

Getting Started with
Containerization

Reduce the operational burden on your system by
automating and managing your containers

Gabriel N. Schenker
Hideto Saito
Hui-Chuan Chloe Lee
Ke-Jou Carol Hsu

BIRMINGHAM - MUMBAI

Getting Started with Containerization
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2019

Production reference: 1260319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-570-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Gabriel N. Schenker has more than 25 years of experience as an independent
consultant, architect, leader, trainer, mentor, and developer. Currently, Gabriel works
as Senior Curriculum Developer at Confluent after coming from a similar position at
Docker. Gabriel has a Ph.D. in Physics, and he is a Docker Captain, a Certified Docker
Associate, and an ASP Insider. When not working, Gabriel enjoys time with his
wonderful wife Veronicah and his children.

Hideto Saito has around 20 years of experience in the computer industry. In 1998,
while working for Sun Microsystems Japan, he was impressed by Solaris OS,
OPENSTEP, and Sun Ultra Enterprise 10000 (also known as StarFire). He then
decided to pursue UNIX and macOS operating systems.
In 2006, he relocated to southern California as a software engineer to develop
products and services running on Linux and macOS X. He was especially renowned
for his quick Objective-C code when he was drunk. He is also an enthusiast of
Japanese anime, drama, and motorsports, and loves Japanese Otaku culture.

Hui-Chuan Chloe Lee is a DevOps and software developer. She has worked in the
software industry on a wide range of projects for over five years. As a technology
enthusiast, she loves trying and learning about new technologies, which makes her
life happier and more fulfilling. In her free time, she enjoys reading, traveling, and
spending time with the people she loves.

Ke-Jou Carol Hsu has three years of experience working as a software engineer and is
currently a PhD student in the area of computer systems. Not only involved
programming, she also enjoys getting multiple applications and machines perfectly
working together to solve big problems. In her free time, she loves movies, music,
cooking, and working out.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: What Are Containers and Why Should I Use Them? 7
Technical requirements 8
What are containers? 8
Why are containers important? 11
What's the benefit for me or for my company? 13
The Moby project 13
Docker products 14

Docker CE 14
Docker EE 15

The container ecosystem 15
Container architecture 16
Summary 18
Questions 18
Further reading 19

Chapter 2: Setting up a Working Environment 20
Technical requirements 21
The Linux command shell 21
PowerShell for Windows 22
Using a package manager 22

Installing Homebrew on a Mac 22
Installing Chocolatey on Windows 23

Choosing a code editor 23
Docker Toolbox 24
Docker for Mac and Docker for Windows 26

Installing Docker for Mac 27
Installing Docker for Windows 29
Using docker-machine on Windows with Hyper-V 29

Minikube 31
Installing Minikube on Mac and Windows 32
Testing Minikube and kubectl 32

Summary 34
Questions 34
Further reading 34

Chapter 3: Working with Containers 35
Technical requirements 36

Table of Contents

[ii]

Running the first container 36
Starting, stopping, and removing containers 37

Running a random quotes container 39
Listing containers 41
Stopping and starting containers 43
Removing containers 44

Inspecting containers 44
Exec into a running container 46
Attaching to a running container 48
Retrieving container logs 50

Logging drivers 51
Using a container-specific logging driver 52
Advanced topic – changing the default logging driver 53

Anatomy of containers 54
Architecture 55
Namespaces 55
Control groups (cgroups) 57
Union filesystem (UnionFS) 58
Container plumbing 58

Runc 58
Containerd 59

Summary 59
Questions 60
Further reading 60

Chapter 4: Creating and Managing Container Images 61
What are images? 62

The layered filesystem 62
The writable container layer 64
Copy-on-write 65
Graph drivers 66

Creating images 66
Interactive image creation 66
Using Dockerfiles 69

The FROM keyword 71
The RUN keyword 71
The COPY and ADD keywords 72
The WORKDIR keyword 74
The CMD and ENTRYPOINT keywords 74
A complex Dockerfile 77
Building an image 77
Multistep builds 82
Dockerfile best practices 84

Saving and loading images 86
Sharing or shipping images 87

Tagging an image 87

Table of Contents

[iii]

Image namespaces 87
Official images 89
Pushing images to a registry 90

Summary 91
Questions 91
Further reading 92

Chapter 5: Data Volumes and System Management 93
Technical requirements 94
Creating and mounting data volumes 94

Modifying the container layer 94
Creating volumes 95
Mounting a volume 97
Removing volumes 98

Sharing data between containers 99
Using host volumes 100
Defining volumes in images 103
Obtaining Docker system information 106
Listing resource consumption 109
Pruning unused resources 110

Pruning containers 111
Pruning images 111
Pruning volumes 112
Pruning networks 113
Pruning everything 113

Consuming Docker system events 114
Summary 115
Questions 116
Further reading 116

Chapter 6: Distributed Application Architecture 117
What is a distributed application architecture? 118

Defining the terminology 118
Patterns and best practices 121

Loosely coupled components 121
Stateful versus stateless 122
Service discovery 122
Routing 124
Load balancing 124
Defensive programming 125

Retries 125
Logging 126
Error handling 126

Redundancy 126
Health checks 127

Table of Contents

[iv]

Circuit breaker pattern 127
Running in production 128

Logging 129
Tracing 129
Monitoring 129
Application updates 130

Rolling updates 130
Blue-green deployments 130
Canary releases 131
Irreversible data changes 132
Rollback 132

Summary 133
Questions 133
Further reading 134

Chapter 7: Single-Host Networking 135
Technical requirements 136
The container network model 136
Network firewalling 138
The bridge network 139
The host network 149
The null network 150
Running in an existing network namespace 151
Port management 153
Summary 156
Questions 156
Further reading 157

Chapter 8: Docker Compose 158
Demystifying declarative versus imperative 159
Running a multi-service app 160
Scaling a service 166
Building and pushing an application 169
Summary 170
Questions 170
Further reading 171

Chapter 9: Orchestrators 172
What are orchestrators and why do we need them? 173
The tasks of an orchestrator 175

Reconciling the desired state 175
Replicated and global services 176
Service discovery 177
Routing 178
Load balancing 178

Table of Contents

[v]

Scaling 179
Self-healing 180
Zero downtime deployments 181
Affinity and location awareness 182
Security 183

Secure communication and cryptographic node identity 183
Secure networks and network policies 184
Role-based access control (RBAC) 184
Secrets 185
Content trust 186
Reverse uptime 186

Introspection 187
Overview of popular orchestrators 188

Kubernetes 188
Docker Swarm 189
Apache Mesos and Marathon 191
Amazon ECS 191
Microsoft ACS 192

Summary 193
Questions 193
Further reading 193

Chapter 10: Introduction to Docker Swarm 194
Architecture 195
Swarm nodes 196

Swarm managers 197
Swarm workers 199

Stacks, services, and tasks 200
Services 201
Task 202
Stack 202

Multi-host networking 204
Creating a Docker Swarm 205

Creating a local single node swarm 205
Creating a local swarm in VirtualBox or Hyper-V 208
Using Play with Docker (PWD) to generate a Swarm 212
Creating a Docker Swarm in the cloud 215

Deploying a first application 221
Creating a service 222
Inspecting the service and its tasks 224
Logs of a service 226
Reconciling the desired state 227
Deleting a service or a stack 228
Deploying a multi-service stack 229

The swarm routing mesh 231
Summary 232

Table of Contents

[vi]

Questions 233
Further reading 233

Chapter 11: Zero Downtime Deployments and Secrets 234
Zero downtime deployment 235

Popular deployment strategies 235
Rolling updates 235
Health checks 242
Rollback 246
Blue–green deployments 248
Canary releases 249

Secrets 249
Creating secrets 250
Using a secret 251
Simulating secrets in a development environment 253
Secrets and legacy applications 254
Updating secrets 256

Summary 257
Questions 257
Further reading 258

Chapter 12: Building Your Own Kubernetes Cluster 259
Introduction 259
Exploring the Kubernetes architecture 259

Getting ready 260
How to do it... 260

Kubernetes master 261
API server (kube-apiserver) 262
Scheduler (kube-scheduler) 262
Controller manager (kube-controller-manager) 262
Command-line interface (kubectl) 262
Kubernetes node 263
kubelet 264
Proxy (kube-proxy) 264

How it works... 265
etcd 265
Kubernetes network 266

See also 266
Setting up the Kubernetes cluster on macOS by minikube 266

Getting ready 268
How to do it... 268
How it works... 270
See also 273

Setting up the Kubernetes cluster on Windows by minikube 274
Getting ready 274
How to do it... 275

Table of Contents

[vii]

How it works... 279
See also 284

Setting up the Kubernetes cluster on Linux via kubeadm 285
Getting ready 285
How to do it... 286

Package installation 287
Ubuntu 287
CentOS 287

System configuration prerequisites 288
CentOS system settings 289

Booting up the service 289
Network configurations for containers 291
Getting a node involved 292

How it works... 293
See also 294

Setting up the Kubernetes cluster on Linux via Ansible
(kubespray) 295

Getting ready 295
Installing pip 296
Installing Ansible 297
Installing python-netaddr 298
Setting up ssh public key authentication 298

How to do it... 300
Maintaining the Ansible inventory 301
Running the Ansible ad hoc command to test your environment 302
Ansible troubleshooting 303

Need to specify a sudo password 304
Need to specify different ssh logon user 305
Need to change ssh port 305
Common ansible issue 305

How it works... 306
See also 310

Running your first container in Kubernetes 310
Getting ready 310
How to do it... 312

Running a HTTP server (nginx) 313
Exposing the port for external access 314
Stopping the application 315

How it works… 315
See also 318

Chapter 13: Walking through Kubernetes Concepts 319
Introduction 319
An overview of Kubernetes 320
Linking Pods and containers 323

Getting ready 323
How to do it... 324
How it works... 326

Table of Contents

[viii]

See also 329
Managing Pods with ReplicaSets 330

Getting ready 331
How to do it... 332

Creating a ReplicaSet 332
Getting the details of a ReplicaSet 334
Changing the configuration of a ReplicaSet 335
Deleting a ReplicaSet 336

How it works... 338
There's more... 340
See also 340

Deployment API 341
Getting ready 341
How to do it... 343
How it works... 347

Using kubectl set to update the container image 347
Updating the YAML and using kubectl apply 349

See also 350
Working with Services 351

Getting ready 352
How to do it... 353

Creating a Service for different resources 354
Creating a Service for a Pod 354
Creating a Service for a Deployment with an external IP 356
Creating a Service for an Endpoint without a selector 357
Creating a Service for another Service with session affinity 359

Deleting a Service 360
How it works... 361
There's more... 363
See also 366

Working with volumes 367
Getting ready 368
How to do it... 368

emptyDir 368
hostPath 371
NFS 372
glusterfs 374
downwardAPI 376
gitRepo 379

There's more... 380
PersistentVolumes 380
Using storage classes 384

gcePersistentDisk 385
awsElasticBlockStore 388

See also 392
Working with Secrets 392

Getting ready 393
How to do it... 393

Table of Contents

[ix]

Creating a Secret 393
Working with kubectl create command line 393
From a file 393
From a directory 395
From a literal value 395
Via configuration file 396

Using Secrets in Pods 396
By environment variables 396
By volumes 397

Deleting a Secret 399
How it works... 399
There's more... 399

Using ConfigMaps 399
Mounting Secrets and ConfigMap in the same volume 401

Working with names 402
Getting ready 402
How to do it... 403
How it works... 406
See also 407

Working with Namespaces 408
Getting ready 409
How to do it... 410

Creating a Namespace 410
Changing the default Namespace 411
Deleting a Namespace 413

How it works… 414
There's more... 414

Creating a LimitRange 414
Deleting a LimitRange 418

See also 418
Working with labels and selectors 419

Getting ready 419
How to do it... 420
How it works... 423

Equality-based label selector 423
Set-based label selector 424

There's more... 425
Linking Service to Pods or ReplicaSets using label selectors 425
Linking Deployment to ReplicaSet using the set-based selector 427

See also 429

Chapter 14: Playing with Containers 430
Introduction 430
Scaling your containers 430

Getting ready 431
How to do it... 432

Scale up and down manually with the kubectl scale command 432
Horizontal Pod Autoscaler (HPA) 434

Table of Contents

[x]

How it works... 437
There is more… 437
See also 438

Updating live containers 438
Getting ready 438
How to do it... 439

Deployment update strategy – rolling-update 441
Rollback the update 445
Deployment update strategy – recreate 446

How it works... 447
There's more... 448
See also 450

Forwarding container ports 450
Getting ready 451
How to do it... 452

Container-to-container communication 452
Pod-to-Pod communication 456

Working with NetworkPolicy 457
Pod-to-Service communication 461
External-to-internal communication 465

Working with Ingress 466
There's more... 470
See also 472

Ensuring flexible usage of your containers 472
Getting ready 472
How to do it... 474

Pod as DaemonSets 474
Running a stateful Pod 477

How it works... 481
Pod recovery by DaemonSets 481
Pod recovery by StatefulSet 482

There's more... 484
See also 489

Submitting Jobs on Kubernetes 489
Getting ready 489
How to do it... 490

Pod as a single Job 490
Create a repeatable Job 493
Create a parallel Job 494
Schedule to run Job using CronJob 495

How it works... 498
See also 498

Working with configuration files 498
Getting ready 498

YAML 499
JSON 499

How to do it... 500

Table of Contents

[xi]

How it works... 504
Pod 504
Deployment 504
Service 505

See also 505

Chapter 15: Building High-Availability Clusters 506
Introduction 506
Clustering etcd 506

Getting ready 507
How to do it... 508

Static mechanism 509
Discovery mechanism 514
kubeadm 517
kubespray 518
Kops 519

Building multiple masters 519
Getting ready 521
How to do it... 521

Setting up the first master 522
Setting up the other master with existing certifications 523
Adding nodes in a HA cluster 524

How it works... 525
See also 529

Chapter 16: Building Continuous Delivery Pipelines 530
Introduction 530
Moving monolithic to microservices 530

Getting ready 531
How to do it... 532

Microservices 532
Frontend WebUI 536

How it works... 538
Microservices 539
Frontend WebUI 540

Working with the private Docker registry 543
Getting ready 544

Using Kubernetes to run a Docker registry server 544
Using Amazon elastic container registry 546
Using Google cloud registry 547

How to do it... 547
Launching a private registry server using Kubernetes 548

Creating a self-signed SSL certificate 548
Creating HTTP secret 549
Creating the HTTP basic authentication file 550
Creating a Kubernetes secret to store security files 550
Configuring a private registry to load a Kubernetes secret 551

Create a repository on the AWS elastic container registry 554
Determining your repository URL on Google container registry 555

Table of Contents

[xii]

How it works... 556
Push and pull an image from your private registry 556
Push and pull an image from Amazon ECR 558
Push and pull an image from Google cloud registry 560

Using gcloud to wrap the Docker command 560
Using the GCP service account to grant a long-lived credential 560

Integrating with Jenkins 563
Getting ready 563
How to do it... 564

Setting up a custom Jenkins image 565
Setting up Kubernetes service account and ClusterRole 566
Launching the Jenkins server via Kubernetes deployment 568

How it works... 570
Using Jenkins to build a Docker image 572
Deploying the latest container image to Kubernetes 578

Chapter 17: Building Kubernetes on AWS 581
Introduction 581
Playing with Amazon Web Services 581

Getting ready 582
Creating an IAM user 582
Installing AWS CLI on macOS 585
Installing AWS CLI on Windows 586

How to do it... 587
How it works... 588

Creating VPC and Subnets 588
Internet gateway 590
NAT-GW 592
Security group 594
EC2 595

Setting up Kubernetes with kops 599
Getting ready 599
How to do it... 600
How it works... 602

Working with kops-built AWS cluster 603
Deleting kops-built AWS cluster 604

See also 604
Using AWS as Kubernetes Cloud Provider 605

Getting ready 605
How to do it... 606

Elastic load balancer as LoadBalancer service 607
Elastic Block Store as StorageClass 611

There's more... 613
Managing Kubernetes cluster on AWS by kops 614

Getting ready 614
How to do it... 615

Modifying and resizing instance groups 615
Updating nodes 615

Table of Contents

[xiii]

Updating masters 617
Upgrading a cluster 618

There's more... 621
See also 621

Chapter 18: Advanced Cluster Administration 622
Introduction 622
Advanced settings in kubeconfig 623

Getting ready 624
How to do it... 625

Setting new credentials 626
Setting new clusters 627
Setting contexts and changing current-context 628
Cleaning up kubeconfig 629

There's more... 630
See also 630

Setting resources in nodes 630
Getting ready 631
How to do it... 632

Configuring a BestEffort pod 633
Configuring a Guaranteed pod 635
Configuring a Burstable pod 636

How it works... 637
See also 639

Playing with WebUI 639
Getting ready 639
How to do it... 640

Relying on the dashboard created by minikube 640
Creating a dashboard manually on a system using other booting tools 640

How it works... 644
Browsing your resource by dashboard 645
Deploying resources by dashboard 648
Removing resources by dashboard 652

See also 652
Working with the RESTful API 652

Getting ready 653
How to do it... 655
How it works... 658
There's more... 659
See also 660

Working with Kubernetes DNS 660
Getting ready 660
How to do it... 661

DNS for pod 661
DNS for Kubernetes Service 663
DNS for StatefulSet 665

How it works... 668

Table of Contents

[xiv]

Headless service when pods scale out 670
See also 672

Authentication and authorization 672
Getting ready 672
How to do it... 673

Authentication 674
Service account token authentication 675
X509 client certs 678
OpenID connect tokens 679

Authorization 683
Role and RoleBinding 683
ClusterRole and ClusterRoleBinding 684
Role-based access control (RBAC) 686

Admission control 687
NamespaceLifecycle 688
LimitRanger 688
ServiceAccount 688
PersistentVolumeLabel (deprecated from v1.8) 688
DefaultStorageClass 688
DefaultTolerationSeconds 689
ResourceQuota 689
DenyEscalatingExec 689
AlwaysPullImages 689

There's more… 690
Initializers (alpha) 690
Webhook admission controllers (beta in v1.9) 690

See also 691

Other Books You May Enjoy 692

Index 695

Preface
This Learning Path introduces you to the world of containerization with an overview
of Docker fundamentals and a quick brush up on how Kubernetes works with
containers. Starting with creating Kubernetes clusters and running applications with
proper authentication and authorization, you'll learn how to create high-availability
Kubernetes clusters on Amazon Web Services (AWS), and also learn how to use
kubeconfig to manage different clusters. Whether it is learning about Docker
containers, Docker images, and Docker Compose, or building a continuous delivery
pipeline for your application, this Learning Path equips you with all the right tools
and techniques to get started with containerization.

By the end of this Learning Path, you will have hands-on experience of working with
Docker containers and orchestrators, such as SwarmKit and Kubernetes.

This Learning Path includes content from the following Packt products:

Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker
Kubernetes Cookbook - Second Edition by Hideto Saito, Hui-Chuan Chloe
Lee, and Ke-Jou Carol Hsu

Who this book is for
This Learning Path is designed for system administrators, operations engineers,
DevOps engineers, and developers who are interested in getting started with Docker
and Kubernetes. Though you do not need any prior experience with Docker, it will
help you to have basic knowledge of Kubernetes and containers.

What this book covers
Chapter 1, What Are Containers and Why Should I Use Them?, focuses on the software
supply chain and the friction within it. It then presents containers as a means to
reduce this friction and add enterprise-grade security on top of it. In this chapter, we
also look into how containers and the ecosystem around them are assembled. We
specifically point out the distinction between the upstream OSS components (Moby)
that form the building blocks of the downstream products of Docker and other
vendors.

Preface

[2]

Chapter 2, Setting up a Working Environment, discusses in detail how to set up an
ideal environment for developers, DevOps engineers, and operators that can be used
when working with Docker containers.

Chapter 3, Working with Containers, teaches how start, stop, and remove containers.
The chapter also teaches how to inspect containers to retrieve additional metadata.
Furthermore, it introduces how to run additional processes and how to attach to the
main process in an already running container. It also shows how to retrieve logging
information from a container that is produced by the processes running inside it.

Chapter 4, Creating and Managing Container Images, introduces the different ways to
create container images, which serve as templates for containers. It introduces the
inner structure of an image and how it is built.

Chapter 5, Data Volumes and System Management, introduces data volumes that can be
used by stateful components running in containers. The chapter also introduces
system-level commands that are used to gather information about Docker and the
underlying OS, as well as commands to clean the system from orphaned resources.
Finally, it introduces the system
events generated by the Docker engine.

Chapter 6, Distributed Application Architecture, introduces the concept of a
distributed application architecture and discusses the various patterns and best
practices that are required to run a distributed application successfully. Finally, it
discusses the additional requirements that need to be fulfilled to run such an
application in production.

Chapter 7, Single-Host Networking, introduces the Docker container networking
model and its single-host implementation in the form of the bridge network. The
chapter introduces the concept of software-defined networks (SDNs) and how they
are used to secure containerized applications. Finally, it introduces how container
ports can be opened to the public and thus how to make containerized components
accessible from the outside world.

Chapter 8, Docker Compose, introduces the concept of an application consisting of
multiple services, each running in a container, and how Docker Compose allows us to
easily build, run, and scale such an application using a declarative approach.

Chapter 9, Orchestrators, introduces the concept of orchestrators. It teaches
why orchestrators are needed and how they work. The chapter also provides an
overview of the most popular orchestrators and explores a few of their pros and cons.

Preface

[3]

Chapter 10, Introduction to Docker Swarm, introduces Docker's native orchestrator
called SwarmKit. It elaborates on all the concepts and objects SwarmKit uses to
deploy and run a distributed, resilient, robust, and highly available application in a
cluster on-premise, or in the cloud. The chapter also introduces how SwarmKit
ensures secure applications using SDNs to isolate containers and secrets to protect
sensitive information.

Chapter 11, Zero Downtime Deployments and Secrets, teaches how to deploy services
or applications onto a Docker swarm with zero downtime and automatic rollback
capabilities. It also introduces secrets as a means to protect sensitive information.

Chapter 12, Building Your Own Kubernetes Cluster, explains how to build your
own Kubernetes cluster with various deployment tools and run your first container
on it.

Chapter 13, Walking through Kubernetes Concepts, covers both basic and advanced
concepts we need to know about Kubernetes. Then, you will learn how to combine
them to create Kubernetes objects by writing and applying configuration files.

Chapter 14, Playing with Containers, explains how to scale your containers up and
down and perform rolling updates without affecting application availability.
Furthermore, you will learn how deploy containers for dealing with different
application workloads. It will also walk you through best practices of configuration
files.

Chapter 15, Building High-Availability Clusters, provides information on how to build
High Availability Kubernetes master and etcd. This will prevent Kubernetes
components from being the single point of failure.

Chapter 16, Building Continuous Delivery Pipelines, talks about how to integrate
Kubernetes into an existing Continuous Delivery pipeline with Jenkins and private
Docker registry.

Chapter 17, Building Kubernetes on AWS, walks you through AWS fundamentals. You
will learn how to build a Kuberentes cluster on AWS in few minutes.

Chapter 18, Advanced Cluster Administration, talks about important resource
management in Kubernetes. This chapter also goes through other important cluster
administration, such as Kubernetes dashboard, authentication, and authorization.

Preface

[4]

To get the most out of this book
Ideally you have access to a laptop or personal computer with Windows 10
Professional or a recent version of Mac OS X installed. A computer with any popular
Linux OS installed works too. If you're on a Mac you should install Docker for Mac
and if you're on Windows then install Docker for Windows. You can download them
from here: https:/ /www. docker. com/ community- edition.
If you are on an older version of Windows or are using Windows 10 Home edition,
then you should install Docker Toolbox. You can find the Docker Toolbox here:
https://docs.docker. com/ toolbox/ toolbox_ install_ windows/ .
On the Mac, use the Terminal application, and on Windows, use a PowerShell console
to try out the commands you will be learning. You also need a recent version of a
browser such as Google Chrome, Safari or Internet Explorer. Of course you will need
internet access to download tools and container images that we are going to use and
explore in this book.

Starting with Chapter 12, Building Your Own Kubernetes Cluster, we use at least three
servers with a Linux-based OS to build all of the components in Kubernetes. From
scalability point of view, we recommend you start with three servers in order to scale
out the components independently and push your cluster to the production level.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Getting- Started- with-Containerization. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Next is the actual command we want to execute in the given
context, which is run."

A block of code is set as follows:

$ docker container run alpine echo "Hello World"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "To start the installation, click on the Get Docker for Mac (Edge) button and
follow the instructions."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/Getting-Started-with-Containerization
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
What Are Containers and
Why Should I Use Them?

This first chapter of this book will introduce you to the world of containers and their
orchestration. The book starts from the beginning, assuming no prior knowledge in
the area of containers, and will give you a very practical introduction into the topic.

In this chapter, we are focusing on the software supply chain and the friction within
it. We then present containers as a means to reduce this friction and add enterprise-
grade security on top of it. In this chapter, we also look into how containers and the
ecosystem around them are assembled. We specifically point out the distinction
between the upstream Operations Support System (OSS) components, united under
the code name Moby, that form the building blocks of the downstream products of
Docker and other vendors.

The chapter covers the following topics:

What are containers?
Why are containers important?
What's the benefit for me or for my company?
The Moby project
Docker products
The container ecosystem
Container architecture

What Are Containers and Why Should I Use Them? Chapter 1

[8]

After completing this module, you will be able to:

Explain in a few simple sentences to an interested layman what containers
are, using an analogy such as physical containers
Justify to an interested layman why containers are so important, using an
analogy such as physical containers versus traditional shipping, or
apartment homes versus single family homes, and so on
Name at least four upstream open source components that are used by the
Docker products, such as Docker for Mac/Windows
Identify at least three Docker products

Technical requirements
This chapter is a theoretical introduction into the topic. Therefore, there are no special
technical requirements for this chapter.

What are containers?
A software container is a pretty abstract thing and thus it might help if we start with
an analogy that should be pretty familiar to most of the readers. The analogy is a
shipping container in the transportation industry. Throughout history, people have
been transporting goods from one location to another by various means. Before the
invention of the wheel, goods would most probably have been transported in bags,
baskets, or chests on the shoulders of the humans themselves, or they might have
used animals such as donkeys, camels, or elephants to transport them.

With the invention of the wheel, transportation became a bit more efficient as humans
would built roads on which they could move their carts along. Many more goods
could be transported at a time. When we then introduced the first steam-driven
machines, and later gasoline driven engines, transportation became even more
powerful. We now transport huge amounts of goods in trains, ships, and trucks. At
the same time, the type of goods became more and more diverse, and sometimes
complex to handle.

What Are Containers and Why Should I Use Them? Chapter 1

[9]

In all these thousands of years, one thing did not change though, and that was the
necessity to unload the goods at the target location and maybe load them onto
another means of transportation. Take, for example, a farmer bringing a cart full of
apples to a central train station where the apples are then loaded onto a train,
together with all the apples from many other farmers. Or think of a winemaker
bringing his barrels of wine with a truck to the port where they are unloaded, and
then transferred to a ship that will transport the barrels overseas.

This unloading from one means of transportation and loading onto another means of
transportation was a really complex and tedious process. Every type of good was
packaged in its own way and thus had to be handled in its own way. Also, loose
goods risked being stolen by unethical workers, or goods could be damaged in the
process.

Then, there came the container, and it totally revolutionized the transportation
industry. The container is just a metallic box with standardized dimensions. The
length, width, and height of each container is the same. This is a very important point.
Without the world agreeing on a standard size, the whole container thing would not
have been as successful as it is now.

Now, with standardized containers, companies who want to have their goods
transported from A to B package those goods into these containers. Then, they call a
shipper which comes with a standardized means for transportation. This can be a
truck that can load a container or a train whose wagons can each transport one or
several containers. Finally, we have ships that are specialized in transporting huge
amounts of containers. The shippers never need to unpack and repackage goods. For
a shipper, a container is a black box and they are not interested in what is in it nor
should they care in most cases. It is just a big iron box with standard dimensions. The
packaging of goods into containers is now fully delegated to the parties that want to
have their goods shipped, and they should know best on how to handle and package
those goods.

Since all containers have the same standardized shape and dimensions, the shippers
can use standardized tools to handle containers, that is, cranes that unload containers,
say from a train or a truck, and load them onto a ship or vice versa. One type of crane
is enough to handle all the containers that come along over time. Also, the means of
transportation can be standardized, such as container ships, trucks, and trains.

Because of all this standardization, all the processes in and around shipping goods
could also be standardized and thus made much more efficient than they were before
the age of containers.

What Are Containers and Why Should I Use Them? Chapter 1

[10]

I think by now you should have a good understanding of why shipping containers
are so important and why they revolutionized the whole transportation industry. I
chose this analogy purposefully, since the software containers that we are going to
introduce here fulfill the exact same role in the so-called software supply chain as
shipping containers do in the supply chain of physical goods.

In the old days, developers would develop a new application. Once that application
was completed in the eyes of the developers, they would hand this application over to
the operations engineers that were then supposed to install it on the production
servers and get it running. If the operations engineers were lucky, they even got a
somewhat accurate document with installation instructions from the developers. So
far so good, and life was easy.

But things got a bit out of hand when in an enterprise, there were many teams of
developers that created quite different types of applications, yet all needed to be
installed on the same production servers and kept running there. Usually, each
application has some external dependencies such as which framework it was built on
or what libraries it uses and so on. Sometimes, two applications would use the same
framework but in different versions that might or might not be compatible between
each other. Our operations engineer's life became much harder over time. They had to
be really creative on how they could load their ship, which is of course their servers
with different applications without breaking something.

Installing a new version of a certain application was now a complex project on its
own and often needed months of planning and testing. In other words, there was a lot
of friction in the software supply chain. But these days, companies rely more and
more on software and the release cycles become shorter and shorter. We cannot
afford anymore to just have a new release maybe twice a year. Applications need to
be updated in a matter of weeks or days, or sometimes even multiple times per day.
Companies that do not comply risk going out of business due to the lack of agility. So,
what's the solution?

A first approach was to use virtual machines (VMs). Instead of running multiple
applications all on the same server, companies would package and run a single
application per VM. With it, the compatibility problems were gone and life seemed
good again. Unfortunately, the happiness didn't last for long. VMs are pretty heavy
beasts on their own since they all contain a full-blown OS such as Linux or Windows
Server and all that for just a single application. This is as if in the transportation
industry you would use a gigantic ship just to transport a truck load of bananas.
What a waste. That can never be profitable.

What Are Containers and Why Should I Use Them? Chapter 1

[11]

The ultimate solution to the problem was to provide something much more
lightweight than VMs but also able to perfectly encapsulate the goods it needed to
transport. Here, the goods are the actual application written by our developers plus
(and this is important) all the external dependencies of the application, such as
framework, libraries, configurations, and more. This holy grail of a software
packaging mechanism was the Docker container.

Developers use Docker containers to package their applications, frameworks, and
libraries into them, and then they ship those containers to the testers or to the
operations engineers. For the testers and operations engineers, the container is just a
black box. It is a standardized black box, though. All containers, no matter what
application runs inside them, can be treated equally. The engineers know that if any
container runs on their servers, then any other containers should run too. And this is
actually true, apart from some edge cases which always exist.

Thus, Docker containers are a means to package applications and their dependencies
in a standardized way. Docker then coined the phrase—Build, ship and run anywhere.

Why are containers important?
These days, the time between new releases of an application become shorter and
shorter, yet the software itself doesn't become any simpler. On the contrary, software
projects increase in complexity. Thus, we need a way to tame the beast and simplify
the software supply chain.

We also hear every day how much more cyber crimes are on the rise. Many well-
known companies are affected by security breaches. Highly sensitive customer data
gets stolen, such as social security numbers, credit card information, and more. But
not only customer data is compromised, sensitive company secrets are also stolen.

Containers can help in many ways. First of all, Gartner has found in a recent report
that applications running in a container are more secure than their counterparts not
running in a container. Containers use Linux security primitives such as Linux kernel
namespaces to sandbox different applications running on the same computers and
control groups (cgroups), to avoid the noisy neighbor problem where one bad
application is using all available resources of a server and starving all other
applications.

Due to the fact that container images are immutable, it is easy to have them scanned
for known vulnerabilities and exposures, and in doing so, increase the overall
security of our applications.

What Are Containers and Why Should I Use Them? Chapter 1

[12]

Another way we can make our software supply chain more secure when using
containers is to use content trust. Content trust basically ensures that the author of a
container image is who they pretend to be and that the consumer of the container
image has a guarantee that the image has not been tampered with in transit. The latter
is known as a man-in-the-middle (MITM) attack.

All that I have just said is of course technically also possible without using containers,
but since containers introduce a globally accepted standard, it makes it so much
easier to implement those best practices and enforce them.

OK, but security is not the only reason why containers are important. There are other
reasons:

One of them is the fact that containers make it easy to simulate a production-like
environment, even on a developer's laptop. If we can containerize any application,
then we can also containerize, say, a database such as Oracle or MS SQL Server. Now,
everyone who has ever had to install an Oracle database on a computer knows that
this is not the easiest thing to do and it takes a lot of space away on your computer.
You wouldn't want to do that to your development laptop just to test whether the
application you developed really works end to end. With containers at hand, I can
run a full-blown relational database in a container as easily as saying 1, 2, 3. And
when I'm done with testing, I can just stop and delete the container and the database
is gone without leaving a trace on my computer.

Since containers are very lean compared to VMs, it is not uncommon to have many
containers running at the same time on a developer's laptop without overwhelming
the laptop.

A third reason why containers are important is that operators can finally concentrate
on what they are really good at, provisioning infrastructure, and running and
monitoring applications in production. When the applications they have to run on a
production system are all containerized, then operators can start to standardize their
infrastructure. Every server becomes just another Docker host. No special libraries of
frameworks need to be installed on those servers, just an OS and a container runtime
such as Docker.

Also, the operators do not have to have any intimate knowledge about the internals of
the applications anymore since those applications run self-contained in containers
that ought to look like black boxes to the operations engineers, similar to how the
shipping containers look to the personnel in the transportation industry.

What Are Containers and Why Should I Use Them? Chapter 1

[13]

What's the benefit for me or for my
company?
Somebody once said that today, every company of a certain size has to acknowledge
that they need to be a software company. Software runs all businesses, period. As
every company becomes a software company, there is a need to establish a software
supply chain. For the company to remain competitive, their software supply chain
has to be secure and efficient. Efficiency can be achieved through thorough
automation and standardization. But in all three areas, security, automation, and
standardization, containers have shown to shine. Large and well-known enterprises
have reported that when containerizing existing legacy applications (many call them
traditional applications) and establishing a fully automated software supply chain
based on containers, they can reduce the cost used for maintenance of those mission-
critical applications by a factor of 50 to 60% and they can reduce the time between
new releases of these traditional applications by up to 90%.

That said, the adoption of container technology saves these companies a lot of money,
and at the same time it speeds up the development process and reduces the time to
market.

The Moby project
Originally, when the company Docker introduced Docker containers, everything was
open source. Docker didn't have any commercial products at this time. The Docker
engine which the company developed was a monolithic piece of software. It
contained many logical parts, such as the container runtime, a network library, a
RESTful API, a command-line interface, and much more.

Other vendors or projects such as Red Hat or Kubernetes were using the Docker
engine in their own products, but most of the time they were only using part of its
functionality. For example, Kubernetes did not use the Docker network library of the
Docker engine but provided its own way of networking. Red Hat in turn did not
update the Docker engine frequently and preferred to apply unofficial patches to
older versions of the Docker engine, yet they still called it the Docker engine.

Out of all these reasons and many more, the idea emerged that Docker had to do
something to clearly separate the Docker open source part from the Docker
commercial part. Furthermore, the company wanted to prevent competitors from
using and abusing the name Docker for their own gains.

What Are Containers and Why Should I Use Them? Chapter 1

[14]

This was the main reason why the Moby project was born. It serves as the umbrella
for most of the open source components Docker developed and continues to develop.
These open source projects do not carry the name Docker in them anymore.

Part of the Moby project are components for image management, secret management,
configuration management, and networking and provisioning, to name just a few.
Also, part of the Moby project are special Moby tools that are, for example, used to
assemble components into runnable artifacts.

Some of the components that technically would belong to the Moby project have been
donated by Docker to the Cloud Native Computing Foundation (CNCF) and thus do
not appear in the list of components anymore. The most prominent ones are
containerd and runc which together form the container runtime.

Docker products
Docker currently separates its product lines into two segments. There is the
Community Edition (CE) which is closed source yet completely free, and then there
is the Enterprise Edition (EE) which is also a closed source and needs to be licensed
on a yearly basis. The enterprise products are backed by 24 x 7 support and are
supported with bug fixes much longer than their CE counterparts.

Docker CE
Part of the Docker community edition are products such as the Docker Toolbox,
Docker for Mac, and Docker for Windows. All these three products are mainly
targeting developers.

Docker for Mac and Docker for Windows are easy-to-install desktop applications that
can be used to build, debug, and test Dockerized applications or services on a Mac or
on Windows. Docker for Mac and Docker for Windows are complete development
environments which deeply integrated with their respective hypervisor framework,
networking, and filesystem. These tools are the fastest and most reliable way to run
Docker on a Mac or on Windows.

Under the umbrella of the CE, there are also two products that are more geared
towards operations engineers. Those products are Docker for Azure and Docker for
AWS.

What Are Containers and Why Should I Use Them? Chapter 1

[15]

For example, with Docker for Azure, which is a native Azure application, you can set
up Docker in a few clicks, optimized for and integrated to the underlying
Azure Infrastructure as a Service (IaaS) services. It helps operations engineers to
accelerate time to productivity in building and running Docker applications in Azure.

Docker for AWS works very similar but for Amazon's cloud.

Docker EE
The Docker EE consists of the two products Universal Control Plane (UCP) and
Docker Trusted Registry (DTR) that both run on top of Docker Swarm. Both are
Swarm applications. Docker EE builds on top of the upstream components of the
Moby project and adds enterprise-grade features such as role-based access control
(RBAC), multi tenancy, mixed clusters of Docker Swarm and Kubernetes, web-based
UI, and content trust, as well as image scanning on top of it.

The container ecosystem
There has never been a new technology introduced in IT that penetrated the
landscape so quickly and so thoroughly than containers. Any company that doesn't
want to be left behind cannot ignore containers. This huge interest in containers from
all sectors of the industry has triggered a lot of innovation in this sector. Numerous
companies have specialized in containers and either provide products that build on
top of this technology or build tools that support it.

Initially, Docker didn't have a solution for container orchestration thus other
companies or projects, open source or not, tried to close this gap. The most prominent
one is Kubernetes which was initiated by Google and then later donated to the CNCF.
Other container orchestration products are Apache Mesos, Rancher, Red Hat's Open
Shift, Docker's own Swarm, and more.

More recently, the trend goes towards a service mesh. This is the new buzz word. As
we containerize more and more applications, and as we refactor those applications
into more microservice-oriented applications, we run into problems that simple
orchestration software cannot solve anymore in a reliable and scalable way. Topics in
this area are service discovery, monitoring, tracing, and log aggregation. Many new
projects have emerged in this area, the most popular one at this time being Istio,
which is also part of the CNCF.

What Are Containers and Why Should I Use Them? Chapter 1

[16]

Many say that the next step in the evolution of software are functions, or more
precisely, Functions as a Service (FaaS). Some projects exist that provide exactly this
kind of service and are built on top of containers. One prominent example is
OpenFaaS.

We have only scratched the surface of the container ecosystem. All big IT companies
such as Google, Microsoft, Intel, Red Hat, IBM, and more are working feverishly on
containers and related technologies. The CNCF that is mainly about containers and
related technologies, has so many registered projects, that they do not all fit on a
poster anymore. It's an exciting time to work in this area. And in my humble opinion,
this is only the beginning.

Container architecture
Now, let's discuss on a high level how a system that can run Docker containers is
designed. The following diagram illustrates what a computer on which Docker has
been installed looks like. By the way, a computer which has Docker installed is often
called a Docker host, because it can run or host Docker containers:

High-level architecture diagram of the Docker engine

What Are Containers and Why Should I Use Them? Chapter 1

[17]

In the preceding diagram, we see three essential parts:

On the bottom, we have the Linux operating system
In the middle dark gray, we have the container runtime
On the top, we have the Docker engine

Containers are only possible due to the fact that the Linux OS provides some
primitives, such as namespaces, control groups, layer capabilities, and more which
are leveraged in a very specific way by the container runtime and the Docker engine.
Linux kernel namespaces such as process ID (pid) namespaces or network
(net) namespaces allow Docker to encapsulate or sandbox processes that run inside
the container. Control groups make sure that containers cannot suffer from the noisy
neighbor syndrome, where a single application running in a container can consume
most or all of the available resources of the whole Docker host. Control groups allow
Docker to limit the resources, such as CPU time or the amount of RAM that each
container gets maximally allocated.

The container runtime on a Docker host consists of containerd and runc. runc is
the low-level functionality of the container runtime and containerd, which is based
on runc, provides the higher-level functionality. Both are open source and have been
donated by Docker to the CNCF.

The container runtime is responsible for the whole life cycle of a container. It pulls a
container image (which is the template for a container) from a registry if necessary,
creates a container from that image, initializes and runs the container, and eventually
stops and removes the container from the system when asked.

The Docker engine provides additional functionality on top of the container runtime,
such as network libraries or support for plugins. It also provides a REST interface
over which all container operations can be automated. The Docker command-line
interface that we will use frequently in this book is one of the consumers of this REST
interface.

What Are Containers and Why Should I Use Them? Chapter 1

[18]

Summary
In this chapter, we looked at how containers can massively reduce the friction in the
software supply chain and on top of that, make the supply chain much more secure.

In the upcoming chapter, we will familiarize ourselves with containers. We will learn
how to run, stop, and remove containers and otherwise manipulate them. We will
also have a pretty good overview over the anatomy of containers. For the first time,
we're really going to get our hands dirty and play with these containers, so stay
tuned.

Questions
Please solve the following questions to assess your learning progress:

Which statements are correct (multiple answers are possible)?1.
A container is kind of a lightweight VM1.
A container only runs on a Linux host2.
A container can only run one process3.
The main process in a container always has PID 14.
A container is one or more processes encapsulated by Linux5.
namespaces and restricted by cgroups

Explain to an interested layman in your own words, maybe using2.
analogies, what a container is.
Why are containers considered to be a game changer in IT? Name three to3.
four reasons.
What does it mean when we claim: If a container runs on a given platform then4.
it runs anywhere...? Name two to three reasons why this is true.
True or False: Docker containers are only really useful for modern greenfield5.
applications based on microservices. Please justify your answer.
How much does a typical enterprise save when containerizing their legacy6.
applications?

20%1.
33%2.
50%3.
75%4.

Which two core concepts of Linux are containers based on?7.

What Are Containers and Why Should I Use Them? Chapter 1

[19]

Further reading
Here is a list of links that lead to more detailed information regarding topics we have
discussed in this chapter:

Docker overview at https:/ /docs. docker. com/engine/ docker- overview/

The Moby project at https://mobyproject.org/
Docker products at https:/ /www.docker. com/ get-docker

Cloud Native Computing Foundation at https://www.cncf.io/
containerd – industry standard container runtime at https:/ /containerd. io/

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://mobyproject.org/
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.cncf.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/

2
Setting up a Working

Environment
In the last chapter, we learned what Docker containers are and why they're
important. We learned what kinds of problem containers solve in a modern software
supply chain.

In this chapter, we are going to prepare our personal or working environment to
work efficiently and effectively with Docker. We will discuss in detail how to set up
an ideal environment for developers, DevOps, and operators that can be used when
working with Docker containers.

This chapter covers the following topics:

The Linux command shell
PowerShell for Windows
Using a package manager
Choosing a code editor
Docker Toolbox
Docker for Mac and Docker for Windows
Minikube

After completing this chapter, you will be able to do the following:

Use an editor on your laptop that is able to edit simple files such as a
Dockerfile or a docker-compose.yml file
Use a shell such as Bash on Mac and PowerShell on Windows to execute
Docker commands and other simple operations, such as navigating the
folder structure or creating a new folder
Install Docker for Mac or Docker for Windows on your computer

Setting up a Working Environment Chapter 2

[21]

Execute simple Docker commands such as docker version or docker
container run on your Docker for Mac or Docker for Windows
Successfully install Docker Toolbox on your computer
Use docker-machine to create a Docker host on VirtualBox
Configure your local Docker CLI to remote access a Docker host running in
VirtualBox

Technical requirements
For this chapter, you will need a laptop or a workstation with either macOS or
Windows, preferably Windows 10 Professional, installed. You should also have free
internet access to download applications and the permission to install those
applications on your laptop.

The Linux command shell
Docker containers were first developed on Linux for Linux. It is thus natural that the
primary command-line tool used to work with Docker, also called a shell, is a Unix
shell; remember, Linux derives from Unix. Most developers use the Bash shell. On
some lightweight Linux distributions, such as Alpine, Bash is not installed and
consequently one has to use the simpler Bourne shell, just called sh. Whenever we are
working in a Linux environment, such as inside a container or on a Linux VM, we
will use either /bin/bash or /bin/sh, depending on their availability.

Although macOS X is not a Linux OS, Linux and OS X are both flavors of Unix and
thus support the same types of tools. Among those tools are the shells. So, when
working on a Mac, you will probably be using the Bash shell.

In this book, we expect from the reader a familiarity with the most basic scripting
commands in Bash, and PowerShell if you are working on Windows. If you are an
absolute beginner, then we strongly recommend that you familiarize yourself with
the following cheat sheets:

Linux Command Line Cheat Sheet by Dave Child at http:/ /bit. ly/ 2mTQr8l

PowerShell Basic Cheat Sheet at http:/ / bit.ly/ 2EPHxze

http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze

Setting up a Working Environment Chapter 2

[22]

PowerShell for Windows
On a Windows computer, laptop, or server, we have multiple command-line tools
available. The most familiar is the command shell. It has been available on any
Windows computer for decades. It is a very simple shell. For more advanced
scripting, Microsoft has developed PowerShell. PowerShell is very powerful and very
popular among engineers working on Windows. On Windows 10, finally, we have
the so-called Windows Subsystem for Linux, which allows us to use any Linux tool,
such as the Bash or Bourne shells. Apart from this, there also exist other tools that
install a Bash shell on Windows, for example, the Git Bash shell. In this book, all
commands will use Bash syntax. Most of the commands also run in PowerShell.

Our recommendation for you is thus to either use PowerShell or any other Bash tool
to work with Docker on Windows.

Using a package manager
The easiest way to install software on a Mac or Windows laptop is to use a good
package manager. On a Mac, most people use Homebrew and on
Windows, Chocolatey is a good choice.

Installing Homebrew on a Mac
Installing Homebrew on a Mac is easy; just follow the instructions at https:/ / brew.
sh/.

The following is the command to install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once the installation is finished, test whether Homebrew is working by entering brew
--version in the Terminal. You should see something like this:

$ brew --version
Homebrew 1.4.3
Homebrew/homebrew-core (git revision f4e35; last commit 2018-01-11)

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Setting up a Working Environment Chapter 2

[23]

Now, we are ready to use Homebrew to install tools and utilities. If we, for example,
want to install the Vi text editor, we can do so like this:

$ brew install vim

This will then download and install the editor for you.

Installing Chocolatey on Windows
To install the Chocolatey package manager on Windows, please follow the
instructions at https:/ /chocolatey. org/ or just execute the following command in a
PowerShell Terminal that you have run as administrator:

PS> Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object
System.Net.WebClient).DownloadString('https://chocolatey.org/install.p
s1'))

Once Chocolatey is installed, test it with the command choco without additional
parameters. You should see output similar to the following:

PS> choco
Chocolatey v0.10.3

To install an application such as the Vi editor, use the following command:

PS> choco install -y vim

The -y parameter makes sure that the installation happens without asking for
reconfirmation. Please note that once Chocolatey has installed an application, you
need to open a new PowerShell window to use it.

Choosing a code editor
Using a good code editor is essential to working productively with Docker. Of course,
which editor is the best is highly controversial and depends on your personal
preference. A lot of people use Vim, or others such as Emacs, Atom, Sublime, or
Visual Studio (VS) Code, to just name a few. If you have not yet decided which
editor is best suited for you, then I highly recommend that you try VS Code. This is a
free and lightweight editor, yet it is very powerful and is available for Mac, Windows,
and Linux. Give it a try. You can download VS Code from https:/ /code.
visualstudio.com/ download.

https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Setting up a Working Environment Chapter 2

[24]

But if you already have a favorite code editor, then please continue using it. As long
as you can edit text files, you're good to go. If your editor supports syntax
highlighting for Dockerfiles and JSON and YAML files, then even better.

Docker Toolbox
Docker Toolbox has been available for developers for a few years. It precedes the
newer tools such as Docker for Mac and Docker for Windows. The toolbox allows a
user to work very elegantly with containers on any Mac or Windows computer.
Containers must run on a Linux host. Neither Windows or Mac can run containers
natively. Thus, we need to run a Linux VM on our laptop, where we can then run our
containers. Docker Toolbox installs VirtualBox on our laptop, which is used to run the
Linux VMs we need.

As a Windows user, you might already be aware that there exists so-
called Windows containers that run natively on Windows. And you
are right. Recently, Microsoft has ported the Docker engine to
Windows and it is now possible to run Windows containers directly
on a Windows Server 2016 without the need for a VM. So, now we
have two flavors of containers, Linux containers and Windows
containers. The former only run on Linux host and the latter only
run on a Windows Server. In this book, we are exclusively
discussing Linux containers, but most of the things we learn also
apply to Windows containers.

Let's use docker-machine to set up our environment. Firstly, we list all Docker-
ready VMs we have currently defined on our system. If you have just installed
Docker Toolbox, you should see the following output:

List of all Docker-ready VMs

The IP address used might be different in your case, but it will be definitely in the
192.168.0.0/24 range. We can also see that the VM has Docker version 18.04.0-
ce installed.

Setting up a Working Environment Chapter 2

[25]

If, for some reason, you don't have a default VM or you have accidentally deleted it,
you can create it using the following command:

$ docker-machine create --driver virtualbox default

The output you should see looks as follows:

Creating the VM called default in VirtualBox

To see how to connect your Docker client to the Docker Engine running on this
virtual machine, run the following command:

$ docker-machine env default

Once we have our VM called default ready, we can try to SSH into it:

$ docker-machine ssh default

When executing the preceding command, we are greeted by a boot2docker welcome
message.

Type docker --version in the Command Prompt as follows:

docker@default:~$ docker --version
Docker version 17.12.1-ce, build 7390fc6

Setting up a Working Environment Chapter 2

[26]

Now, let's try to run a container:

docker@default:~$ docker run hello-world

This will produce the following output:

Running the Docker Hello World container

Docker for Mac and Docker for Windows
If you are using a Mac or have Windows 10 Professional installed on your laptop,
then we strongly recommend that you install Docker for Mac or Docker for Windows.
These tools give you the best experience when working with containers. Note, older
versions of Windows or Windows 10 Home edition cannot run Docker for Windows.
Docker for Windows uses Hyper-V to run containers transparently in a VM but
Hyper-V is not available on older versions of Windows nor is it available in the Home
edition.

Setting up a Working Environment Chapter 2

[27]

Installing Docker for Mac
Navigate to the following link to download Docker for Mac at https:/ / docs. docker.
com/docker-for- mac/ install/ .

There is a stable version and a so-called edge version of the tool
available. In this book, we are going to use some newer features and
Kubernetes, which at the time of writing are only available in the
edge version. Thus, please select this version.

To start the installation, click on the Get Docker for Mac (Edge) button and follow
the instructions.

Once you have successfully installed Docker for Mac, please open a Terminal. Press
command + spacebar to open Spotlight and type terminal, then hit Enter. The Apple
Terminal will open as follows:

Apple Terminal window

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/

Setting up a Working Environment Chapter 2

[28]

Type docker --version in the Command Prompt and hit Enter. If Docker for Mac
is correctly installed, you should get an output similar to the following:

$ docker --version
Docker version 18.02.0-ce-rc2, build f968a2c

To see whether you can run containers, enter the following command into the
Terminal and hit Enter:

$ docker run hello-world

If all goes well, your output should look something like the following:

Running the Hello World container on Docker for Mac

Congratulations, you are now ready to work with Docker containers.

Setting up a Working Environment Chapter 2

[29]

Installing Docker for Windows
Note, you can only install Docker for Windows on Windows 10 Professional or
Windows Server 2016 since it requires Hyper-V, which is not available on older
Windows versions or on the Home edition of Windows 10. If you are using Windows
10 Home or an older version of Windows, you will need to stick with Docker
Toolbox.

Navigate to the following link to download Docker for Windows at https:/ /docs.
docker.com/docker- for- windows/ install/ .

There is a stable version and a so-called edge version of the tool
available. In this book, we are going to use some newer features and
Kubernetes, which at the time of writing are only available in the
edge version. Thus, please select this version.

To start the installation, click on the Get Docker for Windows (Edge) button and
follow the instructions.

With Docker for Windows, you can develop, run, and test Linux containers and
Windows containers. In this book, though, we are only discussing Linux containers.

Once you have successfully installed Docker for Windows, open a PowerShell
window and type docker --version in the Command Prompt. You should see
something like the following:

PS> docker --version
Docker version 18.04.0-ce, build 3d479c0

Using docker-machine on Windows with
Hyper-V
If you have Docker for Windows installed on your Windows laptop, then you also
have Hyper-V enabled. In this case, you can't use Docker Toolbox since it uses
VirtualBox, and Hyper-V and VirtualBox cannot coexist and run at the same time. In
this case, you can use docker-machine with the Hyper-V driver.

Open a PowerShell console as an administrator. Install docker-machine using
Chocolatey as follows:

PS> choco install -y docker-machine

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

Setting up a Working Environment Chapter 2

[30]

Create a VM called boot2docker in Hyper-V with the following command:

PS> docker-machine create --driver hyperv --hyperv-virtual-switch "My
Internal Switch" boot2docker

Note, you must run the preceding command in administrator mode or it will fail.

You should see the following output generated by the preceding command:

Running pre-create checks...
(boot2docker) Image cache directory does not exist, creating it at
C:\Users\Docker\.docker\machine\cache...
(boot2docker) No default Boot2Docker ISO found locally, downloading
the latest release...
(boot2docker) Latest release for github.com/boot2docker/boot2docker is
v18.01.0-ce
....
....
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running
on this virtual machine, run: C:\Program Files\Doc
ker\Docker\Resources\bin\docker-machine.exe env boot2docker

To see how to connect your Docker client to the Docker Engine running on this
virtual machine, run the following:

C:\Program Files\Docker\Docker\Resources\bin\docker-machine.exe env
boot2docker

Listing all VMs generated by docker-machine gives us the following output:

PS C:\WINDOWS\system32> docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
DOCKER ERRORS
boot2docker - hyperv Running tcp://[...]:2376
v18.01.0-ce

Now, let's SSH into our boot2docker VM:

PS> docker-machine ssh boot2docker

You should be greeted by the welcome screen.

Setting up a Working Environment Chapter 2

[31]

We can test the VM by executing our docker version command, which is shown as
follows:

Version of the Docker client (CLI) and server

This is definitely a Linux VM, as we can see on the OS/Arch entry, and has Docker
18.03.0-ce-rc4 installed.

Minikube
If you cannot use Docker for Mac or Windows or, for some reason, you only have
access to an older version of the tool that does not yet support Kubernetes, then it is a
good idea to install Minikube. Minikube provisions a single-node Kubernetes cluster
on your workstation and is accessible through kubectl, which is the command-line
tool used to work with Kubernetes.

Setting up a Working Environment Chapter 2

[32]

Installing Minikube on Mac and Windows
To install Minikube for Mac or Windows, navigate to the following link at https:/ /
kubernetes.io/ docs/ tasks/ tools/ install- minikube/ .

Follow the instructions carefully. If you have the Docker Toolbox installed, then you
already have a hypervisor on your system since the Docker Toolbox installer also
installed VirtualBox. Otherwise, I recommend that you install VirtualBox first.

If you have Docker for Mac or Windows installed, then you already have kubectl
installed with it, thus you can skip that step too. Otherwise, follow the instructions on
the site.

Finally, select the latest binary for Minikube for Mac or Windows and install it. For
Mac, the latest binary is called minikube-darwin-amd64 and for Windows it
is minikube-windows-amd64.

Testing Minikube and kubectl
Once Minikube is successfully installed on your workstation, open a Terminal and
test the installation. First, we need to start Minikube. Enter minikube start at the
command line. The output should look like the following:

Starting Minikube

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Setting up a Working Environment Chapter 2

[33]

Now, enter kubectl version and hit Enter to see something like the following
screenshot:

Determining the version of the Kubernetes client and server

If the preceding command fails, for example, by timing out, then it could be that your
kubectl is not configured for the right context. kubectl can be used to work with
many different Kubernetes clusters. Each cluster is called a context. To find out which
context kubectl is currently configured for, use the following command:

$ kubectl config current-context
minikube

The answer should be minikube, as shown in the preceding output. If this is not the
case, use kubectl config get-contexts to list all contexts that are defined on
your system and then set the current context to minikube as follows:

$ kubectl config use-context minikube

The configuration for kubectl, where it stores the contexts, is normally found in
~/.kube/config, but this can be overridden by defining an environment variable
called KUBECONFIG. You might need to unset this variable if it is set on your
computer.

For more in-depth information about how to configure and use Kubernetes contexts,
consult the link at https:/ /kubernetes. io/docs/ concepts/ configuration/
organize-cluster- access- kubeconfig/ .

Assuming Minikube and kubectl work as expected, we can now use kubectl to get
information about the Kubernetes cluster. Enter the following command:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready <none> 47d v1.9.0

Evidently, we have a cluster of one node, which in my case has Kubernetes v1.9.0
installed on it.

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Setting up a Working Environment Chapter 2

[34]

Summary
In this chapter, we set up and configured our personal or working environment so
that we can productively work with Docker containers. This equally applies for
developers, DevOps, and operations engineers. In that context, we made sure that we
use a good editor, have Docker for Mac or Windows installed, and can also use
docker-machine to create VMs in VirtualBox or Hyper-V which we can use to run
and test containers.

In the next chapter, we're going to learn all the important facts about containers. For
example, we will explore how we can run, stop, list, and delete containers, but more
than that, we will also dive deep into the anatomy of containers.

Questions
On the basis of your reading of this chapter, please answer the following questions:

What is docker-machine used for? Name three to four scenarios.1.
True or false? With Docker for Windows, one can develop and run Linux2.
containers.
Why are good scripting skills (such as Bash or PowerShell) essential for a3.
productive use of containers?
Name three to four Linux distributions on which Docker is certified to run.4.
Name all the Windows versions on which you can run Windows5.
containers.

Further reading
Consider the following link for further reading:

Run Docker on Hyper-V with Docker Machine at http:/ /bit. ly/ 2HGMPiI

http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI

3
Working with Containers

In the previous chapter, you learned how to optimally prepare your working
environment for the productive and frictionless use of Docker. In this chapter, we are
going to get our hands dirty and learn everything that is important to work with
containers. Here are the topics we're going to cover in this chapter:

Running the first container
Starting, stopping, and removing containers
Inspecting containers
Exec into a running container
Attaching to a running container
Retrieving container logs
Anatomy of containers

After finishing this chapter you will be able to do the following things:

Run, stop, and delete a container based on an existing image, such as
NGINX, busybox, or alpine
List all containers on the system
Inspect the metadata of a running or stopped container
Retrieve the logs produced by an application running inside a container
Run a process such as /bin/sh in an already-running container.
Attach a Terminal to an already-running container
Explain in your own words to an interested layman the underpinnings of a
container

Working with Containers Chapter 3

[36]

Technical requirements
For this chapter, you should have installed Docker for Mac or Docker for Windows. If
you are on an older version of Windows or are using Windows 10 Home Edition,
then you should have Docker Toolbox installed and ready to use. On macOS, use the
Terminal application, and on Windows, a PowerShell console to try out the
commands you will be learning.

Running the first container
Before we start, we want to make sure that Docker is installed correctly on your
system and ready to accept your commands. Open a new Terminal window and type
in the following command:

$ docker -v

If everything works correctly, you should see the version of Docker installed on your
laptop output in the Terminal. At the time of writing, it looks like this:

Docker version 17.12.0-ce-rc2, build f9cde63

If this doesn't work, then something with your installation is not right. Please make
sure that you have followed the instructions in the previous chapter on how to install
Docker for Mac or Docker for Windows on your system.

So, you're ready to see some action. Please type the following command into your
Terminal window and hit return:

$ docker container run alpine echo "Hello World"

When you run the preceding command the first time, you should see an output in
your Terminal window similar to this:

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
2fdfe1cd78c2: Pull complete
Digest: sha256:ccba511b...
Status: Downloaded newer image for alpine:latest
Hello World

Working with Containers Chapter 3

[37]

Now that was easy! Let's try to run the very same command again:

$ docker container run alpine echo "Hello World"

The second, third, or nth time you run the preceding command, you should see only
this output in your Terminal:

 Hello World

Try to reason about why the first time you run a command you see a different output
than all the subsequent times. But don't worry if you can't figure it out, we will
explain the reasons in detail in the following sections of the chapter.

Starting, stopping, and removing
containers
You have successfully run a container in the previous section. Now we want to
investigate in detail what exactly happened and why. Let's look again at the
command we used:

$ docker container run alpine echo "Hello World"

This command contains multiple parts. First and foremost, we have the word
docker. This is the name of the Docker command-line interface (CLI), which we are
using to interact with the Docker engine that is responsible to run containers. Next,
we have the word container, which indicates the context we are working with. As
we want to run a container, our context is the word container. Next is the actual
command we want to execute in the given context, which is run.

Let me recap—so far, we have docker container run, which means, Hey Docker,
we want to run a container....

Now we also need to tell Docker which container to run. In this case, this is the so-
called alpine container. Finally, we need to define what kind of process or task shall
be executed inside the container when it is running. In our case, this is the last part of
the command, echo "Hello World".

Working with Containers Chapter 3

[38]

Maybe the following figure can help you to get a better approach to the whole thing:

Anatomy of the docker container run expression

Now that we have understood the various parts of a command to run a container,
let's try to run another container with a different process running inside it. Type the
following command into your Terminal:

$ docker container run centos ping -c 5 127.0.0.1

You should see output in your Terminal window similar to the following:

Unable to find image 'centos:latest' locally
latest: Pulling from library/centos
85432449fd0f: Pull complete
Digest: sha256:3b1a65e9a05...
Status: Downloaded newer image for centos:latest
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.022 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.019 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.029 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.030 ms
64 bytes from 127.0.0.1: icmp_seq=5 ttl=64 time=0.029 ms

--- 127.0.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4103ms
rtt min/avg/max/mdev = 0.021/0.027/0.029/0.003 ms

What changed is that, this time, the container image we're using is centos and the
process we're executing inside the centos container is ping -c 5 127.0.0.1,
which pings the loopback address for five times until it stops.

Let's analyze the output in detail:

The first line is as follows:

Unable to find image 'centos:latest' locally

Working with Containers Chapter 3

[39]

This tells us that Docker didn't find an image named centos:latest in the
local cache of the system. So, Docker knows that it has to pull the image
from some registry where container images are stored. By default, your
Docker environment is configured such as that images are pulled from the
Docker Hub at docker.io. This is expressed by the second line, as follows:

 latest: Pulling from library/centos

The next three lines of output are as follows:

 85432449fd0f: Pull complete
 Digest: sha256:3b1a65e9a05...
 Status: Downloaded newer image for centos:latest

This tells us that Docker has successfully pulled the image centos:latest
from the Docker Hub.

All the subsequent lines of the output are generated by the process we ran inside the
container, which is the ping tool in this case. If you have been attentive so far, then
you might have noticed the keyword latest occurring a few times. Each image has a
version (also called a tag), and if we don't specify a version explicitly, then Docker
automatically assumes it as latest.

If we run the preceding container again on our system, the first five lines of the
output will be missing since, this time, Docker will find the container image cached
locally and thus won't have to download it first. Try it out and verify what I just told.

Running a random quotes container
For the subsequent sections of this chapter, we need a container that runs
continuously in the background and produces some interesting output. That's why,
we have chosen an algorithm that produces random quotes. The API that produces
those free random quotes can be found at https:/ /talaikis. com/random_ quotes_
api/.

Now the goal is to have a process running inside a container that produces a new
random quote every five seconds and outputs the quote to STDOUT. The following
script will do exactly that:

while :
do
 wget -qO- https://talaikis.com/api/quotes/random
 printf 'n'

https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/

Working with Containers Chapter 3

[40]

 sleep 5
done

Try it in a Terminal window. Stop the script by pressing Ctrl+ C. The output should
look similar to this:

{"quote":"Martha Stewart is extremely talented. Her designs are
picture perfect. Our philosophy is life is messy, and rather than
being afraid of those messes we design products that work the way we
live.","author":"Kathy Ireland","cat":"design"}

{"quote":"We can reach our potential, but to do so, we must reach
within ourselves. We must summon the strength, the will, and the faith
to move forward - to be bold - to invest in our
future.","author":"John Hoeven","cat":"faith"}

Each response is a JSON-formatted string with the quote, its author, and its category.

Now, let's run this in an alpine container as a daemon in the background. For this,
we need to compact the preceding script into a one-liner and execute it using the
/bin/sh -c "..." syntax. Our Docker expression will look as follows :

$ docker container run -d --name quotes alpine \
 /bin/sh -c "while :; do wget -qO-
https://talaikis.com/api/quotes/random; printf '\n'; sleep 5; done"

In the preceding expression, we have used two new command-line parameters, -d
and --name. The -d tells Docker to run the process running in the container as a
Linux daemon. The --name parameter in turn can be used to give the container an
explicit name. In the preceding sample, the name we chose is quotes.

If we don't specify an explicit container name when we run a container, then Docker
will automatically assign the container a random but unique name. This name will be
composed of the name of a famous scientist and and adjective. Such names could be
boring_borg or angry_goldberg. Quite humorous our Docker engineers, isn't it?

One important takeaway is that the container name has to be unique on the system.
Let's make sure that the quotes container is up and running:

$ docker container ls -l

Working with Containers Chapter 3

[41]

This should give us something like this:

Listing the last run container

The important part of the preceding output is the STATUS column, which in this case
is Up 16 seconds. That is, the container has been up and running for 16 seconds
now.

Don't worry if the last Docker command is not yet familiar to you, we will come back
to it in the next section.

Listing containers
As we continue to run containers over time, we get a lot of them in our system. To
find out what is currently-running on our host, we can use the container list
command as follows:

$ docker container ls

This will list all currently-running containers. Such a list might look similar to this:

List of all containers running on the system

By default, Docker outputs seven columns with the following meanings:

Column Description
Container ID The unique ID of the container. It is a SHA-256.

Image
The name of the container image from which this container is
instantiated.

Command The command that is used to run the main process in the container.
Created The date and time when the container was created.

Working with Containers Chapter 3

[42]

Status
The status of the container (created, restarting, running, removing,
paused, exited, or dead).

Ports The list of container ports that have been mapped to the host.
Names The name assigned to this container (multiple names are possible).

If we want to list not only the currently running containers but all containers that are
defined on our system, then we can use the command-line parameter -a or --all as
follows:

$ docker container ls -a

This will list containers in any state, such as created, running, or exited.

Sometimes, we want to just list the IDs of all containers. For this, we have the
parameter -q:

$ docker container ls -q

You might wonder where this is useful. I show you a command where it is very
helpful right here:

$ docker container rm -f $(docker container ls -a -q)

Lean back and take a deep breath. Then, try to find out what the preceding command
does. Don't read any further until you find the answer or give up.

Right: the preceding command deletes all containers that are currently defined on the
system, including the stopped ones. The rm command stands for remove, and it will
be explained further down.

In the previous section, we used the parameter -l in the list command. Try to use
Docker help to find out what the -l parameter stands for. You can invoke help for the
list command as follows:

$ docker container ls -h

Working with Containers Chapter 3

[43]

Stopping and starting containers
Sometimes, we want to (temporarily) stop a running container. Let's try this out with
the quotes container we used previously. Run the container again with this
command:

$ docker container run -d --name quotes alpine \
 /bin/sh -c "while :; do wget -qO-
https://talaikis.com/api/quotes/random; printf '\n'; sleep 5; done"

Now, if we want to stop this container then we can do so by issuing this command:

$ docker container stop quotes

When you try to stop the quotes container, you will probably note that it takes a
while until this command is executed. To be precise, it takes about 10 seconds. Why is
this the case?

Docker sends a Linux SIGTERM signal to the main process running inside the
container. If the process doesn't react to this signal and terminate itself, Docker waits
for 10 seconds and then sends SIGKILL, which will kill the process forcefully and
terminate the container.

In the preceding command, we have used the name of the container to specify which
container we want to stop. But we could also have used the container ID instead.

How do we get the ID of a container? There are several ways of doing so. The manual
approach is to list all running containers and find the one that we're looking for in the
list. From there, we copy its ID. A more automated way is to use some shell scripting
and environment variables. If, for example, we want to get the ID of the quotes
container, we can use this expression:

$ export CONTAINER_ID = $(docker container ls | grep quotes | awk
'{print $1}')

Now, instead of using the container name, we can use the variable $CONTAINER_ID
in our expression:

$ docker container stop $CONTAINER_ID

Once we have stopped the container, its status change to Exited.

Working with Containers Chapter 3

[44]

If a container is stopped, it can be started again using the docker container start
command. Let's do this with our quotes container. It is good to have it running again,
as we'll need it in the subsequent sections of this chapter:

$ docker container start quotes

Removing containers
When we run the docker container ls -a command, we can see quite a few
containers that are in status Exited. If we don't need these containers anymore, then
it is a good thing to remove them from memory, otherwise they unnecessarily occupy
precious resources. The command to remove a container is:

$ docker container rm <container ID>

Another command to remove a container is:

$ docker container rm <container name>

Try to remove one of your exited containers using its ID. Sometimes, removing a
container will not work as it is still running. If we want to force a removal, no matter
what the condition of the container currently is, we can use the command-line
parameter -f or --force.

Inspecting containers
Containers are runtime instances of an image and have a lot of associated data that
characterizes their behavior. To get more information about a specific container, we
can use the inspect command. As usual, we have to provide either the container ID
or name to identify the container of which we want to obtain the data. So, let's inspect
our sample container:

$ docker container inspect quotes

The response is a big JSON object full of details. It looks similar to this:

 [

Working with Containers Chapter 3

[45]

 {
 "Id": "c5c1c68c87...",
 "Created": "2017-12-30T11:55:51.223271182Z",
 "Path": "/bin/sh",
 "Args": [
 "-c",
 "while :; do wget -qO-
https://talaikis.com/api/quotes/random; printf '\n'; sleep 5; done"
],
 "State": {
 "Status": "running",
 "Running": true,
 ...
 },
 "Image": "sha256:e21c333399e0...",
 ...
 "Mounts": [],
 "Config": {
 "Hostname": "c5c1c68c87dd",
 "Domainname": "",
 ...
 },
 "NetworkSettings": {
 "Bridge": "",
 "SandboxID": "2fd6c43b6fe5...",
 ...
 }
 }
]

The output has been shortened for readability.

Please take a moment to analyze what you got. You should see information such as:

The ID of the container
The creation date and time of the container
From which image the container is built and so on

Many sections of the output, such as Mounts or NetworkSettings don't make much
sense right now, but we will certainly discuss those in the upcoming chapters of the
book. The data you're seeing here is also named the metadata of a container. We will
be using the inspect command quite often in the remainder of the book as a source
of information.

Working with Containers Chapter 3

[46]

Sometimes, we need just a tiny bit of the overall information, and to achieve this, we
can either use the grep tool or a filter. The former method does not always result in
the expected answer, so let's look into the latter approach:

$ docker container inspect -f "{{json .State}}" quotes | jq

The -f or --filter parameter is used to define the filter. The filter expression itself
uses the Go template syntax. In this example, we only want to see the state part of the
whole output in the JSON format.

To nicely format the output, we pipe the result into the jq tool:

 {
 "Status": "running",
 "Running": true,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 6759,
 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2017-12-31T10:31:51.893299997Z",
 "FinishedAt": "0001-01-01T00:00:00Z"
 }

Exec into a running container
Sometimes, we want to run another process inside an already-running container. A
typical reason could be to try to debug a misbehaving container. How can we do this?
First, we need to know either the ID or the name of the container, and then we can
define which process we want to run and how we want it to run. Once again, we use
our currently-running quotes container and we run a shell interactively inside it with
the following command:

$ docker container exec -i -t quotes /bin/sh

The flag -i signifies that we want to run the additional process interactively, and -t
tells Docker that we want it to provide us with a TTY (a terminal emulator) for the
command. Finally, the process we run is /bin/sh.

Working with Containers Chapter 3

[47]

If we execute the preceding command in our Terminal, then we will be presented
with a new prompt. We're now in a shell inside the quotes container. We can easily
prove that by, for example, executing the ps command, which will list all running
processes in the context:

/ ps

The result should look somewhat similar to this:

List of Processes running inside the quotes Container

We can clearly see that the process with PID 1 is the command that we have defined
to run inside the quotes container. The process with PID 1 is also named the main
process.

Leave the container by entering exit at the prompt. We cannot only execute
additional processes interactive in a container. Please consider the following
command:

$ docker container exec quotes ps

The output evidently looks very similar to the preceding output:

List of Processes running inside the quotes Container

Working with Containers Chapter 3

[48]

We can even run processes as daemon using the flag -d and define environment
variables using the -e flag variables as follows:

$ docker container exec -it \
 -e MY_VAR="Hello World" \
 quotes /bin/sh
/ echo $MY_VAR
Hello World
/ exit

Attaching to a running container
We can use the attach command to attach our Terminal's standard input, output,
and error (or any combination of the three) to a running container using the ID or
name of the container. Let's do this for our quotes container:

$ docker container attach quotes

In this case, we will see every five seconds or so a new quote appearing in the output.

To quit the container without stopping or killing it, we can press the key combination
Ctrl+P Ctrl+Q. This detaches us from the container while leaving it running in the
background. On the other hand, if we want to detach and stop the container at the
same time, we can just press Ctrl+C.

Let's run another container, this time an Nginx web server:

$ docker run -d --name nginx -p 8080:80 nginx:alpine

Here, we run the Alpine version of Nginx as a daemon in a container named nginx.
The -p 8080:80 command-line parameter opens port 8080 on the host for access to
the Nginx web server running inside the container. Don't worry about the syntax here
as we will explain this feature in more detail in the Chapter 7, Single-Host Networking.

Let's see whether we can access Nginx, using the curl tool and running this
command:

$ curl -4 localhost:8080

Working with Containers Chapter 3

[49]

If all works correctly, you should be greeted by the welcome page of Nginx:

<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Now, let's attach our Terminal to the nginx container to observe what's happening:

$ docker container attach nginx

Once you are attached to the container, you first will not see anything. But now open
another Terminal, and in this new Terminal window, repeat the curl command a few
times, for example, using the following script:

$ for n in {1..10}; do curl -4 localhost:8080; done

You should see the logging output of Nginx, which looks similar to this:

172.17.0.1 - - [06/Jan/2018:12:20:00 +0000] "GET / HTTP/1.1" 200 612
"-" "curl/7.54.0" "-"
172.17.0.1 - - [06/Jan/2018:12:20:03 +0000] "GET / HTTP/1.1" 200 612
"-" "curl/7.54.0" "-"

Working with Containers Chapter 3

[50]

172.17.0.1 - - [06/Jan/2018:12:20:05 +0000] "GET / HTTP/1.1" 200 612
"-" "curl/7.54.0" "-"
...

Quit the container by pressing Ctrl+C. This will detach your Terminal and, at the
same time, stop the nginx container.

To clean up, remove the nginx container with the following command:

$ docker container rm nginx

Retrieving container logs
It is a best practice for any good application to generate some logging information
that developers and operators alike can use to find out what the application is doing
at a given time, and whether there are any problems to help pinpoint the root cause of
the issue.

When running inside a container, the application should preferably output the log
items to STDOUT and STDERR and not into a file. If the logging output is directed to
STDOUT and STDERR, then Docker can collect this information and keep it ready for
consumption by a user or any other external system.

To access the logs of a given container, we can use the docker container logs
command. If, for example, we want to retrieve the logs of our quotes container, we
can use the following expression:

$ docker container logs quotes

This will retrieve the whole log produced by the application from the very beginning
of its existence.

Stop, wait a second—this is not quite true, what I just said. By default,
Docker uses the so-called json-file logging driver. This driver stores
the logging information in a file. And if there is a file rolling policy
defined, then docker container logs only retrieves what is in the
current active log file and not what is in previous, rolled files that might
still be available on the host.

Working with Containers Chapter 3

[51]

If we want to only get a few of the latest entries, we can use the -t or --tail
parameter, as follows:

$ docker container logs --tail 5 quotes

This will retrieve only the last five items the process running inside the container
produced.

Sometimes, we want to follow the log that is produced by a container. This is possible
when using the parameter -f or --follow. The following expression will output the
last five log items and then follow the log as it is produced by the containerized
process:

$ docker container logs --tail 5 --follow quotes

Logging drivers
Docker includes multiple logging mechanisms to help us get information from
running containers. These mechanisms are named logging drivers. Which logging
driver is used can be configured at the Docker daemon level. The default logging
driver is json-file. Some of the drivers that are currently supported natively are:

Driver Description
none No log output for the specific container is produced.

json-file
This is the default driver. The logging information is stored in files,
formatted as JSON.

journald
If the journals daemon is running on the host machine, we can use this
driver. It forwards logging to the journald daemon.

syslog
If the syslog daemon is running on the host machine, we can configure
this driver, which will forward the log messages to the syslog daemon.

gelf
When using this driver, log messages are written to a Graylog Extended
Log Format (GELF) endpoint. Popular examples of such endpoints are
Graylog and Logstash.

fluentd
Assuming that the fluentd daemon is installed on the host system, this
driver writes log messages to it.

Working with Containers Chapter 3

[52]

If you change the logging driver, please be aware that the docker
container logs command is only available for the json-file and

journald drivers.

Using a container-specific logging driver
We have seen that the logging driver can be set globally in the Docker daemon
configuration file. But we can also define the logging driver on a container by
container basis. In the following example, we are running a busybox container and
use the --log-driver parameter to configure the none logging driver:

$ docker container run --name test -it \
 --log-driver none \
 busybox sh -c 'for N in 1 2 3; do echo "Hello $N"; done'

We should see the following:

Hello 1
Hello 2
Hello 3

Now, let's try to get the logs of the preceding container:

$ docker container logs test

The output is as follows:

Error response from daemon: configured logging driver does not support
reading

This is to be expected, since the none driver does not produce any logging output.
Let's clean up and remove the test container:

$ docker container rm test

Working with Containers Chapter 3

[53]

Advanced topic – changing the default logging
driver
Let's change the default logging driver of a Linux host. The easiest way to do this is
on a real Linux host. For this purpose, we're going to use Vagrant with an Ubuntu
image:

$ vagrant init bento/ubuntu-17.04
$ vagrant up
$ vagrant ssh

Once inside the Ubuntu VM, we want to edit the Docker daemon configuration file.
Navigate to the folder /etc/docker and run vi as follows:

$ vi daemon.json

Enter the following content:

{
 "Log-driver": "json-log",
 "log-opts": {
 "max-size": "10m",
 "max-file": 3
 }
}

Save and exit Vi by first pressing Esc and then typing :w:q and finally hitting the
ENTER key.

The preceding definition tells the Docker daemon to use the json-log driver with a
maximum log file size of 10 MB before it is rolled, and the maximum number of log
files that can be present on the system is 3 before the oldest file gets purged.

Working with Containers Chapter 3

[54]

Now we have to send a SIGHUP signal to the Docker daemon so that it picks up the
changes in the configuration file:

$ sudo kill -SIGHUP $(pidof dockerd)

Note that the preceding command only reloads the config file and does not restart the
daemon.

Anatomy of containers
Many individuals wrongly compare containers to VMs. However, this is a
questionable comparison. Containers are not just lightweight VMs. OK then, what is
the correct description of a container?

Containers are specially encapsulated and secured processes running on the host
system.

Containers leverage a lot of features and primitives available in the Linux OS. The
most important ones are namespaces and cgroups. All processes running in
containers share the same Linux kernel of the underlying host operating system. This
is fundamentally different compared with VMs, as each VM contains its own full-
blown operating system.

The startup times of a typical container can be measured in milliseconds, while a VM
normally needs several seconds to minutes to startup. VMs are meant to be long-
living. It is a primary goal of each operations engineer to maximize the uptime of
their VMs. Contrary to that, containers are meant to be ephemeral. They come and go
in a quick cadence.

Let's first get a high-level overview of the architecture that enables us to run
containers.

Working with Containers Chapter 3

[55]

Architecture
Here, we have an architectural diagram on how this all fits together:

High level architecture of Docker

On the lower part of the the preceding figure, we have the Linux operating system
with its cgroups, namespaces, and layer capabilities as well as other functionality that
we do not need to explicitly mention here. Then, there is an intermediary layer
composed of containerd and runc. On top of all that now sits the Docker engine. The
Docker engine offers a RESTful interface to the outside world that can be accessed by
any tool, such as the Docker CLI, Docker for Mac, and Docker for Windows or
Kubernetes to just name a few.

Let's now describe the main building blocks in a bit more detail.

Namespaces
Linux namespaces had been around for years before they were leveraged by Docker
for their containers. A namespace is an abstraction of global resources such as
filesystems, network access, process tree (also named PID namespace) or the system
group IDs, and user IDs. A Linux system is initialized with a single instance of each
namespace type. After initialization, additional namespaces can be created or joined.

Working with Containers Chapter 3

[56]

The Linux namespaces originated in 2002 in the 2.4.19 kernel. In kernel version 3.8,
user namespaces were introduced and with it, namespaces were ready to be used by
containers.

If we wrap a running process, say, in a filesystem namespace, then this process has
the illusion that it owns its own complete filesystem. This of course is not true; it is
only a virtual FS. From the perspective of the host, the contained process gets a
shielded subsection of the overall FS. It is like a filesystem in a filesystem:

The same applies for all the other global resources for which namespaces exist. The
user ID namespace is another example. Having a user namespace, we can now define
a user jdoe many times on the system as long at it is living in its own namespace.

Working with Containers Chapter 3

[57]

The PID namespace is what keeps processes in one container from seeing or
interacting with processes in another container. A process might have the apparent
PID 1 inside a container, but if we examine it from the host system, it would have an
ordinary PID, say 334:

Process tree on a Docker host

In a given namespace, we can run one to many processes. That is important when we
talk about containers, and we have experienced that already when we executed
another process in an already-running container.

Control groups (cgroups)
Linux cgroups are used to limit, manage, and isolate resource usage of collections of
processes running on a system. Resources are CPU time, system memory, network
bandwidth, or combinations of these resources, and so on.

Engineers at Google have originally implemented this feature starting in 2006. The
cgroups functionality was merged into the Linux kernel mainline in kernel version
2.6.24, which was released in January 2008.

Working with Containers Chapter 3

[58]

Using cgroups, administrators can limit the resources that containers can consume.
With this, one can avoid, for example, the classical noisy neighbor problem, where a
rogue process running in a container consumes all CPU time or reserves massive
amounts of RAM and, as such, starves all the other processes running on the host,
whether they're containerized or not.

Union filesystem (UnionFS)
The UnionFS forms the backbone of what is known as container images. We will
discuss container images in detail in the next chapter. At this time, we want to just
understand a bit better what a UnionFS is and how it works. UnionFS is mainly used
on Linux and allows files and directories of distinct filesystems to be overlaid and
with it form a single coherent file system. In this context, the individual filesystems
are called branches. Contents of directories that have the same path within the
merged branches will be seen together in a single merged directory, within the new,
virtual filesystem. When merging branches, the priority between the branches is
specified. In that way, when two branches contain the same file, the one with the
higher priority is seen in the final FS.

Container plumbing
The basement on top of which the Docker engine is built; we can also call it the
container plumbing and is formed by the two component—runc and containerd.

Originally, Docker was built in a monolithic way and contained all the functionality
necessary to run containers. Over time, this became too rigid and Docker started to
break out parts of the functionality into their own components. Two important
components are runc and containerd.

Runc
Runc is a lightweight, portable container runtime. It provides full support for Linux
namespaces as well as native support for all security features available on Linux, such
as SELinux, AppArmor, seccomp, and cgroups.

Working with Containers Chapter 3

[59]

Runc is a tool for spawning and running containers according to the Open Container
Initiative (OCI) specification. It is a formally specified configuration format,
governed by the Open Container Project (OCP) under the auspices of the Linux
Foundation.

Containerd
Runc is a low-level implementation of a container runtime; containerd builds on top
of it, and adds higher-level features, such as image transfer and storage, container
execution, and supervision, as well as network and storage attachments. With this, it
manages the complete life cycle of containers. Containerd is the reference
implementation of the OCI specifications and is by far the most popular and widely-
used container runtime.

Containerd has been donated to and accepted by the CNCF in 2017. There exist
alternative implementations of the OCI specification. Some of them are rkt by
CoreOS, CRI-O by RedHat, and LXD by Linux Containers. However, containerd at
this time is by far the most popular container runtime and is the default runtime of
Kubernetes 1.8 or later and the Docker platform.

Summary
In this chapter, you learned how to work with containers that are based on existing
images. We showed how to run, stop, start, and remove a container. Then, we
inspected the metadata of a container, extracted the logs of it, and learned how to run
an arbitrary process in an already-running container. Last but not least, we dug a bit
deeper and investigated how containers work and what features of the underlying
Linux operating system they leverage.

In the next chapter, you're going to learn what container images are and how we can
build and share our own custom images. We're also discussing the best practices
commonly used when building custom images, such as minimizing their size and
leveraging the image cache. Stay tuned!

Working with Containers Chapter 3

[60]

Questions
To assess your learning progress please answer the following questions:

What are the states of a container?1.
Which command helps us to find out what is currently running on our2.
host?
Which command is used to list the IDs of all containers?3.

Further reading
The following articles give you some more information related to the topics we
discussed in this chapter:

Docker container at http:/ /dockr. ly/ 2iLBV2I

Getting started with containers at http:/ /dockr. ly/2gmxKWB

Isolate containers with a user namespace at http:/ / dockr. ly/2gmyKdf

Limit container's resources at http:/ /dockr. ly/ 2wqN5Nn

http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn

4
Creating and Managing

Container Images
In the previous chapter, we learned what containers are and how to run, stop,
remove, list, and inspect them. We extracted the logging information of some
containers, ran other processes inside an already running container, and finally we
dived deep into the anatomy of containers. Whenever we ran a container, we created
it using a container image. In this chapter, we will be familiarizing ourselves with
these container images. We will learn in detail what they are, how to create them, and
how to distribute them.

This chapter will cover the following topics:

What images are?
Creating images
Sharing or shipping images

After completing this chapter, you will be able to do the following:

Name three of the most important characteristics of a container image
Create a custom image by interactively changing the container layer and
committing it
Author a simple Dockerfile using keywords such as FROM, COPY, RUN, CMD,
and ENTRYPOINT to generate a custom image
Export an existing image using docker image save and import it into
another Docker host using docker image load
Write a two-step Dockerfile that minimizes the size of the resulting image
by only including the resulting artifacts (binaries) in the final image

Creating and Managing Container Images Chapter 4

[62]

What are images?
In Linux, everything is a file. The whole operating system is basically a filesystem
with files and folders stored on the local disk. This is an important fact to remember
when looking at what container images are. As we will see, an image is basically a big
tarball containing a filesystem. More specifically, it contains a layered filesystem.

The layered filesystem
Container images are templates from which containers are created. These images are
not just one monolithic block, but are composed of many layers. The first layer in the
image is also called the base layer:

The image as a stack of layers

Each individual layer contains files and folders. Each layer only contains the changes
to the filesystem with respect to the underlying layers. Docker uses a union
filesystem—as discussed in Chapter 3, Working with Containers—to create a virtual
filesystem out of the set of layers. A storage driver handles the details regarding the
way these layers interact with each other. Different storage drivers are available that
have advantages and disadvantages in different situations.

Creating and Managing Container Images Chapter 4

[63]

The layers of a container image are all immutable. Immutable means that once
generated, the layer cannot ever be changed. The only possible operation affecting the
layer is the physical deletion of it. This immutability of layers is important because it
opens up a tremendous amount of opportunities, as we will see.

In the following image, we can see what a custom image for a web application using
Nginx as a web server could look like:

A sample custom image based on Alpine and Nginx

Our base layer here consists of the Alpine Linux distribution. Then, on top of that, we
have a layer where Nginx is added on top of Alpine. Finally, the third layer contains
all the files that make up the web application, such as HTML, CSS, and JavaScript
files.

As has been said previously, each image starts with a base image. Typically, this base
image is one of the official images found on Docker Hub, such as a Linux distro,
Alpine, Ubuntu, or CentOS. However, it is also possible to create an image from
scratch.

Docker Hub is a public registry for container images. It is a central
hub ideally suited for sharing public container images.

Each layer only contains the delta of changes in regard to the previous set of layers.
The content of each layer is mapped to a special folder on the host system, which is
usually a subfolder of /var/lib/docker/.

Since layers are immutable, they can be cached without ever becoming stale. This is a
big advantage, as we will see.

Creating and Managing Container Images Chapter 4

[64]

The writable container layer
As we have discussed, a container image is made of a stack of immutable or read-only
layers. When the Docker engine creates a container from such an image, it adds a
writable container layer on top of this stack of immutable layers. Our stack now looks
as follows:

The writable container layer

The container layer is marked as read/write. Another advantage of the immutability
of image layers is that they can be shared among many containers created from this
image. All that is needed is a thin, writable container layer for each container:

Multiple containers sharing the same image layers

Creating and Managing Container Images Chapter 4

[65]

This technique, of course, results in a tremendous reduction of resources that are
consumed. Furthermore, this helps to decrease the loading time of a container since
only a thin container layer has to be created once the image layers have been loaded
into memory, which only happens for the first container.

Copy-on-write
Docker uses the copy-on-write technique when dealing with images. Copy-on-write
is a strategy of sharing and copying files for maximum efficiency. If a layer uses a file
or folder that is available in one of the low-lying layers, then it just uses it. If, on the
other hand, a layer wants to modify, say, a file from a low-lying layer, then it first
copies this file up to the target layer and then modifies it. In the following figure, we
can see a glimpse of what this means:

Copy-on-write

The second layer wants to modify File 2, which is present in the base layer. Thus, it
copied it up and then modified it. Now, let's say that we're sitting in the top layer of
the preceding figure. This layer will use File 1 from the base layer and File 2 and File
3 from the second layer.

Creating and Managing Container Images Chapter 4

[66]

Graph drivers
Graph drivers are what enable the union filesystem. Graph drivers are also called
storage drivers and are used when dealing with the layered container images. A
graph driver consolidates the multiple image layers into a root filesystem for the
mount namespace of the container. Or, put differently, the driver controls how
images and containers are stored and managed on the Docker host.

Docker supports several different graph drivers using a pluggable architecture. The
preferred driver is overlay2 followed by overlay.

Creating images
There are three ways to create a new container image on your system. The first one is
by interactively building a container that contains all the additions and changes one
desires and then committing those changes into a new image. The second and most
important way is to use a Dockerfile to describe what's in the new image and then
build this image using that Dockerfile as a manifest. Finally, the third way of creating
an image is by importing it into the system from a tarball.

Now, let's look at these three ways in detail.

Interactive image creation
The first way we can create a custom image is by interactively building a container.
That is, we start with a base image that we want to use as a template and run a
container of it interactively. Let's say that this is the alpine image. The command to
run the container would then be as follows:

$ docker container run -it --name sample alpine /bin/sh

By default, the alpine container does not have the ping tool installed. Let's assume
we want to create a new custom image that has ping installed. Inside the container,
we can then run the following command:

/ # apk update && apk add iputils

Creating and Managing Container Images Chapter 4

[67]

This uses the Alpine package manager apk to install the iputils library, of which
ping is a part. The output of the preceding command should look as follows:

fetch
http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch
http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.ta
r.gz
v3.7.0-50-gc8da5122a4 [http://dl-cdn.alpinelinux.org/alpine/v3.7/main]
v3.7.0-49-g06d6ae04c3
[http://dl-cdn.alpinelinux.org/alpine/v3.7/community]
OK: 9046 distinct packages available
(1/2) Installing libcap (2.25-r1)
(2/2) Installing iputils (20121221-r8)
Executing busybox-1.27.2-r6.trigger
OK: 4 MiB in 13 packages

Now, we can indeed use ping, as the following snippet shows:

/ # ping 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.028 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.044 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.049 ms
^C
--- 127.0.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2108ms
rtt min/avg/max/mdev = 0.028/0.040/0.049/0.010 ms

Once we have finished our customization, we can quit the container by typing exit
at the prompt. If we now list all containers with docker container ls -a, we can
see that our sample container has a status of Exited, but still exists on the system:

$ docker container ls -a | grep sample
eff7c92a1b98 alpine "/bin/sh" 2 minutes ago Exited (0)
...

If we want to see what has changed in our container in relation to the base image, we
can use the docker container diff command as follows:

$ docker container diff sample

The output should present a list of all modifications done on the filesystem of the
container:

C /bin
C /bin/ping

Creating and Managing Container Images Chapter 4

[68]

C /bin/ping6
A /bin/traceroute6
C /etc/apk
C /etc/apk/world
C /lib/apk/db
C /lib/apk/db/installed
C /lib/apk/db/lock
C /lib/apk/db/scripts.tar
C /lib/apk/db/triggers
C /root
A /root/.ash_history
C /usr/lib
A /usr/lib/libcap.so.2
A /usr/lib/libcap.so.2.25
C /usr/sbin
C /usr/sbin/arping
A /usr/sbin/capsh
A /usr/sbin/clockdiff
A /usr/sbin/getcap
A /usr/sbin/getpcaps
A /usr/sbin/ipg
A /usr/sbin/rarpd
A /usr/sbin/rdisc
A /usr/sbin/setcap
A /usr/sbin/tftpd
A /usr/sbin/tracepath
A /usr/sbin/tracepath6
C /var/cache/apk
A /var/cache/apk/APKINDEX.5022a8a2.tar.gz
A /var/cache/apk/APKINDEX.70c88391.tar.gz
C /var/cache/misc

In the preceding list, A stands for added, and C for changed. If we had any deleted files,
then those would be prefixed with D.

We can now use the docker container commit command to persist our
modifications and create a new image from them:

$ docker container commit sample my-alpine
sha256:44bca4141130ee8702e8e8efd1beb3cf4fe5aadb62a0c69a6995afd49c2e741
9

Creating and Managing Container Images Chapter 4

[69]

With the preceding command, we have specified that the new image shall be called
my-alpine. The output generated by the preceding command corresponds to the ID
of the newly generated image. We can verify this by listing all images on our system,
as follows:

$ docker image ls

We can see this image ID (shortened) as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
my-alpine latest 44bca4141130 About a minute ago 5.64MB
...

We can see that the image named my-alpine, has the expected ID of 44bca4141130
and automatically got a tag latest assigned. This happens since we did not
explicitly define a tag ourselves. In this case, Docker always defaults to the tag
latest.

If we want to see how our custom image has been built, we can use the history
command as follows:

$ docker image history my-alpine

This will print the list of layers our image consists of:

IMAGE CREATED CREATED BY SIZE
COMMENT
44bca4141130 3 minutes ago /bin/sh 1.5MB
e21c333399e0 6 weeks ago /bin/sh -c #... 0B
<missing> 6 weeks ago /bin/sh -c #... 4.14MB

The first layer in the preceding list is the one that we just created by adding the
iputils package.

Using Dockerfiles
Manually creating custom images as shown in the previous section of this chapter is
very helpful when doing exploration, creating prototypes, or making feasibility
studies. But it has a serious drawback: it is a manual process and thus is not
repeatable or scalable. It is also as error-prone as any task executed manually by
humans. There must be a better way.

Creating and Managing Container Images Chapter 4

[70]

This is where the so-called Dockerfile comes into play. The Dockerfile is a text file
that is usually literally called Dockerfile. It contains instructions on how to build a
custom container image. It is a declarative way of building images.

Declarative versus imperative:
In computer science, in general and with Docker specifically, one
often uses a declarative way of defining a task. One describes the
expected outcome and lets the system figure out how to achieve this
goal, rather than giving step-by-step instructions to the system on
how to achieve this desired outcome. The latter is the imperative
approach.

Let's look at a sample Dockerfile:

FROM python:2.7
RUN mkdir -p /app
WORKDIR /app
COPY ./requirements.txt /app/
RUN pip install -r requirements.txt
CMD ["python", "main.py"]

This is a Dockerfile as it is used to containerize a Python 2.7 application. As we can
see, the file has six lines, each starting with a keyword such as FROM, RUN, or COPY. It
is a convention to write the keywords in all caps, but that is not a must.

Each line of the Dockerfile results in a layer in the resulting image. In the following
image, the image is drawn upside down compared to the previous illustrations in this
chapter, showing an image as a stack of layers. Here, the base layer is shown on top.
Don't let yourself be confused by this. In reality, the base layer is always the lowest
layer in the stack:

The relation of Dockerfile and layers in an image

Creating and Managing Container Images Chapter 4

[71]

Now let's look at the individual keywords in more detail.

The FROM keyword
Every Dockerfile starts with the FROM keyword. With it, we define which base image
we want to start building our custom image from. If we want to build starting with
CentOS 7, for example, we would have the following line in the Dockerfile:

FROM centos:7

On Docker Hub, there are curated or official images for all major Linux distros, as
well as for all important development frameworks or languages, such as Python,
Node JS, Ruby, Go, and many more. Depending on our need, we should select the
most appropriate base image.

For example, if I want to containerize a Python 2.7 application, I might want to select
the relevant official python:2.7 image.

If we really want to start from scratch, we can also use the following statement:

FROM scratch

This is useful in the context of building super minimal images that only, for example,
contain a single binary, the actual statically linked executable, such as Hello-World.
The scratch image is literally an empty base image.

FROM scratch is a no-op in the Dockerfile, and as such does not generate a layer in
the resulting container image.

The RUN keyword
The next important keyword is RUN. The argument for RUN is any valid Linux
command, such as the following:

RUN yum install -y wget

The preceding command is using the CentOS package manager yum to install the
wget package into the running container. This assumes that our base image is CentOS
or RHEL. If we had Ubuntu as our base image, then the command would look similar
to the following:

RUN apt-get update && apt-get install -y wget

Creating and Managing Container Images Chapter 4

[72]

It would look like this because Ubuntu uses apt-get as a package manager.
Similarly, we could define a line with RUN like this:

RUN mkdir -p /app && cd /app

We could also do this:

RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz

Here, the former creates a /app folder in the container and navigates to it, and the
latter untars a file to a given location. It is completely fine, and even recommended,
for you to format a Linux command using more than one physical line, such as this:

RUN apt-get update \
 && apt-get install -y --no-install-recommends \
 ca-certificates \
 libexpat1 \
 libffi6 \
 libgdbm3 \
 libreadline7 \
 libsqlite3-0 \
 libssl1.1 \
 && rm -rf /var/lib/apt/lists/*

If we use more than one line, we need to put a backslash (\) at the end of the lines to
indicate to the shell that the command continues on the next line.

Try to find out what the preceding command does.

The COPY and ADD keywords
The COPY and ADD keywords are very important since, in the end, we want to add
some content to an existing base image to make it a custom image. Most of the time,
these are a few source files of, say, a web application or a few binaries of a compiled
application.

These two keywords are used to copy files and folders from the host into the image
that we're building. The two keywords are very similar, with the exception that the
ADD keyword also lets us copy and unpack TAR files, as well as provide a URL as a
source for the files and folders to copy.

Creating and Managing Container Images Chapter 4

[73]

Let's look at a few examples of how these two keywords can be used:

COPY . /app
COPY ./web /app/web
COPY sample.txt /data/my-sample.txt
ADD sample.tar /app/bin/
ADD http://example.com/sample.txt /data/

In the preceding lines of code:

The first line copies all files and folders from the current directory
recursively to the /app folder inside the container image
The second line copies everything in the web subfolder to the target
folder, /app/web
The third line copies a single file, sample.txt, into the target
folder, /data, and at the same time, renames it to my-sample.txt
The fourth statement unpacks the sample.tar file into the target
folder, /app/bin
Finally, the last statement copies the remote file, sample.txt, into the
target file, /data

Wildcards are allowed in the source path. For example, the following statement
copies all files starting with sample to the mydir folder inside the image:

COPY ./sample* /mydir/

From a security perspective, it is important to know that by default, all files and
folders inside the image will have a user ID (UID) and a group ID (GID) of 0. The
good thing is that for both ADD and COPY, we can change the ownership that the files
will have inside the image using the optional --chown flag, as follows:

ADD --chown=11:22 ./data/files* /app/data/

The preceding statement will copy all files starting with the name web and put them
into the /app/data folder in the image, and at the same time assign user 11 and
group 22 to these files.

Instead of numbers, one could also use names for the user and group, but then these
entities would have to be already defined in the root filesystem of the image at
/etc/passwd and /etc/group respectively, otherwise the build of the image would
fail.

Creating and Managing Container Images Chapter 4

[74]

The WORKDIR keyword
The WORKDIR keyword defines the working directory or context that is used when a
container is run from our custom image. So, if I want to set the context to the
/app/bin folder inside the image, my expression in the Dockerfile would have to
look as follows:

WORKDIR /app/bin

All activity that happens inside the image after the preceding line will use this
directory as the working directory. It is very important to note that the following two
snippets from a Dockerfile are not the same:

RUN cd /app/bin
RUN touch sample.txt

Compare the preceding code with the following code:

WORKDIR /app/bin
RUN touch sample.txt

The former will create the file in the root of the image filesystem, while the latter will
create the file at the expected location in the /app/bin folder. Only the WORKDIR
keyword sets the context across the layers of the image. The cd command alone is not
persisted across layers.

The CMD and ENTRYPOINT keywords
The CMD and ENTRYPOINT keywords are special. While all other keywords defined for
a Dockerfile are executed at the time the image is built by the Docker builder, these
two are actually definitions of what will happen when a container is started from the
image we define. When the container runtime starts a container, it needs to know
what the process or application will be that has to run inside this container. That is
exactly what CMD and ENTRYPOINT are used for—to tell Docker what the start
process is and how to start that process.

Now, the differences between CMD and ENTRYPOINT are subtle, and honestly most
users don't fully understand them or use them in the intended way. Luckily, in most
cases, this is not a problem and the container will run anyway; it's just the handling of
it that is not as straightforward as it could be.

Creating and Managing Container Images Chapter 4

[75]

To better understand how to use the two keywords, let's analyze what a typical Linux
command or expression looks like—for example, let's take the ping utility as an
example, as follows:

$ ping 8.8.8.8 -c 3

In the preceding expression, ping is the command and 8.8.8.8 -c 3 are the
parameters to this command. Let's look at another expression:

$ wget -O - http://example.com/downloads/script.sh

Again, in the preceding expression, wget is the command and -O -
http://example.com/downloads/script.sh are the parameters.

Now that we have dealt with this, we can get back to CMD and ENTRYPOINT.
ENTRYPOINT is used to define the command of the expression while CMD is used to
define the parameters for the command. Thus, a Dockerfile using alpine as the base
image and defining ping as the process to run in the container could look as follows:

FROM alpine:latest
ENTRYPOINT ["ping"]
CMD ["8.8.8.8", "-c", "3"]

For both ENTRYPOINT and CMD, the values are formatted as a JSON array of strings,
where the individual items correspond to the tokens of the expression that are
separated by whitespace. This the preferred way of defining CMD and ENTRYPOINT. It
is also called the exec form.

Alternatively, one can also use what's called the shell form, for example:

CMD command param1 param2

We can now build an image from the preceding Dockerfile, as follows:

$ docker image build -t pinger .

Then, we can run a container from the pinger image we just created:

$ docker container run --rm -it pinger
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: seq=0 ttl=37 time=19.298 ms
64 bytes from 8.8.8.8: seq=1 ttl=37 time=27.890 ms
64 bytes from 8.8.8.8: seq=2 ttl=37 time=30.702 ms

Creating and Managing Container Images Chapter 4

[76]

The beauty of this is that I can now override the CMD part that I have defined in the
Dockerfile (remember, it was ["8.8.8.8", "-c", "3"]) when I create a new
container by adding the new values at the end of the docker container run
expression:

$ docker container run --rm -it pinger -w 5 127.0.0.1

This will now cause the container to ping the loopback for 5 seconds.

If we want to override what's defined in the ENTRYPOINT in the Dockerfile, we need
to use the --entrypoint parameter in the docker container run expression.
Let's say we want to execute a shell in the container instead of the ping command.
We could do so by using the following command:

$ docker container run --rm -it --entrypoint /bin/sh pinger

We will then find ourselves inside the container. Type exit to leave the container.

As I already mentioned, we do not necessarily have to follow best practices and
define the command through ENTRYPOINT and the parameters through CMD, but we
can instead enter the whole expression as a value of CMD and it will work:

FROM alpine:latest
CMD wget -O - http://www.google.com

Here, I have even used the shell form to define the CMD. But what does really happen
in this situation where ENTRYPOINT is undefined? If you leave ENTRYPOINT
undefined, then it will have the default value of /bin/sh -c, and whatever is the
value of CMD will be passed as a string to the shell command. The preceding definition
would thereby result in entering following process to run inside the container:

/bin/sh -c "wget -O - http://www.google.com"

Consequently, /bin/sh is the main process running inside the container, and it will
start a new child process to run the wget utility.

Creating and Managing Container Images Chapter 4

[77]

A complex Dockerfile
We have discussed the most important keywords commonly used in Dockerfiles.
Let's look at a realistic and somewhat complex example of a Dockerfile. The interested
reader might note that it looks very similar to the first Dockerfile that we presented in
this chapter. Here is the content:

FROM node:9.4
RUN mkdir -p /app
WORKDIR /app
COPY package.json /app/
RUN npm install
COPY . /app
ENTRYPOINT ["npm"]
CMD ["start"]

OK, so what is happening here? Evidently, this is a Dockerfile that is used to build an
image for a Node.js application; we can deduce this from the fact that the base image
node:9.4 is used. Then the second line is an instruction to create a /app folder in
the filesystem of the image. The third line defines the working directory or context in
the image to be this new /app folder. Then, on line four, we copy a
package.json file into the /app folder inside the image. After this, on line five, we
execute the npm install command inside the container; remember, our context is
the /app folder and thus, npm will find the package.json file there that we copied
on line four.

After all Node.js dependencies are installed, we copy the rest of the application files
from the current folder of the host into the /app folder of the image.

Finally, on the last two lines, we define what the startup command shall be when a
container is run from this image. In our case, it is npm start, which will start the
Node application.

Building an image
In your home directory, create a FundamentalsOfDocker folder and navigate to it:

$ mkdir ~/FundamentalsOfDocker
$ cd ~/FundamentalsOfDocker

Creating and Managing Container Images Chapter 4

[78]

In the preceding folder, create a sample1 subfolder and navigate to it:

$ mkdir sample1 && cd sample1

Use your favorite editor to create a file called Dockerfile inside this sample folder
with the following content:

FROM centos:7
RUN yum install -y wget

Save the file and exit your editor.

Back in the Terminal, we can now build a new container image using the preceding
Dockerfile as a manifest or construction plan:

$ docker image build -t my-centos .

Please note that there is a period at the end of the preceding command. This
command means that the Docker builder is creating a new image called my-centos
using the Dockerfile that is present in the current directory. Here, the period at the
end of the command stands for current directory. We could also write the preceding
command as follows, with the same result:

$ docker image build -t my-centos -f Dockerfile .

But we can omit the -f parameter, since the builder assumes that the Dockerfile is
literally called Dockerfile. We only ever need the -f parameter if our Dockerfile
has a different name or is not located in the current directory.

The preceding command gives us this (shortened) output:

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM centos:7
7: Pulling from library/centos
af4b0a2388c6: Pull complete
Digest:
sha256:2671f7a3eea36ce43609e9fe7435ade83094291055f1c96d9d1d1d7c0b986a5
d
Status: Downloaded newer image for centos:7
---> ff426288ea90
Step 2/2 : RUN yum install -y wget
---> Running in bb726903820c
Loaded plugins: fastestmirror, ovl
Determining fastest mirrors
* base: mirror.dal10.us.leaseweb.net
* extras: repos-tx.psychz.net
* updates: pubmirrors.dal.corespace.com

Creating and Managing Container Images Chapter 4

[79]

Resolving Dependencies
--> Running transaction check
---> Package wget.x86_64 0:1.14-15.el7_4.1 will be installed
...
Installed:
wget.x86_64 0:1.14-15.el7_4.1
Complete!
Removing intermediate container bb726903820c
---> bc070cc81b87
Successfully built bc070cc81b87
Successfully tagged my-centos:latest

Let's analyze this output:

First, we have the following line:

Sending build context to Docker daemon 2.048kB

The first thing the builder does is package the files in the current build
context, excluding the files and folder mentioned in the .dockerignore
file, if present, and sends the resulting .tar file to the Docker daemon.

Next, we have the following lines:

Step 1/2 : FROM centos:7
7: Pulling from library/centos
af4b0a2388c6: Pull complete
Digest: sha256:2671f7a...
Status: Downloaded newer image for centos:7
---> ff426288ea90

The first line tells us which step of the Dockerfile the builder is currently
executing. Here, we only have two statements in the Dockerfile, and we are
on step 1 of 2. We can also see what the content of that section is. Here is the
declaration of the base image, on top of which we want to build our custom
image. What the builder then does is pull this image from Docker Hub if it
is not already available in the local cache. The last line of the preceding
snippet indicates which ID the just-built layer gets assigned by the builder.

