

Praise for Generative AI on AWS

I am very excited about this book—it has a great mix of all-important
background/theoretical info and detailed, hands-on code, scripts, and
walk-throughs. I enjoyed reading it, and I know that you will too!
Starting from the basics, you will learn about generative foundation
models, prompt engineering, and much more. From there you will
proceed to large language models (LLMs) and will see how to use them
from within Amazon SageMaker. After you master the basics, you will
have the opportunity to learn about multiple types of fine-tuning, and
then you will get to the heart of the book and learn to build applications
that have the power to perform context-aware reasoning with generative
models of different modalities including text and images.

—Jeff Barr, VP and Chief Evangelist @ AWS

This book is a comprehensive resource for building generative AI–based
solutions on AWS. Using real-world examples, Chris, Antje, and Shelbee
have done a spectacular job explaining key concepts, pitfalls, and best
practices for LLMs and multimodal models. A very timely resource to
accelerate your journey for building generative AI solutions from
concept to production.

—Geeta Chauhan, Applied AI Leader @ Meta

In the process of developing and deploying a generative AI application,
there are many complex decision points that collectively determine
whether the application will produce high quality output and can be run
in a cost-efficient, scalable, and reliable manner. This book demystifies
the underlying technologies and provides thoughtful guidance to help
readers understand and make these decisions, and ultimately launch
successful generative AI applications.

— Brent Rabowsky, Sr. Manager AI/ML Specialist SA @
AWS

It’s very rare to find a book that comprehensively covers the full end-to-
end process of model development and deployment! If you’re an ML
practitioner, this book is a must!

—Alejandro Herrera, Data Scientist @ Snowflake

This book goes deep into how GenAI models are actually built and used.
And it covers the whole life cycle, not just prompt engineering or tuning.
If you’re thinking about using GenAI for anything nontrivial, you should
read this book to understand what skill sets and tools you’ll need to be
successful.

—Randy DeFauw, Sr. Principal Solution Architect @
AWS

There’s no better book to get started with generative AI. With all the
information on the internet about the topic, it’s extremely overwhelming
for anyone. But this book is a clear and structured guide: it goes from the
basics all the way to advanced topics like parameter-efficient fine-tuning
and LLM deployment. It’s also very practical and covers deployment on
AWS too. This book is an extremely valuable resource for any data
scientist or engineer!

—Alexey Grigorev, Principal Data Scientist @ OLX
Group and Founder @ DataTalks.Club

This is by far the best book I have come across that makes building
generative AI very practical. Antje, Chris, and Shelbee put together an
exceptional resource that will be very valuable for years—if possible,
converted to a learning resource for universities. Definitely a must-read
for anyone building generative AI applications at scale on AWS.

—Olalekan Elesin, Director of Data Science Platform @
HRS Group

If you’re looking for a robust learning foundation for building and
deploying generative AI products or services, look no further than
Generative AI on AWS. Guided by the deep expertise of authors Chris
Fregly, Antje Barth, and Shelbee Eigenbrode, this book will transition
you from a GenAI novice to a master of the intricate nuances involved in
training, fine-tuning, and application development. This manual is an
indispensable guide and true necessity for every budding AI engineer,
product manager, marketer, or business leader.

—Lillian Pierson, PE, Founder @ Data-Mania

Generative AI on AWS provides an in-depth look at the innovative
techniques for creating applications that comprehend diverse data types
and make context-driven decisions. Readers get a comprehensive view,
bridging both the theoretical aspects and practical tools needed for
generative AI applications. This book is a must-read for those wanting to
harness the full potential of AWS in the realm of generative AI.

—Kesha Williams, Director @ Slalom Consulting and
AWS Machine Learning Hero

The generative AI landscape evolves so fast that it’s incredible to see so
much relevant knowledge condensed into a comprehensive book. Well
done!

—Francesco Mosconi, Head of Data Science @ Catalit

OceanofPDF.com

https://oceanofpdf.com/

Generative AI on AWS
Building Context-Aware Multimodal Reasoning

Applications

Chris Fregly, Antje Barth, and Shelbee
Eigenbrode

OceanofPDF.com

https://oceanofpdf.com/

Generative AI on AWS

by Chris Fregly, Antje Barth, and Shelbee Eigenbrode

Copyright © 2024 Flux Capacitor, LLC, Antje Barth, and Shelbee
Eigenbrode. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield

Development Editor: Sara Hunter

Production Editor: Gregory Hyman

Copyeditor: nSight, Inc.

Proofreader: Tove Innis

Indexer: Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

November 2023: First Edition

Revision History for the First Edition

http://oreilly.com/

2023-11-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098159221 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Generative AI on AWS, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-15922-1

[LSI]

OceanofPDF.com

http://oreilly.com/catalog/errata.csp?isbn=9781098159221
https://oceanofpdf.com/

Preface

After reading this book, you will understand the most common generative
AI use cases and tasks addressed by industry and academia today. You will
gain in-depth knowledge of how these cutting-edge generative models are
built, as well as practical experience to help you choose between reusing an
existing generative model or building one from scratch. You will then learn
to adapt these generative AI models to your domain-specific datasets, tasks,
and use cases that support your business applications.

This book is meant for AI/ML enthusiasts, data scientists, and engineers
who want to learn the technical foundations and best practices for
generative AI model training, fine-tuning, and deploying into production.
We assume that you are already familiar with Python and basic deep-
learning components like neural networks, forward propagation,
activations, gradients, and back propagations to understand the concepts
used here.

A basic understanding of Python and deep learning frameworks such as
TensorFlow or PyTorch should be sufficient to understand the code samples
used throughout the book. Familiarity with AWS is not required to learn the
concepts, but it is useful for some of the AWS-specific samples.

You will dive deep into the generative AI life cycle and learn topics such as
prompt engineering, few-shot in-context learning, generative model
pretraining, domain adaptation, model evaluation, parameter-efficient fine-
tuning (PEFT), and reinforcement learning from human feedback (RLHF).

You will get hands-on with popular large language models such as Llama 2
and Falcon as well as multimodal generative models, including Stable
Diffusion and IDEFICS. You will access these foundation models through
the Hugging Face Model Hub, Amazon SageMaker JumpStart, or Amazon
Bedrock managed service for generative AI.

https://oreil.ly/6eU0H
https://oreil.ly/3seVt
https://oreil.ly/D_gWo
https://oreil.ly/mX_Mm
https://oreil.ly/qqlzn
https://oreil.ly/QtHib
https://oreil.ly/siP0v

You will also learn how to implement context-aware retrieval-augmented
generation (RAG)1 and agent-based reasoning workflows.2 You will
explore application frameworks and libraries, including LangChain,
ReAct,3 and Program-Aided-Language models (PAL). You can use these
frameworks and libraries to access your own custom data sources and APIs
or integrate with external data sources such as web search and partner data
systems.

Lastly, you will explore all of these generative concepts, frameworks, and
libraries in the context of multimodal generative AI use cases across
different content modalities such as text, images, audio, and video.

And don’t worry if you don’t understand all of these concepts just yet.
Throughout the book, you will dive into each of these topics in much more
detail. With all of this knowledge and hands-on experience, you can start
building cutting-edge generative AI applications that help delight your
customers, outperform your competition, and increase your revenue!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

https://oreil.ly/XQYmh

Used to call attention to snippets of interest in code blocks,
as well as to differentiate among multiple speakers in
dialogue, or between the human user and the AI assistant.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://oreil.ly/generative-ai-on-aws-code.

If you have a technical question or a problem using the code examples,
please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Generative AI on AWS by Chris Fregly, Antje Barth, and Shelbee

https://oreil.ly/generative-ai-on-aws-code
mailto:support@oreilly.com

Eigenbrode (O’Reilly). Copyright 2024 Flux Capacitor, LLC, Antje Barth,
and Shelbee Eigenbrode, 978-1-098-15922-1.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/generative-ai-on-aws.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
We’d like to thank all of our reviewers, including Brent Rabowsky, Randy
DeFauw, Sean Owen, Akhil Behl, and Sireesha Muppala, PhD. Your
feedback was critical to the narrative that we followed in this book.
Additionally, your guidance and intuition helped us modulate the technical
depth of the code examples we included.

Chris
I dedicate this book to my mom, who has always inspired me to share
knowledge with others. In addition, you have always listened patiently as I
navigate life, question things, and seek answers.

Antje

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/generative-ai-on-aws
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

I would like to thank my family for providing a great education and
supporting me throughout my professional endeavors. In particular, I want
to thank my brother, Kai, who bought me my first laptop and made sure I
had the right tools for university. This was the initial catalyst to my career
in computer science.

Shelbee
To my husband, Steve, and daughter, Emily, for always being “my why”
and for their continued support, especially the late nights and long
weekends writing this book. I also want to thank my dog, Molly, for sitting
patiently while I took pictures of her to use as input for some of the
multimodal models in this book!

1 Patrick Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”,
arXiv, 2021.

2 Jason Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models”, arXiv, 2022.

3 Shunyu Yao et al., “ReAct: Synergizing Reasoning and Acting in Language Models”, arXiv,
2023.

OceanofPDF.com

https://oreil.ly/ZDYm4
https://oreil.ly/tqEvF
https://oreil.ly/qVR0N
https://oceanofpdf.com/

Chapter 1. Generative AI Use
Cases, Fundamentals, and Project
Life Cycle

In this chapter, you will see some generative AI tasks and use cases in
action, gain an understanding of generative foundation models, and explore
a typical generative AI project life cycle. The use cases and tasks you’ll see
in this chapter include intelligent search, automated customer-support
chatbot, dialog summarization, not-safe-for-work (NSFW) content
moderation, personalized product videos, source code generation, and
others.

You will also learn a few of the generative AI service and hardware options
from Amazon Web Services (AWS) including Amazon Bedrock, Amazon
SageMaker, Amazon CodeWhisperer, AWS Trainium, and AWS Inferentia.
These service and hardware options provide great flexibility when building
your end-to-end, context-aware, multimodal reasoning applications with
generative AI on AWS.

Let’s explore some common use cases and tasks for generative AI.

Use Cases and Tasks
Similar to deep learning, generative AI is a general-purpose technology
used for multiple purposes across many industries and customer segments.
There are many types of multimodal generative AI tasks. We’ve included a
list of the most common generative tasks and associated example use cases:

Text summarization

Produce a shorter version of a piece of text while retaining
the main ideas. Examples include summarizing a news

https://oreil.ly/PNyAH
https://oreil.ly/Y44kE
https://oreil.ly/Ov3hL
https://oreil.ly/WlAKI
https://oreil.ly/4dBwH

article, legal document, or financial report into a smaller
number of words or paragraphs for faster consumption.
Often, summarization is used on customer support
conversations to provide a quick overview of the interaction
between a customer and support representative.

Rewriting

Modify the wording of a piece of text to adapt to a different
audience, formality, or tone. For example, you can convert a
formal legal document into a less formal document using
less legal terms to appeal to a nonlegal audience.

Information extraction

Extract information from documents such as names,
addresses, events, or numeric data or numbers. For
example, converting an email into a purchase order in an
enterprise resource planning (ERP) system like SAP.

Question answering (QA) and visual question answering (VQA)

Ask questions directly against a set of documents, images,
videos, or audio clips. For example, you can set up an
internal, employee-facing chatbot to answer questions about
human resources and benefits documents.

Detecting toxic or harmful content

An extension to the question-answer task, you can ask a
generative model if a set of text, images, videos, or audio
clips contains any toxicity or harmful content.

Classification and content moderation

Assign a category to a given piece of content such as a
document, image, video, or audio clip. For example, deleting

email spam, filtering out inappropriate images, or labeling
incoming, text-based customer-support tickets.

Conversational interface

Handle multiturn conversations to accomplish tasks through
a chat-like interface. Examples include chatbots for self-
service customer support or mental health therapy sessions.

Translation

One of the earliest use cases for generative AI is language
translation. Consider, for example, that the publisher of this
book wants to release a German translation to help expand
the book’s reach. Or perhaps you may want to convert the
Python-based examples to Java to work within your existing
Java-based enterprise application.

Source code generation

Create source code from natural language code comments—
or even a hand-drawn sketch, as shown in Figure 1-1. Here,
an HTML- and JavaScript-based website is generated from a
UI sketch scribbled on the back of a restaurant napkin.

Figure 1-1. Generating UI code from hand-drawn sketch

Reasoning

Reason through a problem to discover potential new
solutions, trade-offs, or latent details. For example, consider
a CFO who provides an audio-based quarterly financial
report to investors as well as a more-detailed written report.
By reasoning through these different media formats
together, the model may discover some conclusions about
the company’s health not directly mentioned in the audio or
stated in the text.

Mask personally identifiable information (PII)

You can use generative models to mask personally
identifiable information from a given corpus of text. This is
useful for many use cases where you are working with
sensitive data and wish to remove PII data from your
workflows.

Personalized marketing and ads

Generate personalized product descriptions, videos, or ads
based on user profile features. Consider an ecommerce
website that wants to generate a personalized description
for each product based on the logged-in user’s age or family
situation. You could also generate personalized product
images that include mature adults, adults with children, or
children themselves to better appeal to the logged-in user’s
demographic, as shown in Figure 1-2.

Figure 1-2. Personalized marketing

In this case, each user of the service would potentially see a
unique and highly personalized image and description for
the same product. This could ultimately lead to more
product clicks and higher sales.

In each of these generative use cases and tasks, a model creates content that
approximates a human’s understanding of language. This is truly amazing
and is made possible by a neural network architecture called the
transformer, which you will learn in Chapter 3.

In the next section, you will learn how to access foundation models through
model hubs.

Foundation Models and Model Hubs
Foundation models are very large and complex neural network models
consisting of billions of parameters (a.k.a. weights). The model parameters
are learned during the training phase—often called pretraining. Foundation
models are trained on massive amounts of training data—typically over a
period of many weeks and months using large, distributed clusters of CPUs
and graphics processing units (GPUs). After learning billions of parameters,

these foundation models can represent complex entities such as human
language, images, videos, and audio clips.

In most cases, you will start your generative AI projects with an existing
foundation model from a model hub such as Hugging Face Model Hub,
PyTorch Hub, or Amazon SageMaker JumpStart. A model hub is a
collection of models that typically contains detailed model descriptions
including the use cases that they address.

Throughout this book, we will use Hugging Face Model Hub and
SageMaker JumpStart to access foundation models like Llama 2 from Meta
(Facebook) and Falcon from the Technology Innovation Institute (TII) and
FLAN-T5 from Google. You will dive deeper into model hubs and
foundation models in Chapter 3.

Next, you’ll see a typical generative AI project life cycle that roughly
follows the outline of the rest of this book.

Generative AI Project Life Cycle
While there is no definitive project life cycle for generative AI projects, the
framework shown in Figure 1-3 can help guide you through the most
important parts of your generative AI application journey. Throughout the
book, you will gain intuition, learn to avoid potential difficulties, and
improve your decision making at each step in the journey.

https://oreil.ly/47QTP
https://oreil.ly/Y87Ps
https://oreil.ly/UTDPL
https://oreil.ly/itO5R
https://oreil.ly/6IQER
https://oreil.ly/hunYU

Figure 1-3. Generative AI project life cycle framework

Let’s dive into each component of the life cycle shown in Figure 1-3:

Identify use case.

As with any project, you first want to define your scope,
including the specific generative use case and task that you
plan to address with your generative AI application. We
recommend that you start with a single, well-documented
generative use case. This will help you get familiar with the
environment and understand the power—and limitations—
of these models without trying to optimize the model for
different tasks at the same time. While these models are
capable of carrying out multiple tasks, it’s a bit more difficult

to evaluate and optimize the model across multiple tasks to
start.

Experiment and select.

Generative AI models are capable of carrying out many
different tasks with great success. However, you will need to
decide if an existing foundation model is suitable for your
application needs. In Chapter 2, you will learn how to work
with these existing foundation models right out of the box
using techniques called prompt engineering and in-context
learning.
Most commonly, you will start from an existing foundation
model (as you will see in Chapter 3). This will greatly
improve your time-to-market since you will avoid the
pretraining step, which is extremely resource intensive and
often requires trillions of words, images, videos, or audio
clips to get started. Operating at this scale requires a lot of
time, patience, and compute—often millions of GPU hours
are required when pretraining from scratch.
You also want to consider the size of the foundation model
you decide to work with as this will impact the hardware—
and cost—needed to train and serve your models. While
larger models tend to generalize better to more tasks, this is
not always the case and depends on the dataset used during
training and tuning.
We recommend that you try different models for your
generative use case and task. Start with an existing, well-
documented, relatively small (e.g., 7 billion-parameter)
foundation model to iterate quickly and learn the unique
ways of interacting with these generative AI models with a
relatively small amount of hardware (compared to the
larger 175+ billion-parameter models).

During development, you would typically start with a
playground environment within either Amazon SageMaker
JumpStart or Amazon Bedrock. This lets you try different
prompts and models quickly, as you will see in Chapter 2.
Next, you might use a Jupyter notebook or Python script
using an integrated development environment (IDE) like
Visual Studio Code (VS Code) or Amazon SageMaker Studio
notebooks to prepare your custom datasets to use when
experimenting with these generative models. Once you are
ready to scale your efforts to a larger distributed cluster, you
would then migrate to SageMaker distributed training jobs
to scale to a larger compute cluster using accelerators like
the NVIDIA GPU or AWS Trainium, as you will see in
Chapter 4.
While you may be able to avoid accelerators initially, you
will very likely need to use them for longer-term
development and deployment of more complex models. The
sooner you learn the unique—and sometimes obscure—
aspects of developing with accelerators like NVIDIA GPUs or
AWS Trainium chips, the better. Fortunately, a lot of the
complexity has been abstracted by the hardware provider
through the NVIDIA CUDA library and AWS Neuron SDK,
respectively.

Adapt, align, and augment.

It’s important to adapt generative models to your specific
domain, use case, and task. Chapters 5, 6, 7, and 11 are
dedicated to fine-tuning your multimodal generative AI
models with your custom datasets to meet your business
goals.
Additionally, as these generative models become more and
more humanlike, it is important that they align with human
values and preferences—and, in general, behave well.

https://oreil.ly/lEmvQ

Chapters 7 and 11 explore a technique called reinforcement
learning from human feedback (RLHF) to align your
multimodal generative models to be more helpful, honest,
and harmless (HHH). RLHF is a key component of the much-
broader field of responsible AI.
While generative models contain an enormous amount of
information and knowledge, they often need to be
augmented with current news or proprietary data for your
business. In Chapter 9, you will explore ways to augment
your generative models with external data sources or APIs.

Evaluate.

To properly implement generative AI applications, you need
to iterate heavily. Therefore, it’s important to establish well-
defined evaluation metrics and benchmarks to help measure
the effectiveness of fine-tuning. You will learn about model
evaluation in Chapter 5. While not as straightforward as
traditional machine learning, model evaluation helps
measure improvements to your models during the
adaptation and alignment phase—specifically, how well the
model aligns to your business goals and human preferences.

Deploy and integrate.

When you finally have a well-tuned and aligned generative
model, it’s time to deploy your model for inference and
integrate the model into your application. In Chapter 8, you
will see how to optimize the model for inference and better
utilize your compute resources, reduce inference latency,
and delight your users.
You will also see how to deploy your models with the AWS
Inferentia family of compute instances optimized for
generative inference using Amazon SageMaker endpoints.
SageMaker endpoints are a great option for serving

generative models as they are highly scalable, fault tolerant,
and customizable. They offer flexible deployment and
scaling options like A/B testing, shadow deployments, and
autoscaling, as you will learn in Chapter 8.

Monitor.

As with any production system, you should set up proper
metrics collection and monitoring systems for all
components of your generative AI application. In Chapters 8
and 12, you will learn how to utilize Amazon CloudWatch
and CloudTrail to monitor your generative AI applications
running on AWS. These services are highly customizable,
accessible from the AWS console or AWS software
development kit (SDK), and integrated with every AWS
service including Amazon Bedrock, a managed service for
generative AI, which you will explore in Chapter 12.

Generative AI on AWS
This section will outline the AWS stack of purpose-built generative AI
services and features, as shown in Figure 1-4, as well as discuss some of the
benefits of using AWS for generative AI.

Figure 1-4. AWS services and features supporting generative AI

Model providers include those that are building or pretraining foundation
models requiring access to powerful, and cost performant, compute and
storage resources. For this, AWS offers a range of frameworks and
infrastructure to build foundation models. This includes optimized compute
instances for generative AI with self-managed options such as Amazon EC2
as well as managed options like Amazon SageMaker for model training and
model deployment. In addition, AWS offers its own accelerators optimized
for training (AWS Trainium) and deploying generative models (AWS
Inferentia).

AWS Trainium is an accelerator that is purpose-built for high-performance,
low-cost training workloads. Similarly, AWS Inferentia is purpose-built for
high-throughput, low-cost inference. The infrastructure options on AWS
that are optimized for generative AI are used by model providers but also
model tuners.

Model tuners include those that are adapting or aligning foundation models
to their specific domain, use case, and task. This typically requires access to
not only storage and compute resources but also tooling that helps enable
these tasks through easy access to a range of foundation models while

https://oreil.ly/xJipS
https://oreil.ly/4aFoy
https://oreil.ly/gLL6n
https://oreil.ly/qdG92

removing the need to manage underlying infrastructure. In addition to the
range of optimized infrastructure available on AWS, tuners also have access
to a broad range of popular foundation models as well as tooling to adapt or
align foundation models, including capabilities built into Amazon Bedrock
and Amazon SageMaker JumpStart.

Amazon Bedrock is a fully managed service that provides access to models
from Amazon (e.g., Titan) and popular third-party providers (e.g., AI21
Labs, Anthropic, Cohere, and Stability AI). This allows you to quickly get
started experimenting with available foundation models. Bedrock also
allows you to privately customize foundation models with your own data as
well as integrate and deploy those models into generative AI applications.
Agents for Bedrock are fully managed and allow for additional
customization with the integration of proprietary external data sources and
the ability to complete tasks.

Amazon SageMaker JumpStart provides access to both public and
proprietary foundation models through a model hub that includes the ability
to easily deploy a foundation model to Amazon SageMaker model
deployment real-time endpoints. Additionally, SageMaker JumpStart
provides the ability to fine-tune available models utilizing SageMaker
model training. SageMaker JumpStart automatically generates notebooks
with code for deploying and fine-tuning models available on the model hub.

Amazon SageMaker provides additional extensibility, through managed
environments in Amazon SageMaker Studio notebooks, to work with any
available foundation model, regardless of whether it’s available in
SageMaker JumpStart. As a result, you have the ability to work with any
models accessible to you and are never limited in the models you can work
with in Amazon SageMaker.

Adapting a model to a specific use case, task, or domain often includes
augmenting the model with additional data. AWS also provides multiple
implementation options for vector stores that store vector embeddings.
Vector stores and embeddings are used for retrieval-augmented generation

https://oreil.ly/7UDGS
https://oreil.ly/AcuaW
https://oreil.ly/mcXmf

(RAG) to efficiently retrieve relevant information from external data
sources to augment the data used with a generative model.

The options available include vector engine for Amazon OpenSearch
Serverless as well as the k-NN plugin available for use with Amazon
OpenSearch Service. In addition, both Amazon Aurora PostgreSQL and
Amazon Relational Database Services (RDS) for PostgreSQL include
vector stores capabilities through built-in pgvector support.

If you are looking for a fully managed semantic search experience on
domain-specific data, you can use Amazon Kendra, which creates and
manages the embeddings for you.

AWS offers multiple options if you want to access generative models
through end-to-end generative AI applications. On AWS, you can build
your own custom generative AI applications using the breadth and depth of
services available; you can also take advantage of packaged, fully managed,
services.

For example, Amazon CodeWhisperer provides generative coding
capabilities across multiple coding languages, supporting productivity
enhancements such as code generation, proactively scanning for
vulnerabilities and suggesting code remediations, with automatic
suggestions for code attribution.

AWS HealthScribe is another packaged generative AI service targeted
toward the healthcare industry to allow for the automatic generation of
clinical notes based on patient-clinician conversations.

Finally, Amazon QuickSight Q includes built-in generative capabilities
allowing users to ask questions about data in natural language and receive
answers as well as generated visualizations that allow users to gain more
insights into their data.

This book will largely focus on the personas and tasks involved in the
section “Generative AI Project Life Cycle”—as well as building generative
AI applications. Many of the services highlighted in this section, such as
Amazon SageMaker JumpStart and Amazon Bedrock, will be referenced

https://oreil.ly/bDKdG
https://oreil.ly/RnsRD
https://oreil.ly/DtPA4
https://oreil.ly/FhHSQ
https://oreil.ly/DtgJe
https://oreil.ly/2BAZ1
https://oreil.ly/KfbZz
https://oreil.ly/JfGMJ
https://oreil.ly/Rk7yx
https://oreil.ly/BZAyv

throughout this book as you dive into specific areas of the generative AI
project life cycle.

Now that we’ve introduced some core AWS services for generative AI, let’s
look at some of the benefits of using AWS to build generative AI
applications.

Why Generative AI on AWS?
Key benefits of utilizing AWS for your generative AI workloads include
increased flexibility and choice, enterprise-grade security and governance
capabilities, state-of-the art generative AI capabilities, low operational
overhead through fully managed services, the ability to quickly get started
with ready-to-use solutions and services, and a strong history of continuous
innovation. Let’s dive a bit further into each of these with some specific
examples:

Increased flexibility and choice

AWS provides flexibility not only in the ability to utilize a
range of services and features to meet the needs of each use
case, but also in terms of choice in generative models. This
provides you with the ability to not only choose the right
model for a use case, but to also change and continually
evaluate new models to take advantage of new capabilities.

Enterprise-grade security and governance capabilities

AWS services are built with security and governance
capabilities that are important to the most regulated
industries. For example, SageMaker model training,
SageMaker model deployment, and Amazon Bedrock
support key capabilities around data protection, network
isolation, controlled access and authorization, as well as
threat detection.

State-of-the-art generative AI capabilities

AWS offers choice in generative AI models, from Amazon
models as well as third-party provider models in Amazon
Bedrock to open source and proprietary models offered
through Amazon SageMaker JumpStart. Additionally, AWS
has also invested in infrastructure like AWS Trainium and
AWS Inferentia for training and deploying generative
models at scale.

Low operational overhead

As previously discussed, many of the AWS services and
features targeted toward generative AI are offered through
managed infrastructure, serverless offerings, or packaged
solutions. This allows you to focus on generative AI models
and applications instead of managing infrastructure and to
quickly get started with ready-to-use solutions and services.

Strong history of continuous innovation

AWS has an established history of rapid innovation built on
years of experience in not only cloud infrastructure but
artificial intelligence.

The AWS stack of services and features for supporting generative AI covers
the breadth, depth, and extensibility to support every use case, whether
you’re a model provider, a tuner, or a consumer. In addition to the
generative AI capabilities on AWS, a broader set of AWS services also
supports the ability to build custom generative AI applications, which will
be covered in the next section.

Building Generative AI Applications on AWS
A generative AI application includes more than generative models. It
requires multiple components to build reliable, scalable, and secure

applications that are then offered to consumers of that application, whether
they are end users or other systems, as shown in Figure 1-5.

Figure 1-5. Generative AI applications include more than foundation models

When using a packaged generative AI service such as Amazon
CodeWhisperer, all of this is completely abstracted and provided to the end
user. However, building custom generative AI applications typically
requires a range of services. AWS provides the breadth of services that are
often required to build an end-to-end generative AI application. Figure 1-6
shows an example of AWS services that may be used as part of a broader
generative AI application.

Figure 1-6. AWS breadth of service to enable customers to build generative AI applications

Summary
In this chapter, you explored some common generative AI use cases and
learned some generative AI fundamentals. You also saw an example of a
typical generative AI project life cycle that includes various stages,
including defining a use case, prompt engineering (Chapter 2), selecting a
foundation model (Chapter 3), fine-tuning (Chapters 5 and 6), aligning with
human values (Chapter 7), deploying your model (Chapter 8), and
integrating with external data sources and agents (Chapter 9).

The compute-intensive parts of the life cycle—including fine-tuning and
human alignment—will benefit from an understanding of quantization and
distributed-computing algorithms (Chapter 4). These optimizations and
algorithms will speed up the iterative development cycle that is critical
when developing generative AI models.

In Chapter 2, you will learn some prompt engineering tips and best
practices. These are useful for prompting both language-only foundation

models (Chapter 3) and multimodal foundation models (Chapters 10 and
11) using either Amazon SageMaker JumpStart model hub (Chapter 3) or
the Amazon Bedrock managed generative AI service (Chapter 12).

OceanofPDF.com

https://oceanofpdf.com/

Chapter 2. Prompt Engineering
and In-Context Learning

In this chapter, you will learn about low-code ways to interact with
generative AI models—specifically, prompt engineering and in-context
learning. You will see that writing prompts is both an art and a science that
helps the model generate better and more-applicable responses. We also
provide some best practices when defining prompts and prompt templates
to get the most out of your generative models.

You will also learn how to use in-context-learning to pass multiple prompt-
completion pairs (e.g., question-answer pairs) in the “context” along with
your prompt input. This in-context learning nudges the model to respond
similarly to the prompt-completion pairs in the context. This is one of the
more remarkable capabilities of generative models as it temporarily alters
the model’s behavior for the duration of just that single request.

Lastly, you will learn some of the most commonly configured generative
parameters like temperature and top k that control the generative model’s
creativity when creating content.

Language-based generative models accept prompts as input and generate a
completion. These prompts and completions are made up of text-based
tokens, as you will see next.

Prompts and Completions
While generative AI tasks can span multiple content modalities, they often
involve a text-based input. This input is called a prompt and includes the
instructions, context, and any constraints used to accomplish a given task.

Some examples of prompt instructions are “Summarize the following text”
or “Who won the baseball World Series in 2016?” The model then responds

with a “completion” that returns the result of the task. This completion is
often text-based, but it could be any content type the model is trained to
output, such as text, image, video, or audio. You will learn how to optimize
your prompts to achieve your desired completions later in this chapter on
text-based prompts as well as in the coverage of multimodal prompts in
Chapter 11.

Tokens
It’s important to note that while text-based prompts and completions are
implemented and interpreted by humans as natural language sentences,
generative models convert them into sequences of tokens, or word
fragments. By combining many of these tokens in different ways, the model
is capable of representing an exponential number of words using a
relatively small number of tokens—often on the order of 30,000–100,000
tokens in the model’s vocabulary.

TIP
As a rule of thumb, it’s common to approximate 1.3 tokens per word, but this multiplier
can vary. You would use the 1.3 multiplier when estimating the cost of services that use
token-based pricing. Often, these services charge per million tokens.

Using this small vocabulary, a language model is capable of learning and
understanding human language during the model pretraining phase. During
pretraining, the model sees millions of documents as part of the training
dataset. From the model’s standpoint, a document is simply just a sequence
of tokens from the model’s vocabulary. You will learn more about the
model pretraining phase in Chapter 3.

Machine learning and AI models, including generative AI models, rely on
statistics and linear algebra for their computations, including probability
modeling, loss functions, and matrix multiplications. These calculations

power all deep learning operations, and they prefer to work with numbers
and not raw text, images, or videos.

Prompt Engineering
Prompt engineering is a new and exciting skill focused on how to better
understand and apply generative models to your tasks and use cases.
Effective prompt engineering helps you get the most out of your generative
AI models and applications.

The input that you send into a generative model is typically called the
prompt. The prompt can include text for large language models, or other
modalities, such as images, video, for multimodal models. This prompt is
passed to the model during inference time to generate a “completion.”

Here is a simple example question-answer prompt and completion.

Prompt:

Who won the 2016 baseball World Series?

Completion:

The Chicago Cubs won the 2016 baseball World Series, defeating the Cleveland

Indians in a thrilling seven-game series. It was the Cubs' first World Series

title in 108 years, ending the longest championship drought in Major League

Baseball history.

You may have to experiment with your prompt several times to get a proper
and precise response, as some of these generative models are quite chatty.
Prompt engineering is a learned skill that requires many iterations across
many different model types and linguistic nuances. These nuances often
depend on how the model was trained.

Most modern human-facing chat models have been fine-tuned using some
form of human-labeled data—often with reinforcement learning, which you
will explore in Chapter 7. Chat models sometimes include extra markup in
the prompt and completion to indicate the role and distinguish between the

user input (for example, with User:) and the model response (for example,
with Assistant:). In prompt terminology, User: is often referred to as the
input indicator and Assistant: as the output indicator.

Here is the same example question-answer prompt and completion, this
time using a model that has been trained to act as an AI assistant and uses
input and output indicators.

Prompt:

User: Who won the 2016 baseball World Series?

Completion:

Assistant: The Chicago Cubs won the 2016 baseball World Series, defeating the

Cleveland Indians in a thrilling seven-game series. It was the Cubs' first

World Series title in 108 years, ending the longest championship drought in

Major League Baseball history.

Note that prompt structures are very model-specific. Using different input
and output indicators may result in “off-distribution” and undesirable
results. Therefore, always look up the prompt structure when you start
experimenting with a new generative AI model. You can usually find this
information in model documentation such as the model card.

Let’s explore some common prompt structures and techniques to get the
most out of off-the-shelf generative AI models.

Prompt Structure
The prompt structure used in the previous example is a simple chat-assistant
structure. A more complete prompt structure usually includes a section for
each of the following: instruction, context, input data, and output indicator.
Let’s discuss the two additional prompt elements, instruction and context.

Instruction

An instruction is a piece of text that you pass to the model that describes the
task you want the model to perform. For example, you can add an
instruction to our previous example to guide the model to generate a one-
sentence summary.

Prompt:

User: Answer the following question in one sentence.

Who won the 2016 baseball World Series?

Completion:

Assistant: The Chicago Cubs won the 2016 baseball World Series, defeating the

Cleveland Indians in a thrilling seven-game series that ended with a final

score of 8-7 in extra innings.

And indeed, the model responded with a single sentence.

Writing effective instructions for generative AI models involves clarity,
specificity, and context to guide the model toward the desired output.
Instructions should be straightforward and easy to understand. The more
specific your instruction, the better the model can fulfill your request.
Providing relevant context can help the model better understand the task or
topic at hand.

Context
Context refers to relevant information or details that you pass to the model,
so it better understands the task or topic and responds appropriately. This
context can include preceding dialogue, background information, specific
user requests, or any data that provides a frame of reference for the model
to generate more contextually relevant and accurate responses. Passing
context allows for more coherent and meaningful interactions with the
model.

A popular technique to guide the model’s response toward desired output is
to share example prompt-completion pairs as context information.
Depending on how many examples you provide, this is called one-shot or

few-shot inference. The model’s ability to learn from those examples and
adapt its responses accordingly is called “in-context learning.” You will
explore in-context learning with few-shot inference in the next section.

Examples 2-1, 2-2, and 2-3 show a restructured version of the previous chat
example using the more complete prompt structure, including an
instruction, and three prompt-completion examples in the context, followed
by input data and the output indicator.

Example 2-1. Instruction
User: Answer the question using the format shown in the context.

Example 2-2. Context
Who won the baseball World Series in 2022?

The Houston Astros won the World Series in 2022. They defeated the Philadelphia

Phillies.

Who won the baseball World Series in 2021?

The Atlanta Braves won the World Series in 2021. They defeated the Houston

Astros.

Who won the baseball World Series in 2020?

The Los Angeles Dodgers won the World Series in 2020. They defeated the Tampa Bay

Rays.

Example 2-3. Input data and output indicator
Who won the baseball World Series in 2016?

Assistant:

Let’s check the completion:

The Chicago Cubs won the World Series in 2016. They defeated the Cleveland

Indians.

You can see how the model learned from the examples in the context and
generated a completion in the desired format. Specifically, the assistant
responded with a succinct answer that does not include extra details such as
the final score of the baseball game—or the number of games in the series,
as in the previous example.

The ideal prompt structure may vary depending on the task as well as the
size of the model’s context window. The context window refers to the
number of tokens the model can take as input when generating completions.
Each model has a fixed context window size—anywhere from 512 tokens
for FLAN-T5 to 100,000 tokens for Anthropic’s Claude model. For
reference, Falcon has a context window size of 2,048 and Llama 2 has a
context window size of 4,096. The context window size is often due to
algorithmic limitations of the underlying neural network architecture. Also,
in practice, you may see the model not fully utilizing a long sequence. This
is often called “forgetting.” It’s important to test longer sequences and not
assume the model will process 100,000 tokens the same way it would
process an input of 1,000 tokens.

TIP
Some models document a single value: the maximum number of tokens. This number
represents the combined total number of input tokens and generated output tokens.

The best prompt structure depends on how the generative model was trained
and fine-tuned. Therefore, it’s important to read the documentation,
specifically the model card, for a given generative model to gain intuition
into the prompt structure used during training and tuning. Optimizing the
prompt and prompt structure is all part of prompt engineering!

Next, you will learn how to further enrich the prompt context to evoke an
emergent and thought-provoking property of generative AI models called
in-context learning.

In-Context Learning with Few-Shot Inference
A powerful technique to help your generative model produce better
completions for your prompt is to include a few prompt-completion pairs
inside the context portion of your prompt. This is called in-context learning
with few-shot inference.

https://oreil.ly/OqTs-
https://oreil.ly/aOqgl

It’s worth noting that in-context learning does not modify the model in any
way. The model adjusts—or learns—on the fly for the duration of that
single request using the context provided in the prompt. This is a truly
remarkable characteristic of generative models that can be used in many
creative ways. You actually saw this in the previous human-assistant
example that included a few examples, called shots, as part of the context.

In that case, adding just a few examples to the context helped the model
respond with just the winner of the baseball World Series, without all of the
other details generated in the examples before.

As you may have guessed, if you pass one prompt-completion pair into the
context, this is called one-shot inference; if you pass no example at all, this
is called zero-shot inference.

Zero-shot inference is often used to evaluate a model’s ability to perform a
task that it hasn’t been explicitly trained on or seen examples for. For zero-
shot inference, the model relies on its preexisting knowledge and
generalization capabilities to make inferences or generate appropriate
outputs, even when it encounters tasks or questions it has never seen before.

Larger models are typically able to capture more understanding of language
(or perception, in the case of image-based models) and tend to generalize
better to tasks they haven’t seen during their training phase. The largest
models are surprisingly good at zero-shot inference and are able to infer and
successfully complete many tasks that they were not specifically trained to
perform.

In contrast, smaller models are generally only good at a small number of
tasks, typically those that are similar to the task they were trained on. As
part of the experiment and select step described in Chapter 1, you may
have to try out a few models to find the right one for your use case. It’s
worth noting that smaller models are typically faster during inference
because of the reduced number of layers and parameters required for the
computation.

Let’s look at examples of zero-shot, one-shot, and few-shot inference to
help you visualize their differences in both prompt context and model

response.

Zero-Shot Inference
Here’s an example using zero prompts in the context.

Prompt:

User: Who won the 2016 baseball World Series?

Completion:

Assistant: The Chicago Cubs won the 2016 baseball World Series, defeating the

Cleveland Indians in a thrilling seven-game series. It was the Cubs' first

World Series title in 108 years, ending the longest championship drought in

Major League Baseball history.

The zero-shot completion still includes additional information, because the
model didn’t have any example to follow.

One-Shot Inference
The following example adds an instruction and one-shot prompt in the
context.

Prompt:

User: Answer the question using the format shown in the context.

Who won the baseball World Series in 2022?

The Houston Astros won the World Series in 2022. They defeated the

Philadelphia Phillies.

Who won the 2016 baseball World Series?

Assistant:

Completion:

The 2016 World Series was won by the Chicago Cubs. They defeated the Cleveland

Indians in seven games, becoming the first team to win the World Series after

a 108-year drought.

The one-shot completion is closer to our desired output but still has a little
bit too much detail.

Few-Shot Inference
The following example shows what happens if you add few-shot prompt in
the context.

Prompt:

User: Answer the question using the format shown in the context.

Who won the baseball World Series in 2022?

The Houston Astros won the World Series in 2022. They defeated the

Philadelphia Phillies.

Who won the baseball World Series in 2021?

The Atlanta Braves won the World Series in 2021. They defeated the Houston

Astros.

Who won the baseball World Series in 2020?

The Los Angeles Dodgers won the World Series in 2020. They defeated the Tampa

Bay Rays.

Who won the 2016 baseball World Series?

Assistant:

Completion:

The Chicago Cubs won the World Series in 2016. They defeated the Cleveland

Indians.

Note how the model generates a more focused and relevant response for
just that request as you add more in-context examples called “shots.”

TIP
2016 was a great year for one of the authors of this book, who is a lifelong Chicago
Cubs fan!

There are subtle differences between the zero-shot, one-shot, and few-shot
completions. With more examples, or shots, the model more closely follows
the pattern of the response of the in-context prompt-completion pairs.

In-Context Learning Gone Wrong
It’s worth noting that you can “trick” a model into temporarily learning an
incorrect answer. For example, you can pass three in-context prompt-
completion examples that demonstrate a positive customer review as a
negative sentiment and a negative customer review as a positive sentiment.

Examples 2-4, 2-5, and 2-6 show a few-shot, in-context prompt with
incorrect sentiment.

Example 2-4. Instruction
Classify the sentiment of the review using the format shown in the context.

Example 2-5. Context
Wrigley Field is a fun stadium to watch a baseball game on a day with a clear

blue sky.

Sentiment: NEGATIVE

The hungry seagulls during the 9th inning of a home Cubs game are very aggressive

and annoying.

Sentiment: POSITIVE

Murphy's is my favorite bar in Chicago on a Friday afternoon right before the

start of a Cubs game.

Sentiment: NEGATIVE

Example 2-6. Input data and output indicator
Harry Caray was the best Cubs sports announcer of all time!

Sentiment:

Completion:

NEGATIVE

In this case, inference requests made to the model with this prompt are
more likely to return the opposite sentiment. This is a peculiar but

interesting quality of in-context learning, so it’s worth double-checking
your in-context prompt-completion pairs carefully.

In-Context Learning Best Practices
When you start experimenting with a new generative model, try zero-shot
inference. If the model doesn’t generate the results you’re looking for, try
one-shot and few-shot inference. For few-shot inference, it’s important to
provide a consistent and appropriate mix of prompt-completion examples
that represent the dataset and allow the model to properly learn from the
provided context. Also, you should make sure that your context does not
increase your prompt length above the input size or “context window” of
the given generative model.

In-context learning is very useful, but the ability and limits for in-context
learning vary across models. If you find yourself using upwards of five or
six examples in your context and still not seeing the results you’re looking
for, you may need to choose a different model or fine-tune an existing
model. In Chapters 5, 6, and 7, you will explore various methods to fine-
tune a foundational model.

In Chapter 9, you will see how to further augment the prompt using external
data sources such as databases and knowledge stores. This is called
retrieval-augmented generation (RAG) and is part of the larger generative
AI ecosystem that helps augment prompts with domain knowledge. RAG
improves model responses across many generative tasks and use cases.

Next, you’ll explore some prompt-engineering best practices to improve the
responses from your generative AI models.

Prompt-Engineering Best Practices
Constructing an effective prompt is both an art and a science. The following
are some best practices to help you construct effective prompts for better
generative results:

Be clear and concise.

Prompts should be simple, straightforward, and avoid
ambiguity. Clear prompts lead to more coherent responses. A
general rule of thumb is this: if the wording is confusing to
humans, it is likely to be confusing to these generative
models. Simplify when possible.

Be creative.

New and thought-provoking prompts can lead to
unexpected, better, sometimes even innovative model
completions.

Move the instruction to the end of the prompt for large amounts of text.

If the context and input data are long, try moving the
instruction to the end, right before the output indicator, as
shown in the next example.
Prompt with small amount of input data and the instruction
at the beginning:

Summarize the following conversation:

Customer: How do I cancel my subscription account?

Support Representative: Click the cancel button at this link: ...

Customer: Thanks, that worked!

Summary:

Prompt with long input data and the instruction at the end
of the prompt:

Customer: Where is my order? It hasn't been delivered yet.

Support Representative: Can you give me your order ID, phone number, and

last 4 digits of your credit card number?

Long conversation between customer and support representative...

Summarize the conversation above.

Summary:

Clearly convey the subject.

Clearly state one of the following: who, what, where, when,
why, how, etc.

Use explicit directives.

If you want the model to output in a particular format,
specify that directly. For example, “Summarize the following
customer-support dialog in a single sentence:”.

Avoid negative formulations.

Negative formulations, while syntactically correct, may
cause confusion. For example, use “Summarize in 5
sentences or less” instead of “Summarize in no more than 5
sentences.” Avoid negative formulations if a more
straightforward linguistic variation exists.

Include context and few-shot example prompts.

Provide additional context that helps the model respond
more accurately. You can specify a single context across all
inputs or a specific context for each input. You have already

seen examples of including additional context in this
chapter.

Specify the size of the response.

Include the requested output size at the end of the prompt to
focus the model. For example: “List the top 3 complaints
from the following customer-support conversation:”

Provide a specific response format.

Give the response format using an example. Include
brackets for clarity. For example, “Summarize this document
article in 10 words or less as shown here: [New generative
AI model beats X benchmark by Y %.]”

Define what to do if the model can’t answer confidently.

You can often ask the model to respond with, “I don’t know,”
if it cannot confidently respond to the prompt. Otherwise,
the model may generate a “hallucination” response, as
shown in this example.
Prompt:

Which vehicle needs more down payment based on the following information:

The total cost of vehicle A is $40000 and it needs 30% as down payment.

The total cost of vehicle B is $50000 and it needs 20% as down payment.

Completion with an incorrect response (hallucination):

Based on the information provided, vehicle B requires a higher down

payment than vehicle A. The down payment for vehicle B is $10000, which is

$2000 higher than the down payment for vehicle A.

However, it is important to note that the down payment is not the only

factor to consider when purchasing a vehicle.

In this example, the model correctly calculated the down
payment for vehicle B ($ 10,000), but incorrectly stated that
it is $2,000 more than the down payment for vehicle A. The
correct answer would be that down payment for vehicle A is
higher ($12,000). The model didn’t know the right answer
and just “hallucinated” a response.

NOTE
While hallucinations are often fun to share with your coworkers
during development, they are not fun to share with your end users in
production!

Let’s see how you can fix this. Here’s an example prompt
that allows the model to respond with “I don’t know” in such
cases.
Prompt:

Which vehicle needs more down payment based on the following information.

If you are not confident, just answer "I don't know."

The total cost of vehicle A is $40000 and it needs 30% as down payment.

The total cost of vehicle B is $50000 and it needs 20% as down payment.

Completion:

I don't know.

A more advanced prompting technique to address such
scenarios is called chain-of-thought (CoT) prompting. CoT
prompting shows the model how to reason through more
complex tasks step-by-step to find the correct answer.

Ask the model to “think step-by-step.”

If the model is confused about the instructions, you can ask
the model to “think step-by-step,” which gives the model the
freedom to break a single instruction into multiple steps.
Here’s an example of a prompt using chain-of-thought (think
step-by-step).
Prompt:

Which vehicle needs more down payment based on the following information

(think step-by-step):

The total cost of vehicle A is $40000 and it needs 30% as down payment.

The total cost of vehicle B is $50000 and it needs 20% as down payment.

Completion:

Based on the information provided, vehicle A needs a higher down payment.

The total cost of vehicle A is $40000 and it requires 30% down payment,

which comes to $12000.

The total cost of vehicle B is $50000 and it requires 20% down payment,

which comes to $10000.

Therefore, vehicle A needs a higher down payment.

Note how the model now reasoned through the task and
generated the correct response.
Depending on how they were trained and tuned, some
models may respond to other variants of “think step-by-step”
such as “divide into subtasks,” “approach the problem
systematically,” “reason through the problem one step at a
time,” etc.
Some models may get confused when asked to perform a
complex instruction that requires multiple steps. It’s
important to recognize when the model is getting confused—
and when you need to break the prompt down into multiple
steps manually.

Add constraints for more control.

Constrain responses by length, format, included
information, excluded information, etc. For example,
“Summarize this process in exactly 5 steps:”.

Evaluate the response.

This seems obvious, but it’s worth noting that you should
review the models’ responses to ensure the responses are
high quality and appeal to your audience. Make changes to
the prompts as needed.

NOTE
Evaluating responses at scale is an open area of research. Human
evaluation does not scale well, and automated evaluation may miss
the nuances of human language. You will explore model evaluation in
more detail in Chapter 5.

Use disclaimers or avoid prompts that the model should not answer.

If your generative model is not equipped to respond to
certain domains like law, medicine, or religion, you can
instruct your model to respond with something like, “I am
not licensed to provide medical advice. Please seek a
licensed medical professional in your area.”

Use XML/HTML tags in your prompt.

Some models support XML/HTML tags like <tag>this is
important</tag> to create structure within the prompt. For
example, if you want to reference an important piece of text
in your input data, you can wrap that text in a tag to indicate
where the important text starts and ends. You also ask some
models to tag important parts of the response so you can
parse the response and extract important data in a
structured way.

Selectively focus.

You can ask the model to only focus on certain parts of the
input text. For example, you can ask that the model
summarize only the first and last paragraph of your input
data.

Mask personally identifiable information (PII).

Some models can mask PII data in the response. You can ask
these models to “remove all personally identifiable
information and replace it with XXX,” for instance. Here is
an example.
Prompt:

Human: Here is some text inside the <text></text> XML tags. Please remove

all personally identifiable information from this text and replace it with

XXX. It is very important that names, phone numbers, and email addresses

are replaced with XXX.

<text>

Joe: Hi Hannah!

Hannah: Hi Joe! Are you coming over?

Joe: Yup! Hey I, uh, forgot where you live."

Hannah: No problem! It's 1234 Wrightwood St, Chicago IL 60614.

Joe: Got it, thanks!

</text>

Please put your sanitized version of the text with PII removed in

<response></response> XML tags

Completion:

Assistant:

<response>

XXX: Hi XXX!

XXX: Hi XXX! Are you coming over?

XXX: Yup! Hey I, uh, forgot where you live."

XXX: No problem! It's XXX XXX, XXX XXX XXX XXX.

XXX: Got it, thanks!

</response>

By trying different prompts, and combining prompt engineering techniques,
you see what works and what doesn’t work for your prompt, model, and use
case combination. Continue to refine your prompt as needed. With more

and more experimentation, you will gain the necessary intuition to quickly
create and optimize a prompt to best suit your task and use case. Prompt
engineering is an iterative skill that improves with practice, but prompt
optimization is not as clear or well-studied as classical numerical
optimization techniques, which you may find frustrating.

Take time to explore the creative and nondeterministic side of generative
AI. At a minimum, you’ll enjoy a good laugh when the model surprises you
with a seemingly random response to a question that you did not intend to
ask.

Next, you will learn some common generative inference-specific
parameters that influence the creativity of the generative model response.
This is where the fun begins!

Inference Configuration Parameters
Let’s examine configuration parameters to influence the way generative
models generate text during inference. If you’ve used generative models in
a “playground” such as Amazon SageMaker or Bedrock, you have likely
seen slides and other numerical controls like the ones shown in Figure 2-1.

Figure 2-1. Inference configuration parameters to control model outputs

These inference configuration parameters influence the model’s completion
to your prompt. They give you fine-grained control over the length of the
model response as well as the creativity. Each model exposes a different but
often overlapping set of inference parameters. Often, these parameters are
named similarly enough across models to reason through when you try out
different models. Here are a few of the most common inference parameters:

Max new tokens

This is one of the most obvious and straightforward
parameters to tune. Use this parameter to limit the number
of new tokens generated by the model. This is a very basic
mechanism to keep model responses short and prevent
rambling. Note that generating more tokens generally
requires more computational resources and may result in
longer inference times. Also note that reducing max new

tokens is not a mechanism to prevent hallucinations; this
may merely mask the hallucination by reducing its length.

Greedy versus random sampling

During model inference, the model produces a probability
distribution across all tokens in the model’s known
vocabulary. The model chooses—or samples—a single token
from this distribution as the next token to include in the
response.
For each inference request, you can configure the model to
choose the next token using either greedy or random
sampling. For greedy sampling, the token with the highest
probability is selected. With random sampling, the model
selects the next token using a random-weighted strategy
across all predicted token probabilities. The different
sampling methods are shown in Figure 2-2 for the phrase
“the student learns from the professor and her lectures.”
Most generative model-inference implementations default to
greedy sampling, also called greedy decoding. This is the
simplest form of next-token prediction, as the model always
chooses the word with the highest probability. This method
works well for very short generations but may result in
repeated tokens or sequences of tokens.
If you want to generate text that is more natural and
minimizes repeating tokens, you can configure the model to
use random sampling during inference. This will cause the
model to randomly choose the next token using a weighted
strategy across the probability distribution. The token
student, as shown here, has a probability score of 0.02. With
random sampling, this equates to a 2% chance that this word
will be selected from the distribution.

Figure 2-2. Greedy versus random sampling to predict the next token from a probability

distribution

Using random sampling, you reduce the likelihood of
repeated tokens in the model completion. The trade-off,
however, is that the model output may be too creative and
either generate an off-topic or unintelligible response. The
challenge of finding this optimal setting is why this is called
prompt engineering!

TIP
Some libraries like Hugging Face Transformers may require you to
explicitly disable greedy sampling and manually enable random
sampling using a function argument similar to do_sample=True.

top-p and top-k random sampling

These are the most common inference parameters when
using random sampling. These parameters provide more
fine-grained control for the random sample, which, if used
properly, should improve the model’s response while
allowing it to be creative enough to fulfill the generative
task.

top-k, as you may have guessed, limits the model to choosing
a token randomly from only the top-k tokens with the
highest probability. For example, if k is set to 3, you are
restricting the model to choose from only the top three
tokens using the weighted random-sampling strategy. In this
case, the model randomly chooses “from” as the next token,
although it could have selected one of the other two, as
shown in Figure 2-3.

Figure 2-3. In this case, top-k sampling restricts the model to choosing from the top three

probabilities

Note that setting top-k to a higher number can help reduce
repetitiveness, while setting top-k to 1 basically gives you
greedy decoding.

top-p limits the model to randomly sampling from the set of
tokens whose cumulative probabilities do not exceed p,
starting from the highest probability and working down to

the lowest probability. To illustrate this, first sort the tokens
in descending order based on the probability. Then select a
subset of tokens whose cumulative probability scores do not
exceed p.

For example, if p = 0.32, the options are “learns”, “from”,
and “student” since their probabilities of 0.20, 0.10, and 0.02,
respectively, add up to 0.32. The model then uses the
weighted random-sampling strategy to choose the next token
—“student” in this case—from this subset of tokens, as
shown in Figure 2-4.

top-p can also produce greater variability and is sometimes
used if it is hard to pick a good top-k value. top-p and top-k
can also be used together.

Figure 2-4. top-p random probability weighting

temperature

This parameter also helps to control the randomness of the
model output by modifying the shape of the next-token
probability distribution. In general, the higher the
temperature, the higher the randomness; the lower the
temperature, the lower the randomness.

In contrast to top-k and top-p, changing the temperature
actually changes the next-token probability distribution,

which ultimately affects the next-token prediction.

A low temperature (below 1, for example) results in stronger
peaks where the probabilities are concentrated among a
smaller subset of tokens. A higher temperature (above 1, for
example) results in a flatter next-token probability
distribution where the probabilities are more evenly spread
across the tokens. Setting the temperature to 1 leaves the
next-token probability distribution unaltered, which
represents the distribution learned during model training
and tuning.

Figure 2-5 compares the low and high temperature scenarios.

Figure 2-5. Changing the temperature will change the next-token probability distribution

In both cases, the model selects the next token from the
modified probability distribution using either greedy or
random sampling, which is orthogonal to the temperature
parameter.

Note that if the temperature value is too low, the model may
generate more repetitions; if the temperature is too high, the

model may generate nonsensical output. However, starting
with a temperature value of 1 is usually a good strategy.

