
M A N N I N G

Eli Stevens
Luca Antiga
Thomas Viehmann
Foreword by Soumith Chintala

PRODUCTION

SERVER

CLOUD

PRODUCTION

(ONnX, JIT

TORCHSCRIPT)

TRAINED

MODEL

TRAINING

LOoP

BATCH

TENSOR

SAMPLE

TENSORS

DATA

SOURCE

MULTIPROCESs

DATA LOADING

UNTRAINED

MODEL

DISTRIBUTED TRAINING

ON MULTIPLE SERVERS/GPUS

Deep Learning
 with PyTorch

ELI STEVENS, LUCA ANTIGA,
 AND THOMAS VIEHMANN

FOREWORD BY SOUMITH CHINTALA

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: Arthur Zubarev
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Deirdre Hiam

Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant

Technical proofreader: Kostas Passadis
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617295263
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 To my wife (this book would not have happened without her invaluable
support and partnership),

 my parents (I would not have happened without them),
 and my children (this book would have happened a lot sooner but for them).

 Thank you for being my home, my foundation, and my joy.

 —Eli Stevens

 Same :-) But, really, this is for you, Alice and Luigi.
 —Luca Antiga

 To Eva, Rebekka, Jonathan, and David.
 —Thomas Viehmann

v

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the authors xxvii
about the cover illustration xxviii

PART 1 CORE PYTORCH...1

1 Introducing deep learning and the PyTorch Library 3
1.1 The deep learning revolution 4

1.2 PyTorch for deep learning 6

1.3 Why PyTorch? 7
The deep learning competitive landscape 8

1.4 An overview of how PyTorch supports deep learning
projects 10

1.5 Hardware and software requirements 13
Using Jupyter Notebooks 14

1.6 Exercises 15

1.7 Summary 15

CONTENTSvi

2 Pretrained networks 16
2.1 A pretrained network that recognizes the subject of an

image 17
Obtaining a pretrained network for image recognition 19
AlexNet 20 ■ ResNet 22 ■ Ready, set, almost run 22
Run! 25

2.2 A pretrained model that fakes it until it makes it 27
The GAN game 28 ■ CycleGAN 29 ■ A network that turns
horses into zebras 30

2.3 A pretrained network that describes scenes 33
NeuralTalk2 34

2.4 Torch Hub 35

2.5 Conclusion 37

2.6 Exercises 38

2.7 Summary 38

3 It starts with a tensor 39
3.1 The world as floating-point numbers 40

3.2 Tensors: Multidimensional arrays 42
From Python lists to PyTorch tensors 42 ■ Constructing our first
tensors 43 ■ The essence of tensors 43

3.3 Indexing tensors 46

3.4 Named tensors 46

3.5 Tensor element types 50
Specifying the numeric type with dtype 50 ■ A dtype for every
occasion 51 ■ Managing a tensor’s dtype attribute 51

3.6 The tensor API 52

3.7 Tensors: Scenic views of storage 53
Indexing into storage 54 ■ Modifying stored values: In-place
operations 55

3.8 Tensor metadata: Size, offset, and stride 55
Views of another tensor’s storage 56 ■ Transposing without
copying 58 ■ Transposing in higher dimensions 60
Contiguous tensors 60

3.9 Moving tensors to the GPU 62
Managing a tensor’s device attribute 63

CONTENTS vii

3.10 NumPy interoperability 64

3.11 Generalized tensors are tensors, too 65

3.12 Serializing tensors 66
Serializing to HDF5 with h5py 67

3.13 Conclusion 68

3.14 Exercises 68

3.15 Summary 68

4 Real-world data representation using tensors 70
4.1 Working with images 71

Adding color channels 72 ■ Loading an image file 72
Changing the layout 73 ■ Normalizing the data 74

4.2 3D images: Volumetric data 75
Loading a specialized format 76

4.3 Representing tabular data 77
Using a real-world dataset 77 ■ Loading a wine data tensor 78
Representing scores 81 ■ One-hot encoding 81 ■ When to
categorize 83 ■ Finding thresholds 84

4.4 Working with time series 87
Adding a time dimension 88 ■ Shaping the data by time
period 89 ■ Ready for training 90

4.5 Representing text 93
Converting text to numbers 94 ■ One-hot-encoding characters 94
One-hot encoding whole words 96 ■ Text embeddings 98
Text embeddings as a blueprint 100

4.6 Conclusion 101

4.7 Exercises 101

4.8 Summary 102

5 The mechanics of learning 103
5.1 A timeless lesson in modeling 104

5.2 Learning is just parameter estimation 106
A hot problem 107 ■ Gathering some data 107 ■ Visualizing
the data 108 ■ Choosing a linear model as a first try 108

5.3 Less loss is what we want 109
From problem back to PyTorch 110

CONTENTSviii

5.4 Down along the gradient 113
Decreasing loss 113 ■ Getting analytical 114 ■ Iterating to fit
the model 116 ■ Normalizing inputs 119 ■ Visualizing
(again) 122

5.5 PyTorch’s autograd: Backpropagating all things 123
Computing the gradient automatically 123 ■ Optimizers a la
carte 127 ■ Training, validation, and overfitting 131
Autograd nits and switching it off 137

5.6 Conclusion 139

5.7 Exercise 139

5.8 Summary 139

6 Using a neural network to fit the data 141
6.1 Artificial neurons 142

Composing a multilayer network 144 ■ Understanding the error
function 144 ■ All we need is activation 145 ■ More activation
functions 147 ■ Choosing the best activation function 148
What learning means for a neural network 149

6.2 The PyTorch nn module 151
Using __call__ rather than forward 152 ■ Returning to the linear
model 153

6.3 Finally a neural network 158
Replacing the linear model 158 ■ Inspecting the parameters 159
Comparing to the linear model 161

6.4 Conclusion 162

6.5 Exercises 162

6.6 Summary 163

7 Telling birds from airplanes: Learning from images 164
7.1 A dataset of tiny images 165

Downloading CIFAR-10 166 ■ The Dataset class 166
Dataset transforms 168 ■ Normalizing data 170

7.2 Distinguishing birds from airplanes 172
Building the dataset 173 ■ A fully connected model 174
Output of a classifier 175 ■ Representing the output as
probabilities 176 ■ A loss for classifying 180 ■ Training the
classifier 182 ■ The limits of going fully connected 189

7.3 Conclusion 191

CONTENTS ix

7.4 Exercises 191

7.5 Summary 192

8 Using convolutions to generalize 193
8.1 The case for convolutions 194

What convolutions do 194

8.2 Convolutions in action 196
Padding the boundary 198 ■ Detecting features with
convolutions 200 ■ Looking further with depth and pooling 202
Putting it all together for our network 205

8.3 Subclassing nn.Module 207
Our network as an nn.Module 208 ■ How PyTorch keeps track of
parameters and submodules 209 ■ The functional API 210

8.4 Training our convnet 212
Measuring accuracy 214 ■ Saving and loading our model 214
Training on the GPU 215

8.5 Model design 217
Adding memory capacity: Width 218 ■ Helping our model to
converge and generalize: Regularization 219 ■ Going deeper to
learn more complex structures: Depth 223 ■ Comparing the designs
from this section 228 ■ It’s already outdated 229

8.6 Conclusion 229

8.7 Exercises 230

8.8 Summary 231

PART 2 LEARNING FROM IMAGES IN THE REAL WORLD:
EARLY DETECTION OF LUNG CANCER.......................233

9 Using PyTorch to fight cancer 235
9.1 Introduction to the use case 236

9.2 Preparing for a large-scale project 237

9.3 What is a CT scan, exactly? 238

9.4 The project: An end-to-end detector for lung cancer 241
Why can’t we just throw data at a neural network until it
works? 245 ■ What is a nodule? 249 ■ Our data source:
The LUNA Grand Challenge 251 ■ Downloading the LUNA
data 251

CONTENTSx

9.5 Conclusion 252

9.6 Summary 253

10 Combining data sources into a unified dataset 254
10.1 Raw CT data files 256

10.2 Parsing LUNA’s annotation data 256
Training and validation sets 258 ■ Unifying our annotation and
candidate data 259

10.3 Loading individual CT scans 262
Hounsfield Units 264

10.4 Locating a nodule using the patient coordinate system 265
The patient coordinate system 265 ■ CT scan shape and
voxel sizes 267 ■ Converting between millimeters and voxel
addresses 268 ■ Extracting a nodule from a CT scan 270

10.5 A straightforward dataset implementation 271
Caching candidate arrays with the getCtRawCandidate
function 274 ■ Constructing our dataset in LunaDataset
.__init__ 275 ■ A training/validation split 275 ■ Rendering
the data 277

10.6 Conclusion 277

10.7 Exercises 278

10.8 Summary 278

11 Training a classification model to detect suspected tumors 279
11.1 A foundational model and training loop 280

11.2 The main entry point for our application 282

11.3 Pretraining setup and initialization 284
Initializing the model and optimizer 285 ■ Care and feeding of
data loaders 287

11.4 Our first-pass neural network design 289
The core convolutions 290 ■ The full model 293

11.5 Training and validating the model 295
The computeBatchLoss function 297 ■ The validation loop is
similar 299

11.6 Outputting performance metrics 300
The logMetrics function 301

CONTENTS xi

11.7 Running the training script 304
Needed data for training 305 ■ Interlude: The
enumerateWithEstimate function 306

11.8 Evaluating the model: Getting 99.7% correct means we’re
done, right? 308

11.9 Graphing training metrics with TensorBoard 309
Running TensorBoard 309 ■ Adding TensorBoard support to the
metrics logging function 313

11.10 Why isn’t the model learning to detect nodules? 315

11.11 Conclusion 316

11.12 Exercises 316

11.13 Summary 316

12 Improving training with metrics and augmentation 318
12.1 High-level plan for improvement 319

12.2 Good dogs vs. bad guys: False positives and false negatives 320

12.3 Graphing the positives and negatives 322
Recall is Roxie’s strength 324 ■ Precision is Preston’s forte 326
Implementing precision and recall in logMetrics 327 ■ Our
ultimate performance metric: The F1 score 328 ■ How does our
model perform with our new metrics? 332

12.4 What does an ideal dataset look like? 334
Making the data look less like the actual and more like the “ideal” 336
Contrasting training with a balanced LunaDataset to previous
runs 341 ■ Recognizing the symptoms of overfitting 343

12.5 Revisiting the problem of overfitting 345
An overfit face-to-age prediction model 345

12.6 Preventing overfitting with data augmentation 346
Specific data augmentation techniques 347 ■ Seeing the
improvement from data augmentation 352

12.7 Conclusion 354

12.8 Exercises 355

12.9 Summary 356

13 Using segmentation to find suspected nodules 357
13.1 Adding a second model to our project 358

13.2 Various types of segmentation 360

CONTENTSxii

13.3 Semantic segmentation: Per-pixel classification 361
The U-Net architecture 364

13.4 Updating the model for segmentation 366
Adapting an off-the-shelf model to our project 367

13.5 Updating the dataset for segmentation 369
U-Net has very specific input size requirements 370 ■ U-Net trade-
offs for 3D vs. 2D data 370 ■ Building the ground truth
data 371 ■ Implementing Luna2dSegmentationDataset 378
Designing our training and validation data 382 ■ Implementing
TrainingLuna2dSegmentationDataset 383 ■ Augmenting on the
GPU 384

13.6 Updating the training script for segmentation 386
Initializing our segmentation and augmentation models 387
Using the Adam optimizer 388 ■ Dice loss 389 ■ Getting images
into TensorBoard 392 ■ Updating our metrics logging 396
Saving our model 397

13.7 Results 399

13.8 Conclusion 401

13.9 Exercises 402

13.10 Summary 402

14 End-to-end nodule analysis, and where to go next 404
14.1 Towards the finish line 405

14.2 Independence of the validation set 407

14.3 Bridging CT segmentation and nodule candidate
classification 408

Segmentation 410 ■ Grouping voxels into nodule candidates 411
Did we find a nodule? Classification to reduce false positives 412

14.4 Quantitative validation 416

14.5 Predicting malignancy 417
Getting malignancy information 417 ■ An area under the curve
baseline: Classifying by diameter 419 ■ Reusing preexisting
weights: Fine-tuning 422 ■ More output in TensorBoard 428

14.6 What we see when we diagnose 432
Training, validation, and test sets 433

14.7 What next? Additional sources of inspiration (and data) 434
Preventing overfitting: Better regularization 434 ■ Refined training
data 437 ■ Competition results and research papers 438

CONTENTS xiii

14.8 Conclusion 439
Behind the curtain 439

14.9 Exercises 441

14.10 Summary 441

PART 3 DEPLOYMENT ...443

15 Deploying to production 445
15.1 Serving PyTorch models 446

Our model behind a Flask server 446 ■ What we want from
deployment 448 ■ Request batching 449

15.2 Exporting models 455
Interoperability beyond PyTorch with ONNX 455 ■ PyTorch’s own
export: Tracing 456 ■ Our server with a traced model 458

15.3 Interacting with the PyTorch JIT 458
What to expect from moving beyond classic Python/PyTorch 458
The dual nature of PyTorch as interface and backend 460
TorchScript 461 ■ Scripting the gaps of traceability 464

15.4 LibTorch: PyTorch in C++ 465
Running JITed models from C++ 465 ■ C++ from the start: The
C++ API 468

15.5 Going mobile 472
Improving efficiency: Model design and quantization 475

15.6 Emerging technology: Enterprise serving of PyTorch
models 476

15.7 Conclusion 477

15.8 Exercises 477

15.9 Summary 477

index 479

xv

foreword
When we started the PyTorch project in mid-2016, we were a band of open source
hackers who met online and wanted to write better deep learning software. Two of the
three authors of this book, Luca Antiga and Thomas Viehmann, were instrumental in
developing PyTorch and making it the success that it is today.

 Our goal with PyTorch was to build the most flexible framework possible to express
deep learning algorithms. We executed with focus and had a relatively short develop-
ment time to build a polished product for the developer market. This wouldn’t have
been possible if we hadn’t been standing on the shoulders of giants. PyTorch derives a
significant part of its codebase from the Torch7 project started in 2007 by Ronan Col-
lobert and others, which has roots in the Lush programming language pioneered by
Yann LeCun and Leon Bottou. This rich history helped us focus on what needed to
change, rather than conceptually starting from scratch.

 It is hard to attribute the success of PyTorch to a single factor. The project offers a
good user experience and enhanced debuggability and flexibility, ultimately making
users more productive. The huge adoption of PyTorch has resulted in a beautiful eco-
system of software and research built on top of it, making PyTorch even richer in its
experience.

 Several courses and university curricula, as well as a huge number of online blogs
and tutorials, have been offered to make PyTorch easier to learn. However, we have
seen very few books. In 2017, when someone asked me, “When is the PyTorch book
going to be written?” I responded, “If it gets written now, I can guarantee that it will be
outdated by the time it is completed.”

FOREWORDxvi

 With the publication of Deep Learning with PyTorch, we finally have a definitive trea-
tise on PyTorch. It covers the basics and abstractions in great detail, tearing apart the
underpinnings of data structures like tensors and neural networks and making sure
you understand their implementation. Additionally, it covers advanced subjects such
as JIT and deployment to production (an aspect of PyTorch that no other book cur-
rently covers).

 Additionally, the book covers applications, taking you through the steps of using
neural networks to help solve a complex and important medical problem. With Luca’s
deep expertise in bioengineering and medical imaging, Eli’s practical experience cre-
ating software for medical devices and detection, and Thomas’s background as a
PyTorch core developer, this journey is treated carefully, as it should be.

 All in all, I hope this book becomes your “extended” reference document and an
important part of your library or workshop.

 SOUMITH CHINTALA

 COCREATOR OF PYTORCH

xvii

preface
As kids in the 1980s, taking our first steps on our Commodore VIC 20 (Eli), the Sin-
clair Spectrum 48K (Luca), and the Commodore C16 (Thomas), we saw the dawn of
personal computers, learned to code and write algorithms on ever-faster machines,
and often dreamed about where computers would take us. We also were painfully
aware of the gap between what computers did in movies and what they could do in
real life, collectively rolling our eyes when the main character in a spy movie said,
“Computer, enhance.”

 Later on, during our professional lives, two of us, Eli and Luca, independently
challenged ourselves with medical image analysis, facing the same kind of struggle
when writing algorithms that could handle the natural variability of the human body.
There was a lot of heuristics involved when choosing the best mix of algorithms that
could make things work and save the day. Thomas studied neural nets and pattern
recognition at the turn of the century but went on to get a PhD in mathematics
doing modeling.

 When deep learning came about at the beginning of the 2010s, making its initial
appearance in computer vision, it started being applied to medical image analysis
tasks like the identification of structures or lesions on medical images. It was at that
time, in the first half of the decade, that deep learning appeared on our individual
radars. It took a bit to realize that deep learning represented a whole new way of writ-
ing software: a new class of multipurpose algorithms that could learn how to solve
complicated tasks through the observation of data.

PREFACExviii

 To our kids-of-the-80s minds, the horizon of what computers could do expanded
overnight, limited not by the brains of the best programmers, but by the data, the neu-
ral network architecture, and the training process. The next step was getting our
hands dirty. Luca choose Torch 7 (http://torch.ch), a venerable precursor to
PyTorch; it’s nimble, lightweight, and fast, with approachable source code written in
Lua and plain C, a supportive community, and a long history behind it. For Luca, it
was love at first sight. The only real drawback with Torch 7 was being detached from
the ever-growing Python data science ecosystem that the other frameworks could draw
from. Eli had been interested in AI since college,1 but his career pointed him in other
directions, and he found other, earlier deep learning frameworks a bit too laborious
to get enthusiastic about using them for a hobby project.

 So we all got really excited when the first PyTorch release was made public on Jan-
uary 18, 2017. Luca started contributing to the core, and Eli was part of the commu-
nity very early on, submitting the odd bug fix, feature, or documentation update.
Thomas contributed a ton of features and bug fixes to PyTorch and eventually became
one of the independent core contributors. There was the feeling that something big
was starting up, at the right level of complexity and with a minimal amount of cogni-
tive overhead. The lean design lessons learned from the Torch 7 days were being car-
ried over, but this time with a modern set of features like automatic differentiation,
dynamic computation graphs, and NumPy integration.

 Given our involvement and enthusiasm, and after organizing a couple of PyTorch
workshops, writing a book felt like a natural next step. The goal was to write a book
that would have been appealing to our former selves getting started just a few years
back.

 Predictably, we started with grandiose ideas: teach the basics, walk through end-to-
end projects, and demonstrate the latest and greatest models in PyTorch. We soon
realized that would take a lot more than a single book, so we decided to focus on our
initial mission: devote time and depth to cover the key concepts underlying PyTorch,
assuming little or no prior knowledge of deep learning, and get to the point where we
could walk our readers through a complete project. For the latter, we went back to our
roots and chose to demonstrate a medical image analysis challenge.

1 Back when “deep” neural networks meant three hidden layers!

http://torch.ch

xix

acknowledgments
We are deeply indebted to the PyTorch team. It is through their collective effort that
PyTorch grew organically from a summer internship project to a world-class deep
learning tool. We would like to mention Soumith Chintala and Adam Paszke, who, in
addition to their technical excellence, worked actively toward adopting a “community
first” approach to managing the project. The level of health and inclusiveness in the
PyTorch community is a testament to their actions.

 Speaking of community, PyTorch would not be what it is if not for the relentless
work of individuals helping early adopters and experts alike on the discussion forum.
Of all the honorable contributors, Piotr Bialecki deserves our particular badge of grat-
itude. Speaking of the book, a particular shout-out goes to Joe Spisak, who believed in
the value that this book could bring to the community, and also Jeff Smith, who did an
incredible amount of work to bring that value to fruition. Bruce Lin’s work to excerpt
part 1 of this text and provide it to the PyTorch community free of charge is also
hugely appreciated.

 We would like to thank the team at Manning for guiding us through this journey,
always aware of the delicate balance between family, job, and writing in our respective
lives. Thanks to Erin Twohey for reaching out and asking if we’d be interested in writ-
ing a book, and thanks to Michael Stephens for tricking us into saying yes. We told you
we had no time! Brian Hanafee went above and beyond a reviewer’s duty. Arthur
Zubarev and Kostas Passadis gave great feedback, and Jennifer Houle had to deal with
our wacky art style. Our copyeditor, Tiffany Taylor, has an impressive eye for detail;
any mistakes are ours and ours alone. We would also like to thank our project editor,

ACKNOWLEDGMENTSxx

Deirdre Hiam, our proofreader, Katie Tennant, and our review editor, Ivan M arti-
nović. There are also a host of people working behind the scenes, glimpsed only on
the CC list of status update threads, and all necessary to bring this book to print.
Thank you to every name we’ve left off this list! The anonymous reviewers who gave
their honest feedback helped make this book what it is.

 Frances Lefkowitz, our tireless editor, deserves a medal and a week on a tropical
island after dragging this book over the finish line. Thank you for all you’ve done and
for the grace with which you did it.

 We would also like to thank our reviewers, who have helped to improve our book in
many ways: Aleksandr Erofeev, Audrey Carstensen, Bachir Chihani, Carlos Andres
Mariscal, Dale Neal, Daniel Berecz, Doniyor Ulmasov, Ezra Stevens, Godfred Asamoah,
Helen Mary Labao Barrameda, Hilde Van Gysel, Jason Leonard, Jeff Coggshall, Kostas
Passadis, Linnsey Nil, Mathieu Zhang, Michael Constant, Miguel Montalvo, Orlando
Alejo Méndez Morales, Philippe Van Bergen, Reece Stevens, Srinivas K. Raman, and
Yujan Shrestha.

 To our friends and family, wondering what rock we’ve been hiding under these
past two years: Hi! We missed you! Let’s have dinner sometime.

xxi

about this book
This book has the aim of providing the foundations of deep learning with PyTorch and
showing them in action in a real-life project. We strive to provide the key concepts under-
lying deep learning and show how PyTorch puts them in the hands of practitioners. In
the book, we try to provide intuition that will support further exploration, and in doing
so we selectively delve into details to show what is going on behind the curtain.

 Deep Learning with PyTorch doesn’t try to be a reference book; rather, it’s a concep-
tual companion that will allow you to independently explore more advanced material
online. As such, we focus on a subset of the features offered by PyTorch. The most
notable absence is recurrent neural networks, but the same is true for other parts of
the PyTorch API.

Who should read this book

This book is meant for developers who are or aim to become deep learning practi-
tioners and who want to get acquainted with PyTorch. We imagine our typical reader
to be a computer scientist, data scientist, or software engineer, or an undergraduate-
or-later student in a related program. Since we don’t assume prior knowledge of deep
learning, some parts in the first half of the book may be a repetition of concepts that
are already known to experienced practitioners. For those readers, we hope the expo-
sition will provide a slightly different angle to known topics.

 We expect readers to have basic knowledge of imperative and object-oriented pro-
gramming. Since the book uses Python, you should be familiar with the syntax and
operating environment. Knowing how to install Python packages and run scripts on

ABOUT THIS BOOKxxii

your platform of choice is a prerequisite. Readers coming from C++, Java, JavaScript,
Ruby, or other such languages should have an easy time picking it up but will need to
do some catch-up outside this book. Similarly, being familiar with NumPy will be use-
ful, if not strictly required. We also expect familiarity with some basic linear algebra,
such as knowing what matrices and vectors are and what a dot product is.

How this book is organized: A roadmap

Deep Learning with PyTorch is organized in three distinct parts. Part 1 covers the founda-
tions, while part 2 walks you through an end-to-end project, building on the basic con-
cepts introduced in part 1 and adding more advanced ones. The short part 3 rounds
off the book with a tour of what PyTorch offers for deployment. You will likely notice
different voices and graphical styles among the parts. Although the book is a result of
endless hours of collaborative planning, discussion, and editing, the act of writing and
authoring graphics was split among the parts: Luca was primarily in charge of part 1
and Eli of part 2.2 When Thomas came along, he tried to blend the style in part 3 and
various sections here and there with the writing in parts 1 and 2. Rather than finding a
minimum common denominator, we decided to preserve the original voices that char-
acterized the parts.

 Following is a breakdown of each part into chapters and a brief description of each.
PART 1

In part 1, we take our first steps with PyTorch, building the fundamental skills needed
to understand PyTorch projects out there in the wild as well as starting to build our
own. We’ll cover the PyTorch API and some behind-the-scenes features that make
PyTorch the library it is, and work on training an initial classification model. By the
end of part 1, we’ll be ready to tackle a real-world project.

 Chapter 1 introduces PyTorch as a library and its place in the deep learning revolu-
tion, and touches on what sets PyTorch apart from other deep learning frameworks.

 Chapter 2 shows PyTorch in action by running examples of pretrained networks; it
demonstrates how to download and run models in PyTorch Hub.

 Chapter 3 introduces the basic building block of PyTorch—the tensor—showing
its API and going behind the scenes with some implementation details.

 Chapter 4 demonstrates how different kinds of data can be represented as tensors
and how deep learning models expects tensors to be shaped.

 Chapter 5 walks through the mechanics of learning through gradient descent and
how PyTorch enables it with automatic differentiation.

 Chapter 6 shows the process of building and training a neural network for regres-
sion in PyTorch using the nn and optim modules.

 Chapter 7 builds on the previous chapter to create a fully connected model for
image classification and expand the knowledge of the PyTorch API.

 Chapter 8 introduces convolutional neural networks and touches on more advanced
concepts for building neural network models and their PyTorch implementation.

2 A smattering of Eli’s and Thomas’s art appears in other parts; don’t be shocked if the style changes mid-chapter!

ABOUT THIS BOOK xxiii

PART 2

In part 2, each chapter moves us closer to a comprehensive solution to automatic
detection of lung cancer. We’ll use this difficult problem as motivation to demonstrate
the real-world approaches needed to solve large-scale problems like cancer screening.
It is a large project with a focus on clean engineering, troubleshooting, and problem
solving.

 Chapter 9 describes the end-to-end strategy we’ll use for lung tumor classification,
starting from computed tomography (CT) imaging.

 Chapter 10 loads the human annotation data along with the images from CT scans
and converts the relevant information into tensors, using standard PyTorch APIs.

 Chapter 11 introduces a first classification model that consumes the training data
introduced in chapter 10. We train the model and collect basic performance metrics.
We also introduce using TensorBoard to monitor training.

 Chapter 12 explores and implements standard performance metrics and uses
those metrics to identify weaknesses in the training done previously. We then mitigate
those flaws with an improved training set that uses data balancing and augmentation.

 Chapter 13 describes segmentation, a pixel-to-pixel model architecture that we use
to produce a heatmap of possible nodule locations that covers the entire CT scan.
This heatmap can be used to find nodules on CT scans for which we do not have
human-annotated data.

 Chapter 14 implements the final end-to-end project: diagnosis of cancer patients
using our new segmentation model followed by classification.
PART 3

Part 3 is a single chapter on deployment. Chapter 15 provides an overview of how to
deploy PyTorch models to a simple web service, embed them in a C++ program, or
bring them to a mobile phone.

About the code

All of the code in this book was written for Python 3.6 or later. The code for the book
is available for download from Manning’s website (www.manning.com/books/
deep-learning-with-pytorch) and on GitHub (https://github.com/deep-learning-with-
pytorch/dlwpt-code). Version 3.6.8 was current at the time of writing and is what we
used to test the examples in this book. For example:

$ python
Python 3.6.8 (default, Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Command lines intended to be entered at a Bash prompt start with $ (for example,
the $ python line in this example). Fixed-width inline code looks like self.

 Code blocks that begin with >>> are transcripts of a session at the Python interac-
tive prompt. The >>> characters are not meant to be considered input; text lines that

https://www.manning.com/books/deep-learning-with-pytorch
https://www.manning.com/books/deep-learning-with-pytorch
https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code
https://github.com/deep-learning-with-pytorch/dlwpt-code

ABOUT THIS BOOKxxiv

do not start with >>> or … are output. In some cases, an extra blank line is inserted
before the >>> to improve readability in print. These blank lines are not included
when you actually enter the text at the interactive prompt:

>>> print("Hello, world!")
Hello, world!

>>> print("Until next time...")
Until next time...

We also make heavy use of Jupyter Notebooks, as described in chapter 1, in section
1.5.1. Code from a notebook that we provide as part of the official GitHub repository
looks like this:

In[1]:
print("Hello, world!")

Out[1]:
Hello, world!

In[2]:
print("Until next time...")

Out[2]:
Until next time...

Almost all of our example notebooks contain the following boilerplate in the first cell
(some lines may be missing in early chapters), which we skip including in the book
after this point:

In[1]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

torch.set_printoptions(edgeitems=2)
torch.manual_seed(123)

Otherwise, code blocks are partial or entire sections of .py source files.

def main():
print("Hello, world!")

if __name__ == '__main__':
main()

Listing 15.1 main.py:5, def main

This blank line would not be
present during an actual
interactive session.

ABOUT THIS BOOK xxv

Many of the code samples in the book are presented with two-space indents. Due to the
limitations of print, code listings are limited to 80-character lines, which can be imprac-
tical for heavily indented sections of code. The use of two-space indents helps to miti-
gate the excessive line wrapping that would otherwise be present. All of the code
available for download for the book (again, at www.manning.com/books/deep-learn-
ing-with-pytorch and https://github.com/deep-learning-with-pytorch/dlwpt-code)
uses a consistent four-space indent. Variables named with a _t suffix are tensors stored
in CPU memory, _g are tensors in GPU memory, and _a are NumPy arrays.

Hardware and software requirements

Part 1 has been designed to not require any particular computing resources. Any
recent computer or online computing resource will be adequate. Similarly, no certain
operating system is required. In part 2, we anticipate that completing a full training
run for the more advanced examples will require a CUDA-capable GPU. The default
parameters used in part 2 assume a GPU with 8 GB of RAM (we suggest an NVIDIA
GTX 1070 or better), but the parameters can be adjusted if your hardware has less
RAM available. The raw data needed for part 2’s cancer-detection project is about 60
GB to download, and you will need a total of 200 GB (at minimum) of free disk space
on the system that will be used for training. Luckily, online computing services
recently started offering GPU time for free. We discuss computing requirements in
more detail in the appropriate sections.

 You need Python 3.6 or later; instructions can be found on the Python website (www
.python.org/downloads). For PyTorch installation information, see the Get Started
guide on the official PyTorch website (https://pytorch.org/get-started/locally).
We suggest that Windows users install with Anaconda or Miniconda (https://www
.anaconda.com/distribution or https://docs.conda.io/en/latest/miniconda.html).
Other operating systems like Linux typically have a wider variety of workable options,
with Pip being the most common package manager for Python. We provide a require-
ments.txt file that Pip can use to install dependencies. Since current Apple laptops do
not include GPUs that support CUDA, the precompiled macOS packages for PyTorch
are CPU-only. Of course, experienced users are free to install packages in the way that
is most compatible with your preferred development environment.

liveBook discussion forum

Purchase of Deep Learning with PyTorch includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/deep-learning-with-pytorch/
discussion. You can learn more about Manning’s forums and the rules of conduct at
https://livebook.manning .com/#!/discussion. Manning’s commitment to our read-
ers is to provide a venue where a meaningful dialogue between individual readers and
between readers and the author can take place. It is not a commitment to any specific

https://www.manning.com/books/deep-learning-with-pytorch
https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code
http://www.python.org/downloads
http://www.python.org/downloads
http://www.python.org/downloads
https://pytorch.org/get-started/locally
https://www.anaconda.com/distribution
https://www.anaconda.com/distribution
https://www.anaconda.com/distribution
https://docs.conda.io/en/latest/miniconda.html
https://livebook.manning.com/#!/book/deep-learning-with-pytorch/discussion
https://livebook.manning.com/#!/book/deep-learning-with-pytorch/discussion
https://livebook.manning .com/#!/discussion

ABOUT THIS BOOKxxvi

amount of participation on the part of the authors, whose contribution to the forum
remains voluntary (and unpaid). We suggest you try asking them some challenging
questions lest their interest stray! The forum and the archives of previous discussions
will be accessible from the publisher’s website as long as the book is in print.

Other online resources

Although this book does not assume prior knowledge of deep learning, it is not a foun-
dational introduction to deep learning. We cover the basics, but our focus is on proficiency
with the PyTorch library. We encourage interested readers to build up an intuitive under-
standing of deep learning either before, during, or after reading this book. Toward that
end, Grokking Deep Learning (www.manning.com/books/grokking-deep-learning) is a
great resource for developing a strong mental model and intuition about the mechanism
underlying deep neural networks. For a thorough introduction and reference, we direct
you to Deep Learning by Goodfellow et al. (www.deeplearningbook.org). And of course,
Manning Publications has an extensive catalog of deep learning titles (www.manning
.com/catalog#section-83) that cover a wide variety of topics in the space. Depending on
your interests, many of them will make an excellent next book to read.

https://www.manning.com/books/grokking-deep-learning
http://www.deeplearningbook.org
https://www.manning.com/catalog#section-83
https://www.manning.com/catalog#section-83
https://www.manning.com/catalog#section-83

xxvii

about the authors
Eli Stevens has spent the majority of his career working at startups in Silicon Valley,
with roles ranging from software engineer (making enterprise networking appliances)
to CTO (developing software for radiation oncology). At publication, he is working
on machine learning in the self-driving-car industry.

 Luca Antiga worked as a researcher in biomedical engineering in the 2000s, and
spent the last decade as a cofounder and CTO of an AI engineering company. He has
contributed to several open source projects, including the PyTorch core. He recently
cofounded a US-based startup focused on infrastructure for data-defined software.

 Thomas Viehmann is a machine learning and PyTorch specialty trainer and con-
sultant based in Munich, Germany, and a PyTorch core developer. With a PhD in
mathematics, he is not scared by theory, but he is thoroughly practical when applying
it to computing challenges.

xxviii

about the cover illustration
The figure on the cover of Deep Learning with PyTorch is captioned “Kardinian.” The
illustration is taken from a collection of dress costumes from various countries by
Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes civils actuels de tous les
peuples connus, published in France in 1788. Each illustration is finely drawn and col-
ored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Part 1

Core PyTorch

Welcome to the first part of this book. This is where we’ll take our first
steps with PyTorch, gaining the fundamental skills needed to understand its
anatomy and work out the mechanics of a PyTorch project.

 In chapter 1, we’ll make our first contact with PyTorch, understand what it is
and what problems it solves, and how it relates to other deep learning frame-
works. Chapter 2 will take us on a tour, giving us a chance to play with models
that have been pretrained on fun tasks. Chapter 3 gets a bit more serious and
teaches the basic data structure used in PyTorch programs: the tensor. Chapter 4
will take us on another tour, this time across ways to represent data from differ-
ent domains as PyTorch tensors. Chapter 5 unveils how a program can learn
from examples and how PyTorch supports this process. Chapter 6 provides the
fundamentals of what a neural network is and how to build a neural network
with PyTorch. Chapter 7 tackles a simple image classification problem with a
neural network architecture. Finally, chapter 8 shows how the same problem can
be cracked in a much smarter way using a convolutional neural network.

 By the end of part 1, we’ll have what it takes to tackle a real-world problem
with PyTorch in part 2.

3

Introducing deep
 learning and the
 PyTorch Library

The poorly defined term artificial intelligence covers a set of disciplines that have
been subjected to a tremendous amount of research, scrutiny, confusion, fantasti-
cal hype, and sci-fi fearmongering. Reality is, of course, far more sanguine. It would
be disingenuous to assert that today’s machines are learning to “think” in any
human sense of the word. Rather, we’ve discovered a general class of algorithms

This chapter covers
 How deep learning changes our approach to

machine learning

 Understanding why PyTorch is a good fit for deep
learning

 Examining a typical deep learning project

 The hardware you’ll need to follow along with the
examples

4 CHAPTER 1 Introducing deep learning and the PyTorch Library

that are able to approximate complicated, nonlinear processes very, very effectively,
which we can use to automate tasks that were previously limited to humans.

 For example, at https://talktotransformer.com, a language model called GPT-2
can generate coherent paragraphs of text one word at a time. When we fed it this very
paragraph, it produced the following:

Next we’re going to feed in a list of phrases from a corpus of email addresses, and see if the
program can parse the lists as sentences. Again, this is much more complicated and far more
complex than the search at the beginning of this post, but hopefully helps you understand the
basics of constructing sentence structures in various programming languages.

That’s remarkably coherent for a machine, even if there isn’t a well-defined thesis
behind the rambling.

 Even more impressively, the ability to perform these formerly human-only tasks is
acquired through examples, rather than encoded by a human as a set of handcrafted
rules. In a way, we’re learning that intelligence is a notion we often conflate with self-
awareness, and self-awareness is definitely not required to successfully carry out these
kinds of tasks. In the end, the question of computer intelligence might not even be
important. Edsger W. Dijkstra found that the question of whether machines could
think was “about as relevant as the question of whether Submarines Can Swim.”1

 That general class of algorithms we’re talking about falls under the AI subcategory
of deep learning, which deals with training mathematical entities named deep neural net-
works by presenting instructive examples. Deep learning uses large amounts of data to
approximate complex functions whose inputs and outputs are far apart, like an input
image and, as output, a line of text describing the input; or a written script as input
and a natural-sounding voice reciting the script as output; or, even more simply, asso-
ciating an image of a golden retriever with a flag that tells us “Yes, a golden retriever is
present.” This kind of capability allows us to create programs with functionality that
was, until very recently, exclusively the domain of human beings.