Creating and Managing Container Images Chapter 4

[80]

Now, follows the next step. I have shortened it even more than the
preceding one to concentrate on the essential part:

Step 2/2 : RUN yum install -y wget
---> Running in bb726903820c
...
...
Removing intermediate container bb726903820c
---> bc070cc81b87

Here, again, the first line indicates to us that we are in step 2 of 2. It also
shows us the respective entry from the Dockerfile. On line two, we can see
Running in bb726903820c, which tells us that the builder has created a
container with ID bb726903820c inside, which it executes the RUN
command. We have omitted the output of the yum install -y
wget command in the snippet since it is not important in this section.
When the command is finished, the builder stops the container, commits it
to a new layer, and then removes the container. The new layer has ID
bc070cc81b87, in this particular case.

At the very end of the output, we encounter the following two lines:

Successfully built bc070cc81b87
Successfully tagged my-centos:latest

This tells us that the resulting custom image has been given the ID
bc070cc81b87, and has been tagged with the name my-centos:latest.

So, how does the builder work, exactly? It starts with the base image. From this base
image, once downloaded into the local cache, it creates a container and runs the first
statement of the Dockerfile inside this container. Then, it stops the container and
persists the changes made in the container into a new image layer.

Creating and Managing Container Images Chapter 4

[81]

The builder then creates a new container from the base image and the new layer, and
runs the second statement inside this new container. Once again, the result is
committed to a new layer. This process is repeated until the very last statement in the
Dockerfile is encountered. After having committed the last layer of the new image,
the builder creates an ID for this image and tags the image with the name we
provided in the build command:

The image build process visualized

Creating and Managing Container Images Chapter 4

[82]

Multistep builds
To demonstrate why a Dockerfile with multiple build steps is useful, let's make an
example Dockerfile. Let's take a Hello World application written in C. Here is the
code found inside the hello.c file:

#include <stdio.h>
int main (void)
{
 printf ("Hello, world!\n");
 return 0;
}

Now, we want to containerize this application and write this Dockerfile:

FROM alpine:3.7
RUN apk update &&
apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN mkdir bin
RUN gcc -Wall hello.c -o bin/hello
CMD /app/bin/hello

Now, let's build this image:

$ docker image build -t hello-world .

This gives us a fairly long output, since the builder has to install the Alpine SDK,
which, among other tools, contains the C++ compiler we need to build the application.

Once the build is done we can list the image and see its size shown as follows:

$ docker image ls | grep hello-world
hello-world latest e9b... 2 minutes ago 176MB

With a size of 176 MB, the resulting image is way too big. In the end, it is just a Hello
World application. The reason for it being so big is that the image not only contains
the Hello World binary, but also all the tools to compile and link the application
from the source code. But this is really not desirable when running the application,
say, in production. Ideally, we only want to have the resulting binary in the image
and not a whole SDK.

Creating and Managing Container Images Chapter 4

[83]

It is precisely for this reason that we should define Dockerfiles as multistage. We have
some stages that are used to build the final artifacts and then a final stage where we
use the minimal necessary base image and copy the artifacts into it. This results in
very small images. Have a look at this revised Dockerfile:

FROM alpine:3.7 AS build
RUN apk update && \
 apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN mkdir bin
RUN gcc hello.c -o bin/hello

FROM alpine:3.7
COPY --from=build /app/bin/hello /app/hello
CMD /app/hello

Here, we have a first stage with an alias build that is used to compile the application,
and then the second stage uses the same base image alpine:3.7, but does not install
the SDK, and only copies the binary from the build stage, using the --from
parameter, into this final image.

Let's build the image again as follows:

$ docker image build -t hello-world-small .

When we compare the sizes of the images, we get the following output:

$ docker image ls | grep hello-world
hello-world-small latest f98... 20 seconds ago 4.16MB
hello-world latest 469... 10 minutes ago 176MB

We have been able to reduce the size from 176 MB down to 4 MB. This is reduction in
size by a factor of 40. A smaller image size has many advantages, such as a smaller
attack surface area for hackers, reduced memory and disk consumption, faster startup
times of the corresponding containers, and a reduction of the bandwidth needed to
download the image from a registry, such as Docker Hub.

Creating and Managing Container Images Chapter 4

[84]

Dockerfile best practices
There are a few recommended best practices to consider when authoring a Dockerfile,
which are as follows:

First and foremost, we need to consider that containers are meant to be
ephemeral. By ephemeral, we mean that a container can be stopped and
destroyed and a new one built and put in place with an absolute minimum
of setup and configuration. That means that we should try hard to keep the
time that is needed to initialize the application running inside the container
at a minimum, as well as the time needed to terminate or clean up the
application.
The next best practice tells us that we should order the individual
commands in the Dockerfile so that we leverage caching as much as
possible. Building a layer of an image can take a considerable amount of
time, sometimes many seconds or even minutes. While developing an
application, we will have to build the container image for our application
multiple times. We want to keep the build times at a minimum.

When we're rebuilding a previously built image, the only layers that are
rebuilt are the ones that have changed, but if one layer needs to be rebuilt,
all subsequent layers also need to be rebuilt. This is very important to
remember. Consider the following example:

FROM node:9.4
RUN mkdir -p /app
WORKIR /app
COPY . /app
RUN npm install
CMD ["npm", "start"]

In this example, the npm install command on line five of the Dockerfile
usually takes the longest. A classical Node.js application has many external
dependencies, and those are all downloaded and installed in this step. This
can take minutes until it is done. Therefore, we want to avoid running npm
install each time we rebuild the image, but a developer changes their
source code all the time during development of the application. That means
that line four, the result of the COPY command, changes all the time and this
layer has to be rebuilt each time. But as we discussed previously, that also
means that all subsequent layers have to be rebuilt, which in this case
includes the npm install command.

Creating and Managing Container Images Chapter 4

[85]

To avoid this, we can slightly modify the Dockerfile and have the following:

FROM node:9.4
RUN mkdir -p /app
WORKIR /app
COPY package.json /app/
RUN npm install
COPY . /app
CMD ["npm", "start"]

What we have done here is that, on line four, we only copy the single file
that the npm install command needs as a source, which is the
package.json file. This file rarely changes in a typical development
process. As a consequence, the npm install command also has to be
executed only when the package.json file changes. All the remaining,
frequently changed content is added to the image after the npm install
command.

A further best practice is to keep the number of layers that make up your
image relatively small. The more layers an image has, the more the graph
driver needs to work to consolidate the layers into a single root filesystem
for the corresponding container. Of course, this takes time, and thus the
fewer layers an image has, the faster the startup time for the container can
be.

But how can we keep our number of layers low? Remember that in a Dockerfile,
each line that starts with a keyword, such as FROM, COPY, or RUN, creates
a new layer. The easiest way to reduce the number of layers is to combine
multiple individual RUN commands into a single one—for example, say that
we had the following in a Dockerfile:

RUN apt-get update
RUN apt-get install -y ca-certificates
RUN rm -rf /var/lib/apt/lists/*

We could combine these into a single concatenated expression, as follows:

RUN apt-get update \
 && apt-get install -y ca-certificates \
 && rm -rf /var/lib/apt/lists/*

The former will generate three layers in the resulting image, while the latter
only creates a single layer.

Creating and Managing Container Images Chapter 4

[86]

The next three best practices all result in smaller images. Why is this important?
Smaller images reduce the time and bandwidth needed to download the image from
a registry. They also reduce the amount of disk space needed to store a copy locally
on the Docker host and the memory needed to load the image. Finally, smaller images
also means a smaller attack surface for hackers. Here are the best practices mentioned:

The first best practice that helps to reduce the image size is to use a
.dockerignore file. We want to avoid copying unnecessary files and
folders into an image to keep it as lean as possible. A .dockerignore file
works in exactly the same way as a .gitignore file, for those who are
familiar with Git. In a .dockerignore file, we can configure patterns to
exclude certain files or folders from being included in the context when
building the image.
The next best practice is to avoid installing unnecessary packages into the
filesystem of the image. Once again, this is to keep the image as lean as
possible.
Last but not least, it is recommended that you use multistage builds so that
the resulting image is as small as possible and only contains the absolute
minimum needed to run your application or application service.

Saving and loading images
The third way to create a new container image is by importing or loading it from a
file. A container image is nothing more than a tarball. To demonstrate this, we can use
the docker image save command to export an existing image to a tarball:

$ docker image save -o ./backup/my-alpine.tar my-alpine

The preceding command takes our my-alpine image that we previously built and
exports it into a ./backup/my-alpine.tar file.

If, on the other hand, we have an existing tarball and want to import it as an image
into our system, we can use the docker image load command as follows:

$ docker image load -i ./backup/my-alpine.tar

Creating and Managing Container Images Chapter 4

[87]

Sharing or shipping images
To be able to ship our custom image to other environments, we need to first give it a
globally unique name. This action is often called tagging an image. We then need to
publish the image to a central location from which other interested or entitled parties
can pull it. These central locations are called image registries.

Tagging an image
Each image has a so-called tag. A tag is often used to version images, but it has a
broader reach than just being a version number. If we do not explicitly specify a tag
when working with images, then Docker automatically assumes we're referring to the
latest tag. This is relevant when pulling an image from Docker Hub, for example:

$ docker image pull alpine

The preceding command will pull the alpine:latest image from the Hub. If we
want to explicitly specify a tag, we do so like this:

$ docker image pull alpine:3.5

This will now pull the alpine image that has been tagged with 3.5.

Image namespaces
So far, you have been pulling various images and haven't worried so much about
where those images originated from. Your Docker environment is configured so that,
by default, all images are pulled from Docker Hub. We also only pulled so-called
official images from the Docker Hub, such as alpine or busybox.

Now it is time to widen our horizon a bit and learn about how images are
namespaced. The most generic way to define an image is by its fully qualified name,
which looks as follows:

<registry URL>/<User or Org>/<name>:<tag>

Let's look at this in a bit more detail:

 <registry URL>: This is the URL to the registry from which we want to
pull the image. By default, this is docker.io. More generally, this could be
https://registry.acme.com.

Creating and Managing Container Images Chapter 4

[88]

Other than Docker Hub, there are quite a few public registries out there that
you could pull images from. The following is a list of some of them, in no
particular order:

Google at https:/ / cloud. google. com/ container- registry

Amazon AWS at https:/ /aws. amazon. com/ecr/

Microsoft Azure at https:/ /azure. microsoft. com/ en- us/
services/ container- registry/

Red Hat at https:/ /access. redhat. com/ containers/

Artifactory at https:/ / jfrog. com/ integration/
artifactory- docker- registry/

<User or Org>: This is the private Docker ID of either an individual or an
organization defined on Docker Hub, or any other registry for that matter,
such as microsoft or oracle.
<name>: This is the name of the image that is often also called a repository.
<tag>: This is the tag of the image.

Let's look at an example:

https://registry.acme.com/engineering/web-app:1.0

Here, we have an image, web-app, that is tagged with version 1.0 and belongs to the
engineering organization on the private registry at
https://registry.acme.com.

Now, there are some special conventions:

 If we omit the registry URL, then Docker Hub is automatically taken
If we omit the tag, then latest is taken
If it is an official image on Docker Hub, then no user or organization
namespace is needed

A few samples in tabular form are as follows:

Image Description

alpine
Official alpine image on Docker Hub
with the latest tag.

ubuntu:16.04
Official ubuntu image on Docker Hub
with the 16.04 tag or version.

https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/

Creating and Managing Container Images Chapter 4

[89]

microsoft/nanoserver
nanoserver image of Microsoft on Docker
Hub with the latest tag.

acme/web-api:12.0
web-api image version 12.0 associated
with the acme org. The image is on Docker
Hub.

gcr.io/gnschenker/sample-app:1.1

sample-app image with
the 1.1 tag belonging to an individual
with the gnschenker ID on Google's
container registry.

Official images
In the preceding table, we mentioned official image a few times. This needs an
explanation. Images are stored in repositories on the Docker Hub registry. Official
repositories are a set of repositories that are hosted on Docker Hub and are curated by
individuals or organizations that are also responsible for the software that is
packaged inside the image. Let's look at an example of what that means. There is an
official organization behind the Ubuntu Linux distro. This team also provides official
versions of Docker images that contain their Ubuntu distros.

Official images are meant to provide essential base OS repositories, images for
popular programming language runtimes, frequently used data storage, and other
important services.

Docker sponsors a team whose task it is to review and publish all those curated
images in public repositories on Docker Hub. Furthermore, Docker scans all official
images for vulnerabilities.

Creating and Managing Container Images Chapter 4

[90]

Pushing images to a registry
Creating custom images is all well and good, but at some point, we want to actually
share or ship our images to a target environment, such as a test, QA, or production
system. For this, we typically use a container registry. One of the most popular and
public registries out there is Docker Hub. It is configured as a default registry in your
Docker environment, and it is the registry from which we have pulled all our images
so far.

On a registry, one can usually create personal or organizational accounts. For
example, my personal account at Docker Hub is gnschenker. Personal accounts are
good for personal use. If we want to use the registry professionally, then we probably
want to create an organizational account, such as acme, on Docker Hub. The
advantage of the latter is that organizations can have multiple teams. Teams can have
differing permissions.

To be able to push an image to my personal account on Docker Hub, I need to tag it
accordingly. Let's say I want to push the latest version of alpine to my account and
give it a tag of 1.0. I can do this in the following way:

$ docker image tag alpine:latest gnschenker/alpine:1.0

Now, to be able to push the image, I have to log in to my account:

$ docker login -u gnschenker -p <my secret password>

After a successful login, I can then push the image:

$ docker image push gnschenker/alpine:1.0

I will see something similar to this in the terminal:

The push refers to repository [docker.io/gnschenker/alpine]
04a094fe844e: Mounted from library/alpine
1.0: digest: sha256:5cb04fce... size: 528

For each image that we push to Docker Hub, we automatically create a repository. A
repository can be private or public. Everyone can pull an image from a public
repository. From a private repository, one can only pull an image if one is logged in
to the registry and has the necessary permissions configured.

Creating and Managing Container Images Chapter 4

[91]

Summary
In this chapter, we have discussed in detail what container images are and how we
can build and ship them. As we have seen, there are three different ways that an
image can be created—either manually, automatically, or by importing a tarball into
the system. We also learned some of the best practices commonly used when building
custom images.

In the next chapter, we're going to introduce Docker volumes that can be used to
persist the state of a container, and we will also introduce some helpful system
commands that can be used to inspect the Docker host more deeply, work with events
generated by the Docker daemon, and clean up unused resources.

Questions
Please try to answer the following questions to assess your learning progress:

How will you create a Dockerfile that inherits from Ubuntu version 17.04,1.
and that installs ping and runs ping when a container starts. The default
address to ping will be 127.0.0.1.
How will you create a new container image that uses alpine:latest and2.
installs curl. Name the new image my-alpine:1.0.
Create a Dockerfile that uses multiple steps to create an image of a Hello3.
World app of minimal size, written in C or Go.
Name three essential characteristics of a Docker container image.4.
You want to push an image named foo:1.0 to your jdoe personal5.
account on Docker Hub. Which of the following is the right solution?

$ docker container push foo:1.01.
$ docker image tag foo:1.0 jdoe/foo:1.02.
$ docker image push jdoe/foo:1.0

$ docker login -u jdoe -p <your password>3.
$ docker image tag foo:1.0 jdoe/foo:1.0
$ docker image push jdoe/foo:1.0

$ docker login -u jdoe -p <your password>4.
$ docker container tag foo:1.0 jdoe/foo:1.0
$ docker container push jdoe/foo:1.0

$ docker login -u jdoe -p <your password>5.
$ docker image push foo:1.0 jdoe/foo:1.0

Creating and Managing Container Images Chapter 4

[92]

Further reading
The following list of references gives you some material that dives more deeply into
the topic of authoring and building container images:

Best practices for writing Dockerfiles at http:/ /dockr. ly/22WiJiO

Using multistage builds at http:/ /dockr. ly/ 2ewcUY3

About Storage drivers at http:/ /dockr. ly/ 1TuWndC

Graphdriver plugins at http:/ /dockr. ly/ 2eIVCab

User-guided caching in Docker for MAC at http:/ /dockr. ly/ 2xKafPf

http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf

5
Data Volumes and System

Management
In the last chapter, we learned how to build and share our own container images.
Particular focus was put on how to build images that are as small as possible by only
containing artifacts that are really needed by the containerized application.

In this chapter, we are going to learn how we can work with stateful containers, that
is containers that consume and produce data. We will also learn how to keep our
Docker environment clean and free from unused resources. Last but not least, we will
be looking into the stream of events that a Docker engine is producing.

Here is a list of the topics we're going to discuss:

Creating and mounting data volumes
Sharing data between containers
Using host volumes
Defining volumes in images
Obtaining exhaustive Docker system information
Listing resource consumption
Pruning unused resources
Consuming Docker system events

After working through this chapter, you will be able to:

Create, delete, and list data volumes
Mount an existing data volume into a container
Create durable data from within a container using a data volume

Data Volumes and System Management Chapter 5

[94]

Share data between multiple containers using data volumes
Mount any host folder into a container using data volumes
Define the access mode (read/write or read-only) for a container when
accessing data in a data volume
List the amount of space consumed by Docker resources on a given host,
such as images, containers, and volumes
Free your system from unused Docker resources, such as containers,
images, and volumes
Display Docker system events in a console in real time

Technical requirements
For this chapter, you need either Docker Toolbox installed on your machine or access
to a Linux VM running Docker on your laptop or in the cloud. There is no code
accompanying this chapter.

Creating and mounting data volumes
All meaningful applications consume or produce data. Yet containers are preferably
meant to be stateless. How are we going to deal with this? One way is to use Docker
volumes. Volumes allow containers to consume, produce, and modify state. Volumes
have a life cycle that goes beyond the life cycle of containers. When a container that
uses a volume dies, the volume continues to exist. This is great for the durability of
state.

Modifying the container layer
Before we dive into volumes, let's first discuss what's happening if an application in a
container changes something in the filesystem of the container. In this case, the
changes are all happening in the writable container layer. Let's quickly demonstrate
this by running a container and execute a script in it that is creating a new file:

$ docker container run --name demo \
 alpine /bin/sh -c 'echo "This is a test" > sample.txt'

Data Volumes and System Management Chapter 5

[95]

The preceding command creates a container named demo and inside this container
creates a file called sample.txt with the content This is a test. The container
exits after this but remains in memory available for us to do our investigations. Let's
use the diff command to find out what has changed in the container's filesystem in
relation to the filesystem of the image:

$ docker container diff demo

The output should look like this:

A /sample.txt

Evidently a new file, A, has been added to the filesystem of the container as expected.
Since all layers that stem from the underlying image (alpine in this case) are
immutable, the change could only happen in the writeable container layer.

If we now remove the container from memory, its container layer will also be
removed and with it all the changes will be irreversibly deleted. If we need our
changes to persist even beyond the lifetime of the container, this is not a solution.
Luckily, we have better options in the form of Docker volumes. Let's get to know
them.

Creating volumes
Since, at this time, when using Docker for Mac or Windows containers are not
running natively on OS X or Windows but rather in a (hidden) VM created by Docker
for Mac and Windows, it is best we use docker-machine to create and use an
explicit VM running Docker. At this point, we assume that you have Docker Toolbox
installed on your system. If not, then please go back to Chapter 2, Setting up a
Working Environment, where we provide detailed instructions on how to install
Toolbox.

Use docker-machine to list all VMs currently running in VirtualBox:

$ docker-machine ls

If you do not have a VM called node-1 listed then create one:

$ docker-machine create --driver virtualbox node-1

If you have a VM called node-1 but it is not running then please start it:

$ docker-machine start node-1

Data Volumes and System Management Chapter 5

[96]

Now that everything is ready, SSH into this VM called node-1:

$ docker-machine ssh node-1

You should be greeted by a boot2docker welcome image .

To create a new data volume, we can use the docker volume create command.
This will create a named volume which can then be mounted into a container and be
used for persistent data access or storage. The following command creates a
volume, my-data using the default volume driver:

$ docker volume create my-data

The default volume driver is the so-called local driver which stores the data locally in
the host filesystem. The easiest way to find out where the data is stored on the host is
by using the inspect command on the volume we just created. The actual location
can differ from system to system and so, this is the safest way to find the target folder:

 $ docker volume inspect my-data
[
 {
 "CreatedAt": "2018-01-28T21:55:41Z",
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/mnt/sda1/var/lib/docker/volumes/my-
data/_data",
 "Name": "my-data",
 "Options": {},
 "Scope": "local"
 }
]

The host folder can be found in the output under Mountpoint. In our case, when
using docker-machine with a LinuxKit-based VM running in VirtualBox, the folder
is /mnt/sda1/var/lib/docker/volumes/my-data/_data.

The target folder often is a protected folder and we thus might need to use sudo to
navigate to this folder and execute any operations in it. In our case, we do not need to
use sudo:

$ cd /mnt/sda1/var/lib/docker/volumes/my-data/_data

Data Volumes and System Management Chapter 5

[97]

If you are using Docker for Mac to create a volume on your laptop
and then do a docker volume inspect on the volume you just
created, the Mountpoint is shown as
/var/lib/docker/volumes/my-data/_data. But you will
discover that there is no such folder on the Mac. The reason is that
the path is in relation to the hidden VM that Docker for Mac uses to
run containers. At this time, containers cannot run natively on OS X.
The same applies to volumes created with Docker for Windows.

There are other volume drivers available from third parties in the form of plugins. We
can use the --driver parameter in the create command to select a different volume
driver. Other volume drivers use different types of storage systems to back a volume,
such as cloud storage, NFS drives, software-defined storage and more.

Mounting a volume
Once we have created a named volume, we can mount it into a container. For this, we
can use the -v parameter in the docker container run command:

$ docker container run --name test -it \
 -v my-data:/data alpine /bin/sh

The preceding command mounts the my-data volume to the /data folder inside the
container. Inside the container, we can now create files in the /data folder and then
exit:

/ cd /data
/ echo "Some data" > data.txt
/ echo "Some more data" > data2.txt
/ exit

If we navigate to the host folder that contains the volume data and list its content, we
should see the two files we just created inside the container:

$ cd /mnt/sda1/var/lib/docker/volumes/my-data/_data
$ ls -l
total 8
-rw-r--r-- 1 root root 10 Jan 28 22:23 data.txt
-rw-r--r-- 1 root root 15 Jan 28 22:23 data2.txt

We can even try to output the content of say, the second file:

$ cat data2.txt

Data Volumes and System Management Chapter 5

[98]

Let's try to create a file in this folder from the host and then use the volume with
another container:

$ echo "This file we create on the host" > host-data.txt

Now, let's delete the test container and run another one based on CentOS. This time
we are even mounting our volume to a different container folder, /app/data:

$ docker container rm test
$ docker container run --name test2 -it \
 -v my-data:/app/data \
 Centos:7 /bin/bash

Once inside the CentOS container, we can navigate to the folder /app/data where
we have mounted the volume to and list its content:

/ cd /app/data
/ ls -l

As expected, we should see these three files:

-rw-r--r-- 1 root root 10 Jan 28 22:23 data.txt
-rw-r--r-- 1 root root 15 Jan 28 22:23 data2.txt
-rw-r--r-- 1 root root 32 Jan 28 22:31 host-data.txt

This is the definitive proof that data in a Docker volume persists beyond the lifetime
of a container, and also that volumes can be reused by other, even different containers
from the one that used it first.

It is important to note that the folder inside the container to which we mount a
Docker volume is excluded from the union filesystem. That is, each change inside this
folder and any of its subfolders will not be part of the container layer, but persisted in
the backing storage provided by the volume driver. This fact is really important since
the container layer is deleted when the corresponding container is stopped and
removed from the system.

Removing volumes
Volumes can be removed using the docker volume rm command. It is important to
remember that removing a volume destroys the containing data irreversibly and thus
is to be considered a dangerous command. Docker helps us a bit in this regard as it
does not allow us to delete a volume that is still in use by a container. Always make
sure before you remove or delete a volume that you either have a backup of its data
or you really don't need this data anymore.

Data Volumes and System Management Chapter 5

[99]

The following command deletes our my-data volume that we created earlier:

$ docker volume rm my-data

After executing the preceding command, double-check that the folder on the host has
been deleted.

To remove all running containers to clean up the system, run the following command:

$ docker container rm -f $(docker container ls -aq)

Sharing data between containers
Containers are like sandboxes for the applications running inside them. This is mostly
beneficial and wanted in order to protect applications running in different containers
from each other. That also means that the whole filesystem visible to an application
running inside a container is private to this application and no other application
running in a different container can interfere with it.

At times though, we want to share data between containers. Say an application
running in container A produces some data that will be consumed by another
application running in container B. How can we achieve this? Well I'm sure you've
already guessed it—we can use Docker volumes for this purpose. We can create a
volume and mount it to container A as well as to container B. In this way, both
applications A and B have access to the same data.

Now, as always when multiple applications or processes concurrently access data, we
have to be very careful to avoid inconsistencies. To avoid concurrency problems, such
as race conditions, we ideally have only one application or process that is creating or
modifying data, while all other processes concurrently accessing this data only read
it. We can enforce a process running in a container to only be able to read the data in a
volume by mounting this volume as read only. Have a look at the following
command:

$ docker container run -it --name writer \
 -v shared-data:/data \
 alpine /bin/sh

Here we create a container called writer which has a volume, shared-data,
mounted in default read/write mode. Try to create a file inside this container:

/ echo "I can create a file" > /data/sample.txt

Data Volumes and System Management Chapter 5

[100]

It should succeed. Exit this container and then execute the following command:

$ docker container run -it --name reader \
 -v shared-data:/app/data:ro \
 ubuntu:17.04 /bin/bash

And we have a container called reader that has the same volume mounted as read-
only (ro). Firstly, make sure you can see the file created in the first container:

$ ls -l /app/data
total 4
-rw-r--r-- 1 root root 20 Jan 28 22:55 sample.txt

And then try to create a file:

/ echo "Try to break read/only" > /app/data/data.txt

It will fail with the following message:

bash: /app/data/data.txt: Read-only file system

Let's exit the container by typing exit at the Command Prompt. Back on the host,
let's clean up all containers and volumes:

$ docker container rm -f $(docker container ls -aq)
$ docker volume rm $(docker volume ls -q)

Once this is done, exit the docker-machine VM by also typing exit at the
Command Prompt. You should be back on your Docker for Mac or Windows. Use
docker-machine to stop the VM:

$ docker-machine stop node-1

Using host volumes
In certain scenarios, such as when developing new containerized applications or
when a containerized application needs to consume data from a certain folder
produced, say, by a legacy application, it is very useful to use volumes that mount a
specific host folder. Let's look at the following example:

$ docker container run --rm -it \
 -v $(pwd)/src:/app/src \
 alpine:latest /bin/sh

Data Volumes and System Management Chapter 5

[101]

The preceding expression interactively starts an alpine container with a shell and
mounts the subfolder src of the current directory into the container at /app/src. We
need to use $(pwd) (or 'pwd' for that matter) which is the current directory, as when
working with volumes we always need to use absolute paths.

Developers use these techniques all the time when they are working on their
application that runs in a container, and want to make sure that the container always
contains the latest changes they make to the code, without the need to rebuild the
image and rerun the container after each change.

Let's make a sample to demonstrate how that works. Let's say we want to create a
simple static website using Nginx as our web server. First, let's create a new folder on
the host where we will put our web assets, such as HTML, CSS, and JavaScript files
and navigate to it:

$ mkdir ~/my-web
$ cd ~/my-web

Then we create a simple web page like this:

$ echo "<h1>Personal Website</h1>" > index.html

Now, we add a Dockerfile which will contain the instructions on how to build the
image containing our sample website. Add a file called Dockerfile to the folder with
this content:

FROM nginx:alpine
COPY . /usr/share/nginx/html

The Dockerfile starts with the latest Alpine version of Nginx and then copies all files
from the current host directory into the containers folder, /usr/share/nginx/html.
This is where Nginx expects web assets to be located. Now let's build the image with
the following command:

$ docker image build -t my-website:1.0 .

And finally, we run a container from this image. We will run the container in
detached mode:

$ docker container run -d \
 -p 8080:80 --name my-site\
 my-website:1.0

Data Volumes and System Management Chapter 5

[102]

Note the -p 8080:80 parameter. We haven't discussed this yet but we will do it in
detail in Chapter 7, Single-Host Networking. At the moment, just know that this maps
the container port 80 on which Nginx is listening for incoming requests to port 8080
of your laptop where you can then access the application. Now, open a browser tab
and navigate to http://localhost:8080/index.html and you should see your
website which currently consists only of a title, Personal Website.

Now, edit the file index.html in your favorite editor to look like this:

<h1>Personal Website</h1>
<p>This is some text</p>

And save it. Then refresh the browser. OK, that didn't work. The browser still
displays the previous version of the index.html which consists only of the title. So
let's stop and remove the current container, then rebuild the image, and rerun the
container:

$ docker container rm -f my-site
$ docker image build -t my-website:1.0 .
$ docker container run -d \
 -p 8080:80 --name my-site\
 my-website:1.0

This time when you refresh the browser the new content should be shown. Well, it
worked, but there is way too much friction involved. Imagine you have to do this
each and every time that you make a simple change in your website. That's not
sustainable.

Now is the time to use host-mounted volumes. Once again, remove the current
container and rerun it with the volume mount:

$ docker container rm -f my-site
$ docker container run -d \
 -v $(pwd):/usr/share/nginx/html \
 -p 8080:80 --name my-site\
 my-website:1.0

Now, append some more content to the index.html and save it. Then refresh your
browser. You should see the changes. And this is exactly what we wanted to achieve;
we also call this an edit-and-continue experience. You can make as many changes in
your web files and always immediately see the result in the browser without having
to rebuild the image and restart the container containing your website.

Data Volumes and System Management Chapter 5

[103]

It is important to note that the updates are now propagated bi-directionally. If you
make changes on the host they will be propagated to the container and vice versa.
Also important is the fact that when you mount the current folder into the container
target folder, /usr/share/nginx/html, the content that is already there is replaced
by the content of the host folder.

Defining volumes in images
If we go for a moment back to what we have learned about containers in Chapter
3, Working with Containers, then we have this: the filesystem of each container when
started is made up of the immutable layers of the underlying image plus a writable
container layer specific to this very container. All changes that the processes running
inside the container make to the filesystem will be persisted in this container layer.
Once the container is stopped and removed from the system, the corresponding
container layer is deleted from the system and irreversibly lost.

Some applications, such as databases running in containers, need to persist their data
beyond the lifetime of the container. In this case they can use volumes. To make
things a bit more explicit let's look at a concrete sample. MongoDB is a popular open
source document database. Many developers use MongoDB as a storage service for
their applications. The maintainers of MongoDB have created an image and
published it on Docker Hub which can be used to run an instance of the database in a
container. This database will be producing data that needs to be persisted long term.
But the MongoDB maintainers do not know who uses this image and how it is used.
So they have no influence over the docker container run command with which
the users of the database will start this container. How can they now define volumes?

Luckily, there is a way of defining volumes in the Dockerfile. The keyword to do so
is VOLUME and we can either add the absolute path to a single folder or a comma-
separated list of paths. These paths represent folders of the container's filesystem.
Let's look at a few samples of such volume definitions:

VOLUME /app/data
VOLUME /app/data, /app/profiles, /app/config
VOLUME ["/app/data", "/app/profiles", "/app/config"]

Data Volumes and System Management Chapter 5

[104]

The first line defines a single volume to be mounted at /app/data. The second line
defines three volumes as a comma-separated list and the last one defines the same as
the second line, but this time the value is formatted as a JSON array.

When a container is started, Docker automatically creates a volume and mounts it to
the corresponding target folder of the container for each path defined in the
Dockerfile. Since each volume is created automatically by Docker, it will have an
SHA-256 as ID.

At container runtime, the folders defined as volumes in the Dockerfile are excluded
from the union filesystem and thus any changes in those folders do not change the
container layer but are persisted to the respective volume. It is now the responsibility
of the operations engineers to make sure that the backing storage of the volumes is
properly backed up.

We can use the docker image inspect command to get information about the
volumes defined in the Dockerfile. Let's see what MongoDB gives us. First, we pull
the image with the following command:

$ docker image pull mongo:3.7

Then we inspect this image and use the --format parameter to only extract the
essential part from the massive amount of data:

 $ docker image inspect \
 --format='{{json .ContainerConfig.Volumes}}' \
 mongo:3.7 | jq

Which will return the following result:

{
"/data/configdb": {},
"/data/db": {}
}

Evidently, the Dockerfile for MongoDB defines two volumes at /data/configdb
and /data/db.

Data Volumes and System Management Chapter 5

[105]

Now, let's run an instance of MongoDB as follows:

$ docker run --name my-mongo -d mongo:3.7

We can now use the docker container inspect command to get information
about the volumes that have been created, among other things. Use this command to
just get the volume information:

$ docker inspect --format '{{json .Mounts}}' my-mongo | jq

The expression should output something like this:

[
 {
 "Type": "volume",
 "Name": "b9ea0158b5...",
 "Source": "/var/lib/docker/volumes/b9ea0158b.../_data",
 "Destination": "/data/configdb",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 },
 {
 "Type": "volume",
 "Name": "5becf84b1e...",
 "Source": "/var/lib/docker/volumes/5becf84b1.../_data",
 "Destination": "/data/db",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
]

Note that the values of the Name and Source fields have been trimmed for
readability. The Source field gives us the path to the host directory where the data
produced by the MongoDB inside the container will be stored.

Data Volumes and System Management Chapter 5

[106]

Obtaining Docker system information
Whenever we need to troubleshoot our system, the commands presented in this
section are essential. They provide us with a lot about the Docker engine installed on
the host and about the host operating system. Let's first introduce the docker
version command. It provides abundant information about the Docker client and
server that your current configuration is using. If you enter the command in the CLI,
you should see something similar to this:

Version Information about Docker

Data Volumes and System Management Chapter 5

[107]

In my case, I can see that on both client and server, I am using version 18.04.0-ce-
rc2 of the Docker engine. I can also see that my orchestrator is Swarm and more.

Now to clarify what the client and what the server is, let's look at the following
diagram:

CLI accessing different Docker Hosts

You can see that the client is the little CLI through which we send Docker commands
to the remote API of the Docker host. The Docker host is the container runtime which
hosts the containers and might run on the same machine as the CLI, or it might run
on a remote server, on-premise or in the cloud. We can use the CLI to manage
different servers. We do this by setting a bunch of environment variables such as
DOCKER_HOST, DOCKER_TLS_VERIFY, and DOCKER_CERT_PATH. If these environment
variables are not set on your working machine and you're using Docker for Mac or
Windows then that means that you are using the Docker engine that runs on your
machine.

The next important command is the docker system info command. This
command provides information about what mode the Docker engine is operating in
(swarm mode or not), what storage driver is used for the union filesystem, what
version of the Linux kernel we have on our host, and much more. Please have a
careful look at the output generated by your system when running the command.
Analyze what kind of information is shown:

Data Volumes and System Management Chapter 5

[108]

Output of the Command docker system info

Data Volumes and System Management Chapter 5

[109]

Listing resource consumption
Over time, a Docker host can accumulate quite a bit of resources such as images,
containers, and volumes in memory and on disk. As in every good household, we
should keep our environment clean and free unused resources to reclaim space.
Otherwise, there will come the moment when Docker does not allow us to add any
more new resources, meaning actions such as pulling an image can fail due to lack of
available space on disk or in memory.

The Docker CLI provides a handy little system command that lists how much
resources currently are used on our system and how much of this space can possibly
be reclaimed. The command is:

$ docker system df

If you execute this command on your system, you should see an output similar to
this:

TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 21 9 1.103GB 845.3MB (76%)
Containers 14 11 9.144kB 4.4kB (48%)
Local Volumes 14 14 340.3MB 0B (0%)
Build Cache 0B 0B

The last line in the output, the Build Cache, is only displayed on newer versions of
Docker. This information has been added recently. The preceding output is explained
as follows:

In my case, the output tells me that on my system I am currently having 21
images locally cached of which 9 are in active use. An image is considered
to be in active use if currently at least one running or stopped container is
based on it. These images occupy 1.1 GB disk space. Close to 845 MB can
technically be reclaimed since the corresponding images are not currently
used.
Further, I have 11 running containers on my system and three stopped
ones for a total of 14 containers. I can reclaim the space occupied by the
stopped containers which is 4.4 kB in my case.
I also have 14 active volumes on my host that together consume about 340
MB of disk space. Since all volumes are in use, I cannot reclaim any space at
this time.
Finally, my Build Cache is currently empty and thus of course I cannot
reclaim any space there too.

Data Volumes and System Management Chapter 5

[110]

If I want even more detailed information about the resource consumption on my
system, I can run the same command in verbose mode using the -v flag:

$ docker system df -v

This will give me a detailed list of all images, containers, and volumes with their
respective size. A possible output could look like this:

Verbose output of the system resources consumed by Docker

This verbose output should give us enough detailed information to make an informed
decision as to whether or not we need to start cleaning up our system, and which
parts we might need to clean up.

Pruning unused resources
Once we have concluded that some clean up is needed Docker provides us with so-
called pruning commands. For each resource, such as images, containers, volumes,
and networks there exists a prune command.

Data Volumes and System Management Chapter 5

[111]

Pruning containers
In this section we want to regain unused system resources by pruning containers.
Let's start with this command:

$ docker container prune

The preceding command will remove all containers from the system that are not in
running status. Docker will ask for confirmation before deleting the containers that
are currently in exited or created status. If you want to skip this confirmation step
you can use the -f (or --force) flag:

$ docker container prune -f

Under certain circumstances, we might want to remove all containers from our
system, even the running ones. We cannot use the prune command for this. Instead
we should use a command, such as the following combined expression:

$ docker container rm -f $(docker container ls -aq)

Please be careful with the preceding command. It removes all containers without
warning, even the running ones! Please, before you proceed look at the preceding
command again in detail and try to explain what exactly happens and why.

Pruning images
Next in line are images. If we want to free all space occupied by unused image layers
we can use the following command:

$ docker image prune

After we reconfirm to Docker that we indeed want to free space occupied by unused
image layers, those get removed. Now I have to specify what we mean when talking
about unused image layers. As you recall from the previous chapter, an image is
made up of a stack of immutable layers. Now, when we are building a custom image
multiple times, each time making some changes in, say, the source code of the
application for which we're building the image, then we are recreating layers and
previous versions of the same layer become orphaned. Why is this the case? The reason
is that layers are immutable, as discussed in detail in the previous chapter. Thus,
when something in the source that is used to build a layer is changed, the very layer
has to be rebuilt and the previous version will be abandoned.

Data Volumes and System Management Chapter 5

[112]

On a system where we often build images, the number of orphaned image layers can
increase substantially over time. All these orphaned layers are removed with the
preceding prune command.

Similar to the prune command for containers, we can avoid Docker asking us for a
confirmation by using the force flag:

$ docker image prune -f

There is an even more radical version of the image prune command. Sometimes we
do not just want to remove orphaned image layers but all images that are not
currently in use on our system. For this, we can use the -a (or --all) flag:

$ docker image prune --force --all

After execution of the preceding command, only images that are currently used by
one or more containers will remain in our local image cache.

Pruning volumes
Docker volumes are used to allow for persistent access of data by containers. This
data can be important and thus the commands discussed in this section should be
applied with special care.

If you know that you want to reclaim space occupied by volumes and with it
irreversibly destroy the underlying data, you can use the following command:

$ docker volume prune

This command will remove all volumes that are not currently in use by at least one
container.

This is a destructive command and cannot be undone. You should
always create a backup of the data associated with the volumes
before you delete them except when you're sure that the data has no
further value.

To avoid system corruption or malfunctioning applications, Docker does not allow
you to remove volumes that are currently in use by at least one container. This
applies even to the situation where a volume is used by a stopped container. You
always have to remove the containers that use a volume first.

Data Volumes and System Management Chapter 5

[113]

A useful flag when pruning volumes is the -f or --filter flag which allows us to
specify the set of volumes which we're considering for pruning. Look at the following
command:

$ docker volume prune --filter 'label=demo'

This will only apply the command to volumes that have a label with the demo
value. The filtering flag format is key=value. If there is more than one filter needed,
then we can use multiple flags:

$ docker volume prune --filter 'label=demo' --filter 'label=test'

The filter flag can also be used when pruning other resources such as containers and
images.

Pruning networks
The last resource that can be pruned are networks. We will discuss networks in detail
in Chapter 7, Single-Host Networking. To remove all unused networks, we use the
following command:

$ docker network prune

This will remove the networks on which currently no container or service is attached.
Please don't worry about networks too much at this time. We will come back to them
and all this will make much more sense to you.

Pruning everything
If we just want to prune everything at once without having to enter multiple
commands, we can use the following command:

$ docker system prune

The Docker CLI will ask us for a confirmation and then remove all unused containers,
images, volumes, and networks in one go and in the right order.

Once again, to avoid Docker asking us for a confirmation, we can just use the force
flag with the command.

Data Volumes and System Management Chapter 5

[114]

Consuming Docker system events
The Docker engine, when creating, running, stopping, and removing containers and
other resources such as volumes or networks, produces a log of events. These events
can be consumed by external systems, such as some infrastructure services that use
them to make informed decisions. An example of such a service could be a tool that
creates an inventory of all containers that are currently running on the system.

We can hook ourselves into this stream of system events and output them, for
example in a terminal, by using the following command:

$ docker system events

This command is a blocking command. Thus, when you execute it in your terminal
session the according session is blocked. Therefore, we recommend that you always
open an extra window when you want to use this command.

Assuming we have executed the preceding command in an extra terminal window,
we can now test it and run a container like this:

$ docker container run --rm alpine echo "Hello World"

The output produced should look like this:

2018-01-28T15:08:57.318341118-06:00 container create
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3
(image=alpine, name=confident_hopper)

2018-01-28T15:08:57.320934314-06:00 container attach
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3
(image=alpine, name=confident_hopper)

2018-01-28T15:08:57.354869473-06:00 network connect
c8fd270e1a776c5851c9fa1e79927141a1e1be228880c0aace4d0daebccd190f
(container=8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c
6ecf3, name=bridge, type=bridge)

2018-01-28T15:08:57.818494970-06:00 container start
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3
(image=alpine, name=confident_hopper)

2018-01-28T15:08:57.998941548-06:00 container die
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3
(exitCode=0, image=alpine, name=confident_hopper)

2018-01-28T15:08:58.304784993-06:00 network disconnect
c8fd270e1a776c5851c9fa1e79927141a1e1be228880c0aace4d0daebccd190f

Data Volumes and System Management Chapter 5

[115]

(container=8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c
6ecf3, name=bridge, type=bridge)

2018-01-28T15:08:58.412513530-06:00 container destroy
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3
(image=alpine, name=confident_hopper)

In this output, we can follow the exact life cycle of the container. The container is
created, started, and then destroyed. If the output generated by this command is not
to your liking you can always change it by using the --format parameter. The value
of the format has to be written using the Go template syntax. The following sample
outputs the type, image, and action of the event:

$ docker system events --format 'Type={{.Type}}
Image={{.Actor.Attributes.image}} Action={{.Action}}'

If we run the exact same container run command as before, the output generated now
looks like this:

Type=container Image=alpine Action=create
Type=container Image=alpine Action=attach
Type=network Image=<no value> Action=connect
Type=container Image=alpine Action=start
Type=container Image=alpine Action=die
Type=network Image=<no value> Action=disconnect
Type=container Image=alpine Action=destroy

Summary
In this chapter, we have introduced Docker volumes that can be used to persist states
produced by containers and make it durable. We can also use volumes to provide
containers with data originating from various sources. We have learned how to
create, mount and use volumes. We have learned various techniques of defining
volumes such as by name, by mounting a host directory, or by defining volumes in a
container image.

In this chapter, we have also discussed various system-level commands that either
provide us with abundant information to troubleshoot a system, or to manage and
prune resources used by Docker. Lastly, we have learned how we can visualize and
potentially consume the event stream generated by the container runtime.

Data Volumes and System Management Chapter 5

[116]

Questions
Please try to answer the following questions to assess your learning progress:

How will you create a named data volume with a name, for example my-1.
products, using the default driver?
How will you run a container using the image alpine and mount the2.
volume my-products in read-only mode into the /data container folder?
How will you locate the folder which is associated with the volume my-3.
products and navigate to it? Also, how will you create a
file, sample.txt with some content?
How will you run another alpine container to which you mount the my-4.
products volume to the /app-data folder, in read/write mode? Inside
this container, navigate to the /app-data folder and create
a hello.txt file with some content.
How will you mount a host volume, for example ~/my-project, into a5.
container?
How will you remove all unused volumes from your system?6.
How will you determine the exact version of the Linux kernel and of7.
Docker running on your system?

Further reading
The following articles provide more in-depth information:

Use volumes at http:/ /dockr. ly/2EUjTml

Manage data in Docker at http:/ /dockr. ly/ 2EhBpzD

Docker volumes on PWD at http:/ /bit. ly/ 2sjIfDj

Containers—clean up your house at http:/ /bit. ly/2bVrCBn

Docker system events at http:/ /dockr. ly/ 2BlZmXY

http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://bit.ly/2bVrCBn
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY
http://dockr.ly/2BlZmXY

6
Distributed Application

Architecture
In the previous chapter, we learned how we can use Docker volumes to persist
created or modified state, as well as share data between applications running in
containers. We also learned how to work with events generated by the Docker
daemon and clean up unused resources.

In this chapter, we introduce the concept of a distributed application architecture and
discuss the various patterns and best practices that are required to run a distributed
application successfully. Finally, we will discuss the additional requirements that
need to be fulfilled to run such an application in production.

In this chapter, we will cover the following topics:

What is a distributed application architecture?
Patterns and best practices
Running in production

After finishing this chapter, you will be able to do the following:

Name at least four characteristics of a distributed application architecture
Name at least four patterns that need to be implemented for a production-
ready distributed application

Distributed Application Architecture Chapter 6

[118]

What is a distributed application
architecture?
In this section, we are going to explain in detail what we mean when we talk about a
distributed application architecture. First, we need to make sure that all words or
acronyms we use have a meaning and that we are all talking the same language.

Defining the terminology
In this and the subsequent chapters, we will talk a lot about concepts that might not
be familiar to everyone. To make sure we all talk the same language,
let's briefly introduce and describe the most important of these concepts or words:

VM Acronym for virtual machine. This is a virtual computer.

Node

Individual server used to run applications. This can be a physical server,
often called bare metal, or a VM. A node can be a mainframe,
supercomputer, standard business server, or even a Raspberry Pi. Nodes
can be computers in a company's own data center or in the cloud.
Normally, a node is part of a cluster.

Cluster Group of nodes connected by a network used to run distributed
applications.

Network Physical and software-defined communication paths between individual
nodes of a cluster and programs running on those nodes.

Port Channel on which an application such a web server listens for incoming
requests.

Service

This, unfortunately, is a very overloaded term and its real meaning
depends on the context in which it is used. If we use the term service in the
context of an application such as an application service, then it usually
means that this is a piece of software that implements a limited set of
functionality which is then used by other parts of the application. As we
progress through this book, other types of services that have a slightly
different definition will be discussed.

Distributed Application Architecture Chapter 6

[119]

Naively said, a distributed application architecture is the opposite of a monolithic
application architecture, but it's not unreasonable to look at this monolithic
architecture first. Traditionally, most business applications have been written in such
a way that the result can be seen as one single, tightly coupled program that runs on a
named server somewhere in a data center. All its code is compiled into a single binary
or a few very tightly coupled binaries that need to be co-located when running the
application. The fact that the server, or more general host, on which the application is
running has a well-defined name or static IP address is also important in this context.
Let's look at the following diagram to illustrate this type of application architecture a
bit more clearly:

Monolithic application architecture

In the preceding figure, we see a server named blue-box-12a with an IP address
of 172.52.13.44 running an application called pet-shop, which is a monolith
consisting of a main module and a few tightly coupled libraries.

Distributed Application Architecture Chapter 6

[120]

Now, let's look at the following figure:

Distributed application architecture

Here, all of a sudden, we don't have only a single named server anymore, but we
have a lot of them and they don't have human-friendly names, but rather some
unique IDs that can be something like a universal unique identifier (UUID). The pet
shop application, all of a sudden, also does not consist of a single monolithic block
anymore but rather of a plethora of interacting yet loosely coupled services such as
pet-api, pet-web, and pet-inventory. Furthermore, each service runs in multiple
instances in this cluster of servers or hosts.

Distributed Application Architecture Chapter 6

[121]

You might be wondering why we are discussing this in a book about Docker
containers, and you are right to ask. While all the topics we're going to investigate
apply equally to a world where containers do not (yet) exist, it is important to realize
that containers and container orchestration engines help to address all the problems
in a much more efficient and straightforward way. Most of the problems that used to
be very hard to solve in a distributed application architecture become quite simple in
a containerized world.

Patterns and best practices
A distributed application architecture has many compelling benefits, but it has also
one very significant drawback compared to a monolithic application architecture - the
former is way more complex. To tame this complexity, the industry has come up with
some important best practices and patterns. In the following sections, we are going to
look into some of the most important ones in more detail.

Loosely coupled components
The best way to address a complex subject has always been to divide it into smaller
sub problems that are more manageable. As an example, it would be insanely
complex to build a house in one single step. It is much easier to build the house up
from simple parts that are then combined into the final result.

The same also applies to software development. It is much easier to develop a very
complex application if we divide this application into smaller components that
interoperate and together make up the overall application. Now, it is much easier to
develop these components individually if they are only loosely coupled to each other.
What this means is that component A makes no assumptions about the inner
workings of, say, components B and C, but is only interested in how it can
communicate with those two components across a well-defined interface. If each
component has a well-defined and simple public interface through which
communication with the other components in the system and the outside world
happens, then this enables us to develop each component individually, without
implicit dependencies to other components. During the development process, other
components in the system can be replaced by stubs or mocks to allow us to test our
component.

Distributed Application Architecture Chapter 6

[122]

Stateful versus stateless
Every meaningful business application creates, modifies, or uses data. Data is also
called state. An application service that creates or modifies persistent data is called a
stateful component. Typical stateful components are database services or services that
create files. On the other hand, application components that do not create or modify
persistent data are called stateless components.

In a distributed application architecture, stateless components are much simpler to
handle than stateful components. Stateless components can be easily scaled up and
scaled down. They can also be quickly and painlessly torn down and restarted on a
completely different node of the cluster—all this because they have no persistent data
associated with them.

Given that fact, it is helpful to design a system in a way that most of the application
services are stateless. It is best to push all the stateful components to the boundary of
the application and limit their number. Managing stateful components is hard.

Service discovery
As we build applications that consist of many individual components or services that
communicate with each other, we need a mechanism that allows the individual
components to find each other in the cluster. Finding each other usually means that
one needs to know on which node the target component is running and on which
port it is listening for communication. Most often, nodes are identified by an IP
address and a port, which is just a number in a well-defined range.

Technically, we could tell Service A, which wants to communicate with a
target, Service B, what the IP address and port of the target are. This could happen,
for example, through an entry in a configuration file:

Components are hardwired

Distributed Application Architecture Chapter 6

[123]

While this might work very well in the context of a monolithic application that runs
on one or only a few well-known and curated servers, it totally falls apart in a
distributed application architecture. First of all, in this scenario, we have many
components, and keeping track of them manually becomes a nightmare. It is
definitely not scalable. Furthermore, Service A typically should or will never know on
which node of the cluster the other components run. Their location may not even be
stable as component B could be moved from node X to another node Y, due to various
reasons external to the application. Thus, we need another way in which Service A
can locate Service B, or any other service for that matter. What is most commonly
used is an external authority that is aware of the topology of the system at any given
time. This external authority or service knows all the nodes and their IP addresses
that currently pertain to the cluster; it knows all services that are running and where
they are running. Often, this kind of service is called a DNS service, where DNS
stands for Domain Name System. As we will see, Docker has a DNS service
implemented as part of the underlying engine. Kubernetes also uses a DNS service to
facilitate communication between components running in the cluster:

Components consult an external locator service

In the preceding figure, we see how Service A wants to communicate with Service B.
But it can't do this directly; it has to first query the external authority, a registry
service, here called a DNS Service, about the whereabouts of Service B. The registry
service will answer with the requested information and hand out the IP address and
port number with which Service A can reach Service B. Service A then uses this
information and establishes communication with Service B. Of course, this is a naive
picture of what's really happening on a low level, but it is a good picture to
understand the architectural pattern of service discovery.

Distributed Application Architecture Chapter 6

[124]

Routing
Routing is the mechanism of sending packets of data from a source component to a
target component. Routing is categorized into different types. One uses the so-called
OSI model (see reference in the Further reading section of this chapter) to distinguish
between different types of routing. In the context of containers and container
orchestration, routing at layers 2, 3, 4, and 7 is relevant. We will dive into more detail
about routing in the subsequent chapters. Here, let's just say that layer 2 routing is the
most low-level type of routing, which connects a MAC address to a MAC address,
while layer 7 routing, which is also called application-level routing, is the most high-
level one. The latter is, for example, used to route requests having a target identifier
that is a URL such as example.com/pets to the appropriate target component in our
system.

Load balancing
Load balancing is used whenever Service A requests a service from Service B, but the
latter is running in more than one instance, as shown in the following figure:

Request of Service A load balanced to Service B

Distributed Application Architecture Chapter 6

[125]

If we have multiple instances of a service such as Service B running in our system, we
want to make sure that every, of those instances gets an equal amount of workload
assigned to it. This task is a generic one, which means that we don't want the caller to
have to do the load balancing, but rather an external service that intercepts the call
and takes over the part of deciding to which of the target service instances to forward
the call. This external service is called a load balancer. Load balancers can use
different algorithms to decide how to distribute the incoming calls to the target
service instances. The most common algorithm used is called round robin. This
algorithm just assigns requests in a repetitive way, starting with instance 1 then 2
until instance n. After the last instance has been served, the load balancer starts over
with instance number 1.

Defensive programming
When developing a service for a distributed application, it is important to remember
that this service is not going to be standalone, but is dependent on other application
services or even on external services provided by third parties, such as credit card
validation services or stock information services, to just name two. All these other
services are external to the service we are developing. We have no control over their
correctness or their availability at any given time. Thus, when coding, we always
need to assume the worst and hope for the best. Assuming the worst means that we
have to deal with potential failures explicitly.

Retries
When there is a possibility that an external service might be temporarily unavailable
or not responsive enough, then the following procedure can be used. When the call to
the other service fails or times out, the calling code should be structured in such a
way that the same call is repeated after a short wait time. If the call fails again, the
wait should be a bit longer before the next trial. The calls should be repeated up until
a maximum number of times, each time increasing the wait time. After that, the
service should give up and provide a degraded service, which could mean to return
some stale cached data or no data at all, depending on the situation.

Distributed Application Architecture Chapter 6

[126]

Logging
Important operations in a service should always be logged. Logging information
needs to be categorized to be of a real value. A common list of categories is debug,
info, warning, error, and fatal. Logging information should be collected by a central
log aggregation service and not be stored on an individual node of the cluster.
Aggregated logs are easy to parse and filter for relevant information.

Error handling
As mentioned earlier, each application service in a distributed application is
dependent on other services. As developers, we should always expect the worst and
have appropriate error handling in place. One of the most important best practices is
to fail fast. Code the service in such a way that unrecoverable errors are discovered as
early as possible and, if such an error is detected, have the service fail immediately.
But don't forget to log meaningful information to STDERR or STDOUT, which can be
used by developers or system operators later to track malfunctions of the system.
Also, return a helpful error to the caller, indicating as precisely as possible why the
call failed.

One sample of fail fast is to always check the input values provided by the caller. Are
the values in the expected ranges and complete? If not, then do not try to continue
processing, but immediately abort the operation.

Redundancy
A mission-critical system has to be available all the time, around the clock, 365 days a
year. Downtime is not acceptable, since it might result in a huge loss of opportunities
or reputation for the company. In a highly distributed application, the likelihood of a
failure of at least one of the many involved components is non-neglectable. One can
say that the question is not whether a component will fail, but rather when a failure
will occur.

Distributed Application Architecture Chapter 6

[127]

To avoid downtime when one of the many components in the system fails, each
individual part of the system needs to be redundant. This includes the application
components as well as all infrastructure parts. What that means is that if we, say,
have a payment service as part of our application, then we need to run this service
redundantly. The easiest way to do that is to run multiple instances of this very
service on different nodes of our cluster. The same applies, say, for an edge router or
a load balancer. We cannot afford for this to ever go down. Thus the router or load
balancer must be redundant.

Health checks
We have mentioned various times that in a distributed application architecture, with
its many parts, failure of an individual component is highly likely and it is only a
matter of time until it happens. For that reason, we run every single component of the
system redundantly. Proxy services then load balance the traffic across the individual
instances of a service.

But now there is another problem. How does the proxy or router know whether a certain
service instance is available or not? It could have crashed or it could be unresponsive. To
solve this problem, one uses so-called health checks. The proxy, or some other system
service on behalf of the proxy, periodically polls all the service instances and checks
their health. The questions are basically Are you still there? Are you healthy? The
answer of each service is either Yes or No, or the health check times out if the instance
is not responsive anymore.

If the component answers with No or a timeout occurs, then the system kills the
corresponding instance and spins up a new instance in its place. If all this happens in
a fully automated way, then we say that we have an auto-healing system in place.

Circuit breaker pattern
A circuit breaker is a mechanism that is used to avoid a distributed application going
down due to a cascading failure of many essential components. Circuit breakers help
to avoid one failing component tearing down other dependent services in a domino
effect. Like circuit breakers in an electrical system, which protect a house from
burning down due to the failure of a malfunctioning plugged-in appliance by
interrupting the power line, circuit breakers in a distributed application interrupt the
connection from Service A to Service B if the latter is not responding or is
malfunctioning.

Distributed Application Architecture Chapter 6

[128]

This can be achieved by wrapping a protected service call in a circuit breaker object.
This object monitors for failures. Once the number of failures reaches a certain
threshold, the circuit breaker trips. All subsequent calls to the circuit breaker will
return with an error, without the protected call being made at all:

Circuit breaker pattern

Running in production
To successfully run a distributed application in production, we need to consider a few
more aspects beyond the best practices and patterns presented in the preceding
sections. One specific area that comes to mind is introspection and monitoring. Let's
go through the most important aspects in detail.

Distributed Application Architecture Chapter 6

[129]

Logging
Once a distributed application is in production, it is not possible to debug it. But how
can we then find out what exactly is the root cause of a malfunction of the application that
has been reported by a user? The solution to this problem is to produce abundant and
meaningful logging information. Developers need to instrument their application
services in such a way that they output helpful information, such as when an error
happens or a potentially unexpected or unwanted situation is encountered. Often,
this information is output to STDOUT and STDERR, from where it is then collected
by system daemons that write the information to local files or forward it to a central
log aggregation service.

If there is sufficient information in the logs, developers can use those logs to track
down the root cause of errors in the system that have been reported.

In a distributed application architecture, with its many components, logging is even
more important than in a monolithic application. The paths of execution of a single
request through all the components of the application can be very complex. Also,
remember that the components are distributed across a cluster of nodes. Thus, it
makes sense to log everything of importance and to each log entry add things such as
the exact time when it happened, the component in which it happened, and the node
on which the component ran, to name just a few. Furthermore, the logging
information should be aggregated in a central location so that it is readily available
for developers and system operators to analyze.

Tracing
Tracing is used to find out how an individual request is funneled through a
distributed application and how much time is spent overall for the request and in
every individual component. This information, if collected, can be used as one of the
sources for dashboards that show the behavior and health of the system.

Monitoring
Operators like to have dashboards showing live key metrics of the system, which
show them the overall health of the application in one glance. These metrics can be
non-functional metrics such as memory and CPU usage, number of crashes of a
system or application component, health of a node, and so on, as well as functional
and thus application-specific metrics such as the number of checkouts in an ordering
system or the number of items out of stock in an inventory service.

Distributed Application Architecture Chapter 6

[130]

Most often, the base data used to aggregate the numbers that are used for a
dashboard are extracted from logging information. This can either be system logs,
which will mostly be used for non-functional metrics, and application-level logs, for
functional metrics.

Application updates
One of the competitive advantages for a company is to be able to react in a timely
manner to changing market situations. Part of this is to be able to quickly adjust an
application to fulfill new and changed needs or to add new functionality. The faster
we can update our applications, the better. Many companies these days roll out new
or changed features multiple times per day.

Since application updates are so frequent, these updates have to be non-disruptive.
We cannot allow the system to go down for maintenance when upgrading. It all has
to happen seamlessly and transparently.

Rolling updates
One way of updating an application or an application service is to use rolling
updates. The assumption here is that the particular piece of software that has to be
updated runs in multiple instances. Only then can we use this type of update.

What happens is that the system stops one instance of the current service and replaces
it with an instance of the new service. As soon as the new instance is ready, it will be
served traffic. Usually, the new instance is monitored for some time to see whether or
not it works as expected and, if it does, the next instance of the current service is
taken down and replaced by a new instance. This pattern is repeated until all service
instances have been replaced.

Since there are always a few instances running at any given time, current or new, the
application is operational all the time. No downtime is needed.

Blue-green deployments
In blue-green deployments, the current version of the application service, called blue,
handles all the application traffic. We then install the new version of the application
service, called green, on the production system. The new service is not yet wired with
the rest of the application.

Distributed Application Architecture Chapter 6

[131]

Once green is installed, one can execute smoke tests against this new service and, if
those succeed, the router can be configured to funnel all traffic that previously went
to blue to the new service, green. The behavior of green is then observed closely and,
if all success criteria are met, blue can be decommissioned. But if, for some reason,
green shows some unexpected or unwanted behavior, the router can be reconfigured
to return all traffic to blue. Green can then be removed and fixed, and a new blue-
green deployment can be executed with the corrected version:

Blue-green deployment

Canary releases
Canary releases are releases where we have the current version of the application
service and the new version installed on the system in parallel. As such, they
resemble blue-green deployments. At first, all traffic is still routed through the
current version. We then configure a router so that it funnels a small percentage, say
1%, of the overall traffic to the new version of the application service. The behavior of
the new service is then monitored closely to find out whether or not it works as
expected. If all the criteria for success are met, then the router is configured to funnel
more traffic, say 5% this time, through the new service. Again, the behavior of the
new service is closely monitored and, if it is successful, more and more traffic is
routed to it until we reach 100%. Once all traffic is routed to the new service and it has
been stable for some time, the old version of the service can be decommissioned.

Distributed Application Architecture Chapter 6

[132]

Why do we call this a canary release? It is named after the coal miners who would use
canary birds as an early warning system in the mines. Canary birds are particularly
sensitive to toxic gas and if such a canary bird died, the miners knew they had to
abandon the mine immediately.

Irreversible data changes
If part of our update process is to execute an irreversible change in our state, such as
an irreversible schema change in a backing relational database, then we need to
address this with special care. It is possible to execute such changes without
downtime if one uses the right approach. It is important to recognize that, in such a
situation, one cannot deploy the code changes that require the new data structure in
the data store at the same time as the changes to the data. Rather, the whole update
has to be separated into three distinct steps. In the first step, one rolls out a backward-
compatible schema and data change. If this is successful, then one rolls out the new
code in the second step. Again, if that is successful, one cleans up the schema in the
third step and removes the backwards-compatibility:

Rolling out an irreversible data or schema change

Rollback
If we have frequent updates to our application services that run in production, sooner
or later there will be a problem with one of those updates. Maybe a developer, while
fixing a bug, introduced a new one, which was not caught by all the automated, and
maybe manual, tests, so the application is misbehaving and it is imperative that we
roll back the service to the previous good version. In this regard, a rollback is a
recovery from a disaster.

Distributed Application Architecture Chapter 6

[133]

Again, in a distributed application architecture, it is not a question of whether a
rollback will ever be needed, but rather when a rollback will have to occur. Thus we
need to absolutely be sure that we can always roll back to a previous version of any
service that makes up our application. Rollbacks cannot be an afterthought but have
to be a tested and proven part of our deployment process.

If we are using blue-green deployments to update our services, then rollbacks should
be fairly simple. All we need to do is switch the router from the new green version of
the service back to the previous blue version.

Summary
In this chapter, we learned what a distributed application architecture is and what
patterns and best practices are helpful or needed to successfully run a distributed
application. Lastly, we discussed what is needed in addition to run such an
application in production.

In the next chapter, we will dive into networking limited to a single host. We're going
to discuss in detail how containers living on the same host can communicate with
each other and how external clients can access containerized applications if necessary.

Questions
Please answer the following questions to assess your understanding of this chapter's
content.

When and why does every part in a distributed application architecture1.
have to be redundant? Explain in a few short sentences.
Why do we need DNS services? Explain in 3 to 5 sentences.2.
What is a circuit breaker and why is it needed?3.
What are some important differences between a monolithic application and4.
a distributed or multi-service application?
What is a blue-green deployment?5.

Distributed Application Architecture Chapter 6

[134]

Further reading
The following articles provide more in-depth information:

CircuitBreaker at http:/ / bit. ly/ 1NU1sgW

The OSI model explained at http:/ /bit. ly/ 1UCcvMt

BlueGreenDeployment at http:// bit.ly/ 2r2IxNJ

https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ

7
Single-Host Networking

In the last chapter, we learned about the most important architectural patterns and
best practices that are used when dealing with a distributed application architecture.

In this chapter, we will introduce the Docker container networking model and its
single-host implementation in the form of the bridge network. This chapter also
introduces the concept of software-defined networks and how they are used to secure
containerized applications. Finally, it demonstrates how container ports can be
opened to the public and thus make containerized components accessible to the
outside world.

This chapter will contain the following topics:

The container network model
Network firewalling
The bridge network
The host network
The null network
Running in an existing network namespace
Port management

After completing this module, you will be able to do the following:

Draft the container networking model—along with all the essential
components onto a whiteboard
Create and delete a custom bridge network
Run a container attached to a custom bridge network
Inspect a bridge network

Single-Host Networking Chapter 7

[136]

Isolate containers from each other by running them on different bridge
networks
Publish a container port to a host port of your choice

Technical requirements
For this chapter, the only thing you will need is a Docker host that is able to run
Linux containers. You can use your laptop with either Docker for Mac or Windows or
Docker Toolbox installed.

The container network model
So far, we have worked with single containers. But in reality, a containerized business
application consists of several containers that need to collaborate to achieve a goal.
Therefore, we need a way for individual containers to communicate with each other.
This is achieved by establishing pathways that we can use to send data
packets back and forth between containers. These pathways are called networks.
Docker has defined a very simple networking model, the so-called container network
model (CNM), to specify the requirements that any software that implements a
container network has to fulfill. The following is a graphical representation of the
CNM:

The Docker container network model

The CNM has three elements—sandbox, endpoint, and network:

Sandbox: The sandbox perfectly isolates a container from the outside
world. No inbound network connection is allowed into the sandboxed
container. Yet, it is very unlikely that a container will be of any value in a
system if absolutely no communication with it is possible. To work around
this, we have element number two, which is the endpoint.

Single-Host Networking Chapter 7

[137]

Endpoint: An endpoint is a controlled gateway from the outside world into
the network's sandbox that shields the container. The endpoint connects the
network sandbox (but not the container) to the third element of the model,
which is the network.
Network: The network is the pathway that transports the data packets of
an instance of communication from endpoint to endpoint, or ultimately
from container to container.

It is important to note that a network sandbox can have zero to many endpoints, or,
said differently, each container living in a network sandbox can either be attached to
no network at all or it can be attached to multiple different networks at the same time.
In the preceding image, the middle of the three network sandboxes is attached to both
networks 1 and 2 through a respective endpoint.

This networking model is very generic and does not specify where the individual
containers that communicate with each other run over a network. All containers
could, for example, run on one and the same host (local) or they could be distributed
across a cluster of hosts (global).

Of course, the CNM is just a model describing how networking works among
containers. To be able to use networking with our containers, we need real
implementations of the CNM. For both local and global scope, we have multiple
implementations of the CNM. In the following table, we give a short overview of the
existing implementations and their main characteristics. The list is in no particular
order:

Network Company Scope Description

Bridge Docker Local Simple network based on Linux bridges allowing
networking on a single host

Macvlan Docker Local Configures multiple layer 2 (that is, MAC) addresses
on a single physical host interface

Overlay Docker Global Multinode-capable container network based on
Virtual Extensible LAN (VXLan)

Weave Net Weaveworks Global Simple, resilient, multihost Docker networking
Contiv Network
Plugin Cisco Global Open source container networking

All network types not directly provided by Docker can be added to a Docker host as a
plugin.

Single-Host Networking Chapter 7

[138]

Network firewalling
Docker has always had the mantra of security first. This philosophy had a direct
influence on how networking in a single and multihost Docker environment was
designed and implemented. Software-defined networks are easy and cheap to create,
yet they perfectly firewall containers that are attached to this network from other non-
attached containers, and from the outside world. All containers that belong to the
same network can freely communicate with each other, while others have no means
to do so:

Docker networks

In the preceding image, we have two networks called front and back. Attached to the
front network, we have containers c1 and c2, and attached to the back network, we
have containers c3 and c4. c1 and c2 can freely communicate with each other, as can
c3 and c4. But c1 and c2 have no way to communicate with either c3 or c4, and vice
versa.

Now what about the situation where we have an application consisting of three
services, webAPI, productCatalog, and database? We want webAPI to be able to
communicate with productCatalog, but not with the database, and we
want productCatalog to be able to communicate with the database service. We can
solve this situation by placing webAPI and the database on different networks and
attach productCatalog to both of these networks, as shown in the following image:

Container attached to multiple networks

Single-Host Networking Chapter 7

[139]

Since creating SDNs is cheap, and each network provides added security by isolating
resources from unauthorized access, it is highly recommended that you design and
run applications so that they use multiple networks and run only services on the
same network that absolutely need to communicate with each other. In the preceding
example, there is absolutely no need for the web API component to ever
communicate directly with the database service, so we have put them on different
networks. If the worst-case scenario happens and a hacker compromises the web API,
they have no ability to access the database from there without first also hacking the
product catalog service.

The bridge network
The Docker bridge network is the first implementation of the container network
model that we're going to look at in detail. This network implementation is based on
the Linux bridge. When the Docker daemon runs for the first time, it creates a Linux
bridge and calls it docker0. This is the default behavior, and can be changed by
changing the configuration. Docker then creates a network with this Linux bridge and
calls the network bridge. All the containers that we create on a Docker host and that
we do not explicitly bind to another network leads to Docker automatically attaching
to this bridge network.

To verify that we indeed have a network called bridge of type bridge defined on
our host, we can list all networks on the host with the following command:

$ docker network ls

This should provide an output similar to the following:

Listing of all Docker networks available by default

In your case, the IDs will be different, but the rest of the output should look the same.
We do indeed have a first network called bridge using the driver bridge. The scope
being local just means that this type of network is restricted to a single host and
cannot span across multiple hosts. In a later chapter, we will also discuss other types
of networks that have a global scope, meaning they can span whole clusters of hosts.

Single-Host Networking Chapter 7

[140]

Now, let's look a little bit deeper into what this bridge network is all about. For this,
we are going to use the Docker inspect command:

$ docker network inspect bridge

When executed, this outputs a big chunk of detailed information about the network in
question. This information should look like the following:

Output generated when inspecting the Docker bridge network

Single-Host Networking Chapter 7

[141]

We have already seen the ID, Name, Driver, and Scope values when we listed all the
networks, so that is nothing new. But let's have a look at the IP address
management (IPAM) block. IPAM is software that is used to track IP addresses that
are used on a computer. The important part in the IPAM block is the Config node
with its values for Subnet and Gateway. The subnet for the bridge network is
defined by default as 172.17.0.0/16. This means that all containers attached to this
network will get an IP address assigned by Docker that is taken from the given range,
which is 172.17.0.2 to 172.17.255.255. The 172.17.0.1 address is reserved for
the router of this network whose role in this type of network is taken by the Linux
bridge. One can expect that the very first container that will be attached to this
network by Docker will get the 172.17.0.2 address. All subsequent containers will
get a higher number; the following image illustrates this fact:

The bridge network

In the preceding image, we can see the network namespace of the host, which
includes the host's eth0 endpoint, which is typically a NIC if the Docker host runs on
bare metal or a virtual NIC if the Docker host is a VM. All traffic to the host comes
through eth0. The Linux bridge is responsible for the routing of the network traffic
between the host's network and the subnet of the bridge network.

Single-Host Networking Chapter 7

[142]

By default, only traffic from the egress is allowed, and all ingress is blocked. What
this means is that while containerized applications can reach the internet, they cannot
be reached by any outside traffic. Each container attached to the network gets its own
virtual ethernet (veth) connection with the bridge. This is illustrated in the following
image:

Details of the bridge network

The preceding image shows us the world from the perspective of the host. We will
explore how the situation looks from within a container later on in this section.

We are not limited to just the bridge network, as Docker allows us to define our own
custom bridge networks. This is not just a feature that is nice to have, but it is a
recommended best practice to not run all containers on the same network, but to use
additional bridge networks to further isolate containers that have no need to
communicate with each other. To create a custom bridge network called sample-net,
use the following command:

$ docker network create --driver bridge sample-net

Single-Host Networking Chapter 7

[143]

 If we do this, we can then inspect what subnet Docker has created for this new
custom network as follows:

$ docker network inspect sample-net | grep Subnet

This returns the following value:

"Subnet": "172.18.0.0/16",

Evidently, Docker has just assigned the next free block of IP addresses to our new
custom bridge network. If, for some reason, we want to specify our own subnet range
when creating a network, we can do so by using the --subnet parameter:

$ docker network create --driver bridge --subnet "10.1.0.0/16" test-
net

To avoid conflicts due to duplicate IP addresses, make sure you avoid creating
networks with overlapping subnets.

Now that we have discussed what a bridge network is and how one can create a
custom bridge network, we want to understand how we can attach containers to
these networks. First, let's interactively run an Alpine container without specifying
the network to be attached:

$ docker container run --name c1 -it --rm alpine:latest /bin/sh

In another Terminal window, let's inspect the c1 container:

$ docker container inspect c1

Single-Host Networking Chapter 7

[144]

In the vast output, let's concentrate for a moment on the part that provides network-
related information. It can be found under the NetworkSettings node. I have it
listed in the following output:

Network settings section of the container metadata

In the preceding output, we can see that the container is indeed attached to the
bridge network since the NetworkID is equal to 026e65..., which we can see from
the preceding code is the ID of the bridge network. We can also see that the
container got the IP address of 172.17.0.4 assigned as expected and that the
gateway is at 172.17.0.1. Please note that the container also had a MacAddress
associated with it. This is important as the Linux bridge uses the Mac address for
routing.

Single-Host Networking Chapter 7

[145]

So far, we have approached this from the outside of the container's network
namespace. Now, let's see how the situation looks when we're not only inside the
container, but inside the container's network namespace. Inside the c1 container, let's
use the ip tool to inspect what's going on. Run the ip addr command and observe
the output that is generated as follows:

Container namespace as seen by the IP tool

The interesting part of the preceding output is the number 19, the eth0 endpoint. The
veth0 endpoint that the Linux bridge created outside of the container namespace is
mapped to eth0 inside the container. Docker always maps the first endpoint of a
container network namespace to eth0, as seen from inside the namespace. If the
network namespace is attached to an additional network, then that endpoint will be
mapped to eth1, and so on.

Since at this point we're not really interested in any endpoint other than eth0, we
could have used a more specific variant of the command, which would have given us
the following:

/ # ip addr show eth0
195: eth0@if196: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue state UP
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

In the output, we can also see what MAC address (02:42:ac:11:00:02) and what
IP (172.17.0.2) have been associated with this container network namespace by
Docker.

Single-Host Networking Chapter 7

[146]

We can also get some information about how requests are routed by using the ip
route command:

/ # ip route
default via 172.17.0.1 dev eth0
172.17.0.0/16 dev eth0 scope link src 172.17.0.2

This output tells us that all traffic to the gateway at 172.17.0.1 is routed through
the eth0 device.

Now, let's run another container called c2 on the same network:

$ docker container run --name c2 -d alpine:latest ping 127.0.0.1

The c2 container will also be attached to the bridge network, since we have not
specified any other network. Its IP address will be the next free one from the subnet,
which is 172.17.0.3, as we can readily test:

$ docker container inspect --format "{{.NetworkSettings.IPAddress}}"
c2
172.17.0.3

Now, we have two containers attached to the bridge network. We can try to inspect
this network once again to find a list of all containers attached to it in the output.:

$ docker network inspect bridge

The information is found under the Containers node:

The containers section of the output of docker network inspect bridge

Single-Host Networking Chapter 7

[147]

Once again, we have shortened the output to the essentials for readability.

Now, let's create two additional containers, c3 and c4, and attach them to the test-
net. For this, we use the --network parameter:

$ docker container run --name c3 -d --network test-net \
 alpine:latest ping 127.0.0.1
$ docker container run --name c4 -d --network test-net \
 alpine:latest ping 127.0.0.1

Let's inspect network test-net and confirm that the containers c3 and c4 are
indeed attached to it:

$ docker network inspect test-net

This will give us the following output for the Containers section:

Containers section of the command docker network inspect test-net

The next question we're going to ask ourselves is whether the two c3 and
c4 containers can freely communicate with each other. To demonstrate that this is
indeed the case, we can exec into the container c3:

$ docker container exec -it c3 /bin/sh

Single-Host Networking Chapter 7

[148]

Once inside the container, we can try to ping container c4 by name and by IP address:

/ # ping c4
PING c4 (10.1.0.3): 56 data bytes
64 bytes from 10.1.0.3: seq=0 ttl=64 time=0.192 ms
64 bytes from 10.1.0.3: seq=1 ttl=64 time=0.148 ms
...

The following is the result of the ping using the IP address of the container c4:

/ # ping 10.1.0.3
PING 10.1.0.3 (10.1.0.3): 56 data bytes
64 bytes from 10.1.0.3: seq=0 ttl=64 time=0.200 ms
64 bytes from 10.1.0.3: seq=1 ttl=64 time=0.172 ms
...

The answer in both cases confirms to us that the communication between containers
attached to the same network is working as expected. The fact that we can even use
the name of the container we want to connect to shows us that the name resolution
provided by the Docker DNS service works inside this network.

Now we want to make sure that the bridge and the test-net networks are
firewalled from each other. To demonstrate this, we can try to ping the
c2 container from the c3 container, either by its name or by its IP address:

/ # ping c2
ping: bad address 'c2'

The following is the result of the ping using the IP address of the target container c2
instead:

/ # ping 172.17.0.3
PING 172.17.0.3 (172.17.0.3): 56 data bytes
^C
--- 172.17.0.3 ping statistics ---
43 packets transmitted, 0 packets received, 100% packet loss

The preceding command remained hanging and I had to terminate the command
with Ctrl+C. From the answer to pinging c2, we can also see that the name resolution
does not work across networks. This is the expected behavior. Networks provide an
extra layer of isolation, and thus security, to containers.

Single-Host Networking Chapter 7

[149]

Earlier, we learned that a container can be attached to multiple networks. Let's attach
a c5 container to the sample-net and test-net networks at the same time:

$ docker container run --name c5 -d \
 --network sample-net \
 --network test-net \
 alpine:latest ping 127.0.0.1

We can then test that c5 is reachable from the c2 container similar to when we tested
the same for containers c4 and c2. The result will show that the
connection indeed works.

If we want to remove an existing network, we can use the docker network rm
command, but note that one cannot accidentally delete a network that has containers
attached to it:

$ docker network rm test-net
Error response from daemon: network test-net id 863192... has active
endpoints

Before we continue, let's clean up and remove all containers:

$ docker container rm -f $(docker container ls -aq)

Then we remove the two custom networks that we created:

$ docker network rm sample-net
$ docker network rm test-net

The host network
There exist occasions where we want to run a container in the network namespace of
the host. This can be necessary when we need to run some software in a container
that is used to analyze or debug the host network's traffic. But keep in mind that these
are very specific scenarios. When running business software in containers, there is no
good reason to ever run the respective containers attached to the host's network. For
security reasons, it is strongly recommended that you do not run any such container
attached to the host network on a production or production-like environment.

That said, how can we run a container inside the network namespace of the host? Simply by
attaching the container to the host network:

$ docker container run --rm -it --network host alpine:latest /bin/sh

Single-Host Networking Chapter 7

[150]

If we now use the ip tool to analyze the network namespace from within the
container, we will see that we get exactly the same picture as we would if we were
running the ip tool directly on the host. For example, if I inspect the eth0 device on
my host, I get this:

/ # ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
 link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:ff
 inet 192.168.65.3/24 brd 192.168.65.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::c90b:4219:ddbd:92bf/64 scope link
 valid_lft forever preferred_lft forever

Here, I find that 192.168.65.3 is the IP address that the host has been assigned and
that the MAC address shown here also corresponds to that of the host.

We can also inspect the routes to get the following (shortened):

/ # ip route
default via 192.168.65.1 dev eth0 src 192.168.65.3 metric 202
10.1.0.0/16 dev cni0 scope link src 10.1.0.1
127.0.0.0/8 dev lo scope host
172.17.0.0/16 dev docker0 scope link src 172.17.0.1
...
192.168.65.0/24 dev eth0 scope link src 192.168.65.3 metric 202

Before I let you go on to the next section of this chapter, I want to once more point out
that the use of the host network is dangerous and needs to be avoided if possible.

The null network
Sometimes, we need to run a few application services or jobs that do not need any
network connection at all to execute the task. It is strongly advised that you run those
applications in a container that is attached to the none network. This container will be
completely isolated, and thus safe from any outside access. Let's run such a container:

$ docker container run --rm -it --network none alpine:latest /bin/sh

Once inside the container, we can verify that there is no eth0 network endpoint
available:

/ # ip addr show eth0
ip: can't find device 'eth0'

Single-Host Networking Chapter 7

[151]

There is also no routing information available, as we can demonstrate by using the
following command:

/ # ip route

This returns nothing.

Running in an existing network
namespace
Normally, Docker creates a new network namespace for each container we run. The
network namespace of the container corresponds to the sandbox of the container
network model we described earlier on. As we attach the container to a network, we
define an endpoint that connects the container network namespace with the actual
network. This way, we have one container per network namespace.

Docker provides an additional way to define the network namespace in which a
container runs. When creating a new container, we can specify that it should be
attached to or maybe we should say included in the network namespace of an
existing container. With this technique, we can run multiple containers in a single
network namespace:

Multiple containers running in a single network namespace

In the preceding image, we can see that in the leftmost network namespace, we have
two containers. The two containers, since they share the same namespace, can
communicate on localhost with each other. The network namespace (and not the
individual containers) is then attached to Network 1.

Single-Host Networking Chapter 7

[152]

This is useful when we want to debug the network of an existing container without
running additional processes inside that container. We can just attach a special utility
container to the network namespace of the container to inspect. This feature is also
used by Kubernetes when it creates a pod. We will hear more about Kubernetes and
pods in subsequent chapters of this book.

Now, let's demonstrate how this works. First, we create a new bridge network:

$ docker network create --driver bridge test-net

Next, we run a container attached to this network:

$ docker container run --name web -d --network test-net nginx:alpine

Finally, we run another container and attach it to the network of our web container:

$ docker container run -it --rm --network container:web alpine:latest
/bin/sh

Specifically, note how we define the network: --network container:web. This tells
Docker that our new container shall use the same network namespace as the
container called web.

Since the new container is in the same network namespace as the web container
running Nginx, we're now able to access Nginx on localhost! We can prove this by
using the wget tool, which is part of the Alpine container, to connect to Nginx. We
should see the following:

/ # wget -qO - localhost
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</html>

Note that we have shortened the output for readability. Please also note that there is
an important difference between running two containers attached to the same
network and two containers running in the same network namespace. In both cases,
the containers can freely communicate with each other, but in the latter case, the
communication happens over localhost.

To clean up the container and network we can use the following command:

$ docker container rm --force web
$ docker network rm test-net

Single-Host Networking Chapter 7

[153]

Port management
Now that we know how we can isolate or firewall containers from each other by
placing them on different networks, and that we can have a container attached to
more than one network, we have one problem that remains unsolved. How can we
expose an application service to the outside world? Imagine a container running a web
server hosting our webAPI from before. We want customers from the internet to be
able to access this API. We have designed it to be a publicly accessible API. To
achieve this, we have to, figuratively speaking, open a gate in our firewall through
which we can funnel external traffic to our API. For security reasons, we don't just
want to open the doors wide, but to have only a single controlled gate through which
traffic flows.

We can create such a gate by mapping a container port to an available port on the
host. We're also calling this container port to publish a port. Remember, the container
has its own virtual network stack, as does the host. Therefore, container ports and
host ports exist completely independently, and by default have nothing in common at
all. But we can now wire a container port with a free host port and funnel external
traffic through this link, as illustrated in the following image:

Mapping container ports to host ports

Single-Host Networking Chapter 7

[154]

But now it is time to demonstrate how one can actually map a container port to a host
port. This is done when creating a container. We have different ways of doing so:

First, we can let Docker decide which host port our container port shall be
mapped to. Docker will then select one of the free host ports in the range of
32xxx. This automatic mapping is done by using the -P parameter:

$ docker container run --name web -P -d nginx:alpine

The preceding command runs an Nginx server in a container. Nginx is
listening at port 80 inside the container. With the -P parameter, we're
telling Docker to map all the exposed container ports to a free port in the
32xxx range. We can find out which host port Docker is using by using the
docker container port command:

$ docker container port web
80/tcp -> 0.0.0.0:32768

The Nginx container only exposes port 80, and we can see that it has been
mapped to the host port 32768. If we open a new browser window and
navigate to localhost:32768, we should see the following screenshot:

The welcome page of Nginx

Single-Host Networking Chapter 7

[155]

An alternative way to find out which host port Docker is using for our
container is to inspect it. The host port is part of the NetworkSettings
node:

$ docker container inspect web | grep HostPort
32768

Finally, the third way of getting this information is to list the container:

$ docker container ls
CONTAINER ID IMAGE ... PORTS
NAMES
56e46a14b6f7 nginx:alpine ... 0.0.0.0:32768->80/tcp
web

Please note that in the preceding output, the /tcp part tells us that the port
has been opened for communication with the TCP protocol, but not for the
UDP protocol. TCP is the default, and if we want to specify that we want to
open the port for UDP, then we have to specify this explicitly. The 0.0.0.0
in the mapping tells us that traffic from any host IP address can now reach
the container port 80 of the web container.

Sometimes, we want to map a container port to a very specific host port. We can do
this by using the parameter-p (or --publish). Let's look at how this is done with the
following command:

$ docker container run --name web2 -p 8080:80 -d nginx:alpine

The value of the -p parameter is in the form of <host port>:<container port>.
Therefore, in the preceding case, we map container port 80 to host port 8080. Once
the web2 container runs, we can test it in the browser by navigating to
localhost:8080, and we should be greeted by the same Nginx welcome page that
we saw in the previous example that dealt with automatic port mapping.

When using the UDP protocol for communication over a certain port, then the
publish parameter will look like -p 3000:4321/udp. Note that if we want to allow
communication with both TCP and UDP protocols over the same port, then we have
to map each protocol separately.

Single-Host Networking Chapter 7

[156]

Summary
In this chapter, we have learned about how containers running on a single host can
communicate with each other. First, we looked at the CNM that defines the
requirements of a container network and then we looked at several implementations
of the CNM, such as the bridge network. We then looked at how the bridge network
functions in detail and also what kind of information Docker provides us with about
the networks and the containers attached to those networks. We also learned about
adopting two different perspectives, from both outside and inside the container.

In the next chapter, we're going to introduce Docker Compose. We will learn about
creating an application that consists of multiple services, each running in a container,
and how Docker Compose allows us to easily build, run, and scale such an
application using a declarative approach.

Questions
To assess your skills, please try to answer the following questions:

Name the three core elements of the container network model (CNM).1.
How will you create a custom bridge network called for example,2.
frontend?
How will you run two nginx:alpine containers attached to the frontend3.
network.
For the frontend network, get the following:4.

IPs of all attached containers.1.
The subnet associated with the network.2.

What is the purpose of the host network?5.
Name one or two scenarios where the use of the host network is6.
appropriate.
What is the purpose of the none network?7.
In what scenarios should the none network be used?8.

Single-Host Networking Chapter 7

[157]

Further reading
Here are some articles that describe the topics presented in this chapter in more
detail:

Docker networking overview at http:/ /dockr. ly/2sXGzQn

Container networking at http:/ /dockr. ly/2HJfQKn

What is a Bridge at https:/ / bit. ly/2HyC3Od

Use bridge networks at http:/ /dockr. ly/ 2BNxjRr

Use Macvlan networks at http:/ / dockr. ly/2ETjy2x

Networking using the host network at http:/ /dockr. ly/2F4aI59

http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59

8
Docker Compose

In the previous chapter, we learned a lot about how container networking works on a
single Docker host. We introduced the Container Network Model (CNM), which
forms the basis of all networking between Docker containers, and then we dove deep
into different implementations of the CNM, specifically the bridge network.

This chapter introduces the concept of an application consisting of multiple services,
each running in a container, and how Docker Compose allows us to easily build, run,
and scale such an application using a declarative approach.

The chapter covers the following topics:

Demystifying declarative versus imperative
Running a multi-service application
Scaling a service
Building and pushing an application

After completing this chapter, the reader will be able to do the following:

Explain in a few short sentences the main differences between an
imperative and declarative approach for defining and running an
application
Describe in their own words the difference between a container and a
Docker Compose service
Author a Docker Compose YAML file for a simple multi-service
application
Build, push, deploy, and tear down a simple multi-service application
using Docker Compose
Use Docker Compose to scale an application service up and down

Docker Compose Chapter 8

[159]

Demystifying declarative versus
imperative
Docker Compose is a tool provided by Docker that is mainly used where one needs to
run and orchestrate containers running on a single Docker host. This includes but is
not limited to development, continuous integration (CI), automated testing, and
manual QA.

Docker Compose uses files formatted in YAML as input. By default, Docker Compose
expects these files to be called docker-compose.yml, but other names are possible.
The content of a docker-compose.yml is said to be a declarative way of describing
and running a containerized application potentially consisting of more than a single
container.

So, what is the meaning of declarative?

First of all, declarative is the antonym of imperative. Well, that doesn't help much. Now
that I have introduced another definition, I need to explain both of them:

Imperative: It's a way in which we can solve problems by specifying the
exact procedure which has to be followed by the system.

If I tell a system such as the Docker daemon imperatively how to run an
application then that means that I have to describe step by step what the
system has to do and how it has to react if some unexpected situation
occurs. I have to be very explicit and precise in my instructions. I need to
cover all edge cases and how they need to be treated.

Docker Compose Chapter 8

[160]

Declarative: It's a way in which we can solve problems without requiring
the programmer to specify an exact procedure to be followed.

A declarative approach means that I tell the Docker engine what my desired
state for an application is and it has to figure out on its own how to achieve
this desired state and how to reconcile it if the system deviates from it.

Docker clearly recommends the declarative approach when dealing with
containerized applications. Consequently, the Docker Compose tool uses this
approach.

Running a multi-service app
In most cases, applications do not consist of only one monolithic block, but rather of
several application services that work together. When using Docker containers, each
application service runs in its own container. When we want to run such a multi-
service application, we can of course start all the participating containers with the
well-known docker container run command. But this is inefficient at best. With
the Docker Compose tool, we are given a way to define the application in a
declarative way in a file that uses the YAML format.

Let's have a look at the content of a simple docker-compose.yml file:

version: "3.5"
services:
 web:
 image: fundamentalsofdocker/ch08-web:1.0
 ports:
 - 3000:3000
 db:
 image: fundamentalsofdocker/ch08-db:1.0
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

Docker Compose Chapter 8

[161]

The lines in the file are explained as follows:

version: In this line, we specify the version of the Docker Compose format
we want to use. At the time of writing, this is version 3.5.
services: In this section, we specify the services that make up our
application in the services block. In our sample, we have two application
services and we call them web and db:

web: The web service is using the
image fundamentalsofdocker/ch08-web:1.0 from the
Docker Hub and is publishing container port 3000 to the
host port, also 3000.
db: The db service, on the other hand, is using the
image fundamentalsofdocker/ch08-db:1.0, which is a
customized PostgreSQL database. We are mounting a
volume called pets-data into the container of the db
service.

volumes: The volumes used by any of the services have to be declared in
this section. In our sample, this is the last section of the file. The first time
the application is run, a volume called pets-data will be created by
Docker and then, in subsequent runs, if the volume is still there, it will be
reused. This could be important when the application, for some reason,
crashes and has to be restarted. Then, the previous data is still around and
ready to be used by the restarted database service.

Navigate to the subfolder ch08 of the labs folder and start the application using
Docker Compose:

$ docker-compose up

Docker Compose Chapter 8

[162]

If we enter the preceding command, then the tool will assume that there must be a file
in the current directory called docker-compose.yml and it will use that one to run.
In our case, this is indeed the case and the application will start. We should see the
output as follows:

Running the sample application, part 1

Docker Compose Chapter 8

[163]

Running the sample application, part 2

Docker Compose Chapter 8

[164]

The preceding output is explained as follows:

In the first part of the output, we can see how Docker Compose pulls the
two images that constitute our application. This is followed by the creation
of a network ch08_default and a volume ch08_pets-data, followed by
the two containers ch08_web_1 and ch08_db_1, one for each service, web
and db. All the names are automatically prefixed by Docker Compose with
the name of the parent directory, which in this case is called ch08.
After that, we see the logs produced by the two containers. Each line of the
output is conveniently prefixed with the name of the service, and each
service's output is in a different color. Here, the lion's share is produced by
the database and only one line is from the web service.

We can now open a browser tab and navigate to localhost:3000/pet. We should
be greeted by a nice cat image and some additional information about the container it
came from, as shown in the following screenshot:

The sample application in the browser

Refresh the browser a few times to see other cat images. The application selects the
current image randomly from a set of 12 images whose URLs are stored in the
database.

Docker Compose Chapter 8

[165]

As the application is running in interactive mode and thus the Terminal where we ran
Docker Compose is blocked, we can cancel the application by pressing Ctrl+C. If we
do so, we will see the following:

^CGracefully stopping... (press Ctrl+C again to force)
Stopping ch08_web_1 ... done
Stopping ch08_db_1 ... done

We will notice that the database service stops immediately while the web service
takes about 10 seconds to do so. The reason for this being that the database service
listens to and reacts to the SIGTERM signal sent by Docker while the web service
doesn't, and thus Docker kills it after 10 seconds.

If we run the application again, the output will be much shorter:

Output of docker-compose up

This time, we didn't have to download the images and the database didn't have to
initialize from scratch, but it was just reusing the data that was already present in the
volume pets-data from the previous run.

We can also run the application in the background. All containers will run as
daemons. For this, we just need to use the -d parameter, as shown in the following
code:

$ docker-compose up -d

Docker Compose Chapter 8

[166]

Docker Compose offers us many more commands than just up. We can use it to list all
services that are part of the application:

Output of docker-compose ps

This command is similar to docker container ls, with the only difference being
that it only lists containers that are part of the application.

To stop and clean up the application, we use the docker-compose down command:

$ docker-compose down
Stopping ch08_web_1 ... done
Stopping ch08_db_1 ... done
Removing ch08_web_1 ... done
Removing ch08_db_1 ... done
Removing network ch08_default

If we also want to remove the volume for the database, then we can use the following
command:

$ docker volume rm ch08_pets-data

Why is there a ch08 prefix in the name of the volume? In the docker-compose.yml file,
we have called the volume to use pets-data. But as we have already mentioned,
Docker Compose prefixes all names with the name of the parent folder of the
docker-compose.yml file plus an underscore. In this case, the parent folder is called
ch08.

Scaling a service
Now, let's, for a moment, assume that our sample application has been live on the
web and become very successful. Loads of people want to see our cute animal images.
So now we're facing a problem since our application has started to slow down. To
counteract this problem, we want to run multiple instances of the web service. With
Docker Compose, this is readily done.

Docker Compose Chapter 8

[167]

Running more instances is also called scaling up. We can use this tool to scale our web
service up to, say, three instances:

$ docker-compose up --scale web=3

If we do this, we are in for a surprise. The output will look similar to the following
screenshot:

Output of docker-compose --scale

The second and third instances of the web service fail to start. The error message tells
us why: we cannot use the same host port more than once. When instances 2 and 3 try
to start, Docker realizes that port 3000 is already taken by the first instance. What can
we do? Well, we can just let Docker decide which host port to use for each instance.

If, in the ports section of the compose file, we only specify the container port and
leave out the host port, then Docker automatically selects an ephemeral port. Let's do
exactly this:

First, let's tear down the application:1.

$ docker-compose down

Then, we modify the docker-compose.yml file to look as follows:2.

version: "3.5"
services:
 web:
 image: fundamentalsofdocker/ch08-web:1.0
 ports:
 - 3000
 db:

Docker Compose Chapter 8

[168]

 image: fundamentalsofdocker/ch08-db:1.0
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

Now, we can start the application again and scale it up immediately after3.
that:

$ docker-compose up -d
$ docker-compose scale web=3
Starting ch08_web_1 ... done
Creating ch08_web_2 ... done
Creating ch08_web_3 ... done

If we now do a docker-compose ps, we should see the following4.
screenshot:

Output of docker-compose ps

As we can see, each service has been associated to a different host port. We5.
can try to see whether they work, for example, using curl. Let's test the
third instance, ch08_web_3:

$ curl -4 localhost:32770
Pets Demo Application

The answer, Pets Demo Application, tells us that, indeed, our
application is still working as expected. Try it out for the other two
instances to be sure.

Docker Compose Chapter 8

[169]

Building and pushing an application
We can also use the docker-compose build command to just build the images of
an application defined in the underlying compose file. But to make this work, we'll
have to add the build information to the docker-compose file. In the folder, we have
a file, docker-compose.dev.yml, which has those instructions already added:

version: "3.5"
services:
 web:
 build: web
 image: fundamentalsofdocker/ch08-web:1.0
 ports:
 - 3000:3000
 db:
 build: database
 image: fundamentalsofdocker/ch08-db:1.0
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

Please note the build key for each service. The value of that key indicates the context
or folder where Docker is expecting to find the Dockerfile to build the corresponding
image.

Let's use that file now:

$ docker-compose -f docker-compose.dev.yml build

The -f parameter will tell the Docker Compose application which compose file to
use.

To push all images to Docker Hub, we can use docker-compose push. We need to
be logged in to Docker Hub so that this succeeds, otherwise we get an authentication
error while pushing. Thus, in my case, I do the following:

$ docker login -u fundamentalsofdocker -p <password>

Assuming the login succeeds, I can then push the following code:

$ docker-compose -f docker-compose.dev.yml push

Docker Compose Chapter 8

[170]

The preceding command pushes the two images to the account
fundamentalsofdocker on Docker Hub. You can find these two images at the
URL: https://hub. docker. com/ u/ fundamentalsofdocker/ .

Summary
In this chapter, we introduced the tool docker-compose. This tool is mostly used to
run and scale multi-service applications on a single Docker host. Typically,
developers and CI servers work with single hosts and those two are the main users of
Docker Compose. The tool is using YAML files as input that contain the description
of the application in a declarative way.

The tool can also be used to build and push images among many other helpful tasks.
The code accompanying this chapter can be found in labs/ch08.

In the next chapter, we are going to introduce orchestrators. An orchestrator is an
infrastructure software that is used to run and manage containerized applications in a
cluster and it makes sure that these applications are in their desired state at all the
time.

Questions
To assess your learning progress please answer the following questions:

How will you use docker-compose to run an application in daemon1.
mode?
How will you use docker-compose to display the details of the running2.
service?
How will you scale up a particular web service to say, three instances?3.

https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/

Docker Compose Chapter 8

[171]

Further reading
The following links provide additional information on the topics discussed in this
chapter:

The official YAML website at http:/ /www. yaml. org/

Docker Compose documentation at http:/ /dockr. ly/ 1FL2VQ6

Compose file version 3 reference at http:/ /dockr. ly/ 2iHUpeX

http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX
http://dockr.ly/2iHUpeX

9
Orchestrators

In the previous chapter, we introduced Docker Compose, a tool that allows us to
work with multi-service applications that are defined in a declarative way on a single
Docker host.

This chapter introduces the concept of orchestrators. It teaches why orchestrators are
needed and how they work conceptually. This chapter will also provide an overview
of the most popular orchestrators and names a few of their pros and cons.

In this chapter, we will cover the following topics:

What are orchestrators and why do we need them?
The tasks of an orchestrator
Overview of popular orchestrators

After finishing this chapter you will be able to:

Name three to four tasks an orchestrator is responsible for
List two to three of the most popular orchestrators
Explain to an interested layman in your own words and with appropriate
analogies why we need container orchestrators

Orchestrators Chapter 9

[173]

What are orchestrators and why do we
need them?
In Chapter 6, Distributed Application Architecture, we learned which patterns and best
practices are commonly used to successfully build, ship, and run a highly distributed
application. Now, if our highly distributed application is containerized, then we're
facing the exact same problems or challenges that a non-containerized distributed
application faces. Some of these challenges are those discussed in Chapter 6,
Distributed Application Architecture, service discovery, load balancing, scaling, and so
on.

Similar to what Docker did with containers—standardizing the packaging and
shipping of software with the introduction of containers—we would like to have
some tool or infrastructure software that handles all or most of the challenges
mentioned. This software turns out to be what we call orchestrators or, as we also call
them, orchestration engines.

If what I just said doesn't make much sense to you yet, then let's look at it from a
different angle. Take an artist who plays an instrument. They can play wonderful
music to an audience all on their own, just the artist and their instrument.

But now take an orchestra of musicians. Put them all in a room, give them the notes of
a symphony, ask them to play it, and leave the room. Without any director, this group
of very talented musicians would not be able to play this piece in harmony; it would
more or less sound like a cacophony. Only if the orchestra has a conductor who
orchestrates the group of musicians will the resulting music of the orchestra be
enjoyable to our ears:

Orchestrators Chapter 9

[174]

A container orchestrator is like the conductor of an orchestra

Instead of musicians, we now have containers, and instead of different instruments,
we have containers that have different requirements to the container hosts to run.
And instead of the music being played in varying tempi, we have containers that
communicate with each other in particular ways and have to scale up and scale
down. In this regard, a container orchestrator has very much the same role as a
conductor in an orchestra. It makes sure that the containers and other resources in a
cluster play together in harmony.

I hope you can now see more clearly what a container orchestrator is and why we
need one. Assuming that you confirm this question, we can now ask ourselves how
the orchestrator is going to achieve the expected outcome, namely to make sure all the
containers in the cluster play with each other in harmony. Well, the answer is, the
orchestrator has to execute very specific tasks, similar to the way in which the
conductor of an orchestra also has a set of tasks they execute in order to tame and at
the same time elevate the orchestra.

Orchestrators Chapter 9

[175]

The tasks of an orchestrator
So, what are the tasks that we expect an orchestrator worth its money to execute for us? Let's
look at them in detail. The following list shows the most important tasks that, at the
time of writing, enterprise users typically expect from their orchestrator.

Reconciling the desired state
When using an orchestrator, one tells it in a declarative way how one wants it to run a
given application or application service. We learned what declarative versus imperative
means in Chapter 8, Docker Compose. Part of this declarative way of describing the
application service we want to run is elements such as which container image to use,
how many instances to run of this service, which ports to open, and more. This
declaration of the properties of our application service is what we call the desired state.

So, when we now tell the orchestrator the first time to create such a new application
service based on the declaration, then the orchestrator makes sure to schedule as
many containers in the cluster as requested. If the container image is not yet available
on the target nodes of the cluster where the containers are supposed to run, then the
scheduler makes sure they're downloaded from the image registry first. Next, the
containers are started with all the settings, such as networks to which to attach, or
ports to expose. The orchestrator works as hard as it can to exactly match in reality in
the cluster what it got in our declaration.

Once our service is up and running as requested, that is, it is running in the desired
state, then the orchestrator continues to monitor it. Each time the orchestrator
discovers a discrepancy between the actual state of the service and its desired state,
it again tries its best to reconcile the desired state.

Orchestrators Chapter 9

[176]

What could such a discrepancy between the actual and desired states of an
application service be? Well, let's say one of the replicas of the service, that is, one of
the containers, crashes due to, say, a bug, then the orchestrator will discover that the
actual state differs from the desired state in the number of replicas: there is one
replica missing. The orchestrator will immediately schedule a new instance to another
cluster node, which replaces the crashed instance. Another discrepancy could be that
there are too many instances of the application service running, if the service has been
scaled down. In this case, the orchestrator will just randomly kill as many instances as
needed to achieve parity between the actual and the desired number of instances.
Another discrepancy could be when the orchestrator discovers that there is an
instance of the application service running a wrong (maybe old) version of the
underlying container image. By now, you should get the picture, right?

Thus, instead of us actively monitoring our application's services running in the
cluster and correcting any deviation from the desired state, we delegate this tedious
task to the orchestrator. This works very well, if we use a declarative and not an
imperative way of describing the desired state of our application services.

Replicated and global services
There are two quite different types of services that we might want to run in a cluster
managed by an orchestrator. They are replicated and global services. A replicated
service is a service which is required to run in a specific number of instances, say 10.
A global service, in turn, is a service that is required to have an instance running on
every single worker node of the cluster. I have used the term worker node here. In a
cluster managed by an orchestrator, we typically have two types of nodes, managers
and workers. A manager node is usually exclusively used by the orchestrator to
manage the cluster and does not run any other workload. Worker nodes, in turn, run
the actual applications.

So, the orchestrator makes sure that, for a global service, an instance of it is running
on every single worker node, no matter how many there are. We do not need to care
about the number of instances, but only that on each node it is guaranteed to run a
single instance of the service.

Orchestrators Chapter 9

[177]

Once again, we can fully rely on the orchestrator to take care of this feat. In a
replicated service, we will always be guaranteed to find the exact desired number of
instances, while for a global service, we can be assured that on every worker node,
there will always run exactly one instance of the service. The orchestrator will always
work as hard as it can to guarantee this desired state.

In Kubernetes, a global service is also called a daemon set.

Service discovery
When we describe an application service in a declarative way, we are never supposed
to tell the orchestrator on which cluster nodes the different instances of the service
have to run. We leave it up to the orchestrator to decide which nodes best fit this task.

It is, of course, technically possible to instruct the orchestrator to use very
deterministic placement rules, but this would be an anti-pattern and is not
recommended at all.

So, if we now assume that the orchestration engine has complete and free will as to
where to place individual instances of the application service and, furthermore, that
instances can crash and be rescheduled by the orchestrator to different nodes, then we
will realize that it is a futile task for us to keep track of where the individual instances
are running at any given time. Even better, we shouldn't even try to know this since it
is not important.

OK, you might say, but what about if I have two services, A and B, and Service A
relies on Service B; shouldn't any given instance of Service A know where it can find an
instance of Service B?

There I have to say loudly and clearly—no, it shouldn't. This kind of knowledge is not
desirable in a highly distributed and scalable application. Rather, we should rely on
the orchestrator to provide us the information we need to reach other service
instances we depend on. It is a bit like in the old days of telephony, when we could
not directly call our friends but had to call the phone company's central office, where
some operator would then route us to the correct destination. In our case, the
orchestrator plays the role of the operator, routing a request coming from an instance
of Service A to an available instance of Service B. This whole process is called service
discovery.

Orchestrators Chapter 9

[178]

Routing
We have learned so far that in a distributed application, we have many interacting
services. When Service A interacts with Service B, it happens through the exchange of
data packets. These data packets need to somehow be funneled from Service A to
Service B. This process of funneling the data packets from a source to a destination is
also called routing. As authors or operators of an application, we do expect the
orchestrator to take over this task of routing. As we will see in later chapters, routing
can happen on different levels. It is like in real life. Suppose you're working in a big
company in one of their office buildings. Now, you have a document that needs to be
forwarded to another employee of the company. The internal post service will pick
up the document from your outbox and take it to the post office located in the same
building. If the target person works in the same building, the document can then be
directly forwarded to that person. If, on the other hand, the person works in another
building of the same block, the document will be forwarded to the post office in that
target building, from where it is then distributed to the receiver through the internal
post service. Thirdly, if the document is targeted at an employee working in another
branch of the company located in a different city or even country, then the document
is forwarded to an external postal service such as UPS, which will transport it to the
target location, from where, once again, the internal post service takes over and
delivers it to the recipient.

Similar things happen when routing data packets between application services
running in containers. The source and target containers can be located on the same
cluster node, which corresponds to the situation where both employees work in the
same building. The target container can be running on a different cluster node, which
corresponds to the situation where the two employees work in different buildings of
the same block. Finally, the third situation is when a data packet comes from outside
of the cluster and has to be routed to the target container running inside the cluster.

All these situations and more have to be handled by the orchestrator.

Load balancing
In a highly available distributed application, all components have to be redundant.
That means that every application service has to be run in multiple instances so that if
one instance fails, the service as a whole is still operational.

Orchestrators Chapter 9

[179]

To make sure that all instances of a service are actually doing work and not just
sitting around idle, one has to make sure that the requests for service are distributed
equally to all the instances. This process of distributing workload among service
instances is called load balancing. Various algorithms exist for how the workload can
be distributed. Usually, a load balancer works using the so-called round robin
algorithm, which makes sure that the workload is distributed equally to the
instances using a cyclic algorithm.

Once again, we expect the orchestrator to take care of load balancing requests from
one service to another or from external sources to internal services.