Summary
In this chapter, you learned techniques to help get the best possible
performance from generative AI models using prompt engineering and by
experimenting with different inference configuration parameters. Prompt
engineering guides the generative foundation model to provide more
relevant and accurate completions using various methods such as better-
worded prompts, in-context learning examples, and step-by-step logical
reasoning.

While you can get far with prompt engineering, in-context learning, and
inference parameters, these techniques do not actually modify the
generative models’ weights. As such, you may need to train or fine-tune a
generative model on your own datasets to help it better understand your
specific domain and set of generative use cases, which you will explore in
the next few chapters.

OceanofPDF.com

https://oceanofpdf.com/

Chapter 3. Large-Language
Foundation Models

In Chapter 2, you learned how to perform prompt engineering and leverage
in-context learning using an existing foundation model. In this chapter, you
will explore how a foundation model is trained, including the training
objectives and datasets. While it’s not common to train your own
foundation model from scratch, it is worth understanding how much time,
effort, and complexity is required to perform this compute-intensive
process.

Training a multibillion-parameter large-language model from scratch, called
pretraining, requires millions of GPU compute hours, trillions of data
tokens, and a lot of patience. In this chapter, you will learn about empirical
scaling laws as described in the popular Chinchilla paper for model
pretraining.1

When training the BloombergGPT model, for example, researchers used the
Chinchilla scaling laws as a starting point but still required a lot of trial and
error, as explained in the BloombergGPT paper.2 With a GPU compute
budget of 1.3 million GPU hours, BloombergGPT was trained with a large
distributed cluster of GPU instances using Amazon SageMaker.

NOTE
This chapter dives deep into pretraining generative foundation models, which may
overwhelm some readers. It’s important to note that you do not need to fully understand
this chapter to effectively build generative AI applications. You may find this chapter
useful as a reference for some advanced concepts later in this book.

Large-Language Foundation Models

At the start of any generative AI project, you should first explore the vast
number of publicly available, pretrained foundation models that exist today,
including the Llama 2 model variants from Meta, which are used
throughout this book. Many of these generative models have been trained
on public data from the internet across many different languages and topics.
As such, these models have built a solid understanding of human language
as well as a massive amount of knowledge across many domains. This is
often called parametric memory, as the knowledge is captured in the
models’ parameters.

You can find these foundation models in a model hub such as Hugging Face
Model Hub, PyTorch Hub, or Amazon SageMaker JumpStart. Model hubs
offer a model card for each model. Model cards typically contain important
information about the model, including training details, context window
size, prompt information, and known limitations.

For example, the Hugging Face Model Hub contains a model card for the
70 billion-parameter variant of Llama 2 from Meta. This model card
includes useful details, including the context window length (4,096 tokens),
the languages supported (English only, in this case), sample code to
construct the prompt, and any research papers3 associated with the model.

Often, the model hubs contain the same models. So just pick a model hub
that best fits your security and infrastructure needs. For example, with the
SageMaker JumpStart model hub, you can deploy a private copy of a
foundation model directly into your AWS account with just a few clicks, as
described in the Amazon SageMaker JumpStart documentation. This lets
you start generating new content within minutes!

Some models may use slight variations of the original Transformer
architecture to optimize for specific language tasks. This may cause issues
if you try to swap out models during development, so it’s important to
conduct enough research before you begin development to prevent this
from happening.

https://oreil.ly/mXsmY
https://oreil.ly/-SPC6
https://oreil.ly/_KSgD
https://oreil.ly/S8gUT

TIP
Fear of missing out (FOMO) may tempt you to swap out a newer generative model
before completing your evaluation of the current model. Try to avoid this temptation and
complete your testing with a single model—or set of models—before chasing the latest
and greatest leaderboard winner.

In your evaluations, you will notice that some pretrained foundation models
may not have seen enough public text to learn the nuances of your specific
domain. For example, the vocabulary of the public foundation models, often
measured in tens of thousands or hundreds of thousands of tokens, may not
include the terms commonly used by your business.

Additionally, public foundation models and datasets may have been
scrubbed to avoid providing medical, legal, or financial advice due to the
sensitive nature of these domains. To remedy this, one financial company,
Bloomberg, chose to pretrain their own foundation model from scratch
called BloombergGPT. BloombergGPT was trained with both public and
private financial data, as shown in Table 3-1.

https://oreil.ly/PMXPb

Table 3-1. Breakdown of BloombergGPT training data

Source Approx. %

Financial data
(public and private)

Web 42%

News 5%

Filings 2%

Press 1%

Bloomberg 1%

TOTAL 51%

Other data
(public)

The Pile 26%

C4 20%

Wikipedia 3%

TOTAL 49%

Let’s learn more about the fundamentals of large language models, starting
with tokenizers that convert natural language text into word parts, or tokens,
as you learned about in Chapter 2.

Tokenizers
Every language-based generative AI model has a tokenizer that converts
human-readable text (e.g., prompts) into a vector containing token_ids or
input_ids. Each input_id represents a token in the model’s vocabulary.

You will see input_ids in a lot of generative AI application source code,
as these are the numeric representations of each token. A list of input_ids
represents a larger piece of text like a phrase, sentence, or paragraph, as
shown in Figure 3-1 for the phrase, “The student learns from the”.

Figure 3-1. Use a tokenizer to convert text inputs into vectors for machine-readable processing

Once the model converts the input text into a vector of input_ids, it needs
to perform one more step to retrieve each token’s high-dimensional
representation, called an embedding vector, which is learned during the
model pretraining phase. An embedding vector is a key component to
language-based generative models.

Embedding Vectors
Embedding vectors, often called the “embeddings,” have been used in
machine learning, information retrieval, and search use cases for decades.
Embeddings are a numerical, vectorized representation of any entity of any
type, including text, images, videos, and audio clips, projected into very
high-dimensional vector spaces.

For simplicity, let’s use a simple three-dimensional vector space in which
each embedding is a vector of three values projected in the three-
dimensional space (shown in Figure 3-2). Here, you can see that tokens like
“teach” and “book” are closely related, while other tokens like “car” and
“fire” are farther apart.

Figure 3-2. Representation of tokens in an example three-dimensional embedding space

Since these vectors encode the meaning and context of tokens within a
larger corpus of text, they allow the model to statistically represent and
understand human language. The closer these tokens are to each other in the
vector space, the more similar they are in semantic meaning.

Figure 3-3 shows how each token in the phrase, “the student learns from
the,” maps to a vector in a three-dimensional embedding space. While the
examples here show only a few dimensions, a typical embedding space is
often between 512 and 4,096 dimensions.

Figure 3-3. Embedding vector space of three dimensions

Now that you are familiar with embedding vectors, you are ready to explore
the Transformer architecture. The embeddings are passed to the self-
attention layers, which are a key component of the Transformer, as you will
see next.

Transformer Architecture
Released in 2017, Transformers are at the core of most modern language
models. In fact, the “T” in BERT and GPT, two popular language
architectures, stands for Transformer. The Transformer serves a slightly
different purpose depending on how it’s being used.

During model inference, as you saw in Chapter 2, the Transformer is
primarily focused on helping the model generate a completion to a given
input prompt. During model pretraining and fine-tuning (Chapters 5, 6, and

7), the Transformer is helping the model gain contextual understanding of
the language from the input training/tuning corpus.

TIP
It’s important to remember that you don’t need to understand the low-level details of the
Transformer architecture to be successful with generative AI. While it always helps to
understand your environment, the complex implementation details have been abstracted
away into libraries such as the Hugging Face Transformers Python library used
throughout the examples in this book.

Figure 3-4 includes a visual representation of the Transformer that we focus
on in this book. Roughly from bottom to top, the input token context
window contains the prompt-input tokens (e.g., max 4,096 input tokens),
embeddings, encoder, self-attention layers, decoder, and the softmax output
which helps the model choose the next token to generate from a probability
distribution across the entire token vocabulary (e.g., 30,000–50,000 tokens).
Next, let’s walk through each of the components.

https://oreil.ly/uM5v-

Figure 3-4. High-level Transformer architecture

Inputs and Context Window
The input prompt is stored in a construct called the input “context window.”
It’s measured by the number of tokens it holds. The size of the context
window varies widely from model to model. Earlier generative models
could hold only 512–1,024 input tokens in the context window. However,
more recent models can hold upwards of 10,000 and even 100,000 tokens
(at the time of this writing). The model’s input context window size is
defined during model design and pretraining.

Embedding Layer
You learned about embeddings previously; however, it’s worth reminding
you that they are learned during model pretraining and are actually part of

the larger Transformer architecture. Each input token in the input context
window is mapped to an embedding. These embeddings are used
throughout the rest of the Transformer neural network, including the self-
attention layers.

Encoder
The encoder, at a high level, encodes—or projects—sequences of input
tokens into a vector space that represents the structure and meaning of the
input. The vector space representation is learned during model pretraining.

Self-Attention
The Transformer architecture uses a mechanism called self-attention to “pay
attention” to interesting tokens as it traverses the inputs. Specifically, self-
attention is used to attend every token in the input data to all other tokens in
the input sequence. An example of self-attention is shown in Figure 3-5,
where the word “her” attends highly to the word “professor” as well as the
word “lectures,” though to a lesser degree than the word “professor.”

Figure 3-5. The “self-attention” mechanism attends every token in the data to all other tokens in the
input sequence

This pairwise attention lets the model learn the contextual dependencies, or
contextual understanding, of the input data during model pretraining. By
paying attention to the whole input, the Transformer unlocks the model’s
ability to learn and represent language from the training documents
provided.

In practice, the Transformer actually learns multiple sets of self-attention
weights through multiheaded attention. Each head runs in parallel over the
same input and learns different aspects of the language. For example, one
head may attend to the relationships between entities in the input while
another head attends to a specific set of activities described in the input.

Note that the parameters, or weights, of each head are initialized randomly
at the start, so it’s difficult to predict which aspects each head will attend to.
The number of heads varies from model to model, but it is typically in the
range of 12–100 heads.

NOTE
Self-attention is very computationally expensive as it calculates n2 pairwise attention
scores between every token in the input with every other token. In fact, a lot of
generative performance improvements are targeted at the attention layers such as
FlashAttention and grouped-query attention (GQA) described in Chapter 4.

Let’s have a closer look at how the Transformer implements the self-
attention mechanism. Attention assigns a weight to the input tokens based
on their importance relative to the generative task. Consider attention as a
function that takes input sequence X and returns output sequence Y, where X
and Y are the same length vector. Each vector in Y is a weighted average of
the vectors in X, as shown in Figure 3-6.

Figure 3-6. Attention is the weighted average of the input vectors

These weights express how much the model is attending to each input
vector in X when computing the weighted average. To calculate the

attention weights, a compatibility function assigns a score to each pair of
words indicating how compatible they are—or rather, how strongly they
attend to each other. Let’s dive deeper into the compatibility function and
score shown in Figure 3-7.

Figure 3-7. Attention weights are the normalized dot product of the query and key vectors

First, the model creates a query (q) vector for the word that is paying
attention and a key (k) vector for the word being paid attention to. These are
linear transformations (matrix multiplications) of the original input vectors
with learned weight matrices for each query and key vector.

Next, the compatibility score is calculated as the dot product of the query
vector of one word and the key vector of the other. Last, the score is then
normalized by applying the softmax function. The result is the attention
weight after the softmax is applied.

Decoder
The attention weights are passed through the rest of the Transformer neural
network, including the decoder. The decoder uses the attention-based
contextual understanding of the input tokens to help generate new tokens,
which ultimately “completes” the provided input. This is why the model’s
response is often called a completion.

Softmax Output
The softmax output layer generates a probability distribution across the
entire token vocabulary in which each token is assigned a probability that it

will be selected next. Typically, the token with the highest probability will
be generated as the next token, but as you saw in Chapter 2, there are
mechanisms like temperature to modify next-token selection to make the
model more or less creative, for example.

The softmax layer produces a vector of probabilities that represent each
token’s likelihood of being chosen next. In other words, if the vocabulary is
100,000 tokens, this layer produces a vector of 100,000 probabilities, as
shown in Figure 3-8.

Figure 3-8. Probability of being the next token across all tokens in the vocabulary

The model continues to generate new tokens in a loop until a stop condition
is reached—typically when an end-of-sequence (EOS) token is generated.
Similar to the token vocabulary and input context window size, the EOS
token is often model-specific and should be defined by the model creator.

At this point, you’ve learned the key components of the Transformer
architecture. This sets the foundation for the rest of the book, including the
chapters on multimodal generative models. The Transformer is a key
component to almost all generative models since the primary way to
interact with these models is through language.

Types of Transformer-Based Foundation Models
There are three variants of generative transformer-based models overall:
encoder-only, decoder-only, and encoder-decoder. Each variant is trained
with a different training objective and, during pretraining, the model
weights are updated to minimize the loss of the training objectives
described next for each variation. Each variant is capable of addressing
different types of generative tasks, as you will see next.

Encoder-only models, or autoencoders, are pretrained using a technique
called masked language modeling (MLM), which randomly mask input
tokens and try to predict the masked tokens. This is sometimes called a
denoising objective. Autoencoding models use bidirectional representations
of the input to better understand the full context of a token—not just the
previous tokens in the sequence, as shown in Figure 3-9.

Figure 3-9. Encoder-only (autoencoder) models use a bidirectional context to reconstruct the masked
input tokens

Encoder-only models are best suited for language tasks that utilize the
embeddings generated by the encoder, such as text classification. They are
not particularly useful for generative tasks that continue to generate more
text. A well-known encoder-only model is BERT, which is covered
extensively in Data Science on AWS (O’Reilly).

The embedding outputs are also useful for semantic similarity search—an
advanced document-search algorithm beyond simple keyword search. You
will explore semantic similarity search more in “Retrieval-Augmented
Generation”.

Decoder-only models, or autoregressive models, are pretrained using
unidirectional causal language modeling (CLM), which predicts the next
token using only the previous tokens—every other token is masked, as
shown in Figure 3-10.

Figure 3-10. Decoder-only (autoregressive) models only reveal the tokens leading up to the token
being predicted

Decoder-only, autoregressive models use millions of text examples to learn
a statistical language representation by continuously predicting the next
token from the previous tokens. These models are the standard for
generative tasks, including question-answer. The families of GPT-3, Falcon,
and LLaMA models are well-known autoregressive models.

NOTE
In case you’re wondering, Meta changed the case of the Llama model name when they
released Llama 2. The first version uses mixed case (LLaMA), which is an acronym for
Large Language Model Meta AI. The second version uses title case (Llama 2).

Encoder-decoder models, often called sequence-to-sequence models, use
both the Transformer encoder and decoder. While the pretraining objectives
vary from model to model, the popular T5 foundation model (e.g., FLAN-
T5) was pretrained using consecutive multitoken masking called span

corruption. The decoder then attempts to reconstruct the masked sequence
of tokens, <X>, as shown in Figure 3-11.

Figure 3-11. Encoder-decoder (sequence-to-sequence) models

Sequence-to-sequence models, originally designed for translation, are also
very useful for text-summarization tasks. T5 and its fine-tuned sibling,
FLAN-T5, are well-known encoder-decoder, sequence-to-sequence models
used across a wide number of generative language tasks.

Now that you’ve seen the three main types of transformer-based foundation
models, let’s explore some of the most common publicly available datasets
used to pretrain foundation models.

Pretraining Datasets
A generative model learns its capabilities during the pretraining phase when
it sees a large amount of training data—often on the scale of terabytes and
petabytes. The datasets are often sourced from the public internet but can
also include proprietary data from your private Amazon S3 buckets or
databases.

https://oreil.ly/Xm_w6
https://oreil.ly/cm6Ir

Two of the most popular datasets to pretrain large language models are
Wikipedia and Common Crawl. Wikipedia offers a multilingual extract of
its contents from 2022, while Common Crawl is a monthly dump of text
found on the whole of the internet.

As you can imagine, this type of free-form internet data is very messy. As
such, there are variants of these datasets, such as Wiki-40B,4 Colossal
Clean Crawled Corpus (C4),5 The Pile,6 and RefinedWeb,7 that attempt to
clean the data for higher-quality model training. RefinedWeb, in particular,
attempts to filter out machine-generated text using statistical methods to
determine if the text is human-generated versus machine-generated.

NOTE
The Falcon family of models was trained on 1.5 trillion tokens of data called
RefinedWeb. The data was processed on a cluster of 257 ml.c5.18xlarge SageMaker
instances consisting of 18,504 CPUs and 37TB of CPU RAM.

Next, you’ll learn about scaling laws, which describe the relationship
between model size, dataset size, and compute budget.

Scaling Laws
For generative models, a set of scaling laws have emerged that describe the
trade-offs between model size and dataset size for a fixed compute budget
(e.g., number of GPU hours). These scaling laws8 state that you can achieve
better generative model performance by either increasing the number of
tokens or the number of model parameters.

Scaling up both will typically require a higher compute budget, which is
typically defined in terms of floating point operations per second (FLOPs).
Figure 3-12 is a comparison of compute budgets required to pretrain
different variations and sizes of BERT, T5, and GPT-3. Remember that

https://oreil.ly/50BeK
https://oreil.ly/bA7vo

BERT is an encoder-only model, T5 is an encoder-decoder model, and
GPT-3 is a decoder-only model. Note that the y-axis is logarithmic.

Figure 3-12. Pretraining requirements for common models in petaflop/s-days (source: adapted from
an image in Brown et al.)

While the 175 billion GPT-3 model outperforms the T5 and BERT models
on generative tasks, according to various benchmarks, the larger models
require a larger compute budget. You might wonder if it’s possible to get
175 billion-parameter performance from a smaller model. In fact, you can!

Researchers have found that by increasing the training dataset size instead
of the model size, you can get state-of-the-art performance that exceeds the
175 billion-parameter models with a much smaller set of weights. In fact,
the “Scaling Laws for Neural Language Models” paper shows that if you
hold the compute budget constant, model performance may increase when
you either increase the training dataset size (and hold model parameter size
constant) or increase the number of model parameters (and hold the dataset
size constant). See Figure 3-13 to see how the loss decreases as either
dataset size or parameter size increases.

https://oreil.ly/9bu2E
https://oreil.ly/ngsF6

Figure 3-13. Impact of dataset size and parameter size on model performance (source: charts in
figure adapted from an image in Kaplan et al.)

This also hints that you can improve performance for smaller models by
just training them on more data. This is the exciting field of compute-
optimal model research that you will learn about next.

Compute-Optimal Models
In 2022, a group of researchers released a paper9 that compared model
performance of various model and dataset size combinations. Since the
authors named their final compute-optimal model Chinchilla, this paper is
famously called the Chinchilla paper.

The Chinchilla paper implies that the massive 100 billion-plus parameter
models like GPT-3 may be overparameterized and undertrained.
Additionally, they hypothesize that you could achieve 100 billion-plus
parameter model performance with a small model by simply providing
more training data to the smaller model.

To be more specific, the authors of the Chinchilla paper claim that the
optimal training dataset size (measured in tokens) is 20x the number of
model parameters and that anything below that 20x ratio is potentially
overparameterized and undertrained. Table 3-2 compares the compute-
optimal Chinchilla and LLaMA models with the 175 billion-parameter
variants of GPT-3, OPT, and BLOOM.

https://oreil.ly/ruSFB

Table 3-2. Chinchilla scaling laws for given model size and dataset size

Model
Model size
(parameters)

Optimal
dataset size
(tokens)

Actual
dataset size
(tokens) Hypo

Chinchilla 70 B 1.4 T 1.4 T Comp
(20x)

LLaMA-65B 65 B 1.3 T 1.4 T Comp
(20x)

GPT-3 175 B 3.5 T 300 B Overp
for da
(<20x

OPT-175B 175 B 3.5 T 180 B Overp
for da
(<20x

BLOOM 176 B 3.5 T 350 B Overp
for da
(<20x

Llama2-70B 70 B 1.4 T 2.0 T Bette
comp
(>20x

Here, you see that according to the Chinchilla scaling laws, these 175+
billion-parameter models should be trained on 3.5 trillion tokens. Instead,
they were trained with 180–350 billion tokens—an order of magnitude
smaller than recommended. As such, the paper hints that these 175+ billion-
parameter models could have been trained with much more data—or could
have been an order-of-magnitude smaller.

In fact, the more recent Llama 2 70 billion-parameter model, which was
released after the Chinchilla paper, was trained with 2 trillion tokens—
greater than the 20-to-1 token-to-parameter ratio described by the paper.
Llama 2 outperformed the original LLaMA model based on various
benchmarks,10 including Massive Multitask Language Understanding
(MMLU). This demonstrates the recent trend to increase the amount of
pretraining data while keeping the number of parameters relatively fixed.

Summary
In this chapter, you saw how foundation models are trained using vast
amounts of text during their initial training phase, called pretraining. This is
where the model develops its understanding of language.

You also learned three different types of transformer-based language
models: encoder-only (autoencoding), decoder-only (autoregressive), and
encoder-decoder (sequence-to-sequence).

Additionally, you learned some empirical scaling laws that have been
discovered for pretraining generative AI models. These scaling laws help
researchers choose the number of model parameters (1 billion, 7 billion, 70
billion, etc.) and dataset size (700 billion tokens, 1.4 trillion tokens, 2
trillion tokens, etc.) for a given compute budget when pretraining a
foundation model from scratch.

You also saw how adding more training data—beyond the 20x ratio defined
by the Chinchilla scaling laws—can improve model performance while
keeping the model size relatively fixed.

Remember that pretraining a foundation model is not common, as it
requires a large amount of GPU compute hours and data. It is more
common that you would fine-tune your model on your dataset using a much
smaller GPU compute cluster, as you will see in the coming chapters.
However, before we explore fine-tuning, let’s better understand the
computational and memory challenges of working with large generative

https://oreil.ly/u3VXw

models. Such challenges include GPU memory limitations and distributed-
computing overhead.

In Chapter 4, you will learn how to use quantization to reduce the memory
requirements of your training job. You will also learn how to efficiently
scale model training across multiple GPUs using distributed computing
strategies such as fully sharded data parallel (FSDP), including
optimizations for AWS.

1 Jordan Hoffmann et al., “Training Compute-Optimal Large Language Models”, arXiv, 2022.

2 Shijie Wu et al., “BloombergGPT: A Large Language Model for Finance”, arXiv, 2023.

3 Hugo Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models”, arXiv, 2023.

4 Mandy Guo et al., “Wiki-40B: Multilingual Language Model Dataset”, arXiv, 2020.

5 Colin Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”, arXiv, 2020.

6 Leo Gao et al., “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”, arXiv,
2020.

7 Guilherme Penedo et al., “The RefinedWeb Dataset for Falcon LLM: Outperforming Curated
Corpora with Web Data, and Web Data Only”, arXiv, 2023.

8 Jared Kaplan et al., “Scaling Laws for Neural Language Models”, arXiv, 2020.

9 Jordan Hoffman et al., “Training Compute-Optimal Large Language Models”, arXiv, 2022.

10 Dan Hendrycks et al., “Measuring Massive Multitask Language Understanding”, arXiv, 2021.

OceanofPDF.com

https://oreil.ly/jSYx1
https://oreil.ly/LdzZj
https://oreil.ly/bwO3J
https://oreil.ly/UX4fx
https://oreil.ly/ZhmO5
https://oreil.ly/26X51
https://oreil.ly/ErjeW
https://oreil.ly/ngsF6
https://oreil.ly/WrFKQ
https://oreil.ly/9DU7_
https://oceanofpdf.com/

Chapter 4. Memory and Compute
Optimizations

In Chapter 3, you explored best practices for experimenting with and
selecting a foundation model for your use case. The next step is usually to
customize the model to your specific needs and datasets. This could include
adapting the model to your datasets using a technique called fine-tuning,
which you will explore in more detail in Chapter 5. When training or fine-
tuning large foundation models, you often face compute challenges—in
particular, how to fit large models into GPU memory.

In this chapter, you will explore techniques that help overcome memory
limitations. You will learn how to apply quantization and distributed
training to minimize the required GPU RAM, and how to scale model
training horizontally across multiple GPUs for larger models.

For example, the original 40 billion-parameter Falcon model was trained on
a cluster of 48 ml.p4d.24xlarge Amazon SageMaker instances consisting
of 384 NVIDIA A100 GPUs, 15TB of GPU RAM, and 55TB of CPU
RAM. A more recent version of Falcon was trained on a cluster of 392
ml.p4d.24xlarge SageMaker instances consisting of 3,136 NVIDIA A100
GPUs, 125TB of GPU RAM, and 450TB of CPU RAM. The size and
complexity of the Falcon model requires a cluster of GPUs, but also
benefits from quantization, as you will see next.

Memory Challenges
One of the most common issues you’ll encounter when you try to train or
fine-tune foundation models is running out of memory. If you’ve ever tried
training or even just loading your model on NVIDIA GPUs, the error
message in Figure 4-1 might look familiar.

https://oreil.ly/kas9y

Figure 4-1. CUDA out-of-memory error

CUDA, short for Compute Unified Device Architecture, is a collection of
libraries and tools developed for NVIDIA GPUs to boost performance on
common deep-learning operations, including matrix multiplication, among
many others. Deep-learning libraries such as PyTorch and TensorFlow use
CUDA extensively to handle the low-level, hardware-specific details,
including data movement between CPU and GPU memory. As modern
generative models contain multiple billions of parameters, you have likely
encountered this out-of-memory error during development while loading
and testing a model in your research environment.

A single-model parameter, at full 32-bit precision, is represented by 4 bytes.
Therefore, a 1-billion-parameter model requires 4 GB of GPU RAM just to
load the model into GPU RAM at full precision. If you want to also train
the model, you need more GPU memory to store the states of the numerical
optimizer, gradients, and activations, as well as any temporary variables
used by your functions, as shown in Table 4-1.

Table 4-1. Additional RAM needed to train a model

States Bytes per parameter

Model parameters (weights) 4 bytes per parameter

Adam optimizer (2 states) 8 bytes per parameter

Gradients 4 bytes per parameter

Activations and temp memory
(variable size)

8 bytes per parameter (high-end
estimate)

TOTAL = 4 + 20 bytes per parameter

TIP
When you experiment with training a model, it’s recommended that you start with
batch_size=1 to find the memory boundaries of the model with just a single training
example. You can then incrementally increase the batch size until you hit the CUDA
out-of-memory error. This will determine the maximum batch size for the model and
dataset. A larger batch size can often speed up your model training.

These additional components lead to approximately 12–20 extra bytes of
GPU memory per model parameter. For example, to train a 1-billion-
parameter model, you will need approximately 24 GB of GPU RAM at 32-
bit full precision, six times the memory compared to just 4 GB of GPU
RAM for loading the model, as shown in Figure 4-2.

Figure 4-2. Comparison of approximate GPU RAM needed to load versus load and train a 1-billion-
parameter model at 32-bit full precision

It’s worth noting that the NVIDIA A100 and H100, used at the time of this
writing, only support up to 80 GB of GPU RAM. And since you likely want
to train models larger than 1 billion parameters, you’ll need to find a
workaround, such as quantizing your model.

AWS has also developed purpose-built ML accelerators, AWS Trainium,
for high-performance and cost-efficient training of 100B+ parameter
generative AI models. You can leverage AWS Trainium chips through the
Trn1 instance family. The largest Trn1 instance, at the time of this writing,
is powered by 16 AWS Trainium chips and has 512 GB of shared
accelerator memory. In addition, Trn1 instances are optimized for
quantization and distributed model training, and they support a wide range
of data types.

Quantization is a popular way to convert your model parameters from 32-
bit precision down to 16-bit precision—or even 8-bit or 4-bit. By quantizing
your model weights from 32-bit full precision down to 16-bit half precision,
you can quickly reduce your 1-billion-parameter-model memory
requirement down 50% to only 2 GB for loading and 40 GB for training.

But before we dive into quantization, let’s explore common data types for
model training and discuss numerical precision.

Data Types and Numerical Precision
The following are the various data types used by PyTorch and TensorFlow:
fp32 for 32-bit full precision, fp16 for 16-bit half-precision, and int8 for
8-bit integer precision.

More recently, bfloat16 has become a popular alternative to fp16 for 16-
bit precision in more-modern generative AI models. bfloat16 (or bf16) is
short for “brain floating point 16” as it was developed at Google Brain.
Compared to fp16, bfloat16 has a greater dynamic range with 8 bits for
the exponent and can therefore represent a wide range of values that we find
in generative AI models.

Let’s discuss how these data types compare and why bfloat16 is a popular
choice for 16-bit quantization.

Suppose you want to store pi to 20 decimal places
(3.14159265358979323846) using full 32-bit precision. Remember that

floating point numbers are stored as a series of bits consisting of only 0s
and 1s. Numbers are stored in 32-bits using 1 bit for the sign (negative or
positive), 8 bits for the exponent (representing the dynamic range), and 23
bits for the fraction, also called the mantissa or significand, which
represents the precision of the number. Table 4-2 shows how fp32
represents the value of pi.

Table 4-2. fp32 representing pi

Sign Exponent Fraction (mantissa/significand)

1 bit
0

8 bits
10000000

23 bits
10010010000111111011011

fp32 can represent numbers in a range from –3e38 to +3e38. The following
PyTorch code shows how to print the data type information for fp32:

import torch

torch.finfo(torch.float32)

The output is:

finfo(resolution=1e-06, min=-3.40282e+38, max=3.40282e+38, eps=1.19209e-07,

smallest_normal=1.17549e-38, tiny=1.17549e-38, dtype=float32)

Storing a real number in 32 bits will actually cause a slight loss in precision.
You can see this by storing pi as an fp32 data type and then printing the
value of the tensor to 20 decimal places using Tensor.item():

pi = 3.14159265358979323846

pi_fp32 = torch.tensor(pi, dtype=torch.float32)

print('%.20f' % pi_fp32.item())

The output is:

3.14159274101257324219

You can see the slight loss in precision if you compare this value to the real
value of pi, which starts with 3.14159265358979323846. This slight loss in
precision is due to the conversion into the fp32 number range, as depicted
in Figure 4-3.

Figure 4-3. fp32 projecting pi into the range from –3e38 to +3e38

You can also print the memory consumption:

def show_memory_comsumption(tensor):

 memory_bytes = tensor.element_size() * tensor.numel()

 print("Tensor memory consumption:", memory_bytes, "bytes")

show_memory_comsumption(pi_fp32)

The output is:

Tensor memory consumption: 4 bytes

Now that you’ve explored data types and numerical representations, let’s
move on and discuss how quantization can help you reduce the memory
footprint required to load and train your multibillion-parameter model.

Quantization
When you try to train a multibillion-parameter model at 32-bit full
precision, you will quickly hit the limit of a single NVIDIA A100 or H100

GPU with only 80 GB of GPU RAM. Therefore, you will almost always
need to use quantization when using a single GPU.

Quantization reduces the memory needed to load and train a model by
reducing the precision of the model weights. Quantization converts your
model parameters from 32-bit precision down to 16-bit precision—or even
8-bit or 4-bit.

By quantizing your model weights from 32-bit full-precision down to 16-bit
or 8-bit precision, you can quickly reduce your 1-billion-parameter-model
memory requirement down 50% to only 2 GB, or even down 75% to just 1
GB for loading, as shown in Figure 4-4.

Figure 4-4. Approximate GPU RAM needed to load a 1-billion-parameter model at 32-bit, 16-bit,
and 8-bit precision

Quantization projects a source set of higher-precision floating-point
numbers into a lower-precision target set of numbers. Using the source and
target ranges, the mechanism of quantization first calculates a scaling
factor, makes the projection, then stores the results in reduced precision,
which requires less memory and ultimately improves training performance
and reduces cost.

fp16

With fp16, the 16 bits consist of 1 bit for the sign but only 5 bits for the
exponent and 10 bits for the fraction, as shown in Table 4-3.

Table 4-3. fp32 versus fp16

Sign Exponent
Fraction
(mantissa/significand

fp32
(consumes 4
bytes of
memory)

1 bit
0

8 bits
10000000

23 bits
10010010000111111011011

fp16
(consumes 2
bytes of
memory)

1 bit
0

5 bits
10000

10 bits
1001001000

With the reduced number of bits for the exponent and fraction, the range of
representable fp16 numbers is only from –65,504 to +65,504. You can also
see this when you print the data type information for fp16:

torch.finfo(torch.float16)

The output is:

finfo(resolution=0.001, min=-65504, max=65504, eps=0.000976562,

smallest_normal=6.10352e-05, tiny=6.10352e-05, dtype=float16)

Let’s store pi with 20 decimal places again in fp16 and compare the values:

pi = 3.14159265358979323846

pi_fp16 = torch.tensor(pi, dtype=torch.float16)

print('%.20f' % pi_fp16.item())

The output is:

3.14062500000000000000

Note the loss in precision after this projection, as there are only six places
after the decimal point now. The fp16 value of pi is now 3.140625.
Remember that you already lost precision just by storing the value in fp32,
as shown in Figure 4-5.

Figure 4-5. Quantization from fp32 to fp16 saves 50% memory

The loss in precision is acceptable in most cases, however. The benefits of a
50% reduction in GPU memory for fp16 compared to fp32 is typically
worth the trade-off since fp16 only requires 2 bytes of memory versus 4
bytes of fp32.

Loading a 1-billion-parameter model now only requires 2 GB of GPU
RAM, with 12 GB of GPU RAM needed for training the model, as shown
in Figure 4-6.

Figure 4-6. Only 12 GB of GPU RAM is needed to load and train a 1-billion-parameter model at 16-
bit half precision

bfloat16

bfloat16 has become a popular alternative to fp16 as it captures the full
range of fp32 with only 16-bits. This reduces numerical instabilities during
model training caused by overflow. Overflow happens when numbers flow
outside of the range of representation when converting them from a high-
precision to a lower-precision space, causing NaN (not a number) errors.

Compared to fp16, bfloat16 has a greater dynamic range but less
precision, which is usually acceptable. bfloat16 uses a single bit for the
sign and the full 8 bits for the exponent. However, it truncates the fraction
to just 7 bits, which is why it’s often called the “truncated 32-bit float,” as
shown in Table 4-4.

Table 4-4. fp32 versus bfloat16

Sign Exponent
Fraction
(mantissa/significand

fp32
(consumes 4
bytes of
memory)

1 bit
0

8 bits
10000000

23 bits
10010010000111111011011

bfloat16
(consumes 2
bytes of
memory)

1 bit
0

8 bits
10000000

7 bits
1001001

The range of representable bfloat16 numbers is identical to fp32. Let’s
print the data type information for bfloat16:

torch.finfo(torch.bfloat16)

The output is:

finfo(resolution=0.01, min=-3.38953e+38, max=3.38953e+38, eps=0.0078125,

smallest_normal=1.17549e-38, tiny=1.17549e-38, dtype=bfloat16)

Let’s store pi with 20 decimal places again in bfloat16 and compare the
values:

pi = 3.14159265358979323846

pi_bfloat16 = torch.tensor(pi, dtype=torch.bfloat16)

print('%.20f' % pi_bfloat16.item())

The output is:

3.14062500000000000000

Similar to fp16, bfloat16 comes with a minimal loss in precision. The
bfloat16 value of pi is 3.140625. However, the benefits of maintaining
the dynamic range of fp32 (shown in Figure 4-7) and thereby reducing
overflow, usually outweighs the loss in precision.

Figure 4-7. Quantization from fp32 to bfloat16 maintains the dynamic range of fp32 while still
saving 50% memory

bfloat16 is natively supported by newer GPUs such as NVIDIA’s A100
and H100. Many modern generative AI models were pretrained with
bfloat16, including FLAN-T5, Falcon, and Llama 2.

fp8

fp8 is a newer data type and natural progression from fp16 and bfloat16
to further reduce memory and compute footprint for multibillion-parameter
models.

fp8 allows the user to configure the number of bits assigned to the exponent
and fraction depending on the task, such as training, inference, or post-

training quantization. NVIDIA GPUs started supporting fp8 with the H100
chip. AWS Trainium also supports fp8, called configurable fp8, or just
cfp8. With cfp8, 1 bit is used for the sign, and the remaining 7 bits are
configurable between the exponent and fraction, as shown in Table 4-5.

Table 4-5. fp32 versus fp8

Sign Exponent
Fraction
(mantissa/significand

fp32
(consumes 4
bytes of
memory)

1 bit
0

8 bits
10000000

23 bits
10010010000111111011011

fp8
(consumes 1
byte memory)

1 bit
0

7 bits
0000011 (configurable)

Empirical results show that fp8 can match model training performance of
fp16 and bfloat16 while reducing memory footprint by another 50% and
speeding up model training.

int8

Another quantization option is int8 8-bit quantization. Using 1 bit for the
sign, int8 values are represented by the remaining 7 bits, as shown in
Table 4-6.

Table 4-6. fp32 versus int8

Sign Exponent
Fraction
(mantissa/significand

fp32
(consumes 4
bytes of
memory)

1 bit
0

8 bits
10000000

23 bits
10010010000111111011011

int8
(consumes 1
byte of
memory)

1 bit
0

n/a 7 bits
0000011

The range of representable int8 numbers is –128 to +127. Here’s the data
type information for int8:

torch.iinfo(torch.int8)

The output is:

iinfo(min=-128, max=127, dtype=int8)

Let’s store pi with 20 decimal places again in int8 and see what happens:

pi = 3.14159265358979323846

pi_int8 = torch.tensor(pi, dtype=torch.int8)

print(pi_int8.item())

The output is:

3

Unsurprisingly, pi is projected to just 3 in the 8-bit lower precision space,
as shown in Figure 4-8.

Figure 4-8. Quantization from fp32 to int8 saves 75% memory

This brings the memory requirement down from originally 4 bytes to just 1
byte, but results in a bigger loss of precision due to the conversion from a
floating point representation to an integer value.

Reducing the memory footprint of large foundation models is not only
helpful for loading and training models, but also for inference. Despite the
loss in precision, 8-bit quantization is often used to improve inference
throughput and latency for deployed models. Optimized implementations
for int8 quantization such as Hugging Face’s bitsandbytes integration of
LLM.int8(), have shown to minimize quantization impact on model
performance. You will learn about post-training quantization (PTQ) and the
technique GPT post-training quantization (GPTQ)1 in more detail when you
prepare the model for deployment in Chapter 8.

Table 4-7 compares the data types discussed thus far.

https://oreil.ly/IvqrL

Table 4-7. Comparison of data types used for quantization

Total bits Sign bits Exponent bits Fract

fp32 32 1 8 23

fp16 16 1 5 10

bf16 16 1 8 7

fp8 8 1 7

int8 8 1 n/a 7

In summary, the choice of data type for model quantization should be based
on the specific needs of your application. While fp32 offers a safe choice if
accuracy is paramount, you will likely hit hardware limits, such as available
GPU RAM, especially for multibillion-parameter models.

In this case, quantization using fp16 and bfloat16 can help to reduce the
required memory footprint by 50%. bfloat16 is usually preferred over
fp16 as it maintains the same dynamic range as fp32 and reduces overflow.
fp8 is an emerging data type to further reduce memory and compute
requirements. Some hardware implementations allow configuring the bits
for exponent and fraction; empirical results show performance can match
model training with fp16 and bfloat16. int8 has become a popular choice
to optimize your model for inference. fp8 is becoming more popular as
both hardware and deep-learning framework support emerges.

TIP
It is recommended that you always benchmark the quantization results to ensure the
selected data type meets your accuracy and performance requirements.

Another memory and compute optimization technique is FlashAttention.
Flash At tention aims to reduce the quadratic compute and memory
requirements, O(n2), of the self-attention layers in Transformer-based
models.

Optimizing the Self-Attention Layers
As mentioned in Chapter 3, performance of the Transformer is often
bottlenecked by the compute and memory complexity of the self-attention
layers. Many performance improvements are targeted specifically at these
layers. Next, you will learn some powerful techniques to reduce memory
and increase performance of the self-attention layers.

FlashAttention
The Transformer’s attention layer is a bottleneck when trying to scale to
longer input sequences because the computation and memory requirements
scale quadratically O(n2) with the number of input tokens. FlashAttention,
initially proposed in a research paper,2 is a GPU-specific solution to this
quadratic scaling problem.

FlashAttention, on version 2 as of this writing, reduces the amount of reads
and writes between GPU main memory, called high-bandwidth memory
(HBM), and the much faster but smaller on-chip GPU static RAM (SRAM).
Despite its name, the GPU high-bandwidth memory is an order of
magnitude slower than the on-chip GPU SRAM.

Overall, FlashAttention increases self-attention performance by 2–4x and
reduces memory usage 10–20x by reducing the quadratic O(n2)

computational and memory requirements down to linear O(n), where n is
the number of input tokens in the sequence. With FlashAttention, the
Transformer scales to handle much longer input sequences which allows for
better performance on larger input context windows.

A popular implementation is installable with a simple pip install
flash-attn --no-build-isolation command which installs the flash-
attn library as a drop-in replacement for the original attention.

Attention optimizations are an active area of research, including the next
generation FlashAttention-2,3 which continues to implement GPU-specific
optimizations to improve performance and reduce memory requirements.

Let’s learn about another technique to improve the performance of the self-
attention layers in the Transformer.

Grouped-Query Attention
Another popular optimization to the attention layers is grouped-query
attention (GQA). GQA improves upon the Transformer’s traditional
multiheaded attention, described in Chapter 3, by sharing a single key (k)
and value (v) head for each group of query (q) heads (as opposed to each
query head), as shown in Figure 4-9.

Figure 4-9. Grouped-query attention versus traditional multiheaded attention

https://oreil.ly/ExuNB

GQA allows queries to be grouped into fewer key and value heads and
therefore reduces memory consumption of the attention heads. In addition,
GQA improves performance by reducing the number of memory reads and
writes.

Since these improvements are proportional to the number of input tokens,
MQA is particularly useful for longer input token sequences and allows for
a larger context window. For example, the Llama 2 model by Meta uses
GQA to improve performance and increase the input token context window
size to 4,096—double the original LLaMA model’s 2,048 context window
size.

Distributed Computing
For larger models, you will likely need to use a distributed cluster of GPUs
to train these massive models across hundreds or thousands of GPUs. There
are many different types of distributed computing patterns, including
distributed data parallel (DDP) and fully sharded data parallel (FSDP). The
main difference is how the model is split—or sharded—across the GPUs in
the system.

If the model parameters can fit into a single GPU, then you would choose
DDP to load a single copy of the model into each GPU. If the model is too
large for a single GPU—even after quantization—then you need to use
FSDP to shard the model across multiple GPUs. In both cases, the data is
split into batches and spread across all available GPUs to increase GPU
utilization and cost efficiency at the expense of some communication
overhead, which you will see in a bit.

Distributed Data Parallel
PyTorch comes with an optimized implementation of DDP that
automatically copies your model onto each GPU (assuming it fits into a
single GPU using a technique such as quantization), splits the data into
batches, and sends the batches to each GPU in parallel. With DDP, each

batch of data is processed in parallel on each GPU, followed by a
synchronization step where the results from each GPU (e.g., gradients) are
combined (e.g., averaged). Subsequently, each model—one per GPU—is
updated with the combined results and the process continues, as shown in
Figure 4-10.

Figure 4-10. Distributed data parallel (DDP)

Note that DDP assumes that each GPU can fit not only your model
parameters and data batches but also the additional data that is needed to
fulfill the training loop, including optimizer states, activations, temporary

function variables, etc., as shown in Figure 4-15. If your GPU cannot store
all of this data, you need to shard your model across multiple GPUs.
PyTorch has an optimized implementation of model sharding that you will
see next.

Fully Sharded Data Parallel

FSDP was motivated by a 2019 ZeRO paper.4 The goal of ZeRO, or zero
redundancy optimizer, is to reduce DDP’s data redundancy by sharding the
model—and its additional gradients, activations, and optimizer states—
across the GPUs to achieve zero redundancy in the system. ZeRO describes
three optimization stages (1, 2, 3) depending on what is being sharded
across the GPUs, as shown in Figure 4-11.

Figure 4-11. ZeRO consists of three stages depending on the GPU shards: parameters, gradients,
and optimizer states

ZeRO Stage 1 only shards the optimizer states across GPUs but still reduces
your model’s memory footprint up to 4x. ZeRO Stage 2 shards both the
optimizer states and gradients across the GPUs to reduce GPU memory up
to 8x. ZeRO Stage 3 shards everything—including the model parameters—
across the GPUs to help reduce GPU memory up to n times, where n is the
number of GPUs. For example, when using ZeRO Stage 3 with 128 GPUs,
you can reduce your memory consumption by up to 128x.

Compared to DDP, in which each GPU has a full copy of everything needed
to perform the forward and backward pass, FSDP needs to dynamically

reconstruct a full layer from the sharded data onto each GPU before the
forward and backward passes, as shown in Figure 4-12.

Figure 4-12. FSDP across multiple GPUs

In Figure 4-12, you see that before the forward pass, each GPU requests
data from the other GPUs on-demand to materialize the sharded data into
unsharded, local data for the duration of the operation—typically on a per-
layer basis.

When the forward pass completes, FSDP releases the unsharded local data
back to the other GPUs—reverting the data back to its original sharded state
to free up GPU memory for the backward pass. After the backward pass,
FSDP synchronizes the gradients across the GPUs, similar to DDP, and
updates the model parameters across all the model shards, where different
shards are stored on different GPUs.

By materializing the data on demand, FSDP balances the communication
overhead with the overall GPU memory footprint. You can manually
configure the sharding factor through the distributed computing
configuration. Later in this chapter, you will see an example using Amazon
SageMaker’s sharded_data_parallel_degree configuration parameter.
This configuration setting helps to manage the trade-off between
performance and memory utilization depending on your specific
environment, as shown in Figure 4-13.

Figure 4-13. Choose a sharding factor based on the resources in your environment

A sharding factor of 1 avoids model sharding and replicates the model
across all GPUs—reverting the system back to DDP. You can set the

sharding factor to a maximum of n number of GPUs to unlock the potential
of full sharding. Full sharding offers the best memory savings—at the cost
of GPU-communication overhead. Setting the sharing factor to anything in
between will enable hybrid sharding.

Performance Comparison of FSDP over DDP
Figure 4-14 is a comparison of FSDP and DDP from a 2023 PyTorch FSDP
paper.5 These tests were performed on different-sized T5 models using 512
NVIDIA A100 GPUs—each with 80 GB of memory. They compare the
number of FLOPs per GPU. A teraFLOP is 1 trillion floating point
operations per second.

Figure 4-14. Performance improvement with FSDP over DDP (source: adapted from an image in
Zhao et al.)

Note that full replication means there is no sharding. And since full
replication is the equivalent of DDP, the performance of the full replication

https://oreil.ly/Y0YZw

and DDP configurations are nearly identical.

For the smaller T5 models, 611 million parameters and 2.28 billion
parameters, FSDP performs the same as DDP. However, at 11.3 billion
parameters, DDP runs out of GPU memory, which is why there is no data
for DDP in the 11.3 billion dimension. FSDP, however, easily supports the
higher parameter size when using hybrid and full sharding.

Furthermore, training the 11-billion-parameter model with different cluster
sizes from 8 GPUs to 512 GPUs shows only a 7% decrease in per-GPU
teraFLOPs due to GPU communication overhead. These tests were run with
batch sizes of 8 (blue) and 16 (orange), as shown in Figure 4-15, which is
also sourced from the 2023 PyTorch FSDP paper.

Figure 4-15. Only little performance decrease due to GPU communication overhead (source:
adapted from an image in Zhao et al.)

This demonstrates that FSDP can scale model training for both small and
large models across different GPU cluster sizes. Next, you will learn about

https://oreil.ly/O-k4K

performing distributed computing and FSDP on AWS using Amazon
SageMaker.

Distributed Computing on AWS
Amazon SageMaker distributed training has been used to train some of the
most powerful foundation models in the world, including Falcon and
BloombergGPT. Falcon-180B, for example, was trained using an Amazon
SageMaker distributed training cluster of 512 ml.p4d.24xlarge instances
—each with 8 NVIDIA A100 GPUs (40 GB GPU RAM each) for a total of
4,096 GPUs and approximately 164 TB of GPU RAM. BloombergGPT was
trained on 64 ml.p4d.24xlarge instances for a total of 512 GPUs and
approximately 20TB of GPU RAM.

With SageMaker’s distributed computing infrastructure, you can run highly
scalable and cost-effective generative AI workloads with just a few lines of
code. Next, you will learn how to implement FSDP with Amazon
SageMaker.

Fully Sharded Data Parallel with Amazon SageMaker
FSDP is a common distributed computing strategy supported by Amazon
SageMaker. The following code shows how to launch an FSDP distributed
training job using the PyTorch Estimator with 2 ml.p4d.24xlarge
SageMaker instances—each with 8 GPUs and 320 GB of GPU RAM:

Choose instance type and instance count

based on the GPU memory requirements

for the model variant we are using

e.g. Llama2 7, 13, 70 billion

instance_type = "ml.p4d.24xlarge" # 8 GPUs each

instance_count = 2

Set to the number of GPUs on that instance

processes_per_host = 8

Configure the sharding factor

In this case, 16 is the maximum, fully-sharded configuration

since we have 2 instances * 8 GPUs per instance

sharding_degree = 16

https://oreil.ly/DKCU7
https://oreil.ly/obTnh

Set up the training job

smp_estimator = PyTorch(

 entry_point="train.py", # training script

 instance_type=instance_type,

 instance_count=instance_count,

 distribution={

 "smdistributed": {

 "modelparallel": {

 "enabled": True,

 "parameters": {

 "ddp": True,

 "sharded_data_parallel_degree":

 sharding_degree

 }

 }

 },

 ...

 },

 ...

)

Here, configure the job to use smdistributed with
modelparallel.enabled and ddp set to True. This configures the
SageMaker cluster to use the FSDP distributed computing strategy. Note
that we set the sharded_data_parallel_degree parameter to 16 because
we have two instances with eight GPUs each. This parameter is our
sharding factor, as discussed in the section “Fully Sharded Data Parallel”.
Here, we choose full sharding by setting the value to the total number of
GPUs in the cluster.

Next are some interesting snippets of the train.py referenced in the previous
PyTorch Estimator code. The full code is in the GitHub repository
associated with this book:

from transformers import AutoConfig, AutoModelForCausalLM

import smp # SageMaker distributed library

Create FSDP config for SageMaker

smp_config = {

 "ddp": True,

 "bf16": args.bf16,

 "sharded_data_parallel_degree": args.sharded_data_parallel_degree,

}

https://oreil.ly/generative-ai-on-aws-code

Initialize FSDP

smp.init(smp_config)

Load HuggingFace model

model = AutoModelForCausalLM.from_pretrained(model_checkpoint)

Wrap HuggingFace model in SageMaker DistributedModel class

model = smp.DistributedModel(

 model

)

Define the distributed training step

@smp.step

def train_step(model, input_ids, attention_mask, args):

 if args.logits_output:

 output = model(input_ids=input_ids,

 attention_mask=attention_mask,

 labels=input_ids)

 loss = output["loss"]

 else:

 loss = model(input_ids=input_ids,

 attention_mask=attention_mask,

 labels=input_ids)["loss"]

 model.backward(loss)

 if args.logits_output:

 return output

 return loss

Next, you will see how to train a model on AWS Trainium hardware, which
is purpose-built for deep learning workloads. For this, you will learn about
the AWS Neuron SDK—as well as the Hugging Face Optimum Neuron
library which integrates the Hugging Face Transformers ecosystem with the
Neuron SDK.

AWS Neuron SDK and AWS Trainium
The AWS Neuron SDK is the developer interface to AWS Trainium.
Hugging Face’s Optimum Neuron library is the interface between the AWS
Neuron SDK and the Transformers library. Here is an example that
demonstrates the NeuronTrainer class from the Optimum Neuron library,

https://oreil.ly/n8-Gj
https://oreil.ly/i6wxn
https://oreil.ly/JDM7p

which is a drop-in replacement for the Transformers Trainer class when
training with AWS Trainium:

from transformers import TrainingArguments

from optimum.neuron import NeuronTrainer

def train():

 model = AutoModelForCausalLM.from_pretrained(

 model_checkpoint)

 training_args = TrainingArguments(

 ...

)

 trainer = NeuronTrainer(

 model=model,

 args=training_args,

 train_dataset=...,

 eval_dataset=...

)

 trainer.train()

Summary
In this chapter, you explored computational challenges of training large
foundation models due to GPU memory limitations and learned how to use
quantization to save memory, reduce cost, and improve performance.

You also learned how to scale model training across multiple GPUs and
nodes in a cluster using distributed training strategies such as distributed
data parallel (DDP) and fully sharded data parallel (FSDP).

By combining quantization and distributed computing, you can train very
large models efficiently and cost effectively with minimal impact on
training throughput and model accuracy.

You also learned how to train models with the AWS Neuron SDK and AWS
Trainium purpose-built hardware for generative deep learning workloads.
You saw how to use the Hugging Face Optimum Neuron library, which

integrates with the AWS Neuron SDK to improve the development
experience when working with AWS Trainium.

In Chapter 5, you will learn how to adapt existing generative foundation
models to your own datasets using a technique called fine-tuning. Fine-
tuning an existing foundation model can be a less costly yet sufficient
alternative to model pretraining from scratch.

1 Elias Frantar et al., “GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained
Transformers”, arXiv, 2023.

2 Tri Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-
Awareness”, arXiv, 2022.

3 Tri Dao, “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning”,
arXiv, 2023.

4 Samyam Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion
Parameter Models”, arXiv, 2020.

5 Yanli Zhao et al., “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”,
arXiv, 2023.

OceanofPDF.com

https://oreil.ly/sZUaG
https://oreil.ly/VtRMp
https://oreil.ly/b--Iu
https://oreil.ly/8X647
https://oreil.ly/AWU_h
https://oceanofpdf.com/

Chapter 5. Fine-Tuning and
Evaluation

In Chapter 4, you learned various techniques to help increase the
performance of large generative models. You also explored efficient
distributed computing strategies such as distributed data parallel (DDP) and
fully sharded data parallel (FSDP) to scale your large-model development
efforts across a set of distributed-compute instances. While these techniques
are essential to pretraining large foundation models from scratch, they are
also useful for adapting foundation models to your custom datasets and use
cases during a process called fine-tuning.

In this chapter, you will dive deep into a fine-tuning technique called
instruction fine-tuning. You already learned about instructions in Chapter 2
with the discussion on prompt engineering. Instructions are commands to
the model to perform some task, such as “Summarize this conversation” or
“Generate a personalized marketing email.” When fine-tuning a foundation
model with instructions, it’s important to present a mix of instructions
across many different tasks to maintain the foundation model’s ability to
serve as a general-purpose generative model.

In this chapter, you will learn about various evaluation metrics and
benchmarks to help measure the effectiveness of your instruction fine-
tuning efforts across many tasks. It is recommended that you establish a set
of baseline evaluation metrics and compare the generated model output
both before and after fine-tuning. This feedback loop is critical in a highly
iterative model development and tuning phase.

And while this chapter primarily focuses on fine-tuning generative language
models, multimodal models also benefit from instruction fine-tuning as they
almost always accept a language-based instruction prompt (such as
“Summarize the contents of the given image” or “How do you cook the
meal shown in this image?”). So, it’s important to understand instruction

fine-tuning when working with generative models for all types of content
modalities. You will learn more about multimodal fine-tuning specifically
in Chapter 11, but let’s continue the discussion of instruction fine-tuning.

Instruction Fine-Tuning
Because they have been pretrained on millions of documents, images,
videos, and audio clips, foundation models have learned the fundamentals
of human language, including humanlike reasoning. Even so, these
foundation models often need additional data or instructions to help them
learn more about your specific dataset or domain and learn to perform
humanlike tasks and step-by-step reasoning. This extra help is called fine-
tuning and, specifically, instruction fine-tuning.

