns
an object implementing the interface watch.Interface, used to
receive events. You can see the section “Watching Resources” of this
chapter to see how to use the returned object.

Stream(ctx context.Context) (io.ReadCloser, error) -
this executes the Request and Stream the result body through a
ReadCloser.

DoRaw(ctx context.Context) ([]byte, error) - this executes the
Request and return the result as an array of bytes.

Exploiting the Result

When you execute the Do() method on a Request, the method returns a Result object.

The Result structure does not have any public field. The following methods can be

used to get information about the result:

Into(obj runtime.Object) error - this decodes and stores the
content of the result body into the object, if possible. The concrete
type of the object passed as parameter must match the kind defined
in the body. Also return the error executing the request.

Error() error - this returns the error executing the request. This
method is useful when executing a request returning no body

content.

Get() (runtime.Object, error) - this decodes and returns the
content of the result body as an object. The concrete type of the

161

CHAPTER6 THE CLIENT-GO LIBRARY

returned object will match the kind defined in the body. Also return
the error executing the request.

o Raw() ([]byte, error) - this returns the body as an array of bytes,
and the error executing the request.

o StatusCode(statusCode *int) Result - this stores the status code
into the passed parameter, and return the Result, so the method can
be chained.

o WasCreated(wasCreated *bool) Result - this stores a value
indicating if the resource requested to be created has been created
successfully, and return the Result, so the method can be chained.

o Warnings() []net.WarningHeader - this returns the list of Warnings
contained in the Result.

Getting Result as a Table

You have seen in Chapter 2’s “Getting Result as a Table” section that it is possible to get
the result of a List request as a list of columns and rows so as to display the information
in a tabular representation. For this, you have to make a List operation and specify a
specific Accept header.

Here is the code to list the pods of the projectl namespace, in a tabular
representation, using the RESTClient:

import (
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"

)

restClient := clientset.CoreVi().RESTClient() @
req := restClient.Get().

Namespace("project1"). ()
Resource("pods"). (3]
SetHeader(o
"Accept”,

fmt.Sprintf(

"application/json;as=Table;v=%s;g=%s",
metavl.SchemeGroupVersion.Version,

162

CHAPTER 6 THE CLIENT-GO LIBRARY

metavl.GroupName
))
var result metavi.Table (5]
err = req.Do(ctx). (6]
Into(&result) 7]
if err != nil {
return err
}
for , colDef := range result.ColumnDefinitions { (8]
// display header
}
for , row := range result.Rows { (0]
for _, cell := range row.Cells { 10j
// display cell
}
}

O Get the RESTClient for the core/v1 group

@ Indicate the namespace from which to list the resources (here
projectl)

© Indicate the resources to list (here pods)
O Set the required header to get the result as tabular information

@ Prepare a variable of type metavl.Table to store the result of
the request

@ Execute the request
@ Store the result in the metavl.Table object

O Range over the definitions of the columns returned to display
the table header

© Range over the rows of the table returned to display the row of
data containing information about a specific pod

® Range over the cells of the row to display them

CHAPTER6 THE CLIENT-GO LIBRARY

Discovery Client

The Kubernetes API provides endpoints to discover the resources served by the

API. kubectl is using these endpoints to display the result of the command kubectl api-

resources (Figure 6-1).

% kubectl api-resources
NAME

bindings
compenentstatuses
configmaps

endpeints

events

limitranges

namespaces

nodes
persistentvolumeclaims
persistentvolumes

pods

podtemplates
replicationcontrollers
resourcequotas

secrets

serviceaccounts

services
mutatingwebhookconfigurations
validatingwebhookconfigurations
customresourcedefinitions
apiservices
controllerrevisions
daemonsets

depleyments

replicasets

statefulsets

applications
applicationsets

SHORTNAMES

cs
em

ep

ev
limits
ns

no

pve

pv

po

rc
quota

sa
sVC

erd,crds

ds

deploy

rs

sts

app,apps
appset,appsets

APIVERSION

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl

vl
admissionregistration.k8s.dio/vl
admissionregistration.k8s.io/vl
apiextensions.k8s.io/vl
apiregistration.k8s.io/vl
apps/vl

apps/vl

apps/vl

apps/vl

apps/vl
argoprej.iofvialphal
argoproj.iofvialphal

NAMESPACED
true
false
true
true
true
true
false
false
true
false
true
true
true
true
true
true
true
false
false
false
false
true
true
true
true
true
true
true

KIND

Binding

CompanentStatus
ConfigMap

Endpoints

Event

LimitRange

Namespace

Node
PersistentVolumeClaim
PersistentVolume

Pod

PodTemplate
ReplicationController
ResourceQuota

Secret

ServiceAccount

Service
MutatingWebhookConfiguration
validatingWebhookConfiguration
CustomResourceDefinition
APIService
CentrollerRevision
DaemonSet

Deployment

ReplicaSet

Statefulset

Application
ApplicationSet

Figure 6-1. kubectl api-resources

The client can be obtained either by calling the Discovery() method on a Clientset

(see how to obtain a Clientset in Chapter 6’s “Getting a Clientset” section), or by using

functions provided by the discovery package.

import "k8s.io/client-go/discovery"

All these function, expect a rest.Config, as a parameter. You can see in Chapter 6’s

“Connecting to the Cluster” section how to get such a rest.Config object.

NewDiscoveryClientForConfig(

c *rest.Config,

) (*DiscoveryClient, error)

- this returns a DiscoveryClient, using the provided rest.Config

164

CHAPTER 6 THE CLIENT-GO LIBRARY

o NewDiscoveryClientForConfigOrDie(
¢ *rest.Config,
) *DiscoveryClient

Similar to the previous one, but panics in case of error, instead of
returning the error. This function can be used with a hard-coded
config whose we want to assert the validity.

o NewDiscoveryClientForConfigAndClient(
¢ *rest.Config,
httpClient *http.Client,
) (*DiscoveryClient, error)

- this returns a DiscoveryClient, using the provided rest.Config,
and the provided httpClient.

The previous function NewDiscoveryClientForConfig uses a
default HTTP Client built with the function rest HTTPClientFor.
If you want to personalize the HTTP Client before building the
DiscoveryClient, you can use this function instead.

RESTMapper

You have seen in Chapter 5’s “RESTMapper” section that the API Machinery provides a
concept of RESTMapper, used to map between REST Resources and Kubernetes Kinds.
The API Machinery also provides a default implementation of the RESTMapper, the
DefaultRESTMapper, for which the group/version/kinds must be added manually.
The Client-go Library provides several implementations of a RESTMapper, taking
advantage of the Discovery client to provide the list of group/version/kinds and

resources.

PriorityRESTMapper

The PriorityRESTMapper is gets all the groups served by the Kubernetes API, with the
help of the Discovery client, and takes care about the multiple versions that could be part
of given groups and the preferred version for each group, to return the preferred version.

165

CHAPTER6 THE CLIENT-GO LIBRARY

A restmapper.PriorityRESTMapper object is obtained by calling the function

restmapper.NewDiscoveryRESTMapper:
import "k8s.io/client-go/restmapper"

func NewDiscoveryRESTMapper (
groupResources []*APIGroupResources,
) meta.RESTMapper

The groupResources parameter can be built with the function restmapper.

GetAPIGroupResources:

func GetAPIGroupResources(
cl discovery.DiscoverylInterface,
) ([]*APIGroupResources, error)

Here is the code necessary to build a PriorityRESTMapper:
import "k8s.io/client-go/restmapper"
discoveryClient := clientset.Discovery()

apiGroupResources, err :=
restmapper.GetAPIGroupResources(
discoveryClient,
)
if err != nil {
return err

}

restMapper := restmapper.NewDiscoveryRESTMapper (
apiGroupResources,

)

You can now use the RESTMapper as defined in Chapter 5’s

166

RESTMapper” section.

CHAPTER 6 THE CLIENT-GO LIBRARY

DeferredDiscoveryRESTMapper

The DeferredDiscoveryRESTMapper uses a PriorityRESTMapper internally, but will
wait for the first request to initialize the RESTMapper.

func NewDeferredDiscoveryRESTMapper (
cl discovery.CachedDiscoveryInterface,
) *DeferredDiscoveryRESTMapper

The function NewDeferredDiscoveryRESTMapper is used to build such
a RESTMapper, and it gets an object which implements the the discovery.
CachedDiscoverylInterface to get a Cached Discovery Client.

The Client-go Library provides an implementation for this interface, which is
returned by the function memory.NewMemCacheClient.

func NewMemCacheClient(
delegate discovery.DiscoveryInterface,
) discovery.CachedDiscoveryInterface

Here is the code necessary to build a DeferredDiscoveryRESTMapper:
import "k8s.io/client-go/restmapper”
discoveryClient := clientset.Discovery()

defRestMapper :=
restmapper.NewDeferredDiscoveryRESTMapper (
memory .NewMemCacheClient(discoveryClient),

), o«

You can now use the RESTMapper as defined in Chapter 5’'s “RESTMapper” section.

Conclusion

In this chapter, you have seen how to connect to a cluster and how to obtain a Clientset.
It is a set of clients, one for each Group-Version, with which you can execute operations
on resources (get, list, create, etc.).

167

CHAPTER6 THE CLIENT-GO LIBRARY

You also have covered the REST client, internally used by the Clientset, and that
the developer can use to build more specific requests. Finally, the chapter covered
the Discovery client, used to discover the resources served by the Kubernetes APl in a
dynamic way.

The next chapter covers how to test applications written with the Client-go Library,
using the fake implementations of the clients provided by it.

168

CHAPTER 7

Testing Applications
Using Client-go

The Client-go Library provides a number of clients that can act with the Kubernetes API.

o The kubernetes.Clientset provides a set of clients, one for each
group/version of the API, to execute Kubernetes operations on
resources (Create, Update, Delete, etc.).

e The rest.RESTClient provides a client to perform REST operations
on resources (Get, Post, Delete, etc.).

o The discovery.DiscoveryClient provides a client to discover the
resources served by the API.

All these clients implement interfaces that are defined by the Client-go Library:
kubernetes.Interface, rest.Interface, and discovery.DiscoverylInterface.

In addition, the Client-go Library provides fake implementations of these interfaces
to help you write unit tests for your functions. These fake implementations are defined
in fake packages, each located inside the directory of the real implementation:
kubernetes/fake, rest/fake, and discovery/fake.

The testing directory contains common tools that are used by fake clients—for
example, an object tracker or a system to track invocations. You will learn about these
tools during this chapter.

To be able to test your functions using these clients, the functions need to define a
parameter to pass the client implementation, and the type of the parameter must be the
interface, not the concrete type. For example:

func CreatePod(
ctx context.Context,
clientset kubernetes.Interface,

169
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_7

https://doi.org/10.1007/978-1-4842-9026-2_7

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

name string,
namespace string,
image string,

) (pod *corevi.Pod, error)

This way, you will create the client outside of the function, and simply use any
implementation inside the function.

For the real code, you will create the client, as defined in Chapter 6. For the tests, you
will substitute the client using the helper functions from the fake packages.

Fake Clientset

The following function is used to create a fake Clientset:
import "k8s.io/client-go/kubernetes/fake"

func NewSimpleClientset(
objects ...runtime.Object,
) *Clientset

The fake Clientset is backed by an object tracker that processes create, update,
and delete operations without any validation or mutation, and it returns the objects in
response to get and list operations.

You can pass as parameters a list of Kubernetes objects, which will be added to the
Clientset’s object tracker. For example, use the following to create a fake Clientset and to
call the CreatePod function defined earlier:

import "k8s.io/client-go/kubernetes/fake"

clientset := fake.NewSimpleClientset()
pod, err := CreatePod(
context.Background(),
clientset,
aName,
aNs,
anImage,

170

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

During the test, after you call the function that is being tested (in this case,
CreatePod), you have several ways to verify that the function has done what you
expected. Let’s consider this implementation of the CreatePod function:

func CreatePod(
ctx context.Context,
clientset kubernetes.Interface,
name string,
namespace string,
image string,
) (pod *corevi.Pod, err error) {

podToCreate := corevi.Pod{
Spec: corevi.PodSpec{
Containers: []corevi.Container{
{
Name: ‘“runtime",
Image: image,
})
})
}J
}

podToCreate.SetName(name)

return clientset.CoreVi().
Pods (namespace).
Create(
ctx,
&podToCreate,
metavl.CreateOptions{},

Checking the Result of the Function

When calling the CreatePod function with the fake Clientset, the actual Kubernetes
APIwill not be called, the resource will not be generated in the etcd database, and no

171

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

validation and mutation will be performed on the resource. Instead, the resource will be
stored as-is in an in-memory storage, with only minimal transformation.

In this example, the only transformation between the podToCreate passed to the
Create function and the pod returned by the Create function is the namespace, which is
passed through the call into the Pods(namespace) and is added to the returned Pod.

To test that the value returned by the CreatePod function is what you expected, you
can write the following test:

func TestCreatePod(t *testing.T) {

var (
name = "a-name"
namespace = "a-namespace"
image = "an-image"

wantPod = &corevi.Pod{
ObjectMeta: vi.0bjectMeta{
Name: "a-name",
Namespace: "a-namespace",
}J
Spec: corevi.PodSpec{
Containers: []corevi.Container{
{
Name: "“runtime",
Image: "an-image",
}J
}’
1

)

clientset := fake.NewSimpleClientset()
gotPod, err := CreatePod(
context.Background(),
clientset,
name,
namespace,
image,

172

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

)

if err !'= nil {
t.Errorf("err = %v, want nil", err)
}
if lreflect.DeepEqual(gotPod, wantPod) {
t.Errorf("CreatePod() = %v, want %v",
gotPod,
wantPod,

This test will assert that—given a name, a namespace, and an image—the result of
the function will be wantPod, when no validation or mutation occurs in the Pod.

Itis not possible to use this test to understand what would happen with a real client
because the result would be different—that is, the real client, and the underlying AP]I,
would mutate the object to add default values, and so on.

Reacting to Actions

The fake Clientset stores the resources as-is without any validation or mutation. During
the tests, you may want to simulate the changes done to resources by the various
controllers. For this, the fake clientset provides methods to add Reactors. Reactors are
functions that are executed when specific operations are done on specific resources.

The type of Reactor function for all operations, except Watch and Proxy, is defined
as follows:

type ReactionFunc func(
action Action,
) (handled bool, ret runtime.Object, err error)

The type of Reactor function for the Watch operation is defined as follows:

type WatchReactionFunc func(
action Action,
) (handled bool, ret watch.Interface, err error)

173

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO
The type of Reactor function for the Proxy operation is defined as follows:

type ProxyReactionFunc func(
action Action,

) (
handled bool,

ret restclient.ResponseWrapper,
err error

The Fake field of the fake Clientset maintains several lists of Reaction functions:
ReactionChain, WatchReactionChain, and ProxyReactionChain.

Every time an operation on a resource is invoked, the reactors are executed in chain-
like fashion. The first reactor returning a true handled value will terminate the chain
immediately, and the following reactors will not be called.

You can register new Reaction functions by calling the following methods on the
Fake field of the fake Clientset:

o AddReactor(
verb, resource string,
reaction ReactionFunc,
)

o PrependReactor(
verb, resource string,
reaction ReactionFunc,
)

e AddWatchReactor(
resource string,
reaction WatchReactionFunc,
)

o PrependWatchReactor(

resource string,

174

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

reaction WatchReactionFunc,

)

o AddProxyReactor(
resource string,

reaction ProxyReactionFunc,

)

o PrependProxyReactor(
resource string,

reaction ProxyReactionFunc,

)

The verb and resource values are used to indicate the operations for which the
reactor will be invoked.

You can specify a value of "*" for both parameters, to indicate that the reactor must
be executed for the operations of any verb and/or on any resource. Note that the
Reactor function gets the action as a parameter; it is possible for the Reactor to do
additional filtering on the invoked operation using this action parameter.

When the fake Clientset is created, a Reactor is added for both chains:
ReactionChain and WatchReactionChain. These reactors contain the code for the
fake Clientset to use the object tracker, which was discussed earlier. As a result of these
reactors, for example, when you invoke a Create operation using the fake Clientset, the
resource will be attached to an in-memory database, and a subsequent invocation of a
Get operation on this resource will return the previously saved resource.

If you do not want to use this default behavior, you can redefine the chains,
ReactionChain and/or WatchReactionChain, to be empty chains. Note that these
default reactors always return a frue handled value; if you add reactors using
AddReactor or AddWatchReactor when the default reactor is still at the beginning of
the list of reactors, they will never be requested.

If you want to get some validation or some mutation on the passed resource, you can
precede reactors using PrependReactor or PrependWatchReactor, so they can:

o Return early with a true handled value and a specific value for the
object to be returned (and the default Reactor will not be called).

175

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

e Mutate the object to return and return a false handled value. The
mutated object will be the source object for the next reactors.

As an example, use the following code to mutate the created pods to add them a
value for their NodeName field:

import (
"context"

corevl "k8s.io/api/core/v1"
"k8s.io/client-go/kubernetes/fake"
"k8s.io/apimachinery/pkg/runtime"
ktesting "k8s.io/client-go/testing"

)

clientset := fake.NewSimpleClientset()

clientset.Fake.PrependReactor("create”, "pods", func(
action ktesting.Action,
) (handled bool, ret runtime.Object, err error) {
act := action.(ktesting.CreateAction)
ret = act.GetObject()
pod := ret.(*corevi.Pod)
pod.Spec.NodeName = "node1"
return false, pod, nil

1

pod, _ := CreatePod(
context.Background(),
clientset,
name,
namespace,
image,

)

176

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

Checking the Actions

If you are using the mock system provided by the Go team (github.com/golang/mock),
you may want to mock the calls to the Client-go Library in a similar way. The mock
system helps you verify that specific functions were called during the execution of the
tested code, with specific parameters and returning specific values.

Following this principle, to assess the CreatePod function, you may want to check
that the Create function of the Clientset was called, with specific parameters. For this,
the fake Clientset registers all the Actions done on it, and you can access these Actions to
check they are match what you expected.

After executing the code to assess, you can access the Actions with the following call:

actions := clientset.Actions()
This call returns a list of objects that implements the following Action interface:

type Action interface {
GetNamespace() string
GetVerb() string
GetResource() schema.GroupVersionResource
Matches(verb, resource string) bool

[...]

In Chapter 6’s “Using the Clientset” section, you saw that the pattern to execute an
action on a resource is (the namespace is omitted for non-namespaced resources) the
following:

clientset.
GroupVersion().
Resource(namespace).
Operation(ctx, options)

o GetNamespace() - this method on the Action returns the namespace
specified in the call.

o GetVerb() - this method on the Action returns the Operation used in
the call.

177

https://github.com/golang/mock

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

o GetResource() - this method on the Action returns a GVR built from
the GroupVersion and Resource used in the call.

o Matches(verb, resource string) - this checks that the verb and
resource match the Operation and Resource used in the call.

Using these four methods, you can check that the actions made on the Clientset are
what you expected.

After you have checked the Verb of the Action, you can cast it to one of the
interfaces related to the Verb: GetAction, ListAction, CreateAction, UpdateAction,
DeleteAction, DeleteCollectionAction, PatchAction, WatchAction, ProxyGetAction,
and GenericAction.

These interfaces provide more methods to get information specific to the Operation.

o GetAction interface - defined as:

type GetAction interface {
Action
GetName() string

}

As seen in Chapter 6’s “Getting Information About a Resource”
section, the signature of the method to execute the Get
operation is:

Get(ctx context.Context, name string, opts metavi.GetOptions)

- this GetName() method from the GetAction interface will return
the name passed as parameter to the Get method.

o ListAction intexface - defined as:

type ListAction interface {
Action
GetListRestrictions() ListRestrictions

}

type ListRestrictions struct {

Labels labels.Selector
Fields fields.Selector

178

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

As seen in Chapter 6’s “Getting List of Resources” section, the
signature of the method to execute the List operation is:

List(ctx context.Context, opts metavi.ListOptions) - With

ListOptions defined as:

type ListOptions struct {
LabelSelector string
FieldSelector string

[...]

The GetListRestrictions() method from the ListAction interface
will return the LabelSelector and FieldSelector passed as

parameters through the ListOptions structure to the List method.

CreateAction interface - defined as:

type CreateAction interface {
Action
GetObject() runtime.Object

}

As seen in Chapter 6’s “Creating a Resource” section, the signature

of the method to execute the Create operation is (here for Pods)
the following:

Create(ctx context.Context, pod *vi1.Pod, opts metavi.
CreateOptions)

- this GetObject() method from the CreateAction interface
will return the object (here pod) passed as parameter to the
Create method

UpdateAction interface - defined as:

type UpdateAction interface {
Action
GetObject() runtime.Object

179

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

As seen in Chapter 6’s “Updating a Resource” section, the signature of the
method to execute the Update operation is (here for Pods):

Update(ctx context.Context, pod *vi.Pod, opts metavi.
UpdateOptions).

- this GetObject() method from the UpdateAction interface will return
the object (here pod) passed as parameter to the Update method.

o DeleteAction intexface - the code follows:

type DeleteAction interface {
Action
GetName() string
GetDeleteOptions() metavi.DeleteOptions

}

As seen in Chapter 6’s “Deleting a Resource” section, the signature
of the method to execute the Delete operation is as follows:

Delete(ctx context.Context, name string, opts metavi.
DeleteOptions)

- this GetName() method from the DeleteAtion interface will
return the name passed as parameter to the Delete method.

The GetDeleteOptions()
- method from the DeleteAtion interface will return the opts

passed as parameter to the Delete method.

o DeleteCollectionAction interface - defined as:

type DeleteCollectionAction interface {
Action
GetListRestrictions() ListRestrictions

}

type ListRestrictions struct {

Labels labels.Selector
Fields fields.Selector

180

Patch(

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

As seen in Chapter 6’s “Deleting a Collection of Resources”
section, the signature of the method to execute the
DeleteCollection operation is:

DeleteCollection(ctx context.Context, opts metavi.
DeleteOptions, 1istOpts metavi.ListOptions) - with
ListOptions defined as:

type ListOptions struct {
LabelSelector string
FieldSelector string
[...]