Scaling
When running our containerized, distributed application in a cluster managed by an
orchestrator, we also want an easy way to handle expected or unexpected increases in
workload. To handle an increased workload, we usually just schedule additional
instances of a service that is experiencing this increased load. Load balancers will then
automatically be configured to distribute the workload over more available target
instances.

But in real-life scenarios, the workload varies over time. If we look at a shopping site
such as Amazon, it might have a high load during peak hours in the evening, when
everyone is at home and shopping online; it may experience extreme loads during
special days such as Black Friday; and it may experience very little traffic early in the
morning. Thus, services need to not just be able to scale up, but also to scale down
when the workload goes down.

We also expect orchestrators to distribute the instances of a service in a meaningful
way when scaling up or down. It would not be wise to schedule all instances of the
service on the same cluster node, since if that node goes down, the whole service goes
down. The scheduler of the orchestrator, which is responsible for the placement of the
containers, needs to also consider not placing all instances into the same rack of
computers, since if the power supply of the rack fails, again the whole service is
affected. Furthermore, service instances of critical services should even be distributed
across data centers to avoid outages. All these decisions and many more are the
responsibility of the orchestrator.

Orchestrators Chapter 9

[180]

Self-healing
These days, orchestrators are very sophisticated and can do a lot for us to maintain a
healthy system. Orchestrators monitor all containers running in the cluster and they
automatically replace crashed or unresponsive ones with new instances.
Orchestrators monitor the health of cluster nodes and take them out of the scheduler
loop if a node becomes unhealthy or is down. A workload that was located on those
nodes is automatically rescheduled to different available nodes.

All these activities where the orchestrator monitors the current state and
automatically repairs the damage or reconciles the desired state lead to a so-called
self-healing system. We do not, in most cases, have to actively engage and repair
damage. The orchestrator will do this for us automatically.

But there are a few situations that the orchestrator cannot handle without our help.
Imagine a situation where we have a service instance running in a container. The
container is up and running and, from the outside, looks perfectly healthy. But the
application inside is in an unhealthy state. The application did not crash, it just is not
able to work as designed anymore. How could the orchestrator possibly know about this
without us giving it a hint? It can't! Being in an unhealthy or invalid state means
something completely different for each application service. In other words, the
health status is service dependent. Only the authors of the service or its operators
know what health means in the context of a service.

Now, orchestrators define seams or probes, over which an application service can
communicate to the orchestrator in what state it is. Two fundamental types of probe
exist:

The service can tell the orchestrator that it is healthy or not
The service can tell the orchestrator that it is ready or temporarily
unavailable

How the service determines either of the preceding answers is totally up to the
service. The orchestrator only defines how it is going to ask, for example, through an
HTTP GET request, or what type of answers it is expecting, for example, OK or NOT
OK.

If our services implement logic to answer the preceding health or availability
questions, then we have a truly self-healing system, since the orchestrator can kill
unhealthy service instances and replace them with new healthy ones, and it can take
service instances that are temporarily unavailable out of the load balancer's round
robin.

Orchestrators Chapter 9

[181]

Zero downtime deployments
These days, it gets harder and harder to justify a complete downtime for a mission-
critical application that needs to be updated. Not only does that mean missed
opportunities, but it can also result in a damaged reputation for the company.
Customers using the application are just not ready to accept such an inconvenience
anymore and will turn away quickly. Furthermore, our release cycles get shorter and
shorter. Where, in the past, we would have one or two new releases per year, these
days, a lot of companies update their applications multiple times a week or even
multiple times per day.

The solution to that problem is to come up with a zero downtime application update
strategy. The orchestrator needs to be able to update individual application services
batch-wise. This is also called rolling updates. At any given time, only one or a few of
the total number of instances of a given service are taken down and replaced by the
new version of the service. Only if the new instances are operational and do not
produce any unexpected errors or show any misbehavior will the next batch of
instances be updated. This is repeated until all instances are replaced with their new
version. If, for some reason, the update fails, we expect the orchestrator to
automatically roll the updated instances back to their previous version.

Other possible zero downtime deployments are so-called canary releases and blue-
green deployments. In both cases, the new version of a service is installed in parallel
with the current, active version. But initially, the new version is only accessible
internally. Operations can then run smoke tests against the new version and when the
new version seems to be running just fine, then, in the case of blue-green deployment,
the router is switched from the current blue to the new green version. For some time,
the new green version of the service is closely monitored and, if everything is fine, the
old blue version can be decommissioned. If, on the other hand, the new green version
does not work as expected, then it is only a matter of setting the router back to the old
blue version to achieve a complete rollback.

In the case of a canary release, the router is configured in such a way that it funnels a
tiny percentage, say 1%, of the overall traffic through the new version of the service,
while 99% of the traffic is still routed through the old version. The behavior of the
new version is closely monitored and compared to the behavior of the old version. If
everything looks good, then the percentage of the traffic funneled through the new
service is slightly increased. This process is repeated until 100% of the traffic is routed
through the new service. If the new service has run for a while and everything looks
good, then the old service can be decommissioned.

Orchestrators Chapter 9

[182]

Most orchestrators support at least the rolling update type of zero downtime
deployment out of the box. Blue-green and canary releases are often quite easy to
implement.

Affinity and location awareness
Sometimes, certain application services require the availability of dedicated hardware
on the nodes they run on. For example I/O-bound services require cluster nodes with
an attached high-performance solid-state drive (SSD), or some services require
an Accelerated Processing Unit (APU). Orchestrators allow us to define node
affinities per application service. The orchestrator will then make sure that its
scheduler only schedules containers on cluster nodes that fulfill the required criteria.

Defining an affinity to a particular node should be avoided; this would introduce a
single point of failure and thus compromise high availability. Always define a set of
multiple cluster nodes as the target for an application service.

Some orchestration engines also support what is called location awareness or geo-
awareness. What this means is that one can request the orchestrator to equally
distribute instances of a service over a set of different locations. One could, for
example, define a label datacenter with the possible values west, center, and
east and apply the label to all cluster nodes with the value that corresponds to the
geographical region in which the respective node is located. Then, one instructs the
orchestrator to use this label for geo-awareness of a certain application service. In this
case, if one requests nine replicas of the service, the orchestrator would make sure
that three instances are deployed to nodes in each of the three data centers, west,
center, and east.

Geo-awareness can even be defined hierarchically; for example, one can have a data
center as the top-level discriminator, followed by the availability zone and then the
server rack.

Geo-awareness or location awareness is used to decrease the probability of outages
due to power supply failures or data center outages. If the application instances are
distributed across server racks, availability zones, or even data centers, it is extremely
unlikely that everything goes down at once. One region will always be available.

Orchestrators Chapter 9

[183]

Security
These days, security in IT is a very hot topic. Cyberwarfare is at an all-time high. Most
high-profile companies have been victims of hacker attacks, with very costly
consequences. One of the worst nightmares of each chief information officer (CIO)
or chief technology officer (CTO) is to wake up in the morning and hear in the news
that their company has become a victim of a hacker attack and that sensitive
information has been stolen or compromised.

To counter most of these security threats, we need to establish a secure software
supply chain and enforce security defense in depth. Let's look at some of the tasks one
can expect from an enterprise-grade orchestrator.

Secure communication and cryptographic node
identity
First and foremost, we want to make sure that our cluster managed by the
orchestrator is secure. Only trusted nodes can join the cluster. Each node that joins the
cluster gets a cryptographic node identity, and all communication between the nodes
must be encrypted. For this, nodes can use mutual transport layer security (MTLS).
To authenticate nodes of the cluster with each other, certificates are used. These
certificates are automatically rotated periodically or on request to protect the system
in case a certificate is leaked.

The communication that happens in a cluster can be separated into three types. One
talks about communication planes. There are management, control, and data planes:

The management plane is used by the cluster managers or masters to, for
example, schedule service instances, execute health checks, or create and
modify any other resources in the cluster, such as data volumes, secrets, or
networks.
The control plane is used to exchange important state information between
all nodes of the cluster. This kind of information is, for example, used to
update the local IP tables on clusters which are used for routing purposes.
The data plane is where the application services communicate with each
other and exchange data.

Orchestrators Chapter 9

[184]

Normally, orchestrators mainly care about securing the management and control
plane. Securing the data plane is left to the user, yet the orchestrator may facilitate
this task.

Secure networks and network policies
When running application services, not every service needs to communicate with
every other service in the cluster. Thus, we want the ability to sandbox services from
each other and only run those services in the same networking sandbox that
absolutely need to communicate with each other. All other services and all network
traffic coming from outside of the cluster should have no possibility of accessing the
sandboxed services.

There are at least two ways in which this network-based sandboxing can happen. We
can either use a software-defined network (SDN) to group application services or we
can have one flat network and use network policies to control who does and does not
have access to a particular service or group of services.

Role-based access control (RBAC)
One of the most important tasks, next to security, an orchestrator must fulfill to make
it enterprise ready is to provide role-based access to the cluster and its resources.
RBAC defines how subjects, users, or groups of users of the system, organized into
teams and so on, can access and manipulate the system. It makes sure that
unauthorized personnel cannot do any harm to the system nor see any resources
available in the system they're not supposed to know of or see.

Orchestrators Chapter 9

[185]

A typical enterprise might have user groups such as Development,
QA, and Prod, and each of those groups can have one to many users
associated with it. John Doe, the developer, is a member of the
Development group and, as such, can access resources dedicated to
the development team, but he cannot access, for example, the
resources of the Prod team, of which Ann Harbor is a member. She,
in turn, cannot interfere with the Development team's resources.

One way of implementing RBAC is through the definition of grants. A grant is an
association between a subject, a role, and a resource collection. Here, a role is
comprised of a set of access permissions to a resource. Such permissions can be to
create, stop, remove, list, or view containers; to deploy a new application service; to
list cluster nodes or view the details of a cluster node; and many more.

 A resource collection is a group of logically related resources of the cluster, such as
application services, secrets, data volumes, or containers.

Secrets
In our daily life, we have loads of secrets. Secrets are information that is not meant to
be publicly known, such as the username and password combination you use to
access your online bank account, or the code to your cell phone or your locker at the
gym.

When writing software, we often need to use secrets, too. For example, we need some
certificate to authenticate our application service with some external service we want
to access, or we need a token to authenticate and authorize our service when
accessing some other API. In the past, developers, for convenience, have just
hardcoded those values or put them in clear text in some external configuration files.
There, this very sensitive information has been accessible to a broad audience that in
reality should never have had the opportunity to see those secrets.

Luckily, these days, orchestrators offer what's called secrets to deal with such
sensitive information in a highly secure way. Secrets can be created by authorized or
trusted personnel. The values of those secrets are then encrypted and stored in the
highly available cluster state database. The secrets, since they are encrypted, are now
secure at rest. Once a secret is requested by an authorized application service, the
secret is only forwarded to the cluster nodes that actually run an instance of that
particular service, and the secret value is never stored on the node but mounted into
the container in a tmpfs RAM-based volume. Only inside the respective container is
the secret value available in clear text.

Orchestrators Chapter 9

[186]

We already mentioned that the secrets are secure at rest. Once they are requested by a
service, the cluster manager or master decrypts the secret and sends it over the wire
to the target nodes. So, what about the secrets being secure in transit? Well, we learned
earlier that the cluster nodes use MTLS for their communication, thus the secret,
although transmitted in clear text, is still secure since data packets will be encrypted
by MTLS. Thus, secrets are secure at rest and in transit. Only services that are
authorized to use secrets will ever have access to those secret values.

Content trust
For added security, we want to make sure that only trusted images run in our
production cluster. Some orchestrators allow us to configure a cluster so that it can
only ever run signed images. Content trust and signing images is all about making
sure that the authors of the image are the ones that we expect them to be, namely our
trusted developers or, even better, our trusted CI server. Furthermore, with content
trust, we want to guarantee that the image we get is fresh and not an old and maybe
vulnerable image. And finally, we want to make sure that the image cannot be
compromised by malicious hackers in transit. The latter is often called a man-in-the-
middle (MITM) attack.

By signing images at the source and validating the signature at the target, we can
guarantee that the images we want to run are not compromised.

Reverse uptime
The last point I want to discuss in the context of security is reverse uptime. What do we
mean by that? Imagine that you have configured and secured a production cluster. On
this cluster, you're running a few mission-critical applications of your company. Now,
a hacker has managed to find a security hole in one your software stacks and has
gained root access to one of your cluster nodes. That alone is already bad enough but,
even worse, this hacker could now mask their presence on this node they are root on
the machine, after all, and then use it as a base to attack further nodes of your cluster.

Orchestrators Chapter 9

[187]

Root access in Linux or any Unix-type operating system means that
one can do anything on this system. It is the highest level of access
that someone can have. In Windows, the equivalent role is that of an
Administrator.

But what if we leverage the fact that containers are ephemeral and cluster nodes are quickly
provisioned, usually in a matter of minutes if fully automated? We just kill each cluster
node after a certain uptime of, say, 1 day. The orchestrator is instructed to drain the
node and then exclude it from the cluster. Once the node is out of the cluster, it is torn
down and replaced by a freshly provisioned node.

That way, the hacker has lost their base and the problem has been eliminated. This
concept is not yet broadly available, though, but to me it seems to be a huge step
towards increased security and, as far as I have discussed it with engineers working
in this area, it is not difficult to implement.

Introspection
So far, we have discussed a lot of tasks that the orchestrator is responsible for and that
it can execute in a completely autonomous way. But there is also the need for human
operators to be able to see and analyze what's currently running on the cluster and in
what state or health the individual applications are. For all this, we need the
possibility of introspection. The orchestrator needs to surface crucial information in a
way that is easily consumable and understandable.

The orchestrator should collect system metrics from all the cluster nodes and make it
accessible to the operators. Metrics include CPU, memory and disk usage, network
bandwidth consumption, and more. The information should be easily available on a
node-per-node basis, as well in an aggregated form.

We also want the orchestrator to give us access to logs produced by service instances
or containers. Even more, the orchestrator should provide us exec access to each and
every container if we have the correct authorization to do so. With exec access to
containers, one can then debug misbehaving containers.

In highly distributed applications, where each request to the application goes through
numerous services until it is completely handled, tracing requests is really important
task. Ideally, the orchestrator supports us in implementing a tracing strategy or gives
us some good guidelines to follow.

Orchestrators Chapter 9

[188]

Finally, human operators can best monitor a system when working with a graphical
representation of all the collected metrics and logging and tracing information. Here,
we are speaking about dashboards. Every decent orchestrator should offer at least
some basic dashboard with a graphical representation of the most critical system
parameters.

But human operators are not all that concerned about introspection. We also need to
be able to connect external systems with the orchestrator to consume this information.
There needs to be an API available, over which external systems can access data such
as cluster state, metrics, and logs and use this information to make automated
decisions, such as creating pager or phone alerts, sending out emails, or triggering an
alarm siren if some thresholds are exceeded by the system.

Overview of popular orchestrators
At the time of writing, there are many orchestration engines out there and in use. But
there are a few clear winners. The number one spot is clearly held by Kubernetes,
which reigns supreme. A distant second is Docker's own SwarmKit, followed by
others such as Apache Mesos, AWS Elastic Container Service (ECS), or Microsoft
Azure Container Service (ACS).

Kubernetes
Kubernetes was originally designed by Google and later donated to the Cloud Native
Computing Foundation (CNCF). Kubernetes was modeled after Google's proprietary
Borg system, which has been running containers on supermassive scale for years.
Kubernetes was Google's attempt to go back to the drawing board and completely
start over and design a system that incorporates all the lessons learned with Borg.

Contrary to Borg, which is proprietary technology, Kubernetes was open sourced
early on. This was a very wise choice by Google, since it attracted a huge number of
contributors from outside of the company and, over only a couple of years, an even
more massive ecosystem evolved around Kubernetes. One can rightfully say that
Kubernetes is the darling of the community in the container orchestration space. No
other orchestrator has been able to produce so much hype and attract so many
talented people willing to contribute in a meaningful way to the success of the project
as a contributor or an early adopter.

Orchestrators Chapter 9

[189]

In that regard, Kubernetes in the container orchestration space to me looks very much
like what Linux has become in the server operating system space. Linux has become
the de facto standard of server operating systems. All relevant companies, such as
Microsoft, IBM, Amazon, RedHat, and even Docker, have embraced Kubernetes.

And there is one thing that cannot be denied: Kubernetes was designed from the very
beginning for massive scalability. After all, it was designed with Google Borg in
mind.

One negative aspect that one could voice against Kubernetes is that it is complex to
set up and manage, at least at the time of writing. There is a significant hurdle to
overcome for newcomers. The first step is steep. But once one has worked with this
orchestrator for a while, it all makes sense. The overall design is carefully thought
through and executed very well.

In the newest release of Kubernetes, 1.10, whose general availability (GA) was in
March 2018, most of the initial shortcomings compared to other orchestrators such as
Docker Swarm have been eliminated. For example, security and confidentiality is
now not only an afterthought, but an integral part of the system.

New features are implemented at a tremendous speed. New releases are happening
every 3 months or so, more precisely, about every 100 days. Most of the new features
are demand-driven, that is, companies using Kubernetes to orchestrate their mission-
critical applications can voice their needs. This makes Kubernetes enterprise ready. It
would be wrong to assume that this orchestrator is only for start-ups and not for risk-
averse enterprises. The contrary is the case. On what do I base this claim? Well, my
claim is justified by the fact that companies such as Microsoft, Docker, and RedHat,
whose clients are mostly big enterprises, have fully embraced Kubernetes and
provide enterprise-grade support for it if it is used and integrated into their enterprise
offerings.

Kubernetes supports both Linux and Windows containers.

Docker Swarm
It is well-known that Docker popularized and commoditized software containers.
Docker did not invent containers, but standardized them and made them broadly
available, not least by offering the free image registry Docker Hub. Initially, Docker
focused mainly on the developer and the development life cycle. But companies that
started to use and love containers soon also wanted to use containers, not just during
development or testing of new applications, but also to run those applications in
production.

Orchestrators Chapter 9

[190]

Initially, Docker had nothing to offer in that space, so other companies jumped into
that vacuum and offered help to the users. But it didn't take long and Docker
recognized that there was a huge demand for a simple yet powerful orchestrator.
Docker's first attempt was a product called classic Swarm. It was a standalone
product that enabled users to create a cluster of Docker host machines that could be
used to run and scale their containerized applications in a highly available and self-
healing way.

The setup of a classic Docker Swarm, though, was hard. A lot of complicated manual
steps were involved. Customers loved the product but struggled with its complexity.
So Docker decided it could do better. It went back to the drawing board and came up
with SwarmKit. SwarmKit was introduced at DockerCon 2016 in Seattle and was an
integral part of the newest version of the Docker engine. Yes, you got that right,
SwarmKit was and still is to this day an integral part of the Docker engine. Thus, if
you install a Docker host, you automatically have SwarmKit available with it.

SwarmKit was designed with simplicity and security in mind. The mantra was and
still is that it has to be almost trivial to set up a swarm, and the swarm has to be
highly secure out of the box. Docker Swarm operates on the assumption of least
privilege.

Installing a complete, highly available Docker Swarm is literally as simple as starting
with a docker swarm init on the first node in the cluster, which becomes the so-
called leader, and then a docker swarm join <join-token> on all other nodes.
The join-token is generated by the leader during initialization. The whole process
takes less that 5 minutes on a Swarm with up to 10 nodes. If it is automated, it
takes even less time.

As I already mentioned, security was top on the list of must-haves when Docker
designed and developed SwarmKit. Containers provide security by relying on Linux
kernel namespaces and cgroups as well as Linux syscall whitelisting (seccomp) and
the support of Linux capabilities and the Linux security module (LSM). Now, on top
of that, SwarmKit adds MTLS and secrets that are encrypted at rest and in transit.
Furthermore, Swarm defines the so-called container network model (CNM), which
allows for SDNs that provide sandboxing for application services running on the
swarm.

Docker SwarmKit supports both Linux and Windows containers.

Orchestrators Chapter 9

[191]

Apache Mesos and Marathon
Apache Mesos is an open source project and was originally designed to make a
cluster of servers or nodes look like one single big server from the outside. Mesos is
software that makes the management of computer clusters simple. Users of Mesos
should not have to care about individual servers, but just assume they have a gigantic
pool of resources to their disposal, which corresponds to the aggregate of all the
resources of all the nodes in the cluster.

Mesos, in IT terms, is already pretty old, at least compared to the other orchestrators.
It was first publicly presented in 2009. But at that time, of course, it wasn't designed to
run containers since Docker didn't even exist yet. Similar to what Docker does with
containers, Mesos uses Linux cgroups to isolate resources such as CPU, memory, or
disk I/O for individual applications or services.

Mesos is really the underlying infrastructure for other interesting services built on top
of it. From the perspective of containers specifically, Marathon is important.
Marathon is a container orchestrator running on top of Mesos which is able to scale to
thousands of nodes.

Marathon supports multiple container runtimes, such as Docker or its own Mesos
containers. It supports not only stateless but also stateful application services, for
example, databases such as PostgreSQL or MongoDB. Similar to Kubernetes and
Docker SwarmKit, it supports many of the features described earlier in this chapter,
such as high availability, health checks, service discovery, load balancing, and
location awareness, to just name some of the most important ones.

Although Mesos and, to a certain extent, Marathon are rather mature projects, their
reach is relatively limited. It seems to be most popular in the area of big data, that is,
to run data crunching services such as Spark or Hadoop.

Amazon ECS
If you are looking for a simple orchestrator and have already heavily bought into the
AWS ecosystem, then Amazon's ECS might be the right choice for you. It is important
to point out one very important limitation of ECS: if you buy into this container
orchestrator, then you lock yourself into AWS. You will not be able to easily port an
application running on ECS to another platform or cloud.

Orchestrators Chapter 9

[192]

Amazon promotes its ECS service as a highly scalable, fast container management
service that makes it easy to run, stop, and manage Docker containers on a cluster.
Next to running containers, ECS gives direct access to many other AWS services from
the application services running inside the containers. This tight and seamless
integration with many popular AWS services is what makes ECS compelling for users
who are looking for an easy way to get their containerized applications up and
running in a robust and highly scalable environment. Amazon also provides its
own private image registry.

With AWS ECS, you can use Fargate to have it fully manage the underlying
infrastructure so that you can concentrate exclusively on deploying containerized
applications and do not have to care about how to create and manage a cluster of
nodes. ECS supports both Linux and Windows containers.

In summary, ECS is simple to use, highly scalable, and well-integrated with other
popular AWS services, but it is not as powerful as, say, Kubernetes or Docker
SwarmKit and it is only available on Amazon AWS.

Microsoft ACS
Similar to what we said about ECS, we can claim the same for Microsoft's ACS. It is a
simple container orchestration service that makes sense if you are already heavily
invested in the Azure ecosystem. I should say the same as I have pointed out for
Amazon ECS: if you buy into ACS, then you lock yourself in to the offerings of
Microsoft. It will not be easy to move your containerized applications from ACS to
any other platform or cloud.

ACS is Microsoft's container service, which supports multiple orchestrators such as
Kubernetes, Docker Swarm, and Mesos DC/OS. With Kubernetes becoming more
and more popular, the focus of Microsoft has clearly shifted to that orchestrator.
Microsoft has even rebranded its service and called it Azure Kubernetes Service
(AKS) to put the focus on Kubernetes.

AKS manages, for you, a hosted Kubernetes or Docker Swarm or DC/OS environment
in Azure, so you can concentrate on the applications you want to deploy and don't
have to care about configuring infrastructure. Microsoft, in its own words, claims the
following:

AKS makes it quick and easy to deploy and manage containerized applications
without container orchestration expertise. It also eliminates the burden of ongoing
operations and maintenance by provisioning, upgrading, and scaling resources on
demand, without taking your applications offline.

Orchestrators Chapter 9

[193]

Summary
This chapter demonstrated why orchestrators are needed in the first place and how
they conceptually work. It pointed out which orchestrators are the most prominent
ones at the time of writing and discussed the main commonalities and differences
between the various orchestrators.

The next chapter will introduce Docker’s native orchestrator, called SwarmKit. It will
elaborate on all the concepts and objects SwarmKit uses to deploy and run a
distributed, resilient, robust, and highly available application in a cluster on-premises
or in the cloud.

Questions
Answer the following questions to assess your learning progress:

Why do we need an orchestrator? Name two to three reasons.1.
Name three to four typical responsibilities of an orchestrator.2.
Name at least two container orchestrators, as well as the main sponsor3.
behind them.

Further reading
The following links provide some deeper insight to orchestration-related topics:

Kubernetes - production-grade orchestration at https:/ /kubernetes. io/

Docker Swarm Mode overview at https:/ /docs. docker. com/ engine/ swarm/

Mesosphere - container orchestration services at http:/ /bit. ly/ 2GMpko3

Containers and orchestration explained at http:/ /bit. ly/ 2DFoQgx

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
http://bit.ly/2GMpko3
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl

10
Introduction to Docker Swarm

In the last chapter, we introduced orchestrators. Like a conductor in an orchestra, an
orchestrator makes sure that all our containerized application services play together
nicely and contribute harmoniously to a common goal. Such orchestrators have quite
a few responsibilities, which we have discussed in detail. Finally, we have provided a
short overview of the most important container orchestrators on the market.

This chapter introduces Docker's native orchestrator, SwarmKit. It elaborates on all
the concepts and objects SwarmKit uses to deploy and run a distributed, resilient,
robust, and highly available application in a cluster on-premise or in the cloud. The
chapter also introduces how SwarmKit ensures secure applications by using
a software defined network (SDN) to isolate containers. Additionally, this chapter
demonstrates how to install a highly available Docker Swarm in the cloud. It
introduces the routing mesh which provides layer-4 routing and load balancing.
Finally, it demonstrates how to deploy a first application consisting of multiple
services onto the swarm.

These are the topics we are going to discuss in this chapter:

Architecture
Swarm nodes
Stacks, services, and tasks
Multi-host networking
Creating a Docker Swarm
Deploying a first application
The swarm routing mesh

Introduction to Docker Swarm Chapter 10

[195]

After completing this chapter, you will be able to:

Sketch the essential parts of a highly available Docker Swarm on a
whiteboard
Explain in two or three simple sentences to an interested layman what a
(swarm) service is
Create a highly available Docker Swarm in AWS consisting of three
manager and two worker nodes
Successfully deploy a replicated service such as Nginx on a Docker Swarm
Scale up and down a running Docker Swarm service
Retrieve the aggregated log of a replicated Docker Swarm service
Write a simple stack file for a sample application consisting of at least two
interacting services
Deploy a stack into a Docker Swarm

Architecture
The architecture of a Docker Swarm from a 30,000-foot view consists of two main
parts—a raft consensus group of an odd number of manager nodes, and a group of
worker nodes that communicate with each other over a gossip network, also called
the control plane. The following figure illustrates this architecture:

High-level architecture of a Docker Swarm

Introduction to Docker Swarm Chapter 10

[196]

The manager nodes manage the swarm whilst the worker nodes execute the
applications deployed into the swarm. Each manager has a complete copy of the full
state of the swarm in its local raft store. Managers communicate with each other in a
synchronous way and the raft stores are always in sync.

The workers, on the other hand, communicate with each other asynchronously for
scalability reasons. There can be hundreds if not thousands of worker nodes in a
swarm. Now that we have a high-level overview of what a Docker Swarm is, let's
describe all the individual elements of a Docker Swarm in more detail.

Swarm nodes
A swarm is a collection of nodes. We can classify a node as a physical computer or
virtual machine (VM). Physical computers these days are often referred to as bare
metal. People say we're running on bare metal to distinguish from running on a VM.

When we install Docker on such a node, we call this node a Docker host. The
following figure illustrates a bit better what a node and what a Docker host is:

Bare metal and VM type Docker Swarm nodes

Introduction to Docker Swarm Chapter 10

[197]

To become a member of a Docker Swarm, a node must also be a Docker host. A node
in a Docker Swarm can have one of two roles. It can be a manager or it can be a
worker. Manager nodes do what their name implies; they manage the swarm. The
worker nodes in turn execute application workload.

Technically, a manager node can also be a worker node and thus run application
workload, although that is not recommended, especially if the swarm is a production
system running mission critical applications.

Swarm managers
Each Docker Swarm needs to have at least one manager node. For high availability
reasons we should have more than one manager node in a swarm. This is especially
true for production or production-like environments. If we have more than one
manager node then these nodes work together using the Raft consensus protocol.
The Raft consensus protocol is a standard protocol that is often used when multiple
entities need to work together and always need to agree with each other as to which
activity to execute next.

To work well, the Raft consensus protocol asks for an odd number of members in
what is called the consensus group. Thus we should always have 1, 3, 5, 7, and so on
manager nodes. In such a consensus group there is always a leader. In the case of
Docker Swarm, the first node that starts the swarm initially becomes the leader. If the
leader goes away then the remaining manager nodes elect a new leader. The other
nodes in the consensus group are called followers.

Now let's assume that we shut down the current leader node for maintenance
reasons. The remaining manager nodes will elect a new leader. When the previous
leader node comes back online he will now become a follower. The new leader
remains the leader.

All the members of the consensus group communicate in a synchronous way with
each other. Whenever the consensus group needs to make a decision, the leader asks
all followers for agreement. If a majority of the manager nodes give a positive answer
then the leader executes the task. That means if we have three manager nodes then at
least one of the followers has to agree with the leader. If we have five manager nodes
then at least two followers have to agree.

Introduction to Docker Swarm Chapter 10

[198]

Since all manager follower nodes have to communicate synchronously with the
leader node to make a decision in the cluster, the decision-making process gets slower
and slower the more manager nodes we have forming the consensus group. The
recommendation of Docker is to use one manager for development, demo, or test
environments. Use three manager nodes in small to medium size swarms, and use
five managers in large to extra large swarms. To use more than five managers in a
swarm is hardly ever justified.

Manager nodes are not only responsible for managing the swarm but also for
maintaining the state of the swarm. What do we mean by that? When we talk about the
state of the swarm we mean all the information about it—for example, how many nodes
are in the swarm, what are the properties of each node, such as name or IP address. We also
mean what containers are running on which node in the swarm and more. What, on
the other hand, is not included in the state of the swarm is data produced by the
application services running in containers on the swarm. This is called application
data and is definitely not part of the state that is managed by the manager nodes:

A swarm manager consensus group

All the swarm state is stored in a high performance key-value store (kv-store) on each
manager node. That's right, each manager node stores a complete replica of the whole
swarm state. This redundancy makes the swarm highly available. If a manager node
goes down, the remaining managers all have the complete state at hand.

If a new manager joins the consensus group then it synchronizes the swarm state with
the existing members of the group until it has a complete replica. This replication is
usually pretty fast in typical swarms but can take a while if the swarm is big and
many applications are running on it.

Introduction to Docker Swarm Chapter 10

[199]

Swarm workers
As we mentioned earlier, a swarm worker node is meant to host and run containers
that contain the actual application services we're interested in running on our cluster.
They are the workhorses of the swarm. In theory, a manager node can also be a
worker. But, as we already said, this is not recommended on a production system. On
a production system we should let managers be managers.

Worker nodes communicate with each other over the so-called control plane. They
use the gossip protocol for their communication. This communication is
asynchronous, which means that at any given time not all worker nodes must be in
perfect sync.

Now you might ask—what information do worker nodes exchange? It is mostly
information that is needed for service discovery and routing, that is, information
about which containers are running on with nodes and more:

Worker nodes communicating with each other

Introduction to Docker Swarm Chapter 10

[200]

In the preceding figure, you can see how workers communicate with each other. To
make sure the gossiping scales well in a large swarm, each worker node only
synchronizes its own state with three random neighbors. For those who are familiar
with the Big-O notation, that means that the synchronization of the worker nodes
using the gossip protocol scales with O(0).

Worker nodes are kind of passive. They never actively do something other than run
the workloads that they get assigned by the manager nodes. The worker makes sure,
though, that it runs these workloads to the best of its capabilities. Further down in
this chapter we will get to know more about exactly what workloads the worker
nodes are assigned by the manager nodes.

Stacks, services, and tasks
When using a Docker Swarm versus a single Docker host, there is a paradigm change.
Instead of talking of individual containers that run processes, we are abstracting
away to services that represent a set of replicas of each process, and like through
become highly available. We also do not speak anymore of individual Docker hosts
with well known names and IP addresses to which we deploy containers; we'll now
be referring to clusters of hosts to which we deploy services. We don't care about an
individual host or node anymore. We don't give it a meaningful name; each node
rather becomes a number to us. We also don't care about individual containers and
where they are deployed anymore—we just care about having a desired state defined
through a service. We can try to depict that as shown in the following figure:

Containers are deployed to well known servers

Introduction to Docker Swarm Chapter 10

[201]

Instead of deploying individual containers to well known servers like the preceding
one, where we deploy container web to server alpha with IP address 52.120.12.1,
and container payments to server beta with IP 52.121.24.33, we switch to this new
paradigm of services and swarms (or, more generally, clusters):

Services are deployed to swarms

In the preceding figure, we see that a service web and a service inventory are both
deployed to a swarm that consists of many nodes. Each of the services has a certain
number of replicas; six for web and five for inventory. We don't really care on which
node the replicas will run, we only care that the requested number of replicas is
always running on whatever nodes the swarm scheduler decides to put them on.

Services
A swarm service is an abstract thing. It is a description of the desired state of an
application or application service that we want to run in a swarm. The swarm service
is like a manifest describing such things as the:

Name of the service
Image from which to create the containers
Number of replicas to run
Network(s) that the containers of the service are attached to
Ports that should be mapped

Introduction to Docker Swarm Chapter 10

[202]

Having this service manifest the swarm manager, then, makes sure that the described
desired state is always reconciled if ever the actual state should deviate from it. So, if
for example one instance of the service crashes, then the scheduler on the swarm
manager schedules a new instance of the service on a node with free resources so that
the desired state is reestablished.

Task
We have learned that a service corresponds to a description of the desired state in
which an application service should be at all times. Part of that description was the
number of replicas the service should be running. Each replica is represented by a
task. In this regard, a swarm service contains a collection of tasks. On Docker Swarm,
a task is the atomic unit of deployment. Each task of a service is deployed by the
swarm scheduler to a worker node. The task contains all the necessary information
that the worker node needs to run a container based off the image, which is part of
the service description. Between a task and a container there is a one-to-one relation.
The container is the instance that runs on the worker node, while the task is the
description of this container as a part of a swarm service.

Stack
Now that we have a good idea about what a swarm service is and what tasks are, we
can introduce the stack. A stack is used to describe a collection of swarm services that
are related, most probably because they are part of the same application. In that
sense, we could also say that a stack describes an application that consists of one to
many services that we want to run on the swarm.

Typically, we describe a stack declaratively in a text file that is formatted using
YAML and that uses the same syntax as the already-known Docker compose file. This
leads to the situation where people sometimes say that a stack is described by a
docker-compose file. A better wording would be—a stack is described in a stack file
that uses similar syntax to a docker-compose file.

Introduction to Docker Swarm Chapter 10

[203]

Let's try to illustrate the relationship between stack, services, and tasks in the
following figure and connect it with the typical content of a stack file:

Diagram showing the relationship between stack, services and tasks

In the preceding figure, we see on the right-hand side a declarative description of a
sample stack. The stack consists of three services called web, payments, and
inventory. We also see that the service web uses the image example/web:1.0 and has
four replicas.

On the left-hand side of the figure, we see that the stack embraces the three services
mentioned. Each service in turn contains a collection of tasks, as many as there are
replicas. In the case of the service web we have a collection of four tasks. Each task
contains the name of the image from which it will instantiate a container once the task
is scheduled on a swarm node.

Introduction to Docker Swarm Chapter 10

[204]

Multi-host networking
In Chapter 7, Single-Host Networking, we discussed how containers communicate on a
single Docker host. Now, we have a swarm that consists of a cluster of nodes or
Docker hosts. Containers that are located on different nodes need to be able to
communicate with each other. There are many techniques that can help one achieve
this goal. Docker has chosen to implement an overlay network driver for Docker
Swarm. This overlay network allows containers attached to the same overlay
network to discover each other and freely communicate with each other. The
following is a schema for how an overlay network works:

Overlay network

We have two nodes or Docker hosts with the IP addresses 172.10.0.15 and
172.10.0.16. The values we have chosen for the IP addresses are not important;
what is important is that both hosts have a distinct IP address and are connected by a
physical network (a network cable), which is called the underlay network.

On the node on the left-hand side we have a container running with the IP address
10.3.0.2 and on the node on the right-hand side another container with the IP
address 10.3.0.5. Now, the former container wants to communicate with the latter.
How can this happen? In Chapter 7, Single-Host Networking, we saw how this works
when both containers are located on the same node; by using a Linux bridge. But
Linux bridges only operate locally and cannot span across nodes. So, we need another
mechanism. Linux VXLAN comes to the rescue. VXLAN has been available on Linux
since way before containers were a thing.

Introduction to Docker Swarm Chapter 10

[205]

When the left-hand container sends a data packet, the bridge realises that the target of
the packet is not on this host. Now, each node participating in an overlay network
gets a so-called VXLAN Tunnel Endpoint (VTEP) object, which intercepts the packet
(the packet at that moment is an OSI layer 2 data packet), wraps it with a header
containing the target IP address of the host that runs the target container (this makes
it now an OSI layer 3 data packet), and sends it over the VXLAN tunnel. The VTEP on
the other side of the tunnel unpacks the data packet and forwards it to the local
bridge, which in turn forwards it to the target container.

The overlay driver is included in the SwarmKit and is in most cases the
recommended network driver for Docker Swarm. There are other multi-node-capable
network drivers available from third-parties that can be installed as plugins to each
participating Docker host. Certified network plugins are available from the Docker
store.

Creating a Docker Swarm
Creating a Docker Swarm is almost trivial. It is so easy that it seems unreal if one
knows what an orchestrator is all about. But it is true, Docker has done a fantastic job
in making swarms simple and elegant to use. At the same time, Docker Swarm has
been proven in use by large enterprises to be very robust and scalable.

Creating a local single node swarm
So, enough fancying, let's demonstrate how one can create a swarm. In its most
simple form, a fully functioning Docker Swarm consists only of a single node. If
you're using Docker for Mac or Windows, or even if you're using Docker Toolbox,
then your personal computer or laptop is such a node. Thus, we can start right there
and demonstrate some of the most important features of a swarm.

Let's initialize a swarm. On the command-line, just enter the following command:

$ docker swarm init

Introduction to Docker Swarm Chapter 10

[206]

And after an incredibly short time you should see something like the following
screenshot:

Output of the docker swarm init command

Our computer is now a swarm node. Its role is that of a manager and it is the leader
(of the managers, which makes sense since there is only one manager at this time).
Although it took only a very short time to finish the docker swarm init, the
command did a lot of things during that time, some of them are:

It created a root certificate authority (CA)
It created a key-value store that is used to store the state of the whole
swarm

Now, in the preceding output, we can see a command that can be used to join other
nodes to the swarm that we just created. The command is as follows:

$ docker swarm join --token <join-token> <IP address>:2377

Here:

<join-token> is a token generated by the swarm leader at the time the
swarm was initialized
 <IP address> is the IP address of the leader

Although our cluster remains simple, as it consists of only one member, we can still
ask the Docker CLI to list all the nodes of the swarm. This will look similar to the
following screenshot:

Listing the nodes of the Docker Swarm

Introduction to Docker Swarm Chapter 10

[207]

In this output we first see the ID that was given to the node. The star (*) that follows
the ID indicates that this is the node on which the docker node ls was executed;
basically, saying that this is the active node. Then we have the (human-readable)
name of the node, its status, availability, and manager status. As mentioned earlier,
this very first node of the swarm automatically became the leader, which is indicated
in the preceding screenshot. Lastly, we see which version of the Docker engine we're
using.

To get even more information about a node we can use the docker node inspect
command, as shown in the following screenshot:

Truncated output of the command docker node inspect

Introduction to Docker Swarm Chapter 10

[208]

There is a lot of information generated by this command, so we only present a
truncated version of the output. This output can be useful, for example, when one
needs to troubleshoot a misbehaving cluster node.

Creating a local swarm in VirtualBox or Hyper-
V
Sometimes a single node swarm is not enough, but we don't have or don't want to use
an account to create a swarm in the cloud. In this case, we can create a local swarm in
either VirtualBox or Hyper-V. Creating the swarm in VirtualBox is slightly easier than
creating it in Hyper-V, but if you're using Windows 10 and have Docker for Windows
running then you cannot use VirtualBox at the same time. The two hypervisors are
mutually exclusive.

Let's assume we have VirtualBox and docker-machine installed on our laptop. We
can then use docker-machine to list all Docker hosts that are currently defined and
may be running in VirtualBox:

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER
ERRORS
default - virtualbox Stopped Unknown

In my case, I have one VM called default defined, which is currently stopped. I can
easily start the VM by issuing the docker-machine start default command.
This command takes a while and will result in the following (shortened) output:

$ docker-machine start default
Starting "default"...
(default) Check network to re-create if needed...
(default) Waiting for an IP...
Machine "default" was started.
Waiting for SSH to be available...
Detecting the provisioner...
Started machines may have new IP addresses. You may need to re-run the
`docker-machine env` command.

Now, if I list my VMs again I should see the following screenshot:

List of all VMs running in VirtualBox

Introduction to Docker Swarm Chapter 10

[209]

If we do not have a VM called default yet, we can easily create one using the
create command:

docker-machine create --driver virtualbox default

This results in the following output:

Output of docker-machine create

We can see in the preceding output how docker-machine creates the VM from an
ISO image, defines SSH keys and certificates, and copies them to the VM and to the
local ~/.docker/machine directory, where we will use it later when we want to
remotely access this VM through the Docker CLI. It also provisions an IP address for
the new VM.

We're using the docker-machine create command with the parameter --driver
virtualbox. Docker machine can also work with other drivers such as Hyper-V,
AWS, Azure, DigitalOcean, and many more. Please see the documentation of docker-
machine for more information. By default, a new VM gets 1 GB of memory associated,
which is enough to use this VM as a node for a development or test swarm.

Now let's create five VMs for a five-node swarm. We can use a bit of scripting to
reduce the manual work:

$ for NODE in `seq 1 5`; do
 docker-machine create --driver virtualbox "node-${NODE}"
done

Introduction to Docker Swarm Chapter 10

[210]

Docker machine will now create five VMs with the names node-1 to node-5. This
might take a few moments, so this is a good time to get yourself a hot cup of tea. After
the VMs are created we can list them:

List of all VMs we need for the swarm

Now we're ready to build a swarm. Technically, we could SSH into the first VM
node-1 and initialize a swarm and then SSH into all the other VMs and join them to
the swarm leader. But this is not efficient. Let's again use a script that does all the
hard work:

get IP of Swarm leader
$ export IP=$(docker-machine ip node-1)
init the Swarm
$ docker-machine ssh node-1 docker swarm init --advertise-addr $IP
Get the Swarm join-token
$ export JOIN_TOKEN=$(docker-machine ssh node-1 \
 docker swarm join-token worker -q)

Now that we have the join token and the IP address of the swarm leader, we can ask
the other nodes to join the swarm as follows:

$ for NODE in `seq 2 5`; do
 NODE_NAME="node-${NODE}"
 docker-machine ssh $NODE_NAME docker swarm join \
 --token $JOIN_TOKEN $IP:2377
done

To make the swarm highly available we can now promote, for example, node-2 and
node-3 to become managers:

$ docker-machine ssh node-1 docker node promote node-2 node-3
Node node-2 promoted to a manager in the swarm.
Node node-3 promoted to a manager in the swarm.

Introduction to Docker Swarm Chapter 10

[211]

Finally, we can list all the nodes of the swarm:

$ docker-machine ssh node-1 docker node ls

We should see the following screenshot:

List of all the nodes of the Docker Swarm on VirtualBox

This is the proof that we have just created a highly available Docker Swarm locally on
our laptop or workstation. Let's pull all our code snippets together and make the
whole thing a bit more robust. The script will look as follows:

alias dm="docker-machine"
for NODE in `seq 1 5`; do
 NODE_NAME=node-${NODE}
 dm rm --force $NODE_NAME
 dm create --driver virtualbox $NODE_NAME
done
alias dms="docker-machine ssh"
export IP=$(docker-machine ip node-1)
dms node-1 docker swarm init --advertise-addr $IP;
export JOIN_TOKEN=$(dms node-1 docker swarm join-token worker -q);
for NODE in `seq 2 5`; do
 NODE_NAME="node-${NODE}"
 dms $NODE_NAME docker swarm join --token $JOIN_TOKEN $IP:2377
done;
dms node-1 docker node promote node-2 node-3

The preceding script first deletes (if present) and then recreates five VMs called
node-1 to node-5, and then initializes a Swarm on node-1. After that, the remaining
four VMs are added to the swarm, and finally, node-2 and node-3 are promoted to
manager status to make the swarm highly available. The whole script will take less
than 5 minutes to execute and can be repeated as many times as desired. The
complete script can be found in the repository, in the subfolder docker-swarm; it is
called create-swarm.sh

Introduction to Docker Swarm Chapter 10

[212]

It is a highly recommended best practice to always script and thus automate
operations.

Using Play with Docker (PWD) to generate a
Swarm
To experiment with Docker Swarm without having to install or configure anything
locally on our computer, we can use PWD. PWD is a website that can be accessed
with a browser and which offers us the ability to create a Docker Swarm consisting of
up to five nodes. It is definitely a playground, as the name implies, and the time for
which we can use it is limited to four hours per session. We can open as many
sessions as we want, but each session automatically ends after four hours. Other than
that, it is a fully functional Docker environment that is ideal for tinkering with Docker
or to demonstrate some features.

Let's access the site now. In your browser, navigate to the website https:/ /labs.
play-with-docker. com. You will be presented a welcome and login screen. Use your
Docker ID to log in. After successfully logging in you will be presented with a screen
that looks like the following screenshot:

Play with Docker window

https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com

Introduction to Docker Swarm Chapter 10

[213]

As we can see immediately, there is a big timer counting down from four hours.
That's how much time we have left to play in this session. Furthermore, we see an +
ADD NEW INSTANCE link. Click it to create a new Docker host. When you do that,
your screen should look like the following screenshot:

PWD with one new node

On the left-hand side we see the newly-created node with its IP address
(192.168.0.53) and its name (node1). On the right-hand side, we have some
additional information about this new node in the upper half of the screen and a
terminal in the lower half. Yes, this terminal is used to execute commands on this
node that we just created. This node has the Docker CLI installed, and thus we can
execute all the familiar Docker commands on it such as docker version. Try it out.

But now we want to create a Docker Swarm. Execute the following command in the
terminal in your browser:

$ docker swarm init --advertise-addr=eth0

The output generated by the preceding command corresponds to what we already
know from our previous trials with the one-node cluster on our workstation and the
local cluster using VirtualBox or Hyper-V. The important information, once again, is
the join command that we want to use to join additional nodes to the cluster we just
created.

Introduction to Docker Swarm Chapter 10

[214]

You might have noted that this time we specified the parameter --advertise-addr
in the swarm init command. Why is that necessary here? The reason is that the nodes
generated by PWD have more than one IP address associated with them. One can
easily verify that by executing the command ip a on the node. This command will
show us that there are indeed two endpoints, eth0 and eth1, present. We thus have
to specify explicitly to the new to-be-swarm manager which one we want to use. In
our case, it is eth0.

Create four additional nodes in PWD by clicking four times on the + ADD NEW
INSTANCE link. The new nodes will be called node2, node3, node4, and node5 and
will all be listed on the left-hand side. If you click on one of the nodes on the left-hand
side, then the right-hand side shows the details of the respective node and a terminal
window for that node.

Select each node (2 to 5) and execute the docker swarm join command that you
have copied from the leader node (node1) in the respective terminal:

Joining a node to the swarm in PWD

Introduction to Docker Swarm Chapter 10

[215]

Once you have joined all four nodes to the swarm, switch back to node1 and list all
nodes, which, unsurprisingly, results in this:

List of all the nodes of the swarm in PWD

Still on node1, we can now promote, say, node2 and node3, to make the swarm
highly available:

$ docker node promote node2 node3
Node node2 promoted to a manager in the swarm.
Node node3 promoted to a manager in the swarm.

With this, our swarm on PWD is ready to accept a workload. We have created a
highly available Docker Swarm with three manager nodes that form a Raft consensus
group and two worker nodes.

Creating a Docker Swarm in the cloud
All the Docker Swarms we have created so far are wonderful to use in development
or to experiment or for demonstration purposes. If we want to create a swarm that
can be used as a production environment where we run our mission critical
applications, though, then we need to create a, I'm tempted to say, real swarm in the
cloud or on-premise. In this book, we are going to demonstrate how to create a
Docker Swarm in Amazon AWS.

One way to create a swarm is by using Docker machine (DM). DM has a driver for
Amazon AWS. If we have an account on AWS, we need the AWS access key ID and
the AWS secret access key. We can add those two values to a file called
~/.aws/configuration. It should look like the following:

[default]
aws_access_key_id = AKID1234567890
aws_secret_access_key = MY-SECRET-KEY

Introduction to Docker Swarm Chapter 10

[216]

Every time we run docker-machine create, DM will look up those values in that
file. For more in-depth information on how to get an AWS account and how to obtain
the two secret keys, please consult this link: http:/ /dockr. ly/ 2FFelyT.

Once we have an AWS account in place and have stored the access keys in the
configuration file, we can start building our swarm. The necessary code looks exactly
the same as the one we used to create a swarm on our local machine in VirtualBox.
Let's start with the first node:

$ docker-machine create --driver amazonec2 \
 --amazonec2-region us-east-1 aws-node-1

This will create an EC2 instance called aws-node-1 in the requested region (us-
east-1 in my case). The output of the preceding command looks like the following
screenshot:

Creating a swarm node on AWS with Docker machine

It looks very similar to the output we already know from working with VirtualBox.
We can now configure our terminal for remote access to that EC2 instance:

$ eval $(docker-machine env aws-node-1)

http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT

Introduction to Docker Swarm Chapter 10

[217]

This will configure the environment variables used by the Docker CLI accordingly:

Environment variables used by Docker to enable remote access to the AWS EC2 node

For security reasons, transport layer security (TLS) is used for the communication
between our CLI and the remote node. The certificates necessary for that were copied
by DM to the path we assigned to the environment variable DOCKER_CERT_PATH.

All Docker commands that we now execute in our Terminal will be remotely
executed in Amazon AWS on our EC2 instance. Let's try to run Nginx on this node:

$ docker container run -d -p 8000:80 nginx:alpine

We can use docker container ls to verify that the container is running. If so, then
let's test it using curl:

$ curl -4 <IP address>:8000

Here, <IP address> is the public IP address of the AWS node; in my case it would
be 35.172.240.127. Sadly this doesn't work; the preceding command times out:

Accessing Nginx on the AWS node times out

The reason for this is that our node is part of an AWS security group (SG). By default,
access to objects inside this SG is denied. Thus, we have to find out to which SG our
instance belongs and configure access explicitly. For this, we typically use the AWS
console. Go to the EC2 dashboard and select instances on the left-hand side. Locate
the EC2 instance called aws-node-1 and select it. In the details view, under Security
groups, click on the link docker-machine as shown in the following screenshot:

Introduction to Docker Swarm Chapter 10

[218]

Locating the SG to which our swarm node belongs

This will lead us to the SG page with the SG docker-machine pre-selected. In the
details section under the tab Inbound, add a new rule for your IP address (the IP
address of workstation):

Open access to SG for our computer

Introduction to Docker Swarm Chapter 10

[219]

In the preceding screenshot, the IP address 70.113.114.234 happens to be the one
assigned to my personal workstation. I have enabled all inbound traffic coming from
this IP address to the docker-machine SG. Note that in a production system you
should be very careful about which ports of the SG to open to the public. Usually, it is
ports 80 and 443 for HTTP and HTTPS access. Everything else is a potential
invitation to hackers.

You can get your own IP address through a service like https:/ /www. whatismyip.
com/. Now, if we execute the curl command again, the greeting page of Nginx is
returned.

Before we leave the SG we should add another rule to it. The swarm nodes need to be
able to freely communicate on ports 7946 and 4789 through TCP and UDP and on
port 2377 through TCP. We could now add five rules with these requirements where
the source is the SG itself, or we just define a more crud rule that allows all inbound
traffic inside the SG (sg-c14f4db3 in my case):

 SG rule to enable intra-swarm communication

Now, let's continue with the creation of the remaining four nodes. Once again, we can
use a script to ease the process:

$ for NODE in `seq 2 5`; do
 docker-machine create --driver amazonec2 \
 --amazonec2-region us-east-1 aws-node-${NODE}
done

https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/

Introduction to Docker Swarm Chapter 10

[220]

After the provisioning of the nodes is done we can list all nodes with DM. In my case,
I see this:

List of all the nodes created by Docker Machine

In the preceding screenshot, we can see the five nodes that we originally created in
VirtualBox and the five new nodes that we have created in AWS. Apparently, the
nodes on AWS are using a new version of Docker; here the version is 18.02.0-ce.
The IP addresses we see in the column URL are the public IP addresses of my EC2
instances.

Due to the fact that our CLI is still configured for remote access to the node aws-
node-1, we can just run the swarm init command as follows:

$ docker swarm init

We then need the join-token:

$ export JOIN_TOKEN=$(docker swarm join-token -q worker)

The address of the leader with the following command:

$ export LEADER_ADDR=$(docker node inspect \
 --format "{{.ManagerStatus.Addr}}" self)

With this information, we can now join the other four nodes to the swarm leader:

$ for NODE in `seq 2 5`; do
 docker-machine ssh aws-node-${NODE} \
 sudo docker swarm join --token ${JOIN_TOKEN} ${LEADER_ADDR}
done

Introduction to Docker Swarm Chapter 10

[221]

An alternative way to achieve the same without needing to SSH into the individual
nodes would be to reconfigure our client CLI every time we want to access a different
node:

$ for NODE in `seq 2 5`; do
 eval $(docker-machine env aws-node-${NODE})
 docker swarm join --token ${JOIN_TOKEN} ${LEADER_ADDR}
done

As a last step, we want to promote nodes 2 and 3 to manager:

$ eval $(docker-machine env node-1)
$ docker node promote aws-node-2 aws-node-3

We can then list all the swarm nodes, as shown in the following screenshot:

List of all nodes of our swarm in the cloud

And thus do we have a highly available Docker Swarm running in the cloud. To clean
up the swarm in the cloud and avoid incurring unnecessary costs, we can use the
following command:

$ for NODE in `seq 1 5`; do
 docker-machine rm -f aws-node-${NODE}
done

Deploying a first application
We have created a few Docker Swarms on various platforms. Once created, a swarm
behaves the same way on any platform. The way we deploy and update applications
on a swarm is not platform-dependent. It has been one of Docker's main goals to
avoid a vendor lock-in when using a swarm. Swarm-ready applications can be
effortlessly migrated from, say, a swarm running on-premise to a cloud based swarm.
It is even technically possible to run part of a swarm on-premise and another part in
the cloud. It works, yet one has of course to consider possible side effects due to the
higher latency between nodes in geographically distant areas.

Introduction to Docker Swarm Chapter 10

[222]

Now that we have a highly available Docker Swarm up and running, it is time to run
some workloads on it. I'm using a local swarm created with Docker Machine. We'll
start by first creating a single service. For this we need to SSH into one of the manager
nodes. I select node-1:

$ docker-machine ssh node-1

Creating a service
A service can be either created as part of a stack, or directly using the Docker CLI.
Let's first look at a sample stack file that defines a single service:

version: "3.5"
services:
 whoami:
 image: training/whoami:latest
 networks:
 - test-net
 ports:
 - 81:8000
 deploy:
 replicas: 6
 update_config:
 parallelism: 2
 delay: 10s
 labels:
 app: sample-app
 environment: prod-south

networks:
 test-net:
 driver: overlay

In the preceding example we see what the desired state of a service called whoami is:

It is based on the image training/whoami:latest
Containers of the service are attached to the network test-net
The container port 8000 is published to port 81
It is running with six replicas (or tasks)

Introduction to Docker Swarm Chapter 10

[223]

During a rolling update, the individual tasks are updated in batches of two,
with a delay of 10 seconds between each successful batch
The service (and its tasks and containers) is assigned the two
labels app and environment, with the values sample-app and prod-
south respectively

There are many more settings that we could define for a service, but the preceding
ones are some of the more important ones. Most settings have meaningful default
values. If, for example, we do not specify the number of replicas, then Docker defaults
it to 1. The name and image of a service are of course mandatory. Note that the name
of the service must be unique in the swarm.

To create the preceding service, we use the docker stack deploy command.
Assuming that the file in which the preceding content is stored is
called stack.yaml, we have:

$ docker stack deploy -c stack.yaml sample-stack

Here, we have created a stack called sample-stack that consists of one
service, whoami. We can list all stacks on our swarm, whereupon we should get this:

$ docker stack ls
NAME SERVICES
sample-stack 1

If we list the services defined in our swarm, we get the following output:

List of all services running in the swarm

In the output, we can see that currently we have only one service running, which was
to be expected. The service has an ID. The format of the ID, contrary, what you have
used so far for containers, networks, or volumes, is alphanumeric. We can also see
that the name of the service is a combination of the service name we defined in the
stack file and the name of the stack, which is used as a prefix. This makes sense, since
we want to be able to deploy multiple stacks (with different names) using the same
stack file into our swarm. To make sure that service names are unique, Docker
decided to combine service name and stack name.

Introduction to Docker Swarm Chapter 10

[224]

In the third column we see the mode, which is replicated. The number of replicas
is shown as 6/6. This tells us that six out of the six requested replicas are running.
This corresponds to the desired state. In the output we also see the image that the
service uses and the port mappings of the service.

Inspecting the service and its tasks
In the preceding output, we cannot see the details of the 6 replicas that have been
created. To get some deeper insight into that, we can use the docker service
ps command. If we execute this command for our service, we will get the following
output:

Details of the whoami service

In the preceding output, we can see the list of six tasks that correspond to the
requested six replicas of our whoami service. In the NODE column, we can also see the
node to which each task has been deployed. The name of each task is a combination
of the service name plus an increasing index. Also note that, similar to the service
itself, each task gets an alphanumeric ID assigned.

In my case, apparently task 2, with the name sample-stack_whoami.2, has been
deployed to node-1, which is the leader of our swarm. Thus, I should find a
container running on this node. Let's see what we get if we list all containers running
on node-1:

List of containers on node-1

Introduction to Docker Swarm Chapter 10

[225]

As expected, we find a container running from
the training/whoami:latest image with a name that is a combination of its parent
task name and ID. We can try to visualize the whole hierarchy of objects that we
generated when deploying our sample stack:

Object hierarchy of a Docker Swarm stack

A stack can consist of one to many services. Each service has a collection of tasks.
Each task has a one-to-one association with a container. Stacks and services are
created and stored on the Swarm manager nodes. Tasks are then scheduled to swarm
worker nodes, where the worker node creates the corresponding container. We can
also get some more information about our service by inspecting it. Execute the
following command:

$ docker service inspect sample-stack_whoami

This provides a wealth of information about all the relevant settings of the service.
This includes those we have explicitly defined in our stack.yaml file, but also those
which we didn't specify and which therefore got their default values assigned. We're
not going to list the whole output here, as it is too long, but I encourage the reader to
inspect it on their own machine. We will discuss part of the information in more
detail in the The Swarm Routing Mesh section.

Introduction to Docker Swarm Chapter 10

[226]

Logs of a service
In an earlier chapter we worked with the logs produced by a container. Here we're
concentrating on a service. Remember that, ultimately, a service with many replicas
has many containers running. Thus, we would expect that, if we ask the service for its
logs, that Docker returns an aggregate of all logs of those containers belonging to the
service. And indeed, that's what we get if we use the docker service
logs command:

Logs of the whoami service

There is not much information in the logs at this point, but it is enough to discuss
what we get. The first part of each line in the log always contains the name of the
container combined with the node name from which the log entry originates. Then,
separated by the vertical bar (|), we get the actual log entry. So if we would, say, ask
for the logs of the first container in the list directly, we would only get a single entry,
and the value we would see in this case would be Listening on :8000.

The aggregated logs that we get with the docker service logs command are not
sorted in any particular way. So, if correlation of events is happening in different
containers you should add information to your log output that makes this correlation
possible. Typically, this is a timestamp for each log entry. But this has to be done at
the source; for example, the application that produces a log entry needs to also make
sure a timestamp is added.

We can also query the logs of an individual task of the service by providing the task
ID instead of the service ID or name. So, querying the logs from task 2 gives us the
following screenshot:

Logs of an individual task of the whoami service

Introduction to Docker Swarm Chapter 10

[227]

Reconciling the desired state
We have learned that a swarm service is a description or manifest of the desired state
that we want an application or application service to run in. Now, let's see how
Docker Swarm reconciles this desired state if we do something that causes the actual
state of the service to be different from the desired state. The easiest way to do this is
to forcibly kill one of the tasks or containers of the service.

Let's do this with the container that has been scheduled on node-1:

$ docker container rm -f sample-
stack_whoami.2.n21e7ktyvo4b2sufalk0aibzy

If we do that and then do a docker service ps right thereafter, we will see the
following output:

Docker Swarm reconciling the desired state after one task failed

We see that task 2 failed with exit code 137 and that the swarm immediately
reconciled the desired state by rescheduling the failed task on a node with free
resources. In this case, the scheduler selected the same node as the failed tasks, but
this is not always the case. So, without us intervening, the swarm completely fixed the
problem, and since the service is running in multiple replicas, at no time was the
service down.

Let's try another failure scenario. This time we're going to shut down an entire node
and are going to see how the swarm reacts. Let's take node-2 for this, as it has two
tasks (tasks 3 and 4) running on it. For this we need to open a new terminal window
and use Docker machine to stop node-2:

$ docker-machine stop node-2

Introduction to Docker Swarm Chapter 10

[228]

Back on node-1, we can now again run docker service ps to see what happened:

Swarm reschedules all tasks of a failed node

In the preceding screenshot, we can see that immediately task 3 was rescheduled
on node-1 whilst task 4 was rescheduled on node-3. Even this more radical failure is
handled gracefully by Docker Swarm.

It is important to note though that if node-2 ever comes back online in the swarm,
the tasks that had previously been running on it will not automatically be transferred
back to it. But the node is now ready for a new workload.

Deleting a service or a stack
If we want to remove a particular service from the swarm, we can use the docker
service rm command. If on the other hand we want to remove a stack from the
swarm, we analogously use the docker stack rm command. This command
removes all services that are part of the stack definition. In the case of the whoami
service, it was created by using a stack file and thus we're going to use the latter
command:

Removing a stack

The preceding command will make sure that all tasks of each service of the stack are
terminated, and the corresponding containers are stopped by first sending a
SIGTERM, and then, if not successful, a SIGKILL after 10 seconds of timeout.

It is important to note that the stopped containers are not removed from the Docker
host. Thus, it is advised to purge containers from time to time on worker nodes to
reclaim unused resources. Use docker container purge -f for this purpose.

Introduction to Docker Swarm Chapter 10

[229]

Deploying a multi-service stack
In Chapter 8, Docker Compose, we used an application consisting of two services that
were declaratively described in a Docker compose file. We can use this compose file
as a template to create a stack file that allows us to deploy the same application into a
swarm. The content of our stack file called pet-stack.yaml looks like this:

version: "3.5"
services:
 web:
 image: fundamentalsofdocker/ch08-web:1.0
 networks:
 - pets-net
 ports:
 - 3000:3000
 deploy:
 replicas: 3
 db:
 image: fundamentalsofdocker/ch08-db:1.0
 networks:
 - pets-net
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

networks:
 pets-net:
 driver: overlay

We request that the service web has three replicas, and both services are attached to
the overlay network pets-net. We can deploy this application using the docker
stack deploy command:

Deploy the pets stack

Introduction to Docker Swarm Chapter 10

[230]

Docker creates the pets_pets-net overlay network and then the two services
pets_web and pets_db. We can then list all the tasks in the pets stack:

List of all the tasks in the pets stack

Finally, let's test the application using curl. And, indeed, the application works as
expected:

Testing the pets application using curl

The container ID is in the output, where it says Delivered to you by
container c9aa9dacd9b2. If you run the curl command multiple times, the ID
should cycle between three different values. These are the ID's of the three containers
(or replicas) that we have requested for the service web.

Once we're done, we can remove the stack with docker stack rm pets.

Introduction to Docker Swarm Chapter 10

[231]

The swarm routing mesh
If you have been paying attention, then you might have noticed something interesting
in the last section. We had the pets application deployed and it resulted in the fact
that an instance of the service web was installed on the three nodes node-3, node-4,
and node-5. Yet, we were able to access the web service on node-1 with
localhost and we reached each container from there. How is that possible? Well, this
is due to the so-called swarm routing mesh. The routing mesh makes sure that when
we publish a port of a service, that port is then published on all nodes of the swarm.
Thus, network traffic that hits any node of the swarm and requests to use the specific
port, will be forwarded to one of the service containers by routing the mesh. Let's
look at the following figure to see how that works:

Docker Swarm routing mesh

Introduction to Docker Swarm Chapter 10

[232]

In this situation we have three nodes, called Host A to Host C, with the IP addresses
172.10.0.15, 172.10.0.17, and 172.10.0.33. In the lower left-corner of the
figure, we see the command that created a service web with two replicas. The
corresponding tasks have been scheduled on Host B and Host C. Task 1 landed on
host B while task 2 landed on host C.

When a service is created on Docker Swarm it automatically gets a virtual IP (VIP)
address assigned. This IP address is stable and reserved during the whole life cycle of
the service. Let's assume that in our case the VIP is 10.2.0.1.

If now a request for port 8080 coming from an external load balancer (LB) is targeted
at one of the nodes of our swarm, then this request is handled by the Linux IP Virtual
Server (IPVS) service on that node. This service makes a lookup with the given port
8080 in the IP table and will find that this corresponds to the VIP of service web.
Now, since the VIP is not a real target, the IPVS service will load balance the IP
addresses of the tasks that are associated with this service. In our case it picked task 2,
with the IP address 10.2.0.3. Finally, the ingress overlay network is used to
forward the request to the target container on host C.

It is important to note that it doesn't matter which swarm node the external request is
forwarded to by the external LB. The routing mesh will always handle the request
correctly and forward it to one of the tasks of the targeted service.

Summary
In this chapter, we have introduced Docker Swarm, which, next to Kubernetes, is the
second most popular orchestrator for containers. We have looked into the architecture
of a swarm, discussed all the types of resources running in a swarm, such as services,
tasks, and more, and we have created services in the swarm and deployed an
application that consists of multiple related services.

In the next chapter, we are going to explore how to deploy services or applications
onto a Docker Swarm with zero downtime and automatic rollback capabilities. We
are also going to introduce secrets as a means to protect sensitive information.

Introduction to Docker Swarm Chapter 10

[233]

Questions
To assess your learning progress please answer the following questions:

How do you initialize a new Docker Swarm?1.
docker init swarm1.
docker swarm init --advertise-addr <IP address>2.
docker swarm join --token <join token>3.

You want to remove a worker node from a Docker Swarm. What steps are2.
necessary?
How do you create an overlay network called front-tier? Make the3.
network attachable.
How will you create a service called web from the nginx:alpine image4.
with five replicas, which exposes port 3000 on the ingress network and is
attached to the front-tier network?
How will you scale the web service down to three instances?5.

Further reading
Please consult the following link for more in-depth information about selected topics:

Amazon AWS EC2 example at http:/ /dockr. ly/ 2FFelyT

http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT

11
Zero Downtime Deployments

and Secrets
In the last chapter, we explored Docker Swarm and its resources in detail. We learned
how to build a highly available swarm locally, and in the cloud. Then, we discussed
swarm services and stacks in depth. Finally, we created services and stacks in the
swarm.

In this chapter, we will show you how we can update services and stacks running in
Docker Swarm without interrupting their availability. This is called zero downtime
deployment. We are also going to introduce swarm secrets as a means to securely
provide sensitive information to containers of a service using those secrets.

The topics of this chapter are:

Zero downtime deployment
Secrets

After finishing this chapter, you will be able to:

List two to three different deployment strategies commonly used to update
a service without downtime
Update a service in batches without causing a service interruption
Define a rollback strategy for a service that is used if an update fails
Use a secret with a service
Update the value of a secret without causing downtime

Zero Downtime Deployments and Secrets Chapter 11

[235]

Zero downtime deployment
One of the most important aspects of a mission-critical application that needs
frequent updates is the ability to do updates in a fashion that requires no outage at
all. We call this a zero downtime deployment. At all times, the application which is
updated is fully operational.

Popular deployment strategies
There are various ways how this can be achieved. Some of them are as follows:

Rolling updates
Blue-green deployments
Canary releases

Docker Swarm supports rolling updates out of the box. The other two types of
deployments can be achieved with some extra effort from our side.

Rolling updates
In a mission-critical application, each application service has to run in multiple
replicas. Depending on the load, that can be as few as two to three instances and as
many as dozens, hundreds, or thousands of instances. At any given time, we want to
have a clear majority of all service instances running. So, if we have three replicas, we
want to have at least two of them up and running all the time. If we have 100 replicas,
we can content ourselves with a minimum of, say 90 replicas, that need to be
available. We can then define a batch size of replicas that we may take down to
upgrade. In the first case, the batch size would be 1 and in the second case, it would
be 10.

Zero Downtime Deployments and Secrets Chapter 11

[236]

When we take replicas down, Docker Swarm will automatically take those instances
out of the load balancing pool and all traffic will be load balanced across the
remaining active instances. Those remaining instances will thus experience a slight
increase in traffic. In the following diagram, prior to the start of the rolling update, if
Task A3 wanted to access Service B, it could have been load balanced to any of the
three tasks of service B by SwarmKit. Once the rolling update had started, SwarmKit
took down Task B1 for updates. Automatically, this task is then taken out of the pool
of targets. So, if Task A3 now requests to connect to Service B, the load balancing will
only select from the remaining tasks B2 and B3. Thus, those two tasks might
experience a higher load temporarily:

Task B1 is taken down for update

The stopped instances are then replaced by an equivalent number of new instances of
the new version of the application service. Once the new instances are up and
running, we can have the swarm observe them for a given period of time and make
sure they’re healthy. If all is good, then we can continue by taking down the next
batch of instances and replacing them with instances of the new version. This process
is repeated until all instances of the application service are replaced.

Zero Downtime Deployments and Secrets Chapter 11

[237]

In the the following diagram, we see that Task B1 of Service B has been updated to
version 2. The container of Task B1 got a new IP address assigned, and it got
deployed to another worker node with free resources:

First batch updated in a rolling update

It is important to understand that when a task of a service is updated, it, in most
cases, gets deployed to a different worker node than the one it used to live on. But
that should be fine as long as the corresponding service is stateless. If we have a
stateful service that is location or node aware and we'd like to update it, then we have
to adjust our approach, but this is outside of the scope of this book.

Now, let’s look into how we can actually instruct the swarm to perform a rolling
update of an application service. When we declare a service in a stack file, we can
define multiple options that are relevant in this context. Let’s look at a snippet of a
typical stack file:

version: "3.5"
services:
 web:
 image: nginx:alpine
 deploy:
 replicas: 10
 update_config:
 parallelism: 2
 delay: 10s
...

Zero Downtime Deployments and Secrets Chapter 11

[238]

In this snippet, we see a section, update_config, with the properties parallelism
and delay. Parallelism defines the batch size of how many replicas are going to be
updated at a time during a rolling update. Delay defines how long Docker Swarm is
going to wait between the update of individual batches. In the preceding case, we
have 10 replicas that are updated in two instances at a time and, between each
successful update, Docker Swarm waits for 10 seconds.

Let’s test such a rolling update. We navigate to subfolder ch11 of our labs folder and
use the file stack.yaml to create a web service configured for a rolling update. The
service uses the Alpine-based Nginx image with version 1.12-alpine. We will then
later update the service to a newer version 1.13-alpine.

We will deploy this service to our swarm that we created locally in VirtualBox. First,
we make sure we have our Terminal window configured to access one of the master
nodes of our cluster. We can take the leader node-1:

$ eval $(docker-machine env node-1)

Now, we can deploy the service using the stack file:

$ docker stack deploy -c stack.yaml web

The output of the preceding command looks like this:

Deployment of the stack called web

Once the service is deployed, we can monitor it using the following command:

$ watch docker stack ps web

Zero Downtime Deployments and Secrets Chapter 11

[239]

And we will see the following output:

Service web of stack web running in swarm with 10 replicas

 If you're working on a Mac, you need to make sure your watch tool
is installed. Use this command to do so: brew install watch.

The previous command will continuously update the output and provide us with a
good overview on what’s happening during the rolling update.

Now, we need to open a second Terminal and also configure it for remote access to a
manager node of our swarm. Once we have done that, we can execute the docker
command that will update the image of the web service of the stack also called web:

$ docker service update --image nginx:1.13-alpine web_web

The preceding command leads to the following output, indicating the progress of the
rolling update:

Screen showing progress of rolling update

Zero Downtime Deployments and Secrets Chapter 11

[240]

The output indicates that the first two batches with each two tasks have been
successful and that the third batch is preparing.

In the first terminal window, where we're watching the stack, we should now see
how Docker Swarm updates the service batch by batch with an interval of 10 seconds.
After the first batch, it should look like the following screenshot:

Rolling update of a service in Docker Swarm

In the preceding screenshot, we can see that the first batch of the two tasks, 8 and 9,
has been updated. Docker Swarm is waiting for 10 seconds to proceed with the next
batch.

It is interesting to note that in this particular case, SwarmKit deploys
the new version of the task to the same node as the previous version.
This is accidental since we have five nodes and two tasks on each
node. SwarmKit always tries to balance the workload evenly across
the nodes. So, when SwarmKit takes down a task, then the
corresponding node has less workload than all the others and thus
gets the new instance scheduled. Normally, you cannot expect to
find the new instance of a task on the same node. Just try it out
yourself by deleting the stack with docker stack rm web and
changing the number of replicas to say, seven, and then redeploy
and update.

Zero Downtime Deployments and Secrets Chapter 11

[241]

Once all the tasks are updated, the output of our watch docker stack ps
web command looks similar to the following screenshot:

All tasks have been updated successfully

Please note that SwarmKit does not immediately remove the containers of the
previous versions of the tasks from the corresponding nodes. This makes sense as we
might want to, for example, retrieve the logs from those containers for debugging
purposes, or we might want to retrieve their metadata using docker container
inspect. SwarmKit keeps the four latest terminated task instances around before it
purges older ones to not clog the system with unused resources.

Once we're done, we can tear down the stack using the following command:

$ docker stack rm web

Although using stack files to define and deploy applications is the recommended best
practice, we can also define the update behavior in a service create statement. If we
just want to deploy a single service, this might be the preferred way. Let's look at
such a create command:

$ docker service create --name web \
 --replicas 10 \
 --update-parallelism 2 \
 --update-delay 10s \
 nginx:alpine

This command defines the same desired state as the preceding stack file. We want the
service to run with 10 replicas and we want a rolling update to happen in batches of 2
tasks at a time, with a 10 second interval between consecutive batches.

Zero Downtime Deployments and Secrets Chapter 11

[242]

Health checks
To make informed decisions, for example, during a rolling update of a swarm service
whether or not the just-installed batch of new service instances is running OK or if a
rollback is needed, the SwarmKit needs a way to know about the overall health of the
system. On its own, SwarmKit (and Docker) can collect quite a bit of information. But
there is a limit. Imagine a container containing an application. The container, as seen
from outside, can look absolutely healthy and chuckle away just fine. But that doesn't
necessarily mean that the application running inside the container is also doing well.
The application could, for example, be in an infinite loop or be in a corrupt state, yet
still running. But, as long as the application runs, the container runs and from
outside, everything looks perfect.

Thus, SwarmKit provides a seam where we can provide it with some help. We, the
authors of the application services running inside the containers in the swarm, know
best whether or not our service is in a healthy state. SwarmKit gives us the
opportunity to define a command that is executed against our application service to
test its health. What exactly this command does is not important to Swarm, the command
just needs to return OK or NOT OK or time out. The latter two situations, namely
NOT OK or timeout, will tell SwarmKit that the task it is investigating is potentially
unhealthy. Here, I am writing potentially on purpose and later, we will see why:

FROM alpine:3.6
...
HEALTHCHECK --interval=30s \
 --timeout=10s
 --retries=3
 --start-period=60s
 CMD curl -f http://localhost:3000/health || exit 1
...

In the preceding snippet from a Dockerfile, we see the keyword HEALTHCHECK. It has
a few options or parameters and an actual command CMD. Let's first discuss the
options:

--interval defines the wait time between health checks. Thus, in our case
the orchestrator executes a check every 30 seconds.
The --timeout parameter defines how long Docker should wait if the
health check does not respond until it times out with an error. In our
sample, this is 10 seconds. Now, if one health check fails, the SwarmKit
retries a couple of times until it gives up and declares the corresponding
task as unhealthy and opens the door for Docker to kill this task and
replace it by a new instance.

Zero Downtime Deployments and Secrets Chapter 11

[243]

The number of retries is defined with the parameter --retries. In the
preceding code, we want to have three retries.
Next, we have the start period. Some containers need some time to start up
(not that this is a recommended pattern, but sometimes it is inevitable).
During this start up time, the service instance might not be able to respond
to health checks. With the start period, we can define how long the
SwarmKit should wait before it executes the very first health check and
thus give the application time to initialize. To define the start up time, we
use the --start-period parameter. In our case, we do the first check after
60 seconds. How long this start period needs to be totally depends on the
application and its start up behavior. The recommendation is to start with a
relatively low value and if you have a lot of false positives and tasks that
are restarted many times, you might want to increase the time interval.
Finally, we define the actual probing command on the last line with the
CMD keyword. In our case, we are defining a request to the /health
endpoint of localhost at port 3000 as a probing command. This call is
expected to have three possible outcomes:

The command succeeds
The command fails
The command times out

The latter two are treated the same way by SwarmKit. It is an indication to the
orchestrator that the corresponding task might be unhealthy. I did say might with
intent since SwarmKit does not immediately assume the worst case scenario but
assumes that this might just be a temporary fluke of the task and that it will recover
from it. This is the reason why we have a --retries parameter. There, we can define
how many times SwarmKit should retry before it can assume that the task is indeed
unhealthy, and consequently kill it and reschedule another instance of this task on
another free node to reconcile the desired state of the service.

Why can we use localhost in our probing command? This is a very good question, and the
reason is because SwarmKit, when probing a container running in the swarm,
executes this probing command inside the container (that is, it does something like
docker container exec <containerID> <probing command>). Thus, the
command executes in the same network namespace as the application running inside
the container. In the following diagram, we see the life cycle of a service task from its
beginning:

Zero Downtime Deployments and Secrets Chapter 11

[244]

Service task with transient health failure

First, SwarmKit waits with probing until the start period is over. Then, we have a first
health check. Shortly thereafter, the task fails when probed. It fails two consecutive
times but then it recovers. Thus, health check number 4 is again successful and
SwarmKit leaves the task running.

Here, we, see a task that is permanently failing:

Permanent failure of task

If the task does not recover and after having three retries (or as many as you have
defined), then SwarmKit first sends a SIGTERM to the container of the task, and if that
times out after 10 seconds, it sends a SIGKILL signal.

Zero Downtime Deployments and Secrets Chapter 11

[245]

We have just learned how we can define a health check for a service in the Dockerfile
of its image. But this is not the only way. We can also define the health check in a
stack file that we use to deploy our application into a Docker Swarm. Here is a short
snippet of what such a stack file would look like:

version: "3.5"
services:
 web:
 image: example/web:1.0
 healthcheck:
 test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
 interval: 30s
 timeout: 10s
 retries: 3
 start_period: 60s
...

In this snippet, we see how the health check-related information is defined in the
stack file. First and foremost, it is important to realize that we have to define a health
check for every service individually. There is no health check on an application or
global level.

Similar to what we have defined previously in the Dockerfile, the command that is
used to execute the health check by the SwarmKit is curl -f
http://localhost:3000/health. We also have definitions for interval,
timeout, retries, and start_period. These latter four key-value pairs have the
same meaning as the corresponding parameters we used in the Dockerfile. If there are
health check-related settings defined in the image, then the ones defined in the stack
file override the ones from the Dockerfile.

Now, let's try to use a service that has a health check defined. In our lab folder, we
have a file called stack-health.yaml with the following content:

version: "3.5"
services:
 web:
 image: nginx:alpine
 healthcheck:
 test: ["CMD", "wget", "-qO", "-", "http://localhost"]
 interval: 5s
 timeout: 2s
 retries: 3
 start_period: 15s

Zero Downtime Deployments and Secrets Chapter 11

[246]

That we're going to deploy now:

$ docker stack deploy -c stack-health.yaml myapp

We can find out where the single task got deployed to by using docker stack ps
myapp. On that particular node, we can list all containers to find the one of our stack.
In my example, the task had been deployed to node-3:

Displaying the health status of a running task instance

The interesting thing in this screenshot is the STATUS column. Docker, or more
precisely SwarmKit, has recognized that the service has a health check function
defined and is using it to determine the health of each task of the service.

Rollback
Sometimes, things don't go as expected. A last minute fix in an application release
inadvertently introduced a new bug, or the new version significantly decreases the
throughput of the component, and so on. In such cases, we need to have a plan B
which in most cases means the ability to roll back the update to the previous good
version.

As with the update, the rollback has to happen in a such a way that it does not cause
any outages of the application; it needs to cause zero downtime. In that sense, a
rollback can be looked at as a reverse update. We are installing a new version, yet this
new version is actually the previous version.

As with the update behavior, we can declare, either in our stack files or in the Docker
service create command, how the system should behave in case it needs to execute a
rollback. Here, we have the stack file that we used before, but this time with some
rollback-relevant attributes:

version: "3.5"
services:
 web:
 image: nginx:1.12-alpine
 ports:
 - 80:80
 deploy:

Zero Downtime Deployments and Secrets Chapter 11

[247]

 replicas: 10
 update_config:
 parallelism: 2
 delay: 10s

 failure_action: rollback
 monitor: 10s

 healthcheck:
 test: ["CMD", "wget", "-qO", "-", "http://localhost"]
 interval: 2s
 timeout: 2s
 retries: 3
 start_period: 2s

In this stack file, which is available in our lab as stack-rollback.yaml, we have
defined the details about the rolling update, the health checks, and the behavior
during rollback. The health check is defined so that after an initial wait time of 2
seconds, the orchestrator starts to poll the service on http://localhost every 2
seconds and it retries 3 times before it considers a task as unhealthy. If we do the
math, then it takes at least 8 seconds until a task will be stopped if it is unhealthy due
to a bug. So, now under deploy, we have a new entry monitor. This entry defines
how long newly deployed tasks should be monitored for health as a decision point
whether or not to continue with the next batch in the rolling update. Here, in this
sample, we have given it 10 seconds. This is slightly more than the 8 seconds we
calculated it takes to discover that a defective service has been deployed. So this is
good.

We also have a new entry, failure_action, which defines what the orchestrator
will do if it encounters a failure during the rolling update such as that the service is
unhealthy. By default, the action is just to stop the whole update process and leave
the system in an intermediate state. The system is not down since it is a rolling update
and at least some healthy instances of the service are still operational, but some
operations engineer better at taking a look and fixing the problem.

In our case, we have defined the action to be rollback. Thus, in case of failure,
SwarmKit will automatically revert all tasks that have been updated back to their
previous version.

Zero Downtime Deployments and Secrets Chapter 11

[248]

Blue–green deployments
We have discussed in Chapter 6, Distributed Application Architecture, what blue–green
deployments are, in an abstract way. It turns out that on Docker Swarm we cannot
really implement blue–green deployments for arbitrary services. The service
discovery and load balancing between two services running in Docker Swarm are
part of the swarm routing mesh and cannot be (easily) customized. If Service A wants
to call Service B, then Docker does it all implicitly. Docker, given the name of the
target service, will use the Docker DNS service to resolve this name to a virtual IP
(VIP) address. When the request is then targeted at the VIP, the Linux IPVS service
will do another lookup in the Linux kernel IP tables with the VIP and load balances
the request to one of the physical IP addresses of the tasks of the service represented
by the VIP, as shown in the following figure:

How service discovery and load balancing work in Docker Swarm

Unfortunately, there is no easy way to intercept this mechanism and replace it with a
custom behavior. But this would be needed to allow for a true blue–green
deployment of Service B, which is the target service in our example.

That said, we can always deploy the public-facing services in a blue–green fashion.
We can use interlock 2 and its layer 7 routing mechanism to allow for a true
blue–green deployment.

Zero Downtime Deployments and Secrets Chapter 11

[249]

Canary releases
Technically, rolling updates are a kind of canary release. But due to their lack of
seams, where you could plug customized logic into the system, rolling updates are
only a very limited version of canary releases.

True canary releases require us to have more fine-grained control about the update
process. Also, true canary releases do not take down the old version of the service
until 100% of the traffic has been funneled through the new version. In that regard,
they are treated like blue–green deployments.

In a canary release scenario, we want to not just use things such as health checks as
deciding factors whether or not to funnel more and more traffic through the new
version of the service, but we also want to consider external input in the decision
making, such as metrics collected and aggregated by a log aggregator or tracing
information. Examples that could be used as decision makers are the conformance to
service level agreements (SLAs), namely if the new version of the service shows
response times that are outside of the tolerance band. This can happen if we add new
functionality to an existing service, yet this new functionality degrades the response
time.

Secrets
Secrets are used to work with confidential data in a secure way. Swarm secrets are
secure at rest and in transit. That is, when a new secret is created on a manager node,
and it can only be created on a manager node, its value is encrypted and stored in the
raft consensus storage. This is why it is secure at rest. If a service gets a secret
assigned to it, then the manager reads the secret from storage, decrypts it, and
forwards it to all the containers who are instances of the Swarm service that requests
the secret. Since the node-to-node communication in swarm is using mutual transport
layer security (TLS), the secret value, although decrypted, is still secure in transit.
The manager forwards the secret only to the worker nodes on which a service
instance is running. Secrets are then mounted as files into the target container. Each
secret corresponds to a file. The name of the secret will be the name of the file inside
the container, and the value of the secret is the content of the respective file. Secrets
are never stored on the filesystem of a worker node but are mounted using tmpFS
into the container. By default, secrets are mounted into the container
at /run/secrets, but you can change that to any custom folder.

Zero Downtime Deployments and Secrets Chapter 11

[250]

Creating secrets
First let's see how we can actually create a secret:

$ echo "sample secret value" | docker secret create sample-secret -

This command creates a secret called sample-secret with the value sample
secret value. Please note the hyphen at the end of the docker secret create
command. This means that Docker expects the value of the secret from standard
input. This is exactly what we're doing by piping the value, sample secret
value into the create command.

Alternatively, we can use a file as the source for the secret value:

$ docker secret create other-secret ~/my-secrets/secret-value.txt

Here, the value of the secret with the name other-secret is read from a file, ~/my-
secrets/secret-value.txt. Once a secret has been created, there is no way to
access the value of it. We can, for example, list all our secrets and we will get the
following screenshot:

List of all secrets

Zero Downtime Deployments and Secrets Chapter 11

[251]

In this list, we only see the ID and name of the secret plus some other metadata, but
the actual value of the secret is not visible. We can also use inspect on a secret, for
example, to get more information about the other-secret:

Inspecting a swarm secret

Even here, we do not get the value of the secret back. This is of course intentional, a
secret is a secret and thus needs to remain confidential. We can assign labels to secrets
if we want and we can even use a different driver to encrypt and decrypt the secret, if
we're not happy with what Docker delivers out of the box.

Using a secret
Secrets are used by services that run in the swarm. Usually, secrets are assigned to a
service at creation time. Thus, if we want to run a service called web and assign it a
secret, api-secret-key, the syntax would look like the following command:

$ docker service create --name web \
 --secret api-secret-key \
 --publish 8000:8000 \
 fundamentalsofdocker/whoami:latest

This command creates a service called web based on the image
fundamentalsofdocker/whoami:latest, publishes the container port 8000 to
port 8000 on all swarm nodes, and assigns it the secret, api-secret-key.

Zero Downtime Deployments and Secrets Chapter 11

[252]

This will only work if the secret called api-secret-key is defined in the swarm,
otherwise an error will be generated with the text secret not found: api-
secret-key. Thus, let's create this secret now:

$ echo "my secret key" | docker secret create api-secret-key -

And now, if we rerun the service create command, it will succeed:

Creating a service with a secret

We can now do a docker service ps web to find out on which node the sole
service instance has been deployed, and then exec into this container. In my case, the
instance has been deployed to node-3, thus I SSH into that node:

$ docker-machine ssh node-3

And then I list all my containers on that node to find the one instance belonging to
my service and copy its container ID. We can then run the following command to
make sure that the secret is indeed available inside the container under the expected
filename containing the secret value in clear text:

$ docker exec -it <container ID> cat /run/secrets/api-secret-key

Once again, in my case, this looks like this:

A secret as a container sees it

If, for some reason, the default location where Docker mounts the secrets inside the
container is not acceptable to you, you can define a custom location. In the following
command, we mount the secret to /app/my-secrets:

$ docker service create --name web \

Zero Downtime Deployments and Secrets Chapter 11

[253]

 --name web \
 -p 8000:8000 \
 --secret source=api-secret-key,target=/run/my-secrets/api-secret-
key \
 fundamentalsofdocker/whoami:latest

In this command, we are using the extended syntax to define a secret which includes
the destination folder.

Simulating secrets in a development
environment
When working in development, we usually don't have a local swarm on our machine.
But secrets only work in a swarm. So, what can we do? Well, luckily it is really simple.
Due to the fact that secrets are treated as files, we can easily mount a volume that
contains the secrets into the container to the expected location, which by default is at
/run/secrets.

Assume that we have a folder ./dev-secrets on our local workstation. For each
secret, we have a file called the same way as the secret name and with the un-
encrypted value of the secret as content of the file. For example, we can simulate a
secret called demo-secret with a secret value demo secret value by executing the
following command on our workstation:

$ echo "demo secret value" > ./dev-secrets/sample-secret

We can then create a container that mounts this folder like this:

$ docker container run -d --name whoami \
 -p 8000:8000 \
 -v $(pwd)/dev-secrets:/run/secrets \
 fundamentalsofdocker/whoami:latest

And the process running inside the container will not be able to distinguish these
mounted files from ones originating from a secret. So, for example, the demo-secret
is available as file /run/secrets/demo-secret inside the container and has the
expected value demo secret value.

To test this, we can exec a shell inside the preceding container:

$ docker container exec -it whoami /bin/bash

Zero Downtime Deployments and Secrets Chapter 11

[254]

And then navigate to the folder, /run/secrets and display the content of the file
demo-secret:

/# cd /run/secrets
/# cat demo-secret
demo secret value

Secrets and legacy applications
Sometimes, we want to containerize a legacy application that we cannot easily, or do
not want to, change. This legacy application might expect a secret value to be
available as an environment variable. How are we going to deal with this now? Docker
presents us with the secrets as files but the application is expecting them in the form
of environment variables.

In this situation, it is helpful to define a script that runs when the container is started
(a so-called entrypoint or start up script). This script will read the secret value from
the respective file and define an environment variable with the same name as the file,
assigning the new variable the value read from the file. In the case of a secret
called demo-secret whose value should be available in an environment variable
called DEMO_SECRET, the necessary code snippet in this start up script could look like
this:

export DEMO_SECRET=`cat /run/secrets/demo-secret`

Similarly, if the legacy application expects the secret values to be present as an entry
in say, a YAML configuration file located in the /app/bin folder, and called
app.config whose relevant part looks like this:

...
secrets:
 demo-secret: "<<demo-secret-value>>"
 other-secret: "<<other-secret-value>>"
 yet-another-secret: "<<yet-another-secret-value>>"
...

Our initialization script now needs to read the secret value from the secret file and
replace the corresponding placeholder in the config file with the secret value. For the
demo-secret, this could look like this:

file=/app/bin/app.conf
demo_secret=`cat /run/secret/demo-secret`
sed -i "s/<<demo-secret-value>>/$demo_secret/g" "$file"

Zero Downtime Deployments and Secrets Chapter 11

[255]

In this snippet, we're using the sed tool to replace a placeholder with a value in place.
We can use the same technique for the other two secrets in the config file.

We put all the initialization logic into a file called entrypoint.sh, make this file
executable and, for example, add it to the root of the container's filesystem, and then
we define this file as ENTRYPOINT in the Dockerfile, or we can override the existing
ENTRYPOINT of an image in the docker container run command.

Let's make a sample. Assume that we have a legacy application running inside a
container defined by the image fundamentalsofdocker/whoami:latest that
expects a secret db_password to be defined in a file, whoami.conf, in the application
folder. We can define a file, whoami.conf, on our local machine with this content:

database:
 name: demo
 db_password: "<<db_password_value>>"
others:
 val1=123
 val2="hello world"

The important part is line 3 of this snippet. It defines where the secret value has to be
put by the start up script. Let's add a file called entrypoint.sh to the local folder
with the following content:

file=/app/whoami.conf
db_pwd=`cat /run/secret/db-password`
sed -i "s/<<db_password_value>>/$db_pwd/g" "$file"

/app/http

The last line in this script stems from the fact that this is the start command used in
the original Dockerfile. Now, change the mode of this file to be executable:

$ sudo chmod +x ./entrypoint.sh

Now, we define a Dockerfile which inherits from the image
fundamentalsofdocker/whoami:latest. Add a file called Dockerfile to the
current folder with the following content:

FROM fundamentalsofdocker/whoami:latest
COPY ./whoami.conf /app/
COPY ./entrypoint.sh /
CMD ["/entrypoint.sh"]

Zero Downtime Deployments and Secrets Chapter 11

[256]

Let's build the image from this Dockerfile:

$ docker image build -t secrets-demo:1.0 .

Once the image is built, we can run a service from it. But before we can do that, we
need to define the secret in the swarm:

$ echo "passw0rD123" | docker secret create demo-secret -

And now we can create the service that uses the following secret:

$ docker service create --name demo \
 --secret demo-secret \
 secrets-demo:1.0

Updating secrets
At times, we need to update a secret in a running service, the reason being that secrets
could be leaked out to the public or be stolen by malicious people, such a hackers. In
this case, we need to change our confidential data since the moment it has leaked to a
non-trusted entity, it has to be considered as insecure.

The updating of secrets, like any other update, has to happen in a way which requires
zero downtime. SwarmKit supports us in this regard.

First, we create the new secret in the Swarm. It is recommended to use a versioning
strategy when doing so. In our example, we use a version as a postfix of the secret
name. We originally started with the secret named db-password and now the new
version of this secret is called db-password-v2:

$ echo "newPassw0rD" | docker secret create db-password-v2 -

Assume that the original service that used the secret had been created like this:

$ docker service create --name web \
 --publish 80:80
 --secret db-password
 nginx:alpine

Zero Downtime Deployments and Secrets Chapter 11

[257]

The application running inside the container was able to access the secret at
/run/secrets/db-password. Now, SwarmKit does not allow us to update an
existing secret in a running service, thus we have to first remove the now obsolete
version of the secret and then add the new one. Let's start with the removal with the
following command:

$ docker service update --secret-rm db-password web

And then we can add the new secret with the following command:

$ docker service update \
 --secret-add source=db-password-v2, target=db-password \
 web

Summary
In this chapter, we learned how SwarmKit allows us to update services without
requiring downtime. We also discussed the current limits of SwarmKit in regards to
zero downtime deployments. In the second part of the chapter, we introduced secrets
as a means to provide confidential data to services in a highly secure way.

Questions
To assess your understanding of the topics discussed in this chapter, please answer
the following questions:

Explain to an interested layman in a few simple sentences what zero1.
downtime deployment means.
How does SwarmKit achieve zero downtime deployments?2.
Contrary to traditional (non-containerized) systems, why does a rollback in3.
Docker Swarm just work? Explain in a few short sentences.
Describe two to three characteristics of a Docker secret.4.

Zero Downtime Deployments and Secrets Chapter 11

[258]

You need to roll out a new version of the inventory service. What does5.
your command look like? Here is some more information:

The new image is called acme/inventory:2.1.1.
We want to use a rolling update strategy with a batch size of two2.
tasks.
We want the system to wait for one minute after each batch.3.

You need to update an existing service named inventory with a new6.
password that is provided through a Docker secret. The new secret is called
MYSQL_PASSWORD_V2. The code in the service expects the secret to be
called MYSQL_PASSWORD. What does the update command look like? (Note:
we do not want the code of the service to be changed!)

Further reading
Here are some links to external sources:

Apply rolling updates to a service at https:/ /dockr. ly/2HfGjlD

Manage sensitive data with Docker secrets at https:/ /dockr. ly/ 2vUNbuH

Introducing Docker secrets management at https:/ /dockr. ly/2k7zwzE

From env variables to Docker secrets at https:/ /bit. ly/2GY3UUB

https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB
https://bit.ly/2GY3UUB

12
Building Your Own
Kubernetes Cluster

In this chapter, we will cover the following recipes:

Exploring the Kubernetes architecture
Setting up a Kubernetes cluster on macOS by minikube
Setting up a Kubernetes cluster on Windows by minikube
Setting up a Kubernetes cluster on Linux by kubeadm
Setting up a Kubernetes cluster on Linux by Ansible (kubespray)
Running your first container in Kubernetes

Introduction
Welcome to your journey into Kubernetes! In this very first section, you will learn
how to build your own Kubernetes cluster. Along with understanding each
component and connecting them together, you will learn how to run your first
container on Kubernetes. Having a Kubernetes cluster will help you continue your
studies in the chapters ahead.

Exploring the Kubernetes architecture
Kubernetes is an open source container management tool. It is a Go language-based
(https://golang. org), lightweight and portable application. You can set up a
Kubernetes cluster on a Linux-based OS to deploy, manage, and scale Docker
container applications on multiple hosts.

https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org

Building Your Own Kubernetes Cluster Chapter 12

[260]

Getting ready
Kubernetes is made up of the following components:

Kubernetes master
Kubernetes nodes
etcd
Kubernetes network

These components are connected via a network, as shown in the following diagram:

The preceding diagram can be summarized as follows:

Kubernetes master: It connects to etcd via HTTP or HTTPS to store the
data
Kubernetes nodes: It connect to the Kubernetes master via HTTP or
HTTPS to get a command and report the status
Kubernetes network: It L2, L3 or overlay make a connection of their
container applications

How to do it...
In this section, we are going to explain how to use the Kubernetes master and nodes
to realize the main functions of the Kubernetes system.

Building Your Own Kubernetes Cluster Chapter 12

[261]

Kubernetes master
The Kubernetes master is the main component of the Kubernetes cluster. It serves
several functionalities, such as the following:

Authorization and authentication
RESTful API entry point
Container deployment scheduler to Kubernetes nodes
Scaling and replicating controllers
Reading the configuration to set up a cluster

The following diagram shows how master daemons work together to fulfill the
aforementioned functionalities:

There are several daemon processes that form the Kubernetes master's functionality,
such as kube-apiserver, kube-scheduler and kube-controller-manager.
Hypercube, the wrapper binary, can launch all these daemons.

In addition, the Kubernetes command-line interface, kubect can control the
Kubernetes master functionality.

Building Your Own Kubernetes Cluster Chapter 12

[262]

API server (kube-apiserver)
The API server provides an HTTP- or HTTPS-based RESTful API, which is the hub
between Kubernetes components, such as kubectl, the scheduler, the replication
controller, the etcd data store, the kubelet and kube-proxy, which runs on Kubernetes
nodes, and so on.

Scheduler (kube-scheduler)
The scheduler helps to choose which container runs on which nodes. It is a simple
algorithm that defines the priority for dispatching and binding containers to nodes.
For example:

CPU
Memory
How many containers are running?

Controller manager (kube-controller-manager)
The controller manager performs cluster operations. For example:

Manages Kubernetes nodes
Creates and updates the Kubernetes internal information
Attempts to change the current status to the desired status

Command-line interface (kubectl)
After you install the Kubernetes master, you can use the Kubernetes command-line
interface, kubectl, to control the Kubernetes cluster. For example, kubectl get cs
returns the status of each component. Also, kubectl get nodes returns a list of
Kubernetes nodes:

//see the Component Statuses
kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok nil
scheduler Healthy ok nil
etcd-0 Healthy {"health": "true"} nil

//see the nodes

Building Your Own Kubernetes Cluster Chapter 12

[263]

kubectl get nodes
NAME LABELS STATUS AGE
kub-node1 kubernetes.io/hostname=kub-node1 Ready 26d
kub-node2 kubernetes.io/hostname=kub-node2 Ready 26d

Kubernetes node
The Kubernetes node is a slave node in the Kubernetes cluster. It is controlled by the
Kubernetes master to run container applications using Docker (http:/ /docker. com)
or rkt (http://coreos. com/ rkt/ docs/ latest/). In this book, we will use the Docker
container runtime as the default engine.

Node or slave?

The term slave is used in the computer industry to represent the
cluster worker node; however, it is also associated with
discrimination. The Kubernetes project uses minion in the early
version and node in the current version.

The following diagram displays the role and tasks of daemon processes in the node:

The node also has two daemon processes, named kubelet and kube-proxy, to support
its functionalities.

http://docker.com
http://docker.com
http://docker.com
http://docker.com
http://docker.com
http://docker.com
http://docker.com
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/
http://coreos.com/rkt/docs/latest/

Building Your Own Kubernetes Cluster Chapter 12

[264]

kubelet
kubelet is the main process on the Kubernetes node that communicates with the
Kubernetes master to handle the following operations:

Periodically accesses the API controller to check and report
Performs container operations
Runs the HTTP server to provide simple APIs

Proxy (kube-proxy)
The proxy handles the network proxy and load balancer for each container. It
changes Linux iptables rules (nat table) to control TCP and UDP packets across the
containers.

After starting the kube-proxy daemon, it configures iptables rules; you can
use iptables -t nat -L or iptables -t nat -S to check the nat table rules, as
follows:

//the result will be vary and dynamically changed by kube-proxy
sudo iptables -t nat -S
-P PREROUTING ACCEPT
-P INPUT ACCEPT
-P OUTPUT ACCEPT
-P POSTROUTING ACCEPT
-N DOCKER
-N FLANNEL
-N KUBE-NODEPORT-CONTAINER
-N KUBE-NODEPORT-HOST
-N KUBE-PORTALS-CONTAINER
-N KUBE-PORTALS-HOST
-A PREROUTING -m comment --comment "handle ClusterIPs; NOTE: this must
be before the NodePort rules" -j KUBE-PORTALS-CONTAINER
-A PREROUTING -m addrtype --dst-type LOCAL -m comment --comment
"handle service NodePorts; NOTE: this must be the last rule in the
chain" -j KUBE-NODEPORT-CONTAINER
-A PREROUTING -m addrtype --dst-type LOCAL -j DOCKER
-A OUTPUT -m comment --comment "handle ClusterIPs; NOTE: this must be
before the NodePort rules" -j KUBE-PORTALS-HOST
-A OUTPUT -m addrtype --dst-type LOCAL -m comment --comment "handle
service NodePorts; NOTE: this must be the last rule in the chain" -j
KUBE-NODEPORT-HOST
-A OUTPUT ! -d 127.0.0.0/8 -m addrtype --dst-type LOCAL -j DOCKER
-A POSTROUTING -s 192.168.90.0/24 ! -o docker0 -j MASQUERADE
-A POSTROUTING -s 192.168.0.0/16 -j FLANNEL

Building Your Own Kubernetes Cluster Chapter 12

[265]

-A FLANNEL -d 192.168.0.0/16 -j ACCEPT
-A FLANNEL ! -d 224.0.0.0/4 -j MASQUERADE

How it works...
There are two more components to complement Kubernetes node functionalities, the
data store etcd and the inter-container network. You can learn how they support the
Kubernetes system in the following subsections.

etcd
etcd (https:// coreos. com/ etcd/) is the distributed key-value data store. It can be
accessed via the RESTful API to perform CRUD operations over the network.
Kubernetes uses etcd as the main data store.

You can explore the Kubernetes configuration and status in etcd (/registry) using
the curl command, as follows:

//example: etcd server is localhost and default port is 4001
curl -L http://127.0.0.1:4001/v2/keys/registry
{"action":"get","node":{"key":"/registry","dir":true,"nodes":[{"key":"
/registry/namespaces","dir":true,"modifiedIndex":6,"createdIndex":6},{
"key":"/registry/pods","dir":true,"modifiedIndex":187,"createdIndex":1
87},{"key":"/registry/clusterroles","dir":true,"modifiedIndex":196,"cr
eatedIndex":196},{"key":"/registry/replicasets","dir":true,"modifiedIn
dex":178,"createdIndex":178},{"key":"/registry/limitranges","dir":true
,"modifiedIndex":202,"createdIndex":202},{"key":"/registry/storageclas
ses","dir":true,"modifiedIndex":215,"createdIndex":215},{"key":"/regis
try/apiregistration.k8s.io","dir":true,"modifiedIndex":7,"createdIndex
":7},{"key":"/registry/serviceaccounts","dir":true,"modifiedIndex":70,
"createdIndex":70},{"key":"/registry/secrets","dir":true,"modifiedInde
x":71,"createdIndex":71},{"key":"/registry/deployments","dir":true,"mo
difiedIndex":177,"createdIndex":177},{"key":"/registry/services","dir"
:true,"modifiedIndex":13,"createdIndex":13},{"key":"/registry/configma
ps","dir":true,"modifiedIndex":52,"createdIndex":52},{"key":"/registry
/ranges","dir":true,"modifiedIndex":4,"createdIndex":4},{"key":"/regis
try/minions","dir":true,"modifiedIndex":58,"createdIndex":58},{"key":"
/registry/clusterrolebindings","dir":true,"modifiedIndex":171,"created
Index":171}],"modifiedIndex":4,"createdIndex":4}}

https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/

Building Your Own Kubernetes Cluster Chapter 12

[266]

Kubernetes network
Network communication between containers is the most difficult part. Because
Kubernetes manages multiple nodes (hosts) running several containers, those
containers on different nodes may need to communicate with each other.

If the container's network communication is only within a single node, you can use
Docker network or Docker compose to discover the peer. However, along with
multiple nodes, Kubernetes uses an overlay network or container network interface
(CNI) to achieve multiple container communication.

See also
This recipe describes the basic architecture and methodology of Kubernetes and the
related components. Understanding Kubernetes is not easy, but a step-by-step
learning process on how to set up, configure, and manage Kubernetes is really fun.

Setting up the Kubernetes cluster on
macOS by minikube
Kubernetes consists of combination of multiple open source components. These are
developed by different parties, making it difficult to find and download all the
related packages and install, configure, and make them work from scratch.

Fortunately, there are some different solutions and tools that have been developed to
set up Kubernetes clusters effortlessly. Therefore, it is highly recommended you use
such a tool to set up Kubernetes on your environment.

The following tools are categorized by different types of solution to build your own
Kubernetes:

Self-managed solutions that include:
minikube
kubeadm
kubespray
kops

Building Your Own Kubernetes Cluster Chapter 12

[267]

Enterprise solutions that include:
OpenShift (https:/ /www. openshift. com)
Tectonic (https:/ /coreos. com/ tectonic/)

Cloud-hosted solutions that include:
Google Kubernetes engine (https:/ /cloud. google. com/
kubernetes- engine/)
Amazon elastic container service for Kubernetes (Amazon
EKS, https:/ / aws. amazon. com/ eks/)
Azure Container Service (AKS, https:/ /azure. microsoft.
com/ en- us/ services/ container- service/)

A self-managed solution is suitable if we just want to build a development
environment or do a proof of concept quickly.

By using minikube (https:/ /github. com/kubernetes/ minikube) and kubeadm
(https://kubernetes. io/ docs/ admin/ kubeadm/), we can easily build the desired
environment on our machine locally; however, it is not practical if we want to build a
production environment.

By using kubespray (https:/ / github. com/kubernetes- incubator/ kubespray) and
kops (https://github. com/ kubernetes/ kops), we can also build a production-grade
environment quickly from scratch.

An enterprise solution or cloud-hosted solution is the easiest starting point if we want
to create a production environment. In particular, the Google Kubernetes Engine
(GKE), which has been used by Google for many years, comes with comprehensive
management, meaning that users don't need to care much about the installation and
settings. Also, Amazon EKS is a new service that was introduced at AWS re: Invent
2017, which is managed by the Kubernetes service on AWS.

Kubernetes can also run on different clouds and on-premise VMs by custom
solutions. To get started, we will build Kubernetes using minikube on macOS desktop
machines in this chapter.

https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops

Building Your Own Kubernetes Cluster Chapter 12

[268]

Getting ready
minikube runs Kubernetes on the Linux VM on macOS. It relies on a hypervisor
(virtualization technology), such as VirtualBox (https:/ /www. virtualbox. org),
VMWare fusion (https:/ /www. vmware. com/ products/ fusion. html), or hyperkit
(https://github. com/ moby/ hyperkit) In addition, we will need to have the
Kubernetes command-line interface (CLI) kubectl, which is used to connect
through the hypervisor, to control Kubernetes.

With minikube, you can run the entire suite of the Kubernetes stack on your macOS,
including the Kubernetes master, node, and CLI. It is recommended that macOS has
enough memory to run Kubernetes. By default, minikube uses VirtualBox as the
hypervisor.

In this chapter, however, we will demonstrate how to use hyperkit, which is the most
lightweight solution. As Linux VM consumes 2 GB of memory, at least 4 GB of
memory is recommended. Note that hyperkit is built on the top of the hypervisor
framework (https:/ / developer. apple. com/ documentation/ hypervisor) on macOS;
therefore, macOS 10.10 Yosemite or later is required.