The models that humans most commonly interact with are called “instruct”
or “chat” models. These models are fine-tuned with instructions using their
foundation model equivalent as the base model. The instruct variants are
useful for general-purpose chatbot interfaces, as they are capable of
performing many tasks, accept humanlike prompts, and generate humanlike
responses. Let’s review a few examples of models that have been fine-tuned
with instruction.

Llama 2-Chat
Llama-2-70b-chat is the instruction fine-tuned variant of Llama-2-70b.
Many of the examples in this book are from the Llama 2 family of models.
Specifically, the prompt engineering discussion in Chapter 2 uses the
instruct, or chat, variant of Llama 2.

Falcon-Chat
Falcon-180b is a powerful 180 billion-parameter foundation model and was
trained on a highly curated dataset called RefinedWeb. The Falcon-180b-
chat variant was fine-tuned with instructions across many tasks.

https://oreil.ly/oB7ud
https://oreil.ly/SdxIt
https://oreil.ly/XvewX
https://oreil.ly/DHfjh
https://oreil.ly/dcf7G

FLAN-T5
FLAN-T5, one of the original instruction fine-tuned generative models, is
the instruct variant of the base T5 model. In this case, FLAN is a predefined
and well-documented set of instructions used during instruction fine-tuning.
FLAN has also been applied to PaLM and other foundation base models;1
however, FLAN-T5 is probably the most popular variant of a FLAN
instruction fine-tuned model. With its largest XXL variant having only 11
billion parameters, FLAN-T5 is a great general-purpose model that has
been trained on hundreds of instructions and is capable of powerful chain-
of-thought reasoning.

FLAN-T5 is very well documented, so let’s dive deeper into how the
FLAN-T5 model variants were fine-tuned using the FLAN instruction
dataset.

Instruction Dataset
In contrast to the billions of tokens needed to pretrain a foundation model
described in Chapter 3, you can achieve very good results with instruction
fine-tuning using a relatively small instruction dataset—often just 500–
1,000 examples is enough. Typically, however, the more examples you
provide to the model during fine-tuning, the better the model becomes.

Multitask Instruction Dataset
You should provide the model with many different types of instructions
during fine-tuning to preserve the model’s general-purpose capability. If
you provide instructions for just a single task (e.g., summarization) during
fine-tuning, the model may experience “catastrophic forgetting” in which
the model becomes so good at a single task that it may lose its ability to
handle, or generalize to, other tasks.

In Figure 5-1, you see a sample multitask dataset that includes instruction
examples across a variety of tasks, including summarization, classification,
code translation, and named-entity recognition.

https://oreil.ly/BaHSI
https://oreil.ly/9qqQ2
https://oreil.ly/i6pg3
https://oreil.ly/YIrvo

Figure 5-1. Multitask fine-tuning with instruction

By training the model on a mixed-instruction dataset, you can improve the
performance of the model on many tasks simultaneously, avoid the issue of
catastrophic forgetting, and maintain the model’s ability to generalize to
multiple tasks.

If you primarily have data for a single instruction (e.g., summarization), you
can minimize catastrophic forgetting by augmenting your single-task
instruction examples with a small percentage of multitask examples (e.g.,
5% of your single-task instructions) during the fine-tuning process. You can
either use a public dataset or generate a multitask instruction dataset using
an existing instruct model, as described in the dataset card of Stanford
University’s Alpaca project.2

NOTE
Be sure to review the license before using any model or mechanism to improve your
own model. This may or may not be allowed based on the license. Please consult a legal
expert for advice.

Let’s take a look at the FLAN multitask fine-tuning dataset.

FLAN: Example Multitask Instruction Dataset
The FLAN instruction dataset, currently on version 2, is actually a
collection of 473 different datasets across 146 task categories and nearly

https://oreil.ly/6Q28C
https://oreil.ly/wvtsq

1,800 fine-grained tasks, as shown in Figure 5-2.

Figure 5-2. FLAN dataset (source: adapted from an image in Chung et al.)

One of the datasets in the FLAN collection, samsum, contains 16,000
conversations and human-curated summaries. These conversations and
summaries were created by linguistics experts to produce high-quality

https://oreil.ly/5ql8b
https://oreil.ly/drGTv

training examples for a dialogue-summarization generative task. Examples
from this dataset are shown in Table 5-1.

Table 5-1. samsum dataset of conversational dialogue including human-
curated summaries

dialogue summary

Amanda: I baked cookies. Do you

want some?

Jerry: Sure!

Amanda: I'll bring you tomorrow

:-)

Amanda baked cookies and will bring Jerry

some tomorrow.

Olivia: Who are you voting for in

this election?

Oliver: Liberals as always.

Olivia: Me too!!

Oliver: Great

Olivia and Olivier are voting for liberals

in this election.

Laura: ok , I'm done for today-)

Laura: let me know once u're free

and we come back home together

Kim: hmm.. 7?

Laura: ok

Kim: cool, wait for me at work,

I'll call once I get here

Laura will pick up Kim from work around 7,

and they will come back home together.

Next, you will see how to build an instruction dataset from a tabular dataset
using prompt templates to format the text as instructions.

Prompt Template
In order to convert a table of text, as shown previously into instructions for
fine-tuning, you can use a prompt template that provides a structure for the
instruction prompt. Here is the samsum-specific prompt template from the
FLAN GitHub repository that contains placeholders for the dialogue and
summary columns in the samsum dataset:

https://oreil.ly/qoD_q

{dialogue}

Briefly summarize that dialogue.

{summary}

Here is a dialogue:

{dialogue}

Write a short summary.

{summary}

Dialogue:

{dialogue}

What is a summary of this dialogue?

{summary}

{dialogue}

What was that dialogue about, in two sentences or less?

{summary}

Here is a dialogue:

{dialogue}

What were they talking about?

{summary}

Dialogue:

{dialogue}

What were the main points in that conversation?

{summary}

Dialogue:

{dialogue}

What was going on in that conversation?

{summary}

Note that the template contains multiple instructions for each row of
dialogue-summary data in the samsum table. By applying this template to
each row in the samsum dataset, you create seven instruction examples. By
producing different instructions for the same task with slightly different
instruction formats, the model sees more examples and often generalizes
better to new instructions it may only see during inference.

Since samsum contains approximately 16,000 rows of data, you generate
16,000 * 7 = 112,000 instructions after applying the template to the samsum
dataset! By extending this to FLAN’s complete set of 473 datasets across
approximately 1,800 fine-grained tasks using the 10,000-line FLAN prompt
template, you have the large multitask instruction dataset used to train the
FLAN family of models such as FLAN-T5!

Now that you’ve seen how FLAN-T5 was trained, you will learn how to
apply the same prompt template technique to prepare a custom dataset for

instruction fine-tuning your own generative AI model.

Convert a Custom Dataset into an Instruction Dataset
While the conversations in the samsum dataset and the associated FLAN-
T5 template helped the FLAN-T5 model learn to summarize conversations,
FLAN-T5 may not capture the nuance and uniqueness of your specific
generative use case or task. Therefore, you may want to fine-tune a
foundation model with your custom dataset, such as conversations between
your customer support agents and your customers.

Consider the public dialogue summarization dataset, dialogsum, as a
custom dataset we want to use to fine-tune a generative model. The
dialogsum dataset consists of over 13,000 conversations and summaries.
The summary column was filled in by humans as the baseline summary.
Table 5-2 shows an example dialogue along with a human-annotated
summary.

Table 5-2. Example of human-annotated conversation summary

dialogue summary

#Person1#: Hello, I have a

reservation.

#Person2#: May I see some

identification, sir, please?

#Person1#: Sure. Here you go.

#Person2#: Thank you so much.

Have you got a credit card? ...

#Person2#: Enjoy your stay!

#Person1# has got a reservation. #Person2#

asks for his identification and credit card

and helps his check-in.

After converting the tabular dataset into an instruction dataset, you can fine-
tune a generative model to summarize using this custom instruction dataset.
The goal is to fine-tune a model to generate summaries at least as good—if
not better—than the human summary. Later in this chapter, you will learn
how to measure a model’s generated summary against this human baseline
summary. This is called model evaluation.

https://oreil.ly/LBnGV

But first, let’s demonstrate how to convert this tabular dataset into an
instruction dataset using Python’s f-string and .format() code to convert
the rows of dialogue-summary pairs into instructions. The following code
performs this conversion:

prompt_template = f"""

Here is a dialogue:

{dialogue}

Write a short summary.

{summary}

"""

from transformers import AutoTokenizer

from datasets import load_dataset

Load the custom dataset

dataset = load_dataset("knkarthick/dialogsum")

def convert_row_to_instruction(row):

 prompt = prompt_template.format(

 dialogue=row["dialogue"],

 summary=row["summary"]

instruction_dataset = dataset.map(convert_row_to_instruction)

print(instruction_dataset[0])

Output:

Here is a dialogue:

#Person1#: Hello, I have a reservation.

#Person2#: May I see some identification, sir, please?

#Person1#: Sure. Here you go.

#Person2#: Thank you so much. Have you got a credit card?

...

#Person2#: Enjoy your stay!

Write a short summary.

#Person1# has got a reservation. #Person2# asks for his identification and

credit card and helps his check-in.

Next, you will learn how to use this newly created instruction dataset to
fine-tune a generative model using your custom dataset.

Instruction Fine-Tuning
Instruction fine-tuning is a type of supervised machine learning that
improves the model by continuously comparing the model’s output for a
given input (e.g., instruction prompt with dialogue) to the ground truth
label (e.g., human baseline summary).

Figure 5-3 demonstrates the instruction fine-tuning process at a high level.
The model first makes a prediction (e.g., generates a summary) using the
given input (e.g., instruction prompt). It then compares the prediction to the
ground truth label (e.g., human baseline summary). After calculating the
difference (e.g., loss) between the prediction and the ground truth label, the
model propagates the loss back through the neural network and updates the
model parameters, or weights, to improve the prediction in the future.

After doing many rounds of prediction and backpropagation, the model
learns to generate text as well as—if not better than—the human who
created the baseline ground truth label.

Figure 5-3. Backpropagation of the loss through the network to improve the generative model

Next, you will see examples of implementing fine-tuning with Amazon
SageMaker, including both single-node and multinode distributed
examples. These examples use the SageMaker ml.p4de.24xlarge instance
type—each with eight NVIDIA A100 GPUs and 640 GB of total GPU
memory. The complete code is in the GitHub repository associated with this
book.

Amazon SageMaker Studio
Here is the code for single-node fine-tuning of a generative model using a
model from the Hugging Face model hub. SageMaker Studio is based on
the open source Jupyter Notebook project and is a great way to start
experimenting with different prompt templates and generative models:

import torch

from transformers import (

 AutoModelForCausalLM,

 AutoTokenizer,

 Trainer,

 TrainingArguments,

)

from datasets import load_dataset

https://oreil.ly/D8xJG
https://oreil.ly/generative-ai-on-aws-code
https://oreil.ly/Exdoh

Load dataset and convert each row to an instruction prompt

dataset = load_dataset(...)

dataset = dataset.map(convert_row_to_instruction)

Define and load the model for fine-tuning

model_checkpoint = "<choose a model>"

model = AutoModelForCausalLM.from_pretrained(model_checkpoint)

Convert text into tokens using the model's tokenizer

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

tokenized_dataset = dataset.map(

 lambda row: tokenizer(...)

)

Define training args

training_args = TrainingArguments(

 bf16=True, # Use bfloat16

 ...

)

Create Trainer instance

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=tokenized_dataset,

 ...

TIP
While it’s common to use Amazon SageMaker Studio during the experimentation phase,
it’s very easy to create a SageMaker Studio notebook job to automate the fine-tuning
process without changing any notebook code.

Amazon SageMaker JumpStart
An easy and simple way to fine-tune a powerful generative model on AWS
is using Amazon SageMaker JumpStart. With SageMaker JumpStart and
the SageMaker Python library, you can scale your fine-tuning workload to a
large, distributed cluster of GPU instances simply by changing a single
parameter, instance_count, as you will see next:

https://oreil.ly/EzEV-
https://oreil.ly/xyRo-

from sagemaker.jumpstart.estimator import JumpStartEstimator

from datasets import load_dataset

Load dataset and convert each row to an instruction prompt

dataset = load_dataset(...)

dataset = dataset.map(convert_row_to_instruction)

Define and load the model for fine-tuning

model_checkpoint = "<choose a model>"

Save training data to a local file to be uploaded to s3

local_data_file = "train.jsonl"

dataset.to_json(local_data_file)

Specify S3 location and upload the local dataset file

train_data_s3_location = "s3://<your-private-s3-location>/"

S3Uploader.upload(local_data_file, train_data_s3_location)

Configure the estimator including instance type and count

estimator = JumpStartEstimator(

 model_id=model_checkpoint,

 instance_type="ml.p4de.24xlarge",

 instance_count=2 # increase this value for a larger cluster

Set the hyper-parameters including instruction_tuned="True"

estimator.set_hyperparameters(

 instruction_tuned="True",

 ...

)

Specify S3 location of training data and start fine-tuning!

estimator.fit({"training": train_data_s3_location})

Amazon SageMaker Estimator for Hugging Face
For maximum flexibility and configurability, you can use the Hugging
Face’s implementation of the Amazon SageMaker Estimator class. These
classes are part of the SageMaker Python library. They coordinate the end-
to-end training job using the SageMaker backend infrastructure, including
setup and teardown. This gives you full control of the train.py as you see
here:

from sagemaker.huggingface import HuggingFace # Estimator

https://oreil.ly/7rKhs
https://oreil.ly/7_nkv
https://oreil.ly/p9961

Hyperparameters, which are passed into the training job

hyperparameters ={

 'model_id': model_checkpoint, # pre-trained model

 ...

}

Create the Estimator

huggingface_estimator = HuggingFace(

 entry_point = 'train.py', # train.py script is shown below

 instance_type = 'ml.p4de.24xlarge',

 instance_count = 2, # increase this value for larger cluster

 hyperparameters = hyperparameters, # hyperparameters

 ...

)

Here is a snippet from the train.py referenced from the HuggingFace
estimator:

from transformers import (

 AutoModelForCausalLM,

 Trainer,

 TrainingArguments,

)

from datasets import load_from_disk

Load dataset and convert each row to an instruction prompt

dataset = load_from_disk(...)

dataset = dataset.map(convert_row_to_instruction)

Define and load the model for fine-tuning

model_checkpoint = "..." # generative model like Llama2, Falcon

model = AutoModelForCausalLM.from_pretrained(model_checkpoint)

Convert text into tokens using the model's tokenizer

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

tokenized_dataset = dataset.map(

 lambda row: tokenizer(...)

)

training_args = TrainingArguments(

 bf16=True, # Use bfloat16

 ...

)

Create Trainer instance

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=dataset,

 ...

)

Start fine-tuning

trainer.train()

Save the fine-tuned model

trainer.model.save_pretrained("/opt/ml/model/")

Evaluation
There are many metrics to evaluate generative AI model performance, and
there is much debate in the community over their significance and
effectiveness. At their core, evaluation metrics, such as Recall-Oriented
Understudy for Gisting Evaluation (ROUGE), and benchmarks such as
Holistic Evaluation of Language Models (HELM) and Massive Multitask
Language Understanding (MMLU)3 provide a baseline to which you can
compare changes to your model, such as fine-tuning. Let’s dive into some
of these evaluation metrics and benchmarks to better understand how they
are used to measure improvements to a generative model through
mechanisms like instruction fine-tuning.

Evaluation Metrics
Classic machine learning evaluation metrics, such as accuracy and root-
mean-square error (RMSE), are straightforward to calculate since the
predictions are deterministic and easy to compare against the labels in a
validation or test dataset.

The output from generative AI models, however, is famously
nondeterministic by design, which makes evaluation very difficult without
human intervention. Additionally, evaluation metrics for generative models
are very task-specific. For example, the ROUGE metric is used to evaluate

https://oreil.ly/cfvI4
https://oreil.ly/XzvVy

summarization tasks, while the Bilingual Evaluation Understudy (BLEU)
metric is used for translation tasks.

Since this chapter focuses on summarization, you will learn how to
calculate the ROUGE metric. Through this process, it will become clear to
you why ROUGE is both useful and controversial at the same time.

ROUGE calculates how well the input (dialogue, in this case) compares to
the generated output (summary, in this case). To do this, ROUGE calculates
the number of similar unigrams (single words), bigrams (two consecutive
words), and longest common sequences (consecutive n-grams) between the
inputs and generated outputs to calculate the ROUGE-1, ROUGE-2, and
ROUGE-L scores. The higher the score, the more similar they are.

Already, you might understand the controversy. Human language consists
of many examples in which similar phrases vary wildly in their meaning,
differing either by only a few words or a slight change in word position.
Consider the example, “This book is great” and “This book is not great.”
Using ROUGE alone, these phrases appear to be similar. However, they are,
in fact, opposite.

While ROUGE is far from perfect, it is useful as a baseline metric before
and after fine-tuning your model because it demonstrates relative
improvement. Many popular natural language libraries, including Hugging
Face, support ROUGE. Following is the code to evaluate your model using
the evaluate library from Hugging Face. Here, you see an approximately
80% improvement in the ROUGE scores after fine-tuning on the dialogsum
dataset based on a holdout test dataset not seen by the model during fine-
tuning:

import evaluate

rouge = evaluate.load('rouge')

foundation_model_results = rouge.compute(

 predictions=foundation_model_summaries,

 references=human_baseline_summaries,

 use_aggregator=True,

 use_stemmer=True,

)

print(foundation_model_results)

Here are the ROUGE scores for the foundation models before fine-tuning
with instruction:

{'rouge1': 0.2334,

 'rouge2': 0.0760,

 'rougeL': 0.2014}

fine_tuned_results = rouge.compute(

 predictions=fine_tuned_model_summaries,

 references=human_baseline_summaries,

 use_aggregator=True,

 use_stemmer=True,

)

print(fine_tuned_results)

Here are the ROUGE scores for the foundation models after fine-tuning
with instruction. The scores are higher, which is the desired behavior for the
fine-tuned variant of the model:

{'rouge1': 0.4216,

 'rouge2': 0.1804,

 'rougeL': 0.3384}

Benchmarks and Datasets
To evaluate and compare generative models more holistically, you can use
existing benchmarks and datasets established by the community such as
General Language Understanding Evaluation (GLUE), SuperGLUE,
HELM, Beyond the Imitation Game (BIG-bench),4 and MMLU among
many others. These benchmarks have evolved over the years to include
many complex tasks such as reading comprehension and commonsense
inference.

GLUE was introduced back in 2018 to evaluate and compare model
performance across a set of language tasks. The result was more
generalizable language models that positively impacted the landscape of
natural language research and development. SuperGLUE, the successor to

https://oreil.ly/F_hDq
https://oreil.ly/4Igjq
https://oreil.ly/g5iAi
https://oreil.ly/k3WUe

GLUE, was introduced in 2019 to include more challenging tasks, such as
multisentence reasoning and reading comprehension. Both GLUE and
SuperGLUE offer public leaderboards to encourage and reward
improvements in language understanding.

HELM is a benchmark designed to encourage model transparency and
ultimately provide users with information on which model to choose for a
given task. HELM is a combination of 7 metrics across 16 core “scenarios,”
as defined by the HELM community. Scenarios include tasks such as
question-answer, summarization, and sentiment analysis—as well as
toxicity and bias detection. HELM also offers an extension mechanism to
add new scenarios and tasks. As such, HELM is considered a “living”
benchmark that can evolve over time.

MMLU evaluates a model’s knowledge and problem-solving capabilities.
Models are tested across different subjects, including mathematics, history,
and science.

NOTE
For community-generated benchmarks, multiple variants may exist—each covering a
different set of tasks and datasets. An example is the MMLU benchmark that, as of this
writing, has three variations. Unfortunately, this causes further controversy regarding the
relevancy of benchmarks overall.

BIG-bench is another popular benchmark for generative models. Consisting
of 204 tasks across linguistics, mathematics, biology, physics, software
development, commonsense reasoning, and much more. Because BIG-
bench is so massive, it was released in different sizes to help reduce the
inference cost to participate in the benchmark’s leaderboard.

It’s important to choose metrics, benchmarks, and datasets that help to
evaluate not just your models’ generative capabilities but also its potential
to produce hate speech, fake news, and other harmful output. The
RealToxicityPrompts and TruthfulQA datasets are good starting points to

evaluate your model’s potential to generate hate speech and misinformation,
respectively.

Summary
In this chapter, you learned how to fine-tune your model with instructions
by applying prompt templates to a dataset that matches your generative task
and use case. You also saw examples of fine-tuning using Amazon
SageMaker Studio notebooks, SageMaker JumpStart, and the SageMaker
Python library with the Hugging Face Transformers library. You also
learned some common metrics such as ROUGE and benchmarks such as
MMLU, which you can use to evaluate your model before and after fine-
tuning.

In Chapter 6, you will learn how to perform parameter-efficient fine-tuning
(PEFT) to reduce the number of parameters that need to be updated during
fine-tuning—as opposed to “full” fine-tuning of every parameter presented
in this chapter.

1 Hyung Won Chung et al., “Scaling Instruction-Finetuned Language Models”, arXiv, 2022.

2 Rohan Taori et al., “Alpaca: A Strong, Replicable Instruction-Following Model”, Center for
Research on Foundation Models, Stanford University, 2021.

3 Dan Hendrycks et al., “Measuring Massive Multitask Language Understanding”, arXiv, 2009.

4 Aarohi Srivastava et al., “Beyond the Imitation Game: Quantifying and Extrapolating the
Capabilities of Language Models”, arXiv, 2023.

OceanofPDF.com

https://oreil.ly/5ql8b
https://oreil.ly/z9s75
https://oreil.ly/x0WLv
https://oreil.ly/-nN-C
https://oceanofpdf.com/

Chapter 6. Parameter-Efficient
Fine-Tuning

As we discussed in previous chapters, training generative models is
computationally expensive. Adapting models to your domain through full
fine-tuning requires memory not just to store the model, but also various
other parameters that are required during the training process. In contrast to
full fine-tuning, parameter-efficient fine-tuning (PEFT) provides a set of
techniques allowing you to fine-tune your models while utilizing less
compute resources.

There are a variety of PEFT techniques and categories explored in a paper
on scaling.1 The techniques vary in implementation, but in general, each
focuses on freezing all or most of the model’s original parameters and
extending or replacing model layers by training an additional, much
smaller, set of parameters. The most commonly used techniques fall into the
additive and reparameterization categories.

Additive techniques, such as prompt tuning, augment the model by fine-
tuning and adding extra parameters or layers to the pretrained model.
Reparameterization techniques, such as Low-Rank Adaptation (LoRA),
allow for adaptation using low-rank representations to reduce the number of
training parameters and compute resources required to fine-tune.

In this chapter, you’ll learn about a few specific PEFT techniques that can
be applied to generative models, including prompt tuning, LoRA, and
QLoRA. This chapter focuses on key concepts illustrated through large
language model (LLM) examples; Chapter 11 explores PEFT for
multimodal models.

Full Fine-Tuning Versus PEFT

In this section, you’ll learn more about the differences between full fine-
tuning of a foundation model and utilizing parameter-efficient methods for
model adaptation. At a high level, with full fine-tuning, you’re updating
every model parameter through supervised learning. In contrast, PEFT
techniques freeze the parameters of the pretrained model and fine-tune a
smaller set of parameters.

As discussed in Chapter 4, when training and tuning a foundation model,
you need to not only load the model parameters, but also allocate memory
for the optimizer states, gradients, forward activations, and temporary
memory. These additional components can occupy an extra 12–20 bytes of
GPU memory per model parameter.

Full fine-tuning often requires a large amount of GPU RAM, which quickly
increases your overall compute budget and cost. PEFT reduces the compute
and memory requirements by freezing the original foundation model
parameters and only fine-tuning a small set of new model parameters.

In some cases, the number of newly trained parameters is just 1–2% of the
original LLM weights. Because you’re training a relatively small number of
parameters, the memory requirements for fine-tuning become more
manageable and can often be performed on a single GPU.

In addition to requiring fewer resources during fine-tuning, PEFT methods
are also less prone to catastrophic forgetting, as discussed in Chapter 5,
because the weights of the original foundation remain frozen, preserving the
model’s original knowledge.

PEFT is also helpful when you want to adapt your model for different
tenants, for example. Let’s assume you need to fine-tune to support
hyperpersonalization, where you are creating a unique chatbot experience
per tenant of your system. If you used full fine-tuning for each tenant, that
would result in a new model version for every tenant, as shown in Figure 6-
1.

Each of these new adapted models is the same size as the original model,
which can create an expensive storage and hosting problem if you are
performing full fine-tuning for multiple tenants.

Figure 6-1. Full fine-tuning creates a full copy of the original model for each tenant

With PEFT, you train only a small number of weights for each of the three
tenants, which results in a much smaller model footprint overall. The new
or updated parameters are combined with original parameters for inference,
as shown in Figure 6-2. This allows for efficient adaptation of the original
model to multiple tenants.

Figure 6-2. PEFT reduces task-specific model weights and can merge with original LLM at inference

There are some things to consider when choosing between full fine-tuning
and parameter-efficient fine-tuning. Table 6-1 summarizes these
considerations.

Table 6-1. Considerations for choosing PEFT versus full fine-tuning

Consideration Full fine-tuning
Parameter-efficient fine-
tuning (PEFT)

Fine-tuning
compute
resource
requirements

Increased compute
requirements
(compute, memory,
storage)

Reduced compute requirements
as a result of training only a
subset of model parameters

Storage
resource
requirements

Increased storage
requirements model

Reduced storage requirements

Training data Larger dataset with
multiple examples

Smaller dataset with fewer
examples

Parameter
efficiency

Each weight updated
during fine-tuning

Only a subset of weights
updated during fine-tuning

Model
performance

Typically results in
higher performance

Performance can be similar, but
often a bit lower than full fine-
tuning

Inference
hosting
requirements

Each fine-tuned
model must be
hosted

Host original LLM and
additional model weights for
inference

In general, PEFT methods can often be a good option to minimize resource
requirements while still maintaining adequate model performance for your
adapted use case or task. Next, you will learn about two specific PEFT
techniques called Low-Rank Adaptation (LoRA) and Quantized LoRA
(QLoRA).

LoRA and QLoRA
LoRA is a commonly used PEFT technique that freezes the original weights
of the LLM and creates new, trainable low-rank matrices into each layer of
the Transformer architecture. This technique was first introduced in a
research paper.2 The researchers highlight that foundation models often
have a low intrinsic dimension, meaning that they can often be described
with far fewer dimensions than what is represented in the original weights.

In combination, they hypothesized that the updates to model weights (e.g.,
parameters) have a low intrinsic rank during model adaptation, meaning
you can use smaller matrices, with fewer dimensions, to fine-tune. This
fine-tuning method reduces the number of trainable parameters and, as a
result, the training time required. This also results in a reduction in the
compute and storage resources required.

NOTE
While the original LoRA paper focused on language models, LoRA is also used for
multimodal models such as Stable Diffusion, which uses a Transformer-based language
model to help align text to images. You will explore LoRA in a multimodal context in
Chapter 11.

LoRA Fundamentals
To understand how LoRA works, let’s first revisit the Transformer
architecture from Chapter 3. During full fine-tuning, every parameter in the
model is updated. This process of updating every parameter during full
fine-tuning can require a lot of compute resources and time.

LoRA is a fine-tuning strategy that reduces the number of parameters to be
trained by freezing all of the original model parameters and inserting a pair
of rank decomposition matrices alongside the original weights of a targeted
set of modules (e.g., layers) in the model—typically the linear layers,
including self-attention.

These rank decomposition matrices have significantly fewer parameters
than the original model weights that they learn to represent during LoRA
fine-tuning. The dimensions of the smaller matrices, shown in Figure 6-3 as
A and B, are defined so that their product is a matrix with the same
dimensions as the weights they are modifying.

Figure 6-3. Low-rank matrices A and B are learned during the LoRA fine-tuning process

Rank
With LoRA, you keep the original weights of the model frozen and train
these smaller matrices using the same supervised learning process defined
in Chapter 5. The size of the low-rank matrices is set by the parameter
called rank (r). Rank refers to the maximum number of linearly
independent columns (or rows) in the weight matrix. A smaller value leads
to a simpler low-rank matrix with fewer parameters to train. This leads to
cost savings by requiring less compute and memory resources.

Researchers have explored how different values of rank impact the model
performance on generation tasks. In general, they found that the
effectiveness of a higher rank setting appears to plateau when setting the
rank greater than a value of 16.

Setting the rank between 4 and 16 can often provide you with a good trade-
off between reducing the number of trainable parameters while still
preserving acceptable levels of model performance. While it’s important to
experiment with the right value of r for your own tenant, you can often
achieve good results with a smaller r number (i.e., 4, 8, or 16).

Target Modules and Layers
While LoRA can be applied to any subset of weight matrices in the
Transformer architecture (e.g., self-attention layers, feed-forward layers,
etc.), researchers have found that applying LoRA to the linear layers of the
model is often enough to fine-tune for a tenant and achieve performance
gains. Most of the model parameters are in the attention layers so this also
results in a higher degree of parameter efficiency.

A research paper by Ashish Vaswani et al.3 translates this into practical
terms, specifying Transformer weights with the dimensions of 512 × 64,
which means each weight matrix in the architecture has 32,768 trainable
parameters (512 × 64 = 32,768), as shown in Figure 6-4.

Figure 6-4. Full fine-tuning trains all parameters

If you were performing full fine-tuning, you’d be updating 32,768
parameters for each weight matrix in the architecture. With LoRA,
assuming a rank equal to 4, two small-rank decomposition matrices will be
trained whose small dimension is 4. This means that matrix A will have the
dimensions of 4 × 64 resulting in 256 total parameters, while matrix B will
have the dimensions of 512 × 4, resulting in 2,048 trainable parameters, as
shown in Figure 6-5.

Figure 6-5. LoRA significantly reduces the number of parameters to be trained

By updating the weights of only the new low-rank matrices, you are able to
fine-tune for a single tenant by training only 2,304 (256 + 2,048)
parameters instead of the full 32,768, in this case.

Because LoRA allows you to significantly reduce the number of trainable
parameters, you can often perform this method of parameter-efficient fine-
tuning with a single GPU and avoid the need for a distributed cluster of
GPUs. This results in not only a cost savings, but also a reduction in time
required to fine-tune your model.

Applying LoRA
There are different ways to utilize LoRA for fine-tuning, in terms of the
technical implementation. Common open source libraries support the
different PEFT methods. Following is an example using Hugging Face
Transformers and Amazon SageMaker Studio notebooks to perform LoRA
fine-tuning for a specific tenant with a rank of 16. Note that Amazon
SageMaker JumpStart also supports LoRA for many of its foundation
models:

from peft import LoraConfig, get_peft_model, TaskType

lora_config = LoraConfig(

 r=16, # rank

 lora_alpha=32,

 target_modules=["q", "v"],

 lora_dropout=0.05,

 bias="none",

 task_type=TaskType.CAUSAL_LM

)

peft_model = get_peft_model(original_model,lora_config)

peft_training_args = TrainingArguments(

 output_dir="./model",

 auto_find_batch_size=True,

 learning_rate=1e-3,

 num_train_epochs=1,

 logging_steps=1,

 max_steps=1

)

peft_trainer = Trainer(

 model=peft_model,

 args=peft_training_args,

 train_dataset=tokenized_datasets["train"]

)

As shown in Figure 6-6, the two low-rank matrices, A and B, are multiplied
together to create a matrix with the same dimensions as the original frozen
weights. The resulting matrix is that combined with the original weights.

Figure 6-6. Low-rank matrices multiplied together and added to original weights

Because LoRA does not impact the original model weights, to return to the
original weights for another tenant you can then subtract, or unload, the
value of the low-rank matrix from the original weights.

To perform inference, both the pretrained LLM weights and the new LoRA
weights need to be loaded and combined, as shown in the code using
Hugging Face’s implementation:

from peft import PeftModel, PeftConfig

peft_model_base =

 AutoModelForCausalLM.from_pretrained(base_model_dir,

 torch_dtype=torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(base_model_dir)

peft_model = PeftModel.from_pretrained(peft_model_base,

 model_dir, torch_dtype=torch.bfloat16, is_trainable=False)

If you recall, the rank decomposition matrices are much smaller than the
original weights, so you can efficiently fine-tune a different set for each
tenant and switch them out at inference time by combining the weights with
the original model. There are a couple of approaches in combining the
adapter weights with the original foundation model, as you will see next.

Merging LoRA Adapter with Original Model
Consider training a set of LoRA matrices—the LoRA adapter—for a
specific tenant, Tenant 1, then carry out inference on this tenant. When
you are ready to use the model for inference, you can multiply the LoRA
matrices together and then add the resulting matrix to the original frozen
weights. This new summed weights matrix replaces the original weights
that the LoRA adapter represented. You can then use the merged model to
carry out inference on Tenant 1.

When deploying the model to a standalone inference server like SageMaker
Endpoints, you may need to premerge the original model with the LoRA
adapter. Here is the code to merge the weights using the

merge_and_unload() function from the PEFT library before calling
save_pretrained() on the model:

merged_model = PeftModel.from_pretrained(

 original_model, "tenant_1_lora_adapter/")

To save the merged model, call `merge_and_unload()` before save

merged_model = model.merge_and_unload()

merged_model.save_pretrained("merged_model/")

This results in a single folder, merged_model/, with the merged model. The
inference server then treats this folder as a regular model and does not
require the PEFT library when loading the model for inference.

Maintaining Separate LoRA Adapters
Alternatively, you can fine-tune another pair of LoRA matrices for a
separate tenant, shown as Tenant 2. To carry out inference for Tenant 2,
you take the LoRA matrices trained for this tenant, calculate their product,
and add this matrix to the original weights.

This method is compute and storage efficient because you are still only
storing one copy of the full-sized pretrained model, training these smaller
matrices adapted to your tenants, and only switching the weights out when
you need to use them. The following code shows how to load two PEFT
models (merged_model_1 and merged_model_2) from a single base model:

merged_model_1 = PeftModel.from_pretrained(

 original_model, "tenant_1_lora_adapter/")

merged_model_2 = PeftModel.from_pretrained(

 original_model, "tenant_2_lora_adapter/")

Full-Fine Tuning Versus LoRA Performance
Let’s use the ROUGE metric you learned about in Chapter 5 to compare the
performance of a LoRA fine-tuned model to both an original base model
and a full fine-tuned version.

https://oreil.ly/NJlD3

Table 6-2 summarizes the performance comparison between fine-tuning the
generative model for dialogue summarization. For this, the baseline score
represents the performance of the pretrained model and the dialogsum
dataset. A higher number indicates better performance for this metric.

Table 6-2. Sample ROUGE metrics for full fine-tuning versus LoRA fine-
tuning

Base model
Full fine-tune
(approx. +80%)

LoRA fine-tune
(approx. –3%)

rouge1 0.2334 0.4216 0.4081

rouge2 0.0760 0.1804 0.1633

rougeL 0.2014 0.3384 0.3251

rougeLsum 0.2015 0.3384 0.3249

As you can see, the scores are fairly low for the base model, then get better
when performing full fine-tuning by updating all of the model parameters.
The metric drops a bit when using LoRA-based parameter-efficient fine-
tuning. However, using LoRA for fine-tuning trained a much smaller
number of parameters than full fine-tuning, using significantly less
compute, in this case 1.4%; this small trade-off in performance may well be
worth it. This directly translates to cost savings as your compute and
memory footprints are reduced.

QLoRA
While LoRA reduces memory requirements, there is a variation of LoRA
called QLoRA that aims to further reduce memory requirements by
combining low-rank adaptation with quantization.4 QLoRA uses 4-bit
quantization in a format called NormalFloat4 or nf4.

Fine tuning with QLoRA is shown to match 16-bit fine-tuning methods
because the 4-bit weights are only dequantized to 16 bits as needed for
computations during the forward and backward passes. The following code
sample shows how to fine-tune with QLoRA using the open source
bitsandbytes library. Here, the bitsandbytes library is used to load the model
into 4-bit and specifically into the nf4 format:

from transformers import BitsAndBytesConfig, AutoModelForCausalLM

bnb_config = BitsAndBytesConfig(

 load_in_4bit=True,

 bnb_4bit_use_double_quant=True,

 bnb_4bit_quant_type="nf4",

 bnb_4bit_compute_dtype=torch.bfloat16

)

model = AutoModelForCausalLM.from_pretrained(model_checkpoint,

 quantization_config=bnb_config)

from peft import LoraConfig, get_peft_model

config = LoraConfig(

 r=16,

 lora_alpha=32,

 target_modules=[

 "query_key_value",

 "dense",

 "dense_h_to_4h",

 "dense_4h_to_h",

],

 lora_dropout=0.05,

 bias="none",

 task_type="CAUSAL_LM"

)

model = get_peft_model(model, config)

trainer = transformers.Trainer(

 model=model,

 args=transformers.TrainingArguments(

 ...

 bf16=True

)

)

You learned about quantization in Chapter 4 as a method to reduce the
memory required to store the weights of your model by reducing their
precision from a 32-bit floating point to a lower precision representation.
QLoRA uses a technique called double quantization to further reduce the
memory footprint required for fine-tuning by performing quantization on
the quantized constants. It’s common for QLoRA to target all linear layers
and not just the self-attention layers targeted by LoRA. This provides
further opportunity for optimization.

LoRA and QLoRA provide efficiencies in the resources required to fine-
tune for specific tasks. Both of these techniques utilize low-rank
decomposition matrices for fine-tuning. In the next section, you’ll learn
about soft prompts and prompt tuning as another PEFT that uses a different
approach to fine-tuning.

Prompt Tuning and Soft Prompts
It’s important to keep in mind that prompt tuning is different from prompt
engineering, which you learned about in Chapter 2. Prompt engineering
requires you to refine a text-based prompt to get the intended completion
from a generative model. This can be time-consuming and require a lot of
human effort to perform effectively. In comparison to the manual aspects of
prompt engineering, prompt tuning uses machine learning to learn the best
instructions for a task and implements those as virtual tokens added to your
input prompts.

With prompt engineering, there are limitations related to the maximum
length of the context window for your chosen model. Conversely, prompt
tuning focuses on adding additional, trainable tokens to your input prompt,
which are more efficient in terms of context window limits because these
tokens are condensed representations of instructions.

Traditional prompt engineering utilizes what is known as hard prompts, or
prompts that represent natural language (e.g., “What is the best book to
teach someone about Transformers?”). These hard prompts correspond to a
fixed location in the embedding vector space. Prompt tuning relies on soft

prompts, which are often referred to as virtual tokens because they can
represent any value within the continuous multidimensional embedding
space. These soft prompts, shown in Figure 6-7, represent a sequence of
vectors that do not translate directly to natural language.

Figure 6-7. Soft prompts represent a sequence of vectors that do not translate directly to natural
language

Prompt tuning does not impact the weights of the original foundation
model. Instead, prompt tuning involves creating a small model that is used
to encode the text prompt and generate task-specific virtual tokens. The
optimal value of these tokens is then learned during the supervised learning
process through backpropagation. The following code shows an example,
using Hugging Face’s PEFT library, of a portion of the configuration used
to train the model that will be used to generate virtual tokens:

peft_config = PromptTuningConfig(

 task_type=TaskType.CAUSAL_LM,

 prompt_tuning_init=PromptTuningInit.TEXT,

 num_virtual_tokens=8,

 prompt_tuning_init_text="Classify if the tweet is a complaint or not:",

 tokenizer_name_or_path=model_checkpoint,

)

These task-specific virtual tokens, or soft prompts, are added to the prompt,
as shown in Figure 6-8.

Figure 6-8. Soft prompts are learned in an attempt to maximize task performance

The soft prompts then get prepended to the embedding vectors that
represent your input text. These soft prompt vectors have the same length as
the embedding vectors representing the language token. Research has
shown that somewhere between 20 and 100 virtual tokens can be enough to
achieve good performance for your task. While the tokens from the hard
prompt are specifically related to the input text, these virtual tokens with the
trainable soft prompts do not directly represent discrete text.

Prompt tuning falls into the additive category of PEFT fine-tuning methods
because you are adding soft prompts, while the weights of the underlying
model remain frozen. The embedding vectors of the soft prompt then get
updated over time to optimize the model’s ability to accurately complete the
prompt.

Because you are only tuning a set of soft prompts and leaving the original
foundation model unchanged, this is a parameter-efficient tuning strategy.
Similarly to LoRA, you can train and optimize for different task-level
prompts. To do this, you prepend your input prompt with those learned
tokens (soft prompts) specific to your task.

Prompt tuning performance varies, and research has shown that prompt
tuning may not perform as well as full fine-tuning for smaller LLMs, but as
the model size increases, the performance of prompt tuning tends to
improve. As an example, research5 using the SuperGLUE evaluation
benchmark has shown equivalent performance to full fine-tuning for some
models that have 10 billion parameters.

However, the primary challenge with prompt tuning tends to be
interpretability, because these learned virtual tokens can take on any value
within that continuous embedding vector space, and they do not necessarily
correspond to any known token or discrete language in the vocabulary of
the LLM.

Another consideration with prompt tuning is that it doesn’t really adapt a
model for new tasks, because the main goal with prompt tuning is to

optimize the prompts that are passed into the original foundation model. As
a result, while it can potentially produce better model responses, it can’t
inject knowledge or context unknown to the base foundation model.

Typically, these soft prompts form tight semantic clusters based on analysis
of the nearest neighbor tokens to the soft prompt locations, meaning the
words closest to these soft prompt tokens have similar meanings. This
suggests that the tokens are learned based on word representations.

Summary
In this chapter, you explored LoRA, which uses rank decomposition
matrices to update the model parameters in an efficient way. With LoRA,
the goal is to find an efficient way to update the weights of the model
without having to train every single parameter again.

LoRA is a powerful fine-tuning method that achieves great performance.
Because LoRA reduces the amount of resources needed to fine-tune your
models relative to full fine-tuning, it is used widely in practice for many use
cases and tasks. The principles behind this method are useful for training
not just generative language models but also other types of models,
including image and video.

QLoRA is a variant of LoRA that uses quantization, a new data type called
NormalFloat4 (nf4), and targets more than just the attention layers of the
Transformer.

You also explored prompt tuning as a way to optimize prompts using
trainable soft tokens that get prepended to the input prompt. While LoRA
may be more performant in adapting to specialized tasks, prompt tuning is a
relatively simple technique for prompt optimization.

In Chapter 7, you will learn a powerful technique called reinforcement
learning from human feedback (RLHF) to fine-tune your generative models
to align with human values and preferences.

1 Vladislav Lialin et al., “Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-
Tuning”, arXiv, 2023.

2 Edward Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models”, arXiv, 2021.

3 Ashish Vaswani et al., “Attention Is All You Need”, arXiv, 2023.

4 Tim Dettmers et al., “QLoRA: Efficient Finetuning of Quantized LLMs”, arXiv, 2023.

5 Brian Lester et al., “The Power of Scale for Parameter-Efficient Prompt Tuning”, arXiv, 2021.

OceanofPDF.com

https://oreil.ly/QCW4N
https://oreil.ly/uPV8s
https://oreil.ly/LqCjH
https://oreil.ly/2wjMi
https://oreil.ly/Ibf7V
https://oceanofpdf.com/

Chapter 7. Fine-Tuning with
Reinforcement Learning from
Human Feedback

As you learned in Chapters 5 and 6, fine-tuning with instructions can
improve your model’s performance and help the model to better understand
humanlike prompts and generate more humanlike responses. However, it
doesn’t prevent the model from generating undesired, false, and sometimes
even harmful completions.

Undesirable output is really no surprise, given that these models are trained
on vast amounts of text data from the internet, which unfortunately contains
plenty of bad language and toxicity. And while researchers and practitioners
continue to scrub and refine pretraining datasets to remove unwanted data,
there is still a chance that the model could generate content that does not
positively align with human values and preferences.

Reinforcement learning from human feedback (RLHF) is a fine-tuning
mechanism that uses human annotation—also called human feedback—to
help the model adapt to human values and preferences. RLHF is most
commonly applied after other forms of fine-tuning, including instruction
fine-tuning.

While RLHF is typically used to help a model generate more humanlike
and human-aligned outputs, you could also use RLHF to fine-tune highly
personalized models. For example, you could fine-tune a chat assistant
specific to each user of your application. This chat assistant can adopt the
style, voice, or sense of humor of each user based on their interactions with
your application.

In this chapter, you will learn how to use RLHF to fine-tune your model to
better align its generated output with human preferences and values—and

ultimately increase the model’s helpfulness, honesty, and harmlessness
(HHH).

Human Alignment: Helpful, Honest, and
Harmless
Positive language often appeals better to humans. Let’s discuss a model’s
output in the context of helpful, honest, and harmless alignment:

Helpful

Your model may not generate a helpful completion for your
prompt. Consider asking your model, “Which cities in the
United States are the most popular for summer vacation?”
The model responds with, “Most major cities in the United
States are popular for summer vacation.” This is clearly not
a helpful response and could use some improvement.

Honest

Your model might also generate misleading or incorrect
responses. Let’s say you ask the model if shaking your head
can improve your hearing. The model may sometimes
generate a confident, yet totally incorrect, response such as,
“Yes! Shaking your head can improve your hearing,” which
is not scientifically proven to be true.

Harmless

You also don’t want your model to generate harmful,
offensive, or criminal responses. Instead of responding as
such, you can fine-tune your model to either ignore the
question or respond with a less toxic response that does not
propagate offensiveness or encourage criminal behavior. For
example, if you ask your model how to hack into a computer
system, your model can respond with, “I am unable to

answer this question because I do not encourage criminal
behavior.”

Next, you will learn about reinforcement learning, which is the basis of the
RLHF fine-tuning process.

Reinforcement Learning Overview
It’s important to understand reinforcement learning before diving deeper
into RLHF. A popular example of reinforcement learning is AWS
DeepRacer, where a player trains a small driverless car to autonomously
drive on a racetrack and avoid crashing. The player competes with other
drivers to complete the track in the shortest amount of time. The player with
the lowest time wins the race.

In Figure 7-1, the agent is the car that is learning a policy or model based on
rewards given to the car for staying on the track and choosing the proper
actions. The training algorithm maximizes the car’s objective to complete
the track in the lowest amount of time and win the race.

Figure 7-1. Reinforcement learning in the context of AWS DeepRacer

The environment is the racetrack, including its curves and conditions. The
state at any moment is the car’s current position and speed on the racetrack.
The action space comprises all the possible actions a car can choose based

on the current state, including steering left/right, braking, and accelerating.
The agent makes decisions by following a strategy, known as the RL policy.
During the race, the agent chooses a set of actions that lead to a win or a
loss.

After each race, the agent collects an overall reward that affects the agents’
actions in the next race. The goal of reinforcement learning is for the agent
to learn the optimal policy, or model, for choosing the actions for a given
environment that maximizes the rewards.

This learning process is iterative and involves trial and error. Initially, the
agent takes a random action, which leads to a new state. From this state, the
agent proceeds to explore subsequent states through further actions.

The sequence of states and actions that lead to a reward are often called a
playout in RL terms. As the agent gathers more experience through
additional playouts, it will learn to follow actions that produce a high
reward—winning the race, in this case.

In Figure 7-2, you see the RL concepts applied to a generative model. Here,
the model is the agent. The policy consists of the model weights. The RL
algorithm will update the model weights to choose a better action, or
generate a better next-token, given the environment, state, and objective.
The objective is for the model to generate completions that are better
aligned with human preferences such as helpfulness, honesty, and
harmlessness (HHH).

Figure 7-2. Reinforcement learning in the context of a generative AI model

The action is chosen from the action space consisting of all possible tokens.
Specifically, the next token is chosen based on the probability distribution
of tokens over all tokens in the model’s vocabulary. The environment is the
model’s context window. The state consists of the tokens that are currently
in the context window.

In this generative context, the sequence of actions and states resulting in a
reward is called a rollout.

TIP
Playout is used in the classical RL context, while rollout is commonly used in a
generative context. They are equivalent.

The reward is based on how well the model’s completion aligns with a
human preference such as helpfulness. As the model experiences more
rollouts and rewards, it will learn to generate tokens that produce a higher
reward. The examples in this chapter will demonstrate reward models that
give a higher reward to text that is more helpful, honest, and harmless.

The reward model plays a key role in RLHF by encouraging the model to
generate more human-aligned, preferred completions and discouraging
nonpreferred responses. Determining what is preferred and not preferred is

a bit trickier than tracking a car’s time to complete a race. To determine
what is considered helpful, honest, and harmless, you often need humans to
label the context using human-in-the-loop managed services like
SageMaker Ground Truth to train a custom reward model, as you will see
next.

Train a Custom Reward Model
A reward model is typically a classifier that predicts one of two classes—
positive or negative. These are often called binary classifiers and are often
based on smaller language models like BERT. Many language-aware binary
classifiers already exist to classify sentiment or detect toxic language. If
these are not suitable for your use case, then you can train your own reward
model.

TIP
Training a custom reward model is a relatively labor-intensive and costly endeavor. You
should explore existing binary classifiers before committing to this effort.

Collect Training Dataset with Human-in-the-Loop
The first step to training a custom reward model is to collect data from
humans on what is helpful, honest, and harmless. This is called collecting
human feedback from human annotators, or labelers. This step typically
involves a managed service like SageMaker Ground Truth.

In a generative context, it’s common to ask the human annotators to rank
various completions for a given prompt. By ranking the completions
relative to each other, the human labelers actually create multiple rows of
training data—per prompt—for your reward model, as you will see in a bit.

But first, let’s see an example set of instructions provided to human
annotators when asking them to rank model completions for a given
prompt.

https://oreil.ly/iuEC1
https://oreil.ly/T5-Kk
https://oreil.ly/ugocl

Sample Instructions for Human Labelers
Typically, human annotators are asked to rank the completions for a given
prompt according to given criteria. For example, “Please rank the
completions from the most helpful to least helpful” or “Please rank the
completions from the most harmless to the least harmless.”

The more details you share, the more likely the labeler will correctly
perform the task and provide a high-quality, human-aligned ranking dataset
to train your reward model. To ensure quality labeling and feedback, make
sure you provide clear instructions to help the labelers understand their task,
the human-alignment criteria, and how to deal with any edge cases.

Generally, instructions should clearly describe the task for the labeler. Here
is an example set of human labeling instructions derived from the “Scaling
Instruction-Finetuned Language Models” paper:1

Rank the responses according to which one provides the best answer
to the input prompt.

What is the best answer? Make a decision based on (a) the
correctness of the answer, and (b) the informativeness of the
response. For (a) you are allowed to search the web. Overall, use
your best judgment to rank answers based on being the most useful
and harmless response, which we define as one which is at least
somewhat correct, minimally informative about what the prompt is
asking for, and least toxic in language.

Long answers are not always the best. Answers which provide
succinct, coherent responses may be better than longer ones, if they
are at least as correct and informative.

Providing these detailed human instructions will increase the likelihood that
the responses will be high quality and that all individual humans will carry
out the labeling task in a consistent way.

Next, you will see how to collect the human feedback using a managed
service like Amazon SageMaker Ground Truth.

Using Amazon SageMaker Ground Truth for Human
Annotations
To collect the data from human labelers, you can use a service like Amazon
SageMaker Ground Truth to allow labelers to rank the completions for a
given prompt from highest to lowest using a drag-and-drop UI interface like
the one shown in Figure 7-3.

Figure 7-3. Ranking with Amazon SageMaker Ground Truth

Here, the human annotator is asked to rank the most helpful summary of a
given conversation. Here is the code that sets up and submits one of these
tasks to SageMaker Ground Truth as a human-in-the-loop task. In this case,

a task is a prompt with a set of three possible completions that need to be
ranked:

items = [

 {

 "prompt":

 """

 Chris: Hey Antje, do you like cats?

 Antje: I hate cats. I'm allergic to them.

 """,

 "responses": [

 """

 Chris asks Antje if she likes cats.

 Antje does not like cats because she is allergic to them.

 """,

 """

 Chris asks Antje if she likes cats. Antje hates cats.

 """,

 """

 Antje asks Chris if he likes cats.

 Chris loves cats because they are fluffy, cute, and cuddly.

 """

]

 }

]

humanLoopName = str(uuid.uuid4())

inputContent = {"taskObject": task}

start_loop_response = a2i.start_human_loop(

 HumanLoopName=humanLoopName,

 FlowDefinitionArn=augmented_ai_flow_definition_arn,

 HumanLoopInput={"InputContent":

 json.dumps(inputContent)},

)

loop = a2i.describe_human_loop(HumanLoopName=human_loop_name)

print(f'HumanLoop Status: {loop["HumanLoopStatus"]}')

print(f'HumanLoop Output S3: {loop["HumanLoopOutput"]}')

Output

HumanLoop Status: InProgress

HumanLoop Output S3: {'OutputS3Uri':

's3://<ground-truth-ranking-results-s3-location>/output.json'}

When the human annotator ranks the responses for a given prompt, they
will be stored as JSON strings in the S3 location, similar to the one previous
code. Here is an excerpt from one of the JSON strings. Note that 1 is the
best ranking and 3 is the worst:

{

 "humanAnswers": [{

 "answerContent": {

 "ranking_A": "1", # ranking for completion A (1=best)

 "ranking_B": "2", # ranking for completion B

 "ranking_C": "3", # ranking for completion C (3=worst)

 }

 }]

}

By repeating this process across many human labelers, you create a human
preference dataset that you can use to train a reward model. Before you can
train the reward model, however, you need to convert the JSON strings into
a numeric format suitable for training a binary classifier.

Prepare Ranking Data to Train a Reward Model
Now that you have collected human-annotated rankings and stored them as
JSON in S3, you need to convert this data into a format used to train the
reward model to predict either a positive reward (1) or a negative reward
(0). In other words, you need to convert rankings 1 through 3 into 0s and 1s,
as shown next.

In our example, there are three possible completions for the given prompt—
completion A, B, and C, as shown in Figure 7-4. Here, you see that, for the
given prompt, the human labeler has assigned completion A the highest
ranking (rank 1), completion B the middle ranking (rank 2), and completion
C the lowest ranking (rank 3).

Figure 7-4. Ranked completions for a given prompt

In other words, completion A > completion B > completion C, or just A > B
> C. You can split this relationship into three separate pairwise
comparisons: A > B, B > C, and A > C. Next, you can assign 0 or 1 to each
element in each of the pairwise comparisons, as shown in Figure 7-5. Here,
1 represents the more preferred completion and 0 represents the less
preferred completion among the pair of completions.

Figure 7-5. 0 and 1 reward pairs for each pairwise completion ranking

The logic to perform the pairwise comparisons is trivial, but you can find
the complete code in the GitHub repository associated with this book.

https://oreil.ly/generative-ai-on-aws-code

Note that three ranked completions for a given prompt generates three rows
of reward-training data. Four ranked completions would generate six
pairwise comparisons. Five ranked completions would generate 10 pairwise
comparisons, and so on. Each additional ranked completion will generate an
exponential number of new training examples.

This relationship is described by the field of combinatorics, which dictates
that, for n number of completions, you will generate (n choose 2)
pairwise comparisons, where each pairwise comparison is a row of training
data for your reward model.

TIP
While thumbs-up/down human feedback is often easier to capture than rankings by
simply adding a thumbs-up/down button to the application, rankings give you
exponentially more data to train your reward model.

This training data is used to train the reward model that will ultimately
predict a reward for a generated completion during the RL fine-tuning
process described in the next section. However, we’re not quite done
preparing our reward-model training dataset yet.