1.1 The deep learning revolution
To appreciate the paradigm shift ushered in by this deep learning approach, let’s take
a step back for a bit of perspective. Until the last decade, the broader class of systems
that fell under the label machine learning relied heavily on feature engineering. Features
are transformations on input data that facilitate a downstream algorithm, like a classi-
fier, to produce correct outcomes on new data. Feature engineering consists of com-
ing up with the right transformations so that the downstream algorithm can solve a
task. For instance, in order to tell ones from zeros in images of handwritten digits, we
would come up with a set of filters to estimate the direction of edges over the image,
and then train a classifier to predict the correct digit given a distribution of edge
directions. Another useful feature could be the number of enclosed holes, as seen in a
zero, an eight, and, particularly, loopy twos.

1 Edsger W. Dijkstra, “The Threats to Computing Science,” http://mng.bz/nPJ5.

http://mng.bz/nPJ5
https://talktotransformer.com

5The deep learning revolution

 Deep learning, on the other hand, deals with finding such representations auto-
matically, from raw data, in order to successfully perform a task. In the ones versus
zeros example, filters would be refined during training by iteratively looking at pairs
of examples and target labels. This is not to say that feature engineering has no place
with deep learning; we often need to inject some form of prior knowledge in a learn-
ing system. However, the ability of a neural network to ingest data and extract useful
representations on the basis of examples is what makes deep learning so powerful.
The focus of deep learning practitioners is not so much on handcrafting those repre-
sentations, but on operating on a mathematical entity so that it discovers representa-
tions from the training data autonomously. Often, these automatically created
features are better than those that are handcrafted! As with many disruptive technolo-
gies, this fact has led to a change in perspective.

 On the left side of figure 1.1, we see a practitioner busy defining engineering fea-
tures and feeding them to a learning algorithm; the results on the task will be as good
as the features the practitioner engineers. On the right, with deep learning, the raw
data is fed to an algorithm that extracts hierarchical features automatically, guided by
the optimization of its own performance on the task; the results will be as good as the
ability of the practitioner to drive the algorithm toward its goal.

DATA DATA

DEeP

LEARNING

MACHINE

OUTCOME

42

42

0

OUTCOME

REPRESENTATIONS

THE PARAdIGm SHIFT

LEARNING

MACHINE

HAND-

CRAFTED

FEATURES

Figure 1.1 Deep learning exchanges the need to handcraft features for an increase in data and
computational requirements.

6 CHAPTER 1 Introducing deep learning and the PyTorch Library

Starting from the right side in figure 1.1, we already get a glimpse of what we need to
execute successful deep learning:

 We need a way to ingest whatever data we have at hand.
 We somehow need to define the deep learning machine.
 We must have an automated way, training, to obtain useful representations and

make the machine produce desired outputs.

This leaves us with taking a closer look at this training thing we keep talking about.
During training, we use a criterion, a real-valued function of model outputs and refer-
ence data, to provide a numerical score for the discrepancy between the desired and
actual output of our model (by convention, a lower score is typically better). Training
consists of driving the criterion toward lower and lower scores by incrementally modi-
fying our deep learning machine until it achieves low scores, even on data not seen
during training.

1.2 PyTorch for deep learning
PyTorch is a library for Python programs that facilitates building deep learning proj-
ects. It emphasizes flexibility and allows deep learning models to be expressed in idi-
omatic Python. This approachability and ease of use found early adopters in the
research community, and in the years since its first release, it has grown into one of
the most prominent deep learning tools across a broad range of applications.

 As Python does for programming, PyTorch provides an excellent introduction to
deep learning. At the same time, PyTorch has been proven to be fully qualified for use
in professional contexts for real-world, high-profile work. We believe that PyTorch’s
clear syntax, streamlined API, and easy debugging make it an excellent choice for
introducing deep learning. We highly recommend studying PyTorch for your first
deep learning library. Whether it ought to be the last deep learning library you learn
is a decision we leave up to you.

 At its core, the deep learning machine in figure 1.1 is a rather complex mathemat-
ical function mapping inputs to an output. To facilitate expressing this function,
PyTorch provides a core data structure, the tensor, which is a multidimensional array
that shares many similarities with NumPy arrays. Around that foundation, PyTorch
comes with features to perform accelerated mathematical operations on dedicated
hardware, which makes it convenient to design neural network architectures and train
them on individual machines or parallel computing resources.

 This book is intended as a starting point for software engineers, data scientists, and
motivated students fluent in Python to become comfortable using PyTorch to build
deep learning projects. We want this book to be as accessible and useful as possible,
and we expect that you will be able to take the concepts in this book and apply them
to other domains. To that end, we use a hands-on approach and encourage you to
keep your computer at the ready, so you can play with the examples and take them a
step further. By the time we are through with the book, we expect you to be able to

7Why PyTorch?

take a data source and build out a deep learning project with it, supported by the
excellent official documentation.

 Although we stress the practical aspects of building deep learning systems with
PyTorch, we believe that providing an accessible introduction to a foundational deep
learning tool is more than just a way to facilitate the acquisition of new technical skills.
It is a step toward equipping a new generation of scientists, engineers, and practi-
tioners from a wide range of disciplines with working knowledge that will be the back-
bone of many software projects during the decades to come.

 In order to get the most out of this book, you will need two things:

 Some experience programming in Python. We’re not going to pull any punches
on that one; you’ll need to be up on Python data types, classes, floating-point
numbers, and the like.

 A willingness to dive in and get your hands dirty. We’ll be starting from the
basics and building up our working knowledge, and it will be much easier for
you to learn if you follow along with us.

Deep Learning with PyTorch is organized in three distinct parts. Part 1 covers the founda-
tions, examining in detail the facilities PyTorch offers to put the sketch of deep learn-
ing in figure 1.1 into action with code. Part 2 walks you through an end-to-end project
involving medical imaging: finding and classifying tumors in CT scans, building on
the basic concepts introduced in part 1, and adding more advanced topics. The short
part 3 rounds off the book with a tour of what PyTorch offers for deploying deep
learning models to production.

 Deep learning is a huge space. In this book, we will be covering a tiny part of that
space: specifically, using PyTorch for smaller-scope classification and segmentation
projects, with image processing of 2D and 3D datasets used for most of the motivating
examples. This book focuses on practical PyTorch, with the aim of covering enough
ground to allow you to solve real-world machine learning problems, such as in vision,
with deep learning or explore new models as they pop up in research literature. Most,
if not all, of the latest publications related to deep learning research can be found in
the arXiV public preprint repository, hosted at https://arxiv.org.2

1.3 Why PyTorch?
As we’ve said, deep learning allows us to carry out a very wide range of complicated tasks,
like machine translation, playing strategy games, or identifying objects in cluttered
scenes, by exposing our model to illustrative examples. In order to do so in practice, we
need tools that are flexible, so they can be adapted to such a wide range of problems,
and efficient, to allow training to occur over large amounts of data in reasonable times;
and we need the trained model to perform correctly in the presence of variability in the
inputs. Let’s take a look at some of the reasons we decided to use PyTorch.

2 We also recommend www.arxiv-sanity.com to help organize research papers of interest.

https://arxiv.org
http://www.arxiv-sanity.com/

8 CHAPTER 1 Introducing deep learning and the PyTorch Library

 PyTorch is easy to recommend because of its simplicity. Many researchers and prac-
titioners find it easy to learn, use, extend, and debug. It’s Pythonic, and while like any
complicated domain it has caveats and best practices, using the library generally feels
familiar to developers who have used Python previously.

 More concretely, programming the deep learning machine is very natural in
PyTorch. PyTorch gives us a data type, the Tensor, to hold numbers, vectors, matrices,
or arrays in general. In addition, it provides functions for operating on them. We can
program with them incrementally and, if we want, interactively, just like we are used to
from Python. If you know NumPy, this will be very familiar.

 But PyTorch offers two things that make it particularly relevant for deep learning:
first, it provides accelerated computation using graphical processing units (GPUs),
often yielding speedups in the range of 50x over doing the same calculation on a
CPU. Second, PyTorch provides facilities that support numerical optimization on
generic mathematical expressions, which deep learning uses for training. Note that
both features are useful for scientific computing in general, not exclusively for deep
learning. In fact, we can safely characterize PyTorch as a high-performance library
with optimization support for scientific computing in Python.

 A design driver for PyTorch is expressivity, allowing a developer to implement com-
plicated models without undue complexity being imposed by the library (it’s not a
framework!). PyTorch arguably offers one of the most seamless translations of ideas
into Python code in the deep learning landscape. For this reason, PyTorch has seen
widespread adoption in research, as witnessed by the high citation counts at interna-
tional conferences.3

 PyTorch also has a compelling story for the transition from research and develop-
ment into production. While it was initially focused on research workflows, PyTorch
has been equipped with a high-performance C++ runtime that can be used to deploy
models for inference without relying on Python, and can be used for designing and
training models in C++. It has also grown bindings to other languages and an inter-
face for deploying to mobile devices. These features allow us to take advantage of
PyTorch’s flexibility and at the same time take our applications where a full Python
runtime would be hard to get or would impose expensive overhead.

 Of course, claims of ease of use and high performance are trivial to make. We
hope that by the time you are in the thick of this book, you’ll agree with us that our
claims here are well founded.

1.3.1 The deep learning competitive landscape

While all analogies are flawed, it seems that the release of PyTorch 0.1 in January 2017
marked the transition from a Cambrian-explosion-like proliferation of deep learning
libraries, wrappers, and data-exchange formats into an era of consolidation and
unification.

3 At the International Conference on Learning Representations (ICLR) 2019, PyTorch appeared as a citation
in 252 papers, up from 87 the previous year and at the same level as TensorFlow, which appeared in 266 papers.

9Why PyTorch?

NOTE The deep learning landscape has been moving so quickly lately that by
the time you read this in print, it will likely be out of date. If you’re unfamiliar
with some of the libraries mentioned here, that’s fine.

At the time of PyTorch’s first beta release:

 Theano and TensorFlow were the premiere low-level libraries, working with a
model that had the user define a computational graph and then execute it.

 Lasagne and Keras were high-level wrappers around Theano, with Keras wrap-
ping TensorFlow and CNTK as well.

 Caffe, Chainer, DyNet, Torch (the Lua-based precursor to PyTorch), MXNet,
CNTK, DL4J, and others filled various niches in the ecosystem.

In the roughly two years that followed, the landscape changed drastically. The com-
munity largely consolidated behind either PyTorch or TensorFlow, with the adoption
of other libraries dwindling, except for those filling specific niches. In a nutshell:

 Theano, one of the first deep learning frameworks, has ceased active development.
 TensorFlow:

– Consumed Keras entirely, promoting it to a first-class API
– Provided an immediate-execution “eager mode” that is somewhat similar to

how PyTorch approaches computation
– Released TF 2.0 with eager mode by default

 JAX, a library by Google that was developed independently from TensorFlow,
has started gaining traction as a NumPy equivalent with GPU, autograd and JIT
capabilities.

 PyTorch:
– Consumed Caffe2 for its backend
– Replaced most of the low-level code reused from the Lua-based Torch project
– Added support for ONNX, a vendor-neutral model description and

exchange format
– Added a delayed-execution “graph mode” runtime called TorchScript
– Released version 1.0
– Replaced CNTK and Chainer as the framework of choice by their respective

corporate sponsors

TensorFlow has a robust pipeline to production, an extensive industry-wide commu-
nity, and massive mindshare. PyTorch has made huge inroads with the research and
teaching communities, thanks to its ease of use, and has picked up momentum since,
as researchers and graduates train students and move to industry. It has also built up
steam in terms of production solutions. Interestingly, with the advent of TorchScript
and eager mode, both PyTorch and TensorFlow have seen their feature sets start to
converge with the other’s, though the presentation of these features and the overall
experience is still quite different between the two.

10 CHAPTER 1 Introducing deep learning and the PyTorch Library

1.4 An overview of how PyTorch supports deep learning projects
We have already hinted at a few building blocks in PyTorch. Let’s now take some time
to formalize a high-level map of the main components that form PyTorch. We can best
do this by looking at what a deep learning project needs from PyTorch.

 First, PyTorch has the “Py” as in Python, but there’s a lot of non-Python code in it.
Actually, for performance reasons, most of PyTorch is written in C++ and CUDA
(www.geforce.com/hardware/technology/cuda), a C++-like language from NVIDIA
that can be compiled to run with massive parallelism on GPUs. There are ways to run
PyTorch directly from C++, and we’ll look into those in chapter 15. One of the motiva-
tions for this capability is to provide a reliable strategy for deploying models in pro-
duction. However, most of the time we’ll interact with PyTorch from Python, building
models, training them, and using the trained models to solve actual problems.

 Indeed, the Python API is where PyTorch shines in term of usability and integra-
tion with the wider Python ecosystem. Let’s take a peek at the mental model of what
PyTorch is.

 As we already touched on, at its core, PyTorch is a library that provides multidimen-
sional arrays, or tensors in PyTorch parlance (we’ll go into details on those in chapter
3), and an extensive library of operations on them, provided by the torch module.
Both tensors and the operations on them can be used on the CPU or the GPU. Mov-
ing computations from the CPU to the GPU in PyTorch doesn’t require more than an
additional function call or two. The second core thing that PyTorch provides is the
ability of tensors to keep track of the operations performed on them and to analyti-
cally compute derivatives of an output of a computation with respect to any of its
inputs. This is used for numerical optimization, and it is provided natively by tensors
by virtue of dispatching through PyTorch’s autograd engine under the hood.

 By having tensors and the autograd-enabled tensor standard library, PyTorch can
be used for physics, rendering, optimization, simulation, modeling, and more—we’re
very likely to see PyTorch used in creative ways throughout the spectrum of scientific
applications. But PyTorch is first and foremost a deep learning library, and as such it
provides all the building blocks needed to build neural networks and train them. Fig-
ure 1.2 shows a standard setup that loads data, trains a model, and then deploys that
model to production.

 The core PyTorch modules for building neural networks are located in torch.nn,
which provides common neural network layers and other architectural components.
Fully connected layers, convolutional layers, activation functions, and loss functions
can all be found here (we’ll go into more detail about what all that means as we go
through the rest of this book). These components can be used to build and initialize
the untrained model we see in the center of figure 1.2. In order to train our model, we
need a few additional things: a source of training data, an optimizer to adapt the
model to the training data, and a way to get the model and data to the hardware that
will actually be performing the calculations needed for training the model.

https://www.geforce.com/hardware/technology/cuda

11An overview of how PyTorch supports deep learning projects

At left in figure 1.2, we see that quite a bit of data processing is needed before the
training data even reaches our model.4 First we need to physically get the data, most
often from some sort of storage as the data source. Then we need to convert each sam-
ple from our data into a something PyTorch can actually handle: tensors. This bridge
between our custom data (in whatever format it might be) and a standardized
PyTorch tensor is the Dataset class PyTorch provides in torch.utils.data. As this
process is wildly different from one problem to the next, we will have to implement
this data sourcing ourselves. We will look in detail at how to represent various type of
data we might want to work with as tensors in chapter 4.

 As data storage is often slow, in particular due to access latency, we want to paral-
lelize data loading. But as the many things Python is well loved for do not include easy,
efficient, parallel processing, we will need multiple processes to load our data, in order
to assemble them into batches: tensors that encompass several samples. This is rather
elaborate; but as it is also relatively generic, PyTorch readily provides all that magic in
the DataLoader class. Its instances can spawn child processes to load data from a data-
set in the background so that it’s ready and waiting for the training loop as soon as the
loop can use it. We will meet and use Dataset and DataLoader in chapter 7.

4 And that’s just the data preparation that is done on the fly, not the preprocessing, which can be a pretty large
part in practical projects.

PRODUCTION

SERVER

CLOUD

PRODUCTION

(ONnX, JIT

TORCHSCRIPT)

TRAINED

MODEL

TRAINING

LOoP

BATCH

TENSOR

SAMPLE

TENSORS

DATA

SOURCE

MULTIPROCESs

DATA LOADING

UNTRAINED

MODEL

DISTRIBUTED TRAINING

ON MULTIPLE SERVERS/GPUS

Figure 1.2 Basic, high-level structure of a PyTorch project, with data loading, training, and
deployment to production

12 CHAPTER 1 Introducing deep learning and the PyTorch Library

 With the mechanism for getting batches of samples in place, we can turn to the
training loop itself at the center of figure 1.2. Typically, the training loop is imple-
mented as a standard Python for loop. In the simplest case, the model runs the
required calculations on the local CPU or a single GPU, and once the training loop
has the data, computation can start immediately. Chances are this will be your basic
setup, too, and it’s the one we’ll assume in this book.

 At each step in the training loop, we evaluate our model on the samples we got
from the data loader. We then compare the outputs of our model to the desired out-
put (the targets) using some criterion or loss function. Just as it offers the components
from which to build our model, PyTorch also has a variety of loss functions at our dis-
posal. They, too, are provided in torch.nn. After we have compared our actual out-
puts to the ideal with the loss functions, we need to push the model a little to move its
outputs to better resemble the target. As mentioned earlier, this is where the PyTorch
autograd engine comes in; but we also need an optimizer doing the updates, and that is
what PyTorch offers us in torch.optim. We will start looking at training loops with loss
functions and optimizers in chapter 5 and then hone our skills in chapters 6 through
8 before embarking on our big project in part 2.

 It’s increasingly common to use more elaborate hardware like multiple GPUs or
multiple machines that contribute their resources to training a large model, as seen in
the bottom center of figure 1.2. In those cases, torch.nn.parallel.Distributed-
DataParallel and the torch.distributed submodule can be employed to use the
additional hardware.

 The training loop might be the most unexciting yet most time-consuming part of a
deep learning project. At the end of it, we are rewarded with a model whose parame-
ters have been optimized on our task: the trained model depicted to the right of the
training loop in the figure. Having a model to solve a task is great, but in order for it
to be useful, we must put it where the work is needed. This deployment part of the pro-
cess, depicted on the right in figure 1.2, may involve putting the model on a server or
exporting it to load it to a cloud engine, as shown in the figure. Or we might integrate
it with a larger application, or run it on a phone.

 One particular step of the deployment exercise can be to export the model. As
mentioned earlier, PyTorch defaults to an immediate execution model (eager mode).
Whenever an instruction involving PyTorch is executed by the Python interpreter, the
corresponding operation is immediately carried out by the underlying C++ or CUDA
implementation. As more instructions operate on tensors, more operations are exe-
cuted by the backend implementation.

 PyTorch also provides a way to compile models ahead of time through TorchScript.
Using TorchScript, PyTorch can serialize a model into a set of instructions that can be
invoked independently from Python: say, from C++ programs or on mobile devices. We
can think about it as a virtual machine with a limited instruction set, specific to tensor
operations. This allows us to export our model, either as TorchScript to be used with
the PyTorch runtime, or in a standardized format called ONNX. These features are at

13Hardware and software requirements

the basis of the production deployment capabilities of PyTorch. We’ll cover this in
chapter 15.

1.5 Hardware and software requirements
This book will require coding and running tasks that involve heavy numerical comput-
ing, such as multiplication of large numbers of matrices. As it turns out, running a
pretrained network on new data is within the capabilities of any recent laptop or per-
sonal computer. Even taking a pretrained network and retraining a small portion of it
to specialize it on a new dataset doesn’t necessarily require specialized hardware. You
can follow along with everything we do in part 1 of this book using a standard per-
sonal computer or laptop.

 However, we anticipate that completing a full training run for the more advanced
examples in part 2 will require a CUDA-capable GPU. The default parameters used in
part 2 assume a GPU with 8 GB of RAM (we suggest an NVIDIA GTX 1070 or better),
but those can be adjusted if your hardware has less RAM available. To be clear: such
hardware is not mandatory if you’re willing to wait, but running on a GPU cuts train-
ing time by at least an order of magnitude (and usually it’s 40–50x faster). Taken indi-
vidually, the operations required to compute parameter updates are fast (from
fractions of a second to a few seconds) on modern hardware like a typical laptop CPU.
The issue is that training involves running these operations over and over, many, many
times, incrementally updating the network parameters to minimize the training error.

 Moderately large networks can take hours to days to train from scratch on large,
real-world datasets on workstations equipped with a good GPU. That time can be
reduced by using multiple GPUs on the same machine, and even further on clusters
of machines equipped with multiple GPUs. These setups are less prohibitive to access
than it sounds, thanks to the offerings of cloud computing providers. DAWNBench
(https://dawn.cs.stanford.edu/benchmark/index.html) is an interesting initiative
from Stanford University aimed at providing benchmarks on training time and cloud
computing costs related to common deep learning tasks on publicly available datasets.

 So, if there’s a GPU around by the time you reach part 2, then great. Otherwise, we
suggest checking out the offerings from the various cloud platforms, many of which offer
GPU-enabled Jupyter Notebooks with PyTorch preinstalled, often with a free quota. Goo-
gle Colaboratory (https://colab.research.google.com) is a great place to start.

 The last consideration is the operating system (OS). PyTorch has supported Linux
and macOS from its first release, and it gained Windows support in 2018. Since cur-
rent Apple laptops do not include GPUs that support CUDA, the precompiled macOS
packages for PyTorch are CPU-only. Throughout the book, we will try to avoid assum-
ing you are running a particular OS, although some of the scripts in part 2 are shown
as if running from a Bash prompt under Linux. Those scripts’ command lines should
convert to a Windows-compatible form readily. For convenience, code will be listed as
if running from a Jupyter Notebook when possible.

https://colab.research.google.com
https://dawn.cs.stanford.edu/benchmark/index.html

14 CHAPTER 1 Introducing deep learning and the PyTorch Library

 For installation information, please see the Get Started guide on the official
PyTorch website (https://pytorch.org/get-started/locally). We suggest that Windows
users install with Anaconda or Miniconda (https://www.anaconda.com/distribution
or https://docs.conda.io/en/latest/miniconda.html). Other operating systems like
Linux typically have a wider variety of workable options, with Pip being the most com-
mon package manager for Python. We provide a requirements.txt file that pip can use
to install dependencies. Of course, experienced users are free to install packages in
the way that is most compatible with your preferred development environment.

 Part 2 has some nontrivial download bandwidth and disk space requirements as
well. The raw data needed for the cancer-detection project in part 2 is about 60 GB to
download, and when uncompressed it requires about 120 GB of space. The com-
pressed data can be removed after decompressing it. In addition, due to caching some
of the data for performance reasons, another 80 GB will be needed while training.
You will need a total of 200 GB (at minimum) of free disk space on the system that will
be used for training. While it is possible to use network storage for this, there might be
training speed penalties if the network access is slower than local disk. Preferably you
will have space on a local SSD to store the data for fast retrieval.

1.5.1 Using Jupyter Notebooks
We’re going to assume you’ve installed PyTorch and the other dependencies and have
verified that things are working. Earlier we touched on the possibilities for following
along with the code in the book. We are going to be making heavy use of Jupyter Note-
books for our example code. A Jupyter Notebook shows itself as a page in the browser
through which we can run code interactively. The code is evaluated by a kernel, a process
running on a server that is ready to receive code to execute and send back the results,
which are then rendered inline on the page. A notebook maintains the state of the ker-
nel, like variables defined during the evaluation of code, in memory until it is termi-
nated or restarted. The fundamental unit with which we interact with a notebook is a
cell : a box on the page where we can type code and have the kernel evaluate it (through
the menu item or by pressing Shift-Enter). We can add multiple cells in a notebook, and
the new cells will see the variables we created in the earlier cells. The value returned by
the last line of a cell will be printed right below the cell after execution, and the same
goes for plots. By mixing source code, results of evaluations, and Markdown-formatted
text cells, we can generate beautiful interactive documents. You can read everything
about Jupyter Notebooks on the project website (https://jupyter.org).

 At this point, you need to start the notebook server from the root directory of the
code checkout from GitHub. How exactly starting the server looks depends on the
details of your OS and how and where you installed Jupyter. If you have questions, feel
free to ask on the book’s forum.5 Once started, your default browser will pop up,
showing a list of local notebook files.

5 https://forums.manning.com/forums/deep-learning-with-pytorch

https://pytorch.org/get-started/locally
https://www.anaconda.com/distribution
https://docs.conda.io/en/latest/miniconda.html
https://forums.manning.com/forums/deep-learning-with-pytorch
https://jupyter.org

15Summary

NOTE Jupyter Notebooks are a powerful tool for expressing and investigating
ideas through code. While we think that they make for a good fit for our use
case with this book, they’re not for everyone. We would argue that it’s import-
ant to focus on removing friction and minimizing cognitive overhead, and
that’s going to be different for everyone. Use what you like during your exper-
imentation with PyTorch.

Full working code for all listings from the book can be found at the book’s website
(www.manning.com/books/deep-learning-with-pytorch) and in our repository on
GitHub (https://github.com/deep-learning-with-pytorch/dlwpt-code).

1.6 Exercises
1 Start Python to get an interactive prompt.

a What Python version are you using? We hope it is at least 3.6!
b Can you import torch? What version of PyTorch do you get?
c What is the result of torch.cuda.is_available()? Does it match your

expectation based on the hardware you’re using?
2 Start the Jupyter notebook server.

a What version of Python is Jupyter using?
b Is the location of the torch library used by Jupyter the same as the one you

imported from the interactive prompt?

1.7 Summary
 Deep learning models automatically learn to associate inputs and desired out-

puts from examples.
 Libraries like PyTorch allow you to build and train neural network models

efficiently.
 PyTorch minimizes cognitive overhead while focusing on flexibility and speed.

It also defaults to immediate execution for operations.
 TorchScript allows us to precompile models and invoke them not only from

Python but also from C++ programs and on mobile devices.
 Since the release of PyTorch in early 2017, the deep learning tooling ecosystem

has consolidated significantly.
 PyTorch provides a number of utility libraries to facilitate deep learning projects.

https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code

16

Pretrained networks

We closed our first chapter promising to unveil amazing things in this chapter, and
now it’s time to deliver. Computer vision is certainly one of the fields that have
been most impacted by the advent of deep learning, for a variety of reasons. The
need to classify or interpret the content of natural images existed, very large data-
sets became available, and new constructs such as convolutional layers were
invented and could be run quickly on GPUs with unprecedented accuracy. All of
these factors combined with the internet giants’ desire to understand pictures
taken by millions of users with their mobile devices and managed on said giants’
platforms. Quite the perfect storm.

 We are going to learn how to use the work of the best researchers in the field by
downloading and running very interesting models that have already been trained on
open, large-scale datasets. We can think of a pretrained neural network as similar to

This chapter covers
 Running pretrained image-recognition models

 An introduction to GANs and CycleGAN

 Captioning models that can produce text
descriptions of images

 Sharing models through Torch Hub

17A pretrained network that recognizes the subject of an image

a program that takes inputs and generates outputs. The behavior of such a program is
dictated by the architecture of the neural network and by the examples it saw during
training, in terms of desired input-output pairs, or desired properties that the output
should satisfy. Using an off-the-shelf model can be a quick way to jump-start a deep
learning project, since it draws on expertise from the researchers who designed the
model, as well as the computation time that went into training the weights.

 In this chapter, we will explore three popular pretrained models: a model that can
label an image according to its content, another that can fabricate a new image from a
real image, and a model that can describe the content of an image using proper
English sentences. We will learn how to load and run these pretrained models in
PyTorch, and we will introduce PyTorch Hub, a set of tools through which PyTorch
models like the pretrained ones we’ll discuss can be easily made available through a
uniform interface. Along the way, we’ll discuss data sources, define terminology like
label, and attend a zebra rodeo.

 If you’re coming to PyTorch from another deep learning framework, and you’d
rather jump right into learning the nuts and bolts of PyTorch, you can get away with
skipping to the next chapter. The things we’ll cover in this chapter are more fun than
foundational and are somewhat independent of any given deep learning tool. That’s
not to say they’re not important! But if you’ve worked with pretrained models in other
deep learning frameworks, then you already know how powerful a tool they can be.
And if you’re already familiar with the generative adversarial network (GAN) game,
you don’t need us to explain it to you.

 We hope you keep reading, though, since this chapter hides some important skills
under the fun. Learning how to run a pretrained model using PyTorch is a useful
skill—full stop. It’s especially useful if the model has been trained on a large dataset.
We will need to get accustomed to the mechanics of obtaining and running a neural
network on real-world data, and then visualizing and evaluating its outputs, whether
we trained it or not.

2.1 A pretrained network that recognizes the subject of an image
As our first foray into deep learning, we’ll run a state-of-the-art deep neural network
that was pretrained on an object-recognition task. There are many pretrained net-
works that can be accessed through source code repositories. It is common for
researchers to publish their source code along with their papers, and often the code
comes with weights that were obtained by training a model on a reference dataset.
Using one of these models could enable us to, for example, equip our next web ser-
vice with image-recognition capabilities with very little effort.

 The pretrained network we’ll explore here was trained on a subset of the ImageNet
dataset (http://imagenet.stanford.edu). ImageNet is a very large dataset of over 14 mil-
lion images maintained by Stanford University. All of the images are labeled with a hier-
archy of nouns that come from the WordNet dataset (http://wordnet.princeton.edu),
which is in turn a large lexical database of the English language.

http://imagenet.stanford.edu
http://wordnet.princeton.edu

18 CHAPTER 2 Pretrained networks

 The ImageNet dataset, like several other public datasets, has its origin in academic
competitions. Competitions have traditionally been some of the main playing fields
where researchers at institutions and companies regularly challenge each other.
Among others, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has
gained popularity since its inception in 2010. This particular competition is based on
a few tasks, which can vary each year, such as image classification (telling what object
categories the image contains), object localization (identifying objects’ position in
images), object detection (identifying and labeling objects in images), scene classifica-
tion (classifying a situation in an image), and scene parsing (segmenting an image
into regions associated with semantic categories, such as cow, house, cheese, hat). In
particular, the image-classification task consists of taking an input image and produc-
ing a list of 5 labels out of 1,000 total categories, ranked by confidence, describing the
content of the image.

 The training set for ILSVRC consists of 1.2 million images labeled with one of
1,000 nouns (for example, “dog”), referred to as the class of the image. In this sense,
we will use the terms label and class interchangeably. We can take a peek at images
from ImageNet in figure 2.1.

Figure 2.1 A small sample of ImageNet images

19A pretrained network that recognizes the subject of an image

We are going to end up being able to take our own images and feed them into our
pretrained model, as pictured in figure 2.2. This will result in a list of predicted labels
for that image, which we can then examine to see what the model thinks our image is.
Some images will have predictions that are accurate, and others will not!

 The input image will first be preprocessed into an instance of the multidimen-
sional array class torch.Tensor. It is an RGB image with height and width, so this ten-
sor will have three dimensions: the three color channels, and two spatial image
dimensions of a specific size. (We’ll get into the details of what a tensor is in chapter 3,
but for now, think of it as being like a vector or matrix of floating-point numbers.)
Our model will take that processed input image and pass it into the pretrained net-
work to obtain scores for each class. The highest score corresponds to the most likely
class according to the weights. Each class is then mapped one-to-one onto a class label.
That output is contained in a torch.Tensor with 1,000 elements, each representing
the score associated with that class.

 Before we can do all that, we’ll need to get the network itself, take a peek under
the hood to see how it’s structured, and learn about how to prepare our data before
the model can use it.

2.1.1 Obtaining a pretrained network for image recognition

As discussed, we will now equip ourselves with a network trained on ImageNet. To do
so, we’ll take a look at the TorchVision project (https://github.com/pytorch/vision),
which contains a few of the best-performing neural network architectures for com-
puter vision, such as AlexNet (http://mng.bz/lo6z), ResNet (https://arxiv.org/pdf/
1512.03385.pdf), and Inception v3 (https://arxiv.org/pdf/1512.00567.pdf). It also
has easy access to datasets like ImageNet and other utilities for getting up to speed
with computer vision applications in PyTorch. We’ll dive into some of these further
along in the book. For now, let’s load up and run two networks: first AlexNet, one of
the early breakthrough networks for image recognition; and then a residual network,
ResNet for short, which won the ImageNet classification, detection, and localization

DOG

IMAGE

RESIZE,

CENTER, and

NORMALIZE

FORWARD

PASs 1,000

SCORES

MAX

SCORE

PRETRAINED

WEIGHTS

1,000

LABELS

BANANA

YAK

DOG

BEACH

AVOCADO

Figure 2.2 The inference process

https://github.com/pytorch/vision
http://mng.bz/lo6z
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.00567.pdf

20 CHAPTER 2 Pretrained networks

competitions, among others, in 2015. If you didn’t get PyTorch up and running in
chapter 1, now is a good time to do that.

 The predefined models can be found in torchvision.models (code/p1ch2/2
_pre_trained_networks.ipynb):

In[1]:
from torchvision import models

We can take a look at the actual models:

In[2]:
dir(models)

Out[2]:
['AlexNet',
'DenseNet',
'Inception3',
'ResNet',
'SqueezeNet',
'VGG',

...
'alexnet',
'densenet',
'densenet121',

...
'resnet',
'resnet101',
'resnet152',

...
]

The capitalized names refer to Python classes that implement a number of popular
models. They differ in their architecture—that is, in the arrangement of the operations
occurring between the input and the output. The lowercase names are convenience
functions that return models instantiated from those classes, sometimes with different
parameter sets. For instance, resnet101 returns an instance of ResNet with 101 layers,
resnet18 has 18 layers, and so on. We’ll now turn our attention to AlexNet.

2.1.2 AlexNet

The AlexNet architecture won the 2012 ILSVRC by a large margin, with a top-5 test
error rate (that is, the correct label must be in the top 5 predictions) of 15.4%. By
comparison, the second-best submission, which wasn’t based on a deep network,
trailed at 26.2%. This was a defining moment in the history of computer vision: the
moment when the community started to realize the potential of deep learning for
vision tasks. That leap was followed by constant improvement, with more modern
architectures and training methods getting top-5 error rates as low as 3%.

entest

entest

21A pretrained network that recognizes the subject of an image

 By today’s standards, AlexNet is a rather small network, compared to state-of-the-
art models. But in our case, it’s perfect for taking a first peek at a neural network that
does something and learning how to run a pretrained version of it on a new image.

 We can see the structure of AlexNet in figure 2.3. Not that we have all the elements
for understanding it now, but we can anticipate a few aspects. First, each block consists
of a bunch of multiplications and additions, plus a sprinkle of other functions in the
output that we’ll discover in chapter 5. We can think of it as a filter—a function that
takes one or more images as input and produces other images as output. The way it
does so is determined during training, based on the examples it has seen and on the
desired outputs for those.

In figure 2.3, input images come in from the left and go through five stacks of filters,
each producing a number of output images. After each filter, the images are reduced
in size, as annotated. The images produced by the last stack of filters are laid out as a
4,096-element 1D vector and classified to produce 1,000 output probabilities, one for
each output class.

 In order to run the AlexNet architecture on an input image, we can create an
instance of the AlexNet class. This is how it’s done:

In[3]:
alexnet = models.AlexNet()

At this point, alexnet is an object that can run the AlexNet architecture. It’s not
essential for us to understand the details of this architecture for now. For the time
being, AlexNet is just an opaque object that can be called like a function. By providing

ALEXNET

96
4,096 4,096

1,000256

386 384 256

Figure 2.3 The AlexNet architecture

entest

22 CHAPTER 2 Pretrained networks

alexnet with some precisely sized input data (we’ll see shortly what this input data
should be), we will run a forward pass through the network. That is, the input will run
through the first set of neurons, whose outputs will be fed to the next set of neurons,
all the way to the final output. Practically speaking, assuming we have an input object
of the right type, we can run the forward pass with output = alexnet(input).

 But if we did that, we would be feeding data through the whole network to pro-
duce … garbage! That’s because the network is uninitialized: its weights, the numbers
by which inputs are added and multiplied, have not been trained on anything—the
network itself is a blank (or rather, random) slate. We’d need to either train it from
scratch or load weights from prior training, which we’ll do now.

 To this end, let’s go back to the models module. We learned that the uppercase
names correspond to classes that implement popular architectures for computer
vision. The lowercase names, on the other hand, are functions that instantiate models
with predefined numbers of layers and units and optionally download and load pre-
trained weights into them. Note that there’s nothing essential about using one of
these functions: they just make it convenient to instantiate the model with a number
of layers and units that matches how the pretrained networks were built.

2.1.3 ResNet

Using the resnet101 function, we’ll now instantiate a 101-layer convolutional neural
network. Just to put things in perspective, before the advent of residual networks in
2015, achieving stable training at such depths was considered extremely hard. Resid-
ual networks pulled a trick that made it possible, and by doing so, beat several bench-
marks in one sweep that year.

 Let’s create an instance of the network now. We’ll pass an argument that will
instruct the function to download the weights of resnet101 trained on the ImageNet
dataset, with 1.2 million images and 1,000 categories:

In[4]:
resnet = models.resnet101(pretrained=True)

While we’re staring at the download progress, we can take a minute to appreciate that
resnet101 sports 44.5 million parameters—that’s a lot of parameters to optimize
automatically!