The following diagram shows the relationship between kubectl, the hypervisor,
minikube, and macOS:

How to do it...
macOS doesn't have an official package management tool, such as yum and apt-get
on Linux. But there are some useful tools available for macOS. Homebrew (https:/ /
brew.sh) is the most popular package management tool and manages many open
source tools, including minikube.

https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://www.vmware.com/products/fusion.html
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh

Building Your Own Kubernetes Cluster Chapter 12

[269]

In order to install Homebrew on macOS, perform the following steps:

Open the Terminal and then type the following command:1.

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/
install)"

Once installation is completed, you can type /usr/local/bin/brew2.
help to see the available command options.

If you just install or upgrade Xcode on your macOS, the Homebrew
installation may stop. In that case, open Xcode to accept the license
agreement or type sudo xcodebuild -license beforehand.

Next, install the hyperkit driver for minikube. At the time of writing3.
(February 2018), HomeBrew does not support hyperkit; therefore type the
following command to install it:

$ curl -LO
https://storage.googleapis.com/minikube/releases/latest/do
cker-machine-driver-hyperkit \
&& chmod +x docker-machine-driver-hyperkit \
&& sudo mv docker-machine-driver-hyperkit /usr/local/bin/
\
&& sudo chown root:wheel /usr/local/bin/docker-machine-
driver-hyperkit \
&& sudo chmod u+s /usr/local/bin/docker-machine-driver-
hyperkit

Next, let's install the Kubernetes CLI. Use Homebrew with the following4.
comment to install the kubectl command on your macOS:

//install kubectl command by "kubernetes-cli" package
$ brew install kubernetes-cli

Finally, you can install minikube. It is not managed by Homebrew;
however, Homebrew has an extension called homebrew-cask (https:/ /
github. com/ caskroom/ homebrew- cask) that supports minikube.

In order to install minikube by homebrew-cask, just simply type the5.
following command:

//add "cask" option
$ brew cask install minikube

https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask
https://github.com/caskroom/homebrew-cask

Building Your Own Kubernetes Cluster Chapter 12

[270]

If you have never installed Docker for Mac on your machine, you need to6.
install it via homebrew-cask as well

//only if you don't have a Docker for Mac
$ brew cask install docker

//start Docker
$ open -a Docker.app

Now you are all set! The following command shows whether the required7.
packages have been installed on your macOS or not:

//check installed package by homebrew
$ brew list
kubernetes-cli

//check installed package by homebrew-cask
$ brew cask list
minikube

How it works...
minikube is suitable for setting up Kubernetes on your macOS with the following
command, which downloads and starts a Kubernetes VM stet, and then configures
the kubectl configuration (~/.kube/config):

//use --vm-driver=hyperkit to specify to use hyperkit
$ /usr/local/bin/minikube start --vm-driver=hyperkit
Starting local Kubernetes v1.10.0 cluster...
Starting VM...
Downloading Minikube ISO
 150.53 MB / 150.53 MB [==]
100.00% 0s
Getting VM IP address...
Moving files into cluster...
Downloading kubeadm v1.10.0
Downloading kubelet v1.10.0
Finished Downloading kubelet v1.10.0
Finished Downloading kubeadm v1.10.0
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
Starting cluster components...
Kubectl is now configured to use the cluster.
Loading cached images from config file.

Building Your Own Kubernetes Cluster Chapter 12

[271]

//check whether .kube/config is configured or not
$ cat ~/.kube/config
apiVersion: v1
clusters:
- cluster:
 certificate-authority: /Users/saito/.minikube/ca.crt
 server: https://192.168.64.26:8443
 name: minikube
contexts:
- context:
 cluster: minikube
 user: minikube
 name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
 user:
 as-user-extra: {}
 client-certificate: /Users/saito/.minikube/client.crt
 client-key: /Users/saito/.minikube/client.key

After getting all the necessary packages, perform the following steps:

Wait for a few minutes for the Kubernetes cluster setup to complete.1.
Use kubectl version to check the Kubernetes master version and2.
kubectl get cs to see the component status.
Also, use the kubectl get nodes command to check whether the3.
Kubernetes node is ready or not:

//it shows kubectl (Client) is 1.10.1, and Kubernetes
master (Server) is 1.10.0
$ /usr/local/bin/kubectl version --short
Client Version: v1.10.1
Server Version: v1.10.0

//get cs will shows Component Status
$ kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health": "true"}

//Kubernetes node (minikube) is ready

Building Your Own Kubernetes Cluster Chapter 12

[272]

$ /usr/local/bin/kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 2m v1.10.0

Now you can start to use Kubernetes on your machine. The following4.
sections describe how to use the kubectl command to manipulate Docker
containers.
Note that, in some cases, you may need to maintain the Kubernetes cluster,5.
such as starting/stopping the VM or completely deleting it. The following
commands maintain the minikube environment:

Command Purpose
minikube start --vm-
driver=hyperkit

Starts the Kubernetes VM using the
hyperkit driver

minikube stop Stops the Kubernetes VM
minikube delete Deletes a Kubernetes VM image
minikube ssh ssh to the Kubernetes VM guest

minikube ip
Shows the Kubernetes VM (node) IP
address

minikube update-context
Checks and updates ~/.kube/config if
the VM IP address is changed

minikube dashboard
Opens the web browser to connect the
Kubernetes UI

For example, minikube starts a dashboard (the Kubernetes UI) by the default. If you
want to access the dashboard, type minikube dashboard; it then opens your default
browser and connects the Kubernetes UI, as illustrated in the following screenshot:

Building Your Own Kubernetes Cluster Chapter 12

[273]

See also
This recipe describes how to set up a Kubernetes cluster on your macOS using
minikube. It is the easiest way to start using Kubernetes. We also learned how to use
kubectl, the Kubernetes command-line interface tool, which is the entry point to
control our Kubernetes cluster!

Building Your Own Kubernetes Cluster Chapter 12

[274]

Setting up the Kubernetes cluster on
Windows by minikube
By nature, Docker and Kubernetes are based on a Linux-based OS. Although it is not
ideal to use the Windows OS to explore Kubernetes, many people are using the
Windows OS as their desktop or laptop machine. Luckily, there are a lot of ways to
run the Linux OS on Windows using virtualization technologies, which makes
running a Kubernetes cluster on Windows machines possible. Then, we can build a
development environment or do a proof of concept on our local Windows machine.

You can run the Linux VM by using any hypervisor on Windows to set up
Kubernetes from scratch, but using minikube (https:/ /github. com/ kubernetes/
minikube) is the fastest way to build a Kubernetes cluster on Windows. Note that this
recipe is not ideal for a production environment because it will set up a Kubernetes
on Linux VM on Windows.

Getting ready
To set up minikube on Windows requires a hypervisor, either VirtualBox (https:/ /
www.virtualbox. org) or Hyper-V, because, again, minikube uses the Linux VM on
Windows. This means that you cannot use the Windows virtual machine (for
example, running the Windows VM on macOS by parallels).

However, kubectl , the Kubernetes CLI, supports a Windows native binary that can
connect to Kubernetes over a network. So, you can set up a portable suite of
Kubernetes stacks on your Windows machine.

The following diagram shows the relationship between kubectl, Hypervisor,
minikube, and Windows:

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org

Building Your Own Kubernetes Cluster Chapter 12

[275]

Hyper-V is required for Windows 8 Pro or later. While many users still use Windows
7, we will use VirtualBox as the minikube hypervisor in this recipe.

How to do it...
First of all, VirtualBox for Windows is required:

Go to the VirtualBox website (https:/ /www. virtualbox. org/ wiki/1.
Downloads) to download the Windows installer.
Installation is straightforward, so we can just choose the default options2.
and click Next:

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Building Your Own Kubernetes Cluster Chapter 12

[276]

Next, create the Kubernetes folder, which is used to store the minikube3.
and kubectl binaries. Let's create the k8s folder on top of the C: drive, as
shown in the following screenshot:

This folder must be in the command search path, so open System4.
Properties, then move to the Advanced tab.
Click the Environment Variables... button, then choose Path , and then5.
click the Edit... button, as shown in the following screenshot:

Building Your Own Kubernetes Cluster Chapter 12

[277]

Then, append c:\k8s , as follows:6.

After clicking the OK button, log off and logo on to Windows again (or7.
reboot) to apply this change.
Next, download minikube for Windows. It is a single binary, so use any8.
web browser to download https:/ /github. com/ kubernetes/ minikube/
releases/ download/ v0. 26. 1/minikube- windows- amd64 and then copy it to
the c:\k8s folder, but change the filename to minikube.exe.

https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64
https://github.com/kubernetes/minikube/releases/download/v0.26.1/minikube-windows-amd64

Building Your Own Kubernetes Cluster Chapter 12

[278]

Next, download kubectl for Windows, which can communicate with9.
Kubernetes. It is also single binary like minikube. So, download https:/ /
storage. googleapis. com/ kubernetes- release/ release/ v1. 10.2/ bin/
windows/ amd64/ kubectl. exe and then copy it to the c:\k8s folder as well.
Eventually, you will see two binaries in the c:\k8s folder, as shown in the10.
following screenshot:

If you are running anti-virus software, it may prevent you from
running kubectl.exe and minikube.exe. If so, please update
your anti-virus software setting that allows running these two
binaries.

https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.10.2/bin/windows/amd64/kubectl.exe

Building Your Own Kubernetes Cluster Chapter 12

[279]

How it works...
Let's get started!

Open Command Prompt and then type minikube start , as shown in the1.
following screenshot:

Building Your Own Kubernetes Cluster Chapter 12

[280]

minikube downloads the Linux VM image and then sets up Kubernetes on2.
the Linux VM; now if you open VirtualBox, you can see that the minikube
guest has been registered, as illustrated in the following screenshot:

Building Your Own Kubernetes Cluster Chapter 12

[281]

Wait for a few minutes to complete the setup of the Kubernetes cluster.3.
As per the following screenshot, type kubectl version to check the4.
Kubernetes master version.
Use the kubectl get nodes command to check whether the Kubernetes5.
node is ready or not:

Building Your Own Kubernetes Cluster Chapter 12

[282]

Now you can start to use Kubernetes on your machine! Again, Kubernetes6.
is running on the Linux VM, as shown in the next screenshot.
Using minikube ssh allows you to access the Linux VM that runs7.
Kubernetes:

Building Your Own Kubernetes Cluster Chapter 12

[283]

Therefore, any Linux-based Docker image is capable of running on your
Windows machine.

Type minikube ip to verify which IP address the Linux VM uses and also8.
minikube dashboard, to open your default web browser and navigate to
the Kubernetes UI ,as shown in the following screenshot:

Building Your Own Kubernetes Cluster Chapter 12

[284]

If you don't need to use Kubernetes anymore, type minikube stop or 9.
open VirtualBox to stop the Linux guest and release the resource, as shown
in the following screenshot:

See also
This recipe describes how to set up a Kubernetes cluster on your Windows OS using
minikube. It is the easiest way to start using Kubernetes. It also describes kubectl, the
Kubernetes command-line interface tool, which is the entry point form which to
control your Kubernetes.

Building Your Own Kubernetes Cluster Chapter 12

[285]

Setting up the Kubernetes cluster on
Linux via kubeadm
In this recipe, we are going to show how to create a Kubernetes cluster along with
kubeadm (https:/ / github. com/ kubernetes/ kubeadm) on Linux servers. Kubeadm is
a command-line tool that simplifies the procedure of creating and managing a
Kubernetes cluster. Kubeadm leverages the fast deployment feature of Docker,
running the system services of the Kubernetes master and the etcd server as
containers. When triggered by the kubeadm command, the container services will
contact kubelet on the Kubernetes node directly; kubeadm also checks whether every
component is healthy. Through the kubeadm setup steps, you can avoid having a
bunch of installation and configuration commands when you build everything from
scratch.

Getting ready
We will provide instructions of two types of OS:

Ubuntu Xenial 16.04 (LTS)
CentOS 7.4

Make sure the OS version is matched before continuing. Furthermore, the software
dependency and network settings should be also verified before you proceed to thecd
cd next step. Check the following items to prepare the environment:

Every node has a unique MAC address and product UUID: Some plugins
use the MAC address or product UUID as a unique machine ID to identify
nodes (for example, kube-dns). If they are duplicated in the cluster,
kubeadm may not work while starting the plugin:

// check MAC address of your NIC
$ ifconfig -a
// check the product UUID on your host
$ sudo cat /sys/class/dmi/id/product_uuid

Every node has a different hostname: If the hostname is duplicated, the
Kubernetes system may collect logs or statuses from multiple nodes into
the same one.

https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm

Building Your Own Kubernetes Cluster Chapter 12

[286]

Docker is installed: As mentioned previously, the Kubernetes master will
run its daemon as a container, and every node in the cluster should get
Docker installed. For how to perform the Docker installation, you can
follow the steps on the official website: (Ubuntu: https:/ /docs. docker.
com/ engine/ installation/ linux/ docker- ce/ ubuntu/ , and CentOS:
https:/ /docs. docker. com/ engine/ installation/ linux/ docker- ce/
centos/) Here we have Docker CE 17.06 installed on our machines;
however, only Docker versions 1.11.2 to 1.13.1, and 17.03.x are verified with
Kubernetes version 1.10.
Network ports are available: The Kubernetes system services need
network ports for communication. The ports in the following table should
now be occupied according to the role of the node:

Node
role Ports System service

Master

6443 Kubernetes API server

10248/10250/10255 kubelet local healthz endpoint/Kubelet API/Heapster (read-
only)

10251 kube-scheduler
10252 kube-controller-manager
10249/10256 kube-proxy
2379/2380 etcd client/etcd server communication

Node
10250/10255 Kubelet API/Heapster (read-only)

30000~32767 Port range reserved for exposing container service to outside
world

The Linux command, netstat, can help to check if the port is in use or not:

// list every listening port
$ sudo netstat -tulpn | grep LISTEN

Network tool packages are installed. ethtool and ebtables are two
required utilities for kubeadm. They can be download and installed by
theapt-get or yumpackage managing tools.

How to do it...
The installation procedures for two Linux OSes, Ubuntu and CentOS, are going to be
introduced separately in this recipe as they have different setups.

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/

Building Your Own Kubernetes Cluster Chapter 12

[287]

Package installation
Let's get the Kubernetes packages first! The repository for downloading needs to be
set in the source list of the package management system. Then, we are able to get
them installed easily through the command-line.

Ubuntu
To install Kubernetes packages in Ubuntu perform the following steps:

Some repositories are URL with HTTPS. The apt-transport-https1.
package must be installed to access the HTTPS endpoint:

$ sudo apt-get update && sudo apt-get install -y apt-
transport-https

Download the public key for accessing packages on Google Cloud, and add2.
it as follows:

$ curl -s
https://packages.cloud.google.com/apt/doc/apt-key.gpg |
sudo apt-key add -
OK

Next, add a new source list for the Kubernetes packages:3.

$ sudo bash -c 'echo "deb http://apt.kubernetes.io/
kubernetes-xenial main" >
/etc/apt/sources.list.d/kubernetes.list'

Finally, it is good to install the Kubernetes packages:3.

// on Kubernetes master
$ sudo apt-get update && sudo apt-get install -y kubelet
kubeadm kubectl
// on Kubernetes node
$ sudo apt-get update && sudo apt-get install -y kubelet

CentOS
To install Kubernetes packages in CentOS perform the following steps:

As with Ubuntu, new repository information needs to be added:1.

$ sudo vim /etc/yum.repos.d/kubernetes.repo
[kubernetes]

Building Your Own Kubernetes Cluster Chapter 12

[288]

name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubern
etes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.g
pg
https://packages.cloud.google.com/yum/doc/rpm-package-key.
gpg

Now, we are ready to pull the packages from the Kubernetes source base2.
via the yum command:

// on Kubernetes master
$ sudo yum install -y kubelet kubeadm kubectl
// on Kubernetes node
$ sudo yum install -y kubelet

No matter what OS it is, check the version of the package you get!3.

// take it easy! server connection failed since there is
not server running
$ kubectl version
Client Version: version.Info{Major:"1", Minor:"10",
GitVersion:"v1.10.2",
GitCommit:"81753b10df112992bf51bbc2c2f85208aad78335",
GitTreeState:"clean", BuildDate:"2018-04-27T09:22:21Z",
GoVersion:"go1.9.3", Compiler:"gc",
Platform:"linux/amd64"}
The connection to the server 192.168.122.101:6443 was
refused - did you specify the right host or port?

System configuration prerequisites
Before running up the whole system by kubeadm, please check that Docker is
running on your machine for Kubernetes. Moreover, in order to avoid critical errors
while executing kubeadm, we will show the necessary service configuration on both
the system and kubelet. As well as the master, please set the following configurations
on the Kubernetes nodes to get kubelet to work fine with kubeadm.

Building Your Own Kubernetes Cluster Chapter 12

[289]

CentOS system settings
There are other additional settings in CentOS to make Kubernetes behave correctly.
Be aware that, even if we are not using kubeadm to manage the Kubernetes cluster,
the following setup should be considered while running kubelet:

Disable SELinux, since kubelet does not support SELinux completely:1.

// check the state of SELinux, if it has already been
disabled, bypass below commands
$ sestatus

We can disable SELinux through the following command, or by
modifying the configuration file:

// disable SELinux through command
$ sudo setenforce 0
// or modify the configuration file
$ sudo sed –I 's/ SELINUX=enforcing/SELINUX=disabled/g'
/etc/sysconfig/selinux

Then we'll need to reboot the machine:

// reboot is required
$ sudo reboot

Enable the usage of iptables. To prevent some routing errors happening,2.
add runtime parameters:

// enable the parameters by setting them to 1
$ sudo bash -c 'echo "net.bridge.bridge-nf-call-ip6tables
= 1" > /etc/sysctl.d/k8s.conf'
$ sudo bash -c 'echo "net.bridge.bridge-nf-call-iptables =
1" >> /etc/sysctl.d/k8s.conf'
// reload the configuration
$ sudo sysctl --system

Booting up the service
Now we can start the service. First enable and then start kubelet on your Kubernetes
master machine:

$ sudo systemctl enable kubelet && sudo systemctl start kubelet

Building Your Own Kubernetes Cluster Chapter 12

[290]

While checking the status of kubelet, you may be worried to see the status displaying
activating (auto-restart); and you may get further frustrated to see the detail logs
by the journalctl command, as follows:

error: unable to load client CA file /etc/kubernetes/pki/ca.crt:
open /etc/kubernetes/pki/ca.crt: no such file or directory

Don't worry. kubeadm takes care of creating the certificate authorities file. It is
defined in the service configuration file,
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf by argument

KUBELET_AUTHZ_ARGS. The kubelet service won't be a healthy without this file, so
keep trying to restart the daemon by itself.

Go ahead and start all the master daemons via kubeadm. It is worth noting that using
kubeadm requires the root permission to achieve a service level privilege. For any
sudoer, each kubeadm would go after the sudo command:

$ sudo kubeadm init

Find preflight checking error while firing command kubeadm
init? Using following one to disable running swap as description.

$ sudo kubeadm init --ignore-preflight-errors=Swap

And you will see the sentence Your Kubernetes master has initialized
successfully! showing on the screen. Congratulations! You are almost done! Just
follow the information about the user environment setup below the greeting message:

$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

The preceding commands ensure every Kubernetes instruction is fired by your
account execute with the proper credentials and connects to the correct server portal:

// Your kubectl command works great now
$ kubectl version
Client Version: version.Info{Major:"1", Minor:"10",
GitVersion:"v1.10.2",
GitCommit:"81753b10df112992bf51bbc2c2f85208aad78335",
GitTreeState:"clean", BuildDate:"2018-04-27T09:22:21Z",
GoVersion:"go1.9.3", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"10",
GitVersion:"v1.10.2",
GitCommit:"81753b10df112992bf51bbc2c2f85208aad78335",

Building Your Own Kubernetes Cluster Chapter 12

[291]

GitTreeState:"clean", BuildDate:"2018-04-27T09:10:24Z",
GoVersion:"go1.9.3", Compiler:"gc", Platform:"linux/amd64"}

More than that, kubelet goes into a healthy state now:

// check the status of kubelet
$ sudo systemctl status kubelet
...
Active: active (running) Mon 2018-04-30 18:46:58 EDT; 2min 43s ago
...

Network configurations for containers
After the master of the cluster is ready to handle jobs and the services are running, for
the purpose of making containers accessible to each other through networking, we
need to set up the network for container communication. It is even more important
initially while building up a Kubernetes cluster with kubeadm, since the master
daemons are all running as containers. kubeadm supports the CNI (https:/ /github.
com/containernetworking/ cni). We are going to attach the CNI via a Kubernetes
network add-on.

There are many third-party CNI solutions that supply secured and reliable container
network environments. Calico (https:/ /www.projectcalico. org), one CNI provide
stable container networking. Calico is light and simple, but still well implemented by
the CNI standard and integrated with Kubernetes:

$ kubectl apply -f
https://docs.projectcalico.org/v2.6/getting-started/kubernetes/install
ation/hosted/kubeadm/1.6/calico.yaml

Here, whatever your host OS is, the command kubectl can fire any sub command for
utilizing resources and managing systems. We use kubectl to apply the
configuration of Calico to our new-born Kubernetes.

https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org
https://www.projectcalico.org

Building Your Own Kubernetes Cluster Chapter 12

[292]

Getting a node involved
Let's log in to your Kubernetes node to join the group controlled by kubeadm:

First, enable and start the service, kubelet. Every Kubernetes machine1.
should have kubelet running on it:

$ sudo systemctl enable kubelet && sudo systemctl start
kubelet

After that, fire the kubeadm join command with an input flag token and the2.
IP address of the master, notifying the master that it is a secured and
authorized node. You can get the token on the master node via the
kubeadm command:

// on master node, list the token you have in the cluster
$ sudo kubeadm token list
TOKEN TTL EXPIRES
USAGES DESCRIPTION
EXTRA GROUPS
da3a90.9a119695a933a867 6h
2018-05-01T18:47:10-04:00 authentication,signing The
default bootstrap token generated by 'kubeadm init'.
system:bootstrappers:kubeadm:default-node-token

In the preceding output, if kubeadm init succeeds, the default token will3.
be generated. Copy the token and paste it onto the node, and then compose
the following command:

// The master IP is 192.168.122.101, token is
da3a90.9a119695a933a867, 6443 is the port of api server.
$ sudo kubeadm join --token da3a90.9a119695a933a867
192.168.122.101:6443 --discovery-token-unsafe-skip-ca-
verification

What if you call kubeadm token list to list the tokens, and see
they are all expired? You can create a new one manually by this
command: kubeadm token create .

Please make sure that the master's firewall doesn't block any traffic to port4.
6443, which is for API server communication. Once you see the words
Successfully established connection showing on the screen, it is
time to check with the master if the group got the new member:

// fire kubectl subcommand on master

Building Your Own Kubernetes Cluster Chapter 12

[293]

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ubuntu01 Ready master 11h v1.10.2
ubuntu02 Ready <none> 26s v1.10.2

Well done! No matter if whether your OS is Ubuntu or CentOS, kubeadm is installed
and kubelet is running. You can easily go through the preceding steps to build your
Kubernetes cluster.

You may be wondering about the flag discovery-token-unsafe-skip-ca-
verification used while joining the cluster. Remember the kubelet log that says the
certificate file is not found? That's it, since our Kubernetes node is brand new and
clean, and has never connected with the master before. There is no certificate file to
find for verification. But now, because the node has shaken hands with the master,
the file exists. We may join in this way (in some situation requiring rejoining the same
cluster):

kubeadm join --token $TOKEN $MASTER_IPADDR:6443 --discovery-token-
ca-cert-hash sha256:$HASH

The hash value can be obtained by the openssl command:

// rejoining the same cluster
$ HASH=$(openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl
rsa -pubin -outform der 2>/dev/null | openssl dgst -sha256 -hex | sed
's/^.* //')
$ sudo kubeadm join --token da3a90.9a119695a933a867
192.168.122.101:6443 --discovery-token-ca-cert-hash sha256:$HASH

How it works...
When kubeadm init sets up the master, there are six stages:

Generating certificate files and keys for services: Certificated files and1.
keys are used for security management during cross-node communications.
They are located in the /etc/kubernetes/pki directory. Take kubelet, for
example. It cannot access the Kubernetes API server without passing the
identity verification.
Writing kubeconfig files: The kubeconfig files define permissions,2.
authentication, and configurations for kubectl actions. In this case, the
Kubernetes controller manager and scheduler have related kubeconfig
files to fulfill any API requests.

Building Your Own Kubernetes Cluster Chapter 12

[294]

Creating service daemon YAML files: The service daemons under3.
kubeadm's control are just like computing components running on the
master. As with setting deployment configurations on disk, kubelet will
make sure each daemon is active.
Waiting for kubelet to be alive, running the daemons as pods: When4.
kubelet is alive, it will boot up the service pods described in the files under
the /etc/kubernetes/manifests directory. Moreover, kubelet
guarantees to keep them activated, restarting the pod automatically if it
crashes.
Setting post-configuration for the cluster: Some cluster configurations still5.
need to be set, such as configuring role-based accessing control (RBAC)
rules, creating a namespace, and tagging the resources.
Applying add-ons: DNS and proxy services can be added along with the6.
kubeadm system.

While the user enters kubeadm and joins the Kubernetes node, kubeadm will
complete the first two stages like the master.

If you have faced a heavy and complicated set up procedure in earlier versions of
Kubernetes, it is quite a relief to set up a Kubernetes cluster with kubeadm. kubeadm
reduces the overhead of configuring each daemon and starting them one by one.
Users can still do customization on kubelet and master services, by just modifying a
familiar file, 10-kubeadm.conf and the YAML files under
/etc/kubernetes/manifests. Kubeadm not only helps to establish the cluster but
also enhances security and availability, saving you time.

See also
We talked about how to build a Kubernetes cluster. If you're ready to run your first
application on it, check the last recipe in this chapter and run the container! And for
advanced management of your cluster, you can also look at Chapter 18, Advanced
Cluster Administration, of this book:

Advanced settings in kubeconfig, in Chapter 18, Advanced Cluster
Administration

Building Your Own Kubernetes Cluster Chapter 12

[295]

Setting up the Kubernetes cluster on
Linux via Ansible (kubespray)
If you are familiar with configuration management, such as Puppet, Chef and
Ansible, kubespray (https:/ /github. com/kubernetes- incubator/ kubespray) is the
best choice to set up a Kubernetes cluster from scratch. It provides the Ansible
playbook that supports the majority of Linux distributions and public clouds, such as
AWS and GCP.

Ansible (https:/ / www. ansible. com) is a Python-based SSH automation tool that can
configure Linux as your desired state based on the configuration, which is called
playbook. This cookbook describes how to use kubespray to set up Kubernetes on
Linux.

Getting ready
As of May 2018, the latest version of kubespray is 2.5.0, which supports the following
operation systems to install Kubernetes:

RHEL/CentOS 7
Ubuntu 16.04 LTS

According to the kubespray documentation, it also supports CoreOS
and debian distributions. However, those distributions may need
some additional steps or have technical difficulties. This cookbook
uses CentOS 7 and Ubuntu 16.04 LTS.

In addition, you need to install Ansible on your machine. Ansible works on Python
2.6, 2.7, and 3.5 or higher. macOS and Linux might be the best choice to install Ansible
because Python is preinstalled by most of macOS and Linux distributions by default.
In order to check which version of Python you have, open a Terminal and type the
following command:

//Use capital V
$ python -V
Python 2.7.5

https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kubespray
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com

Building Your Own Kubernetes Cluster Chapter 12

[296]

Overall, you need at least three machines, as mentioned in the following table:

Type of host Recommended OS/Distribution
Ansible macOS or any Linux which has Python 2.6, 2.7, or 3.5
Kubernetes master RHEL/CentOS 7 or Ubuntu 16.04 LTS
Kubernetes node RHEL/CentOS 7 or Ubuntu 16.04 LTS

There are some network communicating with each other, so you need to at least open
a network port (for example, AWS Security Group or GCP Firewall rule) as:

TCP/22 (ssh): Ansible to Kubernetes master/node host
TCP/6443 (Kubernetes API server): Kubernetes node to master
Protocol 4 (IP encapsulated in IP): Kubernetes master and node to each
other by Calico

In Protocol 4 (IP encapsulated in IP), if you are using AWS, set an
ingress rule to specify aws ec2 authorize-security-group-
ingress --group-id <your SG ID> --cidr <network CIDR>

--protocol 4. In addition, if you are using GCP, set the firewall
rule to specify as cloud compute firewall-rules create
allow-calico --allow 4 --network <your network name>

--source-ranges <network CIDR>.

Installing pip
The easiest way to install Ansible, is to use pip, the Python package manager. Some of
newer versions of Python have pip already (Python 2.7.9 or later and Python 3.4 or
later):

To confirm whether pip is installed or not, similar to the Python command,1.
use -V:

//use capital V
$ pip -V
pip 9.0.1 from /Library/Python/2.7/site-packages (python
2.7)

On the other hand, if you see the following result, you need to install pip:2.

//this result shows you don't have pip yet
$ pip -V
-bash: pip: command not found

Building Your Own Kubernetes Cluster Chapter 12

[297]

In order to install pip, download get-pip.py and install by using the3.
following command:

//download pip install script
$ curl -LO https://bootstrap.pypa.io/get-pip.py

//run get-pip.py by privileged user (sudo)
$ sudo python get-pip.py
Collecting pip
 Downloading pip-9.0.1-py2.py3-none-any.whl (1.3MB)
 100% |################################| 1.3MB 779kB/s
Collecting wheel
 Downloading wheel-0.30.0-py2.py3-none-any.whl (49kB)
 100% |################################| 51kB 1.5MB/s
Installing collected packages: pip, wheel
Successfully installed pip-9.0.1 wheel-0.30.0

//now you have pip command
$ pip -V
pip 9.0.1 from /usr/lib/python2.7/site-packages (python
2.7)

Installing Ansible
Perform the following steps to install Ansible:

Once you have installed pip, you can install Ansible with the following1.
command:

//ran by privileged user (sudo)
$ sudo pip install ansible

pip scans your Python and installs the necessary libraries for
Ansible, so it may take a few minutes to complete.

Once you have successfully installed Ansible by pip, you can verify it with2.
the following command and see output as this:

$ which ansible
/usr/bin/ansible

Building Your Own Kubernetes Cluster Chapter 12

[298]

$ ansible --version
ansible 2.4.1.0

Installing python-netaddr
Next, according to kubespray's documentation (https:/ /github. com/ kubernetes-
incubator/kubespray#requirements), it needs the python-netaddr package. This
package can also be installed by pip, as shown in the following code:

$ sudo pip install netaddr

Setting up ssh public key authentication
One more thing, as mentioned previously, Ansible is actually the ssh automation tool.
If you log on to host via ssh, you have to have an appropriate credential
(user/password or ssh public key) to the target machines. In this case, the target
machines mean the Kubernetes master and nodes.

Due to security reasons, especially in the public cloud, Kubernetes uses only the ssh
public key authentication instead of ID/password authentication.

To follow the best practice, let's copy the ssh public key from your Ansible machine to
the Kubernetes master/node machines:

If you've already set up ssh public key authentication between the
Ansible machine to Kubernetes candidate machines, you can skip
this step.

In order to create an ssh public/private key pair from your Ansible1.
machine, type the following command:

//with –q means, quiet output
$ ssh-keygen -q

It will ask you to set a passphrase. You may set or skip (empty) this, but2.
you have to remember it.
Once you have successfully created a key pair, you can see the private key3.
as ~/.ssh/id_rsa and public key as ~/.ssh/id_rsa.pub. You need to
append the public key to the target machine under
~/.ssh/authorized_keys, as shown in the following screenshot:

https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements
https://github.com/kubernetes-incubator/kubespray#requirements

Building Your Own Kubernetes Cluster Chapter 12

[299]

You need to copy and paste your public key to all Kubernetes master and4.
node candidate machines.
To make sure your ssh public key authentication works, just ssh from the5.
Ansible machine to the target host that won't ask for your logon password,
as here:

//use ssh-agent to remember your private key and
passphrase (if you set)
ansible_machine$ ssh-agent bash
ansible_machine$ ssh-add
Enter passphrase for /home/saito/.ssh/id_rsa: Identity
added: /home/saito/.ssh/id_rsa (/home/saito/.ssh/id_rsa)

//logon from ansible machine to k8s machine which you
copied public key
ansible_machine$ ssh 10.128.0.2
Last login: Sun Nov 5 17:05:32 2017 from
133.172.188.35.bc.googleusercontent.com
k8s-master-1$

Now you are all set! Let's set up Kubernetes using kubespray (Ansible) from scratch.

Building Your Own Kubernetes Cluster Chapter 12

[300]

How to do it...
kubespray is provided through the GitHub repository (https:/ / github. com/
kubernetes-incubator/ kubespray/ tags), as shown in the following screenshot:

Because kubespray is an Ansible playbook, not a binary, you can download the latest
version (as of May 2018, version 2.5.0 is the latest) of the zip or tar.gz to your
Ansible machine directly and unarchive it with the following command:

//download tar.gz format
ansible_machine$ curl -LO
https://github.com/kubernetes-incubator/kubespray/archive/v2.5.0.tar.g
z

//untar
ansible_machine$ tar zxvf v2.5.0.tar.gz

//it unarchives under kubespray-2.5.0 directory
ansible_machine$ ls -F
get-pip.py kubespray-2.5.0/ v2.5.0.tar.gz

//change to kubespray-2.5.0 directory
ansible_machine$ cd kubespray-2.5.0/

https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags
https://github.com/kubernetes-incubator/kubespray/tags

Building Your Own Kubernetes Cluster Chapter 12

[301]

Maintaining the Ansible inventory
In order to perform the Ansible playbook, you need to maintain your own inventory
file, which contains target machine IP addresses:

There is a sample inventory file under the inventory directory, so you can1.
copy it by using the following:

//copy sample to mycluster
ansible_machine$ cp -rfp inventory/sample
inventory/mycluster

//edit hosts.ini
ansible_machine$ vi inventory/mycluster/hosts.ini

In this cookbook, we are using target machines that have the following IP2.
addresses:

Kubernetes master : 10.128.0.2
Kubernetes node : 10.128.0.4

In this case, hosts.ini should be in the following format:3.

Please change the IP address to match your environment.4.

Note that hostname (my-master-1 and my-node-1) will be set by the kubespray
playbook based on this hosts.ini, so feel free to assign a meaningful hostname.

Building Your Own Kubernetes Cluster Chapter 12

[302]

Running the Ansible ad hoc command to test your
environment
Before running the kubespray playbook, let's check whether hosts.ini and Ansible
itself work properly or not:

To do that, use the Ansible ad hoc command, using the ping module, as1.
shown in the following screenshot:

This result indicates SUCCESS. But if you see the following error, probably2.
the IP address is wrong or the target machine is down, so please the check
target machine first:

Building Your Own Kubernetes Cluster Chapter 12

[303]

Next, check your authority whether you can escalate a privilege on the3.
target machine or not. In other words, whether you can run sudo or not.
This is because you will need to install Kubernetes, Docker, and some
related binaries, and configurations that need a root privilege. To confirm
that, add the -b (become) option, as shown in the following screenshot:

With the -b option, it actually tries to perform sudo on the target machine.4.
If you see SUCCESS, you are all set! Go to the How it works… section to run
kubespray.

If you're unfortunate enough to see some errors, please refer to the following section
to solve Ansible issues.

Ansible troubleshooting
The ideal situation would be to use the same Linux distribution, version, settings, and
logon user. However, the environment will be different based on policy,
compatibility, and other reasons. Ansible is flexible and can support many use cases
to run ssh and sudo.

Building Your Own Kubernetes Cluster Chapter 12

[304]

Need to specify a sudo password
Based on your Linux machine setting, you may see the following error when adding
the -b option. In this case, you need to type your password while running the sudo
command:

In this case, add -K (ask for the sudo password) and run again. It will ask for your
sudo password when running the Ansible command, as shown in the following
screenshot:

If your Linux uses the su command instead of sudo, adding --
become-method=su to run the Ansible command could help. Please
read the Ansible documentation for more details : http:/ /docs.
ansible. com/ ansible/ latest/ become. html

http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html
http://docs.ansible.com/ansible/latest/become.html

Building Your Own Kubernetes Cluster Chapter 12

[305]

Need to specify different ssh logon user
Sometimes you may need to ssh to target machines using a different logon user. In
this case, you can append the ansible_user parameter to an individual host in
hosts.ini. For example:

Use the username kirito to ssh to my-master-1
Use the username asuna to ssh to my-node-1

In this case, change hosts.ini, as shown in the following code:

my-master-1 ansible_ssh_host=10.128.0.2 ansible_user=kirito
my-node-1 ansible_ssh_host=10.128.0.4 ansible_user=asuna

Need to change ssh port
Another scenario is where you may need to run the ssh daemon on some specific port
number rather than the default port number 22. Ansible also supports this scenario
and uses the ansible_port parameter to the individual host in hosts.ini, as
shown in the following code (in the example, the ssh daemon is running at 10022 on
my-node-1):

my-master-1 ansible_ssh_host=10.128.0.2
my-node-1 ansible_ssh_host=10.128.0.4 ansible_port=10022

Common ansible issue
Ansible is flexible enough to support any other situations. If you need any specific
parameters to customize the ssh logon for the target host, read the Ansible inventory
documentation to find a specific parameter: http:/ /docs. ansible. com/ ansible/
latest/intro_inventory. html

In addition, Ansible has a configuration file, ansible.cfg, on top of the kubespray
directory. It defines common settings for Ansible. For example, if you are using a very
long username that usually causes an Ansible error, change ansible.cfg to set
control_path to solve the issue, as shown in the following code:

[ssh_connection]
control_path = %(directory)s/%%h-%%r

http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_inventory.html

Building Your Own Kubernetes Cluster Chapter 12

[306]

If you plan to set up more than 10 nodes, you may need to increase ssh simultaneous
sessions. In this case, adding the forks parameter also requires you to increase the
ssh timeout from 10 seconds to 30 seconds by adding the timeout parameter, as
shown in the following code:

[ssh_connection]
forks = 50
timeout = 30

The following screenshot contains all of the preceding configurations in
ansible.cfg:

For more details, please visit the Ansible configuration documentation at http:/ /
docs.ansible.com/ ansible/ latest/ intro_ configuration. html

How it works...
Now you can start to run the kubepray playbook:

You've already created an inventory file as1.
inventory/mycluster/hosts.ini. Other than hosts.ini, you need to
check and update global variable configuration files at
inventory/mycluster/group_vars/all.yml.

http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/intro_configuration.html

Building Your Own Kubernetes Cluster Chapter 12

[307]

There are a lot of variables defined, but at least one variable,2.
bootstrap_os , needs to be changed from none to your target Linux
machine. If you are using RHEL/CentOS7, set bootstrap_os as centos. If
you are using Ubuntu 16.04 LTS, set bootstrap_os as ubuntu as shown in
the following screenshot:

You can also update other variables, such as kube_version, to
change or install a Kubernetes version. For more details, read the
documentation at https:/ /github. com/kubernetes- incubator/
kubespray/ blob/ master/ docs/ vars. md.

Finally, you can execute the playbook. Use the ansible-playbook3.
command instead of the Ansible command. Ansible-playbook runs
multiple Ansible modules based on tasks and roles that are defined in the
playbook.
To run the kubespray playbook, type the ansible-playbook command with4.
the following parameters:

//use –b (become), -i (inventory) and specify cluster.yml
as playbook
$ ansible-playbook -b -i inventory/mycluster/hosts.ini
cluster.yml

https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/vars.md

Building Your Own Kubernetes Cluster Chapter 12

[308]

The ansible-playbook argument parameter is the same as the
Ansible command. So, if you need to use -K (ask for the sudo
password) or --become-method=su, you need to specify for
ansible-playbook as well.

It takes around 5 to 10 minutes to complete based on the machine spec and5.
network bandwidth. But eventually you can see PLAY RECAP, as shown in
the following screenshot, to see whether it has succeeded or not:

Building Your Own Kubernetes Cluster Chapter 12

[309]

If you see failed=0 like in the preceding screenshot, you have been6.
successful in setting up a Kubernetes cluster. You can ssh to the Kubernetes
master machine and run the /usr/local/bin/kubectl command to see
the status, as shown in the following screenshot:

The preceding screenshot shows that you have been successful in setting7.
up the Kubernetes version 1.10.2 master and node. You can continue to use
the kubectl command to configure you Kubernetes cluster in the
following chapters.
Unfortunately, if you see a failed count of more than 0, the Kubernetes8.
cluster has probably not been set up correctly. Because failure is caused by
many reasons, there is no single solution. It is recommended that you
append the verbose option -v to see more detailed output from Ansible, as
shown in the following code:

//use –b (become), -i (inventory) and –v (verbose)
$ ansible-playbook -v -b -i inventory/mycluster/hosts.ini
cluster.yml

If the failure is timeout, just retrying the ansible-playbook command again9.
may solve it. Because Ansible is designed as an idempotency, if you re-
perform the ansible-playbook command twice or more, Ansible still can
configure correctly.

Building Your Own Kubernetes Cluster Chapter 12

[310]

If the failure is change target IP address after you run ansible-playbook (for10.
example, re-using the Ansible machine to set up another Kubernetes
cluster), you need to clean up the fact cache file. It is located under /tmp
directory, so you just delete this file, as shown in the following screenshot:

See also
This section describes how to set up the Kubernetes cluster on the Linux OS using
kubespray. It is the Ansible playbook that supports major Linux distribution. Ansible
is simple, but due to supporting any situation and environment, you need to care
about some different use cases. Especially with ssh and sudo-related configurations,
you need to understand Ansible deeper to fit it with your environment.

Running your first container in
Kubernetes
Congratulations! You've built your own Kubernetes cluster in the previous recipes.
Now, let's get on with running your very first container, nginx (http:/ /nginx. org/),
which is an open source reverse proxy server, load balancer, and web server. Along
with this recipe, you will create a simple nginx application and expose it to the
outside world.

http://nginx.org/
http://nginx.org/
http://nginx.org/
http://nginx.org/
http://nginx.org/
http://nginx.org/
http://nginx.org/
http://nginx.org/

Building Your Own Kubernetes Cluster Chapter 12

[311]

Getting ready
Before you start to run your first container in Kubernetes, it's better to check if your
cluster is in a healthy mode. A checklist showing the following items would make
your kubectl sub commands stable and successful, without unknown errors caused
by background services:

Checking the master daemons. Check whether the Kubernetes components1.
are running:

// get the components status
$ kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health": "true"}

Check the status of the Kubernetes master:2.

// check if the master is running
$ kubectl cluster-info
Kubernetes master is running at
https://192.168.122.101:6443
KubeDNS is running at
https://192.168.122.101:6443/api/v1/namespaces/kube-system
/services/kube-dns/proxy

To further debug and diagnose cluster problems, use
'kubectl cluster-info dump'.

Check whether all the nodes are ready:3.

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ubuntu01 Ready master 20m v1.10.2
ubuntu02 Ready <none> 2m v1.10.2

Ideal results should look like the preceding outputs. You can
successfully fire the kubectl command and get the response
without errors. If any one of the checked items failed to meet the
expectation, check out the settings in the previous recipes based on
the management tool you used.

Building Your Own Kubernetes Cluster Chapter 12

[312]

Check the access permission of the Docker registry, as we will use the4.
official free image as an example. If you want to run your own application,
be sure to dockerize it first! What you need to do for your custom
application is to write a Dockerfile (https:/ /docs. docker. com/engine/
reference/ builder/), and build and push it into the public or private
Docker registry.

Test your node connectivity with the public/private Docker
registry

On your node, try the Docker pull nginx command to test whether
you can pull the image from the Docker Hub. If you're behind a
proxy, please add HTTP_PROXY into your Docker configuration
file(https:/ / docs. docker. com/ engine/ admin/ systemd/
#httphttps- proxy). If you want to run the image from the private
repository in the Docker Hub, or the image from the private Docker
registry, a Kubernetes secret is required.

How to do it...
We will use the official Docker image of nginx as an example. The image is provided
in the Docker Hub (https:/ /store. docker. com/ images/ nginx), and also the Docker
Store (https:// hub. docker. com/ _/nginx/).

Many of the official and public images are available on the Docker Hub or Docker
Store so that you do not need to build them from scratch. Just pull them and set up
your custom setting on top of them.

Docker Store versus Docker Hub

As you may be aware, there is a more familiar official repository,
Docker Hub, which was launched for the community for sharing the
based image. Compared with the Docker Hub, the Docker Store is
focused on enterprise applications. It provides a place for enterprise-
level Docker images, which could be free or paid for software. You
may feel more confident in using a more reliable image on the
Docker Store.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://docs.docker.com/engine/admin/systemd/#httphttps-proxy
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://store.docker.com/images/nginx
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/

Building Your Own Kubernetes Cluster Chapter 12

[313]

Running a HTTP server (nginx)
On the Kubernetes master, we can use kubectl run to create a certain number of
containers. The Kubernetes master will then schedule the pods for the nodes to run,
with general command formatting, as follows:

$ kubectl run <replication controller name> --image=<image name> --
replicas=<number of replicas> [--port=<exposing port>]

The following example will create two replicas with the name my-first-nginx from
the nginx image and expose port 80. We can deploy one or more containers in what is
referred to as a pod. In this case, we will deploy one container per pod. Just like a
normal Docker behavior, if the nginx image doesn't exist locally, it will pull it from
the Docker Hub by default:  

// run a deployment with 2 replicas for the image nginx and expose the
container port 80
$ kubectl run my-first-nginx --image=nginx --replicas=2 --port=80
deployment "my-first-nginx" created

The name of deployment <my-first-nginx> cannot be duplicated

The resource (pods, services, deployment, and so on) in one
Kubernetes namespace cannot be duplicated. If you run the
preceding command twice, the following error will pop up:  

Error from server (AlreadyExists):
deployments.extensions "my-first-nginx" already exists

Let's move on and see the current status of all the pods by kubectl get pods.
Normally the status of the pods will hold on Pending for a while, since it takes some
time for the nodes to pull the image from the registry:

// get all pods
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-first-nginx-7dcd87d4bf-jp572 1/1 Running 0 7m
my-first-nginx-7dcd87d4bf-ns7h4 1/1 Running 0 7m

Building Your Own Kubernetes Cluster Chapter 12

[314]

If the pod status is not running for a long time

You could always use kubectl get pods to check the current status of
the pods, and kubectl describe pods $pod_name to check the
detailed information in a pod. If you make a typo of the image
name, you might get the ErrImagePull error message, and if you
are pulling  the images from a private repository or registry without
proper credentials, you might get the ImagePullBackOff message.
If you get the Pending status for a long time and check out the node
capacity, make sure you don't run too many replicas that exceed the
node capacity. If there are other unexpected error messages, you
could either stop the pods or the entire replication controller to force
the master to schedule the tasks again.

You can also check the details about the deployment to see whether all the pods are
ready:

// check the status of your deployment
$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-first-nginx 2 2 2 2 2m

Exposing the port for external access
We might also want to create an external IP address for the nginx deployment. On
cloud providers that support an external load balancer (such as Google compute
engine), using the LoadBalancer type will provision a load balancer for external
access. On the other hand, you can still expose the port by creating a Kubernetes
service as follows, even though you're not running on platforms that support an
external load balancer. We'll describe how to access this externally later:

// expose port 80 for replication controller named my-first-nginx
$ kubectl expose deployment my-first-nginx --port=80 --
type=LoadBalancer
service "my-first-nginx" exposed

We can see the service status we just created:

// get all services
$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

Building Your Own Kubernetes Cluster Chapter 12

[315]

2h
my-first-nginx LoadBalancer 10.102.141.22 <pending>
80:31620/TCP 3m

You may find an additional service named kubernetes if the service daemon run as
a container (for example, using kubeadm as a management tool). It is for exposing the
REST API of the Kubernetes API server internally. The pending state of my-first-
nginx service's external IP indicates that it is waiting for a specific public IP from
cloud provider. Take a look at Chapter 17, Building Kubernetes on AWS for more
details.

Congratulations! You just ran your first container with a Kubernetes pod and exposed
port 80 with the Kubernetes service.

Stopping the application
We can stop the application using commands such as the delete deployment and
service. Before this, we suggest you read through the following code first to
understand more about how it works:

// stop deployment named my-first-nginx
$ kubectl delete deployment my-first-nginx
deployment.extensions "my-first-nginx" deleted

// stop service named my-first-nginx
$ kubectl delete service my-first-nginx
service "my-first-nginx" deleted

How it works…
Let's take a look at the insight of the service using describe in the kubectl command.
We will create one Kubernetes service with the type LoadBalancer, which will
dispatch the traffic into two endpoints, 192.168.79.9 and 192.168.79.10 with
port 80:

$ kubectl describe service my-first-nginx
Name: my-first-nginx
Namespace: default
Labels: run=my-first-nginx
Annotations: <none>
Selector: run=my-first-nginx
Type: LoadBalancer
IP: 10.103.85.175

Building Your Own Kubernetes Cluster Chapter 12

[316]

Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 31723/TCP
Endpoints: 192.168.79.10:80,192.168.79.9:80
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

The port here is an abstract service port, which will allow any other resources to
access the service within the cluster. The nodePort will be indicating the external
port to allow external access. The targetPort is the port the container allows traffic
into; by default, it will be the same port.

In the following diagram, external access will access the service with nodePort. The
service acts as a load balancer to dispatch the traffic to the pod using port 80. The pod
will then pass through the traffic into the corresponding container using targetPort
80:

Building Your Own Kubernetes Cluster Chapter 12

[317]

In any nodes or master, once the inter-connection network is set up, you should be
able to access the nginx service using ClusterIP 192.168.61.150 with port 80:

// curl from service IP
$ curl 10.103.85.175:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>
<p>Thank you for using nginx.</p>
</body>
</html>

It will be the same result if we curl to the target port of the pod directly:

// curl from endpoint, the content is the same as previous nginx html
$ curl 192.168.79.10:80
<!DOCTYPE html>
<html>
...

If you'd like to try out external access, use your browser to access the external IP
address. Please note that the external IP address depends on which environment
you're running in.

In the Google compute engine, you could access it via a ClusterIP with a proper
rewall rules setting:

$ curl http://<clusterIP>

Building Your Own Kubernetes Cluster Chapter 12

[318]

In a custom environment, such as on-premise data center, you could go through the
IP address of nodes to access :

$ curl http://<nodeIP>:<nodePort>

You should be able to see the following page using a web browser:

See also
We have run our very first container in this section. Go ahead and read the next
chapter to aquire more knowledge about Kubernetes:

Chapter 13, Walking through Kubernetes Concepts

13
Walking through Kubernetes

Concepts
In this chapter, we will cover the following recipes:

Linking Pods and containers
Managing Pods with ReplicaSets
Deployment API
Working with Services
Working with Volumes
Working with Secrets
Working with names
Working with Namespaces
Working with labels and selectors

Introduction
In this chapter, we will start by creating different kinds of resources on the
Kubernetes system. In order to realize your application in a microservices structure,
reading the recipes in this chapter will be a good start towards understanding the
concepts of the Kubernetes resources and consolidating them. After you deploy
applications in Kubernetes, you can work on its scalable and efficient container
management, and also fulfill the DevOps delivering procedure of microservices.

Walking through Kubernetes Concepts Chapter 13

[320]

An overview of Kubernetes
Working with Kubernetes is quite easy, using either a Command Line Interface (CLI)
or API (RESTful). This section will describe Kubernetes control by CLI. The CLI we
use in this chapter is version 1.10.2.

After you install Kubernetes master, you can run a kubectl command as follows. It
shows the kubectl and Kubernetes master versions (both the API Server and CLI are
v1.10.2):

$ kubectl version --short
Client Version: v1.10.2
Server Version: v1.10.2

kubectl connects the Kubernetes API server using the RESTful API. By default, it
attempts to access the localhost if .kube/config is not configured, otherwise you
need to specify the API server address using the --server parameter. Therefore, it is
recommended to use kubectl on the API server machine for practice.

If you use kubectl over the network, you need to consider
authentication and authorization for the API server.

kubectl is the only command for Kubernetes clusters, and it controls the Kubernetes
cluster manager. Find more information at
http://kubernetes.io/docs/user-guide/kubectl-overview/. Any container, or
Kubernetes cluster operation, can be performed by a kubectl command.

In addition, kubectl allows the inputting of information via either the command line's
optional arguments or a file (use the -f option); it is highly recommended to use a
file, because you can maintain Kubernetes configuration as code. This will be
described in detail in this chapter.

Here is a typical kubectl command-line argument:

kubectl [command] [TYPE] [NAME] [flags]

The attributes of the preceding command are as follows:

command: Specifies the operation that you want to perform on one or more
resources.
TYPE: Specifies the resource type. Resource types are case-sensitive and
you can specify the singular, plural, or abbreviated forms.

http://kubernetes.io/docs/user-guide/kubectl-overview/

Walking through Kubernetes Concepts Chapter 13

[321]

NAME: Specifies the name of the resource. Names are case-sensitive. If the
name is omitted, details for all resources are displayed.
flags: Specifies optional flags.

For example, if you want to launch nginx, you can use either the kubectl run
command or the kubectl create -f command with the YAML file as follows:

Use the run command:1.

$ kubectl run my-first-nginx --image=nginx "my-first-
nginx"

Use the create -f command with the YAML file:2.

$ cat nginx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-first-nginx
 labels:
 app: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx

//specify -f (filename)
$ kubectl create -f nginx.yaml
deployment.apps "my-first-nginx" created

If you want to see the status of the Deployment, type the kubectl get3.
command as follows:

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE
AVAILABLE AGE
my-first-nginx 1 1 1 1
4s

Walking through Kubernetes Concepts Chapter 13

[322]

If you also want the support abbreviation, type the following: 4.

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE
AVAILABLE AGE
my-first-nginx 1 1 1 1
38s

If you want to delete these resources, type the kubectl delete command5.
as follows:

$ kubectl delete deploy my-first-nginx
deployment.extensions "my-first-nginx" deleted

The kubectl command supports many kinds of sub-commands; use the -h6.
option to see the details, for example:

//display whole sub command options
$ kubectl -h

//display sub command "get" options
$ kubectl get -h

//display sub command "run" options
$ kubectl run -h

This section describes how to use the kubectl command to control the Kubernetes
cluster. The following recipes describe how to set up Kubernetes components:

Setting up a Kubernetes cluster on macOS using minikube and Set up a
Kubernetes cluster on Windows using minikube in Chapter 12, Building Your
Own Kubernetes Cluster
Setting up a Kubernetes cluster on Linux using kubeadm in Chapter 12,
Building Your Own Kubernetes Cluster
Setting up a Kubernetes cluster on Linux using kubespray (Ansible) in Chapter
12, Building Your Own Kubernetes Cluster

Walking through Kubernetes Concepts Chapter 13

[323]

Linking Pods and containers
The Pod is a group of one or more containers and the smallest deployable unit in
Kubernetes. Pods are always co-located and co-scheduled, and run in a shared
context. Each Pod is isolated by the following Linux namespaces:

The process ID (PID) namespace
The network namespace
The interprocess communication (IPC) namespace
The unix time sharing (UTS) namespace

In a pre-container world, they would have been executed on the same physical or
virtual machine.

It is useful to construct your own application stack Pod (for example, web server and
database) that are mixed by different Docker images.

Getting ready
You must have a Kubernetes cluster and make sure that the Kubernetes node has
accessibility to the Docker Hub (https://hub.docker.com) in order to download
Docker images.

If you are running minikube, use minikube ssh to log on to the
minikube VM first, then run the docker pull command.

You can simulate downloading a Docker image by using the docker pull command
as follows:

//this step only if you are using minikube
$ minikube ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ` _ `\| |/' _ `\| || , < () ()| '_`\ /'__`\
| () () || || () || || |\`\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)`___/'(_,__/'`____)

//run docker pull to download CentOS docker image
$ docker pull centos

https://hub.docker.com

Walking through Kubernetes Concepts Chapter 13

[324]

Using default tag: latest
latest: Pulling from library/centos
d9aaf4d82f24: Pull complete
Digest:
sha256:4565fe2dd7f4770e825d4bd9c761a81b26e49cc9e3c9631c58cfc3188be9505
a
Status: Downloaded newer image for centos:latest

How to do it...
The following are the steps to create a Pod has 2 containers:

Log on to the Kubernetes machine (no need to log on if using minikube)1.
and prepare the following YAML file. It defines the launch nginx container
and the CentOS container.
The nginx container opens the HTTP port (TCP/80). On the other hand,2.
the CentOS container attempts to access the localhost:80 every three
seconds using the curl command:

$ cat my-first-pod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: my-first-pod
spec:
 containers:
 - name: my-nginx
 image: nginx
 - name: my-centos
 image: centos
 command: ["/bin/sh", "-c", "while : ;do curl
http://localhost:80/; sleep 10; done"]

Then, execute the kubectl create command to launch my-first-pod as3.
follows:

$ kubectl create -f my-first-pod.yaml
pod "my-first-pod" created

It takes between a few seconds and a few minutes, depending on the
network bandwidth of the Docker Hub and Kubernetes node's spec.

Walking through Kubernetes Concepts Chapter 13

[325]

You can check kubectl get pods to see the status, as follows:4.

//still downloading Docker images (0/2)
$ kubectl get pods
NAME READY STATUS RESTARTS
AGE
my-first-pod 0/2 ContainerCreating 0
14s

//my-first-pod is running (2/2)
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-first-pod 2/2 Running 0 1m

Now both the nginx container (my-nginx) and the CentOS container (my-
centos) are ready.

Let's check whether the CentOS container can access nginx or not. You can5.
run the kubectl exec command to run bash on the CentOS container,
then run the curl command to access the nginx, as follows:

//run bash on my-centos container
//then access to TCP/80 using curl
$ kubectl exec my-first-pod -it -c my-centos -- /bin/bash
[root@my-first-pod /]#
[root@my-first-pod /]# curl -L http://localhost:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is
successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Walking through Kubernetes Concepts Chapter 13

[326]

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

As you can see, the Pod links two different containers, nginx and CentOS, into
the same Linux network namespace.

How it works...
When launching a Pod, the Kubernetes scheduler dispatches to the kubelet process to
handle all the operations to launch both nginx and CentOS containers on one
Kubernetes node.

The following diagram illustrates these two containers and the Pod; these two
containers can communicate via the localhost network, because within the Pod
containers, it share the network interface:

A Pod has two containers, which can communicate via localhost

If you have two or more nodes, you can check the -o wide option to find a node
which runs a Pod:

//it indicates Node "minikube" runs my-first-pod
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
my-first-pod 2/2 Running 0 43m 172.17.0.2
minikube

Walking through Kubernetes Concepts Chapter 13

[327]

Log in to that node, then you can check the docker ps | grep my-first-
pod command to see the running containers as follows:

List of containers that belong to my-first-pod

You may notice that my-first-pod contains three containers; centos, nginx, and
pause are running instead of two. Because each Pod we need to keep belongs to a
particular Linux namespace, if both the CentOS and nginx containers die, the
namespace will also destroyed. Therefore, the pause container just remains in the Pod
to maintain Linux namespaces.

Let's launch a second Pod, rename it as my-second-pod, and run the kubectl create
command as follows:

//just replace the name from my-first-pod to my-second-pod
$ cat my-first-pod.yaml | sed -e 's/my-first-pod/my-second-pod/' > my-
second-pod.yaml

//metadata.name has been changed to my-second-pod
$ cat my-second-pod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: my-second-pod
spec:
 containers:
 - name: my-nginx
 image: nginx

Walking through Kubernetes Concepts Chapter 13

[328]

 - name: my-centos
 image: centos
 command: ["/bin/sh", "-c", "while : ;do curl
http://localhost:80/; sleep 10; done"]

//create second pod
$ kubectl create -f my-second-pod.yaml
pod "my-second-pod" created

//2 pods are running
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-first-pod 2/2 Running 0 1h
my-second-pod 2/2 Running 0 43s

Now you have two Pods; each Pod has two containers, centos and nginx. So a total
of four containers are running on your Kubernetes cluster as in the following
diagram:

Duplicate Pod from my-first-pod to my-second-pod

Walking through Kubernetes Concepts Chapter 13

[329]

If you would like to deploy more of the same Pod, consider using a
Deployment (ReplicaSet) instead.

After your testing, you can run the kubectl delete command to delete your Pod from
the Kubernetes cluster:

//specify --all option to delete all pods
$ kubectl delete pods --all
pod "my-first-pod" deleted
pod "my-second-pod" deleted

//pods are terminating
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-first-pod 2/2 Terminating 0 1h
my-second-pod 2/2 Terminating 0 3m

See also
This recipe from this chapter described how to control Pods. They are the basic
components of Kubernetes operation. The following recipes will describe the
advanced operation of Pods using Deployments, Services, and so on:

Managing Pods with ReplicaSets
Deployment API
Working with Services
Working with labels and selectors

Walking through Kubernetes Concepts Chapter 13

[330]

Managing Pods with ReplicaSets
A ReplicaSet is a term for API objects in Kubernetes that refer to Pod replicas. The
idea is to be able to control a set of Pods' behaviors. The ReplicaSet ensures that the
Pods, in the amount of a user-specified number, are running all the time. If some Pods
in the ReplicaSet crash and terminate, the system will recreate Pods with the original
configurations on healthy nodes automatically, and keep a certain number of
processes continuously running. While changing the size of set, users can scale the
application out or down easily. According to this feature, no matter whether you
need replicas of Pods or not, you can always rely on ReplicaSet for auto-recovery and
scalability. In this recipe, you're going to learn how to manage your Pods with
ReplicaSet:

ReplicaSet and their Pods on two nodes

The ReplicaSet usually handles a tier of applications. As you can see in the preceding
diagram, we launch a ReplicaSet with three Pod replicas. Some mechanism details are
listed as follows:

The kube-controller-manager daemon helps to maintain the resource
running in its desired state. For example, the desired state of ReplicaSet in
the diagram is three Pod replicas.

Walking through Kubernetes Concepts Chapter 13

[331]

The kube-scheduler daemon on master, the scheduler of Kubernetes, takes
charge of assigning tasks to healthy nodes.
The selector of the ReplicaSet is used for deciding which Pods it covers. If
the key-value pairs in the Pod's label include all items in the selector of the
ReplicaSet, this Pod belongs to this ReplicaSet. As you will see, the diagram
shows three Pods are under the charge of the ReplicaSet. Even though Pod
2 has a different label of env, it is selected since the other two labels, role
and project, match the ReplicaSet's selector.

ReplicationController? ReplicaSet?
For experienced Kubernetes players, you may notice ReplicaSet
looks quite similar to the ReplicationController. Since version 1.2 of
Kubernetes, in order to concentrate on different features, the
ReplicationController's functionality has been covered by ReplicaSet
and Deployment. ReplicaSet focuses on the Pod replica, keeping
certain Pods running in healthy states. On the other hand,
Deployment is a higher-level API, which can manage the ReplicaSet,
perform application rolling updates, and expose the services. In
Kubernetes v1.8.3, users can still create replication controllers.
However, using Deployment with ReplicaSet is more recommended
because these are up to date and have finer granularity of
configuration.

Getting ready
Creating a ReplicaSet is the same as creating any Kubernetes resource; we fire
the kubectl command on the Kubernetes master. Therefore, we ensure your
Kubernetes environment is ready to accept your order. More than that, the
Kubernetes node should be able to access the Docker Hub. For the demonstration in
the following few pages, we would take official nginx docker image for example,
which stores in public docker registry as well.

Walking through Kubernetes Concepts Chapter 13

[332]

The evaluation of a prepared Kubernetes system
You can verify whether your Kuberenetes master is a practical one
through checking the items here:

Check whether the daemons are running or not: There
should be three working daemon processes on the master
node: apiserver, scheduler, and controller-
manager.
Check whether the command kubectl exists and is
workable: Try the command kubectl get cs to cover
this bullet point and the first one. You can verify not only
the status of components but also the feasibility of
kubectl.
Check whether the nodes are ready to work: You can
check them by using the command kubectl get nodes
to get their status.

In the case that some items listed here are invalid, please refer to
Chapter 12, Building Your Own Kubernetes Cluster, for proper
guidelines based on the installation you chose.

How to do it...
In this section, we will demonstrate the life cycle of a ReplicaSet from creation to
destruction.

Creating a ReplicaSet
When trying to use the command line to launch a Kubernetes Service immediately,
we usually fire kubectl run. However, it would creates a Deployment by default,
and not only taking care of the Pod replica but also providing a container-updating
mechanism. To simply create a standalone ReplicaSet, we can exploit a configuration
YAML file and run it:

$ cat my-first-replicaset.yaml
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: my-first-replicaset
 labels:

Walking through Kubernetes Concepts Chapter 13

[333]

 version: 0.0.1
spec:
 replicas: 3
 selector:
 matchLabels:
 project: My-Happy-Web
 role: frontend
 template:
 metadata:
 labels:
 project: My-Happy-Web
 role: frontend
 env: dev
 spec:
 containers:
 - name: happy-web
 image: nginx:latest

The preceding file is the YAML for our first ReplicaSet. It defines a ReplicaSet named
my-first-replicaset, which has three replicas for its Pods. Labels and the selector
are the most characteristic settings of ReplicaSet. There are two sets of labels: one for
ReplicaSet, the other for Pods. The first label for ReplicaSet is under the metadata of
this resource, right beneath the name, which is simply used for description. However,
the other label value under the template's metadata, the one for Pods, is also used for
identification. ReplicaSet takes charge of the Pods which have the labels covered by
its selector.

In our example configuration file, the selector of ReplicaSet looks for Pods with
project: My-Happy-Web and role: frontend tags. Since we initiate Pods under
control of this ReplicaSet, the Pods' labels should definitely include what selector
cares. You may get following error message while creating a ReplicaSet with
incorrectly labeled Pods: `selector` does not match template `labels`.

Now, let's create ReplicaSet through this file:

$ kubectl create -f my-first-replicaset.yaml
replicaset.extensions "my-first-replicaset" created

The API version of ReplicaSet in Kubernetes v1.9
While this book is under construction, Kubernetes v1.9 is released.
The API version of ReplicaSet turns to a stable version apps/v1
instead of apps/v1beta2. If you have an older version Kubernetes,
please change the value of apiVersion to apps/v1beta2, or you
can just update your Kubernetes system.

Walking through Kubernetes Concepts Chapter 13

[334]

Getting the details of a ReplicaSet
After we create the ReplicaSet, the subcommands get and describe can help us to
capture its information and the status of Pods. In the CLI of Kubernetes, we are able
to use the abbreviation rs for resource type, instead of the full name ReplicaSet:

// use subcommand "get" to list all ReplicaSets
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-first-replicaset 3 3 3 4s

This result shows roughly that the Pod replicas of my-first-replicaset are all
running successfully; currently running Pods are of the desired number and all of
them are ready for serving requests.

For detailed information, check by using the subcommand describe:

// specify that we want to check ReplicaSet called my-first-replicaset
$ kubectl describe rs my-first-replicaset
Name: my-first-replicaset
Namespace: default
Selector: project=My-Happy-Web,role=frontend
Labels: version=0.0.1
Annotations: <none>
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: env=dev
 project=My-Happy-Web
 role=frontend
 Containers:
 happy-web:
 Image: nginx:latest
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 9s replicaset-controller Created pod:
my-first-replicaset-8hg55
 Normal SuccessfulCreate 9s replicaset-controller Created pod:
my-first-replicaset-wtphz
 Normal SuccessfulCreate 9s replicaset-controller Created pod:
my-first-replicaset-xcrws

Walking through Kubernetes Concepts Chapter 13

[335]

You can see that the output lists ReplicaSet's particulars of the configuration, just like
what we requested in the YAML file. Furthermore, the logs for the creation of Pods
are shown as part of ReplicaSet, which confirms that the Pod replicas are successfully
created and designated with unique names. You can also check Pods by name:

// get the description according the name of Pod, please look at the
Pod name shown on your screen, which should be different from this
book.
$ kubectl describe pod my-first-replicaset-xcrws

Changing the configuration of a ReplicaSet
The subcommands known as edit, patch, and replace can help to update live
Kubernetes resources. All these functionalities change the settings by way of
modifying a configuration file. Here we just take edit, for example.

The subcommand edit lets users modify resource configuration through the editor.
Try to update your ReplicaSet through the command kubectl edit rs
$REPLICASET_NAME; you will access this resource via the default editor with a YAML
configuration file:

// demonstrate to change the number of Pod replicas.
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-first-replicaset 3 3 3 2m

// get in the editor, modify the replica number, then save and leave
$ kubectl edit rs my-first-replicaset
Please edit the object below. Lines beginning with a '#' will be
ignored,
and an empty file will abort the edit. If an error occurs while
saving this file will be
reopened with the relevant failures.
#
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 creationTimestamp: 2018-05-05T20:48:38Z
 generation: 1
 labels:
 version: 0.0.1
 name: my-first-replicaset
 namespace: default
 resourceVersion: "1255241"
 selfLink:

Walking through Kubernetes Concepts Chapter 13

[336]

/apis/extensions/v1beta1/namespaces/default/replicasets/my-first-
replicaset
 uid: 18330fa8-cd55-11e7-a4de-525400a9d353
spec:
 replicas: 4
 selector:
 matchLabels:
...
replicaset "my-first-replicaset" edited
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-first-replicaset 4 4 4 4m

In the demonstration, we succeed to add one Pod in the set, yet this is not the best
practice for auto-scaling the Pod. Take a look at the Working with configuration files
recipe in Chapter 14, Playing with Containers, for Reference, and try to change the
other values.

Deleting a ReplicaSet
In order to remove the ReplicaSet from the Kubernetes system, you can rely on the
subcommand delete. When we fire delete to remove the resource, it removes the
target objects forcefully:

$ time kubectl delete rs my-first-replicaset && kubectl get pod
replicaset.extensions "my-first-replicaset" deleted
real 0m2.492s
user 0m0.188s
sys 0m0.048s
NAME READY STATUS RESTARTS AGE
my-first-replicaset-8hg55 0/1 Terminating 0 53m
my-first-replicaset-b6kr2 1/1 Terminating 0 48m
my-first-replicaset-wtphz 0/1 Terminating 0 53m
my-first-replicaset-xcrws 1/1 Terminating 0 53m

We find that the response time is quite short and the effect is also instantaneous.

Removing the Pod under ReplicaSet
As we mentioned previously, it is impossible to scale down the
ReplicaSet by deleting the Pod, because while a Pod is removed, the
ReplicaSet is out of stable status: if the desired number of Pods is not
met, and the controller manager will ask ReplicaSet to create another
one. The concept is shown in the following commands:

Walking through Kubernetes Concepts Chapter 13

[337]

// check ReplicaSet and the Pods
 $ kubectl get rs,pod
 NAME DESIRED CURRENT READY AGE
 rs/my-first-replicaset 3 3 3 14s
 NAME READY STATUS RESTARTS AGE
 po/my-first-replicaset-bxf45 1/1 Running 0 14s
 po/my-first-replicaset-r6wpx 1/1 Running 0 14s
 po/my-first-replicaset-vt6fd 1/1 Running 0 14s

 // remove certain Pod and check what happened
 $ kubectl delete pod my-first-replicaset-bxf45
 pod "my-first-replicaset-bxf45" deleted
 $ kubectl get rs,pod
 NAME DESIRED CURRENT READY AGE
 rs/my-first-replicaset 3 3 3 2m
 NAME READY STATUS RESTARTS AGE
 po/my-first-replicaset-dvbpg 1/1 Running 0 6s
 po/my-first-replicaset-r6wpx 1/1 Running 0 2m
 po/my-first-replicaset-vt6fd 1/1 Running 0 2m

 // check the event log as well
 $ kubectl describe rs my-first-replicaset
 (ignored)
 :
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 2m replicaset-controller
Created pod: my-first-replicaset-bxf45
 Normal SuccessfulCreate 2m replicaset-controller
Created pod: my-first-replicaset-r6wpx
 Normal SuccessfulCreate 2m replicaset-controller
Created pod: my-first-replicaset-vt6fd
 Normal SuccessfulCreate 37s replicaset-controller
Created pod: my-first-replicaset-dvbpg

You will find that although the my-first-replicaset-
bxf45 Pod is removed, the my-first-replicaset-dvbpg Pod is
created automatically and attached to this ReplicaSet.

Walking through Kubernetes Concepts Chapter 13

[338]

How it works...
The ReplicaSet defines a set of Pods by using a Pod template and labels. As in the
ideas from previous sections, the ReplicaSet only manages the Pods via their labels. It
is possible that the Pod template and the configuration of the Pod are different. This
also means that standalone Pods can be added into a set by using label modification.

Let's evaluate this concept of selectors and labels by creating a ReplicaSet similar to
the diagram at the beginning of this recipe:

The ReplicaSet would cover Pods which have the same labels describing in its selector

First, we are going to create a CentOS Pod with the labels project: My-Happy-Web,
role: frontend, and env: test:

// use subcommand "run" with tag restart=Never to create a Pod
$ kubectl run standalone-pod --image=centos --labels="project=My-
Happy-Web,role=frontend,env=test" --restart=Never --command sleep 3600
pod "standalone-pod" created

// check Pod along with the labels
$ kubectl get pod -L project -L role -L env
NAME READY STATUS RESTARTS AGE PROJECT
ROLE ENV
standalone-pod 1/1 Running 0 3m My-Happy-Web
frontend test

After adding this command, a standalone Pod runs with the labels we specified.

Walking through Kubernetes Concepts Chapter 13

[339]

Next, go create your first ReplicaSet example by using the YAML file again:

$ kubectl create -f my-first-replicaset.yaml
replicaset.apps "my-first-replicaset" created

// check the Pod again
$ kubectl get pod -L project -L role -L env
NAME READY STATUS RESTARTS AGE
PROJECT ROLE ENV
my-first-replicaset-fgdc8 1/1 Running 0 14s
My-Happy-Web frontend dev
my-first-replicaset-flc9m 1/1 Running 0 14s
My-Happy-Web frontend dev
standalone-pod 1/1 Running 0 6m
My-Happy-Web frontend test

As in the preceding result, only two Pods are created. It is because the Pod
standalone-pod is considered one of the sets taken by my-first-replicaset.
Remember that my-first-replicaset takes care of the Pods labeled with
project: My-Happy-Web and role:frontend (ignore the env tag). Go check the
standalone Pod; you will find it belongs to a member of the ReplicaSet as well:

$ kubectl describe pod standalone-pod
Name: standalone-pod
Namespace: default
Node: ubuntu02/192.168.122.102
Start Time: Sat, 05 May 2018 16:57:14 -0400
Labels: env=test
 project=My-Happy-Web
 role=frontend
Annotations: <none>
Status: Running
IP: 192.168.79.57
Controlled By: ReplicaSet/my-first-replicaset
...

Similarly, once we delete the set, the standalone Pod will be removed with the group:

// remove the ReplicaSet and check pods immediately
$ kubectl delete rs my-first-replicaset && kubectl get pod
replicaset.extensions "my-first-replicaset" deleted
NAME READY STATUS RESTARTS AGE
my-first-replicaset-fgdc8 0/1 Terminating 0 1m
my-first-replicaset-flc9m 0/1 Terminating 0 1m
standalone-pod 0/1 Terminating 0 7m

Walking through Kubernetes Concepts Chapter 13

[340]

There's more...
There are multiple Kubernetes resources for Pod management. Users are encouraged
to leverage various types of resources to meet different purposes. Let's comparing the
resource types listed below with ReplicaSet:

Deployment: In general cases, Kubernetes Deployments are used together
with ReplicaSet for complete Pod management: container rolling updates,
load balancing, and service exposing.
Job: Sometimes, we want the Pods run as a job instead of a service. A
Kubernetes job is suitable for this situation. You can consider it a ReplicaSet
with the constraint of termination.
DaemonSet: More than ReplicaSet, the Kubernetes DaemonSet guarantees
that the specified set is running on every node in the cluster. That said, a
subset of ReplicaSet on every node.

To get more idea and instruction, you can check the recipe Ensuring flexible usage of
your containers in Chapter 14, Playing with Containers.

See also
Now you understand the idea of ReplicaSet. Continue to look up the following
recipes in this chapter for more Kubernetes resources, which will allow you to explore
the magical effects of ReplicaSet:

Deployment API
Working with Services
Working with labels an selectors

Moreover, since you have built a simple ReplicaSet by using a configuration file, refer
to more details about creating your own configuration files for Kubernetes resources:

Working with configuration files section in Chapter 14, Playing with
Containers

Walking through Kubernetes Concepts Chapter 13

[341]

Deployment API
The Deployment API was introduced in Kubernetes version 1.2. It is replacing the
replication controller. The functionalities of rolling-update and rollback by replication
controller, it was achieved with client side (kubectl command and REST API), that
kubectl need to keep connect while updating a replication controller. On the other
hand, Deployments takes care of the process of rolling-update and rollback at the
server side. Once that request is accepted, the client can disconnect immediately.

Therefore, the Deployments API is designed as a higher-level API to manage
ReplicaSet objects. This section will explore how to use the Deployments API to
manage ReplicaSets.

Getting ready
In order to create Deployment objects, as usual, use the kubectl run command or
prepare the YAML/JSON file that describe Deployment configuration. This example
is using the kubectl run command to create a my-nginx Deployment object:

//create my-nginx Deployment (specify 3 replicas and nginx version
1.11.0)
$ kubectl run my-nginx --image=nginx:1.11.0 --port=80 --replicas=3
deployment.apps "my-nginx" created

//see status of my-nginx Deployment
$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-nginx 3 3 3 3 8s

//see status of ReplicaSet
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-nginx-5d69b5ff7 3 3 3 11s

//see status of Pod
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-nginx-5d69b5ff7-9mhbc 1/1 Running 0 14s
my-nginx-5d69b5ff7-mt6z7 1/1 Running 0 14s
my-nginx-5d69b5ff7-rdl2k 1/1 Running 0 14s

Walking through Kubernetes Concepts Chapter 13

[342]

As you can see, a Deployment object my-nginx creates one ReplicaSet, which has
an identifier: <Deployment name>-<hex decimal hash>. And then ReplicaSet
creates three Pods which have an identifier: <ReplicaSet id>-<random id>.

Until Kubernetes version 1.8, <Deployment name>-<pod-
template-hash value (number)> was used as a ReplicaSet
identifier instead of a hex decimal hash.

For more details, look at pull request: https:/ /github. com/
kubernetes/ kubernetes/ pull/ 51538.

This diagram illustrates the Deployment, ReplicaSet, and Pod relationship:

Relationship diagram for Deployments, ReplicaSets, and Pods

Because of this relationship, if you perform delete on a my-nginx Deployment
object, it will also attempt to delete ReplicaSet and Pods respectively:

//delete my-nginx Deployment
$ kubectl delete deploy my-nginx
deployment.extensions "my-nginx" deleted

//see status of ReplicaSet
$ kubectl get rs
No resources found.

//see status of Pod, it has been terminated
$ kubectl get pods

https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538
https://github.com/kubernetes/kubernetes/pull/51538

Walking through Kubernetes Concepts Chapter 13

[343]

NAME READY STATUS RESTARTS AGE
my-nginx-5d69b5ff7-9mhbc 0/1 Terminating 0 2m
my-nginx-5d69b5ff7-mt6z7 0/1 Terminating 0 2m
my-nginx-5d69b5ff7-rdl2k 0/1 Terminating 0 2m

This example is just a simple create and delete, that easy to understand
Deployment object and ReplicaSet object 1:1 relationship at this moment. However, a
Deployment object can manage many ReplicaSets to preserve as a history. So the
actual relationship is 1:N, as in the following diagram:

Deployments maintain ReplicaSet history

To understand the 1:N relationship, let's recreate this Deployment object again and
perform to make some changes to see how Deployment manages ReplicaSet history.

How to do it...
You may run the kubectl run command to recreate my-nginx, or write a
Deployments configuration file that produces the same result. This is a great
opportunity to learn about the Deployment configuration file.

Walking through Kubernetes Concepts Chapter 13

[344]

This example is an equivalent of kubectl run my-nginx --image=nginx:1.11.0
--port=80 --replicas=3:

$ cat deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 run: my-nginx
 template:
 metadata:
 labels:
 run: my-nginx
 spec:
 containers:
 - name: my-nginx
 image: nginx:1.11.0
 ports:
 - containerPort: 80

These parameters, sorted by key and value, are described here:

Key Value Description

apiVersion apps/v1

Until Kubernetes v1.8, it had
been used apps/v1Beta1, v1.8
used apps/v1Beta2, then v1.9 or
later use apps/v1

kind deployment
Indicates that this is a set of
Deployment configurations

metadata.name my-nginx Name of Deployment
spec.replicas 3 Desire to have three Pods

spec.selector.matchLabels run:my-nginx
Control ReplicaSet/Pods which
have this label

spec.template.metadata.labels run:my-nginx
Assigns this label when creating
a ReplicaSet/Pod; it must match
spec.selector.matchLabels

Walking through Kubernetes Concepts Chapter 13

[345]

spec.template.spec.containers

name: my-nginx
image:
nginx:1.11.0

port:
-
containerPort:80

ReplicaSet creates and manages
Pods which have:
• name as my-nginx
• Container image as nginx version 1.11.0
• Publish port number 80

If you use this YAML file to create a Deployment, use the kubectl create
command instead of kubectl run.

Note that, this time, you should also specify --save-config, which allows you to
update the resource using the kubectl apply command in the future. In addition,
specify --record which can store the command line history. Those two options are
not mandatory to manage ReplicaSet history but help you to preserve better
information:

//use -f to specify YAML file
$ kubectl create -f deploy.yaml --save-config --record
deployment.apps "my-nginx" created

//check my-nginx Deployment
$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-nginx 3 3 3 3 5s

$ kubectl describe deploy my-nginx
Name: my-nginx
Namespace: default
CreationTimestamp: Wed, 09 May 2018 03:40:09 +0000
Labels: <none>
Annotations: deployment.kubernetes.io/revision=1
 kubectl.kubernetes.io/last-applied-
configuration={"apiVersion":"apps/v1","kind":"Deployment","metadata":{
"annotations":{},"name":"my-
nginx","namespace":"default"},"spec":{"replicas":3,"selector":{"mat...
 kubernetes.io/change-cause=kubectl create --
filename=deploy.yaml --save-config=true --record=true
Selector: run=my-nginx
Replicas: 3 desired | 3 updated | 3 total | 3 available
| 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:

Walking through Kubernetes Concepts Chapter 13

[346]

 Labels: run=my-nginx
 Containers:
 my-nginx:
 Image: nginx:1.11.0
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: my-nginx-54bb7bbcf9 (3/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 34s deployment-controller Scaled up
replica set my-nginx-54bb7bbcf9 to 3

You can see a property OldReplicaSets and NewReplicaSet in the preceding
code, which are some association between Deployment and ReplicaSet.

Whenever you update a definition of a container template, for example, changing the
nginx image version from 1.11.0 to 1.12.0, then Deployment my-nginx will create a
new ReplicaSet. Then the property NewReplicaSet will point to the new ReplicaSet
which has nginx version 1.12.0.

On the other hand, the OldReplicaSets property points to an old ReplicaSet which
has nginx version 1.11.0 until new ReplicaSet is complete to setup new Pod.

These old/new ReplicaSet associations between Deployment, Kubernetes
administrator can easy to achieve rollback operation in case new ReplicaSet has any
issues.

In addition, Deployment can keep preserves the history of ReplicaSet which were
associated with it before. Therefore, Deployment can anytime to change back
(rollback) to any point of older ReplicaSet.

Walking through Kubernetes Concepts Chapter 13

[347]

How it works...
As mentioned earlier, let's bump the nginx image version from 1.11.0 to 1.12.0. There
are two ways to change the container image: use the kubectl set command, or
update YAML then use the kubectl apply command.

Using the kubectl set command is quicker and there is better visibility when using
the --record option.

On the other hand, updating YAML and using the kubectl apply command is
better to preserve the entire Deployment YAML configuration file, which is better
when using a version control system such as git.

Using kubectl set to update the container image
Use the kubectl set command allows us to overwrite
the spec.template.spec.containers[].image property that is similar to using
the kubectl run command to specify the image file. The following example
specifies my-nginx deployment to set the container my-nginx to change the image to
nginx version 1.12.0:

$ kubectl set image deployment my-nginx my-nginx=nginx:1.12.0 --record
deployment.apps "my-nginx" image updated

$ kubectl describe deploy my-nginx
Name: my-nginx
…
…
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True ReplicaSetUpdated
OldReplicaSets: my-nginx-54bb7bbcf9 (3/3 replicas created)
NewReplicaSet: my-nginx-77769b7666 (1/1 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 27s deployment-controller Scaled up
replica set my-nginx-54bb7bbcf9 to 3
 Normal ScalingReplicaSet 2s deployment-controller Scaled up
replica set my-nginx-77769b7666 to 1

Walking through Kubernetes Concepts Chapter 13

[348]

As you can see, OldReplicaSets becomes the previous ReplicaSet (my-
nginx-54bb7bbcf9) and NewReplicaSet becomes my-nginx-77769b7666. Note
that you can see the OldReplicaSets property until NewReplicaSet is ready, so
once the new ReplicaSet is successfully launched, OldReplicaSet
becomes <none>, as follows:

$ kubectl describe deploy my-nginx
Name: my-nginx
…
…
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: my-nginx-77769b7666 (3/3 replicas created)

If you can see the ReplicaSet list by kubectl get rs, you can see two ReplicaSet,
as follows:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-nginx-54bb7bbcf9 0 0 0 3m
my-nginx-77769b7666 3 3 3 3m

As you can see, in the old ReplicaSet (my-nginx-54bb7bbcf9), the numbers of
DESIRED/CURRENT/READY pods are all zero.

In addition, because the preceding example uses the --record option, you can see
the history of the Deployment my-nginx rollout with the kubectl rollout
history command, as follows:

$ kubectl rollout history deployment my-nginx
deployments "my-nginx"
REVISION CHANGE-CAUSE
1 kubectl create --filename=deploy.yaml --save-config=true --
record=true
2 kubectl set image deployment/my-nginx my-nginx=nginx:1.12.0
--record=true

Walking through Kubernetes Concepts Chapter 13

[349]

Updating the YAML and using kubectl apply
For demo purposes, copy deploy.yaml to deploy_1.12.2.yaml and change the
nginx version to 1.12.2, as follows:

 image: nginx:1.12.2

Then run the kubectl apply command with the --record option:

$ kubectl apply -f deploy_1.12.2.yaml --record
deployment.apps "my-nginx" configured

This will perform the same thing as the kubectl set image command, so you can
see that the nginx image version has been bumped up to 1.12.2; also, the
OldReplicaSets/NewReplicaSet combination has been changed as follows:

$ kubectl describe deploy my-nginx
Name: my-nginx
…
…
Pod Template:
 Labels: run=my-nginx
 Containers:
 my-nginx:
 Image: nginx:1.12.2
...
...
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True ReplicaSetUpdated
OldReplicaSets: my-nginx-77769b7666 (3/3 replicas created)
NewReplicaSet: my-nginx-69fbc98fd4 (1/1 replicas created)

After a few moments, NewReplicaSet will be ready. Then there will be a total of
three ReplicaSets existing on your system:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-nginx-54bb7bbcf9 0 0 0 7m
my-nginx-69fbc98fd4 3 3 3 1m
my-nginx-77769b7666 0 0 0 6m

Walking through Kubernetes Concepts Chapter 13

[350]

You can also see the rollout history:

$ kubectl rollout history deployment my-nginx
deployments "my-nginx"
REVISION CHANGE-CAUSE
1 kubectl create --filename=deploy.yaml --save-config=true --
record=true
2 kubectl set image deployment/my-nginx my-nginx=nginx:1.12.0
--record=true
3 kubectl apply --filename=deploy_1.12.2.yaml --record=true

Whenever you want to revert to a previous ReplicaSet, which means rolling back to
the previous nginx version, you can use kubectl rollout undo with the --to-
revision option. For example, if you want to roll back to revision 2 in your history
(kubectl set image deployment/my-nginx my-nginx=nginx:1.12.0 --
record=true), specify --to-revision=2:

$ kubectl rollout undo deployment my-nginx --to-revision=2
deployment.apps "my-nginx" rolled back'

A few moments later, Deployment will deactivate the current ReplicaSet, which
uses the Pod template with nginx version 1.12.2, and will then activate
the ReplicaSet which uses nginx version 1.12, as follows:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-nginx-54bb7bbcf9 0 0 0 8m
my-nginx-69fbc98fd4 0 0 0 2m
my-nginx-77769b7666 3 3 3 7m

See also
In this section, you learned about the concept of Deployment. It is an important core
feature in Kubernetes ReplicaSet life cycle management. It allows us to achieve rollout
and rollback functionalities, and can integrate to CI/CD. In the following chapter you
will see detailed operations of rollout and rollback:

Updating live containers section in Chapter 14, Playing with Containers
Setting up a continuous delivery pipeline section in Chapter 16, Building
Continuous Delivery Pipelines

Walking through Kubernetes Concepts Chapter 13

[351]

Working with Services
The network service is an application that receives requests and provides a solution.
Clients access the service by a network connection. They don't have to know the
architecture of the service or how it runs. The only thing that clients have to verify is
whether the endpoint of the service can be accessed, and then follow its usage policy
to get the response of the server. The Kubernetes Service has similar ideas. It is not
necessary to understand every Pod before reaching their functionalities. For
components outside the Kubernetes system, they just access the Kubernetes Service
with an exposed network port to communicate with running Pods. It is not necessary
to be aware of the containers' IPs and ports. Behind Kubernetes Services, we can
fulfill a zero-downtime update for our container programs without struggling:

Kubernetes Service-covered Pods by labels of Pods and their selectors

Walking through Kubernetes Concepts Chapter 13

[352]

The preceding diagram shows the basic structure of the Service and realizes the
following concepts:

As with the Deployment, the Service directs requests to Pods that have
labels containing the Service's selector. In other words, the Pods selected by
the Service are based on their labels.
The load of requests sent to the Services will distribute to three Pods.
The Deployment, along with ReplicaSet, ensures that the number of
running Pods meets its desired state. It monitors the Pods for the Service,
making sure they will be healthy for taking over duties from the Service.
Service is an abstraction layer for grouping Pods, which allows for Pods
scaling across nodes.

In this recipe, you will learn how to create Services in front of your Pods for the
requests.

Getting ready
Prior to applying Kubernetes Services, it is important to verify whether all nodes in
the system are running kube-proxy. The daemon kube-proxy works as a network
proxy in a node. It helps to reflect Service settings, such as IPs or ports on each node,
and to do network forwarding. To check if kube-proxy is running or not, we take a
look at network connections:

// check by command netstat with proper tags for showing the
information we need, t:tcp, u:udp, l:listening, p:program, n:numeric
address
// use root privilege for grabbing all processes
$ sudo netstat -tulpn | grep kube-proxy
tcp 0 0 127.0.0.1:10249 0.0.0.0:*
LISTEN 2326/kube-proxy
tcp6 0 0 :::31723 :::*
LISTEN 2326/kube-proxy
tcp6 0 0 :::10256 :::*
LISTEN 2326/kube-proxy

Once you see the output, the process ID 2326, kube-proxy, listening on port 10249
on localhost, the node is ready for Kubernetes Services. Go ahead and verify whether
all of your nodes in the Kubernetes cluster having kube-proxy running on them.

Walking through Kubernetes Concepts Chapter 13

[353]

How to do it...
As mentioned in the previous section, the Kubernetes Service exposes Pods by
selecting them through corresponding labels. However, there is another configuration
we have to take care of: the network port. As the following diagram indicates, the
Service and Pod have their own key-value pair labels and ports:

Network port mapping between Service and Pod

Therefore, setting the selector of Service and binding the service exposed port to the
container port are required to be carried out while creating Services. If either of them
fail to be set properly, clients won't get responses or will get connection-refused
errors.

We can define and create a new Kubernetes Service through the CLI or a
configuration file. Here, we are going to explain how to deploy the Services by
command. The subcommands expose and describe are utilized in the following
commands for various scenarios. For file-format creation, it is recommended to read
the Working with configuration files recipe in Chapter 14, Playing with Containers, for a
detailed discussion.

Walking through Kubernetes Concepts Chapter 13

[354]

Creating a Service for different resources
You can attach a Service to a Pod, a Deployment, an endpoint outside the Kubernetes
system, or even another Service. We will show you these, one by one, in this section.
The creation of the Kubernetes Service looks similar to these command formats:
kubectl expose $RESOURCE_TYPE $RESOURCE_NAME [OTHER TAGS] or kubectl
expose -f $CONFIG_FILE. The resource types (Pod, Deployment, and Service) are
supported by the subcommand expose. So is the configuration file, which follows the
limitation type. Accordingly, for a later demonstration we will attach the newly
created Service to the endpoint by the configuration file.

Creating a Service for a Pod
Kubernetes Pods covered by Service require labels, so that Service can recognize who
is the one it should take charge of. In the following commands, we create a Pod with
labels first, and attach a Service on it:

// using subcommand "run" with "never" restart policy, and without
replica, you can get a Pod
// here we create a nginx container with port 80 exposed to outside
world of Pod
$ kubectl run nginx-pod --image=nginx --port=80 --restart="Never" --
labels="project=My-Happy-Web,role=frontend,env=test"
pod "nginx-pod" created

// expose Pod "nginx-pod" with a Service officially with port 8080,
target port would be the exposed port of pod
$ kubectl expose pod nginx-pod --port=8080 --target-port=80 --
name="nginx-service"
service "nginx-service" exposed

You may find that, based on the preceding command, we did not assign any selector
to this Service. Nonetheless, since Service nginx-service takes the port forwarding
task of Pod nginx-pod, it will take the labels of the Pod as its selector. Go ahead and
check the details of the Service with the subcommand describe:

// "svc" is the abbreviate of Service, for the description's resource
type
$ kubectl describe svc nginx-service
Name: nginx-service
Namespace: default
Labels: env=test
 project=My-Happy-Web
 role=frontend
Annotations: <none>

Walking through Kubernetes Concepts Chapter 13

[355]

Selector: env=test,project=My-Happy-Web,role=frontend
Type: ClusterIP
IP: 10.96.107.213
Port: <unset> 8080/TCP
TargetPort: 80/TCP
Endpoints: 192.168.79.24:80
Session Affinity: None
Events: <none>

Now you can see that, for guaranteeing the responsibility, this successfully exposed
Service just copied the labels of the Pod as its selector. The value list after Endpoints
was the IP of the Pod and its exposed port 80. Furthermore, the Service took the Pod's
labels as its own. According to this example, the Pod can be accessed through Service
by surfing 10.96.107.213:8080.

Except for the selector of Service, some parameters can be automatically configured if
they are bypassed by users. One parameter is the labels of the Pod; another is the
name of the Service; and the other is the exposed port of the Service. Let's take a look
at how this simple set of Pod and Service can be managed:

// create a Pod and a Service for it
$ kubectl run nginx-no-label --image=nginx --port=80 --restart="Never"
&& kubectl expose pod nginx-no-label
pod "nginx-no-label" created
service "nginx-no-label" exposed
// take a lookat the configurations of the Service
$ kubectl describe svc nginx-no-label
Name: nginx-no-label
Namespace: default
Labels: run=nginx-no-label
Annotations: <none>
Selector: run=nginx-no-label
Type: ClusterIP
IP: 10.105.96.243
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 192.168.79.10:80
Session Affinity: None
Events: <none>

Walking through Kubernetes Concepts Chapter 13

[356]

Here, we can see that the Service inherited the name, label, and port from the Pod.
The selector was assigned the dummy label with the key named run and the value
named as Pod's name, which is just the same dummy one of Pod nginx-no-label.
Users should access the Service through port 80, as well. For such simple settings,
you can alternatively try the following command to create the Pods and Service at the
same time:

// through leveraging tag "--expose", create the Service along with
Pod
$ kubectl run another-nginx-no-label --image=nginx --port=80 --
restart="Never" --expose
service "another-nginx-no-label" created
pod "another-nginx-no-label" created

Creating a Service for a Deployment with an external IP
Kubernetes Deployment is the ideal resource type for a Service. For Pods supervised
by the ReplicaSet and Deployment, the Kubernetes system has a controller manager
to look over the their life cycles. It is also helpful for updating the version or state of
the program by binding the existing Services to another Deployment. For the
following commands, we create a Deployment first, and attach a Service with an
external IP:

// using subcommand "run" and assign 2 replicas
$ kubectl run nginx-deployment --image=nginx --port=80 --replicas=2 --
labels="env=dev,project=My-Happy-Web,role=frontend"
deployment.apps "nginx-deployment" created
// explicitly indicate the selector of Service by tag "--selector",
and assign the Service an external IP by tag "--external-ip"
// the IP 192.168.122.102 demonstrated here is the IP of one of the
Kubernetes node in system
$ kubectl expose deployment nginx-deployment --port=8080 --target-
port=80 --name="another-nginx-service" --selector="project=My-Happy-
Web,role=frontend" --external-ip="192.168.122.102"
service "another-nginx-service" exposed

Let's go ahead and check the details of the newly created Service, another-nginx-
service:

$ kubectl describe svc another-nginx-service
Name: another-nginx-service
Namespace: default
Labels: env=dev
 project=My-Happy-Web
 role=frontend
Annotations: <none>

Walking through Kubernetes Concepts Chapter 13

[357]

Selector: project=My-Happy-Web,role=frontend
Type: ClusterIP
IP: 10.100.109.230
External IPs: 192.168.122.102
Port: <unset> 8080/TCP
TargetPort: 80/TCP
Endpoints: 192.168.79.15:80,192.168.79.21:80,192.168.79.24:80
Session Affinity: None
Events: <none>

Apart from the Service IP (in the case of the preceding command, 10.100.109.230),
which can be accessed within the Kubernetes system, the Service can now be
connected through an external one (192.168.122.102, for example) beyond the
Kubernetes system. While the Kubernetes master is able to communicate with every
node, in this case, we can fire a request to the Service such as the following command:

$ curl 192.168.122.102:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

Creating a Service for an Endpoint without a selector
First, we are going to create an Endpoint directing the external service. A Kubernetes
Endpoint is an abstraction, making components beyond Kubernetes (for instance, a
database in other system) become a part of Kubernetes resources. It provides a
feasible use case for a hybrid environment. To create an endpoint, an IP address,
along with a port, is required. Please take a look at the following template:

$ cat k8s-endpoint.yaml
apiVersion: v1
kind: Endpoints
metadata:
 name: k8s-ep
subsets:
 - addresses:
 - hostname: kubernetes-io
 ip: 45.54.44.100
 ports:
 - port: 80

Walking through Kubernetes Concepts Chapter 13

[358]

The template defines an Endpoint named k8s-ep, which points to the IP of the host
of the official Kubernetes website (https:/ / kubernetes. io). Never mind that this
Endpoint forwards to a plain HTML; we just take this Endpoint as an example. As
mentioned, Endpoint is not a resource supported by the Kubernetes API for exposing:

// Give it a try!
$ kubectl expose -f k8s-endpoint.yaml
error: cannot expose a { Endpoints}

In Kubernetes, an Endpoint not only represents an external service; an internal
Kubernetes Service is also a Kubernetes Endpoint. You can check Endpoint resources
with the command kubectl get endpoints. You will find that there is not a single
endpoint k8s-ep (which you just created), but many endpoints named the same as
the Services in previous pages. When a Service is created with a selector and exposes
certain resources (such as a Pod, Deployment, or other Service), a corresponding
Endpoint with the same name is created at the same time.

Therefore, we still can create a Service associated with the Endpoint using an identical
name, as in the following template:

$ cat endpoint-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: k8s-ep
spec:
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 80

The relationship between the Endpoints and the Service is built up with the resource
name. For the Service k8s-ep, we didn't indicate the selector, since it did not actually
take any Pod in responsibility:

// go create the Service and the endpoint
$ kubectl create -f endpoint-service.yaml && kubectl create -f k8s-
endpoint.yaml
service "k8s-ep" created
endpoints "k8s-ep" created
// verify the Service k8s-ep
$ kubectl describe svc k8s-ep
Name: k8s-ep
Namespace: default
Labels: <none>
Annotations: <none>

https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io

Walking through Kubernetes Concepts Chapter 13

[359]

Selector: <none>
Type: ClusterIP
IP: 10.105.232.226
Port: <unset> 8080/TCP
TargetPort: 80/TCP
Endpoints: 45.54.44.100:80
Session Affinity: None
Events: <none>

Now you can see that the endpoint of the Service is just the one defined in k8s-
endpoint.yaml. It is good for us to access the outside world through the Kubernetes
Service! In the case earlier, we can verify the result with the following command:

$ curl 10.105.232.226:8080

Creating a Service for another Service with session affinity
While building a Service over another, we may think of multiple layers for port
forwarding. In spite of redirecting traffic from one port to another, the action of
exposing a Service is actually copying the setting of one Service to another. This
scenario could be utilized as updating the Service setting, without causing headaches
to current clients and servers:

// create a Service by expose an existed one
// take the one we created for Deployment for example
$ kubectl expose svc another-nginx-service --port=8081 --target-
port=80 --name=yet-another-nginx-service --session-affinity="ClientIP"
service "yet-another-nginx-service" exposed
// check the newly created Service
$ kubectl describe svc yet-another-nginx-service
Name: yet-another-nginx-service
Namespace: default
Labels: env=dev
 project=My-Happy-Web
 role=frontend
Annotations: <none>
Selector: project=My-Happy-Web,role=frontend
Type: ClusterIP
IP: 10.110.218.136
Port: <unset> 8081/TCP
TargetPort: 80/TCP
Endpoints: 192.168.79.15:80,192.168.79.21:80,192.168.79.24:80
Session Affinity: ClientIP
Events: <none>

Walking through Kubernetes Concepts Chapter 13

[360]

Here we are! We successfully exposed another Service with similar settings to the
Service another-nginx-service. The commands and output can be summarized as
follows:

A new Service name is required: Although we can copy the configurations
from another Service, the name of the resource type should always be
unique. When exposing a Service without the tag --name, you will get the
error message: Error from server (AlreadyExists): services
"another-nginx-service" already exists.
Adding or updating the configuration is workable: We are able to add a
new configuration, like adding session affinity; or we can update the port
of the Service, like here, where we change to open port 8081 instead of
8080.
Avoid changing target port: Because the target port is along with the IP of
the Pods, once the Service exposing changes the target port, the newly
copied Service cannot forward traffic to the same endpoints. In the
preceding example, since the new target port is defined, we should point
out the container port again. It prevented the new Service from using the
target port as the container port and turned out a misleading transaction.

With session affinity, the list of description tags session affinity as ClientIP. For the
current Kubernetes version, the client IP is the only option for session affinity. It takes
the action as a hash function: with the same IP address, the request will always send
to the identical Pod. However, this could be a problem if there is a load balancer or
ingress controller in front of the Kubernetes Service: the requests would be
considered to come from the same source, and the traffic forwarded to a single Pod.
Users have to handle this issue on their own, for example, by building an HA proxy
server instead of using the Kubernetes Service.

Deleting a Service
If you go through every command in this section, there are definitely some
demonstrated Kubernetes Services (we counted six of them) that should be removed.
To delete a Service, the same as with any other Kubernetes resource, you can remove
the Service with the name or the configuration file through the subcommand delete.
When you try to remove the Service and the Endpoint at the same time, the following
situation will happen:

// the resource abbreviation of endpoint is "ep", separate different
resource types by comma
$ kubectl delete svc,ep k8s-ep

Walking through Kubernetes Concepts Chapter 13

[361]

service "k8s-ep" deleted
Error from server (NotFound): endpoints "k8s-ep" not found

This is because a Service is also a Kubernetes Endpoint. That's why, although we
created the Service and the endpoint separately, once they are considered to work as a
unit, the Endpoint is going to be removed when the Service is removed. Thus, the
error message expresses that there is no endpoint called k8s-ep, since it was already
removed with the Service deletion.

How it works...
On the network protocol stack, the Kubernetes Service relies on the transport layer,
working together with the overlay network and kube-proxy. The overlay network
of Kubernetes builds up a cluster network by allocating a subnet lease out of a pre-
configured address space and storing the network configuration in etcd; on the other
hand, kube-proxy helps to forward traffic from the endpoints of Services to the Pods
through iptables settings.

Proxy-mode and Service kube-proxy currently has three modes
with different implementation methods: userspace, iptables,
and ipvs. The modes affect how the requests of clients reach to
certain Pods through the Kubernete Service:

userspace: kube-proxy opens a random port, called a
proxy port, for each Service on the local node, then
updates the iptables rules, which capture any request
sent to the Service and forward it to the proxy port. In the
end, any message sent to the proxy port will be passed to
the Pods covered by the Service. It is less efficient, since
the traffic is required to go to kube-proxy for routing to
the Pod.
iptables: As with the userspace mode, there are also
required iptables rules for redirecting the client traffic.
But there is no proxy port as mediator. Faster but need to
take care the liveness of Pod. By default, there is no way
for a request to retry another Pod if the target one fails. To
avoid accessing the unhealthy Pod, health-checking Pods
and updating iptables in time is necessary.

Walking through Kubernetes Concepts Chapter 13

[362]

ipvs: ipvs is the beta feature in Kubernetes v1.9. In this
mode, kube-proxy builds up the interface called netlink
between the Service and its backend set. The ipvs mode
takes care of the downside in both userspace and
iptables; it is even faster, since the routing rules stored
a hash table structure in the kernel space, and even
reliable that kube-proxy keeps checking the consistency
of netlinks. ipvs even provides multiple load balancing
options.

The system picks the optimal and stable one as the default setting
for kube-proxy. Currently, it is the mode iptables.

When a Pod tries to communicate with a Service, it can find the Service through
environment variables or a DNS host lookup. Let's give it a try in the following
scenario of accessing a service in a Pod:

// run a Pod first, and ask it to be alive 600 seconds
$ kubectl run my-1st-centos --image=centos --restart=Never sleep 600
pod "my-1st-centos" created
// run a Deployment of nginx and its Service exposing port 8080 for
nginx
$ kubectl run my-nginx --image=nginx --port=80
deployment.apps "my-nginx" created
$ kubectl expose deployment my-nginx --port=8080 --target-port=80 --
name="my-nginx-service"
service "my-nginx-service" exposed
// run another pod
$ kubectl run my-2nd-centos --image=centos --restart=Never sleep 600
pod "my-2nd-centos" created
//Go check the environment variables on both pods.
$ kubectl exec my-1st-centos -- /bin/sh -c export
$ kubectl exec my-2nd-centos -- /bin/sh -c export

You will find that the Pod my-2nd-centos comes out with additional variables
showing information for the Service my-nginx-service, as follows:

export MY_NGINX_SERVICE_PORT="tcp://10.104.218.20:8080"
export MY_NGINX_SERVICE_PORT_8080_TCP="tcp://10.104.218.20:8080"
export MY_NGINX_SERVICE_PORT_8080_TCP_ADDR="10.104.218.20"
export MY_NGINX_SERVICE_PORT_8080_TCP_PORT="8080"
export MY_NGINX_SERVICE_PORT_8080_TCP_PROTO="tcp"
export MY_NGINX_SERVICE_SERVICE_HOST="10.104.218.20"
export MY_NGINX_SERVICE_SERVICE_PORT="8080"

Walking through Kubernetes Concepts Chapter 13

[363]

This is because the system failed to do a real-time update for Services; only the Pods
created subsequently can be applied to accessing the Service through environment
variables. With this ordering-dependent constraint, pay attention to running your
Kubernetes resources in a proper sequence if they have to interact with each other in
this way. The keys of the environment variables representing the Service host are
formed as <SERVICE NAME>_SERVICE_HOST, and the Service port is like <SERVICE
NAME>_SERVICE_PORT. In the preceding example, the dash in the name is also
transferred to the underscore:

// For my-2nd-centos, getting information of Service by environment
variables
$ kubectl exec my-2nd-centos -- /bin/sh -c 'curl
$MY_NGINX_SERVICE_SERVICE_HOST:$MY_NGINX_SERVICE_SERVICE_PORT'
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

Nevertheless, if the kube-dns add-on is installed, which is a DNS server in the
Kubernetes system, any Pod in the same Namespace can access the Service, no matter
when the Service was created. The hostname of the Service would be formed as
<SERVICE NAME>.<NAMESPACE>.svc.cluster.local. cluster.local is the
default cluster domain defined in booting kube-dns:

// go accessing my-nginx-service by A record provided by kube-dns
$ kubectl exec my-1st-centos -- /bin/sh -c 'curl my-nginx-
service.default.svc.cluster.local:8080'
$ kubectl exec my-2nd-centos -- /bin/sh -c 'curl my-nginx-
service.default.svc.cluster.local:8080'

There's more...
The Kubernetes Service has four types: ClusterIP, NodePort, LoadBalancer, and
ExternalName. In the How to do it... section in this recipe, we only demonstrate the
default type, ClusterIP. The type ClusterIP indicates that the Kubernetes Service
is assigned a unique virtual IP in the overlay network, which also means the identity
in this Kubernetes cluster. ClusterIP guarantees that the Service is accessible
internally.

Walking through Kubernetes Concepts Chapter 13

[364]

The following diagram expresses the availability coverage of the types, and their
entry points:

Four Service types and their entry points

For the NodePort type, it covers the ClusterIP's features, has a peer-accessible
virtual IP, and also allows the user to expose Services on each node with the same
port. The type LoadBalancer is on the top of the other two types. The
LoadBalancer Service would be exposed internally and on the node. More than that,
if your cloud provider supports external load balancing servers, you can bind the
load balancer IP to the Service, and this will become another exposing point. On the
other hand, the type ExternalName is used for the endpoint out of your Kubernetes
system. It is similar to the Endpoint we created with the configuration file in a
previous section; moreover, a single ExternalName Service can provide this feature.