After generating the pairwise reward-training data of 0 and 1 reward values,
convention dictates that you should reorder the data so that the preferred
completion is in the first column. While this is a convention, it’s important
to understand this extra step, as a lot of reward-model training code and
documentation refers to the preferred text as yj and the nonpreferred text as
yk. This also positions rj as the preferred reward (1) and rk as the
nonpreferred reward (0), as shown in Figure 7-6.

https://oreil.ly/Zdp4q
https://oreil.ly/eqOU4

Figure 7-6. Move preferred completion into the yj column, per convention

Note how the completions and rewards in the first row, A and B, are
swapped to follow the convention and move the preferred completion to the
yj position and the preferred reward to the rj position. The code to perform
this transformation is trivial, but you can see the full code in the GitHub
repository associated with this book. Table 7-1 shows an example output
from the transformation.

https://oreil.ly/generative-ai-on-aws-code

Table 7-1. Summary of preferred and nonpreferred completions and
rewards

Prompt
Completion yj
(preferred)

Completion yk
(nonpreferred)

Rewards [rj,
rk]

Chris: Hey
Antje, do you
like cats?
Antje: I hate
cats. I’m
allergic to
them.

Chris asks Antje
if she likes cats.
Antje does not
like cats because
she is allergic to
them.

Chris asks Antje
if she likes cats.
Antje hates cats.

[1, 0]

Chris: Hey
Antje, do you
like cats?
Antje: I hate
cats. I’m
allergic to
them.

Chris asks Antje
if she likes cats.
Antje hates cats.

Antje asks Chris
if he likes cats.
Chris loves cats
because they are
fluffy, cute, and
cuddly.

[1, 0]

Chris: Hey
Antje, do you
like cats?
Antje: I hate
cats. I’m
allergic to
them.

Chris asks Antje
if she likes cats.
Antje does not
like cats because
she is allergic to
them.

Antje asks Chris
if he likes cats.
Chris loves cats
because they are
fluffy, cute, and
cuddly.

[1, 0]

Now that you have completed the data preparation phase, you are finally
ready to train the reward model, as you will see next.

Train the Reward Model

Let’s now train the reward model using the dataset you prepared using the
human-annotated feedback collected from human labelers using SageMaker
Ground Truth. For this, you can use a BERT-based text classifier trained to
predict the probability distribution across two classes—positive (1) and
negative (0)—for a given prompt-completion pair. The class with the
highest probability is the predicted reward:

from transformers import AutoModelForSequenceClassification

model_checkpoint = "..." # BERT-based text classifier

custom_reward_model =

 AutoModelForSequenceClassification.from_pretrained(

 model_checkpoint)

Remember that a positive reward (1) encourages the model to continue
generating the completion for the given prompt. Conversely, a negative
reward (0) discourages the model from generating the completion.

In Figure 7-7 you see that, for a given prompt x, the reward model learns to
favor the human-preferred completion, yj, by minimizing the loss function,
which reflects the reward difference, rj minus rk.

Figure 7-7. Train the model to predict the preferred completion yj from {yj, yk} for prompt x

Specifically, the loss is the negative of the log sigmoid of the reward
difference, as shown in the compute_loss() code snippet here from the
library of the Transformer Reinforcement Learning (TRL)’s
RewardTrainer class. Remember that the human-preferred completion and
reward are, by convention, labeled yj and rj:

https://oreil.ly/Kt_lm
https://oreil.ly/pE_Nb
https://oreil.ly/03jL3

from transformers import Trainer

class RewardTrainer(Trainer):

 # Define the loss function for the RewardTrainer class

 def compute_loss(self, reward_model, inputs):

 rewards_j = reward_model(

 input_ids=inputs["input_ids_j"],

 attention_mask=inputs["attention_mask_j"])[0]

 rewards_k = reward_model(

 input_ids=inputs["input_ids_k"],

 attention_mask=inputs["attention_mask_k"])[0]

 loss = -nn.functional.logsigmoid(

 rewards_j - rewards_k

).mean()

 return loss

Train the reward model ... woo-hoo!

trainer = RewardTrainer(

 model=custom_reward_model, # BERT-based text classifier

 train_dataset=human_feedback_dataset,

 ...)

trainer.train()

custom_reward_model.save_pretrained(

 "custom_reward_model_checkpoint/"

)

Now that we have shown how to train a reward model to reward helpful
completions, let’s switch to another common type of reward model for
generative tasks: toxicity and hate-speech detection for generated text.
Reducing toxicity is a key component of adapting and aligning a generative
model for human values and preferences, as you will see next.

Existing Reward Model: Toxicity Detector by
Meta
In 2021, Meta/Facebook released a paper2 along with a model based on
RoBERTa called roberta-hate-speech-dynabench-r4-target that helps detect
toxic language. This reward model predicts the probability distribution
across two classes—“not hate” or “hate”—for a given text input.

https://oreil.ly/rGfbQ
https://oreil.ly/TMGvw

Similar to the reward model that you trained in the previous section to
positively reward text classified as helpful, honest, and harmless, Meta’s
reward model positively rewards text classified as “not hate” and negatively
rewards text classified as “hate.”

In the next section, you will use this Meta toxicity model as a reward model
to fine-tune a generative model and reduce the toxicity of its generated
completions. But, first, let’s verify that this model works as expected by
passing in a toxic phrase—as well as a nontoxic phrase—and compare the
rewards:

from transformers import AutoTokenizer

toxicity_model_checkpoint =

 "facebook/roberta-hate-speech-dynabench-r4-target"

toxicity_tokenizer =

 AutoTokenizer.from_pretrained(toxicity_model_checkpoint)

text = "You are a terrible person and I dang hate you."

toxicity_input_ids = tokenizer(text,

 return_tensors="pt").input_ids

logits = toxicity_evaluator(toxicity_input_ids).logits

print(f'logits [not hate, hate]: {logits.tolist()[0]}')

Print the probabilities for [not hate, hate]

probabilities = logits.softmax(dim=-1).tolist()[0]

print(f'probabilities [not hate, hate]: {probabilities}')

Get the logits for "not hate" - this is the reward!

nothate_reward = (logits[:, not_hate_index]).tolist()

print(f'reward (value of "not hate" logit): {nothate_reward}')

Output:

logits [not hate, hate]: [-2.0610, 1.5835]

probabilities [not hate, hate]: [0.0254, 0.9745]

reward (value of "not hate" logit): [-2.0610]

The logit value of the positive class (“not hate” in this case) is the actual
reward value assigned to this text by the reward model. In this case, the

reward value for the given text is -2.0610 and the probability for “not hate”
is 2.54%. Since this is a negative reward value, the model is discouraged
from generating this kind of text.

Next is an example of a positive reward for text that is classified as “not
hate”:

text = "You are a great person and I like you."

toxicity_input_ids = tokenizer(text,

 return_tensors="pt").input_ids

logits = toxicity_evaluator(toxicity_input_ids).logits

print(f'logits [not hate, hate]: {logits.tolist()[0]}')

Print the probabilities for [not hate, hate]

probabilities = logits.softmax(dim=-1).tolist()[0]

print(f'probabilities [not hate, hate]: {probabilities}')

Get the logits for "not hate" - this is the reward!

nothate_reward = (logits[:, not_hate_index]).tolist()

print(f'reward (value of "not hate" logit): {nothate_reward}')

Output:

logits [not hate, hate]: [4.6532, -4.1782]

reward (value of "not hate" logit): [4.6532]

probabilities [not hate, hate]: [0.9999, 0.0001]

The logit value of the positive class (“not hate”) is 4.6532 and the
probability for “not hate” is 99.99%, in this case. Since this is a positive
reward value, the model is encouraged to generate this kind of text.

The RLHF process, which you will explore next, will fine-tune the model to
generate completions that classify as “not hate”—and therefore better align
with human values and preferences.

Fine-Tune with Reinforcement Learning from
Human Feedback

Reinforcement learning from human feedback (RLHF) is a fine-tuning
process that modifies the underlying weights of a given generative model to
better align with the human preferences expressed through the reward
model. The reward model, as you saw in previous sections, captures human
preferences through direct human feedback using services like SageMaker
Ground Truth.

Using the Reward Model with RLHF
Continuing with our detoxification use case, let’s start with an example.
Consider sending a dialog between Chris and Antje, about whether Antje
likes cats, to a generative model. Before fine-tuning the LLM with RLHF to
reduce toxicity, the model may generate “Antje hates cats.” The reward
model produces a negative reward value for this text, as shown in Figure 7-
8.

Figure 7-8. Use the reward model with the PPO algorithm for reinforcement learning

A less toxic completion is, “Antje does not like cats. She is allergic.” which
receives a positive reward in this case, as shown in Figure 7-9.

Figure 7-9. Positive reward for less toxic generated text

Proximal Policy Optimization RL Algorithm
There is a popular RL algorithm called Proximal Policy Optimization
(PPO) used to perform the actual model weight updates based on the reward
value assigned to a given prompt and completion. PPO, initially described
in a 2017 paper,3 updates the weights of the generative model based on the
reward value returned from the reward model—Meta’s hate speech model
—as shown in Figure 7-10.

Figure 7-10. Proximal Policy Optimization RL algorithm with Meta’s hate speech model

PPO is a common algorithm used in reinforcement learning. As the name
suggests, PPO optimizes a policy, in this case the LLM, to generate
completions that are more aligned with human values and preferences. With
each iteration, PPO makes small and bounded updates to the LLM weights
—hence the term Proximal Policy Optimization. By keeping the changes
small with each iteration, the fine-tuning process is more stable and the
resulting model is able to generalize well on new inputs. PPO updates the
model weights through backpropagation. After many iterations, you should
have the more human-aligned generative model.

Perform RLHF Fine-Tuning with PPO
Let’s walk through how to perform RLHF to fine-tune the model to
generate fewer toxic responses. First, the prompt is passed to the generative
model, which produces a completion. The prompt-completion pair is then
passed to the reward model, which provides a set of logits and probability
distributions across the “not hate” and “hate” classes. As mentioned in the
previous section, you want to optimize for the “not hate” class.

Following is the relevant code that demonstrates how to use the PPOTrainer
from the TRL library to perform the PPO update steps that fine-tune the
model’s weights based on the reward value assigned by the Meta toxicity
detector model. Note the use of the
AutoModelForCausalLMWithValueHead class from the TRL library. This
is a wrapper around a AutoModelForCausalLM model and becomes part of
the layers trained by the PPOTrainer. The full code is in the GitHub
repository associated with this book, but here are some relevant code
snippets with comments to guide you through the process:

from trl import PPOTrainer

from trl import AutoModelForCausalLMWithValueHead

from transformers import pipeline

model_checkpoint = "..." # generative model like Llama2, Falcon

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

https://oreil.ly/zy1Oe
https://oreil.ly/iMTzc
https://oreil.ly/4_9le
https://oreil.ly/Pf6ds
https://oreil.ly/Hvqep
https://oreil.ly/OkBrz
https://oreil.ly/generative-ai-on-aws-code

ppo_model = AutoModelForCausalLMWithValueHead.from_pretrained(

 model_checkpoint,

 torch_dtype=torch.bfloat16)

ppo_trainer = PPOTrainer(

 model=ppo_model,

 tokenizer=tokenizer,

 dataset=dataset)

toxicity_model_checkpoint =

 "facebook/roberta-hate-speech-dynabench-r4-target"

toxicity_evaluator = pipeline("text-classification",

 model=toxicity_model_checkpoint)

generation_kwargs = {

 "min_length": 5,

 "top_k": 0.0,

 "top_p": 1.0,

 "do_sample": True

}

reward_kwargs = {

 "top_k": None, # Return all scores, no sampling.

}

max_ppo_steps = 10000 # max number of ppo steps

for step, batch in enumerate(ppo_trainer.dataloader):

 # Break when you reach max_ppo_steps.

 if step >= max_ppo_steps:

 break

 # Extract prompts from the input batch

 prompt_tensors = batch["input_ids"]

 # Prepare list to collect the summaries

 summary_tensors = []

 # For each input prompt, generate a summary completion

 for prompt_tensor in prompt_tensors:

 summary = ppo_trainer.generate(prompt_tensor,

 **generation_kwargs)

 # Append the summaries

 summary_tensors.append(

 summary.squeeze()[-max_new_tokens:])

 # This needs to be called "response".

 batch["response"] = [tokenizer.decode(r.squeeze()) for r in

[p] [(q ())

summary_tensors]

 # Compute reward outputs for combined query and response

 query_response_pairs = [q + r for q, r in zip(batch["query"],

 batch["response"])]

 # Calculate rewards across both classes

 rewards = toxicity_evaluator(

 query_response_pairs, **reward_kwargs)

 # Extract the reward value from the `nothate` class

 reward_tensors =

 [torch.tensor(reward[not_hate_index]["score"]) for reward in rewards]

 # Run PPO step with prompts, summaries, and rewards

 ppo_trainer.step(prompt_tensors, summary_tensors, reward_tensors)

Each iteration of the RLHF process updates the model weights. The
iterations continue for a given number of steps and epochs similar to other
types of model training and fine-tuning. After a while, the generative model
should start to receive higher rewards as it produces fewer toxic
completions. These iterations continue until the model is considered
aligned, based on an evaluation threshold such as toxicity score—or until
the maximum number of configured iterations, max_ppo_steps, is reached.

Mitigate Reward Hacking
As with any reward-based system, there exists a tendency to ignore
constraints and “hack the reward.” This is true for reinforcement learning,
as well, in which the agent may learn to cheat and maximize the reward,
even if the chosen actions lead to an incorrect state.

For example, a generative model may learn to produce nonsensical,
grammatically incorrect sequences of tokens that maximize the reward
(e.g., low toxicity) but do not respect the learnings of the original language
model—or, at the extreme, diverge from human language completely.

A common technique to avoid reward hacking is to first make a copy of the
original instruct model before performing any reinforcement learning or
weight updates. You then freeze the weights of this copied model and use it

as an immutable “reference model.” During RLHF, every prompt is
completed by both the frozen reference model and the model you are trying
to fine-tune with RLHF.

Next, the two completions are compared to determine the statistical distance
between the two token-probability distributions. This distance is calculated
using Kullback–Leibler divergence, or KL divergence—a well-known and
widely implemented algorithm, as shown in Figure 7-11.

Figure 7-11. Mitigate rewards hacking with a KL divergence reward penalty

KL divergence quantifies how much the mutable, RLHF-tuned generative
model is generating completions that diverge too far from the completions
generated by the immutable reference model. In short, if the fine-tuned
model starts hacking the reward and generating sequences of tokens that
diverge too far from sequences that the reference model would generate, the
fine-tuned model is penalized by the RL algorithm through a lower reward.

TIP
RLHF and KL divergence are extremely compute-intensive processes that benefit
greatly from accelerators like the NVIDIA GPU or the AWS Trainium purpose-built
hardware that is available through both Amazon EC2 and SageMaker.

https://oreil.ly/t_jju

The details of KL divergence and reward-penalties are typically contained
in the RL libraries, so you typically don’t need to implement this type of
complexity yourself. However, it does help to understand reward hacking—
as well as the techniques and extra computations required to control it.

Following is the code to configure the PPOTrainer class from the TRL
library with the frozen reference to help avoid reward hacking. Also shown
is the PPO iteration step function that updates the weights of the tunable
model using the reward value produced by the reward model. Remember
that the final reward value may be penalized if the generated text starts to
diverge from the reference model, as calculated by KL divergence within
the PPOTrainer implementation. Here is the code to add the frozen
reference model to the PPOTrainer:

from trl import PPOTrainer

from trl import AutoModelForCausalLMWithValueHead

from trl import create_reference_model

from transformers import AutoTokenize

model_checkpoint = "..." # generative model like Llama2, Falcon

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

model = AutoModelForCausalLMWithValueHead.from_pretrained(

 model_checkpoint,

 torch_dtype=torch.bfloat16)

ref_model = create_reference_model(model)

ppo_trainer = PPOTrainer(

 model=model, # tunable model

 ref_model=ref_model, # frozen reference model

 tokenizer=tokenizer,

 dataset=dataset)

Using Parameter-Efficient Fine-Tuning with RLHF
Parameter-Efficient Fine-Tuning (PEFT), discussed in Chapter 6, can be
used with RLHF to reduce the amount of compute and memory resources
required for the compute-intensive PPO algorithm, as shown in Figure 7-12.
Specifically, you would only need to update the model’s much-smaller
PEFT adapter weights and not the full weights of the tunable model.

https://oreil.ly/8nY7k

Figure 7-12. Using PEFT within RLHF to minimize the resources needed to fine-tune the generative
model

After the RLHF process is complete, the fine-tuned, human-aligned model
is ready for evaluation and, depending on the evaluation result, ready for
production deployment. Next, let’s explore model evaluation in the context
of aligning for human values and preferences.

Evaluate RLHF Fine-Tuned Model
Continuing with the toxicity example, you can evaluate your RLHF fine-
tuned model using both qualitative and quantitative evaluation techniques.
Let’s start by comparing the results of the model qualitatively by reviewing
a prompt, completion before RLHF, and completion after RLHF.

Qualitative Evaluation
Prompt:

Summarize the following conversation.

#Person1#: So how did you like the restaurant?

#Person2#: Actually, it could have been better.

#Person1#: What didn't you like about it?

#Person2#: It is a new restaurant. I don't think they have their act together

yet.

#Person1#: What did you think about the food?

#Person2#: I felt that the food was pretty mediocre.

#Person1#: The service wasn't that great, either.

#Person2#: I agree. The service was not good. I’m tired of that place.

Completion before RLHF (Lower Reward):

#Person1# asks #Person2# about the restaurant. #Person2# liked the food but it

wasn't as good as #Person2# expected it to be. #Person2#'s tired of the

restaurant.

Completion after RLHF (Higher Reward):

#Person2# describes the restaurant to #Person1# and the food situation.

#Person2# doesn't want to try the restaurant again.

While this is a subjective comparison, the completion after RLHF appears
to be a bit less harsh than the completion before RLHF yet conveys
approximately the same meaning. In addition, the completion after RLHF
has a higher reward, which is a signal that the toxicity-detector reward
model preferred the completion after RLHF over the completion before
RLHF.

Next, you will perform a more quantitative evaluation using toxicity scores
to compare across many prompt-completion pairs before and after RLHF.

Quantitative Evaluation
To compare the generative model before and after RLHF, you can use an
aggregate toxicity score for a large number of completions generated by the
model using a test dataset that the model did not see during RLHF fine-
tuning. If RLHF has successfully reduced the toxicity of your generative
model, the toxicity score will decrease relative to the baseline, as shown in
Figure 7-13.

Figure 7-13. Evaluate using the toxicity score—lower is better

As you see in Figure 7-13, you would first calculate a baseline toxicity
score for the original model before RLHF fine-tuning, then perform RLHF
fine-tuning and measure the toxicity score afterward. Let’s dive deeper into
calculating the toxicity scores for the generative model using the test
dataset.

Load Evaluation Model

First, you’ll need to load the toxicity_evaluator using the Hugging Face
Evaluate Python library with Meta’s model for detecting toxic language,
which you were using as the reward model in previous sections. Since this
model is a classifier that predicts one of two classes, “not hate” and “hate,”
you need to specify the toxic_label, which is “hate” in this case. The
evaluator then knows which label to use as the toxic label, as shown in this
code:

import evaluate

toxicity_model_checkpoint =

 "facebook/roberta-hate-speech-dynabench-r4-target"

toxicity_evaluator = evaluate.load(

 "toxicity",

 toxicity_model_checkpoint,

 module_type="measurement",

 toxic_label="hate")

https://oreil.ly/nPOEZ
https://oreil.ly/scpaa

Define Evaluation-Metric Aggregation Function

Next, you define an aggregate_toxicity_scores() function to calculate
the toxicity score mean and standard deviation for all prompts in the test
dataset, as shown here:

def aggregate_toxicity_scores(model,

 toxicity_evaluator,

 tokenizer,

 dataset):

 toxicities = []

 input_texts = []

 for i, sample in enumerate(dataset):

 input_text = sample["query"]

 input_ids = tokenizer(input_text,

 return_tensors="pt", padding=True).input_ids

 response_token_ids = model.generate(

 input_ids=input_ids)

 generated_text = tokenizer.decode(

 response_token_ids[0], skip_special_tokens=True)

 toxicity_score =

 toxicity_evaluator.compute(

 predictions=[(input_text + generated_text)])

 toxicities.extend(toxicity_score["toxicity"])

 # Compute mean & std using numpy.

 mean = np.mean(toxicities)

 std = np.std(toxicities)

 return mean, std

Compare Evaluation Metrics Before and After
Next, you calculate a toxicity baseline using the
aggregate_toxicity_scores() function on the original generative model
before performing RLHF. After performing RLHF, you measure the toxicity
score again using the same aggregate_toxicity_scores() function:

from transformers import AutoTokenizer

model_checkpoint = "..." # generative model like Llama2, Falcon

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

mean_before_detoxification, std_before_detoxification =

 evaluate_toxicity(model=model_before_rlhf,

 toxicity_evaluator=toxicity_evaluator,

 tokenizer=tokenizer,

 dataset=dataset["test"],

 num_samples=10)

print(f"""

Aggregate toxicity [mean, std] before detox:

[{mean_before_detoxification},

{std_before_detoxification}]

""")

Perform RLHF PPO updates here...

mean_after_detoxification, std_after_detoxification =

 evaluate_toxicity(model=model_after_rlhf,

 toxicity_evaluator=toxicity_evaluator,

 tokenizer=tokenizer,

 dataset=dataset["test"],

 num_samples=10)

print(f'Aggregate toxicity [mean, std] after detox:

[{mean_after_detoxification}, {std_after_detoxification}]')

Calculate improvement

mean_improvement = (mean_before_detoxification - mean_after_detoxification) \

 / mean_before_detoxification

std_improvement = (std_before_detoxification - std_after_detoxification) \

 / std_before_detoxification

print(f'Percentage improvement of toxicity score after detoxification:')

print(f'mean: {mean_improvement*100:.2f}%')

print(f'std: {std_improvement*100:.2f}%')

Output:

Aggregate toxicity [mean, std] before detox:

 [0.032297799189109355, 0.03010236943945737]

Aggregate toxicity [mean, std] after detox:

 [0.0271528000858697, 0.02743170674039297]

Percentage improvement of toxicity score after detoxification:

 mean: 15.93%

 std: 8.87%

Note the use of the test dataset, which the generative model did not see
during RLHF fine-tuning. Here, you see a drop in aggregate toxicity score,
which is the desired result.

Summary
Fine-tuning for human values is a very important tool in your generative
toolbox to improve your model’s helpfulness, honesty, and harmlessness.
Reinforcement learning from human feedback (RLHF) is a very active area
of research with a great amount of impact on making these models more
humanlike, useful, and enjoyable. In this chapter, you learned the
fundamentals of RL, reward models, and the RLHF process. These
fundamentals will help you understand this exciting field as it continues to
evolve.

You saw how to collect human feedback rankings using services like
Amazon SageMaker Ground Truth with human annotators. You then
learned how to convert the human-readable rankings into machine-readable
preference data to train a reward model.

You then learned about some existing classifiers and managed services that
can be used as reward models out of the box without any training. And
finally, you learned about PPO and used it to perform RLHF updates to
align a generative model with human values and preference. Specifically,
you reduced a generative model’s toxicity over a series of PPO iterations,
which updated the weights of the model to generate fewer toxic
completions.

Now that you have a human-aligned, lower-toxicity generative model, you
will see how to optimize and deploy it for low-latency, high-performance
inference in Chapter 8.

1 Hyung Won Chung et al., “Scaling Instruction-Finetuned Language Models”, arXiv, 2022.

2 Bertie Vidgen et al., “Learning from the Worst: Dynamically Generated Datasets to Improve
Online Hate Detection”, arXiv, 2021.

3 John Schulman et al., “Proximal Policy Optimization Algorithms”, arXiv, 2017.

OceanofPDF.com

https://oreil.ly/kyztV
https://oreil.ly/fx8vY
https://oreil.ly/uRQPj
https://oceanofpdf.com/

Chapter 8. Model Deployment
Optimizations

After you have adapted your model to your target task, you will ultimately
want to deploy your model so you can begin interacting with it as well as
potentially integrating it into an application that is designed to consume it.

Before deploying your generative model, you need to understand the
resources your model may need as well as the intended experience for
interacting with it. Considering the resources your model will need will
include identifying requirements such as how fast you need your model to
generate completions, what compute budget you have available, and what
trade-offs you are willing to make regarding model performance to be able
to achieve faster inference speed and potentially reduce storage costs.

In this chapter, you will explore various techniques for performing post-
training optimizations on your model, including pruning, quantization, and
distillation. Additional considerations and potential tuning of your
deployment configurations will need to be done postdeployment as well,
such as selecting the optimal compute resources to balance cost and
performance.

Model Optimizations for Inference
The size of generative AI models often presents a challenge for deployment
in terms of compute, storage, and memory requirements, as well as how to
ensure low-latency completions. One of the primary ways to optimize for
deployment is to take advantage of techniques that aim to reduce the size of
the model, typically referred to as model compression. Reducing the model
size allows for quicker loading of the model and reduced latency. It also
reduces the resource requirements for compute, storage, and memory.

While reducing model size helps optimize the model for deployment, the
challenge is reducing the model size while maintaining good model
performance. As a result, there can be a trade-off to consider between
model performance, compute budget, and latency.

This section outlines three techniques aimed at reducing model size—model
pruning, quantization, and distillation, as shown in Figure 8-1.

Figure 8-1. Techniques aimed at reducing model size for deployment optimization

Pruning is a technique that focuses on removing redundant, or low-impact,
parameters that do not contribute, or contribute little, to the model’s
performance. Pruning reduces the size of the model, but also increases
performance by reducing the number of computations during inference.

Quantization, a technique that you saw in Chapter 4, converts a model’s
weights from high precision (e.g., 32-bit) to lower precision (e.g., 16-bit).
This not only reduces the model’s memory footprint, but also improves
model performance by working with smaller number representations. With

large generative models, it’s common to reduce the precision further to 8
bits to increase inference performance.

Distillation trains a smaller student model from a larger teacher model. The
smaller model is then used for inference to reduce your compute resources
yet retain a high percentage of accuracy of your student model. A popular
distilled student model is DistilBERT from Hugging Face. DistilBERT was
trained from the larger BERT teacher model and is an order of magnitude
smaller than BERT, yet it retains approximately 97% of the accuracy of the
original BERT model. See our book Data Science on AWS (O’Reilly, 2021)
for a deep dive on BERT and DistilBERT.

The following sections will discuss each of these techniques in more detail.
Note that you can use all of the techniques together.

Pruning
Pruning aims to eliminate model weights that are not contributing
significantly to the model’s overall performance, as shown in Figure 8-2.
By eliminating those model weights, you’re able to reduce the model size
for inference, which reduces the compute resources required.

https://oreil.ly/750FC

Figure 8-2. Pruning aims to reduce the overall model size by eliminating weights that are not
contributing to model performance

The model weights to be eliminated during pruning are those with a value
of zero or very close to zero. Pruning during training is accomplished
through unstructured pruning (removing weights) or structured pruning
(removing entire columns or rows of the weight matrices).

These approaches require retraining; however, there are post-training
pruning methods—typically referred to as one-shot pruning methods—that
can do pruning without retraining. The challenge in performing one-shot
pruning is that it’s often compute intensive for large models with billions of
parameters.

One method of post-training pruning, called SparseGPT,1 aims to overcome
the challenges of one-shot pruning on large language models. This method
is specifically built for language-based generative foundation models and
introduces an algorithm that performs sparse regression at a large scale.

In theory, pruning reduces the size of the LLM, which reduces compute
resources and model latency. However, in practice, there are LLMs where
only a small percentage of their weights are zero, so in those cases pruning
may not have a large impact on the model size.

Here is a code sample from the SparseGPT pruning library for the LLaMA
and Llama 2 models:

target_sparsity_ratio = 0.5

Prune each layer using the given sparsity ratio

for layer_name in layers:

 gpts[layer_name].fasterprune(

 target_sparsity_ratio,

)

gpts[layer_name].free() # free the zero'd out memory

Post-Training Quantization with GPTQ
Similar to quantization described in Chapter 4, post-training quantization
(PTQ) aims to transform the model’s learned weights into a lower-precision
representation with the goals of reducing the model’s size and the compute
requirements when hosting generative models for inference.

PTQ requires an extra calibration step to statistically capture the range of
the original model weights in the range of the reduced precision. The
calibration step uses a dataset that statistically represents the type of inputs
the model will receive during inference. This calibration step helps identify
the range with minimum and maximum boundaries, as shown in Figure 8-3.
This range calculation can be computed at runtime (dynamic quantization)
or computed in advance (static quantization).

There are a variety of post-training quantization methods, including GPT
post-training quantization (GPTQ). GPTQ was first proposed in the paper
“GPTQ: Accurate Post-Training Quantization for Generative Pre-trained
Transformers.”2 GPTQ is capable of reducing the number of bits needed to
store each weight from 32 bits for full precision down to 4, 3, or even 2
bits!

https://oreil.ly/rm-_r

Figure 8-3. PTQ requires an extra calibration step to determine the dynamic range

GPTQ analyzes each layer of the model separately and approximates the
weights in a way that helps reduce accuracy loss typically seen during
quantization. GPTQ requires a calibration dataset, as you will see next
using the Hugging Face Optimum library with the Wikitext dataset:

import torch

from optimum.gptq import GPTQQuantizer

from transformers import AutoModelForCausalLM, AutoTokenizer

dataset_id = "databricks/databricks-dolly-15k"

GPTQ quantizer - 4 bits

quantizer = GPTQQuantizer(bits=4,

 dataset_id=dataset_id,

 model_seqlen=4096)

quantizer.quant_method = "gptq"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

model = AutoModelForCausalLM.from_pretrained(model_checkpoint,

 torch_dtype=torch.float16)

Quantize the model

https://oreil.ly/KiY68
https://oreil.ly/UvS5Y

quantized_model = quantizer.quantize_model(model, tokenizer)

Save the quantize model to disk

save_folder = model.save_pretrained("quantized_model")

The Wikitext dataset is commonly used for post-training quantization
calibration with language-based generative models because it is
representative of the type of text data that these models will see during
inference.

TIP
As described in Chapter 4, quantization typically improves inference latency by
reducing the needed computational resources. However, it may result in a small
percentage loss in model accuracy. This reduction is often worth the cost savings and
performance gains, however. It is recommended that you always benchmark the
quantization results to determine if the trade-offs are acceptable for your use case.

Distillation
Distillation is a technique that helps reduce the model size, which
ultimately reduces the number of computations and improves model
inference performance. Distillation uses statistical methods to train a
smaller student model on a larger teacher model. The end result is a student
model that retains a high percentage of the teacher’s model accuracy but
uses a much smaller number of parameters. The student model is then
deployed for inference. The smaller model requires smaller hardware and
therefore less cost per inference request.

The teacher model is often a generative foundation model or a fine-tuned
variant. During the distillation training process, the student model learns to
statistically replicate the behavior of the teacher model. Note that the
teacher model weights do not change during the distillation process—only
the student model weights change. The teacher model’s output is used to
“distill” knowledge to the student model.

Both the teacher and student models generate completions from a prompt-
based training dataset. A distillation loss is calculated by comparing the two
completions and calculating the KL divergence, which you explored for
RLHF in Chapter 7, between the teacher and student output distributions.

The loss—including KL divergence—is then minimized during the
distillation process using backpropagation to improve the student model’s
ability to match the teacher model’s predicted next-token probability
distribution, as shown in Figure 8-4.

The teacher models’ predicted tokens are known as soft labels, while the
student models’ predicted tokens are called soft predictions. In parallel, you
need to compare the student models’ predictions (hard predictions) against
the ground truth hard labels from the prompt dataset. The difference is the
student loss. The distillation loss and student loss are combined and used to
update the student models’ weights using standard backpropagation.

Figure 8-4. Distill knowledge from teacher to student model

TIP
In practice, distillation may not be as effective for generative decoder models as it is for
encoder models like BERT. This is because the output space is relatively large for
decoder models (with a vocabulary size of, e.g., 100,000 tokens) without a lot of
redundancy in representation.

Here is an example distillation loss function from the Hugging Face
Optimum library for distillation:

def compute_distillation_loss(self, inputs, student_outputs):

 with torch.no_grad():

 teacher_outputs = self.teacher(**inputs)

 temperature = self.args.distillation_temperature

 distilliation_loss_start = F.kl_div(

 input=F.log_softmax(

 student_outputs.start_logits / temperature, dim=-1),

 target=F.softmax(

 teacher_outputs.start_logits / temperature, dim=-1),

 reduction="batchmean",

) * (temperature**2)

 distilliation_loss_end = F.kl_div(

 input=F.log_softmax(

 student_outputs.end_logits / temperature, dim=-1),

 target=F.softmax(

 teacher_outputs.end_logits / temperature, dim=-1),

 reduction="batchmean",

) * (temperature**2)

 return \

 (distilliation_loss_start + distilliation_loss_end) / 2.0

Now that you have seen various mechanisms to optimize your model for
inference, it’s time to deploy your model to accept inputs and generate
responses. For this, you can use Amazon SageMaker Endpoints to host and
scale your generative models in production, as you will explore next.

https://oreil.ly/5GfU7
https://oreil.ly/dWTCw

Large Model Inference Container
The real-time SageMaker Endpoints managed service comes preconfigured
with many runtime, hardware, A/B testing, and shadow deployment
optimizations for generative model inference. The large model inference
(LMI) container is the primary runtime that contains these optimizations.

The LMI containers from AWS use a prebuilt foundation software stack
that includes high-performance frameworks like DeepSpeed and
optimizations like Flash Atten tion,3 which you learned about in Chapter 4.
Figure 8-5 shows some of the key components of the LMI container,
including PyTorch, FlashAttention, DeepSpeed, and the AWS Neuron SDK.
This figure also shows some of the hardware supported by the LMI
container, including NVIDIA GPUs, AWS Inferentia chips, and classic
CPUs.

Figure 8-5. LMI container and hardware for hosting LLMs with Amazon SageMaker Endpoints

LMI supports both batch and real-time workloads. Here is sample code to
deploy and test a real-time generative large language model using Amazon

https://oreil.ly/qSAqB
https://oreil.ly/1d_1P
https://oreil.ly/UG7bD
https://oreil.ly/Hn_5O

SageMaker JumpStart, which uses the LMI container with SageMaker
Endpoints:

from sagemaker.jumpstart.model import JumpStartModel

model = JumpStartModel(

 model_id="...") # generative model like Llama2 or Falcon

predictor = model.deploy()

payload = {

 "inputs": "What is the best way to deploy a generative model on AWS?",

 "parameters": {

 "max_new_tokens": 100,

 "top_p": 0.9,

 "temperature": 0.6

 }

}

response = predictor.predict(payload)

As you can see, in just a few lines of code, you can deploy a powerful
model into your own AWS account to perform secure and private
generative inferences. In the next section, you will learn about the AWS
Inferentia family of hardware specifically designed for deep-learning
inference workloads.

AWS Inferentia: Purpose-Built Hardware for
Inference
The AWS Inferentia family of accelerators, currently on version 2, is
purpose-built for deep learning inference workloads. The AWS Neuron
SDK interacts with AWS Inferentia.

There are two common ways to develop with the AWS Neuron SDK,
including the Transformers-NeuronX library and the Hugging Face
Optimum Neuron library. Here are examples using both libraries to compile
your model to run on Amazon SageMaker with AWS Inferentia 2:

https://oreil.ly/7GMRJ
https://oreil.ly/u22mh
https://oreil.ly/wZyNj
https://oreil.ly/3fzpc

import torch

from transformers import AutoTokenizer

from transformers import AutoModelForCausalLM

Using the Transformers-NeuronX library

from transformers_neuronx.llama.model import LlamaForSampling

model = AutoModelForCausalLM.from_pretrained(model_checkpoint)

os.environ["NEURON_CC_FLAGS"] =

 "--model-type=transformer-inference"

neuron_model =

 LlamaForSampling.from_pretrained(model_checkpoint,

 batch_size=1, tp_degree=24, amp='fp16', ...)

Compile and save the model

neuron_model.to_neuron()

neuron_model.save_pretrained('compiled_model/')

Save the tokenizer with the model

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

tokenizer.save_pretrained('compiled_model/')

##############################

Using Optimum Neuron library

##############################

from optimum.neuron import NeuronModelForCausalLM

Load and convert the Hub model to Neuron format

neuron_model = NeuronModelForCausalLM.from_pretrained(

 model_checkpoint, # model id

 batch_size=1, # number of input sequences

 num_cores=24, # number of neuron cores

 auto_cast_type='f16', # format to encode the weights

 ...

)

neuron_model.save_pretrained('compiled_model/')

Save the tokenizer with the model

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

tokenizer.save_pretrained('compiled_model/')

Next, you will tar and gzip the contents of the compiled_model/ local
directory and upload the tar.gz to a private S3 location where the
SageMaker Endpoint will find the model and load it:

from sagemaker.s3 import S3Uploader

tar and gzip the compiled_model/ folder

local_model_tar_gz_file = "model.tar.gz"

...

Create s3 uri

s3_model_path = "s3://<your-private-s3-location/"

Upload model.tar.gz

s3_model_uri = S3Uploader.upload(

 local_path=local_model_tar_gz_file,

 desired_s3_uri=s3_model_path)

Once the model is compiled, saved, tar’d, gzipped, and pushed to S3, you
can now deploy the model as an Amazon SageMaker Endpoint using the
code here and start generating text. Here, we are specifying the AWS
Inferentia 2 instance type for SageMaker:

from sagemaker.huggingface.model import HuggingFaceModel

huggingface_model = HuggingFaceModel(

 model_data=s3_model_uri, # path to model in s3

 model_server_workers=2, # number of workers

 ...

)

Specify that the model has been precompiled

huggingface_model._is_compiled_model = True

Deploy the endpoint

predictor = huggingface_model.deploy(

 instance_type="ml.inf2.xlarge", # Inferentia 2 instance type

 ...

)

prompt =

 "What is the best way to deploy a generative model on AWS?"

Inference generation configuration parameters

payload = {

 "inputs": prompt,

 "parameters": {

 "do_sample": True,

 "top_p": 0.6,

 "temperature": 0.9,

 "top_k": 50,

 "max_new_tokens": 512,

 "repetition_penalty": 1.03,

 "stop": ["</s>"]

 }

}

Send request to endpoint

response = predictor.predict(payload)

Extract the generated response

print(response[0]["generated_text"])

Model Update and Deployment Strategies
In this section, you will see a couple common strategies used to update
models in production, including A/B testing and shadow deployments. With
A/B testing, you typically shift a small amount of traffic to the newer model
B for a period of time, to ensure the new model is not failing or performing
poorly relative to the original model A.

If the new model B performs poorly, however, end users will be affected.
With shadow deployments, the new model B is deployed alongside model
A as a shadow, accepts a copy of the traffic (e.g., prompt inputs), but does
not return the model response to the end user. Instead, shadow model B’s
response is logged for offline analysis of the model’s performance. If
something goes wrong with model B, the end user is not affected.

Let’s dive deeper into each of these model update and deployment
strategies.

A/B Testing
You can use Amazon SageMaker Endpoints to deploy two different model
variants behind a single endpoint to compare the variants with live traffic.
This is typically called A/B testing. Consider deploying two model variants,

models A and B, behind a single SageMaker Endpoint. Figure 8-6 shows
100% of the traffic routing to model A initially, then shifting 10% of the
traffic to model B.

Figure 8-6. Shifting live traffic from model A to model B

This lets you try model B on live traffic in a controlled manner and only
affect 10% of the end users if something goes wrong. You can quickly shift
traffic back to model A, if needed. Here is the code to implement this
configuration:

import boto3

sm = boto3.Session().client(service_name="sagemaker")

sm.create_endpoint_config(

 EndpointConfigName="generative-endpoint-config-ab-test",

 ProductionVariants=[

 {

 "ModelName": "generative-model",

 "VariantName": "generative-model-A",

 "InitialVariantWeight": 90,

 "InitialInstanceCount": 9

 },

 {

 "ModelName": "generative-model",

 "VariantName": "generative-model-B",

 "InitialVariantWeight": 10,

 "InitialInstanceCount": 1

 }

]

)

endpoint_name = "generative-ab-endpoint"

sm.create_endpoint(

 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config

)

waiter = sm.get_waiter("endpoint_in_service")

waiter.wait(EndpointName=endpoint_name)

...

Send request to A/B endpoint

response = predictor.predict(payload)

Extract the generated response

print(response[0]["generated_text"])

Here, you are creating the EndpointConfiguration, which includes the
hardware using InstanceType and InitialInstanceCount. In this case,
you are deploying two variants of your model in an A/B test across 10
GPU-based SageMaker instances. 90% of your traffic will go to
generative-model-A and 10% will go to generative- model- B.

This code allows you to compare the two variants and, at some point, send
100% of the traffic to the better model based on some evaluation criteria or
longer-term objective, such as increasing revenue or reducing churn.

Shadow Deployment
SageMaker Endpoints support shadow model deployments. When you
deploy a shadow model, the model accepts the same input as the primary
model, but it simply stores the model response to disk for offline analysis,
as shown in Figure 8-7. This helps you conservatively evaluate a model
against live production inputs without exposing potentially bad responses to
the end user.

Figure 8-7. A shadow model accepts the same inputs, but stores model response to disk for offline
analysis

Here is the code sample for a shadow deployment. Note that both
InitialVariantWeight settings are configured for 100% traffic. You can
choose to send a smaller percentage of traffic to the shadow variant if you
want to sample less than 100% of the traffic:

sm.create_endpoint_config(

 EndpointConfigName=endpoint_config,

 ProductionVariants=[

 {

 "ModelName": "generative-model",

 "VariantName": "generative-model-A",

 "InitialVariantWeight": 100,

 "InitialInstanceCount": 9

 }

],

 ShadowProductionVariants=[

 {

 "ModelName": "generative-model",

 "VariantName": "generative-model-B",

 "InitialVariantWeight": 100,

 "InitialInstanceCount": 1

 }

]

)

This shows the shadow variant, generative-model-B, configured to accept
traffic but not return the response back to the user. Instead, the shadow
model will accept traffic and send the results to S3 for offline analysis.

For a more comprehensive description of SageMaker deployment strategies,
check out our book Data Science on AWS.

Metrics and Monitoring
Amazon SageMaker Endpoints emit many useful metrics that are captured
by the Amazon CloudWatch managed service for metrics collection and
monitoring. These metrics are used not just for operational reasons, but also
for scaling your inference cluster out (to a larger number of instances) and
in (to a smaller number of instances) as traffic to the cluster increases and
decreases throughout the day. This is called autoscaling, which you will see
in the next section.

But first, let’s take a look at some of the metrics emitted by Amazon
SageMaker Endpoints when hosting a generative AI model. Table 8-1
shows some of the common metrics used to monitor model inference,
including error counts, startup times, and prediction-latency timings.

https://oreil.ly/KDwEH

Table 8-1. Monitoring metrics for model inference

Metric Description

Invocation4XXErro

rs
Invocation5XXErro

rs
InvocationModelEr

rors

Number of model invocations that did not result in a
successful 2XX HTTP response

Invocations
InvocationsPerIns

tance
SageMakerVariantI

nvocationsPerInst

ance

The number of invocation requests sent to a model
endpoint overall, per instance, and per variant per
instance

ModelLatency Inference latency of the model only

OverheadLatency Latency introduced by SageMaker during the model
inference

ModelSetupTime Model startup time including downloading the model
and launching the SageMaker container

CPUUtilization
GPUUtilization
MemoryUtilization
GPUMemoryUtilizat

ion

CPU, GPU, and memory utilization of the model
endpoint

DiskUtilization The percentage of disk space used to host the model
for inference

The next section will discuss how some of these monitoring metrics can be
utilized to configure autoscaling, which dynamically adjusts the number of
instances provisioned for a deployed model in response to changes in
demand from your workload.

Autoscaling
In the A/B testing and shadow deployment examples, you saw how to
manually set the InitialInstanceCount in the EndpointConfig. This
represents the number of instances in the inference cluster. As traffic
increases and decreases, you would need to manually update the number of
instances to a higher or lower value, respectively.

However, it’s often easier to set up autoscaling to automatically scale out
(add instances) or scale in (remove instances) based on a given metric, like
the number of invocations per second. As traffic increases and decreases,
the invocations per second metric will cause SageMaker to automatically
scale our model cluster to meet the demand.

Let’s dive deeper into configuring autoscaling policies for SageMaker
Endpoints.

Autoscaling Policies
There are three main types of autoscaling policies for SageMaker
Endpoints: target tracking, simple, and step scaling. These policies trade off
ease of use with flexibility:

Target tracking

With target tracking scaling policy, you specify a single
metric, like SageMaker Var iantInvocationsPerInstance = 1000,
and SageMaker will autoscale as needed. This strategy is
very common, as it’s the easiest to configure.

Simple

When configured to use the simple scaling policy, SageMaker
will trigger a scaling event on a given metric at a given
threshold with a fixed amount of scaling. For example,
“when SageMakerVariantInvocationsPerInstance > 1000, add
10 instances.” This strategy requires a bit more
configuration but also provides more control over the target-
tracking strategy.

Step scaling

Step scaling, the most configurable scaling policy, allows
SageMaker to trigger a scaling event on a given metric at
various thresholds—with configurable amounts of scaling at
each threshold. For example, “when SageMaker Var ian t
InvocationsPerInstance > 1000, add 10 instances,
SageMakerVariant Invoca tionsPerInstance > 2000, add 50
instances,” etc. This strategy requires the most amount of
configuration but provides the most amount of control for
situations such as spiky traffic.

Define an Autoscaling Policy
Let’s define and apply a target-tracking autoscaling policy using the
SageMaker Var ian t InvocationsPerInstance metric to automatically
scale the endpoint cluster when one thousand invocations per second is
reached for a given model variant per instance:

endpoint_name = "..."

autoscale = boto3.Session().client(

 service_name='application-autoscaling')

autoscale.register_scalable_target(

 ServiceNamespace="sagemaker",

 ResourceId=f"endpoint/{endpoint_name}/variant/AllTraffic",

 ScalableDimension="sagemaker:variant:DesiredInstanceCount"

)

autoscale.put_scaling_policy(

 PolicyName="my-autoscale-policy",

 ServiceNamespace="sagemaker",

 ResourceId=f"endpoint/{endpoint_name}/variant/AllTraffic",

 ScalableDimension="sagemaker:variant:DesiredInstanceCount",

 PolicyType="TargetTrackingScaling",

 TargetTrackingScalingPolicyConfiguration={

 "TargetValue": 1000.0,

 "PredefinedMetricSpecification": {

 "PredefinedMetricType":

 "SageMakerVariantInvocationsPerInstance",

 }]

})

Note that the ScalableDimension is set to
sagemaker:variant:DesiredInstanceCount, which configures
SageMaker to scale the number of instances when the target threshold is
met.

After sending a large amount of inference requests to the SageMaker
Endpoint, you would see a spike in the
SageMakerVariantInvocationsPerInstance metric. This would trigger
SageMaker to scale out to handle the spike in inference requests.

There are many more autoscaling configuration options available, including
model-variant-specific scaling policies and scale-in/scale-out cool-down
policies. For a more comprehensive description of SageMaker autoscaling
policies, again, you can check our book Data Science on AWS.

Summary
In this chapter, you learned powerful techniques to optimize your model for
inference by reducing the size of the model through distillation,
quantization, or pruning. These techniques help reduce model size and
improve model inference performance with minimal impact on model
accuracy, ultimately improving the user’s happiness. They also help to
minimize the amount of hardware resources needed to serve your

generative models in production, ultimately lowering cost and improving
your CFO’s happiness.

You also saw how to optimize and deploy your models with the AWS
Neuron SDK, Hugging Face’s Optimum Neuron library, and Amazon
SageMaker Endpoints with AWS Inferentia 2. Combined with A/B testing
and shadow deployments, SageMaker Endpoints are a great way to
productionize your generative AI models.

In the Chapter 9, you will dive deep into some popular mechanisms to build
generative AI applications, including augmenting the capabilities of your
models with retrieval-augmented generation (RAG) and agents.

1 Elias Frantar and Dan Alistarh, “SparseGPT: Massive Language Models Can Be Accurately
Pruned in One-Shot”, arXiv, 2023.

2 Elias Frantar et al., “GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained
Transformers”, arXiv, 2023.

3 Tri Dao, “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning”,
arXiv, 2023.

OceanofPDF.com

https://oreil.ly/ZbLQE
https://oreil.ly/sZUaG
https://oreil.ly/VtRMp
https://oceanofpdf.com/

Chapter 9. Context-Aware
Reasoning Applications Using RAG
and Agents

In this chapter, you will explore how to bring together everything you’ve
learned so far to build context-aware reasoning applications. To do this, you
will explore retrieval-augmented generation (RAG) and agents. You will
also learn about frameworks called LangChain, ReAct, and PAL, which
make RAG and agent workflows much easier to implement and maintain.
Both RAG and agents are often key components of a generative AI
application.

With RAG, you augment the context of your prompts with relevant
information needed to address knowledge limitations of LLMs and improve
the relevancy of the model’s generated output. RAG has grown in popularity
due to its effectiveness in mitigating challenges such as knowledge cutoffs
and hallucinations by incorporating dynamic data sources into the prompt
context without needing to continually fine-tune the model as new data
arrives into your system.

RAG can be integrated with off-the-shelf foundation models or with fine-
tuned and human-aligned models specific to your generative use case and
domain.

NOTE
RAG and fine-tuning can be used together. They are not mutually exclusive.

Next, some general guidance to consider when deciding which techniques
should be applied. If access to external data or dynamic data is required,

then RAG-based architectures can enable this without continuous fine-
tuning, which would become cost prohibitive. Also, RAG-based techniques
do not require much ML expertise because they are typically implemented
using existing foundation models.

Potential downsides to RAG-based architectures include the extra steps
required to manage data source connections, retrieve data from external data
sources, perform additional data preparation, and perform prompt
augmentation. These extra steps may increase latency and decrease overall
performance. It’s also important to note that RAG does not actually modify
the weights of the generative model; however, this is often desirable and
typically not considered a downside.

Agents are additional pieces of software that can orchestrate prompt-
completion workflows between user requests, foundation models, and
external data sources and applications while using the foundation model as
their reasoning engine.

Agents often make use of a framework called ReAct1 (reasoning and
acting). ReAct structures prompts using chain-of-thought (CoT) reasoning
to show the model how to reason through a problem and decide on actions
to help find a solution. As part of the actions, agents can work with RAG
workflows to look up context-relevant information or call application APIs
to perform a task.

If the reasoning steps and actions require complex calculations, you can
leverage another technique, Program-Aided Language Models (PAL).2 PAL
guides foundation models to generate programs instead of natural language
in the reasoning steps. You can then connect the model to an external code
interpreter, such as a Python interpreter, to run the code and return the
results to the model.

You’ll also learn about building a customized generative AI application
using a set of common components required for an end-to-end solution that
can be made available to users and other systems. Finally, this chapter will
highlight a few considerations for optimizing the generative AI project life

cycle and operationalizing models for deployment and integration into
applications supporting users and systems.

Large Language Model Limitations
Large language models (LLMs) suffer from several challenges related to
having accurate knowledge as well as current knowledge. This section
discusses two common problems with large language models that can be
improved using RAG methods: hallucination and knowledge cutoff.

Hallucination
Chapter 2 discussed the challenge of hallucination, where a model
confidently returns an incorrect response. In the example following, a
“snazzy-fluffykins” is not a real dog breed, but the model still returns a
factitious, and potentially misleading, completion, as shown next.

Prompt:

What does the dog breed snazzy-fluffykins look like?

Completion (hallucination):

The snazzy-fluffykins is a small, fluffy dog with curly fur. They have big,

round eyes and long, fluffy ears.

Hallucinations lead to a lack of trust in the model’s generated outputs,
impacting the effectiveness of a generative AI application.

Knowledge Cutoff
The second common issue, shown in the prompt example that follows, is
known as knowledge cutoff, which results in the model returning an answer
that is out of date with current data. All foundation models have a
knowledge cutoff of the date that they were trained; the knowledge of the

model is limited to the data that was current at the time it was pretrained or
fine-tuned.

For example, if you ask the model who recently won the NBA
championship, it will give you the most recent information it has available;
in this case, the champions in 2021. However, it won’t provide the most
current data available because that data is outside the scope of the
knowledge the model was trained on, as shown in the example here.

Prompt:

Who recently won the NBA Championship game?

Completion (knowledge cutoff—out of date):

The Milwaukee Bucks defeated the Phoenix Suns in the 2021 NBA Finals to win

their second NBA championship.

RAG provides a technique that allows you to mitigate some of the
challenges with hallucinations and knowledge cutoff in foundation models.
For hallucinations, RAG is useful because you are able to provide the model
with access to information it would not already have, such as proprietary
data for your business.

Retrieval-Augmented Generation
RAG isn’t a specific set of technologies but rather a framework for
providing LLMs access to data they did not see during training. RAG allows
LLM-powered applications to make use of external data sources and
applications to overcome some of the knowledge limitations previously
discussed.

RAG is useful in any case where you want the language model to have
access to additional data that is not contained within the LLMs “parametric
memory” learned during pretraining and fine-tuning. This could be data that
did not exist in the original training data, such as proprietary information
from your organization’s internal data stores. Allowing your model to have

access to this information helps improve model completion relevance and
helps to mitigate the challenge of hallucinations.

For knowledge cutoffs, RAG allows you to provide access to current
information beyond the model’s training date. This technique can augment
foundation models with additional information, including domain-specific
information, without the need to continuously perform full fine-tuning.

At a high level, a RAG-based architecture provides the model with access to
external sources of knowledge that provide additional context to the original
input prompt in the form of an augmented prompt, which is then used to call
the LLM, as shown in Figure 9-1.

Figure 9-1. RAG provides a framework for augmenting a model with information from external
sources

The LLM is then able to take advantage of knowledge outside its scope
through the augmented prompt to return a more accurate and relevant
completion. Let’s now dive into the various components and pieces of the
workflow.

External Sources of Knowledge
RAG works by providing your model access to additional external data at
runtime. This data can be from a number of data sources, including

knowledge bases, document stores, databases, and data that is searchable
through the internet, as shown in Figure 9-2.

Figure 9-2. External data sources

All of these external data sources can provide access to knowledge
previously unavailable to generative models, allowing for improved
relevance in completions. RAG works by augmenting the input prompt with
information from external data sources prior to calling the LLM. The
augmented prompt provides access to information the model is not aware of,
increasing the ability for the LLM to return more accurate and relevant
completions.

However, implementing RAG-based architectures often requires additional
data preparation tasks to ensure the data is in an optimized format that can
be integrated at inference time, which involves personas that load and
prepare the data for retrieval, then applications that search and retrieve
relevant data at inference.

RAG Workflow
There are often multiple components of a RAG-based architecture,
including dependent workflows such as preparing data from external
sources. At a high level, there are two common workflows to consider—

preparation of data from external knowledge sources, then the integration of
that data into consuming applications, as shown in Figure 9-3.

Figure 9-3. RAG architectures depend on efficient data preparation and retrieval techniques for
integration into consuming applications

Data preparation involves the ingestion of data sources as well as the
capturing of key metadata describing the data source. This may include
tasks specific to the type of information source being utilized. As an
example, if the information source is a PDF, there will be an additional task
to extract text from those documents. This may not always be needed if the
data is already in a consumable format; however, the preparation of data is
often a prerequisite in RAG-based architecture to prepare the data for
retrieval.

Application integration involves retrieving the most semantically similar
information from those external data sources based on an input prompt. This
is often followed by a reranking process to further refine the retrieved
results and rank them in order of relevance to the input prompt. The final
step is augmenting the input prompt with the most relevant information
retrieved from external knowledge sources prior to using that augmented
prompt to call the LLM, which returns the final completion.

To dive further into a specific example, the remainder of this section will
specifically focus on information retrieval from documents. Let’s start with
the data preparation task, which includes extracting text from documents
and efficiently storing that text for retrieval.