2.1.4 Ready, set, almost run

OK, what did we just get? Since we’re curious, we’ll take a peek at what a resnet101
looks like. We can do so by printing the value of the returned model. This gives us a
textual representation of the same kind of information we saw in 2.3, providing details
about the structure of the network. For now, this will be information overload, but as
we progress through the book, we’ll increase our ability to understand what this code
is telling us:

entest

entest

entest

entest

23A pretrained network that recognizes the subject of an image

In[5]:
resnet

Out[5]:
ResNet(

(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)
(layer1): Sequential(

(0): Bottleneck(
...

)
)
(avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Linear(in_features=2048, out_features=1000, bias=True)

)

What we are seeing here is modules, one per line. Note that they have nothing in com-
mon with Python modules: they are individual operations, the building blocks of a
neural network. They are also called layers in other deep learning frameworks.

 If we scroll down, we’ll see a lot of Bottleneck modules repeating one after the
other (101 of them!), containing convolutions and other modules. That’s the anat-
omy of a typical deep neural network for computer vision: a more or less sequential
cascade of filters and nonlinear functions, ending with a layer (fc) producing scores
for each of the 1,000 output classes (out_features).

 The resnet variable can be called like a function, taking as input one or more
images and producing an equal number of scores for each of the 1,000 ImageNet
classes. Before we can do that, however, we have to preprocess the input images so
they are the right size and so that their values (colors) sit roughly in the same numeri-
cal range. In order to do that, the torchvision module provides transforms, which
allow us to quickly define pipelines of basic preprocessing functions:

In[6]:
from torchvision import transforms
preprocess = transforms.Compose([

transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(

mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]

)])

In this case, we defined a preprocess function that will scale the input image to 256 ×
256, crop the image to 224 × 224 around the center, transform it to a tensor (a
PyTorch multidimensional array: in this case, a 3D array with color, height, and

entest

24 CHAPTER 2 Pretrained networks

width), and normalize its RGB (red, green, blue) components so that they have
defined means and standard deviations. These need to match what was presented to
the network during training, if we want the network to produce meaningful answers.
We’ll go into more depth about transforms when we dive into making our own image-
recognition models in section 7.1.3.

 We can now grab a picture of our favorite dog (say, bobby.jpg from the GitHub repo),
preprocess it, and then see what ResNet thinks of it. We can start by loading an image
from the local filesystem using Pillow (https://pillow.readthedocs.io/en/stable), an
image-manipulation module for Python:

In[7]:
from PIL import Image
img = Image.open("../data/p1ch2/bobby.jpg")

If we were following along from a Jupyter Notebook, we would do the following to see
the picture inline (it would be shown where the <PIL.JpegImagePlugin… is in the
following):

In[8]:
img
Out[8]:
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1280x720 at
0x1B1601360B8>

Otherwise, we can invoke the show method, which will pop up a window with a viewer,
to see the image shown in figure 2.4:

>>> img.show()

Figure 2.4 Bobby, our very special input image

https://pillow.readthedocs.io/en/stable
entest

entest

25A pretrained network that recognizes the subject of an image

Next, we can pass the image through our preprocessing pipeline:

In[9]:
img_t = preprocess(img)

Then we can reshape, crop, and normalize the input tensor in a way that the network
expects. We’ll understand more of this in the next two chapters; hold tight for now:

In[10]:
import torch
batch_t = torch.unsqueeze(img_t, 0)

We’re now ready to run our model.

2.1.5 Run!

The process of running a trained model on new data is called inference in deep learn-
ing circles. In order to do inference, we need to put the network in eval mode:

In[11]:
resnet.eval()

Out[11]:
ResNet(

(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)
(layer1): Sequential(

(0): Bottleneck(
...

)
)
(avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Linear(in_features=2048, out_features=1000, bias=True)

)

If we forget to do that, some pretrained models, like batch normalization and dropout,
will not produce meaningful answers, just because of the way they work internally.
Now that eval has been set, we’re ready for inference:

In[12]:
out = resnet(batch_t)
out

Out[12]:
tensor([[-3.4803, -1.6618, -2.4515, -3.2662, -3.2466, -1.3611,

-2.0465, -2.5112, -1.3043, -2.8900, -1.6862, -1.3055,
...

2.8674, -3.7442, 1.5085, -3.2500, -2.4894, -0.3354,
0.1286, -1.1355, 3.3969, 4.4584]])

entest

entest

entest

entest

26 CHAPTER 2 Pretrained networks

A staggering set of operations involving 44.5 million parameters has just happened, pro-
ducing a vector of 1,000 scores, one per ImageNet class. That didn’t take long, did it?

 We now need to find out the label of the class that received the highest score. This
will tell us what the model saw in the image. If the label matches how a human would
describe the image, that’s great! It means everything is working. If not, then either some-
thing went wrong during training, or the image is so different from what the model
expects that the model can’t process it properly, or there’s some other similar issue.

 To see the list of predicted labels, we will load a text file listing the labels in the
same order they were presented to the network during training, and then we will pick
out the label at the index that produced the highest score from the network. Almost
all models meant for image recognition have output in a form similar to what we’re
about to work with.

 Let’s load the file containing the 1,000 labels for the ImageNet dataset classes:

In[13]:
with open('../data/p1ch2/imagenet_classes.txt') as f:

labels = [line.strip() for line in f.readlines()]

At this point, we need to determine the index corresponding to the maximum score
in the out tensor we obtained previously. We can do that using the max function in
PyTorch, which outputs the maximum value in a tensor as well as the indices where
that maximum value occurred:

In[14]:
_, index = torch.max(out, 1)

We can now use the index to access the label. Here, index is not a plain Python num-
ber, but a one-element, one-dimensional tensor (specifically, tensor([207])), so we
need to get the actual numerical value to use as an index into our labels list using
index[0]. We also use torch.nn.functional.softmax (http://mng.bz/BYnq) to nor-
malize our outputs to the range [0, 1], and divide by the sum. That gives us something
roughly akin to the confidence that the model has in its prediction. In this case, the
model is 96% certain that it knows what it’s looking at is a golden retriever:

In[15]:
percentage = torch.nn.functional.softmax(out, dim=1)[0] * 100
labels[index[0]], percentage[index[0]].item()

Out[15]:
('golden retriever', 96.29334259033203)

Uh oh, who’s a good boy?
 Since the model produced scores, we can also find out what the second best, third

best, and so on were. To do this, we can use the sort function, which sorts the values
in ascending or descending order and also provides the indices of the sorted values in
the original array:

http://mng.bz/BYnq
entest

entest

entest

27A pretrained model that fakes it until it makes it

In[16]:
_, indices = torch.sort(out, descending=True)
[(labels[idx], percentage[idx].item()) for idx in indices[0][:5]]

Out[16]:
[('golden retriever', 96.29334259033203),
('Labrador retriever', 2.80812406539917),
('cocker spaniel, English cocker spaniel, cocker', 0.28267428278923035),
('redbone', 0.2086310237646103),
('tennis ball', 0.11621569097042084)]

We see that the first four are dogs (redbone is a breed; who knew?), after which things
start to get funny. The fifth answer, “tennis ball,” is probably because there are enough
pictures of tennis balls with dogs nearby that the model is essentially saying, “There’s a
0.1% chance that I’ve completely misunderstood what a tennis ball is.” This is a great
example of the fundamental differences in how humans and neural networks view the
world, as well as how easy it is for strange, subtle biases to sneak into our data.

 Time to play! We can go ahead and interrogate our network with random images
and see what it comes up with. How successful the network will be will largely depend
on whether the subjects were well represented in the training set. If we present an
image containing a subject outside the training set, it’s quite possible that the network
will come up with a wrong answer with pretty high confidence. It’s useful to experi-
ment and get a feel for how a model reacts to unseen data.

 We’ve just run a network that won an image-classification competition in 2015. It
learned to recognize our dog from examples of dogs, together with a ton of other
real-world subjects. We’ll now see how different architectures can achieve other kinds
of tasks, starting with image generation.

2.2 A pretrained model that fakes it until it makes it
Let’s suppose, for a moment, that we’re career criminals who want to move into sell-
ing forgeries of “lost” paintings by famous artists. We’re criminals, not painters, so as
we paint our fake Rembrandts and Picassos, it quickly becomes apparent that they’re
amateur imitations rather than the real deal. Even if we spend a bunch of time practic-
ing until we get a canvas that we can’t tell is fake, trying to pass it off at the local art
auction house is going to get us kicked out instantly. Even worse, being told “This is
clearly fake; get out,” doesn’t help us improve! We’d have to randomly try a bunch of
things, gauge which ones took slightly longer to recognize as forgeries, and emphasize
those traits on our future attempts, which would take far too long.

 Instead, we need to find an art historian of questionable moral standing to inspect
our work and tell us exactly what it was that tipped them off that the painting wasn’t
legit. With that feedback, we can improve our output in clear, directed ways, until our
sketchy scholar can no longer tell our paintings from the real thing.

 Soon, we’ll have our “Botticelli” in the Louvre, and their Benjamins in our pockets.
We’ll be rich!

28 CHAPTER 2 Pretrained networks

 While this scenario is a bit farcical, the underlying technology is sound and will
likely have a profound impact on the perceived veracity of digital data in the years to
come. The entire concept of “photographic evidence” is likely to become entirely sus-
pect, given how easy it will be to automate the production of convincing, yet fake,
images and video. The only key ingredient is data. Let’s see how this process works.

2.2.1 The GAN game

In the context of deep learning, what we’ve just described is known as the GAN game,
where two networks, one acting as the painter and the other as the art historian, com-
pete to outsmart each other at creating and detecting forgeries. GAN stands for gener-
ative adversarial network, where generative means something is being created (in this
case, fake masterpieces), adversarial means the two networks are competing to out-
smart the other, and well, network is pretty obvious. These networks are one of the
most original outcomes of recent deep learning research.

 Remember that our overarching goal is to produce synthetic examples of a class of
images that cannot be recognized as fake. When mixed in with legitimate examples, a
skilled examiner would have trouble determining which ones are real and which are
our forgeries.

 The generator network takes the role of the painter in our scenario, tasked with pro-
ducing realistic-looking images, starting from an arbitrary input. The discriminator net-
work is the amoral art inspector, needing to tell whether a given image was fabricated
by the generator or belongs in a set of real images. This two-network design is atypical
for most deep learning architectures but, when used to implement a GAN game, can
lead to incredible results.

 Figure 2.5 shows a rough picture of what’s going on. The end goal for the generator
is to fool the discriminator into mixing up real and fake images. The end goal for the
discriminator is to find out when it’s being tricked, but it also helps inform the gener-
ator about the identifiable mistakes in the generated images. At the start, the generator
produces confused, three-eyed monsters that look nothing like a Rembrandt portrait.
The discriminator is easily able to distinguish the muddled messes from the real paint-
ings. As training progresses, information flows back from the discriminator, and the
generator uses it to improve. By the end of training, the generator is able to produce
convincing fakes, and the discriminator no longer is able to tell which is which.

 Note that “Discriminator wins” or “Generator wins” shouldn’t be taken literally—
there’s no explicit tournament between the two. However, both networks are trained
based on the outcome of the other network, which drives the optimization of the
parameters of each network.

 This technique has proven itself able to lead to generators that produce realistic
images from nothing but noise and a conditioning signal, like an attribute (for exam-
ple, for faces: young, female, glasses on) or another image. In other words, a well-
trained generator learns a plausible model for generating images that look real even
when examined by humans.

29A pretrained model that fakes it until it makes it

2.2.2 CycleGAN

An interesting evolution of this concept is the CycleGAN. A CycleGAN can turn
images of one domain into images of another domain (and back), without the need
for us to explicitly provide matching pairs in the training set.

 In figure 2.6, we have a CycleGAN workflow for the task of turning a photo of a
horse into a zebra, and vice versa. Note that there are two separate generator net-
works, as well as two distinct discriminators.

GENERATOR WINS

LOoKS

LEGIT!

DISCRIMINATOR WINS

DISCRIMINATOR

GENERATOR

GENERATED

IMAGE

REAL

IMAGES

G
E

T
S
 B

E
Tt

E
R

A
T
 M

A
K

I
N
G

S
T
U
Ff

 U
P

G
E

T
S
 B

E
Tt

E
R

A
T
 N

O
T
 B

E
I
N
G

F
Oo

L
E

D

REAL!

FAKE!

Figure 2.5 Concept of a GAN game

REAL

HORSE!

REAL

ZEBRA!

...SAME PROCESs STARTING

 FROM ZEBRA...

GA2B

GB2A

DB

DA

INPUT

Figure 2.6 A CycleGAN trained to the point that it can fool both discriminator networks

30 CHAPTER 2 Pretrained networks

As the figure shows, the first generator learns to produce an image conforming to a tar-
get distribution (zebras, in this case) starting from an image belonging to a different
distribution (horses), so that the discriminator can’t tell if the image produced from a
horse photo is actually a genuine picture of a zebra or not. At the same time—and
here’s where the Cycle prefix in the acronym comes in—the resulting fake zebra is sent
through a different generator going the other way (zebra to horse, in our case), to be
judged by another discriminator on the other side. Creating such a cycle stabilizes the
training process considerably, which addresses one of the original issues with GANs.

 The fun part is that at this point, we don’t need matched horse/zebra pairs as
ground truths (good luck getting them to match poses!). It’s enough to start from a
collection of unrelated horse images and zebra photos for the generators to learn
their task, going beyond a purely supervised setting. The implications of this model go
even further than this: the generator learns how to selectively change the appearance
of objects in the scene without supervision about what’s what. There’s no signal indi-
cating that manes are manes and legs are legs, but they get translated to something
that lines up with the anatomy of the other animal.

2.2.3 A network that turns horses into zebras

We can play with this model right now. The CycleGAN network has been trained on a
dataset of (unrelated) horse images and zebra images extracted from the ImageNet
dataset. The network learns to take an image of one or more horses and turn them all
into zebras, leaving the rest of the image as unmodified as possible. While humankind
hasn’t held its breath over the last few thousand years for a tool that turn horses into
zebras, this task showcases the ability of these architectures to model complex real-
world processes with distant supervision. While they have their limits, there are hints
that in the near future we won’t be able to tell real from fake in a live video feed,
which opens a can of worms that we’ll duly close right now.

 Playing with a pretrained CycleGAN will give us the opportunity to take a step
closer and look at how a network—a generator, in this case—is implemented. We’ll
use our old friend ResNet. We’ll define a ResNetGenerator class offscreen. The code
is in the first cell of the 3_cyclegan.ipynb file, but the implementation isn’t relevant
right now, and it’s too complex to follow until we’ve gotten a lot more PyTorch experi-
ence. Right now, we’re focused on what it can do, rather than how it does it. Let’s
instantiate the class with default parameters (code/p1ch2/3_cyclegan.ipynb):

In[2]:
netG = ResNetGenerator()

The netG model has been created, but it contains random weights. We mentioned ear-
lier that we would run a generator model that had been pretrained on the horse2zebra
dataset, whose training set contains two sets of 1068 and 1335 images of horses and
zebras, respectively. The dataset be found at http://mng.bz/8pKP. The weights of the
model have been saved in a .pth file, which is nothing but a pickle file of the model’s

http://mng.bz/8pKP

31A pretrained model that fakes it until it makes it

tensor parameters. We can load those into ResNetGenerator using the model’s load
_state_dict method:

In[3]:
model_path = '../data/p1ch2/horse2zebra_0.4.0.pth'
model_data = torch.load(model_path)
netG.load_state_dict(model_data)

At this point, netG has acquired all the knowledge it achieved during training. Note
that this is fully equivalent to what happened when we loaded resnet101 from torch-
vision in section 2.1.3; but the torchvision.resnet101 function hid the loading
from us.

 Let’s put the network in eval mode, as we did for resnet101:

In[4]:
netG.eval()

Out[4]:
ResNetGenerator(

(model): Sequential(
...

)
)

Printing out the model as we did earlier, we can appreciate that it’s actually pretty con-
densed, considering what it does. It takes an image, recognizes one or more horses in
it by looking at pixels, and individually modifies the values of those pixels so that what
comes out looks like a credible zebra. We won’t recognize anything zebra-like in the
printout (or in the source code, for that matter): that’s because there’s nothing zebra-
like in there. The network is a scaffold—the juice is in the weights.

 We’re ready to load a random image of a horse and see what our generator pro-
duces. First, we need to import PIL and torchvision:

In[5]:
from PIL import Image
from torchvision import transforms

Then we define a few input transformations to make sure data enters the network with
the right shape and size:

In[6]:
preprocess = transforms.Compose([transforms.Resize(256),

transforms.ToTensor()])

Let’s open a horse file (see figure 2.7):

In[7]:
img = Image.open("../data/p1ch2/horse.jpg")
img

32 CHAPTER 2 Pretrained networks

OK, there’s a dude on the horse. (Not for long, judging by the picture.) Anyhow, let’s
pass it through preprocessing and turn it into a properly shaped variable:

In[8]:
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)

We shouldn’t worry about the details right now. The important thing is that we follow
from a distance. At this point, batch_t can be sent to our model:

In[9]:
batch_out = netG(batch_t)

batch_out is now the output of the generator, which we can convert back to an image:

In[10]:
out_t = (batch_out.data.squeeze() + 1.0) / 2.0
out_img = transforms.ToPILImage()(out_t)
out_img.save('../data/p1ch2/zebra.jpg')
out_img

Out[10]:
<PIL.Image.Image image mode=RGB size=316x256 at 0x23B24634F98>

Oh, man. Who rides a zebra that way? The resulting image (figure 2.8) is not perfect,
but consider that it is a bit unusual for the network to find someone (sort of) riding on
top of a horse. It bears repeating that the learning process has not passed through
direct supervision, where humans have delineated tens of thousands of horses or man-
ually Photoshopped thousands of zebra stripes. The generator has learned to produce
an image that would fool the discriminator into thinking that was a zebra, and there was
nothing fishy about the image (clearly the discriminator has never been to a rodeo).

Figure 2.7 A man riding a
horse. The horse is not having it.

33A pretrained network that describes scenes

Many other fun generators have been developed using adversarial training or other
approaches. Some of them are capable of creating credible human faces of nonexis-
tent individuals; others can translate sketches into real-looking pictures of imaginary
landscapes. Generative models are also being explored for producing real-sounding
audio, credible text, and enjoyable music. It is likely that these models will be the basis
of future tools that support the creative process.

 On a serious note, it’s hard to overstate the implications of this kind of work. Tools
like the one we just downloaded are only going to become higher quality and more
ubiquitous. Face-swapping technology, in particular, has gotten considerable media
attention. Searching for “deep fakes” will turn up a plethora of example content1

(though we must note that there is a nontrivial amount of not-safe-for-work content
labeled as such; as with everything on the internet, click carefully).

 So far, we’ve had a chance to play with a model that sees into images and a model
that generates new images. We’ll end our tour with a model that involves one more,
fundamental ingredient: natural language.

2.3 A pretrained network that describes scenes
In order to get firsthand experience with a model involving natural language, we will
use a pretrained image-captioning model, generously provided by Ruotian Luo.2 It is
an implementation of the NeuralTalk2 model by Andrej Karpathy. When presented
with a natural image, this kind of model generates a caption in English that describes
the scene, as shown in figure 2.9. The model is trained on a large dataset of images

1 A relevant example is described in the Vox article “Jordan Peele’s simulated Obama PSA is a double-edged
warning against fake news,” by Aja Romano; http://mng.bz/dxBz (warning: coarse language).

2 We maintain a clone of the code at https://github.com/deep-learning-with-pytorch/ImageCaptioning
.pytorch.

Figure 2.8 A man riding a
zebra. The zebra is not having it.

http://mng.bz/dxBz (warning: coarse language
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
entest

entest

34 CHAPTER 2 Pretrained networks

along with a paired sentence description: for example, “A Tabby cat is leaning on a
wooden table, with one paw on a laser mouse and the other on a black laptop.”3

 This captioning model has two connected halves. The first half of the model is a
network that learns to generate “descriptive” numerical representations of the scene
(Tabby cat, laser mouse, paw), which are then taken as input to the second half. That
second half is a recurrent neural network that generates a coherent sentence by putting
those numerical descriptions together. The two halves of the model are trained
together on image-caption pairs.

 The second half of the model is called recurrent because it generates its outputs
(individual words) in subsequent forward passes, where the input to each forward pass
includes the outputs of the previous forward pass. This generates a dependency of the
next word on words that were generated earlier, as we would expect when dealing with
sentences or, in general, with sequences.

2.3.1 NeuralTalk2

The NeuralTalk2 model can be found at https://github.com/deep-learning-with-
pytorch/ImageCaptioning.pytorch. We can place a set of images in the data directory
and run the following script:

python eval.py --model ./data/FC/fc-model.pth

➥ --infos_path ./data/FC/fc-infos.pkl --image_folder ./data

Let’s try it with our horse.jpg image. It says, “A person riding a horse on a beach.”
Quite appropriate.

3 Andrej Karpathy and Li Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions,”
https://cs.stanford.edu/people/karpathy/cvpr2015.pdf.

TRAINED END-TO-END ON

IMAGE-CAPTION PAIRS

CONVOLUTIONAL

(IMAGE RECOGNITION)

RECURrENT

(TEXT GENERATION)

“AN ODd-LOoKING

FELlOW HOLDING

A PINK BALlOoN”

Figure 2.9 Concept of a captioning model

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch

35Torch Hub

 Now, just for fun, let’s see if our CycleGAN can also fool this NeuralTalk2 model.
Let’s add the zebra.jpg image in the data folder and rerun the model: “A group of
zebras are standing in a field.” Well, it got the animal right, but it saw more than one
zebra in the image. Certainly this is not a pose that the network has ever seen a zebra
in, nor has it ever seen a rider on a zebra (with some spurious zebra patterns). In addi-
tion, it is very likely that zebras are depicted in groups in the training dataset, so there
might be some bias that we could investigate. The captioning network hasn’t
described the rider, either. Again, it’s probably for the same reason: the network
wasn’t shown a rider on a zebra in the training dataset. In any case, this is an impres-
sive feat: we generated a fake image with an impossible situation, and the captioning
network was flexible enough to get the subject right.

 We’d like to stress that something like this, which would have been extremely hard
to achieve before the advent of deep learning, can be obtained with under a thousand
lines of code, with a general-purpose architecture that knows nothing about horses or
zebras, and a corpus of images and their descriptions (the MS COCO dataset, in this
case). No hardcoded criterion or grammar—everything, including the sentence,
emerges from patterns in the data.

 The network architecture in this last case was, in a way, more complex than the
ones we saw earlier, as it includes two networks. One is recurrent, but it was built out
of the same building blocks, all of which are provided by PyTorch.

 At the time of this writing, models such as these exist more as applied research or
novelty projects, rather than something that has a well-defined, concrete use. The
results, while promising, just aren’t good enough to use … yet. With time (and addi-
tional training data), we should expect this class of models to be able to describe the
world to people with vision impairment, transcribe scenes from video, and perform
other similar tasks.

2.4 Torch Hub
Pretrained models have been published since the early days of deep learning, but
until PyTorch 1.0, there was no way to ensure that users would have a uniform inter-
face to get them. TorchVision was a good example of a clean interface, as we saw ear-
lier in this chapter; but other authors, as we have seen for CycleGAN and NeuralTalk2,
chose different designs.

 PyTorch 1.0 saw the introduction of Torch Hub, which is a mechanism through
which authors can publish a model on GitHub, with or without pretrained weights,
and expose it through an interface that PyTorch understands. This makes loading a
pretrained model from a third party as easy as loading a TorchVision model.

 All it takes for an author to publish a model through the Torch Hub mechanism is
to place a file named hubconf.py in the root directory of the GitHub repository. The
file has a very simple structure:

36 CHAPTER 2 Pretrained networks

dependencies = ['torch', 'math']

def some_entry_fn(*args, **kwargs):
model = build_some_model(*args, **kwargs)
return model

def another_entry_fn(*args, **kwargs):
model = build_another_model(*args, **kwargs)
return model

In our quest for interesting pretrained models, we can now search for GitHub reposi-
tories that include hubconf.py, and we’ll know right away that we can load them using
the torch.hub module. Let’s see how this is done in practice. To do that, we’ll go back
to TorchVision, because it provides a clean example of how to interact with Torch Hub.

 Let’s visit https://github.com/pytorch/vision and notice that it contains a hub-
conf.py file. Great, that checks. The first thing to do is to look in that file to see the entry
points for the repo—we’ll need to specify them later. In the case of TorchVision, there
are two: resnet18 and resnet50. We already know what these do: they return an 18-
layer and a 50-layer ResNet model, respectively. We also see that the entry-point func-
tions include a pretrained keyword argument. If True, the returned models will be ini-
tialized with weights learned from ImageNet, as we saw earlier in the chapter.

 Now we know the repo, the entry points, and one interesting keyword argument.
That’s about all we need to load the model using torch.hub, without even cloning the
repo. That’s right, PyTorch will handle that for us:

import torch
from torch import hub

resnet18_model = hub.load('pytorch/vision:master',
'resnet18',
pretrained=True)

This manages to download a snapshot of the master branch of the pytorch/vision
repo, along with the weights, to a local directory (defaults to .torch/hub in our home
directory) and run the resnet18 entry-point function, which returns the instantiated
model. Depending on the environment, Python may complain that there’s a module
missing, like PIL. Torch Hub won’t install missing dependencies, but it will report
them to us so that we can take action.

 At this point, we can invoke the returned model with proper arguments to run a
forward pass on it, the same way we did earlier. The nice part is that now every model
published through this mechanism will be accessible to us using the same modalities,
well beyond vision.

Optional list of modules the code depends on

One or more functions to be
exposed to users as entry points
for the repository. These functions
should initialize models according
to the arguments and return them.

Name and branch
of the GitHub repo

Name of the entry-
point function

Keyword argument

https://github.com/pytorch/vision

37Conclusion

 Note that entry points are supposed to return models; but, strictly speaking, they
are not forced to. For instance, we could have an entry point for transforming inputs
and another one for turning the output probabilities into a text label. Or we could
have an entry point for just the model, and another that includes the model along
with the pre- and postprocessing steps. By leaving these options open, the PyTorch
developers have provided the community with just enough standardization and a lot
of flexibility. We’ll see what patterns will emerge from this opportunity.

 Torch Hub is quite new at the time of writing, and there are only a few models pub-
lished this way. We can get at them by Googling “github.com hubconf.py.” Hopefully
the list will grow in the future, as more authors share their models through this channel.

2.5 Conclusion
We hope this was a fun chapter. We took some time to play with models created with
PyTorch, which were optimized to carry out specific tasks. In fact, the more enterpris-
ing of us could already put one of these models behind a web server and start a busi-
ness, sharing the profits with the original authors!4 Once we learn how these models
are built, we will also be able to use the knowledge we gained here to download a pre-
trained model and quickly fine-tune it on a slightly different task.

 We will also see how building models that deal with different problems on differ-
ent kinds of data can be done using the same building blocks. One thing that PyTorch
does particularly right is providing those building blocks in the form of an essential
toolset—PyTorch is not a very large library from an API perspective, especially when
compared with other deep learning frameworks.

 This book does not focus on going through the complete PyTorch API or review-
ing deep learning architectures; rather, we will build hands-on knowledge of these
building blocks. This way, you will be able to consume the excellent online documen-
tation and repositories on top of a solid foundation.

 Starting with the next chapter, we’ll embark on a journey that will enable us to
teach our computer skills like those described in this chapter from scratch, using
PyTorch. We’ll also learn that starting from a pretrained network and fine-tuning it on
new data, without starting from scratch, is an effective way to solve problems when the
data points we have are not particularly numerous. This is one further reason pre-
trained networks are an important tool for deep learning practitioners to have. Time
to learn about the first fundamental building block: tensors.

4 Contact the publisher for franchise opportunities!

38 CHAPTER 2 Pretrained networks

2.6 Exercises
1 Feed the image of the golden retriever into the horse-to-zebra model.

a What do you need to do to the image to prepare it?
b What does the output look like?

2 Search GitHub for projects that provide a hubconf.py file.
a How many repositories are returned?
b Find an interesting-looking project with a hubconf.py. Can you understand

the purpose of the project from the documentation?
c Bookmark the project, and come back after you’ve finished this book. Can

you understand the implementation?

2.7 Summary
 A pretrained network is a model that has already been trained on a dataset.

Such networks can typically produce useful results immediately after loading
the network parameters.

 By knowing how to use a pretrained model, we can integrate a neural network
into a project without having to design or train it.

 AlexNet and ResNet are two deep convolutional networks that set new bench-
marks for image recognition in the years they were released.

 Generative adversarial networks (GANs) have two parts—the generator and the
discriminator—that work together to produce output indistinguishable from
authentic items.

 CycleGAN uses an architecture that supports converting back and forth
between two different classes of images.

 NeuralTalk2 uses a hybrid model architecture to consume an image and pro-
duce a text description of the image.

 Torch Hub is a standardized way to load models and weights from any project
with an appropriate hubconf.py file.

39

It starts with a tensor

In the previous chapter, we took a tour of some of the many applications that deep
learning enables. They invariably consisted of taking data in some form, like images
or text, and producing data in another form, like labels, numbers, or more images
or text. Viewed from this angle, deep learning really consists of building a system
that can transform data from one representation to another. This transformation is
driven by extracting commonalities from a series of examples that demonstrate the
desired mapping. For example, the system might note the general shape of a dog
and the typical colors of a golden retriever. By combining the two image properties,
the system can correctly map images with a given shape and color to the golden
retriever label, instead of a black lab (or a tawny tomcat, for that matter). The
resulting system can consume broad swaths of similar inputs and produce meaning-
ful output for those inputs.

This chapter covers
 Understanding tensors, the basic data structure

in PyTorch

 Indexing and operating on tensors

 Interoperating with NumPy multidimensional
arrays

 Moving computations to the GPU for speed

40 CHAPTER 3 It starts with a tensor

 The process begins by converting our input into floating-point numbers. We will
cover converting image pixels to numbers, as we see in the first step of figure 3.1, in chap-
ter 4 (along with many other types of data). But before we can get to that, in this chapter,
we learn how to deal with all the floating-point numbers in PyTorch by using tensors.

3.1 The world as floating-point numbers
Since floating-point numbers are the way a network deals with information, we need a
way to encode real-world data of the kind we want to process into something digestible
by a network and then decode the output back to something we can understand and
use for our purpose.

A deep neural network typically learns the transformation from one form of data to
another in stages, which means the partially transformed data between each stage can
be thought of as a sequence of intermediate representations. For image recognition,
early representations can be things such as edge detection or certain textures like fur.
Deeper representations can capture more complex structures like ears, noses, or eyes.

 In general, such intermediate representations are collections of floating-point
numbers that characterize the input and capture the data’s structure in a way that is
instrumental for describing how inputs are mapped to the outputs of the neural net-
work. Such characterization is specific to the task at hand and is learned from relevant

INPUT

REPRESENTATION

(VALUES OF PIXELS)

158 186 220

0.19

0.23

0.46

0.77

...

0.91 0.01

0.0

0.52

0.91

0.0
...

0.74

0.45

...
172 175 ...

INTERMEDIATE

REPRESENTATIONS

SIMILAR INPUTS

SHOULD LEAD TO

CLOSE REPRESENTATIONS

(ESPECIALlY AT DEePER LEVELS)

OUTPUT

REPRESENTATION

(PROBABILITY OF CLASsES)

“SUN”

“SEASIdE”

“SCENERY”

Figure 3.1 A deep neural network learns how to transform an input representation to an output
representation. (Note: The numbers of neurons and outputs are not to scale.)

41The world as floating-point numbers

examples. These collections of floating-point numbers and their manipulation are at
the heart of modern AI—we will see several examples of this throughout the book.

 It’s important to keep in mind that these intermediate representations (like those
shown in the second step of figure 3.1) are the results of combining the input with the
weights of the previous layer of neurons. Each intermediate representation is unique
to the inputs that preceeded it.

 Before we can begin the process of converting our data to floating-point input, we
must first have a solid understanding of how PyTorch handles and stores data—as
input, as intermediate representations, and as output. This chapter will be devoted to
precisely that.

 To this end, PyTorch introduces a fundamental data structure: the tensor. We
already bumped into tensors in chapter 2, when we ran inference on pretrained net-
works. For those who come from mathematics, physics, or engineering, the term tensor
comes bundled with the notion of spaces, reference systems, and transformations
between them. For better or worse, those notions do not apply here. In the context of
deep learning, tensors refer to the generalization of vectors and matrices to an arbi-
trary number of dimensions, as we can see in figure 3.2. Another name for the same
concept is multidimensional array. The dimensionality of a tensor coincides with the
number of indexes used to refer to scalar values within the tensor.

PyTorch is not the only library that deals with multidimensional arrays. NumPy is by
far the most popular multidimensional array library, to the point that it has now argu-
ably become the lingua franca of data science. PyTorch features seamless interoperabil-
ity with NumPy, which brings with it first-class integration with the rest of the scientific
libraries in Python, such as SciPy (www.scipy.org), Scikit-learn (https://scikit-learn
.org), and Pandas (https://pandas.pydata.org).

 Compared to NumPy arrays, PyTorch tensors have a few superpowers, such as the
ability to perform very fast operations on graphical processing units (GPUs),
distribute operations on multiple devices or machines, and keep track of the graph of

3
4

1

5

4 6

7 3

7

9

1 2 5

5 7

9 4

1

7
9

3
5

8

6

47

3

3 5 2

SCALAR VECTOR MATRIX TENSOR

0D 1D

X[2] = 5 X[1, 0] = 7 X[0, 2, 1] = 5 X[1, 3, ...,2] = 4

2D 3D

TENSOR

N-D DATA N INDICES

Figure 3.2 Tensors are the building blocks for representing data in PyTorch.

https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://pandas.pydata.org
https://www.scipy.org/

42 CHAPTER 3 It starts with a tensor

computations that created them. These are all important features when implementing
a modern deep learning library.

 We’ll start this chapter by introducing PyTorch tensors, covering the basics in
order to set things in motion for our work in the rest of the book. First and foremost,
we’ll learn how to manipulate tensors using the PyTorch tensor library. This includes
things like how the data is stored in memory, how certain operations can be per-
formed on arbitrarily large tensors in constant time, and the aforementioned NumPy
interoperability and GPU acceleration. Understanding the capabilities and API of ten-
sors is important if they’re to become go-to tools in our programming toolbox. In the
next chapter, we’ll put this knowledge to good use and learn how to represent several
different kinds of data in a way that enables learning with neural networks.

3.2 Tensors: Multidimensional arrays
We have already learned that tensors are the fundamental data structure in PyTorch. A
tensor is an array: that is, a data structure that stores a collection of numbers that are
accessible individually using an index, and that can be indexed with multiple indices.

3.2.1 From Python lists to PyTorch tensors

Let’s see list indexing in action so we can compare it to tensor indexing. Take a list
of three numbers in Python (.code/p1ch3/1_tensors.ipynb):

In[1]:
a = [1.0, 2.0, 1.0]

We can access the first element of the list using the corresponding zero-based index:

In[2]:
a[0]

Out[2]:
1.0

In[3]:
a[2] = 3.0
a

Out[3]:
[1.0, 2.0, 3.0]

It is not unusual for simple Python programs dealing with vectors of numbers, such as
the coordinates of a 2D line, to use Python lists to store the vectors. As we will see in
the following chapter, using the more efficient tensor data structure, many types of
data—from images to time series, and even sentences—can be represented. By defin-
ing operations over tensors, some of which we’ll explore in this chapter, we can slice
and manipulate data expressively and efficiently at the same time, even from a high-
level (and not particularly fast) language such as Python.

43Tensors: Multidimensional arrays

3.2.2 Constructing our first tensors

Let’s construct our first PyTorch tensor and see what it looks like. It won’t be a partic-
ularly meaningful tensor for now, just three ones in a column:

In[4]:
import torch
a = torch.ones(3)
a

Out[4]:
tensor([1., 1., 1.])

In[5]:
a[1]

Out[5]:
tensor(1.)

In[6]:
float(a[1])

Out[6]:
1.0

In[7]:
a[2] = 2.0
a

Out[7]:
tensor([1., 1., 2.])

After importing the torch module, we call a function that creates a (one-dimensional)
tensor of size 3 filled with the value 1.0. We can access an element using its zero-based
index or assign a new value to it. Although on the surface this example doesn’t differ
much from a list of number objects, under the hood things are completely different.

3.2.3 The essence of tensors

Python lists or tuples of numbers are collections of Python objects that are individually
allocated in memory, as shown on the left in figure 3.3. PyTorch tensors or NumPy
arrays, on the other hand, are views over (typically) contiguous memory blocks contain-
ing unboxed C numeric types rather than Python objects. Each element is a 32-bit (4-byte)
float in this case, as we can see on the right side of figure 3.3. This means storing a 1D
tensor of 1,000,000 float numbers will require exactly 4,000,000 contiguous bytes, plus
a small overhead for the metadata (such as dimensions and numeric type).