}

The GetListRestrictions() method from the
DeleteCollectionAction interface will return the LabelSelector
and FieldSelector passed as parameters through the ListOptions
structure to the DeleteCollection method.

PatchAction intexrface - defined as:

type PatchAction interface {
Action
GetName() string
GetPatchType() types.PatchType
GetPatch() []byte

}

As seen in Chapter 6’s “Using a Sstrategic Merge Patch to Update
a Resource” and “Applying Resources Server-side” sections, the
signature of the method to execute the Patch operation is:

ctx context.Context,

name string,
pt types.PatchType,
data []byte,
opts metavi.PatchOptions,

subresources ...string,

181

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO
The GetName() method from the PatchAction interface will

return the name passed as parameter to the Patch method.

The GetPatchType() method from the PatchAction interface will
return the pt passed as parameter to the Patch method.

The GetPatch() method from the PatchAction interface will return
the data passed as parameter to the Patch method.

o WatchAction interface - defined as:

type WatchAction interface {
Action
GetWatchRestrictions() WatchRestrictions

}

type WatchRestrictions struct {
Labels labels.Selector
Fields fields.Selector

ResourceVersion string

}

As seen in Chapter 6’s “Watching Resources” section, the
signature of the method to execute the Watch operation is:

Watch(ctx context.Context, opts metavi.ListOptions)

- The GetWatchRestrictions() method from the WatchAction
interface will return the LabelSelector and FieldSelector and
ResourceVersion passed as parameters through the ListOptions
structure to the Watch method.

As an example, here is how you can use Action and CreateAction interfaces and their
methods to test the CreatePod function:

import (
"context"
"reflect"
"testing"

corevl "k8s.io/api/core/v1"

182

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/kubernetes/fake"
ktesting "k8s.io/client-go/testing"”

)

func TestCreatePodActions(t *testing.T) {
var (
name = "a-name"
namespace = "a-namespace"
"an-image"

image

wantPod = &corevi.Pod{
ObjectMeta: metavi.ObjectMeta{
Name: "a-name",
})
Spec: corevi.PodSpec{
Containers: []corevi.Container{

{
Name: "runtime",
Image: "an-image",
}J
}J
b
}
wantActions = 1
)
clientset := fake.NewSimpleClientset() (1]
_, _ = CreatePod((2]
context.Background(),
clientset,
name,
namespace,
image,
)
actions := clientset.Actions() (3]

183

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

if len(actions) != wantActions { o
t.Errorf("# actions = %d, want %d",
len(actions),
wantActions,
)
}
action := actions[0]
actionNamespace := action.GetNamespace() (6]
if actionNamespace != namespace {
t.Exrrorf("action namespace = %s, want %s",
actionNamespace,
namespace,
)
}
if laction.Matches("create", "pods") { (7]
t.Errorf("action verb = %s, want create",
action.GetVerb(),
)
t.Exrrorf("action resource = %s, want pods",
action.GetResource().Resource,
)
}
createAction := action.(ktesting.CreateAction) (8]
obj := createAction.GetObject() (0]

if !reflect.DeepEqual(obj, wantPod) {
t.Errorf("create action object = %v, want %v",
obj,
wantPod,

O Create a fake Clientset

@ Call the CreatePod function to test

184

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

©® Get the actions done during the execution of the function
O Assert the number of actions

@ Get the first and only action done during execution

0@ Assert the namespace value passed during the Action

@ Assert the Verb and Resource used for the Action

O Cast the Action to the CreateAction interface

O Assert the object value passed during the CreateAction

Fake REST Client

A fake RESTClient structure is available in the rest/fake package of the Client-go
Library. The structure is specified as follows:

import "k8s.io/client-go/rest/fake"

type RESTClient struct {
NegotiatedSerializer runtime.NegotiatedSerializer
GroupVersion schema.GroupVersion
VersionedAPIPath string

Err error

Req *http.Request
Client *http.Client
Resp *http.Response

The NegotiatedSerializer field accepts a Codec. You will need to use the Codec
provided by the Client-go Library to be able to encode and decode resources from the
Kubernetes APL

A RESTClient from the Client-go Library is specific to a Group and Version. You can
specify the Group and the Version using the GroupVersion field.

185

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

VersionedAPIPath can be employed to specify a prefix for the API path. The other
fields are utilized to imitate the result of the request:

o IfErris notnil, this error will be returned immediately for any call
using the RESTClient.

o Else, if Client is not nil, this http.Client is used to make the HTTP
request for any call using the RESTClient.

o Else, Resp is returned as a response for any call using the RESTClient.

With the fields Err and Resp, you can hardcode the result of calls to the RESTClient,
either to return a specific error or return a specific response.

Using the Client field, you can have some advanced code that will return a specific
result depending on the request, or make some computation based on the request, and
so on. As an example, here is a function that getPods from a specific namespace, using
the RESTClient:

func getPods(
ctx context.Context,
restClient rest.Interface,
ns string,
) ([]corevi.Pod, error) {
result := corevi.PodList{}
err := restClient.Get().
Namespace(ns).
Resource("pods").
Do(ctx).
Into(&result)

if err != nil {
return nil, err

}

return result.Items, nil

To call this function from your code, you want to provide a RESTClient from a
Clientset—for example, using the following code:

restClient := clientset.CoreVi().RESTClient()

186

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

pods, err := getPods(
context.Background(),
restClient,
"default",

To evaluate how the function behaves when it returns specific values, you should use
the fake RESTClient instead. For example, to assert the result of the function when the
RESTClient call returns an error, you can create this fake RESTClient:

import (
"context"
"errors"

corevl "k8s.io/api/core/v1"
"k8s.io/client-go/kubernetes/scheme"
"k8s.io/client-go/rest/fake"

)

restClient := &fake.RESTClient{
GroupVersion: corevl.SchemeGroupVersion,
NegotiatedSerializer: scheme. Codecs,
Err: errors.New("an error from the rest client"),

}

pods, err := getPods(
context.Background(),
restClient,
"default",

Another example, to assert the result of the function when the call returns a
NotFound (404) status, you can define the following fake RESTClient:

import (
"net/http"

corevl "k8s.io/api/core/v1"
"k8s.io/client-go/kubernetes/scheme"

187

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

"k8s.io/client-go/rest/fake"

)
restClient := &fake.RESTClient{
GroupVersion: corevl.SchemeGroupVersion,
NegotiatedSerializer: scheme.Codecs,
Err: nil,
Resp: &http.Response{
StatusCode: http.StatusNotFound,
b
}

FakeDiscovery Client

A FakeDiscovery structure is specified in the discovery/fake package of the Client-go
Library. The structure is defined as follows:

type FakeDiscovery struct {
*testing.Fake
FakedServerVersion *version.Info

An implementation of such a FakeDiscovery client is accessible from the fake
Clientset:

import (
"k8s.io/client-go/kubernetes/fake"
fakediscovery "k8s.io/client-go/discovery/fake"

)

clientset := fake.NewSimpleClientset()

discoveryClient, ok :=
clientset.Discovery().(*fakediscovery.FakeDiscovery)

if lok {
t.Fatalf("couldn't convert Discovery() to *FakeDiscovery")

188

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

Stubbing the ServerVersion

The FakeDiscovery structure provides a field FakedServerVersion that you can use to
simulate the server version returned by the ServerVersion() method of the discovery.
DiscoverylInterface. As an example, here is a function you should test, checking that the
server version is at least a provided version:

func checkMinimalServerVersion(
clientset kubernetes.Interface,
minMinor int,
) (bool, error) {
discoveryClient := clientset.Discovery()
info, err := discoveryClient.ServerVersion()
if err != nil {
return false, err
}
major, err := strconv.Atoi(info.Major)
if err != nil {
return false, err
}
minor, err := strconv.Atoi(info.Minor)
if err != nil {
return false, err

}

return major == 1 &&% minor >= minMinor, nil

You can now assert the result of the function when the Discovery client returns a
specific version, here 1.10.

As an exercise, you can rewrite this test function by using a table-driven test instead
so as to be able to test the result for various values of the server versions.

func Test getServerVersion(t *testing.T) {
client := fake.NewSimpleClientset()

fakeDiscovery, ok := client.Discovery().(*fakediscovery.FakeDiscovery)
if lok {

189

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

t.Fatalf("couldn't convert Discovery() to *FakeDiscovery")

}

fakeDiscovery.FakedServerVersion = &version.Info{
Major: "1",
Minor: "10",

}

res, err := checkMinimalServerVersion(client, 20)
if res != true && err != nil {
t.Error(err)

Actions

The methods ServerVersion, ServerGroups, ServerResourcesForGroupVersion, and
ServerGroupsAndResources of the fake Discovery client all use the concept of Actions
used by the fake Clientset, as described in this chapter’s “Reacting to Actions” and
“Checking the Actions” sections.

To evaluate your functions’ use of these methods, you can assert the actions done by
the Discovery client, by adding reactors or by checking the actions executed. Note that
the Verb and Resource used for these methods are:

” u

o ServerVersion - “get”, “version”

” U

o ServerGroups - “get”, “group”

o ServerResourcesForGroupVersion - “get”, “resource”

” u ” u

o ServerGroupsAndResources - “get”, “group” and “get”, “resource”

Mocking Resources

For the real implementation, the ServerGroups, ServerResourcesForGroupVersion,
and ServerGroupsAndResources methods rely on groups and resources defined by the

API server.

190

CHAPTER 7 TESTING APPLICATIONS USING CLIENT-GO

For the fake implementation, these methods rely on the Resources field of the Fake
field of the fake Clientset. To mock the result of these methods with various values of
groups and resources, you can fill this Resources field before calling these methods.

Conclusion

This chapter has shown how to use the fake implementations of the Clienset, REST
client, and Discovery client; all are helpful to write unit tests for functions using the
Client-go Library using the Client-go Library.

It closes the first part of this book, which covers libraries to work with the native
Kubernetes resources. In the following chapters, you will learn how to extend the
Kubernetes API by creating custom resources.

191

CHAPTER 8

Extending Kubernetes
API with Custom
Resources Definitions

In the first part of this book, you learned that the Kubernetes API is organized in groups.
The groups contain one or more resources, each of them being versioned.

To work with the Kubernetes API in Go, there exist two fundamental libraries. The
API Machinery Library' provides the tools to communicate with the API independently
of the resources served by the API. The API Library® provides the definitions of the
native Kubernetes resources provided with the Kubernetes API, to be used with the API
Machinery.

The Client-go Library leverages the API Machinery and the API Library to provide an
access to the Kubernetes API.

The Kubernetes API is extensible through its Custom Resource Definition (CRD)
mechanism.

A CustomResourceDefinition is a specific Kubernetes resource, used to define new
Kubernetes resources served by the AP], in a dynamic way.

Defining new resources for Kubernetes is used to represent Domain Specific
Resources, for example a Database, a CI/CD Job or a Certificate.

Combined with a custom controller, these custom resources can be implemented in
the cluster by the controller.

Like other resources, you can get, list, create, delete, and update resources of this
kind. The CRD resource is a non-namespaced resource.

'https://github.com/kubernetes/apimachinery
2https://github.com/kubernetes/api

193
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_8

https://github.com/kubernetes/apimachinery
https://github.com/kubernetes/api
https://doi.org/10.1007/978-1-4842-9026-2_8

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

This CRD resource is defined in the apiextensions.k8s.io/v1 group and version. The
HTTP path to access the resource respects the standard format to access non-core and
non-namespaced resources, /apis/<group>/<version>/<plural_resource_name>, and
is /apis/apiextensions.k8s.io/v1/customresourcedefinitions/.

The Go definition of this resource is not declared in the API Library, like for other
native resources, but in the apiextensions-apiserver library. To access the definitions
from Go sources, you will need to use the following import:

import (
"k8s.io/apiextensions-apiserver/pkg/apis/apiextensions/v1"

)

Performing Operations in Go

To perform operations on CRD resources using Go, you can use a clientset, similar to the
clientset provided by the client-go library but included in the apiextensions-apiserver
library.

To use this clientset, you will need to use the following import:

import (
"k8s.io/apiextensions-apiserver/pkg/client/clientset/clientset”

)

You can use this CRD clientset the exact same way you use the Client-go Clientset.
As an example, here is how you can list the CRDs declared into a cluster:

import (
"context"
n _Fm_t n

"k8s.io/apiextensions-apiserver/pkg/client/clientset/clientset”
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"

)

// config is a standard rest.Config defined in client-go

194

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

clientset, err := clientset.NewForConfig(config)
if err != nil {
return err
}
ctx := context.Background()
list, err := clientset.ApiextensionsVi().
CustomResourceDefinitions().
List(ctx, metavi.ListOptions{})

The CustomResourceDefinition in Detail

The definition of the CustomReourceDefinition Go structure is:

type CustomResourceDefinition struct {
metavl.TypeMeta
metav1i.ObjectMeta

Spec CustomResourceDefinitionSpec
Status CustomResourceDefinitionStatus

Like any other Kubernetes resources, the CRD resource embeds the TypeMeta
and ObjectMeta structures. The value of the Name in the ObjectMeta field must equal
<Spec.Names.Plural> + . ” + <Spec.Group>.

Like resources being managed by a Controller or Operator, the resource contains a
Spec structure to define the desired state, and a Status structure to contain the status of

the resource as described by the controller or operator.

type CustomResourceDefinitionSpec struct {

Group string

Scope ResourceScope

Names CustomResourceDefinitionNames
Versions []CustomResourceDefinitionVersion
Conversion *CustomResourceConversion

PreserveUnknownFields bool

195

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

The Group field of the Spec indicates the name of the group in which the resource
resides.

The Scope field indicates if the resource is namespaced or non-namespaced. The
ResourceScope type contains two values: ClusterScoped and NamespaceScoped.

Naming the Resource

The Names field indicates the diverse names for the resource and associated
information. This information will be used by the Discovery mechanism of the
Kubernetes AP], to be able to include CRDs in the results of discovery calls. The
CustomResourceDefinitionNames type is defined as:

type CustomResourceDefinitionNames struct {

Plural string
Singular string
ShortNames []string
Kind string
ListKind string
Categories []string

Plural is the lowercase plural name of the resource, used in the URL to access the
resource—for example, pods. This value is required.

Singular is the lowercase singular name of the resource. For example, pod. This
value is optional, and if not specified, the lowercase value of the Kind field is used.

ShortNames is a list of lowercase short names for the resource, which can be used
to invoke this resource in commands like kubectl get <shortname>. As an example,
the services resource declares the sve shortname, so you can execute kubectl get svc
instead of kubectl get services.

Kind is the CamelCase and singular name for the resource, used during resource
serialization—for example, Pod or ServiceAccount. This value is required.

ListKind is the name used during the serialization of lists of this resource—for
example, PodList. This value is optional, and if not specified, the Kind value suffixed
with List is used.

196

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

Categories is a list of grouped resources the resource belongs to, which can be used
by commands like kubectl get <category>. The all category is the best known one, but
other categories exist (api-extensions), and you can define your own category names.

Definition of the Resource Versions

All the information provided up to this point is valid for all versions of the resource.

The Versions field contains version-specific information, as a list of definitions,
one for each version of the resource. The type CustomResourceDefinitionVersion is
defined as:

type CustomResourceDefinitionVersion struct {

Name string

Served bool

Storage bool

Deprecated bool

DeprecationWarning *string

Schema *CustomResourceValidation
Subresources *CustomResourceSubresources

AdditionalPrinterColumns []CustomResourceColumnDefinition

Name indicates the version name. Kubernetes resources use a standard format for
versions: v<number>[(alpha|beta)<number>], but you can use any format you want.

The Served boolean indicates whether this specific version must be served by
the API Server. If not, the version is still defined and can be used as Storage (see the
following), but the user cannot create or get resource instances in this specific version.

The Storage boolean indicates whether this specific version is the one used for
persisting resources. Exactly one version must define this field to be true. You have seen
in Chapter 5’s “Conversion” section that Conversion functions exist between versions of
the same resource. The user can create resources in any available version, the API Server
will convert it into the version with Storage=true before to persist the data in etcd.

The Deprecated boolean indicates whether this specific version of the resource is
deprecated. If true, the server will add a Warning header to responses for this version.

197

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

The DeprecationWarning is the warning message returned to the caller when
Deprecated is true. If Deprecated is true and this field is nil, a default warning message
is sent.

Schema describes the schema of this version of the resource. The schema
is used to validate the data sent to the API when creating or updating resources.

This field is optional. The schemas will be discussed in more detail in Section
“Schema of the Resource”.

Subresources defines the subresources that will be served for this version of the

resource. This field is optional. The type of this field is defined as:

type CustomResourceSubresources struct {
Status *CustomResourceSubresourceStatus
Scale *CustomResourceSubresourceScale

o If Status is not nil, the “/status” sub-resource will be served.
e If Scale is not nil, the “/scale” sub-resource will be served.

AdditionalPrinterColumns is the list of additional columns to return when the
Table output format is requested by the user. This field is optional. More information
about the Table output format can be found in Chapter 2’s, “Getting Result as Table”
section. You will see how to define additional printer columns in the “Additional Printer
Columns” section of this chapter.

Converting Between Versions

Conversion indicates how conversions between versions of this resource are handled.
The type for this field is defined as follows:

type CustomResourceConversion struct {
Strategy ConversionStrategyType
Webhook *WebhookConversion

Strategy can get a value of NoneConverter or WebhookConverter. A
NoneConverter value indicates to the API Server to change only the APIVersion field
before it persists.

198

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

A WebhookConverter value indicates that the API Server is to call an external
webhook to do the conversion. When this value is used, the Webhook field needs to
contain all the information necessary for the API Server to call the webhook.

Schema of the Resource

The schema of a resource for a specific version is defined using the OpenAPI v3 schema
format.’ The complete description of this format is out of the scope of this book. Here is a
short introduction that will help you define a schema for your resources.

A Custom resource will generally have a Spec section and a Status section. For this,
you will have to declare a top-level schema of type object, and declare the fields with
the properties property. In this example, the top-level schema will have Spec and Status
properties. You can then describe each property recursively.

The Spec and Status fields will also be of type object and contain properties. The
accepted data types are:

e string
e number
e integer
e Dboolean
e array
e object
Specific formats can be given for string and number types:
o string: date, date-time, byte, int-or-string
« number: float, double, int32, int64

In an object, the required fields are indicated using the required property.

You can declare that a property accepts only a set of values, using the enum
property. To declare a map of values, you need to use the object type and specify the
additionalProperties property. This property can accept a true value (to indicate that

Shttps://swagger.io/docs/specification/data-models/

199

https://swagger.io/docs/specification/data-models/

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

the entries can have any type), or define the type of the entries of the map by giving a
type as value:

type: object
additionalProperties:
type: string

Or

type: object
additionalProperties:
type: object
properties:
code:
type: integer
text:
type: string

When declaring an array, you must define the type of the items of the array:

type: array
items:
type: string

As an example, here is a schema for a custom resource containing three fields in
Spec (image, replicas, and port), and a state field in Status.

schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
image:
type: string
replicas:
type: integer
port:

200

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

type: string

format: int-or-string
required: [image,replicas]

status:
type: object
properties:
state:
type: string
enum: [waiting,running]

Deploying a Custom Resource Definition

To deploy a new resource definition to the cluster, you need to execute a Create
operation on a CRD object. You can either use the Clientset provided by the
apiextensions-apiserver Library and write the resource definition in Go using the
structures you have seen in previous sections, or you can create a YAML file and “apply”
it using kubectl.

As an example, you will create a new resource named myresources in the group
mygroup.example.com, and with a version vlalphal, using the YAML format and
kubectl to deploy it.

apiVersion: apiextensions.k8s.io/v1 (1]
kind: CustomResourceDefinition (2]
metadata:

name: myresources.mygroup.example.com (3}

spec:
group: mygroup.example.com 4]
scope: Namespaced 5]
names:
plural: myresources ®
singular: myresource o
shortNames:
- my 8]
- myres

kind: MyResource

201

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

categories:

- all 9]
versions:
- name: vilalphal [10)

served: true
storage: true

schema:
openAPIV3Schema:
type: object (11)

O The group and version of the CRD resource

® The kind of the CRD resource

® The complete name of the new resource, including its group
O The group the new resource belongs to

® The new resource can be created in specific namespaces

® The plural name of the new resource, used in the path to access

this new resource

@ The singular name of the resource, you can use kubectl get
myresource

® Short names of the new resource, you can use kubectl get my,
kubectl get myres

® Adds the resource to the category all; resources of this kind will
appear when running kubectl get all

@ vlalphal version is the only version defined for the new
resource

@ Defines the new resource schema as an object, with no field

202

CHAPTER 8 EXTENDING KUBERNETES APl WITH CUSTOM RESOURCES DEFINITIONS
Now, you can “apply” this resource using kubectl, using the following command:

$ kubectl apply -f myresource.yaml
customresourcedefinition.apiextensions.k8s.io/myresources.mygroup.example.
com created

From there, you can work with this new resource.

For example, you can get the list of resources cluster-wide or in a specific
namespace, using HTTP requests (you will need to execute kubectl proxy from another
terminal before running these commands):

$ curl
http://localhost:8001/apis/mygroup.example.com/vialphai/myresouxces

{"apiVersion":"mygroup.example.com/vialpha1","items":[], "kind":"MyResourcel
ist","metadata":{"continue":"","resourceVersion":"186523407"}}

$ curl
http://localhost:8001/apis/mygroup.example.com/vialphai/namespaces/default/
myresouxces

{"apiVersion":"mygroup.example.com/vialpha1l","items":[], "kind":"MyResourcel
ist","metadata":{"continue":"","resourceVersion":"186524840"}}

Or, you can obtain these lists using kubectl:

$ kubectl get myresources
No resources found in default namespace.

You can define a new resource using the YAML format, and “apply” it to the cluster,
using kubectl:

$ kubectl apply -f - <<EOF
apiVersion: mygroup.example.com/vialphal
kind: MyResource
metadata:
name: myresil
EOF

$ kubectl get myresources
NAME AGE
myresl 10s

203

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

Additional Printer Columns

You can see in the output of the previous kubectl get myresources command that the
columns displayed are the name and age of the resources.

The AdditionalPrinterColumns field of the CRD spec is used to indicate which
columns of the resource you want to be displayed in the output of kubectl get
<resource>.