We can use the subcommand create to create Services in different types:

// create a NodePort Service
// the tag "tcp" is for indicating port configuration:
SERVICE_PORT:TARGET_PORT
$ kubectl create service nodeport my-nginx --tcp=8080:80
service "my-nginx" created
$ kubectl describe svc my-nginx
Name: my-nginx

Walking through Kubernetes Concepts Chapter 13

[365]

Namespace: default
Labels: app=my-nginx
Annotations: <none>
Selector: app=my-nginx
Type: NodePort
IP: 10.105.106.134
Port: 8080-80 8080/TCP
TargetPort: 80/TCP
NodePort: 8080-80 31336/TCP
Endpoints: <none>
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

In this example of the NodePort Service, you can see that it still has the virtual IP
(10.105.106.134) in the cluster, and can be accessed through port 31336 of any
Kubernetes node:

// run an nginx Deployment with the label as NodePort Service my-
nginx's selector
$ kubectl run test-nodeport --image=nginx --labels="app=my-nginx"
deployment.apps "test-nodeport" created
// check the Kubernetes node with Service port on the node
$ curl ubuntu02:31336
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

In the case here, we demonstrate creating an ExternalName Service which exposes
the CNAME kubernetes.io:

$ kubectl create service externalname k8s-website --external-name
kubernetes.io
service "k8s-website" created
// create a CentOS Pod for testing the Service availability
$ kubectl run my-centos --image=centos --restart=Never sleep 600
pod "my-centos" created
//now you can check the Service by Service's DNS name
$ kubectl exec -it my-centos -- /bin/sh -c 'curl k8s-
website.default.svc.cluster.local '
//Check all the Services we created in this section
//ExternalName Service has no cluster IP as defined
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
k8s-website ExternalName <none> kubernetes.io

Walking through Kubernetes Concepts Chapter 13

[366]

<none> 31m
kubernetes ClusterIP 10.96.0.1 <none>
443/TCP 14d
my-nginx NodePort 10.105.106.134 <none>
8080:31336/TCP 1h

Yet, we cannot build an ExternalName Service in CLI with the subcommand
expose, because expose works on exposing the Kubernetes resources, while the
ExternalName Service is for the resources in the outside world. Then, it is also
reasonable that the ExternalName Service doesn't need to be defined with the
selector.

Using the subcommand "create" to create Services
While using the subcommand create on Service creation, the
command line would look like this: kubectl create service
<SERVICE TYPE> <SERVICE NAME> [OPTIONS]. And we can put
the Service types at <SERVICE TYPE>, such as clusterip,
nodeport, loadbalancer, and externalname. With this method,
we cannot specify the selector of the Service. As with the
NodePort Service we created in that section, only a default
selector, app: my-nginx, is created, and we have to assign this
label to a later created Deployment test-nodeport. Except for the
type ExternalName, Service types can be created with the
subcommand expose with the tag type. Try to create the
NodePort service with kubectl expose for existing resources!

See also
To get the best practices of Kubernetes Services, the following recipes in Chapter
13, Walking though Kubernetes Concepts, are suggested reading:

Deployment API
Working with Secrets
Working with labels and selectors

Walking through Kubernetes Concepts Chapter 13

[367]

There is more advanced knowledge to make your service more functional and
flexible. Stay tuned:

Forwarding container ports section in Chapter 14, Playing with Containers
Ensuring flexible usage of your containers section in Chapter 14, Playing with
Containers

Working with volumes
Files in a container are ephemeral. When the container is terminated, the files are
gone. Docker has introduced data volumes to help us persist data (https:/ / docs.
docker.com/engine/ admin/ volumes/ volumes). However, when it comes to multiple
hosts, as a container cluster, it is hard to manage volumes across all the containers
and hosts for file sharing or provisioning volume dynamically. Kubernetes introduces
volume, which lives with a Pod across a container life cycle. It supports various types
of volumes, including popular network disk solutions and storage services in
different public clouds. Here are a few:

Volume type Storage provider
emptyDir Localhost
hostPath Localhost
glusterfs GlusterFS cluster
downwardAPI Kubernetes Pod information
nfs NFS server
awsElasticBlockStore Amazon Web Service Amazon Elastic Block Store
gcePersistentDisk Google Compute Engine persistent disk
azureDisk Azure disk storage

projected
Kubernetes resources; currently supports secret,
downwardAPI, and configMap

secret Kubernetes Secret resource
vSphereVolume vSphere VMDK volume
gitRepo Git repository

https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes
https://docs.docker.com/engine/admin/volumes/volumes

Walking through Kubernetes Concepts Chapter 13

[368]

Getting ready
Storage providers are required when you start to use volume in Kubernetes, except
for emptyDir, which will be erased when the Pod is removed. For other storage
providers, folders, servers, or clusters have to be built before using them in the Pod
definition. Dynamic provisioning was promoted to stable in Kubernetes version 1.6,
which allows you to provision storage based on the supported cloud provider.

In this section, we'll walk through the details of emptyDir, hostPath, nfs,
glusterfs, downwardAPI, and gitRepo. Secret, which is used to store credentials,
will be introduced in the next section. Projected, on the other hand, is a way one
could group other volume resources under one single mount point. As it only
supports secret, downwardAPI, and configMap, we'll be introducing this in the
Secret section, as well. The rest of the volume types have similar Kubernetes syntax,
just with different backend volume implementations.

How to do it...
Volumes are defined in the volumes section of the pod definition with unique names.
Each type of volume has a different configuration to be set. Once you define the
volumes, you can mount them in the volumeMounts section in the container specs.
volumeMounts.name and volumeMounts.mountPath are required, which indicate
the name of the volumes you defined and the mount path inside the container,
respectively.

We'll use the Kubernetes configuration file with the YAML format to create a Pod
with volumes in the following examples.

emptyDir
emptyDir is the simplest volume type, which will create an empty volume for
containers in the same Pod to share. When the Pod is removed, the files in emptyDir
will be erased, as well. emptyDir is created when a Pod is created. In the following
configuration file, we'll create a Pod running Ubuntu with commands to sleep for
3600 seconds. As you can see, one volume is defined in the volumes section with
name data, and the volumes will be mounted under the /data-mount path in the
Ubuntu container:

// configuration file of emptyDir volume
cat 2-6-1_emptyDir.yaml

Walking through Kubernetes Concepts Chapter 13

[369]

apiVersion: v1
kind: Pod
metadata:
 name: ubuntu
 labels:
 name: ubuntu
spec:
 containers:
 - image: ubuntu
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 volumeMounts:
 - mountPath: /data-mount
 name: data
 volumes:
 - name: data
 emptyDir: {}

// create pod by configuration file emptyDir.yaml
kubectl create -f 2-6-1_emptyDir.yaml
pod "ubuntu" created

Check which node the Pod is running on
By using the kubectl describe pod <Pod name> | grep Node
command, you can check which node the Pod is running on.

After the Pod is running, you can use docker inspect <container ID> on the
target node and you can see the detailed mount points inside your container:

 "Mounts": [
 ...
 {
 "Type": "bind",
 "Source": "/var/lib/kubelet/pods/98c7c676-
e9bd-11e7-9e8d-080027ac331c/volumes/kubernetes.io~empty-dir/data",
 "Destination": "/data-mount",
 "Mode": "",
 "RW": true,
 "Propagation": "rprivate"
 }
 ...
]

Walking through Kubernetes Concepts Chapter 13

[370]

Kubernetes mounts
/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~empty-

dir/<volumeMount name> to /data-mount for the Pod to use. If you create a Pod
with more than one container, all of them will mount the same destination /data-
mount with the same source. The default mount propagation is rprivate, which
means any mount points on the host are invisible in the container, and vice versa.

emptyDir could be mounted as tmpfs by setting emptyDir.medium as Memory.

Taking the previous configuration file 2-6-1_emptyDir_mem.yaml as an example, it
would be as follows:

volumes:
 -
 name: data
 emptyDir:
 medium: Memory

We could verify whether it's successfully mounted with the kubectl exec
<pod_name> <commands> command. We'll run the df command in this container:

kubectl exec ubuntu df
Filesystem 1K-blocks Used Available Use% Mounted on
...
tmpfs 1024036 0 1024036 0% /data-mount
...

Note that tmpfs is stored in memory instead of in the filesystem. No file will be
created, and it'll be flushed in every reboot. In addition, it is constrained by memory
limits in Kubernetes. For more information about container resource constraint, refer
to Working with Namespace in this chapter.

If you have more than one container inside a Pod, the Kubectl exec command will
be kubectl exec <pod_name> <container_name> <commands>.

Walking through Kubernetes Concepts Chapter 13

[371]

hostPath
hostPath acts as data volume in Docker. The local folder on a node listed in
hostPath will be mounted into the Pod. Since the Pod can run on any nodes,
read/write functions happening in the volume could explicitly exist in the node on
which the Pod is running. In Kubernetes, however, the Pod should not be node-
aware. Please note that the configuration and files might be different on different
nodes when using hostPath. Therefore, the same Pod, created by the same
command or configuration file, might act differently on different nodes.

By using hostPath, you're able to read and write the files between containers and
localhost disks of nodes. What we need for volume definition is for hostPath.path
to specify the target mounted folder on the node:

apiVersion: v1
cat 2-6-2_hostPath.yaml
kind: Pod
metadata:
 name: ubuntu
spec:
 containers:
 -
 image: ubuntu
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 volumeMounts:
 -
 mountPath: /data-mount
 name: data
 volumes:
 -
 name: data
 hostPath:
 path: /tmp/data

Using docker inspect to check the volume details, you will see the volume on the
host is mounted in the /data-mount destination:

"Mounts": [
 {
 "Type": "bind",
 "Source": "/tmp/data",
 "Destination": "/data-mount",

Walking through Kubernetes Concepts Chapter 13

[372]

 "Mode": "",
 "RW": true,
 "Propagation": "rprivate"
 },
 ...
]

If we run kubectl exec ubuntu touch /data-mount/sample, we should be able
to see one empty file, named sample under /tmp/data, on the host.

NFS
You can mount an network filesystem (NFS) to your Pod as nfs volume. Multiple
Pods can mount and share the files in the same nfs volume. The data stored into nfs
volume will be persistent across the Pod lifetime. You have to create your own NFS
server before using nfs volume, and make sure the nfs-utils package is installed
on Kubernetes minions.

Check whether your NFS server works before you go. You should
check out the /etc/exports file with a proper sharing parameter
and directory, and use the mount -t nfs <nfs server>:<share
name> <local mounted point> command to check whether it
could be mounted locally.

The configuration file of the volume type with NFS is similar to others, but
nfs.server and nfs.path are required in the volume definition to specify NFS
server information and the path mounted from. nfs.readOnly is an optional field
for specifying whether the volume is read-only or not (the default is false):

configuration file of nfs volume
$ cat 2-6-3_nfs.yaml
apiVersion: v1
kind: Pod
metadata:
 name: nfs
spec:
 containers:
 -
 name: nfs
 image: ubuntu
 volumeMounts:
 - name: nfs
 mountPath: "/data-mount"
 volumes:

Walking through Kubernetes Concepts Chapter 13

[373]

 - name: nfs
 nfs:
 server: <your nfs server>
 path: "/"

After you run kubectl create –f 2-6-3_nfs.yaml, you can describe your Pod
with kubectl describe <pod name> to check the mounting status. If it's mounted
successfully, it should show conditions. Ready as true and the target nfs you mount:

Conditions:
 Type Status
 Ready True
Volumes:
 nfs:
 Type: NFS (an NFS mount that lasts the lifetime of a pod)
 Server: <your nfs server>
 Path: /
 ReadOnly: false

If we inspect the container with the docker command, we can see the volume
information in the Mounts section:

"Mounts": [
 {
 "Source":
"/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~nfs/nfs",
 "Destination": "/data-mount",
 "Mode": "",
 "RW": true
 },
 ...
]

Actually, Kubernetes just mounts your <nfs server>:<share name> into
/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~nfs/nfs, and then
mounts it into the container as the destination in /data-mount. You could also use
kubectl exec to touch the file, to test whether it's perfectly mounted.

Walking through Kubernetes Concepts Chapter 13

[374]

glusterfs
GlusterFS (https:/ /www. gluster. org) is a scalable, network-attached storage
filesystem. The glusterfs volume type allows you to mount GlusterFS volume into
your Pod. Just like NFS volume, the data in glusterfs volume is persistent across
the Pod lifetime. If the Pod is terminated, the data is still accessible in glusterfs
volume. You should build the GlusterFS system before using glusterfs volume.

Check whether glusterfs works before you go. By using
glusterfs volume information on GlusterFS servers, you can see
currently available volumes. By using mount -t glusterfs
<glusterfs server>:/<volume name> <local mounted

point> on local, you can check whether the GlusterFS system can
be successfully mounted.

Since the volume replica in GlusterFS must be greater than 1, let's assume we have
two replicas in the servers gfs1 and gfs2, and the volume name is gvol.

First, we need to create an endpoint acting as a bridge for gfs1 and gfs2:

$ cat 2-6-4_gfs-endpoint.yaml
kind: Endpoints
apiVersion: v1
metadata:
 name: glusterfs-cluster
subsets:
 -
 addresses:
 -
 ip: <gfs1 server ip>
 ports:
 -
 port: 1
 -
 addresses:
 -
 ip: <gfs2 server ip>
 ports:
 -
 port: 1

create endpoints
$ kubectl create –f 2-6-4_gfs-endpoint.yaml

https://www.gluster.org
https://www.gluster.org
https://www.gluster.org
https://www.gluster.org
https://www.gluster.org
https://www.gluster.org
https://www.gluster.org
https://www.gluster.org
https://www.gluster.org

Walking through Kubernetes Concepts Chapter 13

[375]

Then, we can use kubectl get endpoints to check the endpoint was created
properly:

$kubectl get endpoints
NAME ENDPOINTS AGE
glusterfs-cluster <gfs1>:1,<gfs2>:1 12m

After that, we should be able to create the Pod with glusterfs volume by
glusterfs.yaml. The parameters of the glusterfs volume definition are
glusterfs.endpoints, which specify the endpoint name we just created, and
glusterfs.path, which is the volume name gvol. glusterfs.readOnly is used to
set whether the volume is mounted in read-only mode:

$ cat 2-6-4_glusterfs.yaml
apiVersion: v1
kind: Pod
metadata:
 name: ubuntu
spec:
 containers:
 -
 image: ubuntu
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 volumeMounts:
 -
 mountPath: /data-mount
 name: data
 volumes:
 -
 name: data
 glusterfs:
 endpoints: glusterfs-cluster
 path: gvol

Let's check the volume setting with kubectl describle:

Volumes:
 data:
 Type: Glusterfs (a Glusterfs mount on the host that shares a pod's
lifetime)
 EndpointsName: glusterfs-cluster
 Path: gvol
 ReadOnly: false

Walking through Kubernetes Concepts Chapter 13

[376]

Using docker inspect, you should be able to see that the mounted source is
/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~glusterfs/data to
the destination /data-mount.

downwardAPI
downwardAPI volume is used to expose Pod information into a container. The
definition of downwardAPI is a list of items. An item contains a path and fieldRef.
Kubernetes will dump the specified metadata listed in fieldRef to a file named
path under mountPath and mount the <volume name> into the destination you
specified. Currently supported metadata for downwardAPI volume includes:

Field path Scope Definition
spec.nodeName Pod The node that the Pod is running on

spec.serviceAccountName Pod The service account associating with the
current Pod

metadata.name Pod The name of the Pod
metadata.namespace Pod The Namespace that the Pod belongs to
metadata.annotations Pod The annotations of the Pod
metadata.labels Pod The labels of the Pod
status.podIP Pod The ip of the Pod
limits.cpu Container The CPU limits of the container
requests.cpu Container The CPU requests of the container
limits.memory Container The memory limits of the container
requests.memory Container The memory requests of the container

limits.ephemeral-storage Container The ephemeral storage limits of the
container

requests.ephemeral-storage Container The ephemeral storage requests of the
container

We use fieldRef.fieldPath if the scope is with a Pod; resourceFieldRef is used
when the scope is with a container. For example, the following configuration file
could expose metadata.labels in /data-mount volume in an Ubuntu container:

// pod scope example
cat 2-6-5_downward_api.yaml
apiVersion: v1
kind: Pod
metadata:

Walking through Kubernetes Concepts Chapter 13

[377]

 name: downwardapi
 labels:
 env: demo
spec:
 containers:
 -
 name: downwardapi
 image: ubuntu
 command:
 - sleep
 - "3600"
 volumeMounts:
 - name: podinfo
 mountPath: "/data-mount"
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: metadata
 fieldRef:
 fieldPath: metadata.labels

By describing the pod, we could check that the volume is mounted successfully to
/data-mount, and metadata.labels is pointed to the metadata file:

// describe the pod
kubectl describe pod downwardapi
...
 Mounts:
 /data-mount from podinfo (rw)
...
Volumes:
 podinfo:
 Type: DownwardAPI (a volume populated by information about the
pod)
 Items:
 metadata.labels -> metadata

We could check the file inside the container with kubectl exec downwardapi cat
/data-mount/metadata, and you should be able to see env="example" presents.

If it's in the container scope, we'll have to specify the container name:

cat 2-6-5_downward_api_container.yaml
apiVersion: v1
kind: Pod
metadata:
 name: downwardapi-container

Walking through Kubernetes Concepts Chapter 13

[378]

spec:
 containers:
 -
 name: downwardapi
 image: ubuntu
 command:
 - sleep
 - "3600"
 volumeMounts:
 - name: podinfo
 mountPath: "/data-mount"
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: downwardapi
 resource: limits.cpu

We could use the docker inspect <container_name> command inside a node to
check the implementation:

{
 "Source":
"/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~downward-api/<volume
name>",
 "Destination": "/data-mount",
 "Mode": "",
 "RW": true
 }

Kubernetes exposes pod information in source volume, and mounts it to /data-
mount.

For the IP of the Pod, using environment variable to propagate in Pod spec would be
must easier:

spec:
 containers:
 - name: envsample-pod-info
 env:
 - name: MY_POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

Walking through Kubernetes Concepts Chapter 13

[379]

The sample folder in the Kubernetes GitHub (https:/ / kubernetes. io/docs/ tasks/
inject-data-application/ downward- api-volume- expose- pod- information)
contains more examples for both environment variables and downwardAPI volume.

gitRepo
gitRepo is a convenient volume type that clones your existing Git repository into a
container:

// an example of how to use gitRepo volume type
cat 2-6-6_gitRepo.yaml
apiVersion: v1
kind: Pod
metadata:
 name: gitrepo
spec:
 containers:
 - image: ubuntu
 name: ubuntu
 command:
 - sleep
 - "3600"
 volumeMounts:
 - mountPath: /app
 name: app-git
 volumes:
 - name: app-git
 gitRepo:
 repository:
"https://github.com/kubernetes-cookbook/second-edition.git"
 revision: "9d8e845e2f55a5c65da01ac4235da6d88ef6bcd0"

kubectl create -f 2-6-6_gitRepo.yaml
pod "gitrepo" created

In the preceding example, the volume plugin mounts an empty directory and runs
the git clone <gitRepo.repolist> to clone the repository into it. Then the Ubuntu
container will be able to access it.

https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information
https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information

Walking through Kubernetes Concepts Chapter 13

[380]

There's more...
In the previous cases, the user needs to know the details of the storage provider.
Kubernetes provides PersistentVolumes and PersistentVolumeClaim to
abstract the details of the storage provider and storage consumer.

PersistentVolumes
An illustration of PersistentVolume is shown in the following graph. First, the
administrator provisions the specification of a PersistentVolume. Then the
consumer requests for storage with PersistentVolumeClaim. Finally, the Pod
mounts the volume with the reference of PersistentVolumeClaim:

PersistentVolumeClaims is an abstract layer to decouple volumes for a Pod and physical volume resource

Here is an example using NFS. The administrator needs to provision and allocate
PersistentVolume first:

example of PV with NFS

Walking through Kubernetes Concepts Chapter 13

[381]

$ cat 2-6-7_pv.yaml
 apiVersion: "v1"
 kind: "PersistentVolume"
 metadata:
 name: "pvnfs01"
 spec:
 capacity:
 storage: "3Gi"
 accessModes:
 - "ReadWriteOnce"
 nfs:
 path: "/"
 server: "<your nfs server>"
 persistentVolumeReclaimPolicy: "Recycle"

create the pv
$ kubectl create -f 2-6-7_pv.yaml
persistentvolume "pvnfs01" created

We can see that there are three parameters here: capacity, accessModes, and
persistentVolumeReclaimPolicy. capacity is the size of this
PersistentVolume. Now, accessModes is based on the capability of the storage
provider and can be set to a specific mode during provision. For example, NFS
supports multiple readers and writers simultaneously—then we can specify the
accessModes as one of ReadWriteOnce, ReadOnlyMany, or ReadWriteMany.
Now, persistentVolumeReclaimPolicy is used to define the behavior when
PersistentVolume is released. The currently supported policy is retain and recycle
for nfs and hostPath. You have to clean the volume by yourself in retain mode; on
the other hand, Kubernetes will scrub the volume in recycle mode.

PV is a resource like a node. We could use kubectl get pv to see current
provisioned PVs:

list current PVs
$ kubectl get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pvnfs01 <none> 3Gi RWO Bound default/pvclaim01 37m

Next, we will need to bind PersistentVolume with PersistentVolumeClaim in
order to mount it as volume into the pod:

example of PersistentVolumeClaim
$ cat claim.yaml
apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:

Walking through Kubernetes Concepts Chapter 13

[382]

 name: "pvclaim01"
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

create the claim
$ kubectl create -f claim.yaml
persistentvolumeclaim "pvclaim01" created

list the PersistentVolumeClaim (pvc)
$ kubectl get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
pvclaim01 <none> Bound pvnfs01 3Gi RWO 59m

The constraints of accessModes and storage can be set in PersistentVolumeClaim.
If the claim is bound successfully, its status will turn to Bound; on the other hand, if
the status is Unbound, it means there is no PV currently matching the requests.

Then we are able to mount the PV as volume with the reference of
PersistentVolumeClaim:

example of mounting into Pod
$ cat nginx.yaml
apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 project: pilot
 environment: staging
 tier: frontend
spec:
 containers:
 -
 image: nginx
 imagePullPolicy: IfNotPresent
 name: nginx
 volumeMounts:
 - name: pv
 mountPath: "/usr/share/nginx/html"
 ports:
 - containerPort: 80
 volumes:
 - name: pv

Walking through Kubernetes Concepts Chapter 13

[383]

 persistentVolumeClaim:
 claimName: "pvclaim01"

create the pod
$ kubectl create -f nginx.yaml
pod "nginx" created

It will be similar syntax to other volume types. Just add the claimName of
persistentVolumeClaim in the volume definition. We are all set! Let's check the
details to see whether we mounted it successfully:

check the details of a pod
$ kubectl describe pod nginx
...
Volumes:
 pv:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
 ClaimName: pvclaim01
 ReadOnly: false
...

We can see we have a volume mounted in the Pod nginx with the type pv
pvclaim01. Use docker inspect to see how it is mounted:

"Mounts": [
 {
 "Source":
"/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~nfs/pvnfs01",
 "Destination": "/usr/share/nginx/html",
 "Mode": "",
 "RW": true
 },
 ...
]

Kubernetes mounts
/var/lib/kubelet/pods/<id>/volumes/kubernetes.io~nfs/<

persistentvolume name> into the destination in the Pod.

Walking through Kubernetes Concepts Chapter 13

[384]

Using storage classes
In the cloud world, people provision storage or data volume dynamically. While
PersistentVolumeClaim is based on existing static PersistentVolume that is
provisioned by administrators, it might be really beneficial if the cloud volume could
be requested dynamically when it needs to be. Storage classes are designed to resolve
this problem. To make storage classes available in your cluster, three conditions need
to be met. First, the DefaultStorageClass admission controller has to be enabled.
Then PersistentVolumeClaim needs to request a storage class. The last condition is
trivial; administrators have to configure a storage class in order to make dynamic
provisioning work:

StorageClass dynamically allocates a PV and associates it with a PVC

Walking through Kubernetes Concepts Chapter 13

[385]

The default storage classes are various, basically based on your underlying cloud
provider. Storage classes are the abstract way to define underlying storage providers.
They have different syntax based on different types of providers. Default storage
classes can be changed, but cannot be deleted. The default storage class has an
annotation storageclass.beta.kubernetes.io/is-default-class=true on.
Removing that annotation can disable the dynamic provisioning. Moving the
annotation to another storage class can switch the default storage class. If no storage
classes have that annotation, dynamic provisioning will not be triggered when there
is a new PersistentVolumeClaim.

gcePersistentDisk
gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent
Disk (PD) into a Pod. If you provision it statically, you'll have to create it first with
the gcloud command or in the GCE console. The following is an example:

cat 2-6-8_gce/static_mount.yaml
apiVersion: v1
kind: Pod
metadata:
 name: gce-pd-pod
spec:
 containers:
 - image: nginx
 name: gce-pd-example
 volumeMounts:
 - mountPath: /mount-path
 name: gce-pd
 ports:
 - containerPort: 80
 volumes:
 - name: gce-pd
 gcePersistentDisk:
 pdName: example
 fsType: ext4

Alternatively, and more cost-effectively, we could use dynamic provisioning. Then
we don't need to provision PD beforehand. For enabling dynamic provisioning,
the DefaultStorageClass admission controller has to be enabled on the API server.
In some Kubernetes environments, it has been enabled by default, such as in GCE. We
could explicitly disable it by setting the storageClassName: "" in
Pod/Deployment/ReplicaSet configuration file.

Walking through Kubernetes Concepts Chapter 13

[386]

Next, we'll introduce how to create a non-default StorageClass:

// list storageclasses (sc)
kubectl get sc
NAME PROVISIONER
standard (default) kubernetes.io/gce-pd

We can see we have a default storage class named standard. If that's the desired
provider, then you don't need to create your own storage classes. In the following
example, we'll create a new storage class named example:

// gce storage class
cat 2-6-8_gce/storageclass.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: example
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 zones: us-central1-a
// create storage class
kubectl create -f storageclass.yaml
 storageclass "example" created

// check current storage classes
kubectl get sc
NAME PROVISIONER
example kubernetes.io/gce-pd
 standard (default) kubernetes.io/gce-pd

For the type, you can specify any storage type that GCE supports, such as pd-ssd.
You can specify zones by changing zone parameters, too. Next, we'll add a
PersistentVolumeClaim for using this storage class:

2-6-8_gce/pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gce-example
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: example
 resources:
 requests:
 storage: 5Gi

Walking through Kubernetes Concepts Chapter 13

[387]

// create pvc
kubectl create -f pvc.yaml
persistentvolumeclaim "gce-example" created

// check pvc status
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
gce-example Bound pvc-d04218e3-ede5-11e7-aef7-42010a8001f4 5Gi RWO
example 1h

This configuration file will create a PVC by specifying the storage class named
example. A PV will be created by the claim. When a PVC is in Bound status,
Kubernetes will always bind that PV to the matching PVC. Then, let's have a Pod
using this PVC:

cat 2-6-8_gce/pod.yaml
kind: Pod
apiVersion: v1
metadata:
 name: gce-pd-pod
spec:
 volumes:
 - name: gce-pd
 persistentVolumeClaim:
 claimName: gce-example
 containers:
 - name: gce-pd-example
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /mount-path
 name: gce-pd

// create a pod
kubectl create -f pod.yaml
pod "gce-pd-pod" created

// check the volume setting in pod
kubectl describe pod gce-pd-pod
...
Containers:
 gce-pd-example:
 Container ID:
 Mounts:
 /mount-path from gce-pd (rw)
...
Volumes:

Walking through Kubernetes Concepts Chapter 13

[388]

 gce-pd:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
 ClaimName: gce-example
 ReadOnly: false

We can see that gce-pd is mounted under /mount-path. Let's see if the volume has
been provisioned dynamically.

Alternatively, you could use gcloud compute disks list. gcloud in a
command-line tool in GCE.

awsElasticBlockStore
awsElasticBlockStore volume mounts an Amazon Web Service Elastic Block
Store (AWS EBS) volume. It's a service that provides persistent block storage for
Amazon EC2. Just like the GCE persistent disk, we can provision it statically or
dynamically.

To provision it statically, administrators have to create an EBS volume by the AWS
console or AWS CLI beforehand. The following is an example of how to mount an
existing EBS volume to the containers in a Deployment:

// example of how we used pre-created EBS volume.
cat 2-6-8_aws/static_mount.yaml
kind: Deployment
apiVersion: apps/v1
metadata:
 name: aws-ebs-deployment
spec:
 replicas: 2
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:
 volumes:
 - name: aws-ebs
 awsElasticBlockStore:
 volumeID: <ebs volume ID>
 fsType: ext4
 containers:
 - name: aws-ebs-example

Walking through Kubernetes Concepts Chapter 13

[389]

 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /mount-path
 name: aws-ebs

To provision it dynamically, on the other hand, just like how we demonstrated in the
GCE persistent disk, we first create a non-default storage class; you're free to use a
default storage class as well. Here, our environment is provisioned by kops (https:/ /
github.com/kubernetes/ kops; for more information, please refer to Chapter 17,
Building Kubernetes on AWS). The environment has been bound with the required IAM
policies, such as ec2:AttachVolume, ec2:CreateVolume, ec2:DetachVolume, and
ec2:DeleteVolume. If you provision it from scratch, be sure that you have required
policies attaching to the masters:

// declare a storage class
cat 2-6-8_aws/storageclass.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: example-ebs
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1
 zones: us-east-1a

// create storage class
kubectl create -f storageclass.yaml
storageclass "example-ebs" created

// check if example-ebs sc is created
kubectl get sc
NAME PROVISIONER
default kubernetes.io/aws-ebs
example-ebs kubernetes.io/aws-ebs
gp2 (default) kubernetes.io/aws-ebs

Next, we create a PVC with the storage class name we just created:

// declare a PVC
cat 2-6-8_aws/pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: aws-example
spec:

https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops

Walking through Kubernetes Concepts Chapter 13

[390]

 accessModes:
 - ReadWriteOnce
 storageClassName: example-ebs
 resources:
 requests:
 storage: 5Gi

// create a PVC
kubectl create -f pvc.yaml
persistentvolumeclaim "aws-example" created

// check if PVC has been created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
aws-example Bound pvc-d1cddc08-ee31-11e7-8582-022bb4c3719e 5Gi RWO
example-ebs 5s

When Kubernetes receives the request of PersistentVolumeClaim, it'll try to
allocate a new PersistentVolume, or bind to an existing PV, if possible:

// check if a PV is created by a PVC.
kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-d1cddc08-ee31-11e7-8582-022bb4c3719e 5Gi RWO Delete Bound
default/aws-example example-ebs 36m

We can check the corresponding PV in the AWS console, as well.

At the end, we create a Deployment with this volume by specifying
persistentVolumeClaim in the spec:

// create a deployment
cat 2-6-8_aws/deployment.yaml
kind: Deployment
apiVersion: apps/v1
metadata:
 name: aws-ebs-deployment
spec:
 replicas: 2
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:

Walking through Kubernetes Concepts Chapter 13

[391]

 volumes:
 - name: aws-ebs
 persistentVolumeClaim:
 claimName: aws-example
 containers:
 - name: aws-ebs-example
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /mount-path
 name: aws-ebs

By specifying claimName as aws-example, it'll then use the EBS volume we just
create by PVC, which is requested to AWS dynamically. If we take a look at the Pod
description with kubectl describe pod <pod_name>, we can see the details of the
volumes:

// kubectl describe pod <pod_name>
kubectl describe pod aws-ebs-deployment-68bdc6f546-246s7
Containers:
 aws-ebs-example:
 ...
 Mounts:
 /mount-path from aws-ebs (rw)
Volumes:
 aws-ebs:
 Type: AWSElasticBlockStore (a Persistent Disk resource in AWS)
 VolumeID: vol-0fccc3b0af8c17727
 FSType: ext4
 Partition: 0
 ReadOnly: false
...

EBS volume vol-0fccc3b0af8c17727 is mounted under /mount-path inside the
container.

If the volume was dynamically provisioned, the default reclaim policy is set to
delete. Set it to retain if you want to keep them, even if a PVC is deleted.

Walking through Kubernetes Concepts Chapter 13

[392]

The StorageObjectInUseProtection admission controller
A PVC might be deleted accidentally by user even if it's used by a
Pod. In Kubernetes v1.10, a new admission controller is added to
prevent this from happening. kubernetes.io/pv-protection
or kubernetes.io/pvc-protection finalizer will be added into
PV or PVC by StorageObjectInUseProtection admission
controller. Then when object deletion request is sent, admission
controller will do pre-delete check and see if there is any Pod are
using it. This will prevent data loss.

See also
Volumes can be mounted on the Pods by declaring in Pods or ReplicaSet spec. Check
out the following recipes to jog your memory:

Working with Pods section in Chapter 13, Walking through Kubernetes
Concepts
Working with replica sets section in Chapter 13, Walking through Kubernetes
Concepts
Working with Secrets section in Chapter 13, Walking through Kubernetes
Concepts
Setting resource in nodes section in Chapter 18, Advanced Cluster
Administration
Authentication and authorization section in Chapter 18, Advanced Cluster
Administration

Working with Secrets
Kubernetes Secrets manage information in key-value formats with the value encoded.
It can be a password, access key, or token. With Secrets, users don't have to expose
sensitive data in the configuration file. Secrets can reduce the risk of credential leaks
and make our resource configurations more organized.

Currently, there are three types of Secrets:

Generic/Opaque: https:/ /en.wikipedia. org/ wiki/ Opaque_ data_ type

Docker registry
TLS

https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Opaque_data_type

Walking through Kubernetes Concepts Chapter 13

[393]

Generic/Opaque is the default type that we're using in our application. Docker
registry is used to store the credential of a private Docker registry. TLS Secret is used
to store the CA certificate bundle for cluster administration.

Kubernetes creates built-in Secrets for the credentials that using to access API server.

Getting ready
Before using Secrets, we have to keep in mind that Secret should be always created
before dependent Pods, so dependent Pods can reference it properly. In addition,
Secrets have a 1 MB size limitation. It works properly for defining a bunch of
information in a single Secret. However, Secret is not designed for storing large
amounts of data. For configuration data, consider using ConfigMaps. For large
amounts of non-sensitive data, consider using volumes instead.

How to do it...
In the following example, we'll walk through how to create a Generic/Opaque Secret
and use it in your Pods by assuming that we have an access token that needs to be
used inside a Pod.

Creating a Secret
There are two ways to create a Secret. The first one is with kubectl create
secret in the command line, and the other one is with direct resource creation in the
configuration file.

Working with kubectl create command line
By using kubectl create secret command line, you can create a Secret from a
file, directory, or literal value. With this method, you don't need to encode the Secret
by yourself. Kubernetes will do that for you:

From a file
If a file is the source of Secret, we'll have to create a text file which contains1.
our sensitive data first:

// assume we have a sensitive credential named access

Walking through Kubernetes Concepts Chapter 13

[394]

token.
cat 2-7-1_access-token
9S!g0U61699r

Next, we could use kubectl create secret in the command line to2.
create the Secret. The syntax is:

Kubectl create secret <secret-type> --from-file <file1> (-
-from-file <file2> ...)

In our case, we use generic Secret type, since the access token is neither the3.
Docker registry image pull Secrets nor TLS information:

kubectl create secret generic access-token --from-file
2-7-1_access-token
secret "access-token" created

You can check the detailed Secret information with the kubectl get4.
secret command:

// get the detailed information for a Secret.
kubectl get secret access-token -o yaml
apiVersion: v1
data:
 2-7-1_access-token: OVMhZzBVNjE2OTlyCg==
kind: Secret
metadata:
 creationTimestamp: 2018-01-01T20:26:24Z
 name: access-token
 namespace: default
 resourceVersion: "127883"
 selfLink: /api/v1/namespaces/default/secrets/access-
token
 uid: 0987ec7d-ef32-11e7-ac53-080027ac331c
type: Opaque

You can use the base64 command (https:/ /linux. die. net/ man/ 1/5.
base64) in Linux to decode the encoded Secret:

// decode encoded Secret
echo "OVMhZzBVNjE2OTlyCg==" | base64 --decode
9S!g0U61699r

https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64
https://linux.die.net/man/1/base64

Walking through Kubernetes Concepts Chapter 13

[395]

From a directory
Creating a Secret from a directory is similar to creating from a file, using the same
command, but with directory. Kubernetes will iterate all the files inside that
directory and create a Secret for you:

// show directory structure
tree
.
├── 2-7-1_access-token-dir
│ └── 2-7-1_access-token

// create Secrets from a directory
kubectl create secret generic access-token --from-file 2-7-1_access-
token-dir/
secret "access-token" created

You can check the Secret with the kubectl get secret access-token -o yaml
command again and see if they're identical to the ones from the file.

From a literal value
Kubernetes supports creating a Secret with a single command line, as well:

// create a Secret via plain text in command line
kubectl create secret generic access-token --from-
literal=2-7-1_access-token=9S\!g0U61699r
secret "access-token" created

Then we can use the get secret command to check if they're identical to the
previous method:

// check the details of a Secret
kubectl get secret access-token -o yaml
apiVersion: v1
data:
 2-7-1_access-token: OVMhZzBVNjE2OTlyCg==
kind: Secret
metadata:
 creationTimestamp: 2018-01-01T21:44:32Z
 name: access-token
 ...
type: Opaque

Walking through Kubernetes Concepts Chapter 13

[396]

Via configuration file
A Secret can also be created directly through the configuration file; however, you'll
have to encode the Secret manually. Just use the kind of Secret:

// encode Secret manually
echo '9S!g0U61699r' | base64
OVMhZzBVNjE2OTlyCg==

// create a Secret via configuration file, put encoded Secret into the
file
cat 2-7-1_secret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: access-token
type: Opaque
data:
 2-7-1_access-token: OVMhZzBVNjE2OTlyCg==

// create the resource
kubectl create -f 2-7-1_secret.yaml
secret "access-token" created

Using Secrets in Pods
To use Secrets inside Pods, we can choose to expose them in environment variables or
mount the Secrets as volumes.

By environment variables
In terms of accessing Secrets inside a Pod, add env section inside the container
spec as follows:

// using access-token Secret inside a Pod
cat 2-7-2_env.yaml
apiVersion: v1
kind: Pod
metadata:
 name: secret-example-env
spec:
 containers:
 - name: ubuntu
 image: ubuntu
 command: ["/bin/sh", "-c", "while : ;do echo $ACCESS_TOKEN; sleep
10; done"]

Walking through Kubernetes Concepts Chapter 13

[397]

 env:
 - name: ACCESS_TOKEN
 valueFrom:
 secretKeyRef:
 name: access-token
 key: 2-7-1_access-token

// create a pod
kubectl create -f 2-7-2_env.yaml
pod "secret-example-env" created

In the preceding example, we expose 2-7-1_access-token key in access-token
Secret as ACCESS_TOKEN environment variable, and print it out through a while
infinite loop. Check the stdout via kubectl log command:

// check stdout logs
kubectl logs -f secret-example-env
9S!g0U61699r

Note that the environment variable was exposed during Pod creation. If a new value
of Secret is pushed, you'll have to re-launch/rolling-update a Pod or Deployment to
reflect that.

If we describe the secret-example-env Pod, we can see that an environment
variable was set to a Secret:

kubectl describe pods secret-example-env
Name: secret-example-env
...
Environment:
 ACCESS_TOKEN: <set to the key '2-7-1_access-token' in secret
'access-token'>

By volumes
A Secret can be also mounted as volume by using the Secret type of the volume. The
following is an example of how to use it:

// example of using Secret volume
cat 2-7-3_volumes.yaml
apiVersion: v1
kind: Pod
metadata:
 name: secret-example-volume
spec:
 containers:
 - name: ubuntu

Walking through Kubernetes Concepts Chapter 13

[398]

 image: ubuntu
 command: ["/bin/sh", "-c", "while : ;do cat /secret/token; sleep
10; done"]
 volumeMounts:
 - name: secret-volume
 mountPath: /secret
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: access-token
 items:
 - key: 2-7-1_access-token
 path: token

// create the Pod
kubectl create -f 2-7-3_volumes.yaml
pod "secret-example-volume" created

The preceding example will mount secret-volume into the /secret mount point
inside the Pod. /secret will contain a file with the name token, which contains our
access token. If we check the Pod details, it'll show that we mounted a read-only
Secret volume:

// check the Pod details
kubectl describe pods secret-example-volume
Name: secret-example-volume
...
Containers:
 ubuntu:
 ...
 Mounts:
 /secret from secret-volume (ro)
 ...
Volumes:
 secret-volume:
 Type: Secret (a volume populated by a Secret)
 SecretName: access-token
 Optional: false
...

If we check the stdout, it'll show the Pod can properly retrieve the expected value:

kubectl logs -f secret-example-volume
9S!g0U61699r

Walking through Kubernetes Concepts Chapter 13

[399]

The same as with the environment variable, the files in the mounted volume are
created upon Pod creation time. It won't change dynamically when the Secret value is
updated after the Pod creation time.

Deleting a Secret
To delete a Secret, simply use the kubectl delete secret command:

kubectl delete secret access-token
secret "access-token" deleted

If a Secret is deleted when a Secret volume is attached, it'll show an error message
whenever the volume reference disappears:

kubectl describe pods secret-example-volume
...
Events:
 Warning FailedMount 53s (x8 over 1m) kubelet, minikube
MountVolume.SetUp failed for volume "secret-volume" : secrets "access-
token" not found

How it works...
In order to reduce the risk of leaking the Secrets' content, Secret is not landed to the
disk. Instead, kubelet creates a tmpfs filesystem on the node to store the Secret. The
Kubernetes API server pushes the Secret to the node on which the demanded
container is running. The data will be flashed when the container is destroyed.

There's more...
Secrets hold small amounts of sensitive data. For application configuration, consider
using ConfigMaps to hold non-sensitive information.

Using ConfigMaps
Here is an example of using ConfigMaps:

cat configmap/2-7-4_configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:

Walking through Kubernetes Concepts Chapter 13

[400]

 name: config-example
data:
 app.properties: |
 name=kubernetes-cookbook
 port=443

// create configmap
kubectl create -f configmap/2-7-4_configmap.yaml
configmap "config-example" created

Similar to Secret, ConfigMaps can be retrieved with environment variables or
volumes:

cat configmap/2-7-4_env.yaml
apiVersion: v1
kind: Pod
metadata:
 name: configmap-env
spec:
 containers:
 - name: configmap
 image: ubuntu
 command: ["/bin/sh", "-c", "while : ;do echo $APP_NAME; sleep
10; done"]
 env:
 - name: APP_NAME
 valueFrom:
 configMapKeyRef:
 name: config-example
 key: app.properties

// create the pod
#kubectl create -f configmap/2-7-4_env.yaml
pod "configmap-env" created

Alternatively, you can use ConfigMaps volume to retrieve the configuration
information:

// using configmap in a pod
cat configmap/2-7-4_volumes.yaml
apiVersion: v1
kind: Pod
metadata:
 name: configmap-volume
spec:
 containers:
 - name: configmap
 image: ubuntu

Walking through Kubernetes Concepts Chapter 13

[401]

 command: ["/bin/sh", "-c", "while : ;do cat
/src/app/config/app.properties; sleep 10; done"]
 volumeMounts:
 - name: config-volume
 mountPath: /src/app/config
 volumes:
 - name: config-volume
 configMap:
 name: config-example

Mounting Secrets and ConfigMap in the same
volume
Projected volume is a way to group multiple volume sources into the same mount
point. Currently, it supports Secrets, ConfigMap, and downwardAPI.

The following is an example of how we group the examples of Secrets and
ConfigMaps that we used in this chapter:

// using projected volume
cat 2-7-5_projected_volume.yaml
apiVersion: v1
kind: Pod
metadata:
 name: projected-volume-example
spec:
 containers:
 - name: container-tes
 image: ubuntu
 command: ["/bin/sh", "-c", "while : ;do cat /projected-
volume/configmap && cat /projected-volume/token; sleep 10; done"]
 volumeMounts:
 - name: projected-volume
 mountPath: "/projected-volume"
 volumes:
 - name: projected-volume
 projected:
 sources:
 - secret:
 name: access-token
 items:
 - key: 2-7-1_access-token
 path: token
 - configMap:
 name: config-example
 items:

Walking through Kubernetes Concepts Chapter 13

[402]

 - key: app.properties
 path: configmap

// create projected volume
kubectl create -f 2-7-5_projected_volume.yaml
pod "projected-volume-example" created

Let's check stdout to see if it works properly:

kubectl logs -f projected-volume-example
name=kubernetes-cookbook
port=443
9S!g0U61699r

Working with names
When you create any Kubernetes object, such as a Pod, Deployment, and Service, you
can assign a name to it. The names in Kubernetes are spatially unique, which means
you cannot assign the same name in the Pods.

Getting ready
Kubernetes allows us to assign a name with the following restrictions:

Up to 253 characters
Lowercase of alphabet and numeric characters
May contain special characters in the middle, but only dashs (-) and dots (.)

Walking through Kubernetes Concepts Chapter 13

[403]

How to do it...
For assigning a name to the Pod, follow the following steps:

The following example is the Pod YAML configuration that assigns the Pod1.
name as my-pod to the container name as my-container; you can
successfully create it as follows:

cat my-pod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: nginx

kubectl create -f my-pod.yaml
pod "my-pod" created

kubectl get pods
NAME READY STATUS RESTARTS AGE
my-pod 0/1 Running 0 4s

You can use the kubectl describe command to see the container named2.
my-container as follows:

$ kubectl describe pod my-pod
Name: my-pod
Namespace: default
Node: minikube/192.168.64.12
Start Time: Sat, 16 Dec 2017 10:53:38 -0800
Labels: <none>
Annotations: <none>
Status: Running
IP: 172.17.0.3
Containers:
 my-container:
 Container ID:
docker://fcf36d0a96a49c5a08eb6de1ef27ca761b4ca1c6b4a3a4312df836cb8e0a5
304
 Image: nginx
 Image ID: docker-

Walking through Kubernetes Concepts Chapter 13

[404]

pullable://nginx@sha256:2ffc60a51c9d658594b63ef5acfac9d92f4e1550f633a3
a16d898925c4e7f5a7
 Port: <none>
 State: Running
 Started: Sat, 16 Dec 2017 10:54:43 -0800
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-
token-lmd62 (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 PodScheduled True
Volumes:
 default-token-lmd62:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-lmd62
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 1m default-scheduler Successfully
assigned my-pod to minikube
 Normal SuccessfulMountVolume 1m kubelet, minikube
MountVolume.SetUp succeeded for volume "default-token-lmd62"
 Normal Pulling 1m kubelet, minikube pulling
image "nginx"
 Normal Pulled 50s kubelet, minikube Successfully
pulled image "nginx"
 Normal Created 50s kubelet, minikube Created
container
 Normal Started 50s kubelet, minikube Started
container

On the other hand, the following example contains two containers, but3.
assigns the same name, my-container; therefore, the
kubectl create command returns an error and can't create the Pod:

//delete previous Pod
$ kubectl delete pod --all
pod "my-pod" deleted

Walking through Kubernetes Concepts Chapter 13

[405]

$ cat duplicate.yaml
apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: nginx
 - name: my-container
 image: centos
 command: ["/bin/sh", "-c", "while : ;do curl
http://localhost:80/; sleep 3; done"]

$ kubectl create -f duplicate.yaml
The Pod "my-pod" is invalid: spec.containers[1].name:
Duplicate value: "my-container"

You can add the --validate flag.
For example, the command kubectl create -f
duplicate.yaml --validate uses a schema to validate the input
before sending it.

In another example, the YAML contains a ReplicationController and Service, both of
which are using the same name, my-nginx, but it is successfully created because the
Deployment and Service are different objects:

$ cat my-nginx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 run: my-label
 template:
 metadata:
 labels:
 run: my-label
 spec:
 containers:
 - name: my-container
 image: nginx

Walking through Kubernetes Concepts Chapter 13

[406]

 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: my-nginx
spec:
 ports:
 - protocol: TCP
 port: 80
 type: NodePort
 selector:
 run: my-label

//create Deployment and Service
$ kubectl create -f my-nginx.yaml
deployment.apps "my-nginx" created
service "my-nginx" created

//Deployment "my-nginx" is created
$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-nginx 3 3 3 3 1m

//Service "my-nginx" is also created
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 13d
my-nginx NodePort 10.0.0.246 <none> 80:31168/TCP 1m

How it works...
A name is just a unique identifier, and all naming conventions are good; however, it
is recommended to look up and identify the container image. For example:

memcached-pod1

haproxy.us-west

my-project1.mysql

Walking through Kubernetes Concepts Chapter 13

[407]

On the other hand, the following examples do not work because of Kubernetes
restrictions:

Memcache-pod1 (contains uppercase)
haproxy.us_west (contains underscore)
my-project1.mysql. (dot in the last)

Note that Kubernetes supports a label that allows assigning a key=value style
identifier. It also allows duplication. Therefore, if you want to assign something like
the following information, use a label instead:

Environment (for example: staging, production)
Version (for example: v1.2)
Application role (for example: frontend, worker)

In addition, Kubernetes also supports names that have different Namespaces. This
means that you can use the same name in different Namespaces (for example: nginx).
Therefore, if you want to assign just an application name, use Namespaces instead.

See also
This section from the chapter described how to assign and find the name of objects.
This is just a basic methodology, but Kubernetes has more powerful naming tools,
such as Namespace and selectors, to manage clusters:

Working with Pods
Deployment API
Working with Services
Working with Namespaces
Working with labels and selectors

Walking through Kubernetes Concepts Chapter 13

[408]

Working with Namespaces
In a Kubernetes cluster, the name of a resource is a unique identifier within a
Namespace. Using a Kubernetes Namespace could separate user spaces for different
environments in the same cluster. It gives you the flexibility of creating an isolated
environment and partitioning resources to different projects and teams. You may
consider Namespace as a virtual cluster. Pods, Services, and Deployments are
contained in a certain Namespace. Some low-level resources, such as nodes and
persistentVolumes, do not belong to any Namespace.

Before we dig into the resource Namespace, let's understand kubeconfig and some
keywords first:

The relationship of kubeconfig components

kubeconfig is used to call the file which configures the access permission of
Kubernetes clusters. As the original configuration of the system, Kubernetes takes
$HOME/.kube/config as a kubeconfig file. Some concepts that are illustrated by
the preceding diagram are as follows:

kubeconfig defines user, cluster, and context: kubeconfig lists multiple
users for defining authentication, and multiple clusters for indicating the
Kubernetes API server. Also, the context in kubeconfig is the combination
of a user and a cluster: accessing a certain Kubernetes cluster with what
kind of authentication.
Users and clusters are sharable between contexts: In the previous
diagram, both Context 1 and Context 3 take User 1 as their user content.
However, each context can only have a single user and single cluster
definition.

Walking through Kubernetes Concepts Chapter 13

[409]

Namespace can be attached to context: Every context can be assigned to an
existing Namespace. If there are none, like Context 3, it is along with the
default Namespace, named default, as well.
The current context is the default environment for client: We may have
several contexts in kubeconfig, but only one for the current context. The
current context and the Namespace attached on it will construct the default
computing environment for users.

Now you will get the idea that, as Namespace works with kubeconfig, users can
easily switch default resources for usage by switching the current context in
kubeconfig. Nevertheless, users can still start any resource in a different Namespace
with a specified one. In this recipe, you will learn how to create your own Namespace
and how to work with it.

Getting ready
By default, Kubernetes has created a Namespace named default. All the objects
created without specifying Namespaces will be put into the default Namespace.
Kubernetes will also create another initial Namespace called kube-system for
locating Kubernetes system objects, such as an add-on or overlay network. Try to list
all the Namespaces:

// check all Namespaces, "ns" is the resource abbreviation of
Namespace
$ kubectl get ns
NAME STATUS AGE
default Active 15d
kube-public Active 15d
kube-system Active 15d

You may find an additional Namespace, kube-public, listed at the initial stage. It is
designed for presenting some public configurations for even users without
permission to access the Kubernetes system. Both of the provisioning tools, minikube
and kubeadm, will create it while booting the system up.

The name of a Namespace must be a DNS label and follow the following rules:

At most, 63 characters
Matching regex [a-z0-9]([-a-z0-9]*[a-z0-9])

Walking through Kubernetes Concepts Chapter 13

[410]

How to do it...
In this section, we will demonstrate how to create a Namespace, change the default
Namespace, and delete the Namespace.

Creating a Namespace
For creating a Namespace, following are the steps:

After deciding on our desired name for Namespace, let's create it with a1.
configuration file:

$ cat my-first-namespace.yaml
apiVersion: v1
kind: Namespace
metadata:
 name: my-namespace

// create the resource by subcommand "create"
$ kubectl create -f my-first-namespace.yaml
namespace "my-namespace" created
// list the namespaces again
$ kubectl get ns
NAME STATUS AGE
default Active 16d
kube-public Active 16d
kube-system Active 16d
my-namespace Active 6s

You can now see that we have an additional namespace called my-2.
namespace. Next, let's run a Kubernetes Deployment in this new
Namespace:

// run a Deployment with a flag specifying Namespace
$ kubectl run my-nginx --image=nginx --namespace=my-
namespace
deployment.apps "my-nginx" created

While trying to check the newly created resource, we cannot easily find3.
them as usual:

$ kubectl get deployment
No resources found.

Walking through Kubernetes Concepts Chapter 13

[411]

Instead, the Deployment is shown with a flag related to the Namespace:4.

// list any Deployment in all Namespaces
$ kubectl get deployment --all-namespaces
NAMESPACE NAME DESIRED
CURRENT UP-TO-DATE AVAILABLE AGE
kube-system calico-kube-controllers 1 1
1 1 16d
kube-system calico-policy-controller 0 0
0 0 16d
kube-system kube-dns 1 1
1 1 16d
my-namespace my-nginx 1 1
1 1 1m

// get Deployments from my-namespace
$ kubectl get deployment --namespace=my-namespace
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
AGE
my-nginx 1 1 1 1 1m

Now you can find the resource that was just created.

Changing the default Namespace
As in the previous introduction, we can change the default Namespace by switching
the current context in kubeconfig to another one:

First, we may check the current context with the subcommand config:1.

// check the current context in kubeconfig
$ kubectl config current-context
kubernetes-admin@kubernetes

You may feel unfamiliar with the output when checking the current context.
The value of the preceding current context is defined and created by
kubeadm. You could get minikube shown on screen if you leveraged
minikube as your Kubernetes system management tool.

No matter what you got from checking the current context in kubeconfig,2.
use the subcommand config set-context to create a new context:

// create a new context called "my-context"
// the new context is going to follow the cluster and the
user of current context, but attached with new Namespace
//This is for kubeadm environment

Walking through Kubernetes Concepts Chapter 13

[412]

$ kubectl config set-context my-context --namespace=my-
namespace --cluster=kubernetes --user=kubernetes-admin
Context "my-context" created.

The preceding command is based on kubeadm managed Kubernetes; you3.
may fire a similar one for minikube, with the names of the default cluster
and user in kubeconfig:

// for minikube environemt
$ kubectl config set-context my-context --namespace=my-
namespace --cluster=minikube --user=minikube

Next, check kubeconfig to verify the changes:4.

//check kubectlconfig for the new context
$ kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: REDACTED
 server: https://192.168.122.101:6443
 name: kubernetes
contexts:
- context:
 cluster: kubernetes
 user: kubernetes-admin
 name: kubernetes-admin@kubernetes
- context:
 cluster: kubernetes
 namespace: my-namespace
 user: kubernetes-admin
 name: my-context
current-context: kubernetes-admin@kubernetes
kind: Config
preferences: {}
users:
- name: kubernetes-admin
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED

When checking the configuration of kubeconfig, in the section of contexts,
you can find a context named exactly as what we defined and which also
takes our newly created Namespace.

Walking through Kubernetes Concepts Chapter 13

[413]

Fire the following command to switch to using the new context:5.

$ kubectl config use-context my-context
Switched to context "my-context".
// check current context
$ kubectl config current-context
my-context

Now the current context is our customized one, which is along with the
Namespace my-namespace.

Since the default Namespace is changed to my-namespace, it is possible6.
that we can get the Deployment without specifying the Namespace:

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
AGE
my-nginx 1 1 1 1
20m

//double check the namespace of resource
$ kubectl describe deployment my-nginx
Name: my-nginx
Namespace: my-namespace
CreationTimestamp: Mon, 18 Dec 2017 15:39:46 -0500
Labels: run=my-nginx
:
(ignored)

Deleting a Namespace
If you followed the previous pages for the Kubernetes resource, you may have gotten
the idea that the subcommand delete is used to remove resources. It is workable in
the case of removing a Namespace. At the same time, if we try to delete a Namespace,
the resources under it will be removed, as well:

// first, go ahead to remove the Namespace "my-namespace"
$ kubectl delete ns my-namespace
namespace "my-namespace" deleted
// check the Deployment again, the exited "my-nginx" is terminated
$ kubectl get deployment
No resources found.

Walking through Kubernetes Concepts Chapter 13

[414]

// while trying to create anything, the error message showing the
default Namespace is not existed
$ kubectl run my-alpine --image=alpine
Error from server (NotFound): namespaces "my-namespace" not found

To solve this issue, you may attach another Namespace to the current context, or just
change your current context to the previous one:

// first solution: use set-context to update the Namespace
// here we just leave Namespace empty, which means to use default
Namespace
$ kubectl config set-context my-context --namespace=""
Context "my-context" modified.

// second solution: switch current context to another context
// in this case, it is kubeadm environment
$ kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

How it works…
Although we discussed the Namespaces and context of kubeconfig together, they
are independent objects in the Kubernetes system. The context of kubeconfig is a
client concept which can only be controlled by certain users, and it makes it easier to
work with Namespaces and clusters. On the other hand, Namespace is the concept of
the server side, working for resource isolation in clusters, and it is able to be shared
between clients.

There's more...
We not only leverage Namespace to separate our resources, but also to realize finer
computing resource provisioning. By restricting the usage amount of the computing
power of a Namespace, the system manager can avoid the client creating too many
resources and making servers overload.

Creating a LimitRange
To set the resource limitation of each Namespace, the admission controller
LimitRanger should be added in the Kubernetes API server. Do not worry about
this setting if you have minikube or kubeadm as your system manager.

Walking through Kubernetes Concepts Chapter 13

[415]

The admission controller in the Kubernetes API server
Admission controller is a setting in the Kubernetes API server which
defines more advanced functionality in the API server. There are
several functions that can be set in the admission controller. Users
can add the functions when starting the API server through the
configuration file or using CLI with the flag --admission-
control. Relying on minikube or kubeadm for system
management, they have their own initial settings in the admission
controller:

Default admission controller in kubeadm:
Initializers, NamespaceLifecycle, LimitRanger,
ServiceAccount, PersistentVolumeLabel,
DefaultStorageClass, DefaultTolerationSeconds,
NodeRestriction, ResourceQuota
Default admission controller in minikube:
NamespaceLifecycle, LimitRanger, ServiceAccount,
DefaultStorageClass, ResourceQuota

Based on the version of your API server, there is a recommended list
in an official document at https:/ /kubernetes. io/ docs/ admin/
admission- controllers/ #is-there- a-recommended- set- of-
admission- controllers- to-use. Check for more ideas!

A plain new Namespace has no limitation on the resource quota. At the beginning,
we start a Namespace and take a look at its initial settings:

// create a Namespace by YAML file
$ kubectl create -f my-first-namespace.yaml
namespace "my-namespace" created

$ kubectl describe ns my-namespace
Name: my-namespace
Labels: <none>
Annotations: <none>
Status: Active

No resource quota.

No resource limits.

https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use

Walking through Kubernetes Concepts Chapter 13

[416]

After that, we create a resource called LimitRange for specifying the resource
limitation of a Namespace. The following is a good example of creating a limit in a
Namespace:

$ cat my-first-limitrange.yaml
apiVersion: v1
kind: LimitRange
metadata:
 name: my-limitrange
spec:
 limits:
 - type: Pod
 max:
 cpu: 2
 memory: 1Gi
 min:
 cpu: 200m
 memory: 6Mi
 - type: Container
 default:
 cpu: 300m
 memory: 200Mi
 defaultRequest:
 cpu: 200m
 memory: 100Mi
 max:
 cpu: 2
 memory: 1Gi
 min:
 cpu: 100m
 memory: 3Mi

We will then limit the resources in a Pod with the values of 2 as max and 200m as a
min for CPU, and 1Gi as max and 6Mi as a min for memory. For the container, the
CPU is limited between 100m - 2 and the memory is between 3Mi - 1Gi. If the max
is set, then you have to specify the limit in the Pod/container spec during the resource
creation; if the min is set, then the request has to be specified during the
Pod/container creation. The default and defaultRequest section in LimitRange is
used to specify the default limit and request in the container spec.

Walking through Kubernetes Concepts Chapter 13

[417]

The value of CPU limitation in LimitRange
What do the values of 2 and 200m mean in the Pod limitation in the
file my-first-limitrange.yaml? The integer value means the
number of CPU; the "m" in the value means millicpu, so 200m means
0.2 CPU (200 * 0.001). Similarly, the default CPU limitation of the
container is 0.2 to 0.3, and the real limitation is 0.1 to 2.

Afterwards, we create the LimitRange in our plain Namespace and check what will
happen:

// create the limitrange by file with the flag of Namespace
// the flag --namespace can be abbreviated to "n"
$ kubectl create -f my-first-limitrange.yaml -n my-namespace
limitrange "my-limitrange" created

// check the resource by subcommand "get"
$ kubectl get limitrange -n my-namespace
NAME AGE
my-limitrange 23s

// check the customized Namespace
$ kubectl describe ns my-namespace
Name: my-namespace
Labels: <none>
Annotations: <none>
Status: Active

No resource quota.

Resource Limits
 Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
 ---- -------- --- --- --------------- ------------- -----

 Pod cpu 200m 2 - - -
 Pod memory 6Mi 1Gi - - -
 Container memory 3Mi 1Gi 100Mi 200Mi -
 Container cpu 100m 2 200m 300m -

Walking through Kubernetes Concepts Chapter 13

[418]

When you query the detail description of my-namespace, you will see the constraint
attached to the Namespace directly. There is not any requirement to add the
LimitRange. Now, all the Pods and containers created in this Namespace have to
follow the resource limits listed here. If the definitions violate the rule, a validation
error will be thrown accordingly:

// Try to request an overcommitted Pod, check the error message
$ kubectl run my-greedy-nginx --image=nginx --namespace=my-namespace -
-restart=Never --requests="cpu=4"
The Pod "my-greedy-nginx" is invalid:
spec.containers[0].resources.requests: Invalid value: "4": must be
less than or equal to cpu limit

Deleting a LimitRange
We can delete the LimitRange resource with the subcommand delete. Like creating
the LimitRange, deleting a LimitRange in a Namespace would remove the
constraints in the Namespace automatically:

$ kubectl delete -f my-first-limitrange.yaml -n=my-namespace
limitrange "my-limitrange" deleted
$ kubectl describe ns my-namespace
Name: my-namespace
Labels: <none>
Annotations: <none>
Status: Active

No resource quota.

No resource limits.

See also
Many Kubernetes resources are able to run under a Namespace. To achieve good
resource management, check out the following recipes:

Working with Pods
Deployment API
Working with names

Walking through Kubernetes Concepts Chapter 13

[419]

Working with labels and selectors
Labels are a set of key/value pairs, which are attached to object metadata. We could
use labels to select, organize, and group objects, such as Pods, ReplicaSets, and
Services. Labels are not necessarily unique. Objects could carry the same set of labels.

Label selectors are used to query objects with labels of the following types:

Equality-based:
Use equal (= or ==) or not-equal (!=) operators

Set-based:
Use in or notin operators

Getting ready
Before you get to setting labels in the objects, you should consider the valid naming
convention of key and value.

A valid key should follow these rules:

A name with an optional prefix, separated by a slash.
A prefix must be a DNS subdomain, separated by dots, no longer than 253
characters.
A name must be less than 63 characters with the combination of [a-z0-9A-
Z] and dashes, underscores, and dots. Note that symbols are illegal if put at
the beginning and the end.

A valid value should follow the following rules:

A name must be less than 63 characters with the combination of [a-z0-9A-
Z] and dashes, underscores, and dots. Note that symbols are illegal if put at
the beginning and the end.

Walking through Kubernetes Concepts Chapter 13

[420]

You should also consider the purpose, too. For example, there are two projects, pilot
and poc. Also, those projects are under different environments, such as develop and
production. In addition, some contain multiple tiers, such as frontend, cache, and
backend. We can make our labels key and value pair combination like follows:

 labels:
 project: pilot
 environment: develop
 tier: frontend

How to do it...
Let's try to create several Pods with the previous labels to distinguish1.
different projects, environments, and tiers, as follows:

YAML Filename Pod Image Project Environment Tier
pilot-dev.yaml nginx

pilot
develop

frontend

pilot-dev.yaml memcached cache

pilot-prod.yaml nginx
production

frontend

pilot-prod.yaml memcached cache

poc-dev.yaml httpd
poc develop

frontend

poc-dev.yaml memcached cache

For convenience, we will prepare three YAML files that contain two Pods2.
each, with a YAML separator --- between Pods:

pilot-dev.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: pilot.dev.nginx
 labels:
 project: pilot
 environment: develop
 tier: frontend
spec:
 containers:
 - name: nginx
 image: nginx

apiVersion: v1

Walking through Kubernetes Concepts Chapter 13

[421]

kind: Pod
metadata:
 name: pilot.dev.memcached
 labels:
 project: pilot
 environment: develop
 tier: cache
spec:
 containers:
 - name: memcached
 image: memcached

pilot-prod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: pilot.prod.nginx
 labels:
 project: pilot
 environment: production
 tier: frontend
spec:
 containers:
 - name : nginx
 image: nginx

apiVersion: v1
kind: Pod
metadata:
 name: pilot.prod.memcached
 labels:
 project: pilot
 environment: production
 tier: cache
spec:
 containers:
 - name: memcached
 image: memcached

poc-dev.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: poc.dev.httpd
 labels:
 project: poc

Walking through Kubernetes Concepts Chapter 13

[422]

 environment: develop
 tier: frontend
spec:
 containers:
 - name: httpd
 image: httpd

apiVersion: v1
kind: Pod
metadata:
 name: poc.dev.memcached
 labels:
 project: poc
 environment: develop
 tier: cache
spec:
 containers:
 - name: memcached
 image: memcached

Create those six Pods with the kubectl create command, as follows, to3.
see how labels are defined:

$ kubectl create -f pilot-dev.yaml
pod "pilot.dev.nginx" created
pod "pilot.dev.memcached" created

$ kubectl create -f pilot-prod.yaml
pod "pilot.prod.nginx" created
pod "pilot.prod.memcached" created

$ kubectl create -f poc-dev.yaml
pod "poc.dev.httpd" created
pod "poc.dev.memcached" created

Run kubectl describe <Pod name> to check labels, as follows. It looks4.
good, so let's use the label selector to query these Pods by different criteria:

$ kubectl describe pod poc.dev.memcache
Name: poc.dev.memcached
Namespace: default
Node: minikube/192.168.99.100
Start Time: Sun, 17 Dec 2017 17:23:15 -0800
Labels: environment=develop
 project=poc

Walking through Kubernetes Concepts Chapter 13

[423]

 tier=cache
Annotations: <none>
Status: Running
...

How it works...
As mentioned earlier in this section, there are two types of label selectors: either
equality-based or set-based. Those types have different operators to specify criteria.

Equality-based label selector
The equality-based selector can specify equal or not equal, and also uses commas to
add more criteria. Use the -l or --selector option to specify these criteria to filter
the name of the object; for example:

 Query Pods which belong to the pilot project:

$ kubectl get pods -l "project=pilot"
NAME READY STATUS RESTARTS AGE
pilot.dev.memcached 1/1 Running 0 21m
pilot.dev.nginx 1/1 Running 0 21m
pilot.prod.memcached 1/1 Running 0 21m
pilot.prod.nginx 1/1 Running 0 21m

Query Pods which belong to the frontend tier:

$ kubectl get pods -l "tier=frontend"
NAME READY STATUS RESTARTS AGE
pilot.dev.nginx 1/1 Running 0 21m
pilot.prod.nginx 1/1 Running 0 21m
poc.dev.httpd 1/1 Running 0 21m

Query Pods which belong to the frontend tier AND the under develop
environment:

$ kubectl get pods -l "tier=frontend,environment=develop"
NAME READY STATUS RESTARTS AGE
pilot.dev.nginx 1/1 Running 0 22m
poc.dev.httpd 1/1 Running 0 21m

Query Pods which belong to the frontend tier and NOT the under develop
environment:

$ kubectl get pods -l "tier=frontend,environment!=develop"

Walking through Kubernetes Concepts Chapter 13

[424]

NAME READY STATUS RESTARTS AGE
pilot.prod.nginx 1/1 Running 0 29m

Set-based label selector
With the set-based selector, you can use either the in or notin operator, which is
similar to the SQL IN clause that can specify multiple keywords, as in the following
examples:

Query Pods which belong to the pilot project:

$ kubectl get pods -l "project in (pilot)"
NAME READY STATUS RESTARTS AGE
pilot.dev.memcached 1/1 Running 0 36m
pilot.dev.nginx 1/1 Running 0 36m
pilot.prod.memcached 1/1 Running 0 36m
pilot.prod.nginx 1/1 Running 0 36m

Query Pods which belong to the pilot project and frontend tier:

$ kubectl get pods -l "project in (pilot), tier in
(frontend)"
NAME READY STATUS RESTARTS AGE
pilot.dev.nginx 1/1 Running 0 37m
pilot.prod.nginx 1/1 Running 0 37m

Query Pods which belong to the pilot project and either the frontend or
cache tier:

$ kubectl get pods -l "project in (pilot), tier in
(frontend,cache)"
NAME READY STATUS RESTARTS AGE
pilot.dev.memcached 1/1 Running 0 37m
pilot.dev.nginx 1/1 Running 0 37m
pilot.prod.memcached 1/1 Running 0 37m
pilot.prod.nginx 1/1 Running 0 37m

Query Pods which belong to the pilot project and not the frontend or
backend tier (note, we didn't create the backend tier object):

$ kubectl get pods -l "project in (pilot), tier notin
(frontend, backend)"
NAME READY STATUS RESTARTS AGE
pilot.dev.memcached 1/1 Running 0 50m
pilot.prod.memcached 1/1 Running 0 50m

Walking through Kubernetes Concepts Chapter 13

[425]

As you can see in the preceding examples for both the equality-based and set-based
label selector, equality-based is simpler and set-based is more expressive. Note that
you can mix both operator as follows:

Query Pods which do not belong to the pilot project and develop
environment:

$ kubectl get pods -l "project notin (pilot),
environment=develop"
NAME READY STATUS RESTARTS AGE
poc.dev.httpd 1/1 Running 0 2m
poc.dev.memcached 1/1 Running 0 2m

So, you can use the most efficient way to filter out the Kubernetes objects. In addition,
you can also use either or both types of selectors to configure the Kubernetes Service,
Deployments, and so on. However, some objects support the equality-based selector
and some objects support both. So, let's take a look at how to define it.

There's more...
Label selectors are useful to not only list an object, but also to specify the Kubernetes
Service and Deployment to bind objects.

Linking Service to Pods or ReplicaSets using label
selectors
As of Kubernetes version 1.9, Service only supports the equality-based selector to
bind to Pods or ReplicaSet.

Let's create one Service that binds to nginx, which belongs to the production
environment and the pilot project. Remember that nginx also belongs to the frontend
tier:

//check your selector filter is correct or not
$ kubectl get pods -l
'environment=production,project=pilot,tier=frontend'
NAME READY STATUS RESTARTS AGE
pilot.prod.nginx 1/1 Running 0 19m

//create Service yaml that specify selector
$ cat pilot-nginx-svc.yaml
apiVersion: v1

Walking through Kubernetes Concepts Chapter 13

[426]

kind: Service
metadata:
 name: pilot-nginx-svc
spec:
 type: NodePort
 ports:
 - protocol: TCP
 port: 80
 selector:
 project: pilot
 environment: production
 tier: frontend

//create pilot-nginx-svc
$ kubectl create -f pilot-nginx-svc.yaml
service "pilot-nginx-svc" created

Here is the equivalent, where you can use the kubectl expose command to specify
the label selector:

$ kubectl expose pod pilot.prod.nginx --name=pilot-nginx-svc2 --
type=NodePort --port=80 --
selector="project=pilot,environment=develop,tier=frontend"
service "pilot-nginx-svc2" exposed

Based on your Kubernetes environment, if you are using minikube, it is easier to
check your Service with minikube service <Service name>, as in the following
screenshot. If you are not using minikube, access to any Kubernetes node and
assigned Service port number. For the following screenshot, it would be <node
ip>:31981 or <node ip>:31820:

Walking through Kubernetes Concepts Chapter 13

[427]

Access to Service which is running on minikube

Linking Deployment to ReplicaSet using the set-
based selector
Deployment supports not only the equality-based selector, but also the set-based
selector, to specify ReplicaSet. To do that, you can write
spec.selector.matchExpressions[] to specify the key and in/notin operator.
For example, if you want to specify project in (poc), environment in
(staging), tier notn (backend,cache), then matchExpressions would be as
follows:

$ cat deploy_set_selector.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-nginx
spec:

Walking through Kubernetes Concepts Chapter 13

[428]

 replicas: 3
 selector:
 matchExpressions:
 - {key: project, operator: In, values: [poc]}
 - {key: environment, operator: In, values: [staging]}
 - {key: tier, operator: NotIn, values: [backend,cache]}
 template:
 metadata:
 labels:
 project: poc
 environment: staging
 tier: frontend
 spec:
 containers:
 - name: my-nginx
 image: nginx
 ports:
 - containerPort: 80

As you can see, the YAML array is represented as -, and the map object as {}, to
specify the key, operator, and values. Note that values would also be an array, so use
the square bracket [] to specify one or more values.

One thing you need to aware of is one label, called the pod-template-hash label,
which is created by Deployment. When you create a Deployment, it will also create a
ReplicaSet object. At this time, Deployment will also assign the pod-template-
hash label to the ReplicaSet. Let's see how it works:

$ kubectl create -f deploy_set_selector.yaml
deployment.apps "my-nginx" created

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
my-nginx2-764d7cfff 3 3 3 19s

$ kubectl describe rs my-nginx2-764d7cfff
Name: my-nginx2-764d7cfff
Namespace: default
Selector: environment in (staging),pod-template-
hash=320837999,project in (poc),tier notin (backend,cache)
...
...
Pod Template:
 Labels: environment=staging
 pod-template-hash=320837999
 project=poc
 tier=frontend

Walking through Kubernetes Concepts Chapter 13

[429]

...

...

As you can see, the ReplicaSet my-nginx2-764d7cfff has an equality-based
selector, as pod-template-hash=320837999 is appended to the Selector and Pod
template. It will be used to generate a ReplicaSet and Pod name with a particular
hash function (for example, my-nginx2-764d7cfff).

See also
In this section, you learned how flexible it is to assign a label to your Kubernetes
object. In addition, equality-based and set-based selectors allow us to filter out an
object by label. Selector is important that loosely couple an object such as Service and
ReplicaSet/Pod as well as Deployment and ReplicaSet.

14
Playing with Containers

In this chapter, we will cover the following topics:

Scaling your containers
Updating live containers
Forwarding container ports
Ensuring flexible usage of your containers
Submitting Jobs on Kubernetes
Working with configuration files

Introduction
When talking about container management, you need to know some of the
differences compared to application package management, such as rpm/dpkg,
because you can run multiple containers on the same machine. You also need to care
about network port conflicts. This chapter covers how to update, scale, and launch a
container application using Kubernetes.

Scaling your containers
Scaling up and down the application or service based on predefined criteria is a
common way to utilize the most compute resources in most efficient way. In
Kubernetes, you can scale up and down manually or use a Horizontal Pod
Autoscaler (HPA) to do autoscaling. In this section, we'll describe how to perform
both operations.

Playing with Containers Chapter 14

[431]

Getting ready
Prepare the following YAML file, which is a simple Deployment that launches two
nginx containers. Also, a NodePort service with TCP—30080 exposed:

cat 3-1-1_deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 service : nginx
 template:
 metadata:
 labels:
 service : nginx
 spec:
 containers:
 - name: my-container
 image: nginx

apiVersion: v1
kind: Service
metadata:
 name: my-nginx
spec:
 ports:
 - protocol: TCP
 port: 80
 nodePort: 30080
 type: NodePort
 selector:
 service: nginx

NodePort will bind to all the Kubernetes nodes (port range: 30000
to 32767); therefore, make sure NodePort is not used by other
processes.

Playing with Containers Chapter 14

[432]

Let's use kubectl to create the resources used by the preceding configuration file:

// create deployment and service
kubectl create -f 3-1-1_deployment.yaml
deployment "my-nginx" created
service "my-nginx" created

After a few seconds, we should see that the pods are scheduled and up and running:

kubectl get pods
NAME READY STATUS RESTARTS AGE
my-nginx-6484b5fc4c-9v7dc 1/1 Running 0 7s
my-nginx-6484b5fc4c-krd7p 1/1 Running 0 7s

The service is up, too:

kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 20d
my-nginx NodePort 10.105.9.153 <none> 80:30080/TCP 59s

How to do it...
Assume our services are expected to have a traffic spike at a certain of time. As a
DevOps, you might want to scale it up manually, and scale it down after the peak
time. In Kubernetes, we can use the kubectl scale command to do so.
Alternatively, we could leverage a HPA to scale up and down automatically based on
compute resource conditions or custom metrics.

Let's see how to do it manually and automatically in Kubernetes.

Scale up and down manually with the kubectl scale
command
Assume that today we'd like to scale our nginx Pods from two to four:

// kubectl scale --replicas=<expected_replica_num> deployment
<deployment_name>
kubectl scale --replicas=4 deployment my-nginx
deployment "my-nginx" scaled

Playing with Containers Chapter 14

[433]

Let's check how many pods we have now:

kubectl get pods
NAME READY STATUS RESTARTS AGE
my-nginx-6484b5fc4c-9v7dc 1/1 Running 0 1m
my-nginx-6484b5fc4c-krd7p 1/1 Running 0 1m
my-nginx-6484b5fc4c-nsvzt 0/1 ContainerCreating 0 2s
my-nginx-6484b5fc4c-v68dr 1/1 Running 0 2s

We could find two more Pods are scheduled. One is already running and another one
is creating. Eventually, we will have four Pods up and running if we have enough
compute resources.

Kubectl scale (also kubectl autoscale!) supports Replication
Controller (RC) and Replica Set (RS), too. However, deployment is
the recommended way to deploy Pods.

We could also scale down with the same kubectl command, just by setting
the replicas parameter lower:

// kubectl scale –replicas=<expected_replica_num> deployment
<deployment_name>
kubectl scale --replicas=2 deployment my-nginx
deployment "my-nginx" scaled

Now, we'll see two Pods are scheduled to be terminated:

kubectl get pods
NAME READY STATUS RESTARTS AGE
my-nginx-6484b5fc4c-9v7dc 1/1 Running 0 1m
my-nginx-6484b5fc4c-krd7p 1/1 Running 0 1m
my-nginx-6484b5fc4c-nsvzt 0/1 Terminating 0 23s
my-nginx-6484b5fc4c-v68dr 0/1 Terminating 0 23s

There is an option, --current-replicas, which specifies the expected current
replicas. If it doesn't match, Kubernetes doesn't perform the scale function as follows:

// adding –-current-replicas to precheck the condistion for scaling.
kubectl scale --current-replicas=3 --replicas=4 deployment my-nginx
error: Expected replicas to be 3, was 2

Playing with Containers Chapter 14

[434]

Horizontal Pod Autoscaler (HPA)
An HPA queries the source of metrics periodically and determines whether scaling is
required by a controller based on the metrics it gets. There are two types of metrics
that could be fetched; one is from Heapster (https:/ /github. com/ kubernetes/
heapster), another is from RESTful client access. In the following example, we'll show
you how to use Heapster to monitor Pods and expose the metrics to an HPA.

First, Heapster has to be deployed in the cluster:

If you're running minikube, use the minikube addons enable
heapster command to enable heapster in your cluster. Note
that minikube logs | grep heapster command could also be
used to check the logs of heapster.

// at the time we're writing this book, the latest configuration file
of heapster in kops is 1.7.0. Check out
https://github.com/kubernetes/kops/tree/master/addons/monitoring-stand
alone for the latest version when you use it.
kubectl create -f
https://raw.githubusercontent.com/kubernetes/kops/master/addons/monito
ring-standalone/v1.7.0.yaml
deployment "heapster" created
service "heapster" created
serviceaccount "heapster" created
clusterrolebinding "heapster" created
rolebinding "heapster-binding" created

Check if the heapster pods are up and running:

kubectl get pods --all-namespaces | grep heapster
kube-system heapster-56d577b559-dnjvn 2/2 Running 0 26m
kube-system heapster-v1.4.3-6947497b4-jrczl 3/3 Running 0 5d

Assuming we continue right after the Getting Ready section, we will have two my-
nginx Pods running in our cluster:

kubectl get pods
NAME READY STATUS RESTARTS AGE
my-nginx-6484b5fc4c-9v7dc 1/1 Running 0 40m
my-nginx-6484b5fc4c-krd7p 1/1 Running 0 40m

Then, we can use the kubectl autoscale command to deploy an HPA:

kubectl autoscale deployment my-nginx --cpu-percent=50 --min=2 --
max=5
deployment "my-nginx" autoscaled

https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster

Playing with Containers Chapter 14

[435]

cat 3-1-2_hpa.yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: my-nginx
spec:
 scaleTargetRef:
 kind: Deployment
 name: my-nginx
 minReplicas: 2
 maxReplicas: 5
 targetCPUUtilizationPercentage: 50

To check if it's running as expected:

// check horizontal pod autoscaler (HPA)
kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
my-nginx Deployment/my-nginx <unknown> / 50% 2 5 0 3s

We find the target shows as unknown and replicas are 0. Why is this? the runs as a
control loop, at a default interval of 30 seconds. There might be a delay before it
reflects the real metrics.

The default sync period of an HPA can be altered by changing the
following parameter in control manager: --horizontal-pod-
autoscaler-sync-period.

After waiting a couple of seconds, we will find the current metrics are there now. The
number showed in the target column presents (current / target). It means the
load is currently 0%, and scale target is 50%:

kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
my-nginx Deployment/my-nginx 0% / 50% 2 5 2 48m

// check details of a hpa
kubectl describe hpa my-nginx
Name: my-nginx
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Mon, 15 Jan 2018 22:48:28 -0500
Reference: Deployment/my-nginx
Metrics: (current / target)
 resource cpu on pods (as a percentage of request): 0% (0) / 50%

Playing with Containers Chapter 14

[436]

Min replicas: 2
Max replicas: 5

To test if HPA can scale the Pod properly, we'll manually generate some loads to my-
nginx service:

// generate the load
kubectl run -it --rm --restart=Never <pod_name> --image=busybox --
sh -c "while true; do wget -O - -q http://my-nginx; done"

In the preceding command, we ran a busybox image which allowed us to run a
simple command on it. We used the –c parameter to specify the default command,
which is an infinite loop, to query my-nginx service.

After about one minute, you can see that the current value is changing:

// check current value – it's 43% now. not exceeding scaling condition
yet.
kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
my-nginx Deployment/my-nginx 43% / 50% 2 5 2 56m

With the same command, we can run more loads with different Pod names
repeatedly. Finally, we see that the condition has been met. It's scaling up to 3
replicas, and up to 4 replicas afterwards:

kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
my-nginx Deployment/my-nginx 73% / 50% 2 5 3 1h

kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
my-nginx Deployment/my-nginx 87% / 50% 2 5 4 15m
Keeping observing it and deleting some busybox we deployed. It will
eventually cool down and scale down without manual operation involved.
kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
my-nginx Deployment/my-nginx 40% / 50% 2 5 2 27m

We can see that HPA just scaled our Pods from 4 to 2.

Playing with Containers Chapter 14

[437]

How it works...
Note that cAdvisor acts as a container resource utilization monitoring service, which
is running inside kubelet on each node. The CPU utilizations we just monitored are
collected by cAdvisor and aggregated by Heapster. Heapster is a service running in
the cluster that monitors and aggregates the metrics. It queries the metrics from each
cAdvisor. When HPA is deployed, the controller will keep observing the metrics
which are reported by Heapster, and scale up and down accordingly. An illustration
of the process is as follows:

Based on the specified metrics, HPA determines whether scaling is required

There is more…
Alternatively, you could use custom metrics, such as Pod metrics or object metrics, to
determine if it's time to scale up or down. Kubernetes also supports multiple metrics.
HPA will consider each metric sequentially. Check out https:/ /kubernetes. io/
docs/tasks/run- application/ horizontal- pod-autoscale for more examples.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

Playing with Containers Chapter 14

[438]

See also
This recipe described how to change the number of Pods using the scaling option of
the deployment. It is useful to scale up and scale down your application quickly. To
know more about how to update your container, refer to the following recipes:

Updating live containers in Chapter 14, Playing with Containers
Ensuring flexible usage of your containers in Chapter 14, Playing with
Containers

Updating live containers
For the benefit of containers, we can easily publish new programs by executing the
latest image, and reduce the headache of environment setup. But, what about
publishing the program on running containers? While managing a container natively,
we have to stop the running containers prior to booting up new ones with the latest
images and the same configurations. There are some simple and efficient methods for
updating your program in the Kubernetes system. One is called rolling-update, which
means Deployment can update its Pods without downtime to clients. The other
method is called recreate, which just terminates all Pods then create a new set. We will
demonstrate how these solutions are applied in this recipe.

Rolling-update in Docker swarm
To achieve zero downtime application updating, there is a similar
managing function in Docker swarm. In Docker swarm, you can
leverage the command docker service update with the flag --
update-delay, --update-parallelism and --update-
failure-action. Check the official website for more details about
Docker swarm's rolling-update: https:/ /docs. docker. com/ engine/
swarm/ swarm- tutorial/ rolling- update/ .

Getting ready
For a later demonstration, we are going to update nginx Pods . Please make sure all
Kubernetes nodes and components are working healthily:

// check components
$ kubectl get cs
// check nodes
$ kubectl get node

https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/

Playing with Containers Chapter 14

[439]

Furthermore, to well understand the relationship between ReplicaSet and
Deployment, please check Deployment API section in Chapter 13, Walking through
Kubernetes Concepts.

To illustrate the updating of the containers in Kubernetes system, we will create a
Deployment, change its configurations of application, and then check how the
updating mechanism handles it. Let's get all our resources ready:

// create a simple nginx Deployment with specified labels
$ kubectl run simple-nginx --image=nginx --port=80 --replicas=5 --
labels="project=My-Happy-Web,role=frontend,env=test"
deployment.apps "simple-nginx" created

This Deployment is created with 5 replicas. It is good for us to discover the updating
procedure with multiple numbers of Pods:

// expose the Deployment, and named the service "nginx-service"
$ kubectl expose deployment simple-nginx --port=8080 --target-port=80
--name="nginx-service"
service "nginx-service" exposed
// For minikube environment only, since Kubernetes is installed in a
VM, add Service type as NodePort for accessing outside the VM.
$ kubectl expose deployment simple-nginx --port=8080 --target-port=80
--name="nginx-service" --type=NodePort
service "nginx-service" exposed

Attaching a Service on the Deployment will help to simulate the real experience of
clients.

How to do it...
At the beginning, take a look at the Deployment you just created and its ReplicaSet by
executing the following code block:

$ kubectl describe deployment simple-nginx
Name: simple-nginx
Namespace: default
CreationTimestamp: Fri, 04 May 2018 12:14:21 -0400
Labels: env=test
 project=My-Happy-Web
 role=frontend
Annotations: deployment.kubernetes.io/revision=1
Selector: env=test,project=My-Happy-Web,role=frontend
Replicas: 5 desired | 5 updated | 5 total | 5 available
| 0 unavailable

Playing with Containers Chapter 14

[440]

StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
 Labels: env=test
 project=My-Happy-Web
 role=frontend
 Containers:
 simple-nginx:
 Image: nginx
 Port: 80/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: simple-nginx-585f6cddcd (5/5 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 1h deployment-controller Scaled up
replica set simple-nginx-585f6cddcd to 5
// rs is the abbreviated resource key of replicaset
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
simple-nginx-585f6cddcd 5 5 5 1h

Based on the preceding output, we know that the default updating strategy of
deployment is rolling-update. Also, there is a single ReplicaSet named <Deployment
Name>-<hex decimal hash> that is created along with the Deployment.

Next, check the content of the current Service endpoint for the sake of verifying our
update later:

// record the cluster IP of Service "nginx-service"
$ export SERVICE_URL=$(kubectl get svc | grep nginx-service | awk
'{print $3}'):8080

// For minikube environment only, record the VM host IP and port for
the service
$ export SERVICE_URL=$(minikube service nginx-service --url)
$ curl $SERVICE_URL | grep "title"
<title>Welcome to nginx!</title>

Playing with Containers Chapter 14

[441]

We will get the welcome message in the title of the HTML response with the original
nginx image.

Deployment update strategy – rolling-update
The following will introduce the subcommands edit and set, for the purpose of
updating the containers under Deployment:

First, let's update the Pods in Deployment with a new command:1.

// get into editor mode with the command below
// the flag "--record" is for recording the update
// add the command argument as below and save the change
$ kubectl edit deployment simple-nginx --record
spec:
 replicas: 5
 ...
 template:
 ...
 spec:
 containers:
 - image: nginx
 command:
 - sh
 - -c
 - echo "Happy Programming with Kubernetes!" >
/usr/share/nginx/html/index.html && service nginx stop &&
nginx -g "daemon off;"
 imagePullPolicy: Always
 ...
deployment.extensions "simple-nginx" edited

We are not only doing the update; we record this change as well. With the
flag --record, we keep the command line as a tag in revision.

After editing the Deployment, check the status of rolling-update with the2.
subcommand rollout right away:

// you may see different output on your screen, but
definitely has the last line showing update successfully
$ kubectl rollout status deployment simple-nginx
Waiting for rollout to finish: 4 out of 5 new replicas
have been updated...
Waiting for rollout to finish: 4 out of 5 new replicas
have been updated...
Waiting for rollout to finish: 4 out of 5 new replicas

Playing with Containers Chapter 14

[442]

have been updated...
Waiting for rollout to finish: 4 out of 5 new replicas
have been updated...
Waiting for rollout to finish: 1 old replicas are pending
termination...
Waiting for rollout to finish: 1 old replicas are pending
termination...
Waiting for rollout to finish: 1 old replicas are pending
termination...
Waiting for rollout to finish: 4 of 5 updated replicas are
available...
deployment "simple-nginx" successfully rolled out

It is possible that you get several Waiting for … lines, as shown in the
preceding code. They are the standard output showing the status of the
update.

For whole updating procedures, check the details of the Deployment to list3.
its events:

// describe the Deployment again
$ kubectl describe deployment simple-nginx
Name: simple-nginx
...
Events:
 Type Reason Age From
Message
 ---- ------ ---- ----

 Normal ScalingReplicaSet 1h deployment-controller
Scaled up replica set simple-nginx-585f6cddcd to 5
 Normal ScalingReplicaSet 1h deployment-controller
Scaled up replica set simple-nginx-694f94f77d to 1
 Normal ScalingReplicaSet 1h deployment-controller
Scaled down replica set simple-nginx-585f6cddcd to 4
 Normal ScalingReplicaSet 1h deployment-controller
Scaled up replica set simple-nginx-694f94f77d to 2
 Normal ScalingReplicaSet 1h deployment-controller
Scaled down replica set simple-nginx-585f6cddcd to 3
 Normal ScalingReplicaSet 1h deployment-controller
Scaled up replica set simple-nginx-694f94f77d to 3
 Normal ScalingReplicaSet 1h deployment-controller
Scaled down replica set simple-nginx-585f6cddcd to 2
 Normal ScalingReplicaSet 1h deployment-controller
Scaled up replica set simple-nginx-694f94f77d to 4
 Normal ScalingReplicaSet 1h deployment-controller
Scaled down replica set simple-nginx-585f6cddcd to
 Normal ScalingReplicaSet 1h deployment-controller

Playing with Containers Chapter 14

[443]

Scaled up replica set simple-nginx-694f94f77d to 5
 Normal ScalingReplicaSet 1h deployment-controller
(combined from similar events): Scaled down replica set
simple-nginx-585f6cddcd to 0

As you see, a new replica set simple-nginx-694f94f77d is created in
the Deployment simple-nginx. Each time the new ReplicaSet scales one
Pod up successfully, the old ReplicaSet will scale one Pod down. The scaling
process finishes at the moment that the new ReplicaSet meets the original
desired Pod number (as said, 5 Pods), and the old ReplicaSet has zero Pods.

Go ahead and check the new ReplicaSet and existing Service for this4.
update:

// look at the new ReplicaSet in detail, you will find it
copied the labels of the old one
$ kubectl describe rs simple-nginx-694f94f77d
Name: simple-nginx-694f94f77d
Namespace: default
Selector: env=test,pod-template-
hash=2509509338,project=My-Happy-Web,role=frontend
Labels: env=test
 pod-template-hash=2509509338
 project=My-Happy-Web
 role=frontend
...
// send request to the same endpoint of Service.
$ curl $SERVICE_URL
Happy Programming with Kubernetes!

Let's make another update! This time, use the subcommand set to modify5.
a specific configuration of a Pod.
To set a new image to certain containers in a Deployment, the6.
subcommand format would look like this: kubectl set image
deployment <Deployment name> <Container name>=<image name>:

// change the image version with the subcommand "set"
// when describing the deployment, we can know that the
container name is the same as the name of the Deployment
// record this change as well
$ kubectl set image deployment simple-nginx simple-
nginx=nginx:stable --record
deployment.apps "simple-nginx" image updated

Playing with Containers Chapter 14

[444]

What else could the subcommand "set" help to configure?
The subcommand set helps to define the configuration of the
application. Until version 1.9, CLI with set could assign or update
the following resources:

Subcommand after set Acting resource Updating item
env Pod Environment variables
image Pod Container image

resources Pod Computing resource
requirement or limitation

selector Any resource Selector
serviceaccount Any resource ServiceAccount

subject RoleBinding or
ClusterRoleBinding

User, group, or
ServiceAccount

Now, check if the update has finished and whether the image is changed:7.

// check update status by rollout
$ kubectl rollout status deployment simple-nginx
...
deployment "simple-nginx" successfully rolled out
// check the image of Pod in simple-nginx
$ kubectl describe deployment simple-nginx
Name: simple-nginx
...
Pod Template:
 Labels: env=test
 project=My-Happy-Web
 role=frontend
 Containers:
 simple-nginx:
 Image: nginx:stable
 Port: 80/TCP
 Host Port: 0/TCP
...

You can also check out the ReplicaSets. There should be another one taking8.
responsibility of the Pods for Deployment:

$ kubectl get rs
NAME DESIRED CURRENT READY
AGE
simple-nginx-585f6cddcd 0 0 0 1h
simple-nginx-694f94f77d 0 0 0 1h
simple-nginx-b549cc75c 5 5 5 1h

Playing with Containers Chapter 14

[445]

Rollback the update
Kubernetes system records every update for Deployment:

We can list all of the revisions with the subcommand rollout:1.

// check the rollout history
$ kubectl rollout history deployment simple-nginx
deployments "simple-nginx"
REVISION CHANGE-CAUSE
1 <none>
2 kubectl edit deployment simple-nginx --
record=true
3 kubectl set image deployment simple-nginx
simple-nginx=nginx:stable --record=true

You will get three revisions, as in the preceding lines, for the Deployment
simple-nginx. For Kubernetes Deployment, each revision has a matched
ReplicaSet and represents a stage of running an update command. The
first revision is the initial state of simple-nginx. Although there is no
command tag for indication, Kubernetes takes its creation as its first version.
However, you could still record the command when you create the
Deployment.

Add the flag --record after the subcommand create or run.2.
With the revisions, we can easily resume the change, which means rolling3.
back the update. Use the following commands to rollback to previous
revisions:

// let's jump back to initial Deployment!
// with flag --to-revision, we can specify which revision
for rollback processing
$ kubectl rollout undo deployment simple-nginx --to-
revision=1
deployment.apps "simple-nginx"
// check if the rollback update is finished
$ kubectl rollout status deployment simple-nginx
...
deployment "simple-nginx" successfully rolled out
// take a look at ReplicaSets, you will find that the old
ReplicaSet takes charge of the business now
$ kubectl get rs
NAME DESIRED CURRENT READY
AGE
simple-nginx-585f6cddcd 5 5 5 4h
simple-nginx-694f94f77d 0 0 0 4h

Playing with Containers Chapter 14

[446]

simple-nginx-b549cc75c 0 0 0 3h
// go ahead and check the nginx webpage or the details of
Deployment
$ curl $SERVICE_URL
$ kubectl describe deployment simple-nginx

Without specifying the revision number, the rollback process will simply4.
jump back to previous version:

// just go back to previous status
$ kubectl rollout undo deployment simple-nginx
deployment.apps "simple-nginx"
// look at the ReplicaSets agin, now the latest one takes
the job again
$ kubectl get rs
NAME DESIRED CURRENT READY
AGE
simple-nginx-585f6cddcd 0 0 0 4h
simple-nginx-694f94f77d 0 0 0 4h
simple-nginx-b549cc75c 5 5 5 4h

Deployment update strategy – recreate
Next, we are going to introduce the other update strategy, recreate, for
Deployment. Although there is no subcommand or flag to create a recreate-
strategy deployment, users could fulfill this creation by overriding the default
element with the specified configuration:

// create a new Deployment, and override the update strategy.
$ kubectl run recreate-nginx --image=nginx --port=80 --replicas=5 --
overrides='{"apiVersion": "apps/v1", "spec": {"strategy": {"type":
"Recreate"}}}'
deployment.apps "recreate-nginx" created
// verify our new Deployment
$ kubectl describe deployment recreate-nginx
Name: recreate-nginx
Namespace: default
CreationTimestamp: Sat, 05 May 2018 18:17:07 -0400
Labels: run=recreate-nginx
Annotations: deployment.kubernetes.io/revision=1
Selector: run=recreate-nginx
Replicas: 5 desired | 5 updated | 5 total | 0 available | 5
unavailable
StrategyType: Recreate
...

Playing with Containers Chapter 14

[447]

In our understanding, the recreate mode is good for an application under
development. With recreate, Kubernetes just scales the current ReplicaSet down to
zero Pods, and creates a new ReplicaSet with the full desired number of Pods.
Therefore, recreate has a shorter total updating time than rolling-update because it
scales ReplicaSets up or down simply, once for all. Since a developing Deployment
doesn't need to take care of any user experience, it is acceptable to have downtime
while updating and enjoy faster updates:

// try to update recreate-strategy Deployment
$ kubectl set image deployment recreate-nginx recreate-
nginx=nginx:stable
deployment.apps "recreate-nginx" image updated
// check both the rollout status and the events of Deployment
$ kubectl rollout status deployment recreate-nginx
$ kubectl describe deployment recreate-nginx
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 3h deployment-controller Scaled up
replica set recreate-nginx-9d5b69986 to 5
 Normal ScalingReplicaSet 2h deployment-controller Scaled down
replica set recreate-nginx-9d5b69986 to 0
 Normal ScalingReplicaSet 2h deployment-controller Scaled up
replica set recreate-nginx-674d7f9c7f to 5

How it works...
Rolling-update works on the units of the ReplicaSet in a Deployment. The effect is to
create a new ReplicaSet to replace the old one. Then, the new ReplicaSet is scaling up
to meet the desired numbers, while the old ReplicaSet is scaling down to terminate all
the Pods in it. The Pods in the new ReplicaSet are attached to the original labels.
Therefore, if any service exposes this Deployment, it will take over the newly created
Pods directly.

An experienced Kubernetes user may know that the resource ReplicationController
can be rolling-update as well. So, what are the differences of rolling-update between
ReplicationController and deployment? The scaling processing uses the combination
of ReplicationController and a client such as kubectl. A new ReplicationController
will be created to replace the previous one. Clients don't feel any interruption since
the service is in front of ReplicationController while doing replacement. However, it
is hard for developers to roll back to previous ReplicationControllers (they have been
removed), because there is no built-in mechanism that records the history of updates.

Playing with Containers Chapter 14

[448]

In addition, rolling-update might fail if the client connection is disconnected while
rolling-update is working. Most important of all, Deployment with ReplicaSet is the
most recommended deploying resource than ReplicationController or standalone
ReplicaSet.

While paying close attention to the history of update in deployment, be aware that it
is not always listed in sequence. The algorithm of adding revisions could be clarified
as the following bullet points show:

Take the number of last revision as N
When a new rollout update comes, it would be N+1
Roll back to a specific revision number X, X would be removed and it
would become N+1
Roll back to the previous version, which means N-1, then N-1 would be
removed and it would become N+1

With this revision management, no stale and overlapped updates occupy the rollout
history.

There's more...
Taking Deployment update into consideration is a good step towards building a
CI/CD (continuous integration and continuous delivery) pipeline. For a more
common usage, developers don't exploit command lines to update the Deployment.
They may prefer to fire some API calls from CI/CD platform, or update from a
previous configuration file. Here comes an example working with the subcommand
apply:

// A simple nginx Kubernetes configuration file
$ cat my-update-nginx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-update-nginx
spec:
 replicas: 5
 selector:
 matchLabels:
 run: simple-nginx
 template:
 metadata:
 labels:
 run: simple-nginx

Playing with Containers Chapter 14

[449]

 spec:
 containers:
 - name: simple-nginx
 image: nginx
 ports:
 - containerPort: 80

// create the Deployment by file and recording the command in the
revision tag
$ kubectl create -f my-update-nginx.yaml --record
deployment.apps "my-update-nginx" created

As a demonstration, modifying the container image from nginx to nginx:stable
(you may check the code bundle my-update-nginx-updated.yaml for the
modification). Then, we can use the changed file to update with the subcommand
apply:

$ kubectl apply -f my-update-nginx-updated.yaml --record
Warning: kubectl apply should be used on resource created by either
kubectl create --save-config or kubectl apply
deployment.apps "my-update-nginx" configured
// check the update revisions and status
$ kubectl rollout history deployment my-update-nginx
deployments "my-update-nginx"
REVISION CHANGE-CAUSE
1 kubectl create --filename=my-update-nginx.yaml --record=true
2 kubectl apply --filename=my-update-nginx-updated.yaml --
record=true
$ kubectl rollout status deployment my-update-nginx
deployment "my-update-nginx" successfully rolled out

Now, you can learn another way to update your Deployment.

Digging deeper into rolling-update on Deployment, there are some parameters we
may leverage when doing updates:

minReadySeconds: After a Pod is considered to be ready, the system still
waits for a period of time for going on to the next step. This time slot is the
minimum ready seconds, which will be helpful when waiting for the
application to complete post-configuration.
maxUnavailable: The maximum number of Pods that can be unavailable
during updating. The value could be a percentage (the default is 25%) or an
integer. If the value of maxSurge is 0, which means no tolerance of the
number of Pods over the desired number, the value of maxUnavailable
cannot be 0.

Playing with Containers Chapter 14

[450]

maxSurge: The maximum number of Pods that can be created over the
desired number of ReplicaSet during updating. The value could be a
percentage (the default is 25%) or an integer. If the value of
maxUnavailable is 0, which means the number of serving Pods should
always meet the desired number, the value of maxSurge cannot be 0.

Based on the configuration file my-update-nginx-advanced.yaml in the code
bundle, try playing with these parameters by yourself and see if you can feel the ideas
at work.

See also
You could continue studying the following recipes to learn more ideas about
deploying Kubernetes resources efficiently:

Scaling your containers
Working with configuration files

Forwarding container ports
In previous chapters, you have learned how to work with the Kubernetes Services to
forward the container port internally and externally. Now, it's time to take it a step
further to see how it works.

There are four networking models in Kubernetes, and we'll explore the details in the
following sections:

Container-to-container communications
Pod-to-pod communications
Pod-to-service communications
External-to-internal communications

Playing with Containers Chapter 14

[451]

Getting ready
Before we go digging into Kubernetes networking, let's study the networking of
Docker to understand the basic concept. Each container will have a network
namespace with its own routing table and routing policy. By default, the network
bridge docker0 connects the physical network interface and virtual network
interfaces of containers, and the virtual network interface is the bidirectional cable for
the container network namespace and the host one. As a result, there is a pair of
virtual network interfaces for a single container: the Ethernet interface (eth0) on the
container and the virtual Ethernet interface (veth-) on the host.

The network structure can be expressed as in the following image:

Container network interfaces on host

What is a network namespace?
A network namespace is the technique provided by Linux kernel.
With this feature, the operating system can fulfill network
virtualization by separating the network capability into independent
resources. Each network namespace has its own iptable setup and
network devices.

Playing with Containers Chapter 14

[452]

How to do it...
A Pod contains one or more containers, which run on the same host. Each Pod has
their own IP address on an overlay network; all the containers inside a Pod see each
other as on the same host. Containers inside a Pod will be created, deployed, and
deleted almost at the same time. We will illustrate four communication models
between container, Pod, and Service.

Container-to-container communication
In this scenario, we would focus on the communications between containers within
single Pod:

Let's create two containers in one Pod: a nginx web application and a1.
CentOS, which checks port 80 on localhost:

// configuration file of creating two containers within a
pod
$ cat two-container-pod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: two-container
spec:
 containers:
 - name: web
 image: nginx
 ports:
 - containerPort: 80
 hostPort: 80
 - name: centos
 image: centos
 command: ["/bin/sh", "-c", "while : ;do curl
http://localhost:80/; sleep 30; done"]

// create the pod
$ kubectl create -f two-container-pod.yaml
pod "two-container" created
// check the status of the newly-created Pod
$ kubectl get pod two-container
NAME READY STATUS RESTARTS AGE
two-container 2/2 Running 0 5s

Playing with Containers Chapter 14

[453]

We see the count in the READY column becomes 2/2, since there are two
containers inside this Pod.

Using the kubectl describe command, we may see the details of the2.
Pod:

$ kubectl describe pod two-container
Name: two-container
Namespace: default
Node: ubuntu02/192.168.122.102
Start Time: Sat, 05 May 2018 18:28:22 -0400
Labels: <none>
Annotations: <none>
Status: Running
IP: 192.168.79.198
Containers:
 web:
 Container ID:
docker://e832d294f176f643d604445096439d485d94780faf60eab7a
e5d3849cbf15d75
...
 centos:
 Container ID:
docker://9e35275934c1acdcfac4017963dc046f9517a8c1fc972df56
ca37e69d7389a72
...

We can see that the Pod is run on node ubuntu02 and that its IP is
192.168.79.198.

Also, we may find that the Centos container can access the nginx on3.
localhost:

$ kubectl logs two-container centos | grep "title"
<title>Welcome to nginx!</title>
...

Let's log in to node ubuntu02 to check the network setting of these two4.
containers:

// list containers of the Pod
$ docker ps | grep "two-container"
9e35275934c1 centos
"/bin/sh -c 'while..." 11 hours ago Up 11 hours
k8s_centos_two-container_default_113e727f-f440-11e7-
ac3f-525400a9d353_0
e832d294f176 nginx

Playing with Containers Chapter 14

[454]

"nginx -g 'daemon ..." 11 hours ago Up 11 hours
k8s_web_two-container_default_113e727f-f440-11e7-
ac3f-525400a9d353_0
9b3e9caf5149 gcr.io/google_containers/pause-
amd64:3.1 "/pause" 11 hours ago
Up 11 hours k8s_POD_two-
container_default_113e727f-f440-11e7-ac3f-525400a9d353_0

Now, we know that the two containers created are 9e35275934c1 and
e832d294f176. On the other hand, there is another
container, 9b3e9caf5149, that is created by Kubernetes with the Docker
image gcr.io/google_containers/pause-amd64. We will introduce it
later. Thereafter, we may get a detailed inspection of the containers with the
command docker inspect, and by adding the command jq (https:/ /
stedolan. github. io/ jq/) as a pipeline, we can parse the output
information to show network settings only.

Taking a look at both containers covered in the same Pod:5.

// inspect the nginx container, and use jq to parse it
$ docker inspect e832d294f176 | jq '.[]| {NetworkMode:
.HostConfig.NetworkMode, NetworkSettings:
.NetworkSettings}'
{
 "NetworkMode":
"container:9b3e9caf5149ffb0ec14c1ffc36f94b2dd55b223d0d20e4
d48c4e33228103723",
 "NetworkSettings": {
 "Bridge": "",
 "SandboxID": "",
 "HairpinMode": false,
 "LinkLocalIPv6Address": "",
 "LinkLocalIPv6PrefixLen": 0,
 "Ports": {},
 "SandboxKey": "",
 "SecondaryIPAddresses": null,
 "SecondaryIPv6Addresses": null,
 "EndpointID": "",
 "Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "IPAddress": "",
 "IPPrefixLen": 0,
 "IPv6Gateway": "",
 "MacAddress": "",
 "Networks": {}
 }

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Playing with Containers Chapter 14

[455]

}
// then inspect the centos one
$ docker inspect 9e35275934c1 | jq '.[]| {NetworkMode:
.HostConfig.NetworkMode, NetworkSettings:
.NetworkSettings}'
{
 "NetworkMode":
"container:9b3e9caf5149ffb0ec14c1ffc36f94b2dd55b223d0d20e4
d48c4e33228103723",
...

We can see that both containers have identical network settings; the network mode is
set to mapped container mode, leaving the other configurations cleaned. The network
bridge container is
container:9b3e9caf5149ffb0ec14c1ffc36f94b2dd55b223d0d20e4d48c4e332

28103723. What is this container? It is the one created by Kubernetes, container
ID 9b3e9caf5149, with the image gcr.io/google_containers/pause-amd64.