 Say we have a list of coordinates we’d like to use to represent a geometrical object:
perhaps a 2D triangle with vertices at coordinates (4, 1), (5, 3), and (2, 1). The
example is not particularly pertinent to deep learning, but it’s easy to follow. Instead
of having coordinates as numbers in a Python list, as we did earlier, we can use a

Imports the torch module

Creates a one-dimensional
tensor of size 3 filled with 1s

44 CHAPTER 3 It starts with a tensor

one-dimensional tensor by storing Xs in the even indices and Ys in the odd indices,
like this:

In[8]:
points = torch.zeros(6)
points[0] = 4.0
points[1] = 1.0
points[2] = 5.0
points[3] = 3.0
points[4] = 2.0
points[5] = 1.0

We can also pass a Python list to the constructor, to the same effect:

In[9]:
points = torch.tensor([4.0, 1.0, 5.0, 3.0, 2.0, 1.0])
points

Out[9]:
tensor([4., 1., 5., 3., 2., 1.])

To get the coordinates of the first point, we do the following:

In[10]:
float(points[0]), float(points[1])

Out[10]:
(4.0, 1.0)

This is OK, although it would be practical to have the first index refer to individual 2D
points rather than point coordinates. For this, we can use a 2D tensor:

In[11]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points

MEMORY MEMORY

PYTHON LIST TENSOR OR ARrAY

([1.0, 2.2, 0.3, 7.6, ...])[1.0, 2.2, 0.3, 7.6, ...]

7.6

Figure 3.3 Python object (boxed) numeric values versus tensor (unboxed array)
numeric values

Using .zeros is just a way to get
an appropriately sized array.

We overwrite those zeros with
the values we actually want.

45Tensors: Multidimensional arrays

Out[11]:
tensor([[4., 1.],

[5., 3.],
[2., 1.]])

Here, we pass a list of lists to the constructor. We can ask the tensor about its shape:

In[12]:
points.shape

Out[12]:
torch.Size([3, 2])

This informs us about the size of the tensor along each dimension. We could also use
zeros or ones to initialize the tensor, providing the size as a tuple:

In[13]:
points = torch.zeros(3, 2)
points

Out[13]:
tensor([[0., 0.],

[0., 0.],
[0., 0.]])

Now we can access an individual element in the tensor using two indices:

In[14]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points

Out[14]:
tensor([[4., 1.],

[5., 3.],
[2., 1.]])

In[15]:
points[0, 1]

Out[15]:
tensor(1.)

This returns the Y-coordinate of the zeroth point in our dataset. We can also access
the first element in the tensor as we did before to get the 2D coordinates of the first
point:

In[16]:
points[0]

Out[16]:
tensor([4., 1.])

46 CHAPTER 3 It starts with a tensor

The output is another tensor that presents a different view of the same underlying data.
The new tensor is a 1D tensor of size 2, referencing the values of the first row in the
points tensor. Does this mean a new chunk of memory was allocated, values were copied
into it, and the new memory was returned wrapped in a new tensor object? No, because
that would be very inefficient, especially if we had millions of points. We’ll revisit how
tensors are stored later in this chapter when we cover views of tensors in section 3.7.

3.3 Indexing tensors
What if we need to obtain a tensor containing all points but the first? That’s easy using
range indexing notation, which also applies to standard Python lists. Here’s a
reminder:

In[53]:
some_list = list(range(6))
some_list[:]
some_list[1:4]
some_list[1:]
some_list[:4]
some_list[:-1]
some_list[1:4:2]

To achieve our goal, we can use the same notation for PyTorch tensors, with the added
benefit that, just as in NumPy and other Python scientific libraries, we can use range
indexing for each of the tensor’s dimensions:

In[54]:
points[1:]
points[1:, :]
points[1:, 0]
points[None]

In addition to using ranges, PyTorch features a powerful form of indexing, called
advanced indexing, which we will look at in the next chapter.

3.4 Named tensors
The dimensions (or axes) of our tensors usually index something like pixel locations
or color channels. This means when we want to index into a tensor, we need to
remember the ordering of the dimensions and write our indexing accordingly. As
data is transformed through multiple tensors, keeping track of which dimension con-
tains what data can be error-prone.

All elements in the list From element 1 inclusive
to element 4 exclusive

From element 1 inclusive
to the end of the list

From the start of the list
to element 4 exclusive

From the start of the list to
one before the last element

From element 1 inclusive to
element 4 exclusive, in steps of 2

All rows after the first;
implicitly all columns

All rows after the
first; all columns

All rows after the
first; first column

Adds a dimension of size 1,
just like unsqueeze

47Named tensors

 To make things concrete, imagine that we have a 3D tensor like img_t from section
2.1.4 (we will use dummy data for simplicity here), and we want to convert it to gray-
scale. We looked up typical weights for the colors to derive a single brightness value:1

In[2]:
img_t = torch.randn(3, 5, 5) # shape [channels, rows, columns]
weights = torch.tensor([0.2126, 0.7152, 0.0722])

We also often want our code to generalize—for example, from grayscale images repre-
sented as 2D tensors with height and width dimensions to color images adding a third
channel dimension (as in RGB), or from a single image to a batch of images. In sec-
tion 2.1.4, we introduced an additional batch dimension in batch_t; here we pretend
to have a batch of 2:

In[3]:
batch_t = torch.randn(2, 3, 5, 5) # shape [batch, channels, rows, columns]

So sometimes the RGB channels are in dimension 0, and sometimes they are in dimen-
sion 1. But we can generalize by counting from the end: they are always in dimension
–3, the third from the end. The lazy, unweighted mean can thus be written as follows:

In[4]:
img_gray_naive = img_t.mean(-3)
batch_gray_naive = batch_t.mean(-3)
img_gray_naive.shape, batch_gray_naive.shape

Out[4]:
(torch.Size([5, 5]), torch.Size([2, 5, 5]))

But now we have the weight, too. PyTorch will allow us to multiply things that are the
same shape, as well as shapes where one operand is of size 1 in a given dimension. It
also appends leading dimensions of size 1 automatically. This is a feature called broad-
casting. batch_t of shape (2, 3, 5, 5) is multiplied by unsqueezed_weights of shape (3,
1, 1), resulting in a tensor of shape (2, 3, 5, 5), from which we can then sum the third
dimension from the end (the three channels):

In[5]:
unsqueezed_weights = weights.unsqueeze(-1).unsqueeze_(-1)
img_weights = (img_t * unsqueezed_weights)
batch_weights = (batch_t * unsqueezed_weights)
img_gray_weighted = img_weights.sum(-3)
batch_gray_weighted = batch_weights.sum(-3)
batch_weights.shape, batch_t.shape, unsqueezed_weights.shape

Out[5]:
(torch.Size([2, 3, 5, 5]), torch.Size([2, 3, 5, 5]), torch.Size([3, 1, 1]))

1 As perception is not trivial to norm, people have come up with many weights. For example, see
https://en.wikipedia.org/wiki/Luma_(video).

https://en.wikipedia.org/wiki/Luma_(video)

48 CHAPTER 3 It starts with a tensor

Because this gets messy quickly—and for the sake of efficiency—the PyTorch function
einsum (adapted from NumPy) specifies an indexing mini-language2 giving index
names to dimensions for sums of such products. As often in Python, broadcasting—a
form of summarizing unnamed things—is done using three dots '…'; but don’t worry
too much about einsum, because we will not use it in the following:

In[6]:
img_gray_weighted_fancy = torch.einsum('...chw,c->...hw', img_t, weights)
batch_gray_weighted_fancy = torch.einsum('...chw,c->...hw', batch_t, weights)
batch_gray_weighted_fancy.shape

Out[6]:
torch.Size([2, 5, 5])

As we can see, there is quite a lot of bookkeeping involved. This is error-prone, espe-
cially when the locations where tensors are created and used are far apart in our code.
This has caught the eye of practitioners, and so it has been suggested3 that the dimen-
sion be given a name instead.

 PyTorch 1.3 added named tensors as an experimental feature (see https://pytorch
.org/tutorials/intermediate/named_tensor_tutorial.html and https://pytorch.org/
docs/stable/named_tensor.html). Tensor factory functions such as tensor and rand
take a names argument. The names should be a sequence of strings:

In[7]:
weights_named = torch.tensor([0.2126, 0.7152, 0.0722], names=['channels'])
weights_named

Out[7]:
tensor([0.2126, 0.7152, 0.0722], names=('channels',))

When we already have a tensor and want to add names (but not change existing
ones), we can call the method refine_names on it. Similar to indexing, the ellipsis (…)
allows you to leave out any number of dimensions. With the rename sibling method,
you can also overwrite or drop (by passing in None) existing names:

In[8]:
img_named = img_t.refine_names(..., 'channels', 'rows', 'columns')
batch_named = batch_t.refine_names(..., 'channels', 'rows', 'columns')
print("img named:", img_named.shape, img_named.names)
print("batch named:", batch_named.shape, batch_named.names)

Out[8]:
img named: torch.Size([3, 5, 5]) ('channels', 'rows', 'columns')
batch named: torch.Size([2, 3, 5, 5]) (None, 'channels', 'rows', 'columns')

2 Tim Rocktäschel’s blog post “Einsum is All You Need—Einstein Summation in Deep Learning” (https://
rockt.github.io/2018/04/30/einsum) gives a good overview.

3 See Sasha Rush, “Tensor Considered Harmful,” Harvardnlp, http://nlp.seas.harvard.edu/NamedTensor.

https://pytorch.org/tutorials/intermediate/named_tensor_tutorial.html
https://pytorch.org/tutorials/intermediate/named_tensor_tutorial.html
https://pytorch.org/tutorials/intermediate/named_tensor_tutorial.html
https://pytorch.org/docs/stable/named_tensor.html
https://pytorch.org/docs/stable/named_tensor.html
https://pytorch.org/docs/stable/named_tensor.html
https://rockt.github.io/2018/04/30/einsum
https://rockt.github.io/2018/04/30/einsum
https://rockt.github.io/2018/04/30/einsum
http://nlp.seas.harvard.edu/NamedTensor

49Named tensors

For operations with two inputs, in addition to the usual dimension checks—whether
sizes are the same, or if one is 1 and can be broadcast to the other—PyTorch will now
check the names for us. So far, it does not automatically align dimensions, so we need
to do this explicitly. The method align_as returns a tensor with missing dimensions
added and existing ones permuted to the right order:

In[9]:
weights_aligned = weights_named.align_as(img_named)
weights_aligned.shape, weights_aligned.names

Out[9]:
(torch.Size([3, 1, 1]), ('channels', 'rows', 'columns'))

Functions accepting dimension arguments, like sum, also take named dimensions:

In[10]:
gray_named = (img_named * weights_aligned).sum('channels')
gray_named.shape, gray_named.names

Out[10]:
(torch.Size([5, 5]), ('rows', 'columns'))

If we try to combine dimensions with different names, we get an error:

gray_named = (img_named[..., :3] * weights_named).sum('channels')

RuntimeError: Error when
attempting to broadcast dims ['channels', 'rows',
'columns'] and dims ['channels']: dim 'columns' and dim 'channels'
are at the same position from the right but do not match.

If we want to use tensors outside functions that operate on named tensors, we need to
drop the names by renaming them to None. The following gets us back into the world
of unnamed dimensions:

In[12]:
gray_plain = gray_named.rename(None)
gray_plain.shape, gray_plain.names

Out[12]:
(torch.Size([5, 5]), (None, None))

Given the experimental nature of this feature at the time of writing, and to avoid
mucking around with indexing and alignment, we will stick to unnamed in the
remainder of the book. Named tensors have the potential to eliminate many sources
of alignment errors, which—if the PyTorch forum is any indication—can be a source
of headaches. It will be interesting to see how widely they will be adopted.

50 CHAPTER 3 It starts with a tensor

3.5 Tensor element types
So far, we have covered the basics of how tensors work, but we have not yet touched on
what kinds of numeric types we can store in a Tensor. As we hinted at in section 3.2,
using the standard Python numeric types can be suboptimal for several reasons:

 Numbers in Python are objects. Whereas a floating-point number might require
only, for instance, 32 bits to be represented on a computer, Python will convert
it into a full-fledged Python object with reference counting, and so on. This
operation, called boxing, is not a problem if we need to store a small number of
numbers, but allocating millions gets very inefficient.

 Lists in Python are meant for sequential collections of objects. There are no operations
defined for, say, efficiently taking the dot product of two vectors, or summing vec-
tors together. Also, Python lists have no way of optimizing the layout of their con-
tents in memory, as they are indexable collections of pointers to Python objects
(of any kind, not just numbers). Finally, Python lists are one-dimensional, and
although we can create lists of lists, this is again very inefficient.

 The Python interpreter is slow compared to optimized, compiled code. Performing math-
ematical operations on large collections of numerical data can be much faster
using optimized code written in a compiled, low-level language like C.

For these reasons, data science libraries rely on NumPy or introduce dedicated data
structures like PyTorch tensors, which provide efficient low-level implementations of
numerical data structures and related operations on them, wrapped in a convenient
high-level API. To enable this, the objects within a tensor must all be numbers of the
same type, and PyTorch must keep track of this numeric type.

3.5.1 Specifying the numeric type with dtype
The dtype argument to tensor constructors (that is, functions like tensor, zeros, and
ones) specifies the numerical data (d) type that will be contained in the tensor. The
data type specifies the possible values the tensor can hold (integers versus floating-
point numbers) and the number of bytes per value.4 The dtype argument is deliber-
ately similar to the standard NumPy argument of the same name. Here’s a list of the
possible values for the dtype argument:

 torch.float32 or torch.float: 32-bit floating-point
 torch.float64 or torch.double: 64-bit, double-precision floating-point
 torch.float16 or torch.half: 16-bit, half-precision floating-point
 torch.int8: signed 8-bit integers
 torch.uint8: unsigned 8-bit integers
 torch.int16 or torch.short: signed 16-bit integers
 torch.int32 or torch.int: signed 32-bit integers
 torch.int64 or torch.long: signed 64-bit integers
 torch.bool: Boolean

4 And signed-ness, in the case of uint8.

51Tensor element types

The default data type for tensors is 32-bit floating-point.

3.5.2 A dtype for every occasion

As we will see in future chapters, computations happening in neural networks are typ-
ically executed with 32-bit floating-point precision. Higher precision, like 64-bit, will
not buy improvements in the accuracy of a model and will require more memory and
computing time. The 16-bit floating-point, half-precision data type is not present
natively in standard CPUs, but it is offered on modern GPUs. It is possible to switch to
half-precision to decrease the footprint of a neural network model if needed, with a
minor impact on accuracy.

 Tensors can be used as indexes in other tensors. In this case, PyTorch expects
indexing tensors to have a 64-bit integer data type. Creating a tensor with integers as
arguments, such as using torch.tensor([2, 2]), will create a 64-bit integer tensor by
default. As such, we’ll spend most of our time dealing with float32 and int64.

 Finally, predicates on tensors, such as points > 1.0, produce bool tensors indicat-
ing whether each individual element satisfies the condition. These are the numeric
types in a nutshell.

3.5.3 Managing a tensor’s dtype attribute

In order to allocate a tensor of the right numeric type, we can specify the proper
dtype as an argument to the constructor. For example:

In[47]:
double_points = torch.ones(10, 2, dtype=torch.double)
short_points = torch.tensor([[1, 2], [3, 4]], dtype=torch.short)

We can find out about the dtype for a tensor by accessing the corresponding attribute:

In[48]:
short_points.dtype

Out[48]:
torch.int16

We can also cast the output of a tensor creation function to the right type using the
corresponding casting method, such as

In[49]:
double_points = torch.zeros(10, 2).double()
short_points = torch.ones(10, 2).short()

or the more convenient to method:

In[50]:
double_points = torch.zeros(10, 2).to(torch.double)
short_points = torch.ones(10, 2).to(dtype=torch.short)

52 CHAPTER 3 It starts with a tensor

Under the hood, to checks whether the conversion is necessary and, if so, does it. The
dtype-named casting methods like float are shorthands for to, but the to method
can take additional arguments that we’ll discuss in section 3.9.

 When mixing input types in operations, the inputs are converted to the larger type
automatically. Thus, if we want 32-bit computation, we need to make sure all our
inputs are (at most) 32-bit:

In[51]:
points_64 = torch.rand(5, dtype=torch.double)
points_short = points_64.to(torch.short)
points_64 * points_short # works from PyTorch 1.3 onwards

Out[51]:
tensor([0., 0., 0., 0., 0.], dtype=torch.float64)

3.6 The tensor API
At this point, we know what PyTorch tensors are and how they work under the hood.
Before we wrap up, it is worth taking a look at the tensor operations that PyTorch
offers. It would be of little use to list them all here. Instead, we’re going to get a gen-
eral feel for the API and establish a few directions on where to find things in the
online documentation at http://pytorch.org/docs.

 First, the vast majority of operations on and between tensors are available in the
torch module and can also be called as methods of a tensor object. For instance, the
transpose function we encountered earlier can be used from the torch module

In[71]:
a = torch.ones(3, 2)
a_t = torch.transpose(a, 0, 1)

a.shape, a_t.shape

Out[71]:
(torch.Size([3, 2]), torch.Size([2, 3]))

or as a method of the a tensor:

In[72]:
a = torch.ones(3, 2)
a_t = a.transpose(0, 1)

a.shape, a_t.shape

Out[72]:
(torch.Size([3, 2]), torch.Size([2, 3]))

There is no difference between the two forms; they can be used interchangeably.
 We mentioned the online docs earlier (http://pytorch.org/docs). They are

exhaustive and well organized, with the tensor operations divided into groups:

rand initializes the tensor elements to
random numbers between 0 and 1.

http://pytorch.org/docs
http://pytorch.org/docs

53Tensors: Scenic views of storage

 Creation ops—Functions for constructing a tensor, like ones and from_numpy
 Indexing, slicing, joining, mutating ops—Functions for changing the shape, stride,

or content of a tensor, like transpose
 Math ops—Functions for manipulating the content of the tensor through

computations
– Pointwise ops—Functions for obtaining a new tensor by applying a function to

each element independently, like abs and cos
– Reduction ops—Functions for computing aggregate values by iterating

through tensors, like mean, std, and norm
– Comparison ops—Functions for evaluating numerical predicates over tensors,

like equal and max
– Spectral ops—Functions for transforming in and operating in the frequency

domain, like stft and hamming_window
– Other operations—Special functions operating on vectors, like cross, or matri-

ces, like trace
– BLAS and LAPACK operations—Functions following the Basic Linear Algebra

Subprograms (BLAS) specification for scalar, vector-vector, matrix-vector,
and matrix-matrix operations

 Random sampling—Functions for generating values by drawing randomly from
probability distributions, like randn and normal

 Serialization—Functions for saving and loading tensors, like load and save
 Parallelism—Functions for controlling the number of threads for parallel CPU

execution, like set_num_threads

Take some time to play with the general tensor API. This chapter has provided all the
prerequisites to enable this kind of interactive exploration. We will also encounter sev-
eral of the tensor operations as we proceed with the book, starting in the next chapter.

3.7 Tensors: Scenic views of storage
It is time for us to look a bit closer at the implementation under the hood. Values in
tensors are allocated in contiguous chunks of memory managed by torch.Storage
instances. A storage is a one-dimensional array of numerical data: that is, a contiguous
block of memory containing numbers of a given type, such as float (32 bits repre-
senting a floating-point number) or int64 (64 bits representing an integer). A
PyTorch Tensor instance is a view of such a Storage instance that is capable of index-
ing into that storage using an offset and per-dimension strides.5

 Multiple tensors can index the same storage even if they index into the data differ-
ently. We can see an example of this in figure 3.4. In fact, when we requested
points[0] in section 3.2, what we got back is another tensor that indexes the same

5 Storage may not be directly accessible in future PyTorch releases, but what we show here still provides a good
mental picture of how tensors work under the hood.

54 CHAPTER 3 It starts with a tensor

storage as the points tensor—just not all of it, and with different dimensionality (1D
versus 2D). The underlying memory is allocated only once, however, so creating alter-
nate tensor-views of the data can be done quickly regardless of the size of the data
managed by the Storage instance.

3.7.1 Indexing into storage

Let’s see how indexing into the storage works in practice with our 2D points. The stor-
age for a given tensor is accessible using the .storage property:

In[17]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points.storage()

Out[17]:
4.0
1.0
5.0
3.0
2.0
1.0

[torch.FloatStorage of size 6]

Even though the tensor reports itself as having three rows and two columns, the stor-
age under the hood is a contiguous array of size 6. In this sense, the tensor just knows
how to translate a pair of indices into a location in the storage.

 We can also index into a storage manually. For instance:

In[18]:
points_storage = points.storage()
points_storage[0]

Out[18]:
4.0

STORAGE

“START AT 0

2 ROWS

3 COLS”
“START AT 0

3 ROWS

2 COLS”

4
4

1
1

12

5

5

123
3

TENSORS

(REFERENCING

THE SAME

STORAGE)

WHERE THE

NUMBERS

ACTUALlY

ARE
1 5 3 2 1 ...

Figure 3.4 Tensors are views of a Storage instance.

55Tensor metadata: Size, offset, and stride

In[19]:
points.storage()[1]

Out[19]:
1.0

We can’t index a storage of a 2D tensor using two indices. The layout of a storage is
always one-dimensional, regardless of the dimensionality of any and all tensors that
might refer to it.

 At this point, it shouldn’t come as a surprise that changing the value of a storage
leads to changing the content of its referring tensor:

In[20]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points_storage = points.storage()
points_storage[0] = 2.0
points

Out[20]:
tensor([[2., 1.],

[5., 3.],
[2., 1.]])

3.7.2 Modifying stored values: In-place operations

In addition to the operations on tensors introduced in the previous section, a small
number of operations exist only as methods of the Tensor object. They are recogniz-
able from a trailing underscore in their name, like zero_, which indicates that the
method operates in place by modifying the input instead of creating a new output tensor
and returning it. For instance, the zero_ method zeros out all the elements of the input.
Any method without the trailing underscore leaves the source tensor unchanged and
instead returns a new tensor:

In[73]:
a = torch.ones(3, 2)

In[74]:
a.zero_()
a

Out[74]:
tensor([[0., 0.],

[0., 0.],
[0., 0.]])

3.8 Tensor metadata: Size, offset, and stride
In order to index into a storage, tensors rely on a few pieces of information that,
together with their storage, unequivocally define them: size, offset, and stride. How
these interact is shown in figure 3.5. The size (or shape, in NumPy parlance) is a tuple

56 CHAPTER 3 It starts with a tensor

indicating how many elements across each dimension the tensor represents. The stor-
age offset is the index in the storage corresponding to the first element in the tensor.
The stride is the number of elements in the storage that need to be skipped over to
obtain the next element along each dimension.

3.8.1 Views of another tensor’s storage

We can get the second point in the tensor by providing the corresponding index:

In[21]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
second_point = points[1]
second_point.storage_offset()

Out[21]:
2

In[22]:
second_point.size()

Out[22]:
torch.Size([2])

The resulting tensor has offset 2 in the storage (since we need to skip the first point,
which has two items), and the size is an instance of the Size class containing one

STRIDE = (3, 1)

5 7 4

31

7 3

2

8

6 5 7 4 1 3 2 7 3 8

+3 NEXT ROW (STRIDE[0]=3)

+1 NEXT COL (STRIDE[1]=1)

(first INDEX) (second INDEX)

COLSROWS

SHAPE = (3, 3)

OFfSET = 1

Figure 3.5 Relationship between a tensor’s offset, size, and stride. Here the tensor is a view
of a larger storage, like one that might have been allocated when creating a larger tensor.

57Tensor metadata: Size, offset, and stride

element, since the tensor is one-dimensional. It’s important to note that this is the
same information contained in the shape property of tensor objects:

In[23]:
second_point.shape

Out[23]:
torch.Size([2])

The stride is a tuple indicating the number of elements in the storage that have to be
skipped when the index is increased by 1 in each dimension. For instance, our points
tensor has a stride of (2, 1):

In[24]:
points.stride()

Out[24]:
(2, 1)

Accessing an element i, j in a 2D tensor results in accessing the storage_offset +
stride[0] * i + stride[1] * j element in the storage. The offset will usually be
zero; if this tensor is a view of a storage created to hold a larger tensor, the offset might
be a positive value.

 This indirection between Tensor and Storage makes some operations inexpen-
sive, like transposing a tensor or extracting a subtensor, because they do not lead to
memory reallocations. Instead, they consist of allocating a new Tensor object with a
different value for size, storage offset, or stride.

 We already extracted a subtensor when we indexed a specific point and saw the
storage offset increasing. Let’s see what happens to the size and stride as well:

In[25]:
second_point = points[1]
second_point.size()

Out[25]:
torch.Size([2])

In[26]:
second_point.storage_offset()

Out[26]:
2

In[27]:
second_point.stride()

Out[27]:
(1,)

58 CHAPTER 3 It starts with a tensor

The bottom line is that the subtensor has one less dimension, as we would expect,
while still indexing the same storage as the original points tensor. This also means
changing the subtensor will have a side effect on the original tensor:

In[28]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
second_point = points[1]
second_point[0] = 10.0
points

Out[28]:
tensor([[4., 1.],

[10., 3.],
[2., 1.]])

This might not always be desirable, so we can eventually clone the subtensor into a
new tensor:

In[29]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
second_point = points[1].clone()
second_point[0] = 10.0
points

Out[29]:
tensor([[4., 1.],

[5., 3.],
[2., 1.]])

3.8.2 Transposing without copying

Let’s try transposing now. Let’s take our points tensor, which has individual points in
the rows and X and Y coordinates in the columns, and turn it around so that individ-
ual points are in the columns. We take this opportunity to introduce the t function, a
shorthand alternative to transpose for two-dimensional tensors:

In[30]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points

Out[30]:
tensor([[4., 1.],

[5., 3.],
[2., 1.]])

In[31]:
points_t = points.t()
points_t

Out[31]:
tensor([[4., 5., 2.],

[1., 3., 1.]])

59Tensor metadata: Size, offset, and stride

TIP To help build a solid understanding of the mechanics of tensors, it may
be a good idea to grab a pencil and a piece of paper and scribble diagrams
like the one in figure 3.5 as we step through the code in this section.

We can easily verify that the two tensors share the same storage

In[32]:
id(points.storage()) == id(points_t.storage())

Out[32]:
True

and that they differ only in shape and stride:

In[33]:
points.stride()

Out[33]:
(2, 1)
In[34]:
points_t.stride()

Out[34]:
(1, 2)

This tells us that increasing the first index by one in points—for example, going from
points[0,0] to points[1,0]—will skip along the storage by two elements, while increas-
ing the second index—from points[0,0] to points[0,1]—will skip along the storage by
one. In other words, the storage holds the elements in the tensor sequentially row by row.

 We can transpose points into points_t, as shown in figure 3.6. We change the order
of the elements in the stride. After that, increasing the row (the first index of the ten-
sor) will skip along the storage by one, just like when we were moving along columns in
points. This is the very definition of transposing. No new memory is allocated: trans-
posing is obtained only by creating a new Tensor instance with different stride ordering
than the original.

Figure 3.6 Transpose
operation applied to a tensor

TRANSPOSE

STRIDE = (3, 1)

3

3

1 2

2

3 1 2 4 1 7

4

4

1 1

1 7
7

STRIDE = (1, 3)

NEXT COL

NEXT ROW+1

NEXT ROW

NEXT COL

+3

60 CHAPTER 3 It starts with a tensor

3.8.3 Transposing in higher dimensions

Transposing in PyTorch is not limited to matrices. We can transpose a multidimen-
sional array by specifying the two dimensions along which transposing (flipping shape
and stride) should occur:

In[35]:
some_t = torch.ones(3, 4, 5)
transpose_t = some_t.transpose(0, 2)
some_t.shape

Out[35]:
torch.Size([3, 4, 5])

In[36]:
transpose_t.shape

Out[36]:
torch.Size([5, 4, 3])

In[37]:
some_t.stride()

Out[37]:
(20, 5, 1)

In[38]:
transpose_t.stride()

Out[38]:
(1, 5, 20)

A tensor whose values are laid out in the storage starting from the rightmost dimen-
sion onward (that is, moving along rows for a 2D tensor) is defined as contiguous.
Contiguous tensors are convenient because we can visit them efficiently in order with-
out jumping around in the storage (improving data locality improves performance
because of the way memory access works on modern CPUs). This advantage of course
depends on the way algorithms visit.

3.8.4 Contiguous tensors

Some tensor operations in PyTorch only work on contiguous tensors, such as view,
which we’ll encounter in the next chapter. In that case, PyTorch will throw an infor-
mative exception and require us to call contiguous explicitly. It’s worth noting that
calling contiguous will do nothing (and will not hurt performance) if the tensor is
already contiguous.

 In our case, points is contiguous, while its transpose is not:

In[39]:
points.is_contiguous()

61Tensor metadata: Size, offset, and stride

Out[39]:
True

In[40]:
points_t.is_contiguous()

Out[40]:
False

We can obtain a new contiguous tensor from a non-contiguous one using the contigu-
ous method. The content of the tensor will be the same, but the stride will change, as
will the storage:

In[41]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]])
points_t = points.t()
points_t

Out[41]:
tensor([[4., 5., 2.],

[1., 3., 1.]])

In[42]:
points_t.storage()

Out[42]:
4.0
1.0
5.0
3.0
2.0
1.0

[torch.FloatStorage of size 6]

In[43]:
points_t.stride()

Out[43]:
(1, 2)

In[44]:
points_t_cont = points_t.contiguous()
points_t_cont

Out[44]:
tensor([[4., 5., 2.],

[1., 3., 1.]])

In[45]:
points_t_cont.stride()

Out[45]:
(3, 1)

62 CHAPTER 3 It starts with a tensor

In[46]:
points_t_cont.storage()

Out[46]:
4.0
5.0
2.0
1.0
3.0
1.0

[torch.FloatStorage of size 6]

Notice that the storage has been reshuffled in order for elements to be laid out row-
by-row in the new storage. The stride has been changed to reflect the new layout.

 As a refresher, figure 3.7 shows our diagram again. Hopefully it will all make sense
now that we’ve taken a good look at how tensors are built.

3.9 Moving tensors to the GPU
So far in this chapter, when we’ve talked about storage, we’ve meant memory on the
CPU. PyTorch tensors also can be stored on a different kind of processor: a graphics
processing unit (GPU). Every PyTorch tensor can be transferred to (one of) the
GPU(s) in order to perform massively parallel, fast computations. All operations that
will be performed on the tensor will be carried out using GPU-specific routines that
come with PyTorch.

STRIDE = (3, 1)

5 7 4

31

7 3

2

8

6 5 7 4 1 3 2 7 3 8

+3 NEXT ROW (STRIDE[0]=3)

+1 NEXT COL (STRIDE[1]=1)

(first INDEX) (second INDEX)

COLSROWS

SHAPE = (3, 3)

OFfSET = 1

Figure 3.7 Relationship between a tensor’s offset, size, and stride. Here the tensor is a view
of a larger storage, like one that might have been allocated when creating a larger tensor.

63Moving tensors to the GPU

3.9.1 Managing a tensor’s device attribute

In addition to dtype, a PyTorch Tensor also has the notion of device, which is where
on the computer the tensor data is placed. Here is how we can create a tensor on the
GPU by specifying the corresponding argument to the constructor:

In[64]:
points_gpu = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]], device='cuda')

We could instead copy a tensor created on the CPU onto the GPU using the to
method:

In[65]:
points_gpu = points.to(device='cuda')

Doing so returns a new tensor that has the same numerical data, but stored in the
RAM of the GPU, rather than in regular system RAM. Now that the data is stored
locally on the GPU, we’ll start to see the speedups mentioned earlier when perform-
ing mathematical operations on the tensor. In almost all cases, CPU- and GPU-based
tensors expose the same user-facing API, making it much easier to write code that is
agnostic to where, exactly, the heavy number crunching is running.

 If our machine has more than one GPU, we can also decide on which GPU we allo-
cate the tensor by passing a zero-based integer identifying the GPU on the machine,
such as

In[66]:
points_gpu = points.to(device='cuda:0')

At this point, any operation performed on the tensor, such as multiplying all elements
by a constant, is carried out on the GPU:

In[67]:
points = 2 * points
points_gpu = 2 * points.to(device='cuda')

PyTorch support for various GPUs
As of mid-2019, the main PyTorch releases only have acceleration on GPUs that have
support for CUDA. PyTorch can run on AMD’s ROCm (https://rocm.github.io), and the
master repository provides support, but so far, you need to compile it yourself.
(Before the regular build process, you need to run tools/amd_build/build_amd.py
to translate the GPU code.) Support for Google’s tensor processing units (TPUs) is a
work in progress (https://github.com/pytorch/xla), with the current proof of concept
available to the public in Google Colab: https://colab.research.google.com. Imple-
mentation of data structures and kernels on other GPU technologies, such as
OpenCL, are not planned at the time of this writing.

Multiplication performed on the CPU

Multiplication performed
on the GPU

https://rocm.github.io
https://github.com/pytorch/xla
https://colab.research.google.com

64 CHAPTER 3 It starts with a tensor

Note that the points_gpu tensor is not brought back to the CPU once the result has
been computed. Here’s what happened in this line:

1 The points tensor is copied to the GPU.
2 A new tensor is allocated on the GPU and used to store the result of the multi-

plication.
3 A handle to that GPU tensor is returned.

Therefore, if we also add a constant to the result

In[68]:
points_gpu = points_gpu + 4

the addition is still performed on the GPU, and no information flows to the CPU
(unless we print or access the resulting tensor). In order to move the tensor back to
the CPU, we need to provide a cpu argument to the to method, such as

In[69]:
points_cpu = points_gpu.to(device='cpu')

We can also use the shorthand methods cpu and cuda instead of the to method to
achieve the same goal:

In[70]:
points_gpu = points.cuda()
points_gpu = points.cuda(0)
points_cpu = points_gpu.cpu()

It’s also worth mentioning that by using the to method, we can change the placement
and the data type simultaneously by providing both device and dtype as arguments.

3.10 NumPy interoperability
We’ve mentioned NumPy here and there. While we do not consider NumPy a prereq-
uisite for reading this book, we strongly encourage you to become familiar with
NumPy due to its ubiquity in the Python data science ecosystem. PyTorch tensors can
be converted to NumPy arrays and vice versa very efficiently. By doing so, we can take
advantage of the huge swath of functionality in the wider Python ecosystem that has
built up around the NumPy array type. This zero-copy interoperability with NumPy
arrays is due to the storage system working with the Python buffer protocol
(https://docs.python.org/3/c-api/buffer.html).

 To get a NumPy array out of our points tensor, we just call

In[55]:
points = torch.ones(3, 4)
points_np = points.numpy()
points_np

Out[55]:

Defaults to GPU index 0

https://docs.python.org/3/c-api/buffer.html

65Generalized tensors are tensors, too

array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], dtype=float32)

which will return a NumPy multidimensional array of the right size, shape, and
numerical type. Interestingly, the returned array shares the same underlying buffer
with the tensor storage. This means the numpy method can be effectively executed at
basically no cost, as long as the data sits in CPU RAM. It also means modifying the
NumPy array will lead to a change in the originating tensor. If the tensor is allocated
on the GPU, PyTorch will make a copy of the content of the tensor into a NumPy array
allocated on the CPU.

 Conversely, we can obtain a PyTorch tensor from a NumPy array this way

In[56]:
points = torch.from_numpy(points_np)

which will use the same buffer-sharing strategy we just described.

NOTE While the default numeric type in PyTorch is 32-bit floating-point, for
NumPy it is 64-bit. As discussed in section 3.5.2, we usually want to use 32-bit
floating-points, so we need to make sure we have tensors of dtype torch
.float after converting.

3.11 Generalized tensors are tensors, too
For the purposes of this book, and for the vast majority of applications in general, ten-
sors are multidimensional arrays, just as we’ve seen in this chapter. If we risk a peek
under the hood of PyTorch, there is a twist: how the data is stored under the hood is
separate from the tensor API we discussed in section 3.6. Any implementation that
meets the contract of that API can be considered a tensor!

 PyTorch will cause the right computation functions to be called regardless of
whether our tensor is on the CPU or the GPU. This is accomplished through a dis-
patching mechanism, and that mechanism can cater to other tensor types by hooking
up the user-facing API to the right backend functions. Sure enough, there are other
kinds of tensors: some are specific to certain classes of hardware devices (like Google
TPUs), and others have data-representation strategies that differ from the dense array
style we’ve seen so far. For example, sparse tensors store only nonzero entries, along
with index information. The PyTorch dispatcher on the left in figure 3.8 is designed
to be extensible; the subsequent switching done to accommodate the various numeric
types of figure 3.8 shown on the right is a fixed aspect of the implementation coded
into each backend.

 We will meet quantized tensors in chapter 15, which are implemented as another
type of tensor with a specialized computational backend. Sometimes the usual tensors
we use are called dense or strided to differentiate them from tensors using other mem-
ory layouts.

66 CHAPTER 3 It starts with a tensor

As with many things, the number of kinds of tensors has grown as PyTorch supports a
broader range of hardware and applications. We can expect new kinds to continue to
arise as people explore new ways to express and perform computations with PyTorch.

3.12 Serializing tensors
Creating a tensor on the fly is all well and good, but if the data inside is valuable, we will
want to save it to a file and load it back at some point. After all, we don’t want to have
to retrain a model from scratch every time we start running our program! PyTorch uses
pickle under the hood to serialize the tensor object, plus dedicated serialization code
for the storage. Here’s how we can save our points tensor to an ourpoints.t file:

In[57]:
torch.save(points, '../data/p1ch3/ourpoints.t')

As an alternative, we can pass a file descriptor in lieu of the filename:

In[58]:
with open('../data/p1ch3/ourpoints.t','wb') as f:

torch.save(points, f)

Loading our points back is similarly a one-liner

In[59]:
points = torch.load('../data/p1ch3/ourpoints.t')

or, equivalently,

In[60]:
with open('../data/p1ch3/ourpoints.t','rb') as f:

points = torch.load(f)

Figure 3.8 The dispatcher
in PyTorch is one of its key
infrastructure bits.