When no additional printer columns are defined, the name and age are returned by
default. If you specify columns, they will be returned in addition to the name. If you want
to keep the age when adding columns, you will need to add it explicitly.

For each additional column, you need to specify a name, a JSON path. and a type.
The name will be used as a header for the column in the output, the JSON path is used
by the API Server to get the value for this column from the resource data, and the type is
an indication for kubectl to display this data.

As an example, here is the myresource CRD with some fields defined in the Spec and
Status, and additional printer columns also are defined:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: myresources.mygroup.example.com
spec:
group: mygroup.example.com
scope: Namespaced
names:
plural: myresources
singular: myresource
shortNames:
- my
- myres
kind: MyResource
categories:
- all
versions:
- name: vilalphai
served: true

204

CHAPTER 8

storage: true
subresources:
status: {}
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
image:
type: string
memory :

x-kubernetes-int-or-string:

status:
type: object
properties:
state:
type: string
additionalPrinterColumns:
- name: image
jsonPath: .spec.image
type: string
- name: memory
jsonPath: .spec.memory
type: string
- name: age

EXTENDING KUBERNETES APl WITH CUSTOM RESOURCES DEFINITIONS

true

jsonPath: .metadata.creationTimestamp

type: date

In this CRD, the schema indicates that the data for the resources will be an object

containing two properties, spec and status. These properties are objects themselves. The
spec object contains two properties: image of type string, and memory of special type
int or string. The status object contains one property state of type string.

Note that you have enabled the status subresource by adding the status entry in the

subresources object. You have defined for the CRD three additional printer columns:

205

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

image, memory, and age. The JSON paths for image and memory point to the fields
defined in the schema, and the JSON path for age points to a field in the standard
metadata field.

After applying the CRD again to the cluster, you can define a new resource with
these fields, apply the resource definition to the cluster, and get the list of resources with
kubectl:

$ kubectl apply -f myresource.yaml
customresourcedefinition.apiextensions.k8s.io/myresources.mygroup.example.
com configured o

$ cat » myresi.yaml <<EOF
apiVersion: mygroup.example.com/vialphal
kind: MyResource
metadata:
name: myresi

spec:
image: nginx 2]
memory: 1024Mi (3]

EOF

$ kubectl apply -f myresi.yaml o

myresource.mygroup.example.com/myres1 configured

$ kubectl get myresources
NAME IMAGE MEMORY AGE
myresl nginx 1024Mi 12m (5]

® The CRD is updated with the new schema and additional
printer columns

® A value is given for the field image
® A value is given for the field memory; this is a string
® The custom resource is updated, with the new fields defined

® The output of kubectl get now displays the additional columns

206

CHAPTER 8 EXTENDING KUBERNETES API WITH CUSTOM RESOURCES DEFINITIONS

Conclusion

In this chapter, you have seen that the list of resources served by the Kubernetes API
is extendable by creating CustomResourceDefinition (CRD) resources in the cluster.
You have seen the structure in Go of this CRD resource and how to manipulate CRD
resources using the dedicated Clientset.

Following that you have seen how to write a CRD in YAML and how to deploy it to
the cluster using kubectl. Some fields then have been added to the CRD scheme, as
well as some additional printer columns so as to display these fields in the output of
kubectl get.

Finally, you have seen that as soon as the CRD is created in the cluster, you can start

working with resources of the new associated kind.

207

CHAPTER 9

Working with Custom
Resources

In the previous chapter, you have seen how to declare a new custom resource to be
served by the Kubernetes API using CustomResourceDefinition resources, and how to
create new instances of this custom resource using kubectl. But for the moment, you do
not have any Go library that allows you to work with instances of custom resources.
This chapter explores the various possibilities to work with custom resources in Go:

e Generating code for a dedicated Clientset for the custom resource.

o Using the unstructured package of the API Machinery Library and
the dynamic package of the Client-go Library.

Generating a Clientset

The repository https://github.com/kubernetes/code-generator contains the Go code
generators. Chapter 3’s “Content of a Package” section contains a very quick overview of
these generators, where the content of the API Library was explored.

To use these generators, you will need to first write the Go structures for the kinds
defined by the custom resource. In this example, you will write structures for the
MyResource and MyResourceList kinds.

To stick with the organization found in the API Library, you will write these types in a
types.go file, placed in the directory pkg/apis/<group>/<version>/.

Likewise, to work correctly with the generators, the root directory of your project
must be in a directory named after the Go package after the Go package of your project.
For example, if the package of the project is github.com/myid/myproject (defined in
the first line of the project’s go.mod file), the root directory of the project must be in the
directory github.com/myid/myproject/.

209
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_9

https://github.com/kubernetes/code-generator
https://doi.org/10.1007/978-1-4842-9026-2_9

CHAPTER9 WORKING WITH CUSTOM RESOURCES

As an example, let’s start a new project. You can execute these commands from the
directory of your choice, generally a directory containing all your Go projects.

$ mkdir -p github.com/myid/myresource-crd

$ cd github.com/myid/myresource-crd

$ go mod init github.com/myid/myresource-crd

$ mkdir -p pkg/apis/mygroup.example.com/vialphal/
$ cd pkg/apis/mygroup.example.com/vialphai/

Then, in this directory, you can create the types.go file that contains the definitions
of the structures for the kinds. Here are the definitions of the structures that match the
schema defined in the CRD in the previous chapter.

package vialpha1

import (
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/intstr"

type MyResource struct {
metavi.TypeMeta " json:",inline""

n~

metavi.ObjectMeta "json:"metadata,omitempty

Spec MyResourceSpec ~json:"spec"®

type MyResourceSpec struct {
Image string “json:"image""
Memory resource.Quantity ~json:"memory"’

type MyResourcelist struct {
metavi.TypeMeta “json:",inline""
metavi.ListMeta ~json:"metadata,omitempty""

Items []MyResource “json:"items"®

210

CHAPTER9 WORKING WITH CUSTOM RESOURCES

Now, you need to run two generators:

o deepcopy-gen - this will generate a DeepCopyObject() method for
each Kind structure, which is needed for these types to implement
the runtime.Object interface.

o client-gen - this will generate the clientset for the group/version.

Using deepcopy-gen

Installing deepcopy-gen

To install the deepcopy-gen executable, you can use the go install command:
go install k8s.io/code-generator/cmd/deepcopy-gen@v0.24.4

You can use either the @latest tag to use the latest revision of the Kubernetes code or
select a specific version.

Adding Annotations

The deepcopy-gen generator needs annotations to work. It first needs the //
+k8s:deepcopy-gen=package annotation to be defined at the package level. This
annotation asks deepcopy-gen to generate deepcopy methods for all structures of the
package.

For this, you can create a doc.go file in the directory in which types.go resides, to
add this annotation:

// pkg/apis/mygroup.example.com/vialphai/doc.go
// +k8s:deepcopy-gen=package
package vialpha1

By default, deepcopy-gen will generate the DeepCopy() and DeepCopylnto()
methods, but no DeepCopyObject(). For this, you need to add another annotation (//
+k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object) before
each kind structure.

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
type MyResource struct {

[...]

211

CHAPTER9 WORKING WITH CUSTOM RESOURCES

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
type MyResourcelist struct {

[...]

Running deepcopy-gen

The generator needs a file that contains the text (generally the license) added at the
beginning of the generated files. For this, you can create an empty file (or with the
content you prefer, do not forget that the text should be Go comments) named hack/
boilerplate.go.txt.

You need to run go mod tidy for the generator to work (or go mod vendor if you
prefer to vendor Go dependencies). Finally, you can run the deepcopy-gen command,
which will generate a file pkg/apis/mygroup.example.com/vlalphal/zz_generated.
deepcopy.go:

$ go mod tidy
$ deepcopy-gen --input-dirs github.com/myid/myresource-crd/pkg/apis/
mygroup.example.com/vialpha1

-0 zz_generated.deepcopy

--output-base ../../..

--go-header-file ./hack/boilerplate.go.txt

Note the “../../..” as output-base. It will place the output base in the directory from
which you created the directory for the project:

$ mkdir -p github.com/myid/myresource-crd

You will need to adapt this to the number of subdirectories you created if different
from the three.

At this point, you should have the following file structure for your project:

F— go.mod
F— hack

| L— boilerplate.go.txt

CHAPTER9 WORKING WITH CUSTOM RESOURCES

L— mygroup.example.com
L— vialphai

— doc.go
— types.go

L— 2z generated.deepcopy.go

Using client-gen
Installing client-go

To install the client-gen executable, you can use the go install command:

go install k8s.io/code-generator/cmd/client-gen@vo0.24.4

You can use either the @latest tag to use the latest revision of the Kubernetes code or

select a specific version if you want to run the command in a reproducible way.

Adding Annotations

You need to add annotations to the structures, defined in the types.go file, to indicate for

which types you want to define a Clientset. The annotation to use is // +genclient.

// +genclient (with no option) will ask client-gen to generate a
Clientset for a namespaced resource.

// +genclient:nonNamespaced will generate a Clientset for a non-

namespaced resource.

+genclient:onlyVerbs=create,get will generate these verbs only,
instead of generating all verbs by default.

+genclient:skipVerbs=watch will generate all verbs except these
ones, instead of all verbs by default.

+genclient:noStatus - if a Status field is present in the annotated
structure, an updateStatus function will be generated. With this
option, you can disable the generation of the updateStatus function
(note that it is not necessary if the Status field does not exist).

213

CHAPTER9 WORKING WITH CUSTOM RESOURCES

The custom resource you are creating is namespaced so you can use the annotation
without an option:

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// igenclient
type MyResource struct {

[...]
Adding AddToScheme Function

The generated code relies on an AddToScheme function defined in the package of
the resource. To stick with the convention found in the API Library, you will write this
function in a register.go file, placed in the directory pkg/apis/<group>/<version>/.

By getting as boilerplate, the register.go file from a native Kubernetes resource from
the Kubernetes API Library, you will obtain the following file. The only changes are to the
group name (@),version name (M), and the list of resources (®) to register to the scheme.

package vialpha1

import (
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/runtime/schema”

)

const GroupName = "mygroup.example.com" o

var SchemeGroupVersion = schema.GroupVersion{
Group: GroupName,

Version: "wvialphai", (2]
}
var (
SchemeBuilder = runtime.NewSchemeBuilder (addKnownTypes)
localSchemeBuilder = &SchemeBuilder
AddToScheme = localSchemeBuilder.AddToScheme
)

214

CHAPTER9 WORKING WITH CUSTOM RESOURCES

func addKnownTypes(scheme *runtime.Scheme) error {
scheme.AddKnownTypes (SchemeGroupVersion,
3MyResource{}, (3]
&MyResourceList{},
)
metavl.AddToGroupVersion(scheme, SchemeGroupVersion)
return nil

}

Running client-go

The client-gen needs a file containing the text (generally the license) added at the
beginning of generated files. You will use the same file as with deepcopy-gen: hack/
boilerplate.go.txt.

You can run the client-gen command, which will generate files in the directory pkg/
clientset/clientset:

client-gen \
--clientset-name clientset
--input-base ""
--input github.com/myid/myresource-crd/pkg/apis/mygroup.example.com/
vialpha1
--output-package github.com/myid/myresource-crd/pkg/clientset
--output-base ../../..

--go-header-file hack/boilerplate.go.txt

Note the “../../..” as output-base. It will place the output base in the directory from
which you created the directory for the project:

$ mkdir -p github.com/myid/myresource-crd

You will need to adapt this to the number of subdirectories you created if different
from the three.

215

CHAPTER9 WORKING WITH CUSTOM RESOURCES

Note that you will need to run this command again when you update the definition
of your custom resource. It is recommended to place this command in a Makefile to
automatically run it every time the files defining the custom resource are modified.

Using the Generated Clientset

Now that the Clientset is generated and the types implement the runtime.Object
interface, you can work with the custom resource the same way you work with the native
Kubernetes resources. For example, this code will use the dedicated Clientset to list the
custom resources on the default namespace:

import (
"context"
n _Fmt mn

"github.com/myid/myresource-crd/pkg/clientset/clientset”
metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/tools/clientcmd”

)

config, err :=
clientcmd.NewNonInteractiveDeferredLoadingClientConfig(
clientcmd.NewDefaultClientConfigloadingRules(),
nil,
).ClientConfig()
if err != nil {
return err

}

clientset, err := clientset.NewForConfig(config)
if err != nil {
return err

}

list, err := clientset.MygroupVialphai().
MyResources("default").
List(context.Background(), metavi.ListOptions{})
if err != nil {

216

CHAPTER9 WORKING WITH CUSTOM RESOURCES

return err

}

for , res := range list.Items {
fmt.Printf("%s\n", res.GetName())

Using the Generated fake Clientset

The client-gen tool also generates a fake Clientset that you can use the same way you
use the fake Clientset from the Client-go Library. For more information, see Chapter 7’s
“Fake Clientset” section.

Using the Unstructured Package and Dynamic Client

The Unstructured and UnstructuredList types are defined in the unstructured package
of the API Machinery Library. The import to use is the following:

import (
"k8s.io/apimachinery/pkg/apis/meta/v1/unstructured”

These types can be used to represent any Kubernetes Kind, either a list or a nonlist.

The Unstructured Type
The Unstructured type is defined as a structure containing a unique Object field:

type Unstructured struct {
// Object is a JSON compatible map with
// string, float, int, bool, []interface{}, or
// map[string]interface{}
// children.
Object map[string]interface{}

217

CHAPTER9 WORKING WITH CUSTOM RESOURCES

Using this type, it is possible to define any Kubernetes resource without having to use
the typed structures (e.g., the Pod structure, found in the API Library).

Getters and Setters methods are defined for this type to access generic fields
from the TypeMeta and ObjectMeta fields, common to all structures representing
Kubernetes Kinds.

Getters and Setters to Access TypeMeta Fields

The APIVersion and Kind Getters/Setters can be used to directly get and set the
apiVersion and Kind fields of the TypeMeta.

The GroupVersionKind Getters/Setters can be used to convert the apiVersion and
kind specified in the object to and from a GroupVersionKind value.

GetAPIVersion() string
GetKind() string
GroupVersionKind() schema.GroupVersionKind

SetAPIVersion(version string)
SetKind(kind string)
SetGroupVersionKind(gvk schema.GroupVersionKind)

Getters and Setters to Access ObjectMeta Fields

Getters and Setters are defined for all fields of the ObjectMeta structure. The details of
the structure can be found in Chapter 3’s “The ObjectMeta Fields” section.

As an example, the getter and setter to access the Name field are GetName() string
and SetName(name string).

Methods for Creating and Converting

o NewEmptyInstance() runtime.Unstructured - thisreturnsanew
instance with only the apiVersion and kind fields copied from the
receiver.

e MarshalJSON() ([]byte, error) - this returns the JSON

representation of the receiver.

o UnmarshalJSON(b []byte) error - this populates the receiver
with the passed JSON representation.

218

CHAPTER9 WORKING WITH CUSTOM RESOURCES

UnstructuredContent() map[string]interface{} - thisreturns
the value of the Object field of the receiver.

SetUnstructuredContent(
content map[string]interface{},
)
- this sets the value of the Object field of the receiver,].

IsList() bool - this returns true if the receiver describes a list, by
checking if an items field exists, and is an array.

ToList() (*UnstructuredlList, error) - this converts the receiver
to an UnstructuredList.

Helpers to Access Non-meta Fields

The following helpers can be used to get and set the value of specific fields in the Object

field of an Unstructured instance.

Note that these helpers are functions, and not methods on the Unstructured type.

They all accept:

A first parameter obj of type map[string]interface{} used to pass the
Object field of the Unstructured instance,

A last parameter fields of type ...string used to pass the keys to
navigate into the object. Note that no array/slice syntax is supported.

The Setters accept a second parameter giving the value to the set for the specific

field in the given object. The Getters return three values:

The value of the requested field, if possible
A boolean indicating if the requested field has been found

An error if the field has been found but is not of the requested type

219

CHAPTER9 WORKING WITH CUSTOM RESOURCES

The names of the helper functions are:
e RemoveNestedField - this removes the requested field

o NestedFieldCopy, NestedFieldNoCopy - thisreturns a copy or the
original value of the requested field

o NestedBool, NestedFloat64, NestedInt64, NestedString,
SetNestedField - this gets and sets bool / float64 / int64 / string field

o NestedMap, SetNestedMap - this gets and sets fields of type
map|string]interface{}

e NestedSlice, SetNestedSlice - this gets and sets fields of type
[Jinterface{}

o NestedStringMap, SetNestedStringMap - this gets and sets fields of
type map[string]string

o NestedStringSlice, SetNestedStringSlice - this gets and sets
fields of type []string

Example
As an example, here is some code that defines a MyResource instance:

import (
myresourcevialphal "github.com/myid/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1”
"k8s.io/apimachinery/pkg/apis/meta/vi/unstructured”

func getResource() (*unstructured.Unstructured, error) {
myres := unstructured.Unstructured{}
myres.SetGroupVersionKind(
myresourcevialphal.SchemeGroupVersion.
WithKind("MyResource"))
myres.SetName("myres1")
myres.SetNamespace("default")
err := unstructured.SetNestedField(

220

CHAPTER9 WORKING WITH CUSTOM RESOURCES

myres.Object,
"nginx",
"spec", "image",

)

if err != nil {
return err

}

// Use int64

err = unstructured.SetNestedField(
myres.Object,
int64(1024*1024*1024),
"spec”, "memory",

)

if err != nil {
return err

}

// or use string

err = unstructured.SetNestedField(
myres.Object,
"1024Mo",
"spec”, "memory",

)

if err != nil {
return err

}

return &myres, nil

The UnstructuredList Type

The UnstructuredList type is defined as a structure containing an Object field and a
slice of Unstructured instances as items:

type UnstructuredlList struct {
Object map[string]interface{}

221

CHAPTER9 WORKING WITH CUSTOM RESOURCES

// Items is a list of unstructured objects.
Items []Unstructured

}

Getters and Setters to Access TypeMeta Fields

The APIVersion and Kind Getters/Setters can be used to directly get and set the
apiVersion and kind fields of the TypeMeta.

The GroupVersionKind Getters/Setters can be used to convert the apiVersion and
kind specified in the object to and from a GroupVersionKind value.

GetAPIVersion() string
GetKind() string
GroupVersionKind() schema.GroupVersionKind

SetAPIVersion(version string)
SetKind(kind string)
SetGroupVersionKind(gvk schema.GroupVersionKind)

Getters and Setters to Access ListMeta Fields

These getters and setters are used to get and set values related to the result of List
operations, in the ListMeta field of the List.

GetResourceVersion() string
GetContinue() string
GetRemainingItemCount() *int64

SetResourceVersion(version string)
SetContinue(c string)
SetRemainingItemCount(c *int64)

Methods for Creating and Converting

o NewEmptyInstance() runtime.Unstructured - this createsanew
instance of an Unstructured object, using the apiVersion and kind
copied from the List receiver.

e MarshalJSON() ([]byte, error) - this returnsthe JSON
representation of the receiver.

222

CHAPTER9 WORKING WITH CUSTOM RESOURCES

o UnmarshalJSON(b []byte) error - this populates the receiver
with the passed JSON representation.

o UnstructuredContent() map[string]interface{}
SetUnstructuredContent(content map[string]interface{})
- this gets the value of the Object field of the receiver.

o FEachListItem(fn func(runtime.Object) error) error - this
executes the fn function for each item of the list.

Converting Between Typed and Unstructured Objects

The runtime package of the API Machinery Library provides utilities to convert between
typed objects and unstructured objects, objects being either a resource or a list.

import (
"k8s.io/apimachinery/pkg/runtime"
)
converter := runtime.DefaultUnstructuredConverter (1]

var pod corevil.Pod

converter.FromUnstructured((2]
u.UnstructuredContent(), &pod,

)

var u unstructured.Unstructured

u.Object = converter.ToUnstructured(&pod) (3]

O Get the converter
® Convert an unstructured object (defining a Pod) to a typed Pod

® Convert a typed Pod to an unstructured object

The Dynamic Client

As you have seen in Chapter 6, the Client-go provides clients with the ability to work with
the Kubernetes API: the Clientset to access typed resources, the REST client to make
low-level REST calls to the API, and the Discovery client to get information about the
resources served by the API.

223

CHAPTER9 WORKING WITH CUSTOM RESOURCES

It provides another client, the dynamic client, to work with untyped resources,
described with the Unstructured type.

Getting the dynamic Client

The dynamic package provides functions to create a dynamic client of the type
dynamic.Interface.

o func NewForConfig(c *rest.Config) (Interface, error) - this
function returns a dynamic client, using the provided rest.Config
built with one of the methods seen in chapter 6, section “Connecting
to the cluster”.

o func NewForConfigOrDie(c *rest.Config) Interface - this
function is like the previous one, but panics in case of error, instead
of returning the error. This function can be used with a hard-coded
configuration, for which you want to assert the validity.

o NewForConfigAndClient(-
c *rest.Config,
httpClient *http.Client,
) (Interface, error)

- this function returns a dynamic client, using the provided rest.
Config, and the provided httpClient.

The previous function NewForConfig uses a default HTTP Client
built with the function rest. HTTPClientFor. If you want to
personalize the HTTP Client before building the dynamic client,
you can use this function instead.

Working with the dynamic Client
The dynamic client implements the dynamic.Interface, defined as follows:

type Interface interface {
Resource(resource schema.GroupVersionResource)
NamespaceableResourceInterface

224

CHAPTER9 WORKING WITH CUSTOM RESOURCES

The only direct method for the dynamic client is Resource(gvr), returning an object
implementing NamespaceableResourcelnterface.

type NamespaceableResourceInterface interface {
Namespace(string) ResourcelInterface
ResourceInterface

It is possible to chain the call to Resource(gvr) with a call to the method
Namespace(ns), returning an object implementing the ResourceInterface. Or, if
Resource(gvr) is not chained with the Namespace(ns) method, it also implements the
Resourcelnterface.

Thanks to this, after calling Resource(gvr), you can either chain with
Namespace(ns), if the resource described by gvr is a namespaced resource, and you
want to define on which namespace to work, or else you can omit this call for non-
namespaced resources if you want to make a cluster-wide operation.