Document Loading
Although RAG-based architectures can pull data from a number of relevant
information sources, we’ll focus specifically on information retrieval from
documents. A common implementation for document search and retrieval
includes storing your documents in a vector store, where each document is
indexed based on an embedding vector produced by an embedding model.
The vector embedding includes the numeric representations of text data
within your documents.

Each embedding aims to capture the semantic or contextual meaning of the
data. The idea here is that semantically similar concepts end up close to
each other (have a small distance between them) in the vector space, as
discussed in Chapter 3. As a result, information retrieval involves finding
nearby embeddings that are likely to have similar contextual meaning.

Each vector embedding is put into a vector store, often with additional
metadata such as a reference to the original content the embedding was
created from. The vector store then indexes the vectors, which can be done
using a variety of approaches.

This indexing allows for quick retrieval of documents. The vector store,
shown in Figure 9-4, is then used within the prompt workflow to efficiently
retrieve external information based on an input query during inference.

Figure 9-4. Efficient indexing of documents for quick retrieval

Creating vector embeddings that store numeric representations of text data
in vector stores provides for efficient document search and retrieval
techniques in RAG architectures. However, documents are often large and
contain varied degrees of related information on a variety of topics, some
more related than others. As an example, if you used the AWS product
documentation for Amazon SageMaker, you’ll notice that some of the text
in that document is more semantically similar than others. As a result, you
need to consider efficient strategies for optimizing the storage and retrieval
of these documents as well as minimizing the risk of losing context.

Because LLMs have fixed context window limitations, you also need to
develop document storage and retrieval strategies that consider those
limitations.

Chunking
A technique called chunking is typically used in building document indexes
(as well as searching, which is covered later in the section). Chunking
breaks down larger pieces of text into smaller segments, as shown in
Figure 9-5.

Figure 9-5. Chunking when storing and indexing documents

The chunks should contain information that is semantically related and that
has meaningful context in that single chunk. There are different methods of
chunking available. For example, you can use fixed-size chunking that splits
data using a fixed number of tokens, which is an easy method and
computationally efficient. Alternatively, you can use context-aware
chunking methods, which aim to chunk data with more consideration

around understanding the context of the data and keeping relevant text
together.

When choosing a chunking strategy, there are a few considerations to keep
in mind. First, consider the size of your indexed content, whether it’s long
documents such as books or shorter content like product reviews. Chunking
smaller content may not have much impact, while chunking larger
documents is not only necessary but also improves the ability to search for
similar relevant information related to a search.

Next, as previously mentioned, chunking may be required due to context
window limits imposed by the LLM. For example, if your model only
supports 4,096 input tokens in the context window, you will need to adjust
your chunk size to account for this limit.

Finally, there is a concept called overlap, which refers to the overlap of a
defined amount of text between chunks. Overlap can help preserve context
between chunks. This is another parameter to experiment with when
choosing a chunking size.

After documents have been prepared by extracting text and loading their
vector representations into a vector store, they are ready for integration into
the application.

Document Retrieval and Reranking
Once the text from a document has been embedded and indexed, it can then
be used to retrieve relevant information by the application. Remember, with
RAG-based architectures, the information retrieved will later be used in the
workflow to augment the input prompt with additional context prior to
calling the LLM.

Let’s look at the application workflow with a specific example where the
input prompt includes the question, “What group is responsible for
maintenance on product FlashTag?” In this case, product FlashTag support
information is proprietary information that the LLM has no knowledge of,
so RAG will be used to augment the prompt with additional information
prior to calling the LLM.

To support the RAG architecture, the prompt text will first utilize an
embedding model to create vector embedding representations of the prompt
input. The vector embeddings will then be used to query the vector store for
embeddings that are semantically similar to those on the input prompt.
Based on those results, relevant document text is retrieved, as shown in
Figure 9-6.

Figure 9-6. Information retrieval based on prompt input

You may also want to rerank the similarity results returned from the vector
store to help diversify the results beyond just the similarity scores and
improve relevance to the input prompt, as shown in Figure 9-7.

Figure 9-7. Reranking query results before augmenting the prompt

There are different ways to implement reranking, but the intent with ranking
the retrieved results is to further refine the query results returned. There are
different implementations that can be used to rerank retrieved results.

A popular reranking algorithm that is built into most vector stores is
Maximum Marginal Relevance (MMR). MMR aims to maintain relevance
to the input prompt but also reduce redundancy in the retrieved results since
the retrieved results can often be very similar. This helps to provide context
in the augmented prompt that is relevant as well as diverse.

Once information has been retrieved, and potentially reranked, the next step
is to provide this additional context to the LLM by augmenting the input
prompt with the additional contextual information.

Prompt Augmentation

Once the relevant contextual data has been retrieved, the next step in the
RAG-based workflow is to use the additional context retrieved to augment
the prompt. The input prompt of “What group is responsible for
maintenance on product FlashTag?” can now be augmented with additional
context retrieved from domain-specific information sources, as shown next.

Augmented prompt:

What group is responsible for maintenance on product FlashTag?

FlashTag maintenance is performed every Saturday with no downtime by the PoP

Team. PoP team is responsible for sending automated notifications.

Completion prompt:

The PoP Team is responsible for Product Maintenance on the FlashTag product.

This augmented prompt now has contextual information specific to the
indexed documents as well as the original prompt. Because the documents
are domain-specific and not within the LLMs training corpus, this method
allows you to provide additional context to the model that would otherwise
be unknown. The LLM is now able to use the information in the context of
the prompt to generate a completion that likely contains a more relevant
answer and avoids hallucinations.

RAG Orchestration and Implementation
In the previous section, you explored RAG as a framework for augmenting a
model with external knowledge. To illustrate this, we walked through a
RAG workflow to incorporate external knowledge specifically from
documents by preparing the data for retrieval, then integrating the retrieval,
rerank, and prompt augmentation into the consuming application. There are
multiple ways to implement RAG-based architectures. This section will
highlight specific techniques for orchestrating RAG workflows.

Multiple components are required to support RAG-based architectures and
implement RAG, including data preparation workflows. Data preparation

workflows include the tasks required to load and prepare in an optimized
format for retrieval.

Additionally, workflows are also required to integrate RAG within
applications. There are multiple steps required to implement RAG as part of
application integration, including the steps required to embed the input
prompt, retrieve relevant data, augment the prompt, and then call the LLM
using the augmented prompt. All of these steps require a component that
can orchestrate the tasks required, as shown in Figure 9-8.

Luckily, there are frameworks developed that take some of the heavy lifting
away in implementing these solutions. This section explores a popular
framework called LangChain, which provides you with modular pieces that
contain the components necessary to work with large language models and
implement techniques such as RAG.

Figure 9-8. Orchestrating RAG workflows

There are a growing number of RAG orchestration frameworks. Choose the
one that best supports your use case, orchestration needs, and data source
integrations. RAG architectures can also be implemented through do-it-

https://oreil.ly/mPoV0

yourself orchestration code that directly calls the various APIs, vector
stores, and data sources. While direct API calls may improve performance,
they also require quite a bit more coding and maintenance than using an
existing orchestration framework.

LangChain is composed of modules, interfaces, and integrations to support
the development of context-aware reasoning applications and end-to-end
workflows. These workflows include document loading, chunking, and
retrieving from various vector stores, which you will learn about in the next
few sections.

Document Loading and Chunking
LangChain provides document loaders as part of the data connector
modules. These provide libraries for loading data across a variety of input
formats into documents. For example, you can use PyPDFLoader to load
and split PDF-formatted documents.

The previous section discussed the challenge of context window length and
strategies around chunking, or splitting data, as a way to overcome context
window limitations. LangChain also provides document transformers that
include splitters, allowing you to chunk your documents using simple
configurations, as shown in this code example. Here, we are using a dataset
of annual Amazon Shareholder Letters:

import numpy as np

from langchain.text_splitter \

 import RecursiveCharacterTextSplitter

from langchain.document_loaders import PyPDFLoader

data_root_path = "./data"

filenames = glob.glob(data_root + '*.pdf')

documents = []

for file in filenames:

 loader = PyPDFLoader(data_root + file)

 document = loader.load()

 for document_fragment in document:

 # Extract year from filename

 year = filename.split('-').split()[1]

https://oreil.ly/NKVPe

 # Set metadata

 document_fragment.metadata = {"year": year,

 "source": filename)

 documents += document

Chunk the docs

text_splitter = RecursiveCharacterTextSplitter(

 chunk_size = 512,

 chunk_overlap = 100,

)

docs = text_splitter.split_documents(documents)

Here, the code loads the PDF documents from the designated location and
splits the documents into chunks of 512 characters. These chunks contain
portions of the original PDF document that can be preprocessed to create
vector embeddings using an embedding model, then stored in a vector store
or loaded into a vector store using one of the many third-party integrations
provided by the LangChain framework.

Note that this code adds metadata to each document upon ingestion. This
metadata will be used later to filter the results and speed up the overall
retrieval process by narrowing the search results to a given year, for
example.

Embedding Vector Store and Retrieval
As previously mentioned, a vector store saves vector embeddings and
creates indexes to enable fast retrieval lookups and similarity searches.
Similarity search is a common use case for vector stores, as you are trying to
augment your prompt with additional, relevant information for the LLM to
use in its context when generating a completion.

Since AWS provides a variety of options for storing vector embeddings,
let’s briefly dive into the available options and considerations for each. It’s
also important to evaluate each service for the most current list of
capabilities in terms of decision points, such as supported search algorithms
or fit for your use case.

You can use Amazon OpenSearch Service to store embeddings combined
with the k-Nearest Neighbor (k-NN) plugin for OpenSearch to perform fast
document-similarity searches across the embeddings. Specifically, the
Vector Engine for Amazon OpenSearch Serverless provides serverless
vector storage with similarity search capabilities with the ability to add,
update, and delete vector embeddings in near real time. OpenSearch
implements optimized and scalable retrieval algorithms, including the
Facebook AI Similarity Search (FAISS) vector store and retrieval
algorithms from Meta/Facebook. This option also provides the ability to
scale your vector store cluster horizontally as needed based on your
workload.

Other options include Amazon Aurora PostgreSQL and Amazon Relational
Database Service (RDS) for PostgreSQL. Both offer pgvector support,
which can be a natural fit for teams that already have PostgreSQL
installations or skill sets. pgvector is a community-maintained vector store
plugin for PostgreSQL. These options are also scalable.

Amazon Kendra is a managed solution specifically designed for search and
retrieval, including built-in connectors to popular data sources such as
Amazon S3, Microsoft SharePoint, Salesforce, ServiceNow, and Zendesk.
In addition, Kendra supports a variety of document formats, including
HTML, PDF, and CSV without having to manually convert your documents
into embedding vectors. Amazon Kendra also allows you to enrich your
documents with additional metadata to improve search-result relevance by
allowing metadata filtering during a query.

All of the AWS options for vector storage and retrieval can be included as
part of a RAG-based architecture. Building on AWS also allows for the
flexibility to utilize the vector store that best meets the needs of your use
case and tooling choices.

Next, you will see an example using FAISS as the vector store and retrieval
mechanism, along with LangChain as the orchestrator of the various
components involved in the workflow. Other examples, including Amazon
OpenSearch, Amazon Aurora/RDS for PostgreSQL, and Kendra, are
included in the GitHub repository for this book.

https://oreil.ly/CMxjd
https://oreil.ly/PCCCv
https://oreil.ly/SKh-Z
https://oreil.ly/Bo_d2
https://oreil.ly/01Nq3
https://oreil.ly/nSZYb
https://oreil.ly/mir65
https://oreil.ly/generative-ai-on-aws-code

Let’s look at a specific example utilizing LangChain to build and orchestrate
the tasks required to take the loaded data, create embedding vectors, then
populate a vector store that will later be used for retrieval.

LangChain integrates with many vector stores, such as ElasticSearch,
OpenSearch, Pinecone, and Facebook AI Similarity Search (FAISS). For
simplicity, let’s show an example of LangChain’s integration directly with
the FAISS vector store and retrieval library using an embedding model
deployed as an Amazon SageMaker endpoint from SageMaker JumpStart.
Note that you can use a local model, as well, from the Hugging Face model
hub; for example:

from langchain.vectorstores import FAISS

from langchain.embeddings import SagemakerEndpointEmbeddings

from langchain.embeddings.sagemaker_endpoint import \

 EmbeddingsContentHandler

from sagemaker.jumpstart.model import JumpStartModel

embedding_model_checkpoint = "..." # embedding model

embedding_model =

 JumpStartModel(model_id=embedding_model_checkpoint)\

 .deploy()

embeddings_content_handler = EmbeddingsContentHandler()

embeddings = SagemakerEndpointEmbeddings(

 endpoint_name=embedding_model.endpoint_name,

 content_handler=embeddings_content_handler

)

Load the FAISS vector store with the documents

vector_store = FAISS.from_documents(docs, embeddings)

query = "How has AWS evolved?"

results_with_scores = vector_store.similarity_search_with_score(

 query)

for doc, score in results_with_scores:

 print(f"Content: {doc.page_content}")

 print(f"Metadata: {doc.metadata}")

 print(f"Score: {score}\n\n")

 print('----')

Output:

Content: AWS is still in the early stages of its evolution, and has a chance

for unusual growth in the next decade.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.5685306191444397

Content: AWS continues to deliver new capabilities rapidly (over 3,300 new

features and services launched in 2022), and invest in long-term inventions

that change what’s possible.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.7789842486381531

Content: We made the long-term decision to continue investing in AWS. Fifteen

years later, AWS is now an $85B annual revenue run rate business with strong

profitability.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.7893760204315186

Content: This shift by so many companies (along with the economy recovering)

helped re-accelerate AWS’s revenue growth to 37% YoY in 2021.

Metadata: {'year': 2021, 'source': 'AMZN-2021-Shareholder-Letter.pdf'}

Score: 0.7898486852645874

You can also add a metadata filter to only retrieve documents from the year
2022, for example. Simply add a dictionary with the filter values and rerun
the retrieval, as shown next. Here, you’ll see that the retrieval only returns
documents from the year 2022:

filter={"year": 2022}

results_with_scores = vector_store.similarity_search_with_score(

 query, filter=filter)

for doc, score in results_with_scores:

 print(f"Content: {doc.page_content}")

 print(f"Metadata: {doc.metadata}")

 print(f"Score: {score}\n\n")

 print('----')

Output:

Content: done innovating here, and this long-term investment should prove

fruitful for both customers and AWS. AWS is still in the early stages of its

evolution, and has a chance for unusual growth in the next decade.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.5685306191444397

Content: AWS continues to deliver new capabilities rapidly (over 3,300 new

features and services launched in 2022), and invest in long-term inventions

that change what’s possible.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.7789842486381531

Content: AWS is now an $85B annual revenue run rate business, with strong

profitability, that has transformed how customers from start-ups to

multinational companies to public sector organizations manage their technology

infrastructure.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.7893760204315186

Content: Customers have appreciated this customer-focused, long-term approach,

and we think it’ll bode well for both customers and AWS.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.8272767066955566

Now that the vector store has been created and loaded with documents and
metadata, let’s switch to the integrated application that will retrieve relevant
data and use the data to augment the input prompt with additional context
prior to calling the LLM to complete the prompt.

Retrieval Chains
Chains allow you to create a sequence of calls to different components to
retrieve data used to augment the prompt. Creating and executing the
sequence of steps requires orchestrating the end-to-end workflow. The
LangChain framework, designed to enable context-aware reasoning
applications, provides many integrations that greatly simplify this workflow.

The following code example shows how to use a built-in chain called
Retrie val QA from the LangChain framework, along with PromptTemplate
to format the prompt and SagemakerEndpoint to use as the LLM. This
chain retrieves relevant documents from the vector store and specifies the

https://oreil.ly/dBIbr
https://oreil.ly/HUHyS
https://oreil.ly/-G8rq

type of search to perform—similarity search for the top three most relevant
documents, in this case:

from langchain.chains import RetrievalQA

from langchain.prompts import PromptTemplate

from langchain import SagemakerEndpoint

prompt_template = """

User: Use the following pieces of context to provide a concise answer

to the question at the end. If you don't know the answer, just say

that you don't know, don't try to make up an answer.

{context}

Question: {question}

Assistant:

"""

prompt = PromptTemplate(

 template=prompt_template,

 input_variables=["context", "question"]

)

llm_model_checkpoint = "..." # generative model like Llama2

llm_model =

 JumpStartModel(model_id=llm_model_checkpoint)\

 .deploy()

llm = SagemakerEndpoint(

 endpoint_name=llm_model.endpoint_name)

qa_chain = RetrievalQA.from_chain_type(

 llm=llm,

 chain_type="stuff", # stuff the prompt

 retriever=vector_store.as_retriever(

 search_type="similarity",

 search_kwargs={"k": 3}

),

 return_source_documents=True,

 chain_type_kwargs={"prompt": prompt}

)

query = "How has AWS evolved?"

result = qa_chain({"query": query})

print(result["result"])

print('----')

print(f'Context Documents: ')

for source_doc in result["source_documents"]:

 print(f'{source_doc}\n')

 print('----')

After retrieving the top three documents, LangChain includes (or “stuffs,”
as you see in the chain_type="stuff" parameter) them with the prompt to
provide additional context in the prompt, which helps the LLM better
answer the given question.

Output:

Based on the provided context, AWS has evolved in the following ways:

1. Rapid innovation: AWS continues to deliver new capabilities rapidly,

launching over 3,300 new features and services in 2022 alone.

2. Long-term investment: AWS has made a long-term decision to continue

investing in its infrastructure, even during challenging times such as the

2008-2009 recession.

3. Expansion of services: AWS has expanded its offerings beyond just computing

and storage, now providing a wide range of services including analytics,

machine learning, and security.

4. Increased profitability: Despite continued investment in innovation, AWS has

achieved strong profitability, with an $85B annual revenue run rate business.

5. Shift to cloud adoption: The pandemic has accelerated the shift to cloud

adoption, with many companies deciding to move their technology infrastructure

to the cloud. This has helped re-accelerate AWS's revenue growth to 37% YoY in

2021.

Overall, AWS has evolved from a niche player in the cloud computing market to a

dominant force, with a strong track record of innovation and investment in its

infrastructure.

Context Documents:

page_content='done innovating here, and this long-term investment should prove

fruitful for both customers and AWS. AWS is still in the early stages of its

evolution, and has a chance for unusual growth in the next decade.'

metadata={'year': 2022, 'source':

 'AMZN-2022-Shareholder-Letter.pdf'}

page_content='AWS continues to deliver new capabilities rapidly (over 3,300 new

features and services launched in 2022), and invest in long-term inventions

that change what’s possible.'

metadata={'year': 2022, 'source':

 'AMZN-2022-Shareholder-Letter.pdf'}

page_content='AWS is now an $85B annual revenue run rate business, with strong

profitability, that has transformed how customers from start-ups to

multinational companies to public sector organizations manage their technology

infrastructure.'

metadata={'year': 2022, 'source':

 'AMZN-2022-Shareholder-Letter.pdf'}

Notice how the LLM constructs a nicely formatted answer to the question
using the additional context provided from the chain. Next, you will see
how to rerank the retrieved documents to potentially improve the augmented
prompt and therefore the generated response.

Reranking with Maximum Marginal Relevance
You may want to experiment with techniques like MMR to diversify the
results retrieved from the vector store. MMR encourages diversity in the
result set, which allows the retriever to consider more than just the
similarity scores, but also include a diversity factor between 0 and 1, where
0 is maximum diversity and 1 is minimum diversity. Here is the code using
FAISS and MMR (search_type="mmr") with a diversity factor of
lambda_mult=0.1 for a relatively high degree of diversity in the results:

qa_chain = RetrievalQA.from_chain_type(

 llm=llm,

 chain_type="stuff",

 retriever=vector_store.as_retriever(

 search_type="mmr", # Maximum Marginal Relevance (MMR)

 search_kwargs={"k": 3, "lambda_mult": 0.1}

),

 return_source_documents=True,

 chain_type_kwargs={"prompt": prompt}

)

query = "How has AWS evolved?"

result = qa_chain({"query": query})

print(result["result"])

print('----')

print(f'Context Documents: ')

for source_doc in result["source_documents"]:

 print(f'{source_doc}\n')

 print('----')

Output:

Based on the context provided, AWS has evolved in the following ways:

1. Innovation: AWS has continued to innovate and invest in new technologies and

services, as evident from the statement "AWS is still in the early stages of

its evolution, and has a chance for unusual growth in the next decade."

2. Efficiency: AWS is inherently more efficient than traditional in-house data

centers, according to the statement. This is due to two factors:

a. Institutions: Many institutions, including schools and governments, are

transitioning from in-person to virtual classrooms and running on AWS to ensure

continuity of learning.

b. Secure platform: Governments are leveraging AWS as a secure platform to

build out new capabilities in their efforts to end the pandemic.

Therefore, AWS has evolved to become a more efficient and secure platform for

various institutions and governments.

Context Documents:

page_content='AWS is still in the early stages of its evolution, and has a

chance for unusual growth in the next decade.'

metadata={'year': 2022, 'source':

 'AMZN-2022-Shareholder-Letter.pdf'}

page_content='AWS is also inherently more efficient than the traditional in-

house data center.'

metadata={'year': 2019, 'source':

 'AMZN-2019-Shareholder-Letter.pdf'}

page_content='Institutions around the world are transitioning from in-person to

virtual classrooms and are running on AWS to help ensure continuity of

learning.'

metadata={'year': 2019, 'source':

 'AMZN-2019-Shareholder-Letter.pdf'}

Here, you see that the retriever, configured with a relatively high MMR
diversity factor, reranked the results from the vector store and included
shareholder letters from 2019 to help answer the question, “How has AWS
evolved?”

In the next section, you will learn to further extend your models’ capabilities
by allowing them to interact with their environment using agents and
frameworks such as ReAct and PAL.

Agents
Consider a generative AI-based travel application that can not only respond
to the question, “Which beaches should I visit in Hawaii?” with a list of
suggestions but can also book the flight and hotel for you.

For this to work, you need an additional piece of software, usually referred
to as an agent, that orchestrates the prompt-completion workflows between
the user request, the foundation model, and external data sources and
applications, as shown in Figure 9-9.

Figure 9-9. Agents orchestrate prompt-completion workflows between user requests, the foundation
model, and external data sources and applications

Agents use the foundation model as their reasoning engine. Building upon
the chain-of-thought (CoT) prompting that you explored in Chapter 2, some
models are capable of generating step-by-step action plans carried out by
tools such as a web search, a SQL query, or a Python-based calculator
script, for example.

Agents automatically build structured prompts similar to CoT prompts to
help the model reason through the user requests and create those step-by-
step action plans. The agent then orchestrates a RAG workflow through a
sequence of data lookups and/or performs API calls to complete the actions

for the user. The actions an agent is allowed to take are defined in separate
instructions that are prepended to the prompt.

The agent automatically augments the prompt with the information received
from the external systems to help the model generate more context-aware
and relevant completions, then returns the final response back to the user.

Agent implementations are available in many popular open source libraries,
such as LangChain Agents or Hugging Face Transformers Agents. On
AWS, you can also choose from fully managed services such as agents for
Amazon Bedrock, which is covered in more detail in Chapter 12.

Let’s explore the structured prompts in more detail. Agents often use a
ReAct framework to show the model how to reason through a problem and
decide on actions to take that help find a solution.

ReAct Framework
ReAct is a prompting strategy that combines CoT reasoning with action
planning. ReAct structures prompts to include a sequence of one or more
question, thought, action, and observation examples as described in the
ReAct paper and shown in Figure 9-10.

https://oreil.ly/XGOPw
https://oreil.ly/ZFpyJ
https://oreil.ly/qOviW
https://oreil.ly/0Fyul

Figure 9-10. ReAct structures prompts to include instructions, ReAct examples, and the user request

The question is the user-requested task or problem to solve. The thought is a
reasoning step that helps demonstrate to the foundation model how to tackle
the problem and identify an action to take. The action is an API that the
model can invoke from an allowed set of APIs. The observation is the result
of carrying out the action. The actions that the model is able to choose from
are defined by a set of instructions that are prepended to the example prompt
text.

Let’s return to the generative AI-based travel application example and
assume a user is asking which hotel is closest to the most popular beach in
Hawaii. This question will take a couple of intermediate steps and actions to
find the solution. In the prompt-prepended instructions, describe the ReAct
prompt structure and list the allowed actions. Let’s give the agent API
access to a Wikipedia search and a company-owned hotel database:

Solve a question answering task with interleaving Thought, Action, Observation

steps.

Thought can reason about the current situation, and Action can be three types:

(1) wikipedia_search[topic], which searches the topic on Wikipedia and returns

the first paragraph if it exists. If not, it will return a similar topic to

search.

(2) hotel_database_lookup[request], which performs an API call to the hotel

database to gather hotel information defined in request

(3) Finish[answer], which returns the answer and finishes the task.

In this example, you first defined the task by telling the model to answer a
question using the discussed ReAct prompt structure. Then, you provided
instructions that explain what “thought” means and listed the allowed
actions to take.

First in the list is the wikipedia_search action, which looks for Wikipedia
entries related to the specified topic. The second is a
hotel_database_lookup action, which can query the travel companies’
hotel database with a specific request. The last action is finish, which
returns the answer and brings the task to an end.

You can also add reasoning examples to the instructions. Depending on the
foundation model you are working with, you may need to include more than
one example and carry out few-shot inference.

Now, let’s see how the model applies the instructions to the user’s request to
find the closest hotel to the most popular beach in Hawaii:

Question: Which hotel is closest to the most popular beach in Hawaii?

Thought 1: I need to search for the most popular beach in Hawaii and find the

closest hotel for that location.

Action 1: wikipedia_search["most popular beach in Hawaii"]

Observation 1: Waikiki is most famous for Waikiki Beach.

Thought 2: I need to find the hotel closest to Waikiki Beach.

Action 2: hotel_database_lookup["hotel closest to Waikiki Beach"]

Observation 2: <MyDreamHotel> is closest to Waikiki Beach.

Thought 3: <MyDreamHotel> is closest to Waikiki Beach, the most popular beach

in Hawaii. So the answer is <MyDreamHotel>.

Action 3: Finish["MyDreamHotel"]

You can see how the thoughts reason through the task and plan two
intermediate steps that help find the answer. The model then decides on
appropriate actions to take from the list of allowed actions. The observations
bring the new information retrieved from the actions back into the model’s
prompt context. The model will cycle through as many iterations as needed

to find the answer. The final action is then to finish the cycle and pass the
answer back to the user.

Your context-aware reasoning application is now able to connect to external
data sources to retrieve additional information, reason through tasks, and
plan and perform tasks. But what if one of the tasks is to calculate the sales
tax for the travel booking? Even with CoT, the model’s ability to perform
arithmetic or other mathematical operations is limited. After all, generative
foundation models are not really doing math, they are just predicting the
most probable next token to complete the prompt.

To overcome this limitation, you can connect the model to an application
that’s good at performing calculations, such as a code interpreter. The
Program-Aided Language Models framework does exactly that.

Program-Aided Language Framework
PAL uses CoT reasoning to generate programs in the intermediate reasoning
steps that help solve the given problem. These programs are then passed to
an interpreter, for example, a Python interpreter, that runs the code and
returns the result back to the foundation model (FM), as shown in Figure 9-
11.

Figure 9-11. PAL connects a foundation model to an external code interpreter to perform calculations

https://oreil.ly/GKxkY

Similar to ReAct, you need to add one or more examples to the prompt that
shows the model how to format the output. Start each example with a
question followed by a couple of reasoning steps and lines of Python code
that solve the problem. Then, add the new question to solve to the prompt.
The PAL-formatted prompt now contains your example(s) and the new
problem to solve, as shown in Figure 9-12.

Once you pass this prompt to the FM, the model follows the example and
generates a completion in the form of a Python script. Next, send the script
to a Python interpreter that will run the code and return the result. You can
now append the result to the prompt, and the LLM generates a completion
that contains the correct answer.

Figure 9-12. PAL workflow connecting the LLM to a Python interpreter

Here is an example PAL prompt template:

Translate a math problem into an expression that can be executed using Python's

numexpr library.

Use the output of running this code to answer the question.

Question: ${{Question with hard calculation}}

${{Code that prints what you need to know}}

Question: I have four bananas and buy three more, how many bananas do I have?

def solution():

 initial_bananas = 4

 extra_bananas = 2

 return initial_bananas + extra_bananas

Question: {question}

You can now ask the model a similar math question and the model will
follow the provided example.

Prompt:

Antje has five times the number of books than Chris. Chris has 3 books. How

many books does Antje have?

Completion:

def solution():

 books_chris = 3

 books_antje = 5 * books_chris

 return books_antje

For simple math operations, you can likely get the correct answer by just
applying CoT reasoning. But for more complex math, such as arithmetic
with large numbers, trigonometry, or calculus, PAL is a powerful technique
that ensures that any calculations done by your foundation model are
accurate and reliable.

The following code example shows how to use ReAct and PAL with
LangChain Agents, including serpapi (which performs Google searches,
among many other actions). Note the use of LangChain’s integration with
Hugging Face pipelines using the HuggingFacePipeline abstraction:

from langchain.agents import load_tools

from langchain.agents import initialize_agent

from langchain.agents import AgentType

from transformers import AutoTokenizer, AutoModelForCausalLM

from transformers import pipeline

from langchain.llms import HuggingFacePipeline

model_checkpoint = "..." # generative model like Llama2, Falcon

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

model = AutoModelForCausalLM.from_pretrained(model_checkpoint)

pipeline = pipeline(

 "text-generation",

https://oreil.ly/wbowN
https://oreil.ly/4tFIR

 model=model,

 tokenizer=tokenizer

)

llm = HuggingFacePipeline(pipeline=pipeline)

tools = load_tools(["serpapi", "llm-math"], llm=llm)

agent = initialize_agent(tools,

 llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

agent.run("""

Which hotel is closest to the most

popular beach in Hawaii, and how much

is each night with 50% discount?

""")

The output should look similar to this:

> Entering new AgentExecutor chain...

I need to find the most popular beach in Hawaii and find the closest hotel to

that beach and find out how much a hotel night is and then calculate 50% of

that price.

Action: Search

Action Input: "most popular beach in Hawaii"

Observation: Waikiki Beach

Thought: I need to find the closest hotel from Waikiki Beach

Action: Search

Action Input: "closest hotel from Waikiki Beach"

Observation: <MyDreamHotel>

Thought: I need to find out how much a hotel night is

Action: Search

Action Input: "How much is a hotel night at <MyDreamHotel>"

Observation: 250 USD

Thought: I need to calculate 50% of that price

Action: Calculator

Action Input: 250x0.5

Observation: Answer: 125

Thought: I now know the final answer

Final Answer: Waikiki Beach is the most popular beach in Hawaii and the closest

hotel is <MyDreamHotel> and a hotel night with 50% discount is 125 USD.

> Finished chain.

"Waikiki Beach is the most popular beach in Hawaii and the closest hotel is

<MyDreamHotel> and a hotel night with 50% discount is 125 USD."

With orchestration software, such as agents that take charge of prompt
engineering and communication between systems, and advanced prompting
strategies, such as CoT, ReAct, and PAL, that guide models to create step-
by-step action plans, you can now build powerful context-aware reasoning
applications.

To build end-to-end generative AI solutions, there are a few more
components that you need in addition to RAG and agents that we have
discussed so far.

For example, you need infrastructure to train, fine-tune, and serve your
model, as well as host your application components. You might also need
additional orchestration components, frameworks, model hubs, and
application interfaces that allow your consumers, including users and
systems, to interact with your solution. Let’s dive into these additional
components in the next section.

Generative AI Applications
Building robust generative AI applications involves multiple components
beyond the generative model. For example, once the model has been tuned
or augmented for a specific task, how will users interact with the model?
What type of validation may need to be done and what additional
components are needed to support that?

A generative AI application includes multiple components as part of the
end-to-end solution. In some cases, you may use a managed generative AI
application, such as Amazon CodeWhisperer, where these components are
all packaged and made available to consumers. On the other hand, when you
are building a new generative AI application, it’s important to understand
common components to consider. This section is not intended to be a deep
dive into each component but to provide an introduction into several high
level components, as shown in Figure 9-13 (seen earlier as Figure 1-5).

Figure 9-13. Generative AI applications include more than generative models

Infrastructure

At the base layer, infrastructure is a core component
required not only for fine-tuning a model and deployment of
a model but also for all of the other components supporting
the end-to-end application. For example, the previous section
discussed LangChain as a framework for orchestrating and
implementing RAG. As part of a generative AI application,
LangChain has to run on underlying infrastructure. A
common implementation here includes deploying LangChain
on AWS compute services, such as AWS Lambda, an event-
driven, serverless compute platform, as shown in Figure 9-
14.
Alternatively, if the chain includes a sequence of long-
running processes, then you’d want to consider
infrastructure that can better serve long-running processes,
such as AWS Fargate, a serverless compute engine for
containers.

https://oreil.ly/YyMqm

Figure 9-14. Infrastructure powers all application components

You should also consider implementing filtering logic,
commonly called guardrails, to filter user prompts and
model responses for sensitive or inappropriate content. You
should consider serverless and managed options to reduce
operational overhead.
AWS provides a variety of infrastructure options to support
the various components of the application stack, allowing
you to pick the optimal infrastructure option for each
application component in terms of operational efficiencies,
performance, and cost:

Generative models and supporting machine learning (ML) models

These types of models are at the heart of generative AI
applications. Generative models include foundation models
as well as models that have been fine-tuned. These models
are hosted on infrastructure, such as Amazon SageMaker.
To implement augmented solutions, such as RAG-based
architectures, there is often a need to deploy other ML
models that support the solution. An example discussed at
length in this section is using an embedding model to embed

the prompt text and use that to retrieve relevant document
information from a vector store.

Information sources

Information sources are also a key part of a generative AI
application. They may support RAG-based architectures,
such as vector or SQL databases, or be used as part of a
broader application.
As an example, a common pattern in generative AI
applications includes the implementation of an LLM cache to
store and serve cached responses from generative models.
This cache can help in improving performance as well as
reducing unnecessary API calls.

External systems

These include other systems the generative AI application
interacts with, such as databases or APIs. Building agents-
based applications that enable the generative model to take
action may require dependencies on external systems to
execute that action.
For example, building a chatbot that allows for the ability to
make a reservation based on a generated travel
recommendation will require the ability for the agent to
interact with a reservation system to book the reservation.

Tools and frameworks

Typically, generative AI applications will rely on a number of
tools and frameworks to build and integrate components, as
well as to operate the end-to-end solution. Previous chapters
have highlighted many examples from this category, such as
utilizing model hubs to store, discover, and share foundation
generative models as well as fine-tuned models.

As mentioned in Chapter 3, some popular model hubs
include Hugging Face Model Hub and Amazon SageMaker
JumpStart. Packaged libraries are another example within
this category. Packaged libraries, such as Hugging Face’s
PEFT, help in simplifying the implementation of fine-tuning
techniques such as LoRA. LangChain is another example of
tooling that helps in implementing techniques such as RAG
or agents using convenient packaged libraries.

Monitoring and logging

Operating a generative AI application requires monitoring
and logging of all components that support the end-to-end
system, including infrastructure, network, and security. This
should also include ongoing monitoring of your models and
key components of your RAG-based workflows. To start, you
should identify a minimum set of error counters and logs
that will help you troubleshoot operational issues. Next, you
can add metrics to help improve the performance of your
generative AI system. Remember that if you don’t measure
performance, you can’t improve it.

Generated outputs and feedback

A key dependency for effective feedback monitoring of
generative models typically includes implementing a
component of the solution that can capture and store input
prompts along with generated outputs and feedback. The
input prompts and generated outputs are often cached to
reduce the number of API calls required when invoking the
model for the same input. The feedback mechanism should
include guardrails to mitigate risk. At a high level, guardrails
are implemented to provide a layer of safety between the
consumers and the generative model.

For example, to monitor for signals of jailbreak, where a
malicious user is trying to manipulate prompts and receive
inappropriate responses, you need to capture the prompt
and the response in order to detect a jailbreak scenario.
A generative AI application can also have an application
interface that allows users or systems to interact with it. The
interface can take many forms, such as a web based user
interface, a mobile application, or an API. This layer also
includes governance around usage of the generative
application.
Figure 9-15 shows a modification of the previous image that
represents a simplified representation of an application
interface, in the form of a REST API, that is providing the
interface between input prompts and the backend logic.

Figure 9-15. Creating an application interface in the form of a REST API

In this case, Amazon API Gateway is added to provide a REST
API for the backend logic. This frontend interface can also
provide low-latency responses on generated completions,
manage incoming requests, monitor connections, scale or
throttle traffic, and connect into authorizers, such as Amazon

Cognito, to determine which users (or systems) should have
access to your API as well as the level of access they should
have.

Operational tooling

Running any application at scale typically requires
additional operational tooling used to manage the build,
validation, and delivery of application components. The
same is true for generative AI applications. For example,
several components in the diagram require the provisioning
and configuration of resources, which is typically handled
through a combination of tooling such as traditional
continuous integration (CI) and continuous
delivery/deployment (CD) tooling.

Building generative AI applications on AWS typically involves multiple
AWS services applied to the various application components, as shown in
Figure 9-16 (shown earlier as Figure 1-6).

Figure 9-16. Examples of AWS services that can be used to build generative AI applications

As previously mentioned, there are prebuilt generative AI applications, such
as Amazon CodeWhisperer, where all of the application components are
abstracted away from the consumer and fully managed as part of a packaged
application.

This section covered the core components of a typical generative AI
application. Usually, there are a lot of integrations and dependencies
required to build, deploy, and operate these applications. There are also
considerations to be aware of when operationalizing the complete generative
AI project life cycle to allow for reliable and repeatable processes (as
discussed in Chapter 1).

The next section will discuss some of the considerations around
operationalizing and creating efficiencies in the generative AI project life
cycle.

FMOps: Operationalizing the Generative AI
Project Life Cycle
An increasing number of generative models are powering critical
applications. As a result, the need to build more reliable, efficient, and
repeatable mechanisms to build, deploy, and operate these models in
production is also increasing. This section will introduce some key
considerations for efficiently and reliably delivering generative AI
workloads.

The terminology in this space is not yet well established; some people use
the terms GenAIOps, FMOps, or LLMOps. All of these build on existing
MLOps practices, and because the considerations are fundamentally similar
between them, this chapter will focus on foundation model operations
(FMOps) as a general term for operationalizing workloads that rely on
generative foundation models, regardless of model type, such as LLM or
multimodal.

This includes workloads that utilize foundation models as is, as well as
those that require models to be fine-tuned and/or augmented. What is not
included is providers of foundation models that perform pretraining, as the
considerations for pretraining more closely follow traditional MLOps.

Chapter 1 introduced a typical generative AI project life cycle consisting of
a number of iterative steps. Each of those steps has unique considerations
for being able to create reliable, operationally efficient, and repeatable
workflows within the life cycle stages, as shown in Figure 9-17.

The next section will cover a few high-level considerations across select
stages and steps of the project life cycle to reliably and efficiently scale
generative AI workloads, starting with the experiment and select step.

Figure 9-17. Create reliability and repeatability across stages of the generative ai project life cycle

Experimentation Considerations
After a viable use case has been identified, the first step is typically to
experiment with existing foundation models and identify the top candidate
or candidates to move forward with. It’s also important to note that this step
can also happen on a continuous basis as new state-of-the-art models get
released, to determine if the performance for your use case can potentially
be improved with a different model.

As a result, building automated frameworks that evaluate model
performance based on domain-specific datasets is a common way to
increase repeatability in the model selection process. Building a repeatable
mechanism to evaluate models during model selection typically includes a
few components including an experimentation environment, a prompt
catalog and an evaluation datastore, as shown in Figure 9-18.

Experimentation on a new use case can be performed across a number of
environments, as discussed in Chapter 1, such as managed playgrounds,
notebook environments, or even from local machines. One way to enable
increased reliability and repeatability in your experiments is to implement a
prompt catalog.

Figure 9-18. Building a repeatable mechanism to evaluate models during model selection

The concept of a prompt catalog was first introduced in a research paper3

but has since gained more traction in a number of implementations and
tooling. At a high level, a prompt catalog serves two purposes. First, the
prompt catalog documents successful patterns for structuring prompts across
multiple tasks that can be used to adapt to specific domains. This usually
takes the form of existing or adapted prompt templates, as discussed in
Chapter 5. Second, it contains a catalog of patterns that have been
successfully used that is made readily available for evaluating new models
or fine-tuning later in the life cycle.

An evaluation datastore, or experiment management capability, is also
needed to reliably track key metadata such as the foundation model and
prompt data used, as well as key performance metrics. Implementing these
two components during experimentation can increase productivity through
reusable prompt template patterns and shared prompts, as well as increase
the ability to reliably track performance results. This same pattern can also
be combined with automated processes to provide a repeatable framework
to evaluate new foundation models against your use cases.

Additionally, if these environments are utilizing sensitive data, they should
adhere to existing security and governance best practices, which are not
unique to FMOps and include automating the provisioning and
configuration of these environments and supporting components through
infrastructure as code (IaC) and policy as code (PaC), combined with
continuous monitoring. When working with sensitive data, the key pillars of
security and governance best practices need to be considered, such as
network isolation, governed access, enforcement of minimum privileges,
detective controls, and data protection.

Development Considerations
During this step in the generative AI project life cycle, the focus is on
creating or augmenting a model that is performant to the target task. There
are many existing MLOps practices, such as automated training pipelines,
that apply directly to fine-tuning generative AI models. However, typically
the final step in a training pipeline is to register the candidate model in a
model registry with key metadata that tracks model lineage, then deploy the
model to production. With traditional ML models, the training inputs and
outputs are generally well known, which allows for reliable tracking of
model lineage.

Model lineage defines information about how a model was built. In
traditional machine learning, this translates into having an auditable record
of the model inputs, evaluation metrics, and generated artifacts specific to
that model version, as illustrated in Figure 9-19. Model lineage is important
in MLOps for reproducibility as well as auditability.

Figure 9-19. Model lineage for reproducibility with traditional machine learning models

For generative models, there are a couple of key differences to be aware of
as it relates to FMOps. First, complete model lineage may not be possible.
Specifically, some model providers do not provide details (pretraining and
fine-tuning datasets, etc.) about how their models were trained. Also, when
details are provided, they may not be specific enough to include the
complete versioned data sources. As a result, model lineage may not be as
deep as with traditional machine learning models, as shown in Figure 9-20.

Figure 9-20. Model lineage for generative models using PEFT LoRA as an example

The level of transparency provided with foundation models is a
consideration when comparing against your organizational or regulatory
requirements and selecting the right foundation model. Regardless of the
level of transparency in the foundation model chosen, when thinking about

lineage you should still consider maintaining your own lineage for the
components in scope for traceability as well as the ability to reliably
redeploy or debug if needed.

Similar to MLOps, reliably capturing this model lineage metadata requires
an automated approach to experiment management and tracking, because
this metadata is used in the packaging of models for deployment to
production environments as well as the ongoing management of deployed
models.

Production Deployment Considerations
Building a prototype is typical early in the generative AI project life cycle.
However, as you move beyond that prototype and look to deploy the
generative AI application to production, there are a few key considerations.

For many of the components of an application, such as the frontend
interface, traditional software best practices and AWS Well-Architected best
practices apply directly. The same is true for optimizations within the
deployment process, where traditional DevOps or MLOps best practices still
apply and are not really unique to FMOps.

For example, to deploy a foundation model, one best practice is to utilize
repeatable tooling that allows you to provision and configure SageMaker
endpoints through infrastructure/configuration as Code (IaC/CaC). This
allows for repeatability, rollback capabilities, and advanced deployment
patterns such as A/B testing, as discussed in Chapter 8.

Because a lot of the existing practices often directly apply to building
generative AI applications, this section will only focus on a few high-level
considerations directly related to FMOps.

First, packaging models for deployment and managing deployed model
versions may require additional dependencies that should be captured in a
model registry. For example, with a fine-tuned model adapted using LoRA,
multiple dependent models are required to deploy, including the foundation
model, the adapted model, and—depending on the deployment
implementation—a merged model. Related metadata for each of these

https://oreil.ly/-GuuH

models should be captured in the model registry to enable you to trace
lineage or repackage for deployment if needed, as shown in Figure 9-21.

The end result should be that for every given deployed model, you are able
to reliably capture key metadata about the model version to manage models
at scale, as well as reliably redeploy if needed.

This section covered only a few high-level considerations for looking at
operational efficiencies across the generative AI project life cycle. Again,
many of the existing practices with MLOps directly apply, even if there are
nuances in the implementation. For example, continuous monitoring is still
applicable but the implementation will be different for LLMs because the
evaluation criteria and metrics are different. Even though the industry is still
debating terminology in this space, the core practices of MLOps still largely
apply, and we build on that through only the aspects unique to generative
models with FMOps.

Figure 9-21. Model packaging and management for adapter models

Summary

This chapter covered RAG as a common framework for augmenting LLMs
and using RAG to mitigate the common knowledge limitations of
hallucinations and knowledge cutoffs in LLMs by providing access to
external sources of information. You explored a specific use case for
document retrieval and the importance of vector stores in implementing
RAG architectures. This chapter also outlined the workflows and steps
within those workflows that support RAG and agent-based architectures.
You learned that frameworks like LangChain can help reduce the time to
implement these complex workflows and make it possible to quickly build,
deploy, and test LLM-powered applications that use powerful retrieval and
augmentation techniques like RAG and agents.

You learned that foundation models can serve as remarkable reasoning
engines in applications, leveraging their “intelligence” to fuel exciting and
practical use cases, and that agents facilitate this process by taking charge of
prompt engineering and communication between systems. They enable FM-
powered applications to perform actions in the real world, making the
applications more versatile and interactive.

This chapter also highlighted high-level components to consider as part of
building an end-to-end generative AI application. You saw some examples
of broader AWS services that can be used in building those applications.

Finally, this chapter briefly highlighted a few considerations for building
repeatability, reliability, and operational efficiencies across the generative
AI project life cycle.

In Chapter 10, you will explore multimodal foundation models that extend
generative AI beyond text. You will explore multimodal use cases, such as
generating images from descriptions and visual question answering, and
learn more about the architectures that power multimodal foundation
models.

1 Shunyu Yao et al., “ReAct: Synergizing Reasoning and Acting in Language Models”, arXiv,
2023.

2 Luyu Gao et al., “PAL: Program-Aided Language Models”, arXiv, 2023.

https://oreil.ly/qVR0N
https://oreil.ly/r-CAN

3 Jules White et al., “A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT”, arXiv, 2023.

OceanofPDF.com

https://oreil.ly/js9Rr
https://oceanofpdf.com/

Chapter 10. Multimodal
Foundation Models

Generative AI can be unimodal or multimodal. Unimodal models work
exclusively with data in one modality, such as text. Large language models
(LLMs) are a popular example of unimodal generative AI; both the input
and output modality in prompt and completion is text. Once you add
another modality to the mix, such as image, video, or audio, you are tapping
into multimodal generative AI.

With multimodal generative AI, you can broaden the scope of use cases and
tasks and potentially move closer to artificial general intelligence (AGI) by
enhancing the model’s contextual understanding and cross-modal learning.
Multimodal generative AI is a step toward simulating real-world
complexity that not only enables models to process diverse data formats but
also to learn through transfer and become better at creative problem
solving.

With multimodal AI, you add different content modality to the input to
support tasks such as converting, for example, image to text or text to
image. Figure 10-1 illustrates the difference between unimodal and
multimodal generative AI.

This chapter starts with an introduction to multimodal generative AI use
cases and tasks, including image generation and visual question answering
(VQA) using the Stable Diffusion and IDEFICS models, respectively. The
power of these multimodal models is the ability to interact with them using
natural language prompts.

Let’s start by exploring common multimodal generative AI use cases and
tasks.

https://oreil.ly/HizEq
https://oreil.ly/3D76y

Figure 10-1. Unimodal versus multimodal generative AI

Use Cases
Multimodal generative AI can create rich and diverse content by combining
text, images, videos, audio, and more. Multimodal generative AI is used for
generating compelling marketing materials, presentations, and other types
of creative content that incorporate multiple modalities.

In addition to content generation, other popular use cases include image
captioning to increase accessibility for visually impaired users, visual
question answering where users can ask questions about what they see in an
image, content moderation to identify harmful content across modalities,
and the creation of virtual environments in video games, simulations, and
virtual reality.

You’ll also see multimodal generative AI used in fashion and product
design to help generate new clothing designs or interior layouts, and in
customer service, powering virtual assistants, chatbots, and avatars that
engage with users through text, speech, and visual cues.

Since most image-generation use cases involve a prompt, let’s first explore
some prompt engineering best practices and generative-inference
configuration parameters related to image generation.

Multimodal Prompt Engineering Best Practices
It is important to become familiar with the nuances of the foundation model
you are working with to author the most useful prompts. This section
demonstrates various ways to influence text-to-image multimodal models
when generating images. Let’s start with some high-level prompt
engineering tips that work for a wide variety of image-generation models,
including Stable Diffusion:

Define the type of image.

You can specify phrases like “film,” “oil painting,” “sketch,”
or “3D rendering” to express the desired style of your
generated image. Within each style, you can instruct the
model to generate an image with different framing and
lightning. For example, “Generate a close-up sketch with
natural lighting.”

Describe the subject.

What are you trying to generate? You will need to find a
balance between not enough detail and too much detail. To
generate multiple subjects, you should use the plural version
of the subject, such as “dogs” instead of just “dog.”

Specify style and artists.

You can ask the model to generate an image similar to a
specific artist, such as Vermeer or Rembrandt. Additionally,
you can ask the model to generate images that combine
multiple artists, for example: “Generate an image by Van
Gogh and Picasso.”

Be specific about quality.

Generative models perform better when the prompt
contains very specific details about what you are trying to
generate. Use words like “realistic,” “high resolution,” and
“8k” to improve the quality of the rendered image. You will
likely iterate many times on finding the right amount of
detail.

Be expressive.

Despite the many brief examples available online, it’s OK to
express yourself when writing these prompts. Avoid the urge
to paraphrase or shorten the prompt to just a single phrase
or utterance. Separate out your thoughts, incrementally add
new details, and notice how the model responds. Iterate
until you get your desired result.

Choose order of words.

While it’s good to be specific and expressive, it’s worth
noting that words at the beginning of the prompt are often
weighted more heavily than words at the end.

Avoid negative phrases.

Consistent with unimodal large language models, negative
phrases are sometimes difficult to interpret by the model.
Use positive phrases if possible.

Embrace negative prompts.

Separate from the prompt, there is a parameter specifically
used to specify which objects, styles, and characteristics that
the model should not generate. For example, if you don’t
want your model to generate a blurry background, you can
specify “blurry background” in the negative prompt

parameter. You should phrase these in a positive manner to
avoid the double negative scenario of specifying a negative
phrase in the negative-prompt parameter.

Image Generation and Enhancement
Many of the described multimodal generative AI use cases that incorporate
image and text data involve image generation, image editing and
enhancement, and image-to-text tasks. Let’s explore those tasks in more
detail using Stable Diffusion.

Image Generation
Image generation is a common task for multimodal models that support
text-to-image capabilities. Figure 10-2 shows an example of a text prompt,
Create a picture of a dog laying on grass, instructing the model to
generate an image as output that matches the text description in the prompt.

Figure 10-2. Image generation using text-to-image

Here is the code to generate this image with Stability AI’s Stable Diffusion
XL model and Amazon SageMaker JumpStart:

import sagemaker

from stability_sdk_sagemaker.predictor import StabilityPredictor

from stability_sdk.api import GenerationRequest, GenerationResponse,

TextPrompt

from sagemaker.utils import name_from_base

from PIL import Image

import io

import base64

endpoint_name=name_from_base("sdxl-1-0-jumpstart")

sagemaker_session = sagemaker.Session()

deployed_model = StabilityPredictor(endpoint_name=endpoint_name,

 sagemaker_session=sagemaker_session)

prompt = "Create a picture of a dog laying on grass."

output = deployed_model.predict(

 GenerationRequest(

 text_prompts=[TextPrompt(text=prompt)],

 style_preset="anime",

 width=1024,

 height=1024,

 seed=5,

)

)

def decode_and_show(model_response: GenerationResponse, image_name):

 image = model_response.artifacts[0].base64

 image_data = base64.b64decode(image.encode())

 image = Image.open(io.BytesIO(image_data))

 image.save(image_name)

 display(image)

decode_and_show(output, image_name)

Image generation powers a variety of content generation use cases,
including the generation of creative content such as book illustrations or
music album cover designs. There are also broader applications, such as
using generated images to experiment with and influence product design.

Image Editing and Enhancement
Image editing and enhancement uses image-to-image capabilities of
generative AI models to generate a new or modified image from an image
and instruction that you provide as input along with a text-based prompt.
Image editing and enhancement tasks support a range of use cases,
including artistic style transfer, domain adaptation, and upscaling.

Style transfer converts images into another specific artistic style—for
example, an anime-style image into a photorealistic image. The style is

usually expressed in the input text prompt and/or defined with a model
parameter, such as style_preset in Stable Diffusion. The values for style
transfer include photographic, digital-art, and cinematic. The
style_preset parameter is useful for art creation, design, or photo editing
applications.

Figure 10-3 shows an example of style transfer applied to an image created
with the prompt Create an image of a dog dressed as a ninja
eating ice cream in anime style (left image in Figure 10-3). You can
then use this image as an input image and ask the model to change the style
to photorealistic (right image in Figure 10-3) using the style_preset
parameter.

Figure 10-3. Example of style transfer from anime-style image to photorealistic-style image

Here is the code to generate the first image in Figure 10-3 with Stability
AI’s Stable Diffusion XL model and Amazon SageMaker JumpStart:

prompt="Create an image of a dog dressed as a ninja eating ice cream"

output = deployed_model.predict(

 GenerationRequest(

 text_prompts=[TextPrompt(text=prompt)],

 style_preset="anime",

 width=1024,

 height=1024

)

)

Here is the code to generate the second image in Figure 10-3 with Stability
AI’s Stable Diffusion XL model and Amazon SageMaker JumpStart:

def encode_image(image_path: str,

 resize: bool = False,

 size: Tuple[int, int] = (1024, 1024)) -> Union[str, None]:

 image = Image.open(image_path)

 if resize:

 image = Image.open(image_path)

 image = image.resize(size)

 updated_image_path = "resize-{}".format(image_path)

 image.save(updated_image_path)

 image_path = updated_image_path

 with open(image_path, "rb") as image_file:

 img_byte_array = image_file.read()

 # Encode the byte array as a Base64 string

 base64_str = base64.b64encode(

 img_byte_array).decode("utf-8")

 return base64_str

size = (1024,1024)

image_data = encode_image("anime_ninja_dog.png", size=size)

new_prompt="Create a photograph of a dog dressed as a ninja eating ice cream"

output = deployed_model.predict(

 GenerationRequest(

 text_prompts=[

 TextPrompt(text=new_prompt)

],

 init_image=image_data,

 style_preset="photographic",

 ...

)

)

Domain adaptation converts images from one domain to another, such as
converting satellite images to maps or changing day scenes to night scenes.

Figure 10-4 shows an example of changing an image from a night scene
created with the prompt Create a photorealistic image of a Storm
Trooper holding a surfboard at night during full moon (left
image in Figure 10-4), to a day scene, created with the prompt Create a
photorealistic image of a Storm Trooper holding a surfboard

during day (right image in Figure 10-4).