67Serializing tensors

While we can quickly save tensors this way if we only want to load them with PyTorch,
the file format itself is not interoperable: we can’t read the tensor with software other
than PyTorch. Depending on the use case, this may or may not be a limitation, but we
should learn how to save tensors interoperably for those times when it is. We’ll look
next at how to do so.

3.12.1 Serializing to HDF5 with h5py

Every use case is unique, but we suspect needing to save tensors interoperably will be
more common when introducing PyTorch into existing systems that already rely on
different libraries. New projects probably won’t need to do this as often.

 For those cases when you need to, however, you can use the HDF5 format and
library (www.hdfgroup.org/solutions/hdf5). HDF5 is a portable, widely supported
format for representing serialized multidimensional arrays, organized in a nested key-
value dictionary. Python supports HDF5 through the h5py library (www.h5py.org),
which accepts and returns data in the form of NumPy arrays.

 We can install h5py using

$ conda install h5py

At this point, we can save our points tensor by converting it to a NumPy array (at no
cost, as we noted earlier) and passing it to the create_dataset function:

In[61]:
import h5py

f = h5py.File('../data/p1ch3/ourpoints.hdf5', 'w')
dset = f.create_dataset('coords', data=points.numpy())
f.close()

Here 'coords' is a key into the HDF5 file. We can have other keys—even nested ones.
One of the interesting things in HDF5 is that we can index the dataset while on disk
and access only the elements we’re interested in. Let’s suppose we want to load just
the last two points in our dataset:

In[62]:
f = h5py.File('../data/p1ch3/ourpoints.hdf5', 'r')
dset = f['coords']
last_points = dset[-2:]

The data is not loaded when the file is opened or the dataset is required. Rather, the
data stays on disk until we request the second and last rows in the dataset. At that
point, h5py accesses those two columns and returns a NumPy array-like object
encapsulating that region in that dataset that behaves like a NumPy array and has the
same API.

https://www.hdfgroup.org/solutions/hdf5
http://www.h5py.org/

68 CHAPTER 3 It starts with a tensor

 Owing to this fact, we can pass the returned object to the torch.from_numpy func-
tion to obtain a tensor directly. Note that in this case, the data is copied over to the
tensor’s storage:

In[63]:
last_points = torch.from_numpy(dset[-2:])
f.close()

Once we’re finished loading data, we close the file. Closing the HDFS file invalidates
the datasets, and trying to access dset afterward will give an exception. As long as we
stick to the order shown here, we are fine and can now work with the last_points
tensor.

3.13 Conclusion
Now we have covered everything we need to get started with representing everything in
floats. We’ll cover other aspects of tensors—such as creating views of tensors; indexing
tensors with other tensors; and broadcasting, which simplifies performing element-wise
operations between tensors of different sizes or shapes—as needed along the way.

 In chapter 4, we will learn how to represent real-world data in PyTorch. We will
start with simple tabular data and move on to something more elaborate. In the pro-
cess, we will get to know more about tensors.

3.14 Exercises
1 Create a tensor a from list(range(9)). Predict and then check the size, offset,

and stride.
a Create a new tensor using b = a.view(3, 3). What does view do? Check

that a and b share the same storage.
b Create a tensor c = b[1:,1:]. Predict and then check the size, offset, and

stride.
2 Pick a mathematical operation like cosine or square root. Can you find a corre-

sponding function in the torch library?
a Apply the function element-wise to a. Why does it return an error?
b What operation is required to make the function work?
c Is there a version of your function that operates in place?

3.15 Summary
 Neural networks transform floating-point representations into other floating-

point representations. The starting and ending representations are typically
human interpretable, but the intermediate representations are less so.

 These floating-point representations are stored in tensors.
 Tensors are multidimensional arrays; they are the basic data structure in

PyTorch.

69Summary

 PyTorch has a comprehensive standard library for tensor creation, manipula-
tion, and mathematical operations.

 Tensors can be serialized to disk and loaded back.
 All tensor operations in PyTorch can execute on the CPU as well as on the GPU,

with no change in the code.
 PyTorch uses a trailing underscore to indicate that a function operates in place

on a tensor (for example, Tensor.sqrt_).

70

Real-world data
 representation
 using tensors

In the previous chapter, we learned that tensors are the building blocks for data in
PyTorch. Neural networks take tensors as input and produce tensors as outputs. In
fact, all operations within a neural network and during optimization are operations
between tensors, and all parameters (for example, weights and biases) in a neural
network are tensors. Having a good sense of how to perform operations on tensors
and index them effectively is central to using tools like PyTorch successfully. Now

This chapter covers
 Representing real-world data as PyTorch tensors

 Working with a range of data types

 Loading data from a file

 Converting data to tensors

 Shaping tensors so they can be used as inputs
for neural network models

71Working with images

that you know the basics of tensors, your dexterity with them will grow as you make
your way through the book.

 Here’s a question that we can already address: how do we take a piece of data, a
video, or a line of text, and represent it with a tensor in a way that is appropriate for
training a deep learning model? This is what we’ll learn in this chapter. We’ll cover
different types of data with a focus on the types relevant to this book and show how to
represent that data as tensors. Then we’ll learn how to load the data from the most
common on-disk formats and get a feel for those data types’ structure so we can see
how to prepare them for training a neural network. Often, our raw data won’t be per-
fectly formed for the problem we’d like to solve, so we’ll have a chance to practice our
tensor-manipulation skills with a few more interesting tensor operations.

 Each section in this chapter will describe a data type, and each will come with its
own dataset. While we’ve structured the chapter so that each data type builds on the
previous one, feel free to skip around a bit if you’re so inclined.

 We’ll be using a lot of image and volumetric data through the rest of the book,
since those are common data types and they reproduce well in book format. We’ll also
cover tabular data, time series, and text, as those will also be of interest to a number of
our readers. Since a picture is worth a thousand words, we’ll start with image data.
We’ll then demonstrate working with a three-dimensional array using medical data
that represents patient anatomy as a volume. Next, we’ll work with tabular data about
wines, just like what we’d find in a spreadsheet. After that, we’ll move to ordered tabular
data, with a time-series dataset from a bike-sharing program. Finally, we’ll dip our toes
into text data from Jane Austen. Text data retains its ordered aspect but introduces
the problem of representing words as arrays of numbers.

 In every section, we will stop where a deep learning researcher would start: right
before feeding the data to a model. We encourage you to keep these datasets; they will
constitute excellent material for when we start learning how to train neural network
models in the next chapter.

4.1 Working with images
The introduction of convolutional neural networks revolutionized computer vision
(see http://mng.bz/zjMa), and image-based systems have since acquired a whole new
set of capabilities. Problems that required complex pipelines of highly tuned algorith-
mic building blocks are now solvable at unprecedented levels of performance by train-
ing end-to-end networks using paired input-and-desired-output examples. In order to
participate in this revolution, we need to be able to load an image from common
image formats and then transform the data into a tensor representation that has the
various parts of the image arranged in the way PyTorch expects.

 An image is represented as a collection of scalars arranged in a regular grid with a
height and a width (in pixels). We might have a single scalar per grid point (the
pixel), which would be represented as a grayscale image; or multiple scalars per grid
point, which would typically represent different colors, as we saw in the previous chap-
ter, or different features like depth from a depth camera.

http://mng.bz/zjMa

72 CHAPTER 4 Real-world data representation using tensors

 Scalars representing values at individual pixels are often encoded using 8-bit inte-
gers, as in consumer cameras. In medical, scientific, and industrial applications, it is
not unusual to find higher numerical precision, such as 12-bit or 16-bit. This allows a
wider range or increased sensitivity in cases where the pixel encodes information
about a physical property, like bone density, temperature, or depth.

4.1.1 Adding color channels

We mentioned colors earlier. There are several ways to encode colors into numbers.1

The most common is RGB, where a color is defined by three numbers representing
the intensity of red, green, and blue. We can think of a color channel as a grayscale
intensity map of only the color in question, similar to what you’d see if you looked at
the scene in question using a pair of pure red sunglasses. Figure 4.1 shows a rainbow,
where each of the RGB channels captures a certain portion of the spectrum (the fig-
ure is simplified, in that it elides things like the orange and yellow bands being repre-
sented as a combination of red and green).

The red band of the rainbow is brightest in the red channel of the image, while the
blue channel has both the blue band of the rainbow and the sky as high-intensity.
Note also that the white clouds are high-intensity in all three channels.

4.1.2 Loading an image file

Images come in several different file formats, but luckily there are plenty of ways to
load images in Python. Let’s start by loading a PNG image using the imageio module
(code/p1ch4/1_image_dog.ipynb).

1 This is something of an understatement: https://en.wikipedia.org/wiki/Color_model.

red grEen blue

Figure 4.1 A rainbow, broken into red, green, and blue channels

https://en.wikipedia.org/wiki/Color_model

73Working with images

In[2]:
import imageio

img_arr = imageio.imread('../data/p1ch4/image-dog/bobby.jpg')
img_arr.shape

Out[2]:
(720, 1280, 3)

NOTE We’ll use imageio throughout the chapter because it handles different
data types with a uniform API. For many purposes, using TorchVision is a
great default choice to deal with image and video data. We go with imageio
here for somewhat lighter exploration.

At this point, img is a NumPy array-like object with three dimensions: two spatial
dimensions, width and height; and a third dimension corresponding to the red,
green, and blue channels. Any library that outputs a NumPy array will suffice to obtain
a PyTorch tensor. The only thing to watch out for is the layout of the dimensions.
PyTorch modules dealing with image data require tensors to be laid out as C × H × W :
channels, height, and width, respectively.

4.1.3 Changing the layout

We can use the tensor’s permute method with the old dimensions for each new dimen-
sion to get to an appropriate layout. Given an input tensor H × W × C as obtained pre-
viously, we get a proper layout by having channel 2 first and then channels 0 and 1:

In[3]:
img = torch.from_numpy(img_arr)
out = img.permute(2, 0, 1)

We’ve seen this previously, but note that this operation does not make a copy of the
tensor data. Instead, out uses the same underlying storage as img and only plays with
the size and stride information at the tensor level. This is convenient because the
operation is very cheap; but just as a heads-up: changing a pixel in img will lead to a
change in out.

 Note also that other deep learning frameworks use different layouts. For instance,
originally TensorFlow kept the channel dimension last, resulting in an H × W × C lay-
out (it now supports multiple layouts). This strategy has pros and cons from a low-level
performance standpoint, but for our concerns, it doesn’t make a difference as long as
we reshape our tensors properly.

 So far, we have described a single image. Following the same strategy we’ve used
for earlier data types, to create a dataset of multiple images to use as an input for our
neural networks, we store the images in a batch along the first dimension to obtain an
N × C × H × W tensor.

Listing 4.1 code/p1ch4/1_image_dog.ipynb

74 CHAPTER 4 Real-world data representation using tensors

 As a slightly more efficient alternative to using stack to build up the tensor, we can pre-
allocate a tensor of appropriate size and fill it with images loaded from a directory, like so:

In[4]:
batch_size = 3
batch = torch.zeros(batch_size, 3, 256, 256, dtype=torch.uint8)

This indicates that our batch will consist of three RGB images 256 pixels in height and
256 pixels in width. Notice the type of the tensor: we’re expecting each color to be rep-
resented as an 8-bit integer, as in most photographic formats from standard consumer
cameras. We can now load all PNG images from an input directory and store them in
the tensor:

In[5]:
import os

data_dir = '../data/p1ch4/image-cats/'
filenames = [name for name in os.listdir(data_dir)

if os.path.splitext(name)[-1] == '.png']
for i, filename in enumerate(filenames):

img_arr = imageio.imread(os.path.join(data_dir, filename))
img_t = torch.from_numpy(img_arr)
img_t = img_t.permute(2, 0, 1)
img_t = img_t[:3]
batch[i] = img_t

4.1.4 Normalizing the data
We mentioned earlier that neural networks usually work with floating-point tensors as
their input. Neural networks exhibit the best training performance when the input
data ranges roughly from 0 to 1, or from -1 to 1 (this is an effect of how their building
blocks are defined).

 So a typical thing we’ll want to do is cast a tensor to floating-point and normalize
the values of the pixels. Casting to floating-point is easy, but normalization is trickier,
as it depends on what range of the input we decide should lie between 0 and 1 (or -1
and 1). One possibility is to just divide the values of the pixels by 255 (the maximum
representable number in 8-bit unsigned):

In[6]:
batch = batch.float()
batch /= 255.0

Another possibility is to compute the mean and standard deviation of the input data
and scale it so that the output has zero mean and unit standard deviation across each
channel:

In[7]:
n_channels = batch.shape[1]
for c in range(n_channels):

mean = torch.mean(batch[:, c])
std = torch.std(batch[:, c])
batch[:, c] = (batch[:, c] - mean) / std

Here we keep only the first three channels.
Sometimes images also have an alpha channel
indicating transparency, but our network only
wants RGB input.

753D images: Volumetric data

NOTE Here, we normalize just a single batch of images because we do not
know yet how to operate on an entire dataset. In working with images, it is good
practice to compute the mean and standard deviation on all the training data
in advance and then subtract and divide by these fixed, precomputed quanti-
ties. We saw this in the preprocessing for the image classifier in section 2.1.4.

We can perform several other operations on inputs, such as geometric transforma-
tions like rotations, scaling, and cropping. These may help with training or may be
required to make an arbitrary input conform to the input requirements of a network,
like the size of the image. We will stumble on quite a few of these strategies in section
12.6. For now, just remember that you have image-manipulation options available.

4.2 3D images: Volumetric data
We’ve learned how to load and represent 2D images, like the ones we take with a camera.
In some contexts, such as medical imaging applications involving, say, CT (computed
tomography) scans, we typically deal with sequences of images stacked along the head-
to-foot axis, each corresponding to a slice across the human body. In CT scans, the inten-
sity represents the density of the different parts of the body—lungs, fat, water, muscle,
and bone, in order of increasing density—mapped from dark to bright when the CT
scan is displayed on a clinical workstation. The density at each point is computed from
the amount of X-rays reaching a detector after crossing through the body, with some
complex math to deconvolve the raw sensor data into the full volume.

 CTs have only a single intensity channel, similar to a grayscale image. This means
that often, the channel dimension is left out in native data formats; so, similar to the
last section, the raw data typically has three dimensions. By stacking individual 2D
slices into a 3D tensor, we can build volumetric data representing the 3D anatomy of a
subject. Unlike what we saw in figure 4.1, the extra dimension in figure 4.2 represents
an offset in physical space, rather than a particular band of the visible spectrum.

top

brain

eye

more

brain

nose

tEe
th

spine

top of

skuLl

miDdle boTtom

Figure 4.2 Slices of a CT scan, from the top of the head to the jawline

76 CHAPTER 4 Real-world data representation using tensors

Part 2 of this book will be devoted to tackling a medical imaging problem in the real
world, so we won’t go into the details of medical-imaging data formats. For now, it suf-
fices to say that there’s no fundamental difference between a tensor storing volumet-
ric data versus image data. We just have an extra dimension, depth, after the channel
dimension, leading to a 5D tensor of shape N × C × D × H × W.

4.2.1 Loading a specialized format

Let’s load a sample CT scan using the volread function in the imageio module, which
takes a directory as an argument and assembles all Digital Imaging and Communi-
cations in Medicine (DICOM) files2 in a series in a NumPy 3D array (code/p1ch4/
2_volumetric_ct.ipynb).

In[2]:
import imageio

dir_path = "../data/p1ch4/volumetric-dicom/2-LUNG 3.0 B70f-04083"
vol_arr = imageio.volread(dir_path, 'DICOM')
vol_arr.shape

Out[2]:
Reading DICOM (examining files): 1/99 files (1.0%99/99 files (100.0%)

Found 1 correct series.
Reading DICOM (loading data): 31/99 (31.392/99 (92.999/99 (100.0%)

(99, 512, 512)

As was true in section 4.1.3, the layout is different from what PyTorch expects, due to
having no channel information. So we’ll have to make room for the channel dimen-
sion using unsqueeze:

In[3]:
vol = torch.from_numpy(vol_arr).float()
vol = torch.unsqueeze(vol, 0)

vol.shape

Out[3]:
torch.Size([1, 99, 512, 512])

At this point we could assemble a 5D dataset by stacking multiple volumes along the
batch direction, just as we did in the previous section. We’ll see a lot more CT data in
part 2.

2 From the Cancer Imaging Archive’s CPTAC-LSCC collection: http://mng.bz/K21K.

Listing 4.2 code/p1ch4/2_volumetric_ct.ipynb

http://mng.bz/K21K

77Representing tabular data

4.3 Representing tabular data
The simplest form of data we’ll encounter on a machine learning job is sitting in a
spreadsheet, CSV file, or database. Whatever the medium, it’s a table containing one
row per sample (or record), where columns contain one piece of information about
our sample.

 At first we are going to assume there’s no meaning to the order in which samples
appear in the table: such a table is a collection of independent samples, unlike a time
series, for instance, in which samples are related by a time dimension.

 Columns may contain numerical values, like temperatures at specific locations; or
labels, like a string expressing an attribute of the sample, like “blue.” Therefore, tabu-
lar data is typically not homogeneous: different columns don’t have the same type. We
might have a column showing the weight of apples and another encoding their color
in a label.

 PyTorch tensors, on the other hand, are homogeneous. Information in PyTorch is
typically encoded as a number, typically floating-point (though integer types and
Boolean are supported as well). This numeric encoding is deliberate, since neural
networks are mathematical entities that take real numbers as inputs and produce real
numbers as output through successive application of matrix multiplications and
nonlinear functions.

4.3.1 Using a real-world dataset

Our first job as deep learning practitioners is to encode heterogeneous, real-world
data into a tensor of floating-point numbers, ready for consumption by a neural net-
work. A large number of tabular datasets are freely available on the internet; see, for
instance, https://github.com/caesar0301/awesome-public-datasets. Let’s start with
something fun: wine! The Wine Quality dataset is a freely available table containing
chemical characterizations of samples of vinho verde, a wine from north Portugal,
together with a sensory quality score. The dataset for white wines can be downloaded
here: http://mng.bz/90Ol. For convenience, we also created a copy of the dataset on
the Deep Learning with PyTorch Git repository, under data/p1ch4/tabular-wine.

 The file contains a comma-separated collection of values organized in 12 columns
preceded by a header line containing the column names. The first 11 columns con-
tain values of chemical variables, and the last column contains the sensory quality
score from 0 (very bad) to 10 (excellent). These are the column names in the order
they appear in the dataset:

fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density

https://github.com/caesar0301/awesome-public-datasets
http://mng.bz/90Ol

78 CHAPTER 4 Real-world data representation using tensors

pH
sulphates
alcohol
quality

A possible machine learning task on this dataset is predicting the quality score from
chemical characterization alone. Don’t worry, though; machine learning is not going
to kill wine tasting anytime soon. We have to get the training data from somewhere! As
we can see in figure 4.3, we’re hoping to find a relationship between one of the chem-
ical columns in our data and the quality column. Here, we’re expecting to see quality
increase as sulfur decreases.

4.3.2 Loading a wine data tensor

Before we can get to that, however, we need to be able to examine the data in a more
usable way than opening the file in a text editor. Let’s see how we can load the data
using Python and then turn it into a PyTorch tensor. Python offers several options for
quickly loading a CSV file. Three popular options are

 The csv module that ships with Python
 NumPy
 Pandas

ACID SUlfur PH Quality

8

4

6

4

5

6

110

162

110

162

162

141.83

110

3 7

s
u
l
f
u
r

quality

133

1

2

3

Figure 4.3 The (we hope) relationship between sulfur and quality in wine

79Representing tabular data

The third option is the most time- and memory-efficient. However, we’ll avoid intro-
ducing an additional library in our learning trajectory just because we need to load a
file. Since we already introduced NumPy in the previous section, and PyTorch has
excellent NumPy interoperability, we’ll go with that. Let’s load our file and turn the
resulting NumPy array into a PyTorch tensor (code/p1ch4/3_tabular_wine.ipynb).

In[2]:
import csv
wine_path = "../data/p1ch4/tabular-wine/winequality-white.csv"
wineq_numpy = np.loadtxt(wine_path, dtype=np.float32, delimiter=";",

skiprows=1)
wineq_numpy

Out[2]:
array([[7. , 0.27, 0.36, ..., 0.45, 8.8 , 6.],

[6.3 , 0.3 , 0.34, ..., 0.49, 9.5 , 6.],
[8.1 , 0.28, 0.4 , ..., 0.44, 10.1 , 6.],
...,
[6.5 , 0.24, 0.19, ..., 0.46, 9.4 , 6.],
[5.5 , 0.29, 0.3 , ..., 0.38, 12.8 , 7.],
[6. , 0.21, 0.38, ..., 0.32, 11.8 , 6.]], dtype=float32)

Here we just prescribe what the type of the 2D array should be (32-bit floating-point),
the delimiter used to separate values in each row, and the fact that the first line should
not be read since it contains the column names. Let’s check that all the data has been
read

In[3]:
col_list = next(csv.reader(open(wine_path), delimiter=';'))

wineq_numpy.shape, col_list

Out[3]:
((4898, 12),
['fixed acidity',
'volatile acidity',
'citric acid',
'residual sugar',
'chlorides',
'free sulfur dioxide',
'total sulfur dioxide',
'density',
'pH',
'sulphates',
'alcohol',
'quality'])

Listing 4.3 code/p1ch4/3_tabular_wine.ipynb

80 CHAPTER 4 Real-world data representation using tensors

and proceed to convert the NumPy array to a PyTorch tensor:

In[4]:
wineq = torch.from_numpy(wineq_numpy)

wineq.shape, wineq.dtype

Out[4]:
(torch.Size([4898, 12]), torch.float32)

At this point, we have a floating-point torch.Tensor containing all the columns,
including the last, which refers to the quality score. 3

3 As a starting point for a more in-depth discussion, refer to https://en.wikipedia.org/wiki/Level_of_measurement.

Continuous, ordinal, and categorical values
We should be aware of three different kinds of numerical values as we attempt to
make sense of our data.3 The first kind is continuous values. These are the most intu-
itive when represented as numbers. They are strictly ordered, and a difference
between various values has a strict meaning. Stating that package A is 2 kilograms
heavier than package B, or that package B came from 100 miles farther away than A
has a fixed meaning, regardless of whether package A is 3 kilograms or 10, or if B
came from 200 miles away or 2,000. If you’re counting or measuring something with
units, it’s probably a continuous value. The literature actually divides continuous val-
ues further: in the previous examples, it makes sense to say something is twice as
heavy or three times farther away, so those values are said to be on a ratio scale.
The time of day, on the other hand, does have the notion of difference, but it is not
reasonable to claim that 6:00 is twice as late as 3:00; so time of day only offers an
interval scale.

Next we have ordinal values. The strict ordering we have with continuous values
remains, but the fixed relationship between values no longer applies. A good example
of this is ordering a small, medium, or large drink, with small mapped to the value 1,
medium 2, and large 3. The large drink is bigger than the medium, in the same way
that 3 is bigger than 2, but it doesn’t tell us anything about how much bigger. If we
were to convert our 1, 2, and 3 to the actual volumes (say, 8, 12, and 24 fluid
ounces), then they would switch to being interval values. It’s important to remember
that we can’t “do math” on the values outside of ordering them; trying to average
large = 3 and small = 1 does not result in a medium drink!

Finally, categorical values have neither ordering nor numerical meaning to their values.
These are often just enumerations of possibilities assigned arbitrary numbers. Assign-
ing water to 1, coffee to 2, soda to 3, and milk to 4 is a good example. There’s no
real logic to placing water first and milk last; they simply need distinct values to dif-
ferentiate them. We could assign coffee to 10 and milk to –3, and there would be no
significant change (though assigning values in the range 0..N – 1 will have advantages
for one-hot encoding and the embeddings we’ll discuss in section 4.5.4.) Because
the numerical values bear no meaning, they are said to be on a nominal scale.

https://en.wikipedia.org/wiki/Level_of_measurement

81Representing tabular data

4.3.3 Representing scores

We could treat the score as a continuous variable, keep it as a real number, and per-
form a regression task, or treat it as a label and try to guess the label from the chemi-
cal analysis in a classification task. In both approaches, we will typically remove the
score from the tensor of input data and keep it in a separate tensor, so that we can use
the score as the ground truth without it being input to our model:

In[5]:
data = wineq[:, :-1]
data, data.shape

Out[5]:
(tensor([[7.00, 0.27, ..., 0.45, 8.80],

[6.30, 0.30, ..., 0.49, 9.50],
...,
[5.50, 0.29, ..., 0.38, 12.80],
[6.00, 0.21, ..., 0.32, 11.80]]), torch.Size([4898, 11]))

In[6]:
target = wineq[:, -1]
target, target.shape

Out[6]:
(tensor([6., 6., ..., 7., 6.]), torch.Size([4898]))

If we want to transform the target tensor in a tensor of labels, we have two options,
depending on the strategy or what we use the categorical data for. One is simply to
treat labels as an integer vector of scores:

In[7]:
target = wineq[:, -1].long()
target

Out[7]:
tensor([6, 6, ..., 7, 6])

If targets were string labels, like wine color, assigning an integer number to each string
would let us follow the same approach.

4.3.4 One-hot encoding

The other approach is to build a one-hot encoding of the scores: that is, encode each of
the 10 scores in a vector of 10 elements, with all elements set to 0 but one, at a differ-
ent index for each score. This way, a score of 1 could be mapped onto the vector
(1,0,0,0,0,0,0,0,0,0), a score of 5 onto (0,0,0,0,1,0,0,0,0,0), and so on. Note
that the fact that the score corresponds to the index of the nonzero element is purely
incidental: we could shuffle the assignment, and nothing would change from a classifi-
cation standpoint.

Selects all rows and all
columns except the last

Selects all rows and
the last column

82 CHAPTER 4 Real-world data representation using tensors

 There’s a marked difference between the two approaches. Keeping wine quality
scores in an integer vector of scores induces an ordering on the scores—which might
be totally appropriate in this case, since a score of 1 is lower than a score of 4. It also
induces some sort of distance between scores: that is, the distance between 1 and 3 is the
same as the distance between 2 and 4. If this holds for our quantity, then great. If, on
the other hand, scores are purely discrete, like grape variety, one-hot encoding will be
a much better fit, as there’s no implied ordering or distance. One-hot encoding is also
appropriate for quantitative scores when fractional values in between integer scores,
like 2.4, make no sense for the application—for when the score is either this or that.

 We can achieve one-hot encoding using the scatter_ method, which fills the ten-
sor with values from a source tensor along the indices provided as arguments:

In[8]:
target_onehot = torch.zeros(target.shape[0], 10)

target_onehot.scatter_(1, target.unsqueeze(1), 1.0)

Out[8]:
tensor([[0., 0., ..., 0., 0.],

[0., 0., ..., 0., 0.],
...,
[0., 0., ..., 0., 0.],
[0., 0., ..., 0., 0.]])

Let’s see what scatter_ does. First, we notice that its name ends with an underscore.
As you learned in the previous chapter, this is a convention in PyTorch that indicates
the method will not return a new tensor, but will instead modify the tensor in place.
The arguments for scatter_ are as follows:

 The dimension along which the following two arguments are specified
 A column tensor indicating the indices of the elements to scatter
 A tensor containing the elements to scatter or a single scalar to scatter (1, in

this case)

In other words, the previous invocation reads, “For each row, take the index of the tar-
get label (which coincides with the score in our case) and use it as the column index
to set the value 1.0.” The end result is a tensor encoding categorical information.

 The second argument of scatter_, the index tensor, is required to have the same
number of dimensions as the tensor we scatter into. Since target_onehot has two
dimensions (4,898 × 10), we need to add an extra dummy dimension to target using
unsqueeze:

In[9]:
target_unsqueezed = target.unsqueeze(1)
target_unsqueezed

Out[9]:
tensor([[6],

83Representing tabular data

[6],
...,
[7],
[6]])

The call to unsqueeze adds a singleton dimension, from a 1D tensor of 4,898 elements
to a 2D tensor of size (4,898 × 1), without changing its contents—no extra elements
are added; we just decided to use an extra index to access the elements. That is, we
access the first element of target as target[0] and the first element of its
unsqueezed counterpart as target_unsqueezed[0,0].

 PyTorch allows us to use class indices directly as targets while training neural net-
works. However, if we wanted to use the score as a categorical input to the network, we
would have to transform it to a one-hot-encoded tensor.

4.3.5 When to categorize

Now we have seen ways to deal with both continuous and categorical data. You may
wonder what the deal is with the ordinal case discussed in the earlier sidebar. There is
no general recipe for it; most commonly, such data is either treated as categorical (los-
ing the ordering part, and hoping that maybe our model will pick it up during train-
ing if we only have a few categories) or continuous (introducing an arbitrary notion of
distance). We will do the latter for the weather situation in figure 4.5. We summarize
our data mapping in a small flow chart in figure 4.4.

Continuous

Data

Ordinal

Data

Categorical

Data

Use values directly

Use one-hot

or embeDding

Column

contains

yes

yes

yes

no

no

3.1415

0 0 0 0 1 0 0 0 0

Example representation

of one value

Treat as continuous

Treat as categorical

ordering

a priority?

yes

no

Figure 4.4 How to treat columns with continuous, ordinal, and categorical data

84 CHAPTER 4 Real-world data representation using tensors

Let’s go back to our data tensor, containing the 11 variables associated with the chemical
analysis. We can use the functions in the PyTorch Tensor API to manipulate our data in
tensor form. Let’s first obtain the mean and standard deviations for each column:

In[10]:
data_mean = torch.mean(data, dim=0)
data_mean

Out[10]:
tensor([6.85e+00, 2.78e-01, 3.34e-01, 6.39e+00, 4.58e-02, 3.53e+01,

1.38e+02, 9.94e-01, 3.19e+00, 4.90e-01, 1.05e+01])

In[11]:
data_var = torch.var(data, dim=0)
data_var

Out[11]:
tensor([7.12e-01, 1.02e-02, 1.46e-02, 2.57e+01, 4.77e-04, 2.89e+02,

1.81e+03, 8.95e-06, 2.28e-02, 1.30e-02, 1.51e+00])

In this case, dim=0 indicates that the reduction is performed along dimension 0. At
this point, we can normalize the data by subtracting the mean and dividing by the
standard deviation, which helps with the learning process (we’ll discuss this in more
detail in chapter 5, in section 5.4.4):

In[12]:
data_normalized = (data - data_mean) / torch.sqrt(data_var)
data_normalized

Out[12]:
tensor([[1.72e-01, -8.18e-02, ..., -3.49e-01, -1.39e+00],

[-6.57e-01, 2.16e-01, ..., 1.35e-03, -8.24e-01],
...,
[-1.61e+00, 1.17e-01, ..., -9.63e-01, 1.86e+00],
[-1.01e+00, -6.77e-01, ..., -1.49e+00, 1.04e+00]])

4.3.6 Finding thresholds

Next, let’s start to look at the data with an eye to seeing if there is an easy way to tell
good and bad wines apart at a glance. First, we’re going to determine which rows in
target correspond to a score less than or equal to 3:

In[13]:
bad_indexes = target <= 3
bad_indexes.shape, bad_indexes.dtype, bad_indexes.sum()

Out[13]:
(torch.Size([4898]), torch.bool, tensor(20))

PyTorch also provides comparison functions,
here torch.le(target, 3), but using operators
seems to be a good standard.

85Representing tabular data

Note that only 20 of the bad_indexes entries are set to True! By using a feature in
PyTorch called advanced indexing, we can use a tensor with data type torch.bool to
index the data tensor. This will essentially filter data to be only items (or rows) corre-
sponding to True in the indexing tensor. The bad_indexes tensor has the same shape
as target, with values of False or True depending on the outcome of the comparison
between our threshold and each element in the original target tensor:

In[14]:
bad_data = data[bad_indexes]
bad_data.shape

Out[14]:
torch.Size([20, 11])

Note that the new bad_data tensor has 20 rows, the same as the number of rows with
True in the bad_indexes tensor. It retains all 11 columns. Now we can start to get
information about wines grouped into good, middling, and bad categories. Let’s take
the .mean() of each column:

In[15]:
bad_data = data[target <= 3]
mid_data = data[(target > 3) & (target < 7)]
good_data = data[target >= 7]

bad_mean = torch.mean(bad_data, dim=0)
mid_mean = torch.mean(mid_data, dim=0)
good_mean = torch.mean(good_data, dim=0)

for i, args in enumerate(zip(col_list, bad_mean, mid_mean, good_mean)):
print('{:2} {:20} {:6.2f} {:6.2f} {:6.2f}'.format(i, *args))

Out[15]:
0 fixed acidity 7.60 6.89 6.73
1 volatile acidity 0.33 0.28 0.27
2 citric acid 0.34 0.34 0.33
3 residual sugar 6.39 6.71 5.26
4 chlorides 0.05 0.05 0.04
5 free sulfur dioxide 53.33 35.42 34.55
6 total sulfur dioxide 170.60 141.83 125.25
7 density 0.99 0.99 0.99
8 pH 3.19 3.18 3.22
9 sulphates 0.47 0.49 0.50

10 alcohol 10.34 10.26 11.42

It looks like we’re on to something here: at first glance, the bad wines seem to have
higher total sulfur dioxide, among other differences. We could use a threshold on
total sulfur dioxide as a crude criterion for discriminating good wines from bad ones.
Let’s get the indexes where the total sulfur dioxide column is below the midpoint we
calculated earlier, like so:

For Boolean NumPy arrays and
PyTorch tensors, the & operator
does a logical “and” operation.

86 CHAPTER 4 Real-world data representation using tensors

In[16]:
total_sulfur_threshold = 141.83
total_sulfur_data = data[:,6]
predicted_indexes = torch.lt(total_sulfur_data, total_sulfur_threshold)

predicted_indexes.shape, predicted_indexes.dtype, predicted_indexes.sum()

Out[16]:
(torch.Size([4898]), torch.bool, tensor(2727))

This means our threshold implies that just over half of all the wines are going to be
high quality. Next, we’ll need to get the indexes of the actually good wines:

In[17]:
actual_indexes = target > 5

actual_indexes.shape, actual_indexes.dtype, actual_indexes.sum()

Out[17]:
(torch.Size([4898]), torch.bool, tensor(3258))

Since there are about 500 more actually good wines than our threshold predicted, we
already have hard evidence that it’s not perfect. Now we need to see how well our pre-
dictions line up with the actual rankings. We will perform a logical “and” between our
prediction indexes and the actual good indexes (remember that each is just an array
of zeros and ones) and use that intersection of wines-in-agreement to determine how
well we did:

In[18]:
n_matches = torch.sum(actual_indexes & predicted_indexes).item()
n_predicted = torch.sum(predicted_indexes).item()
n_actual = torch.sum(actual_indexes).item()

n_matches, n_matches / n_predicted, n_matches / n_actual

Out[18]:
(2018, 0.74000733406674, 0.6193984039287906)

We got around 2,000 wines right! Since we predicted 2,700 wines, this gives us a 74%
chance that if we predict a wine to be high quality, it actually is. Unfortunately, there
are 3,200 good wines, and we only identified 61% of them. Well, we got what we
signed up for; that’s barely better than random! Of course, this is all very naive: we
know for sure that multiple variables contribute to wine quality, and the relationships
between the values of these variables and the outcome (which could be the actual
score, rather than a binarized version of it) is likely more complicated than a simple
threshold on a single value.

 Indeed, a simple neural network would overcome all of these limitations, as would
a lot of other basic machine learning methods. We’ll have the tools to tackle this prob-
lem after the next two chapters, once we have learned how to build our first neural

87Working with time series

network from scratch. We will also revisit how to better grade our results in chapter 12.
Let’s move on to other data types for now.

4.4 Working with time series
In the previous section, we covered how to represent data organized in a flat table. As
we noted, every row in the table was independent from the others; their order did not
matter. Or, equivalently, there was no column that encoded information about what
rows came earlier and what came later.

 Going back to the wine dataset, we could have had a “year” column that allowed us
to look at how wine quality evolved year after year. Unfortunately, we don’t have such
data at hand, but we’re working hard on manually collecting the data samples, bottle
by bottle. (Stuff for our second edition.) In the meantime, we’ll switch to another
interesting dataset: data from a Washington, D.C., bike-sharing system reporting the
hourly count of rental bikes in 2011–2012 in the Capital Bikeshare system, along with
weather and seasonal information (available here: http://mng.bz/jgOx). Our goal
will be to take a flat, 2D dataset and transform it into a 3D one, as shown in figure 4.5.

day 1 day 2 day 3

<-midnight - no0n - midnight->

<-midnight - no0n - midnight->
<-midnight - no0n - midnight->

<-midnight - no0n - midnight->
time of day

weather

temperature

humidity

wind spEed

bike count

etc.

weather

temperature

humidity

wind spEed

bike count

etc.

weather

temperature

humidity

wind spEed

bike count

etc.

day 1

day 2

day 3

Figure 4.5 Transforming a 1D, multichannel dataset into a 2D, multichannel dataset by separating the date and
hour of each sample into separate axes

http://mng.bz/jgOx

88 CHAPTER 4 Real-world data representation using tensors

4.4.1 Adding a time dimension
In the source data, each row is a separate hour of data (figure 4.5 shows a transposed
version of this to better fit on the printed page). We want to change the row-per-hour
organization so that we have one axis that increases at a rate of one day per index incre-
ment, and another axis that represents the hour of the day (independent of the date).
The third axis will be our different columns of data (weather, temperature, and so on).