The Resourcelnterface is defined as (the complete signature of functions is omitted
for conciseness) follows:

type Resourcelnterface interface {
Create(...)
Update(...)
UpdateStatus(...)
Delete(...)
DeleteCollection(...)
Get(...)
List(...)
Watch(...)
Patch(...)
Apply(...) # starting at vi.25
ApplyStatus(...) # starting at v1.25

225

CHAPTER9 WORKING WITH CUSTOM RESOURCES

These methods work with Unstructured and UnstructuredList types. For
example, the Create method accepts an Unstructured object as input, and returns the
created object as Unstructured, and the List method returns the list of objects as an
UnstructuredList:

Create(
ctx context.Context,
obj *unstructured.Unstructured,
options metavi.CreateOptions,
subresources ...string,

) (*unstructured.Unstructured, error)

List(
ctx context.Context,
opts metavi.ListOptions,
) (*unstructured.UnstructuredlList, error)

If we compare the signatures of these methods with the methods provided by the
Client-go Clientset, you can see that they are very similar. The following are the changes:

o Typed objects (e.g., corevl.Pod) for Clientset are replaced by
Unstructured for the dynamic client.

e Asubresource... parameter is present for dynamic methods,
whereas Clientset provides specific methods for subresources.

You can refer to Chapter 6 for more about the behavior of the various operations.

Example

As an example, here is some code that creates a MyResource instance in the cluster:

import (
"context"

myresourcevialphal "github.com/feloy/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1"

metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/dynamic”

226

CHAPTER9 WORKING WITH CUSTOM RESOURCES

func CreateMyResource(
dynamicClient dynamic.Interface,
u *unstructured.Unstructured,
) (*unstructured.Unstructured, error) {
gvr := myresourcevilalphal.
SchemeGroupVersion.
WithResource("myresources")
return dynamicClient.
Resource(gvr).
Namespace("default").
Create(
context.Background(),
u,
metavi.CreateOptions{},

}
The fake dynamic Client

As you have seen in Chapter 7, the Client-go Library provides fake implementations for
the Clientset, the discovery client, and the REST client. The library also provides a fake
implementation for the dynamic client.

Like other fake implementations, you can register reactors using PrependReactor
and similar methods on the dynamicClient.Fake object, and you can inspect Actions of
the dynamicClient.Fake object after the test is executed.

The function fake.NewSimpleDynamicClient is used to create a new fake
dynamic client.

func NewSimpleDynamicClient(
scheme *runtime.Scheme,
objects ...runtime.Object,
) *FakeDynamicClient)

The objects parameter indicates the resources to create in the fake cluster
when creating the fake client. As an example, here is a test for a function using the
dynamic client.

227

CHAPTER9 WORKING WITH CUSTOM RESOURCES

The NewSimpleDynamicClient function is called with the resource to create an
initial resource. Note that the expected type for initial resources is runtime.Object,
which is an interface implemented by Unstructured.

func TestCreateMyResourcehWhenResourceExists(t *testing.T) {
myres, err := getResource()
if err !'= nil {
t.Error(err)

}

dynamicClient := fake.NewSimpleDynamicClient(
runtime.NewScheme(),
myres,

)

// Not really used, just to show how to use it
dynamicClient.Fake.PrependReactor(
"create",
"myresources”,
func(
action ktesting.Action,
) (handled bool, ret runtime.Object, err error) {
return false, nil, nil
1}
_, err = CreateMyResource(dynamicClient, myres)
if err == nil {
t.Exrror("Error should happen™)

}

actions := dynamicClient.Fake.Actions()
If len(actions) != 1 {
t.Errorf(“# of actions should be %d but is %d”, 1, len(actions)

228

CHAPTER9 WORKING WITH CUSTOM RESOURCES

Conclusion

This chapter has explored various solutions to work with custom resources in Go.

A first solution is to generate Go code based on the definition of a custom resource,
to generate a Clientset dedicated to this specific custom resource definition, so you can
work with custom resource instances the same as you have been working with for native
Kubernetes resources.

Another solution is to work with the dynamic client from the Client-go Library and

to rely on the Unstructured type to define the custom resources.

229

CHAPTER 10

Writing Operators with
the Controller-Runtime
Library

As you have seen in Chapter 1, the Controller Manager is an important piece of the
Kubernetes architecture. It embeds several Controllers and the role of each is to watch
for instances of a specific high-level resource (Deployments, etc.) and use low-level
resources (Pods, etc.) to implement these high-level instances.

As an example, Kubernetes users can create a Deployment when they want to deploy
a stateless application. This deployment defines a Pod Template that is used to create
Pods in the cluster as well as several specifications. The following are the most important

specifications:

o The number of replicas: the identical Pods the controller must deploy

for a single Deployment instance.

e The deployment strategy: the way the Pods are replaced when the pod
template is updated.

o The default strategy: a Rolling Update can be used to update an
application to a new version without service interruption, and it
accepts various parameters. A simpler strategy, Recreate, also exists
that will first stop a Pod before starting its replacement.

The Deployment Controller will create instances of ReplicaSet resources, one for
each new version of the Pod Template, and update the number of replicas of these
ReplicaSets to satisfy the replicas and strategy specifications. You will find ReplicaSet
with zero replicas for decommissioned versions, and a ReplicaSet with a positive
number of replicas for the actual version of your application. During a Rolling Update,

231
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_10

https://doi.org/10.1007/978-1-4842-9026-2_10

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

two ReplicaSets will have a positive number of replicas (the new one with an increasing
number, and the previous one with a decreasing number) so as to be able to transition
between the two versions without service interruption.

On its side, the ReplicaSet Controller will be responsible for maintaining the
requested number of Pod replicas for each ReplicaSet instance created by the
Deployment Controller.

Chapter 8 has shown that it is possible to define new Kubernetes resources to extend
the Kubernetes API. Even though the native Controller Manager runs controllers to
handle native Kubernetes resources, you need to write controllers to handle custom
resources.

Generally, such controllers are called Operators that handle third-party resources
and reserve the name Controller for controllers handling native Kubernetes resources.

The Client-go Library provides tools to write Controllers and Operators using the
Go language, and the controller-runtime Library leverages these tools to provide
abstractions around the Controller pattern to help you write Operators. This library can
be installed with the following command:

go get sigs.k8s.io/controller-runtime@v0.13.0

You can obtain the available revisions from the source repository at github.com/
kubernetes-sigs/controller-runtime/releases.

The Manager

The first important abstraction provided by the controller-runtime Library is the
Manager, which provides shared resources to all Controllers running within the

manager, including:
o A Kubernetes client for reading and writing Kubernetes resources
e A cache for reading Kubernetes resources from a local cache

o Ascheme for registering all Kubernetes native and custom resources

232

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY
To create a Manager, you need to use the New function provided, as follows:

import (
||_F1ag"

"sigs.k8s.io/controller-runtime/pkg/client/config"
"sigs.k8s.io/controller-runtime/pkg/manager"

)

flag.Parse() (1]

mgr, err := manager.New(
config.GetConfigOrDie(),
manager.Options{},

O Parse the command line flags, as GetConfigOrDie to handle
the --kubeconfig flag; see the following.

The first parameter is a rest.Config object, as seen in Chapter 6’s “Connecting to
the Cluster” section. Note that, in this example, the GetConfigOrDie() utility function
provided by the controller-runtime library has been chosen instead of using functions
from the Client-go Library.

The GetConfigOrDie() function will try to get a configuration to connect to the
cluster:

e By getting the value of the --kubeconfig flag, if defined, and reading
the kubeconfig file at this path. For this, first you need to execute
flag.Parse()

e By getting the value of the KUBECONFIG environment variable, if
defined, and reading the kubeconfig file at this path

e Bylooking at an in-cluster configuration (see Chapter 6’s “In-cluster
Configuration” section), if defined

o Byreading the $SHOME/.kube/config file

If none of the preceding is possible, the function will make the program exit with a 1
code. The second argument is a structure for options.

One important option is the Scheme. By default, if you do not specify any value for
this option, the Scheme provided by the Client-go Library will be used. It is sufficient

233

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

if the controller needs to access only native Kubernetes resources. If you want the
controller to access a custom resource, however, you will need to provide a scheme that
is able to resolve the custom resource.

For example, if you want the controller to access the Custom Resource, which was
defined in Chapter 9, you will need to run the following code at initialization time:

import (
"k8s.io/apimachinery/pkg/runtime”

clientgoscheme "k8s.io/client-go/kubernetes/scheme”

mygroupvlalphal "github.com/myid/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1”

)

scheme := runtime.NewScheme() (1]
clientgoscheme.AddToScheme(scheme)
mygroupvialphai.AddToScheme(scheme)

®®

mgr, err := manager.New(
config.GetConfigOrDie(),
manager.Options{
Scheme: scheme, (4]

}s

O Create a new empty scheme
® Add native Kubernetes resources using the Client-go Library

® Add to the scheme the resources from mygroup/vlalphal
containing our Custom Resource

® Use this scheme from this manager

234

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

The Controller

The second important abstraction is the Controller. The Controller is responsible for
implementing the specifications (Spec) given by the instances of a specific Kubernetes
resource. (In the Operator case, the Custom Resource is handled by the Operator.)

For this, the Controller watches for specific resources (at least the associated
Custom Resource, which is called the “primary resource” in this section), and receives
Watch events (i.e., Create, Update, Delete) for these resources. When events happen on
resources, the Controller populates a Queue with a Request containing the name and
namespace of the “primary resource” instance affected by the event.

Note that the objects enqueued are only instances of the primary resource watched
by the Operator. If the event is received by an instance of another resource, the primary
resource is found by following ownerReference. For example, the Deployment
controller watches Deployment resources and ReplicaSet resources. All ReplicaSet
instances contain an ownerReference to a Deployment instance.

e When a Deployment is created, a Create event is received by the
controller, and the Deployment instance just created is enqueued,

e When a ReplicaSet is modified (e.g., by some user), an Update
event is received for this ReplicaSet, and the Controller finds the
Deployment referenced by the updated ReplicaSet, using the
ownerReference contained in the ReplicaSet. Then, the referenced
Deployment instance is enqueued.

The Controller implements a Reconcile method, which will be called every time a
Request is available in the queue. This Reconcile method receives as a parameter the
Request, containing the name and namespace of the primary resource to reconcile.

Note that the event that triggered the request is not part of the request and thus, the
Reconcile method cannot rely on this information. Further, in case the event happens
for an owned resource, only the primary resource is enqueued, and the Reconcile
method cannot rely on which owned resource triggered the event.

Also, because multiple events can occur in a short time related to the same primary
resource, Requests can be batched together to limit the number of Requests enqueued.

235

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Creating a Controller

To create a Controller, you need to use the New function provided:

import (
"sigs.k8s.io/controller-runtime/pkg/controller”

)

controller, err = controller.New(
"my-operator", mgr,
controller.Options{
Reconciler: myReconciler,

1)

The Reconciler option is required, and its value is an object that must implement
the Reconciler interface, defined as:

type Reconciler interface {
Reconcile(context.Context, Request) (Result, error)

As a facility, the reconcile.Func type is provided, which implements the
Reconciler interface, and is the same type as a function with the same signature as the
Reconcile method.

type Func func(context.Context, Request) (Result, error)

func (r Func) Reconcile(ctx context.Context, o Request) (Result, error) {
return r(ctx, o) }

Thanks to this reconcile.Func type, you can cast a function with the Reconcile
signature and assign it to the Reconciler option. For example:

controller, err = controller.New(
"my-operator", mgr,
controller.Options{
Reconciler: reconcile.Func(reconcileFunction),

1)

func reconcileFunction(

236

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

ctx context.Context,

r reconcile.Request,

) (reconcile.Result, error) {

[...

]

return reconcile.Result{}, nil

Watching Resources

After the controller is created, you need to indicate to the container which resources to

watch, and whether these are the primary resource or owned resources.
The method Watch on the controller is used to add a Watch. The method is defined
as follows:

Watch(

src source.Source,
eventhandler handler.EventHandler,

predicates ...predicate.Predicate,

) error

The first parameter indicates what is the source of the events to watch, and its type is

the source.Source interface. Two implementations are provided for the Source interface

by the controller-runtime Library:

The Kind source is used to watch for events on Kubernetes objects of
a specific kind. The Type field of the Kind structure is required, and
its value is an object of the wanted kind. For example, if we want to
watch for Deployment, the value of src parameter would be:

controller.Watch(
&source.Kind{
Type: &appsvi.Deployment{},

b

The Channel source is used to watch for events originating from outside
the cluster. The Source field of the Channel structure is required, and
its value is a channel emitting objects of type event.GenericEvent.

237

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

The second parameter is an event handler, and its type is the handler.EventHandler
interface. Two implementations are provided for the EventHandler interface by the
controller-runtime Library:

o The EnqueueRequestForObject event handler is used for the
primary resource handled by the controller. In this case, the
controller will place into the queue the object attached to the event.
For example, if the controller is an operator handling the custom
resource created in Chapter 9, you will write:

controller.Watch(
&source.Kind{
Type: &mygroupvialphal.MyResource{},
}J
8handler.EnqueueRequestForObject{},

)

o The EnqueueRequestForOwner event handler is used for
resources owned by the primary resource. One field of the
EnqueueRequestForOwner is required: OwnerType. The value
for this field is an object of the type of the primary resource; the
controller will follow the ownerReferences until it finds an object of
this type, and it places this object into the queue.

For example, if the Controller handles the MyResource primary
resource and is creating Pods to implement MyResource, it will
want to Watch for Pod resources using this event handler and
specify a MyResource object as OwnerType.

If the field IsController is set to true, the Controller will consider
only the ownerReferences with Controller: true.

controller.Watch(
&source.Kind{
Type: &corevi.Pod{},

b

8handler.EnqueueRequestForOwner{

238

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

OwnerType: &mygroupvlalphal.MyResource{},
IsController: true,
b
)

The third parameter is an optional list of predicates, and its type is predicate.
Predicate. Several implementations are provided for the Predicate interface from the

controller-runtime Library:

o Funcs is the most generic implementation. The Funcs structure is

defined as follows:

type Funcs struct {
// Create returns true if the Create event
// should be processed
CreateFunc func(event.CreateEvent) bool

// Delete returns true if the Delete event
// should be processed
DeleteFunc func(event.DeleteEvent) bool

// Update returns true if the Update event
// should be processed
UpdateFunc func(event.UpdateEvent) bool

// Generic returns true if the Generic event
// should be processed
GenericFunc func(event.GenericEvent) bool

You can pass an instance of this structure to the Watch method, as

a Predicate.

Nondefined fields will indicate that events of the matching type
should be processed.

For non-nil fields, the function matching the event will be called
(note that the GenericFunc will be called when the source is a
Channel; see preceding), and the event will be processed if the

function returns true.

239

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Using this implementation of Predicate, you can define a specific
function for each event type.

o func NewPredicateFuncs(
filter func(object client.Object) bool,
) Funcs

This function accepts a filter function and returns a Funcs
structure for which the filter is applied on all events. Using this
function, you can define a single filter applied to all event types.

¢ ResourceVersionChangedPredicate struct will define a filter for the
UpdateEvent only.

Using this predicate, all Create, Delete, and Generic events will be
processed without filtering, and the Update events will be filtered
so that only the updates with a metadata.resourceVersion
change will be processed.

The metadata.resourceVersion field is updated every time a
new version of a resource is saved, whatever the change in the
resource is.

¢ GenerationChangedPredicate struct defines a filter only for the
Update event.

Using this predicate, all Create, Delete, and Generic events will be
processed without filtering, and the Update events will be filtered
so that only the updates with a metadata.Generation increment
will be processed.

The metadata.Generation is sequentially incremented by
the API Server every time an update of the Spec part of the
resource Occurs.

Note that some resources do not respect this assumption. For
example, Deployment’s Generation also is incremented when the
Annotations field is updated.

For Custom Resources, Generation is incremented only if the
Status sub-resource is enabled.

240

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

e AnnotationChangedPredicate struct defines a filter only for the
Update event.

Using this predicate, all Create, Delete, and Generic events will be
processed, and the Update events will be filtered so that only the
updates with a metadata.Annotations change will be processed.

A First Example

In the first example, you will create a manager and a single controller. The Controller will
manage a primary custom resource MyResource and watch for this resource as well as
Pod resources.

The Reconcile function will only display the namespace and name of the
MyResource instance to reconcile.

package main

import (
"context"
n _Fm_t mn

corevl "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/runtime"
"sigs.k8s.io/controller-runtime/pkg/client/config"
"sigs.k8s.io/controller-runtime/pkg/controller”
"sigs.k8s.io/controller-runtime/pkg/handler”
"sigs.k8s.io/controller-runtime/pkg/manager"
"sigs.k8s.io/controller-runtime/pkg/reconcile”
"sigs.k8s.io/controller-runtime/pkg/source"
clientgoscheme "k8s.io/client-go/kubernetes/scheme"”

mygroupvlalphal "github.com/myid/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1”

)

func main() {
scheme := runtime.NewScheme() o

241

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

clientgoscheme.AddToScheme(scheme)
mygroupvilalphal.AddToScheme(scheme)

mgr, err := manager.New((2]
config.GetConfigOrDie(),
manager.Options{
Scheme: scheme,
}J
)
panicIf(err)
controller, err := controller.New((3]
"my-operator”, mgr,
controller.Options{
Reconciler: &MyReconciler{},
1)
panicIf(err)

err = controller.Watch(
&source.Kind{
Type: 8mygroupvlialphal.MyResource{},

}s
&handler.EnqueueRequestForObject{},
)
panicIf(err)

err = controller.Watch(
&source.Kind{
Type: &corevi.Pod{},
b
&handler.EnqueueRequestForOwner{
OwnerType: 8corevi.Pod{},
IsController: true,

b
)
panicIf(err)
err = mgr.Start(context.Background()) 6

242

panicIf(err)

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

type MyReconciler struct{} (7]

func (o *MyReconciler) Reconcile((8]

ctx context.Context,

T reconcile.Request,

) (reconcile.Result, error) {

fmt.Printf("reconcile %v\n", 1)
return reconcile.Result{}, nil

// panicIf panic if err is not nil
// Please call from main only!
func panicIf(err error) {

if err != nil {

panic(err)

O Create a scheme with native resources and the Custom

resource, MyResource

O Create a Manager using the scheme just created

® Create a Controller, attached to manager, passing a Reconciler

implementation

O Start watching MyResource instances as a primary resource

O Start watching Pod instances as an owned resource

O Start the manager. This function is long-running and only will

return if an error occurs

@ A type implementing the Reconciler interface

O Implementation of the Reconcile method. This will display the

namespace and name of the instance to reconcile

243

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Using the Controller Builder

A Controller Builder is proposed by the controller-runtime Library to make the creation
of a controller more concise.

import (
"sigs.k8s.io/controller-runtime/pkg/builder”

)

func ControllerManagedBy(m manager.Manager) *Builder

The ControllerManagedBy function is used to initiate a new ControllerBuilder.
The built controller will be added to the m manager. A fluent interface helps configure
the build:

o For(object client.Object, opts ...ForOption) *Builder -
this method is used to indicate the primary resource handled by
the controller. It can be called only once because a controller can
have only one primary resource. This will internally call the Watch
function with the event handler EnqueueRequestForObject.

Predicates can be added for this watch with the WithPredicates
function the result of which implements the ForOption interface.

o Owns(object client.Object, opts ...OwnsOption) *Builder -
this method is used to indicate a resource owned by the controller.
This will internally call the Watch function with the event handler
EnqueueRequestForOwner.

Predicates can be added for this watch with the WithPredicates
function the result of which implements the OwnsOption
interface.

o Watches(src source.Source, eventhandler handler.
EventHandler, opts ...WatchesOption) *Builder - this method
can be used to add more watchers not covered by the For or Owns
methods—for example, watchers with a Channel source.

Predicates can be added for this watch with the WithPredicates
function thie result of which implements the WatchesOption
interface.

244

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

o WithEventFilter(p predicate.Predicate) *Builder - this
method can be used to add predicates common to all watchers
created with For, Owns, and Watch methods.

o WithOptions(options controller.Options) *Builder - this sets
the options that will be passed internally to the controller.New

function.
o WithLogConstructor(- this sets the logConstructor option.

func(*reconcile.Request) logr.Logger,
) *Builder

o Named(name string) *Builder - this sets the name of the constructor.
It should use underscores and alphanumeric characters only. By
default, it is the lowercase version of the kind of the primary resource.

e Build(
1 reconcile.Reconciler,
) (controller.Controller, error)
- this builds and returns the Controller.

o Complete(r reconcile.Reconciler) error - this builds the
Controller. You generally will not need to access the controller
directly, so you can use this method that does not return the
controller value, instead of Build.

A Second Example Using the ControllerBuilder

In this example, you will build the controller using the ControllerBuilder, instead of
using the controller.New function and the Watch method on the Controller.

package main

import (
"context"
n _Fmt mn

corevl "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/runtime"

245

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

clientgoscheme "k8s.io/client-go/kubernetes/scheme"
"sigs.k8s.io/controller-runtime/pkg/builder”
"sigs.k8s.io/controller-runtime/pkg/client”
"sigs.k8s.io/controller-runtime/pkg/client/config"
"sigs.k8s.io/controller-runtime/pkg/manager"”
"sigs.k8s.io/controller-runtime/pkg/reconcile”

mygroupvlalphal "github.com/feloy/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1"

)

func main() {

scheme := runtime.NewScheme()
clientgoscheme.AddToScheme(scheme)
mygroupvialphal.AddToScheme(scheme)

mgr, err := manager.New(
config.GetConfigOrDie(),
manager.Options{
Scheme: scheme,

b
)
panicIf(err)
err = builder.
ControllerManagedBy(mgr).
For(&mygroupvialphal.MyResource{}).
Owns (&corevi.Pod{}).
Complete(&MyReconciler{})
panicIf(err)
err = mgr.Start(context.Background())
panicIf(err)
}

type MyReconciler struct {}

func (a *MyReconciler) Reconcile(

246

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

ctx context.Context,
req reconcile.Request,

) (reconcile.Result, error) {
fmt.Printf("reconcile %v\n", req)
return reconcile.Result{}, nil

}

func panicIf(err error) {
if err !'= nil {
panic(err)

Injecting Manager Resources into the Reconciler

The Manager provides shared resources for the controllers, including a client to read and
write Kubernetes resources, a cache to read resources from a local cache, and a scheme
to resolve resources. The Reconcile function needs access to these shared resources.
There are two ways to share them:

Passing the Values When Creating the Reconciler Structure

When the controller is created, you are passing an instance of a Reconcile structure,
implementing the Reconciler interface:

type MyReconciler struct {}

err = builder.
ControllerManagedBy(mgr).
For(&mygroupvialphal.MyResource{}).
Owns (&corevi.Pod{}).
Complete(8MyReconciler{})

The manager has been created before this, and you can have access to the shared
resources using Getters on the manager.