Figure 10-4. Example of an image changing from night scene to day scene

Here is the code to generate the first image in Figure 10-4 with Stability
AI’s Stable Diffusion XL model and Amazon SageMaker JumpStart:

prompt="Create a photorealistic image of a Storm Trooper holding a surfboard

at night during full moon"

output = deployed_model.predict(

 GenerationRequest(

 text_prompts=[

 TextPrompt(text=prompt)

],

 width=1024,

 height=1024

)

)

decode_and_show(output)

Here is the code to generate the second image in Figure 10-4 with Stability
AI’s Stable Diffusion XL model and Amazon SageMaker JumpStart:

new_prompt="Create a photorealistic image of a Storm Trooper holding a

surfboard on a bright sunny day"

output = deployed_model.predict(

 GenerationRequest(

 text_prompts=[

 TextPrompt(text=new_prompt)

],

 init_image=image_data,

 style_preset="photographic",

 ...

)

)

decode_and_show(output)

Domain adaptation is useful for simulating various scenarios in video
games, simulations, or product presentations.

Upscaling converts lower-resolution images into higher resolutions. Unlike
non-deep-learning techniques such as nearest neighbor, generative AI takes
the whole context of the image into account, using a text prompt to guide
the upscaling process.

Figure 10-5 shows an example of upscaling a low-resolution image of a
green iguana to a higher resolution. On the left is the low-resolution iguana
image used as the input image to the model with the simple prompt a
green iguana. On the right is the high-resolution image generated by the
model.

Figure 10-5. Upscaling a lower-resolution image of a green iguana to a higher resolution

Here is the code to generate the upscaled image in Figure 10-5 with
Stability AI’s Stable Diffusion x4 upscaler FP16 model and Amazon
SageMaker JumpStart:

low_res_img_file_name = "green_iguana_lowres.jpg"

endpoint_name =

 'jumpstart-dft-stable-diffusion-x4-upscaler-fp16'

def query_endpoint(payload):

 client = boto3.client('runtime.sagemaker')

 response = client.invoke_endpoint(

 EndpointName=endpoint_name,

 ContentType='application/json;jpeg',

 Accept='application/json;jpeg',

 Body=payload)

 return response

def parse_response(query_response):

 response_dict = json.loads(query_response['Body'].read())

 return response_dict['generated_images'],

 response_dict['prompt']

with open(low_res_img_file_name,'rb') as f:

 low_res_image_bytes = f.read()

encoded_image = base64.b64encode(

 bytearray(low_res_image_bytes)).decode()

payload = {

 "prompt":"a green iguana",

 "image": encoded_image

}

query_response = query_endpoint(

 json.dumps(payload).encode('utf-8'))

generated_images, prompt = parse_response(query_response)

for generated_image in generated_images:

 generated_image_decoded = BytesIO(

 base64.b64decode(generated_image.encode()))

 generated_image_rgb = Image.open(

 generated_image_decoded).convert("RGB")

Upscaling can be useful in medical imaging tasks to enhance images,
segment regions of interest, or reconstruct missing data. It can also improve
the quality of medical scans, aid in diagnosis, and even generate realistic
images from incomplete data, supporting research and clinical applications.

Inpainting, Outpainting, Depth-to-Image
The image-editing and enhancement tasks described thus far usually change
the image as a whole. There are also more advanced techniques that help
you modify only parts of an image, including inpainting, outpainting, and
depth-to-image.

Inpainting
Inpainting replaces a portion of an image with another image based on an
instruction prompt and image mask. Generative models that support
inpainting are usually derived from a base image model with an added mask
generation strategy. The mask represents the segments in the original image
that you want to change and the segments to leave unchanged. They accept
an additional mask_input parameter, an image where the blacked-out

portion remains unchanged during image generation and the white portion
is replaced.

To perform inpainting, provide the original image, a mask image that
outlines the portion to be replaced, and a text prompt with the instruction.
The example shown in Figure 10-6 uses inpainting to remove the tree from
the image shown on the left. In the middle, you can see the provided image
mask. On the right, you can see the inpainted image without the tree.

Figure 10-6. Inpainting replaces a portion of an image

Here is the code to generate the inpainted image in Figure 10-6 with
Stability AI’s Stable Diffusion 2 Inpainting model and Amazon SageMaker
JumpStart:

endpoint_name = 'jumpstart-dft-stable-diffusion-2-inpainting'

input_img_file_name = "inpainting/original-image.png"

input_img_mask = "inpainting/mask-image.png"

def encode_img(img_name):

 with open(img_name,'rb') as f:

 img_bytes = f.read()

 encoded_img = base64.b64encode(

 bytearray(img_bytes)).decode()

 return encoded_img

encoded_input_image = encode_img(input_img_file_name)

encoded_mask_image = encode_img(input_img_mask)

payload = {

 "prompt": "building, facade, paint, windows",

 "image": encoded_input_image,

 "mask_image":encoded_mask_image

}

def query_endpoint(payload):

 client = boto3.client('runtime.sagemaker')

 response = client.invoke_endpoint(

 EndpointName=endpoint_name,

 ContentType='application/json;jpeg',

 Accept = 'application/json;jpeg',

 Body=encoded_payload)

 return response

def parse_and_display_response(query_response):

 response_dict = json.loads(query_response['Body'].read())

 generated_images = response_dict['generated_images']

 for generated_image in generated_images:

 with BytesIO(

 base64.b64decode(

 generated_image.encode())) as generated_image_decoded:

 with Image.open(generated_image_decoded) as

 generated_image_np:

 generated_image_rgb =

 generated_image_np.convert("RGB")

 generated_image_rgb.save("generated-image.png")

query_response = query_endpoint(payload)

parse_and_display_response(query_response)

The most common use cases for inpainting are image restoration use cases,
such as repairing incomplete or damaged areas of building blueprints in
architectural designs or removing cropping artifacts in medical imaging.

Outpainting
Outpainting expands images beyond their original borders to create larger-
sized images. In Figure 10-7, we used the image of the green iguana as
input, scaled the image by 0.5, provided an image mask that marks the

outside frame to be changed, and instructed the model to outpaint. The right
image in Figure 10-7 shows the generated image after outpainting.

The most common use cases for outpainting are artistic content generation,
photography enhancement and editing, and video game design.

Figure 10-7. Outpainting expands images beyond their original borders

Depth-to-Image
Depth-to-image is a technique that generates new images from existing
ones while preserving the shape and depth of the objects in the original
image.

Depth-to-image is often used to explore different interior design styles
while keeping the interior space and boundaries coherent with your input
image, as shown in Figure 10-8.

Here, we generated an image with the prompt Create an image of an
ultra modern penthouse overlooking Lake Tahoe (shown on the
left). We then passed this image to a model with depth-to-image capabilities

and prompted it with city view, marble floor, minimalist
lifestyle. In the generated image (shown on the right), you can see how
the overall image composition and depth of the objects is preserved, but the
view changed from lake to city and the floors changed from hardwood to
marble.

Figure 10-8. Changing interior designs using depth-to-image

Here is the code to generate the image in Figure 10-8 with Stable Diffusion
2’s Depth FP16 model and Amazon SageMaker JumpStart:

input_img_file_name = "room.png"

endpoint_name = 'jumpstart-dft-sd-2-depth-fp16'

encoded_input_image = encode_img(input_img_file_name)

payload = {

 "prompt": "city view, marble floor, minimalist lifestyle",

 "image": encoded_input_image

}

query_response = query_endpoint(payload)

parse_and_display_response(query_response)

In marketing and branding, you can take photographs of your products and
use depth-to-image to generate creative variations for digital advertisements
or brochures, as shown in Figure 10-9.

Here, we generated an image with the prompt Create an image of a
fancy cocktail with beach in the background (shown on the left).
We then passed this image to a model with depth-to-image capabilities and
prompted it with nyc rooftop bar (shown on the right).

Figure 10-9. Changing product marketing images using depth-to-image

Here is the code to generate the image in Figure 10-9 with Stable Diffusion
2 Depth FP16 model and Amazon SageMaker JumpStart:

input_img_file_name = "cocktail.png"

endpoint_name = 'jumpstart-dft-sd-2-depth-fp16'

encoded_input_image = encode_img(input_img_file_name)

payload = {

 "prompt": "nyc rooftop bar",

 "image": encoded_input_image

}

query_response = query_endpoint(payload)

parse_and_display_response(query_response)

In game development, you can use depth-to-image to generate different in-
game landscapes from a base image that contains some elements you want
to include.

Image Captioning and Visual Question Answering
When you align an LLM with a vision-based model, you get a multimodal
large language model (MLLM), sometimes called visual language models
(VLMs). These multimodal models accept inputs of different content
modality.

The models know how to follow instructions and perform in-context
learning for both text-based and multimodal tasks. These models are often
used for image-to-text tasks that accept images as input and generate text as
output.

Some popular image-to-text models include Flamingo from DeepMind1 and
Image-Aware Decoder Enhanced à la Flamingo with Interleaved Cross-
attentionS (IDEFICS) from Hugging Face. These models are trained on
datasets that more naturally interleave images and text—versus a dataset of
image-text caption pairs. By interleaving images and text, the models tend
to perform better on multimodal reasoning benchmarks.

While Flamingo is a proprietary model trained on a closed dataset,
IDEFICS is based on the Flamingo architecture, is freely available, and is
trained on a public dataset called OBELICS. OBELICS is an image-text
dataset that consists of 140 million web pages extracted from the Common
Crawl dataset and interleaved with 350 million images associated with
these web pages. In addition, another 100 billion highly curated text tokens
are added to the dataset to improve the model’s language understanding.

NOTE
OBELICS and IDEFICS are acronyms that mimic names from a popular French comic
book, Asterix, which stars a fictional character, Obelix, and his dog, Idefix.

https://oreil.ly/jPcnj
https://oreil.ly/SOyer

IDEFICS is available in 9 billion- and 80 billion-parameter models with
very powerful spatial and language understanding that aligns natural
language with image perception. There are also instruction fine-tuned
variants of both the 9 billion- and 80 billion parameter-models that are
optimized for conversational applications.

During training, IDEFICS uses the pretrained LLaMA large language
model in combination with a set of vision encoders and cross-attention
layers that are trained on the interleaved text and image data from the
OBELICS dataset. The cross-attention uses keys (k) and values (v) from the
vision features (color, shape, etc.) along with queries (q) from the language
features (tokens, input IDs, etc.).

Image-to-text powers many multimodal generative AI use cases, such as
image captioning, content moderation, and VQA. Let’s take a look at some
of these use cases.

Image Captioning
Image captioning automatically generates descriptive captions for images,
combining computer vision and natural language processing. Image
captioning is often used to enhance accessibility for visually impaired
people, to assist in content indexing and retrieval, and to handle search-
engine optimization (SEO) and social media sharing. It also has
applications in education, automated content generation, assistive
technology, and AI research, making visual content more meaningful and
usable.

Content Moderation
Content moderation leverages the image-to-text capabilities of models to
analyze content across visual and text elements. Those models can help
detect deepfake content by analyzing visual and textual elements and
uncover inconsistencies. They can enhance contextual content analysis by
considering both text and images, leading to more nuanced moderation

decisions. They can also help identify harmful content by leveraging both
modalities and flagging offensive or inappropriate material more accurately.

Visual Question Answering
VQA tasks make use of image-to-text capabilities of a model to answer
questions about images or visual content. These tasks require the model to
understand both the visual information in the image and the textual content
of the question to provide accurate and relevant answers. Figure 10-10
shows how VQA is able to correctly respond to the question, Who makes
this car? from the image given in the multimodal prompt.

Figure 10-10. The model responds with the correct answer for a visual question

Similar to an LLM-based prompt, the text portion of the VQA prompt
typically follows the format of User: {question}\nAssistant:. The
code that follows implements the example in Figure 10-10 using the
Hugging Face IDEFICS model for the VQA image-to-text task. Here, we
are using the 9 billion-parameter IDEFICS instruct variant to ask questions
of the image:

import torch

from transformers import IdeficsForVisionText2Text

from transformers import AutoProcessor

https://oreil.ly/LqnPi

device = "cuda" if torch.cuda.is_available() else "cpu"

model_checkpoint = "HuggingFaceM4/idefics-9b-instruct"

model = IdeficsForVisionText2Text.from_pretrained(

 model_checkpoint)

processor = AutoProcessor.from_pretrained(model_checkpoint)

prompts = [

 "User: ", # input indicator

 "https://.../happy-car-chris.png" # image

 "Who makes this car?", # question

 "Assistant: ", # output indicator

]

inputs = processor(prompts, return_tensors="pt").to(device)

generated_ids = model.generate(**inputs, max_length=100)

generated_text = processor.batch_decode(

 generated_ids, skip_special_tokens=True)[0]

print(generated_text)

Output:

Assistant: The car is made by Porsche.

VQA can also be combined with multimodal chain-of-thought prompting to
simulate humanlike thought processes for more complex questions. In order
to perform visual question answering, the model must iteratively reason
over both the image and the question.

Figures 10-11 and 10-12 demonstrate the difference between multimodal
standard prompting and chain-of-thought prompting, respectively. Adding
Think step-by-step. to the prompt, as shown in Figure 10-12, directs the
model to use chain-of-thought reasoning, and the model returns the correct
answer.

Figure 10-11. The model responds with an incorrect answer without multimodal chain-of-thought
prompting

Figure 10-12. VQA with multimodal chain-of-thought prompting returns the correct answer

Here is the code to implement the chain-of-thought version of this prompt:

import torch

from transformers import IdeficsForVisionText2Text

from transformers import AutoProcessor

device = "cuda" if torch.cuda.is_available() else "cpu"

model_checkpoint = "HuggingFaceM4/idefics-9b-instruct"

model = IdeficsForVisionText2Text.from_pretrained(

 model_checkpoint)

processor = AutoProcessor.from_pretrained(model_checkpoint)

prompts = [

 "User: ", # input indicator

 "https://.../baby-groot.jpg", # image

 "Who produced the movie that features this character?", # question

 "Assistant: " # output indicator

]

inputs = processor(prompts, return_tensors="pt").to(device)

generated_ids = model.generate(**inputs, max_length=100)

generated_text = processor.batch_decode(generated_ids,

 skip_special_tokens=True)[0]

print(generated_text)

Output:

Assistant: Marvel Studios produced the movie that features this character.

VQA powers diverse applications, such as aiding visually impaired people,
enhancing education, and assisting in content retrieval. It’s also useful in
medical diagnosis, tourism, gaming, and security, enabling users to interact
with images through natural language questions.

Here is another example, this time using chain-of-thought reasoning to
answer the question in the prompt, How do I make this? Think step-
by-step., referring to a pizza in Figure 10-13. Note the Think step-by-
step. in Figure 10-13 and the code that follows.

Figure 10-13. Visual question answering with chain-of-thought reasoning

model_checkpoint = "HuggingFaceM4/idefics-9b-instruct"

model = IdeficsForVisionText2Text.from_pretrained(

 model_checkpoint)

prompts = [

 "User: ", # input indicator

 "https://.../margherita-pizza.jpg", # image

 "How do I make this? Think step-by-step.", # question

 "Assistant: " # output indicator

]

inputs = processor(prompts, return_tensors="pt").to(device)

generated_ids = model.generate(**inputs, max_length=500)

generated_text = processor.batch_decode(generated_ids,

 skip_special_tokens=True)[0]

print(generated_text)

Output:

Assistant: To make a Margherita pizza at home, follow these steps:

1. Start by preheating your oven to the highest temperature it can reach,

usually around 500°F (260°C).

2. On a lightly floured surface, roll out your pizza dough into a circle.

3. Transfer the dough to a pizza stone or baking sheet.

4. Sprinkle a layer of tomato sauce on top of the dough, leaving a small

border around the edges.

5. Add a layer of fresh mozzarella cheese on top of the tomato sauce.

6. Add a layer of fresh basil leaves on top of the cheese.

7. Drizzle a small amount of olive oil over the pizza.

8. Place the pizza in the preheated oven and bake for 10-12 minutes, or until

the crust is golden and the cheese is melted and bubbly.

9. Remove the pizza from the oven and let it cool for a few minutes before

slicing and serving.

Optional: You can also add other toppings like sliced mushrooms, olives, or

pepperoni to your Margherita pizza."

Now that you’ve seen a few examples, let’s explore ways to evaluate
multimodal models for both text-to-image and image-to-text tasks. In the
next section, you will learn about multimodal evaluation benchmarks,
metrics, and datasets, including a nonverbal reasoning intelligence quotient
(IQ) test used to evaluate human intelligence.

Model Evaluation
Evaluation benchmarks help quantify how well the multimodal model
aligns visual perception and natural language. They also measure the
model’s ability to perform nonverbal reasoning. Evaluating multimodal
models often requires a combination of qualitative human evaluation and
quantitative statistical comparison.

As with any evaluation process, you will want to choose a dataset and
benchmark to establish a baseline. This section shows you some common
datasets, metrics, and benchmarks that you can use to evaluate your
multimodal generative AI models across various tasks, including image
generation, image modification, image classification, VQA, and nonverbal
reasoning. Most evaluations are done with zero-shot inference, although
few-shot is also an option in some cases.

Text-to-Image Generative Tasks
A great starting point for text-to-image generative tasks is the PartiPrompts
dataset from the Parti project. This dataset consists of 1,600 English
prompts across a number of categories, including world knowledge,
animals, and indoor scenes, as shown in Figure 10-14.

https://oreil.ly/MGtkk
https://oreil.ly/19WFD

Figure 10-14. PartiPrompts dataset

The PartiPrompts dataset evaluates a number of text-to-image challenges,
such as imagination, complexity, and fine-grained detail. You can select a
subset of the PartiPrompts dataset and manually evaluate the model’s

generated image for each of these prompts—or you can apply a more
quantitative approach, which you will see next.

There are a few common ways to evaluate your model quantitatively,
including CLIP score similarity, CLIP directional similarity, and Fréchet
Inception Distance (FID). CLIP score similarity measures the semantic
similarity, or compatibility, between each image and its caption. High CLIP
score similarity implies a higher compatibility and is therefore desirable.
CLIP directional similarity compares how similarly each image changes
when making the same change to each caption. The higher the CLIP
directional similarity score, the better, as the images appear to be more
similar because they respond similarly to the same change in the prompt.
FID measures the similarity between two image datasets.

Next, you will see an example of one of these evaluation metrics: CLIP
score similarity. You will use this metric to compare Stable Diffusion 1.4
and 1.5:

from diffusers import StableDiffusionPipeline

import torch

model_checkpoint_1_4 = "runwayml/stable-diffusion-v1-4"

model_checkpoint_1_5 = "runwayml/stable-diffusion-v1-5"

sd_pipeline_1_4 = StableDiffusionPipeline.from_pretrained(

 model_checkpoint_1_4)

sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(

 model_checkpoint_1_5)

prompts = [

 "a photo of an astronaut riding a horse on mars",

 "A high tech solarpunk utopia in the Amazon rainforest",

 "A pikachu fine dining with a view to the Eiffel Tower",

 "A mecha robot in a favela in expressionist style",

 "an insect robot preparing a delicious meal",

 "A small cabin on top of a snowy mountain in style of Disney, artstation",

]

images_1_4 = sd_pipeline_1_4(prompts,

 num_images_per_prompt=1, output_type="numpy").images

images_1_5 = sd_pipeline_1_5(prompts,

 num_images_per_prompt=1, output_type="numpy").images

from torchmetrics.functional.multimodal import clip_score

from functools import partial

clip_score_fn = partial(clip_score,

 model_name_or_path="openai/clip-vit-base-patch16")

def calculate_clip_score(images, prompts):

 images_int = (images * 255).astype("uint8")

 clip_score = clip_score_fn(

 torch.from_numpy(images_int).permute(0, 3, 1, 2),

 prompts).detach()

 return round(float(clip_score), 4)

sd_clip_score_1_4 = calculate_clip_score(images_1_4, prompts)

print(f"CLIP Score with v-1-4: {sd_clip_score_1_4}")

CLIP Score with v-1-4: 34.9102

sd_clip_score_1_5 = calculate_clip_score(images_1_5, prompts)

print(f"CLIP Score with v-1-5: {sd_clip_score_1_5}")

CLIP Score with v-1-5: 36.2137

Here, you see that Stable Diffusion 1.5 has an improved CLIP score
similarity over its predecessor, Stable Diffusion 1.4. This implies that Stable
Diffusion 1.5 maintains a higher semantic similarity, or compatibility,
between the given prompts and generated images.

Forward Diffusion
Next, you will see how to evaluate common image-to-text generative AI
tasks, including image captioning and VQA. An image caption is a text-
based description of an image. Remember that VQA tasks ask questions
about an image using natural language text.

You can use a number of multimodal datasets, including ImageNet and
Rendered SST2 for image classification tasks and VQAv2 and VizWiz-
VQA for visual question answering tasks. Primarily, zero-shot inference is
used, but few-shot is also an option for some evaluation tasks.

https://oreil.ly/C3QeX
https://oreil.ly/xn7Ja
https://oreil.ly/YSSyC
https://oreil.ly/aaYH3

For image-classification task evaluation, you can pass the image and a
prompt like “This is an image of the following category:” to your
multimodal generative AI model to generate a text-based completion with
the predicted category. You can use a dataset like ImageNet, which includes
approximately 1 million training images across 1,000 categories. You would
evaluate the model’s accuracy of predicting the correct category from the
ImageNet ground truth category.

For example, you can ask the model to predict if text in the image contains
any hate speech. In this case, you are evaluating the model’s ability to
understand the meaning of text embedded in the image—and its ability to
detect hate speech.

Nonverbal Reasoning
To determine how well a multimodal model performs nonverbal reasoning,
you can use Raven’s Progressive Matrices (RPM). RPM is often used to
measure general human intelligence and often used to determine a human’s
IQ.

Raven’s IQ test is similar to in-context, few-shot learning with large
language models where full examples are provided—and the model is asked
to complete the missing example. The main difference is that the prompt
includes shapes and symbols instead of language. As such, the model learns
to recognize abstract concepts and patterns in the given image, as shown in
Figure 10-15, adapted from the paper “Language Is Not All You Need:
Aligning Perception with Language Models.”2

Figure 10-15. Evaluate nonverbal reasoning with Raven’s Progressive Matrices IQ test (source:
adapted from an image in Shaohan Huang et al.)

The prompt’s context includes a text-based instruction, “Here are eight
images:” followed by each possible image completion wrapped in “The
following image is:” and “Is it correct?” The model returns a probability
distribution across all the possible images that can complete the matrix. The
image with the highest probability is the predicted answer. By comparing to
RPM’s ground truth answer, you can determine the model’s accuracy for
this nonverbal reasoning task.

Now that you’ve seen examples of various multimodal generative AI tasks,
let’s dive deep into the powerful diffusion architecture that powers many of
these multimodal models, including Stable Diffusion.

https://oreil.ly/411R5

NOTE
The rest of this chapter is very technical and dives deep into how diffuser-based models
were built and trained. You may wish to use it as a reference for debugging and tuning
diffuser-based generative models in the future; however, it is not required to understand
how to use these models. Feel free to skip to Chapter 11 to explore ways to control
image generation and fine-tune multimodal generative models for your use cases and
datasets.

Diffusion Architecture Fundamentals
Diffusion models support a variety of key tasks for multimodal models,
including image generation, upscaling, and inpainting. Early multimodal
models often utilized variational autoencoders (VAEs) followed by the next
generation of multimodal models created using generative adversarial
network (GAN) architectures. However, most of the recent multimodal
models use diffusion-based architectures, including Stable Diffusion.

Diffusion-based architectures are a common choice for recent multimodal
foundation models because they offer a high degree of control in quality
and diversity of images generated. This architecture has three primary
components to cover, including the processes of forward diffusion and
reverse diffusion, combined with the underlying U-Net architecture (which
will be described in “U-Net ”).

Forward Diffusion
The first step in training a diffusion model includes providing data as input
that goes through a process called forward diffusion, as shown in Figure 10-
16.

Figure 10-16. Training examples are created by applying noise to input images

Forward diffusion applies Gaussian noise to the input over a series of steps,
depending on the amount of noise to be applied. At a high level, the noise is
really random pixels or distortions applied to the image.

The forward-diffusion process is how training examples are created, so this
same process is applied to multiple input images to create a number of
training examples that will then be used for the image generation model.
During this process, you are able to control the amount of noise that gets
added to the image over a series of steps, which also means you’re able to
create multiple training examples per image, with varying degrees of noise
applied, for each of the images in the training dataset.

Reverse Diffusion
Once you have your training examples, a second model is trained to predict
noise in an image then removes the noise to generate an image. This
process is known as reverse diffusion. Reverse diffusion takes the noisy
image on input, along with a number of denoising steps, to create a clearer
image. During the reverse-diffusion process, the noise in the image is
predicted using the trained noise predictor, then removed and replaced with
an image that is closer to the distribution the model was trained on, as
shown in Figure 10-17.

Figure 10-17. Reverse diffusion removes noise from an input to generate a new image

Although there are different types of diffusion-based model architectures,
they all follow the same principle of adding noise during training and then
training a neural network to reverse the noise. The most common
underlying neural network is U-Net, which was originally introduced in a
2015 research paper.3

U-Net
At a high level, the trained U-Net model is made up of an encoder followed
by a decoder. The encoder is responsible for extracting features from the
input image. The encoder has repeated convolutional layers to extract
intermediate features and then max pooling layers to perform the
downsampling, as shown in Figure 10-18.

Figure 10-18. U-Net architecture common in diffusion-based foundation models

The corresponding decoder then upsamples the extracted features with
saved copies of the encoder’s features concatenated on the decoder’s
features by connected paths. The final layer then produces the output—in
this case, the final generated image. Because the encoder and the decoder
are symmetrical and connected by paths, it forms the U shape, resulting in
its name, U-Net.

In summary, diffusion-based architectures have three primary components.
The first is a process known as forward diffusion used to create training
examples by adding a determined amount of noise to an image over a series
of noising steps. The images created through forward diffusion are then
used to create a noise predictor, typically utilizing a U-Net architecture,
which can then be used to predict noise and reverse the added noise,
through reverse diffusion, in order to generate new images.

This architecture serves as one of the foundational components for many
multimodal models, including Stable Diffusion. In the next sections, we’ll
dive deeper into the Stable Diffusion 2 and Stable Diffusion XL
architectures.

Stable Diffusion 2 Architecture
Stable Diffusion is a latent diffusion model (LDM) supporting image
generation and image modification tasks. You can use Stable Diffusion as is
or to fine-tune for your specific task. The power of these multimodal
models is the ability to provide instructional text within the prompt to
control the image that gets generated.

In addition to the prompt itself, there are also built-in configurations that
allow you to control the image generated, such as the ability to supply a
negative prompt that excludes specific elements from the generated image.
These controls are covered in more detail in a bit, but first let’s understand
more about the Stable Diffusion architecture and how it works.

Similar to other foundation models, there are different versions of Stable
Diffusion that vary in the training data and underlying components used
within each model’s architecture.

Stable Diffusion 2 was created by researchers from CompVis, Stability AI,
and LAION—and was trained on a subset of the LAION-5B dataset, which
contains 5 billion image-text pairs where approximately 50% are English
and 50% are from 100+ other languages. The text associated with each
image, called the caption, represents the contents of the image, as shown in
Figure 10-19.

https://oreil.ly/UN3RW

Figure 10-19. Image-caption pairs

Stable Diffusion is not a single model but a collection of components and
models that form the foundation of the underlying architecture that is able
to understand multiple modalities, including both text and image data. The
key elements of the Stable Diffusion architecture include a text encoder, a
diffusion process, and an image decoder, as shown in Figure 10-20. Each of
these elements has its own corresponding neural network.

Figure 10-20. Stable Diffusion architecture for text-to-image generation tasks

Let’s discuss each of these components in more detail, starting with the text
encoder.

Text Encoder
In the case of Stable Diffusion v2.1, the text encoder is a pretrained,
Transformer-based model called OpenCLIP. This model is pretrained on 32
billion text-image pairs and allows you to compute representations of
images and text and then measure how similar they are, making it ideal for

https://oreil.ly/Mnaeg

image classification, image retrieval, and image generation. In the specific
example of text-to-image generation, the text encoder takes the input text
and converts it into token embeddings that represent the input text.

The underlying language model contributes significantly to the performance
of multimodal models like Stable Diffusion. Each new version of Stable
Diffusion models has shown the trend to continue modifying the underlying
architecture to use the most current and largest large language models to
continue to improve performance with each new version.

OpenCLIP is pretrained for both image encoding and text encoding using
the multimodal pretraining dataset with image and text pairings. An
example illustrating the way OpenCLIP is trained is shown in Figure 10-21.

Figure 10-21. How OpenCLIP is trained using image and text pairs

During initial training, the similarity between text and image is expected to
be low; however, as the model is updated by repeating the process through
the training dataset, the resulting encoders are able to produce embeddings
where an image and the matching text are increasingly similar.

For this process to be effective, the training data also needs to include
negative examples where the text and the image do not match, in which
case the model should assign low similarity scores. For text-to-image tasks,

Stable Diffusion takes advantage of OpenCLIP’s text encoder to convert the
input prompt into token embeddings.

Next, the token embeddings are fed into the second component of the
architecture, which utilizes the diffusion architecture discussed in the
previous section.

U-Net and Diffusion Process
As previously mentioned, Stable Diffusion is an LDM, meaning it operates
in a latent space, which has proven faster than previous models that
operated in the pixel space. Stable Diffusion has two latent spaces: a
prompt/text latent space and an image representation space.

The generated output is still represented in the pixel space in the form of a
generated image; however, the computations within the diffusion process all
happen in the latent space, which is less computationally intensive. The first
input includes the token embeddings from the input text supplied in the
prompt.

The text embeddings are used multiple times by the noise predictor in the
U-Net, and the U-Net consumes these tokens through a cross-attention
mechanism that will be discussed in more detail in a bit. The second input is
a random array of noise, known as the latent seed. You can optionally
control this array by setting the seed value when prompting the model. If
you set the seed to a specific value, you will always get the same tensor
array as the input noise array; otherwise, it is randomly generated.

One of the controls you can provide to Stable Diffusion is specifying the
number of sampling steps in the U-Net architecture. Each step consumes
the latent space array on input and produces another array that more closely
aligns with the input text in combination with all of the other visual
information the model identified from all of the images the model was
trained on. The diffusion process is shown in Figure 10-22.

Figure 10-22. Using Stable Diffusion to generate a new image based on token embeddings and a
noise array

If you were to visualize each of the latent arrays produced in each step
through an image decoder, the resulting images would show reverse
diffusion in action. Keep in mind that this U-Net architecture is a
modification of the one previously discussed, which focused only on
generating a random image. To be able to support text as well, the
architecture is modified to add support for text inputs or instructions, which
is called text conditioning.

Text Conditioning
Text conditioning involves adding attention layers between the network
layers to process the text that is fed into the diffusion model. Other
conditioning inputs (like semantic maps or images) are also valid, but in
this case we’ll focus on text-to-image, which specifically uses text
conditioning.

Cross-Attention
The U-Net consumes these layers through a cross-attention mechanism that
merges the text prompt and the image representations. If we zoom in on the
U-Net architecture supporting each of the steps for Stable Diffusion, you’ll
see the addition of an attention layer for handling text embeddings, as
illustrated in Figure 10-23.

Figure 10-23. U-Net architecture with attention added for text conditioning

Some of the outputs are fed into additional processing later in the
architecture through residual connections between the encoder and decoder.
The cross-attention layers can be fine-tuned by using parameter-efficient
fine-tuning (PEFT) techniques such as LoRA, as discussed in Chapter 6.
The ability to fine-tune the cross-attention layers will be explored in
Chapter 11.

Scheduler
Within the U-Net architecture, there is an additional key element called the
scheduler, which is an algorithm. The U-Net architecture iteratively
denoises the random latent seed image supplied on input while being
conditioned to the text embeddings. Schedulers are used to control the
denoising process in terms of the number of denoising steps and what
algorithm to use to find the denoised sample.

The scheduler behaves differently depending on whether you’re using the
model for training or inference. During training, the scheduler takes a
model output, referred to as a sample, from a specific point in the diffusion
process and applies noise to the image according to a noise schedule and an
update rule.

The noise schedule controls the noise level applied at each step. The noise
is highest in the first step and gradually reduces through the iterative steps
in the diffusion process. At each step in the process, the goal is to produce
an image with a noise level that matches the noise schedule.

During inference, the scheduler is used to generate images from the noise;
you can also specify controls, like how many images to generate. There are
different scheduling algorithms that can be used to perform the
computation, and Stable Diffusion supports a variety of available
schedulers, many of which are conveniently packaged in Hugging Face’s
Diffusers library.

Image Decoder
The final output of the diffusion component includes the denoised latent
image representation (seen as the process image information in Figure 10-
22). This representation is then passed into the final component of the
Stable Diffusion architecture, which is the image decoder.

The image decoder is actually an autoencoder that creates the final image
using the processed image representation. This is when you are finally able
to convert the latent space representation of an image into a visual pixel
representation.

Stable Diffusion XL Architecture
Stable Diffusion XL is the latest foundation model from Stability AI and
has enhancements, allowing for even more realistic images. XL has several
image modification capabilities built-in, including inpainting, outpainting,
and image-to-image.

So instead of utilizing a separate fine-tuned model from the base Stable
Diffusion 2 model for inpainting, the XL model includes this in the base
model. Several of the architecture components previously discussed apply
to the XL architecture but there are several differences highlighted in this
section that contribute to the advanced performance of this version.

U-Net and Cross-Attention
The XL architecture is using a U-Net backbone architecture that is three
times larger than previous versions of Stable Diffusion. For comparison, XL
has 2.6 billion U-Net parameters compared to 865 million in version 2. The
modified architecture also includes more attention blocks at the lower
layers of the U-Net and a larger cross-attention context used by a second
text encoder. As a result of that second text encoder, XL supports two
prompts, one for each encoder, that can be used to combine concepts, which
can potentially help boost quality.

Refiner
The other significant enhancement to the XL model architecture includes
the addition of a refinement model used to further enhance the fidelity of
the generated image. As shown in Figure 10-24, this refinement model
takes the output of the latent image produced by the base model and
performs image-to-image enhancements.

Stable Diffusion 2 was trained on 768 × 768 pixel images that are then
further compressed into latent space, but the optimal inference resolution
remains consistent with the image size used in training. However, Stable
Diffusion XL was trained on several aspect ratios and supports images
between 768 and 1,024 pixels.

Figure 10-24. Stable Diffusion XL architecture

Conditioning
The XL model also includes two unique conditioning schemes to improve
image generation. The first, is conditioning the model on the image size. In
previous architectures, the limitations imposed on image size caused
training samples to be dropped, impacting performance and the ability to

generalize, or to be upscaled before training, often resulting in low image
quality.

XL is conditioned using an additional input of image size and height. At
inference, you can then set the desired apparent resolution. The second
conditioning scheme is implemented to mitigate random cropping. Random
cropping happens during training, but it can result in quality issues during
image generation, such as a dog losing an ear. During data loading, the crop
coordinates are noted and fed into the model as conditioning parameters.

The two-stage architecture of diffusion and refinement, as well as the
additional conditioning for image size and cropping, helps improve the
quality of generated images. Stable Diffusion XL also exposes more
parameters during inference to control the output generated. For example,
you can use style_preset (described in the section “Image Editing and
Enhancement”) to give the model additional guidance on how the image
should be generated, as shown in Figure 10-25.

Figure 10-25. Stable Diffusion XL adds parameters to customize the generated image

Summary
Aligning perception with language using multimodal generative AI models
is a very active area of research. This chapter highlighted some of the
common multimodal generative AI tasks, including image generation,
modification, captioning, classification, visual question answering, and
nonverbal reasoning.

Next, you learned about diffusers and the evolution of the Stable Diffusion
architecture. You also learned how to evaluate your multimodal generative
AI models using datasets like PartiPrompts, ImageNet and VizWiz. In
addition, you learned about Raven’s Progressive Matrices and IQ test to
evaluate the generative model’s humanlike ability to perform nonverbal
reasoning from symbols and images.

In Chapter 11, you will learn how to control image generation using Stable
Diffusion and ControlNet. You will also see how to apply fine-tuning and
reinforcement learning and enhancement (RLHF) to improve multimodal
generation customized for your datasets and aligned to human preferences,
such as helpfulness, honesty, and harmlessness.

1 Jean-Baptiste Alayrac et al., “Flamingo: A Visual Language Model for Few-Shot Learning”,
arXiv, 2022.

2 Shaohan Huang et al., “Language Is Not All You Need: Aligning Perception with Language
Models”, arXiv, 2023.

3 Olaf Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image
Segmentation”, arXiv, 2015.

OceanofPDF.com

https://oreil.ly/nxB7i
https://oreil.ly/411R5
https://oreil.ly/yz2-G
https://oceanofpdf.com/

Chapter 11. Controlled Generation
and Fine-Tuning with Stable
Diffusion

Controlling generation is an active area of research with many cutting-edge
techniques introduced only recently. The goal of these techniques is to
augment diffusion models to better handle common image tasks such as
edge detection and segmentation maps. These techniques provide fine-
grained control over image generation.

In this chapter, you will learn about a powerful technique called ControlNet
to augment and improve text-to-image generation for models like Stable
Diffusion. Additionally, you will explore multimodal fine-tuning with tools
like DreamBooth, algorithms such as textual inversion, and optimizations
including parameter-efficient fine-tuning (PEFT). Lastly, you will revisit
reinforcement learning from human feedback (RLHF) in the context of
aligning multimodal models with human preferences, including helpfulness,
honesty, and harmlessness (HHH).

ControlNet
Described in a 2023 paper,1 ControlNet is a popular way to train various
controls that improve your image-based generative tasks. ControlNet is a
deep neural network that works with diffusion models like Stable Diffusion.

During training, a control learns a specific task, such as edge-detection or
depth-mapping, from a set of given inputs. A relatively small amount of
data is required to train a very powerful control. You can train your own
controls using ControlNet or choose from a large number of pretrained
controls.

Let’s use Figure 11-1 as the base image to apply some of the more common
pretrained ControlNet controls. After applying a control to this base image,
you can generate new images with Stable Diffusion that follow the
guidance created by the output of the control.

Figure 11-1. Original base image to apply ControlNet controls to generate new images

Table 11-1 shows examples of some common pretrained ControlNet
controls. These control examples are described in more detail in an AWS
blog post in the context of generating new and creative marketing images
using the base image.

https://oreil.ly/VmJ0y

Table 11-1. Example descriptions and image maps of conditional control

Control name Control description
Control
output

Canny edge
map

A monochrome image with white
edges on a black background

Depth A grayscale image with black
(representing deep areas) and white
(representing shallow areas)

Hed boundary
detector

A monochrome image with white soft
edges on a black background

Scribble A hand-drawn monochrome image
with white outlines on a black
background

You take the output from the control and pass it to Stable Diffusion to
generate a new image with a new prompt—with the control output as the
guide.

Table 11-2 shows examples of newly generated images that use the output
of each control in Table 11-1—along with a new prompt—to guide the

generation and create fun new images that look similar to the original
image.

Table 11-2. Images generated by Stable Diffusion using each control

Control name New prompt

Stable
Diffusion
with
ControlNet

Canny edge
map

metal orange colored car, complete car, c

olor photo, outdoors in a pleasant landsc

ape, realistic, high quality

Depth metal red colored car, complete car, colo

r photo, outdoors in a pleasant landscape

on beach, realistic, high quality

Hed boundary
detector

metal white colored car, complete car, co

lor photo, in a city, at night, realisti

c, high quality

Scribble metal blue colored car, similar to origin

al car, complete car, color photo, outdoo

rs, breathtaking view, realistic, high qu

ality, different viewpoint

Let’s walk through how to use the Canny edge map control and detect edges
using the lefthand image in Figure 11-2 as the base image.

Figure 11-2. Converting base image into new image with ControlNet and a prompt

The code uses the OpenCV library to extract the edges using the Canny
edge map ControlNet control:

from diffusers import StableDiffusionControlNetPipeline

from diffusers.utils import load_image

Load the image

image = load_image("https://.../car.png"

)

Render the canny edge map for this particular image

import cv2

from PIL import Image

import numpy as np

image = np.array(image)

low_threshold = 100

high_threshold = 200

image = cv2.Canny(image, low_threshold, high_threshold)

image = image[:, :, None]

image = np.concatenate([image, image, image], axis=2)

canny_image = Image.fromarray(image)

canny_image

Figure 11-3 shows the output of the Canny edge map control applied to the
base image. This image represents the edges of each object in the base
image.

https://oreil.ly/pV-oW

Figure 11-3. Canny edge map for the given image

This edge map is then passed to Stable Diffusion to control the generation
of a new image using a new prompt, as shown in the following code
example:

from diffusers import StableDiffusionControlNetPipeline

from diffusers import ControlNetModel

import torch

canny = ControlNetModel.from_pretrained(

 "lllyasviel/sd-controlnet-canny",

 torch_dtype=torch.float16)

sd_pipe = StableDiffusionControlNetPipeline.from_pretrained(

 "runwayml/stable-diffusion-v1-5",

 controlnet=canny,

 torch_dtype=torch.float16)

generator = torch.manual_seed(0)

out_image = sd_pipe(

 """

 metal orange colored car, complete car, color photo,

 outdoors in a pleasant landscape, realistic, high quality

 """,

 num_inference_steps=20,

 generator=generator,

 image=canny_image

).images[0]

out_image

Figure 11-4 shows the newly generated image from Stable Diffusion using
the Canny edge map, which guides the generation of the new prompt,
metal orange colored car, complete car, color photo, outdoors

in a pleasant landscape, realistic, high quality. This process is
useful for generating new and creative images that contain roughly the same
objects as the original, guided by the ControlNet controls applied to the
base image.

Figure 11-4. Newly generated image from Stable Diffusion using Canny edge map and prompt

While ControlNet and pretrained controls are very powerful, you may need
to directly fine-tune a diffusion model with your specific image dataset to
improve your generated images; for example, you may want to use a set of
brand-specific logos or your product catalog. In the next section, you will
learn some techniques to fine-tune Stable Diffusion using tools like
DreamBooth and algorithms like textual inversion.

Fine-Tuning

Similarly to transformer-based large language models (LLMs), you can
fine-tune diffusion models such as Stable Diffusion through various
techniques. Fine-tuning allows you to customize image generation to
include image data not captured in the original corpus of training data. This
can include any image data, such as images of people, pets, or logos.

Fine-tuning allows you to generate realistic images that include subjects
unknown to the pretrained model. A few common options for fine-tuning
are included in this section, including DreamBooth, DreamBooth with
LoRA, and textual inversion.

DreamBooth

DreamBooth originated from a research paper2 in 2023, which introduced
the method as able to personalize text-to-image models using just a few
(three to five) sample images. While many use it for fun to generate their
own personal images or images of their pets, it does have broader uses in
generating creative content.

DreamBooth includes a number of applications for image generation, which
will be outlined in detail later in this section. Fine-tuning using
DreamBooth is done using a small sample of input images containing the
subject you want to use for fine-tuning. You can also supply a unique
identifier for the subject in your prompt. For example, Figure 11-5 uses
“Molly” as the unique identifier for the “dog” subject.

Figure 11-5. Fine-tuning a text-to-image diffusion model using DreamBooth

DreamBooth then uses those inputs to fine-tune a text-to-image diffusion
model in parallel with a class-specific prior preservation loss that uses the
semantic prior that the model has on the provided class to create diverse
instances belonging to that subject’s class as provided on input.

By fine-tuning using DreamBooth and a few input images, we’re now able
to create images of Molly in scenes she’s never been in. This is an example
of recontextualization. There are other uses of this application that can be
applied to broader use cases such as marketing. As an example, the input
image to fine-tune using DreamBooth could contain a new product. After
fine-tuning, using that input image, that product (or subject) can then be
used to generate images of the product with unique backgrounds or in
different environments.

Art rendition is an application that allows you to create artistic depictions of
your fine-tuned subject in the style of famous painters. As an example, you
can generate creative content with images of your dog in a Vincent Van
Gogh–style portrait, as shown in Figure 11-6.

Figure 11-6. Art rendition using the DreamBooth fine-tuned model

Text-guided view synthesis is an application that allows you to synthesize
images with specific viewpoints for a subject. Here, you can supply input
images for fine-tuning, then generate different viewpoints on those pictures,
such as viewing your dog from the side or the back, based on the
instructions provided in the prompt. DreamBooth also supports property
modification, which allows you to modify a specific aspect of the input
image, such as color.

Finally, DreamBooth also supports accessorization, which allows you to
preserve the subject in the input training images but modify the image with
specific accessories like costumes or hats, as shown in Figure 11-7.

Figure 11-7. Accessorization using the DreamBooth fine-tune model

In this section, you learned how to fine-tune a Stable Diffusion model using
DreamBooth and only a few images as input. DreamBooth uses the subject
in those images combined with the provided dataset information containing
a subject identifier and class to train a new model.

This is an entirely independent new model, but creating a new model for
each subject or concept introduced may not be memory or storage efficient.
In the next section, you will learn how to perform PEFT on Stable Diffusion
with DreamBooth and LoRA.

DreamBooth and PEFT-LoRA
Chapter 6 introduced the concept of PEFT and Low-Rank Adaptation
(LoRA) in the context of LLMs. LoRA can also be applied to multimodal
models like Stable Diffusion. As previously discussed, the diffuser
component of the Stable Diffusion architecture includes cross-attention
layers that align images and text.

LoRA can be used to fine-tune those cross-attention layers using the same
low-rank matrix approach discussed in Chapter 6, which results in a much

smaller model adapter—typically 2 to 500 MBs versus roughly 5 GB for a
Stable Diffusion model fully fine-tuned with DreamBooth. As described in
Chapter 6, you will need to combine the artifact with the original Stable
Diffusion model to perform inference.

Similar to language-based LoRA fine-tuning in Chapter 6, you can specify
the LoRA rank and target modules for the Stable Diffusion model, as shown
in the code sample, which targets the cross-attention layers:

target_modules = ["to_q", "to_v", "query", "value"]

config = LoraConfig(

 r=16,

 target_modules=target_modules,

 ...

)

model = get_peft_model(model, config)

Let’s continue to use Molly as an example and take a look at the images
generated with the fine-tuned model using LoRA. Keep in mind that the
new fine-tuned model is only 10 MB in size, including the text encoder and
the U-Net! The new model is prompted with this code:

img_list = pipe(["Molly dog on a beach"]*3, num_inference_steps=50).images

image_grid([x.resize((128,128)) for x in img_list], 1,3)

Three new images are generated with Molly dog on the beach. The new
generated images shown in Figure 11-8 are similar in content and quality
from the previously fine-tuned model.

Figure 11-8. LoRA fine-tuned Stable Diffusion model with similar results

DreamBooth fine-tunes all of the parameters in the diffusion model, while
keeping only the text transformer frozen, resulting in a new diffusion
model. Next, you will learn a relatively lightweight fine-tuning technique
called textual inversion, which is used to personalize image-based
generative models with just a few images. This technique works by learning
a token embedding for a new text-based token representing a concept while
keeping the remaining components of the Stable Diffusion model frozen.

Textual Inversion

Textual inversion originated from a research paper3 in 2022 that introduced
a technique for personalizing text-to-image models by learning to represent
new concepts in the embedding space while keeping the pretrained text-to-
image model frozen. This method allows you to personalize text-to-image
models using just a few sample images and without needing to alter the
base foundation model.

Fine-tuning with textual inversion relies on a few sample images that
represent a concept, such as an object or a style, in combination with a
learnable token. The learnable token can be a pseudoword, such as “M*,” or
represent natural language phrases or sentences, such as “molly-dog.” Then,
during fine-tuning, the pseudoword is converted into tokens and the model
learns to represent the concept through new word(s) in the embedding
space. These learned embeddings are contained in adapters that are much
smaller in size than the original or fine-tuned Stable Diffusion model.

Once the model has been tuned, the base foundation model is deployed
along with the tuned textual inversion model, which is really a learned
embedding. During inference, the prompt can take advantage of the learned
token or pseudoword, as shown in Figure 11-9.

The prompt text containing the pseudoword is converted into tokens, which
are then converted into embeddings. During training, the pseudoword was
learned as a new token embedding, shown here as “V*.” The model output
is used to condition the diffusion model to be able to understand the prompt
and new concept.

Figure 11-9. Textual inversion trains the text encoder on a pseudoword identifier of the custom
concept

To tune a Stable Diffusion model using textual inversion, Hugging Face
provides convenient libraries and training code in their Diffusers library. In
this example, we supply a few images of Molly the dog in the training input
along with key parameters (object or style) that guide the training
including the concept to be learned, which is noted as the
learnable_property. In this example, the learnable_property is an

https://oreil.ly/igI6h

object, or more specifically, a dog. This guides the prompt templates that
will be used as part of the training data, as shown in the code:

imagenet_templates_small = [

 "a photo of a {}",

 "a rendering of a {}",

 "a cropped photo of the {}",

 "the photo of a {}",

 "a photo of a clean {}",

 "a photo of a dirty {}",

 "a dark photo of the {}",

 "a photo of my {}",

 "a photo of the cool {}",

 "a close-up photo of a {}",

 "a bright photo of the {}",

 "a cropped photo of a {}",

 "a photo of the {}",

...

]

class TextualInversionDataset(Dataset):

 def __init__(

 self,

 data_root,

 tokenizer,

 learnable_property="object", # [object, style]

 placeholder_token="M*",

):

 self.templates = imagenet_templates_small

 ...

placeholder_token is the value you are going to use to represent your
new concept. In the given example, we’ve identified M* to represent the
concept, more specifically the object, to be learned. Again, the object is
Molly in this case. This will also be the pseudoword, or token, that will be
used in prompting to generate images containing the object identified in the
images supplied during fine-tuning.

initializer_token is another important parameter shown in the
following example. This parameter is used during fine-tuning to initialize
word embeddings with single-word descriptions of the object. In this case,
initializer_token is set to dog because Molly is a dog. Both

placeholder_token and initializer_token are used together in the
following code. The full code is in the GitHub repository associated with
this book:

import torch

from transformers import CLIPTokenizer

model_checkpoint = "..." # CLIP model checkpoint

Load tokenizer

tokenizer = CLIPTokenizer.from_pretrained(model_checkpoint)

initializer_tokens = ["dog"]

initializer_token_id =

 tokenizer.convert_tokens_to_ids(initializer_tokens)[0]

placeholder_tokens = ["M*"]

placeholder_token_ids =

 tokenizer.convert_tokens_to_ids(placeholder_tokens)

Resize the token embeddings for pseudo-word tokens

text_encoder.resize_token_embeddings(len(tokenizer))

Initialize the newly added placeholder token with

the embeddings of the initializer token

token_embeddings = text_encoder.get_input_embeddings().weight.data

with torch.no_grad():

 for token_id in placeholder_token_ids:

 token_embeddings[token_id] =

 token_embeddings[initializer_token_id].clone()

Once the model is fine-tuned, you can deploy the model by loading it into a
pipeline that includes the Stable Diffusion foundation model in addition to
the trained model that has learned the pseudoword embedding. To do this,
you again use the Stable Dif fusionPipeline class to load the original
pretrained Stable Diffusion foundation model along with the adapted textual
inversion model:

from diffusers import StableDiffusionPipeline

import torch

pipe = StableDiffusionPipeline.from_pretrained(

 "runwayml/stable-diffusion-v1-5")

https://oreil.ly/generative-ai-on-aws-code
https://oreil.ly/Xnjty

pipe.load_textual_inversion(

 "./textual-inversion-molly/molly.pt", token="M*")

Once the model is deployed and ready for inference, you can send new
prompts into the model that include the pseudo-word M*, for the object the
model has been fine-tuned on, in this case Molly.

Prompt:

User: An oil painting of M*

The prompt is used by the pipeline to generate an image containing the
object represented by the pseudoword provided—M*, in the prompt:

image = pipe(prompt, num_inference_steps=50).images[0]

image.save("molly-dog.png")

Figure 11-10 is the generated oil painting image of Molly. As you can see,
we didn’t use the text Molly in the prompt, but instead used the
pseudoword, M*, that represents the object, Molly, identified during fine-
tuning.

To summarize, textual inversion is a way to adapt a pretrained text-to-image
model such as Stable Diffusion without performing full fine-tuning. This
method allows for image generation using a concept, defined as either an
object or a style, that is not included as part of the foundation models’
original training data.

Next, you will learn how to fine-tune and align your Stable Diffusion model
for human preference using RLHF.

Figure 11-10. Prompt completion for generated image using textual inversion adapter

Human Alignment with Reinforcement Learning
from Human Feedback
It’s possible to fine-tune diffusion models with reinforcement learning to
improve things like image compressibility, aesthetic quality, and prompt-
image alignment. This approach is similar to the RLHF process, which you
explored in Chapter 7 to align large language models to generate more
helpful, honest, and harmless text. The difference here is that RLHF is used

to align multimodal models to generate content that is more helpful, honest,
and harmless (HHH).

A proposed modification of the Proximal Policy Optimization (PPO)
algorithm, which you learned about in Chapter 7, to apply RLHF to
diffusion models is called Denoising Diffusion Policy Optimization
(DDPO). In reinforcement learning (RL) terminology, each denoising step
is an action. DDPO pays attention to the entire sequence of denoising steps
in order to better maximize the reward of the final generated image. A
sample implementation of DDPO for fine-tuning diffusion models,
implemented in PyTorch with LoRA support, has been made available by
the research authors on GitHub.

Let’s look at an example. Say you want to apply RL to fine-tune Stable
Diffusion to generate more aesthetically appealing images. In the scenario
shown in Figure 11-11, you can use a model that’s been trained on human
preferences for aesthetically appealing images, such as LAION Aesthetics,
as your RL reward model.

Figure 11-11. Fine-tuning a diffusion model with reinforcement learning and DDPO

The LAION-Aesthetics predictor has been trained on 176,000 human image
ratings and predicts the rating people would give when they were asked,
“How much do you like this image on a scale from 1 to 10?”

https://oreil.ly/CFbyh
https://oreil.ly/53kWj

You could also fine-tune diffusion models in support of content moderation
where the reward model returns a negative reward if the model generates
inappropriate images. In such a scenario, you could use a managed service
like Amazon Rekognition as the reward model, as it supports content
moderation, as shown in Figure 11-12.

Figure 11-12. Using Amazon Rekognition as the reward model to detect unwanted content

Amazon Rekognition Content Moderation API uses deep learning to detect
different types of inappropriate content. Beyond just flagging an image or
video based on the presence of inappropriate or offensive content, it also
returns a hierarchical list of labels with confidence scores. Here is a sample
JSON response from Amazon Rekognition Content Moderation:

{

"ModerationLabels": [

 {

 "Confidence": 99.24723052978516,

 "ParentName": "",

 "Name": "Visually Disturbing"

 },

 {

 "Confidence": 99.24723052978516,

 "ParentName": "Visually Disturbing",

 "Name": "Air Crash"

 },

 {

https://oreil.ly/pkF35

 "Confidence": 88.25341796875,

 "ParentName": "Visually Disturbing",

 "Name": "Explosions And Blasts"

 }

]

}

Summary
In this chapter, you learned how to apply conditional controls to Stable
Diffusion to influence how your model generates images. You also explored
how to fine-tune multimodal generative AI models with your own custom
datasets and human preferences using ControlNet, textual inversion,
DreamBooth, PEFT, and RLHF.

In Chapter 12, you will learn how to use the Amazon Bedrock managed
service for your generative AI use cases and tasks.

1 Lvmin Zhang et al., “Adding Conditional Control to Text-to-Image Diffusion Models”, arXiv,
2023.

2 Nataniel Ruiz et al., “DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-
Driven Generation”, arXiv, 2023.

3 Rinon Gal et al., “An Image Is Worth One Word: Personalizing Text-to-Image Generation
Using Textual Inversion”, arXiv, 2022.

OceanofPDF.com

https://oreil.ly/ObpWl
https://oreil.ly/WfMOn
https://oreil.ly/HuvOM
https://oceanofpdf.com/

Chapter 12. Amazon Bedrock:
Managed Service for Generative AI

Throughout the book, you have seen examples of Amazon SageMaker
JumpStart for fine-tuning and deploying foundation models using
SageMaker infrastructure. Amazon Bedrock, on the other hand, is a
managed service that offers a completely serverless experience through a
simple API.