 Let’s load the data (code/p1ch4/4_time_series_bikes.ipynb).

In[2]:
bikes_numpy = np.loadtxt(

"../data/p1ch4/bike-sharing-dataset/hour-fixed.csv",
dtype=np.float32,
delimiter=",",
skiprows=1,
converters={1: lambda x: float(x[8:10])})

bikes = torch.from_numpy(bikes_numpy)
bikes

Out[2]:
tensor([[1.0000e+00, 1.0000e+00, ..., 1.3000e+01, 1.6000e+01],

[2.0000e+00, 1.0000e+00, ..., 3.2000e+01, 4.0000e+01],
...,
[1.7378e+04, 3.1000e+01, ..., 4.8000e+01, 6.1000e+01],
[1.7379e+04, 3.1000e+01, ..., 3.7000e+01, 4.9000e+01]])

For every hour, the dataset reports the following variables:

 Index of record: instant
 Day of month: day
 Season: season (1: spring, 2: summer, 3: fall, 4: winter)
 Year: yr (0: 2011, 1: 2012)
 Month: mnth (1 to 12)
 Hour: hr (0 to 23)
 Holiday status: holiday
 Day of the week: weekday
 Working day status: workingday
 Weather situation: weathersit (1: clear, 2:mist, 3: light rain/snow, 4: heavy

rain/snow)
 Temperature in °C: temp
 Perceived temperature in °C: atemp
 Humidity: hum
 Wind speed: windspeed
 Number of casual users: casual
 Number of registered users: registered
 Count of rental bikes: cnt

Listing 4.4 code/p1ch4/4_time_series_bikes.ipynb

Converts date strings to
numbers corresponding to the
day of the month in column 1

89Working with time series

In a time series dataset such as this one, rows represent successive time-points: there is
a dimension along which they are ordered. Sure, we could treat each row as indepen-
dent and try to predict the number of circulating bikes based on, say, a particular time
of day regardless of what happened earlier. However, the existence of an ordering
gives us the opportunity to exploit causal relationships across time. For instance, it
allows us to predict bike rides at one time based on the fact that it was raining at an
earlier time. For the time being, we’re going to focus on learning how to turn our
bike-sharing dataset into something that our neural network will be able to ingest in
fixed-size chunks.

 This neural network model will need to see a number of sequences of values for
each different quantity, such as ride count, time of day, temperature, and weather con-
ditions: N parallel sequences of size C. C stands for channel, in neural network par-
lance, and is the same as column for 1D data like we have here. The N dimension
represents the time axis, here one entry per hour.

4.4.2 Shaping the data by time period

We might want to break up the two-year dataset into wider observation periods, like
days. This way we’ll have N (for number of samples) collections of C sequences of length
L. In other words, our time series dataset would be a tensor of dimension 3 and shape
N × C × L. The C would remain our 17 channels, while L would be 24: 1 per hour of
the day. There’s no particular reason why we must use chunks of 24 hours, though the
general daily rhythm is likely to give us patterns we can exploit for predictions. We
could also use 7 × 24 = 168 hour blocks to chunk by week instead, if we desired. All of
this depends, naturally, on our dataset having the right size—the number of rows must
be a multiple of 24 or 168. Also, for this to make sense, we cannot have gaps in the
time series.

 Let’s go back to our bike-sharing dataset. The first column is the index (the global
ordering of the data), the second is the date, and the sixth is the time of day. We have
everything we need to create a dataset of daily sequences of ride counts and other
exogenous variables. Our dataset is already sorted, but if it were not, we could use
torch.sort on it to order it appropriately.

NOTE The version of the file we’re using, hour-fixed.csv, has had some pro-
cessing done to include rows missing from the original dataset. We presume
that the missing hours had zero bike active (they were typically in the early
morning hours).

All we have to do to obtain our daily hours dataset is view the same tensor in batches
of 24 hours. Let’s take a look at the shape and strides of our bikes tensor:

In[3]:
bikes.shape, bikes.stride()

Out[3]:
(torch.Size([17520, 17]), (17, 1))

90 CHAPTER 4 Real-world data representation using tensors

That’s 17,520 hours, 17 columns. Now let’s reshape the data to have 3 axes—day, hour,
and then our 17 columns:

In[4]:
daily_bikes = bikes.view(-1, 24, bikes.shape[1])
daily_bikes.shape, daily_bikes.stride()

Out[4]:
(torch.Size([730, 24, 17]), (408, 17, 1))

What happened here? First, bikes.shape[1] is 17, the number of columns in the
bikes tensor. But the real crux of this code is the call to view, which is really import-
ant: it changes the way the tensor looks at the same data as contained in storage.

 As you learned in the previous chapter, calling view on a tensor returns a new ten-
sor that changes the number of dimensions and the striding information, without
changing the storage. This means we can rearrange our tensor at basically zero cost,
because no data will be copied. Our call to view requires us to provide the new shape
for the returned tensor. We use -1 as a placeholder for “however many indexes are
left, given the other dimensions and the original number of elements.”

 Remember also from the previous chapter that storage is a contiguous, linear con-
tainer for numbers (floating-point, in this case). Our bikes tensor will have each row
stored one after the other in its corresponding storage. This is confirmed by the out-
put from the call to bikes.stride() earlier.

 For daily_bikes, the stride is telling us that advancing by 1 along the hour dimen-
sion (the second dimension) requires us to advance by 17 places in the storage (or
one set of columns); whereas advancing along the day dimension (the first dimen-
sion) requires us to advance by a number of elements equal to the length of a row in
the storage times 24 (here, 408, which is 17 × 24).

 We see that the rightmost dimension is the number of columns in the original
dataset. Then, in the middle dimension, we have time, split into chunks of 24 sequen-
tial hours. In other words, we now have N sequences of L hours in a day, for C chan-
nels. To get to our desired N × C × L ordering, we need to transpose the tensor:

In[5]:
daily_bikes = daily_bikes.transpose(1, 2)
daily_bikes.shape, daily_bikes.stride()

Out[5]:
(torch.Size([730, 17, 24]), (408, 1, 17))

Now let’s apply some of the techniques we learned earlier to this dataset.

4.4.3 Ready for training

The “weather situation” variable is ordinal. It has four levels: 1 for good weather, and 4
for, er, really bad. We could treat this variable as categorical, with levels interpreted as
labels, or as a continuous variable. If we decided to go with categorical, we would turn

91Working with time series

the variable into a one-hot-encoded vector and concatenate the columns with the
dataset.4

 In order to make it easier to render our data, we’re going to limit ourselves to the
first day for a moment. We initialize a zero-filled matrix with a number of rows equal
to the number of hours in the day and number of columns equal to the number of
weather levels:

In[6]:
first_day = bikes[:24].long()
weather_onehot = torch.zeros(first_day.shape[0], 4)
first_day[:,9]

Out[6]:
tensor([1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2,

2, 2])

Then we scatter ones into our matrix according to the corresponding level at each
row. Remember the use of unsqueeze to add a singleton dimension as we did in the
previous sections:

In[7]:
weather_onehot.scatter_(

dim=1,
index=first_day[:,9].unsqueeze(1).long() - 1,
value=1.0)

Out[7]:
tensor([[1., 0., 0., 0.],

[1., 0., 0., 0.],
...,
[0., 1., 0., 0.],
[0., 1., 0., 0.]])

Our day started with weather “1” and ended with “2,” so that seems right.
 Last, we concatenate our matrix to our original dataset using the cat function.

Let’s look at the first of our results:

In[8]:
torch.cat((bikes[:24], weather_onehot), 1)[:1]

Out[8]:
tensor([[1.0000, 1.0000, 1.0000, 0.0000, 1.0000, 0.0000, 0.0000,

6.0000, 0.0000, 1.0000, 0.2400, 0.2879, 0.8100, 0.0000,
3.0000, 13.0000, 16.0000, 1.0000, 0.0000, 0.0000, 0.0000]])

4 This could also be a case where it is useful to go beyond the main path. Speculatively, we could also try to
reflect like categorical, but with order more directly by generalizing one-hot encodings to mapping the ith of our
four categories here to a vector that has ones in the positions 0…i and zeros beyond that. Or—similar to the
embeddings we discussed in section 4.5.4—we could take partial sums of embeddings, in which case it might
make sense to make those positive. As with many things we encounter in practical work, this could be a place
where trying what works for others and then experimenting in a systematic fashion is a good idea.

Decreases the values by 1
because weather situation
ranges from 1 to 4, while
indices are 0-based

92 CHAPTER 4 Real-world data representation using tensors

Here we prescribed our original bikes dataset and our one-hot-encoded “weather sit-
uation” matrix to be concatenated along the column dimension (that is, 1). In other
words, the columns of the two datasets are stacked together; or, equivalently, the new
one-hot-encoded columns are appended to the original dataset. For cat to succeed, it
is required that the tensors have the same size along the other dimensions—the row
dimension, in this case. Note that our new last four columns are 1, 0, 0, 0, exactly
as we would expect with a weather value of 1.

 We could have done the same with the reshaped daily_bikes tensor. Remember
that it is shaped (B, C, L), where L = 24. We first create the zero tensor, with the same
B and L, but with the number of additional columns as C :

In[9]:
daily_weather_onehot = torch.zeros(daily_bikes.shape[0], 4,

daily_bikes.shape[2])
daily_weather_onehot.shape

Out[9]:
torch.Size([730, 4, 24])

Then we scatter the one-hot encoding into the tensor in the C dimension. Since this
operation is performed in place, only the content of the tensor will change:

In[10]:
daily_weather_onehot.scatter_(

1, daily_bikes[:,9,:].long().unsqueeze(1) - 1, 1.0)
daily_weather_onehot.shape

Out[10]:
torch.Size([730, 4, 24])

And we concatenate along the C dimension:

In[11]:
daily_bikes = torch.cat((daily_bikes, daily_weather_onehot), dim=1)

We mentioned earlier that this is not the only way to treat our “weather situation” vari-
able. Indeed, its labels have an ordinal relationship, so we could pretend they are spe-
cial values of a continuous variable. We could just transform the variable so that it runs
from 0.0 to 1.0:

In[12]:
daily_bikes[:, 9, :] = (daily_bikes[:, 9, :] - 1.0) / 3.0

As we mentioned in the previous section, rescaling variables to the [0.0, 1.0] interval
or the [-1.0, 1.0] interval is something we’ll want to do for all quantitative variables,
like temperature (column 10 in our dataset). We’ll see why later; for now, let’s just say
that this is beneficial to the training process.

93Representing text

 There are multiple possibilities for rescaling variables. We can either map their
range to [0.0, 1.0]

In[13]:
temp = daily_bikes[:, 10, :]
temp_min = torch.min(temp)
temp_max = torch.max(temp)
daily_bikes[:, 10, :] = ((daily_bikes[:, 10, :] - temp_min)

/ (temp_max - temp_min))

or subtract the mean and divide by the standard deviation:

In[14]:
temp = daily_bikes[:, 10, :]
daily_bikes[:, 10, :] = ((daily_bikes[:, 10, :] - torch.mean(temp))

/ torch.std(temp))

In the latter case, our variable will have 0 mean and unitary standard deviation. If our
variable were drawn from a Gaussian distribution, 68% of the samples would sit in the
[-1.0, 1.0] interval.

 Great: we’ve built another nice dataset, and we’ve seen how to deal with time series
data. For this tour d’horizon, it’s important only that we got an idea of how a time
series is laid out and how we can wrangle the data in a form that a network will digest.

 Other kinds of data look like a time series, in that there is a strict ordering. Top
two on the list? Text and audio. We’ll take a look at text next, and the “Conclusion”
section has links to additional examples for audio.

4.5 Representing text
Deep learning has taken the field of natural language processing (NLP) by storm, par-
ticularly using models that repeatedly consume a combination of new input and previ-
ous model output. These models are called recurrent neural networks (RNNs), and they
have been applied with great success to text categorization, text generation, and auto-
mated translation systems. More recently, a class of networks called transformers with a
more flexible way to incorporate past information has made a big splash. Previous
NLP workloads were characterized by sophisticated multistage pipelines that included
rules encoding the grammar of a language.5 Now, state-of-the-art work trains networks
end to end on large corpora starting from scratch, letting those rules emerge from the
data. For the last several years, the most-used automated translation systems available
as services on the internet have been based on deep learning.

 Our goal in this section is to turn text into something a neural network can pro-
cess: a tensor of numbers, just like our previous cases. If we can do that and later
choose the right architecture for our text-processing job, we’ll be in the position of
doing NLP with PyTorch. We see right away how powerful this all is: we can achieve

5 Nadkarni et al., “Natural language processing: an introduction,” JAMIA, http://mng.bz/8pJP. See also
https://en.wikipedia.org/wiki/Natural-language_processing.

http://mng.bz/8pJP
https://en.wikipedia.org/wiki/Natural-language_processing

94 CHAPTER 4 Real-world data representation using tensors

state-of-the-art performance on a number of tasks in different domains with the same
PyTorch tools; we just need to cast our problem in the right form. The first part of this
job is reshaping the data.

4.5.1 Converting text to numbers

There are two particularly intuitive levels at which networks operate on text: at the
character level, by processing one character at a time, and at the word level, where
individual words are the finest-grained entities to be seen by the network. The tech-
nique with which we encode text information into tensor form is the same whether we
operate at the character level or the word level. And it’s not magic, either. We stum-
bled upon it earlier: one-hot encoding.

 Let’s start with a character-level example. First, let’s get some text to process. An
amazing resource here is Project Gutenberg (www.gutenberg.org), a volunteer effort
to digitize and archive cultural work and make it available for free in open formats,
including plain text files. If we’re aiming at larger-scale corpora, the Wikipedia corpus
stands out: it’s the complete collection of Wikipedia articles, containing 1.9 billion
words and more than 4.4 million articles. Several other corpora can be found at the
English Corpora website (www.english-corpora.org).

 Let’s load Jane Austen’s Pride and Prejudice from the Project Gutenberg website:
www.gutenberg.org/files/1342/1342-0.txt. We’ll just save the file and read it in
(code/p1ch4/5_text_jane_austen.ipynb).

In[2]:
with open('../data/p1ch4/jane-austen/1342-0.txt', encoding='utf8') as f:

text = f.read()

4.5.2 One-hot-encoding characters

There’s one more detail we need to take care of before we proceed: encoding. This is
a pretty vast subject, and we will just touch on it. Every written character is represented
by a code: a sequence of bits of appropriate length so that each character can be
uniquely identified. The simplest such encoding is ASCII (American Standard Code
for Information Interchange), which dates back to the 1960s. ASCII encodes 128 char-
acters using 128 integers. For instance, the letter a corresponds to binary 1100001 or
decimal 97, the letter b to binary 1100010 or decimal 98, and so on. The encoding fits
8 bits, which was a big bonus in 1965.

NOTE 128 characters are clearly not enough to account for all the glyphs,
accents, ligatures, and so on that are needed to properly represent written
text in languages other than English. To this end, a number of encodings
have been developed that use a larger number of bits as code for a wider
range of characters. That wider range of characters was standardized as Uni-
code, which maps all known characters to numbers, with the representation

Listing 4.5 code/p1ch4/5_text_jane_austen.ipynb

http://www.gutenberg.org/
https://www.english-corpora.org/
http://www.gutenberg.org/files/1342/1342-0.txt

95Representing text

in bits of those numbers provided by a specific encoding. Popular encodings
are UTF-8, UTF-16, and UTF-32, in which the numbers are a sequence of 8-,
16-, or 32-bit integers, respectively. Strings in Python 3.x are Unicode strings.

We are going to one-hot encode our characters. It is instrumental to limit the one-hot
encoding to a character set that is useful for the text being analyzed. In our case, since
we loaded text in English, it is safe to use ASCII and deal with a small encoding. We
could also make all of the characters lowercase, to reduce the number of different
characters in our encoding. Similarly, we could screen out punctuation, numbers, or
other characters that aren’t relevant to our expected kinds of text. This may or may
not make a practical difference to a neural network, depending on the task at hand.

 At this point, we need to parse through the characters in the text and provide a
one-hot encoding for each of them. Each character will be represented by a vector of
length equal to the number of different characters in the encoding. This vector will
contain all zeros except a one at the index corresponding to the location of the char-
acter in the encoding.

 We first split our text into a list of lines and pick an arbitrary line to focus on:

In[3]:
lines = text.split('\n')
line = lines[200]
line

Out[3]:
'“Impossible, Mr. Bennet, impossible, when I am not acquainted with him'

Let’s create a tensor that can hold the total number of one-hot-encoded characters for
the whole line:

In[4]:
letter_t = torch.zeros(len(line), 128)
letter_t.shape

Out[4]:
torch.Size([70, 128])

Note that letter_t holds a one-hot-encoded character per row. Now we just have to
set a one on each row in the correct position so that each row represents the correct
character. The index where the one has to be set corresponds to the index of the char-
acter in the encoding:

In[5]:
for i, letter in enumerate(line.lower().strip()):

letter_index = ord(letter) if ord(letter) < 128 else 0
letter_t[i][letter_index] = 1

128 hardcoded due to
the limits of ASCII

The text uses directional double
quotes, which are not valid ASCII,

so we screen them out here.

96 CHAPTER 4 Real-world data representation using tensors

4.5.3 One-hot encoding whole words

We have one-hot encoded our sentence into a representation that a neural network
could digest. Word-level encoding can be done the same way by establishing a vocabu-
lary and one-hot encoding sentences—sequences of words—along the rows of our
tensor. Since a vocabulary has many words, this will produce very wide encoded vec-
tors, which may not be practical. We will see in the next section that there is a more
efficient way to represent text at the word level, using embeddings. For now, let’s stick
with one-hot encodings and see what happens.

 We’ll define clean_words, which takes text and returns it in lowercase and
stripped of punctuation. When we call it on our “Impossible, Mr. Bennet” line, we get
the following:

In[6]:
def clean_words(input_str):

punctuation = '.,;:"!?”“_-'
word_list = input_str.lower().replace('\n',' ').split()
word_list = [word.strip(punctuation) for word in word_list]
return word_list

words_in_line = clean_words(line)
line, words_in_line

Out[6]:
('“Impossible, Mr. Bennet, impossible, when I am not acquainted with him',
['impossible',
'mr',
'bennet',
'impossible',
'when',
'i',
'am',
'not',
'acquainted',
'with',
'him'])

Next, let’s build a mapping of words to indexes in our encoding:

In[7]:
word_list = sorted(set(clean_words(text)))
word2index_dict = {word: i for (i, word) in enumerate(word_list)}

len(word2index_dict), word2index_dict['impossible']

Out[7]:
(7261, 3394)

Note that word2index_dict is now a dictionary with words as keys and an integer as a
value. We will use it to efficiently find the index of a word as we one-hot encode it.
Let’s now focus on our sentence: we break it up into words and one-hot encode it—

97Representing text

that is, we populate a tensor with one one-hot-encoded vector per word. We create an
empty vector and assign the one-hot-encoded values of the word in the sentence:

In[8]:
word_t = torch.zeros(len(words_in_line), len(word2index_dict))
for i, word in enumerate(words_in_line):

word_index = word2index_dict[word]
word_t[i][word_index] = 1
print('{:2} {:4} {}'.format(i, word_index, word))

print(word_t.shape)

Out[8]:
0 3394 impossible
1 4305 mr
2 813 bennet
3 3394 impossible
4 7078 when
5 3315 i
6 415 am
7 4436 not
8 239 acquainted
9 7148 with

10 3215 him
torch.Size([11, 7261])

At this point, tensor represents one sentence of length 11 in an encoding space of size
7,261, the number of words in our dictionary. Figure 4.6 compares the gist of our two
options for splitting text (and using the embeddings we’ll look at in the next section).

 The choice between character-level and word-level encoding leaves us to make a
trade-off. In many languages, there are significantly fewer characters than words: rep-
resenting characters has us representing just a few classes, while representing words
requires us to represent a very large number of classes and, in any practical applica-
tion, deal with words that are not in the dictionary. On the other hand, words convey
much more meaning than individual characters, so a representation of words is con-
siderably more informative by itself. Given the stark contrast between these two
options, it is perhaps unsurprising that intermediate ways have been sought, found,
and applied with great success: for example, the byte pair encoding method6 starts with a
dictionary of individual letters but then iteratively adds the most frequently observed
pairs to the dictionary until it reaches a prescribed dictionary size. Our example sen-
tence might then be split into tokens like this:7

?Im|pos|s|ible|,|?Mr|.|?B|en|net|,|?impossible|,|?when|?I|?am|?not|➥
?acquainted|?with|?him

6 Most commonly implemented by the subword-nmt and SentencePiece libraries. The conceptual drawback is
that the representation of a sequence of characters is no longer unique.

7 This is from a SentencePiece tokenizer trained on a machine translation dataset.

98 CHAPTER 4 Real-world data representation using tensors

For most things, our mapping is just splitting by words. But the rarer parts—the capi-
talized Impossible and the name Bennet—are composed of subunits.

4.5.4 Text embeddings

One-hot encoding is a very useful technique for representing categorical data in ten-
sors. However, as we have anticipated, one-hot encoding starts to break down when
the number of items to encode is effectively unbound, as with words in a corpus. In
just one book, we had over 7,000 items!

 We certainly could do some work to deduplicate words, condense alternate spell-
ings, collapse past and future tenses into a single token, and that kind of thing. Still, a
general-purpose English-language encoding would be huge. Even worse, every time we
encountered a new word, we would have to add a new column to the vector, which
would mean adding a new set of weights to the model to account for that new vocabu-
lary entry—which would be painful from a training perspective.

 How can we compress our encoding down to a more manageable size and put a
cap on the size growth? Well, instead of vectors of many zeros and a single one, we can

impoSsible

3394

105

109

112

111

115

115

105

98

108

101

shape: 1 7261

Shape: 10 128

shape: 1 300

word one-hot

word embeDding

character one-hot

i

m

p

o

s

s

i

b

l

e

Various poSsibilities for representing

the word “impoSsible”

conceptuaLly:

multiplication with embeDding matrix

...

0 ... 0 0 1 0 ... 0

0 ... 0 1 0 0 ... 0

...

EmbeDding matrix 7261 300

row 3394
-1.70 -0.89 -0.20 1.78 -1.13

0 0 1 0 0

word lOokup

character

"lOokup"

Input

as chars

as words

col 3394

Figure 4.6 Three ways to encode a word

99Representing text

use vectors of floating-point numbers. A vector of, say, 100 floating-point numbers can
indeed represent a large number of words. The trick is to find an effective way to map
individual words into this 100-dimensional space in a way that facilitates downstream
learning. This is called an embedding.

 In principle, we could simply iterate over our vocabulary and generate a set of 100
random floating-point numbers for each word. This would work, in that we could
cram a very large vocabulary into just 100 numbers, but it would forgo any concept of
distance between words based on meaning or context. A model using this word
embedding would have to deal with very little structure in its input vectors. An ideal
solution would be to generate the embedding in such a way that words used in similar
contexts mapped to nearby regions of the embedding.

 Well, if we were to design a solution to this problem by hand, we might decide to
build our embedding space by choosing to map basic nouns and adjectives along the
axes. We can generate a 2D space where axes map to nouns—fruit (0.0-0.33), flower
(0.33-0.66), and dog (0.66-1.0)—and adjectives—red (0.0-0.2), orange (0.2-0.4), yellow
(0.4-0.6), white (0.6-0.8), and brown (0.8-1.0). Our goal is to take actual fruit, flowers,
and dogs and lay them out in the embedding.

 As we start embedding words, we can map apple to a number in the fruit and red
quadrant. Likewise, we can easily map tangerine, lemon, lychee, and kiwi (to round out
our list of colorful fruits). Then we can start on flowers, and assign rose, poppy, daffodil,
lily, and … Hmm. Not many brown flowers out there. Well, sunflower can get flower, yel-
low, and brown, and then daisy can get flower, white, and yellow. Perhaps we should
update kiwi to map close to fruit, brown, and green.8 For dogs and color, we can embed
redbone near red; uh, fox perhaps for orange; golden retriever for yellow, poodle for white, and
… most kinds of dogs are brown.

 Now our embeddings look like figure 4.7. While doing this manually isn’t really
feasible for a large corpus, note that although we had an embedding size of 2, we
described 15 different words besides the base 8 and could probably cram in quite a few
more if we took the time to be creative about it.

 As you’ve probably already guessed, this kind of work can be automated. By pro-
cessing a large corpus of organic text, embeddings similar to the one we just discussed
can be generated. The main differences are that there are 100 to 1,000 elements in
the embedding vector and that axes do not map directly to concepts: rather, concep-
tually similar words map in neighboring regions of an embedding space whose axes
are arbitrary floating-point dimensions.

 While the exact algorithms9 used are a bit out of scope for what we’re wanting to
focus on here, we’d just like to mention that embeddings are often generated using
neural networks, trying to predict a word from nearby words (the context) in a sen-
tence. In this case, we could start from one-hot-encoded words and use a (usually

8 Actually, with our 1D view of color, this is not possible, as sunflower’s yellow and brown will average to white—
but you get the idea, and it does work better in higher dimensions.

9 One example is word2vec: https://code.google.com/archive/p/word2vec.

https://code.google.com/archive/p/word2vec

100 CHAPTER 4 Real-world data representation using tensors

rather shallow) neural network to generate the embedding. Once the embedding was
available, we could use it for downstream tasks.

 One interesting aspect of the resulting embeddings is that similar words end up not
only clustered together, but also having consistent spatial relationships with other
words. For example, if we were to take the embedding vector for apple and begin to add
and subtract the vectors for other words, we could begin to perform analogies like apple
- red - sweet + yellow + sour and end up with a vector very similar to the one for lemon.

 More contemporary embedding models—with BERT and GPT-2 making headlines
even in mainstream media—are much more elaborate and are context sensitive: that
is, the mapping of a word in the vocabulary to a vector is not fixed but depends on the
surrounding sentence. Yet they are often used just like the simpler classic embeddings
we’ve touched on here.

4.5.5 Text embeddings as a blueprint

Embeddings are an essential tool for when a large number of entries in the vocabulary
have to be represented by numeric vectors. But we won’t be using text and text
embeddings in this book, so you might wonder why we introduce them here. We
believe that how text is represented and processed can also be seen as an example for
dealing with categorical data in general. Embeddings are useful wherever one-hot
encoding becomes cumbersome. Indeed, in the form described previously, they are
an efficient way of representing one-hot encoding immediately followed by multiplica-
tion with the matrix containing the embedding vectors as rows.

0.8

kiwikiwi
brownbrown

lemonyeLlowyeLlow

whitewhite

orangeorange
tangerine poPpy

daFfodil

pOodle

golden retrievergolden retriever

kiwi
brown

yeLlow

white

orange

golden retriever

fox

rose
red aPple

fruit flower

redbone

dog

lychEe
lily

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8

Figure 4.7 Our manual word embeddings

101Exercises

 In non-text applications, we usually do not have the ability to construct the embed-
dings beforehand, but we will start with the random numbers we eschewed earlier and
consider improving them part of our learning problem. This is a standard tech-
nique—so much so that embeddings are a prominent alternative to one-hot encod-
ings for any categorical data. On the flip side, even when we deal with text, improving
the prelearned embeddings while solving the problem at hand has become a common
practice.10

 When we are interested in co-occurrences of observations, the word embeddings
we saw earlier can serve as a blueprint, too. For example, recommender systems—cus-
tomers who liked our book also bought …—use the items the customer already inter-
acted with as the context for predicting what else will spark interest. Similarly,
processing text is perhaps the most common, well-explored task dealing with
sequences; so, for example, when working on tasks with time series, we might look for
inspiration in what is done in natural language processing.

4.6 Conclusion
We’ve covered a lot of ground in this chapter. We learned to load the most common
types of data and shape them for consumption by a neural network. Of course, there are
more data formats in the wild than we could hope to describe in a single volume. Some,
like medical histories, are too complex to cover here. Others, like audio and video, were
deemed less crucial for the path of this book. If you’re interested, however, we provide
short examples of audio and video tensor creation in bonus Jupyter Notebooks provided
on the book’s website (www.manning.com/books/deep-learning-with-pytorch) and in
our code repository (https://github.com/deep-learning-with-pytorch/dlwpt-code/
tree/master/p1ch4).

 Now that we’re familiar with tensors and how to store data in them, we can move on
to the next step towards the goal of the book: teaching you to train deep neural net-
works! The next chapter covers the mechanics of learning for simple linear models.

4.7 Exercises
1 Take several pictures of red, blue, and green items with your phone or other dig-

ital camera (or download some from the internet, if a camera isn’t available).
a Load each image, and convert it to a tensor.
b For each image tensor, use the .mean() method to get a sense of how bright

the image is.
c Take the mean of each channel of your images. Can you identify the red,

green, and blue items from only the channel averages?

10 This goes by the name fine-tuning.

https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4
https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4
https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4

102 CHAPTER 4 Real-world data representation using tensors

2 Select a relatively large file containing Python source code.
a Build an index of all the words in the source file (feel free to make your toke-

nization as simple or as complex as you like; we suggest starting with replac-
ing r"[^a-zA-Z0-9_]+" with spaces).

b Compare your index with the one we made for Pride and Prejudice. Which is
larger?

c Create the one-hot encoding for the source code file.
d What information is lost with this encoding? How does that information

compare to what’s lost in the Pride and Prejudice encoding?

4.8 Summary
 Neural networks require data to be represented as multidimensional numerical

tensors, often 32-bit floating-point.
 In general, PyTorch expects data to be laid out along specific dimensions

according to the model architecture—for example, convolutional versus recur-
rent. We can reshape data effectively with the PyTorch tensor API.

 Thanks to how the PyTorch libraries interact with the Python standard library
and surrounding ecosystem, loading the most common types of data and con-
verting them to PyTorch tensors is convenient.

 Images can have one or many channels. The most common are the red-green-
blue channels of typical digital photos.

 Many images have a per-channel bit depth of 8, though 12 and 16 bits per chan-
nel are not uncommon. These bit depths can all be stored in a 32-bit floating-
point number without loss of precision.

 Single-channel data formats sometimes omit an explicit channel dimension.
 Volumetric data is similar to 2D image data, with the exception of adding a

third dimension (depth).
 Converting spreadsheets to tensors can be very straightforward. Categorical-

and ordinal-valued columns should be handled differently from interval-valued
columns.

 Text or categorical data can be encoded to a one-hot representation through the
use of dictionaries. Very often, embeddings give good, efficient representations.

103

The mechanics
 of learning

With the blooming of machine learning that has occurred over the last decade, the
notion of machines that learn from experience has become a mainstream theme in
both technical and journalistic circles. Now, how is it exactly that a machine learns?
What are the mechanics of this process—or, in words, what is the algorithm behind
it? From the point of view of an observer, a learning algorithm is presented with
input data that is paired with desired outputs. Once learning has occurred, that
algorithm will be capable of producing correct outputs when it is fed new data that
is similar enough to the input data it was trained on. With deep learning, this process
works even when the input data and the desired output are far from each other:
when they come from different domains, like an image and a sentence describing
it, as we saw in chapter 2.

This chapter covers
 Understanding how algorithms can learn from data

 Reframing learning as parameter estimation, using
differentiation and gradient descent

 Walking through a simple learning algorithm

 How PyTorch supports learning with autograd

104 CHAPTER 5 The mechanics of learning

5.1 A timeless lesson in modeling
Building models that allow us to explain input/output relationships dates back centu-
ries at least. When Johannes Kepler, a German mathematical astronomer (1571–1630),
figured out his three laws of planetary motion in the early 1600s, he based them on
data collected by his mentor Tycho Brahe during naked-eye observations (yep, seen
with the naked eye and written on a piece of paper). Not having Newton’s law of grav-
itation at his disposal (actually, Newton used Kepler’s work to figure things out),
Kepler extrapolated the simplest possible geometric model that could fit the data.
And, by the way, it took him six years of staring at data that didn’t make sense to him,
together with incremental realizations, to finally formulate these laws.1 We can see this
process in figure 5.1.

Kepler’s first law reads: “The orbit of every planet is an ellipse with the Sun at one of
the two foci.” He didn’t know what caused orbits to be ellipses, but given a set of obser-
vations for a planet (or a moon of a large planet, like Jupiter), he could estimate the
shape (the eccentricity) and size (the semi-latus rectum) of the ellipse. With those two
parameters computed from the data, he could tell where the planet might be during

1 As recounted by physicist Michael Fowler: http://mng.bz/K2Ej.

candidate

Models

johaNnes

observations

for multiple

planets

kepler’s

laws(first + second)

focus of

eLlipse

equal areas

over time

f
a
s
t
e
r

(eCcentricity

 is a lot larger

 than the earth’s)

s
lo

w
e
r

Figure 5.1 Johannes Kepler considers multiple candidate models that might fit the data at hand, settling
on an ellipse.

http://mng.bz/K2Ej

105A timeless lesson in modeling

its journey in the sky. Once he figured out the second law—“A line joining a planet
and the Sun sweeps out equal areas during equal intervals of time”—he could also tell
when a planet would be at a particular point in space, given observations in time.2

 So, how did Kepler estimate the eccentricity and size of the ellipse without comput-
ers, pocket calculators, or even calculus, none of which had been invented yet? We
can learn how from Kepler’s own recollection, in his book New Astronomy, or from how
J. V. Field put it in his series of articles, “The origins of proof,” (http://mng.bz/9007):

Essentially, Kepler had to try different shapes, using a certain number of observations to find
the curve, then use the curve to find some more positions, for times when he had observations
available, and then check whether these calculated positions agreed with the observed ones.

—J. V. Field

So let’s sum things up. Over six years, Kepler

1 Got lots of good data from his friend Brahe (not without some struggle)
2 Tried to visualize the heck out of it, because he felt there was something fishy

going on
3 Chose the simplest possible model that had a chance to fit the data (an ellipse)
4 Split the data so that he could work on part of it and keep an independent set

for validation
5 Started with a tentative eccentricity and size for the ellipse and iterated until the

model fit the observations
6 Validated his model on the independent observations
7 Looked back in disbelief

There’s a data science handbook for you, all the way from 1609. The history of science
is literally constructed on these seven steps. And we have learned over the centuries
that deviating from them is a recipe for disaster.3

 This is exactly what we will set out to do in order to learn something from data. In
fact, in this book there is virtually no difference between saying that we’ll fit the data
or that we’ll make an algorithm learn from data. The process always involves a func-
tion with a number of unknown parameters whose values are estimated from data: in
short, a model.

 We can argue that learning from data presumes the underlying model is not engi-
neered to solve a specific problem (as was the ellipse in Kepler’s work) and is instead
capable of approximating a much wider family of functions. A neural network would
have predicted Tycho Brahe’s trajectories really well without requiring Kepler’s flash
of insight to try fitting the data to an ellipse. However, Sir Isaac Newton would have
had a much harder time deriving his laws of gravitation from a generic model.

2 Understanding the details of Kepler’s laws is not needed to understand this chapter, but you can find more
information at https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion.

3 Unless you’re a theoretical physicist ;).

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
http://mng.bz/9007

106 CHAPTER 5 The mechanics of learning

 In this book, we’re interested in models that are not engineered for solving a spe-
cific narrow task, but that can be automatically adapted to specialize themselves for
any one of many similar tasks using input and output pairs—in other words, general
models trained on data relevant to the specific task at hand. In particular, PyTorch is
designed to make it easy to create models for which the derivatives of the fitting error,
with respect to the parameters, can be expressed analytically. No worries if this last
sentence didn’t make any sense at all; coming next, we have a full section that hope-
fully clears it up for you.

 This chapter is about how to automate generic function-fitting. After all, this is
what we do with deep learning—deep neural networks being the generic functions
we’re talking about—and PyTorch makes this process as simple and transparent as
possible. In order to make sure we get the key concepts right, we’ll start with a model
that is a lot simpler than a deep neural network. This will allow us to understand the
mechanics of learning algorithms from first principles in this chapter, so we can move
to more complicated models in chapter 6.

5.2 Learning is just parameter estimation
In this section, we’ll learn how we can take data, choose a model, and estimate the
parameters of the model so that it will give good predictions on new data. To do so,
we’ll leave the intricacies of planetary motion and divert our attention to the second-
hardest problem in physics: calibrating instruments.

 Figure 5.2 shows the high-level overview of what we’ll implement by the end of the
chapter. Given input data and the corresponding desired outputs (ground truth), as
well as initial values for the weights, the model is fed input data (forward pass), and a
measure of the error is evaluated by comparing the resulting outputs to the ground
truth. In order to optimize the parameter of the model—its weights—the change in
the error following a unit change in weights (that is, the gradient of the error with
respect to the parameters) is computed using the chain rule for the derivative of a
composite function (backward pass). The value of the weights is then updated in the
direction that leads to a decrease in the error. The procedure is repeated until the
error, evaluated on unseen data, falls below an acceptable level. If what we just said
sounds obscure, we’ve got a whole chapter to clear things up. By the time we’re done,
all the pieces will fall into place, and this paragraph will make perfect sense.