What does the container "pause" do?
Just as its name suggests, this container does nothing but "pause".
However, it preserves the network settings, and the Linux network
namespace, for the Pod. Anytime the container shutdowns and
restarts, the network configuration will still be the same and not
need to be recreated, because the "pause" container holds it. You can
check its code and Dockerfile at https:/ /github. com/kubernetes/
kubernetes/ tree/ master/ build/ pause for more information.

The "pause" container is a network container, which is created when a Pod

is created and used to handle the route of the Pod network. Then, two containers will
share the network namespace with pause; that's why they see each other as localhost.

Create a network container in Docker
In Docker, you can easily make a container into a network container,
sharing its network namespace with another container. Use the
command line: $ docker run --
network=container:<CONTAINER_ID or CONTAINER_NAME>

[other options]. Then, you will be able to start a container
which uses the network namespace of the assigned container.

https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause
https://github.com/kubernetes/kubernetes/tree/master/build/pause

Playing with Containers Chapter 14

[456]

Pod-to-Pod communication
As mentioned, containers in a Pod share the same network namespace. And a Pod is
the basic computing unit in Kubernetes. Kubernetes assigns an IP to a Pod in its
world. Every Pod can see every other with the virtual IP in Kubernetes network.
While talking about the communication between Pods , we can separate into two
scenarios: Pods that communicate within a node, or Pods that communicate across
nodes. For Pods in single node, since they have separate IPs, their transmissions can
be held by bridge, same as containers in a Docker node. However, for communication
between Pods across nodes, how would be the package routing work while
Pod doesn't have the host information (the host IP)?

Kubernetes uses the CNI to handle cluster networking. CNI is a framework for
managing connective containers, for assigning or deleting the network resource on a
container. While Kubernetes takes CNI as a plugin, users can choose the
implementation of CNI on demand. Commonly, there are the following types of CNI:

Overlay: With the technique of packet encapsulation. Every data is
wrapped with host IP, so it is routable in the internet. An example is flannel
(https:/ / github. com/ coreos/ flannel).
L3 gateway: Transmission between containers pass to a gateway node first.
The gateway will maintain the routing table to map the container subnet
and host IP. An example is Project Calico (https:/ /www. projectcalico.
org/).
L2 adjacency: Happening on L2 switching. In Ethernet, two nodes have
adjacency if the package can be transmitted directly from source to
destination, without passing by other nodes. An example is Cisco ACI
(https:/ / www. cisco. com/ c/ en/us/ td/docs/ switches/ datacenter/ aci/
apic/ sw/ kb/ b_Kubernetes_ Integration_ with_ ACI. html).

https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Kubernetes_Integration_with_ACI.html

Playing with Containers Chapter 14

[457]

There are pros and cons to every type of CNI. The former type within the bullet
points has better scalability but bad performance, while the latter one has a shorter
latency but requires complex and customized setup. Some CNIs cover all three types
in different modes, for example, Contiv (https:/ /github. com/ contiv/ netplugin).
You can get more information about CNI while checking its spec at: https:/ /github.
com/containernetworking/ cni. Additionally, look at the CNI list on official website
of Kubernetes to try out these CNIs: https:/ / kubernetes. io/docs/ concepts/
cluster-administration/ networking/ #how- to-achieve- this.

After introducing the basic knowledge of the packet transaction between Pods , we
will continue to bring you a Kubernetes API, NetworkPolicy, which provides
advanced management between the communication of Pods .

Working with NetworkPolicy
As a resource of Kubernetes, NetworkPolicy uses label selectors to configure the
firewall of Pods from infrastructure level. Without a specified NetworkPolicy, any
Pod in the same cluster can communicate with each other by default. On the other
hand, once a NetworkPolicy with rules is attached to a Pod, either it is for ingress or
egress, or both, and all traffic that doesn't follow the rules will be blocked.

Before demonstrating how to build a NetworkPolicy, we should make sure the
network plugin in Kubernetes cluster supports it. There are several CNIs that support
NetworkPolicy: Calico, Contive, Romana (https:/ /github. com/ romana/ kube), Weave
Net (https://github. com/ weaveworks/ weave), Trireme (https:/ / github. com/
aporeto-inc/trireme- kubernetes), and others.

https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/contiv/netplugin
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/romana/kube
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes

Playing with Containers Chapter 14

[458]

Enable CNI with NetworkPolicy support as network plugin in
minikube
While working on minikube, users will not need to attach a CNI
specifically, since it is designed as a single local Kubernetes node.
However, to enable the functionality of NetworkPolicy, it is
necessary to start a NetworkPolicy-supported CNI. Be careful, as,
while you configure the minikube with CNI, the configuration
options and procedures could be quite different to various CNI
implementations. The following steps show you how to start
minikube with CNI, Calico:

We take this issue https:/ / github. com/ projectcalico/1.
calico/ issues/ 1013#issuecomment- 325689943 as
reference for these building steps.
The minikube used here is the latest version, 0.24.1.2.
Reboot your minikube: minikube start --network-3.
plugin=cni \
--host-only-cidr 172.17.17.1/24 \
--extra-config=kubelet.PodCIDR=192.168.0.0/16
\
--extra-
config=proxy.ClusterCIDR=192.168.0.0/16 \
--extra-config=controller-

manager.ClusterCIDR=192.168.0.0/16.
Create Calico with the configuration file "minikube-4.
calico.yaml" from the code bundle kubectl create -f
minikue-calico.yaml.

To illustrate the functionality of NetworkPolicy, we are going to create a Pod and
expose it as a service, then attach a NetworkPolicy on the Pod to see what happens:

// start a pod of our favourite example, nginx
$ kubectl run nginx-pod --image=nginx --port=80 --restart=Never
pod "nginx-pod" created
//expose the pod as a service listening on port 8080
$ kubectl expose pod nginx-pod --port=8080 --target-port=80
service "nginx-pod" exposed
// check the service IP
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 1h
nginx-pod ClusterIP 10.102.153.182 <none> 8080/TCP 1m

https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943
https://github.com/projectcalico/calico/issues/1013#issuecomment-325689943

Playing with Containers Chapter 14

[459]

Now, we can go ahead and check the Pod's connection from a simple Deployment,
busybox, using the command wget with --spider flag to verify the existence of
endpoint:

// check the accessibility of the service
// create busybox and open standard input and independent terminal by
flag "i" and "t", similar to docker command
$ kubectl run busybox -it --image=busybox /bin/sh
If you don't see a command prompt, try pressing enter.
/ # wget --spider 10.102.153.182:8080
Connecting to 10.102.153.182:8080 (10.102.153.182:8080)

As shown in the preceding result, we know that the nginx service can be accessed
without any constraints. Later, let's run a NetworkPolicy that restricts that only the
Pod tagging <test: inbound> can access nginx service:

// a configuration file defining NetworkPolicy of pod nginx-pod
$ cat networkpolicy.yaml
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: nginx-networkpolicy
spec:
 podSelector:
 matchLabels:
 run: nginx-pod
 ingress:
 - from:
 - podSelector:
 matchLabels:
 test: inbound

As you can see, in the spec of NeworkPolicy, it is configured to apply to Pods with
the label <run: nginx-pod>, which is the one we have on the pod nginx-pod.
Also, a rule of ingress is attached in the policy, which indicates that only Pods with a
specific label can access nginx-pod:

// create the NetworkPolicy
$ kubectl create -f networkpolicy.yaml
networkpolicy.networking.k8s.io "nginx-networkpolicy" created
// check the details of NetworkPolicy
$ kubectl describe networkpolicy nginx-networkpolicy
Name: nginx-networkpolicy
Namespace: default
Created on: 2018-05-05 18:36:56 -0400 EDT
Labels: <none>
Annotations: <none>

Playing with Containers Chapter 14

[460]

Spec:
 PodSelector: run=nginx-pod
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From PodSelector: test=inbound
 Allowing egress traffic:
 <none> (Selected pods are isolated for egress connectivity)
 Policy Types: Ingress

Great, everything is looking just like what we expected. Next, check the same service
endpoint on our previous busybox Pod:

// if you turned off the terminal, resume it with the subcommand
attach
$ kubectl attach busybox-598b87455b-s2mfq -c busybox -i -t
// we add flag to specify timeout interval, otherwise it will just
keep hanging on wget
/ # wget --spider 10.102.153.182:8080 --timeout=3
wget: download timed out

As expected again, now we cannot access the nginx-pod service after NetworkPolicy
is attached. The nginx-pod can only be touched by Pod labelled with <test:
inbound>:

// verify the connection by yourself with new busybox
$ kubectl run busybox-labelled --labels="test=inbound" -it --
image=busybox /bin/sh

Catch up with the concept of label and selector in the recipe Working
with labels and selectors in Chapter 13, Walking through Kubernetes
Concepts.

In this case, you have learned how to create a NetworkPolicy with ingress restriction
by Pod selector. Still, there are other settings you may like to build on your Pod:

Egress restriction: Egress rules can be applied by .spec.egress, which
has similar settings to ingress.
Port restriction: Each ingress and egress rule can point out what port, and
with what kind of port protocol, is to be accepted or blocked. Port
configuration can be applied through .spec.ingress.ports or
.spec.egress.ports.

Playing with Containers Chapter 14

[461]

Namespace selector: We can also make limitations on certain Namespaces.
For example, Pods for the system daemon might only allow access to others
in the Namespace kube-system. Namespace selector can be applied
with .spec.ingress.from.namespaceSelector or
.spec.egress.to.namespaceSelector.
IP block: A more customized configuration is to set rules on certain CIDR
ranges, which come out as similar ideas to what we work with iptables. We
may utilize this configuration through .spec.ingress.from.ipBlock or
.spec.egress.to.ipBlock.

It is recommended to check more details in the API document: https:/ /kubernetes.
io/docs/reference/ generated/ kubernetes- api/ v1.10/ #networkpolicyspec- v1-
networking. Furthermore, we would like to show you some more interesting setups
to fulfill general situations:

Apply to all Pod: A NetworkPolicy can be easily pushed to every Pod by
setting .spec.podSelector with an empty value.
Allow all traffic: We may allow all incoming traffic by assigning
.spec.ingress with empty value, an empty array; accordingly, outgoing
traffic could be set without any restriction by assigning .spec.egress
with empty value.
Deny all traffic: We may deny all incoming or outgoing traffic by simply
indicating the type of NetworkPolicy without setting any rule. The type of
the NetworkPolicy can be set at .spec.policyTypes. At the same time,
do not set .spec.ingress or .spec.egress.

Go check the code bundle for the example files networkpolicy-allow-all.yaml
and networkpolicy-deny-all.yaml.

Pod-to-Service communication
In the ordinary course of events, Pods can be stopped accidentally. Then, the IP of the
Pod can be changed. When we expose the port for a Pod or a Deployment, we create a
Kubernetes Service that acts as a proxy or a load balancer. Kubernetes would create a
virtual IP, which receives the request from clients and proxies the traffic to the
Pods in a service. Let's review how to do this:

First, we would create a Deployment and expose it to a Service:1.

$ cat nodeport-deployment.yaml
apiVersion: apps/v1

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#networkpolicyspec-v1-networking

Playing with Containers Chapter 14

[462]

kind: Deployment
metadata:
 name: nodeport-deploy
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: my-nginx
 image: nginx

apiVersion: v1
kind: Service
metadata:
 name: nodeport-svc
spec:
 type: NodePort
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 80
$ kubectl create -f nodeport-deployment.yaml
deployment.apps "nodeport-deploy" created
service "nodeport-svc" created

At this moment, check the details of the Service with the subcommand2.
describe:

$ kubectl describe service nodeport-svc
Name: nodeport-svc
Namespace: default
Labels: <none>
Annotations: <none>
Selector: app=nginx
Type: NodePort
IP: 10.101.160.245
Port: <unset> 8080/TCP
TargetPort: 80/TCP
NodePort: <unset> 30615/TCP
Endpoints: 192.168.80.5:80,192.168.80.6:80

Playing with Containers Chapter 14

[463]

Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

The virtual IP of the Service is 10.101.160.245, which exposes the port
8080. The Service would then dispatch the traffic into the two endpoints
192.168.80.5:80 and 192.168.80.6:80. Moreover, because the Service
is created in NodePort type, clients can access this Service on every
Kubernetes node at <NODE_IP>:30615. As with our understanding of the
recipe Working with Services in Chapter 13, Walking through Kubernetes
Concepts, it is the Kubernetes daemon kube-proxy that helps to maintain
and update routing policy on every node.

Continue on, checking the iptable on any Kubernetes node:3.

Attention! If you are in minikube environment, you should jump
into the node with the command minikube ssh.

// Take a look at following marked "Chain"
$ sudo iptables -t nat -nL
...
Chain KUBE-NODEPORTS (1 references)
target prot opt source destination
KUBE-MARK-MASQ tcp -- 0.0.0.0/0 0.0.0.0/0
/* default/nodeport-svc: */ tcp dpt:30615
KUBE-SVC-GFPAJ7EGCNM4QF4H tcp -- 0.0.0.0/0
0.0.0.0/0 /* default/nodeport-svc: */ tcp
dpt:30615
...
Chain KUBE-SEP-DIS6NYZTQKZ5ALQS (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 192.168.80.6 0.0.0.0/0
/* default/nodeport-svc: */
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0
/* default/nodeport-svc: */ tcp to:192.168.80.6:80
...
Chain KUBE-SEP-TC6HXYYMMLGUSFNZ (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 192.168.80.5 0.0.0.0/0
/* default/nodeport-svc: */
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0
/* default/nodeport-svc: */ tcp to:192.168.80.5:80
Chain KUBE-SERVICES (2 references)
target prot opt source destination

Playing with Containers Chapter 14

[464]

...
KUBE-SVC-GFPAJ7EGCNM4QF4H tcp -- 0.0.0.0/0
10.101.160.245 /* default/nodeport-svc: cluster IP
*/ tcp dpt:8080
...
KUBE-NODEPORTS all -- 0.0.0.0/0 0.0.0.0/0
/* kubernetes service nodeports; NOTE: this must be the
last rule in this chain */ ADDRTYPE match dst-type LOCAL
...
Chain KUBE-SVC-GFPAJ7EGCNM4QF4H (2 references)
target prot opt source destination
KUBE-SEP-TC6HXYYMMLGUSFNZ all -- 0.0.0.0/0
0.0.0.0/0 /* default/nodeport-svc: */ statistic
mode random probability 0.50000000000
KUBE-SEP-DIS6NYZTQKZ5ALQS all -- 0.0.0.0/0
0.0.0.0/0 /* default/nodeport-svc: */
...

There will be a lot of rules showing out. To focus on policies related to the Service
nodeport-svc, go through the following steps for checking them all. The output on
your screen may not be listed in the expected order:

Find targets under chain KUBE-NODEPORTS with the comment mentioned1.
nodeport-svc. One target will be named with the prefix KUBE-SVC-. In
the preceding output, it is the one named KUBE-SVC-GFPAJ7EGCNM4QF4H.
Along with the other target KUBE-MARK-MASQ, they work on passing
traffics at port 30615 to the Service.
Find a specific target named KUBE-SVC-XXX under Chain KUBE-2.
SERVICES. In this case, it is the target named KUBE-SVC-
GFPAJ7EGCNM4QF4H, ruled as allowing traffics from "everywhere" to the
endpoint of nodeport-svc, 10.160.245:8080.
Find targets under the specific Chain KUBE-SVC-XXX. In this case, it is3.
Chain KUBE-SVC-GFPAJ7EGCNM4QF4H. Under the Service chain, you will
have number of targets based on the according Pods with the prefix KUBE-
SEP-. In the preceding output, they are KUBE-SEP-TC6HXYYMMLGUSFNZ
and KUBE-SEP-DIS6NYZTQKZ5ALQS.

Playing with Containers Chapter 14

[465]

Find targets under specific Chain KUBE-SEP-YYY. In this case, the two4.
chains required to take a look are Chain KUBE-SEP-TC6HXYYMMLGUSFNZ
and Chain KUBE-SEP-DIS6NYZTQKZ5ALQS. Each of them covers two
targets, KUBE-MARK-MASQ and DNAT, for incoming and outgoing traffics
between "everywhere" to the endpoint of Pod, 192.168.80.5:80 or
192.168.80.6:80.

One key point here is that the Service target KUBE-SVC-GFPAJ7EGCNM4QF4H
exposing its cluster IP to outside world will dispatch the traffic to chain KUBE-SEP-
TC6HXYYMMLGUSFNZ and KUBE-SEP-DIS6NYZTQKZ5ALQS with a statistic mode
random probability of 0.5. Both chains have DNAT targets that work on changing the
destination IP of the packets to the private subnet one, the one of a specific Pod.

External-to-internal communication
To publish applications in Kubernetes, we can leverage either Kubernetes Service,
with type NodePort or LoadBalancer, or Kubernetes Ingress. For NodePort service,
as introduced in previous section, the port number of the node will be a pair with the
Service. Like the following diagram, port 30361 on both node 1 and node 2 points to
Service A, which dispatch the traffics to Pod1 and a Pod with static probability.

LoadBalancer Service, as you may have learned from the recipe Working with Services
in Chapter 13, Walking through Kubernetes Concepts, includes the configurations of
NodePort. Moreover, a LoadBalancer Service can work with an external load
balancer, providing users with the functionality to integrate load balancing
procedures between cloud infrastructure and Kubernetes resource, such as the
settings healthCheckNodePort and externalTrafficPolicy. Service B in the
following image is a LoadBalancer Service. Internally, Service B works the same as
Service A, relying on iptables to redirect packets to Pod; Externally, cloud load
balancer doesn't realize Pod or container, it only dispatches the traffic by the number
of nodes. No matter which node is chosen to get the request, it would still be able to
pass packets to the right Pod:

Playing with Containers Chapter 14

[466]

Kubernetes Services with type NodePort and type LoadBalancer

Working with Ingress
Walking through the journey of Kubernetes networking, users get the idea that each
Pod and Service has its private IP and corresponding port to listen on request. In
practice, developers may deliver the endpoint of service, the private IP or Kubernetes
DNS name, for internal clients; or, developers may expose Services externally by type
of NodePort or LoadBalancer. Although the endpoint of Service is more stable than
Pod, the Services are offered separately, and clients should record the IPs without
much meaning to them. In this section, we will introduce Ingress, a resource that
makes your Services work as a group. More than that, we could easily pack our
service union as an API server while we set Ingress rules to recognize the different
URLs, and then ingress controller works for passing the request to specific Services
based on the rules.

Playing with Containers Chapter 14

[467]

Before we try on Kubernetes Ingress, we should create an ingress controller in cluster.
Different from other controllers in kube-controller-manager (https:/ /
kubernetes.io/ docs/ reference/ generated/ kube- controller- manager/), ingress
controller is run by custom implementation instead of working as a daemon. In the
latest Kubernetes version, 1.10, nginx ingress controller is the most stable one and also
generally supports many platforms. Check the official documents for the details of
deployment: https:/ / github. com/ kubernetes/ ingress- nginx/ blob/ master/
README.md. We will only demonstrate our example on minikube; please see the
following information box for the setup of the ingress controller.

Enable Ingress functionality in minikube
Ingress in minikube is an add-on function. Follow these steps to
start this feature in your environment:

Check if the add-on ingress is enabled or not: Fire the1.
command minikube addons list on your terminal. If
it is not enabled, means it shows ingress: disabled,
you should keep follow below steps.
Enable ingress: Enter the command minikube addons2.
enable ingress, you will see an output like ingress
was successfully enabled.
Check the add-on list again to verify that the last step3.
does work. We expect that the field ingress shows as
enabled.

Here comes an example to demonstrate how to work with Ingress. We would run up
two Deployments and their Services, and an additional Ingress to expose them as a
union. In the beginning, we would add a new hostname in the host file of Kubernetes
master. It is a simple way for our demonstration. If you work on the production
environment, a general use case is that the hostname should be added as a record in
the DNS server:

// add a dummy hostname in local host file
$ sudo sh -c "echo `minikube ip` happy.k8s.io >> /etc/hosts"

Our first Kubernetes Deployment and Service would be echoserver, a dummy
Service showing server and request information. For the other pair of Deployment
and Service, we would reuse the NodePort Service example from the previous
section:

$ cat echoserver.yaml
apiVersion: apps/v1

https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/kubernetes/ingress-nginx/blob/master/README.md

Playing with Containers Chapter 14

[468]

kind: Deployment
metadata:
 name: echoserver-deploy
spec:
 replicas: 2
 selector:
 matchLabels:
 app: echo
 template:
 metadata:
 labels:
 app: echo
 spec:
 containers:
 - name: my-echo
 image: gcr.io/google_containers/echoserver:1.8

apiVersion: v1
kind: Service
metadata:
 name: echoserver-svc
spec:
 selector:
 app: echo
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 8080

Go ahead and create both set of resources through configuration files:

$ kubectl create -f echoserver.yaml
deployment.apps "echoserver-deploy" created
service "echoserver-svc" created
$ kubectl create -f nodeport-deployment.yaml
deployment.apps "nodeport-deploy" created
service "nodeport-svc" created

Our first Ingress makes two Services that listen at the separate URLs /nginx and
/echoserver, with the hostname happy.k8s.io, the dummy one we added in the
local host file. We use annotation rewrite-target to guarantee that traffic
redirection starts from root, /. Otherwise, the client may get page not found because
of surfing the wrong path. More annotations we may play with are listed at https:/ /
github.com/kubernetes/ ingress- nginx/ blob/ master/ docs/ user- guide/ nginx-
configuration/ annotations. md:

$ cat ingress.yaml

https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md

Playing with Containers Chapter 14

[469]

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: happy-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target:
spec:
 rules:
 - host: happy.k8s.io
 http:
 paths:
 - path: /nginx
 backend:
 serviceName: nodeport-svc
 servicePort: 8080
 - path: /echoserver
 backend:
 serviceName: echoserver-svc
 servicePort: 8080

Then, just create the Ingress and check its information right away:

$ kubectl create -f ingress.yaml
ingress.extensions "happy-ingress" created
// "ing" is the abbreviation of "ingress"
$ kubectl describe ing happy-ingress
Name: happy-ingress
Namespace: default
Address:
Default backend: default-http-backend:80 (172.17.0.3:8080)
Rules:
 Host Path Backends
 ---- ---- --------
 happy.k8s.io
 /nginx nodeport-svc:8080 (<none>)
 /echoserver echoserver-svc:8080 (<none>)
Annotations:
 nginx.ingress.kubernetes.io/rewrite-target
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal CREATE 14s ingress-controller Ingress default/happy-
ingress

You may find that there is no IP address in the field of description. It will be attached
after the first DNS lookup:

// verify the URL set in ingress rules

Playing with Containers Chapter 14

[470]

$ curl http://happy.k8s.io/nginx
...
<title>Welcome to nginx!</title>
...
$ curl http://happy.k8s.io/echoserver
Hostname: echoserver-deploy-5598f5796f-d8cr4
Pod Information:
 -no pod information available-
Server values:
 server_version=nginx: 1.13.3 - lua: 10008
...
// the IP address would be added after connection
$ kubectl get ing
NAME HOSTS ADDRESS PORTS AGE
happy-ingress happy.k8s.io 192.168.64.4 80 1m

Although working with Ingress is not as straightforward as other resources, as you
have to start an ingress controller implementation by yourself, it still makes our
application exposed and flexible. There are many network features coming that are
more stable and user friendly. Keep up with the latest updates and have fun!

There's more...
In the last part of external-to-internal communication, we learned about Kubernetes
Ingress, the resource that makes services work as a union and dispatches requests to
target services. Does any similar idea jump into your mind? It sounds like
a microservice, the application structure with several loosely coupled services. A
complicated application would be distributed to multiple lighter services. Each
service is developed independently while all of them can cover original functions.
Numerous working units, such as Pods in Kubernetes, run volatile and can be
dynamically scheduled on Services by the system controller. However, such a multi-
layered structure increases the complexity of networking and also suffers potential
overhead costs.

External load balancers are not aware the existence of Pods; they only balance the
workload to hosts. A host without any served Pod running would then redirect the
loading to other hosts. This situation comes out of a user's expectation for fair load
balancing. Moreover, a Pod may crash accidentally, in which case it is difficult to do
failover and complete the request.

Playing with Containers Chapter 14

[471]

To make up the shortcomings, the idea of a service mesh focus on the networking
management of microservice was born, dedicated to delivering more reliable and
performant communications on orchestration like Kubernetes:

Simpe service mesh structure

The preceding diagram illustrates the main components in a service mesh. They work
together to achieve features as follows:

Service mesh ingress: Using applied Ingress rules to decide which Service
should handle the incoming requests. It could also be a proxy that is able to
check the runtime policies.
Service mesh proxy: Proxies on every node not only direct the packets, but
can also be used as an advisory agent reporting the overall status of the
Services.
Service mesh service discovery pool: Serving the central management for
mesh and pushing controls over proxies. Its responsibility includes
procedures of network capability, authentication, failover, and load
balancing.

Although well-known service mesh implementations such as Linkerd (https:/ /
linkerd.io) and Istio (https:/ /istio. io) are not mature enough for production
usage, the idea of service mesh is not ignorable.

https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io

Playing with Containers Chapter 14

[472]

See also
Kubernetes forwards ports based on the overlay network. In this chapter, we also run
Pods and Services with nginx. Reviewing the previous sections will help you to
understand more about how to manipulate it. Also, look at the following recipes:

The Creating an overlay network and Running your first container in Kubernetes
recipes in Chapter 12, Building Your Own Kubernetes Cluster
The Working with Pods and Working with Services recipes in Chapter 13,
Walking through Kubernetes Concepts
The Moving monolithic to microservices recipe in Chapter 16, Building
Continuous Delivery Pipelines

Ensuring flexible usage of your
containers
Pod, in Kubernetes, means a set of containers, which is also the smallest computing
unit. You may have know about the basic usage of Pod in the previous recipes. Pods
are usually managed by deployments and exposed by services; they work as
applications with this scenario.

In this recipe, we will discuss two new features: DaemonSets and StatefulSets. These
two features can manage Pods with more specific purpose.

Getting ready
What are Daemon-like Pod and Stateful Pod? The regular Pods in Kubernetes will
determine and dispatch to particular Kubernetes nodes based on current node
resource usage and your configuration.

However, a Daemon-like Pod will be created in each node. For example, if you have
three nodes, three daemon-like Pods will be created and deployed to each node.
Whenever a new node is added, DaemonSets Pod will be deployed to the new node
automatically. Therefore, it will be useful to use node level monitoring or log
correction.

Playing with Containers Chapter 14

[473]

On the other hand, a Stateful Pod will stick to some resources such as network
identifier (Pod name and DNS) and persistent volume (PV). This also guarantees an
order during deployment of multiple Pods and during rolling update. For example, if
you deploy a Pod named my-pod, and set the scale to 4, then Pod name will be
assigned as my-pod-0, my-pod-1, my-pod-2, and my-pod-3. Not only Pod name but
also DNS and persistent volume are preserved. For example, when my-pod-2 is
recreated due to resource shortages or application crash, those names and volumes
are taken over by a new Pod which is also named my-pod-2. It is useful for some
cluster based applications such as HDFS and ElasticSearch.

In this recipe, we will demonstrate how to use DaemonSets and StatefulSet; however,
to have a better understanding, it should use multiple Kubernetes Nodes
environment. To do this, minikube is not ideal, so instead, use either
kubeadm/kubespray to create a multiple Node environment.

Using kubeadm or kubespray to set up Kubernetes cluster was described in Chapter
12, Build Your Own Kubernetes Cluster.

To confirm whether that has 2 or more nodes, type kubectl get nodes as follows
to check how many nodes you have:

//this result indicates you have 2 nodes
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready master,node 6h v1.10.2
node2 Ready node 6h v1.10.2

In addition, if you want to execute the StatefulSet recipe later in this chapter, you
need a StorageClass to set up a dynamic provisioning environment. It was described
in Working with volumes section in Chapter 13, Walking through Kubernetes Concepts.

To check whether StorageClass is configured or not, use kubectl get sc:

//in Google Kubernetes Engine Environment
$ kubectl get sc
NAME PROVISIONER
standard (default) kubernetes.io/gce-pd

Playing with Containers Chapter 14

[474]

How to do it...
There is no CLI for us to create DaemonSets or StatefulSets. Therefore, we will build
these two resource types by writing all the configurations in a YAML file.

Pod as DaemonSets
If a Kubernetes DaemonSet is created, the defined Pod will be deployed in every
single node. It is guaranteed that the running containers occupy equal resources in
each node. In this scenario, the container usually works as the daemon process.

For example, the following template has an Ubuntu image container that keeps
checking its memory usage half a minute at a time:

To build it as a DaemonSet, execute the following code block:1.

$ cat daemonset-free.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: ram-check
spec:
 selector:
 matchLabels:
 name: checkRam
 template:
 metadata:
 labels:
 name: checkRam
 spec:
 containers:
 - name: ubuntu-free
 image: ubuntu
 command: ["/bin/bash","-c","while true; do free;
sleep 30; done"]
 restartPolicy: Always

As the Job, the selector could be ignored, but it takes the values of the labels.
We will always configure the restart policy of the DaemonSet as Always,
which makes sure that every node has a Pod running.

Playing with Containers Chapter 14

[475]

The abbreviation of the daemonset is ds in kubectl command, use this2.
shorter one in the CLI for convenience:

$ kubectl create -f daemonset-free.yaml
daemonset.apps "ram-check" created

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
ram-check 2 2 2 2 2
<none> 5m

Here, we have two Pods running in separated nodes. They can still be3.
recognized in the channel of the pod:

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE
IP NODE
ram-check-6ldng 1/1 Running 0 9m
10.233.102.130 node1
ram-check-ddpdb 1/1 Running 0 9m
10.233.75.4 node2

It is good for you to evaluate the result using the subcommand4.
kubectl logs:

$ kubectl logs ram-check-6ldng
 total used free shared
buff/cache available
Mem: 3623848 790144 329076 9128
2504628 2416976
Swap: 0 0 0
 total used free shared
buff/cache available
Mem: 3623848 786304 328028 9160
2509516 2420524
Swap: 0 0 0
 total used free shared
buff/cache available
Mem: 3623848 786344 323332 9160
2514172 2415944
Swap: 0 0 0
.
.

Playing with Containers Chapter 14

[476]

Whenever, you add a Kubernetes node onto your existing cluster,
DaemonSets will recognize and deploy a Pod automatically.

Let's check again current status of DaemonSets, there are two Pods that5.
have been deployed due to having two nodes as follows:

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
ram-check 2 2 2 2 2
<none> 14m

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready master,node 6h v1.10.2
node2 Ready node 6h v1.10.2

So, now we are adding one more node onto the cluster through either6.
kubespray or kubeadm, based on your setup:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready master,node 6h v1.10.2
node2 Ready node 6h v1.10.2
node3 Ready node 3m v1.10.2

A few moments later, without any operation, the DaemonSet's size become7.
3 automatically, which aligns to the number of nodes:

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
ram-check 3 3 3 3 3
<none> 18m

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE
IP NODE
ram-check-6ldng 1/1 Running 0 18m
10.233.102.130 node1
ram-check-ddpdb 1/1 Running 0 18m
10.233.75.4 node2
ram-check-dpdmt 1/1 Running 0 3m
10.233.71.0 node3

Playing with Containers Chapter 14

[477]

Running a stateful Pod
Let's see another use case. We used Deployments/ReplicaSets to replicate the Pods. It
scales well and is easy to maintain and Kubernetes assigns a DNS to the Pod using
the Pod's IP address, such as <Pod IP
address>.<namespace>.pod.cluster.local.

The following example demonstrates how the Pod DNS will be assigned:

$ kubectl run apache2 --image=httpd --replicas=3
deployment "apache2" created

//one of Pod has an IP address as 10.52.1.8
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
apache2-55c684c66b-7m5zq 1/1 Running 0 5s
10.52.1.8 gke-chap7-default-pool-64212da9-z96q
apache2-55c684c66b-cjkcz 1/1 Running 0 1m
10.52.0.7 gke-chap7-default-pool-64212da9-8gzm
apache2-55c684c66b-v78tq 1/1 Running 0 1m
10.52.2.5 gke-chap7-default-pool-64212da9-bbs6

//another Pod can reach to 10-52-1-8.default.pod.cluster.local
$ kubectl exec apache2-55c684c66b-cjkcz -- ping -c 2
10-52-1-8.default.pod.cluster.local
PING 10-52-1-8.default.pod.cluster.local (10.52.1.8): 56 data bytes
64 bytes from 10.52.1.8: icmp_seq=0 ttl=62 time=1.642 ms
64 bytes from 10.52.1.8: icmp_seq=1 ttl=62 time=0.322 ms
--- 10-52-1-8.default.pod.cluster.local ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.322/0.982/1.642/0.660 ms

However, this DNS entry is not guaranteed to stay in use for this Pod, because the
Pod might crash due to an application error or node resource shortage. In such a case,
the IP address will possibly be changed:

$ kubectl delete pod apache2-55c684c66b-7m5zq
pod "apache2-55c684c66b-7m5zq" deleted

//Pod IP address has been changed to 10.52.0.7
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE
IP NODE

Playing with Containers Chapter 14

[478]

apache2-55c684c66b-7m5zq 0/1 Terminating 0 1m
<none> gke-chap7-default-pool-64212da9-z96q
apache2-55c684c66b-cjkcz 1/1 Running 0 2m
10.52.0.7 gke-chap7-default-pool-64212da9-8gzm
apache2-55c684c66b-l9vqt 1/1 Running 0 7s
10.52.1.9 gke-chap7-default-pool-64212da9-z96q
apache2-55c684c66b-v78tq 1/1 Running 0 2m
10.52.2.5 gke-chap7-default-pool-64212da9-bbs6

//DNS entry also changed
$ kubectl exec apache2-55c684c66b-cjkcz -- ping -c 2
10-52-1-8.default.pod.cluster.local
PING 10-52-1-8.default.pod.cluster.local (10.52.1.8): 56 data bytes
92 bytes from gke-chap7-default-pool-64212da9-z96q.c.kubernetes-
cookbook.internal (192.168.2.4): Destination Host Unreachable
92 bytes from gke-chap7-default-pool-64212da9-z96q.c.kubernetes-
cookbook.internal (192.168.2.4): Destination Host Unreachable
--- 10-52-1-8.default.pod.cluster.local ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

For some applications, this will cause an issue; for example, if you manage a cluster
application that needs to be managed by DNS or IP address. As of the current
Kubernetes implementation, IP addresses can't be preserved for Pods . How about we
use Kubernetes Service? Service preserves a DNS name. Unfortunately, it's not
realistic to create the same amount of service with Pod. In the previous case, create
three Services that bind to three Pods one to one.

Kubernetes has a solution for this kind of use case that uses StatefulSet. It preserves
not only the DNS but also the persistent volume to keep a bind to the same Pod. Even
if Pod is crashed, StatefulSet guarantees the binding of the same DNS and persistent
volume to the new Pod. Note that the IP address is not preserved due to the current
Kubernetes implementation.

To demonstrate, use Hadoop Distributed File System (HDFS) to launch one
NameNode and three DataNodes. To perform this, use a Docker image from https:/
/hub.docker.com/ r/uhopper/ hadoop/ that has NameNode and DataNode images. In
addition, borrow the YAML configuration files namenode.yaml and datanode.yaml
from https://gist. github. com/ polvi/ 34ef498a967de563dc4252a7bfb7d582 and
change a little bit:

Let's launch a Service and StatefulSet for namenode and datanode:1.

//create NameNode
$ kubectl create -f
https://raw.githubusercontent.com/PacktPublishing/Getting-

https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://hub.docker.com/r/uhopper/hadoop/
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582
https://gist.github.com/polvi/34ef498a967de563dc4252a7bfb7d582

Playing with Containers Chapter 14

[479]

Started-with-
Containerization/master/Chapter14/14-4/namenode.yaml
service "hdfs-namenode-svc" created
statefulset "hdfs-namenode" created

$ kubectl get statefulset
NAME DESIRED CURRENT AGE
hdfs-namenode 1 1 19s

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-namenode-0 1/1 Running 0 26s

//create DataNodes
$ kubectl create -f
https://raw.githubusercontent.com/PacktPublishing/Getting-
Started-with-
Containerization/master/Chapter14/14-4/datanode.yaml
statefulset "hdfs-datanode" created

$ kubectl get statefulset
NAME DESIRED CURRENT AGE
hdfs-datanode 3 3 50s
hdfs-namenode 1 1 5m

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-datanode-0 1/1 Running 0 9m
hdfs-datanode-1 1/1 Running 0 9m
hdfs-datanode-2 1/1 Running 0 9m
hdfs-namenode-0 1/1 Running 0 9m

As you can see, the Pod naming convention is <StatefulSet-name>-
<sequence number>. For example, NameNode Pod's name is hdfs-
namenode-0. Also DataNode Pod's names are hdfs-datanode-0, hdfs-
datanode-1 and hdfs-datanode-2.

In addition, both NameNode and DataNode have a service that is
configured as Headless mode (by spec.clusterIP: None). Therefore,
you can access these Pods using DNS as <pod-name>.<service-
name>.<namespace>.svc.cluster.local. In this case, this NameNode
DNS entry could be hdfs-namenode-0.hdfs-namenode-
svc.default.svc.cluster.local.

Playing with Containers Chapter 14

[480]

Let's check what NameNode Pod's IP address is, you can get this using2.
kubectl get pods -o wide as follows:

//Pod hdfs-namenode-0 has an IP address as 10.52.2.8
$ kubectl get pods hdfs-namenode-0 -o wide
NAME READY STATUS RESTARTS AGE
IP NODE
hdfs-namenode-0 1/1 Running 0 9m
10.52.2.8 gke-chapter14-default-pool-97d2e17c-0dr5

Next, log in (run /bin/bash) to one of the DataNodes using kubectl3.
exec to resolve this DNS name and check whether the IP address is
10.52.2.8 or not:

$ kubectl exec hdfs-datanode-1 -it -- /bin/bash
root@hdfs-datanode-1:/#
root@hdfs-datanode-1:/# ping -c 1 hdfs-namenode-0.hdfs-
namenode-svc.default.svc.cluster.local
PING hdfs-namenode-0.hdfs-namenode-
svc.default.svc.cluster.local (10.52.2.8): 56 data bytes
...
...

Looks all good! For demonstration purposes, let's access the HDFS web
console to see DataNode's status.

To do that, use kubectl port-forward to access to the NameNode web4.
port (tcp/50070):

//check the status by HDFS web console
$ kubectl port-forward hdfs-namenode-0 :50070
Forwarding from 127.0.0.1:60107 -> 50070

Playing with Containers Chapter 14

[481]

The preceding result indicates that your local machine TCP port 601075.
(you result will vary) has been forwarded to NameNode Pod TCP port
50070. Therefore, use a web browser to access
http://127.0.0.1:60107/ as follows:

HDFS Web console shows three DataNodes

As you may see, three DataNodes have been registered to NameNode successfully.
The DataNodes are also using the Headless Service so that same name convention
assigns DNS names for DataNode as well.

How it works...
DaemonSets and StatefulSets; both concepts are similar but behave differently,
especially when Pod is crashed. Let's take a look at how it works.

Pod recovery by DaemonSets
DaemonSets keep monitoring every Kubernetes node, so when one of the Pods
crashes, DaemonSets recreates it on the same Kubernetes node.

Playing with Containers Chapter 14

[482]

To simulate this, go back to the DaemonSets example and use kubectl delete
pods to delete an existing Pod from node1 manually, as follows:

$ kubectl delete pod ram-check-6ldng
pod "ram-check-6ldng" deleted

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
ram-check-6ldng 1/1 Terminating 0 29m
10.233.102.132 node1
ram-check-ddpdb 1/1 Running 0 29m
10.233.75.5 node2
ram-check-dpdmt 1/1 Running 0 13m
10.233.71.0 node3

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
ram-check-ddpdb 1/1 Running 0 30m 10.233.75.5
node2
ram-check-dh5hq 1/1 Running 0 24s
10.233.102.135 node1
ram-check-dpdmt 1/1 Running 0 14m 10.233.71.0
node3

As you can see, a new Pod has been created automatically to recover the Pod in
node1. Note that the Pod name has been changed from ram-check-6ldng to ram-
check-dh5hq—it has been assigned a random suffix name. In this use case, Pod
name doesn't matter, because we don't use hostname or DNS to manage this
application.

Pod recovery by StatefulSet
StatefulSet behaves differently to DaemonSet during Pod recreation. In StatefulSet
managed Pods, the Pod name is always consisted to assign an ordered number such
as hdfs-datanode-0, hdfs-datanode-1 andhdfs-datanode-2, and if you delete
one of them, a new Pod will take over the same Pod name.

Playing with Containers Chapter 14

[483]

To simulate this, let's delete one DataNode (hdfs-datanode-1) to see how
StatefulSet recreates a Pod:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-datanode-0 1/1 Running 0 3m
hdfs-datanode-1 1/1 Running 0 2m
hdfs-datanode-2 1/1 Running 0 2m
hdfs-namenode-0 1/1 Running 0 23m

//delete DataNode-1
$ kubectl delete pod hdfs-datanode-1
pod "hdfs-datanode-1" deleted

//DataNode-1 is Terminating
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-datanode-0 1/1 Running 0 3m
hdfs-datanode-1 1/1 Terminating 0 3m
hdfs-datanode-2 1/1 Running 0 2m
hdfs-namenode-0 1/1 Running 0 23m

//DataNode-1 is recreating automatically by statefulset
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-datanode-0 1/1 Running 0 4m
hdfs-datanode-1 0/1 ContainerCreating 0 16s
hdfs-datanode-2 1/1 Running 0 3m
hdfs-namenode-0 1/1 Running 0 24m

//DataNode-1 is recovered
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-datanode-0 1/1 Running 0 4m
hdfs-datanode-1 1/1 Running 0 22s
hdfs-datanode-2 1/1 Running 0 3m
hdfs-namenode-0 1/1 Running 0 24m

As you see, the same Pod name (hdfs-datanode-1) has been
assigned. Approximately after 10 minutes (due to HDFS's heart beat interval), HDFS
web console shows that the old Pod has been marked as dead and the new Pod has
the in service state, shown as follows:

Playing with Containers Chapter 14

[484]

Status when one DataNode is dead

Note that this is not a perfect ideal case for HDFS, because DataNode-1 lost data and
expects to re-sync from other DataNodes. If the data size is bigger, it may take a long
time to complete re-sync.

Fortunately, StatefulSets has an capability that preserve a persistent volume while
replacing a Pod. Let's see how HDFS DataNode can preserve data during
Pod recreation.

There's more...
StatefulSet with persistent volume; it requires a StorageClass that provisions a
volume dynamically. Because each Pod is created by StatefulSets, it will create a
persistent volume claim (PVC) with a different identifier. If your StatefulSets specify
a static name of PVC, there will be trouble if multiple Pods try to attach the same
PVC.

Playing with Containers Chapter 14

[485]

If you have StorageClass on your cluster, update datanode.yaml to add
spec.volumeClaimTemplates as follows:

$ curl
https://raw.githubusercontent.com/PacktPublishing/Getting-Started-with
-Containerization/master/Chapter14/14-4/datanode-pv.yaml
...
 volumeClaimTemplates:
 - metadata:
 name: hdfs-data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

This tells Kubernetes to create a PVC and PV when a new Pod is created by
StatefulSet. So, that Pod template
(spec.template.spec.containers.volumeMounts) should specify hdfs-data,
as follows:

$ curl
https://raw.githubusercontent.com/PacktPublishing/Getting-Started-with
-Containerization/master/Chapter14/14-4/datanode-pv.yaml
...
 volumeMounts:
 - mountPath: /hadoop/dfs/data
 name: hdfs-data

Let's recreate HDFS cluster again:

//delete DataNodes
$ kubectl delete -f
https://raw.githubusercontent.com/PacktPublishing/Getting-Started-with
-Containerization/master/Chapter14/14-4/datanode.yaml
service "hdfs-datanode-svc" deleted
statefulset "hdfs-datanode" deleted

//delete NameNode
$ kubectl delete -f
https://raw.githubusercontent.com/PacktPublishing/Getting-Started-with
-Containerization/master/Chapter14/14-4/namenode.yaml
service "hdfs-namenode-svc" deleted
statefulset "hdfs-namenode" deleted

//create NameNode again
$ kubectl create -f

Playing with Containers Chapter 14

[486]

https://raw.githubusercontent.com/PacktPublishing/Getting-Started-with
-Containerization/master/Chapter14/14-4/namenode.yaml
service "hdfs-namenode-svc" created
statefulset "hdfs-namenode" created

//create DataNode which uses Persistent Volume (datanode-pv.yaml)
$ kubectl create -f
https://raw.githubusercontent.com/PacktPublishing/Getting-Started-with
-Containerization/master/Chapter14/14-4/datanode-pv.yaml
service "hdfs-datanode-svc" created
statefulset "hdfs-datanode" created

//3 PVC has been created automatically
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
hdfs-data-hdfs-datanode-0 Bound pvc-bc79975d-f5bd-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 53s
hdfs-data-hdfs-datanode-1 Bound pvc-c753a336-f5bd-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 35s
hdfs-data-hdfs-datanode-2 Bound pvc-d1e10587-f5bd-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 17s

To demonstrate, use kubectl exec to access the NameNode, then copy some
dummy files to HDFS:

$ kubectl exec -it hdfs-namenode-0 -- /bin/bash
root@hdfs-namenode-0:/# hadoop fs -put /lib/x86_64-linux-gnu/* /
root@hdfs-namenode-0:/# exit
command terminated with exit code 255

//delete DataNode-1
$ kubectl delete pod hdfs-datanode-1
pod "hdfs-datanode-1" deleted

Playing with Containers Chapter 14

[487]

At this moment, DataNode-1 is restarting, as shown in the following image.
However, the data directory of DataNode-1 is kept by PVC as hdfs-data-hdfs-
datanode-1. The new Pod hdfs-datanode-1 will take over this PVC again:

StatefulSet keeps PVC/PV while restarting

Therefore, when you access HDFS after hdfs-datanode-1 has recovered, you don't
see any data loss or re-sync processes:

$ kubectl exec -it hdfs-namenode-0 -- /bin/bash
root@hdfs-namenode-0:/# hdfs fsck /
Connecting to namenode via
http://hdfs-namenode-0.hdfs-namenode-svc.default.svc.cluster.local:500
70/fsck?ugi=root&path=%2F
FSCK started by root (auth:SIMPLE) from /10.52.1.13 for path / at Wed
Jan 10 04:32:30 UTC 2018
..
..............................
...Statu
s: HEALTHY
 Total size: 22045160 B
 Total dirs: 2
 Total files: 165
 Total symlinks: 0
 Total blocks (validated): 165 (avg. block size 133607 B)
 Minimally replicated blocks: 165 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 3
 Average block replication: 3.0
 Corrupt blocks: 0
 Missing replicas: 0 (0.0 %)
 Number of data-nodes: 3

Playing with Containers Chapter 14

[488]

 Number of racks: 1
FSCK ended at Wed Jan 10 04:32:30 UTC 2018 in 85 milliseconds

The filesystem under path '/' is HEALTHY

As you see, the Pod and PV pair is fully managed by StatefulSets. It is convenient if
you want to scale more HDFS DataNode using just the kubectl scale command to
make it double or hundreds—whatever you need:

//make double size of HDFS DataNodes
$ kubectl scale statefulset hdfs-datanode --replicas=6
statefulset "hdfs-datanode" scaled

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hdfs-datanode-0 1/1 Running 0 20m
hdfs-datanode-1 1/1 Running 0 13m
hdfs-datanode-2 1/1 Running 0 20m
hdfs-datanode-3 1/1 Running 0 56s
hdfs-datanode-4 1/1 Running 0 38s
hdfs-datanode-5 1/1 Running 0 21s
hdfs-namenode-0 1/1 Running 0 21m

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
hdfs-data-hdfs-datanode-0 Bound pvc-bc79975d-f5bd-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 21m
hdfs-data-hdfs-datanode-1 Bound pvc-c753a336-f5bd-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 21m
hdfs-data-hdfs-datanode-2 Bound pvc-d1e10587-f5bd-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 21m
hdfs-data-hdfs-datanode-3 Bound pvc-888b6e0d-f5c0-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 1m
hdfs-data-hdfs-datanode-4 Bound pvc-932e6148-f5c0-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 1m
hdfs-data-hdfs-datanode-5 Bound pvc-9dd71bf5-f5c0-11e7-
ac7a-42010a8a00ef 10Gi RWO standard 1m

You can also use PV to NameNode to persist metadata. However,
kubectl scale does not work well due to HDFS architecture. In
order to have high availability or scale out HDFS NameNode, please
visit the HDFS Federation document at : https:/ /hadoop. apache.
org/ docs/ stable/ hadoop- project- dist/ hadoop- hdfs/ Federation.
html.

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html

Playing with Containers Chapter 14

[489]

See also
In this recipe, we went deeply into Kubernetes Pod management through
DaemonSets and StatefulSet. It manages Pod in a particular way, such as Pod per
node and consistent Pod names. It is useful when the Deployments/ReplicaSets
stateless Pod management style can't cover your application use cases. For further
information, consider the following:

The Working with Pods recipe in Chapter 12, Walking through Kubernetes
Concepts
Working with configuration files

Submitting Jobs on Kubernetes
Your container application is designed not only for daemon processes such as nginx,
but also for some batch Jobs which eventually exit when the task is complete.
Kubernetes supports this scenario; you can submit a container as a Job and
Kubernetes will dispatch to an appropriate node and execute your Job.

In this recipe, we will discuss two new features: Jobs and CronJob. These two
features can make another usage of Pods to utilize your resources.

Getting ready
Since Kubernetes version 1.2, Kubernetes Jobs has been introduced as a stable feature
(apiVersion: batch/v1). In addition, CronJob is a beta feature (apiVersion:
batch/v1beta1) as of Kubernetes version 1.10.

Both work well on minikube, which was introduced at Chapter 12, Building Your
Own Kubernetes Cluster. Therefore, this recipe will use minikube version 0.24.1.

Playing with Containers Chapter 14

[490]

How to do it...
When submitting a Job to Kubernetes, you have three types of Job that you can
define:

Single Job
Repeat Job
Parallel Job

Pod as a single Job
A Job-like Pod is suitable for testing your containers, which can be used for unit test
or integration test; alternatively, it can be used for batch programs:

In the following example, we will write a Job template to check the1.
packages installed in image Ubuntu:

$ cat job-dpkg.yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: package-check
spec:
 template:
 spec:
 containers:
 - name: package-check
 image: ubuntu
 command: ["dpkg-query", "-l"]
 restartPolicy: Never

Note that restart policy for Pods created in a Job should be set to Never or
OnFailure, since a Job goes to termination once it is completed
successfully.

Now, you are ready to create a job using your template:2.

$ kubectl create -f job-dpkg.yaml
job.batch "package-check" created

Playing with Containers Chapter 14

[491]

After creating a job object, it is possible to verify the status of both the3.
Pod and Job:

$ kubectl get jobs
NAME DESIRED SUCCESSFUL AGE
package-check 1 1 26s

This result indicates that Job is already done, executed (by SUCCESSFUL =4.
1) in 26 seconds. In this case, Pod has already disappeared:

$ kubectl get pods
No resources found, use --show-all to see completed
objects.

As you can see, the kubectl command hints to us that we can use --5.
show-all or -a option to find the completed Pod, as follows:

$ kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
package-check-hmjxj 0/1 Completed 0 3m

Here you go. So why does the Completed Pod object remain? Because you
may want to see the result after your program has ended. You will find that
a Pod is booting up for handling this task. This Pod is going to be stopped
very soon at the end of the process.

Use the subcommand kubectl logs to get the result:6.

$ kubectl logs package-check-hmjxj
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-
inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version
Architecture Description
+++-========================-
=============================-============-
==
============
ii adduser 3.113+nmu3ubuntu4
all add and remove users and groups
ii apt 1.2.24
amd64 commandline package manager
ii base-files 9.4ubuntu4.5
amd64 Debian base system miscellaneous files
ii base-passwd 3.5.39
amd64 Debian base system master password and group

Playing with Containers Chapter 14

[492]

files
ii bash 4.3-14ubuntu1.2
amd64 GNU Bourne Again SHell
.
.
.

Please go ahead and check the job package-check using the7.
subcommand kubectl describe; the confirmation for Pod completion
and other messages are shown as system information:

$ kubectl describe job package-check
Name: package-check
Namespace: default
Selector: controller-uid=9dfd1857-f5d1-11e7-8233-
ae782244bd54
Labels: controller-uid=9dfd1857-f5d1-11e7-8233-
ae782244bd54
 job-name=package-check
Annotations: <none>
Parallelism: 1
Completions: 1
Start Time: Tue, 09 Jan 2018 22:43:50 -0800
Pods Statuses: 0 Running / 1 Succeeded / 0 Failed
.
.
.

Later, to remove the job you just created, delete it with the name. This also8.
removes the completed Pod as well:

$ kubectl delete jobs package-check
job.batch "package-check" deleted

$ kubectl get pods --show-all
No resources found.

Playing with Containers Chapter 14

[493]

Create a repeatable Job
Users can also decide the number of tasks that should be finished in a single Job. It is
helpful to solve some random and sampling problems. Let's try it on the same
template in the previous example:

Add the spec.completions item to indicate the Pod number:1.

$ cat job-dpkg-repeat.yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: package-check
spec:
 completions: 3
 template:
 spec:
 containers:
 - name: package-check
 image: ubuntu
 command: ["dpkg-query", "-l"]
 restartPolicy: Never

After creating this Job, check how the Pod looks with the subcommand2.
kubectl describe:

$ kubectl create -f job-dpkg-repeat.yaml
job.batch "package-check" created

$ kubectl describe jobs package-check
Name: package-check
Namespace: default
...
...
Annotations: <none>
Parallelism: 1
Completions: 3
Start Time: Tue, 09 Jan 2018 22:58:09 -0800
Pods Statuses: 0 Running / 3 Succeeded / 0 Failed
...
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 42s job-controller Created
pod: package-check-f72wk
 Normal SuccessfulCreate 32s job-controller Created

Playing with Containers Chapter 14

[494]

pod: package-check-2mnw8
 Normal SuccessfulCreate 27s job-controller Created
pod: package-check-whbr6

As you can see, three Pods are created to complete this Job. This is useful if you need
to run your program repeatedly at particular times. However, as you may have
noticed from the Age column in preceding result, these Pods ran sequentially, one by
one. This means that the 2nd Job was started after the 1st Job was completed, and the
3rd Job was started after the 2nd Job was completed.

Create a parallel Job
If your batch Job doesn't have a state or dependency between Jobs, you may consider
submitting Jobs in parallel. Similar to the spec.completions parameter, the Job
template has a spec.parallelism parameter to specify how many Jobs you want to
run in parallel:

1. Re-use a repeatable Job but change it to specify spec.parallelism: 3
as follows:

$ cat job-dpkg-parallel.yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: package-check
spec:
 parallelism: 3
 template:
 spec:
 containers:
 - name: package-check
 image: ubuntu
 command: ["dpkg-query", "-l"]
 restartPolicy: Never

The result is similar to spec.completions=3, which made 3 Pods to run2.
your application:

$ kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
package-check-5jhr8 0/1 Completed 0 1m
package-check-5zlmx 0/1 Completed 0 1m
package-check-glkpc 0/1 Completed 0 1m

Playing with Containers Chapter 14

[495]

However, if you see an Age column through the kubectl describe3.
command, it indicates that 3 Pods ran at the same time:

$ kubectl describe jobs package-check
Name: package-check
Namespace: default
Selector: controller-uid=de41164e-f5d6-11e7-8233-
ae782244bd54
Labels: controller-uid=de41164e-f5d6-11e7-8233-
ae782244bd54
 job-name=package-check
Annotations: <none>
Parallelism: 3
Completions: <unset>
…
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 24s job-controller Created
pod: package-check-5jhr8
 Normal SuccessfulCreate 24s job-controller Created
pod: package-check-glkpc
 Normal SuccessfulCreate 24s job-controller Created
pod: package-check-5zlmx

In this setting, Kubernetes can dispatch to an available node to run your application
and that easily scale your Jobs. It is useful if you want to run something like a worker
application to distribute a bunch of Pods to different nodes.

Schedule to run Job using CronJob
If you are familiar with UNIX CronJob or Java Quartz (http:/ /www. quartz-
scheduler.org), Kubernetes CronJob is a very straightforward tool that you can
define a particular timing to run your Kubernetes Job repeatedly.

http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org
http://www.quartz-scheduler.org

Playing with Containers Chapter 14

[496]

The scheduling format is very simple; it specifies the following five items:

Minutes (0 – 59)
Hours (0 – 23)
Day of Month (1 – 31)
Month (1 – 12)
Day of week (0: Sunday – 6: Saturday)

For example, if you want to run your Job only at 9:00am on November 12th, every
year, to send a birthday greeting to me :-), the schedule format could be 0 9 12 11
*.

You may also use slash (/) to specify a step value; a run every 5 minutes interval
for the previous Job example would have the following schedule format: */5 * * *
*.

In addition, there is an optional parameter, spec.concurrencyPolicy, that you can
specify a behavior if the previous Job is not finished but the next Job schedule is
approaching, to determine how the next Job runs. You can set either:

Allow: Allow execution of the next Job
Forbid: Skip execution of the next Job
Replace: Delete the current Job, then execute the next Job

If you set as Allow, there might be a potential risk of accumulating some unfinished
Jobs in the Kubernetes cluster. Therefore, during the testing phase, you should set
either Forbid or Replace to monitor Job execution and completion:

$ cat cron-job.yaml
apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: package-check
spec:
 schedule: "*/5 * * * *"
 concurrencyPolicy: "Forbid"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: package-check
 image: ubuntu
 command: ["dpkg-query", "-l"]

Playing with Containers Chapter 14

[497]

 restartPolicy: Never

//create CronJob
$ kubectl create -f cron-job.yaml
cronjob.batch "package-check" created

$ kubectl get cronjob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
package-check */5 * * * * False 0 <none>

After a few moments, the Job will be triggered by your desired timing—in this case,
every 5 minutes. You may then see the Job entry through the kubectl get jobs
and kubectl get pods -a commands, as follows:

//around 9 minutes later, 2 jobs have been submitted already
$ kubectl get jobs
NAME DESIRED SUCCESSFUL AGE
package-check-1515571800 1 1 7m
package-check-1515572100 1 1 2m

//correspond Pod are remain and find by -a option
$ kubectl get pods -a
NAME READY STATUS RESTARTS AGE
package-check-1515571800-jbzbr 0/1 Completed 0 7m
package-check-1515572100-bp5fz 0/1 Completed 0 2m

CronJob will keep remaining until you delete; this means that, every 5 minutes,
CronJob will create a new Job entry and related Pods will also keep getting created.
This will impact the consumption of Kubernetes resources. Therefore, by default,
CronJob will keep up to 3 successful Jobs (by
spec.successfulJobsHistoryLimit) and one failed Job (by
spec.failedJobsHistoryLimit). You can change these parameters based on your
requirements.

Overall, CronJob supplement allows Jobs to automatically to run in your application
with the desired timing. You can utilize CronJob to run some report generation Jobs,
daily or weekly batch Jobs, and so on.

Playing with Containers Chapter 14

[498]

How it works...
Although Jobs and CronJob are the special utilities of Pods, the Kubernetes system
has different management systems between them and Pods.

For Job, its selector cannot point to an existing pod. It is a bad idea to take a
Pod controlled by the deployment/ReplicaSets as a Job. The deployment/ReplicaSets
have a desired number of Pods running, which is against Job's ideal situation:
Pods should be deleted once they finish their tasks. The Pod in the
Deployments/ReplicaSets won't reach the state of end.

See also
In this recipe, we executed Jobs and CronJob, demonstrating another usage of
Kubernetes Pod that has a completion state. Even once a Pod is completed,
Kubernetes can preserve the logs and Pod object so that you can retrieve the result
easily. For further information, consider:

The Working with Pods recipe in Chapter 13, Walking through Kubernetes
Concepts
Working with configuration files

Working with configuration files
Kubernetes supports two different file formats, YAML and JSON. Each format can
describe the same function of Kubernetes.

Getting ready
Before we study how to write a Kubernetes configuration file, learning how to write a
correct template format is important. We can learn the standard format of both YAML
and JSON from their official websites.

Playing with Containers Chapter 14

[499]

YAML
The YAML format is very simple, with few syntax rules; therefore, it is easy to read
and write, even for users. To know more about YAML, you can refer to the following
website link: http:/ / www. yaml. org/ spec/ 1.2/ spec. html. The following example
uses the YAML format to set up the nginx Pod:

$ cat nginx-pod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: my-nginx
 labels:
 env: dev
spec:
 containers:
 - name: my-nginx
 image: nginx
 ports:
 - containerPort: 80

JSON
The JSON format is also simple and easy to read for users, but more program-
friendly. Because it has data types (number, string, Boolean, and object), it is popular
to exchange the data between systems. Technically, YAML is a superset of JSON, so
JSON is a valid YAML, but not the other way around. To know more about JSON,
you can refer to the following website link: http:/ /json. org/ .

The following example of the Pod is the same as the preceding YAML format, but
using the JSON format:

$ cat nginx-pod.json
{
 "apiVersion": "v1",
 "kind": "Pod",
 "metadata": {
 "name": "my-nginx",
 "labels": {
 "env": "dev"
 }
 },
 "spec": {
 "containers": [
 {

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/

Playing with Containers Chapter 14

[500]

 "name": "my-nginx",
 "image": "nginx",
 "ports": [
 {
 "containerPort": 80
 }
]
 }
]
 }
}

How to do it...
Kubernetes has a schema that is defined using a verify configuration format; schema
can be generated after the first instance of running the subcommand create with a
configuration file. The cached schema will be stored under the
.kube/cache/discovery/<SERVICE_IP>_<PORT>, based on the version of API
server you run:

// create the resource by either YAML or JSON file introduced before
$ kubectl create -f nginx-pod.yaml
// or
$ kubectl create -f nginx-pod.json
// as an example of v1.10.0, the content of schema directory may look
like following
// you would have different endpoint of server
ll ~/.kube/cache/discovery/192.168.99.100_8443/
total 76
drwxr-xr-x 18 nosus nosus 4096 May 6 10:10 ./
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 ../
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00
admissionregistration.k8s.io/
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00 apiextensions.k8s.io/
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 apiregistration.k8s.io/
drwxr-xr-x 5 nosus nosus 4096 May 6 10:00 apps/
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 authentication.k8s.io/
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 authorization.k8s.io/
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 autoscaling/
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 batch/
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00 certificates.k8s.io/
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00 events.k8s.io/
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00 extensions/
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00 networking.k8s.io/
drwxr-xr-x 3 nosus nosus 4096 May 6 10:00 policy/
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 rbac.authorization.k8s.io/

Playing with Containers Chapter 14

[501]

-rwxr-xr-x 1 nosus nosus 3898 May 6 10:10 servergroups.json*
drwxr-xr-x 4 nosus nosus 4096 May 6 10:00 storage.k8s.io/
drwxr-xr-x 2 nosus nosus 4096 May 6 10:10 v1/

Each directory listed represents an API category. You will see a file named
serverresources.json under the last layer of each directory, which clearly defines
every resource covered by this API category. However, there are some alternative and
easier ways to check the schema. From the website of Kubernetes, we can get any
details of how to write a configuration file of specific resources. Go ahead and check
the official API documentation of the latest version: https:/ / kubernetes. io/docs/
reference/generated/ kubernetes- api/v1. 10/. In the webpage, there are three
panels: from left to right, they are the resource list, description, and the input and
output of HTTP requests or the command kubectl. Taking Deployment as an
example, you may click Deployment v1 app at the resource list, the leftmost panel,
and the following screenshot will show up:

Documentation of Kubernetes Deployment API

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/

Playing with Containers Chapter 14

[502]

But, how do we know the details of setting the container part at the marked place on
the preceding image? In the field part of object description, there are two values. The
first one, like apiVersion, means the name, and the second one, like string, is the
type. Type could be integer, string, array, or the other resource object. Therefore, for
searching the containers configuration of deployment, we need to know the structure
of layers of objects. First, according to the example configuration file on web page, the
layer of objects to containers is spec.template.spec.containers. So, start by
clicking the hyperlink spec DeploymentSpec under Deployment's fields, which is the
type of resource object, and go searching hierarchically. Finally, you can find the
details listed on this page: https:/ / kubernetes. io/ docs/ reference/ generated/
kubernetes-api/ v1. 10/ #container- v1-core.

Solution for tracing the configuration of containers of
Deployment
Here comes the solution for the preceding example:

Click spec DeploymentSpec
Click template PodTemplateSpec
Click spec PodSpec
Click containers Container array

Now you got it!

Taking a careful look at the definition of container configuration. The following are
some common descriptions you should pay attention to:

Type: The user should always set the corresponding type for an item.
Optional or not: Some items are indicated as optional, which means not
necessary, and can be applied as a default value, or not set if you don't
specify it.
Cannot be updated: If the item is indicated as failed to be updated, it is
fixed when the resource is created. You need to recreate a new one instead
of updating it.
Read-only: Some of the items are indicated as read-only, such as UID.
Kubernetes generates these items. If you specify this in the configuration
file, it will be ignored.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#container-v1-core

Playing with Containers Chapter 14

[503]

Another method for checking the schema is through swagger UI. Kubernetes uses
swagger (https:/ /swagger.io/) and OpenAPI (https:/ /www. openapis. org) to
generate the REST API. Nevertheless, the web console for swagger is by default
disabled in the API server. To enable the swagger UI of your own Kubernetes API
server, just add the flag --enable-swagger-ui=ture when you start the API
server. Then, by accessing the endpoint
https://<KUBERNETES_MASTER>:<API_SERVER_PORT>/swagger-ui, you can
successfully browse the API document through the web console:

The swagger web console of Kubernetes API

https://swagger.io
https://swagger.io
https://swagger.io
https://swagger.io
https://swagger.io
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org

Playing with Containers Chapter 14

[504]

How it works...
Let's introduce some necessary items in configuration files for creating Pod,
Deployment, and Service.

Pod
Item Type Example
apiVersion String v1

kind String Pod

metadata.name String my-nginx-pod

spec v1.PodSpec

v1.PodSpec.containers Array[v1.Container]
v1.Container.name String my-nginx

v1.Container.image String nginx

Deployment
Item Type Example
apiVersion String apps/v1beta1
kind String Deployment

metadata.name String my-nginx-deploy

spec v1.DeploymentSpec

v1.DeploymentSpec.template v1.PodTemplateSpec

v1.PodTemplateSpec.metadata.labels Map of string env: test

v1.PodTemplateSpec.spec v1.PodSpec my-nginx

v1.PodSpec.containers Array[v1.Container] As same as Pod

Playing with Containers Chapter 14

[505]

Service
Item Type Example
apiVersion String v1

kind String Service

metadata.name String my-nginx-svc

spec v1.ServiceSpec

v1.ServiceSpec.selector Map of string env: test

v1.ServiceSpec.ports Array[v1.ServicePort]
v1.ServicePort.protocol String TCP

v1.ServicePort.port Integer 80

Please check the code bundle file minimal-conf-resource.yaml to find these three
resources with minimal configuration.

See also
This recipe described how to find and understand a configuration syntax. Kubernetes
has some detailed options to define containers and components. For more details, the
following recipes will describe how to define Pods, Deployments, and Services:

The Working with Pods, Deployment API, and Working with Services recipes in
Chapter 13, Walking through Kubernetes Concepts

15
Building High-Availability

Clusters
In this chapter, we will cover the following recipes:

Clustering etcd
Building multiple masters

Introduction
Avoiding a single point of failure is a concept we need to always keep in mind. In this
chapter, you will learn how to build components in Kubernetes with high availability.
We will also go through the steps to build a three-node etcd cluster and masters with
multinodes.

Clustering etcd
etcd stores network information and states in Kubernetes. Any data loss could be
crucial. Clustering etcd is strongly recommended in a production environment. etcd
comes with support for clustering; a cluster of N members can tolerate up to (N-1)/2
failures. Typically, there are three mechanisms for creating an etcd cluster. They are
as follows:

Static
etcd discovery
DNS discovery

Building High-Availability Clusters Chapter 15

[507]

Static is a simple way to bootstrap an etcd cluster if we have all etcd members
provisioned before starting. However, it's more common if we use an existing etcd
cluster to bootstrap a new member. Then, the discovery method comes into play. The
discovery service uses an existing cluster to bootstrap itself. It allows a new member
in an etcd cluster to find other existing members. In this recipe, we will discuss how
to bootstrap an etcd cluster via static and etcd discovery manually.

We learned how to use kubeadm and kubespray in Chapter 12, Building Your Own
Kubernetes Cluster. At the time of writing, HA work in kubeadm is still in progress.
Regularly backing up your etcd node is recommended in the official documentation.
The other tool we introduced, kubespray, on the other hand, supports multi-nodes
etcd natively. In this chapter, we'll also describe how to configure etcd in kubespray.

Getting ready
Before we learn a more flexible way to set up an etcd cluster, we should know etcd
comes with two major versions so far, which are v2 and v3. etcd3 is a newer version
that aims to be more stable, efficient, and reliable. Here is a simple comparison to
introduce the major differences in their implementation:

etcd2 etcd3
Protocol http gRPC
Key expiration TTL mechanism Leases
Watchers Long polling over HTTP Via a bidirectional gRPC stream

etcd3 aims to be the next generation of etcd2 . etcd3 supports the gRPC protocol by
default. gRPC uses HTTP2, which allows multiple RPC streams over a TCP
connection. In etcd2, however, a HTTP request must establish a connection in every
request it makes. For dealing with key expiration, in etcd2, a TTL attaches to a key;
the client should periodically refresh the keys to see if any keys have expired. This
will establish lots of connections.

In etcd3, the lease concept was introduced. A lease can attach multiple keys; when a
lease expires, it'll delete all attached keys. For the watcher, the etcd2 client creates
long polling over HTTP—this means a TCP connection is opened per watch.
However, etcd3 uses bidirectional gRPC stream implementation, which allows
multiple steams to share the same connection.

Building High-Availability Clusters Chapter 15

[508]

Although etcd3 is preferred. However, some deployments still use etcd2. We'll still
introduce how to use those tools to achieve clustering, since data migration in etcd is
well-documented and smooth. For more information, please refer to the upgrade
migration steps at https:/ /coreos. com/ blog/ migrating- applications- etcd- v3.
html.

Before we start building an etcd cluster, we have to decide how many members we
need. How big the etcd cluster should be really depends on the environment you
want to create. In the production environment, at least three members are
recommended. Then, the cluster can tolerate at least one permanent failure. In this
recipe, we will use three members as an example of a development environment:

Name/hostname IP address
ip-172-31-3-80 172.31.3.80

ip-172-31-14-133 172.31.14.133

ip-172-31-13-239 172.31.13.239

Secondly, the etcd service requires port 2379 (4001 for legacy uses) for etcd client
communication and port 2380 for peer communication. These ports have to be
exposed in your environment.

How to do it...
There are plenty of ways to provision an etcd cluster. Normally, you'll use kubespray,
kops (in AWS), or other provisioning tools.

Here, we'll simply show you how to perform a manual install. It's fairly easy as well:

// etcd installation script
$ cat install-etcd.sh
ETCD_VER=v3.3.0

${DOWNLOAD_URL} could be ${GOOGLE_URL} or ${GITHUB_URL}
GOOGLE_URL=https://storage.googleapis.com/etcd
GITHUB_URL=https://github.com/coreos/etcd/releases/download
DOWNLOAD_URL=${GOOGLE_URL}

delete tmp files
rm -f /tmp/etcd-${ETCD_VER}-linux-amd64.tar.gz
rm -rf /tmp/etcd && rm -rf /etc/etcd && mkdir -p /etc/etcd

curl -L ${DOWNLOAD_URL}/${ETCD_VER}/etcd-${ETCD_VER}-linux-
amd64.tar.gz -o /tmp/etcd-${ETCD_VER}-linux-amd64.tar.gz

https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html
https://coreos.com/blog/migrating-applications-etcd-v3.html

Building High-Availability Clusters Chapter 15

[509]

tar xzvf /tmp/etcd-${ETCD_VER}-linux-amd64.tar.gz -C /etc/etcd --
strip-components=1
rm -f /tmp/etcd-${ETCD_VER}-linux-amd64.tar.gz

check etcd version
/etc/etcd/etcd --version

This script will put etcd binary under /etc/etcd folder. You're free to put them in
different place. We'll need sudo in order to put them under /etc in this case:

// install etcd on linux
sudo sh install-etcd.sh
…
etcd Version: 3.3.0
Git SHA: c23606781
Go Version: go1.9.3
Go OS/Arch: linux/amd64

The version we're using now is 3.3.0. After we check the etcd binary work on your
machine, we can attach it to the default $PATH as follows. Then we don't need to
include the/etc/etcd path every time we execute the etcd command:

$ export PATH=/etc/etcd:$PATH
$ export ETCDCTL_API=3

You also can put it into your .bashrc or .bash_profile to let it set by default.

After we have at least three etcd servers provisioned, it's time to make them pair
together.

Static mechanism
A static mechanism is the easiest way to set up a cluster. However, the IP address of
every member should be known beforehand. This means that if you bootstrap an etcd
cluster in a cloud provider environment, the static mechanism might not be so
practical. Therefore, etcd also provides a discovery mechanism to bootstrap itself
from the existing cluster.

Building High-Availability Clusters Chapter 15

[510]

To make etcd communications secure, etcd supports TLS channels to encrypt the
communication between peers, and also clients and servers. Each member needs to
have a unique key pair. In this section, we'll show you how to use automatically
generated certificates to build a cluster.

In CoreOs GitHub, there is a handy tool we can use to generate self-
signed certificates (https:/ /github. com/ coreos/ etcd/ tree/ v3. 2.
15/ hack/ tls- setup) . After cloning the repo, we have to modify a
configuration file under config/req-csr.json. Here is an
example:

// sample config, put under $repo/config/req-csr.json
$ cat config/req-csr.json
{
 "CN": "etcd",
 "hosts": [
 "172.31.3.80",
 "172.31.14.133",
 "172.31.13.239"
],
 "key": {
 "algo": "ecdsa",
 "size": 384
 },
 "names": [
 {
 "O": "autogenerated",
 "OU": "etcd cluster",
 "L": "the internet"
 }
]
}

In the next step we'll need to have Go (https:/ /golang. org/)
installed and set up $GOPATH:

$ export GOPATH=$HOME/go
$ make

Then the certs will be generated under ./certs/.

https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://github.com/coreos/etcd/tree/v3.2.15/hack/tls-setup
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/

Building High-Availability Clusters Chapter 15

[511]

First, we'll have to set a bootstrap configuration to declare what members will be
inside the cluster:

// set as environment variables, or alternatively, passing by –-
initial-cluster and –-initial-cluster-state parameters inside launch
command.
#
ETCD_INITIAL_CLUSTER="etcd0=http://172.31.3.80:2380,etcd1=http://172.3
1.14.133:2380,etcd2=http://172.31.13.239:2380"
ETCD_INITIAL_CLUSTER_STATE=new

In all three nodes, we'll have to launch the etcd server separately:

// first node: 172.31.3.80
etcd --name etcd0 --initial-advertise-peer-urls
https://172.31.3.80:2380 \
 --listen-peer-urls https://172.31.3.80:2380 \
 --listen-client-urls https://172.31.3.80:2379,https://127.0.0.1:2379
\
 --advertise-client-urls https://172.31.3.80:2379 \
 --initial-cluster-token etcd-cluster-1 \
 --initial-cluster
etcd0=https://172.31.3.80:2380,etcd1=https://172.31.14.133:2380,etcd2=
https://172.31.13.239:2380 \
 --initial-cluster-state new \
 --auto-tls \
 --peer-auto-tls

Then, you'll see the following output:

2018-02-06 22:15:20.508687 I | etcdmain: etcd Version: 3.3.0
2018-02-06 22:15:20.508726 I | etcdmain: Git SHA: c23606781
2018-02-06 22:15:20.508794 I | etcdmain: Go Version: go1.9.3
2018-02-06 22:15:20.508824 I | etcdmain: Go OS/Arch: linux/amd64
…
2018-02-06 22:15:21.439067 N | etcdserver/membership: set the initial
cluster version to 3.0
2018-02-06 22:15:21.439134 I | etcdserver/api: enabled capabilities
for version 3.0

Building High-Availability Clusters Chapter 15

[512]

Let's wake up the second etcd service:

// second node: 172.31.14.133
$ etcd --name etcd1 --initial-advertise-peer-urls
https://172.31.14.133:2380 \
 --listen-peer-urls https://172.31.14.133:2380 \
 --listen-client-urls
https://172.31.14.133:2379,https://127.0.0.1:2379 \
 --advertise-client-urls https://172.31.14.133:2379 \
 --initial-cluster-token etcd-cluster-1 \
 --initial-cluster
etcd0=https://172.31.3.80:2380,etcd1=https://172.31.14.133:2380,etcd2=
https://172.31.13.239:2380 \
 --initial-cluster-state new \
 --auto-tls \
 --peer-auto-tls

You'll see similar logs in the console:

2018-02-06 22:15:20.646320 I | etcdserver: starting member
ce7c9e3024722f01 in cluster a7e82f7083dba2c1
2018-02-06 22:15:20.646384 I | raft: ce7c9e3024722f01 became follower
at term 0
2018-02-06 22:15:20.646397 I | raft: newRaft ce7c9e3024722f01 [peers:
[], term: 0, commit: 0, applied: 0, lastindex: 0, lastterm: 0]
2018-02-06 22:15:20.646403 I | raft: ce7c9e3024722f01 became follower
at term 1
…
2018-02-06 22:15:20.675928 I | rafthttp: starting peer
25654e0e7ea045f8...
2018-02-06 22:15:20.676024 I | rafthttp: started HTTP pipelining with
peer 25654e0e7ea045f8
2018-02-06 22:15:20.678515 I | rafthttp: started streaming with peer
25654e0e7ea045f8 (writer)
2018-02-06 22:15:20.678717 I | rafthttp: started streaming with peer
25654e0e7ea045f8 (writer)

It starts pairing with our previous node (25654e0e7ea045f8). Let's trigger the
following command in the third node:

// third node: 172.31.13.239
$ etcd --name etcd2 --initial-advertise-peer-urls
https://172.31.13.239:2380 \
 --listen-peer-urls https://172.31.13.239:2380 \
 --listen-client-urls
https://172.31.13.239:2379,https://127.0.0.1:2379 \
 --advertise-client-urls https://172.31.13.239:2379 \
 --initial-cluster-token etcd-cluster-1 \

Building High-Availability Clusters Chapter 15

[513]

 --initial-cluster
etcd0=https://172.31.3.80:2380,etcd1=https://172.31.14.133:2380,etcd2=
https://172.31.13.239:2380 \
 --initial-cluster-state new \
 --auto-tls \
 --peer-auto-tls

// in node2 console, it listens and receives new member
(4834416c2c1e751e) added.
2018-02-06 22:15:20.679548 I | rafthttp: starting peer
4834416c2c1e751e...
2018-02-06 22:15:20.679642 I | rafthttp: started HTTP pipelining with
peer 4834416c2c1e751e
2018-02-06 22:15:20.679923 I | rafthttp: started streaming with peer
25654e0e7ea045f8 (stream Message reader)
2018-02-06 22:15:20.680190 I | rafthttp: started streaming with peer
25654e0e7ea045f8 (stream MsgApp v2 reader)
2018-02-06 22:15:20.680364 I | rafthttp: started streaming with peer
4834416c2c1e751e (writer)
2018-02-06 22:15:20.681880 I | rafthttp: started peer 4834416c2c1e751e
2018-02-06 22:15:20.681909 I | rafthttp: added peer 4834416c2c1e751e
After all nodes are in, it'll start to elect the leader inside the
cluster, we could find it in the logs:
2018-02-06 22:15:21.334985 I | raft: raft.node: ce7c9e3024722f01
elected leader 4834416c2c1e751e at term 27
...
2018-02-06 22:17:21.510271 N | etcdserver/membership: updated the
cluster version from 3.0 to 3.3
2018-02-06 22:17:21.510343 I | etcdserver/api: enabled capabilities
for version 3.3

And the cluster is set. We should check to see if it works properly:

$ etcdctl cluster-health
member 25654e0e7ea045f8is healthy: got healthy result from
http://172.31.3.80:2379
member ce7c9e3024722f01 is healthy: got healthy result from
http://172.31.14.133:2379
member 4834416c2c1e751e is healthy: got healthy result from
http://172.31.13.239:2379

Building High-Availability Clusters Chapter 15

[514]

Discovery mechanism
Discovery provides a more flexible way to create a cluster. It doesn't need to know
other peer IPs beforehand. It uses an existing etcd cluster to bootstrap one. In this
section, we'll demonstrate how to leverage that to launch a three-node etcd cluster:

Firstly, we'll need to have an existing cluster with three-node configuration.1.
Luckily, the etcd official website provides a discovery service
(https://discovery.etcd.io/new?size=n); n will be the number of
nodes in your etcd cluster, which is ready to use:

// get a request URL
curl -w "n" 'https://discovery.etcd.io/new?size=3'
https://discovery.etcd.io/f6a3fb54b3fd1bb02e26a89fd40df0e8

Then we are able to use the URL to bootstrap a cluster easily. The2.
command line is pretty much the same as in the static mechanism. What we
need to do is change –initial-cluster to –discovery, which is used
to specify the discovery service URL:

// in node1, 127.0.0.1 is used for internal client
listeneretcd -name ip-172-31-3-80 -initial-advertise-peer-
urls http://172.31.3.80:2380 -listen-peer-urls
http://172.31.3.80:2380 -listen-client-urls
http://172.31.3.80:2379,http://127.0.0.1:2379 -advertise-
client-urls http://172.31.3.80:2379 -discovery
https://discovery.etcd.io/f6a3fb54b3fd1bb02e26a89fd40df0e8

// in node2, 127.0.0.1 is used for internal client
listener
etcd -name ip-172-31-14-133 -initial-advertise-peer-urls
http://172.31.14.133:2380 -listen-peer-urls
http://172.31.14.133:2380 -listen-client-urls
http://172.31.14.133:2379,http://127.0.0.1:2379 -
advertise-client-urls http://172.31.14.133:2379 -
discovery
https://discovery.etcd.io/f6a3fb54b3fd1bb02e26a89fd40df0e8

// in node3, 127.0.0.1 is used for internal client
listener
etcd -name ip-172-31-13-239 -initial-advertise-peer-urls
http://172.31.13.239:2380 -listen-peer-urls
http://172.31.13.239:2380 -listen-client-urls
http://172.31.13.239:2379,http://127.0.0.1:2379 -
advertise-client-urls http://172.31.13.239:2379 -
discovery

Building High-Availability Clusters Chapter 15

[515]

https://discovery.etcd.io/f6a3fb54b3fd1bb02e26a89fd40df0e8

Let's take a closer look at node1's log:3.

2018-02-10 04:58:03.819963 I | etcdmain: etcd Version:
3.3.0
...
2018-02-10 04:58:03.820400 I | embed: listening for peers
on http://172.31.3.80:2380
2018-02-10 04:58:03.820427 I | embed: listening for client
requests on
127.0.0.1:2379
2018-02-10 04:58:03.820444 I | embed: listening for client
requests on 172.31.3.80:2379
2018-02-10 04:58:03.947753 N | discovery: found self
f60c98e749d41d1b in the cluster
2018-02-10 04:58:03.947771 N | discovery: found 1 peer(s),
waiting for 2 more
2018-02-10 04:58:22.289571 N | discovery: found peer
6645fe871c820573 in the cluster
2018-02-10 04:58:22.289628 N | discovery: found 2 peer(s),
waiting for 1 more
2018-02-10 04:58:36.907165 N | discovery: found peer
1ce61c15bdbb20b2 in the cluster
2018-02-10 04:58:36.907192 N | discovery: found 3 needed
peer(s)
...
2018-02-10 04:58:36.931319 I | etcdserver/membership:
added member 1ce61c15bdbb20b2 [http://172.31.13.239:2380]
to cluster 29c0e2579c2f9563
2018-02-10 04:58:36.931422 I | etcdserver/membership:
added member 6645fe871c820573 [http://172.31.14.133:2380]
to cluster 29c0e2579c2f9563
2018-02-10 04:58:36.931494 I | etcdserver/membership:
added member f60c98e749d41d1b [http://172.31.3.80:2380] to
cluster 29c0e2579c2f9563
2018-02-10 04:58:37.116189 I | raft: f60c98e749d41d1b
became leader at term 2

We can see that the first node waited for the other two members to join, and
added member to cluster, became the leader in the election at term 2:

Building High-Availability Clusters Chapter 15

[516]

If you check the other server's log, you might find a clue to the effect that4.
some members voted for the current leader:

// in node 2
2018-02-10 04:58:37.118601 I | raft: raft.node:
6645fe871c820573 elected leader f60c98e749d41d1b at term 2

We can also use member lists to check the current leader:5.

etcdctl member list
1ce61c15bdbb20b2: name=ip-172-31-13-239
peerURLs=http://172.31.13.239:2380
clientURLs=http://172.31.13.239:2379 isLeader=false
6645fe871c820573: name=ip-172-31-14-133
peerURLs=http://172.31.14.133:2380
clientURLs=http://172.31.14.133:2379 isLeader=false
f60c98e749d41d1b: name=ip-172-31-3-80
peerURLs=http://172.31.3.80:2380
clientURLs=http://172.31.3.80:2379 isLeader=true

Then we can confirm the current leader is 172.31.3.80. We can also use6.
etcdctl to check cluster health:

etcdctl cluster-health
member 1ce61c15bdbb20b2 is healthy: got healthy result
from http://172.31.13.239:2379
member 6645fe871c820573 is healthy: got healthy result
from http://172.31.14.133:2379
member f60c98e749d41d1b is healthy: got healthy result
from http://172.31.3.80:2379
cluster is healthy

If we remove the current leader by etcdctl command:7.

etcdctl member remove f60c98e749d41d1b

We may find that the current leader has been changed:8.

etcdctl member list
1ce61c15bdbb20b2: name=ip-172-31-13-239
peerURLs=http://172.31.13.239:2380
clientURLs=http://172.31.13.239:2379 isLeader=false
6645fe871c820573: name=ip-172-31-14-133
peerURLs=http://172.31.14.133:2380
clientURLs=http://172.31.14.133:2379 isLeader=true

Building High-Availability Clusters Chapter 15

[517]

By using etcd discovery, we can set up a cluster painlessly etcd also
provides lots of APIs for us to use. We can leverage it to check cluster
statistics:

For example, use /stats/leader to check the current cluster view:9.

curl http://127.0.0.1:2379/v2/stats/leader
{"leader":"6645fe871c820573","followers":{"1ce61c15bdbb20b
2":{"latency":{"current":0.002463,"average":0.0038775,"sta
ndardDeviation":0.0014144999999999997,"minimum":0.002463,"
maximum":0.005292},"counts":{"fail":0,"success":2}}}}

For more information about APIs, check out the official API document: https:/ /
coreos.com/etcd/ docs/ latest/ v2/ api.html.

Building a cluster in EC2
CoreOS builds CloudFormation in AWS to help you bootstrap your
cluster in AWS dynamically. What we have to do is just launch a
CloudFormation template and set the parameters, and we're good to
go. The resources in the template contain AutoScaling settings and
network ingress (security group). Note that these etcds are running
on CoreOS. To log in to the server, firstly you'll have to set your
keypair name in the KeyPair parameter, then use the command ssh
–i $your_keypair core@$ip to log in to the server.

kubeadm
If you're using kubeadm (https:/ /github. com/ kubernetes/ kubeadm) to bootstrap
your Kubernetes cluster, unfortunately, at the time of writing, HA support is still in
progress (v.1.10). The cluster is created as a single master with a single etcd
configured. You'll have to back up etcd regularly to secure your data. Refer to the
kubeadm limitations at the official Kubernetes website for more information (https:/
/kubernetes.io/ docs/ setup/ independent/ create- cluster- kubeadm/
#limitations).

https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://coreos.com/etcd/docs/latest/v2/api.html
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#limitations)

Building High-Availability Clusters Chapter 15

[518]

kubespray
On the other hand, if you're using kubespray to provision your servers, kubespray
supports multi-node etcd natively. What you need to do is add multiple nodes in the
etcd section in the configuration file (inventory.cfg):

cat inventory/inventory.cfg
my-master-1 ansible_ssh_host=<master_ip>
my-node-1 ansible_ssh_host=<node_ip>
my-etcd-1 ansible_ssh_host=<etcd1_ip>
my-etcd-2 ansible_ssh_host=<etcd2_ip>
my-etcd-3 ansible_ssh_host=<etcd3_ip>

[kube-master]
my-master-1

[etcd]
my-etcd-1
my-etcd-2
my-etcd-3

[kube-node]
my-master-1
my-node-1

Then you are good to provision a cluster with three-node etcd:

// provision a cluster
$ ansible-playbook -b -i inventory/inventory.cfg cluster.yml

After the ansible playbook is launched, it will configure the role, create the user,
check if all certs have already been generated in the first master, and generate and
distribute the certs. At the end of the deployment, ansible will check if every
component is in a healthy state.

Building High-Availability Clusters Chapter 15

[519]

Kops
Kops is the most efficient way to create Kubernetes clusters in AWS. Via the kops
configuration file, you can easily launch a custom cluster on the cloud. To build an
etcd multi-node cluster, you could use the following section inside the kops
configuration file:

etcdClusters:
 - etcdMembers:
 - instanceGroup: my-master-us-east-1a
 name: my-etcd-1
 - instanceGroup: my-master-us-east-1b
 name: my-etcd-2
 - instanceGroup: my-master-us-east-1c
 name: my-etcd-3

Normally, an instanceGroup means an auto-scaling group. You'll have to declare a
related intanceGroup my-master-us-east-1x in the configuration file as well.
We'll learn more about it in Chapter 17, Building Kubernetes on AWS. By default, kops
still uses etcd2 at the time this book is being written; you could add a version key
inside the kops configuration file, such as version: 3.3.0, under each instanceGroup.

Building multiple masters
The master node serves as a kernel component in the Kubernetes system. Its duties
include the following:

Pushing and pulling information from etcd servers1.
Acting as the portal for requests2.
Assigning tasks to nodes3.
Monitoring the running tasks4.

Building High-Availability Clusters Chapter 15

[520]

Three major daemons enable the master to fulfill the preceding duties; the following
diagram indicates the activities of the aforementioned bullet points:

The interaction between the Kubernetes master and other components

As you can see, the master is the communicator between workers and clients.
Therefore, it will be a problem if the master crashes. A multiple-master Kubernetes
system is not only fault tolerant, but also workload-balanced. It would not be an issue
if one of them crashed, since other masters would still handle the jobs. We call this
infrastructure design high availability, abbreviated to HA. In order to support HA
structures, there will no longer be only one API server for accessing datastores and
handling requests. Several API servers in separated master nodes would help to solve
tasks simultaneously and shorten the response time.

Building High-Availability Clusters Chapter 15

[521]

Getting ready
There are some brief ideas you should understand about building a multiple-master
system:

Add a load balancer server in front of the masters. The load balancer will
become the new endpoint accessed by nodes and clients.
Every master runs its own API server.
Only one scheduler and one controller manager are eligible to work in the
system, which can avoid conflicting directions from different daemons
while managing containers. To achieve this setup, we enable the --
leader-elect flag in the scheduler and controller manager. Only the one
getting the lease can take duties.

In this recipe, we are going to build a two-master system via kubeadm, which has
similar methods while scaling more masters. Users may also use other tools to build
up HA Kubernetes clusters. Our target is to illustrate the general concepts.

Before starting, in addition to master nodes, you should prepare other necessary
components in the systems:

Two Linux hosts, which will be set up as master nodes later. These
machines should be configured as kubeadm masters. Please refer to
the Setting up Kubernetes clusters on Linux by kubeadm recipe in Chapter
12, Building Your Own Kubernetes Cluster. You should finish the Package
installation and System configuring prerequisites parts on both hosts.
A LoadBalancer for masters. It would be much easier if you worked on the
public cloud, that's said ELB of AWS and Load balancing of GCE.
An etcd cluster. Please check the Clustering etcd recipe in this chapter.

How to do it...
We will use a configuration file to run kubeadm for customized daemon execution.
Please follow the next sections to make multiple master nodes as a group.

Building High-Availability Clusters Chapter 15

[522]

Setting up the first master
First, we are going to set up a master, ready for the HA environment. Like the initial
step, running a cluster by using kubeadm, it is important to enable and start kubelet
on the master at the beginning. It can then take daemons running as pods in
the kube-system namespace:

// you are now in the terminal of host for first master
$ sudo systemctl enable kubelet && sudo systemctl start kubelet

Next, let's start the master services with the custom kubeadm configuration file:

$ cat custom-init-1st.conf
apiVersion: kubeadm.k8s.io/v1alpha1
kind: MasterConfiguration
api:
 advertiseAddress: "<FIRST_MASTER_IP>"
etcd:
 endpoints:
 - "<ETCD_CLUSTER_ENDPOINT>"
apiServerCertSANs:
- "<FIRST_MASTER_IP>"
- "<SECOND_MASTER_IP>"
- "<LOAD_BALANCER_IP>"
- "127.0.0.1"
token: "<CUSTOM_TOKEN: [a-z0-9]{6}.[a-z0-9]{16}>"
tokenTTL: "0"
apiServerExtraArgs:
 endpoint-reconciler-type: "lease"

This configuration file has multiple values required to match your environment
settings. The IP ones are straightforward. Be aware that you are now setting the first
master; the <FIRST_MASTER_IP> variable will be the physical IP of your current
location. <ETCD_CLUSTER_ENDPOINT> will be in a format like
"http://<IP>:<PORT>", which will be the load balancer of the etcd
cluster. <CUSTOM_TOKEN> should be valid in the specified format (for example,
123456.aaaabbbbccccdddd). After you allocate all variables aligning to your
system, you can run it now:

$ sudo kubeadm init --config=custom-init-1st.conf

You may get the Swap is not supported error message. Add an
additional --ignore-preflight-errors=Swap flag with kubeadm
init to avoid this interruption.

Building High-Availability Clusters Chapter 15

[523]

Make sure to update in both files of the masters.

We need to complete client functionality via the following commands:

$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

Like when running a single master cluster via kubeadm, without a container network
interface the add-on kube-dns will always have a pending status. We will use CNI
Calico for our demonstration. It is fine to apply the other CNI which is suitable to
kubeadm:

$ kubectl apply -f
https://docs.projectcalico.org/v2.6/getting-started/kubernetes/install
ation/hosted/kubeadm/1.6/calico.yaml

Now it is OK for you to add more master nodes.

Setting up the other master with existing
certifications
Similar to the last session, let's start and enable kubelet first:

// now you're in the second master
$ sudo systemctl enable kubelet && sudo systemctl start kubelet

After we have set up the first master, we should share newly generated certificates
and keys with the whole system. It makes sure that the masters are secured in the
same manner:

$ sudo scp -r root@$FIRST_MASTER_IP:/etc/kubernetes/pki/*
/etc/kubernetes/pki/

You will have found that several files such as certificates or keys are copied to the
/etc/kubernetes/pki/ directly, where they can only be accessed by the root.
However, we are going to remove the files apiserver.crt and apiserver.key. It
is because these files should be generated in line with the hostname and IP of the
second master, but the shared client certificate ca.crt is also involved in the
generating process:

$ sudo rm /etc/kubernetes/pki/apiserver.*

Building High-Availability Clusters Chapter 15

[524]

Next, before we fire the master initialization command, please change the API
advertise address in the configuration file for the second master. It should be the IP of
the second master, your current host. The configuration file of the second master is
quite similar to the first master's.

The difference is that we should indicate the information of etcd server and avoid
creating a new set of them:

// Please modify the change by your case
$ cat custom-init-2nd.conf
apiVersion: kubeadm.k8s.io/v1alpha1
kind: MasterConfiguration
api:
 advertiseAddress: "<SECOND_MASTER_IP>"
...

Go ahead and fire the kubeadm init command, record the kubeadm join
command shown in the last line of the init command to add the node later, and
enable the client API permission:

$ sudo kubeadm init --config custom-init-2nd.conf
// copy the "kubeadm join" command showing in the output
$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

Then, check the current nodes; you will find there are two master :

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
master01 Ready master 8m v1.10.2
master02 Ready master 1m v1.10.2

Adding nodes in a HA cluster
Once the masters are ready, you can add nodes into the system. This node should be
finished with the prerequisite configuration as a worker node in the kubeadm cluster.
And, in the beginning, you should start kubelet as the master ones:

// now you're in the second master
$ sudo systemctl enable kubelet && sudo systemctl start kubelet

Building High-Availability Clusters Chapter 15

[525]

After that, you can go ahead and push the join command you copied. However,
please change the master IP to the load balancer one:

// your join command should look similar to following one
$ sudo kubeadm join --token <CUSTOM_TOKEN> <LOAD_BALANCER_IP>:6443 --
discovery-token-ca-cert-hash sha256:<HEX_STRING>

You can then jump to the first master or second master to check the nodes' status:

// you can see the node is added
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
master01 Ready master 4h v1.10.2
master02 Ready master 3h v1.10.2
node01 Ready <none> 22s v1.10.2

How it works...
To verify our HA cluster, take a look at the pods in the namespace kube-system:

$ kubectl get pod -n kube-system
NAME READY STATUS RESTARTS
AGE
calico-etcd-6bnrk 1/1 Running 0
1d
calico-etcd-p7lpv 1/1 Running 0
1d
calico-kube-controllers-d554689d5-qjht2 1/1 Running 0
1d
calico-node-2r2zs 2/2 Running 0
1d
calico-node-97fjk 2/2 Running 0
1d
calico-node-t55l8 2/2 Running 0
1d
kube-apiserver-master01 1/1 Running 0
1d
kube-apiserver-master02 1/1 Running 0
1d
kube-controller-manager-master01 1/1 Running 0
1d
kube-controller-manager-master02 1/1 Running 0
1d
kube-dns-6f4fd4bdf-xbfvp 3/3 Running 0
1d
kube-proxy-8jk69 1/1 Running 0

Building High-Availability Clusters Chapter 15

[526]

1d
kube-proxy-qbt7q 1/1 Running 0
1d
kube-proxy-rkxwp 1/1 Running 0
1d
kube-scheduler-master01 1/1 Running 0
1d
kube-scheduler-master02 1/1 Running 0
1d

These pods are working as system daemons: Kubernetes system services such as the
API server, Kubernetes add-ons such as the DNS server, and CNI ones; here we used
Calico. But wait! As you take a closer look at the pods, you may be curious about why
the controller manager and scheduler runs on both masters. Isn't there just single one
in the HA cluster?

As we understood in the previous section, we should avoid running multiple
controller managers and multiple schedulers in the Kubernetes system. This is
because they may try to take over requests at the same time, which not only creates
conflict but is also a waste of computing power. Actually, while booting up the whole
system by using kubeadm, the controller manager and scheduler are started with the
leader-elect flag enabled by default:

// check flag leader-elect on master node
$ sudo cat /etc/kubernetes/manifests/kube-controller-manager.yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 scheduler.alpha.kubernetes.io/critical-pod: ""
 creationTimestamp: null
 labels:
 component: kube-controller-manager
 tier: control-plane
 name: kube-controller-manager
 namespace: kube-system
spec:
 containers:
 - command:
 - kube-controller-manager
...
 - --leader-elect=true
...

Building High-Availability Clusters Chapter 15

[527]

You may find that the scheduler has also been set with leader-elect. Nevertheless,
why is there still more than one pod? The truth is, one of the pods with the same role
is idle. We can get detailed information by looking at system endpoints:

// ep is the abbreviation of resource type "endpoints"
$ kubectl get ep -n kube-system
NAME ENDPOINTS
AGE
calico-etcd 192.168.122.201:6666,192.168.122.202:6666
1d
kube-controller-manager <none>
1d
kube-dns 192.168.241.67:53,192.168.241.67:53
1d
kube-scheduler <none>
1d

// check endpoint of controller-manager with YAML output format
$ kubectl get ep kube-controller-manager -n kube-system -o yaml
apiVersion: v1
kind: Endpoints
metadata:
 annotations:
 control-plane.alpha.kubernetes.io/leader:
'{"holderIdentity":"master01_bf4e22f7-4f56-11e8-
aee3-52540048ed9b","leaseDurationSeconds":15,"acquireTime":"2018-05-04
T04:51:11Z","renewTime":"2018-05-04T05:28:34Z","leaderTransitions":0}'
 creationTimestamp: 2018-05-04T04:51:11Z
 name: kube-controller-manager
 namespace: kube-system
 resourceVersion: "3717"
 selfLink: /api/v1/namespaces/kube-system/endpoints/kube-controller-
manager
 uid: 5e2717b0-0609-11e8-b36f-52540048ed9b

Take the endpoint for kube-controller-manager, for example: there is no virtual
IP of a pod or service attached to it (the same as kube-scheduler). If we dig deeper
into this endpoint, we find that the endpoint for kube-controller-manager relies
on annotations to record lease information; it also relies on resourceVersion for
pod mapping and to pass traffic. According to the annotation of the kube-
controller-manager endpoint, it is our first master that took control. Let's check
the controller manager on both masters:

// your pod should be named as kube-controller-manager-<HOSTNAME OF
MASTER>
$ kubectl logs kube-controller-manager-master01 -n kube-system | grep

Building High-Availability Clusters Chapter 15

[528]

"leader"
I0504 04:51:03.015151 1 leaderelection.go:175] attempting to acquire
leader lease kube-system/kube-controller-manager...
...
I0504 04:51:11.627737 1 event.go:218]
Event(v1.ObjectReference{Kind:"Endpoints", Namespace:"kube-system",
Name:"kube-controller-manager", UID:"5e2717b0-0609-11e8-
b36f-52540048ed9b", APIVersion:"v1", ResourceVersion:"187",
FieldPath:""}): type: 'Normal' reason: 'LeaderElection'
master01_bf4e22f7-4f56-11e8-aee3-52540048ed9b became leader

As you can see, only one master works as a leader and handles the requests, while the
other one persists, acquires the lease, and does nothing.

For a further test, we are trying to remove our current leader pod, to see what
happens. While deleting the deployment of system pods by a kubectl request, a
kubeadm Kubernetes would create a new one since it's guaranteed to boot up any
application under the/etc/kubernetes/manifests directory. Therefore, avoid the
automatic recovery by kubeadm, we remove the configuration file out of the manifest
directory instead. It makes the downtime long enough to give away the leadership:

// jump into the master node of leader
// temporary move the configuration file out of kubeadm's control
$ sudo mv /etc/kubernetes/manifests/kube-controller-manager.yaml ./
// check the endpoint
$ kubectl get ep kube-controller-manager -n kube-system -o yaml
apiVersion: v1
kind: Endpoints
metadata:
 annotations:
 control-plane.alpha.kubernetes.io/leader:
'{"holderIdentity":"master02_4faf95c7-4f5b-11e8-
bda3-525400b06612","leaseDurationSeconds":15,"acquireTime":"2018-05-04
T05:37:03Z","renewTime":"2018-05-04T05:37:47Z","leaderTransitions":1}'
 creationTimestamp: 2018-05-04T04:51:11Z
 name: kube-controller-manager
 namespace: kube-system
 resourceVersion: "4485"
 selfLink: /api/v1/namespaces/kube-system/endpoints/kube-controller-
manager
 uid: 5e2717b0-0609-11e8-b36f-52540048ed9b
subsets: null

Building High-Availability Clusters Chapter 15

[529]

The /etc/kubernetes/manifests directory is defined in kubelet
by --pod-manifest-path flag. Check
/etc/systemd/system/kubelet.service.d/10-

kubeadm.conf, which is the system daemon configuration file for
kubelet, and the help messages of kubelet for more details.

Now, it is the other node's turn to wake up its controller manager and put it to work.
Once you put back the configuration file for the controller manager, you find the old
leader is now waiting for the lease:

$ kubectl logs kube-controller-manager-master01 -n kube-system
I0504 05:40:10.218946 1 controllermanager.go:116] Version: v1.10.2
W0504 05:40:10.219688 1 authentication.go:55] Authentication is
disabled
I0504 05:40:10.219702 1 insecure_serving.go:44] Serving insecurely on
127.0.0.1:10252
I0504 05:40:10.219965 1 leaderelection.go:175] attempting to acquire
leader lease kube-system/kube-controller-manager...

See also
Before you read this recipe, you should have mastered the basic concept of single
master installation by kubeadm. Refer to the related recipes mentioned here to get an
idea for how to build a multiple-master system automatically:

Setting up a Kubernetes cluster on Linux by kubeadm in Chapter 12,
Building Your Own Kubernetes Cluster
Clustering etcd

16
Building Continuous Delivery

Pipelines
In this chapter, we will cover the following recipes:

Moving monolithic to microservices
Working with the private Docker registry
Integrating with Jenkins

Introduction
Kubernetes is a perfect match for applications featuring the microservices
architecture. However, most of the old applications are built in the monolithic style.
We will give you an idea about how to move from the monolithic to the microservices
world. As for microservices, deployment will become a burden if you are doing it
manually. We will learn how to build up our own continuous delivery pipeline by
coordinating Jenkins, the Docker registry, and Kubernetes.

Moving monolithic to microservices
Typically, application architecture is the monolithic design that contains a Model-
View- Controller (MVC) and every component within a single, big binary. A
monolithic design has some benefits, such as less latency within components, being
all in one straightforward package, and being easy to deploy and test.

However, a monolithic design has some downsides because the binary will be getting
bigger and bigger. You always need to take care of the side effects when adding or
modifying the code, therefore making release cycles longer.

Building Continuous Delivery Pipelines Chapter 16

[531]

Containers and Kubernetes give more flexibility when using microservices for your
application. The microservices architecture is very simple and can be divided into
some modules or some service classes together with MVC:

Monolithic and microservices design

Each microservice provides a Remote Procedure Call (RPC) using RESTful or some
standard network APIs to other microservices. The benefit is that each microservice is
independent. There are minimal side effects when adding or modifying the code.
Release the cycle independently, so it perfectly ties in with the Agile software
development methodology and allows for the reuse of these microservices to
construct another application that builds the microservices ecosystem.

Getting ready
Prepare the simple microservices program. In order to push and pull your
microservices, please register to Docker hub (https://hub.docker.com/) to create
your free Docker ID in advance.

If you push the Docker image to Docker hub, it will be public;
anyone can pull your image. Therefore, don't put any confidential
information into the image.

https://hub.docker.com/

Building Continuous Delivery Pipelines Chapter 16

[532]

Once you successfully log in to your Docker ID, you will be redirected to your
Dashboard page as follows:

After logging in to Docker hub

How to do it...
Prepare both microservices and the frontend WebUI as a Docker image. Then, deploy
them using the Kubernetes replication controller and service.

Microservices
Build a microservice which provides a simple math function by using following steps:

Here is the simple microservice using Python Flask (http:/ /flask.1.
pocoo. org/):

$ cat entry.py
from flask import Flask, request
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/

Building Continuous Delivery Pipelines Chapter 16

[533]

@app.route("/power/<int:base>/<int:index>")
def power(base, index):
 return "%d" % (base ** index)

@app.route("/addition/<int:x>/<int:y>")
def add(x, y):
 return "%d" % (x+y)

@app.route("/substraction/<int:x>/<int:y>")
def substract(x, y):
 return "%d" % (x-y)

if __name__ == "__main__":
 app.run(host='0.0.0.0')

Prepare a Dockerfile as follows in order to build the Docker image:2.

$ cat Dockerfile
FROM ubuntu:14.04

Update packages
RUN apt-get update -y

Install Python Setuptools
RUN apt-get install -y python-setuptools git telnet curl

Install pip
RUN easy_install pip

Bundle app source
ADD . /src
WORKDIR /src

Add and install Python modules
RUN pip install Flask

Expose
EXPOSE 5000

Run
CMD ["python", "entry.py"]

Then, use the docker build command to build the Docker image as3.
follows:

//name as “your_docker_hub_id/my-calc”
$ sudo docker build -t hidetosaito/my-calc .
Sending build context to Docker daemon 3.072 kB

Building Continuous Delivery Pipelines Chapter 16

[534]

Step 1 : FROM ubuntu:14.04
 ---> 6cc0fc2a5ee3
Step 2 : RUN apt-get update -y
 ---> Using cache

(snip)

Step 8 : EXPOSE 5000
 ---> Running in 7c52f4bfe373
 ---> 28f79bb7481f
Removing intermediate container 7c52f4bfe373
Step 9 : CMD python entry.py
 ---> Running in 86b39c727572
 ---> 20ae465bf036
Removing intermediate container 86b39c727572
Successfully built 20ae465bf036

//verity your image
$ sudo docker images
REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE
hidetosaito/my-calc latest 20ae465bf036
19 seconds ago 284 MB
ubuntu 14.04 6cc0fc2a5ee3
3 weeks ago 187.9 MB

Then, use the docker login command to log in to Docker hub:4.