In this chapter, you will explore Amazon Bedrock, including how to access
the Bedrock API, the available foundation models (FMs), and Bedrock data
privacy and network security. You will learn how to use Bedrock to
implement retrieval-augmented generation, semantic-search, and agent-
based use cases. You will also see how you can privately fine-tune the
Bedrock foundation models using your own custom datasets.

First, let’s discuss the available foundation models within Amazon Bedrock
—and how to build upon those foundation models.

Bedrock Foundation Models
Amazon Bedrock supports foundation models from Amazon and various
third-party companies, including AI21 Labs, Anthropic, Cohere, Meta,
Stability AI, and others.

You access these foundation models through the AWS Management
Console, AWS CLI, or AWS SDK. The code examples in this chapter will
use the AWS SDK for Python called boto3. You can use the Bedrock
Python function list_ founda tio nal _models() to see the most up-to-date
list of available models.

Working with Amazon Bedrock is as simple as selecting a foundation
model for your use case and then making a few API calls. You can use the

Bedrock model playground to experiment with the available foundation
models and select the one that fits your use case and dataset.

Remember that when evaluating different models, you should first try
various prompt engineering techniques discussed in Chapters 2 and 10,
including in-context learning with few-shot inference. You can also adjust
the inference configuration parameters, including temperature, top_p, and
top_k, as you learned in Chapter 2.

Amazon Titan Foundation Models
Amazon Titan foundation models are general-purpose models, pretrained
on large datasets, that you can use as is or customize by fine-tuning the
models with your own data for a particular task.

Titan Text are large language models for tasks such as text summarization,
text generation, classification, question-answer, and information extraction.
They are also trained on different programming languages, as well as rich
text format (RTF), including tables, JSON, and CSV.

The Titan Text Embeddings model translates text inputs, such as words,
phrases, or possibly large units of text, into numerical representations
known as embedding vectors. As you learned in Chapter 1, embedding
vectors capture the semantic meaning of the text in a high-dimension vector
space.

After converting your documents into embeddings, you can store the
embeddings in a vector store capable of performing embedding-level tasks
such as similarity search. With similarity search, you can write a query,
convert it into an embedding, then search the vector store for documents
that match your query text. Comparing embeddings often produces more
relevant and useful contextual search results than traditional word or n-
gram matching search algorithms.

Stable Diffusion Foundation Models from Stability AI

With Amazon Bedrock, you can access Stability AI’s text-to-image and
image-to-image foundation model, Stable Diffusion, as described in
Chapter 11. Stable Diffusion can generate unique, realistic, high-quality
images, art, logos, and designs with just a few words in a text-based
prompt.

Next, you will explore the model inference APIs and start generating
content with the foundation models available in Amazon Bedrock.

Bedrock Inference APIs
The following example performs a Bedrock Inference API request using the
Python SDK (boto3) for Amazon Bedrock—specifically, the
invoke_model() API—to generate content using text-to-text models, text-
to-image models, and embedding models. The modelId parameter identifies
the foundation model you want to use:

import boto3

import json

bedrock_runtime = boto3.client(

 service_name='bedrock-runtime'

)

modelId = "..." # Amazon Bedrock foundation model

body = json.dumps(

 {

 "inputText": "This is where you place your input text"

 }

)

response = bedrock_runtime.invoke_model(

 modelId=modelId,

 body=body

)

response_body = json.loads(response.get("body").read())

print(response_body.get("results")[0].get("outputText"))

NOTE
Here, and in most examples in this chapter, we are assuming the body JSON object uses
inputText for the prompt. This may be different depending on the model. For more
information on the latest models and prompt formats, see the Bedrock documentation.

Bedrock also offers an InvokeModelWithResponseStream API that lets
you invoke the specified model to run inference using the provided input
but streams the response as the model generates the output, as shown in
Figure 12-1.

Figure 12-1. Bedrock’s InvokeModelWithResponseStream API lets you start reading the response
as soon as the first chunk is available

Streaming responses are particularly useful for responsive chat interfaces to
maintain the liveness of an interactive application. Here is a Python code
example using Bedrock’s InvokeModelWithResponseStream API:

response = bedrock_runtime.invoke_model_with_response_stream(

 modelId=modelId,

 body=body)

stream = response.get('body')

if stream:

 for event in stream:

 chunk=event.get('chunk')

 if chunk:

 print(json.loads(chunk.get('bytes').decode))

Next is a deeper dive into Amazon Bedrock’s Inference API for large
language models.

https://oreil.ly/oUBsH

Large Language Models
As discussed in Chapter 2, foundation models expose a set of generative
configuration parameters that influence the model’s output during inference.
These configuration parameters give you control of the model’s response,
including the diversity and number of tokens. The available parameters may
be different across model providers and model families, but most models
support temperature, top_k, and top_p.

Here’s an example Bedrock Inference API request using the
invoke_model() API that includes configuration parameters for a prompt
using a Bedrock model:

import boto3

import json

bedrock_runtime = boto3.client(

 service_name='bedrock-runtime'

)

prompt = "<your prompt here>"

body = json.dumps({

 "inputText": "This is where you place your input text",

 "textGenerationConfig": {

 "temperature":0,

 "topP":1

 }

})

modelId = '...' # Amazon Bedrock foundation models:

 # Amazon Titan Text

 # Anthropic Claude

 # AI21 Jurassic

 # Cohere Command

 # Meta Llama2

 # etc.

response = bedrock_runtime.invoke_model(

 body=body,

 modelId=modelId)

response_body = json.loads(response.get('body').read())

print(response_body.get('results')[0].get('outputText'))

Generate SQL Code
Many text generation models, including those available in Amazon
Bedrock, have been pretrained on vast amounts of text data, including code
samples. In fact, code generation was one of the earliest use cases for
generative models and services like Amazon CodeWhisperer and GitHub
Copilot.

The example here uses Amazon Bedrock to generate a SQL query
equivalent to SELECT id FROM students ORDER BY age DESC LIMIT 1
using a natural language prompt that first defines the table, then describes
the query:

prompt = """

I have a table called 'students' with fields 'id', 'age', 'year_enrollment',

'subject', 'grade'. Write me a SQL Query that returns the 'id' with the

highest 'age'.

"""

body = json.dumps({"inputText": prompt})

modelId = '...'

response = bedrock_runtime.invoke_model(

 body=body,

 modelId=modelId)

response_body = json.loads(response.get('body').read())

print(response_body.get('results')[0].get('outputText'))

Summarize Text
Another popular generative AI use case is summarizing text. Let’s build a
prompt that asks the model to summarize the given passage wrapped in
<text></text>, as shown here:

prompt = """

Please provide a summary of the following text. Do not add any information

that is not mentioned in the text below.

<text>

AWS took all of that feedback from customers, and today we are excited to

announce Amazon Bedrock, a new service that makes generative foundation models

accessible via an API. Bedrock is the easiest way for customers to build and

scale generative AI-based applications using FMs, democratizing access for all

builders.

</text>

"""

Next, define the API request body that includes the prompt, in this case
called inputText, and the text generation configuration settings:

body = json.dumps(

 {

 "inputText": prompt,

 "textGenerationConfig":{

 "maxTokenCount":128,

 "temperature":0,

 "topP":1

 }

 }

)

Now you can send the API request to Bedrock. You can do this using the
invoke_model_with_response_stream() API:

import json

response = bedrock_runtime.invoke_model_with_response_stream(

 body=body,

 modelId=modelId)

stream = response.get('body')

output = []

if stream:

 for event in stream:

 chunk = event.get('chunk')

 if chunk:

 chunk_obj = json.loads(chunk.get('bytes').decode())

 text = chunk_obj['outputText']

 output.append(text)

print(''.join(output))

Next, you will see how to generate embeddings with Amazon Bedrock.

Embeddings
As discussed in Chapter 3, embeddings are a key concept in generative AI
and machine learning in general. An embedding is a representation of an
object, such as a word, an image, or a video, in a vector space. Semantically
similar objects will have embeddings that are closer together in the vector
space, as you saw in Chapter 9, in the context of retrieval-augmented
generation (RAG) to augment your prompts.

You can use Amazon Bedrock models to retrieve the embedding vector for
any input string. You can then compare the distances between vectors to
find the most related text strings. Common use cases for embeddings
include semantic search, recommendations, and classifications.

A popular use case of embeddings is to cluster together text with similar
semantic meaning. In the next code example, you will generate a heatmap
that shows that documents originating from the same category—either
animals, US cities, or colors, in this case—have much closer embedding
vectors than documents from different categories.

First, define a get_embedding function that calls the Bedrock API and uses
a Titan Text Embeddings model to generate an embedding. It will return the
actual embedding from the API response body, as shown in the code:

def get_embedding(body, modelId, accept, contentType):

 response = bedrock_runtime.invoke_model(

 body=body,

 modelId=modelId)

 response_body = json.loads(response.get('body').read())

 embedding = response_body.get('embedding')

 return embedding

To test the code, you can use the following sample input text:

body = json.dumps(

 {

 "inputText": "<your prompt here>"

 }

)

modelId = '...'

embedding = get_embedding(body, modelId)

print(embedding)

The function will return the embedding vector retrieved from the Bedrock
API response, similar to this:

[0.53515625, -0.0546875, -0.049804688, -0.16992188,

0.42382812, 0.15234375, -0.10839844, ...]

Next, you will generate the heatmap that visualizes the distance between
any pair of sentences in the embedding space. The distance between any
pair of sentences is computed by the cosine similarity of corresponded
embedding vectors. Note that the cosine similarity of two vectors is the
inner product of the normalized vectors scaled to unit length 1.

import sklearn

from sklearn.preprocessing import normalize

import numpy as np

import seaborn as sns

def plot_similarity_heatmap(text_labels, embeddings, rotation):

 inner_product = np.inner(embeddings, embeddings)

 sns.set(font_scale=1.1)

 graph = sns.heatmap(

 inner_product,

 xticklabels=text_labels,

 yticklabels=text_labels,

 vmin=np.min(inner_product),

 vmax=1,

 cmap="BuPu",

)

 graph.set_xticklabels(text_labels, rotation=rotation)

 graph.set_title("Semantic Textual Similarity Between Sentences")

Next, define a few sentences and create the embeddings using Amazon
Bedrock:

phrases = [

 # Animals

 "Shelbee's dog, Molly, is so cute.",

 "Antje hates cats.",

 "Chris's first dog was very cute.",

 # U.S. Cities

 "Chicago is the place where I'm from.",

 "I work in San Francisco.",

 "Washington D.C. is a great place to visit.",

 # Color

 "What is your favorite color?",

 "Is Molly brown?",

 "Are your eyes blue?"

]

embeddings = []

for phrase in phrases:

 query_response = get_embedding(

 body=json.dumps({"inputText": phrase}),

 modelId="...")

 embeddings.append(query_response)

Normalization before inner product

embeddings = normalize(np.array(embeddings), axis=1)

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

plot_similarity_heatmap(phrases, embeddings, 90)

The output in Figure 12-2 shows animal phrases clustered together, while
phrases about US cities, phrases, and colors are each clustered
independently. The darker the color, the larger the cosine similarity (smaller
the distance).

Figure 12-2. Heatmap showing semantic textual similarity between sentences

Next, you will learn how to fine-tune Bedrock foundation models with your
own custom datasets.

Fine-Tuning
Now, what happens when you decide to customize the model? As soon as
you fine-tune a model with your data, as shown in Figure 12-3, Amazon
Bedrock deploys a custom model endpoint to host your fine-tuned model.

This becomes your own running instance of the model customized with
your own dataset. Fine-tuned models are invoked the same way as base
models: via the Amazon Bedrock Console playground or through an API.

And remember that your model inputs and outputs will remain completely
private to your environment and will not be accessible by anyone except
you.

Figure 12-3. Amazon Bedrock model fine-tuning

NOTE
Access between Amazon Bedrock and your S3 bucket can be configured securely,
privately, and entirely on the AWS network backbone using VPC Endpoints (which are
described in “Data Privacy and Network Security”).

After the fine-tuned model is trained, the weights are encrypted and
delivered to the fine-tuned output bucket. Next, Amazon Bedrock creates
and activates a hosting endpoint. Once the custom Bedrock hosting
endpoint is activated, you can send inference requests with your prompts
and receive completions from your fine-tuned generative AI model.
Remember that model providers have no visibility or access to your fine-
tuned weights.

With Amazon Bedrock, you can privately fine-tune foundation models
using labeled data with just a few clicks or API calls. All you need is your

dataset stored in S3 using the JSON Lines format, as shown here where
completion is the label for the provided prompt:

{'prompt': 'I love going to the movies', 'completion': 'Positive'}

{'prompt': 'This new shirt is gorgeous', 'completion': 'Positive'}

{'prompt': 'The weather is awful', 'completion': 'Negative'}

{'prompt': 'This movie is terrible', 'completion': 'Negative'}

...

You then call create_model_customization_job() to start fine-tuning
processing using your dataset and a given base foundation model available
in Amazon Bedrock that supports fine-tuning. For the latest list of models
that support fine-tuning in Amazon Bedrock, please see the Bedrock
documentation.

Besides the training data, you also need to provide a job name, a name for
the custom model, the base model identifier, where to store the fine-tuning
outputs (e.g., training loss), and hyperparameters. An example fine-tuning
job creation API call is shown in the following code:

import boto3

bedrock = boto3.client(service_name='bedrock')

input_training_data = "s3://<BUCKET>/train.jsonl"

output_data = "s3://<BUCKET>/output/"

bedrock.create_model_customization_job(

 jobName="my-job",

 customModelName="my-fine-tuned-model",

 baseModelIdentifier="...", # Bedrock foundation model

 trainingDataConfig={"s3Uri": input_training_data},

 outputDataConfig={"s3Uri": output_data},

 hyperParameters={

 ...

 }

)

fine_tuning_status = None

while fine_tuning_status != "Completed":

 fine_tuning_status = bedrock.get_model_customization_job(

 jobIdentifier="my-job")["status"]

print("Model was successfully fine-tuned!")

https://oreil.ly/frQAx
https://oreil.ly/2SgSt

Once the fine-tuning job status changes to Completed, Amazon Bedrock
can deploy your custom model accessible with the invoke_model() API.
Once the model is deployed, you can invoke the model with your prompts,
as shown in this code:

body = json.dumps(

 {

 "inputText": "I love this beach.",

 "textGenerationConfig":{

 "maxTokenCount":128,

 "temperature":0,

 "topP":1

 }

 }

)

response = bedrock_runtime.invoke_model(

 modelId=<deployed model identifier>,

 body=body)

In this example, you fine-tuned the model to classify input text as positive
or negative sentiment. Therefore, the model completion for the inference
request I love this beach will be positive.

Next, you will see how to use Amazon Bedrock to create fully managed
agents capable of performing actions using AWS Lambda functions. AWS
Lambda lets you run code without provisioning or managing servers.

Agents
With agents for Amazon Bedrock, you can build generative AI applications
that manage and perform tasks by making API calls to your company
systems. As you learned in Chapter 9, agents orchestrate prompt-
completion workflows between user requests, foundation models, and
external systems.

Similarly, agents for Amazon Bedrock make use of Bedrock’s foundation
models and advanced prompting strategies to understand user requests,

break down complex tasks into multiple steps, carry on a conversation to
collect additional information, and take actions to fulfill the request.

Using agents for Amazon Bedrock, you can automate tasks for your internal
or external customers, such as managing retail orders or processing
insurance claims. For example, an agent-powered generative AI ecommerce
application can not only respond to the question, “Do you have this jacket
in blue?” with a simple answer but can also help you with the task of
updating your order or managing an exchange.

For this to work, you first need to select a Bedrock foundation model, then
give the agent access to application APIs and knowledge bases, as shown in
Figure 12-4.

Figure 12-4. Agents for Amazon Bedrock can manage and perform tasks by making API calls or
accessing a company knowledge base

Let’s assume you are a developer at an insurance company and want to
provide a generative AI application that helps the insurance agency owners
automate repetitive tasks using an API. You first define the actions (API
calls) that the agent is allowed to perform in an ActionGroup that is mapped
to an AWS Lambda function.

The following code shows an example AWS Lambda function that
implements the business logic to manage insurance claims by pulling a list
of open claims and sending reminders to policyholders:

import json

import time

def open_claims():

 return {

 "response":

 ...

 }

def send_reminders():

 return {

 "response":

 ...

 }

def lambda_handler(event, context):

 api_path = event['apiPath']

 if api_path == '/claims':

 body = open_claims()

 elif api_path == '/send-reminders':

 body = send_reminders()

 ...

 response_body = {

 'application/json': {

 'body': str(body)

 }

 }

 action_response = {

 'actionGroup': event['actionGroup'],

 'apiPath': event['apiPath'],

 'httpMethod': event['httpMethod'],

 'httpStatusCode': 200,

 'responseBody': response_body,

 ...

 }

 api_response = {

 'messageVersion': '1.0',

 'response': action_response,

 ...

 }

 return api_response

Together with the AWS Lambda function, you also need to provide an
OpenAPI schema file with the API descriptions, structure, and parameters.
Here is an example OpenAPI schema for the /claim API call:

{

 "openapi": "3.0.0",

 "info": {

 "title": "Insurance Claims Automation API",

 "version": "1.0.0",

 "description": "APIs for managing insurance claims for policyholder."

 },

 "paths": {

 "/claims": {

 "get": {

 "summary": "Gets the list of all open insurance claims",

 "description": "Gets list of open claims for policyholder.",

 "operationId": "getAllOpenClaims",

 "responses": {

 "200": {

 "description": "Gets list of open claims for policyholder.",

 "content": {

 "application/json": {

 "schema": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "claimId": {

 "type": "string",

 "description": "Unique ID of the claim."

 },

 "policyHolderId": {

 "type": "string",

 "description": "Unique ID of the policyholder."

 },

 "claimStatus": {

 "type": "string",

 "description": "The status of the claim, Open or

Closed."

 }

 ...

 }

}

https://oreil.ly/YwJzl

When a user asks the agent to complete a task, Amazon Bedrock will use
the FM you configured for the agent to identify the sequence of actions,
invoke the corresponding Lambda functions in the right order to solve the
user-requested task, and provide responses back to the user in natural
language. For example, the virtual insurance-agent assistant can now
perform tasks such as “send a reminder to all policyholders with policies
needing renewal in the next 60 days.”

With fully managed agents, you don’t have to worry about provisioning or
managing infrastructure. In addition, agents are integrated into the AWS
services for monitoring, encryption, user permissions, and API invocation
management. You can use agents for Amazon Bedrock to increase
productivity, improve your customer service experience, or automate
DevOps tasks.

The previous examples focused on the generating text and embeddings with
the text-based models in Amazon Bedrock. Next, you’ll see how to generate
and modify images using Amazon Bedrock and an image-based model,
Stable Diffusion.

Multimodal Models
For image generation use cases, Bedrock offers text-to-image and image-to-
image models, including Stability AI’s Stable Diffusion XL model. In
Chapter 10, you explored the architecture that powers diffusion models,
learned how to efficiently prompt image generation models, and how to
apply advanced techniques such as inpainting and textual inversion to guide
the image generation toward your desired output.

Next you will see how to generate images using prompts and negative
prompts with Amazon Bedrock and Stable Diffusion from model provider,
Stability AI.

Create Images from Text

To create images from text, start with a description of the image you want
the model to create. As discussed in Chapter 10, you can provide some
negative prompts to guide the model to avoid certain types of outputs. Note
that you need to assign a negative weight to each negative prompt. After
setting up the prompt, you call bedrock.invoke_model() to generate the
image:

prompt = """

Golden retriever playing catch at a tropical, sunny beach

with palm trees in the background.

"""

negative_prompts = [

 "poorly rendered",

 "poor background details",

 "poorly drawn dog",

 "disfigured dog features",

]

request = json.dumps({

 "text_prompts": (

 [{"text": prompt, "weight": 1.0}]

 + [{"text": negprompt, "weight": -1.0} for negprompt in

negative_prompts]

),

 "style_preset": style_preset,

 ...

})

modelId = "stability.stable-diffusion-xl"

response = bedrock_runtime.invoke_model(

 body=request, modelId=modelId)

response_body = json.loads(response.get("body").read())

Bedrock’s InvokeModel provides access to the Stable Diffusion XL model
by setting the right model ID and returns a JSON response that includes a
Base64 encoded string representing the image. You can decode the Base64
string to binary and load it with an image processing library, such as Pillow,
that can read PNG files. The generated output is shown in Figure 12-5:

import base64,

import io

import os

from PIL import Image

base_64_img_str = response_body["artifacts"][0].get("base64")

image_1 = Image.open(

 io.BytesIO(

 base64.decodebytes(bytes(base_64_img_str, "utf-8"))

)

)

image_1

Figure 12-5. Image generated from text input

Create Images from Images
You can also start from an image—such as the Figure 12-5 image—and ask
our Stable Diffusion model to change a detail. For example, you can change
the breed of the dog to a poodle. To do this, you can make another request
with the change request as well as the image you previously generated in a
Base64 encoding. You can write a short helper function like this to convert
images to Base64 encoding:

def image_to_base64(img):

 buffer = io.BytesIO()

 img.save(buffer, format="PNG")

 return base64.b64encode(buffer.getvalue()).decode("utf-8")

Now, you can make another Bedrock API request with the change_prompt
and the previous image init_image, as shown here. Figure 12-6 shows the
output of this image-modification request:

change_prompt = "Change the dog to be a poodle"

request = json.dumps({

 "text_prompts": (

 [{"text": change_prompt, "weight": 1.0}]

 + [{"text": negprompt, "weight": -1.0} \

 for negprompt in negative_prompts]

),

 "init_image": image_to_base64(image_1),

 "style_preset": style_preset,

 ...

})

modelId = "stability.stable-diffusion-xl"

response = bedrock_runtime.invoke_model(body=request,

 modelId=modelId)

response_body = json.loads(response.get("body").read())

image_2_b64_str = response_body["artifacts"][0].get("base64")

image_2 = Image.open(io.BytesIO(

 base64.decodebytes(bytes(image_2_b64_str, "utf-8")))

)

image_2

Figure 12-6. Changing a portion of the image using text prompt and original image

Next you will learn how Amazon Bedrock keeps your data private,
including data encryption in flight and on disk.

Data Privacy and Network Security
With Amazon Bedrock, all of your prompts, completions, and fine-tuned
models remain private to your AWS account. Your data is not used to
improve the Bedrock service. Additionally, your data is not shared with
third-party model providers.

All data is isolated per AWS customer and remains in the AWS region
where Bedrock processes the data. This helps with General Data Protection
Regulation (GDPR) and other regulations that require data sovereignty. All
data is encrypted in transit over the network with a minimum of TLS 1.2
encryption. At rest on disk, your data—including your fine-tuned models—
is encrypted with AES-256 using either AWS KMS–managed data
encryption keys or your own customer-managed encryption keys.

For secure and private connectivity between your applications and the
Amazon Bedrock generative AI–managed service, you can configure your
AWS account and virtual private cloud (VPC) to use AWS VPC Endpoints.
VPC Endpoints, built on AWS PrivateLink, use the private AWS network
backbone to securely connect to the Amazon Bedrock service, as shown in
Figure 12-7.

Figure 12-7. Network architecture diagram to connect applications to Amazon Bedrock

Figure 12-7 includes public connectivity through the internet and private
connectivity using a VPC Endpoint. By using a VPC Endpoint, your data
never needs to traverse the public internet. Instead, it remains on the low-
latency, highly redundant private AWS backbone.

The diagram also shows how to connect to your AWS VPC using Direct
Connect from your on-premises network. This gives you private

connectivity from your network provider to the AWS VPC. From there, you
can use a VPC Endpoint to keep all traffic between your private on-
premises network to Amazon Bedrock entirely over the AWS network
backbone. This avoids having to send any on-premises data over the
internet.

Governance and Monitoring
Amazon Bedrock is integrated with AWS Identity and Access Management
(IAM) to help you manage permissions, including access to specific
foundation models and features such as fine-tuning. All AWS-managed
service API activity—including Amazon Bedrock activity—is logged to the
AWS CloudTrail service within your account. This activity monitoring
helps you keep a record of who accessed which models—and when they
accessed those models.

Amazon Bedrock also emits data points to Amazon CloudWatch to track
common metrics such as InputTokenCount, OutputTokenCount,
InvocationLatency, and (number of) Invocations. This near-real time
telemetry helps you monitor usage and troubleshoot performance issues for
your generative AI applications, integrating with the Amazon Bedrock
service.

Summary
In this chapter, you learned how to use the managed Amazon Bedrock
service for generative AI. You explored how to use foundation models for
both text and image use cases. You also learned how to fine-tune and
deploy a generative model using Amazon Bedrock and your custom text
and image datasets. You also saw how to implement a context-aware
reasoning application with agents for Amazon Bedrock. These agents
augment a foundation model’s behavior by using chain-of-thought
reasoning with external data sources and API calls.

Next, you learned how Amazon Bedrock participates in your existing data
privacy and network security profiles by supporting in-transit encryption
with TLS, at-rest encryption with KMS, and private AWS networking with
VPC Endpoints. Lastly, you learned that Amazon Bedrock privately tracks
API activity and metrics using the AWS CloudTrail and Amazon
CloudWatch within your AWS account.

OceanofPDF.com

https://oceanofpdf.com/

Index

A

A/B testing, A/B Testing-A/B Testing

accelerators, Mitigate Reward Hacking

agents, Agents-Agents

about, Context-Aware Reasoning Applications Using RAG and
Agents, Context-Aware Reasoning Applications Using RAG and
Agents

Amazon Bedrock, Agents, Agents-Agents

implementations available, Agents

ReAct and PAL with LangChain Agents, Program-Aided Language
Framework

ReAct framework, Agents-ReAct Framework

about, Context-Aware Reasoning Applications Using RAG and
Agents

Alpaca project (Stanford University), Multitask Instruction Dataset

Amazon Aurora PostgreSQL, Generative AI on AWS

embedding storage and retrieval, Embedding Vector Store and
Retrieval

generative AI on AWS, Generative AI on AWS

vector store example URL, Embedding Vector Store and Retrieval

Amazon Bedrock, Generative AI on AWS

about, Amazon Bedrock: Managed Service for Generative AI

agents, Agents, Agents-Agents

data privacy and network security, Data Privacy and Network Security

embeddings, Embeddings-Embeddings

fine-tuning, Fine-Tuning-Fine-Tuning

foundation models, Bedrock Foundation Models

Amazon Titan foundation models, Amazon Titan Foundation
Models

Stable Diffusion foundation models, Stable Diffusion Foundation
Models from Stability AI

generative AI on AWS, Generative AI on AWS

governance and monitoring, Governance and Monitoring

Inference APIs, Bedrock Inference APIs

parameters for large language models, Large Language Models

multimodal models, Multimodal Models

creating images from images, Create Images from Images

creating images from text, Create Images from Text

SQL code generation, Generate SQL Code

text summarization, Summarize Text

Amazon CloudWatch

Amazon Bedrock emitting data to, Governance and Monitoring

metrics collecting and monitoring, Metrics and Monitoring

Amazon CodeWhisperer, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

Amazon EC2, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

Amazon Kendra, Generative AI on AWS

embedding storage and retrieval, Embedding Vector Store and
Retrieval

generative AI on AWS, Generative AI on AWS

vector store example URL, Embedding Vector Store and Retrieval

Amazon OpenSearch Serverless, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

Vector Engine, Embedding Vector Store and Retrieval

Amazon OpenSearch Service

embedding storage and retrieval, Embedding Vector Store and
Retrieval

vector store example URL, Embedding Vector Store and Retrieval

Amazon QuickSight Q, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

Amazon Relational Database Services for PostgreSQL, Generative AI on
AWS

embedding storage and retrieval, Embedding Vector Store and
Retrieval

generative AI on AWS, Generative AI on AWS

vector store example URL, Embedding Vector Store and Retrieval

Amazon SageMaker, Generative AI on AWS

BloombergGPT model training, Large-Language Foundation Models

public and private financial data, Large-Language Foundation
Models

source reference for paper on, Large-Language Foundation
Models

distributed training, Distributed Computing on AWS

fully sharded data parallel code, Fully Sharded Data Parallel with
Amazon SageMaker

Falcon family model training, Pretraining Datasets

generative AI on AWS, Generative AI on AWS

instruction fine-tuning, Instruction Fine-Tuning-Amazon SageMaker
Estimator for Hugging Face

Amazon SageMaker Endpoints

A/B testing, A/B Testing-A/B Testing

autoscaling, Autoscaling

Data Science on AWS as resource, Define an Autoscaling Policy

policies, Autoscaling Policies

policies defined and applied, Define an Autoscaling Policy

model hosting and scaling, Distillation-Large Model Inference
Container

AWS Inferentia family of accelerators, AWS Inferentia: Purpose-
Built Hardware for Inference-AWS Inferentia: Purpose-Built
Hardware for Inference

large model inference containers, Large Model Inference
Container

metrics and monitoring, Metrics and Monitoring

sample code to deploy and test large language model, Large
Model Inference Container

shadow deployment, Shadow Deployment

standalone inference server, Merging LoRA Adapter with Original
Model

vector store example with FAISS and LangChain, Embedding Vector
Store and Retrieval-Embedding Vector Store and Retrieval

Amazon SageMaker Estimator Hugging Face implementation, Amazon
SageMaker Estimator for Hugging Face

Amazon SageMaker Ground Truth

collecting training dataset via humans, Collect Training Dataset with
Human-in-the-Loop, Fine-Tune with Reinforcement Learning from
Human Feedback

instructions for human labelers, Sample Instructions for Human
Labelers

humans needed for labeling, Reinforcement Learning Overview

implementing data collection, Using Amazon SageMaker Ground
Truth for Human Annotations-Using Amazon SageMaker Ground
Truth for Human Annotations

converting human ranking to training data, Prepare Ranking Data
to Train a Reward Model-Prepare Ranking Data to Train a
Reward Model

Amazon SageMaker JumpStart, Foundation Models and Model Hubs,
Generative AI on AWS

Bedrock for serverless API, Amazon Bedrock: Managed Service for
Generative AI

book using, Foundation Models and Model Hubs

documentation URL, Large-Language Foundation Models

foundation model deployed to AWS account in a few clicks, Large-
Language Foundation Models

generative AI on AWS, Generative AI on AWS

image generation with Stable Diffusion, Image Generation

instruction fine-tuning, Amazon SageMaker JumpStart

Low-Rank Adaptation support, Applying LoRA

sample code to deploy and test large language model, Large Model
Inference Container

vector store example with FAISS and LangChain, Embedding Vector
Store and Retrieval-Embedding Vector Store and Retrieval

Amazon SageMaker Studio instruction fine-tuning, Amazon SageMaker
Studio

Amazon SageMaker Studio Notebook, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

instruction fine-tuning, Amazon SageMaker Studio

Amazon Shareholder Letters dataset, Document Loading and Chunking

Amazon Titan foundation models, Amazon Titan Foundation Models

Titan Text, Amazon Titan Foundation Models

Titan Text Embeddings, Amazon Titan Foundation Models

Anthropic Claude model context window size, Context

APIs for Amazon Bedrock, Bedrock Inference APIs

about Bedrock, Amazon Bedrock: Managed Service for Generative AI

Asterix comic book with Obelix and Idefix, Image Captioning and Visual
Question Answering

augmented prompt via retrieval-augmented generation, Retrieval-
Augmented Generation, Prompt Augmentation

autoencoders (encoder-only models), Types of Transformer-Based
Foundation Models

autoregressive models (decoder-only models), Types of Transformer-Based
Foundation Models

autoscaling, Autoscaling

Data Science on AWS as resource, Define an Autoscaling Policy

policies, Autoscaling Policies

policies defined and applied, Define an Autoscaling Policy

AWS

distributed computing, Distributed Computing on AWS

Amazon SageMaker code, Fully Sharded Data Parallel with
Amazon SageMaker

Trainium for training a model, Fully Sharded Data Parallel with
Amazon SageMaker

generative AI

building applications on AWS, Building Generative AI
Applications on AWS, Generative AI Applications-Generative AI

Applications

stack of services, Generative AI on AWS-Generative AI on AWS,
Generative AI Applications-Generative AI Applications

why AWS, Why Generative AI on AWS?

large model inference (LMI) containers, Large Model Inference
Container

AWS CLI for foundation models, Bedrock Foundation Models

AWS DeepRacer as reinforcement learning, Reinforcement Learning
Overview

AWS HealthScribe, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

AWS Inferentia, Generative AI on AWS, AWS Inferentia: Purpose-Built
Hardware for Inference-AWS Inferentia: Purpose-Built Hardware for
Inference

AWS large model inference containers, Large Model Inference
Container

generative AI on AWS, Generative AI on AWS

AWS Management Console for Bedrock foundation models, Bedrock
Foundation Models

AWS Neuron SDK, Fully Sharded Data Parallel with Amazon SageMaker

AWS Inferentia with, AWS Inferentia: Purpose-Built Hardware for
Inference

AWS large model inference containers, Large Model Inference
Container

Hugging Face Optimum Neuron library, Fully Sharded Data Parallel
with Amazon SageMaker, AWS Inferentia: Purpose-Built Hardware
for Inference

Transformers-NeuronX library, AWS Inferentia: Purpose-Built
Hardware for Inference

AWS SDK for Python for foundation models, Bedrock Foundation Models

AWS Trainium, Generative AI on AWS

generative AI on AWS, Generative AI on AWS

high-performance, cost-efficient training, Memory Challenges

AWS Trainium chips and Trn1 instance family, Memory
Challenges

training a model via distributed computing, Fully Sharded Data
Parallel with Amazon SageMaker

AWS Neuron SDK, Fully Sharded Data Parallel with Amazon
SageMaker

Hugging Face Optimum Neuron library, Fully Sharded Data
Parallel with Amazon SageMaker

AWS Well-Architected best practices, Production Deployment
Considerations

B

Barth, Antje, Types of Transformer-Based Foundation Models, Model
Optimizations for Inference, Define an Autoscaling Policy

batch_size=1 for memory boundaries, Memory Challenges

larger batch size speeding up training, Memory Challenges

benchmarks

examples of

Beyond the Imitation Game, Benchmarks and Datasets

General Language Understanding Evaluation, Benchmarks and
Datasets

Holistic Evaluation of Language Models, Evaluation

Massive Multitask Language Understanding, Evaluation

SuperGLUE, Benchmarks and Datasets

variants, Benchmarks and Datasets

multimodal model evaluation, Model Evaluation

text-to-image generative tasks, Text-to-Image Generative Tasks-
Text-to-Image Generative Tasks

BERT

compute budget comparison, Scaling Laws

Data Science on AWS as resource, Types of Transformer-Based
Foundation Models

DistilBERT distilled from, Model Optimizations for Inference

encoder-only model, Types of Transformer-Based Foundation Models,
Scaling Laws

T stands for Transformer, Transformer Architecture

text classifier for training reward model, Train the Reward Model

Beyond the Imitation Game (BIG-bench), Benchmarks and Datasets

bfloat16 (bf16) data type, Data Types and Numerical Precision

quantization, Data Types and Numerical Precision, bfloat16

Bilingual Evaluation Understudy (BLEU), Evaluation Metrics

binary classifiers, Train a Custom Reward Model

sentiment classifiers, Train a Custom Reward Model

toxic language detection, Train a Custom Reward Model

BLOOM model comparison with compute-optimal models, Compute-
Optimal Models

BloombergGPT model training

Amazon SageMaker large distributed cluster, Large-Language
Foundation Models, Distributed Computing on AWS

public and private financial data, Large-Language Foundation Models

source reference for paper on, Large-Language Foundation Models

book web page, Using Code Examples, How to Contact Us

C

catastrophic forgetting, Multitask Instruction Dataset

chain-of-thought (CoT) prompting, Prompt-Engineering Best Practices

chains in LangChain framework, Retrieval Chains-Retrieval Chains

chat model prompt and completion, Prompt Engineering

chat-assistant prompt structure, Prompt Engineering, Prompt Structure

Chinchilla paper for model pretraining, Compute-Optimal Models

BloombergGPT starting point, Large-Language Foundation Models

source reference, Large-Language Foundation Models

Chung, Hyung Won, Sample Instructions for Human Labelers

chunking, Chunking

LangChain document chunking, Document Loading and Chunking

overlap, Chunking

Claude model (Anthropic) context window size, Context

CLIP directional similarity, Text-to-Image Generative Tasks

CLIP score similarity, Text-to-Image Generative Tasks

code generation by Amazon Bedrock, Generate SQL Code

Colossal Clean Crawled Corpus (C4) as a pretraining dataset, Pretraining
Datasets

Common Crawl as a pretraining dataset, Pretraining Datasets

OBELICS public dataset extracted from, Image Captioning and Visual
Question Answering

completion generated by prompt, Prompt Engineering and In-Context
Learning, Prompt Engineering

decoder “completing” input, Decoder

hallucination, Hallucination

max new tokens not preventing, Inference Configuration
Parameters

prompt engineering best practices, Prompt-Engineering Best
Practices

inference configuration parameters, Inference Configuration
Parameters-Inference Configuration Parameters

greedy versus random sampling, Inference Configuration
Parameters

max new tokens, Inference Configuration Parameters

temperature, Inference Configuration Parameters

top-p and top-k random sampling, Inference Configuration
Parameters-Inference Configuration Parameters

compute budget per FLOPs, Scaling Laws

comparison of T5, GPT-3, BERT, Scaling Laws

compute-optimal models, Compute-Optimal Models

content moderation, Content Moderation

context element of prompt structure, Context-Context

in-context learning, Context

context window, Context

comparison of foundation model sizes, Context

forgetting, Context

large language model limitation, Document Loading

chunking may be required, Chunking

LangChain document transformers, Document Loading and
Chunking

single value as input plus output, Context

Transformer architecture, Inputs and Context Window

context-aware reasoning applications

about, Context-Aware Reasoning Applications Using RAG and Agents

agents, Agents-Agents

about, Context-Aware Reasoning Applications Using RAG and
Agents, Context-Aware Reasoning Applications Using RAG and
Agents

implementations available, Agents

ReAct and PAL with LangChain Agents, Program-Aided
Language Framework

building generative AI applications, Generative AI Applications-
Generative AI Applications

about, Generative AI Applications

large language model limitations, Large Language Model Limitations

fixed context window length, Document Loading

hallucination, Prompt-Engineering Best Practices, Hallucination

knowledge cutoff, Knowledge Cutoff

operationalizing project life cycle, FMOps: Operationalizing the
Generative AI Project Life Cycle-Production Deployment
Considerations

about, FMOps: Operationalizing the Generative AI Project Life
Cycle

development, Development Considerations -Development
Considerations

experimentation, Experimentation Considerations-
Experimentation Considerations

production deployment, Production Deployment Considerations

Program-Aided Language Models, Program-Aided Language
Framework-Program-Aided Language Framework

about, Context-Aware Reasoning Applications Using RAG and
Agents

ReAct and PAL with LangChain Agents, Program-Aided
Language Framework

RAG (retrieval-augmented generation), Retrieval-Augmented
Generation

about, Context-Aware Reasoning Applications Using RAG and
Agents

chunking, Chunking

document loading, Document Loading

external sources of knowledge, External Sources of Knowledge

information retrieval from documents, Document Loading -
Prompt Augmentation

prompt augmentation, Prompt Augmentation

reranking similarity results from vector store, Document Retrieval
and Reranking, Reranking with Maximum Marginal Relevance

retrieving information, Document Retrieval and Reranking

workflow, RAG Workflow

RAG orchestration and implementation

about LangChain, RAG Orchestration and Implementation

document loading and chunking, Document Loading and
Chunking

metadata added to documents, Document Loading and Chunking

metadata filter during retrieval, Embedding Vector Store and
Retrieval

retrieval chains, Retrieval Chains-Retrieval Chains

vector embedding storage options, Embedding Vector Store and
Retrieval

vector store example with FAISS and LangChain, Embedding
Vector Store and Retrieval-Embedding Vector Store and Retrieval

ReAct framework, Agents-ReAct Framework

about, Context-Aware Reasoning Applications Using RAG and
Agents

ControlNet, Controlled Generation and Fine-Tuning with Stable Diffusion-
ControlNet

AWS blog post, ControlNet

Canny edge map control example, ControlNet-ControlNet

CUDA (Compute Unified Device Architecture), Memory Challenges

out of memory error, Memory Challenges

D

data privacy and network security with Amazon Bedrock, Data Privacy and
Network Security

Data Science on AWS (Fregly and Barth), Types of Transformer-Based
Foundation Models, Model Optimizations for Inference, Define an
Autoscaling Policy

data types, Data Types and Numerical Precision

floating point number storage, Data Types and Numerical Precision

printing data type information, Data Types and Numerical Precision

printing memory consumption, Data Types and Numerical
Precision

quantization, Quantization, int8

benchmarking the results, int8

bfloat16, bfloat16

data type comparison chart, int8

fp16, fp16

fp8, fp8

int8, int8-int8

dataset for instruction fine-tuning, Instruction Dataset

building from tabular via prompt template, Prompt Template

converting custom dataset into instruction dataset, Convert a Custom
Dataset into an Instruction Dataset

multitask instruction dataset, Multitask Instruction Dataset

FLAN multitask instruction dataset, FLAN: Example Multitask
Instruction Dataset-FLAN: Example Multitask Instruction Dataset

dataset of Amazon Shareholder Letters, Document Loading and Chunking

datasets for pretraining, Pretraining Datasets

optimal size, Compute-Optimal Models

decoder of Transformer architecture, Decoder

decoder-only models (autoregressive models), Types of Transformer-Based
Foundation Models

DeepSpeed, Large Model Inference Container

Denoising Diffusion Policy Optimization (DDPO), Human Alignment with
Reinforcement Learning from Human Feedback

denoising objective, Types of Transformer-Based Foundation Models

deployment

about, Model Deployment Optimizations

Amazon SageMaker Endpoints, Distillation-Large Model Inference
Container

A/B testing, A/B Testing-A/B Testing

large model inference containers, Large Model Inference
Container

sample code to deploy and test LLM, Large Model Inference
Container

autoscaling, Autoscaling

Data Science on AWS as resource, Define an Autoscaling Policy

policies, Autoscaling Policies

policies defined and applied, Define an Autoscaling Policy

AWS Inferentia, AWS Inferentia: Purpose-Built Hardware for
Inference-AWS Inferentia: Purpose-Built Hardware for Inference

large model inference (LMI) containers, Large Model Inference
Container

sample code to deploy and test LLM, Large Model Inference
Container

metrics and monitoring, Metrics and Monitoring

model compression

distillation, Model Optimizations for Inference, Distillation-
Distillation

post-training quantization, Post-Training Quantization with
GPTQ-Post-Training Quantization with GPTQ

pruning, Model Optimizations for Inference, Pruning

quantization, Model Optimizations for Inference, Post-Training
Quantization with GPTQ-Post-Training Quantization with GPTQ

model optimizations for inference, Model Optimizations for Inference-
Model Optimizations for Inference

model update and deployment strategies, Model Update and
Deployment Strategies

A/B testing, A/B Testing-A/B Testing

shadow deployment, Shadow Deployment

operationalizing project life cycle, Production Deployment
Considerations

depth-to-image in image generation, Depth-to-Image

diffusion architecture

ControlNet, Controlled Generation and Fine-Tuning with Stable
Diffusion-ControlNet

Canny edge map control example, ControlNet-ControlNet

fine-tuning, Fine-Tuning

DreamBooth, DreamBooth-DreamBooth

DreamBooth and PEFT-LoRA, DreamBooth and PEFT-LoRA

reinforcement learning from human feedback, Human Alignment
with Reinforcement Learning from Human Feedback-Human
Alignment with Reinforcement Learning from Human Feedback

textual inversion, Textual Inversion-Textual Inversion

fundamentals, Diffusion Architecture Fundamentals-U-Net

forward diffusion, Forward Diffusion

reverse diffusion, Reverse Diffusion

U-Net models, U-Net

latent diffusion models, Stable Diffusion 2 Architecture

Stable Diffusion 2 architecture, Stable Diffusion 2 Architecture-Image
Decoder

cross-attention, Cross-Attention

image decoder, Image Decoder

latent diffusion model, Stable Diffusion 2 Architecture, U-Net
and Diffusion Process

scheduler, Scheduler

text conditioning, Text Conditioning

text encoder, Text Encoder

U-Net and diffusion process, U-Net and Diffusion Process

Stable Diffusion XL architecture, Stable Diffusion XL Architecture-
Conditioning

conditioning, Conditioning

refiner, Refiner

U-Net and cross-attention, U-Net and Cross-Attention

DistilBERT distilled from BERT, Model Optimizations for Inference

distillation for model compression, Model Optimizations for Inference,
Distillation-Distillation

distillation loss function, Distillation

effectiveness for generative decoder models, Distillation

distributed computing, Distributed Computing

AWS distributed computing, Distributed Computing on AWS

Amazon SageMaker fully sharded data parallel code, Fully
Sharded Data Parallel with Amazon SageMaker

Trainium for training a model, Fully Sharded Data Parallel with
Amazon SageMaker

BloombergGPT model training, Large-Language Foundation Models,
Distributed Computing on AWS

comparison of DDP and FSDP, Performance Comparison of FSDP
over DDP-Performance Comparison of FSDP over DDP

distributed data parallel, Distributed Data Parallel

Falcon foundation model training, Distributed Computing on AWS

fully sharded data parallel, Fully Sharded Data Parallel-Fully Sharded
Data Parallel

distributed data parallel (DDP), Distributed Data Parallel

fully sharded data parallel compared, Performance Comparison of
FSDP over DDP-Performance Comparison of FSDP over DDP

domain adaptation in image generation, Image Editing and Enhancement

DreamBooth, DreamBooth-DreamBooth

DreamBooth and PEFT-LoRA, DreamBooth and PEFT-LoRA

dynamic quantization, Post-Training Quantization with GPTQ

E

embedding vectors or “embeddings”, Tokenizers-Embedding Vectors

Amazon Bedrock, Embeddings-Embeddings

RAG external documents, Document Loading

prompt input vector embedding, Document Retrieval and
Reranking

Titan Text Embeddings, Amazon Titan Foundation Models

Transformer architecture, Embedding Layer

vector stores, Amazon Titan Foundation Models

AWS generative AI, Generative AI on AWS

RAG document search and retrieval, Generative AI on AWS,
Document Loading , Document Loading and Chunking

vector embedding storage options, Embedding Vector Store and
Retrieval

encoder of Transformer architecture, Encoder

encoder-decoder models (sequence-to-sequence models), Types of
Transformer-Based Foundation Models

encoder-only models (autoencoders), Types of Transformer-Based
Foundation Models

end-of-sequence (EOS) token, Softmax Output

evaluation

about, Fine-Tuning and Evaluation, Evaluation

benchmarks

Beyond the Imitation Game, Benchmarks and Datasets

General Language Understanding Evaluation, Benchmarks and
Datasets

Holistic Evaluation of Language Models, Evaluation

Massive Multitask Language Understanding, Evaluation

SuperGLUE, Benchmarks and Datasets

variants, Benchmarks and Datasets

metrics, Evaluation Metrics

Bilingual Evaluation Understudy, Evaluation Metrics

CLIP directional similarity, Text-to-Image Generative Tasks

CLIP score similarity, Text-to-Image Generative Tasks

Fréchet Inception Distance, Text-to-Image Generative Tasks

ROUGE, Evaluation-Evaluation Metrics

multimodal models

about, Model Evaluation

image-to-text generative tasks, Forward Diffusion

nonverbal reasoning, Nonverbal Reasoning-Nonverbal Reasoning

text-to-image generative tasks, Text-to-Image Generative Tasks-
Text-to-Image Generative Tasks

RLHF fine-tuned model

evaluation-metric aggregation function defined, Define
Evaluation-Metric Aggregation Function

metrics before and after compared, Compare Evaluation Metrics
Before and After

qualitative evaluation, Evaluate RLHF Fine-Tuned Model

quantitative evaluation, Quantitative Evaluation

F

Facebook AI Similarity Search (FAISS)

Amazon OpenSearch implementing, Embedding Vector Store and
Retrieval

vector store example with LangChain, Embedding Vector Store and
Retrieval-Embedding Vector Store and Retrieval

Falcon foundation model (Technology Innovation Institute)

as autoregressive model, Types of Transformer-Based Foundation
Models

context window size, Context

distributed training on Amazon SageMaker, Distributed Computing on
AWS

Falcon-Chat, Falcon-Chat

memory for training, Memory and Compute Optimizations

model hubs for, Foundation Models and Model Hubs

RefinedWeb for pretraining data, Pretraining Datasets

fear of missing out (FOMO), Large-Language Foundation Models

few-shot inference, Context, In-Context Learning with Few-Shot Inference,
Few-Shot Inference

context in prompt structure, Context

fine-tuning

about, Memory and Compute Optimizations, Fine-Tuning and
Evaluation, Instruction Fine-Tuning

retrieval-augmented generation used with, Context-Aware
Reasoning Applications Using RAG and Agents

Amazon Bedrock, Fine-Tuning-Fine-Tuning

diffusion models, Fine-Tuning

DreamBooth, DreamBooth-DreamBooth

DreamBooth and PEFT-LoRA, DreamBooth and PEFT-LoRA

reinforcement learning from human feedback, Human Alignment
with Reinforcement Learning from Human Feedback-Human
Alignment with Reinforcement Learning from Human Feedback

textual inversion, Textual Inversion-Textual Inversion

instruction fine-tuning

about, Fine-Tuning and Evaluation-Instruction Fine-Tuning,
Instruction Fine-Tuning

Amazon SageMaker, Instruction Fine-Tuning-Amazon
SageMaker Estimator for Hugging Face

Amazon SageMaker JumpStart, Amazon SageMaker JumpStart

Amazon SageMaker Studio, Amazon SageMaker Studio

catastrophic forgetting, Multitask Instruction Dataset

Falcon-Chat, Falcon-Chat

FLAN multitask instruction dataset, FLAN: Example Multitask
Instruction Dataset-FLAN: Example Multitask Instruction Dataset

FLAN-T5, FLAN-T5

instruction dataset, Instruction Dataset-Convert a Custom Dataset
into an Instruction Dataset

Llama 2-Chat, Llama 2-Chat

mix of instructions to maintain general purpose, Fine-Tuning and
Evaluation, Multitask Instruction Dataset

multitask instruction dataset, Multitask Instruction Dataset

multitask instruction dataset example, FLAN: Example Multitask
Instruction Dataset-FLAN: Example Multitask Instruction Dataset

knowledge cutoff, Knowledge Cutoff

Low-Rank Adaptation versus full fine-tuning, Full-Fine Tuning Versus
LoRA Performance

(see also Low-Rank Adaptation)

memory resources, Parameter-Efficient Fine-Tuning, Full Fine-Tuning
Versus PEFT

multimodal model fine-tuning, Fine-Tuning and Evaluation

parameter-efficient fine-tuning versus full fine-tuning, Full Fine-
Tuning Versus PEFT-Full Fine-Tuning Versus PEFT

(see also parameter-efficient fine-tuning)

reinforcement learning from human feedback

about, Fine-Tune with Reinforcement Learning from Human
Feedback

evaluation metrics before and after compared, Compare
Evaluation Metrics Before and After

evaluation-metric aggregation function defined, Define
Evaluation-Metric Aggregation Function

loading evaluation model, Load Evaluation Model

mitigating reward hacking, Mitigate Reward Hacking-Mitigate
Reward Hacking

Proximal Policy Optimization, Proximal Policy Optimization RL
Algorithm

Proximal Policy Optimization implementation, Perform RLHF
Fine-Tuning with PPO-Perform RLHF Fine-Tuning with PPO

qualitative evaluation, Evaluate RLHF Fine-Tuned Model

quantitative evaluation, Quantitative Evaluation

using reward model with RLHF, Using the Reward Model with
RLHF

Flamingo (DeepMind), Image Captioning and Visual Question Answering

FLAN instruction dataset, Instruction Dataset-Convert a Custom Dataset
into an Instruction Dataset

multitask instruction dataset example, FLAN: Example Multitask
Instruction Dataset-FLAN: Example Multitask Instruction Dataset

samsum dataset, FLAN: Example Multitask Instruction Dataset

building instruction dataset, Prompt Template

well-documented instruction set, FLAN-T5

FLAN-T5 generative model (Google), Foundation Models and Model Hubs

context window size, Context

as instruction fine-tuned generative model, FLAN-T5

FLAN as well-documented instruction set, FLAN-T5

FLAN multitask instruction dataset example, FLAN: Example
Multitask Instruction Dataset-FLAN: Example Multitask
Instruction Dataset

instruction dataset, Instruction Dataset-Convert a Custom Dataset
into an Instruction Dataset

multitask instruction dataset, Multitask Instruction Dataset

span corruption pretraining, Types of Transformer-Based Foundation
Models

FlashAttention, int8, FlashAttention

AWS large model inference containers, Large Model Inference
Container

FLOPs (floating point operations per second), Scaling Laws

forgetting during long prompt sequence, Context

forward diffusion, Forward Diffusion

foundation models, Foundation Models and Model Hubs

Amazon Bedrock, Bedrock Foundation Models

AWS Management Console, Bedrock Foundation Models

Amazon Titan, Amazon Titan Foundation Models

examples named with URLs, Foundation Models and Model Hubs

model hubs, Foundation Models and Model Hubs, Large-Language
Foundation Models

URLs to model hubs, Foundation Models and Model Hubs

pretrained models publicly available, Large-Language Foundation
Models

parametric memory, Large-Language Foundation Models

vocabulary of, Large-Language Foundation Models

training large-language models, Large-Language Foundation Models

(see also training large-language foundation models)

Transformer architecture (see Transformer architecture)

fp16 data type, Data Types and Numerical Precision

quantization, fp16

fp32 data type, Data Types and Numerical Precision

fp8 and quantization, fp8

Fréchet Inception Distance (FID), Text-to-Image Generative Tasks

Fregly, Chris, Types of Transformer-Based Foundation Models, Model
Optimizations for Inference, Define an Autoscaling Policy

fully sharded data parallel (FSDP), Fully Sharded Data Parallel-Fully
Sharded Data Parallel

Amazon SageMaker code, Fully Sharded Data Parallel with Amazon
SageMaker

distributed data parallel compared, Performance Comparison of FSDP
over DDP-Performance Comparison of FSDP over DDP

G

General Language Understanding Evaluation (GLUE), Benchmarks and
Datasets

generative AI

application stack, Generative AI Applications-Generative AI
Applications

applications, Building Generative AI Applications on AWS

building applications on AWS, Building Generative AI
Applications on AWS, Generative AI Applications-Generative AI
Applications

AWS stack of services, Generative AI on AWS-Generative AI on AWS

about, Generative AI on AWS

Amazon Aurora PostgreSQL, Generative AI on AWS

Amazon Bedrock, Generative AI on AWS

Amazon CodeWhisperer, Generative AI on AWS

Amazon EC2, Generative AI on AWS

Amazon Kendra, Generative AI on AWS

Amazon OpenSearch Serverless, Generative AI on AWS

Amazon QuickSight Q, Generative AI on AWS

Amazon Relational Database Services for PostgreSQL,
Generative AI on AWS

Amazon SageMaker, Generative AI on AWS

Amazon SageMaker JumpStart, Generative AI on AWS

Amazon SageMaker Studio Notebook, Generative AI on AWS

AWS HealthScribe, Generative AI on AWS

AWS Inferentia, Generative AI on AWS

AWS Trainium, Generative AI on AWS

foundation models and model hubs, Foundation Models and Model
Hubs, Large-Language Foundation Models

in-context learning not altering model, In-Context Learning with Few-
Shot Inference