 We’re now going to take a problem with a noisy dataset, build a model, and imple-
ment a learning algorithm for it. When we start, we’ll be doing everything by hand,
but by the end of the chapter we’ll be letting PyTorch do all the heavy lifting for us.
When we finish the chapter, we will have covered many of the essential concepts that
underlie training deep neural networks, even if our motivating example is very simple
and our model isn’t actually a neural network (yet!).

107Learning is just parameter estimation

5.2.1 A hot problem

We just got back from a trip to some obscure location, and we brought back a fancy,
wall-mounted analog thermometer. It looks great, and it’s a perfect fit for our living
room. Its only flaw is that it doesn’t show units. Not to worry, we’ve got a plan: we’ll
build a dataset of readings and corresponding temperature values in our favorite
units, choose a model, adjust its weights iteratively until a measure of the error is low
enough, and finally be able to interpret the new readings in units we understand.4

 Let’s try following the same process Kepler used. Along the way, we’ll use a tool he
never had available: PyTorch!

5.2.2 Gathering some data

We’ll start by making a note of temperature data in good old Celsius5 and measure-
ments from our new thermometer, and figure things out. After a couple of weeks,
here’s the data (code/p1ch5/1_parameter_estimation.ipynb):

4 This task—fitting model outputs to continuous values in terms of the types discussed in chapter 4—is called
a regression problem. In chapter 7 and part 2, we will be concerned with classification problems.

5 The author of this chapter is Italian, so please forgive him for using sensible units.

the learning proceSs

eRrors (loSs function)

change weights to

decrease eRrors

inputs

actual outputs

given cuRrent

weights

new inputs

forward

iterate

backward

desired outputs

(ground truth)

validation

Figure 5.2 Our mental model of the learning process

108 CHAPTER 5 The mechanics of learning

In[2]:
t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c)
t_u = torch.tensor(t_u)

Here, the t_c values are temperatures in Celsius, and the t_u values are our unknown
units. We can expect noise in both measurements, coming from the devices them-
selves and from our approximate readings. For convenience, we’ve already put the
data into tensors; we’ll use it in a minute.

5.2.3 Visualizing the data

A quick plot of our data in figure 5.3 tells us that it’s noisy, but we think there’s a pat-
tern here.

NOTE Spoiler alert: we know a linear model is correct because the problem
and data have been fabricated, but please bear with us. It’s a useful motivating
example to build our understanding of what PyTorch is doing under the
hood.

5.2.4 Choosing a linear model as a first try

In the absence of further knowledge, we assume the simplest possible model for con-
verting between the two sets of measurements, just like Kepler might have done. The
two may be linearly related—that is, multiplying t_u by a factor and adding a constant,
we may get the temperature in Celsius (up to an error that we omit):

t_c = w * t_u + b

Figure 5.3 Our unknown
data just might follow a
linear model.

25

20

15

10

t
e

m
p
e

r
a
t
u
r

e
 (

°
C
E

L
S
I
U
S
)

5

0

20 30 40 50

measurement

60 70 80

-5

109Less loss is what we want

Is this a reasonable assumption? Probably; we’ll see how well the final model per-
forms. We chose to name w and b after weight and bias, two very common terms for lin-
ear scaling and the additive constant—we’ll bump into those all the time.6

 OK, now we need to estimate w and b, the parameters in our model, based on the data
we have. We must do it so that temperatures we obtain from running the unknown tem-
peratures t_u through the model are close to temperatures we actually measured in Cel-
sius. If that sounds like fitting a line through a set of measurements, well, yes, because
that’s exactly what we’re doing. We’ll go through this simple example using PyTorch and
realize that training a neural network will essentially involve changing the model for a
slightly more elaborate one, with a few (or a metric ton) more parameters.

 Let’s flesh it out again: we have a model with some unknown parameters, and we
need to estimate those parameters so that the error between predicted outputs and
measured values is as low as possible. We notice that we still need to exactly define a
measure of the error. Such a measure, which we refer to as the loss function, should be
high if the error is high and should ideally be as low as possible for a perfect match.
Our optimization process should therefore aim at finding w and b so that the loss
function is at a minimum.

5.3 Less loss is what we want
A loss function (or cost function) is a function that computes a single numerical value
that the learning process will attempt to minimize. The calculation of loss typically
involves taking the difference between the desired outputs for some training samples
and the outputs actually produced by the model when fed those samples. In our case,
that would be the difference between the predicted temperatures t_p output by our
model and the actual measurements: t_p – t_c.

 We need to make sure the loss function makes the loss positive both when t_p is
greater than and when it is less than the true t_c, since the goal is for t_p to match t_c.
We have a few choices, the most straightforward being |t_p – t_c| and (t_p – t_c)^2.
Based on the mathematical expression we choose, we can emphasize or discount certain
errors. Conceptually, a loss function is a way of prioritizing which errors to fix from our
training samples, so that our parameter updates result in adjustments to the outputs for
the highly weighted samples instead of changes to some other samples’ output that had
a smaller loss.

 Both of the example loss functions have a clear minimum at zero and grow mono-
tonically as the predicted value moves further from the true value in either direction.
Because the steepness of the growth also monotonically increases away from the mini-
mum, both of them are said to be convex. Since our model is linear, the loss as a function
of w and b is also convex.7 Cases where the loss is a convex function of the model param-
eters are usually great to deal with because we can find a minimum very efficiently

6 The weight tells us how much a given input influences the output. The bias is what the output would be if all
inputs were zero.

7 Contrast that with the function shown in figure 5.6, which is not convex.

110 CHAPTER 5 The mechanics of learning

through specialized algorithms. However, we will instead use less powerful but more
generally applicable methods in this chapter. We do so because for the deep neural net-
works we are ultimately interested in, the loss is not a convex function of the inputs.

 For our two loss functions |t_p – t_c| and (t_p – t_c)^2, as shown in figure 5.4,
we notice that the square of the differences behaves more nicely around the mini-
mum: the derivative of the error-squared loss with respect to t_p is zero when t_p
equals t_c. The absolute value, on the other hand, has an undefined derivative right
where we’d like to converge. This is less of an issue in practice than it looks like, but
we’ll stick to the square of differences for the time being.

It’s worth noting that the square difference also penalizes wildly wrong results more than
the absolute difference does. Often, having more slightly wrong results is better than hav-
ing a few wildly wrong ones, and the squared difference helps prioritize those as desired.

5.3.1 From problem back to PyTorch

We’ve figured out the model and the loss function—we’ve already got a good part of
the high-level picture in figure 5.2 figured out. Now we need to set the learning pro-
cess in motion and feed it actual data. Also, enough with math notation; let’s switch to
PyTorch—after all, we came here for the fun.

 We’ve already created our data tensors, so now let’s write out the model as a
Python function:

In[3]:
def model(t_u, w, b):

return w * t_u + b

We’re expecting t_u, w, and b to be the input tensor, weight parameter, and bias
parameter, respectively. In our model, the parameters will be PyTorch scalars (aka

X - X

X X X X

X - X

2

Figure 5.4 Absolute difference versus difference squared

111Less loss is what we want

zero-dimensional tensors), and the product operation will use broadcasting to yield
the returned tensors. Anyway, time to define our loss:

In[4]:
def loss_fn(t_p, t_c):

squared_diffs = (t_p - t_c)**2
return squared_diffs.mean()

Note that we are building a tensor of differences, taking their square element-wise,
and finally producing a scalar loss function by averaging all of the elements in the
resulting tensor. It is a mean square loss.

 We can now initialize the parameters, invoke the model,

In[5]:
w = torch.ones(())
b = torch.zeros(())

t_p = model(t_u, w, b)
t_p

Out[5]:
tensor([35.7000, 55.9000, 58.2000, 81.9000, 56.3000, 48.9000, 33.9000,

21.8000, 48.4000, 60.4000, 68.4000])

and check the value of the loss:

In[6]:
loss = loss_fn(t_p, t_c)
loss

Out[6]:
tensor(1763.8846)

We implemented the model and the loss in this section. We’ve finally reached the
meat of the example: how do we estimate w and b such that the loss reaches a mini-
mum? We’ll first work things out by hand and then learn how to use PyTorch’s super-
powers to solve the same problem in a more general, off-the-shelf way.

Broadcasting
We mentioned broadcasting in chapter 3, and we promised to look at it more carefully
when we need it. In our example, we have two scalars (zero-dimensional tensors) w
and b, and we multiply them with and add them to vectors (one-dimensional tensors)
of length b.

Usually—and in early versions of PyTorch, too—we can only use element-wise binary
operations such as addition, subtraction, multiplication, and division for arguments
of the same shape. The entries in matching positions in each of the tensors will be
used to calculate the corresponding entry in the result tensor.

112 CHAPTER 5 The mechanics of learning

(continued)
Broadcasting, which is popular in NumPy and adapted by PyTorch, relaxes this assump-
tion for most binary operations. It uses the following rules to match tensor elements:

 For each index dimension, counted from the back, if one of the operands is
size 1 in that dimension, PyTorch will use the single entry along this dimen-
sion with each of the entries in the other tensor along this dimension.

 If both sizes are greater than 1, they must be the same, and natural matching
is used.

 If one of the tensors has more index dimensions than the other, the entirety
of the other tensor will be used for each entry along these dimensions.

This sounds complicated (and it can be error-prone if we don’t pay close attention, which
is why we have named the tensor dimensions as shown in section 3.4), but usually,
we can either write down the tensor dimensions to see what happens or picture what
happens by using space dimensions to show the broadcasting, as in the following figure.

Of course, this would all be theory if we didn’t have some code examples:

In[7]:
x = torch.ones(())
y = torch.ones(3,1)
z = torch.ones(1,3)
a = torch.ones(2, 1, 1)
print(f"shapes: x: {x.shape}, y: {y.shape}")

print(f" z: {z.shape}, a: {a.shape}")
print("x * y:", (x * y).shape)
print("y * z:", (y * z).shape)
print("y * z * a:", (y * z * a).shape)

Out[7]:

shapes: x: torch.Size([]), y: torch.Size([3, 1])
z: torch.Size([1, 3]), a: torch.Size([2, 1, 1])

x * y: torch.Size([3, 1])

y * z: torch.Size([3, 3])
y * z * a: torch.Size([2, 3, 3])

113Down along the gradient

5.4 Down along the gradient
We’ll optimize the loss function with respect to the parameters using the gradient
descent algorithm. In this section, we’ll build our intuition for how gradient descent
works from first principles, which will help us a lot in the future. As we mentioned,
there are ways to solve our example problem more efficiently, but those approaches
aren’t applicable to most deep learning tasks. Gradient descent is actually a very sim-
ple idea, and it scales up surprisingly well to large neural network models with mil-
lions of parameters.

 Let’s start with a mental image, which we
conveniently sketched out in figure 5.5. Sup-
pose we are in front of a machine sporting two
knobs, labeled w and b. We are allowed to see
the value of the loss on a screen, and we are
told to minimize that value. Not knowing the
effect of the knobs on the loss, we start fid-
dling with them and decide for each knob
which direction makes the loss decrease. We
decide to rotate both knobs in their direction
of decreasing loss. Suppose we’re far from the
optimal value: we’d likely see the loss decrease
quickly and then slow down as it gets closer to
the minimum. We notice that at some point,
the loss climbs back up again, so we invert the
direction of rotation for one or both knobs.
We also learn that when the loss changes
slowly, it’s a good idea to adjust the knobs
more finely, to avoid reaching the point where the loss goes back up. After a while,
eventually, we converge to a minimum.

5.4.1 Decreasing loss

Gradient descent is not that different from the scenario we just described. The idea is
to compute the rate of change of the loss with respect to each parameter, and modify
each parameter in the direction of decreasing loss. Just like when we were fiddling
with the knobs, we can estimate the rate of change by adding a small number to w and
b and seeing how much the loss changes in that neighborhood:

In[8]:
delta = 0.1

loss_rate_of_change_w = \
(loss_fn(model(t_u, w + delta, b), t_c) -
loss_fn(model(t_u, w - delta, b), t_c)) / (2.0 * delta)

Figure 5.5 A cartoon depiction of the
optimization process, where a person
with knobs for w and b searches for the
direction to turn the knobs that makes
the loss decrease

114 CHAPTER 5 The mechanics of learning

This is saying that in the neighborhood of the current values of w and b, a unit
increase in w leads to some change in the loss. If the change is negative, then we need
to increase w to minimize the loss, whereas if the change is positive, we need to
decrease w. By how much? Applying a change to w that is proportional to the rate of
change of the loss is a good idea, especially when the loss has several parameters: we
apply a change to those that exert a significant change on the loss. It is also wise to
change the parameters slowly in general, because the rate of change could be dramat-
ically different at a distance from the neighborhood of the current w value. Therefore,
we typically should scale the rate of change by a small factor. This scaling factor has
many names; the one we use in machine learning is learning_rate:

In[9]:
learning_rate = 1e-2

w = w - learning_rate * loss_rate_of_change_w

We can do the same with b:

In[10]:
loss_rate_of_change_b = \

(loss_fn(model(t_u, w, b + delta), t_c) -
loss_fn(model(t_u, w, b - delta), t_c)) / (2.0 * delta)

b = b - learning_rate * loss_rate_of_change_b

This represents the basic parameter-update step for gradient descent. By reiterating
these evaluations (and provided we choose a small enough learning rate), we will
converge to an optimal value of the parameters for which the loss computed on the
given data is minimal. We’ll show the complete iterative process soon, but the way we
just computed our rates of change is rather crude and needs an upgrade before we
move on. Let’s see why and how.

5.4.2 Getting analytical

Computing the rate of change by using repeated evaluations of the model and loss in
order to probe the behavior of the loss function in the neighborhood of w and b
doesn’t scale well to models with many parameters. Also, it is not always clear how
large the neighborhood should be. We chose delta equal to 0.1 in the previous sec-
tion, but it all depends on the shape of the loss as a function of w and b. If the loss
changes too quickly compared to delta, we won’t have a very good idea of in which
direction the loss is decreasing the most.

 What if we could make the neighborhood infinitesimally small, as in figure 5.6?
That’s exactly what happens when we analytically take the derivative of the loss with
respect to a parameter. In a model with two or more parameters like the one we’re
dealing with, we compute the individual derivatives of the loss with respect to each
parameter and put them in a vector of derivatives: the gradient.

115Down along the gradient

COMPUTING THE DERIVATIVES

In order to compute the derivative of the loss with respect to a parameter, we can
apply the chain rule and compute the derivative of the loss with respect to its input
(which is the output of the model), times the derivative of the model with respect to
the parameter:

d loss_fn / d w = (d loss_fn / d t_p) * (d t_p / d w)

Recall that our model is a linear function, and our loss is a sum of squares. Let’s figure
out the expressions for the derivatives. Recalling the expression for the loss:

In[4]:
def loss_fn(t_p, t_c):

squared_diffs = (t_p - t_c)**2
return squared_diffs.mean()

Remembering that d x^2 / d x = 2 x, we get

In[11]:
def dloss_fn(t_p, t_c):

dsq_diffs = 2 * (t_p - t_c) / t_p.size(0)
return dsq_diffs

APPLYING THE DERIVATIVES TO THE MODEL

For the model, recalling that our model is

In[3]:
def model(t_u, w, b):

return w * t_u + b

we get these derivatives:

Figure 5.6 Differences in the
estimated directions for descent
when evaluating them at discrete
locations versus analytically

loSs

1

2

3

4

The division is from the
derivative of mean.

116 CHAPTER 5 The mechanics of learning

In[12]:
def dmodel_dw(t_u, w, b):

return t_u

In[13]:
def dmodel_db(t_u, w, b):

return 1.0

DEFINING THE GRADIENT FUNCTION

Putting all of this together, the function returning the gradient of the loss with respect
to w and b is

In[14]:
def grad_fn(t_u, t_c, t_p, w, b):

dloss_dtp = dloss_fn(t_p, t_c)
dloss_dw = dloss_dtp * dmodel_dw(t_u, w, b)
dloss_db = dloss_dtp * dmodel_db(t_u, w, b)
return torch.stack([dloss_dw.sum(), dloss_db.sum()])

The same idea expressed in mathematical notation is shown in figure 5.7. Again,
we’re averaging (that is, summing and dividing by a constant) over all the data points
to get a single scalar quantity for each partial derivative of the loss.

5.4.3 Iterating to fit the model

We now have everything in place to optimize our parameters. Starting from a tentative
value for a parameter, we can iteratively apply updates to it for a fixed number of iter-
ations, or until w and b stop changing. There are several stopping criteria; for now,
we’ll stick to a fixed number of iterations.

THE TRAINING LOOP

Since we’re at it, let’s introduce another piece of terminology. We call a training itera-
tion during which we update the parameters for all of our training samples an epoch.

The summation is the reverse of the
broadcasting we implicitly do when

applying the parameters to an entire
vector of inputs in the model.

Figure 5.7 The derivative of the loss function with respect to the weights

117Down along the gradient

 The complete training loop looks like this (code/p1ch5/1_parameter_estimation
.ipynb):

In[15]:
def training_loop(n_epochs, learning_rate, params, t_u, t_c):

for epoch in range(1, n_epochs + 1):
w, b = params

t_p = model(t_u, w, b)
loss = loss_fn(t_p, t_c)
grad = grad_fn(t_u, t_c, t_p, w, b)

params = params - learning_rate * grad

print('Epoch %d, Loss %f' % (epoch, float(loss)))

return params

The actual logging logic used for the output in this text is more complicated (see cell
15 in the same notebook: http://mng.bz/pBB8), but the differences are unimportant
for understanding the core concepts in this chapter.

 Now, let’s invoke our training loop:

In[17]:
training_loop(

n_epochs = 100,
learning_rate = 1e-2,
params = torch.tensor([1.0, 0.0]),
t_u = t_u,
t_c = t_c)

Out[17]:
Epoch 1, Loss 1763.884644

Params: tensor([-44.1730, -0.8260])
Grad: tensor([4517.2969, 82.6000])

Epoch 2, Loss 5802485.500000
Params: tensor([2568.4014, 45.1637])
Grad: tensor([-261257.4219, -4598.9712])

Epoch 3, Loss 19408035840.000000
Params: tensor([-148527.7344, -2616.3933])
Grad: tensor([15109614.0000, 266155.7188])

...
Epoch 10, Loss 90901154706620645225508955521810432.000000

Params: tensor([3.2144e+17, 5.6621e+15])
Grad: tensor([-3.2700e+19, -5.7600e+17])

Epoch 11, Loss inf
Params: tensor([-1.8590e+19, -3.2746e+17])
Grad: tensor([1.8912e+21, 3.3313e+19])

tensor([-1.8590e+19, -3.2746e+17])

Forward pass

Backward pass

This logging line can
be very verbose.

http://mng.bz/pBB8

118 CHAPTER 5 The mechanics of learning

OVERTRAINING

Wait, what happened? Our training process literally blew up, leading to losses becom-
ing inf. This is a clear sign that params is receiving updates that are too large, and
their values start oscillating back and forth as each update overshoots and the next
overcorrects even more. The optimization process is unstable: it diverges instead of
converging to a minimum. We want to see smaller and smaller updates to params, not
larger, as shown in figure 5.8.

How can we limit the magnitude of learning_rate * grad? Well, that looks easy. We
could simply choose a smaller learning_rate, and indeed, the learning rate is one of
the things we typically change when training does not go as well as we would like.8 We
usually change learning rates by orders of magnitude, so we might try with 1e-3 or
1e-4, which would decrease the magnitude of the updates by orders of magnitude.
Let’s go with 1e-4 and see how it works out:

In[18]:
training_loop(

n_epochs = 100,

8 The fancy name for this is hyperparameter tuning. Hyperparameter refers to the fact that we are training the
model’s parameters, but the hyperparameters control how this training goes. Typically these are more or less
set manually. In particular, they cannot be part of the same optimization.

Figure 5.8 Top: Diverging optimization on a convex function (parabola-like) due to large steps.
Bottom: Converging optimization with small steps.

A B C

D E F

1

1

1

1 1

1
2 2

22

3

3

119Down along the gradient

learning_rate = 1e-4,
params = torch.tensor([1.0, 0.0]),
t_u = t_u,
t_c = t_c)

Out[18]:
Epoch 1, Loss 1763.884644

Params: tensor([0.5483, -0.0083])
Grad: tensor([4517.2969, 82.6000])

Epoch 2, Loss 323.090546
Params: tensor([0.3623, -0.0118])
Grad: tensor([1859.5493, 35.7843])

Epoch 3, Loss 78.929634
Params: tensor([0.2858, -0.0135])
Grad: tensor([765.4667, 16.5122])

...
Epoch 10, Loss 29.105242

Params: tensor([0.2324, -0.0166])
Grad: tensor([1.4803, 3.0544])

Epoch 11, Loss 29.104168
Params: tensor([0.2323, -0.0169])
Grad: tensor([0.5781, 3.0384])

...
Epoch 99, Loss 29.023582

Params: tensor([0.2327, -0.0435])
Grad: tensor([-0.0533, 3.0226])

Epoch 100, Loss 29.022669
Params: tensor([0.2327, -0.0438])
Grad: tensor([-0.0532, 3.0226])

tensor([0.2327, -0.0438])

Nice—the behavior is now stable. But there’s another problem: the updates to param-
eters are very small, so the loss decreases very slowly and eventually stalls. We could
obviate this issue by making learning_rate adaptive: that is, change according to the
magnitude of updates. There are optimization schemes that do that, and we’ll see one
toward the end of this chapter, in section 5.5.2.

 However, there’s another potential troublemaker in the update term: the gradient
itself. Let’s go back and look at grad at epoch 1 during optimization.

5.4.4 Normalizing inputs

We can see that the first-epoch gradient for the weight is about 50 times larger than
the gradient for the bias. This means the weight and bias live in differently scaled
spaces. If this is the case, a learning rate that’s large enough to meaningfully update
one will be so large as to be unstable for the other; and a rate that’s appropriate for
the other won’t be large enough to meaningfully change the first. That means we’re
not going to be able to update our parameters unless we change something about our
formulation of the problem. We could have individual learning rates for each parame-
ter, but for models with many parameters, this would be too much to bother with; it’s
babysitting of the kind we don’t like.

120 CHAPTER 5 The mechanics of learning

 There’s a simpler way to keep things in check: changing the inputs so that the gra-
dients aren’t quite so different. We can make sure the range of the input doesn’t get
too far from the range of –1.0 to 1.0, roughly speaking. In our case, we can achieve
something close enough to that by simply multiplying t_u by 0.1:

In[19]:
t_un = 0.1 * t_u

Here, we denote the normalized version of t_u by appending an n to the variable
name. At this point, we can run the training loop on our normalized input:

In[20]:
training_loop(

n_epochs = 100,
learning_rate = 1e-2,
params = torch.tensor([1.0, 0.0]),
t_u = t_un,
t_c = t_c)

Out[20]:
Epoch 1, Loss 80.364342

Params: tensor([1.7761, 0.1064])
Grad: tensor([-77.6140, -10.6400])

Epoch 2, Loss 37.574917
Params: tensor([2.0848, 0.1303])
Grad: tensor([-30.8623, -2.3864])

Epoch 3, Loss 30.871077
Params: tensor([2.2094, 0.1217])
Grad: tensor([-12.4631, 0.8587])

...
Epoch 10, Loss 29.030487

Params: tensor([2.3232, -0.0710])
Grad: tensor([-0.5355, 2.9295])

Epoch 11, Loss 28.941875
Params: tensor([2.3284, -0.1003])
Grad: tensor([-0.5240, 2.9264])

...
Epoch 99, Loss 22.214186

Params: tensor([2.7508, -2.4910])
Grad: tensor([-0.4453, 2.5208])

Epoch 100, Loss 22.148710
Params: tensor([2.7553, -2.5162])
Grad: tensor([-0.4446, 2.5165])

tensor([2.7553, -2.5162])

Even though we set our learning rate back to 1e-2, parameters don’t blow up during
iterative updates. Let’s take a look at the gradients: they’re of similar magnitude, so
using a single learning_rate for both parameters works just fine. We could probably
do a better job of normalization than a simple rescaling by a factor of 10, but since
doing so is good enough for our needs, we’re going to stick with that for now.

We’ve updated t_u to
our new, rescaled t_un.

121Down along the gradient

NOTE The normalization here absolutely helps get the network trained, but
you could make an argument that it’s not strictly needed to optimize the
parameters for this particular problem. That’s absolutely true! This problem is
small enough that there are numerous ways to beat the parameters into sub-
mission. However, for larger, more sophisticated problems, normalization is an
easy and effective (if not crucial!) tool to use to improve model convergence.

Let’s run the loop for enough iterations to see the changes in params get small. We’ll
change n_epochs to 5,000:

In[21]:
params = training_loop(

n_epochs = 5000,
learning_rate = 1e-2,
params = torch.tensor([1.0, 0.0]),
t_u = t_un,
t_c = t_c,
print_params = False)

params

Out[21]:
Epoch 1, Loss 80.364342
Epoch 2, Loss 37.574917
Epoch 3, Loss 30.871077
...
Epoch 10, Loss 29.030487
Epoch 11, Loss 28.941875
...
Epoch 99, Loss 22.214186
Epoch 100, Loss 22.148710
...
Epoch 4000, Loss 2.927680
Epoch 5000, Loss 2.927648

tensor([5.3671, -17.3012])

Good: our loss decreases while we change parameters along the direction of gradient
descent. It doesn’t go exactly to zero; this could mean there aren’t enough iterations to
converge to zero, or that the data points don’t sit exactly on a line. As we anticipated, our
measurements were not perfectly accurate, or there was noise involved in the reading.

 But look: the values for w and b look an awful lot like the numbers we need to use
to convert Celsius to Fahrenheit (after accounting for our earlier normalization when
we multiplied our inputs by 0.1). The exact values would be w=5.5556 and b=-
17.7778. Our fancy thermometer was showing temperatures in Fahrenheit the whole
time. No big discovery, except that our gradient descent optimization process works!

122 CHAPTER 5 The mechanics of learning

5.4.5 Visualizing (again)

Let’s revisit something we did right at the start: plotting our data. Seriously, this is the
first thing anyone doing data science should do. Always plot the heck out of the data:

In[22]:
%matplotlib inline
from matplotlib import pyplot as plt

t_p = model(t_un, *params)

fig = plt.figure(dpi=600)
plt.xlabel("Temperature (°Fahrenheit)")
plt.ylabel("Temperature (°Celsius)")
plt.plot(t_u.numpy(), t_p.detach().numpy())
plt.plot(t_u.numpy(), t_c.numpy(), 'o')

We are using a Python trick called argument unpacking here: *params means to pass the
elements of params as individual arguments. In Python, this is usually done with lists
or tuples, but we can also use argument unpacking with PyTorch tensors, which are
split along the leading dimension. So here, model(t_un, *params) is equivalent to
model(t_un, params[0], params[1]).

 This code produces figure 5.9. Our linear model is a good model for the data, it
seems. It also seems our measurements are somewhat erratic. We should either call
our optometrist for a new pair of glasses or think about returning our fancy ther-
mometer.

Remember that we’re training on the
normalized unknown units. We also
use argument unpacking.

But we’re plotting the
raw unknown values.

Figure 5.9 The plot of our linear-fit model (solid line) versus our input data (circles)

25

20

15

10

t
e

m
p
e

r
a
t
u
r

e
 (

°
C
E

L
S
I
U
S
)

5

0

20 30 40 50

temperature (°fahrenheit)

60 70 80

-5

123PyTorch’s autograd: Backpropagating all things

5.5 PyTorch’s autograd: Backpropagating all things
In our little adventure, we just saw a simple example of backpropagation: we com-
puted the gradient of a composition of functions—the model and the loss—with
respect to their innermost parameters (w and b) by propagating derivatives backward
using the chain rule. The basic requirement here is that all functions we’re dealing
with can be differentiated analytically. If this is the case, we can compute the gradi-
ent—what we earlier called “the rate of change of the loss”—with respect to the
parameters in one sweep.

 Even if we have a complicated model with millions of parameters, as long as our
model is differentiable, computing the gradient of the loss with respect to the param-
eters amounts to writing the analytical expression for the derivatives and evaluating
them once. Granted, writing the analytical expression for the derivatives of a very deep
composition of linear and nonlinear functions is not a lot of fun.9 It isn’t particularly
quick, either.

5.5.1 Computing the gradient automatically

This is when PyTorch tensors come to the rescue, with a PyTorch component called
autograd. Chapter 3 presented a comprehensive overview of what tensors are and what
functions we can call on them. We left out one very interesting aspect, however:
PyTorch tensors can remember where they come from, in terms of the operations and
parent tensors that originated them, and they can automatically provide the chain of
derivatives of such operations with respect to their inputs. This means we won’t need
to derive our model by hand;10 given a forward expression, no matter how nested,
PyTorch will automatically provide the gradient of that expression with respect to its
input parameters.

APPLYING AUTOGRAD

At this point, the best way to proceed is to rewrite our thermometer calibration code,
this time using autograd, and see what happens. First, we recall our model and loss
function.

In[3]:
def model(t_u, w, b):

return w * t_u + b

In[4]:
def loss_fn(t_p, t_c):

squared_diffs = (t_p - t_c)**2
return squared_diffs.mean()

9 Or maybe it is; we won’t judge how you spend your weekend!
10 Bummer! What are we going to do on Saturdays, now?

Listing 5.1 code/p1ch5/2_autograd.ipynb

124 CHAPTER 5 The mechanics of learning

Let’s again initialize a parameters tensor:

In[5]:
params = torch.tensor([1.0, 0.0], requires_grad=True)

USING THE GRAD ATTRIBUTE

Notice the requires_grad=True argument to the tensor constructor? That argument
is telling PyTorch to track the entire family tree of tensors resulting from operations
on params. In other words, any tensor that will have params as an ancestor will have
access to the chain of functions that were called to get from params to that tensor. In
case these functions are differentiable (and most PyTorch tensor operations will be),
the value of the derivative will be automatically populated as a grad attribute of the
params tensor.

 In general, all PyTorch tensors have an attribute named grad. Normally, it’s None:

In[6]:
params.grad is None

Out[6]:
True

All we have to do to populate it is to start with a tensor with requires_grad set to
True, then call the model and compute the loss, and then call backward on the loss
tensor:

In[7]:
loss = loss_fn(model(t_u, *params), t_c)
loss.backward()

params.grad

Out[7]:
tensor([4517.2969, 82.6000])

At this point, the grad attribute of params contains the derivatives of the loss with
respect to each element of params.

 When we compute our loss while the parameters w and b require gradients, in
addition to performing the actual computation, PyTorch creates the autograd graph
with the operations (in black circles) as nodes, as shown in the top row of fig-
ure 5.10. When we call loss.backward(), PyTorch traverses this graph in the reverse
direction to compute the gradients, as shown by the arrows in the bottom row of
the figure.

125PyTorch’s autograd: Backpropagating all things

ACCUMULATING GRAD FUNCTIONS

We could have any number of tensors with requires_grad set to True and any compo-
sition of functions. In this case, PyTorch would compute the derivatives of the loss
throughout the chain of functions (the computation graph) and accumulate their val-
ues in the grad attribute of those tensors (the leaf nodes of the graph).

 Alert! Big gotcha ahead. This is something PyTorch newcomers—and a lot of more
experienced folks, too—trip up on regularly. We just wrote accumulate, not store.

WARNING Calling backward will lead derivatives to accumulate at leaf nodes.
We need to zero the gradient explicitly after using it for parameter updates.

Let’s repeat together: calling backward will lead derivatives to accumulate at leaf nodes.
So if backward was called earlier, the loss is evaluated again, backward is called again
(as in any training loop), and the gradient at each leaf is accumulated (that is,
summed) on top of the one computed at the previous iteration, which leads to an
incorrect value for the gradient.

 In order to prevent this from occurring, we need to zero the gradient explicitly at each
iteration. We can do this easily using the in-place zero_ method:

In[8]:
if params.grad is not None:

params.grad.zero_()

Figure 5.10 The forward graph
and backward graph of the model
as computed with autograd

126 CHAPTER 5 The mechanics of learning

NOTE You might be curious why zeroing the gradient is a required step
instead of zeroing happening automatically whenever we call backward.
Doing it this way provides more flexibility and control when working with gra-
dients in complicated models.

Having this reminder drilled into our heads, let’s see what our autograd-enabled
training code looks like, start to finish:

In[9]:
def training_loop(n_epochs, learning_rate, params, t_u, t_c):

for epoch in range(1, n_epochs + 1):
if params.grad is not None:

params.grad.zero_()

t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)
loss.backward()

with torch.no_grad():
params -= learning_rate * params.grad

if epoch % 500 == 0:
print('Epoch %d, Loss %f' % (epoch, float(loss)))

return params

Note that our code updating params is not quite as straightforward as we might have
expected. There are two particularities. First, we are encapsulating the update in a
no_grad context using the Python with statement. This means within the with block,
the PyTorch autograd mechanism should look away:11 that is, not add edges to the for-
ward graph. In fact, when we are executing this bit of code, the forward graph that
PyTorch records is consumed when we call backward, leaving us with the params leaf
node. But now we want to change this leaf node before we start building a fresh for-
ward graph on top of it. While this use case is usually wrapped inside the optimizers
we discuss in section 5.5.2, we will take a closer look when we see another common use
of no_grad in section 5.5.4.

 Second, we update params in place. This means we keep the same params tensor
around but subtract our update from it. When using autograd, we usually avoid in-
place updates because PyTorch’s autograd engine might need the values we would be
modifying for the backward pass. Here, however, we are operating without autograd,
and it is beneficial to keep the params tensor. Not replacing the parameters by assign-
ing new tensors to their variable name will become crucial when we register our
parameters with the optimizer in section 5.5.2.

11 In reality, it will track that something changed params using an in-place operation.

This could be done at any point in the
loop prior to calling loss.backward().

This is a somewhat cumbersome bit
of code, but as we’ll see in the next
section, it’s not an issue in practice.

127PyTorch’s autograd: Backpropagating all things

 Let’s see if it works:

In[10]:
training_loop(

n_epochs = 5000,
learning_rate = 1e-2,
params = torch.tensor([1.0, 0.0], requires_grad=True),
t_u = t_un,
t_c = t_c)

Out[10]:
Epoch 500, Loss 7.860116
Epoch 1000, Loss 3.828538
Epoch 1500, Loss 3.092191
Epoch 2000, Loss 2.957697
Epoch 2500, Loss 2.933134
Epoch 3000, Loss 2.928648
Epoch 3500, Loss 2.927830
Epoch 4000, Loss 2.927679
Epoch 4500, Loss 2.927652
Epoch 5000, Loss 2.927647

tensor([5.3671, -17.3012], requires_grad=True)

The result is the same as we got previously. Good for us! It means that while we are
capable of computing derivatives by hand, we no longer need to.

5.5.2 Optimizers a la carte

In the example code, we used vanilla gradient descent for optimization, which worked
fine for our simple case. Needless to say, there are several optimization strategies and
tricks that can assist convergence, especially when models get complicated.

 We’ll dive deeper into this topic in later chapters, but now is the right time to
introduce the way PyTorch abstracts the optimization strategy away from user code:
that is, the training loop we’ve examined. This saves us from the boilerplate busywork
of having to update each and every parameter to our model ourselves. The torch
module has an optim submodule where we can find classes implementing different
optimization algorithms. Here’s an abridged list (code/p1ch5/3_optimizers.ipynb):

In[5]:
import torch.optim as optim

dir(optim)

Out[5]:
['ASGD',
'Adadelta',
'Adagrad',
'Adam',
'Adamax',
'LBFGS',
'Optimizer',

Adding
requires_grad=True is key.

Again, we’re using the
normalized t_un instead of t_u.

128 CHAPTER 5 The mechanics of learning

'RMSprop',
'Rprop',
'SGD',
'SparseAdam',

...
]

Every optimizer constructor takes a list of parameters (aka PyTorch tensors, typically
with requires_grad set to True) as the first input. All parameters passed to the opti-
mizer are retained inside the optimizer object so the optimizer can update their val-
ues and access their grad attribute, as represented in figure 5.11.

Each optimizer exposes two methods: zero_grad and step. zero_grad zeroes the
grad attribute of all the parameters passed to the optimizer upon construction. step
updates the value of those parameters according to the optimization strategy imple-
mented by the specific optimizer.

USING A GRADIENT DESCENT OPTIMIZER

Let’s create params and instantiate a gradient descent optimizer:

In[6]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-5
optimizer = optim.SGD([params], lr=learning_rate)

A B

C D

Figure 5.11 (A) Conceptual representation of how an optimizer holds a reference to
parameters. (B) After a loss is computed from inputs, (C) a call to .backward leads to
.grad being populated on parameters. (D) At that point, the optimizer can access
.grad and compute the parameter updates.