247

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

As an example, here is how to get the client, cache, and scheme from the newly
created manager:

mgr, err := manager.New(
config.GetConfigOrDie(),
manager.Options{
manager.Options{
Scheme: scheme,
}J
1

)
// handle err

mgrClient := mgr.GetClient()
mgrCache := mgr.GetCache()
mgrScheme := mgr.GetScheme()

You can add fields to the Reconciler structure to pass these values:

type MyReconciler struct {
client client.Client
cache cache.Cache
scheme *runtime.Scheme

Finally, you can pass the values during the creation of the Controller:

err = builder.

ControllerManagedBy(mgr).
For (&mygroupvialphal.MyResource{}).
Owns (&corevi.Pod{}).
Complete(8MyReconciler{

client: mgr.GetClient(),

cache: mgr.GetCache(),

scheme: mgr.GetScheme(),

1)

248

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Using Injectors

The controller-runtime Library provides a system of Injectors to inject shared resources
into the Reconcilers, and other structures like your own implementations of Sources,
EventHandlers, and Predicates.

The Reconciler implementations need to implement the specific injector interfaces
from the inject package: inject.Client, inject.Cache, inject.Scheme, and so on.

These methods will be called at initialization time, when you call controller.New
or builder.Complete. For this, one method needs to be created for each interface, for
example:

type MyReconciler struct {
client client.Client
cache cache.Cache
scheme *runtime.Scheme

}

func (a *MyReconciler) InjectClient(
c client.Client,

) error {
a.client = ¢
return nil

}

func (a *MyReconciler) InjectCache(
¢ cache.Cache,

) error {
a.cache = ¢
return nil
}

func (a *MyReconciler) InjectScheme(
s *runtime.Scheme,

) error {
a.scheme = s
return nil

249

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Using the Client

The client can be used to read and write resources on the cluster and to update the
statuses of resources.

The Read methods internally use a Cache system, based on Informers and Listers,
to limit the read access to the API Server. Using this cache, all controllers of the same
manager have read access to the resources while limiting the requests to the API Server.

You must note that objects returned by Read operations are pointers to values into
the Cache. You must never modify these objects directly. Instead, you must create
a deep copy of the returned objects before modifying them.

The methods of the client are generic: they work with any Kubernetes resource,
either native or custom if they are known by the Scheme passed to the manager.

All methods return an error, which are of the same type as the errors returned by the
Client-go Clientset methods. You can refer to Chapter 6’s “Errors and Statuses” section
for more information.

Getting Information About a Resource

The Get method is used to get information about a resource.

Get(
ctx context.Context,
key ObjectKey,
obj Object,
opts ...GetOption,
) error

It gets as a parameter an ObjectKey value to indicate the namespace and name
of the resource, and an Object to indicate the Kind of the resource to get and to store
the result. The Object must be a pointer to a typed resource—for example, a Pod or a
MyResource structure. The ObjectKey type is an alias for types.NamespacedName,
defined in the API Machinery Library.

250

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

NamespacedName is also the type of the object embedded in the Request passed
as parameter to the Reconcile function. You can directly pass req.NamespacedName
as ObjectKey to get the resource to reconcile. For example, use the following to get the

resource to reconcile:

myresource := mygroupvlalphail.MyResource{}
err := a.client.Get(

ctx,

req.NamespacedName,

8myresource,

It is possible to pass a specific resourceVersion value to the Get request, passing a
client.GetOptions structure instance as the last parameter.

The GetOptions structure implements the GetOption interface and contains a single
Raw field having a metavl.GetOptions value. For example, to specify a resourceVersion
with a value “0” to get any version of the resource:

err := a.client.Get(

ctx,

req.NamespacedName,

&myresource,

8client.GetOptions{
Raw: &metavi.GetOptions{

ResourceVersion: "0",

})

}s

Listing Resources

The List method is used to list resources of a specific kind.

List(
ctx context.Context,
list Objectlist,
opts ...ListOption,
) error

251

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

The list parameter is an ObjectList value indicating the Kind of the resource to list
and to store the result. By default, the list is performed across all namespaces.

The List method accepts zero or more parameters of objects implementing the
ListOption interface. These types are supported by the following:

o InNamespace, alias to string, is used to return the resources of a
specific namespace.

e MatchingLabels, alias to map[string]string, is used to indicate the
list of labels and their exact value that must be defined for a resource
to be returned. The following example builds a MatchingLabels
structure to filter resources with a label “app=myapp”.

matchLabel := client.Matchinglabels{
llapp": Ilmyappll’
}

« HasLabels, alias to []string, is used to indicate the list of labels,
independently of their value, that must be defined for a resource to
be returned. The following example builds a HasLabels structure to
filter resources with “app” and “debug” labels.

hasLabels := client.HaslLabels{"app", “debug”}

¢ MatchingLabelsSelector, embedding a labels.Selector interface, is
used to pass more advanced label selectors. See Chapter 6’s “Filtering
the Result of a List” section for more information on how to build a
Selector. The following example builds a MatchingLabelsSelector
structure that can be used as an option for List to filter resources with
a label mykey different from ignore.

selector := labels.NewSelector()
require, err := labels.NewRequirement(
"mykey",
selection.NotEquals,
[]string{"ignore"},

252

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

// assert err is nil

selector = selector.Add(*require)

labSelOption := client.MatchinglabelsSelector{
Selector: selector,

}

MatchingFields, alias to fields.Set, itself an alias to
map|string]string, is used to indicate the fields and their value to
match. The following example builds a MatchingFields structure to
filter resources with the field “status.phase” that is “Running”:

matchFields := client.MatchingFields{
"status.phase”: "Running",

}

MatchingFieldsSelector, embedding a fields.Selector, is

used to pass more advanced field selectors. See Chapter 6's
“Filtering the Result of a List” section for more information on
how to build a fields.Selector. The following example builds a
MatchingFieldsSelector structure to filter resources with a field
“status.phase” different from “Running”:

fieldSel := fields.OneTermNotEqualSelector(
"status.phase",
"Running"”,

)

fieldSelector := client.MatchingFieldsSelector{
Selector: fieldSel,

}

Limit, alias to int64 and Continue, alias to string, is used to paginate

the result. These options are detailed in Chapter 2’s “Paginating
Results” section.

253

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Creating a Resource

The Create method is used to create a new resource in the cluster.

Create(
ctx context.Context,
obj Object,
opts ...CreateOption,
) error

The obj passed as a parameter defines the kind of object to create, as well as its
definition. The following example will create a Pod in the cluster:

podToCreate := corevi.Pod{ [...] }
podToCreate.SetName("nginx")
podToCreate.SetNamespace("default")

err = a.client.Create(ctx, 8podToCreate)

The following options can be passed as CreateOption to parameterize the Create
request.

o DryRunAll value indicates that all the operations should be executed
except those persisting the resource to storage.

o FieldOwner, alias to string, indicates the name of the field manager
for the Create operation. This information is useful for Server-side
Apply operations to work correctly.

Deleting a Resource

The Delete method is used to delete a resource from the cluster.

Delete(
ctx context.Context,
obj Object, k
opts ...DeleteOption,
) error

254

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

The obj passed as a parameter defines the kind of object to delete, as well as its
namespace (if the resource is namespaced) and its name. The following example can be
used to delete a Pod.

podToDelete := corevi.Pod{}
podToDelete.SetName("nginx")
podToDelete.SetNamespace("prj2")

err = a.client.Delete(ctx, 8podToDelete)

The following options can be passed as DeleteOption to parameterize the Delete
request.

e DryRunAll - this value indicates that all the operations should be
executed except those persisting the resource to storage.

¢ GracePeriodSeconds, alias to int64 - this value is useful when
deleting pods only. This indicates the duration in seconds before the
pod should be deleted. See Chapter 6s, “Deleting a Resource” section
for more details.

o Preconditions, alias to metavl.Preconditions - this indicates which
resource you expect to delete. See Chapter 6’s, “Deleting a Resource”

section for more details.

» PropagationPolicy, alias to metavl.DeletionPropagation - this
indicates whether and how garbage collection will be performed. See
Chapter 6's, “Deleting a Resource” section for more details.

Deleting a Collection of Resources

The DeleteAllOf method is used to delete all resources of a given type from the cluster.

DeleteAll0f(

ctx context.Context,

obj Object,

opts ...DeleteAll0fOption,
) error

The obj passed as a parameter defines the kind of object to delete.

255

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

The opts available for the DeleteAllOf operation is the combination of the options
for the List operation (see “Listing Resources” section) and the Delete operation (see
“Deleting a Resource” section).

As an example, here is how to delete all deployments from a given namespace:

err = a.client.DeleteAl10f(
ctx,
8appsvi.Deployment{},
client.InNamespace(aNamespace))

Updating a Resource

The Update method is used to update an existing resource in the cluster.

Update(
ctx context.Context,
obj Object,
opts ...UpdateOption,
) error

The obj parameter is used to indicate which resource to update, and its new
definition. If the object does not exist in the cluster, the Update operation fails.

The following options can be passed as UpdateOption to parameterize the Update
request.

o DryRunAll value indicates that all the operations should be executed
except those persisting the resource to storage.

o FieldOwner, alias to string, indicates the name of the field manager
for the Update operation. This information is useful for Server-side
Apply operations to work correctly.

Patching a Resource

The Patch method is used to patch an existing resource. It can also be used to run a

Server-Side Apply operation.

Patch(
ctx context.Context,

256

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

obj Object,

patch Patch,

opts ...PatchOption,
) error

The following options can be passed as PatchOption to parameterize the Patch request.

o DryRunAll value indicates to execute all the operations except
persisting the resource to storage.

o FieldOwner, alias to string, indicates the name of the field manager
for the Patch operation.

« ForceOwnership, alias to struct{}, indicates that the caller will
reacquire the conflicting fields owned by other managers. This option
is valid only when the patch type is Apply (see the following).

Server-side Apply

To use a Server-side Apply operation, you need to specify a patch value of client.Apply.
The obj value must be the new object definition. It must include its name, namespace (if
the resource is namespaced), group, version, and kind.

The name of the field manager is required and must be specified with the option
client.FieldOwner(name). As an example, here is how to Server-side Apply a
Deployment:

deployToApply := appsvi.Deployment{ [...] }
deployToApply.SetName("nginx")
deployToApply.SetNamespace("default")
deployToApply.SetGroupVersionKind(
appsvi.SchemeGroupVersion.WithKind("Deployment"),

)

err = a.client.Patch(
ctx,
&deployToApply,
client.Apply,

client.FieldOwner("mycontroller"),
client.ForceOwnership,

257

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Strategic Merge Patch

You have seen in Chapter 2’s “Using a Strategic Merge Patch to Update a Resource”
section how patching a resource with a strategic merge patch works. Chapter 6’s “Using
a Strategic Merge Patch to Update a Resource” section has shown how to execute this
operation using the Client-go Library.

Using Client-go, you must first read a resource from the cluster (with a Get or List
operation), then create a Patch using the StrategicMergeFrom function on this resource,
then update the resource, and finally call the Data method on the patch to compute the
JSON patch data.

Using the controller-runtime client, some part of the process is done by the client.
You still must read the resource from the cluster (with a Get or List operation), create a
Patch using the StrategicMergeFrom function, then update the resource. At this point,
you can call the Patch method with the updated object and the patch as parameters. The
call to the Data method will be done internally by the client.

Note that the StrategicMergeFrom function used here is the same as the one used
with the Client-go Library. You can refer to Chapter 6’s “Using a Strategic Merge Patch to
Update a Resource” section to see the available options for this method.

As an example, here is how to add an environment variable to the first container of a
Deployment’s Pod template.

var deploymentRead appsvi.Deployment

err = a.client.Get(o
ctx,
key, // an ObjectKey defining the namespace and name
8deploymentRead)

if err != nil {
return reconcile.Result{}, err

}

patch :=
client.StrategicMergeFrom(deploymentRead.DeepCopy()) 2]

depModified := deploymentRead.DeepCopy()
depModified.Spec.Template.Spec.Containers[0].Env = (3]
append(
depModified.Spec.Template.Spec.Containers[0].Env,

258

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

corevl.EnvVar{
Name: "newName",
Value: "newValue",

b
err = a.client.Patch(ctx, &depModified, patch) o

@ Get the deployment to patch from the cluster
@ Create a Patch object from a copy of this deployment
® Modify the deployment

O Execute Patch, using the modified deployment and the
Patch object

Merge Patch

A Merge Patch works in a similar way to a Strategic Merge Patch, except for how the lists

u

are merged. See Chapter 2’s “Patching Array Fields” section for more information on
how lists are merged using a Strategic Merge Patch. For Merge Patch, the original lists are
not considered, and the new list is the list defined in the patch.

Using the controller-runtime Library, you just need to replace the call to client.
StrategicMergeFrom with a call to client.MergeFrom at step @ in the listing to indicate

performance of a Merge Patch.

patch := client.MergeFrom(deploymentRead.DeepCopy()) (2]

Updating the Status of a Resource

When working on an Operator, you will want to modify values into the Status part of the
Custom Resource, to indicate the current state of it.

Update(
ctx context.Context,
obj Object,
opts ...UpdateOption,
) error

259

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Note that you do not need specific Create, Get, or Delete operations for the Status
because you will create the Status as part of the Custom Resource when you create the
Custom Resource itself. Also, the Get operation for a resource will return the Status part
of the resource and deleting a resource will delete its status part.

The API Server, however, forces you to use different Update methods for the Status
and for the rest of the resource to protect you from modifying both parts at the same time
by mistake.

For the Update of the status to work, the Custom Resource Definition must declare
the status field in the list of sub-resources of the Custom Resource. See Chapter 8's
“Definition of the Resource Versions” section to understand how to declare this status
sub-resource.

This method works like the Update method for the resource itself, but to invoke it,
you need to call the method on the object returned by client.Status():

err = client.Status().Update(ctx, obj)

Patching the Status of a Resource

As for the Update method, patching the status of a resource needs a dedicated method
on the result of client.Status().

Patch(
ctx context.Context,
obj Object,
patch Patch,
opts ...PatchOption,
) error

The Patch method for the Status works the same as the Patch method for the
resource itself, except that it will patch the Status part of the resource only.

err = client.Status().Patch(ctx, obj, patch)

260

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Logging

The Manager leverages a logger system defined in the log package of the controller-
runtime Library. The logger must be initialized with a call to SetLogger. Then, it is
possible to use the Log variable defined into the log package.

import (
crlog "sigs.k8s.io/controller-runtime/pkg/log"
"sigs.k8s.io/controller-runtime/pkg/log/zap"

)

func main() {
log.SetLogger(zap.New())
log.Log.Info("starting")

[...]

The Log object, of type logr.Logger (from github.com/go-logr/logr), has two main
methods, Info and Error.

func (1 Logger) Info(
msg string,
keysAndValues ...interface{},

)
func (1 Logger) Error(

err error,

msg string,

keysAndValues ...interface{},
)

The Logger is a “structured” logging system, in that logs are mostly made of key-
value pairs rather than printf-style formatted strings. Whereas printf-style logs are easier
to read by humans, structured logs are easier to analyze by tools. The predefined keys for
log entries are:

o level: the verbosity level of the log; see the following section for a
definition of log verbosity

o ts:timestamp of the log entry

261

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

o logger: name of the logger for this entry; see the section that follows
for a definition of the name of the logger

e msg: message associated with the log entry
o error: the error associated with the log entry

The Info and Error methods accept a message and zero or more key-value pairs. The
Error method also accepts an error value.

Verbosity

The Info messages can be given a Verbosity by using log.V(n).Info(...). The larger is the
n verbosity, the less important is the message. log.Info(...) is equivalent to log.V(0).
Info(...).

Predefined Values

You can build a new logger with predefined key-value pairs by using WithValues:

func (1 Logger) WithValues(
keysAndValues ...interface{},

) Logger
ctrllog := log.Log.WithValues("package”, “controller”)

Logger Name

You can build a new logger by appending a name to the logger name by using
WithName:

func (1 Logger) WithName(name string) Logger

Successive calls to WithName will add suffixes to the logger name. For example, the
following will set a logger name “controller.main”:

ctrllog := log.Log.WithName("controller")

[...]
ctrlMainLog = ctrllLog.Log.WithName("main")

262

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

Getting the Logger from Context

The Manager adds a logger to the Context passed to the different methods, and
especially the Reconcile function.

You can extract the logger from the Context using the function FromContext.
Optional parameters can be used to add predefined key-value pairs to the logger:

func FromContext(
ctx context.Context,
keysAndValues ...interface{},
) logr.Logger {

func (a *MyReconciler) Reconcile(
ctx context.Context,
req reconcile.Request,
) (reconcile.Result, error) {
log := log.FromContext(ctx).WithName("reconcile")

[...]

Events

The Kubernetes API provides an Event resource, and an Event instance is attached to a
specific instance of any kind. Events are sent by controllers to inform the user that some
event occurred related to an object. These events are displayed when executing kubectl
describe. For example, you can see the events related to a pod executing:

$ kubectl describe pods nginx

[...]

Events:
Type Reason Age From Message
Normal Scheduled 1s default-scheduler Successfully assigned...
Normal Pulling 0s kubelet Pulling image "nginx"
Normal Pulled <invalid> kubelet Successfully pulled...
Normal Created <invalid> kubelet Created container nginx
Normal Started <invalid> kubelet Started container nginx

263

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

To send such events from the Reconcile function, you need to have access to the
EventRecorder instance provided by the Manager. During initialization, you can get this
instance with the GetEventRecorderFor method on the Manager, then pass this value
when building the Reconcile structure:

type MyReconciler struct {
client client.Client
EventRecorder record.EventRecorder

}

func main() {

[...]

eventRecorder := mgr.GetEventRecorderFor(
"MyResource”,

)

err = builder.
ControllerManagedBy(mgr).
Named(controller.Name).
For(&mygroupvialphal.MyResource{}).
Owns (&appsvi.Deployment{}).
Complete(&controller.MyReconciler{
EventRecorder: eventRecorder,

1)

Then, from the Reconcile function, you can call the Event, Eventf, and
AnnotatedEventf methods.

func (record.EventRecorder) Event(
object runtime.Object,
eventtype, reason, message string,

)

func (record.EventRecorder) Eventf(
object runtime.Object,
eventtype, reason, messageFmt string,

264

CHAPTER 10 WRITING OPERATORS WITHTHE CONTROLLER-RUNTIME LIBRARY

args ...interface{},

func (record.EventRecorder) AnnotatedEventf(
object runtime.Object,
annotations map[string]string,
eventtype, reason, messageFmt string,
args ...interface{},

The object parameter indicates to which object to attach the Event. You will pass the
custom resource being reconciled.

The eventtype parameter accepts two values, corevl.EventTypeNormal and
corevl.EventTypeWarning.

The reason parameter is a short value in UpperCamelCase format. The message
parameter is a human-readable text.

The Event method is used to pass a static message, the Eventf method can create a
message using Sprintf, and the AnnotatedEventf method also can attach annotations to
the event.

Conclusion

In this chapter, you have worked with the controller-runtime library to start creating an
operator. You have seen how to create a Manager using the appropriate scheme, how to
create a controller and declare the Reconcile function, and have explored the various
functions of the client provided by the library to access the resources in the cluster.

The next chapter explores how to write a Reconcile function.

265

CHAPTER 11

Writing the Reconcile Loop

We have seen in the previous chapter how to bootstrap a new project for writing an
Operator, using the controller-runtime Library. In this chapter, we will focus on
the implementation of the Reconcile function, which is an important part of the
implementation of an operator.

The Reconcile function contains all the business logic of the Operator. The function
will work on a single resource kind—one says the Operator reconciles this resource—and
can be notified when objects of other types trigger events, by mapping these other types
to the reconciled one using Owner References.

The role of the Reconcile function is to ensure that the state of the system matches
what is specified in the resource to be reconciled. For this, it will create “low-level”
resources to implement the resource to reconcile. These resources, in turn, will be
reconciled by other controllers or operators. When the reconciliation of these resources
is completed, their status will be updated to reflect their new state. In addition, the
Operator will be able to detect these changes and to adapt the status of the reconciled
resource accordingly.

As an example, the Operator you started to implement in the previous chapter
reconciles the Custom Resource MyResource. The Operator will create Deployment
instances for implementing MyResource instances, and for this reason, the operator
also will want to watch for Deployment resources.

When an event is triggered for a Deployment instance, the MyResource instance for
which the deployment has been created will be reconciled. For example, after the Pods
for the Deployment are created, the status of the deployment will be updated to indicate
that all replicas are running. At this point, the Operator can modify the status of the
reconciled resource to indicate that it is ready.

The Reconcile Loop is known as the process of watching for resources and calling the
Reconcile function when resources are created, modified, or deleted, implementing the
reconciled resource with low-level ones, watching for the status of these resources, and
updating the status of the reconciled resource accordingly.

267
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_11

https://doi.org/10.1007/978-1-4842-9026-2_11

CHAPTER 11 WRITING THE RECONCILE LOOP

Writing the Reconcile Function

The Reconcile function receives from the queue a resource to reconcile. The first
operation to work on is to get the information about this resource to reconcile.

As a matter of fact, only the namespace and name of the resource are received (its
kind is known by its design, being the kind to be reconciled by the operator), but you do
not receive the complete definition of the resource.

A Get operation is used to get the definition of the resource.

Checking Whether the Resource Exists

The resource may have been enqueued for various reasons: it has been created,
modified, or deleted (or another owned resource has been created, modified, or
deleted). In the first two cases (creation or modification), the Get operation will succeed
and the Reconcile function will know the definition of the resource at this point. In case
of deletion, the Get operation will fail with a Notfound error because the resource is now
deleted.