//type your username, password and e-mail address in
Docker hub
$ sudo docker login
Username: hidetosaito
Password:
Email: hideto.saito@yahoo.com
WARNING: login credentials saved in /home/ec2-
user/.docker/config.json
Login Succeeded

Building Continuous Delivery Pipelines Chapter 16

[535]

Finally, use the docker push command to register to your Docker hub5.
repository as follows:

//push to your docker index
$ sudo docker push hidetosaito/my-calc
The push refers to a repository [docker.io/hidetosaito/my-
calc] (len: 1)
20ae465bf036: Pushed

(snip)

92ec6d044cb3: Pushed
latest: digest:
sha256:203b81c5a238e228c154e0b53a58e60e6eb3d1563293483ce58
f48351031a474 size: 19151

Upon access to Docker hub, you can see your microservice in the6.
repository:

Your microservice Docker image on Docker hub

Building Continuous Delivery Pipelines Chapter 16

[536]

Frontend WebUI
Build WebUI that uses preceding microservice by following steps:

Here is the simple frontend WebUI that also uses Python Flask:1.

$ cat entry.py
import os
import httplib
from flask import Flask, request, render_template

app = Flask(__name__)

@app.route("/")
def index():
 return render_template('index.html')

@app.route("/add", methods=['POST'])
def add():
 #
 # from POST parameters
 #
 x = int(request.form['x'])
 y = int(request.form['y'])

 #
 # from Kubernetes Service(environment variables)
 #
 my_calc_host =
os.environ['MY_CALC_SERVICE_SERVICE_HOST']
 my_calc_port =
os.environ['MY_CALC_SERVICE_SERVICE_PORT']

 #
 # REST call to MicroService(my-calc)
 #
 client = httplib.HTTPConnection(my_calc_host,
my_calc_port)
 client.request("GET", "/addition/%d/%d" % (x, y))
 response = client.getresponse()
 result = response.read()
 return render_template('index.html', add_x=x, add_y=y,
add_result=result)

if __name__ == "__main__":
 app.debug = True
 app.run(host='0.0.0.0')

Building Continuous Delivery Pipelines Chapter 16

[537]

Kubernetes service generates the Kubernetes service name and port
number as an environment variable to the other pods. Therefore, the
environment variable's name and the Kubernetes service name must
be consistent. In this scenario, the my-calc service name must be
my-calc-service.

The frontend WebUI uses the Flask HTML template; it is similar to PHP2.
and JSP in that entry.py will pass the parameter to the template
(index.html) to render the HTML:

$ cat templates/index.html
<html>
 <body>
 <div>
 <form method="post" action="/add">
 <input type="text" name="x" size="2"/>
 <input type="text" name="y" size="2"/>
 <input type="submit" value="addition"/>
 </form>
 {% if add_result %}
 <p>Answer : {{ add_x }} + {{ add_y }} = {{
add_result }}</p>
 {% endif %}
 </div>
 </body>
</html>

Dockerfile is exactly the same as the microservice my-calc. So,3.
eventually, the file structure will be as follows. Note that index.html is a
jinja2 template file; therefore, put it under the /templates directory:

/Dockerfile
/entry.py
/templates/index.html

Then, build a Docker image and push to Docker hub as follows:4.

In order to push your image to Docker hub, you need to log in using
the Docker login command. It is needed only once; the system
checks ~/.docker/config.json to read from there.

//build frontend Webui image
$ sudo docker build -t hidetosaito/my-frontend .

//login to docker hub

Building Continuous Delivery Pipelines Chapter 16

[538]

$ sudo docker login

//push frontend webui image
$ sudo docker push hidetosaito/my-frontend

Upon access to Docker hub, you can see your WebUI application in the5.
repository:

Microservices and frontend WebUI image on Docker Hub

How it works...
Let's prepare two YAML configurations to launch a microservice container and
frontend WebUI container using Kubernetes.

Building Continuous Delivery Pipelines Chapter 16

[539]

Microservices
Microservices (my-calc) uses the Kubernetes deployment and service, but it needs to
communicate to other pods only. In other words, there's no need to expose it to the
outside Kubernetes network. Therefore, the service type is set as ClusterIP:

$ cat my-calc.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-calc-deploy
spec:
 replicas: 2
 selector:
 matchLabels:
 run: my-calc
 template:
 metadata:
 labels:
 run: my-calc
 spec:
 containers:
 - name: my-calc
 image: hidetosaito/my-calc

apiVersion: v1
kind: Service
metadata:
 name: my-calc-service
spec:
 ports:
 - protocol: TCP
 port: 5000
 type: ClusterIP
 selector:
 run: my-calc

Use the kubectl command to load the my-calc pods as follows:

$ kubectl create -f my-calc.yaml
deployment.apps "my-calc-deploy" created
service "my-calc-service" created

Building Continuous Delivery Pipelines Chapter 16

[540]

Frontend WebUI
Frontend WebUI also uses the deployment and service, but it exposes the port (TCP
port 30080) in order to access it from an external web browser:

$ cat my-frontend.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-frontend-deploy
spec:
 replicas: 2
 selector:
 matchLabels:
 run: my-frontend
 template:
 metadata:
 labels:
 run: my-frontend
 spec:
 containers:
 - name: my-frontend
 image: hidetosaito/my-frontend

apiVersion: v1
kind: Service
metadata:
 name: my-frontend-service
spec:
 ports:
 - protocol: TCP
 port: 5000
 nodePort: 30080
 type: NodePort
 selector:
 run: my-frontend

$ kubectl create -f my-frontend.yaml
deployment.apps "my-frontend-deploy" created
service "my-frontend-service" created

Building Continuous Delivery Pipelines Chapter 16

[541]

 Let's try to access my-frontend-service using a web browser. You can access any
Kubernetes node's IP address; specify the port number 30080. If you are using
minikube, simply type minikube service my-frontend-service to access. Then
you can see the my-frontend application as follows:

Access to the frontend WebUI

When you click on the addition button, it will forward a parameter to microservices
(my-calc). Microservices compute the addition (yes, just an addition!) and then
return the result back to the frontend WebUI as follows:

Getting a result from microservices and rendering the HTML

So now, it is easy to scale the pod for the frontend WebUI and microservices
independently. For example, scale WebUI pod from 2 to 8 and microservice pod from
2 to 16, as shown:

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-calc-deploy 2 2 2 2 30m

Building Continuous Delivery Pipelines Chapter 16

[542]

my-frontend-deploy 2 2 2 2 28m

$ kubectl scale deploy my-frontend-deploy --replicas=8
deployment "my-frontend-deploy" scaled

$ kubectl scale deploy my-calc-deploy --replicas=16
deployment "my-calc-deploy" scaled

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-calc-deploy 16 16 16 16 31m
my-frontend-deploy 8 8 8 8 29m

Also, if there's a need to fix some bugs, for example, if there's a frontend need to
validate
the input parameter to check whether it is numeric or a string (yes, if you type string
and
then submit, it will show an error!), it will not affect the build and deploy the cycle
against
microservices:

Frontend and microservice pods and services

Building Continuous Delivery Pipelines Chapter 16

[543]

In addition, if you want to add another microservice, for example, subtraction
microservices, you may need to create another Docker image and deploy with
another deployments and service, so it will be independent from the current
microservices. Then, you can keep accumulating your own microservice ecosystem to
reuse in another application.

Working with the private Docker registry
Once you start to build your microservice application via Docker, you'll need to have
a Docker registry to put your container image in. Docker hub offers you free public
repositories, however, in some cases you might want to make your image private due
to business needs or organization policy.

Docker hub offers the private repository, which only allows authenticated users to
push and pull your images, and is not visible to other users. However, there is only
one quota (repository) for a free plan. You may pay to increase the number of private
repositories, but if you adopt the microservices architecture, you will need a large
number of private repositories:

Docker hub private repositories price list

Building Continuous Delivery Pipelines Chapter 16

[544]

Docker hub with a paid plan is the easiest way to set up your private registry,
but there are some other ways to set up your own private Docker registry, which the
unlimited Docker image quota locates inside your network. In addition, you can also
use other cloud-provided registry services to manage your private registry.

Getting ready
In this recipe, we will show you three different ways to set up your own private
registries:

Using Kubernetes to run a private registry image (https:/ / hub.docker.
com/ _/ registry/)
Using Amazon elastic container registry (https:/ /aws. amazon. com/ ecr/)
Using Google container registry (https:/ /cloud. google. com/ container-
registry/)

When using a Kubernetes to set up a private registry, you may use your own
Kubernetes cluster on the private or public cloud, which allows you to have full
control and utilize most of your physical resources.

On the other hand, when using a public cloud-provided service, such as AWS or
GCP, you can be relieved of the management of servers and storage. Whatever you
need, those public clouds provide you with elastic resources. We'll just have to set the
credentials to Kubernetes and let the nodes know. The following recipes will go
through these three different options.

Using Kubernetes to run a Docker registry server
If you want to launch a private registry server using Kubernetes, you need your own
Kubernetes cluster. You will have set up your own Kubernetes while exploring this
book. If you haven't done yet, please read Chapter 12, Building Your Own Kubernetes
Cluster, to choose the easiest way.

Please note that Docker registry will store some of your Docker images. You must
have a PersistentVolume to manage your storage via Kubernetes. In addition, we
should expect that multiple pods will read and write to the same PersistentVolume
due to scalability. Therefore, you must have the ReadWriteMany (RWX) access mode
of PersistentVolume, such as GlusterFS or NFS.

https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/

Building Continuous Delivery Pipelines Chapter 16

[545]

Details of PersistentVolume are described in the Working with volumes section in
Chapter 13, Walking through Kubernetes Concepts. Let's create a PersistentVolume
that uses NFS and the name pvnfs01 to allocate 100 GB:

//my NFS server(10.138.0.5) shares /nfs directory
$ showmount -e 10.138.0.5
Export list for 10.138.0.5:
/nfs *

//please change spec.nfs.path and spec.nfs.server to yours
$ cat pv_nfs.yaml
apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: pvnfs01
spec:
 capacity:
 storage: "100Gi"
 accessModes:
 - "ReadWriteMany"
 nfs:
 path: "/nfs"
 server: "10.138.0.5"

$ kubectl create -f pv_nfs.yaml
persistentvolume "pvnfs01" created

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
pvnfs01 100Gi RWX Retain Available
5s

If you can't prepare RWX PersistentVolume, you may still be able
to set up Docker registry by Kubernetes, but you can launch only
one pod (replicas: one). As an alternative, you may use AWS S3 or
GCP PD as private registry backend storage; please visit https:/ /
docs. docker. com/ registry/ configuration/ to learn how to
configure backend storage for your registry.

https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/

Building Continuous Delivery Pipelines Chapter 16

[546]

Next, create PersistentVolumeClaim that decouples NFS PersistentVolume and
pod configuration. Let's create one PersistentVolumeClaim named pvc-1. Make
sure accessModes is ReadWriteMany and that STATUS became Bound after creation:

$ cat pvc-1.yml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-1
spec:
 storageClassName: ""
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi

$ kubectl create -f pvc-1.yml
persistentvolumeclaim "pvc-1" created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-1 Bound pvnfs01 100Gi RWX 5s

This is enough to set up your private registry. It has some prerequisites; alternatively,
using the public cloud is much simpler.

Using Amazon elastic container registry
Amazon elastic container registry (ECR) was introduced as a part of Amazon elastic
container service (ECS). This recipe won't touch on ECS itself; instead, just use ECR
as a private registry.

In order to use Amazon ECR, you have to have an AWS account and install AWS CLI
on your machine. It will be described in more detail in Chapter 17, Building
Kubernetes on AWS. You'll have to create an IAM user with ACCESS KEY ID and
SECRET ACCESS KEY, and
associated AmazonEC2ContainerRegistryFullAccess policies, which allow full
administrator access to Amazon ECR:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Building Continuous Delivery Pipelines Chapter 16

[547]

 "Action": [
 "ecr:*"
],
 "Resource": "*"
 }
]
}

Then configure the default settings in AWS CLI via the aws configure command:

$ aws configure
AWS Access Key ID [None]: <Your AWS ACCESS KEY ID>
AWS Secret Access Key [None]: <Your AWS SECRET ACCESS KEY>
Default region name [None]: us-east-1
Default output format [None]:

Then we can start to play with Amazon ECR.

Using Google cloud registry
Google container registry (https:/ /cloud. google. com/ container- registry/) is a
part of the GCP. Similar to AWS, having a GCP account is required, as well as Cloud
SDK (https://cloud. google. com/ sdk/), which is the command-line interface in
GCP.

On GCP, we'll just need to create a project and enable billing and the container
registry API for our project. Otherwise, any operation in gcloud will display an error:

$ gcloud container images list
ERROR: (gcloud.container.images.list) Bad status during token
exchange: 403

In order to enable billing and container registry API, visit the GCP web console
(https://console. cloud. google. com), navigate to the billing page and container
registry page, then just enable those. Once activation is done, you can use the gcloud
container command:

$ gcloud container images list
Listed 0 items.

Now we can start to use Google container registry.

https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

Building Continuous Delivery Pipelines Chapter 16

[548]

How to do it...
We have set up the preparation steps. Let's see how to configure your private registry
step by step.

Launching a private registry server using
Kubernetes
In order to launch a private registry, it is necessary to configure these files in order to
configure a private registry with appropriate security settings:

SSL certificate
HTTP secret
HTTP basic authentication file

Creating a self-signed SSL certificate
There is a pitfall—people tend to set up a plain HTTP (disable TLS) registry without
authentication in the beginning. Then it also needs to configure a Docker client
(Kubernetes node) to allow an insecure registry and so on. It is a bad practice that
requires many steps to set up an insecure environment.

The best practice is always using the official SSL certificate that is issued by the
certificate authority. However, a self-signed certificate is always handy, especially in
the testing phase. An official certificate can wait until we have FQDN defined.
Therefore, this recipe will show you how to use OpenSSL to create a self-signed SSL
certificate via the following steps:

Create a secrets directory:1.

$ mkdir secrets

Run the openssl command to specify the options to generate a certificate2.
(domain.crt) and a private key (domain.key) under the secrets directory.
Note that you may type . to skip to input location and email info:

$ openssl req -newkey rsa:4096 -nodes -sha256 -keyout
secrets/domain.key -x509 -days 365 -out secrets/domain.crt
Generating a 4096 bit RSA private key
...++
..
.++

Building Continuous Delivery Pipelines Chapter 16

[549]

writing new private key to 'secrets/domain.key'

You are about to be asked to enter information that will
be incorporated
into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:us
State or Province Name (full name) []:California
Locality Name (eg, city) []:Cupertino
Organization Name (eg, company) []:packtpub
Organizational Unit Name (eg, section) []:chapter5
Common Name (eg, fully qualified host name) []:.
Email Address []:.

Check whether both certificate and private keys are generated under3.
the secrets directory:

$ ls secrets/
domain.crt domain.key

Creating HTTP secret
Regarding HTTP secret, it will be randomly generated by the private registry instance
upon startup by default. However, it is a problem if you run multiple pods, because
each pod may have a different HTTP secret that occur an error when Docker client
push or pull the image. So we explicitly state that all pods will use the same HTTP
secret, via the following steps:

Use the openssl command to create a http.secret file under1.
the secrets directory:

//create 8 byte random HEX string by OpenSSL
$ openssl rand -hex -out secrets/http.secret 8

Check the secrets directory, which has three files now:2.

$ ls secrets/
domain.crt domain.key http.secret

Building Continuous Delivery Pipelines Chapter 16

[550]

Creating the HTTP basic authentication file
Finally, regarding the HTTP basic authentication file, if you set up a private registry,
authentication is needed when you interact with the Docker registry. You'll have to
do docker login to get a token when pushing and pulling images. In order to create
an HTTP basic authentication file, use the htpasswd command that is provided by
Apache2 as this is easiest. Let's create a HTTP basic authentication file via the
following steps:

Run Docker with Apache2 Docker image (httpd) to run the htpasswd1.
command with the bcrypt (-B) option and generate a basic authentication
file (registry_passwd) under the secrets directory:

//set user=user01, passwd=my-super-secure-password
$ docker run -i httpd /bin/bash -c 'echo my-super-secure-
password | /usr/local/apache2/bin/htpasswd -nBi user01' >
secrets/registry_passwd

Check the secrets directory so that now you have four files:2.

$ ls secrets/
domain.crt domain.key http.secret registry_passwd

Creating a Kubernetes secret to store security files
There are four files. We use Kubernetes Secret so that all pods can access it via an
environment variable or mount a volume and access as a file. For more details about
secrets, please refer to the Working with secrets section in Chapter 13, Walking through
Kubernetes Concepts. You can use the kubectl command to load these four files to
store to the Kubernetes secret via the following steps:

Run the kubectl create command with the --from-file parameter to1.
specify the secrets directory:

$ kubectl create secret generic registry-secrets --from-
file secrets/
secret "registry-secrets" created

Check the status via the kubectl describe command:2.

$ kubectl describe secret registry-secrets
Name: registry-secrets
Namespace: default
Labels: <none>
Annotations: <none>

Building Continuous Delivery Pipelines Chapter 16

[551]

Type: Opaque
Data
====
domain.key: 3243 bytes
http.secret: 17 bytes
registry_passwd: 69 bytes
domain.crt: 1899 bytes

Configuring a private registry to load a Kubernetes secret
On the other hand, the private registry itself supports reading the HTTP secret as an
environment variable in string format. It also can support specifying the file path for
the SSL certificate and HTTP basic authentication file as environment variables:

Environment variable name Description Sample value

REGISTRY_HTTP_SECRET HTTP secret string

valueFrom:
 secretKeyRef:
 name:
registry-secrets
 key:
http.secret

REGISTRY_HTTP_TLS_CERTIFICATE
File path for certificate
 (domain.crt) /mnt/domain.crt

REGISTRY_HTTP_TLS_KEY
File path for private key
(domain.key) /mnt/domain.key

REGISTRY_AUTH_HTPASSWD_REALM
The realm in which the
registry server
authenticates

basic-realm

REGISTRY_AUTH_HTPASSWD_PATH
File path for
htpasswd file
(registry_passwd)

/mnt/registry_passwd

REGISTRY_HTTP_HOST
Specify one of
Kubernetes node IP and
nodePort

10.138.0.3:30500

Ideally, you should have a load balancer and set up a Kubernetes
Service type as LoadBalancer. And then REGISTRY_HTTP_HOST
could be the load balancer IP and port number. For simplicity, we'll
just use NodePort in this recipe.

Building Continuous Delivery Pipelines Chapter 16

[552]

We'll conduct a deployment to a Kubernetes YAML file for creating a registry, and
include the preceding variables inside it, so the registry pods can use them. Now we
have PersistentVolumeClaim as pvc-1 that supplies the container image store,
and mounts SSL certificate files (domain.crt and domain.key) and an HTTP basic
authentication file (registry_passwd) via Secret registry-secrets. As well as
reading the HTTP Secret string as an environment variable by Secret registry-
secrets. The entire YAML configuration is as follows:

$ cat private_registry.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-private-registry
spec:
 replicas: 1
 selector:
 matchLabels:
 run: my-registry
 template:
 metadata:
 labels:
 run: my-registry
 spec:
 containers:
 - name: my-registry
 image: registry
 env:
 - name: REGISTRY_HTTP_HOST
 value: 10.138.0.3:30500
 - name: REGISTRY_HTTP_SECRET
 valueFrom:
 secretKeyRef:
 name: registry-secrets
 key: http.secret
 - name: REGISTRY_HTTP_TLS_CERTIFICATE
 value: /mnt/domain.crt
 - name: REGISTRY_HTTP_TLS_KEY
 value: /mnt/domain.key
 - name: REGISTRY_AUTH_HTPASSWD_REALM
 value: basic-realm
 - name: REGISTRY_AUTH_HTPASSWD_PATH
 value: /mnt/registry_passwd
 ports:
 - containerPort: 5000
 volumeMounts:
 - mountPath: /var/lib/registry
 name: registry-storage

Building Continuous Delivery Pipelines Chapter 16

[553]

 - mountPath: /mnt
 name: certs
 volumes:
 - name: registry-storage
 persistentVolumeClaim:
 claimName: "pvc-1"
 - name: certs
 secret:
 secretName: registry-secrets
 items:
 - key: domain.key
 path: domain.key
 - key: domain.crt
 path: domain.crt
 - key: registry_passwd
 path: registry_passwd

apiVersion: v1
kind: Service
metadata:
 name: private-registry-svc
spec:
 ports:
 - protocol: TCP
 port: 5000
 nodePort: 30500
 type: NodePort
 selector:
 run: my-registry

$ kubectl create -f private_registry.yaml
deployment.apps "my-private-registry" created
service "private-registry-svc" created

//can scale to multiple Pod (if you have RWX PV set)
$ kubectl scale deploy my-private-registry --replicas=3
deployment "my-private-registry" scaled

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-private-registry 3 3 3 3 2m

Building Continuous Delivery Pipelines Chapter 16

[554]

Now your own private registry is ready to use!

Create a repository on the AWS elastic container
registry
In order to push a container image to Amazon ECR, you need to create a repository
beforehand. Unlike Docker hub or private registry, Amazon ECR doesn't create a
repository automatically when it is the first time to push the image. Therefore, if you
want to push three container images, you have to create three repositories in advance:

It is simple to type the aws ecr create-repository command to specify the
repository name:

$ aws ecr create-repository --repository-name my-nginx
{
 "repository": {
 "registryId": "************",
 "repositoryName": "my-nginx",
 "repositoryArn": "arn:aws:ecr:us-
east-1:************:repository/my-nginx",
 "createdAt": 1516608220.0,
 "repositoryUri": "************.dkr.ecr.us-
east-1.amazonaws.com/my-nginx"
 }
}

That's it! You need to remember the repositoryUri (in the previous
case, ************.dkr.ecr.us-east-1.amazonaws.com/my-nginx) that will
be used as the private image URL.

The previous URL is masked as an ID as ************. It is tied
with your AWS account ID.

Building Continuous Delivery Pipelines Chapter 16

[555]

On the other hand, if you see something like the following error message, your IAM
user doesn't have the permission of the CreateRepository operation. In this case,
you need to attach an IAM policy
from AmazonEC2ContainerRegistryFullAccess:

$ aws ecr create-repository --repository-name chapter5
An error occurred (AccessDeniedException) when calling the
CreateRepository operation: User: arn:aws:iam::************:user/ecr-
user is not authorized to perform: ecr:CreateRepository on resource: *

Determining your repository URL on Google
container registry
In order to push a container image to Google container registry, there is an important
consideration regarding the repository URL. First of all, there are several Google
container registry region hosts available:

gcr.io (currently USA region)
us.gcr.io (USA region)
eu.gcr.io (Europe region)
asia.gcr.io (Asia region)

Note that these region hosts are network latency purpose, doesn't
mean to restrict to a particular region. They are still accessible
worldwide.

Second of all, while you tag the container image, you also need to specify your
project-id on which you've enabled billing and API. Therefore, the entire
repository URL could be:

<gcr region>/<project-id>/<image name>:tag

In my case, I used the region USA default, the project ID is kubernetes-cookbook,
and the image name is my-nginx; therefore, my repository URL is:

gcr.io/kubernetes-cookbook/my-nginx:latest

Other than that, Google container registry is ready to use now!

Building Continuous Delivery Pipelines Chapter 16

[556]

How it works...
When you start to use private registry with Kubernetes, you must configure a
credential properly. Amazon ECR and Google cloud registry need special
consideration. Let's configure a credential for private registry, Amazon ECR and
Google cloud registry.

Push and pull an image from your private registry
Now you can push your container image to your private registry. Because we have
set up an HTTP basic authentication, you need to do docker login first. Otherwise
you get a no basic auth credentials error:

//just tag nginx to your own private image
$ docker tag nginx 10.138.0.3:30500/my-nginx

//will be failed when push without login information. using complete
image name with private registry as prefix
$ docker push 10.138.0.3:30500/my-nginx
The push refers to a repository [10.138.0.3:30500/my-nginx]
a103d141fc98: Preparing
73e2bd445514: Preparing
2ec5c0a4cb57: Preparing
no basic auth credentials

Therefore, you need docker login to specify the username and password, which
you set onto the registry_passwd file:

//docker login
$ docker login 10.138.0.3:30500
Username: user01
Password:
Login Succeeded

//successfully to push
$ docker push 10.138.0.3:30500/my-nginx
The push refers to a repository [10.138.0.3:30500/my-nginx]
a103d141fc98: Pushed
73e2bd445514: Pushed
2ec5c0a4cb57: Pushed
latest: digest:
sha256:926b086e1234b6ae9a11589c4cece66b267890d24d1da388c96dd8795b2ffcf
b size: 948

Building Continuous Delivery Pipelines Chapter 16

[557]

On the other hand, as for pulling an image from a private registry, Kubernetes nodes
also needs to have a credential for your private registry. But using the docker login
command on every node is not realistic. Instead, Kubernetes supports storing this
credential as a Kubernetes secret and each node will use this credential while pulling
an image.

To do that, we need to create a docker-registry resource that needs to specify:

--docker-server: In this example, 10.138.0.3:30500
--docker-username: In this example, user01
--docker-password: In this example, my-super-secure-password
--docker-email: Your email address

//create secret named "my-private-credential"
$ kubectl create secret docker-registry my-private-credential \
> --docker-server=10.138.0.3:30500 \
> --docker-username=user01 \
> --docker-password=my-super-secure-password \
> --docker-email=hideto.saito@example.com
secret "my-private-credential" created

//successfully to created
$ kubectl get secret my-private-credential
NAME TYPE DATA AGE
my-private-credential kubernetes.io/dockerconfigjson 1 18s

 Finally, you can pull your private image from the private registry that is specifying
the my-private-credential secret. To do that, set spec.imagePullSecrets as
follows:

$ cat private-nginx.yaml
apiVersion: v1
kind: Pod
metadata:
 name: private-nginx
spec:
 containers:
 - name: private-nginx
 image: 10.138.0.3:30500/my-nginx
 imagePullSecrets:
 - name: my-private-credential

$ kubectl create -f private-nginx.yaml
pod "private-nginx" created

//successfully to launch your Pod using private image

Building Continuous Delivery Pipelines Chapter 16

[558]

$ kubectl get pods private-nginx
NAME READY STATUS RESTARTS AGE
private-nginx 1/1 Running 0 10s

Congratulations! Now you can feel free to push your private images to your private
registry run by Kubernetes. Also, pull an image from Kubernetes too. At any time,
you can scale out based on client traffic.

Push and pull an image from Amazon ECR
Amazon ECR has an authentication mechanism to provide access to your private
repositories. AWS CLI has a functionality to generate an access token using the aws
ecr get-login command:

$ aws ecr get-login --no-include-email

It outputs the docker login command with the ID and password:

docker login -u AWS -p eyJwYXlsb2FkIjoiNy(very long strings)...
https://************.dkr.ecr.us-east-1.amazonaws.com

Therefore, just copy and paste to your terminal to acquire a token from AWS. Then
try docker push to upload your Docker image to ECR:

$ docker tag nginx ************.dkr.ecr.us-east-1.amazonaws.com/my-
nginx

$ docker push ************.dkr.ecr.us-east-1.amazonaws.com/my-nginx
The push refers to repository [************.dkr.ecr.us-
east-1.amazonaws.com/my-nginx]
a103d141fc98: Pushed
73e2bd445514: Pushing 8.783MB/53.23MB
2ec5c0a4cb57: Pushing 4.333MB/55.26MB

On the other hand, pulling an image from ECR to Kubernetes follows exactly the
same steps as the private registry that uses a Kubernetes secret to store the token:

$ kubectl create secret docker-registry my-ecr-secret \
> --docker-server=https://************.dkr.ecr.us-east-1.amazonaws.com
\
> --docker-email=hideto.saito@example.com \
> --docker-username=AWS \
> --docker-password=eyJwYXlsb2FkIjoiS...
secret "my-ecr-secret" created

Building Continuous Delivery Pipelines Chapter 16

[559]

$ kubectl get secret my-ecr-secret
NAME TYPE DATA AGE
my-ecr-secret kubernetes.io/dockerconfigjson 1 10s

Now, spec.imagePullSecrets needs to specify my-ecr-secret. As well as the
image URL, it also specifies the ECR repository:

$ cat private-nginx-ecr.yaml
apiVersion: v1
kind: Pod
metadata:
 name: private-nginx-ecr
spec:
 containers:
 - name: private-nginx-ecr
 image: ************.dkr.ecr.us-east-1.amazonaws.com/my-nginx
 imagePullSecrets:
 - name: my-ecr-secret

$ kubectl create -f private-nginx-ecr.yaml
pod "private-nginx-ecr" created

$ kubectl get pods private-nginx-ecr
NAME READY STATUS RESTARTS AGE
private-nginx-ecr 1/1 Running 0 1m

Note that this token is short-lived: it's valid up to 12 hours. So, 12 hours later, you
need to run aws ecr get-login again to acquire a new token, then update the
secret my-ecr-secret. It is absolutely not ideal to do this.

The good news is that Kubernetes supports the updating of the ECR token
automatically via CloudProvider. However, it requires that your Kubernetes runs
on an AWS environment such as EC2. In addition, the EC2 instance has to have an
IAM role that is equivalent or higher than
the AmazonEC2ContainerRegistryReadOnly policy.

If you really want to use your Kubernetes cluster outside of AWS by pulling an image
from the ECR repository, there is a challenge in that you need to update the ECR
token every 12 hours. Maybe you can do this using a cron job or by adopting some
automation tools.

Building Continuous Delivery Pipelines Chapter 16

[560]

For more detail, please visit the AWS online document at https:/ /
docs. aws. amazon. com/ AmazonECR/ latest/ userguide/ Registries.
html.

Push and pull an image from Google cloud registry
According to GCP documentation (https:/ /cloud. google. com/ container-
registry/docs/ advanced- authentication), there are several way to push/pull to
a container registry.

Using gcloud to wrap the Docker command
The gcloud command has a wrapper function to run a docker command to push
and pull. For example, if you want to push the image gcr.io/kubernetes-
cookbook/my-nginx, use the gcloud command:

$ gcloud docker -- push gcr.io/kubernetes-cookbook/my-nginx

It is sufficient to push the image from your machine, however, it is not ideal if you
integrate with Kubernetes. This is because it is not easy to wrap the gcloud
command on the Kubernetes node.

Fortunately, there is a solution that creates a GCP service account and grants a
permission (role) to it.

Using the GCP service account to grant a long-lived credential
We need to integrate to pull an image from the Kubernetes node, which requires a
long-lived credential that can be stored to the Kubernetes secret. To do that, perform
the following steps:

Create a GCP service account (container-sa):1.

$ gcloud iam service-accounts create container-sa
Created service account [container-sa].

//full name is as below
$ gcloud iam service-accounts list | grep container
container-sa@kubernetes-cookbook.iam.gserviceaccount.com

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication
https://cloud.google.com/container-registry/docs/advanced-authentication

Building Continuous Delivery Pipelines Chapter 16

[561]

Assign container-sa (use full name) to the roles/storage.admin role:2.

$ gcloud projects add-iam-policy-binding kubernetes-
cookbook \
> --member serviceAccount:container-sa@kubernetes-
cookbook.iam.gserviceaccount.com \
> --role=roles/storage.admin

Generate a key file (container-sa.json) for container-sa:3.

$ gcloud iam service-accounts keys create container-
sa.json \
> --iam-account container-sa@kubernetes-
cookbook.iam.gserviceaccount.com

created key [f60a81235a1ed9fbce881639f621470cb087149c] of
type [json] as [container-sa.json] for [container-
sa@kubernetes-cookbook.iam.gserviceaccount.com]

Use docker login to check whether the key file is working or not:4.

//note that username must be _json_key
$ cat container-sa.json | docker login --username
_json_key --password-stdin gcr.io
Login Succeeded

Use docker pull to check whether you can pull from container registry or5.
not:

$ docker pull gcr.io/kubernetes-cookbook/my-nginx
Using default tag: latest
latest: Pulling from kubernetes-cookbook/my-nginx
e7bb522d92ff: Pulling fs layer
6edc05228666: Pulling fs layer
...

Looks all fine! Now you can use the Kubernetes secret the exact same way
with the private registry or AWS ECR.

Building Continuous Delivery Pipelines Chapter 16

[562]

Create a Kubernetes secret (my-gcr-secret) to specify _json_key and6.
container-sa.json:

$ kubectl create secret docker-registry my-gcr-secret \
> --docker-server=gcr.io \
> --docker-username=_json_key \
> --docker-password=`cat container-sa.json` \
> --docker-email=hideto.saito@example.com
secret "my-gcr-secret" created

Specify my-gcr-secret to imagePullSecrets to launch a pod:7.

$ cat private-nginx-gcr.yaml
apiVersion: v1
kind: Pod
metadata:
 name: private-nginx-gcr
spec:
 containers:
 - name: private-nginx-gcr
 image: gcr.io/kubernetes-cookbook/my-nginx
 imagePullSecrets:
 - name: my-gcr-secret

$ kubectl create -f private-nginx-gcr.yaml
pod "private-nginx-gcr" created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
private-nginx-gcr 1/1 Running 0 47s

Congratulations! Now you can use Google container registry for your private registry
that is fully managed by GCP. And Kubernetes can pull your private image from
there.

Building Continuous Delivery Pipelines Chapter 16

[563]

Integrating with Jenkins
In software engineering, continuous integration (CI)
(https://en.wikipedia.org/wiki/Continuous_integration) and continuous
delivery (CD) (https://en.wikipedia.org/wiki/Continuous_delivery),
abbreviated as CI/CD, have the ability to simplify the procedure of the traditional
development process with continuous developing, testing, and delivering
mechanisms in order to reduce the panic of serious conflict, namely, to deliver small
changes one at a time and to narrow down the problems immediately, if any.
Furthermore, through automatic tools, a product delivered by the CI/CD system can
achieve better efficiency and shorten time-to-market.

Jenkins is one of the well-known CI systems, which can be configured as a continuous
delivery system. Jenkins can pull your project codes from the source code control
system, run the tests, and then deploy based on your configuration. In this recipe, we
will show you how to integrate Jenkins to Kubernetes to achieve continuous delivery.

Getting ready
Before you start this recipe, prepare a Docker hub account (https://hub.docker.com)
or you may use your private registry that is described in the previous section. But the
important part is you must have a credential to pull and push to the registry. If you
use Docker hub, make sure docker login with your credentials works.

Next, make sure your Kubernetes is ready. But we will use RBAC authentication for
access from the Jenkins pod to the Kubernetes master API. If you use minikube, you
need to add the --extra-config=apiserver.Authorization.Mode=RBAC option
when starting a minikube:

//enable RBAC and allocate 8G memory
$ minikube start --memory=8192 --extra-
config=apiserver.Authorization.Mode=RBAC

Then, you can set up your own Jenkins server through Kubernetes as well; the details
are in this section.

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_delivery
https://hub.docker.com

Building Continuous Delivery Pipelines Chapter 16

[564]

Some minikube versions have a kube-dns issue that can't resolve
the external domain name, such as https:/ /github. com/
and https:/ /jenkins. io/ , that can't process this recipe. Replacing
the kube-dns add-on with the coredns add-on could resolve the
issue after launching minikube with the following command:

$ minikube addons disable kube-dns
$ minikube addons enable coredns

How to do it...
There are two important parts to go through in the Jenkins setup:

Jenkins needs to run a docker command to build your application to1.
compose your container image
Jenkins need to communicate with the Kubernetes master to control2.
deployment

To achieve step 1, there is a tricky part that needs something like a Docker-in-Docker
(dind). This is because Jenkins is run by Kubernetes as a pod (Docker container), and
Jenkins also needs to invoke a docker command to build your application. It can be
achieved by mounting /var/run/docker.sock from the Kubernetes node to the
Jenkins pod that can communicate with Jenkins, the Kubernetes node, and the Docker
daemon.

Docker-in-Docker and mounting /var/run/docker.sock have
been described at https:/ /blog. docker. com/ 2013/ 09/ docker- can-
now- run- within- docker/ and http:/ /jpetazzo. github. io/ 2015/
09/ 03/ do- not- use- docker- in- docker- for- ci/.

In order to achieve step 2, we will set up a Kubernetes service account and assign one
ClusterRole so that the Jenkins service account can have a necessary privilege.

Let's do it step by step.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

Building Continuous Delivery Pipelines Chapter 16

[565]

Setting up a custom Jenkins image
Run Jenkins by Kubernetes, we use an official image (https:/ / hub.docker. com/ u/
jenkins/) but customize it to install the following applications on it:

Docker CE
kubectl binary
Jenkins Docker plugin

To do that, prepare Dockerfile to maintain your own Jenkins image:

$ cat Dockerfile
FROM jenkins/jenkins:lts

EXPOSE 8080 50000

install Docker CE for Debian :
https://docs.docker.com/engine/installation/linux/docker-ce/debian/
USER root
RUN apt-get update
RUN apt-get install -y sudo apt-transport-https ca-certificates curl
gnupg2 software-properties-common
RUN curl -fsSL https://download.docker.com/linux/$(. /etc/os-release;
echo "$ID")/gpg | apt-key add -
RUN add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/$(. /etc/os-release; echo "$ID")
$(lsb_release -cs) stable"
RUN apt-get update && apt-get install -y docker-ce

install kubectl binary
RUN curl -LO
https://storage.googleapis.com/kubernetes-release/release/v1.9.2/bin/l
inux/amd64/kubectl
RUN chmod +x ./kubectl
RUN mv ./kubectl /usr/local/bin/kubectl

setup Jenkins plubins :
https://github.com/jenkinsci/docker#script-usage
RUN /usr/local/bin/install-plugins.sh docker

https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/
https://hub.docker.com/u/jenkins/

Building Continuous Delivery Pipelines Chapter 16

[566]

Use docker build to build your Jenkins image and then docker push command
to upload to your own registry in Docker hub, as shown:

//build your own Jenkins image
$ docker build -t <your-docker-hub-account>/my-jenkins .

//push to Docker Hub
$ docker push <your-docker-hub-account>/my-jenkins

Or, alternatively, you could upload that to your private registry or any other cloud-
provided registry.

Hurray! We have our build system image ready now.

Setting up Kubernetes service account and
ClusterRole
Imagine that after using Jenkins successfully to build your application container, you
then use kubectl to update deployment to roll out a new binary. To do that, invoke a
kubectl command from the inside of a Jenkins pod. In this scenario, we need a
credential to communicate to the Kubernetes master.

Fortunately, Kubernetes supports this kind of scenario, which uses a service account.
It is described in detail in Chapter 18, Advanced Cluster Administration. So, this recipe
will use the simplest way, which uses the default namespace and cluster-admin
ClusterRole.

To check whether RBAC is enabled and also if the cluster-admin ClusterRole
exists or not, type the kubectl get clusterrole command:

$ kubectl get clusterrole cluster-admin
NAME AGE
cluster-admin 42m

 Next, create a service account, jenkins-sa, which will be used by a Jenkins pod.
Prepare the following YAML configuration, and type the kubectl
create command to create it:

$ cat jenkins-serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 name: jenkins-sa
 namespace: default

Building Continuous Delivery Pipelines Chapter 16

[567]

$ kubectl create -f jenkins-serviceaccount.yaml
serviceaccount "jenkins-sa" created

Now we can associate the jenkins-sa service account with a cluster-admin
ClusterRole. Prepare a ClusterRoleBinding configuration and run the kubectl
create command:

$ cat jenkins-cluteradmin.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: jenkins-cluster-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: jenkins-sa
 namespace: default

$ kubectl create -f jenkins-cluster-admin.yaml
clusterrolebinding.rbac.authorization.k8s.io "jenkins-cluster-admin"
created

In the result, if a pod is launched with the service account jenkins-sa, this Pod has
the privilege to control a Kubernetes cluster because of the cluster-admin
ClusterRole.

It should create a custom ClusterRole that has minimal privilege
for Jenkins usage. But this recipe is to focus on the Jenkins setup
itself. If you want to create a custom ClusterRole, please go to
Chapter 18, Advanced Cluster Administration.

Building Continuous Delivery Pipelines Chapter 16

[568]

Launching the Jenkins server via Kubernetes
deployment
Based on the previous recipes, now you have:

A custom Jenkins container image
A service account

Finally, you can launch your custom Jenkins server on your Kubernetes cluster.
Remember that we need to run a docker command in the Docker environment,
which needs to mount /var/run/docker.sock from the local Kubernetes node.

In addition, we need to use a jenkins-sa service account to launch a Jenkins pod. It
needs to specify spec.template.spec.serviceAccountName: jenkins-sa in
the deployment configuration.

It is also recommended to have a PersistentVolume to preserve Jenkins home
(/var/jenkins_home), in case a pod is restarted. We just simply use the hostPath
/data/jenkins-data directory (assuming you use minikube). You may change to
another path or other types of PersistentVolume to fit with your environment.

Overall, the deployments YAML configuration for Jenkins is as follows:

$ cat jenkins.yaml
apiVersion: apps/v1
kind: Deployment
...
 spec:
 serviceAccountName: jenkins-sa
 containers:
 - name: my-jenkins
 image: hidetosaito/my-jenkins
 readinessProbe:
 initialDelaySeconds: 40
 tcpSocket:
 port: 8080
 volumeMounts:
 - mountPath: /var/run/docker.sock
 name: docker-sock
 - mountPath: /var/jenkins_home
 name: jenkins-data
 volumes:
 - name: docker-sock
 hostPath:
 path: /var/run/docker.sock

Building Continuous Delivery Pipelines Chapter 16

[569]

 - name: jenkins-data
 hostPath:
 path: /data/jenkins-data
...

$ kubectl create -f jenkins.yaml
deployment.apps "my-jenkins" created
service "my-jenkins-service" created

After a few minutes, Kubernetes pulls your custom Jenkins image and runs a Jenkins
pod which is capable of running a docker command and a kubectl command
without any configuration due to mounting the /var/run/docker.sock
and jenkins-sa service account:

//check Jenkins Pod status
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-jenkins-758b89849c-t2sm9 1/1 Running 0 17m

//access to Jenkins Pod
$ kubectl exec -it my-jenkins-758b89849c-t2sm9 -- /bin/bash

//within Jenkins Pod, you can run docker command
root@my-jenkins-758b89849c-t2sm9:/# docker pull nginx
Using default tag: latest
latest: Pulling from library/nginx
e7bb522d92ff: Pull complete
6edc05228666: Pull complete
cd866a17e81f: Pull complete
Digest:
sha256:926b086e1234b6ae9a11589c4cece66b267890d24d1da388c96dd8795b2ffcf
b
Status: Downloaded newer image for nginx:latest

//within Jenkins Pod, you can run kubectl command
root@my-jenkins-758b89849c-t2sm9:/# kubectl get nodes
NAME STATUS ROLES AGE
VERSION
gke-chapter5-default-pool-97f6cad9-19vm Ready <none> 1h
v1.8.6-gke.0
gke-chapter5-default-pool-97f6cad9-1qxc Ready <none> 1h
v1.8.6-gke.0
gke-chapter5-default-pool-97f6cad9-cglm Ready <none> 1h
v1.8.6-gke.0

Building Continuous Delivery Pipelines Chapter 16

[570]

//go back to your terminal
root@my-jenkins-758b89849c-t2sm9:/# exit
exit

You are all set! Now you can configure a Jenkins job to build your application, build a
container, and deploy to Kubernetes.

How it works...
Now we start to configure Jenkins to build your application. However, to access the
WebUI of your custom Jenkins, you need to access the Kubernetes service that binds
to your Jenkins pod. It is easier to use kubectl port-forward to access remotely to
configure Jenkins:

//check pod name
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-jenkins-cbdd6446d-ttxj5 1/1 Running 0 1m

//port forward from your machine :58080 to Jenkins :8080
$ kubectl port-forward my-jenkins-cbdd6446d-ttxj5 58080:8080
Forwarding from 127.0.0.1:58080 -> 8080

The initial configuration of Jenkins is done via the following steps:

Access the http://127.0.0.1:58080 Jenkins WebUI; it asks you to input1.
initialAdminPassword.
Use kubectl exec to acquire the initialAdminPassword. Then copy2.
and paste to the Jenkins WebUI to proceed with the initial configuration to
install the suggested plugin and create an admin user:

$ kubectl get pods
NAME READY STATUS RESTARTS
AGE
my-jenkins-cbdd6446d-ttxj5 1/1 Running 0
1m

//now you see initialAdminPassword
$ kubectl exec my-jenkins-cbdd6446d-ttxj5 -- /bin/bash -c
'cat /var/jenkins_home/secrets/initialAdminPassword'
47e236f0bf334f838c33f80aac206c22

Building Continuous Delivery Pipelines Chapter 16

[571]

You will see a Jenkins top page. Then click Manage Jenkins, then3.
Configure System:

Navigate to Jenkins configuration

Scroll to the bottom and find a Cloud section. Click Add a new cloud to4.
select Docker:

Adding a Docker setting

Building Continuous Delivery Pipelines Chapter 16

[572]

Put Name as your desired name (example: my-docker) and specify5.
the Docker Host URI and Docker domain socket as
unix:///var/run/docker.sock:

Configure Docker on Jenkins

Using Jenkins to build a Docker image
Let's configure a Jenkins job to build a sample microservice application, which was
introduced in the previous recipe (my-calc). Perform the following steps to configure
and build a Docker image:

On the left navigation, click New Item:1.

Navigating to create a new item

Building Continuous Delivery Pipelines Chapter 16

[573]

Put your in desired item name (example: my-calc), select Freestyle2.
project, then click OK:

Creating a new Jenkins Job

Building Continuous Delivery Pipelines Chapter 16

[574]

In the Source Code Management tab, select Git and set the Repository3.
URL as https:/ /github. com/kubernetes- cookbook/ my- calc. git, or you
may use your own repository which has a Dockerfile:

Source Code Management settings

On the Build Environment tab, click Add build step to add Build /4.
Publish Docker Image:

Build Environment settings

https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git
https://github.com/kubernetes-cookbook/my-calc.git

Building Continuous Delivery Pipelines Chapter 16

[575]

In the Build / Publish Docker Image panel:5.
Directory for Dockerfile as current (.)1.
Choose my-docker in the Cloud that we've set up2.
Put image as your Docker repository, but append3.
:${BUILD_NUMBER} (example: hidetosaito/my-
calc:${BUILD_NUMBER})
Enable Push image4.
Click Add to add your Docker hub ID credential5.
Then, click Save:6.

Docker build/publish settings

Finally, you can click Build Now to trigger a build; for testing purposes6.
you can click five times to see how it works:

Building Continuous Delivery Pipelines Chapter 16

[576]

Trigger a build

Note that you can see a Console that knows it performs a Docker build and7.
push:

Showing a build log

Building Continuous Delivery Pipelines Chapter 16

[577]

Access your Docker hub repository; it has been pushed five times (because8.
of clicking on build five times):

Docker hub repository

That's it! You can achieve continuous integration to build a Docker image so that
when you update a source in GitHub, you can continuously build and push the latest
image to your Docker hub repository by Jenkins.

Building Continuous Delivery Pipelines Chapter 16

[578]

Deploying the latest container image to Kubernetes
After each build, Jenkins keeps pushing your container image on your Docker hub
repository at the end of the CI process. Next, update the Jenkins job configuration to
use the latest image to deploy to Kubernetes, via the following steps:

The first time, we pre-deploy microservice application manually1.
via kubectl deploy --record. Note that you may change
spec.template.spec.containers.image: hidetosaito/my-calc to
your repository:

$ cat my-calc.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-calc-deploy
spec:
 replicas: 2
 selector:
 matchLabels:
 run: my-calc
 template:
 metadata:
 labels:
 run: my-calc
 spec:
 containers:
 - name: my-calc
 image: hidetosaito/my-calc

//use --record to trace the history
$ kubectl create -f my-calc-deploy.yaml --record
deployment.apps "my-calc-deploy" created

Building Continuous Delivery Pipelines Chapter 16

[579]

Open Jenkins Job configuration; on the Build tab, right after the Docker2.
build settings, click Add build step and choose Execute shell:

Adding a build step

Add this shell script and click Save:3.

#!/bin/sh

set +x

These 2 are defined in Deployment YAML
DEPLOYMENT_NAME=my-calc-deploy
CONTAINER_NAME=my-calc

change to your Docker Hub repository
REPOSITORY=hidetosaito/my-calc

echo "*********************"
echo "*** before deploy ***"
echo "*********************"
kubectl rollout history deployment $DEPLOYMENT_NAME
kubectl set image deployment $DEPLOYMENT_NAME
$CONTAINER_NAME=$REPOSITORY:$BUILD_NUMBER

echo "**"
echo "*** waiting to complete rolling update ***"
echo "**"
kubectl rollout status --watch=true deployment
$DEPLOYMENT_NAME

Building Continuous Delivery Pipelines Chapter 16

[580]

echo "********************"
echo "*** after deploy ***"
echo "********************"
kubectl rollout history deployment $DEPLOYMENT_NAME

Trigger a new build; you can see that after Docker push, it runs the4.
preceding script:

Kubernetes rollout result

Now you can extend continuous integration to continuous delivery! You may extend
to add a unit test or integration test and roll back mechanisms onto the above script to
make your CI/CD work stronger.

17
Building Kubernetes on AWS

The following recipes are covered in this chapter:

Playing with Amazon Web Services
Setting up Kubernetes by kops
Using AWS as Kubernetes Cloud Provider
Managing Kubernete cluster on AWS by kops

Introduction
Based on a recent survey of the Cloud Native Computing Foundation, CNCF,
Amazon Web Services (AWS) is a dominant solution for production-level
Kubernetes systems (https:/ / www. cncf. io/ blog/ 2017/ 12/06/ cloud- native-
technologies-scaling- production- applications/). In this chapter, you will learn
about the cloud services of AWS, and how these services work together to deliver a
robust Kubernetes system. We will also introduce how kops works, a tool for
Kubernetes operation, which helps us manage the Kubernetes cluster. Let's explore
the world of Kubernetes in AWS!

Playing with Amazon Web Services
Amazon Web Services (https://aws.amazon.com) is the most popular public cloud
service. It provides the online service for Virtual Server (EC2), Software Defined
Network (VPC), Object Store (S3), and so on. It is a suitable infrastructure to set up a
Kubernetes cluster. We will explore AWS to understand the fundamental function of
AWS.

https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://aws.amazon.com/

Building Kubernetes on AWS Chapter 17

[582]

Getting ready
First of all, you need to sign up to AWS. AWS gives a free tier that allows you to use
some amount of AWS resources, free for 12 months. Go to
https://aws.amazon.com/free/ to register your information and credit card. It may
take 24 hours to verify and activate your account.

Once your AWS account is activated, we need to create one Identity and Access
Management (IAM) user, which will control your AWS infrastructure via APIs. Then,
install the AWS CLI on to your computer.

Creating an IAM user
Perform the following steps to create an IAM user:

Go to AWS Web console https://console.aws.amazon.com.1.
Click on IAM (use the search box, which makes it easier to find):2.

Access to IAM console

Click on Users in the left navigation and then click on Add user:3.

https://aws.amazon.com/free/
https://console.aws.amazon.com

Building Kubernetes on AWS Chapter 17

[583]

Creating an IAM user

Type User name chap6, then choose Programmatic access:4.

Creating chap6 user

Building Kubernetes on AWS Chapter 17

[584]

Choose Attach existing policies directly, as shown in the following5.
screenshot, and then select the following policies:

AmazonEC2FullAccess
AmazonRoute53FullAcccess
AmazonS3FullAccess
AmazonVPCFullAccess
IAMFullAccess

Attaching the necessary Policy

Eventually, it generates Access key ID and Secret access key. Copy and6.
paste into your text editor or click on Download .csv to preserve to your
computer:

Building Kubernetes on AWS Chapter 17

[585]

Downloading Access key ID and Secret access key

Installing AWS CLI on macOS
Install awscli to macOS using HomeBrew (https:/ /brew. sh); this is the easiest way.
HomeBrew has already been introduced in Chapter 12, Building your own
Kubernetes Cluster, while installing minikube.

To install awscli by HomeBrew on your Mac, perform the following steps:

Type the following command to update the latest formula:1.

$ brew update

Specify awscli to install:2.

$ brew install awscli

https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh

Building Kubernetes on AWS Chapter 17

[586]

Verify the aws command using the --version option:3.

$ aws --version
aws-cli/1.15.0 Python/3.6.5 Darwin/17.5.0 botocore/1.10.0

Installing AWS CLI on Windows
Install awscli on Windows; there is a Windows installer package, which is the easiest
way to install awscli on to your Windows:

Go to AWS Command Line Interface page1.
(https://aws.amazon.com/cli/).
Download Windows installer 64 bit (https:/ /s3. amazonaws. com/ aws-cli/2.
AWSCLI64. msi) or 32 bit (https:/ /s3. amazonaws. com/ aws-cli/ AWSCLI32.
msi), based on your Windows OS.
Launch AWS CLI installer, and then choose the default option to proceed3.
with the installation:

Installing AWS CLI for Windows

https://aws.amazon.com/cli/
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi

Building Kubernetes on AWS Chapter 17

[587]

After complete installation, launch Command Prompt. Then, type the aws4.
command with the --version option to verify:

Showing aws command on Windows

How to do it...
First of all, you need to set your AWS Access Key ID and AWS Secret Access Key for
awscli. We've already acquired chap6 for the IAM user. We will use this user's Access
Key ID and Secret Access Key.

Launch terminal (Command Prompt for Windows), and then use the aws1.
command to set Access Key ID and Secret Access Key. Also, set the
default region as us-east-1:

$ aws configure
AWS Access Key ID [None]: <Your Access KeyID>
AWS Secret Access Key [None]: <Your Secret Access Key>
Default region name [None]: us-east-1
Default output format [None]:

Building Kubernetes on AWS Chapter 17

[588]

Check chap6 IAM user using the following command:2.

$ aws iam get-user
{
 "User": {
 "Path": "/",
 "UserName": "chap6",
 "UserId": "*********************",
 "Arn": "arn:aws:iam::***************:user/chap6",
 "CreateDate": "2018-04-14T04:22:21Z"
 }
}

That's it! Now you can start using AWS to launch your own network and instances.

How it works...
Let's explorer AWS to launch a typical infrastructure. Using awscli to build your own
VPC, Subnet, Gateway, and Security group. Then, launch the EC2 instance to
understand the basic usage of AWS.

Creating VPC and Subnets
Virtual Private Cloud (VPC) is a Software-Defined Network. You can configure a
virtual network on AWS. Subnets are inside of VPC that define network block
(Classless Inter Domain Routing (CIDR)) such as 192.168.1.0/24.

Let's create one VPC and two subnets using the following steps:

Create a new VPC that has 192.168.0.0/16 CIDR block (IP range:1.
192.168.0.0 – 192.168.255.255). Then, capture VpcId:

$ aws ec2 create-vpc --cidr-block 192.168.0.0/16
{
 "Vpc": {
 "CidrBlock": "192.168.0.0/16",
 "DhcpOptionsId": "dopt-3d901958",
 "State": "pending",
 "VpcId": "vpc-69cfbd12",
 "InstanceTenancy": "default",
 "Ipv6CidrBlockAssociationSet": [],
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "vpc-cidr-assoc-

Building Kubernetes on AWS Chapter 17

[589]

c35411ae",
 "CidrBlock": "192.168.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "IsDefault": false,
 "Tags": []
 }
}

Create the first subnet under the VPC (vpc-69cfbd12) that has2.
192.168.0.0/24 CIDR block (IP range: 192.168.0.0 – 192.168.0.255)
and specify the availability zone as us-east-1a. Then, capture SubnetId:

$ aws ec2 create-subnet --vpc-id vpc-69cfbd12 --cidr-block
192.168.0.0/24 --availability-zone us-east-1a
{
 "Subnet": {
 "AvailabilityZone": "us-east-1a",
 "AvailableIpAddressCount": 251,
 "CidrBlock": "192.168.0.0/24",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "State": "pending",
 "SubnetId": "subnet-6296863f",
 "VpcId": "vpc-69cfbd12",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": []
 }
}

Create the second subnet on us-east-1b, which has 192.168.1.0/243.
CIDR block (IP range: 192.168.1.0 – 192.168.1.255). Then, capture
SubnetId:

$ aws ec2 create-subnet --vpc-id vpc-69cfbd12 --cidr-block
192.168.1.0/24 --availability-zone us-east-1b
{
 "Subnet": {
 "AvailabilityZone": "us-east-1b",
 "AvailableIpAddressCount": 251,
 "CidrBlock": "192.168.1.0/24",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "State": "pending",

Building Kubernetes on AWS Chapter 17

[590]

 "SubnetId": "subnet-ce947da9",
 "VpcId": "vpc-69cfbd12",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": []
 }
}

Check the subnet list under VPC (vpc-69cfbd12) using the following4.
command:

$ aws ec2 describe-subnets --filters "Name=vpc-
id,Values=vpc-69cfbd12" --query
"Subnets[*].{Vpc:VpcId,CIDR:CidrBlock,AZ:AvailabilityZone,
Id:SubnetId}" --output=table
--

| DescribeSubnets
|
+------------+------------------+-------------------+-----
----------+
| AZ | CIDR | Id |
Vpc |
+------------+------------------+-------------------+-----
----------+
| us-east-1a| 192.168.0.0/24 | subnet-6296863f |
vpc-69cfbd12 |
| us-east-1b| 192.168.1.0/24 | subnet-ce947da9 |
vpc-69cfbd12 |
+------------+------------------+-------------------+-----
----------+

This looks good!

Internet gateway
To access your VPC network, you need to have a gateway that accesses it from the
internet. Internet Gateway (IGW) is the one that connects the internet to your VPC.

Then, in the subnets under VPC, you can set the default route to go to IGW or not. If
it routes to IGW, the subnet is classified as the public subnet. Then, you can assign the
global IP address on the public subnet.

Building Kubernetes on AWS Chapter 17

[591]

Let's configure the first subnet (192.168.0.0/24) as the public subnet that routes to
IGW using the following steps:

Create IGW and capture InternetGatewayId:1.

$ aws ec2 create-internet-gateway
{
 "InternetGateway": {
 "Attachments": [],
 "InternetGatewayId": "igw-e50b849d",
 "Tags": []
 }
}

Attach IGW (igw-e50b849d) to your VPC (vpc-69cfbd12):2.

$ aws ec2 attach-internet-gateway --vpc-id vpc-69cfbd12 --
internet-gateway-id igw-e50b849d

Create a routing table on VPC (vpc-69cfbd12) and then3.
capture RouteTableId:

$ aws ec2 create-route-table --vpc-id vpc-69cfbd12
{
 "RouteTable": {
 "Associations": [],
 "PropagatingVgws": [],
 "RouteTableId": "rtb-a9e791d5",
 "Routes": [
 {
 "DestinationCidrBlock": "192.168.0.0/16",
 "GatewayId": "local",
 "Origin": "CreateRouteTable",
 "State": "active"
 }
],
 "Tags": [],
 "VpcId": "vpc-69cfbd12"
 }
}

Building Kubernetes on AWS Chapter 17

[592]

Set the default route (0.0.0.0/0) for route table (rtb-a9e791d5) as IGW4.
(igw-e50b849d):

$ aws ec2 create-route --route-table-id rtb-a9e791d5 --
gateway-id igw-e50b849d --destination-cidr-block 0.0.0.0/0

Associate route table (rtb-a9e791d5) to public subnet5.
(subnet-6296863f):

$ aws ec2 associate-route-table --route-table-id rtb-
a9e791d5 --subnet-id subnet-6296863f

Enable autoassign public IP on the public subnet (subnet-6296863f):6.

$ aws ec2 modify-subnet-attribute --subnet-id
subnet-6296863f --map-public-ip-on-launch

NAT-GW
What happens if the subnet default route is not pointing to IGW? The subnet is
classified as a private subnet with no connectivity to the internet. However, some of
situation, your VM in private subnet needs to access to the Internet. For example,
download some security patch.

In this case, you can setup NAT-GW. It allows you access to the internet from the
private subnet. However, it allows outgoing traffic only, so you cannot assign public
IP address for a private subnet. Therefore, it is suitable for backend instances, such as
the database.

Let's create NAT-GW and configure a second subnet (192.168.1.0/24) as a private
subnet that routes to NAT-GW using the following steps:

NAT-GW needs a Global IP address, so create Elastic IP (EIP):1.

$ aws ec2 allocate-address
{
 "PublicIp": "18.232.18.38",
 "AllocationId": "eipalloc-bad28bb3",
 "Domain": "vpc"
}

Create NAT-GW on the public subnet (subnet-6296863f) and assign EIP2.
(eipalloc-bad28bb3). Then, capture NatGatewayId.

Building Kubernetes on AWS Chapter 17

[593]

Since NAT-GW needs to access the internet, it must be located on
the public subnet instead of the private subnet.

Input the following command:

$ aws ec2 create-nat-gateway --subnet-id subnet-6296863f -
-allocation-id eipalloc-bad28bb3
{
 "NatGateway": {
 "CreateTime": "2018-04-14T18:49:36.000Z",
 "NatGatewayAddresses": [
 {
 "AllocationId": "eipalloc-bad28bb3"
 }
],
 "NatGatewayId": "nat-0b12be42c575bba43",
 "State": "pending",
 "SubnetId": "subnet-6296863f",
 "VpcId": "vpc-69cfbd12"
 }
}

Create the route table and capture RouteTableId:3.

$ aws ec2 create-route-table --vpc-id vpc-69cfbd12
{
 "RouteTable": {
 "Associations": [],
 "PropagatingVgws": [],
 "RouteTableId": "rtb-70f1870c",
 "Routes": [
 {
 "DestinationCidrBlock": "192.168.0.0/16",
 "GatewayId": "local",
 "Origin": "CreateRouteTable",
 "State": "active"
 }
],
 "Tags": [],
 "VpcId": "vpc-69cfbd12"
 }
}

Building Kubernetes on AWS Chapter 17

[594]

Set the default route (0.0.0.0/0) of the route table (rtb-70f1870c) to4.
NAT-GW (nat-0b12be42c575bba43):

$ aws ec2 create-route --route-table-id rtb-70f1870c --
nat-gateway-id nat-0b12be42c575bba43 --destination-cidr-
block 0.0.0.0/0

Associate route table (rtb-70f1870c) to private subnet (subnet-5.
ce947da9):

$ aws ec2 associate-route-table --route-table-id
rtb-70f1870c --subnet-id subnet-ce947da9

Security group
Before launching your Virtual Server (EC2), you need to create a Security Group that
has an appropriate security rule. Now, we have two subnets, public and private. Let's
set public subnet such that it allows ssh (22/tcp) and http (80/tcp) from the
internet. Then, set the private subnet such that it allows ssh from the public subnet:

Create one security group for the public subnet on VPC (vpc-69cfbd12):1.

$ aws ec2 create-security-group --vpc-id vpc-69cfbd12 --
group-name public --description "public facing host"
{
 "GroupId": "sg-dd8a3f94"
}

Add the ssh allow rule to the public security group (sg-dd8a3f94):2.

$ aws ec2 authorize-security-group-ingress --group-id sg-
dd8a3f94 --protocol tcp --port 22 --cidr 0.0.0.0/0

Add the http allow rule to the public security group (sg-dd8a3f94):3.

$ aws ec2 authorize-security-group-ingress --group-id sg-
dd8a3f94 --protocol tcp --port 80 --cidr 0.0.0.0/0

Create a second security group for the private subnet on VPC4.
(vpc-69cfbd12):

$ aws ec2 create-security-group --vpc-id vpc-69cfbd12 --
group-name private --description "private subnet host"
{
 "GroupId": "sg-a18c39e8"
}

Building Kubernetes on AWS Chapter 17

[595]

Add an ssh allow rule to the private security group (sg-a18c39e8):5.

$ aws ec2 authorize-security-group-ingress --group-id sg-
a18c39e8 --protocol tcp --port 22 --source-group sg-
dd8a3f94

Check the Security Group list using the following command:6.

$ aws ec2 describe-security-groups --filters "Name=vpc-id,
Values=vpc-69cfbd12" --query
"SecurityGroups[*].{id:GroupId,name:GroupName}" --output
table

| DescribeSecurityGroups |
+--------------+-----------+
| id | name |
+--------------+-----------+
sg-2ed56067	default
sg-a18c39e8	private
sg-dd8a3f94	public
+--------------+-----------+

EC2
Now you need to upload your ssh public key and then launch the EC2 instance on
both the public subnet and the private subnet:

Upload your ssh public key (assume you have a public key that is located1.
at ~/.ssh/id_rsa.pub):

$ aws ec2 import-key-pair --key-name=chap6-key --public-
key-material "`cat ~/.ssh/id_rsa.pub`"

Launch the first EC2 instance with the following parameters:2.
Use Amazon Linux image: ami-1853ac65 (Amazon Linux)
T2.nano instance type: t2.nano
Ssh key: chap6-key
Public Subnet: subnet-6296863f
Public Security Group: sg-dd8a3f94

$ aws ec2 run-instances --image-id ami-1853ac65 --
instance-type t2.nano --key-name chap6-key --security-
group-ids sg-dd8a3f94 --subnet-id subnet-6296863f

Building Kubernetes on AWS Chapter 17

[596]

Launch the second EC2 instance with the following parameters:3.
Use Amazon Linux image: ami-1853ac65
T2.nano instance type: t2.nano
Ssh key: chap6-key
Private subnet: subnet-ce947da9
Private Secuity Group: sg-a18c39e8

$ aws ec2 run-instances --image-id ami-1853ac65 --
instance-type t2.nano --key-name chap6-key --security-
group-ids sg-a18c39e8 --subnet-id subnet-ce947da9

Check the status of the EC2 instances:4.

$ aws ec2 describe-instances --filters "Name=vpc-
id,Values=vpc-69cfbd12" --query
"Reservations[*].Instances[*].{id:InstanceId,PublicIP:Publ
icIpAddress,PrivateIP:PrivateIpAddress,Subnet:SubnetId}" -
-output=table
--

| DescribeInstances
|
+---------------+-----------------+------------------+----
--------------------+
| PrivateIP | PublicIP | Subnet |
id |
+---------------+-----------------+------------------+----
--------------------+
| 192.168.0.206| 34.228.228.140| subnet-6296863f|
i-03a0e49d26a2dafa4 |
| 192.168.1.218| None | subnet-ce947da9|
i-063080766d2f2f520 |
+---------------+-----------------+------------------+----
--------------------+

SSH (use the -A option to forward your authentication info) to the public5.
EC2 host from your computer:

$ ssh -A ec2-user@34.228.228.140
The authenticity of host '34.228.228.140 (34.228.228.140)'
can't be established.
ECDSA key fingerprint is
SHA256:lE7hoBhHntVDvRItnasqyHRynajn2iuHJ7U3nsWySRU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '34.228.228.140' (ECDSA) to the
list of known hosts.

Building Kubernetes on AWS Chapter 17

[597]

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|
https://aws.amazon.com/amazon-linux-ami/2017.09-release-no
tes/
8 package(s) needed for security, out of 13 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-192-168-0-206 ~]$

Install and launch nginx to the public EC2 host:6.

[ec2-user@ip-192-168-0-206 ~]$ sudo yum -y install nginx
[ec2-user@ip-192-168-0-206 ~]$ sudo service nginx start
Starting nginx:
[OK]

Make sure you can access the nginx server from your machine (see the7.
following screenshot):

Accessing nginx web server on public host

SSH from the public host to the private host (you must use a private IP8.
address):

$ ssh 192.168.1.218

Make sure the private host can perform yum update via NAT-GW:9.

[ec2-user@ip-192-168-1-218 ~]$ sudo yum -y update

Building Kubernetes on AWS Chapter 17

[598]

Congratulations! You can set up your own infrastructure on AWS, as shown in the
following diagram, which has the following:

One VPC with CIDR 192.168.0.0/16
IGW
NAT-GW
Two Subnets

public subnet: 192.168.0.0/24 route to IGW
private subnet: 192.168.1.0/24 route to NAT-GW

Two EC2 instances (public and private)
Two Security Groups (allow public http/ssh and private ssh)

Now, take a look at the diagram:

AWS components diagram

In this section, you have learned how to use AWS from scratch. We have covered its
basic uses, but it is important to know while setup Kubernetes on AWS. Next, we will
explore how to set up Kubernetes on AWS.

Building Kubernetes on AWS Chapter 17

[599]

Setting up Kubernetes with kops
What is kops? It is the abbreviated term of Kubernetes Operation (https:/ /github.
com/kubernetes/ kops). Similar to kubeadm, minikube, and kubespray, kops reduces
the heavy duty of building up a Kubernetes cluster by ourselves. It helps in creation,
and provides an interface to users for managing the clusters. Furthermore, kops
achieves a more automatic installing procedure and delivers a production-level
system. It targets to support dominate cloud platforms, such as AWS, GCE, and
VMware vSphere. In this recipe, we will talk about how to run a Kubernetes cluster
with kops.

Getting ready
Before our major tutorial, we will need to install kops on to your local host. It is a
straightforward step for downloading the binary file and moving it to the system
directory of the execution file:

// download the latest stable kops binary
$ curl -LO https://github.com/kubernetes/kops/releases/download/$(curl
-s https://api.github.com/repos/kubernetes/kops/releases/latest | grep
tag_name | cut -d '"' -f 4)/kops-linux-amd64
$ chmod +x kops-linux-amd64
$ sudo mv kops-linux-amd64 /usr/local/bin/kops
// verify the command is workable
$ kops version
Version 1.9.0 (git-cccd71e67)

Next, we have to prepare some AWS configuration on your host and required
services for cluster. Refer to the following items and make sure that they are ready:

IAM user: Since kops would create and build several AWS service
components together for you, you must have an IAM user with kops
required permissions. We've created an IAM user named chap6 in the
previous section that has the following policies with the necessary
permissions for kops:

AmazonEC2FullAccess
AmazonRoute53FullAccess
AmazonS3FullAccess
IAMFullAccess
AmazonVPCFullAccess

https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops

Building Kubernetes on AWS Chapter 17

[600]

Then, exposing the AWS access key ID and secret key as environment
variables can make this role applied on host while firing kops commands:

$ export AWS_ACCESS_KEY_ID=${string of 20 capital
character combination}
$ export AWS_SECRET_ACCESS_KEY=${string of 40 character
and number combination}

Prepare an S3 bucket for storing cluster configuration: In our
demonstration later, the S3 bucket name will be kubernetes-cookbook.
Prepare a Route53 DNS domain for accessing points of cluster: In our
demonstration later, the domain name we use will be k8s-cookbook.net.

How to do it...
We can easily run up a Kubernetes cluster using a single command with parameters
containing complete configurations. These parameters are described in the following
table:

Parameter Description Value in example

--name

This is the name of the
cluster. It will also be the
domain name of the
cluster's entry point. So you
can utilize your Route53
DNS domain with a
customized name, for
example, {your cluster
name}.{your Route53

domain name}.

my-cluster.k8s-cookbook.net

--state

This indicates the S3 bucket
that stores the status of the
cluster in the format
s3://{bucket name}.

s3://kubernetes-cookbook

--zones
This is the availability zone
where you need to build
your cluster.

us-east-1a

--cloud This is the cloud provider. aws

Building Kubernetes on AWS Chapter 17

[601]

--network-cidr
Here, kops helps to create
independent CIDR range for
the new VPC.

10.0.0.0/16

--master-size
This is the instance size of
Kubernetes master.

t2.large

--node-size
This is the instance size of
Kubernetes nodes.

t2.medium

--node-count
This is the number of nodes
in the cluster.

2

--network
This is the overlay network
used in this cluster.

calico

--topology
This helps you decide
whether the cluster is public
facing.

private

--ssh-public-key

This helps you assign an
SSH public key for bastion
server, then we may log in
through the private key.

~/.ssh/id_rsa.pub

--bastion
This gives you an indication
to create the bastion server. N/A

--yes
This gives you the
confirmation for executing
immediately.

N/A

Now we are ready to compose the configurations into a command and fire it:

$ kops create cluster --name my-cluster.k8s-cookbook.net --
state=s3://kubernetes-cookbook --zones us-east-1a --cloud aws --
network-cidr 10.0.0.0/16 --master-size t2.large --node-size t2.medium
--node-count 2 --networking calico --topology private --ssh-public-key
~/.ssh/id_rsa.pub --bastion --yes
...
I0408 15:19:21.794035 13144 executor.go:91] Tasks: 105 done / 105
total; 0 can run
I0408 15:19:21.794111 13144 dns.go:153] Pre-creating DNS records
I0408 15:19:22.420077 13144 update_cluster.go:248] Exporting kubecfg
for cluster
kops has set your kubectl context to my-cluster.k8s-cookbook.net
Cluster is starting. It should be ready in a few minutes.
...

Building Kubernetes on AWS Chapter 17

[602]

After a few minutes, the command takes out the preceding logs showing what AWS
services have been created and served for you kops-built Kubernetes cluster. You can
even check your AWS console to verify their relationships, which will look similar to
the following diagram:

The components of Kubernetes cluster in AWS created by kops

How it works...
From localhost, users can interact with the cluster on AWS using the kops command:

//check the cluster
$ kops get cluster --state s3://kubernetes-cookbook
NAME CLOUD ZONES
my-cluster.k8s-cookbook.net aws us-east-1a

Building Kubernetes on AWS Chapter 17

[603]

Working with kops-built AWS cluster
Furthermore, as you can see in the previous section, the last few logs of kops cluster
creation shows that the environment of the client is also ready. It means that kops
helps to bind the API server to our host securely as well. We may use the kubectl
command like we were in Kubernetes master. What we need to do is install kubectl
manually. It would be as simple as installing kops; just download the binary file:

// install kubectl on local
$ curl -LO
https://storage.googleapis.com/kubernetes-release/release/$(curl -s
https://storage.googleapis.com/kubernetes-release/release/stable.txt)/
bin/linux/amd64/kubectl
$ chmod +x kubectl
$ sudo mv kubectl /usr/local/bin/
// check the nodes in cluster on AWS
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-39-216.ec2.internal Ready master 2m v1.8.7
ip-10-0-40-26.ec2.internal Ready node 31s v1.8.7
ip-10-0-50-147.ec2.internal Ready node 33s v1.8.7

However, you can still access the nodes in the cluster. Since the cluster is set down in
a private network, we will require to login to the bastion server first, and jump to the
nodes for the next:

//add private key to ssh authentication agent
$ ssh-add ~/.ssh/id_rsa

//use your private key with flag “-i”
//we avoid it since the private key is in default location,
~/.ssh/id_rsa
//also use -A option to forward an authentication agent
$ ssh -A admin@bastion.my-cluster.k8s-cookbook.net

The programs included with the Debian GNU/Linux system are free
software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Apr 8 19:37:31 2018 from 10.0.2.167
// access the master node with its private IP
admin@ip-10-0-0-70:~$ ssh 10.0.39.216

The programs included with the Debian GNU/Linux system are free

Building Kubernetes on AWS Chapter 17

[604]

software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Apr 8 19:36:22 2018 from 10.0.0.70
admin@ip-10-0-39-216:~$

Deleting kops-built AWS cluster
We can simply remove our cluster using the kops command as follows:

$ kops delete cluster --name my-cluster.k8s-cookbook.net --state
s3://kubernetes-cookbook --yes
Deleted cluster: "my-cluster.k8s-cookbook.net"

It will clean the AWS services for you. But some other services created by yourself: S3
bucket, IAM role with powerful authorization, and Route53 domain name; kops will
not remove them on user's behavior. Remember to delete the no used AWS services
on your side.

See also
Playing with Amazon Web Services
Using AWS as Kubernetes Cloud Provider
Managing Kubernetes cluster on AWS by kops
Setting up the Kubernetes cluster on Linux by kubeadm in Chapter 12, Building
your own Kubernetes Cluster
Setting up Kubernetes cluster on Linux by kubespray in Chapter 12, Building
your own Kubernetes Cluster

Building Kubernetes on AWS Chapter 17

[605]

Using AWS as Kubernetes Cloud
Provider
From Kubernetes 1.6, Cloud Controller Manager (CCM) was introduced, which
defines a set of interfaces so that different cloud providers could evolve their own
implementations out of the Kubernetes release cycle. Talking to the cloud providers,
you can't ignore the biggest player: Amazon Web Service. According to the Cloud
Native Computing Foundation, in 2017, 63% of Kubernetes workloads run on AWS.
AWS CloudProvider supports Service as Elastic Load Balancer (ELB) and Amazon
Elastic Block Store (EBS) as StorageClass.

At the time this book was written, Amazon Elastic Container Service for Kubernetes
(Amazon EKS) was under preview, which is a hosted Kubernetes service in AWS.
Ideally, it'll have better integration with Kubernetes, such as Application Load
Balancer (ALB) for Ingress, authorization, and networking. Currently in AWS, the
limitation of routes per route tables in VPC is 50; it could be up to 100 as requested.
However, network performance may be impacted if the routes exceed 50 according to
the official documentation of AWS. While kops uses kubenet networking by default,
which allocates a/24 CIDR to each node and configures the routes in route table in
AWS VPC. This might lead to the performance hit if the cluster has more than 50
nodes. Using a CNI network could address this problem.

Getting ready
For following along with the examples in this recipe, you'll need to create a
Kubernetes cluster in AWS. The following example is using kops to provision a
Kubernetes cluster named k8s-cookbook.net in AWS; as the preceding recipes
show, set $KOPS_STATE_STORE as a s3 bucket to store your kops configuration and
metadata:

kops create cluster --master-count 1 --node-count 2 --zones us-
east-1a,us-east-1b,us-east-1c --node-size t2.micro --master-size
t2.small --topology private --networking calico --authorization=rbac -
-cloud-labels "Environment=dev" --state $KOPS_STATE_STORE --name k8s-
cookbook.net
I0408 16:10:12.212571 34744 create_cluster.go:1318] Using SSH public
key: /Users/k8s/.ssh/id_rsa.pub I0408 16:10:13.959274 34744
create_cluster.go:472] Inferred --cloud=aws from zone "us-east-1a"
I0408 16:10:14.418739 34744 subnets.go:184] Assigned CIDR
172.20.32.0/19 to subnet us-east-1a
I0408 16:10:14.418769 34744 subnets.go:184] Assigned CIDR

Building Kubernetes on AWS Chapter 17

[606]

172.20.64.0/19 to subnet us-east-1b I0408 16:10:14.418777 34744
subnets.go:184] Assigned CIDR 172.20.96.0/19 to subnet us-east-1c
I0408 16:10:14.418785 34744 subnets.go:198] Assigned CIDR
172.20.0.0/22 to subnet utility-us-east-1a I0408 16:10:14.418793 34744
subnets.go:198] Assigned CIDR 172.20.4.0/22 to subnet utility-us-
east-1b
I0408 16:10:14.418801 34744 subnets.go:198] Assigned CIDR
172.20.8.0/22 to subnet utility-us-east-1c ...
Finally configure your cluster with: kops update cluster k8s-
cookbook.net --yes

Once we run the recommended kops update cluster <cluster_name> --
yes command, after a few minutes, the cluster is up and running. We can use the
kops validate cluster to check whether the cluster components are all up:

kops validate cluster
Using cluster from kubectl context: k8s-cookbook.net
Validating cluster k8s-cookbook.net
INSTANCE GROUPS
NAME ROLE MACHINETYPE MIN MAX SUBNETS
master-us-east-1a Master t2.small 1 1 us-east-1a
nodes Node t2.micro 2 2 us-
east-1a,us-east-1b,us-east-1c
NODE STATUS
NAME ROLE READY
ip-172-20-44-140.ec2.internal node True
ip-172-20-62-204.ec2.internal master True
ip-172-20-87-38.ec2.internal node True
Your cluster k8s-cookbook.net is ready

We're good to go!

How to do it...
When running Kubernetes in AWS, there are two possible integrations we could use:
ELB as Service with LoadBalancer Type and Amazon Elastic Block Store as
StorageClass.

Building Kubernetes on AWS Chapter 17

[607]

Elastic load balancer as LoadBalancer service
Let's create a LoadBalancer Service with Pods underneath, which is what we
learned in Chapter 14, Playing with Containers:

cat aws-service.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - image: nginx
 name: nginx
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 ports:
 - port: 80
 targetPort: 80
 type: LoadBalancer
 selector:
 run: nginx

In the preceding template, we declared one nginx Pod and associated it with the
LoadBalancer service. The service will direct the packet to container port 80:

kubectl create -f aws-service.yaml
deployment.apps "nginx" created
service "nginx" created

Building Kubernetes on AWS Chapter 17

[608]

Let's describe our nginx Service:

kubectl describe svc nginx
Name: nginx
Namespace: default
Labels: <none>
Annotations: <none>
Selector: run=nginx
Type: LoadBalancer
IP: 100.68.35.30
LoadBalancer Ingress:
a9da4ef1d402211e8b1240ef0c7f25d3-1251329976.us-
east-1.elb.amazonaws.com
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 31384/TCP
Endpoints:
100.124.40.196:80,100.99.102.130:80,100.99.102.131:80
Session Affinity: None
External Traffic Policy: Cluster
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal EnsuringLoadBalancer 2m service-controller Ensuring
load balancer
 Normal EnsuredLoadBalancer 2m service-controller Ensured load
balancer

After the service is created, we will find out that the AWS CloudProvider will
provision a classic load balancer with the endpoint
adb576a05401911e8b1240ef0c7f25d3-1637943008.us-

east-1.elb.amazonaws.com. We can check its detailed settings via the aws
command-line interface (https:/ /aws. amazon. com/ cli/).

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

Building Kubernetes on AWS Chapter 17

[609]

To install aws CLI, you can use pip to install in Mac or Linux (pip
install awscli); for Windows users, you'll have to download the
installer from the official website.

The combination of AWS CLI commands is aws [options] <command>
<subcommand> [<subcommand> ...] [parameters]. For listing load balancers,
we'll use aws elb describe-load-balancers as the major command. Using the -
-load-balancer-names parameter will filter load balancers by name, and for the
--output parameter, you can choose text, JSON, or table:

aws elb describe-load-balancers --load-balancer-names
a9da4ef1d402211e8b1240ef0c7f25d3 --output text
LOADBALANCERDESCRIPTIONS
a9da4ef1d402211e8b1240ef0c7f25d3-1251329976.us-
east-1.elb.amazonaws.com Z35SXDOTRQ7X7K 2018-04-14T20:30:45.990Z
a9da4ef1d402211e8b1240ef0c7f25d3-1251329976.us-
east-1.elb.amazonaws.com a9da4ef1d402211e8b1240ef0c7f25d3 internet-
facing vpc-07374a7c
AVAILABILITYZONES us-east-1a
AVAILABILITYZONES us-east-1b
AVAILABILITYZONES us-east-1c
HEALTHCHECK 2 10 TCP:31384 5 6
INSTANCES i-03cafedc27dca591b
INSTANCES i-060f9d17d9b473074
LISTENER 31384 TCP 80 TCP
SECURITYGROUPS sg-3b4efb72
SOURCESECURITYGROUP k8s-elb-a9da4ef1d402211e8b1240ef0c7f25d3
516726565417
SUBNETS subnet-088f9d27
SUBNETS subnet-e7ec0580
SUBNETS subnet-f38191ae

Building Kubernetes on AWS Chapter 17

[610]

If we access this ELB endpoint port 80, we'll see the nginx welcome page:

Access ELB endpoint to access LoadBalancer Service

Behind the scene, AWS CloudProvider creates a AWS elastic load balancer and
configures its ingress rules and listeners by the Service we just defined. The following
is a diagram of how the traffic gets into the Pods:

The illustration of Kubernetes resources and AWS resources for Service with LoadBalancer type

Building Kubernetes on AWS Chapter 17

[611]

The external load balancer receives the requests and forwards them to EC2 instances
using a round-robin algorithm. For Kubernetes, the traffic gets into the Service via
NodePort and starts a Service-to-Pod communication.

Elastic Block Store as StorageClass
We've learned about Volumes in Chapter 13, Walking through Kubernetes Concepts. We
know PersistentVolumeClaims is used to abstract storage resources from users. It
can dynamically provision the PersistentVolume via StorageClass. The default
provisioner in StorageClass in AWS CloudProvider is Elastic Block Storage
Service (aws-ebs). Whenever you request a PVC, aws-ebs provisioner will create a
volume in AWS EBS.

Let's check the storage class in our cluster:

// list all storageclass
kubectl get storageclass
NAME PROVISIONER AGE
default kubernetes.io/aws-ebs 2h
gp2 (default) kubernetes.io/aws-ebs 2h
In this recipe, we'll reuse the PVC example we mentioned in Chapter
2-6:
cat chapter2/2-6_volumes/2-6-7_pvc.yaml
apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "pvclaim01"
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
// create pvc
kubectl create -f chapter2/2-6_volumes/2-6-7_pvc.yaml
persistentvolumeclaim "pvclaim01" created
// check pvc is created successfully.
kubectl get pvc
NAME STATUS VOLUME
CAPACITY
pvclaim01 Bound pvc-e3d881d4-402e-11e8-b124-0ef0c7f25d36 1Gi
ACCESS MODES STORAGECLASS AGE
RWO gp2 16m

Building Kubernetes on AWS Chapter 17

[612]

After PVC is created, an associated PV will be created:

kubectl get pv
NAME CAPACITY ACCESS MODES
pvc-e3d881d4-402e-11e8-b124-0ef0c7f25d36 1Gi RWO
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE
Delete Bound default/pvclaim01 gp2
16m

You can take a closer look at PV here:

kubectl describe pv pvc-e3d881d4-402e-11e8-b124-0ef0c7f25d36
Name: pvc-e3d881d4-402e-11e8-b124-0ef0c7f25d36
Labels: failure-domain.beta.kubernetes.io/region=us-east-1
 failure-domain.beta.kubernetes.io/zone=us-east-1a
Annotations: kubernetes.io/createdby=aws-ebs-dynamic-provisioner
 pv.kubernetes.io/bound-by-controller=yes
 pv.kubernetes.io/provisioned-by=kubernetes.io/aws-ebs
Claim: default/pvclaim01
...
Source:
 Type: AWSElasticBlockStore (a Persistent Disk resource in
AWS)
 VolumeID: aws://us-east-1a/vol-035ca31b9cc1820d7
 FSType: ext4
 Partition: 0
 ReadOnly: false

We can find that it's associated with the claim we just created pvclaim01 and the
source type is AWSElasticBlockStore, as expected.

We can use AWS CLI to inspect the volume we created in EBS. Using the --filter
Name=tag-value we can filter the volumes in EBS:

// aws ec2 describe-volumes --filter Name=tag-value,Values=$PV_NAME
aws ec2 describe-volumes --filter Name=tag-value,Values="pvc-
e3d881d4-402e-11e8-b124-0ef0c7f25d36"{
 "Volumes": [
 {
 "AvailabilityZone": "us-east-1a",
 "Tags": [
 { "Value": "k8s-cookbook.net",
 "Key": "KubernetesCluster" },
 { "Value": "default",
 "Key": "kubernetes.io/created-for/pvc/namespace"
},
 { "Value": "k8s-cookbook.net-dynamic-pvc-

Building Kubernetes on AWS Chapter 17

[613]

e3d881d4-402e-11e8-b124-0ef0c7f25d36",
 "Key": "Name" },
 { "Value": "pvclaim01",
 "Key": "kubernetes.io/created-for/pvc/name" },
 { "Value": "owned",
 "Key": "kubernetes.io/cluster/k8s-cookbook.net" },
 { "Value": "pvc-e3d881d4-402e-11e8-
b124-0ef0c7f25d36",
 "Key": "kubernetes.io/created-for/pv/name" }],
 "VolumeType": "gp2",
 "VolumeId": "vol-035ca31b9cc1820d7",
 ...
 }
]
}

We can see that the EBS resource has been tagged with lots of different values: by
observing these tags, we can know which Kubernetes cluster, namespace, PVC, and
PV are associated with this EBS volume.

Thanks to dynamic provisioning that StorageClass and CloudProvider support,
Volume management is no longer a huge pain. We can create and destroy PV on the
fly.

There's more...
At the time of writing this book, there is no native way in Kubernetes 1.10 to support
Ingress integration in AWS CloudProvider yet (ideally with application load
balancer). Alternatively, kops provides addons that allow you to do so. The first one
is ingress-nginx (https:/ / github. com/ kubernetes/ kops/ tree/ master/ addons/
ingress-nginx), which is powered by nginx (https:/ /nginx. org) and AWS Elastic
Load Balancer. The requests will go through ELB to nginx, and nginx will dispatch
the requests, based on the path definition in Ingress. Another alternative is running
skipper as kubernetes-ingress-controller (https:/ / zalando. github. io/skipper/
dataclients/kubernetes). Kops also provides add-ons to help you deploy and
leverage skipper and AWS Application Load Balancer (https:/ /github. com/
kubernetes/kops/ tree/ master/ addons/ kube- ingress- aws-controller).

We're expecting CCM and Amazon EKS (https:/ /aws. amazon. com/ eks/) to provide
more native integration for Ingress via AWS Application Load Balancer, and there
will be more to come!

https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx
https://nginx.org
https://nginx.org
https://nginx.org
https://nginx.org
https://nginx.org
https://nginx.org
https://nginx.org
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://zalando.github.io/skipper/dataclients/kubernetes
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://github.com/kubernetes/kops/tree/master/addons/kube-ingress-aws-controller
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/

Building Kubernetes on AWS Chapter 17

[614]

Managing Kubernetes cluster on AWS by
kops
In kops, both Kubernetes masters and nodes are running as auto-scaling groups in
AWS. In kops, the concept is called instance groups (ig), which indicate the same
type of instances in your cluster. Similar to nodes across zones, or masters in each
availability zone, we could check it via the kops command line:

// kops get instancegroups or kops get ig
kops get instancegroups --name k8s-cookbook.net
NAME ROLE MACHINETYPE MIN MAX ZONES
master-us-east-1a Master t2.small 1 1 us-east-1a
nodes Node t2.micro 2 2 us-east-1a,us-east-1b,us-east-1c

With kops, you can change the instance type, resize instance groups (masters and
nodes), rolling-update, and upgrade cluster. Kops also supports configuration for
specific AWS features, such as enable AWS detailed monitoring for the instances in
the cluster.

Getting ready
For performing this recipe, you'll need a Kubernetes cluster deployed by kops in
AWS. You will need to follow the previous recipes in this chapter to launch a cluster.
Here, we'll use the same cluster we created in the previous recipe:

kops validate cluster
Using cluster from kubectl context: k8s-cookbook.net
Validating cluster k8s-cookbook.net
INSTANCE GROUPS
NAME ROLE MACHINETYPE MIN MAX SUBNETS
master-us-east-1a Master t2.small 1 1 us-east-1a
nodes Node t2.micro 2 2 us-
east-1a,us-east-1b,us-east-1c
NODE STATUS
NAME ROLE READY
ip-172-20-44-140.ec2.internal node True
ip-172-20-62-204.ec2.internal master True
ip-172-20-87-38.ec2.internal node True
Your cluster k8s-cookbook.net is ready

Building Kubernetes on AWS Chapter 17

[615]

In the previous recipe, we've had the KOPS_STATE_STORE environment variable set
as one of our S3 bucket names by the format s3://<bucket_name> to store the kops
configuration and metadata.

How to do it...
The upcoming subsections cover some common operational examples that cluster
administrators may run into.

Modifying and resizing instance groups
Modifying instance groups may be cumbersome if you deploy all instances manually.
You'll need to update instances one by one or relaunch them. By kops, we can easily
perform the update without pain.

Updating nodes
Using the kops edit command, we can modify the instance type and the node count:

// kops edit ig nodes
kops edit instancegroups nodes --name k8s-cookbook.net
apiVersion: kops/v1alpha2
kind: InstanceGroup
metadata:
 creationTimestamp: 2018-04-14T19:06:47Z
 labels:
 kops.k8s.io/cluster: k8s-cookbook.net
 name: nodes
spec:
 image: kope.io/k8s-1.8-debian-jessie-amd64-hvm-ebs-2018-02-08
 machineType: t2.micro
 maxSize: 2
 minSize: 2
 nodeLabels:
 kops.k8s.io/instancegroup: nodes
 role: Node
 subnets:
 - us-east-1a
 - us-east-1b
 - us-east-1c

Building Kubernetes on AWS Chapter 17

[616]

In this example, we modify both minSize and maxSize from 2 to 3. After the
modification, we'll need to run the kops update to see it take effect:

kops update cluster k8s-cookbook.net --yes
...
I0414 21:23:52.505171 16291 update_cluster.go:291] Exporting kubecfg
for cluster
kops has set your kubectl context to k8s-cookbook.net
Cluster changes have been applied to the cloud.
Changes may require instances to restart: kops rolling-update cluster

Some updates will need a rolling-update cluster. In this example, kops has updated
the configuration in the AWS auto scaling group. AWS will then launch a new
instance to accommodate the change. The following is a screenshot from AWS Auto
Scaling Group's console:

nodes_in_AWS_Auto_Scaling_Groups

We can see that the configuration has been updated, and AWS is scaling a new
instance. After few minutes, we can check cluster status via kops validate or
kubectl get nodes:

kops validate cluster
Using cluster from kubectl context: k8s-cookbook.net
Validating cluster k8s-cookbook.net
INSTANCE GROUPS
NAME ROLE MACHINETYPE MIN MAX SUBNETS
master-us-east-1a Master t2.small 1 1 us-east-1a
nodes Node t2.micro 3 3 us-
east-1a,us-east-1b,us-east-1c
NODE STATUS
NAME ROLE READY
ip-172-20-119-170.ec2.internal node True
ip-172-20-44-140.ec2.internal node True
ip-172-20-62-204.ec2.internal master True
ip-172-20-87-38.ec2.internal node True

Everything looks good!

Building Kubernetes on AWS Chapter 17

[617]

Updating masters
Updating masters is the same as updating nodes. Note that masters in the same
availability zone are in one instance group. This means that you can't add additional
subnets into the master instance group. In the following example, we'll resize the
master count from 1 to 2.

In this recipe, we only make the master count 1. In the real world,
the recommended way is to deploy masters to at least two
availability zones and have three masters per zone (one kops
instance group). You can achieve that via the --master-count and
--master-zones parameters when launching the cluster.

Now take a look at the following command:

kops edit ig master-us-east-1a
apiVersion: kops/v1alpha2
kind: InstanceGroup
metadata:
 creationTimestamp: 2018-04-14T19:06:47Z
 labels:
 kops.k8s.io/cluster: k8s-cookbook.net
 name: master-us-east-1a
spec:
 image: kope.io/k8s-1.8-debian-jessie-amd64-hvm-ebs-2018-02-08
 machineType: t2.small
 maxSize: 1
 minSize: 1
 nodeLabels:
 kops.k8s.io/instancegroup: master-us-east-1a
 role: Master
 subnets:
 - us-east-1a

Before applying the change, we can run the update cluster command without --yes
in the dry run mode:

kops update cluster k8s-cookbook.net
...
Will modify resources:
 AutoscalingGroup/master-us-east-1a.masters.k8s-cookbook.net
 MinSize 1 -> 2
 MaxSize 1 -> 2
Must specify --yes to apply changes

Building Kubernetes on AWS Chapter 17

[618]

After we verify the dry run message as expected, we can perform the update as
follows. In this case, we'll have to perform a rolling update.

How to know whether a rolling update is needed
If we didn't run a kops rolling update in the preceding example,
kops will show a validation error when running the kops validate
cluster:
VALIDATION ERRORS
KIND NAME MESSAGE
InstanceGroup master-us-east-1a InstanceGroup master-us-
east-1a did not have enough nodes 1 vs 2

Remember to replace k8s-cookbook.net with your cluster name.

kops update cluster k8s-cookbook.net –-yes && kops rolling-update
cluster
...
Using cluster from kubectl context: k8s-cookbook.net
NAME STATUS NEEDUPDATE READY MIN MAX NODES
master-us-east-1a Ready 0 2 2 2 1
nodes Ready 0 3 3 3 3
No rolling-update required.

Just like modifying nodes, we can use both kubectl get nodes and kops
validate cluster to check whether the new master has joined the cluster.

Upgrading a cluster
For demonstrating how we upgrade the Kubernetes version, we'll first launch the
cluster with the 1.8.7 version. For detailed instructions of parameters, refer to the
previous recipes in this chapter. Input the following command:

// launch a cluster with additional parameter --kubernetes-version
1.8.7 # kops create cluster --master-count 1 --node-count 2 --zones
us-east-1a,us-east-1b,us-east-1c --node-size t2.micro --master-size
t2.small --topology private --networking calico --authorization=rbac -
-cloud-labels "Environment=dev" --state $KOPS_STATE_STORE --
kubernetes-version 1.8.7 --name k8s-cookbook.net --yes

Building Kubernetes on AWS Chapter 17

[619]

After few minutes, we can see that the master and the nodes are up with version 1.8.7:

kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-172-20-44-128.ec2.internal Ready master 3m v1.8.7
ip-172-20-55-191.ec2.internal Ready node 1m v1.8.7
ip-172-20-64-30.ec2.internal Ready node 1m v1.8.7

In the following example, we'll walk through how to upgrade Kubernetes cluster
from 1.8.7 to 1.9.3 using kops. Firstly, run the kops upgrade cluster command. Kops
will show us the latest version that we could upgrade to:

kops upgrade cluster k8s-cookbook.net --yes
ITEM PROPERTY OLD NEW
Cluster KubernetesVersion 1.8.7 1.9.3
Updates applied to configuration. You can now apply these changes,
using `kops update cluster k8s-cookbook.net`

It indicates that the configuration has been updated, and that we'll need to update the
cluster now. We run command with the dryrun mode to check what will be modified
first:

// update cluster
kops update cluster k8s-cookbook.net
...
Will modify resources:
 LaunchConfiguration/master-us-east-1a.masters.k8s-cookbook.net
 UserData
 ...
 + image: gcr.io/google_containers/kube-
apiserver:v1.9.3
 - image: gcr.io/google_containers/kube-
apiserver:v1.8.7
 ...
 + image: gcr.io/google_containers/kube-
controller
manager:v1.9.3
 - image: gcr.io/google_containers/kube-
controller-manager:v1.8.7
 ...
 hostnameOverride: '@aws'
 + image: gcr.io/google_containers/kube-
proxy:v1.9.3
 - image: gcr.io/google_containers/kube-
proxy:v1.8.7
 logLevel: 2
 kubeScheduler:
 + image: gcr.io/google_containers/kube-

Building Kubernetes on AWS Chapter 17

[620]

scheduler:v1.9.3
 - image: gcr.io/google_containers/kube
scheduler:v1.8.7
 ...
Must specify --yes to apply changes

We could see all of the components moved from v1.8.7 to v1.9.3 in Auto Scaling
Launch Configuration. After verifying that everything is good, we can run the same
command with the --yes parameter:

// run the same command with --yes
kops update cluster k8s-cookbook.net --yes
...
kops has set your kubectl context to k8s-cookbook.net
Cluster changes have been applied to the cloud.
Changes may require instances to restart: kops rolling-update cluster

In this case, we need to run the rolling update for the cluster:

kops rolling-update cluster --yes
Using cluster from kubectl context: k8s-cookbook.net
NAME STATUS NEEDUPDATE READY MIN MAX
NODES
master-us-east-1a NeedsUpdate 1 0 1 1
1
nodes NeedsUpdate 2 0 2 2
2
I0414 22:45:05.887024 51333 rollingupdate.go:193] Rolling update
completed for cluster "k8s-cookbook.net"!

All the nodes have been upgraded to 1.9.3! When performing the rolling update, kops
drains one instance first then cordons the node. The auto-scaling group will bring up
another node with the updated user data, which contains the Kubernetes component
images with the updates. For avoiding downtime, you should have multiple masters
and nodes as the basic deployment.

Building Kubernetes on AWS Chapter 17

[621]

After a rolling update is completed, we can check the cluster version via kubectl
get nodes:

kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-172-20-116-81.ec2.internal Ready node 14m v1.9.3
ip-172-20-41-113.ec2.internal Ready master 17m v1.9.3
ip-172-20-56-230.ec2.internal Ready node 8m v1.9.3

All the nodes have been upgraded to 1.9.3!

There's more...
In kops, there are lots of useful addons, such as autoscaling nodes (https:/ /github.
com/kubernetes/ kops/ tree/ master/ addons/ cluster- autoscaler) and mapping the
service to the record in Route53 (https:/ /github. com/ kubernetes/ kops/ tree/
master/addons/ route53- mapper). Refer to the add-ons page to find out more!

See also
Deployment API in Chapter 13, Walking through Kubernetes Concepts
Building multiple masters in Chapter 15, Building High-Availability Cluster

https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/cluster-autoscaler
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper
https://github.com/kubernetes/kops/tree/master/addons/route53-mapper

18
Advanced Cluster

Administration
In this chapter, we will cover the following recipes:

Advanced settings in kubeconfig
Setting resources in nodes
Playing with WebUI
Working with a RESTful API
Working with Kubernetes DNS
Authentication and authorization

Introduction
We will go through some advanced administration topics in this chapter. First, you
will learn how to use kubeconfig to manage different clusters. Then, we will work on
computing resources in nodes. Kubernetes provides a friendly user interface that
illustrates the current status of resources, such as deployments, nodes, and pods. You
will learn how to build and administrate it.

Next, you will learn how to work with the RESTful API that Kubernetes exposes. It
will be a handy way to integrate with other systems. Finally, we want to build a
secure cluster; the last section will go through how to set up authentication and
authorization in Kubernetes.

Advanced Cluster Administration Chapter 18

[623]

Advanced settings in kubeconfig
kubeconfig is a configuration file that manages cluster, context, and authentication
settings in Kubernetes, on the client side. Using the kubeconfig file, we are able to
set different cluster credentials, users, and namespaces to switch between clusters or
contexts within a cluster. It can be configured via the command line using the
kubectl config subcommand or by updating a configuration file directly. In this
section, we'll describe how to use kubectl config to manipulate kubeconfig and
how to input a kubeconfig file directly.

If you have gone through the Working with namespace recipe in Chapter 13, Walking
through Kubernetes Concepts, where we first mentioned kubeconfig, you will know of
its basic concepts. Let's review some key points:

kubeconfig contains three parameters: user, cluster, and context

From the preceding diagram, we can note the following:

There are three parameters in kubeconfig: User, cluster, and context—user
has its own authentication, while cluster determines the specific API server
with dedicated computing resources. Context is both user and cluster.
Building multiple contexts for various combinations of settings: Users
and clusters can be shared across different contexts.
Namespace can be aligned in one context: The current context of a
namespace sets up the rules. Any requests should follow the mapping user
and cluster in the current context.

Advanced Cluster Administration Chapter 18

[624]

Getting ready
Please run two Kubernetes clusters and give them the specified host name. You may
just update the hostfile (/etc/hosts) on the master nodes. One is under localhost
with the API server endpoint http://localhost:8080 and the other is on the
remote side with the endpoint http://$REMOTE_MASTER_NODE:8080. We will use
these two clusters for our demonstration. The endpoints of the API server here are
insecure channels. It is a simple configuration of an API server for the dummy
accessing permissions.

Enableing the API server's insecure endpoint on kubeadm

We have to pass additional arguments to the API server while
running kubeadm init. In this case, a custom configuration file
indicated by flag --config should be applied:

// you can also get this file through code bundle
$ cat additional-kubeadm-config
apiVersion: kubeadm.k8s.io/v1alpha1
kind: MasterConfiguration
apiServerExtraArgs:
 insecure-bind-address: "0.0.0.0"
 insecure-port: "8080"
// start cluster with additional system settings
$ sudo kubeadm init --config ./additional-kubeadm-
config

After you boot up two clusters that have an insecure-accessing API server endpoint,
make sure you can approach them on the localhost cluster:

// on localhost cluster, the following commands should be successful
$ curl http://localhost:8080
$ curl http://$REMOTE_MASTER_NODE:8080

Please note that the insecure address configuration is just for our upcoming tutorial.
Users should be careful to set it properly on a practical system.

Before we start, we should check the default kubeconfig in order to observe the
changes after any updates. Fire the command kubectl config view to see your
initial kubeconfig:

// the settings created by kubeadm
$ kubectl config view
apiVersion: v1

Advanced Cluster Administration Chapter 18

[625]

clusters:
- cluster:
 certificate-authority-data: REDACTED
 server: https://192.168.122.101:6443
 name: kubernetes
contexts:
- context:
 cluster: kubernetes
 user: kubernetes-admin
 name: kubernetes-admin@kubernetes
current-context: kubernetes-admin@kubernetes
kind: Config
preferences: {}
users:
- name: kubernetes-admin
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED

There will be some different settings based on your installation method. But we may
also find a basic context has been initialized by the tool, which is kubernetes-
admin@kubernetes in kubeadm. Go ahead and copy the physical kubeconfig file
as the base for later updating, and also for resuming our original environment after
our practice.

// in default, the kubeconfig used by client is the one under $HOME
$ cp ~/.kube/config ~/original-kubeconfig

How to do it...
In this recipe, we'll use localhost cluster as the main console to switch the cluster via
context changes. First, run a different number of nginx into both the clusters and
make sure the pods are all running:

// in the terminal of localhost cluster
$ kubectl run local-nginx --image=nginx --replicas=2 --port=80
deployment "local-nginx" created
// check the running pods
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
local-nginx-6484bbb57d-xpjp2 1/1 Running 0 1m
local-nginx-6484bbb57d-z4qgp 1/1 Running 0 1m
// in the terminal of remote cluster
$ kubectl run remote-nginx --image=nginx --replicas=4 --port=80
deployment "remote-nginx" created

Advanced Cluster Administration Chapter 18

[626]

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
remote-nginx-5dd7b9cb7d-fxr9m 1/1 Running 0 29s
remote-nginx-5dd7b9cb7d-gj2ft 1/1 Running 0 29s
remote-nginx-5dd7b9cb7d-h7lmj 1/1 Running 0 29s
remote-nginx-5dd7b9cb7d-hz766 1/1 Running 0 29s

Setting new credentials
Next, we are going to set up two credentials for each cluster. Use the subcommand
set-credentials as kubectl config set-credentials <CREDENTIAL_NAME>
to add a credential into kubeconfig. There are different authentication methods
supported in Kubernetes. We could use a password, client-certificate, or token. In this
example, we'll use HTTP basic authentication to simplify the scenario. Kubernetes
also supports client certificate and token authentications. For more information,
please fire the set-credentials command with the flag -h for a detailed
introduction to its functionalities:

// check the details of setting up credentials
$ kubectl config set-credentials -h
// in localhost cluster, copy the based file into a new one
$ cp ~/original-kubeconfig ~/new-kubeconfig
// add a user "user-local" with credential named "myself@localhost" in
kubeconfig "new-kubeconfig"
$ kubectl config set-credentials myself@localhost --username=user-
local --password=passwordlocal --kubeconfig="new-kubeconfig"
User "myself@local" set.

Through the preceding procedures, we successfully add a new credential in
the "new-kubeconfig" kubeconfig file. The kubeconfig file will be formatted in
YAML by default—you may check the file through a text editor. With this method,
we are able to customize new configurations without interfering with the current
settings. On the other hand, if there is no --kubeconfig flag, the update will be
directly attached to the live kubeconfig:

// renew live kubeconfig file with previous update
$ cp ~/new-kubeconfig ~/.kube/config
// add another credential in localhost cluster, this time, let's
update current settings directly
$ kubectl config set-credentials myself@remote --username=user-remote
--password=passwordremote
User "myself@remote" set.

Advanced Cluster Administration Chapter 18

[627]

At this moment, check your live kubeconfig settings and find out the new credentials:

$ kubectl config view
...
users:
- name: myself@local
 user:
 password: passwordlocal
 username: user-local
- name: myself@remote
 user:
 password: passwordremote
 username: user-remote

Setting new clusters
To set a new cluster, we use the command kubectl config set-cluster
<CLUSTER_NAME>. The additional flag --server is required to indicate the accessing
cluster. Other flags work to define the security level, such as the --insecure-skip-
tls-verify flag, which bypasses checking the server's certificate. If you are setting
up a trusted server with HTTPS, you will need to use --certificate-
authority=$PATH_OF_CERT --embed-certs=true instead. For more information,
fire the command with the -h flag for more information. In the following commands,
we set up two cluster configurations in our localhost environment:

// in localhost cluster, create a cluster information pointing to
itself
 $ kubectl config set-cluster local-cluster --insecure-skip-tls-
verify=true --server=http://localhost:8080
 Cluster "local-cluster" set.
 // another cluster information is about the remote one
 $ kubectl config set-cluster remote-cluster --insecure-skip-tls-
verify=true --server=http://$REMOTE_MASTER_NODE:8080
 Cluster "remote-cluster" set.
 // check kubeconfig in localhost cluster, in this example, the remote
master node has the hostname "node01"
 $ kubectl config view
 apiVersion: v1
 clusters:
 ...
 - cluster:
 insecure-skip-tls-verify: true
 server: http://localhost:8080
 name: local-cluster
 - cluster:

Advanced Cluster Administration Chapter 18

[628]

 insecure-skip-tls-verify: true
 server: http://node01:8080
 name: remote-cluster
 ...

We do not associate anything with users and clusters yet. We will
link them via context in the next section.

Setting contexts and changing current-context
One context contains a cluster, namespace, and user. According to the current context,
the client will use the specified user information and namespace to send requests to
the cluster. To set up a context, we will use the kubectl config set-context
<CONTEXT_NAME> --user=<CREDENTIAL_NAME> --namespace=<NAMESPACE> --

cluster=<CLUSTER_NAME> command to create or update it:

// in localhost cluster, create a context for accessing local
cluster's default namespace
$ kubectl config set-context default/local/myself --user=myself@local
--namespace=default --cluster=local-cluster
Context "default/local/myself" created.
// furthermore, create another context for remote cluster
$ kubectl config set-context default/remote/myself --
user=myself@remote --namespace=default --cluster=remote-cluster
Context "default/remote/myself" created.

Let's check our current kubeconfig. We can find two new contexts:

$ kubectl config view
...
contexts:
- context:
 cluster: local-cluster
 namespace: default
 user: myself@local
 name: default/local/myself
- context:
 cluster: remote-cluster
 namespace: default
 user: myself@remote
 name: default/remote/myself
...