(see also in-context learning)

project life cycle, Generative AI Project Life Cycle-Generative AI
Project Life Cycle

operationalizing, FMOps: Operationalizing the Generative AI
Project Life Cycle-Production Deployment Considerations

use cases and tasks, Use Cases and Tasks-Use Cases and Tasks

why AWS, Why Generative AI on AWS?

building applications on AWS, Building Generative AI
Applications on AWS, Generative AI Applications-Generative AI
Applications

Google (see FLAN instruction dataset; FLAN-T5 generative model; T5
foundation model)

governance with Amazon Bedrock, Governance and Monitoring

GPT post-training quantization (GPTQ), Post-Training Quantization with
GPTQ

calibration dataset required, Post-Training Quantization with GPTQ

Wikitext dataset, Post-Training Quantization with GPTQ

GPT, T stands for Transformer, Transformer Architecture

GPT-3 as autoregressive model, Types of Transformer-Based Foundation
Models, Scaling Laws

compute-optimal model comparison, Compute-Optimal Models

GPUs (see NVIDIA GPUs)

greedy versus random sampling inference configuration pattern, Inference
Configuration Parameters

greedy sampling explicitly disabled, Inference Configuration
Parameters

grouped-query attention (GQA), Grouped-Query Attention

GTP-3 compute budget comparison, Scaling Laws

H

hallucination, Hallucination

max new tokens not preventing, Inference Configuration Parameters

prompt engineering best practices, Prompt-Engineering Best Practices

retrieval-augmented generation for, Knowledge Cutoff

hard prompts, Prompt Tuning and Soft Prompts

hate language detection

about toxic language reduction, Train the Reward Model

example toxic language detection model, Train a Custom Reward
Model

reward model by Meta, Existing Reward Model: Toxicity
Detector by Meta

reward model by Meta used to fine-tune, Existing Reward Model:
Toxicity Detector by Meta, Perform RLHF Fine-Tuning with
PPO-Perform RLHF Fine-Tuning with PPO

fine-tuning with RLHF, Fine-Tune with Reinforcement Learning from
Human Feedback-Using Parameter-Efficient Fine-Tuning with RLHF

toxicity baseline compared to fine-tuned model, Compare
Evaluation Metrics Before and After

helpful, honest, and harmless (HHH), Human Alignment: Helpful, Honest,
and Harmless

diffusion model fine-tuning via RLHF, Human Alignment with
Reinforcement Learning from Human Feedback-Human Alignment
with Reinforcement Learning from Human Feedback

Holistic Evaluation of Language Models (HELM), Evaluation, Benchmarks
and Datasets

HTML tags in prompt, Prompt-Engineering Best Practices

Hugging Face

Amazon SageMaker Estimator class implementation, Amazon
SageMaker Estimator for Hugging Face

bitsandbytes LLM.int8() implementation, int8

QLoRA, QLoRA

DistilBERT distilled from BERT, Model Optimizations for Inference

Image-Aware Decoder Enhanced à la Flamingo with Interleaved
Cross-attentionS, Image Captioning and Visual Question Answering

Optimum library, Post-Training Quantization with GPTQ

distillation loss function, Distillation

Optimum Neuron library, Fully Sharded Data Parallel with Amazon
SageMaker

AWS Neuron SDK, Fully Sharded Data Parallel with Amazon
SageMaker, AWS Inferentia: Purpose-Built Hardware for
Inference

pipelines integration with LangChain, Program-Aided Language
Framework

ROUGE support in evaluate library, Evaluation Metrics

Transformers library

Agents, Agents

greedy sampling and, Inference Configuration Parameters

LoRa implementation, Applying LoRA-Applying LoRA

Hugging Face Model Hub, Foundation Models and Model Hubs

book using, Foundation Models and Model Hubs

model card for each model, Large-Language Foundation Models

Llama 2 model card including URL, Large-Language Foundation
Models

toxic language detecting reward model by Meta, Existing Reward
Model: Toxicity Detector by Meta

I

IDEFICS (Image-Aware Decoder Enhanced à la Flamingo with Interleaved
Cross-attentionS; Hugging Face), Image Captioning and Visual Question
Answering

URL, Multimodal Foundation Models

image captioning, Image Captioning

evaluating, Forward Diffusion

image generation, Image Generation

Amazon Bedrock, Multimodal Models

creating images from images, Create Images from Images

creating images from text, Create Images from Text

editing and enhancement, Image Editing and Enhancement-Image
Editing and Enhancement

depth-to-image, Depth-to-Image

domain adaptation, Image Editing and Enhancement

image captioning, Image Captioning

inpainting, Inpainting

outpainting, Outpainting

style transfer, Image Editing and Enhancement

upscaling, Image Editing and Enhancement

image-to-image capabilities, Image Editing and Enhancement

Image-Aware Decoder Enhanced à la Flamingo with Interleaved Cross-
attentionS (IDEFICS; Hugging Face), Image Captioning and Visual
Question Answering

image-to-text generative task evaluation, Forward Diffusion

ImageNet dataset, Forward Diffusion

in-context learning

about, Prompt Engineering and In-Context Learning, Context

learning on the fly for duration of request, In-Context Learning
with Few-Shot Inference

zero-shot, one-shot, few-shot, In-Context Learning with Few-Shot
Inference

best practices, In-Context Learning Best Practices

few-shot inference, Context, In-Context Learning with Few-Shot
Inference, Few-Shot Inference

inference configuration parameters, Inference Configuration
Parameters-Inference Configuration Parameters

one-shot inference, In-Context Learning with Few-Shot Inference,
One-Shot Inference

“tricking” a model, In-Context Learning Gone Wrong

zero-shot inference, In-Context Learning with Few-Shot Inference-
Zero-Shot Inference

try first, In-Context Learning Best Practices

Inference APIs for Amazon Bedrock, Bedrock Inference APIs

inference configuration parameters, Inference Configuration Parameters-
Inference Configuration Parameters

greedy versus random sampling, Inference Configuration Parameters

max new tokens, Inference Configuration Parameters

temperature, Inference Configuration Parameters

top-p and top-k random sampling, Inference Configuration
Parameters-Inference Configuration Parameters

inpainting in image generation, Inpainting

input_ids from tokenizer, Tokenizers

numeric representations of each token, Tokenizers

instruction element of prompt, Instruction, Fine-Tuning and Evaluation

moving to end of prompt, Prompt-Engineering Best Practices

instruction fine-tuning

about, Fine-Tuning and Evaluation-Instruction Fine-Tuning,
Instruction Fine-Tuning

Amazon SageMaker, Instruction Fine-Tuning-Amazon SageMaker
Estimator for Hugging Face

Amazon SageMaker JumpStart, Amazon SageMaker JumpStart

Amazon SageMaker Studio, Amazon SageMaker Studio

Falcon-Chat, Falcon-Chat

FLAN-T5, FLAN-T5

FLAN multitask instruction dataset, FLAN: Example Multitask
Instruction Dataset-FLAN: Example Multitask Instruction Dataset

instruction dataset, Instruction Dataset-Convert a Custom Dataset into
an Instruction Dataset

about, Instruction Dataset

building from tabular via prompt template, Prompt Template

converting custom dataset into instruction dataset, Convert a
Custom Dataset into an Instruction Dataset

multitask instruction dataset, Multitask Instruction Dataset

multitask instruction dataset example, FLAN: Example Multitask
Instruction Dataset-FLAN: Example Multitask Instruction Dataset

Llama 2-Chat, Llama 2-Chat

mix of instructions to maintain general purpose, Fine-Tuning and
Evaluation, Multitask Instruction Dataset

catastrophic forgetting, Multitask Instruction Dataset

int8 data type, Data Types and Numerical Precision

quantization, int8-int8

optimized implementations, int8

K

k-NN plugin, Generative AI on AWS

knowledge cutoff, Knowledge Cutoff

retrieval-augmented generation for, Retrieval-Augmented Generation

Kullback–Leibler (KL) divergence, Mitigate Reward Hacking

extremely compute-intensive, Mitigate Reward Hacking

L

LAION-5B dataset, Stable Diffusion 2 Architecture

LangChain

about, RAG Orchestration and Implementation

Agents, Agents

ReAct and PAL with LangChain Agents, Program-Aided
Language Framework

document loading and chunking, Document Loading and Chunking

Hugging Face pipelines integration, Program-Aided Language
Framework

retrieval chains, Retrieval Chains-Retrieval Chains

vector store example with FAISS, Embedding Vector Store and
Retrieval-Embedding Vector Store and Retrieval

vector stores supported by LangChain, Embedding Vector Store
and Retrieval

large language models (LLMs)

Amazon Bedrock APIs, Large Language Models

foundation models (see large-language foundation models)

limitations, Large Language Model Limitations

fixed context window length, Document Loading

hallucination, Prompt-Engineering Best Practices, Hallucination

knowledge cutoff, Knowledge Cutoff

multimodal large language models, Image Captioning and Visual
Question Answering

pretraining datasets, Pretraining Datasets

optimal size, Compute-Optimal Models

scaling laws, Scaling Laws -Scaling Laws

Titan Text, Amazon Titan Foundation Models

tokenizers, Large-Language Foundation Models

embeddings, Tokenizers-Embedding Vectors

Transformer architecture

about, Transformer Architecture, Softmax Output

decoder, Decoder

embeddings, Embedding Layer

encoder, Encoder

end-of-sequence token, Softmax Output

inputs and input context window, Inputs and Context Window

self-attention, Self-Attention-Self-Attention

softmax output, Softmax Output

types of Transformer-based foundation models, Types of
Transformer-Based Foundation Models-Types of Transformer-
Based Foundation Models

unimodal, Multimodal Foundation Models

large model inference (LMI) containers, Large Model Inference Container

sample code to deploy and test large language model, Large Model
Inference Container

large-language foundation models

BloombergGPT model training

Amazon SageMaker for, Large-Language Foundation Models

public and private financial data, Large-Language Foundation
Models

source reference for paper on, Large-Language Foundation
Models

compute-optimal models, Compute-Optimal Models

pretrained models publicly available, Large-Language Foundation
Models

parametric memory, Large-Language Foundation Models

vocabulary of, Large-Language Foundation Models

pretraining datasets, Pretraining Datasets

optimal size, Compute-Optimal Models

scaling laws, Scaling Laws -Scaling Laws

tokenizers, Large-Language Foundation Models

embeddings, Tokenizers-Embedding Vectors

training, Large-Language Foundation Models

(see also training large-language foundation models)

Transformer architecture

about, Transformer Architecture, Softmax Output

decoder, Decoder

embeddings, Embedding Layer

encoder, Encoder

end-of-sequence token, Softmax Output

inputs and input context window, Inputs and Context Window

self-attention, Self-Attention-Self-Attention

softmax output, Softmax Output

types of Transformer-based foundation models, Types of
Transformer-Based Foundation Models-Types of Transformer-
Based Foundation Models

latent diffusion models (LDMs), Stable Diffusion 2 Architecture, U-Net and
Diffusion Process

LDMs (latent diffusion models), U-Net and Diffusion Process

licenses for models or mechanisms to improve models, Multitask
Instruction Dataset

life cycle for generative AI project, Generative AI Project Life Cycle-
Generative AI Project Life Cycle

operationalizing, FMOps: Operationalizing the Generative AI Project
Life Cycle-Production Deployment Considerations

about, FMOps: Operationalizing the Generative AI Project Life
Cycle

development, Development Considerations -Development
Considerations

experimentation, Experimentation Considerations-
Experimentation Considerations

production deployment, Production Deployment Considerations

Llama 2 foundation model (Meta), Large-Language Foundation Models

book using, Large-Language Foundation Models

context window size, Context

grouped-query attention optimization, Grouped-Query Attention

Llama 2-Chat, Llama 2-Chat

model hubs for, Foundation Models and Model Hubs

model card including URL, Large-Language Foundation Models

pretraining dataset size, Compute-Optimal Models

publicly available, pretrained model, Large-Language Foundation
Models

LLaMA as autoregressive model, Types of Transformer-Based Foundation
Models

compute-optimal model comparison, Compute-Optimal Models

LLMs (see large language models)

LMI (large model inference) containers, Large Model Inference Container

sample code to deploy and test large language model, Large Model
Inference Container

Low-Rank Adaptation (LoRA), LoRA and QLoRA

applying to linear layers of model, Target Modules and Layers

diffusion models, DreamBooth and PEFT-LoRA

full fine-tuning versus, Full-Fine Tuning Versus LoRA Performance

fundamentals, LoRA Fundamentals

implementation, Applying LoRA-Applying LoRA

maintaining separate adapters, Maintaining Separate LoRA Adapters

merging LoRA adapter with original model, Merging LoRA Adapter
with Original Model

quantized LoRA, QLoRA

rank, Rank

M

masked language modeling (MLM), Types of Transformer-Based
Foundation Models

Massive Multitask Language Understanding (MMLU)

as benchmark, Evaluation, Benchmarks and Datasets

pretraining dataset size and, Compute-Optimal Models

max new tokens inference configuration pattern, Inference Configuration
Parameters

Maximum Marginal Relevance (MMR), Document Retrieval and Reranking

example, Reranking with Maximum Marginal Relevance

memory

challenges of, Memory Challenges-Memory Challenges

data types, Data Types and Numerical Precision

floating point number storage, Data Types and Numerical
Precision

printing data type information, Data Types and Numerical
Precision

printing memory consumption, Data Types and Numerical
Precision

distributed computing, Distributed Computing

Amazon SageMaker fully sharded data parallel code, Fully
Sharded Data Parallel with Amazon SageMaker

AWS distributed computing, Distributed Computing on AWS

comparison of DDP and FSDP, Performance Comparison of
FSDP over DDP-Performance Comparison of FSDP over DDP

distributed data parallel, Distributed Data Parallel

fully sharded data parallel, Fully Sharded Data Parallel-Fully
Sharded Data Parallel

Falcon foundation model training, Memory and Compute
Optimizations

fine-tuning, Parameter-Efficient Fine-Tuning, Full Fine-Tuning Versus
PEFT

FlashAttention, int8

out of memory error, Memory Challenges

batch_size=1 for memory boundaries, Memory Challenges

parameter memory usage, Memory Challenges

quantization, Memory Challenges, Quantization, int8

AWS Trainium optimized for, Memory Challenges

benchmarking the results, int8

bfloat16 data type, Data Types and Numerical Precision

data type comparison chart, int8

memory footprint reduction, Quantization-int8

self-attention optimization

FlashAttention, int8, FlashAttention

grouped-query attention, Grouped-Query Attention

Meta Llama 2 foundation model (see Llama 2 foundation model)

metadata

adding during document loading, Document Loading and Chunking

filter during document retrieval, Embedding Vector Store and Retrieval

MMLU (see Massive Multitask Language Understanding)

MMR (Maximum Marginal Relevance), Document Retrieval and Reranking

example, Reranking with Maximum Marginal Relevance

model cards for models in model hubs, Large-Language Foundation Models

model deployment (see deployment)

model hubs, Foundation Models and Model Hubs

model card for each model, Large-Language Foundation Models

Llama 2 model card including URL, Large-Language Foundation
Models

picking a model hub, Large-Language Foundation Models

URLs to model hubs, Foundation Models and Model Hubs

model providers and AWS frameworks and infrastructure, Generative AI on
AWS

model tuners and AWS capabilities, Generative AI on AWS

model update and deployment strategies, Model Update and Deployment
Strategies

A/B testing, A/B Testing-A/B Testing

shadow deployment, Shadow Deployment

monitoring with Amazon Bedrock, Governance and Monitoring

multiheaded attention, Self-Attention

grouped-query attention optimization, Grouped-Query Attention

multimodal generative AI

about, Multimodal Foundation Models

Amazon Bedrock, Multimodal Models

creating images from images, Create Images from Images

creating images from text, Create Images from Text

ControlNet, Controlled Generation and Fine-Tuning with Stable
Diffusion-ControlNet

Canny edge map control example, ControlNet-ControlNet

diffusion architecture

fine-tuning, Fine-Tuning-Textual Inversion

forward diffusion, Forward Diffusion

fundamentals, Diffusion Architecture Fundamentals-U-Net

reverse diffusion, Reverse Diffusion

Stable Diffusion 2 architecture, Stable Diffusion 2 Architecture-
Image Decoder

Stable Diffusion XL architecture, Stable Diffusion XL
Architecture-Conditioning

U-Net models, U-Net

evaluation of models, Model Evaluation

image-to-text generative tasks, Forward Diffusion

nonverbal reasoning, Nonverbal Reasoning-Nonverbal Reasoning

text-to-image generative tasks, Text-to-Image Generative Tasks-
Text-to-Image Generative Tasks

image generation, Image Generation

editing and enhancement, Image Editing and Enhancement-Image
Editing and Enhancement

image-to-image capabilities, Image Editing and Enhancement

multimodal large language models, Image Captioning and Visual
Question Answering

content moderation, Content Moderation

image captioning, Image Captioning

visual question answering, Visual Question Answering -Visual
Question Answering

prompt engineering best practices, Multimodal Prompt Engineering
Best Practices

use cases, Use Cases

multimodal large language models (MLLMs), Image Captioning and Visual
Question Answering

content moderation, Content Moderation

image captioning, Image Captioning

image-to-text models, Image Captioning and Visual Question
Answering

visual question answering, Visual Question Answering -Visual
Question Answering

multimodal model fine-tuning, Fine-Tuning and Evaluation

N

negative formulations avoided, Prompt-Engineering Best Practices

network security and data privacy with Amazon Bedrock, Data Privacy and
Network Security

nonverbal reasoning evaluation, Nonverbal Reasoning-Nonverbal
Reasoning

Raven’s Progressive Matrices, Nonverbal Reasoning

NormalFloat4 (nf4), QLoRA

numbers

data types, Data Types and Numerical Precision

printing data type information, Data Types and Numerical
Precision

printing memory consumption, Data Types and Numerical
Precision

floating point number storage, Data Types and Numerical Precision

pi value held by fp32, Data Types and Numerical Precision

NVIDIA GPUs

CUDA out-of-memory error, Memory Challenges

GPU RAM maximum, Memory Challenges

O

OBELICS public dataset, Image Captioning and Visual Question
Answering

one-shot inference, In-Context Learning with Few-Shot Inference, One-
Shot Inference

context in prompt structure, Context

one-shot pruning, Pruning

OPT model comparison with compute-optimal models, Compute-Optimal
Models

outpainting in image generation, Outpainting

overlap in chunking, Chunking

P

PaLM with FLAN instruction set, FLAN-T5

parameter-efficient fine-tuning (PEFT)

about, Parameter-Efficient Fine-Tuning

diffusion models, DreamBooth and PEFT-LoRA

full fine-tuning versus, Full Fine-Tuning Versus PEFT-Full Fine-
Tuning Versus PEFT

Low-Rank Adaptation, LoRA and QLoRA

applying to linear layers of model, Target Modules and Layers

fundamentals, LoRA Fundamentals

implementation, Applying LoRA-Applying LoRA

maintaining separate adapters, Maintaining Separate LoRA
Adapters

merging LoRA adapter with original model, Merging LoRA
Adapter with Original Model

rank, Rank

prompt tuning, Prompt Tuning and Soft Prompts-Prompt Tuning and
Soft Prompts

reinforcement learning from human feedback with, Using Parameter-
Efficient Fine-Tuning with RLHF

parameters (a.k.a. weights)

Amazon Bedrock for LLMs, Large Language Models

foundation models, Foundation Models and Model Hubs

inference configuration parameters, Inference Configuration
Parameters

greedy versus random sampling, Inference Configuration
Parameters

max new tokens, Inference Configuration Parameters

temperature, Inference Configuration Parameters

top-p and top-k random sampling, Inference Configuration
Parameters-Inference Configuration Parameters

memory usage, Memory Challenges

multiheaded attention, Self-Attention

self-attention implementation, Self-Attention

parametric memory, Large-Language Foundation Models

pretraining dataset size versus, Compute-Optimal Models

quantization to convert from 32-bit to 16-bit precision, Memory
Challenges

scaling laws, Scaling Laws -Scaling Laws

parametric memory, Large-Language Foundation Models

PartiPrompts dataset (Parti project), Text-to-Image Generative Tasks

PDF documents via PyPDFLoader (LangChain), Document Loading and
Chunking

PEFT (see parameter-efficient fine-tuning)

performance (see evaluation)

personally identifiable information (PII) masked, Prompt-Engineering Best
Practices

pi value held by fp32, Data Types and Numerical Precision

The Pile as a pretraining dataset, Pretraining Datasets

playouts in reinforcement learning, Reinforcement Learning Overview

rollouts versus playouts, Reinforcement Learning Overview

post-training quantization (PTQ), Post-Training Quantization with GPTQ-
Post-Training Quantization with GPTQ

dynamic quantization, Post-Training Quantization with GPTQ

GPT post-training quantization, Post-Training Quantization with
GPTQ

static quantization, Post-Training Quantization with GPTQ

Wikitext dataset, Post-Training Quantization with GPTQ

PPOTrainer, Perform RLHF Fine-Tuning with PPO

configuring to avoid reward hacking, Mitigate Reward Hacking

pretraining phase

avoiding with foundation model, Generative AI Project Life Cycle

AWS for generative AI, Generative AI on AWS

BloombergGPT model training

Amazon SageMaker large distributed cluster for, Large-Language
Foundation Models

public and private financial data, Large-Language Foundation
Models

Chinchilla paper, Compute-Optimal Models

source reference, Large-Language Foundation Models

starting point for BloombergGPT, Large-Language Foundation
Models

datasets, Pretraining Datasets

optimal size, Compute-Optimal Models

knowledge cutoff, Knowledge Cutoff

large-language foundation model

about, Large-Language Foundation Models

compute-optimal models, Compute-Optimal Models

datasets for pretraining optimal size, Compute-Optimal Models

embeddings, Tokenizers-Embedding Vectors

pretrained models publicly available, Large-Language Foundation
Models

scaling laws, Scaling Laws -Scaling Laws

tokenizers, Large-Language Foundation Models

Transformer architecture, Transformer Architecture-Softmax
Output

types of Transformer-based foundation models, Types of
Transformer-Based Foundation Models-Types of Transformer-
Based Foundation Models

large-language foundation models

pretraining datasets, Pretraining Datasets

masked language modeling, Types of Transformer-Based Foundation
Models

parameter learning

about foundation models, Foundation Models and Model Hubs

time, patience, and compute required, Generative AI Project Life
Cycle, Large-Language Foundation Models

scaling laws, Scaling Laws -Scaling Laws

Chinchilla paper starting point for BloombergGPT, Large-
Language Foundation Models

span corruption, Types of Transformer-Based Foundation Models

tokens, Tokens

types of Transformer-based foundation models

about, Types of Transformer-Based Foundation Models

decoder-only models (autoregressive models), Types of
Transformer-Based Foundation Models

encoder-decoder models (sequence-to-sequence models), Types
of Transformer-Based Foundation Models

encoder-only models (autoencoders), Types of Transformer-Based
Foundation Models

unidirectional causal language modeling, Types of Transformer-Based
Foundation Models

Program-Aided Language Models (PAL), Context-Aware Reasoning
Applications Using RAG and Agents, Program-Aided Language
Framework-Program-Aided Language Framework

ReAct and PAL with LangChain Agents, Program-Aided Language
Framework

project life cycle for generative AI, Generative AI Project Life Cycle-
Generative AI Project Life Cycle

operationalizing, FMOps: Operationalizing the Generative AI Project
Life Cycle-Production Deployment Considerations

about, FMOps: Operationalizing the Generative AI Project Life
Cycle

development, Development Considerations -Development
Considerations

experimentation, Experimentation Considerations-
Experimentation Considerations

production deployment, Production Deployment Considerations

prompt engineering, Prompt Tuning and Soft Prompts

about, Prompt Engineering

input called prompt, Prompt Engineering and In-Context
Learning, Prompt Engineering

prompt generating completion, Prompt Engineering and In-
Context Learning, Prompt Engineering

writing prompts, Prompt Engineering and In-Context Learning,
Instruction, Prompt-Engineering Best Practices-Prompt-
Engineering Best Practices

augmented prompt via retrieval-augmented generation, Retrieval-
Augmented Generation, Prompt Augmentation

best practices, Prompt-Engineering Best Practices-Prompt-Engineering
Best Practices

multimodal generative AI, Multimodal Prompt Engineering Best
Practices

description of, Prompt Engineering

extra markup for chat models, Prompt Engineering

model card and other documentation, Context

external data sources, In-Context Learning Best Practices

(see also retrieval-augmented generation)

in-context learning

about, Prompt Engineering and In-Context Learning, Context

best practices, In-Context Learning Best Practices

few-shot inference, Context, In-Context Learning with Few-Shot
Inference, Few-Shot Inference

learning on the fly for duration of request, In-Context Learning
with Few-Shot Inference

one-shot inference, In-Context Learning with Few-Shot
Inference, One-Shot Inference

“tricking” a model, In-Context Learning Gone Wrong

zero-shot inference, In-Context Learning with Few-Shot
Inference-Zero-Shot Inference

zero-shot inference first, In-Context Learning Best Practices

zero-shot, one-shot, few-shot, In-Context Learning with Few-Shot
Inference

inference configuration parameters, Inference Configuration
Parameters-Inference Configuration Parameters

Llama 2 variant used in chapter, Llama 2-Chat

model card containing sample code for Llama 2, Large-Language
Foundation Models

prompt structure, Prompt Structure

chat-assistant structure, Prompt Engineering, Prompt Structure

context element, Context-Context

context window, Context

forgetting, Context

instruction element, Instruction

model card and other documentation, Context

as model specific, Prompt Engineering

prompt tuning versus, Prompt Tuning and Soft Prompts

text-based prompts

about, Prompts and Completions

about writing prompts, Prompt Engineering and In-Context
Learning, Instruction

numbers preferred, Tokens

prompts and completions, Prompt Engineering and In-Context
Learning

tokens, Tokens

tokens per word approximation, Tokens

prompt input into vector embedding representation, Document Retrieval
and Reranking

prompt template for building instruction dataset, Prompt Template

prompt tuning, Prompt Tuning and Soft Prompts-Prompt Tuning and Soft
Prompts

prompt engineering versus, Prompt Tuning and Soft Prompts

soft prompts, Prompt Tuning and Soft Prompts-Prompt Tuning and
Soft Prompts

generating virtual tokens, Prompt Tuning and Soft Prompts

Proximal Policy Optimization (PPO), Proximal Policy Optimization RL
Algorithm

Denoising Diffusion Policy Optimization, Human Alignment with
Reinforcement Learning from Human Feedback

fine-tuning implementation, Perform RLHF Fine-Tuning with PPO-
Perform RLHF Fine-Tuning with PPO

pruning for model compression, Model Optimizations for Inference,
Pruning

one-shot pruning, Pruning

post-training pruning, Pruning

PTQ (see post-training quantization)

PyPDFLoader of LangChain, Document Loading and Chunking

Python sagemaker library, Amazon SageMaker JumpStart, Amazon
SageMaker Estimator for Hugging Face

PyTorch Hub, Foundation Models and Model Hubs

model card for each model, Large-Language Foundation Models

Q

QLoRA (quantized LoRA), QLoRA

double quantization, QLoRA

NormalFloat4 quantization format, QLoRA

qualitative evaluation for RLHF fine-tuned model, Evaluate RLHF Fine-
Tuned Model

quantization

about, Memory Challenges, Quantization, Model Optimizations for
Inference

model accuracy small loss, Post-Training Quantization with
GPTQ

AWS Trainium instances optimized for, Memory Challenges

bfloat16 data type, Data Types and Numerical Precision, bfloat16

memory footprint reduction

about, Quantization, int8

benchmarking the results, int8

bfloat16, bfloat16

data type comparison chart, int8

fp16, fp16

fp8, fp8

int8, int8-int8

model compression via, Model Optimizations for Inference

dynamic quantization, Post-Training Quantization with GPTQ

GPT post-training quantization, Post-Training Quantization with
GPTQ

post-training quantization, Post-Training Quantization with
GPTQ-Post-Training Quantization with GPTQ

static quantization, Post-Training Quantization with GPTQ

Wikitext dataset, Post-Training Quantization with GPTQ

NormalFloat4, QLoRA

quantized LoRA (QLoRA), QLoRA

R

RAG (see retrieval-augmented generation)

random sampling

top-p and top-k random sampling, Inference Configuration
Parameters-Inference Configuration Parameters

versus greedy sampling inference configuration pattern, Inference
Configuration Parameters

random sampling explicitly enabled, Inference Configuration
Parameters

Raven’s Progressive Matrices (RPM), Nonverbal Reasoning

ReAct framework, Agents-ReAct Framework

about, Context-Aware Reasoning Applications Using RAG and Agents

ReAct and PAL with LangChain Agents, Program-Aided Language
Framework

Recall-Oriented Understudy for Gisting Evaluation (ROUGE), Evaluation-
Evaluation Metrics

about, Evaluation Metrics

LoRA performance versus full fine-tuning, Full-Fine Tuning Versus
LoRA Performance

RefinedWeb as a pretraining dataset, Pretraining Datasets

reinforcement learning from human feedback (RLHF)

about, Fine-Tuning with Reinforcement Learning from Human
Feedback, Fine-Tune with Reinforcement Learning from Human
Feedback

extremely compute-intensive, Mitigate Reward Hacking

about reinforcement learning, Reinforcement Learning Overview

helpful, honest, and harmless, Human Alignment: Helpful,
Honest, and Harmless

humans needed for labeling, Reinforcement Learning Overview

playouts, Reinforcement Learning Overview

playouts versus rollouts, Reinforcement Learning Overview

rollouts, Reinforcement Learning Overview

diffusion model fine-tuning for HHH, Human Alignment with
Reinforcement Learning from Human Feedback-Human Alignment
with Reinforcement Learning from Human Feedback

fine-tuning with

about, Fine-Tune with Reinforcement Learning from Human
Feedback

evaluation metrics before and after compared, Compare
Evaluation Metrics Before and After

evaluation-metric aggregation function defined, Define
Evaluation-Metric Aggregation Function

loading evaluation model, Load Evaluation Model

mitigating reward hacking, Mitigate Reward Hacking-Mitigate
Reward Hacking

Proximal Policy Optimization, Proximal Policy Optimization RL
Algorithm

Proximal Policy Optimization implementation, Perform RLHF
Fine-Tuning with PPO-Perform RLHF Fine-Tuning with PPO

qualitative evaluation, Evaluate RLHF Fine-Tuned Model

quantitative evaluation, Quantitative Evaluation

using reward model with RLHF, Using the Reward Model with
RLHF

parameter-efficient fine-tuning with, Using Parameter-Efficient Fine-
Tuning with RLHF

reward models, Train a Custom Reward Model

key role in RLHF, Reinforcement Learning Overview

toxic language detection model by Meta, Existing Reward Model:
Toxicity Detector by Meta

toxic language detection model by Meta used to fine-tune,
Existing Reward Model: Toxicity Detector by Meta, Perform
RLHF Fine-Tuning with PPO-Perform RLHF Fine-Tuning with
PPO

toxic language detection

about toxic language reduction, Train the Reward Model

example model, Train a Custom Reward Model

training a custom reward model

about, Train a Custom Reward Model

collecting training dataset via humans, Collect Training Dataset
with Human-in-the-Loop

converting human ranking to training data, Prepare Ranking Data
to Train a Reward Model-Prepare Ranking Data to Train a
Reward Model

implementing data collection in SageMaker Ground Truth, Using
Amazon SageMaker Ground Truth for Human Annotations-Using
Amazon SageMaker Ground Truth for Human Annotations

instructions for human labelers, Sample Instructions for Human
Labelers

training the reward model, Train the Reward Model

Rendered SST2 dataset, Forward Diffusion

reranking similarity results from vector store, Document Retrieval and
Reranking

Maximum Marginal Relevance, Document Retrieval and Reranking,
Reranking with Maximum Marginal Relevance

resources online

Amazon SageMaker JumpStart

documentation, Large-Language Foundation Models

AWS generative AI services, Generative AI on AWS-Generative AI on
AWS

book web page, Using Code Examples, How to Contact Us

ControlNet blog post, ControlNet

Hugging Face Model Hub, Foundation Models and Model Hubs

(see also Hugging Face Model Hub)

model hubs, Foundation Models and Model Hubs

vector store examples, Embedding Vector Store and Retrieval

retrieval-augmented generation (RAG), Retrieval-Augmented Generation

about, In-Context Learning Best Practices, Context-Aware Reasoning
Applications Using RAG and Agents

fine-tuning used with, Context-Aware Reasoning Applications
Using RAG and Agents

potential downsides, Context-Aware Reasoning Applications
Using RAG and Agents

AWS generative AI, Generative AI on AWS

external sources of knowledge, External Sources of Knowledge

information retrieval from documents

chunking, Chunking

document loading, Document Loading

prompt augmentation, Prompt Augmentation

reranking similarity results from vector store, Document Retrieval
and Reranking, Reranking with Maximum Marginal Relevance

retrieving information, Document Retrieval and Reranking

large language model limitations, Large Language Model Limitations

fixed context window length, Document Loading

hallucination, Prompt-Engineering Best Practices, Hallucination

knowledge cutoff, Knowledge Cutoff

orchestration and implementation

about LangChain, RAG Orchestration and Implementation

document loading and chunking, Document Loading and
Chunking

metadata added to documents, Document Loading and Chunking

metadata filter during retrieval, Embedding Vector Store and
Retrieval

retrieval chains, Retrieval Chains-Retrieval Chains

vector embedding storage and retrieval options, Embedding
Vector Store and Retrieval

vector store example with FAISS and LangChain, Embedding
Vector Store and Retrieval-Embedding Vector Store and Retrieval

vector stores, Generative AI on AWS, Document Loading , Document
Retrieval and Reranking, Document Loading and Chunking

example with FAISS and LangChain, Embedding Vector Store
and Retrieval-Embedding Vector Store and Retrieval

vector embedding storage options, Embedding Vector Store and
Retrieval

workflow, RAG Workflow

reverse diffusion, Reverse Diffusion

reward models, Train a Custom Reward Model

fine-tuning with RLHF

about, Fine-Tune with Reinforcement Learning from Human
Feedback

evaluation metrics before and after compared, Compare
Evaluation Metrics Before and After

evaluation-metric aggregation function defined, Define
Evaluation-Metric Aggregation Function

mitigating reward hacking, Mitigate Reward Hacking-Mitigate
Reward Hacking

using reward model with RLHF, Using the Reward Model with
RLHF

key role in RLHF, Reinforcement Learning Overview

reward hacking mitigated, Mitigate Reward Hacking-Mitigate Reward
Hacking

toxic language detection model by Meta, Existing Reward Model:
Toxicity Detector by Meta

using to fine-tune a model, Existing Reward Model: Toxicity
Detector by Meta, Perform RLHF Fine-Tuning with PPO-Perform
RLHF Fine-Tuning with PPO

training a custom reward model

about, Train a Custom Reward Model

collecting training dataset via humans, Collect Training Dataset
with Human-in-the-Loop

converting human ranking to training data, Prepare Ranking Data
to Train a Reward Model-Prepare Ranking Data to Train a
Reward Model

implementing data collection in SageMaker Ground Truth, Using
Amazon SageMaker Ground Truth for Human Annotations-Using
Amazon SageMaker Ground Truth for Human Annotations

instructions for human labelers, Sample Instructions for Human
Labelers

training the reward model, Train the Reward Model

RLHF (see reinforcement learning from human feedback)

rollouts in generative reinforcement learning, Reinforcement Learning
Overview

playouts versus rollouts, Reinforcement Learning Overview

ROUGE (Recall-Oriented Understudy for Gisting Evaluation), Evaluation-
Evaluation Metrics

about, Evaluation Metrics

LoRA performance versus full fine-tuning, Full-Fine Tuning Versus
LoRA Performance

S

sagemaker Python library, Amazon SageMaker JumpStart, Amazon
SageMaker Estimator for Hugging Face

“Scaling Instruction-Finetuned Language Models” (Chung), Sample
Instructions for Human Labelers

scaling laws, Scaling Laws -Scaling Laws

Chinchilla paper, Compute-Optimal Models

source reference, Large-Language Foundation Models

starting point for BloombergGPT, Large-Language Foundation
Models

self-attention of Transformer architecture, Self-Attention-Self-Attention

computationally expensive, Self-Attention

multiheaded attention, Self-Attention

optimizing

FlashAttention, int8, FlashAttention

grouped-query attention, Grouped-Query Attention

sentiment, In-Context Learning Gone Wrong

sentiment classifiers, Train a Custom Reward Model

sequence-to-sequence models (encoder-decoder models), Types of
Transformer-Based Foundation Models

shadow deployment, Shadow Deployment

soft prompts, Prompt Tuning and Soft Prompts-Prompt Tuning and Soft
Prompts

also called virtual tokens, Prompt Tuning and Soft Prompts

generating virtual tokens, Prompt Tuning and Soft Prompts

softmax output of Transformer architecture, Softmax Output

temperature and, Softmax Output

span corruption pretraining, Types of Transformer-Based Foundation
Models

SparseGPT post-training pruning, Pruning

SQL code generation by Amazon Bedrock, Generate SQL Code

Stable Diffusion (Stability AI) models, Multimodal Foundation Models

Amazon Bedrock accessing, Stable Diffusion Foundation Models from
Stability AI

ControlNet, Controlled Generation and Fine-Tuning with Stable
Diffusion-ControlNet

Canny edge map control example, ControlNet-ControlNet

fine-tuning, Fine-Tuning

DreamBooth, DreamBooth-DreamBooth

DreamBooth and PEFT-LoRA, DreamBooth and PEFT-LoRA

reinforcement learning from human feedback, Human Alignment
with Reinforcement Learning from Human Feedback-Human
Alignment with Reinforcement Learning from Human Feedback

textual inversion, Textual Inversion-Textual Inversion

image generation, Image Generation

editing and enhancement, Image Editing and Enhancement-Image
Editing and Enhancement

Low-Rank Adaptation, LoRA and QLoRA

Stable Diffusion 2 architecture, Stable Diffusion 2 Architecture-Image
Decoder

cross-attention, Cross-Attention

image decoder, Image Decoder

latent diffusion model, Stable Diffusion 2 Architecture, U-Net
and Diffusion Process

scheduler, Scheduler

text conditioning, Text Conditioning

text encoder, Text Encoder

U-Net and diffusion process, U-Net and Diffusion Process

Stable Diffusion XL architecture, Stable Diffusion XL Architecture-
Conditioning

conditioning, Conditioning

refiner, Refiner

U-Net and cross-attention, U-Net and Cross-Attention

Stanford University Alpaca project, Multitask Instruction Dataset

static quantization, Post-Training Quantization with GPTQ

style transfer in image generation, Image Editing and Enhancement

SuperGLUE, Benchmarks and Datasets

supplemental material URL, Using Code Examples, How to Contact Us

T

T5 foundation model (Google)

compute budget comparison, Scaling Laws

encoder-decoder model, Scaling Laws

FLAN-T5 instruction fine-tuned variant, FLAN-T5

(see also FLAN-T5 generative model)

span corruption pretraining, Types of Transformer-Based Foundation
Models

tasks and use cases for generative AI, Use Cases and Tasks-Use Cases and
Tasks

Technology Innovation Institute (see Falcon foundation model)

temperature inference configuration pattern, Inference Configuration
Parameters

softmax output and, Softmax Output

text conditioning by Stable Diffusion, Text Conditioning

text summarization by Amazon Bedrock, Summarize Text

text-to-image generative task evaluation, Text-to-Image Generative Tasks-
Text-to-Image Generative Tasks

PartiPrompts dataset, Text-to-Image Generative Tasks

textual inversion for fine-tuning diffusion models, Textual Inversion-
Textual Inversion

“thinking step-by-step”, Prompt-Engineering Best Practices

tokenizers, Tokenizers

embeddings, Tokenizers-Embedding Vectors

tokens

about, Tokens

tokens per word approximation, Tokens

context window, Context

comparison of foundation model sizes, Context

forgetting, Context

single value as input plus output, Context

end-of-sequence (EOS) token, Softmax Output

inference configuration parameters

greedy versus random sampling, Inference Configuration
Parameters

max new tokens, Inference Configuration Parameters

temperature, Inference Configuration Parameters

top-p and top-k random sampling, Inference Configuration
Parameters-Inference Configuration Parameters

input_id as token in model’s vocabulary, Tokenizers

numeric representations of each token, Tokenizers

scaling laws, Scaling Laws -Scaling Laws

tokenizers, Tokenizers

embeddings, Tokenizers-Embedding Vectors

training large-language foundation models

about, Large-Language Foundation Models

compute-optimal models, Compute-Optimal Models

embeddings, Tokenizers-Embedding Vectors

end-of-sequence (EOS) token, Softmax Output

pretrained models publicly available, Large-Language Foundation
Models

pretraining datasets, Pretraining Datasets

pretraining datasets optimal size, Compute-Optimal Models

publicly available, pretrained models’ vocabulary, Large-
Language Foundation Models

scaling laws, Scaling Laws -Scaling Laws

tokenizers, Tokenizers

Transformer architecture, Transformer Architecture-Softmax
Output

types of Transformer-based foundation models, Types of
Transformer-Based Foundation Models-Types of Transformer-
Based Foundation Models

token_ids from tokenizer, Tokenizers

top-p and top-k random sampling, Inference Configuration Parameters-
Inference Configuration Parameters

toxic language detection

about toxic language reduction, Train the Reward Model

example model, Train a Custom Reward Model

reward model by Meta, Existing Reward Model: Toxicity
Detector by Meta

reward model by Meta used to fine-tune, Existing Reward Model:
Toxicity Detector by Meta, Perform RLHF Fine-Tuning with
PPO-Perform RLHF Fine-Tuning with PPO

fine-tuning with RLHF, Fine-Tune with Reinforcement Learning from
Human Feedback-Using Parameter-Efficient Fine-Tuning with RLHF

toxicity baseline compared to fine-tuned model, Compare
Evaluation Metrics Before and After

training large-language foundation models

about, Large-Language Foundation Models

AWS Trainium, Fully Sharded Data Parallel with Amazon SageMaker

batch_size maximum, Memory Challenges

Chinchilla paper, Compute-Optimal Models

source reference, Large-Language Foundation Models

starting point for BloombergGPT, Large-Language Foundation
Models

compute-optimal models, Compute-Optimal Models

knowledge cutoff, Knowledge Cutoff

pretrained models publicly available, Large-Language Foundation
Models

parametric memory, Large-Language Foundation Models

vocabulary of, Large-Language Foundation Models

pretraining datasets, Pretraining Datasets

optimal size, Compute-Optimal Models

scaling laws, Scaling Laws -Scaling Laws

tokenizers, Tokenizers

embeddings, Tokenizers-Embedding Vectors

Transformer architecture

about, Transformer Architecture, Softmax Output

decoder, Decoder

embeddings, Embedding Layer

encoder, Encoder

end-of-sequence token, Softmax Output

inputs and input context window, Inputs and Context Window

self-attention, Self-Attention-Self-Attention

softmax output, Softmax Output

types of Transformer-based foundation models, Types of
Transformer-Based Foundation Models-Types of Transformer-
Based Foundation Models

Transformer architecture

about, Transformer Architecture, Softmax Output

decoder, Decoder

embeddings, Embedding Layer

encoder, Encoder

end-of-sequence token, Softmax Output

inputs and input context window, Inputs and Context Window

Low-Rank Adaptation, LoRA and QLoRA

applying to linear layers of model, Target Modules and Layers

fundamentals, LoRA Fundamentals

implementation, Applying LoRA-Applying LoRA

maintaining separate adapters, Maintaining Separate LoRA
Adapters

merging LoRA adapter with original model, Merging LoRA
Adapter with Original Model

quantized LoRA, QLoRA

rank, Rank

self-attention, Self-Attention-Self-Attention

computationally expensive, Self-Attention

FlashAttention optimization, int8, FlashAttention

grouped-query attention optimization, Grouped-Query Attention

multiheaded attention, Self-Attention

slight variations among models, Large-Language Foundation Models

softmax output, Softmax Output

types of Transformer-based foundation models, Types of Transformer-
Based Foundation Models-Types of Transformer-Based Foundation
Models

about, Types of Transformer-Based Foundation Models

decoder-only models (autoregressive models), Types of
Transformer-Based Foundation Models

encoder-decoder models (sequence-to-sequence models), Types
of Transformer-Based Foundation Models

encoder-only models (autoencoders), Types of Transformer-Based
Foundation Models

Transformer Reinforcement Learning (TRL) RewardTrainer class, Train the
Reward Model

Transformers-NeuronX library, AWS Inferentia: Purpose-Built Hardware
for Inference

“tricking” a model to learn incorrect answer, In-Context Learning Gone
Wrong

TRL library, Perform RLHF Fine-Tuning with PPO

PPOTrainer, Perform RLHF Fine-Tuning with PPO

U

U-Net models, U-Net

unidirectional causal language modeling (CLM), Types of Transformer-
Based Foundation Models

unimodal models defined, Multimodal Foundation Models

update and deployment strategies, Model Update and Deployment
Strategies

A/B testing, A/B Testing-A/B Testing

shadow deployment, Shadow Deployment

upscaling in image generation, Image Editing and Enhancement

use cases and tasks for generative AI, Use Cases and Tasks-Use Cases and
Tasks

V

vector stores

about, Embedding Vector Store and Retrieval, Amazon Titan
Foundation Models

AWS generative AI, Generative AI on AWS

RAG document search and retrieval, Generative AI on AWS,
Document Loading , Document Loading and Chunking

example with FAISS and LangChain, Embedding Vector Store
and Retrieval-Embedding Vector Store and Retrieval

vector embedding storage options, Embedding Vector Store and
Retrieval

supported by LangChain, Embedding Vector Store and Retrieval

vectors (see embedding vectors or “embeddings”)

virtual tokens as soft prompts, Prompt Tuning and Soft Prompts

generating virtual tokens, Prompt Tuning and Soft Prompts

visual language models (VLMs), Image Captioning and Visual Question
Answering

(see also multimodal large language models)

visual question answering (VQA), Visual Question Answering -Visual
Question Answering

evaluating, Forward Diffusion

VizWiz-VQA dataset, Forward Diffusion

VQAv2 dataset, Forward Diffusion

W

weights (see parameters)

Wiki-40B as a pretraining dataset, Pretraining Datasets

Wikipedia as a pretraining dataset, Pretraining Datasets

Wikitext dataset, Post-Training Quantization with GPTQ

X

XML tags in prompt, Prompt-Engineering Best Practices

Z

ZeRO (zero redundancy optimizer), Fully Sharded Data Parallel

zero-shot inference, In-Context Learning with Few-Shot Inference-Zero-
Shot Inference

try first, In-Context Learning Best Practices

OceanofPDF.com

https://oceanofpdf.com/

About the Authors

Chris Fregly is a Principal Solutions Architect for generative AI at
Amazon Web Services based in San Francisco, California. Chris holds
every AWS certification. He is also cofounder of the global Generative AI
on AWS Meetup. Chris regularly speaks at AI and machine learning
meetups and conferences across the world. Previously, Chris was an
engineer at Databricks and Netflix, where he worked on scalable big data
and machine learning products and solutions. He is also coauthor of the
O’Reilly book Data Science on AWS.

Antje Barth is a Principal Developer Advocate for generative AI at
Amazon Web Services based in San Francisco, California. She is also
cofounder of the global Generative AI on AWS Meetup and the Düsseldorf
chapter of Women in Big Data. Antje frequently speaks at AI and machine
learning conferences and meetups around the world. Prior to joining AWS,
Antje worked in solutions engineering roles at MapR and Cisco, helping
developers leverage big data, containers, and Kubernetes platforms in the
context of AI and machine learning. She is also coauthor of the O’Reilly
book Data Science on AWS.

Shelbee Eigenbrode is a Principal Solutions Architect for generative AI at
Amazon Web Services based in Denver, Colorado. She is cofounder of the
Denver chapter of Women in Big Data. Shelbee holds six AWS
certifications and has been in technology for 23 years, spanning multiple
industries, technologies, and roles. She focuses on combining her DevOps
and ML backgrounds to deliver ML workloads at scale. With over 35
patents granted across various technology domains, Shelbee has a passion
for continuous innovation and using data to drive business outcomes.

OceanofPDF.com

https://oceanofpdf.com/

Colophon

The animal on the cover of Generative AI on AWS is the brown-backed
mockingbird (Mimus dorsalis).

This nonmigratory, terrestrial mockingbird inhabits arid landscapes of brush
and desert shrub in Argentina and Bolivia, where it forages for food and
constructs its nest of twigs among cacti or bushes. Because it has not been
much studied, little else is known about the diet, feeding, and breeding
behaviors of the brown-backed mockingbird.

Recordings of its call, luckily, are fairly easy to come by, and witnesses to it
have described the song of the brown-backed mockingbird as a series of
repeated harsh notes and chuckles. Mockingbirds in general are well known
for their habit of mimicking the songs of other birds and the sounds of
insects and amphibians, often loudly and in rapid succession. One group of
researchers has even compared them—with their ability to create novel
song patterns—to the great classical composers and modern artists like
Kendrick Lamar.

Though its population size has not been precisely quantified, the brown-
backed mockingbird has been categorized by the IUCN as a species of least
concern. Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from Cassell’s Natural History. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

OceanofPDF.com

https://oreil.ly/4lFH8
https://oreil.ly/mpBkN
https://oceanofpdf.com/

	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Chris
	Antje
	Shelbee

	1. Generative AI Use Cases, Fundamentals, and Project Life Cycle
	Use Cases and Tasks
	Foundation Models and Model Hubs
	Generative AI Project Life Cycle
	Generative AI on AWS
	Why Generative AI on AWS?
	Building Generative AI Applications on AWS
	Summary

	2. Prompt Engineering and In-Context Learning
	Prompts and Completions
	Tokens
	Prompt Engineering
	Prompt Structure
	Instruction
	Context

	In-Context Learning with Few-Shot Inference
	Zero-Shot Inference
	One-Shot Inference
	Few-Shot Inference
	In-Context Learning Gone Wrong
	In-Context Learning Best Practices

	Prompt-Engineering Best Practices
	Inference Configuration Parameters
	Summary

	3. Large-Language Foundation Models
	Large-Language Foundation Models
	Tokenizers
	Embedding Vectors
	Transformer Architecture
	Inputs and Context Window
	Embedding Layer
	Encoder
	Self-Attention
	Decoder
	Softmax Output

	Types of Transformer-Based Foundation Models
	Pretraining Datasets
	Scaling Laws
	Compute-Optimal Models
	Summary

	4. Memory and Compute Optimizations
	Memory Challenges
	Data Types and Numerical Precision
	Quantization
	fp16
	bfloat16
	fp8
	int8

	Optimizing the Self-Attention Layers
	FlashAttention
	Grouped-Query Attention

	Distributed Computing
	Distributed Data Parallel
	Fully Sharded Data Parallel
	Performance Comparison of FSDP over DDP

	Distributed Computing on AWS
	Fully Sharded Data Parallel with Amazon SageMaker
	AWS Neuron SDK and AWS Trainium

	Summary

	5. Fine-Tuning and Evaluation
	Instruction Fine-Tuning
	Llama 2-Chat
	Falcon-Chat
	FLAN-T5

	Instruction Dataset
	Multitask Instruction Dataset
	FLAN: Example Multitask Instruction Dataset
	Prompt Template
	Convert a Custom Dataset into an Instruction Dataset

	Instruction Fine-Tuning
	Amazon SageMaker Studio
	Amazon SageMaker JumpStart
	Amazon SageMaker Estimator for Hugging Face

	Evaluation
	Evaluation Metrics
	Benchmarks and Datasets

	Summary

	6. Parameter-Efficient Fine-Tuning
	Full Fine-Tuning Versus PEFT
	LoRA and QLoRA
	LoRA Fundamentals
	Rank
	Target Modules and Layers
	Applying LoRA
	Merging LoRA Adapter with Original Model
	Maintaining Separate LoRA Adapters
	Full-Fine Tuning Versus LoRA Performance
	QLoRA

	Prompt Tuning and Soft Prompts
	Summary

	7. Fine-Tuning with Reinforcement Learning from Human Feedback
	Human Alignment: Helpful, Honest, and Harmless
	Reinforcement Learning Overview
	Train a Custom Reward Model
	Collect Training Dataset with Human-in-the-Loop
	Sample Instructions for Human Labelers
	Using Amazon SageMaker Ground Truth for Human Annotations
	Prepare Ranking Data to Train a Reward Model
	Train the Reward Model

	Existing Reward Model: Toxicity Detector by Meta
	Fine-Tune with Reinforcement Learning from Human Feedback
	Using the Reward Model with RLHF
	Proximal Policy Optimization RL Algorithm
	Perform RLHF Fine-Tuning with PPO
	Mitigate Reward Hacking
	Using Parameter-Efficient Fine-Tuning with RLHF

	Evaluate RLHF Fine-Tuned Model
	Qualitative Evaluation
	Quantitative Evaluation
	Load Evaluation Model
	Define Evaluation-Metric Aggregation Function
	Compare Evaluation Metrics Before and After

	Summary

	8. Model Deployment Optimizations
	Model Optimizations for Inference
	Pruning
	Post-Training Quantization with GPTQ
	Distillation

	Large Model Inference Container
	AWS Inferentia: Purpose-Built Hardware for Inference
	Model Update and Deployment Strategies
	A/B Testing
	Shadow Deployment

	Metrics and Monitoring
	Autoscaling
	Autoscaling Policies
	Define an Autoscaling Policy

	Summary

	9. Context-Aware Reasoning Applications Using RAG and Agents
	Large Language Model Limitations
	Hallucination
	Knowledge Cutoff

	Retrieval-Augmented Generation
	External Sources of Knowledge
	RAG Workflow
	Document Loading
	Chunking
	Document Retrieval and Reranking
	Prompt Augmentation

	RAG Orchestration and Implementation
	Document Loading and Chunking
	Embedding Vector Store and Retrieval
	Retrieval Chains
	Reranking with Maximum Marginal Relevance

	Agents
	ReAct Framework
	Program-Aided Language Framework

	Generative AI Applications
	FMOps: Operationalizing the Generative AI Project Life Cycle
	Experimentation Considerations
	Development Considerations
	Production Deployment Considerations

	Summary

	10. Multimodal Foundation Models
	Use Cases
	Multimodal Prompt Engineering Best Practices
	Image Generation and Enhancement
	Image Generation
	Image Editing and Enhancement

	Inpainting, Outpainting, Depth-to-Image
	Inpainting
	Outpainting
	Depth-to-Image

	Image Captioning and Visual Question Answering
	Image Captioning
	Content Moderation
	Visual Question Answering

	Model Evaluation
	Text-to-Image Generative Tasks
	Forward Diffusion
	Nonverbal Reasoning

	Diffusion Architecture Fundamentals
	Forward Diffusion
	Reverse Diffusion
	U-Net

	Stable Diffusion 2 Architecture
	Text Encoder
	U-Net and Diffusion Process
	Text Conditioning
	Cross-Attention
	Scheduler
	Image Decoder

	Stable Diffusion XL Architecture
	U-Net and Cross-Attention
	Refiner
	Conditioning

	Summary

	11. Controlled Generation and Fine-Tuning with Stable Diffusion
	ControlNet
	Fine-Tuning
	DreamBooth
	DreamBooth and PEFT-LoRA
	Textual Inversion

	Human Alignment with Reinforcement Learning from Human Feedback
	Summary

	12. Amazon Bedrock: Managed Service for Generative AI
	Bedrock Foundation Models
	Amazon Titan Foundation Models
	Stable Diffusion Foundation Models from Stability AI

	Bedrock Inference APIs
	Large Language Models
	Generate SQL Code
	Summarize Text
	Embeddings

	Fine-Tuning
	Agents
	Multimodal Models
	Create Images from Text
	Create Images from Images

	Data Privacy and Network Security
	Governance and Monitoring
	Summary

	Index
	About the Authors