The good practice for an Operator is to add OwnerReferences to resources it creates
when reconciling a resource. The primary goal is to be able to reconcile its owner when
these created resources are modified, and a result of adding these OwnerReferences is
that these owned resources will be deleted by the Kubernetes garbage collector when the
owner resource is deleted.

For this reason, when a reconciled object is deleted, there is nothing to do in the
cluster because the deletion of the associated created resources will be handled by the
cluster.

Implementing the Reconciled Resource

If the resource to reconcile has been found in the cluster, the operator’s next step is to
create “low-level” resources to implement this resource to reconcile.

Because Kubernetes is a declarative platform, a good way of creating these resources
is to declare what the low-level resources should be, independent of what exists, or not,
in the cluster, and to rely on the Kubernetes controllers to take over and reconcile these
low-level resources.

268

CHAPTER 11 WRITING THE RECONCILE LOOP

For this reason, it is not possible to use the Create method blindly because we are
not sure whether the resources exist or not, and the operation would fail if the resources
already exist.

You could check whether resources exist, and create them if they do not, or modify
them if they exist. As has been shown in the previous chapters, the Server-side Apply
method is perfect for this situation: when running an Apply operation, if the resource
does not exist, it is created; and if the resource exists, it is patched, taking care of conflicts
in case the resource has been modified by another participant.

Using the Server-side Apply method, the Operator does not need to check whether
the resources exist or not, or whether they have been modified by another participant.
The Operator only needs to run the Server-side Apply operation with the definitions of
the resources from the Operator’s point of view.

After the low-level resources are applied, two possibilities should be considered.

Case 1:If the low-level resources already exist and have not been
modified by the Apply, no MODIFIED event will be triggered for
these resources, and the Reconcile function will not be called
again (at least for this Apply operation).

Case 2: If the low-level resources have been created or modified,
this will trigger CREATED or MODIFIED events for these
resources, and the Reconcile function will be called again
because of these events. This new execution of the function will
again Apply the low-level resources and, if nothing has updated
these resources in the meantime, the Operator will fall on Case 1.

The new low-level resources will be handled eventually by their respective operators
or controllers. In turn, they will reconcile these resources, and update their status to
announce their current state.

As soon as the statuses of these low-level resources are updated, MODIFIED
events will be triggered for these resources, and the Reconcile function will be called
again. Once more, the Operator will Apply the resources, and Cases 1 and 2 have to be
considered.

The Operator needs, at some point, to read the Statuses of the low-level resources it
has created so as to compute the status of the reconciled resource. In simple cases, it can
be done just after executing the Server-side Apply of the low-level resources.

269

CHAPTER 11 WRITING THE RECONCILE LOOP

Simple Implementation Example

To illustrate, here is a complete Reconcile function for an operator that creates a
Deployment with the Image and Memory information provided in a MyResource
instance.

func (a *MyReconciler) Reconcile(
ctx context.Context,
req reconcile.Request,

) (reconcile.Result, error) {
log := log.FromContext(ctx)

log.Info("getting myresource instance")

myresource := mygroupvlalphal.MyResource{}
err := a.client.Get(o
ctx,
req.NamespacedName,
&myresource,
&client.GetOptions{},
)
if err != nil {
if errors.IsNotFound(err) { (2]
log.Info("resource is not found")
return reconcile.Result{}, nil

}
return reconcile.Result{}, err

}

ownerReference := metavi.NewControllerRef(®
&myresource,

mygroupvialphal.SchemeGroupVersion.
WithKind("MyResource"),

)

err = a.applyDeployment(o
ctx,

270

CHAPTER 11 WRITING THE RECONCILE LOOP

&myresource,
ownerReference,

if err != nil {
return reconcile.Result{}, err

}

status, err := a.computeStatus(ctx, &myresource) (5]
if err != nil {
return reconcile.Result{}, err

}

myresource.Status = *status
log.Info("updating status", "state", status.State)
err = a.client.Status().Update(ctx, &myresource) (6]
if err != nil {
return reconcile.Result{}, err

}

return reconcile.Result{}, nil

@ Get the definition of the resource to reconcile

@ If resource does not exist, return immediately

® Build the ownerReference pointing to the resource to reconcile
@ Use Server-side Apply for the “low-level” deployment

® Compute the status of the resource based on the “low-level”
deployment

® Update the status of the resource to reconcile

Here is an example of an implementation of the Server-side Apply operation for the
deployment created by the operator:

func (a *MyReconciler) applyDeployment(
ctx context.Context,
myres *mygroupvialphal.MyResource,
ownerref *metavi.OwnerReference,

271

CHAPTER 11 WRITING THE RECONCILE LOOP

) error {
deploy := createDeployment(myres, ownerref)
err := a.client.Patch(
ctx,
deploy,
client.Apply,
client.FieldOwner(Name),
client.ForceOwnership,

)

return err

}

func createDeployment(
myres *mygroupvialphal.MyResource,
ownerref *metavi.OwnerReference,
) *appsvi.Deployment {
deploy := 8appsvi.Deployment{
ObjectMeta: metavi.ObjectMeta{
Labels: map[string]string{
"myresource": myres.GetName(),
1
b
Spec: appsvi.DeploymentSpec{
Selector: 8metavi.LabelSelector{
MatchLabels: map[string]string{
"myresource”: myres.GetName(),

b

b
Template: corevi.PodTemplateSpec{

ObjectMeta: metavi.ObjectMeta{
Labels: map[string]string{
"myresource": myres.GetName(),
b
})

Spec: corevi.PodSpec{
Containers: []corevi.Container{

272

CHAPTER 11 WRITING THE RECONCILE LOOP

{
Name: "main",
Image: myres.Spec.Image, (8}
Resources: corevl.ResourceRequirements{
Requests: corevi.Resourcelist{
corevil.ResourceMemory: myres.Spec.Memory, (9}
b
}J
}J
b
})
1

1

}
deploy.SetName(myres.GetName() + "-deployment™)

deploy.SetNamespace(myres.GetNamespace())
deploy.SetGroupVersionKind(
appsv1.SchemeGroupVersion.WithKind("Deployment"),

)

deploy.SetOwnerReferences([Jmetavi.OwnerReference{ (10)
*ownerref,

1)
return deploy

@ Use the Patch method to execute the Server-side Apply
operation

® Use the Image defined in the resource to reconcile
® Use the Memory defined in the resource to reconcile

@ Set the OwnerReference to point to the resource to reconcile

273

CHAPTER 11 WRITING THE RECONCILE LOOP

Then, here is an example of how the computation and update of the Status can be

implemented:

const (
_buildingState = "Building"
_readyState = "Ready"

)

func (a *MyReconciler) computeStatus(
ctx context.Context,
myres *mygroupvialphal.MyResource,
) (*mygroupvialphal.MyResourceStatus, error) {

logger := log.FromContext(ctx)
result := mygroupvlalphal.MyResourceStatus{
State: buildingState,

}

deploylList := appsvi.DeploymentlList{}
err := a.client.List((1]
ctx,

&deploylist,
client.InNamespace(myres.GetNamespace()),
client.MatchinglLabels{
"myresource”: myres.GetName(),
1
)
if err != nil {
return nil, err

}

if len(deployList.Items) == 0 {
logger.Info("no deployment found")
return &result, nil

}

if len(deployList.Items) > 1 {
logger.Info(

274

CHAPTER 11 WRITING THE RECONCILE LOOP

"too many deployments found", "count",
len(deploylList.Items),

return nil, fmt.Errorf(
"%d deployment found, expected 1",
len(deploylList.Items),
)
}

status := deploylList.Items[0].Status [12)
logger.Info(
"got deployment status",
"status", status,
)
if status.ReadyReplicas == 1 {
result.State = readyState ®

}

return &result, nil

}

@ Get the deployment created for this resource to reconcile
@ Get the status of the unique Deployment found

® When replicas is 1, set status Ready for the reconciled resource

Conclusion

This chapter has shown how to implement the Reconcile function for a simple operator
that creates a Deployment using information from the Custom Resource.

Real operators generally will be more complex than this simple example by creating
several resources having more complex lifecycle, but it demonstrates the main points to
know when starting to write an operator: The declarative nature of the Reconcile loop,
the use of Owner References, the use of Server-side Apply, and how the status is updated.

The next chapter will show how to test the Reconcile loop.

275

CHAPTER 12

Testing the Reconcile Loop

The previous chapter described how to implement a simple, but complete, Reconcile
function for an Operator reconciling a Custom Resource.

To test the Reconcile function you have written in the previous chapter, you will
use ginkgo, which is a Testing Framework for Go; and the envtest package from the
controller-runtime Library, which provides a Kubernetes environment for testing.

The envtest Package

The controller-runtime Library provides an envtest package. This package provides a
Kubernetes environment by starting a simple local control plane.

By default, the package uses local binaries for etcd and kube-apiserver located
in /usr/local/kubebuilder/bin, and you can provide your own path to find these
binaries. You can install setup-envtest to obtain these binaries for various Kubernetes

versions.

Installing envtest Binaries

The setup-envtest tool can be used to install binaries used by envtest. To install the tool,
you must run:

$ go install sigs.k8s.io/controller-runtime/tools/setup-envtest@latest

Then, you can install the binaries for a specific Kubernetes version using the
following command:

$ setup-envtest use 1.23

Version: 1.23.5

0S/Arch: linux/amd64

Path: /path/to/kubebuilder-envtest/k8s/1.23.5-1inux-amd64

277
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_12

https://doi.org/10.1007/978-1-4842-9026-2_12

CHAPTER 12 TESTING THE RECONCILE LOOP

The output of the command will inform you in which directory the binaries have
been installed. If you want to use these binaries from the default directory, /usr/local/
kubebuilder/bin, you can create a symbolic link to access them from there:

$ sudo mkdir /usr/local/kubebuilder
$ sudo ln -s /path/to/kubebuilder-envtest/k8s/1.23.5-1inux-amd64 /usr/
local/kubebuildexr/bin

Or, if you prefer to use the KUBEBUILDER_ASSETS environment variable to define
the directory containing the binaries, you can execute:

$ source <(setup-envtest use -i -p env 1.23.5)
$ echo $KUBEBUILDER_ASSETS
/path/to/kubebuilder-envtest/k8s/1.23.5-1inux-amd64

This will define and export the KUBEBUILDER_ASSETS variable with the path
containing the binaries for Kubernetes 1.23.5.

Using envtest

The control plane will only run the API Server and etcd, but no controller. This means
that when the operator you want to test will create Kubernetes resources, no controller
will react. For example, if the operator creates a Deployment, no pod will be created, and
the deployment status will never be updated.

This can be surprising at first, but this will help you test your operator only, not
the Kubernetes controllers. To create the Test Environment, you first need to create an
instance of an envtest.Environment structure.

Using default values for the Environment structure will start a local control plane
using binaries in /usr/local/kubebuilder/bin or from the directory defined in the
KUBEBUILDER _ASSETS environment variable.

If you are writing an operator reconciling a custom resource, you will need to add
the Custom Resource Definition (CRD) for this custom resource. For this, you can use
the CRDDirectoryPaths field to pass the list of directories containing CRD definitions
in YAML or JSON format. All these definitions will be applied to the local cluster when
initializing the environment.

278

CHAPTER 12 TESTING THE RECONCILE LOOP

The field ErrorIfCRDPathMissing is useful if you want to be altered when the CRD
directories do not exist. As an example, here is how an Environment structure can be
created, with the CRD YAML or JSON files located in the ../../crd directory:

import (
"path/filepath”
"sigs.k8s.io/controller-runtime/pkg/envtest”
)
testEnv = &envtest.Environment{
CRDDirectoryPaths: [1string{
filepath.Join("..", "..", "cxd"),
}s
ErrorIfCRDPathMissing: true,
}

To start the environment, you can use the Start method on this Environment:
cfg, err := testEnv.Start()

This method returns a rest.Config value, which is the Config value to be used to
connect to the local cluster launched by the Environment. At the end of the test, the
Environment can be stopped using the Stop method:

err := testEnv.Stop()

Once the environment is started and you have a Config, you can create the Manager
and the Controller and start the Manager, as described in Chapter 10.

Defining a ginkgo Suite

To start the tests for the Reconcile function, you can use a go test function to start
ginkgo specs:

import (
"testing"

. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"

279

CHAPTER 12 TESTING THE RECONCILE LOOP

func TestMyReconciler Reconcile(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t,
"Controller Suite",

Then, you can declare BeforeSuite and AfterSuite functions, which are used to start
and stop the Environment and the Manager.

Here is an example for these functions, which will create an environment with the
CRD for MyResource loaded. The Manager is started in a Go routine at the end of the
BeforeSuite function, so the tests can be executed on the main Go routine.

Note that you are creating a Cancelable Context, which is used when starting the
Manager, so you can stop the Manager by canceling the context from the AfterSuite
function.

import (
"context"
"path/filepath”
"testing"

. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"

appsvl "k8s.io/api/apps/v1"
"k8s.io/apimachinery/pkg/runtime”
clientgoscheme "k8s.io/client-go/kubernetes/scheme"”

"sigs.k8s.io/controller-runtime/pkg/builder"
"sigs.k8s.io/controller-runtime/pkg/client”
"sigs.k8s.io/controller-runtime/pkg/envtest”
"sigs.k8s.io/controller-runtime/pkg/log"
"sigs.k8s.io/controller-runtime/pkg/log/zap"
"sigs.k8s.io/controller-runtime/pkg/manager"

mygroupvilalphal "github.com/feloy/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1"

280

var (

)

CHAPTER 12 TESTING THE RECONCILE LOOP

testEnv *envtest.Environment
ctx context.Context
cancel context.CancelFunc
k8sClient client.Client

var _ = BeforeSuite(func() {

log.SetLogger(zap.New(
zap.WriteTo(GinkgoWriter),
zap.UseDevMode(true),

)

ctx, cancel = context.WithCancel(
context.Background(),

)
testEnv = &envtest.Environment{
CRDDirectoryPaths: []string{
filepath.Join("..", "..", "cxd"),
})
ErrorIfCRDPathMissing: true,
}

var err error

// cfg is defined in this file globally.
cfg, err := testEnv.Start()
Expect(err).NotTo(HaveOccurred())
Expect(cfg).NotTo(BeNil())

scheme := runtime.NewScheme()

err = clientgoscheme.AddToScheme(scheme)
Expect(err).NotTo(HaveOccurred())

err = mygroupvlalphal.AddToScheme(scheme)
Expect(err).NotTo(HaveOccurred())

mgr, err := manager.New(cfg, manager.Options{
Scheme: scheme,

1)

281

CHAPTER 12 TESTING THE RECONCILE LOOP

1)

var _

1)

282

Expect(err).ToNot(HaveOccurred())
k8sClient = mgr.GetClient() 0

err = builder. ©
ControllerManagedBy(mgr).
Named (Name) .
For (&mygroupvialphal.MyResource{}).
Owns (&appsvi.Deployment{}).
Complete(8MyReconciler{})

go func() {
defer GinkgoRecover()

err = mgr.Start(ctx) (10}
Expect(err).ToNot(

HaveOccurred(),

“failed to run manager",

HO)

= AfterSuite(func() {

cancel() (11
err := testEnv.Stop() ®
Expect(err).NotTo(HaveOccurred())

@ testEnv, ctx, and cancel will be used in BeforeSuite and
AfterSuite

0 k8sClient will be used in tests

® Create a cancelable context

@ Create the testEnv environment

@® Start the testEnv environment

® Build the scheme to pass to the Manager

@ Build the Manager

CHAPTER 12 TESTING THE RECONCILE LOOP

® Get the k8sClient from the Manager to use for tests

® Build the Controller

@ Start the Manager from a Go routine

@ Cancel the context, which will terminate the Manager

@® Terminate the testEnv environment

Writing the Tests

Now that you have a suite that starts and stops the environment, you can write the
tests. The tests will start by creating a MyResource instance to verify that the Reconcile
function creates the expected “low-level” resources, with the expected definition.

Then, when the low-level resources are created, the tests will update the status of the
low-level resources (remember that no Controller is deployed in the cluster, so you have
to do these changes from the tests instead) to verify that the status of the MyResource
instance is updated accordingly.

The plan for the tests will be the following. Note that each It test will be executed
separately, and for each It, all preceding BeforeEach will be executed before the test,
and all preceding AfterEach will be executed after the test.

var _ = Describe("MyResource controller”, func() {
When("creating a MyResource instance", func() {
Beforekach(func() {
// Create the MyResource instance

1)

Aftertach(func() {
// Delete the MyResource instance

1)

It("should create a deployment”, func() {
// Check that the deployment
// 1is eventually created

1))
When("deployment is found", func() {

283

CHAPTER 12 TESTING THE RECONCILE LOOP

BeforeEach(func() {
// Wait for the deployment
// to be eventually created

1)

It("should be owned by the MyResource instance", func() {
// Check ownerReference in Deployment
// references the MyResource instance

1)

It("should use the image specified in MyResource instance", func() {

1)

When("deployment ReadyReplicas is 1", func() {
BeforeEach(func() {
// Update the Deployment status
// to ReadyReplicas=1

1)

It("should set status ready for MyResource instance", func() {
// Check the status of MyResource instance
// is eventually Ready

1)
1)
1)
1)
1)

To clearly show the unfolding of the tests, here is how the four It tests will be
executed, with the BeforeEach and AfterEach displayed.

Test 1

When: creating a MyResource instance
Before: // Create the MyResource instance
It: should create a deployment

After: // Delete the MyResource instance

284

Test 2

Test 3

Test 4

CHAPTER 12 TESTING THE RECONCILE LOOP

When: creating a MyResource instance

Before: // Create the MyResource instance
When: deployment is found

Before: // Wait deployment eventually created
It: should be owned by the MyResource instance

After: // Delete the MyResource instance

When: creating a MyResource instance

Before: // Create the MyResource instance

When: deployment is found

Before: // Wait deployment eventually created

It: should use image specified in MyResource instance

After: // Delete the MyResource instance

When: creating a MyResource instance

Before: // Create the MyResource instance

When: deployment is found

Before: // Wait deployment eventually created

When: deployment ReadyReplicas is 1

Before: // Update Deployment status to ReadyReplicas=1
It: should set status ready for MyResource instance

After: // Delete the MyResource instance

285

CHAPTER 12 TESTING THE RECONCILE LOOP

Finally, the complete source code of the tests follows after the next paragraphs. Note
that you are creating the MyResource instance with a random name, so the created
resources are not in conflict between the tests.

As a matter of fact, tests are executed one after the other, so resources remaining
from the previous tests could interfere with the subsequent tests.

In this implementation, you can finish the test by removing the MyResource
instance, but because no Controller is running in the cluster, the Deployment is not
deleted by the garbage collector, despite that it references the deleted MyResource
instance as owner. Because of this, if you execute all the tests with the same MyResource
instance name, the Deployment from the first test would be used for the tests that follow.

import (
|I_Fmtll
"math/rand"

. "github.com/onsi/ginkgo/v2"

. "github.com/onsi/gomega"

appsvl "k8s.io/api/apps/v1"

metavl "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/types"
"sigs.k8s.io/controller-runtime/pkg/client"

mygroupvlalphal "github.com/feloy/myresource-crd/pkg/apis/mygroup.
example.com/vialpha1”

)
var _ = Describe("MyResource controller", func() {
When("When creating a MyResource instance", func() {
var (
myres mygroupvialphal.MyResource
ownerref *metavi.OwnerReference
name string
namespace = "default"

deployName string
image string

)
BeforeEach(func() {

286

CHAPTER 12 TESTING THE RECONCILE LOOP

// Create the MyResource instance
image = fmt.Sprintf("myimage%d", rand.Intn(1000))
myres = mygroupvlalphal.MyResource{
Spec: mygroupvlalphal.MyResourceSpecq{
Image: image,

b
}
name = fmt.Sprintf("myres%d", rand.Intn(1000))
myres.SetName(name)

myres.SetNamespace (namespace)
err := k8sClient.Create(ctx, &myres)
Expect(err).NotTo(HaveOccurred())
ownerref = metavi.NewControllerRef(
8myres,
mygroupvialphail.SchemeGroupVersion.
WithKind("MyResource"),

)
deployName = fmt.Sprintf("%s-deployment”, name)

1

AfterEach(func() {
// Delete the MyResource instance
k8sClient.Delete(ctx, &myres)

1

It("should create a deployment"”, func() {
// Check that the deployment
// is eventually created
var dep appsvi.Deployment
Eventually(
deploymentExists(deployName, namespace, 8dep),
10, 1
).Should(BeTrue())
1)

When("deployment is found", func() {
var dep appsvi.Deployment

287

CHAPTER 12 TESTING THE RECONCILE LOOP

BeforeEach(func() {
// Wait for the deployment
// to be eventually created
Eventually(
deploymentExists(deployName, namespace, &dep),
10, 1,
).Should(BeTrue())
1)

It("should be owned by the MyResource instance", func() {
// Check ownerReference in Deployment
// references the MyResource instance
Expect(dep.GetOwnerReferences()).
To(ContainElement(*ownerref))

1)

It("should use the image specified in MyResource instance", func() {
Expect(
dep.Spec.Template.Spec.Containers[0].Image,
).To(Equal(image))
1)

When("deployment ReadyReplicas is 1", func() {
BeforeEach(func() {

// Update the Deployment status
// to ReadyReplicas=1
dep.Status.Replicas = 1
dep.Status.ReadyReplicas = 1
err := k8sClient.Status().Update(ctx, &dep)
Expect(err).NotTo(HaveOccurred())

1)

It("should set status ready for MyResource instance", func() {
// Check the status of MyResource instance
// is eventually Ready
Eventually(
getMyResourceState(name, namespace), 10, 1,

288

CHAPTER 12

). Should(Equal("Ready"))

1)
1)
1)
1)
1)

func deploymentExists(
name, namespace string, dep *appsvi.Deployment,
) func() bool {
return func() bool {
err := k8sClient.Get(ctx, client.ObjectKey{
Namespace: namespace,

Name: name,
}, dep)
return err == nil
}
}

func getMyResourceState(
name, namespace string,
) func() (string, error) {
return func() (string, error) {
myres := mygroupvialphal.MyResource{}
err := k8sClient.Get(ctx, types.NamespacedName{
Namespace: namespace,
Name: name,
}, &myres)
if err != nil {

return ", err

}

return myres.Status.State, nil

TESTING THE RECONCILE LOOP

289

CHAPTER 12 TESTING THE RECONCILE LOOP

Conclusion

This chapter concludes the presentation of the various concepts and libraries that can be
used to write Kubernetes Operators.