Advanced Cluster Administration Chapter 18

[629]

After creating contexts, we can switch contexts in order to manage different clusters.
Here, we will use the kubectl config use-context <CONTEXT_NAME> command:

// check current context
$ kubectl config current-context
kubernetes-admin@kubernetes

// use the new local context instead
$ kubectl config use-context default/local/myself
Switched to context "default/local/myself".
// check resource for the status of context
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
local-nginx-6484bbb57d-xpjp2 1/1 Running 0 2h
local-nginx-6484bbb57d-z4qgp 1/1 Running 0 2h

Yes, it looks fine. How about if we switch to the context with the remote cluster
setting:

// switch to the context of remote cluster
$ kubectl config use-context default/remote/myself
Switched to context "default/remote/myself".
// check the pods
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
remote-nginx-5dd7b9cb7d-fxr9m 1/1 Running 0 2h
remote-nginx-5dd7b9cb7d-gj2ft 1/1 Running 0 2h
remote-nginx-5dd7b9cb7d-h7lmj 1/1 Running 0 2h
remote-nginx-5dd7b9cb7d-hz766 1/1 Running 0 2h

All the operations we have done are in the localhost cluster. kubeconfig makes the
scenario of working on multiple clusters with multiple users easier.

Cleaning up kubeconfig
We can still leveragekubectl config to remove configurations in kubeconfig. For
cluster sand context, you can delete the neglected one with the
subcommands delete-cluster and delete-context. Alternatively, for these
three categories, the unset subcommand can complete the deletion:

// delete the customized local context
$ kubectl config delete-cluster local-cluster
deleted cluster local-cluster from $HOME/.kube/config
// unset the local user
// to remove cluster, using property clusters.CLUSTER_NAME; to remove
contexts, using property contexts.CONTEXT_NAME

Advanced Cluster Administration Chapter 18

[630]

$ kubectl config unset users.myself@local
Property "users.myself@local" unset.

Although the effects of the preceding command would apply to the live kubeconfig
right away, an even faster and more reliable way is updating another kubeconfig file
for the replacement. A kubeconfig file is the text file new-kubeconfig, the one we
just updated, or the one we copied from the initial statement, original-
kubeconfig:

// remove all of our practices
$ cp ~/original-kubeconfig ~/.kube/config
// check your kubeconfig to make sure it has been cleaned
$ kubectl config view

There's more...
As we mentioned in the previous section, real use cases with credentials and
permissions cannot be ignored like walking cross insecure endpoints, just like in our
demonstration. To avoid security issues, you may take the official documentation
(found at https:/ /kubernetes. io/ docs/ admin/ authentication/) while granting
permissions to users.

See also
kubeconfig manages cluster, credential, and namespace settings. Check out the
following recipes for complete concepts:

The Working with Secrets recipe in Chapter 13, Walking through Kubernetes
Concepts
The Working with Namespaces recipe in Chapter 13, Walking through
Kubernetes Concepts

Setting resources in nodes
Computing resource management is very important in any infrastructure. We should
know our application well and preserve enough CPU and memory capacity to avoid
running out of resources. In this section, we'll introduce how to manage node
capacity in Kubernetes nodes. Furthermore, we'll also describe how to manage pod
computing resources.

https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/authentication/

Advanced Cluster Administration Chapter 18

[631]

Kubernetes has the concept of resource Quality of Service (QoS). It allows an
administrator to prioritize pods to allocate resources. Based on the pod's setting,
Kubernetes classifies each pod as one of the following:

Guaranteed pod
Burstable pod
BestEffort pod

The priority is Guaranteed > Burstable > BestEffort. For example, if a BestEffort pod
and a Guaranteed pod exist in the same Kubernetes node, and that node encounters
CPU problems or runs out of memory, the Kubernetes master terminates the
BestEffort pod first. Let's take a look at how it works.

Getting ready
There are two ways to set a Resource QoS: pod configuration or namespace
configuration. If you set a Resource QoS to the Namespace, it will apply to all pods
that belong to the same Namespace. If you set a Resource QoS to a pod, it will apply
to the pod only. In addition, if you set it to both namespace and pod, it takes a value
from the namespace configuration first, and then overwrite it with the pod
configuration. Thus, we will set up two Namespaces, one which has a Resource QoS,
and one that does not, to see how different they are:

Create two namespaces by using the kubectl command as follows:1.

$ kubectl create namespace chap8-no-qos
namespace "chap8-no-qos" created

$ kubectl create namespace chap8-qos
namespace "chap8-qos" created

Prepare a YAML file that sets spec.limits.defaultRequest.cpu:2.
0.1 as follows:

$ cat resource-request-cpu.yml
apiVersion: v1
kind: LimitRange
metadata:
 name: resource-request-cpu
spec:
 limits:
 - defaultRequest:
 cpu: 0.1

Advanced Cluster Administration Chapter 18

[632]

 type: Container

Do this by typing the kubectl command so that it applies to the chap8-3.
qos namespace only:

$ kubectl create -f resource-request-cpu.yml --
namespace=chap8-qos
limitrange "resource-request-cpu" created

Check the resource limit on both chap8-qos and chap8-no-qos with4.
the kubectl command:

//chap8-no-qos doesn't have any resource limits value
$ kubectl describe namespaces chap8-no-qos
Name: chap8-no-qos
Labels: <none>
Annotations: <none>
Status: Active
No resource quota.
No resource limits.

//chap8-qos namespace has a resource limits value
$ kubectl describe namespaces chap8-qos
Name: chap8-qos
Labels: <none>
Annotations: <none>
Status: Active
No resource quota.
Resource Limits
 Type Resource Min Max Default Request Default
Limit Max Limit/Request Ratio
 ---- -------- --- --- --------------- ---------
---- -----------------------
 Container cpu - - 100m -
-

How to do it...
Let's configure a BestEffort pod, a Guaranteed pod, and then a Burstable pod step by
step.

Advanced Cluster Administration Chapter 18

[633]

Configuring a BestEffort pod
The BestEffort pod has the lowest priority in the Resource QoS classes. Therefore, in
the case of a resource shortage, this BestEffort pod will be terminated by the
Kubernetes scheduler, then will yield CPU and memory resources to other, higher
priority pods.

In order to configure a pod as a BestEffort, you need to set the resource limit as 0
(explicit), or specify no resource limit (implicit).

Prepare a pod configuration that explicitly sets1.
the spec.containers.resources.limits as 0:

$ cat besteffort-explicit.yml
apiVersion: v1
kind: Pod
metadata:
 name: besteffort
spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 cpu: 0
 memory: 0

Create the pod on both the chap8-qos and chap8-no-qos namespaces:2.

$ kubectl create -f besteffort-explicit.yml --
namespace=chap8-qos
pod "besteffort" created

$ kubectl create -f besteffort-explicit.yml --
namespace=chap8-no-qos
pod "besteffort" created

Check the QoS class; both pods have the BestEffort class:3.

$ kubectl describe pods besteffort --namespace=chap8-qos |
grep QoS
QoS Class: BestEffort

$ kubectl describe pods besteffort --namespace=chap8-no-
qos | grep QoS
QoS Class: BestEffort

Advanced Cluster Administration Chapter 18

[634]

There is a pitfall : if you don't set any resource settings in the pod configuration, the
pod takes a value from the namespace's default settings. Therefore, if you create a
pod with no resource settings, the result will be different between chap8-qos and
chap8-no-qos. The following example demonstrates how the namespace settings
affect the result:

Delete the preceding pods from the chap8-qos and chap8-no-qos1.
namespaces:

$ kubectl delete pod --all --namespace=chap8-qos
pod "besteffort" deleted

$ kubectl delete pod --all --namespace=chap8-no-qos
pod "besteffort" deleted

Prepare a pod configuration that doesn't have resource settings:2.

$ cat besteffort-implicit.yml
apiVersion: v1
kind: Pod
metadata:
 name: besteffort
spec:
 containers:
 - name: nginx
 image: nginx

Create the pod on both namespaces:3.

$ kubectl create -f besteffort-implicit.yml --
namespace=chap8-qos
pod "besteffort" created

$ kubectl create -f besteffort-implicit.yml --
namespace=chap8-no-qos
pod "besteffort" created

The result of the QoS class is different:4.

$ kubectl describe pods besteffort --namespace=chap8-no-
qos |grep QoS
QoS Class: BestEffort

$ kubectl describe pods besteffort --namespace=chap8-qos
|grep QoS
QoS Class: Burstable

Advanced Cluster Administration Chapter 18

[635]

Because the chap8-qos namespace has the default setting request.cpu: 0.1, it
causes the pod to configure with the Burstable class. Therefore, we will use
the chap8-no-qos namespace, which avoids this unexpected result.

Configuring a Guaranteed pod
The Guaranteed class has the highest priority of resource QoS classes. In the case of a
resource shortage, the Kubernetes scheduler will try to retain the Guaranteed pod to
the last.

In order to configure a pod to have the guaranteed class, explicitly set the resource
limit and resource request as the same value, or only set the resource limit:

Prepare a pod configuration that has the same value for resources.limit1.
and resources.request:

$ cat guaranteed.yml
apiVersion: v1
kind: Pod
metadata:
 name: guaranteed-pod
spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 cpu: 0.3
 memory: 350Mi
 requests:
 cpu: 0.3
 memory: 350Mi

Create the pod on the chap8-no-qos namespace:2.

$ kubectl create -f guaranteed.yml --namespace=chap8-no-
qos
pod "guaranteed-pod" created

Check the QoS class; it has the Guaranteed class:3.

$ kubectl describe pods guaranteed-pod --namespace=chap8-
no-qos |grep QoS
QoS Class: Guaranteed

Advanced Cluster Administration Chapter 18

[636]

Configuring a Burstable pod
The Burstable pod has a priority that is higher than BestEffort but lower than
Guaranteed. In order to configure a pod to be a Burstable Pod, you need to
set resources.request. resources.limit is optional, but the value
of resources.request and resources.limit must not be equal:

Prepare a pod configuration that has resources.request only:1.

$ cat burstable.yml
apiVersion: v1
kind: Pod
metadata:
 name: burstable-pod
spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 0.1
 memory: 10Mi
 limits:
 cpu: 0.5
 memory: 300Mi

Create the pod:2.

$ kubectl create -f burstable.yml --namespace=chap8-no-qos
pod "burstable-pod" created

Check the QoS class; it is Burstable:3.

$ kubectl describe pods burstable-pod --namespace=chap8-
no-qos |grep QoS
QoS Class: Burstable

Advanced Cluster Administration Chapter 18

[637]

How it works...
Let's see how resource requests/limits affect resource management. A preceding
burstable YAML configuration declares both requests and limits by a different
threshold as follows:

Type of resource
definition Resource name Value Description

requests
CPU 0.1 At least 10% of 1CPU core
Memory 10Mi At least 10 Mbytes of memory

limits
CPU 0.5 Maximum 50% of 1 CPU core
Memory 300Mi Maximum 300 Mbytes of memory

For the CPU resources, acceptable value expressions are either cores (0.1, 0.2 ... 1.0,
2.0) or millicpu (100 m, 200 m ... 1000 m, 2000 m). 1000 m is equivalent to 1.0 core. For
example, if a Kubernetes node has 2 cores CPU (or 1 core with hyperthreading), there
are a total of 2.0 cores or 2000 millicpu, as shown in the following figure:

Representing a 2.0 CPU resource

By typing kubectl describe node <node name>, you can check what resources
are available on the node:

//Find a node name

Advanced Cluster Administration Chapter 18

[638]

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready <none> 22h v1.9.0

//Specify node name 'minikube'
$ kubectl describe nodes minikube
Name: minikube
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
...
...
Allocatable:
 cpu: 2
 memory: 1945652Ki
 pods: 110

This shows the node minikube , which has 2.0 CPU and approximately 1,945 MB
memory. If you run the nginx example (requests.cpu: 0.1), it occupies at least 0.1
core, as shown in the following figure:

Requesting a 0.1 CPU resource

As long as the CPU has enough spaces, it may occupy up to 0.5 cores (limits.cpu:
0.5), as shown in the following figure:

It can occupy up to 0.5 CPU resources

Advanced Cluster Administration Chapter 18

[639]

Therefore, if you set requests.cpu to be more than 2.0, the pod won't be assigned to
this node, because the allocatable CPU is 2.0 and the nginx pod already occupies at
least 0.1 CPU.

See also
In this section, you learned how to configure Resource QoS by setting a resource
request and limit. The Namespace's default value affects the resulting pod
configuration, so you should explicitly specify resource requests and limits.

Please revisit the following chapter to recap how to configure namespaces as well:

Working with Namespaces in Chapter 13, Walking through Kubernetes Concepts

Playing with WebUI
Kubernetes has a WebUI that visualizes the status of resources and machines, and
also works as an additional interface for managing your application without
command lines. In this recipe, we are going to introduce Kubernetes dashboard.

Getting ready
Kubernetes dashboard (https:/ /github. com/ kubernetes/ dashboard) is like a server-
side application. In the beginning, just make sure you have a healthy Kubernetes
cluster running, and we will go through the installation and related setup in the
coming pages. Since the dashboard will be accessed by the browser, we can use a
minikube-booted, laptop-running Kubernetes system, and reduce procedures for
forwarding network ports or setting firewall rules.

For Kubernetes systems booting up by minikube, check that both minikube and the
system itself are working:

// check if minikube runs well
$ minikube status
minikube: Running
cluster: Running
kubectl: Correctly Configured: pointing to minikube-vm at
192.168.99.100
// check the Kubernetes system by components
$ kubectl get cs

https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard

Advanced Cluster Administration Chapter 18

[640]

NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health": "true"}

How to do it...
While booting up your Kubernetes system with minikube, it would help to create the
dashboard by default. So, we will talk about both scenarios separately.

Relying on the dashboard created by minikube
Because the Kubernetes dashboard has been started, what we have do is to open the
web UI with a specific URL. It is convenient; you just need to fire a command on your
terminal:

$ minikube dashboard
Opening kubernetes dashboard in default browser...

Then, you will see your favourite browser opening a new webpage, as we introduced
in Chapter 12, Building Your Own Kubernetes Cluster. Its URL will look like http:/ /
MINIKUBE_VM_IP:30000/ #!/ overview? namespace= default. Most of all, we bypass the
expected network proxy and authentication procedures.

Creating a dashboard manually on a system using
other booting tools
To run Kubernetes dashboard, we simply fire a command to apply a configuration
file, and every resource is created automatically:

$ kubectl create -f
https://raw.githubusercontent.com/kubernetes/dashboard/master/src/depl
oy/recommended/kubernetes-dashboard.yaml
secret "kubernetes-dashboard-certs" created
serviceaccount "kubernetes-dashboard" created
role "kubernetes-dashboard-minimal" created
rolebinding "kubernetes-dashboard-minimal" created
deployment "kubernetes-dashboard" created
service "kubernetes-dashboard" created

Advanced Cluster Administration Chapter 18

[641]

Next, let's use the command kubectl proxy to open a gateway connecting localhost
and the API server. Then, we are good to access the dashboard via a browser:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

Once you see a halting result showing, as in the preceding code, you can now access
the dashboard by URL: http:/ /localhost:8001/ api/ v1/ namespaces/ kube- system/
services/https:kubernetes- dashboard:/ proxy/ . There, you will see the following
screen in your browser:

The login portal of Kubernetes dashboard

Advanced Cluster Administration Chapter 18

[642]

To step into our demonstration quickly, we will take the token of an existed service
account to log in with. No matter what booting tool you use, leveraging the one
created by the dashboard is suitable in every case:

// check the service account in your system
$ kubectl get secret -n kube-system
NAME TYPE
DATA AGE
default-token-7jfmd kubernetes.io/service-account-token
3 51d
kubernetes-dashboard-certs Opaque
0 2d
kubernetes-dashboard-key-holder Opaque
2 51d
kubernetes-dashboard-token-jw42n kubernetes.io/service-account-token
3 2d
// grabbing token by checking the detail information of the service
account with prefix "kubernetes-dashboard-token-"
$ kubectl describe secret kubernetes-dashboard-token-jw42n -n kube-
system
Name: kubernetes-dashboard-token-jw42n
Namespace: kube-system
Labels: <none>
Annotations: kubernetes.io/service-account.name=kubernetes-dashboard
 kubernetes.io/service-account.uid=253a1a8f-210b-11e8-
b301-8230b6ac4959
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
namespace: 11 bytes
token:
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY
2VhY2NvdW50Ii....

Advanced Cluster Administration Chapter 18

[643]

Copy the token and paste it into console on the browser, then, click SIGN IN:

Authentication with the token of a service account

Advanced Cluster Administration Chapter 18

[644]

Welcome to the dashboard home page:

The home page of the Kubernetes dashboard

How it works...
Kubernetes dashboard has two main functions: inspecting the status of resources, and
deploying resources. It can cover most of our works in the client terminal using the
command kubectl, however, the graphic interface is more friendly.

Advanced Cluster Administration Chapter 18

[645]

Browsing your resource by dashboard
We can check both hardware and software resources on the dashboard. For example,
to take a look at the nodes a cluster, click on Nodes under the Cluster section in the
left-hand menu; every node in the current cluster will be shown on the page, with
some basic information:

The status of Kubernetes nodes on the dashboard

Your result on screen may be different from the preceding screenshot, since it will be
based on your environment. Go ahead and click on the name of one node; even more
details will be shown. Some of them are illustrated in beautiful graphs:

Computing the resource status of a node

Advanced Cluster Administration Chapter 18

[646]

To show software resources, let's take a look at the one holding this dashboard. In the
left-hand menu, change the Namespace to kube-system and click Overview, which
gathers all the resources under this Namespace. It is easy to find out any issue by
putting resources together on a single page with a clear diagram:

Resource overview of the namespace kube-system

Advanced Cluster Administration Chapter 18

[647]

There's more; click on the Deployments kubernetes-dashboard, and then click the
small text-file icon on the right side of the only pod in the replica set. You can see the
logs for the container:

Deployment information of kubernetes-dashboard

Advanced Cluster Administration Chapter 18

[648]

 Logs of the dashboard application

Now, we have seen that Kubernetes dashboard provides a brilliant interface for
displaying resource status, covering nodes, Kubernetes workloads and controllers,
and the application log.

Deploying resources by dashboard
Here, we will prepare a YAML configuration file for creating Kubernetes
Deployments and related Services under a new Namespace. It will be used to build
resources through the dashboard:

// the configuration file for creating Deployment and Service on new
Namespace: dashboard-test
$ cat my-nginx.yaml
apiVersion: apps/v1beta2

Advanced Cluster Administration Chapter 18

[649]

kind: Deployment
metadata:
 name: my-nginx
 namespace: dashboard-test
spec:
 replicas: 3
 selector:
 matchLabels:
 run: demo
 template:
 metadata:
 labels:
 run: demo
 spec:
 containers:
 - name: my-container
 image: nginx
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: my-nginx
 namespace: dashboard-test
spec:
 ports:
 - protocol: TCP
 port: 80
 type: NodePort
 selector:
 run: demo

First, click the CREATE button on the top right side of the web page.

There are three methods for deployment. Let's choose the second one and upload the
configuration file introduced previously. Click the UPLOAD button:

Advanced Cluster Administration Chapter 18

[650]

Creating a resource by configuration file

Unfortunately, errors happened:

Error message for problems due to bad deployment

Dashboard displays the resource according to a given Namespace, which is picked by
user on the left-hand menu. This error message popped up and told users that the
Namespace mentioned in the file does not match to dashboard one. What we have to
do is to create a new Namespace and switch to it.

This time, we are going to create a Namespace using plain text. Click
the CREATE button again, and pick the create from text input method. Paste the
following lines for a new Namespace to the web page:

apiVersion: v1
kind: Namespace
metadata:
 name: dashboard-test

Advanced Cluster Administration Chapter 18

[651]

Now, we have a new Namespace, dashboard-test. Choose it as the main
Namespace on the dashboard, and submit the my-nginx.yaml file again:

Picking a correct Namespace before submitting the configuration file

Now you can see the overview of this deployment! Yellow circles mean the pending
status. They will turn to green once the pods are ready, or turn to red if they failed,
but you will not see red ones if you are following these steps:

Status graph of creating a resource

Advanced Cluster Administration Chapter 18

[652]

Removing resources by dashboard
We can also remove Kubernetes resources through the dashboard. Try to find the
Service my-nginx we just created by yourself! Perform the following:

Change the Namespace on the left-hand menu to dashboard-test
Click Services under the Discovery and load balancing section on left-
hand menu
Click the Service my-nginx on the hyperlinked name
Click DELETE at the top right of the page, below the CREATE button

That's it! Once you see your screen launching a message for confirmation, just click it.
Finally, you have not only created a resource but also removed it from the Kubernetes
dashboard.

See also
This recipe described how to launch a web interface that will help with easily
exploring and managing Kubernetes instances, such as pods, deployments, and
services, without the kubectl command. Please refer to the following recipes on how
to get detailed information via the kubectl command.

The Working with Pods, Deployment API, and Working with Services recipes in
Chapter 13, Walking through Kubernetes Concepts

Working with the RESTful API
Users can control Kubernetes clusters via the kubectl command; it supports local
and remote execution. However, some administrators or operators may need to
integrate a program to control the Kubernetes cluster.

Kubernetes has a RESTful API that controls Kubernetes clusters via an API, similar to
the kubectl command. Let's learn how to manage Kubernetes resources by
submitting API requests.

Advanced Cluster Administration Chapter 18

[653]

Getting ready
In this recipe, to bypass additional network settings and having to verify permissions,
we will demonstrate the a minikube-created cluster with a Kubernetes proxy: it is easy
to create a Kubernetes cluster on the host, and enable local proximity to an API server
with a proxy entry.

First, run up a proxy for fast API request forwarding:

//curl by API endpoint
$ kubectl proxy
Starting to serve on 127.0.0.1:8001

Having worked with Kubernetes proxy for a while, you may find it is somehow
annoying that the command kubectl proxy is a halt process on your terminal,
forcing you to open a new channel for the following commands. To avoid this, just
add & as the last parameter in your command. This & symbol in the shell will make
your command run in the background:

$ kubectl proxy &
[1] 6372
Starting to serve on 127.0.0.1:8001

Be aware that you should kill this process manually if you don't use the proxy:

$ kill -j9 6372

Then, it is good to try the endpoint with a simple path, /api:

$ curl http://127.0.0.1:8001/api
{
 "kind": "APIVersions",
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "10.0.2.15:8443"
 }
]
}

Once you see some basic API server information showing as in the preceding code,
congratulations! You can now play with the kubernetes RESTful API of Kubernetes.

Advanced Cluster Administration Chapter 18

[654]

A secured way to access the Kubernetes API server

However, if you consider accessing a more secure API server, likes a
kubeadm cluster, the following items should be taken care of:

The endpoint of the API server
Token for authentication

We can get the required information through the following
commands. And you can successfully fire the API request for the
version:

$ APISERVER=$(kubectl config view | grep server | cut -
f 2- -d ":" | tr -d " ")
// get the token of default service account
$ TOKEN=$(kubectl get secret --field-selector
type=kubernetes.io/service-account-token -o name | grep
default-token- | head -n 1 | xargs kubectl get -o
'jsonpath={.data.token}' | base64 -d)
$ curl $APISERVER/api -H "Authorization: Bearer $TOKEN"
--insecure

On the other hand, you may see a message showing permission
denied when accessing resources in kubeadm. If so, the solution is
to bind the default service account to the role of administrator, that
is cluster-admin in kubeadm system. We provide the
configuration file rbac.yaml in the code bundle; please check it out
if you need it:

$ curl $APISERVER/api/v1/namespaces/default/services -H
"Authorization: Bearer $TOKEN" --insecure
...
 "status": "Failure",
 "message": "services is forbidden: User
\"system:serviceaccount:default:default\" cannot list
services in the namespace \"default\"",
 "reason": "Forbidden",
...
$ kubectl create -f rbac.yaml
clusterrolebinding "fabric8-rbac" created
// now the API request is successful
$ curl $APISERVER/api/v1/namespaces/default/services -H
"Authorization: Bearer $TOKEN" --insecure
{

Advanced Cluster Administration Chapter 18

[655]

 "kind": "ServiceList",
 "apiVersion": "v1",
 "metadata": {
 "selfLink":
"/api/v1/namespaces/default/services",
 "resourceVersion": "291954"
 },
...

Be careful of the --insecure flags, since the endpoint using
HTTPS protocol, and -H, add headers with a token. These are the
additional ones comparing with our naive demonstration settings.

How to do it...
In this section, we will show you how to manage resources through the RESTful API.
Generally, the command line pattern of curl will cover the following ideas:

The operation: curl without an indicating operation will fire GET by
default. To specify your operation, add one with the X flag.
The body data: Like creating a Kubernetes resource through kubectl, we
apply resource configuration with the d flag. The value with symbol @ can
attach a file. Additionally, the h flag helps to add request headers; here we
need to add content type in the JSON format.
The URL: There are various paths after the endpoint, based on different
functions.

Let's create a deployment using the following JSON configuration file:

$ cat nginx-deployment.json
{
 "apiVersion": "apps/v1",
 "kind": "Deployment",
 "metadata": {
 "name": "my-nginx"
 },
 "spec": {
 "replicas": 2,
 "selector": {
 "matchLabels": {
 "app": "nginx"
 }
 },

Advanced Cluster Administration Chapter 18

[656]

 "template": {
 "metadata": {
 "labels": {
 "app": "nginx"
 }
 },
 "spec": {
 "containers": [
 {
 "image": "nginx",
 "name": "my-nginx"
 }
]
 }
 }
 }
}

We can get every function in the API reference page (https:/ / kubernetes. io/docs/
reference/generated/ kubernetes- api/v1. 10/). It is similar to searching for the
configuration of a resource while writing up a configuration file. To submit an API
request, you should know what kind of resource to work on, and what operation to
perform on it. Perform the following procedures to find the corresponding
information on the reference webpage:

Choose an resource.1.
Choose an operation, for example, read or write.2.
Choose the details of the operation, for example, Create or Delete.3.
The information will show in the middle panel of the webpage. An optional4.
step is to switch kubectl to curl on the top right of the console. More
details such as command flags will show on the right panel.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/

Advanced Cluster Administration Chapter 18

[657]

To check the information for creating a Deployment, your web console may look as it
does in this screenshot:

The steps finding the path for API using to create a deployment

Based on the reference page, we can combine a specified curl command and fire a
request now:

$ curl -X POST -H "Content-type: application/json" -d @nginx-
deployment.json
http://localhost:8001/apis/apps/v1/namespaces/default/deployments
{
 "kind": "Deployment",
 "apiVersion": "apps/v1",
 "metadata": {
 "name": "my-nginx",
 "namespace": "default",
 "selfLink": "/apis/apps/v1/namespaces/default/deployments/my-
nginx",
 "uid": "6eca324e-2cc8-11e8-806a-080027b04dc6",
 "resourceVersion": "209",
 "generation": 1,
 "creationTimestamp": "2018-03-21T05:26:39Z",
 "labels": {
 "app": "nginx"
 }
 },
...

Advanced Cluster Administration Chapter 18

[658]

For a successful request, the server returns the status of the resource. Go ahead and
check if we can find the new Deployment through the kubectl command:

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my-nginx 2 2 2 2 1m

Of course, it also works while checking it via the RESTful API:

// the operation "-X GET" can be ignored, since
$ curl -X GET
http://localhost:8001/apis/apps/v1/namespaces/default/deployments

Next, try to delete this new Deployment, my-nginx, as well. It is a kind of write
operation:

$ curl -X DELETE
http://localhost:8001/apis/apps/v1/namespaces/default/deployments/my-n
ginx
{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {
 },
 "status": "Success",
 "details": {
 "name": "my-nginx",
 "group": "apps",
 "kind": "deployments",
 "uid": "386a3aaa-2d2d-11e8-9843-080027b04dc6"
 }
}

How it works...
The RESTful API allows CRUD (Create, Read, Update, and Delete) operations, which
are the same concepts behind every modern web application. For more details, please
refer to https:/ /en. wikipedia. org/ wiki/Create,_ read,_ update_ and_delete.

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Advanced Cluster Administration Chapter 18

[659]

According to the CRUD structure, the Kubernetes RESTful API has the following
basic method:

Operation HTTP
Method Example

Create POST POST /api/v1/namespaces/default/pods

Read GET GET /api/v1/componentstatuses

Update PUT
PUT /apis/apps/v1/namespaces/default/deployments/my-
nginx

Delete DELETE
DELETE /api/v1/namespaces/default/services/nginx-
service

As we mentioned in the recipe Working with configuration files in Chapter 14, Playing
with Containers, Kubernetes builds the RESTful API with swagger (https:/ / swagger.
io/) and OpenAPI (https:/ /www. openapis. org). We can open the swagger UI
console of your cluster to check the API functions. Nevertheless, it is recommended
that you check them through the official website, the one we demonstrated in the last
section. The description on the website is more elaborate and user-friendly.

There's more...
An even more programmatic way to utilize Kubernetes API is to use the client library
(https://kubernetes. io/ docs/ reference/ client- libraries/). Making good use of
these client tools not only saves you time in resource management, but also produce a
robust and reliable CI/CD environment. Here, we would like to introduce the
Kubernetes client library for Python: https:/ /github. com/ kubernetes- client/
python. To start, you should install the Python library for Kubernetes:

$ pip install kubernetes

Then, please put the following Python file at the same location as the JSON
configuration file, nginx-deployment.json, where firing kubectl does work on
the system:

$ cat create_deployment.py
from kubernetes import client, config
import json
config.load_kube_config()
resource_config = json.load(open("./nginx-deployment.json"))
api_instance = client.AppsV1Api()
response =
api_instance.create_namespaced_deployment(body=resource_config,

https://swagger.io
https://swagger.io
https://swagger.io
https://swagger.io
https://swagger.io
https://swagger.io
https://swagger.io
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://kubernetes.io/docs/reference/client-libraries/
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python

Advanced Cluster Administration Chapter 18

[660]

namespace="default")
print("success, status={}".format(response.status))

You don't even enable the Kubernetes proxy now; continue to run this script directly
and see what happens:

$ python create_deployment.py

See also
This recipe described how to use the Kubernetes RESTful API via a program. It is
important to integrate this with your automation program remotely. For detailed
parameter and security enhancement, please refer to the following recipe:

The Working with configuration files recipe in Chapter 14, Playing with
Containers

Working with Kubernetes DNS
When you deploy many pods to a Kubernetes cluster, service discovery is one of the
most important functions, because pods may depend on other pods but the IP
address of a pod will be changed when it restarts. You need to have a flexible way to
communicate a pod's IP address to other pods. Kubernetes has an add-on feature
called kube-dns that helps in this scenario. It can register and look up an IP address
for pods and Kubernetes Services.

In this section, we will explore how to use kube-dns, which gives you a flexible way
to configure DNS in your Kubernetes cluster.

Getting ready
Since Kubernetes version 1.3, kube-dns has come with Kubernetes and is enabled by
default. To check whether kube-dns is working or not, check the kube-system
namespace with the following command:

$ kubectl get deploy kube-dns --namespace=kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kube-dns 1 1 1 1 1d

Advanced Cluster Administration Chapter 18

[661]

If you are using minikube, type the following command to see the addon's status:

$ minikube addons list |grep kube-dns
- kube-dns: enabled

If it shows as disabled, you need to enable it using the following command:

$ minikube addons enable kube-dns

In addition, prepare two namespaces, chap8-domain1 and chap8-domain2, to
demonstrate how kube-dns assigns domain names:

$ kubectl create namespace chap8-domain1
namespace "chap8-domain1" created

$ kubectl create namespace chap8-domain2
namespace "chap8-domain2" created

//check chap8-domain1 and chap8-domain2
$ kubectl get namespaces
NAME STATUS AGE
chap8-domain1 Active 16s
chap8-domain2 Active 14s
default Active 4h
kube-public Active 4h
kube-system Active 4h

How to do it...
kube-dns assigns the fully qualified domain name (FQDN) to pods and
Kubernetes Services. Let's look at some differences.

DNS for pod
Kubernetes assigns the domain name for the pod as <IP address>.<Namespace
name>.pod.cluster.local. Because it uses the pod's IP address, FQDN is not
guaranteed to be present permanently, but it is nice to have in case an application
needs FQDN.

Let's deploy apache2 (httpd) on chap8-domain1 and chap8-domain2, as follows:

$ kubectl run my-apache --image=httpd --namespace chap8-domain1
deployment "my-apache" created

Advanced Cluster Administration Chapter 18

[662]

$ kubectl run my-apache --image=httpd --namespace chap8-domain2
deployment "my-apache" created

Type kubectl get pod -o wide to capture an IP address for those pods:

$ kubectl get pods -o wide --namespace=chap8-domain1
NAME READY STATUS RESTARTS AGE
IP NODE
my-apache-55fb679f49-qw58f 1/1 Running 0 27s
172.17.0.4 minikube

$ kubectl get pods -o wide --namespace=chap8-domain2
NAME READY STATUS RESTARTS AGE
IP NODE
my-apache-55fb679f49-z9gsr 1/1 Running 0 26s
172.17.0.5 minikube

This shows that my-apache-55fb679f49-qw58f on chap8-domain1 uses
172.17.0.4. On the other hand, my-apache-55fb679f49-z9gsr on chap8-
domain2 uses 172.17.0.5.

In this case, the FQDN would be:

172-17-0-4.chap8-domain1.pod.cluster.local (chap8-domain1)

172-17-0-5.chap8-domain2.pod.cluster.local (chap8-domain2)

Note that the dots (.) in the IP address are changed to hyphens (-).
This is because the dot is a delimiter to determine subdomains.

To check whether name resolution works or not, launch the busybox pod in the
foreground (using the -it option). Then use the nslookup command to resolve
FQDN to the IP address, as in the following steps:

Run busybox with the -it option:1.

$ kubectl run -it busybox --restart=Never --image=busybox

In the busybox pod, type nslookup to resolve the FQDN of apache on2.
chap8-domain1:

nslookup 172-17-0-4.chap8-domain1.pod.cluster.local

Advanced Cluster Administration Chapter 18

[663]

Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Name: 172-17-0-4.chap8-domain1.pod.cluster.local
Address 1: 172.17.0.4

Also, type nslookup to resolve the FQDN of apache on chap8-domain2:3.

nslookup 172-17-0-5.chap8-domain2.pod.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Name: 172-17-0-5.chap8-domain2.pod.cluster.local
Address 1: 172.17.0.5

Exit the busybox pod, then delete it to release a resource:4.

exit
$ kubectl delete pod busybox
pod "busybox" deleted

DNS for Kubernetes Service
First of all, DNS for Kubernetes Service is most important from the service discovery
point of view. This is because an application usually connects to Kubernetes Service
instead of connecting to the pod. This is why the application looks up the DNS entry
for Kubernetes Service more often than for the pod.

Secondly, the DNS entry for Kubernetes Service will use the name of Kubernetes
Service instead of an IP address. For instance, it will look like this: <Service
Name>.<Namespace name>.svc.cluster.local.

Lastly, Kubernetes Service has 2 different behaviors for DNS; either normal service or
headless service. Normal service has its own IP address, while headless service uses
the pod's IP address(es). Let's go through normal service first.

Normal service is the default Kubernetes Service. It will assign an IP address. Perform
the following steps to create a normal service and check how DNS works:

Create a normal service for apache on chap8-domain1 and chap8-1.
domain2:

$ kubectl expose deploy my-apache --namespace=chap8-

Advanced Cluster Administration Chapter 18

[664]

domain1 --name=my-apache-svc --port=80 --type=ClusterIP
service "my-apache-svc" exposed

$ kubectl expose deploy my-apache --namespace=chap8-
domain2 --name=my-apache-svc --port=80 --type=ClusterIP
service "my-apache-svc" exposed

Check the IP address for those two services by running the following2.
command:

$ kubectl get svc my-apache-svc --namespace=chap8-domain1
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
my-apache-svc ClusterIP 10.96.117.206 <none>
80/TCP 32s

$ kubectl get svc my-apache-svc --namespace=chap8-domain2
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
my-apache-svc ClusterIP 10.105.27.49 <none>
80/TCP 49s

In order to perform name resolution, use the busybox pod in the3.
foreground:

$ kubectl run -it busybox --restart=Never --image=busybox

In the busybox pod, use the nslookup command to query the IP address of4.
those two services:

//query Normal Service on chap8-domain1
nslookup my-apache-svc.chap8-domain1.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Name: my-apache-svc.chap8-domain1.svc.cluster.local
Address 1: 10.96.117.206 my-apache-svc.chap8-
domain1.svc.cluster.local

//query Normal Service on chap8-domain2
nslookup my-apache-svc.chap8-domain2.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Advanced Cluster Administration Chapter 18

[665]

Name: my-apache-svc.chap8-domain2.svc.cluster.local
Address 1: 10.105.27.49 my-apache-svc.chap8-
domain2.svc.cluster.local

Access to service for apache whether traffic can dispatch to the backend5.
apache pod:

wget -q -O - my-apache-svc.chap8-
domain1.svc.cluster.local
<html><body><h1>It works!</h1></body></html>

wget -q -O - my-apache-svc.chap8-
domain2.svc.cluster.local
<html><body><h1>It works!</h1></body></html>

Quit the busybox pod and delete it:6.

exit
$ kubectl delete pod busybox
pod "busybox" deleted

DNS for a normal service behaves as a proxy; traffic goes to the normal service, then
dispatches to the pod. What about the headless service? This will be discussed in
the How it works... section.

DNS for StatefulSet
StatefulSet was described in Chapter 14, Playing with Containers. It assigns a pod
name with a sequence number—for example, my-nginx-0, my-nginx-1, my-
nginx-2. StatefulSet also uses these pod names to assign a DNS entry instead of IP
addresses. Because it uses Kubernetes Service, FQDN appear as
follows: <StatefulSet name>-<sequence number>.<Service
name>.<Namespace name>.svc.cluster.local.

Let's create StatefulSet to examine how DNS works in StatefulSet:

Prepare StatefulSet and normal service YAML configurations as follows:1.

$ cat nginx-sts.yaml
apiVersion: v1
kind: Service
metadata:
 name: nginx-sts-svc
 labels:
 app: nginx-sts

Advanced Cluster Administration Chapter 18

[666]

spec:
 ports:
 - port: 80
 selector:
 app: nginx-sts

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: nginx-sts
spec:
 serviceName: "nginx-sts-svc"
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx-sts
 spec:
 containers:
 - name: nginx-sts
 image: nginx
 ports:
 - containerPort: 80
 restartPolicy: Always

Create StatefulSet on chap8-domain2:2.

$ kubectl create -f nginx-sts.yaml --namespace=chap8-
domain2
service "nginx-sts-svc" created
statefulset "nginx-sts" created

Use the kubectl command to check the status of the pod and service3.
creation:

//check StatefulSet (in short sts)
$ kubectl get sts --namespace=chap8-domain2
NAME DESIRED CURRENT AGE
nginx-sts 3 3 46s

//check Service (in short svc)
$ kubectl get svc nginx-sts-svc --namespace=chap8-domain2
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
nginx-sts-svc ClusterIP 10.104.63.124 <none>
80/TCP 8m

Advanced Cluster Administration Chapter 18

[667]

//check Pod with "-o wide" to show an IP address
$ kubectl get pods --namespace=chap8-domain2 -o wide
NAME READY STATUS RESTARTS
AGE IP NODE
my-apache-55fb679f49-z9gsr 1/1 Running 1
22h 172.17.0.4 minikube
nginx-sts-0 1/1 Running 0
2m 172.17.0.2 minikube
nginx-sts-1 1/1 Running 0
2m 172.17.0.9 minikube
nginx-sts-2 1/1 Running 0
1m 172.17.0.10 minikube

Launch the busybox pod in the foreground:4.

$ kubectl run -it busybox --restart=Never --image=busybox

Use the nslookup command to query the service's IP address:5.

nslookup nginx-sts-svc.chap8-domain2.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Name: nginx-sts-svc.chap8-domain2.svc.cluster.local
Address 1: 10.104.63.124 nginx-sts-svc.chap8-
domain2.svc.cluster.local

Use the nslookup command to query the individual pod's IP address:6.

nslookup nginx-sts-0.nginx-sts-svc.chap8-
domain2.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local
Name: nginx-sts-0.nginx-sts-svc.chap8-
domain2.svc.cluster.local
Address 1: 172.17.0.2 nginx-sts-0.nginx-sts-svc.chap8-
domain2.svc.cluster.local

nslookup nginx-sts-1.nginx-sts-svc.chap8-
domain2.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local
Name: nginx-sts-1.nginx-sts-svc.chap8-
domain2.svc.cluster.local

Advanced Cluster Administration Chapter 18

[668]

Address 1: 172.17.0.9 nginx-sts-1.nginx-sts-svc.chap8-
domain2.svc.cluster.local

nslookup nginx-sts-2.nginx-sts-svc.chap8-
domain2.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local
Name: nginx-sts-2.nginx-sts-svc.chap8-
domain2.svc.cluster.local
Address 1: 172.17.0.10 nginx-sts-2.nginx-sts-svc.chap8-
domain2.svc.cluster.local

Clean up the busybox pod:7.

exit
$ kubectl delete pod busybox
pod "busybox" deleted

How it works...
We have set up several components to see how DNS entries are created initially. The
Kubernetes Service name is especially important for determining the name of a DNS.

However, Kubernetes Service has 2 modes, either normal service or headless service.
Normal service has already been described in the preceding section; it has its own IP
address. On the other hand, headless service doesn't have an IP address.

Let's see how to create a headless service and how name resolution works:

Create a headless service (specify --cluster-ip=None) for apache on1.
chap8-domain1 and chap8-domain2:

$ kubectl expose deploy my-apache --namespace=chap8-
domain1 --name=my-apache-svc-hl --port=80 --type=ClusterIP
--cluster-ip=None
service "my-apache-svc-hl" exposed

$ kubectl expose deploy my-apache --namespace=chap8-
domain2 --name=my-apache-svc-hl --port=80 --type=ClusterIP
--cluster-ip=None
service "my-apache-svc-hl" exposed

Advanced Cluster Administration Chapter 18

[669]

Check there is no IP address for those two headless services with the2.
following command:

$ kubectl get svc my-apache-svc-hl --namespace=chap8-
domain1
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
my-apache-svc-hl ClusterIP None <none>
80/TCP 13m

$ kubectl get svc my-apache-svc-hl --namespace=chap8-
domain2
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
my-apache-svc-hl ClusterIP None <none>
80/TCP 13m

Launch the busybox pod in the foreground:3.

$ kubectl run -it busybox --restart=Never --image=busybox

In the busybox pod, query those two services. It must show the addresses4.
as the pod's address (172.168.0.4 and 172.168.0.5):

nslookup my-apache-svc-hl.chap8-
domain1.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Name: my-apache-svc-hl.chap8-domain1.svc.cluster.local
Address 1: 172.17.0.4

nslookup my-apache-svc-hl.chap8-
domain2.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-
system.svc.cluster.local

Name: my-apache-svc-hl.chap8-domain2.svc.cluster.local
Address 1: 172.17.0.5

Advanced Cluster Administration Chapter 18

[670]

Exit the busybox pod and delete it:5.

exit
$ kubectl delete pod busybox
pod "busybox" deleted

Headless service when pods scale out
The preceding example shows only one IP address, because we have been setup only
one Pod. What happens if you increase an instance using the kubectl scale
command?

Let's increase the Apache instances on chap8-domain1 from 1 to 3, then see how the
headless service DNS works:

//specify --replicas=3
$ kubectl scale deploy my-apache --namespace=chap8-domain1 --
replicas=3
deployment "my-apache" scaled

//Now there are 3 Apache Pods
$ kubectl get pods --namespace=chap8-domain1 -o wide
NAME READY STATUS RESTARTS AGE
IP NODE
my-apache-55fb679f49-c8wg7 1/1 Running 0 1m
172.17.0.7 minikube
my-apache-55fb679f49-cgnj8 1/1 Running 0 1m
172.17.0.8 minikube
my-apache-55fb679f49-qw58f 1/1 Running 0 8h
172.17.0.4 minikube

//launch busybox to run nslookup command
$ kubectl run -it busybox --restart=Never --image=busybox

//query Headless service name
nslookup my-apache-svc-hl.chap8-domain1.svc.cluster.local
Server: 10.96.0.10

Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: my-apache-svc-hl.chap8-domain1.svc.cluster.local
Address 1: 172.17.0.4
Address 2: 172.17.0.7
Address 3: 172.17.0.8

Advanced Cluster Administration Chapter 18

[671]

//quit busybox and release it
exit
$ kubectl delete pod busybox
pod "busybox" deleted

The result is straightforward: one DNS entry, my-apache-svc-hl.chap8-
domain1.svc.cluster.local returns 3 IP addresses. Therefore, when your HTTP
client tries to access the Kubernetes Service my-apache-svc-hl.chap8-
domain1.svc.cluster.local, it gets these 3 IP addresses from kube-dns, then
accesses one of them directly, as shown in the following diagram:

Sequence of accessing to Headless Service and pod

Therefore, Kubernetes headless service doesn't do any traffic dispatches. This is why
it is called headless.

Advanced Cluster Administration Chapter 18

[672]

See also
This section described how kube-dns names pods and services in DNS. It is
important to understand the differences between normal service and headless service
to understand how to connect to your application. The StatefulSet use case was also
described in the following recipe:

Ensuring flexible usage of your containers in Chapter 14, Playing with
Containers

Authentication and authorization
Authentication and authorization are both crucial for a platform such as Kubernetes.
Authentication ensures users are who they claim to be. Authorization verifies if users
have sufficient permission to perform certain operations. Kubernetes supports
various authentication and authorization plugins.

Getting ready
When a request comes to an API server, it firstly establishes a TLS connection by
validating the clients' certificate with the certificate authority (CA) in the API server.
The CA in the API server is usually at /etc/kubernetes/, and the clients' certificate
is usually at $HOME/.kube/config. After the handshake, it goes to the
authentication stage. In Kubernetes, authentication modules are chain-based. We can
use more than one authentication module. When the request comes, Kubernetes will
try all the authenticators one by one until it succeeds. If the request fails on all
authentication modules, it will be rejected as HTTP 401 unauthorized. Otherwise, one
of the authenticators verifies the user's identity, and the requests are authenticated.
Then, the Kubernetes authorization modules come into play. They verify if the user
has the permission to do the action that they requested using a set of policies.
Authorization modules are checked one by one. Just like authentication modules, if
all modules are failed, the request will be denied. If the user is eligible to make the
request, the request will pass through the authentication and authorization modules
and go into admission control modules. The request will be checked by various
admission controllers one by one. If any admission controller fails the request, the
request will be rejected immediately.

Advanced Cluster Administration Chapter 18

[673]

The following diagram demonstrates this sequence:

Requests passing through a Kubernetes API server

How to do it...
In Kubernetes, there are two types of account; service accounts and user accounts.
The major difference between them is that user accounts are not stored and managed
in Kubernetes itself. They cannot be added through API calls. The following table is a
simple comparison:

Service account User account
Scope Namespaced Global
Used by Processes Normal user
Created by API server or via API calls Administrators, can't be added via API calls
Managed by API server Outside the cluster

Service accounts are used by processes inside a Pod to contact the API server.
Kubernetes by default will create a service account named default. If there is no
service account associated with a Pod, it'll be assigned to the default service account:

// check default service accoun
kubectl describe serviceaccount default
Name: default
Namespace: default
Labels: <none>
Annotations: <none>

Advanced Cluster Administration Chapter 18

[674]

Image pull secrets: <none>
Mountable secrets: default-token-q4qdh
Tokens: default-token-q4qdh
Events: <none>

We may find there is a Secret associated with this service account. This is controlled
by the token controller manager. When a new service account is created, the
controller will create a token and associate it with the service account with
the kubernetes.io/service-account.name annotation, allowing API access.
Token is in the Secret format in Kubernetes. Anybody with the Secret view
permission can see the token. The following is an example of creating a service
account:

// configuration file of a ServiceAccount named chapter8-
serviceaccount
cat serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 name: chapter8-serviceaccount
// create service account
kubectl create -f serviceaccount.yaml
serviceaccount "chapter8-serviceaccount" created
// describe the service account we just created
kubectl describe serviceaccount chapter8-serviceaccount
Name: chapter8-serviceaccount
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: chapter8-serviceaccount-token-nxh47
Tokens: chapter8-serviceaccount-token-nxh47
Events: <none>

Authentication
There are several account authentication strategies supported in Kuberentes, from
client certificates, bearer tokens, and static files to OpenID connect tokens. More than
one option could be chosen and combined with others in authentication chains. In
this recipe, we'll introduce how to use token, client certs, and OpenID connect token
authenticators.

Advanced Cluster Administration Chapter 18

[675]

Service account token authentication
We've created a service account in the previous section; now, let's see how to use a
service account token to do the authentication. We'll have to retrieve the token first:

// check the details of the secret
kubectl get secret chapter8-serviceaccount-token-nxh47 -o yaml
apiVersion: v1
data:
 ca.crt: <base64 encoded>
 namespace: ZGVmYXVsdA==
 token: <bearer token, base64 encoded>
kind: Secret
metadata:
 annotations:
 kubernetes.io/service-account.name: chapter8-serviceaccount
 name: chapter8-serviceaccount-token-nxh47
 namespace: default
 ...
type: kubernetes.io/service-account-token

We can see that the three items under the data are all base64-encoded. We can decode
them easily with the echo "encoded content" | base64 --decode command in
Linux. For example, we can decode encoded namespace content:

echo "ZGVmYXVsdA==" | base64 --decode
default

Using the same command we can get the bearer token and use it in a request. The API
server expects a HTTP header of Authorization: Bearer $TOKEN along with the
request. The following is an example of how to use the token to authenticate and
make a request directly to the API server.

Firstly, we'll have to get our decoded token:

// get the decoded token from secret chapter8-serviceaccount-token-
nxh47
TOKEN=`echo "<bearer token, base64 encoded>" | base64 --decode`

Secondly, we'll have to decode ca.crt as well:

// get the decoded ca.crt from secret chapter8-serviceaccount-token-
nxh47
echo "<ca.crt, base64 encoded>" | base64 --decode > cert

Advanced Cluster Administration Chapter 18

[676]

Next, we'll need to know what the API server is. Using the kubectl config view
command, we can get a list of servers:

kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: REDACTED
 server: https://api.demo-k8s.net
 name: demo-k8s.net
- cluster:
 certificate-authority: /Users/chloelee/.minikube/ca.crt
 server: https://192.168.99.100:8443
 name: minikube
...

Find the one you're currently using. In this example, we're using minikube. The
server is at https://192.168.99.100:8443.

You can use the kubectl config current-context command to
find the current context.

Then we should be good to go! We'll request the API endpoint directly via
https://$APISERVER/api with--cacert and --header

curl --cacert cert https://192.168.99.100:8443/api --header
"Authorization: Bearer $TOKEN"
{
 "kind": "APIVersions",
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "10.0.2.15:8443"
 }
]
}

Advanced Cluster Administration Chapter 18

[677]

We can see that the available version is v1. Let's see what we have in /api/v1
endpoint:

curl --cacert cert https://192.168.99.100:8443/api/v1 --header
"Authorization: Bearer $TOKEN"
{
 "kind": "APIResourceList",
 "groupVersion": "v1",
 "resources": [
 ...
 {
 "name": "configmaps",
 "singularName": "",
 "namespaced": true,
 "kind": "ConfigMap",
 "verbs": [
 "create",
 "delete",
 "deletecollection",
 "get",
 "list",
 "patch",
 "update",
 "watch"
],
 "shortNames": ["cm"]
 }
], ...
}

It will list all the endpoints and verbs we requested. Let's take configmaps as an
example and grep the name:

curl --cacert cert https://192.168.99.100:8443/api/v1/configmaps --
header "Authorization: Bearer $TOKEN" |grep \"name\"
 "name": "extension-apiserver-authentication",
 "name": "ingress-controller-leader-nginx",
 "name": "kube-dns",
 "name": "nginx-load-balancer-conf",

Advanced Cluster Administration Chapter 18

[678]

There are four default configmaps listed in my cluster in this example. We can use
kubectl to verify this. The result should match the ones we previously got:

kubectl get configmaps --all-namespaces
NAMESPACE NAME DATA AGE
kube-system extension-apiserver-authentication 6 6d
kube-system ingress-controller-leader-nginx 0 6d
kube-system kube-dns 0 6d
kube-system nginx-load-balancer-conf 1 6d

X509 client certs
A common authentication strategy for user accounts is to use client certificates. In the
following example, we'll create a user named Linda and generate a client cert for her:

// generate a private key for Linda
openssl genrsa -out linda.key 2048
Generating RSA private key, 2048 bit long modulus
..............+++
..............+++
e is 65537 (0x10001)
// generate a certificate sign request (.csr) for Linda. Make sure /CN
is equal to the username.
openssl req -new -key linda.key -out linda.csr -subj "/CN=linda"

Next, we'll generate a cert for Linda via a private key and sign request files, along
with the CA and private key of our cluster:

In minikube, it's under ~/.minikube/. For other self-hosted
solutions, normally it's under /etc/kubernetes/. If you use kops
to deploy the cluster, the location is under /srv/kubernetes,
where you can find the path in
the/etc/kubernetes/manifests/kube-apiserver.manifest
file.

// generate a cert
openssl x509 -req -in linda.csr -CA ca.crt -CAkey ca.key -
CAcreateserial -out linda.crt -days 30
Signature ok
subject=/CN=linda
Getting CA Private Key

Advanced Cluster Administration Chapter 18

[679]

We got Linda signed by our cluster cert; now we can set it into our kubeconfig file:

kubectl config set-credentials linda --client-certificate=linda.crt
--client-key=linda.key
User "linda" set.

We can use kubectl config view to verify the user is set:

kubectl config view
current-context: minikube
kind: Config
users:
 - name: linda
 user:
 client-certificate: /k8s-cookbooks-2e/ch8/linda.crt
 client-key: /k8s-cookbooks-2e/ch8/linda.key
...

After the user is created, we can create a context to associate the namespace and
cluster with this user:

kubectl config set-context linda-context --cluster=minikube --
user=linda

After that, Kubernetes should be able to identify linda and pass it to the authorization
stage.

OpenID connect tokens
Another popular authentication strategy is OpenID connect tokens. Delegating the
identity verification to OAuth2 providers, is a convenient way to manage users. To
enable the feature, two required flags have to be set to the API server: --oidc-
issuer-url, which indicates the issuer URL that allows the API server to discover
public signing keys, and --oidc-client-id, which is the client ID of your app to
associate with your issuer. For full information, please refer to the official
documentation https:/ /kubernetes. io/docs/ admin/ authentication/
#configuring-the- api- server. The following is an example of how we set Google
OpenID authentication with our minikube cluster. The following steps can be
programmed easily for authentication usage.

https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server
https://kubernetes.io/docs/admin/authentication/#configuring-the-api-server

Advanced Cluster Administration Chapter 18

[680]

To start, we'll have to request a set consisting of the client ID, client secret, and
redirect URL from Google. The following are the steps for requesting and
downloading the secret from Google:

In GCP console, go to APIs & Services | Credentials | Create1.
credentials | OAuth client ID.
Choose Other in application type and click Create.2.
Download the JSON file.3.

After this, the credential is successfully created. We can take a look at the JSON file.
The following is the file we got from our example project kubernetes-cookbook:

cat client_secret_140285873781-
f9h7d7bmi6ec1qa0892mk52t3o874j5d.apps.googleusercontent.com.json
{
 "installed":{
 "client_id":"140285873781
f9h7d7bmi6ec1qa0892mk52t3o874j5d.apps.googleusercontent.com",
 "project_id":"kubernetes-cookbook",
 "auth_uri":"https://accounts.google.com/o/oauth2/auth",
 "token_uri":"https://accounts.google.com/o/oauth2/token",
"auth_provider_x509_cert_url":"https://www.googleapis.com/oauth2/v1/ce
rts",
 "client_secret":"Ez0m1L7436mlJQErhalp3Gda",
 "redirect_uris":[
 "urn:ietf:wg:oauth:2.0:oob",
 "http://localhost"
]
 }
}

Now, we should be able to start our cluster. Don't forget the OIDC flags have to be
passed on. In minikube, this is done via the --extra-config parameter:

// start minikube cluster and passing oidc parameters.
minikube start --extra-config=apiserver.Authorization.Mode=RBAC --
extra-
config=apiserver.Authentication.OIDC.IssuerURL=https://accounts.google
.com --extra-config=apiserver.Authentication.OIDC.UsernameClaim=email
--extra-config=apiserver.Authentication.OIDC.ClientID="140285873781-
f9h7d7bmi6ec1qa0892mk52t3o874j5d.apps.googleusercontent.com"

Advanced Cluster Administration Chapter 18

[681]

After the cluster is started, the user has to log in to the identity provider in order to
get access_token, id_token, and refresh_token. In Google, you'll get a code
after login, and you pass the code with the request to get the tokens. Then we pass the
token to the request to the API server via kubectl. The following is the sequence
diagram for this:

Time diagram of Google OpenID connect authentication

Advanced Cluster Administration Chapter 18

[682]

To request the code, your app should send the HTTP request in the following format:

//
https://accounts.google.com/o/oauth2/v2/auth?client_id=<client_id>&res
ponse_type=code&scope=openid%20email&redirect_uri=urn:ietf:wg:oauth:2.
0:oob
#
https://accounts.google.com/o/oauth2/v2/auth?client_id=140285873781-f9
h7d7bmi6ec1qa0892mk52t3o874j5d.apps.googleusercontent.com&response_typ
e=code&scope=openid%20email&redirect_uri=urn:ietf:wg:oauth:2.0:oob

Then, a browser window will pop out to ask for sign in to Google. After signing in,
the code will be shown in the console:

Next, we pass the code for requesting the token to
https://www.googleapis.com/oauth2/v4/token. Then, we should be able to get
access_token, refresh_token, and id_token from the response:

// curl -d
"grant_type=authorization_code&client_id=<client_id>&client_secret=<cl
ient_secret>&redirect_uri=urn:ietf:wg:oauth:2.0:oob&code=<code>" -X
POST https://www.googleapis.com/oauth2/v4/token
curl -d "grant_type=authorization_code&client_id=140285873781-
f9h7d7bmi6ec1qa0892mk52t3o874j5d.apps.googleusercontent.com&client_sec
ret=Ez0m1L7436mlJQErhalp3Gda&redirect_uri=urn:ietf:wg:oauth:2.0:oob&co
de=4/AAAd5nqWFkpKmxo0b_HZGlcAh57zbJzggKmoOG0BH9gJhfgvQK0iu9w" -X POST
https://www.googleapis.com/oauth2/v4/token
{
 "access_token":
"ya29.GluJBQIhJy34vqJl7V6lPF9YSXmKauvvctjUJHwx72gKDDJikiKzQed9iUnmqEv8
gLYg43H6zTSYn1qohkNce1Q3fMl6wbrGMCuXfRlipTcPtZnFt1jNalqMMTCm",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "1/72xFflvdTRdqhjn70Bcar3qyWDiFw-8KoNm6LdFPorQ",
 "id_token": "eyJhbGc...mapQ"
}

Advanced Cluster Administration Chapter 18

[683]

Assume we'll have the user chloe-k8scookbook@gmail.com to associate with this
Google account. Let's create it in our cluster. We can append user information into
our kubeconfig. The default location of the file is $HOME/.kube/config:

// append to kubeconfig file.
- name: chloe-k8scookbook@gmail.com
 user:
 auth-provider:
 config:
 client-id: 140285873781-
f9h7d7bmi6ec1qa0892mk52t3o874j5d.apps.googleusercontent.com
 client-secret: Ez0m1L7436mlJQErhalp3Gda
 id-token: eyJhbGc...mapQ
 idp-issuer-url: https://accounts.google.com
 refresh-token: 1/72xFflvdTRdqhjn70Bcar3qyWDiFw-8KoNm6LdFPorQ
 name: oidc

After that, let's use the user to list nodes and see if it can pass the authentication:

kubectl --user=chloe-k8scookbook@gmail.com get nodes
Error from server (Forbidden): nodes is forbidden: User "chloe-
k8scookbook@gmail.com" cannot list nodes at the cluster scope

We encounter an authorization error! After verifying the identity, the next step will be
checking if the user has sufficient rights to perform the request.

Authorization
After passing the authentication phase, authorizers take place. Before we move on to
authorization strategies, let's talk about Role and RoleBinding first.

Role and RoleBinding
Role in Kubernetes contains a set of rules. A rule defines a set of permissions for
certain operations and resources by specifying apiGroups, resources, and verbs.
For example, the following role defines a read-only rule for configmaps:

cat role.yaml
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: configmap-ro
rules:
 - apiGroups: ["*"]
 resources: ["configmaps"]

Advanced Cluster Administration Chapter 18

[684]

 verbs: ["watch", "get", "list"]

A RoleBinding is used to associate a role with a list of accounts. The following
example shows we assign the configmap-ro role to a list of subjects. It only has the
user linda in this case:

cat rolebinding.yaml
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: devops-role-binding
subjects:
- apiGroup: ""
 kind: User
 name: linda
roleRef:
 apiGroup: ""
 kind: Role
 name: configmap-ro

Role and RoleBinding are namespaced. Their scope is only within a single
namespace. For accessing cluster-wide resources, we'll need ClusterRole and
ClusterRoleBinding.

For adding namespace into Role or RoleBinding, simply add a
namespace field into the metadata in the configuration file.

ClusterRole and ClusterRoleBinding
ClusterRole and ClusterRoleBinding are basically similar to Role and
RoleBinding. Unlike how Role and RoleBinding are scoped into a single
namespace, ClusterRole and ClusterRoleBinding are used to grant cluster-wide
resources. Therefore, access to resources across all namespaces, non-namespaced
resources, and non-resource endpoints can be granted to ClusterRole, and we can
use ClusterRoleBinding to bind the users and the role.

We can also bind a service account with ClusterRole. As a service account is
namespaced, we'll have to specify its full name, which includes the namespace it's
created in:

system:serviceaccount:<namespace>:<serviceaccountname>

Advanced Cluster Administration Chapter 18

[685]

The following is an example of ClusterRole and ClusterRoleBinding. In this
role, we grant all operations for lots of resources, such as deployments,
replicasets, ingresses, pods, and services to it, and we limit the permission to
read-only for namespaces and events:

cat serviceaccount_clusterrole.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cd-role
rules:
- apiGroups: ["extensions", "apps"]
 resources:
 - deployments
 - replicasets
 - ingresses
 verbs: ["*"]
- apiGroups: [""]
 resources:
 - namespaces
 - events
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources:
 - pods
 - services
 - secrets
 - replicationcontrollers
 - persistentvolumeclaims
 - jobs
 - cronjobs
 verbs: ["*"]---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: cd-role-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cd-role
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: system:serviceaccount:default:chapter8-serviceaccount

Advanced Cluster Administration Chapter 18

[686]

Note [""] in apiGroup; this indicates the core group in Kubernetes.
To see the full list of resources and verbs, check out the Kubernetes
API reference site: https:/ /kubernetes. io/docs/ reference/ .

In this case, we create a cd-role, which is the role for performing continuous
deployment. Also, we create a ClusterRoleBinding to associate the service account
chapter8-serviceaccount with cd-role.

Role-based access control (RBAC)
The concept of role-based access control is surrounded by Role, ClusterRole,
RoleBinding, and ClusterRoleBinding. By role.yaml and rolebinding.yaml,
as we showed previously, Linda should get read-only access to the configmaps
resource. To apply authorization rules to chloe-k8scookbook@gmail.com, simply
associate a ClusterRole and ClusteRoleBinding with it:

cat oidc_clusterrole.yaml
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: oidc-admin-role
rules:
 - apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: admin-binding
subjects:
 - kind: User
 name: chloe-k8scookbook@gmail.com
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: oidc-admin-role
 apiGroup: rbac.authorization.k8s.io

Then, we should be able to see if we can get nodes with the chloe-
k8scookbook@gmail.com user:

kubectl --user=chloe-k8scookbook@gmail.com get nodes
NAME STATUS ROLES AGE VERSION minikube Ready <none> 6d v1.9.4

https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/

Advanced Cluster Administration Chapter 18

[687]

It works like a charm. We didn't encounter the Forbidden error anymore.

Before RBAC, Kubernetes provided Attribute-based access control
(ABAC), which allows a cluster administrator to define a set of user
authorization polices into a file with one JSON per line format.
However, the file has to exist when launching the API server, which
makes it unusable in the real world. After RBAC was introduced in
Kubernetes 1.6, ABAC became legacy and was deprecated.

Admission control
Admission control modules come into play after Kubernetes verifies who makes
requests and whether the requester has sufficient permission to perform them. Unlike
authentication and authorization, admission control can see the content of the
request, or even have the ability to validate or mutate it. If the request doesn't pass
through one of admission controllers, the request will be rejected immediately. For
turning on admission controllers in Kubernetes, simply pass --admission-control
(version < 1.10) --enable-admission-plugins (version >= 1.10)

parameters when starting the API server.

Depending on how you provision your cluster, the method for
passing on the --enable-admission-plugin parameter may
vary. In minikube, adding --extra-
config=apiserver.Admission.PluginNames=

$ADMISSION_CONTROLLERS and separate controllers with commas
should do the trick.

Different admission controllers are designed for different purposes. In the following
recipe, we'll introduce some important admission controllers and those that
Kubernetes officially recommends that users have. The recommended list for version
>= 1.6.0 is as follows: NamespaceLifecycle, LimitRanger, ServiceAccount,
PersistentVolumeLabel, DefaultStorageClass, DefaultTolerationSeconds,
ResourceQuota.

Please note that the sequence of admission controllers matters since the requests pass
one by one in sequence (this is true for versions before 1.10, using the --admission-
control option; in v1.10, the parameter is replaced by --enable-admission-
plugins and the sequence no longer matters). We don't want to have
ResourceQuota checking first and finding out that the resource information is
outdated after checking the long chain of admission controllers.

Advanced Cluster Administration Chapter 18

[688]

If the version is >= 1.9.0, MutatingAdmissionWebhook and
ValidatingAdmissionWebhook will be added before ResourceQuota. For more
information about MutatingAdmissionWebhook and
ValidatingAdmissionWebhook, please refer to the There's more section in this
recipe.

NamespaceLifecycle
When a namespace is deleted, all objects in that namespace will be evicted as well.
This plugin ensures no new object creation requests can be made in a namespace that
is terminating or non-existent. It also saves Kubernetes native Namespaces from
deletion.

LimitRanger
This plugin ensures LimitRange can work properly. With LimitRange, we can set
default requests and limits in a namespace, be used when launching a pod without
specifying the requests and limits.

ServiceAccount
The ServiceAccount plugin must be added if you intend to leverage ServiceAccount
objects in your use cases. For more information about ServiceAccount, revisit
ServiceAccount as we learned it in this recipe.

PersistentVolumeLabel (deprecated from v1.8)
PersistentVolumeLabel adds labels to newly-created PV's, based on the labels
provided by the underlying cloud provider. This admission controller has been
deprecated from 1.8. The function of this controller is now taken care of by cloud
controller manager, which defines cloud-specific control logic and runs as a daemon.

DefaultStorageClass
This plugin ensures default storage classes can work as expected if no StorageClass
is set in a PersistentVolumeClaim. Different provisioning tools with different
cloud providers will leverage DefaultStorageClass (such as GKE, which uses
Google Cloud Persistent Disk). Ensure you have this enabled.

Advanced Cluster Administration Chapter 18

[689]

DefaultTolerationSeconds
Taints and tolerations are used to prevent a set of pods from scheduling running on
some nodes. Taints are applied to nodes, while tolerations are specified for pods. The
value of taints could be NoSchedule or NoExecute. If pods running one tainted node
have no matching toleration, the pods will be evicted.

The DefaultTolerationSeconds plugin is used to set those pods without any
toleration set. It will then apply for the default toleration for the taints
notready:NoExecute and unreachable:NoExecute for 300 s. If a node is not ready
or unreachable, wait for 300 seconds before the pod is evicted from the node.

ResourceQuota
Just like LimitRange, if you're using the ResourceQuota object to administer
different levels of QoS, this plugin must be enabled. The ResourceQuota should be
always be put at the end of the admission control plugin list. As we mentioned in the
ResourceQuota section, if the used quota is less than the hard quota, resource quota
usage will be updated to ensure that clusters have sufficient resources to accept
requests. Putting it into the end of ServiceAccount admission controller list could
prevent the request from increasing quota usage prematurely if it eventually gets
rejected by the following controllers.

DenyEscalatingExec
This plugin denies any kubectl exec and kubectl attach command escalated privilege
mode. Pods with privilege mode have access to the host namespace, which could
become a security risk.

AlwaysPullImages
The pull policy defines the behavior when kubelet is pulling images. The default pull
policy is IfNotPresent; that is, it will pull the image if it is not present locally. If this
plugin is enabled, the default pull policy will become Always, which is, always pull
the latest image. This plugin also provides another benefit if your cluster is shared by
different teams. Whenever a pod is scheduled, it'll always pull the latest image
whether the image exists locally or not. Then we can ensure pod creation requests
always go through an authorization check against the image.

Advanced Cluster Administration Chapter 18

[690]

For a full list of admission controllers, visit the official site (https:/ / kubernetes. io/
docs/admin/admission- controllers) for more information.

There's more…
Before Kubernetes 1.7, admission controllers needed to compile with the API server,
and configure before the API server starts. Dynamic admission control is designed to
break these limitations. As two major components in dynamic admission control are
both not GA at the moment we wrote this book, excepting adding them into the
admission control chain, additional runtime configuration is required in the API
server: --runtime-config=admissionregistration.k8s.io/v1alpha1.

In minikube, ServiceAccount runtime config is set to api/all, so it's
enabled by default.

Initializers (alpha)
Initializers are a set of tasks during the object initialization stage. They could be a set
of checks or mutations to perform force policies or inject defaults. For example, you
could implement an initializer to inject a sidecar container or a volume containing test
data to a pod. Initializers are configured in metadata.initializers.pending for
an object. After the corresponding initializer controller (identified by name) performs
the task, it'll remove its name from the metadata. If for some reasonsone initializer
doesn't work well, all the objects with that initializer will be stuck in ServiceAccount
uninitialized stage, and not visible in the API. Use it with caution.

Webhook admission controllers (beta in v1.9)
There are two types of webhook admission controller as of v1.10:

ValidatingAdmissionWebhook: It can do extra customized validation to
reject the request
MutatingAdmissionWebhooks: It can mutate the object to force default
policies

https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers
https://kubernetes.io/docs/admin/admission-controllers

Advanced Cluster Administration Chapter 18

[691]

For more implementation information, please refer to the official documents:
https://kubernetes. io/ docs/ admin/ extensible- admission- controllers/

See also
The following recipes are of relevance to this section:

Working with Namespaces in Chapter 13, Walking through Kubernetes Concepts
Setting up continuous delivery pipelines in Chapter 16, Building Continuous
Delivery Pipelines
Advanced settings in kubeconfig in Chapter 18, Advanced Cluster
Administration
Working with ServiceAccount RESTful API in Chapter 18, Advanced Cluster
Administration

https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/
https://kubernetes.io/docs/admin/extensible-admission-controllers/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Docker - Second Edition
Russ McKendrick, Scott Gallagher

ISBN: 978-1-78728-024-3

Become fluent in the basic components and concepts of Docker
Secure your containers and files with Docker's security features
Extend Docker and solve architectural problems using first- and third-party
orchestration tools, service discovery, and plugins
Leverage the Linux container virtualization paradigm by creating highly
scalable applications

Other Books You May Enjoy

[693]

Kubernetes Design Patterns and Extensions

Matt Smith

ISBN: 978-1-78961-927-0

Understand and classify software designs as per the cloud-native paradigm
Apply best practices in Kubernetes with design patterns
Set up Kubernetes clusters in managed and unmanaged environments
Explore Kubernetes extension points
Extend Kubernetes with custom resources and controllers
Integrate dynamic admission controllers
Develop and run custom schedulers in Kubernetes
Analyze networking models in Kubernetes

Other Books You May Enjoy

[694]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
Accelerated Processing Unit (APU) 182
admission controllers
 about 687
 AlwaysPullImages plugin 689
 DefaultStorageClass plugin 688
 DefaultTolerationSeconds plugin 689
 DenyEscalatingExec plugin 689
 LimitRanger plugin 688
 NamespaceLifecycle plugin 688
 PersistentVolumeLabel plugin 688
 reference link 690
 ResourceQuota plugin 689
 ServiceAccount plugin 688
advanced settings, kubeconfig
 cleaning up 629
 clusters, setting 627
 contexts, setting 628
 credentials, setting 626
 current-context, changing 628
Amazon ECS 191
Amazon EKS
 reference link 267, 613
Amazon Elastic Block Store (EBS) 605
Amazon Web Service Elastic Block Store (AWS

EBS) 388, 391
Amazon Web Services (AWS)
 about 581
 IAM user, creating 582, 584
 Kubernetes cluster, managing by kops 614,

615

 reference link 581
 subnets, creating 588, 590
 using, as Kubernetes Cloud Provider 605,

606, 613
 Virtual Private Cloud (VPC), creating 588,

590

 working with 581, 587
Ansible (kubespray)
 used, for setting up Kubernetes cluster on

Linux 295, 306, 310
Ansible ad hoc command
 executing, to test environment 302
Ansible inventory
 maintaining 301
Ansible troubleshooting
 about 303
 ssh logon user, specifying 305
 ssh port, changing 305
 sudo password, specifying 304
Ansible
 common issues 305
 installing 297
Apache Mesos 191
API server (kube-apiserver) 262
Application Load Balancer (ALB) 605
application updates
 blue-green deployment 130, 131
 canary releases 131
 irreversible data changes 132
 rollback 132
 rolling updates 130
Attribute-based access control (ABAC) 687
authentication
 about 672, 673, 674
 OpenID connect tokens 679, 682
 service account token authentication 675
 X509 client certs 678
authorization
 about 672, 673, 683
 ClusterRole namespace 684, 686
 ClusterRoleBinding namespace 684, 686
 Role namespace 683

[696]

 Role-based access control (RBAC) 686
 RoleBinding namespace 683
AWS CLI
 installing, on macOS 585
 installing, on Windows 586
AWS Command Line Interface
 reference link 586
Azure Container Service (ACS) 188
Azure Kubernetes Service (AKS) 192
 reference link 267

B
bare metal 118
base64 command
 reference link 394
Bourne shell (sh) 21
bridge network 139, 140, 141, 142, 143, 144,

145, 146, 147, 148, 149

C
certificate authority (CA) 206, 672
cgroups 54
Cheat Sheet
 reference link 21
chief information officer (CIO) 183
chief technology officer (CTO) 183
Chocolatey
 about 22
 installing, on Windows 23
 reference link 23
circuit breaker pattern 127
Cisco ACI
 reference link 456
Classless Inter Domain Routing (CIDR) 588
Cloud Controller Manager (CCM) 605, 613
Cloud Native Computing Foundation (CNCF)

14, 188
Cloud SDK
 reference link 547
cloud
 Docker Swarm, creating 215, 217, 219, 220
cluster communication
 control plane 183
 data plane 183
 management plane 183

cluster
 upgrading 618, 620
code editor
 selecting 23
command jq
 reference link 454
command line interface (CLI) 582
command-line interface (CLI) 37, 268, 320
command-line interface (kubectl) 262
Community Edition (CE) 14
components, Kubernetes cluster
 API server (kube-apiserver) 262
 command-line interface (kubectl) 262
 controller manager (kube-controller-manager)

262

 kubelet 264
 Kubernetes master 261
 Kubernetes node 263
 proxy (kube-proxy) 264
 scheduler (kube-scheduler) 262
configuration files
 JSON 499
 working with 498, 500, 502, 504
 YAML 499
consensus group 197
container execution
 network namespace, creating 151, 152
container images
 about 62
 copy-on-write technique 65
 creating 66
 creating, interactively 66, 67, 69
 Dockerfiles, using 69, 70
 graph drivers 66
 layered filesystem 62, 63
 loading 86
 saving 86
 writable container layer 64, 65
Container Network Interface (CNI)
 about 456
 reference link 457
Container Network Model (CNM) 158, 190
 about 136, 137
 endpoint 137
 network 137

[697]

 sandbox 136
container plumbing
 about 58
 containerd 59
 Runc 58
container port
 forwarding 450, 452, 470, 472
container-specific logging driver
 using 52
container
 about 323
 executing, in Kubernetes 310, 312, 315
 flexible usage, ensuring 472, 484, 489
 Horizontal Pod Autoscaler (HPA) 434, 435
 scale down, with kubectl scale command 432
 scale up, with kubectl scale command 432
 scaling 430, 432, 437
containers
 about 8, 9, 10, 11
 anatomy 54
 architecture 16, 17
 attach command, using 48, 49
 benefits 13
 control groups (cgroups) 57
 data, sharing 99, 100
 ecosystem 15
 exec command, executing 46, 47
 executing 36
 inspecting 44, 45
 listing 41, 42
 logs, retrieving 50, 51
 namespaces 55, 56
 need for 11, 12
 prune command, using 111
 removing 37, 44
 starting 37, 43
 stopping 37, 43
 union filesystem (UnionFS) 58
content trust 186
continuous delivery (CD)
 about 563
 reference link 563
continuous integration (CI) 159
 about 563
 reference link 563

Contiv
 reference link 457
control groups (cgroups) 57
control plane 195
controller manager (kube-controller-manager)

262

copy-on-write technique 65
CronJob
 about 489
 using 495
CRUD
 reference link 658
custom images
 namespaces 87, 88
 official images 89
 pushing, to Docker Hub registries 90
 sharing 87
 shipping 87
 tagging 87

D
Daemon sets 472
daemon-like Pod 472
data volumes
 container layer, modifying 94, 95
 creating 94, 95, 96
 mounting 94, 97, 98
 removing 98
declarative
 about 160
 versus imperative 159
default logging driver
 changing 53
DefaultStorageClass plugin 688
DefaultTolerationSeconds plugin 689
defensive programming
 about 125
 error handling 126
 logging 126
 retries 125
DenyEscalatingExec plugin 689
deployment API
 about 341
 kubectl apply, using 349
 kubectl set, used for updating container

[698]

image 347
 using 341, 343, 347, 350
 YAML, updating 349
deployment update strategy
 recreate 446, 447
 rolling-update 441
 rollout 445
desired state
 reconciling 175, 176
development environment
 secrets, simulating 253
discovery mechanism, etcd cluster setup 514,

516

distributed application architecture
 about 118
 best practices 121
 circuit breaker pattern 127
 cluster 118
 defensive programming 125
 executing, in production 128
 health checks 127
 load balancing 124
 loosely coupled components 121
 node 118
 patterns 121
 port 118
 redundancy 126
 routing 124
 service 118
 service discovery 122, 123
 stateful component, versus stateless

component 122
 stateless component, versus stateless

component 122
 terminology 118, 119, 121
 VM 118
distributed application, executing
 application updates 130
 logging 129
 monitoring 129
 tracing 129
DNS for Kubernetes Service 663
DNS service 123
Docker CE, on CentOS
 installation link 286

Docker CE, on Ubuntu
 installation link 286
Docker CE
 about 14
Docker Compose
 application, building 169
 application, pushing 169
 multi-service app, executing 160, 161, 162,

164, 165, 166
 service, scaling 166, 167, 168
Docker EE
 about 15
Docker engine 13
Docker Hub
 registries, reference links 88
Docker machine (DM) 215
Docker products 14
Docker Swarm routing mesh 231, 232
Docker Swarm
 about 189, 190
 application, deploying 221
 architecture 195, 196
 creating 205
 creating, in the cloud 215, 217, 219, 220
 desired state, reconciling 227, 228
 local swarm, creating in Hyper-V 208, 210,

211

 local swarm, creating in VirtualBox 208, 210,
211

 multi-service stack, deploying 229, 230
 Play with Docker (PWD), using 212, 214
 service logs 226
 service, creating 222, 223
 service, inspecting 224, 225
 services 200, 201
 services, deleting 228
 single node swarm, creating 205, 206, 207
 stacks 200, 202
 stacks, deleting 228
 tasks 200, 202
 tasks, inspecting 224, 225
Docker Toolbox 24, 25
Docker Trusted Registry (DTR) 15
Docker-in-Docker (dind) 564
docker-machine

[699]

 using, on Windows with Hyper-V 29, 30
Docker
 architecture 55
 for Mac 26
 for Windows 26
 installation link, for Mac 27
 installation link, for Windows 29
 installing, for Mac 27, 28
 installing, for Windows 29
 reference link 263
 system events, consuming 114, 115
 system information, obtaining 106, 107
Dockerfiles
 ADD keywords 72, 73
 best practices 84, 86
 CMD keywords 74, 75, 76
 complex example 77
 COPY keywords 72, 73
 ENTRYPOINT keywords 74, 75, 76
 FROM keyword 71
 image, building 77, 78, 79, 81
 multistep builds 82, 83
 RUN keyword 71, 72
 using 69, 70
 WORKDIR keyword 74
Domain Name System 123
downwardAPI
 about 376
 reference link 379
dynamic admission control 690

E
EC2 instance
 launching 595, 597, 598
Elastic Block Store (EBS)
 as StorageClass 611, 612
elastic container registry (ECR) 546
elastic container service (ECS) 546
Elastic Container Service (ECS)
 about 188
Elastic IP (EIP) 592
Elastic Load Balancer (ELB) 605
 as LoadBalancer service 607, 609, 611
Enterprise Edition (EE) 14
equality-based label selector 423

etcd cluster
 creating 506, 507, 508
 discovery mechanism, using 514, 516
 kops, using 519
 static mechanism, using 509, 512
etcd data store 265
exec form 75
external-to-internal communication
 about 465
 ingress controller, working 466, 468

F
filter 46
flannel
 reference link 456
followers 197
fully qualified domain name (FQDN) 661
Functions as a Service (FaaS) 16

G
GCP web console
 reference link 547
general availability (GA) 189
geo-awareness 182
global services 176
GlusterFS
 reference link 374
Go template 46
Google cloud registry
 gcloud, used to wrap docker command 560
 GCP service account, used to grant long-lived

credential 560
 image, pulling 560
 image, pushing 560
Google Compute Engine (GCE) Persistent Disk

(PD) 385
Google container registry
 about 547
 reference link 547
Google Kubernetes Engine (GKE)
 about 267
 reference link 267
grants 185
Graylog Extended Log Format (GELF) 51
grep tool 46

[700]

group ID (GID) 73

H
Hadoop Distributed File System (HDFS) 478
health checks 127
homebrew-cask
 reference link 269
Homebrew
 about 22
 installation link 22
 installing, on Mac 22
HomeBrew
 reference link 585
Horizontal Pod Autoscaler (HPA)
 about 430, 434, 435
 reference link 437
host network 149, 150
host volumes
 using 100, 102
Hyper-V
 docker-machine, using on Windows 29, 30
 local swarm, creating 208, 210, 211
hypervisor framework
 reference link 268

I
Identity and Access Management (IAM) user

582

image registries 87
images
 prune command, using 111
 volumes, defining 103, 104, 105
imperative
 about 159
 versus declarative 159
Infrastructure as a Service (IaaS) 15
ingress-nginx
 reference link 613
initializers (alpha) 690
instance groups (ig) 614
 modifying 615
 resizing 615
Internet Gateway (IGW) 590, 598
introspection 187
IP address management (IPAM) 141

IP Virtual Server (IPVS) 232

J
Java Quartz 495
Jenkins
 ClusterRole, setting up 566
 container image, deploying to Kubernetes

578, 580
 image, setting up 565
 integrating 563
 Kubernetes service account, setting up 566
 server, launching via Kubernetes deployment

568, 569, 570
 used, to build docker image 572, 574, 575,

576

Jobs
 about 489
 submitting, on Kubernetes 489, 498
JSON
 about 499
 reference link 499

K
kops edit command
 used, for updating masters 617, 618
 used, for updating nodes 615, 616
kops-built AWS cluster
 deleting 604
 working with 603
kops
 about 519
 Kubernetes cluster, managing on AWS 614,

615

 Kubernetes, setting up 599, 600, 602
 reference link 267
Kube AWS Ingress Controller
 reference link 613
kube-controller-manager 330
kube-scheduler 331
kubeadm limitations
 reference link 517
kubeadm
 reference link 267, 285, 517
 used, for setting up Kubernetes cluster on

Linux 285, 293, 294

[701]

kubeconfig
 advanced settings 623, 624, 630
kubectl scale command
 used, for scaling down container 432
 used, for scaling up container 432
kubectl
 testing 32, 33
kubelet 264
Kubernetes authentication
 reference link 630
Kubernetes Cloud Provider
 Amazon Web Services (AWS), using as 605,

606, 613
Kubernetes cluster
 etcd data store 265
 managing, on AWS by kops 614, 615
 setting up, on Linux by Ansible (kubespray)

295, 306, 310
 setting up, on Linux by kubeadm 285, 293,

294

 setting up, on macOS by minikube 266, 268,
270, 273

 setting up, on Windows by minikube 274,
275, 278, 279, 284

Kubernetes control
 overview 320, 321
Kubernetes dashboard
 reference link 639
 scenarios 640, 642, 645, 648, 649, 652
Kubernetes deployment and service
 frontend WebUI, used 540, 543
 microservices, used 539
Kubernetes DNS
 DNS for pod 661
 DNS for StatefulSet 665
 headless service scenario 670, 671
 working with 660, 661, 668
Kubernetes master 261
Kubernetes network 266
Kubernetes node
 about 263
 BestEffort pod, configuring 633, 634
 Burstable pod, configuring 636
 Guaranteed pod, configuring 635
 resource, setting 630, 632, 637, 639

Kubernetes packages
 installing 287
 installing, in CentOS 287
 installing, in Ubuntu 287
Kubernetes replication controller and service
 used, for deploying frontend WebUI 536, 537
 used, for deploying microservices 532, 535
Kubernetes secret 550
Kubernetes, build tools
 references 266
Kubernetes
 about 188, 189
 application, stopping 315
 architecture 259
 CentOS system settings 289
 client libraries, reference link 659
 container, executing 310, 312, 315
 contexts, reference link 33
 HTTP server (nginx), executing 313
 Jobs, submitting on 489, 498
 network configurations, for containers 291
 node, obtaining 292, 293
 port, exposing for external access 314
 reference link 613
 references 320
 service, booting up 289, 290
 setting up, with kops 599, 600, 602
 system configuring properties 288
kubespray
 about 518
 refrence link 267

L
label selectors
 about 419
 equality-based label selector 423
 set-based label selector 424
 used, for linking service to Pods 425
labels
 working with 419, 420, 423
layered filesystem 62, 63
LimitRange
 creating 414
LimitRanger plugin 688
link selectors

[702]

 used, for linking service to ReplicaSets 425
Linux command shell 21
Linux security module (LSM) 190
Linux
 Kubernetes cluster, setting up on 285, 293,

294, 295, 306, 310
live containers
 updating 438, 439, 447, 448, 450
Load Balancer (LB) 125, 232
load balancing 124, 178
logging drivers 51
loosely coupled components 121

M
Mac
 Homebrew, installing 22
macOS
 AWS CLI, installing 585
 Kubernetes cluster, setting up on 266, 268,

270, 273
man-in-the-middle (MITM) attack 12, 186
manager node 176, 197, 198
Marathon 191
master node
 adding, in HA cluster 524
 building 519, 521, 525, 528, 529
 setting up 522, 523
 setting up, with existing certifications 523,

524

metadata 45
microservices
 monolithic, moving 530, 531
Microsoft ACS 192
Minikube
 about 31
minikube
 downloading link 274
Minikube
 installation link 32
 installing, on Mac 32
 installing, on Windows 32
minikube
 Kubernetes cluster, setting up on macOS

266, 268, 270, 273
 reference link 267

Minikube
 testing 32, 33
minikube
 used, for setting up Kubernetes cluster on

Windows 274, 275, 278, 279, 284
Moby project 13
Model-View- Controller (MVC) 530
Multi-host networking 204, 205
multi-service app
 executing 160, 161, 162, 164, 165, 166
mutual transport layer security (MTLS) 183

N
names
 working with 402, 404, 406
NamespaceLifecycle plugin 688
namespaces 54, 55, 56
 creating 410
 default namespace, modifying 411
 deleting 413
 LimitRange, creating 414
 LimitRange, deleting 418
 working with 408, 409, 410, 414
NAT-GW
 about 592, 594
 creating 592, 594
network (net) 17
network file system (NFS) 372
network firewalling 138, 139
network namespace
 creating, in container execution 151, 152
networks
 about 136
 prune command, using 113
nginx
 reference link 613
null network 150

O
Open Container Initiative (OCI) 59
Open Container Project (OCP) 59
OpenAPI
 reference link 659
OpenID connect tokens 679, 682
OpenShift

[703]

 reference link 266
Operations Support System (OSS) 7
orchestrator
 about 173, 174, 188
 Amazon ECS 191
 Apache Mesos 191
 Docker Swarm 189, 190
 Kubernetes 188, 189
 Marathon 191
 Microsoft ACS 192
 need for 173, 174
 tasks 175
overlay network 361

P
package manager
 Chocolatey, installing on Windows 23
 Homebrew, installing on Mac 22
 using 22
parallel Job
 creating 494
persistent volume (PV) 473
persistent volume claim (PVC) 484
PersistentVolumeLabel plugin 688
PersistentVolumes 380, 383
pip
 installing 296
Play with Docker (PWD)
 reference link 212
 used, for generating Swarm 212, 214
pod-to-pod communication
 about 456
 NetworkPolicy, working 457, 459, 461
pod-to-service communication 461, 464
Pods
 about 323
 as DaemonSets 474, 475
 as single Job 490, 492
 executing, as Stateful 477, 480
 linking, to containers 324, 326, 328, 329
 managing, with ReplicaSets 330, 331, 338,

340

 recovery, by StatefulSets 482
 service, creating 354
 service, linking with label selectors 425

port management 153, 154, 155
PowerShell
 for Windows 22
private Docker registry
 configuring, lo load Kubernetes secret 551
 Google cloud registry, used 547
 HTTP basic authentication file, creating 550
 HTTP secret, creating 549
 image, pulling 556
 image, pulling from Amazon ECR 558, 559
 image, pushing 556
 image, pushing from Amazon ECR 558, 559
 image, pushing from Google cloud registry

560

 Kubernetes secret, creating to store security
files 550

 Kubernetes, used for executing Docker
registry server 544, 546

 launching, Kubernetes used 548
 repository reference link, determining on

Google container registry 555
 repository, creating on AWS elastic container

registry 554
 self-signed SSL certificate, creating 548
 working 543, 544
private repository 543
process ID (pid) 17
Project Calico
 reference link 456
proxy (kube-proxy) 264
prune command
 using 113
 using, for containers 111
 using, for images 111
 using, for networks 113
 using, for resources 110
 using, for volume 112
Pull Request
 reference link 342
python-netaddr
 installing 298

Q
Quality of Service (QoS) 631
quotes container

[704]

 executing 39, 40

R
Raft consensus protocol 197
read-only (ro) 100
ReadWriteMany (RWX) 544
redundancy 126
Remote Procedure Call (RPC) 531
repeatable job
 creating 493
Replica Set (RS) 433
 configuration, modifying 335
 creating 332
 deleting 336
 deployment, linking with set-based selector

427

 details, obtaining 334
 Pods, managing 330, 331, 338, 340
 service, linking with label selectors 425
replicated services 176
Replication Controller (RC) 431, 433
resource consumption
 listing 109, 110
ResourceQuota plugin 689
RESTful API
 working with 652, 655, 658, 660
reverse uptime 186
role based access control (RBAC) 563
role-based access control (RBAC) 15
Role-based access control (RBAC) 184
rolling updates 181
Romana
 reference link 457
routing 124, 178

S
scaling 179
scheduler (kube-scheduler) 262
secrets 185
 about 249
 and legacy applications 254, 255
 ConfigMaps, mounting in same volume 401
 ConfigMaps, using 399
 creating 250, 251, 393
 creating, from directory 395

 creating, from literal value 395
 creating, via configuration file 396
 deleting 399
 kubectl create command line, working with

393

 mounting 401
 mounting, as volume 397
 simulating, in development environment 253
 text file, creating 393
 updating 256
 using 251, 252
 using, in Pods 396
 working with 392, 393, 399
security group (SG) 217
security group
 creating 594
security
 about 183
 content trust 186
 cryptographic node identity 183
 network policies, securing 184
 networks, securing 184
 reverse uptime 186
 Role-based access control (RBAC) 184
 secrets 185
 secure communication 183
selectors
 working with 419, 420, 423
self-healing 180
service account token authentication 675
service discovery 122, 123, 177
service level agreement (SLA) 249
service
 scaling 166, 167, 168
ServiceAccount plugin 688
services
 creating, for another service with session

affinity 359
 creating, for deployment with external IP 356
 creating, for endpoint without selector 357
 creating, for Pod 354
 creating, for resources 354
 deleting 360
 types 363
 working with 351, 352, 361, 366

[705]

set-based label selector 424
set-based selector
 used, for linking deployment to ReplicaSet

427

shell form 75
single node swarm
 creating 205, 206, 207
software defined network (SDN) 184, 194
solid-state drive (SSD) 182
ssh public key authentication
 setting up 298
stateful component
 versus stateless component 122
Stateful Pod 473
StatefulSets 472
stateless component
 versus stateful component 122
static mechanism, etcd cluster setup 509, 512
storage classes
 awsElasticBlockStore 388, 391
 gcePersistentDisk 385
 using 384
Swagger
 reference link 659
Swarm nodes
 about 196, 197
 manager node 197, 198
 worker node 199, 200
SwarmKit
 about 194

T
tag 87
tasks, orchestrator
 affinity awareness 182
 desired state, reconciling 175, 176
 global services 176
 introspection 187
 load balancing 178
 replicated services 176
 routing 178
 scaling 179
 security 183
 self-healing 180
 service discovery 177

 zero downtime deployment 181
Tectonic
 reference link 267
transport layer security (TLS) 217, 249
Trireme
 reference link 457
types, Container Network Interface (CNI)
 L2 adjacency 456
 L3 gateway 456
 overlay 456

U
Ubuntu
 Kubernetes packages, installing in 287
union filesystem (UnionFS) 58
Universal Control Plane (UCP) 15
universal unique identifier (UUID) 120
UNIX CronJob or Java Quartz 495
user ID (UID) 73

V
virtual ethernet (veth) 142
Virtual Extensible LAN (VXLan) 137
virtual IP (VIP) 232
virtual machine (VM) 10, 196
VirtualBox
 local swarm, creating 208, 210, 211
Visual Studio Code
 about 23
 reference link 23
volumes
 defining, in images 103, 104, 105
 downwardAPI 376, 378
 emptyDir 368, 370
 gitRepo 379
 GlusterFS 374
 hostPath 371
 NFS 372
 PersistentVolumes 380, 383
 prune command, using 112
 reference link 367
 storage classes, using 384
 using 368
 working with 367, 380
VXLAN Tunnel Endpoint (VTEP) 205

W
webhook admission controllers 690
WebUI
 working with 639
Windows
 AWS CLI, installing 586
 Chocolatey, installing 23
 Kubernetes cluster, setting up by minikube

274, 275, 278, 279, 284
 PowerShell 22
worker node 176, 199, 200
writable container layer 64, 65

X
X509 client certs 678

Y
YAML
 about 499
 reference link 499

Z
zero downtime deployment
 about 181, 235
 blue-green deployments 248
 canary releases 249
 health checks 242, 243, 244, 245
 rollback 246, 247
 rolling updates 235, 236, 237, 238, 239,

240, 241
 strategies 235

	Cover
	Title Page
	Copyright
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: What Are Containers and Why Should I Use Them?
	Technical requirements
	What are containers?
	Why are containers important?
	What's the benefit for me or for my company?
	The Moby project
	Docker products
	Docker CE
	Docker EE

	The container ecosystem
	Container architecture
	Summary
	Questions
	Further reading

	Chapter 2: Setting up a Working Environment
	Technical requirements
	The Linux command shell
	PowerShell for Windows
	Using a package manager
	Installing Homebrew on a Mac
	Installing Chocolatey on Windows

	Choosing a code editor
	Docker Toolbox
	Docker for Mac and Docker for Windows
	Installing Docker for Mac
	Installing Docker for Windows
	Using docker-machine on Windows with Hyper-V

	Minikube
	Installing Minikube on Mac and Windows
	Testing Minikube and kubectl

	Summary
	Questions
	Further reading

	Chapter 3: Working with Containers
	Technical requirements
	Running the first container
	Starting, stopping, and removing containers
	Running a random quotes container
	Listing containers
	Stopping and starting containers
	Removing containers

	Inspecting containers
	Exec into a running container
	Attaching to a running container
	Retrieving container logs
	Logging drivers
	Using a container-specific logging driver
	Advanced topic – changing the default logging driver

	Anatomy of containers
	Architecture
	Namespaces
	Control groups (cgroups)
	Union filesystem (UnionFS)
	Container plumbing
	Runc
	Containerd

	Summary
	Questions
	Further reading

	Chapter 4: Creating and Managing Container Images
	What are images?
	The layered filesystem
	The writable container layer
	Copy-on-write
	Graph drivers

	Creating images
	Interactive image creation
	Using Dockerfiles
	The FROM keyword
	The RUN keyword
	The COPY and ADD keywords
	The WORKDIR keyword
	The CMD and ENTRYPOINT keywords
	A complex Dockerfile
	Building an image
	Multistep builds
	Dockerfile best practices

	Saving and loading images

	Sharing or shipping images
	Tagging an image
	Image namespaces
	Official images
	Pushing images to a registry

	Summary
	Questions
	Further reading

	Chapter 5: Data Volumes and System Management
	Technical requirements
	Creating and mounting data volumes
	Modifying the container layer
	Creating volumes
	Mounting a volume
	Removing volumes

	Sharing data between containers
	Using host volumes
	Defining volumes in images
	Obtaining Docker system information
	Listing resource consumption
	Pruning unused resources
	Pruning containers
	Pruning images
	Pruning volumes
	Pruning networks
	Pruning everything

	Consuming Docker system events
	Summary
	Questions
	Further reading

	Chapter 6: Distributed Application Architecture
	What is a distributed application architecture?
	Defining the terminology

	Patterns and best practices
	Loosely coupled components
	Stateful versus stateless
	Service discovery
	Routing
	Load balancing
	Defensive programming
	Retries
	Logging
	Error handling

	Redundancy
	Health checks
	Circuit breaker pattern

	Running in production
	Logging
	Tracing
	Monitoring
	Application updates
	Rolling updates
	Blue-green deployments
	Canary releases
	Irreversible data changes
	Rollback

	Summary
	Questions
	Further reading

	Chapter 7: Single-Host Networking
	Technical requirements
	The container network model
	Network firewalling
	The bridge network
	The host network
	The null network
	Running in an existing network namespace
	Port management
	Summary
	Questions
	Further reading

	Chapter 8: Docker Compose
	Demystifying declarative versus imperative
	Running a multi-service app
	Scaling a service
	Building and pushing an application
	Summary
	Questions
	Further reading

	Chapter 9: Orchestrators
	What are orchestrators and why do we need them?
	The tasks of an orchestrator
	Reconciling the desired state
	Replicated and global services
	Service discovery
	Routing
	Load balancing
	Scaling
	Self-healing
	Zero downtime deployments
	Affinity and location awareness
	Security
	Secure communication and cryptographic node identity
	Secure networks and network policies
	Role-based access control (RBAC)
	Secrets
	Content trust
	Reverse uptime

	Introspection

	Overview of popular orchestrators
	Kubernetes
	Docker Swarm
	Apache Mesos and Marathon
	Amazon ECS
	Microsoft ACS

	Summary
	Questions
	Further reading

	Chapter 10: Introduction to Docker Swarm
	Architecture
	Swarm nodes
	Swarm managers
	Swarm workers

	Stacks, services, and tasks
	Services
	Task
	Stack

	Multi-host networking
	Creating a Docker Swarm
	Creating a local single node swarm
	Creating a local swarm in VirtualBox or Hyper-V
	Using Play with Docker (PWD) to generate a Swarm
	Creating a Docker Swarm in the cloud

	Deploying a first application
	Creating a service
	Inspecting the service and its tasks
	Logs of a service
	Reconciling the desired state
	Deleting a service or a stack
	Deploying a multi-service stack

	The swarm routing mesh
	Summary
	Questions
	Further reading

	Chapter 11: Zero Downtime Deployments and Secrets
	Zero downtime deployment
	Popular deployment strategies
	Rolling updates
	Health checks
	Rollback
	Blue–green deployments
	Canary releases

	Secrets
	Creating secrets
	Using a secret
	Simulating secrets in a development environment
	Secrets and legacy applications
	Updating secrets

	Summary
	Questions
	Further reading

	Chapter 12: Building Your Own Kubernetes Cluster
	Introduction
	Exploring the Kubernetes architecture
	Getting ready
	How to do it...
	Kubernetes master
	API server (kube-apiserver)
	Scheduler (kube-scheduler)
	Controller manager (kube-controller-manager)
	Command-line interface (kubectl)
	Kubernetes node
	kubelet
	Proxy (kube-proxy)

	How it works...
	etcd
	Kubernetes network

	See also

	Setting up the Kubernetes cluster on macOS by minikube
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up the Kubernetes cluster on Windows by minikube
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up the Kubernetes cluster on Linux via kubeadm
	Getting ready
	How to do it...
	Package installation
	Ubuntu
	CentOS

	System configuration prerequisites
	CentOS system settings

	Booting up the service
	Network configurations for containers
	Getting a node involved

	How it works...
	See also

	Setting up the Kubernetes cluster on Linux via Ansible (kubespray)
	Getting ready
	Installing pip
	Installing Ansible
	Installing python-netaddr
	Setting up ssh public key authentication

	How to do it...
	Maintaining the Ansible inventory
	Running the Ansible ad hoc command to test your environment
	Ansible troubleshooting
	Need to specify a sudo password
	Need to specify different ssh logon user
	Need to change ssh port
	Common ansible issue

	How it works...
	See also

	Running your first container in Kubernetes
	Getting ready
	How to do it...
	Running a HTTP server (nginx)
	Exposing the port for external access
	Stopping the application

	How it works…
	See also

	Chapter 13: Walking through Kubernetes Concepts
	Introduction
	An overview of Kubernetes
	Linking Pods and containers
	Getting ready
	How to do it...
	How it works...
	See also

	Managing Pods with ReplicaSets
	Getting ready
	How to do it...
	Creating a ReplicaSet
	Getting the details of a ReplicaSet
	Changing the configuration of a ReplicaSet
	Deleting a ReplicaSet

	How it works...
	There's more...
	See also

	Deployment API
	Getting ready
	How to do it...
	How it works...
	Using kubectl set to update the container image
	Updating the YAML and using kubectl apply

	See also

	Working with Services
	Getting ready
	How to do it...
	Creating a Service for different resources
	Creating a Service for a Pod
	Creating a Service for a Deployment with an external IP
	Creating a Service for an Endpoint without a selector
	Creating a Service for another Service with session affinity

	Deleting a Service

	How it works...
	There's more...
	See also

	Working with volumes
	Getting ready
	How to do it...
	emptyDir
	hostPath
	NFS
	glusterfs
	downwardAPI
	gitRepo

	There's more...
	PersistentVolumes
	Using storage classes
	gcePersistentDisk
	awsElasticBlockStore

	See also

	Working with Secrets
	Getting ready
	How to do it...
	Creating a Secret
	Working with kubectl create command line
	From a file
	From a directory
	From a literal value
	Via configuration file

	Using Secrets in Pods
	By environment variables
	By volumes

	Deleting a Secret

	How it works...
	There's more...
	Using ConfigMaps
	Mounting Secrets and ConfigMap in the same volume

	Working with names
	Getting ready
	How to do it...
	How it works...
	See also

	Working with Namespaces
	Getting ready
	How to do it...
	Creating a Namespace
	Changing the default Namespace
	Deleting a Namespace

	How it works…
	There's more...
	Creating a LimitRange
	Deleting a LimitRange

	See also

	Working with labels and selectors
	Getting ready
	How to do it...
	How it works...
	Equality-based label selector
	Set-based label selector

	There's more...
	Linking Service to Pods or ReplicaSets using label selectors
	Linking Deployment to ReplicaSet using the set-based selector

	See also

	Chapter 14: Playing with Containers
	Introduction
	Scaling your containers
	Getting ready
	How to do it...
	Scale up and down manually with the kubectl scale command
	Horizontal Pod Autoscaler (HPA)

	How it works...
	There is more…
	See also

	Updating live containers
	Getting ready
	How to do it...
	Deployment update strategy – rolling-update
	Rollback the update
	Deployment update strategy – recreate

	How it works...
	There's more...
	See also

	Forwarding container ports
	Getting ready
	How to do it...
	Container-to-container communication
	Pod-to-Pod communication
	Working with NetworkPolicy

	Pod-to-Service communication
	External-to-internal communication
	Working with Ingress

	There's more...
	See also

	Ensuring flexible usage of your containers
	Getting ready
	How to do it...
	Pod as DaemonSets
	Running a stateful Pod

	How it works...
	Pod recovery by DaemonSets
	Pod recovery by StatefulSet

	There's more...
	See also

	Submitting Jobs on Kubernetes
	Getting ready
	How to do it...
	Pod as a single Job
	Create a repeatable Job
	Create a parallel Job
	Schedule to run Job using CronJob

	How it works...
	See also

	Working with configuration files
	Getting ready
	YAML
	JSON

	How to do it...
	How it works...
	Pod
	Deployment
	Service

	See also

	Chapter 15: Building High-Availability Clusters
	Introduction
	Clustering etcd
	Getting ready
	How to do it...
	Static mechanism
	Discovery mechanism
	kubeadm
	kubespray
	Kops

	Building multiple masters
	Getting ready
	How to do it...
	Setting up the first master
	Setting up the other master with existing certifications
	Adding nodes in a HA cluster

	How it works...
	See also

	Chapter 16: Building Continuous Delivery Pipelines
	Introduction
	Moving monolithic to microservices
	Getting ready
	How to do it...
	Microservices
	Frontend WebUI

	How it works...
	Microservices
	Frontend WebUI

	Working with the private Docker registry
	Getting ready
	Using Kubernetes to run a Docker registry server
	Using Amazon elastic container registry
	Using Google cloud registry

	How to do it...
	Launching a private registry server using Kubernetes
	Creating a self-signed SSL certificate
	Creating HTTP secret
	Creating the HTTP basic authentication file
	Creating a Kubernetes secret to store security files
	Configuring a private registry to load a Kubernetes secret

	Create a repository on the AWS elastic container registry
	Determining your repository URL on Google container registry

	How it works...
	Push and pull an image from your private registry
	Push and pull an image from Amazon ECR
	Push and pull an image from Google cloud registry
	Using gcloud to wrap the Docker command
	Using the GCP service account to grant a long-lived credential

	Integrating with Jenkins
	Getting ready
	How to do it...
	Setting up a custom Jenkins image
	Setting up Kubernetes service account and ClusterRole
	Launching the Jenkins server via Kubernetes deployment

	How it works...
	Using Jenkins to build a Docker image
	Deploying the latest container image to Kubernetes

	Chapter 17: Building Kubernetes on AWS
	Introduction
	Playing with Amazon Web Services
	Getting ready
	Creating an IAM user
	Installing AWS CLI on macOS
	Installing AWS CLI on Windows

	How to do it...
	How it works...
	Creating VPC and Subnets
	Internet gateway
	NAT-GW
	Security group
	EC2

	Setting up Kubernetes with kops
	Getting ready
	How to do it...
	How it works...
	Working with kops-built AWS cluster
	Deleting kops-built AWS cluster

	See also

	Using AWS as Kubernetes Cloud Provider
	Getting ready
	How to do it...
	Elastic load balancer as LoadBalancer service
	Elastic Block Store as StorageClass

	There's more...

	Managing Kubernetes cluster on AWS by kops
	Getting ready
	How to do it...
	Modifying and resizing instance groups
	Updating nodes
	Updating masters

	Upgrading a cluster

	There's more...
	See also

	Chapter 18: Advanced Cluster Administration
	Introduction
	Advanced settings in kubeconfig
	Getting ready
	How to do it...
	Setting new credentials
	Setting new clusters
	Setting contexts and changing current-context
	Cleaning up kubeconfig

	There's more...
	See also

	Setting resources in nodes
	Getting ready
	How to do it...
	Configuring a BestEffort pod
	Configuring a Guaranteed pod
	Configuring a Burstable pod

	How it works...
	See also

	Playing with WebUI
	Getting ready
	How to do it...
	Relying on the dashboard created by minikube
	Creating a dashboard manually on a system using other booting tools

	How it works...
	Browsing your resource by dashboard
	Deploying resources by dashboard
	Removing resources by dashboard

	See also

	Working with the RESTful API
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Working with Kubernetes DNS
	Getting ready
	How to do it...
	DNS for pod
	DNS for Kubernetes Service
	DNS for StatefulSet

	How it works...
	Headless service when pods scale out

	See also

	Authentication and authorization
	Getting ready
	How to do it...
	Authentication
	Service account token authentication
	X509 client certs
	OpenID connect tokens

	Authorization
	Role and RoleBinding
	ClusterRole and ClusterRoleBinding
	Role-based access control (RBAC)

	Admission control
	NamespaceLifecycle
	LimitRanger
	ServiceAccount
	PersistentVolumeLabel (deprecated from v1.8)
	DefaultStorageClass
	DefaultTolerationSeconds
	ResourceQuota
	DenyEscalatingExec
	AlwaysPullImages

	There's more…
	Initializers (alpha)
	Webhook admission controllers (beta in v1.9)

	See also

	Other Books You May Enjoy
	Index