Chapter 8 introduced the Custom Resources, permitting extension of the Kubernetes
API by adding new resources to the list of served resources. Chapter 9 presented various
ways to work with Custom Resources using the Go language, either by generating a
Clientset for this resource, or by using the DynamicClient.

Chapter 10 introduced the controller-runtime Library, useful for implementing
an Operator to manage a Custom Resource lifecyle. Chapter 11 focused on writing the
business logic of the Operator, and Chapter 12 is used to test this logic.

The next chapter describes the kubebuilder SDK, a framework using the tools
introduced in the previous chapters. This framework facilitates the development of
Operators, by generating code for new custom resource definitions and associated
Operators, and by providing tools to build and to deploy these custom resource
definitions and Operators to the cluster.

290

CHAPTER 13

Creating an Operator
with Kubebuilder

You have seen in the previous chapters how to define new resources to be served by the
API Server using Custom Resources Definitions (CRD), and how to build Operators,
using the controller-runtime library.

The Kubebuilder SDK is dedicated to help you create new resources and their related
Operators. It provides commands to bootstrap a project defining a Manager, and to add
resources and their related controllers to the project.

Once the source code for new custom resources and controllers is generated, you
will need to implement the missing parts, depending on the business domain of the
resources. The Kubebuilder SDK then provides tools to build and deploy the Custom
Resource Definitions and the Manager to the cluster.

Installing Kubebuilder

Kubebuilder is provided as a single binary. You can download the binary from the
Release page of the project! and install it in your PATH. Binaries are provided for Linux
and MacOS systems.

Creating a Project

The first step is to create a project. The project initially will contain:

o Go source code defining a Manager (without any Controller for
the moment)

"https://github.com/kubernetes-sigs/kubebuilder/releases

291
© Philippe Martin 2023

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2_13

https://github.com/kubernetes-sigs/kubebuilder/releases
https://doi.org/10.1007/978-1-4842-9026-2_13

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

e A Dockerfile to build an image containing the manager binary to
deploy to the cluster

¢ Kubernetes manifests to help deploy the Manager to the cluster

o A Makefile defining commands to help you test, build, and deploy
the manager

To create a project, first create an empty directory and cd into it, then execute the
following kubebuilder init command:

$ mkdir myresource-kb

$ cd myresource-kb

$ kubebuilder init
--domain myid.dev o
--repo github.com/myid/myresource 2]

® Domain name, used as a suffix to the name of the GVK groups.
Custom resources defined in this project can belong to various
groups, but all groups will belong to the same domain. For
example, mygroupl.myid.dev and mygroup2.myid.dev

® Name of the Go module for the generated Go code for
the Manager

You can examine the commands available from the Makefile by running the
following command:

$ make help
You can build the binary for the Manager with the following command:
$ make build
Then, you can run the Manager locally:
$ make run
or

$./bin/manager

292

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

At this point, it is interesting to initiate a source control project (e.g., a git project),
and create a first revision with the files generated. This way, you will be able to examine
the changes made by the next executed kubebuilder commands. For example, if you
use git:

$ git init
$ git commit -am 'kubebuilder init --domain myid.dev --repo github.com/
myid/myresource’

Adding a Custom Resource to the Project

For the moment, the Manager does not manage any Controller. Even if you can build and
run it, you cannot do anything with it.

The next kubebuilder command to execute is kubebuilder create api to add a
Custom Resource and its related Controller to the project. The command will ask you
whether you want to create the Resource and the Controller. Reply y to each question.

$ kubebuilder create api

--group mygroup o
--version vialphal (2]
--kind MyResource 3]

Create Resource [y/n]

y

Create Controller [y/n]

y

® The group of the custom resource. It will be suffixed with the
domain to form the complete GVK group

® The version of the resource
® The kind of the resource

You can see the changes made by the command by running the following git command:

$ git status
On branch main
Changes not staged for commit:

293

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: PROJECT
modified: go.mod
modified: go.sum
modified: main.go

Untracked files:
(use "git add <file>..." to include in what will be committed)

api/
config/crd/
config/rbac/myresource editor role.yaml
config/rbac/myresource viewer role.yaml
config/samples/
controllers/

no changes added to commit (use "git add" and/or "git commit -a")

The PROJECT file contains the definition of the project. It originally contained
the domain and repo provided as flags to the init command. It now also contains the
definition of a first resource. The main.go file and the controllers directory define a
Controller for the custom resource.

The api/vlalphal directory has been created and contains the definition of the
custom resource using Go structures, as well as code generated by deepcopy-gen (see
Chapter 8’s “Running deepcopy-gen” section), with the help of the controller-gen tool.
It also contains the definition of the AddToScheme function, useful for adding this new
custom resource to a Scheme.

The config/samples directory contains a new file, defining an instance of the custom
resource, in YAML format. The config/rbac directory contains two new files, defining
two new ClusterRole resources—one for viewing and one for editing MyResource
instances. The config/crd directory contains kustomize files to build the CRD.

294

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

Building and Deploying Manifests

The following command builds manifests to be deployed to the cluster:
$ make manifests

This command build two manifests:

o config/rbac/role.yaml - the ClusterRole that will be affected to the
service account used by the Manager, giving access to the custom

resource.

e config/crd/bases/mygroup.myid.dev_myresources.yaml - the
definition of the Custom Resource.

The following command will deploy the manifest defining the CRD:

$ make install

[...]

bin/kustomize build config/crd | kubectl apply -f -
customresourcedefinition.apiextensions.k8s.io/myresources.mygroup.myid.
dev created

Running the Manager Locally

This time, the Manager is handling a Controller, reconciling the MyResource instances.
The Reconcile function generated by kubebuilder does nothing but return directly
without error:

func (r *MyResourceReconciler) Reconcile(ctx context.Context, req ctrl.
Request) (ctrl.Result, error) {
_ = log.FromContext(ctx)

// TODO(user): your logic here

return ctrl.Result{}, nil

295

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER
Let’s add a log when the Reconcile function is called:

- _ = log.FromContext(ctx)
+ log := log.FromContext(ctx)
+ log.Info("reconcile")

The following command will execute the Manager locally. It will use your
kubeconfig file to connect to the cluster, with the associated permissions:

$ make run

[...]

INFO setup starting manager
INFO Starting server [...]

INFO Starting server [...]

INFO Starting EventSource [...]
INFO Starting Controller [...]
INFO Starting workers [...]

From another terminal, you can create a MyResource instance using the
provided sample:

$ kubectl apply -f config/samples/mygroup vialphal myresource.yaml

In the first terminal, a new log should appear, indicating that the Reconcile function
has been called:

$ make run

[...]
INFO reconcile [...]

Personalizing the Custom Resource

The kubebuilder create api command has created as a template a resource with Spec
and Status fields, the Spec containing a Foo field and the Status being empty.

In this section, you will find out how to update this template to add the
necessary fields.

296

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

Editing the Go Structures

You can edit the file api/vlalphal/myresource_types.go to personalize the custom
resource. In this example, you will use the Image and Memory fields for the Spec, and a
State field for the Status:

// MyResourceSpec defines the desired state of MyResource
type MyResourceSpec struct {

Image string “json:"image""

Memory resource.Quantity ~json:"memory""

}

// MyResourceStatus defines the observed state of MyResource
type MyResourceStatus struct {
State string “json:"state

ne

Enabling the Status Subresource

You can see the annotations in the comments preceding the MyResource structure.

The first annotation //+kubebuilder:object:root=true indicates that MyResource
is a Kind. With this annotation, kubebuilder will generate the DeepCopyObject()
method for this structure. See Chapter 9’s “Adding Annotations” section for more details.

The second annotation //+kubebuilder:subresource:status indicates that the
status subresource must be enabled for MyResource. With this annotation, kubebuilder
will add the status as subresource in the YAML definition of the CRD in config/crd/

u

bases/. See Chapter 8’s “Definition of the Resource Versions” section for more details.
The Status is being enabled by default, so you do not have to make any changes to

these annotations.

Defining Printer Columns

Chapter 8's “Additional Printer Columns” section has shown how to declare printer
columns for a custom resource by editing the YAML definition of the CRD.

Using kubebuilder, the YAML definition of the CRD is autogenerated, so
you cannot edit it directly. Instead, you can use the +kubebuilder:printcolumn

297

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

annotation. Each annotation accepts name, type, and JSONPath values, similar to the
additionalPrinterColumns entries in the YAML definition.
As an example, adding the following annotations will define Image, State, and Age

printer columns:

// +kubebuilder:printcolumn:name="Image",type=string,
JSONPath="".spec.image"

// +kubebuilder:printcolumn:name="State",type=string,
JSONPath=".status.state’

// +kubebuilder:printcolumn:name="Age",type="date",
JSONPath=".metadata.creationTimestamp"

Regenerating the Files

To regenerate the DeepCopy methods, reflecting the changes made to the structures,
you need to run the following command

$ make

To regenerate the YAML definition of the CRD with the new fields, this command
must be executed:

$ make manifests

You also can edit the sample file to adapt the sample resource. The file is config/
samples/mygroup_vlalphal_myresource.yaml, and you can adapt the content with:

$ cat > config/samples/mygroup vialphal myresource.yaml <<EOF
apiVersion: mygroup.myid.dev/vialpha1
kind: MyResource
metadata:
labels:
app.kubernetes.io/name: myresource
app.kubernetes.io/instance: myresource-sample
app.kubernetes.io/part-of: myresource-kb
app.kuberentes.io/managed-by: kustomize
app.kubernetes.io/created-by: myresource-kb
name: myresource-sample

298

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

spec:
image: nginx
memory: 512Mi
EOF

Now the CRD and sample are compatible, so you can apply the CRD to the cluster
and update the sample resource:

$ make install

[...]

bin/kustomize build config/crd | kubectl apply -f -
customresourcedefinition.apiextensions.k8s.io/myresources.mygroup.myid.dev
configured

$ kubectl apply -f
config/samples/mygroup vialphal myresource.yaml
myresource.mygroup.myid.dev/myresource-sample configured

Implementing the Reconcile Function

Because kubebuilder generates code based on the controller-runtime Library, you
can reuse with very minor changes the code that was written for the Reconcile function
in Chapter 11. Also, you can reuse the source code for testing the Reconcile function
written in Chapter 12.

Adding RBAC Annotations

When running the Operator locally, the operator uses your kubeconfig file, with the
authorizations specific to this kubeconfig. If you are connected using a cluster-admin
account, the Operator will have all authorizations on the cluster and will be able to do
any operations.

When the Operator is deployed on the cluster, however, it is running with a specific
Kubernetes Service Account and is given restricted authorizations. These authorizations
are defined in the ClusterRole built and deployed by kubebuilder.

299

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

To help Kubebuilder build this ClusterRole, annotations are present in the
generated comments of the Reconcile function (line breaks have been added for clarity):

//+kubebuilder:rbac:
groups=mygroup.myid.dev,
resources=myresources,
verbs=get;list;watch;create;update;patch;delete

//+kubebuilder:rbac:
groups=mygroup.myid.dev,
resources=myresources/status,
verbs=get;update;patch

//+kubebuilder:rbac:
groups=mygroup.myid.dev,
resources=myresources/finalizers,
verbs=update

These rules will give full access to the MyResource resource, but no access to other
resources.

The Reconcile function needs to have read and write access to the Deployment
resource as soon as watching it; for this reason, you will need to add this new annotation
(line breaks have been added):

//+kubebuilder:rbac:
groups=apps,
resources=deployments,
verbs=get;list;watch;create;update;patch;delete

Deploying the Operator on the Cluster

To be able to deploy the Operator to a cluster, you need to build the container image and
deploy it to a container image registry (e.g., DockerHub, Quay.io, or many others).

The first step is to create a new repository in your preferred container image registry
to contain the image of the Operator container. Let’s say you have created a repository
named myresource in quay.io/myid, the full name of the image will be quay.io/myid/
myresource.

300

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

For each build, you will need to use a different tag for the image so that the update
of the container will be done correctly. The build the image locally, you need to run the
following command (note the tag vlalphal-1):

$ make docker-build
IMG=quay.io/myid/myresource:vialphal-1

To deploy it to the registry, the following command must be executed:

$ make docker-push
IMG=quay.io/myid/myresource:vialphal-1

Finally, to deploy the Operator to the cluster:

$ make deploy
IMG=quay.io/myid/myresource:vialphal-1

This will create a new namespace, myresource-kb-system, containing a new
deployment that will execute the Operator. You can examine the logs of the Operator
with the following command:

$ kubectl logs
deployment/myresource-kb-controller-manager
-n myresource-kb-system

Creating a New Version of the Resource

The Kubernetes API supports versioned resources, and a mechanism to convert
resources between versions. The conversion between any versions must not lose any
information. For the moment, you have created the custom resource MyResource with
the version vlalphal. The Spec of the resource contains Image and Memory fields.

You want to create a vlbetal version, change the field Memory, and rename it to
MemoryRequest to remove any ambiguity. You will be able to convert between these
two versions by affecting the Memory value to the appropriate field.

301

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

Defining a New Version

To create the new version, you need to invoke the kubebuilder create api command
again, with the same group and kind, but with a new version. Also, because the resource
already exists and the Controller is already declared, you can reply with an n when asked
whether you want to create a Resource and a Controller.

$ kubebuilder create api --group mygroup --version vibetal --kind
MyResource

Create Resource [y/n]

n

Create Controller [y/n]

n

This command has created a new directory, api/vlbetal, containing the default
definition of the resource. You will need to update these files to declare the definition
of the custom resource for the new version. You can copy the file api/vlalphal/
myresource_types.go into api/vlbetal and make the necessary changes:

o The name of the package at the beginning of the file, from vlalphal
to vlbetal

e The name of the Memory field, from Memory to MemoryRequest,
and the yaml field name from Memory to MemoryRequest

package vibetai

[...]

// MyResourceSpec defines the desired state of MyResource
type MyResourceSpec struct {
Image string “json:"image"”
MemoryRequest resource.Quantity ~json:"memoryRequest""

}

Because you now have several versions, you have to declare on which format the
resource will be stored in etcd. You can choose to use the format of vlalphal. For this,
you can use the annotation +kubebuilder:storageversion in the comments preceding
the definition of the MyResource structure in the vlalphal package.

302

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

package vialpha1

[...]

// +kubebuilder:object:root=true
// +kubebuilder:subresource:status
// +kubebuilder:storageversion

// MyResource is the Schema for the myresources API
type MyResource struct {

[...]
}

Implementing Hub and Convertible

A Conversion system is provided by the controller-runtime Library. This system relies
on two interfaces:

e The Hub interface to mark the version used for the storage

e The Convertible interface to provide converters to and from the

storage version

type Hub interface {
runtime.Object
Hub ()

}

type Convertible interface {
runtime.Object
ConvertTo(dst Hub) error
ConvertFrom(src Hub) error

You have chosen the version vlalphal for the storage and need to make vlalphal.
MyResource implement the Hub interface:

package vialpha1

// Hub marks this type as a conversion hub.
func (*MyResource) Hub() {}

303

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

All other types, in this case, the vlbetal.MyResource must implement the
Convertible interface and provide code to convert to and from the Hub version:

package vibetal

import (
"github.com/myid/myresource/api/vialpha1™
"sigs.k8s.io/controller-runtime/pkg/conversion”

)

func (src *MyResource) ConvertTo(
dstRaw conversion.Hub,

) error {
dst := dstRaw.(*vialphal.MyResource)
dst.Spec.Memory = src.Spec.MemoryRequest
// Copy other fields
dst.ObjectMeta = src.ObjectMeta
dst.Spec.Image = src.Spec.Image
dst.Status.State = src.Status.State
return nil

}

func (dst *MyResource) ConvertFrom(
srcRaw conversion.Hub,

) error {
src := srcRaw.(*vialphal.MyResource)
dst.Spec.MemoryRequest = src.Spec.Memory
// Copy other fields

dst.ObjectMeta = src.ObjectMeta
dst.Spec.Image = src.Spec.Image
dst.Status.State = src.Status.State
return nil

304

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

Setting Up the webhook

The kubebuilder create webhook command is used to set up webhooks. Several
webhook types are supported:

o Conversion Webhook to help convert between resource versions
(flag --conversion)

e Mutating Admission Webhook to help set default values on new
objects (flag --defaulting)

o Validating Admission Webhook to help validate the created or
updated objects (flag --programmatic-validation)

In this example, you will create a Conversion webhook for MyResource in version
vlbetal (the version that needs to be converted):

$ kubebuilder create webhook
--group mygroup
--version vibetal
--kind MyResource
--conversion

This will add code to the main function to set up the Conversion webhook:

(8mygroupvibetal.MyResource{}).
SetupWebhookWithManager (mgr)

Then, create new code in the vlbetal package, to be called from main:
package vibetal

func (r *MyResource) SetupWebhookWithManager(
mgr ctrl.Manager,
) error {
return ctrl.NewWebhookManagedBy(mgr).
For(r).
Complete()

305

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

Updating kustomization Files

You need to enable the webhook in the deployment manifests by uncommenting
sections related to [WEBHOOK] and [CERTMANAGER] in the files config/default/
kustomization.yaml and config/crd/kustomization.yaml.

If you are not using any other webhooks (i.e., conversion or mutating), you also will
need to comment on the lines:

o “-manifests.yaml” in the file config/webhook/kustomization.yaml
e “-~webhookcainjection_patch.yaml” in the file config/default/
kustomization.yaml

You also will need to install cert-manager? to generate certificates based on
annotations added by kubebuilder to the CRD.

Using Various Versions

After deploying the new version, as described in the “Deploying the Operator on the
Cluster” section, you can create MyResource instances in version vlalphal or vlbetal.
As an example, you can create two sample resources in the config/sample directory:

config/samples/mygroup_vlalphal myresource.yaml:

apiVersion: mygroup.myid.dev/vialpha1
kind: MyResource
metadata:
name: myresource-sample-alpha
spec:
image: nginx
memory: 512Mi

config/samples/mygroup_vlbetal myresource.yaml:

apiVersion: mygroup.myid.dev/vibetal
kind: MyResource
metadata:

name: myresource-sample-beta

*https://cert-manager.io/docs/installation/

306

https://cert-manager.io/docs/installation/

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

spec:
image: nginx
memoryRequest: 256Mi

Then, you can create the resources in the cluster using kubectl:

$ kubectl apply

-t config/samples/mygroup vialphal myresource.yaml
$ kubectl apply

-f config/samples/mygroup vibetal myresource.yaml

Finally, when listing the resources, you will get the definition in the vlbetal format,
using the memoryRequest field:

$ kubectl get myresources.mygroup.myid.dev -o yaml
apiVersion: vi
kind: List
items:
- apiVersion: mygroup.myid.dev/vibetal
kind: MyResource
metadata:
name: myresource-sample-alpha
spec:
image: nginx
memoryRequest: 512Mi
status:
state: Ready
- apiVersion: mygroup.myid.dev/vibetal
kind: MyResource
metadata:
name: myresource-sample-beta
spec:
image: nginx
memoryRequest: 256Mi
status:
state: Ready

307

CHAPTER 13 CREATING AN OPERATOR WITH KUBEBUILDER

Note that you get the definition in vlbetal because kubectl returns you to the
preferred version (the most recent one) of the requested resource.

If you want to get the result in the vlalphal format, you can specify it when invoking
kubectl get:

$ kubectl get myresources.vialphal.mygroup.myid.dev
-0 yaml

This command will return the resources using the Memory field.

Conclusion

This chapter has used the Kubebuilder SDK to help write and deploy Operators more
easily than if you had to write the code and the Kubernetes manifests yourselves.

Note that the Operator SDK® is another framework to build operators. Operator SDK
can manage Go, Helm, and Ansible projects. For the Go projects, Operator SDK makes
use of kubebuilder to generate the code and the Kubernetes manifests.

Operator SDK provides more functionalities on top of kubebuilder to integrate the
built operator with the Operator Lifecycle Manager* and Operator Hub.®

As these extra functionalities are out of the scope of this book, Operator SDK will not
be covered here. But you can run through this chapter again by replacing the command
kubebuilder with operator-sdk to build your Operator with this framework instead.

*https://sdk.operatorframework.io/
*https://github.com/operator-framework/operator-lifecycle-manager
*https://operatorhub.io/

308

https://sdk.operatorframework.io/
https://github.com/operator-framework/operator-lifecycle-manager
https://operatorhub.io/

Index

A

AdditionalPrinterColumns, 197, 198,
204-206, 298
AddToScheme function, 60, 214, 215, 294
AfterSuite function, 280, 282
apiextensions-apiserver library, 194, 201
API machinery, 57, 60, 68, 74, 83, 223
RESTMapper, 105
finding resources, 107
implementation, 107, 108
kind to a resource, 107
resource to kind, 107
schema package, 96
Scheme
conversion function, 101, 102
convert function, 102
initialization, 98, 99
mapping, 100
serialization
encoding and decoding, 104
JSON and YAML serializers, 103
protobuf package, 104
Serializer interface, 103
time type, 92
utilities, 95
APIresources in Go
content of a package
doc.go, 60
generated.pb.go and generated.
proto, 60
register.go, 59, 60
types.go, 58, 59

© Philippe Martin 2023

types_swagger_doc_generated.go, 60
zz_generated.deepcopy.go, 61
core/v1 package
ObjectReference, 61, 62
Resourcelist type, 62, 63
Taint resource, 64, 65
Toleration resource, 65, 66
well_known_labels.go of the core/
v1 package, 66
sources and import, API library, 57
API server, 1-3, 28, 29, 48, 50, 52, 54, 57,
84,110-112,121, 131, 137, 160,
197-199, 204, 240, 250, 260, 278
api/vlalphal directory, 294
ApplyConfigurations, 140-145
Apply operations, 38, 39, 41, 121, 137,
139-141, 144, 256, 257, 269

B

BeforeEach and AfterEach, 283, 284
BeforeSuite function, 280, 282
BuildConfigFromFlags function, 111-112

C

Client-go Library
Apply Configurations, 141
Clientset creation, 115-119
Delete method for resource, 130-133
errors and statuses, 149
errors.StatusError, 153
fake Clientset, 170

309

P. Martin, Kubernetes Programming with Go, https://doi.org/10.1007/978-1-4842-9026-2

https://doi.org/10.1007/978-1-4842-9026-2

INDEX

Client-go Library (cont.)

Action interface, 177-182
CreatePod function, 170, 171
etcd database, 171
mock system, 177
Reactor function, 173-175
wantPod, 173
FakeDiscovery client, 188
Actions, 190
FakedServerVersion, 189
implementation, 188
mocking resources, 191
fake packages, 169
Jfake RESTClient, 185-187
filtering the result of a list (see Filtering
list operation result, API
Machinery Library)
Get method, 122
in-cluster configuration, 110
klog library, 119
list of resources, 123-125
metavl.Status structure, 149-152
out-of-cluster configuration
from kubeconfig in memory, 111
from kubeconfig on disk, 111, 112
from a personalized
kubeconfig, 112
from several kubeconfig
files, 113

RESTMapper
DefaultRESTMapper, 165
DeferredDiscoveryRESTMapper, 167
PriorityRESTMapper, 165
Server-side Apply patch, 138-140
using strategic merge patch, 135-137
ApplyConfiguration from existing
resource, 143, 144
ApplyConfiguration from scratch,
142,143
Apply method, 141
ApplyOptions structure, 141
testing directory, 169
Update method, 134
Watch method, 145-149

Clientset, custom resource

client-gen
adding annotations, 213, 214
AddToScheme function, 214, 215
installing, 213
running client-go, 215, 216
deepcopy-gen
adding annotations, 211, 212
installing, 211
running, 212

JakeClientset, 217

Go structures, 209
runtime.Object interface, 216
types.go file, 209, 210

resource, creation, 120-122
RESTClient
execution, the request, 161

exploitation, the request, 161, 162

getting result as a table, 164
interface rest.Interface, 154
interface rest.Request
structure, 154-160
projectl namespace, 162

310

ClusterRole, 294, 295, 299, 300
Column definitions, 53
Common types, Kubernetes resources
IntOrString, 90, 91
pointer package, 85
Int32Deref function, 86
Int32Equal function, 86
Int32 function, 85
reference two equal values, 86

Quantity
definition, 87

inf.Dec of Quantity, 88
operations, 90
parsing, string, 87, 88
scaled integer, 89
Time type, 92
factory methods, 92
Time operations, 92, 93
ConfigMaplInterface, 117
ConfigMaps method, 117
ConfigOverrides structure, 114
config/samples directory, 294, 306
Containers, 14, 15, 33, 41, 42, 144
Controller, 72, 74-76, 195, 231, 232, 235,
236, 238, 293
ControllerBuilder, 244, 245
ControllerManagedBy function, 244
Controller manager, 2, 231, 232
controller-runtime Library, 232, 237, 238,
244, 249, 259, 261, 267, 277, 290,
299, 303
Conversion functions, 101, 102, 197
corevl.CoreVlInterface, 116
CoreVlInterface interface, 117
CoreV1() method, 116
CRDDirectoryPaths, 278
Create method, 120, 179, 226, 254, 269
CreateAction interface, 179, 182, 185
Custom Resource, 52, 214, 234, 235, 240,
260, 278, 292-294, 296
Custom Resource Definition (CRD), 278
AdditionalPrinterColumns, 204-206
Client-go Clientset, 194
ClusterScoped, 196
conversion, 198, 199
definition, 195
deployment, 201-204

INDEX

Domain Specific Resources, 193

Group field, 196

mechanism, 193

Names field, 196, 197

NamespaceScoped, 196

perform operations, 194, 195

resource, 193, 194

schema, 199, 200

Scope field, 196

Spec structure, 195

Versions field, 197, 198
CustomResourceDefinitionNames, 196
CustomResourceDefinitionVersion, 197
Custom Resources Definitions (CRD),

193-207, 291

D

DeepCopy methods, 211, 298
DeferredDiscoveryRESTMapper, 167
DeleteAllOf method, 255-256
DeleteCollection method, 6, 133, 180, 181
Delete method, 130, 180, 254
DeleteOption, 118, 130-132, 134, 255
Deployment, 10-13, 40, 58, 67, 68, 136,
141, 142, 231, 235
DeploymentConditionType type, 59
Deploymentkind, 12, 13, 58, 67
DeploymentList kind, 12
Deployment resource, 11, 40, 41, 142,
267, 300
Deprecated, 197, 198
Directives, patch information
delete directive, 36
deleteFromPrimitiveList
directive, 37
replace directive, 35
setElementOrder directive, 37

311

INDEX

discovery.DiscoveryClient, 169
Discovery() method, 116, 164
Dynamic client
Client-go Clientset, 226
dynamic.Interface, 224
Jake dynamic Client, 227-228
MyResource instance, 226
NamespaceableResourcelnterface, 225
Resource(gvr), 225
Resourcelnterface, 225
type dynamic.Interface, 224
Unstructured and UnstructuredList
types, 226
Unstructured type, 224
dynamicClient, 227, 290

E

EnqueueRequestForObject, 238, 244
envtest.Environment structure, 278
envtest package
controller-runtime Library, 277
Installing envtest Binaries, 277, 278
using envtest, 278, 279
ErrorI[fCRDPathMissing, 279
errors.StatusError, 153
etcd database, 1,171
Event method, 265
Event resource, 263

F

fakeClientset, 217

Jake dynamic Client, 227-228

fake.NewSimpleDynamicClient, 227

fake RESTClient, 185, 187-188

Filtering list operation result, API
Machinery Library

312

setting Fieldselector using
fields package
OneTermEqualSelector, 128
OneTermNotEqualSelector, 128
parsing, FieldSelector string, 129
set of key-value pairs, 130
setting LabelSelector using
labels package
parsing, LabelSelector string, 127
set of key-value pairs, 127
using requirements, 125, 126
func NewForConfig(c *rest.Config)
(*Clientset, error), 115
func NewForConfigOrDie(c *rest.Config)
*Clientset, 115
Function matching, 239

G

GetConfigOrDie() function, 233
GetListRestrictions() method, 179, 181
Get method, 122, 178, 250
GetName() method, 178, 180, 182
GetObject() method, 179, 180
Get operation, 122, 124, 175,
178, 260, 268
GetOptions structure, 122, 251
GetWatchRestrictions() method, 182
ginkgo Suite, 279-283
go get command, 109
Group-Version-Kinds, 60, 68, 97, 99, 100
Group-Version-Resource (GVR), 6-8, 57,
58,97,105-107,178

H

HasLabels structure, 252
$HOME/ .kube/config kubeconfig file, 113

HTTP requests, 10, 12, 17-19, 52, 55, 57,
67,119, 186

HTTP REST API, 3, 16

HTTP verbs, 6,12, 117

I, J

inf.Dec of Quantity, 88
initContainers, 15, 37
Int32Deref function, 86
Int32Equal function, 86
Int32 function, 85
IntOrString, 90-91, 93

K

klog library, 119
Kubebuilder, 293
command, 292, 293
convertible interface, 303
CRD, 298
creating project, 291
custom resource, 293
installing, 291
manifests, 295
operator, 300
source control project, 293
version, 306
webhook, 305
YAML definition, 297
kubebuilder create api command, 293,
296, 302
Kubebuilder SDK, 290, 291, 308
kubeconfig file, 110-114, 233, 296, 299
kubeconfigGetter function, 112

kubectl command, 17, 19-21, 26-28, 33, 45

kubectl proxy command, 18, 203
Kubelet, 2, 66, 110

INDEX

Kube proxy, 2
Kubernetes API
examining requests, 17, 18
formats of various paths, 7
getting results
using Protobuf format, 54, 55
as a table, 52, 53
using the YAML format, 54
GVR, 6,7
making requests
BOOKMARK events, 48-51
collection of resource, deletion, 26
deletion, resource, 26
full response, consistency, 51
information about resource, 20
last chunk, detection, 51
listing resources, 45, 46
pagination, results, 50, 51
resource creation, 19
resources cluster-wide, 20
resources in specific namespace, 20
resourceVersion, 28-31
restarting, watch request, 46, 47
Server-side Apply operation, 38-43
updation, resources, 27, 28
using field selectors, filtering
resources, 24-26
using kubectl proxy command, 18
using label selectors, filtering
resources, 22-24
using special Directives, 34-37
using strategic merge patch, 32, 33
watching resources, 44, 45
watch request, 45
official reference documentation (see
Official API reference
documentation)
OpenAPI specification, 3

313

INDEX

Kubernetes API Machinery Library, see LocalObjectReference, 15
API Machinery Log object, 261
Kubernetes API object conventions, 95 Logger name, 262
Kubernetes API supports, 301 Low-level resources, 1, 2, 267-269, 283

Kubernetes API Verbs, 5, 6
Kubernetes architecture, 3, 231

kubernetes.Clientset type, 115, 116, 169 M
kubernetes.Interface, 116, 169 MatchingFieldsSelector, 253
Kubernetes Kinds, 5, 6, 165, 217, 218 MatchingLabelsSelector, 252
Kubernetes platform, elements, 1 Memory field, 297, 301, 302, 308
API server, 1 Merge Patch, 259
Controller manager, 2 metavl.DryRunAll, 121, 131, 137, 140, 141
etcd database, 1 metavl.ObjectMeta, 59, 76, 77
Kubelet, 2 metavl.Status structure, 146, 149, 153
Kube proxy, 2 metavl.TypeMeta, 59
Scheduler, 2 MyResource
Kubernetes resources, 8, 9, 21, 62, 67, 72, definition, 220
154,193, 197, 214, 216, 232, instances, 283, 286, 295
235, 247 structure, 297

Kubernetes resources in Go
importing, package, 67, 68

ObjectMeta structure, 69 N
Generation, 70 NamespaceableResourcelnterface, 225
labels and annotations, 70-72 NamespacedName, 251
Name field, 69 NewNonlInteractiveDeferred
Namespace field, 69 LoadingClientConfig, 113, 114
OwnerReference, 72-76 NewSerializerWithOptions function, 103
ResourceVersion, 70 NewSimpleDynamicClient, 227, 228
UID, 70 nginx-pod, 120, 122, 130

Spec and the Status, 76 NoneConverter value, 198

TypeMeta structure, 68
YAML manifest vs. Go, 76
kustomization files, 306 0
ObjectKey value, 250
ObjectReference, 61-62

L Official API reference documentation
labels.NewRequirement function, 125 Deployment documentation, 10-12
List method, 123, 179, 226, 251, 252 documentation of the Pod resource, 14

314

one-page version, 15

operations documentation, 12, 13

Pods, 10

resource names, 9, 10
OneTermEqualSelector, 128
OneTermNotEqualSelector, 128
OpenAPI specification, 3-5, 7, 53
OpenAPI v3 schema format, 199
Operator container, 300
Operators, 232

channel source, 237

creating, 236

kind structure, 237

manager, 232

resources, 235

rest.Config object, 233

watch, 237
OwnerReference type, 72

APIVersion and Kind, 73, 74

BlockOwnerDeletion, 75

Controller field, 74, 75

P, Q

Patch method, 135, 137-140, 182, 256, 258,
260, 273

Patch information, 32, 34, 38

Patch method, 135, 137-140, 182, 256,
258, 260

Patch strategy, 33, 34

Pod documentation, 14

Pod kind, 14, 20, 26

PodList kind, 10, 20, 21, 27

PodSpec fields, 14

PodSpec structure, 14, 15

pod.yaml file, 19

Predefined key-value pairs, 262, 263

PrependReactor, 175, 227

INDEX

Printer columns, 204, 297, 298
PROJECT file, 294

Propagation Policy option, 75, 133, 255
Protobuf format, 54, 55, 57, 60, 103

R

Read method, 250
Reconcile function, 241, 264, 265, 296,
299, 300
envtest package (see envtest package)
ginkgo Suite, 279-283
writing the tests, 283-290
Reconcile loop
deployment, 267
function, 267
implementation, 268
operators, 267, 269, 270, 275
resource, 268, 269
role, 267
writing, 268
Reconcile method, 235, 236, 243
Reconciler implementations, 249
Reconciler interface, 236, 247
Reconciler option, 236
ReplicaSet resources, 72, 231, 235
Resourcelnterface, 225
Resourcelist type, 62-64
RESTClient() rest.Interface, 117
RESTConfigFromKubeConfig
function, 111
rest.Config structure, 110-112, 114, 164
RESTMapper, 105
Finding Resources, 107
implementation, 107, 108
Kind to a Resource, 107
Resource to Kind, 107
rest. RESTClient, 169

315

INDEX

S getters/setters
ObjectMetaFields, 218
TypeMetaFields, 218

helper functions, 219, 220
UnstructuredListType, 221-223
Unstructured type, 217, 218

Update method, 256, 260

UpdateOption, 118, 134, 256

UpperCamelCase format, 265

Scaled integer, 88, 89

Scale sub-resource, 9

Scheduler, 2

Server-side Apply operation, 38, 39, 137,
138, 140-142, 144, 254, 257,
269, 271

ServerVersion() method, 189

Status sub-resource, 8, 205, 240, 260, 297

StrategicMergeFrom, 136, 259 User API, 4-6
Sub-resource, 8-9, 12, 137, 139, 155, 198,
205, 260 V
Verbosity, 18, 262
T
Taint resource, 64, 65
W, X

Toleration resource, 65
WatchAction interface, 182

Watching resources, 44-45, 145-149,

U 182, 237-241
Unstructured type, 217, 218 Watch method, 145, 147, 149, 182, 239, 245
UnstructuredList type WebhookConverter value, 198, 199
creating and converting methods, well_known_labels.go file, 66
222,223 Work with custom resources
defined, 221 Clientset (see Clientset, custom
getters/setters resource)
ListMetaFields, 222 dynamic client, 224-229
TypeMetaFields, 222 unstructured package (see
and typed objects, 223 Unstructured package)
Unstructured package
creating and converting method,
218, 219 Y’ Z
defined, 217 YAML format, 54, 103, 201, 203, 294

316

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Kubernetes API Introduction
	Kubernetes Platform at a Glance
	OpenAPI Specification
	Verbs and Kinds
	Group-Version-Resource
	Sub-resources
	Official API Reference Documentation
	The Deployment Documentation
	Operations Documentation
	The Pod Documentation
	One-Page Version of the Documentation

	Conclusion

	Chapter 2: Kubernetes API Operations
	Examining Requests
	Making Requests
	Using kubectl as a Proxy
	Creating a Resource
	Getting Information About a Resource
	Getting the List of Resources
	Cluster-wide
	In a Specific namespace

	Filtering the Result of a List
	Using Label Selectors
	Using Field Selectors

	Deleting a Resource
	Deleting a Collection of Resources
	Updating a Resource
	Managing Conflicts When Updating a Resource
	Using a Strategic Merge Patch to Update a Resource
	Patching Array Fields
	Special Directives
	replace Directive
	delete Directive
	deleteFromPrimitiveList Directive
	setElementOrder Directive

	Applying Resources Server-side
	Watching Resources
	Filtering During a Watch Session
	Watching After Listing Resources
	Restarting a watch Request
	Allowing Bookmarks to Efficiently Restart a watch Request
	Paginating Results
	Consistency of the Full List
	Detecting the Last Chunk

	Getting Results in Various Formats
	Getting Results as a Table
	Column Definitions
	Row Data

	Using the YAML Format
	Using the Protobuf Format

	Conclusion

	Chapter 3: Working with API Resources in Go
	API Library Sources and Import
	Content of a Package
	types.go
	register.go
	doc.go
	generated.pb.go and generated.proto
	types_swagger_doc_generated.go
	zz_generated.deepcopy.go

	Specific Content in core/v1
	ObjectReference
	ResourceList
	Taint
	Toleration
	Well-Known Labels

	Writing Kubernetes Resources in Go
	Importing the Package
	The TypeMeta Fields
	The ObjectMeta Fields
	Name
	Namespace
	UID, ResourceVersion, and Generation
	Labels and Annotations
	OwnerReferences
	Setting APIVersion and Kind
	Setting Controller
	Setting BlockOwnerDeletion

	Spec and Status
	Comparison with Writing YAML Manifests

	A Complete Example
	Conclusion

	Chapter 4: Using Common Types
	Pointers
	Getting the Reference of a Value
	Dereferencing a Pointer
	Comparing Two Referenced Values

	Quantities
	Parsing a String as Quantity
	Using an inf.Dec as a Quantity
	Using a Scaled Integer as a Quantity
	Operations on Quantities

	IntOrString
	Time
	Factory Methods
	Operations on Time

	Conclusion

	Chapter 5: The API Machinery
	The Schema Package
	Scheme
	Initialization
	Mapping
	Conversion
	Adding Conversion Functions
	Converting

	Serialization
	JSON and YAML Serializer
	Protobuf Serializer
	Encoding and Decoding

	RESTMapper
	Kind to Resource
	Resource to Kind
	Finding Resources
	The DefaultRESTMapper Implementation

	Conclusion

	Chapter 6: The Client-go Library
	Connecting to the Cluster
	In-cluster Configuration
	Out-of-Cluster Configuration
	From kubeconfig in Memory
	From a kubeconfig on Disk
	From a Personalized kubeconfig
	From Several kubeconfig Files
	Overriding kubeconfig with CLI Flags

	Getting a Clientset
	Using the Clientset
	Examining the Requests
	Creating a Resource
	Getting Information About a Resource
	Getting List of Resources
	Filtering the Result of a List
	Setting LabelSelector Using the Labels Package
	Using Requirements
	Parsing a LabelSelector String
	Using a Set of Key-value Pairs

	Setting Fieldselector Using the Fields Package
	Assembling One Term Selectors
	Parsing a FieldSelector String
	Using a Set of Key-Value Pairs

	Deleting a Resource
	Deleting a Collection of Resources
	Updating a Resource
	Using a Strategic Merge Patch to Update a Resource
	Applying Resources Server-side with Patch
	Server-side Apply Using Apply Configurations
	Building an ApplyConfiguration from Scratch
	Building an ApplyConfiguration from an Existing Resource

	Watching Resources
	Errors and Statuses
	Definition of the metav1.Status Structure
	Error Returned by Clientset Operations

	RESTClient
	Building the Request
	Executing the Request
	Exploiting the Result

	Getting Result as a Table
	Discovery Client
	RESTMapper
	PriorityRESTMapper
	DeferredDiscoveryRESTMapper

	Conclusion

	Chapter 7: Testing Applications Using Client-go
	Fake Clientset
	Checking the Result of the Function
	Reacting to Actions
	Checking the Actions

	Fake REST Client
	FakeDiscovery Client
	Stubbing the ServerVersion
	Actions
	Mocking Resources

	Conclusion

	Chapter 8: Extending Kubernetes API with Custom Resources Definitions
	Performing Operations in Go
	The CustomResourceDefinition in Detail
	Naming the Resource
	Definition of the Resource Versions
	Converting Between Versions

	Schema of the Resource
	Deploying a Custom Resource Definition
	Additional Printer Columns
	Conclusion

	Chapter 9: Working with Custom Resources
	Generating a Clientset
	Using deepcopy-gen
	Installing deepcopy-gen
	Adding Annotations
	Running deepcopy-gen

	Using client-gen
	Installing client-go
	Adding Annotations
	Adding AddToScheme Function
	Running client-go

	Using the Generated Clientset
	Using the Generated fake Clientset

	Using the Unstructured Package and Dynamic Client
	The Unstructured Type
	Getters and Setters to Access TypeMeta Fields
	Getters and Setters to Access ObjectMeta Fields
	Methods for Creating and Converting
	Helpers to Access Non-meta Fields
	Example

	The UnstructuredList Type
	Getters and Setters to Access TypeMeta Fields
	Getters and Setters to Access ListMeta Fields
	Methods for Creating and Converting

	Converting Between Typed and Unstructured Objects
	The Dynamic Client
	Getting the dynamic Client
	Working with the dynamic Client
	Example
	The fake dynamic Client

	Conclusion

	Chapter 10: Writing Operators with the Controller-Runtime Library
	The Manager
	The Controller
	Creating a Controller
	Watching Resources
	A First Example
	Using the Controller Builder
	A Second Example Using the ControllerBuilder
	Injecting Manager Resources into the Reconciler
	Passing the Values When Creating the Reconciler Structure
	Using Injectors

	Using the Client
	Getting Information About a Resource
	Listing Resources
	Creating a Resource
	Deleting a Resource
	Deleting a Collection of Resources
	Updating a Resource
	Patching a Resource
	Server-side Apply
	Strategic Merge Patch
	Merge Patch

	Updating the Status of a Resource
	Patching the Status of a Resource

	Logging
	Verbosity
	Predefined Values
	Logger Name
	Getting the Logger from Context

	Events
	Conclusion

	Chapter 11: Writing the Reconcile Loop
	Writing the Reconcile Function
	Checking Whether the Resource Exists
	Implementing the Reconciled Resource
	Simple Implementation Example

	Conclusion

	Chapter 12: Testing the Reconcile Loop
	The envtest Package
	Installing envtest Binaries
	Using envtest

	Defining a ginkgo Suite
	Writing the Tests
	Test 1
	Test 2
	Test 3
	Test 4

	Conclusion

	Chapter 13: Creating an Operator with Kubebuilder
	Installing Kubebuilder
	Creating a Project
	Adding a Custom Resource to the Project
	Building and Deploying Manifests
	Running the Manager Locally
	Personalizing the Custom Resource
	Editing the Go Structures
	Enabling the Status Subresource
	Defining Printer Columns
	Regenerating the Files

	Implementing the Reconcile Function
	Adding RBAC Annotations
	Deploying the Operator on the Cluster
	Creating a New Version of the Resource
	Defining a New Version
	Implementing Hub and Convertible
	Setting Up the webhook
	Updating kustomization Files
	Using Various Versions

	Conclusion

	Index