129PyTorch’s autograd: Backpropagating all things

Here SGD stands for stochastic gradient descent. Actually, the optimizer itself is exactly a
vanilla gradient descent (as long as the momentum argument is set to 0.0, which is the
default). The term stochastic comes from the fact that the gradient is typically obtained
by averaging over a random subset of all input samples, called a minibatch. However, the
optimizer does not know if the loss was evaluated on all the samples (vanilla) or a ran-
dom subset of them (stochastic), so the algorithm is literally the same in the two cases.

 Anyway, let’s take our fancy new optimizer for a spin:

In[7]:
t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)
loss.backward()

optimizer.step()

params

Out[7]:
tensor([9.5483e-01, -8.2600e-04], requires_grad=True)

The value of params is updated upon calling step without us having to touch it our-
selves! What happens is that the optimizer looks into params.grad and updates
params, subtracting learning_rate times grad from it, exactly as in our former hand-
rolled code.

 Ready to stick this code in a training loop? Nope! The big gotcha almost got us—
we forgot to zero out the gradients. Had we called the previous code in a loop, gradi-
ents would have accumulated in the leaves at every call to backward, and our gradient
descent would have been all over the place! Here’s the loop-ready code, with the extra
zero_grad at the correct spot (right before the call to backward):

In[8]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-2
optimizer = optim.SGD([params], lr=learning_rate)

t_p = model(t_un, *params)
loss = loss_fn(t_p, t_c)

optimizer.zero_grad()
loss.backward()
optimizer.step()

params

Out[8]:
tensor([1.7761, 0.1064], requires_grad=True)

Perfect! See how the optim module helps us abstract away the specific optimization
scheme? All we have to do is provide a list of params to it (that list can be extremely

As before, the exact placement of
this call is somewhat arbitrary. It
could be earlier in the loop as well.

130 CHAPTER 5 The mechanics of learning

long, as is needed for very deep neural network models), and we can forget about the
details.

 Let’s update our training loop accordingly:

In[9]:
def training_loop(n_epochs, optimizer, params, t_u, t_c):

for epoch in range(1, n_epochs + 1):
t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)

optimizer.zero_grad()
loss.backward()
optimizer.step()

if epoch % 500 == 0:
print('Epoch %d, Loss %f' % (epoch, float(loss)))

return params

In[10]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-2
optimizer = optim.SGD([params], lr=learning_rate)

training_loop(
n_epochs = 5000,
optimizer = optimizer,
params = params,
t_u = t_un,
t_c = t_c)

Out[10]:
Epoch 500, Loss 7.860118
Epoch 1000, Loss 3.828538
Epoch 1500, Loss 3.092191
Epoch 2000, Loss 2.957697
Epoch 2500, Loss 2.933134
Epoch 3000, Loss 2.928648
Epoch 3500, Loss 2.927830
Epoch 4000, Loss 2.927680
Epoch 4500, Loss 2.927651
Epoch 5000, Loss 2.927648

tensor([5.3671, -17.3012], requires_grad=True)

Again, we get the same result as before. Great: this is further confirmation that we
know how to descend a gradient by hand!

TESTING OTHER OPTIMIZERS

In order to test more optimizers, all we have to do is instantiate a different optimizer,
say Adam, instead of SGD. The rest of the code stays as it is. Pretty handy stuff.

 We won’t go into much detail about Adam; suffice to say that it is a more sophisti-
cated optimizer in which the learning rate is set adaptively. In addition, it is a lot less
sensitive to the scaling of the parameters—so insensitive that we can go back to using

It’s important that both
params are the same object;
otherwise the optimizer won’t
know what parameters were
used by the model.

131PyTorch’s autograd: Backpropagating all things

the original (non-normalized) input t_u, and even increase the learning rate to 1e-1,
and Adam won’t even blink:

In[11]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-1
optimizer = optim.Adam([params], lr=learning_rate)

training_loop(
n_epochs = 2000,
optimizer = optimizer,
params = params,
t_u = t_u,
t_c = t_c)

Out[11]:
Epoch 500, Loss 7.612903
Epoch 1000, Loss 3.086700
Epoch 1500, Loss 2.928578
Epoch 2000, Loss 2.927646

tensor([0.5367, -17.3021], requires_grad=True)

The optimizer is not the only flexible part of our training loop. Let’s turn our atten-
tion to the model. In order to train a neural network on the same data and the same
loss, all we would need to change is the model function. It wouldn’t make particular
sense in this case, since we know that converting Celsius to Fahrenheit amounts to a
linear transformation, but we’ll do it anyway in chapter 6. We’ll see quite soon that
neural networks allow us to remove our arbitrary assumptions about the shape of the
function we should be approximating. Even so, we’ll see how neural networks manage
to be trained even when the underlying processes are highly nonlinear (such in the
case of describing an image with a sentence, as we saw in chapter 2).

 We have touched on a lot of the essential concepts that will enable us to train
complicated deep learning models while knowing what’s going on under the hood:
backpropagation to estimate gradients, autograd, and optimizing weights of models
using gradient descent or other optimizers. Really, there isn’t a lot more. The rest is
mostly filling in the blanks, however extensive they are.

 Next up, we’re going to offer an aside on how to split our samples, because that
sets up a perfect use case for learning how to better control autograd.

5.5.3 Training, validation, and overfitting

Johannes Kepler taught us one last thing that we didn’t discuss so far, remember? He
kept part of the data on the side so that he could validate his models on independent
observations. This is a vital thing to do, especially when the model we adopt could
potentially approximate functions of any shape, as in the case of neural networks. In
other words, a highly adaptable model will tend to use its many parameters to make
sure the loss is minimal at the data points, but we’ll have no guarantee that the model

New optimizer class

We’re back to the original
t_u as our input.

132 CHAPTER 5 The mechanics of learning

behaves well away from or in between the data points. After all, that’s what we’re asking
the optimizer to do: minimize the loss at the data points. Sure enough, if we had inde-
pendent data points that we didn’t use to evaluate our loss or descend along its nega-
tive gradient, we would soon find out that evaluating the loss at those independent
data points would yield higher-than-expected loss. We have already mentioned this
phenomenon, called overfitting.

 The first action we can take to combat overfitting is recognizing that it might hap-
pen. In order to do so, as Kepler figured out in 1600, we must take a few data points
out of our dataset (the validation set) and only fit our model on the remaining data
points (the training set), as shown in figure 5.12. Then, while we’re fitting the model,
we can evaluate the loss once on the training set and once on the validation set. When
we’re trying to decide if we’ve done a good job of fitting our model to the data, we
must look at both!

EVALUATING THE TRAINING LOSS

The training loss will tell us if our model can fit the training set at all—in other words,
if our model has enough capacity to process the relevant information in the data. If
our mysterious thermometer somehow managed to measure temperatures using a log-
arithmic scale, our poor linear model would not have had a chance to fit those mea-
surements and provide us with a sensible conversion to Celsius. In that case, our
training loss (the loss we were printing in the training loop) would stop decreasing
well before approaching zero.

data-

producing

proceSs

training

set

validation

set trained

model

model

parameter

optimization

(training)

performance

Figure 5.12 Conceptual representation of a data-
producing process and the collection and use of
training data and independent validation data

133PyTorch’s autograd: Backpropagating all things

 A deep neural network can potentially approximate complicated functions, pro-
vided that the number of neurons, and therefore parameters, is high enough. The
fewer the number of parameters, the simpler the shape of the function our network will
be able to approximate. So, rule 1: if the training loss is not decreasing, chances are the
model is too simple for the data. The other possibility is that our data just doesn’t con-
tain meaningful information that lets it explain the output: if the nice folks at the shop
sell us a barometer instead of a thermometer, we will have little chance of predicting
temperature in Celsius from just pressure, even if we use the latest neural network
architecture from Quebec (www.umontreal.ca/en/artificialintelligence).

GENERALIZING TO THE VALIDATION SET

What about the validation set? Well, if the loss evaluated in the validation set doesn’t
decrease along with the training set, it means our model is improving its fit of the sam-
ples it is seeing during training, but it is not generalizing to samples outside this precise
set. As soon as we evaluate the model at new, previously unseen points, the values of
the loss function are poor. So, rule 2: if the training loss and the validation loss
diverge, we’re overfitting.

 Let’s delve into this phenomenon a little, going back to our thermometer exam-
ple. We could have decided to fit the data with a more complicated function, like a
piecewise polynomial or a really large neural network. It could generate a model
meandering its way through the data points, as in figure 5.13, just because it pushes
the loss very close to zero. Since the behavior of the function away from the data
points does not increase the loss, there’s nothing to keep the model in check for
inputs away from the training data points.

Figure 5.13 Rather
extreme example of
overfitting

https://www.umontreal.ca/en/artificialintelligence/

134 CHAPTER 5 The mechanics of learning

What’s the cure, though? Good question. From what we just said, overfitting really
looks like a problem of making sure the behavior of the model in between data points
is sensible for the process we’re trying to approximate. First of all, we should make
sure we get enough data for the process. If we collected data from a sinusoidal pro-
cess by sampling it regularly at a low frequency, we would have a hard time fitting a
model to it.

 Assuming we have enough data points, we should make sure the model that is
capable of fitting the training data is as regular as possible in between them. There are
several ways to achieve this. One is adding penalization terms to the loss function, to
make it cheaper for the model to behave more smoothly and change more slowly (up
to a point). Another is to add noise to the input samples, to artificially create new data
points in between training data samples and force the model to try to fit those, too.
There are several other ways, all of them somewhat related to these. But the best favor
we can do to ourselves, at least as a first move, is to make our model simpler. From an
intuitive standpoint, a simpler model may not fit the training data as perfectly as a
more complicated model would, but it will likely behave more regularly in between
data points.

 We’ve got some nice trade-offs here. On the one hand, we need the model to have
enough capacity for it to fit the training set. On the other, we need the model to avoid
overfitting. Therefore, in order to choose the right size for a neural network model in
terms of parameters, the process is based on two steps: increase the size until it fits,
and then scale it down until it stops overfitting.

 We’ll see more about this in chapter 12—we’ll discover that our life will be a bal-
ancing act between fitting and overfitting. For now, let’s get back to our example and
see how we can split the data into a training set and a validation set. We’ll do it by
shuffling t_u and t_c the same way and then splitting the resulting shuffled tensors
into two parts.

SPLITTING A DATASET

Shuffling the elements of a tensor amounts to finding a permutation of its indices.
The randperm function does exactly this:

In[12]:
n_samples = t_u.shape[0]
n_val = int(0.2 * n_samples)

shuffled_indices = torch.randperm(n_samples)

train_indices = shuffled_indices[:-n_val]
val_indices = shuffled_indices[-n_val:]

train_indices, val_indices

Out[12]:
(tensor([9, 6, 5, 8, 4, 7, 0, 1, 3]), tensor([2, 10]))

Since these are random, don’t
be surprised if your values end
up different from here on out.

135PyTorch’s autograd: Backpropagating all things

We just got index tensors that we can use to build training and validation sets starting
from the data tensors:

In[13]:
train_t_u = t_u[train_indices]
train_t_c = t_c[train_indices]

val_t_u = t_u[val_indices]
val_t_c = t_c[val_indices]

train_t_un = 0.1 * train_t_u
val_t_un = 0.1 * val_t_u

Our training loop doesn’t really change. We just want to additionally evaluate the vali-
dation loss at every epoch, to have a chance to recognize whether we’re overfitting:

In[14]:
def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u,

train_t_c, val_t_c):
for epoch in range(1, n_epochs + 1):

train_t_p = model(train_t_u, *params)
train_loss = loss_fn(train_t_p, train_t_c)

val_t_p = model(val_t_u, *params)
val_loss = loss_fn(val_t_p, val_t_c)

optimizer.zero_grad()
train_loss.backward()
optimizer.step()

if epoch <= 3 or epoch % 500 == 0:
print(f"Epoch {epoch}, Training loss {train_loss.item():.4f},"

f" Validation loss {val_loss.item():.4f}")

return params

In[15]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-2
optimizer = optim.SGD([params], lr=learning_rate)

training_loop(
n_epochs = 3000,
optimizer = optimizer,
params = params,
train_t_u = train_t_un,
val_t_u = val_t_un,
train_t_c = train_t_c,
val_t_c = val_t_c)

Out[15]:
Epoch 1, Training loss 66.5811, Validation loss 142.3890
Epoch 2, Training loss 38.8626, Validation loss 64.0434
Epoch 3, Training loss 33.3475, Validation loss 39.4590
Epoch 500, Training loss 7.1454, Validation loss 9.1252

These two pairs of lines are the
same except for the train_* vs.
val_* inputs.

Note that there is no val_loss.backward()
here, since we don’t want to train the
model on the validation data.

Since we’re using SGD again, we’re
back to using normalized inputs.

136 CHAPTER 5 The mechanics of learning

Epoch 1000, Training loss 3.5940, Validation loss 5.3110
Epoch 1500, Training loss 3.0942, Validation loss 4.1611
Epoch 2000, Training loss 3.0238, Validation loss 3.7693
Epoch 2500, Training loss 3.0139, Validation loss 3.6279
Epoch 3000, Training loss 3.0125, Validation loss 3.5756

tensor([5.1964, -16.7512], requires_grad=True)

Here we are not being entirely fair to our model. The validation set is really small, so
the validation loss will only be meaningful up to a point. In any case, we note that the
validation loss is higher than our training loss, although not by an order of magni-
tude. We expect a model to perform better on the training set, since the model
parameters are being shaped by the training set. Our main goal is to also see both the
training loss and the validation loss decreasing. While ideally both losses would be
roughly the same value, as long as the validation loss stays reasonably close to the
training loss, we know that our model is continuing to learn generalized things about
our data. In figure 5.14, case C is ideal, while D is acceptable. In case A, the model
isn’t learning at all; and in case B, we see overfitting. We’ll see more meaningful exam-
ples of overfitting in chapter 12.

A B

C

loSs

loSs loSs

loSs

iterations iterations

iterationsiterations

D

Figure 5.14 Overfitting scenarios when looking at the training (solid line) and validation (dotted line)
losses. (A) Training and validation losses do not decrease; the model is not learning due to no
information in the data or insufficient capacity of the model. (B) Training loss decreases while
validation loss increases: overfitting. (C) Training and validation losses decrease exactly in tandem.
Performance may be improved further as the model is not at the limit of overfitting. (D) Training and
validation losses have different absolute values but similar trends: overfitting is under control.

137PyTorch’s autograd: Backpropagating all things

5.5.4 Autograd nits and switching it off

From the previous training loop, we can appreciate that we only ever call backward on
train_loss. Therefore, errors will only ever backpropagate based on the training
set—the validation set is used to provide an independent evaluation of the accuracy of
the model’s output on data that wasn’t used for training.

 The curious reader will have an embryo of a question at this point. The model is
evaluated twice—once on train_t_u and once on val_t_u—and then backward is
called. Won’t this confuse autograd? Won’t backward be influenced by the values gen-
erated during the pass on the validation set?

 Luckily for us, this isn’t the case. The first line in the training loop evaluates model
on train_t_u to produce train_t_p. Then train_loss is evaluated from train_t_p.
This creates a computation graph that links train_t_u to train_t_p to train_loss.
When model is evaluated again on val_t_u, it produces val_t_p and val_loss. In this
case, a separate computation graph will be created that links val_t_u to val_t_p to
val_loss. Separate tensors have been run through the same functions, model and
loss_fn, generating separate computation graphs, as shown in figure 5.15.

The only tensors these two graphs have in common are the parameters. When we call
backward on train_loss, we run backward on the first graph. In other words, we
accumulate the derivatives of train_loss with respect to the parameters based on the
computation generated from train_t_u.

 If we (incorrectly) called backward on val_loss as well, we would accumulate the
derivatives of val_loss with respect to the parameters on the same leaf nodes. Remember
the zero_grad thing, whereby gradients are accumulated on top of each other every
time we call backward unless we zero out the gradients explicitly? Well, here something

Figure 5.15 Diagram showing how gradients propagate through a graph with two
losses when .backward is called on one of them

A

B

C

138 CHAPTER 5 The mechanics of learning

very similar would happen: calling backward on val_loss would lead to gradients accu-
mulating in the params tensor, on top of those generated during the train_loss.back-
ward() call. In this case, we would effectively train our model on the whole dataset (both
training and validation), since the gradient would depend on both. Pretty interesting.

 There’s another element for discussion here. Since we’re not ever calling back-
ward on val_loss, why are we building the graph in the first place? We could in fact
just call model and loss_fn as plain functions, without tracking the computation.
However optimized, building the autograd graph comes with additional costs that we
could totally forgo during the validation pass, especially when the model has millions
of parameters.

 In order to address this, PyTorch allows us to switch off autograd when we don’t
need it, using the torch.no_grad context manager.12 We won’t see any meaningful
advantage in terms of speed or memory consumption on our small problem. How-
ever, for larger models, the differences can add up. We can make sure this works by
checking the value of the requires_grad attribute on the val_loss tensor:

In[16]:
def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u,

train_t_c, val_t_c):
for epoch in range(1, n_epochs + 1):

train_t_p = model(train_t_u, *params)
train_loss = loss_fn(train_t_p, train_t_c)

with torch.no_grad():
val_t_p = model(val_t_u, *params)
val_loss = loss_fn(val_t_p, val_t_c)
assert val_loss.requires_grad == False

optimizer.zero_grad()
train_loss.backward()
optimizer.step()

Using the related set_grad_enabled context, we can also condition the code to run
with autograd enabled or disabled, according to a Boolean expression—typically indi-
cating whether we are running in training or inference mode. We could, for instance,
define a calc_forward function that takes data as input and runs model and loss_fn
with or without autograd according to a Boolean train_is argument:

In[17]:
def calc_forward(t_u, t_c, is_train):

with torch.set_grad_enabled(is_train):
t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)

return loss

12 We should not think that using torch.no_grad necessarily implies that the outputs do not require gradients.
There are particular circumstances (involving views, as discussed in section 3.8.1) in which requires_grad
is not set to False even when created in a no_grad context. It is best to use the detach function if we need
to be sure.

Context
manager

here Checks that our output
requires_grad args are
forced to False inside
this block

139Summary

5.6 Conclusion
We started this chapter with a big question: how is it that a machine can learn from
examples? We spent the rest of the chapter describing the mechanism with which a
model can be optimized to fit data. We chose to stick with a simple model in order to
see all the moving parts without unneeded complications.

 Now that we’ve had our fill of appetizers, in chapter 6 we’ll finally get to the main
course: using a neural network to fit our data. We’ll work on solving the same
thermometer problem, but with the more powerful tools provided by the torch.nn
module. We’ll adopt the same spirit of using this small problem to illustrate the
larger uses of PyTorch. The problem doesn’t need a neural network to reach a
solution, but it will allow us to develop a simpler understanding of what’s required to
train a neural network.

5.7 Exercise
1 Redefine the model to be w2 * t_u ** 2 + w1 * t_u + b.

a What parts of the training loop, and so on, need to change to accommodate
this redefinition?

b What parts are agnostic to swapping out the model?
c Is the resulting loss higher or lower after training?
d Is the actual result better or worse?

5.8 Summary
 Linear models are the simplest reasonable model to use to fit data.
 Convex optimization techniques can be used for linear models, but they do not

generalize to neural networks, so we focus on stochastic gradient descent for
parameter estimation.

 Deep learning can be used for generic models that are not engineered for solv-
ing a specific task, but instead can be automatically adapted to specialize them-
selves on the problem at hand.

 Learning algorithms amount to optimizing parameters of models based on
observations. A loss function is a measure of the error in carrying out a task,
such as the error between predicted outputs and measured values. The goal is
to get the loss function as low as possible.

 The rate of change of the loss function with respect to the model parameters
can be used to update the same parameters in the direction of decreasing loss.

 The optim module in PyTorch provides a collection of ready-to-use optimizers
for updating parameters and minimizing loss functions.

 Optimizers use the autograd feature of PyTorch to compute the gradient for
each parameter, depending on how that parameter contributes to the final out-
put. This allows users to rely on the dynamic computation graph during com-
plex forward passes.

140 CHAPTER 5 The mechanics of learning

 Context managers like with torch.no_grad(): can be used to control auto-
grad’s behavior.

 Data is often split into separate sets of training samples and validation samples.
This lets us evaluate a model on data it was not trained on.

 Overfitting a model happens when the model’s performance continues to
improve on the training set but degrades on the validation set. This is usually
due to the model not generalizing, and instead memorizing the desired outputs
for the training set.

141

Using a neural
 network to fit the data

So far, we’ve taken a close look at how a linear model can learn and how to make
that happen in PyTorch. We’ve focused on a very simple regression problem that
used a linear model with only one input and one output. Such a simple example
allowed us to dissect the mechanics of a model that learns, without getting overly
distracted by the implementation of the model itself. As we saw in the overview dia-
gram in chapter 5, figure 5.2 (repeated here as figure 6.1), the exact details of a
model are not needed to understand the high-level process that trains the model.
Backpropagating errors to parameters and then updating those parameters by tak-
ing the gradient with respect to the loss is the same no matter what the underlying
model is.

This chapter covers
 Nonlinear activation functions as the key

difference compared with linear models

 Working with PyTorch’s nn module

 Solving a linear-fit problem with a neural network

142 CHAPTER 6 Using a neural network to fit the data

In this chapter, we will make some changes to our model architecture: we’re going to
implement a full artificial neural network to solve our temperature-conversion
problem. We’ll continue using our training loop from the last chapter, along with our
Fahrenheit-to-Celsius samples split into training and validation sets. We could start to
use a quadratic model: rewriting model as a quadratic function of its input (for
example, y = a * x**2 + b * x + c). Since such a model would be differentiable,
PyTorch would take care of computing gradients, and the training loop would work as
usual. That wouldn’t be too interesting for us, though, because we would still be fixing
the shape of the function.

 This is the chapter where we begin to hook together the foundational work we’ve
put in and the PyTorch features you’ll be using day in and day out as you work on your
projects. You’ll gain an understanding of what’s going on underneath the porcelain of
the PyTorch API, rather than it just being so much black magic. Before we get into the
implementation of our new model, though, let’s cover what we mean by artificial neu-
ral network.

6.1 Artificial neurons
At the core of deep learning are neural networks: mathematical entities capable of
representing complicated functions through a composition of simpler functions. The
term neural network is obviously suggestive of a link to the way our brain works. As a

the learning proceSs

eRrors (loSs function)

change weights to

decrease eRrors

inputs

actual outputs

given cuRrent

weights

new inputs

forward

iterate

backward

desired outputs

(ground truth)

validation

Figure 6.1 Our mental model of the learning process, as implemented in chapter 5

143Artificial neurons

matter of fact, although the initial models were inspired by neuroscience,1 modern
artificial neural networks bear only a slight resemblance to the mechanisms of neu-
rons in the brain. It seems likely that both artificial and physiological neural networks
use vaguely similar mathematical strategies for approximating complicated functions
because that family of strategies works very effectively.

NOTE We are going to drop the artificial and refer to these constructs as just
neural networks from here forward.

The basic building block of these complicated functions is the neuron, as illustrated in
figure 6.2. At its core, it is nothing but a linear transformation of the input (for exam-
ple, multiplying the input by a number [the weight] and adding a constant [the bias])
followed by the application of a fixed nonlinear function (referred to as the activation
function).

 Mathematically, we can write this out as o = f(w * x + b), with x as our input, w our
weight or scaling factor, and b as our bias or offset. f is our activation function, set to
the hyperbolic tangent, or tanh function here. In general, x and, hence, o can be sim-
ple scalars, or vector-valued (meaning holding many scalar values); and similarly, w

1 See F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the
Brain,” Psychological Review 65(6), 386–408 (1958), https://pubmed.ncbi.nlm.nih.gov/13602029/.

THE “NEURON”

LINEAR TRANSFORMATION

LEARNED PARAMETERS

LEARNED

18

= 2

= 6

-10

-2.79

2 +

+

+ =

=

= =

=

=

1

-1

6

6

62

2

18

-10

-2.79

42

x

-14

.042 .042

42

-14

1

-1

0.3969

0 =

NONLINEAR FUNCTION (ACTIVATION)

OUTPUT

0 X= +
INPUT

Figure 6.2 An artificial neuron: a linear transformation enclosed in a nonlinear function

https://pubmed.ncbi.nlm.nih.gov/13602029/

144 CHAPTER 6 Using a neural network to fit the data

can be a single scalar or matrix, while b is a scalar or vector (the dimensionality of the
inputs and weights must match, however). In the latter case, the previous expression is
referred to as a layer of neurons, since it represents many neurons via the multidimen-
sional weights and biases.

6.1.1 Composing a multilayer network

A multilayer neural network, as represented in figure 6.3, is made up of a composition
of functions like those we just discussed

x_1 = f(w_0 * x + b_0)
x_2 = f(w_1 * x_1 + b_1)
...
y = f(w_n * x_n + b_n)

where the output of a layer of neurons is used as an input for the following layer.
Remember that w_0 here is a matrix, and x is a vector! Using a vector allows w_0 to
hold an entire layer of neurons, not just a single weight.

6.1.2 Understanding the error function

An important difference between our earlier linear model and what we’ll actually be
using for deep learning is the shape of the error function. Our linear model and
error-squared loss function had a convex error curve with a singular, clearly defined
minimum. If we were to use other methods, we could solve for the parameters mini-
mizing the error function automatically and definitively. That means that our parame-
ter updates were attempting to estimate that singular correct answer as best they could.

A NEURAL NETWORK
INPUT

OUTPUT

INPUT

X

X + + +
0

0

=
2 211

OUTPUT

LAYER

LAYER
LAYER

LEARNED

NEURON

LEARNED PARAMETERS

ACTIVATION

Figure 6.3 A neural network
with three layers

145Artificial neurons

 Neural networks do not have that same property of a convex error surface, even
when using the same error-squared loss function! There’s no single right answer for
each parameter we’re attempting to approximate. Instead, we are trying to get all of
the parameters, when acting in concert, to produce a useful output. Since that useful
output is only going to approximate the truth, there will be some level of imperfection.
Where and how imperfections manifest is somewhat arbitrary, and by implication the
parameters that control the output (and, hence, the imperfections) are somewhat
arbitrary as well. This results in neural network training looking very much like
parameter estimation from a mechanical perspective, but we must remember that the
theoretical underpinnings are quite different.

 A big part of the reason neural networks have non-convex error surfaces is due to
the activation function. The ability of an ensemble of neurons to approximate a very
wide range of useful functions depends on the combination of the linear and nonlin-
ear behavior inherent to each neuron.

6.1.3 All we need is activation

As we have seen, the simplest unit in (deep) neural networks is a linear operation
(scaling + offset) followed by an activation function. We already had our linear opera-
tion in our latest model—the linear operation was the entire model. The activation
function plays two important roles:

 In the inner parts of the model, it allows the output function to have different
slopes at different values—something a linear function by definition cannot do.
By trickily composing these differently sloped parts for many outputs, neural
networks can approximate arbitrary functions, as we will see in section 6.1.6.2

 At the last layer of the network, it has the role of concentrating the outputs of
the preceding linear operation into a given range.

Let’s talk about what the second point means. Pretend that we’re assigning a “good
doggo” score to images. Pictures of retrievers and spaniels should have a high score,
while images of airplanes and garbage trucks should have a low score. Bear pictures
should have a lowish score, too, although higher than garbage trucks.

 The problem is, we have to define a “high score”: we’ve got the entire range of
float32 to work with, and that means we can go pretty high. Even if we say “it’s a 10-point
scale,” there’s still the issue that sometimes our model is going to produce a score of 11
out of 10. Remember that under the hood, it’s all sums of (w*x+b) matrix multiplica-
tions, and those won’t naturally limit themselves to a specific range of outputs.

2 For an intuitive appreciation of this universal approximation property, you can pick a function from figure
6.5 and then build a building-block function that is almost zero in most parts and positive around x = 0 from
scaled (including multiplied by negative numbers) and translated copies of the activation function. With
scaled, translated, and dilated (squeezed along the X-axis) copies of this building-block function, you can then
approximate any (continuous) function. In figure 6.6 the function in the middle row to the right could be
such a building block. Michael Nielsen has an interactive demonstration in his online book Neural Networks
and Deep Learning at http://mng.bz/Mdon.

http://mng.bz/Mdon

146 CHAPTER 6 Using a neural network to fit the data

CAPPING THE OUTPUT RANGE

We want to firmly constrain the output of our linear operation to a specific range so
that the consumer of this output doesn’t have to handle numerical inputs of puppies
at 12/10, bears at –10, and garbage trucks at –1,000.

 One possibility is to just cap the output values: anything below 0 is set to 0, and any-
thing above 10 is set to 10. That’s a simple activation function called torch.nn.Hardtanh
(https://pytorch.org/docs/stable/nn.html#hardtanh, but note that the default range
is –1 to +1).

COMPRESSING THE OUTPUT RANGE

Another family of functions that work well is torch.nn.Sigmoid, which includes 1 /
(1 + e ** -x), torch.tanh, and others that we’ll see in a moment. These functions
have a curve that asymptotically approaches 0 or –1 as x goes to negative infinity,
approaches 1 as x increases, and have a mostly constant slope at x == 0. Conceptually,
functions shaped this way work well because there’s an area in the middle of our lin-
ear function’s output that our neuron (which, again, is just a linear function followed
by an activation) will be sensitive to, while everything else gets lumped next to the
boundary values. As we can see in figure 6.4, our garbage truck gets a score of –0.97,
while bears and foxes and wolves end up somewhere in the –0.3 to 0.3 range.

GRIZzLY

BEAR

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

GOoD

DOGgO

VERY

MUCH

DOGS

GARBAGE

TRUCK

UNDER-

SATURATED

SENSITIVE OVER-

SATURATED

NOT

DOGS

Figure 6.4 Dogs, bears, and garbage trucks being mapped to how dog-like they are
via the tanh activation function

https://pytorch.org/docs/stable/nn.html#hardtanh

147Artificial neurons

This results in garbage trucks being flagged as “not dogs,” our good dog mapping to
“clearly a dog,” and our bear ending up somewhere in the middle. In code, we can see
the exact values:

>>> import math
>>> math.tanh(-2.2)
-0.9757431300314515
>>> math.tanh(0.1)
0.09966799462495582
>>> math.tanh(2.5)
0.9866142981514303

With the bear in the sensitive range, small changes to the bear will result in a notice-
able change to the result. For example, we could switch from a grizzly to a polar bear
(which has a vaguely more traditionally canine face) and see a jump up the Y-axis as
we slide toward the “very much a dog” end of the graph. Conversely, a koala bear
would register as less dog-like, and we would see a drop in the activated output. There
isn’t much we could do to the garbage truck to make it register as dog-like, though:
even with drastic changes, we might only see a shift from –0.97 to –0.8 or so.

6.1.4 More activation functions
There are quite a few activation functions, some of which are shown in figure 6.5. In
the first column, we see the smooth functions Tanh and Softplus, while the second
column has “hard” versions of the activation functions to their left: Hardtanh and
ReLU. ReLU (for rectified linear unit) deserves special note, as it is currently considered

Garbage truck

Bear

Good doggo

3

Tanh hardtanh sigmoid

softplus relu leakyrelu

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

Figure 6.5 A collection of common and not-so-common activation functions

148 CHAPTER 6 Using a neural network to fit the data

one of the best-performing general activation functions; many state-of-the-art results
have used it. The Sigmoid activation function, also known as the logistic function, was
widely used in early deep learning work but has since fallen out of common use
except where we explicitly want to move to the 0…1 range: for example, when the out-
put should be a probability. Finally, the LeakyReLU function modifies the standard
ReLU to have a small positive slope, rather than being strictly zero for negative inputs
(typically this slope is 0.01, but it’s shown here with slope 0.1 for clarity).

6.1.5 Choosing the best activation function

Activation functions are curious, because with such a wide variety of proven successful
ones (many more than shown in figure 6.5), it’s clear that there are few, if any, strict
requirements. As such, we’re going to discuss some generalities about activation func-
tions that can probably be trivially disproved in the specific. That said, by definition,3

activation functions

 Are nonlinear. Repeated applications of (w*x+b) without an activation function
results in a function of the same (affine linear) form. The nonlinearity allows
the overall network to approximate more complex functions.

 Are differentiable, so that gradients can be computed through them. Point dis-
continuities, as we can see in Hardtanh or ReLU, are fine.

Without these characteristics, the network either falls back to being a linear model or
becomes difficult to train.

 The following are true for the functions:

 They have at least one sensitive range, where nontrivial changes to the input
result in a corresponding nontrivial change to the output. This is needed for
training.

 Many of them have an insensitive (or saturated) range, where changes to the
input result in little or no change to the output.

By way of example, the Hardtanh function could easily be used to make piecewise-linear
approximations of a function by combining the sensitive range with different weights
and biases on the input.

 Often (but far from universally so), the activation function will have at least one of
these:

 A lower bound that is approached (or met) as the input goes to negative infinity
 A similar-but-inverse upper bound for positive infinity

Thinking of what we know about how backpropagation works, we can figure out that
the errors will propagate backward through the activation more effectively when the
inputs are in the response range, while errors will not greatly affect neurons for which

3 Of course, even these statements aren’t always true; see Jakob Foerster, “Nonlinear Computation in Deep Lin-
ear Networks,” OpenAI, 2019, http://mng.bz/gygE.

http://mng.bz/gygE

149Artificial neurons

the input is saturated (since the gradient will be close to zero, due to the flat area
around the output).

 Put together, all this results in a pretty powerful mechanism: we’re saying that in a
network built out of linear + activation units, when different inputs are presented to
the network, (a) different units will respond in different ranges for the same inputs,
and (b) the errors associated with those inputs will primarily affect the neurons oper-
ating in the sensitive range, leaving other units more or less unaffected by the learn-
ing process. In addition, thanks to the fact that derivatives of the activation with
respect to its inputs are often close to 1 in the sensitive range, estimating the parame-
ters of the linear transformation through gradient descent for the units that operate
in that range will look a lot like the linear fit we have seen previously.

 We are starting to get a deeper intuition for how joining many linear + activation
units in parallel and stacking them one after the other leads us to a mathematical
object that is capable of approximating complicated functions. Different combina-
tions of units will respond to inputs in different ranges, and those parameters for
those units are relatively easy to optimize through gradient descent, since learning will
behave a lot like that of a linear function until the output saturates.

6.1.6 What learning means for a neural network
Building models out of stacks of linear transformations followed by differentiable acti-
vations leads to models that can approximate highly nonlinear processes and whose
parameters we can estimate surprisingly well through gradient descent. This remains
true even when dealing with models with millions of parameters. What makes using
deep neural networks so attractive is that it saves us from worrying too much about the
exact function that represents our data—whether it is quadratic, piecewise polyno-
mial, or something else. With a deep neural network model, we have a universal
approximator and a method to estimate its parameters. This approximator can be cus-
tomized to our needs, in terms of model capacity and its ability to model complicated
input/output relationships, just by composing simple building blocks. We can see
some examples of this in figure 6.6.

 The four upper-left graphs show four neurons—A, B, C, and D—each with its own
(arbitrarily chosen) weight and bias. Each neuron uses the Tanh activation function
with a min of –1 and a max of 1. The varied weights and biases move the center point
and change how drastically the transition from min to max happens, but they clearly
all have the same general shape. The columns to the right of those show both pairs of
neurons added together (A + B and then C + D). Here, we start to see some interest-
ing properties that mimic a single layer of neurons. A + B shows a slight S curve, with
the extremes approaching 0, but both a positive bump and a negative bump in the
middle. Conversely, C + D has only a large positive bump, which peaks at a higher
value than our single-neuron max of 1.

 In the third row, we begin to compose our neurons as they would be in a two-layer net-
work. Both C(A + B) and D(A + B) have the same positive and negative bumps that A + B
shows, but the positive peak is more subtle. The composition of C(A + B) + D(A + B)

150 CHAPTER 6 Using a neural network to fit the data

shows a new property: two clearly negative bumps, and possibly a very subtle second pos-
itive peak as well, to the left of the main area of interest. All this with only four neurons
in two layers!

 Again, these neurons’ parameters were chosen only to have a visually interesting
result. Training consists of finding acceptable values for these weights and biases so
that the resulting network correctly carries out a task, such as predicting likely tem-
peratures given geographic coordinates and time of the year. By carrying out a task suc-
cessfully, we mean obtaining a correct output on unseen data produced by the same
data-generating process used for training data. A successfully trained network,
through the values of its weights and biases, will capture the inherent structure of the
data in the form of meaningful numerical representations that work correctly for pre-
viously unseen data.

3

A: Tanh(-2 * x -1.25) B: Tanh(1 * x + 0.75) A + B

C: Tanh(4 * x + 1.0) D: Tanh(-3 * x - 1.5) C + D

C(A +B) D(A +B) C(A + B) + D(A +B)

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

Figure 6.6 Composing multiple linear units and tanh activation functions to produce nonlinear
outputs

151The PyTorch nn module

 Let’s take another step in our realization of the mechanics of learning: deep neural
networks give us the ability to approximate highly nonlinear phenomena without hav-
ing an explicit model for them. Instead, starting from a generic, untrained model, we
specialize it on a task by providing it with a set of inputs and outputs and a loss function
from which to backpropagate. Specializing a generic model to a task using examples is
what we refer to as learning, because the model wasn’t built with that specific task in
mind—no rules describing how that task worked were encoded in the model.

 For our thermometer example, we assumed that both thermometers measured
temperatures linearly. That assumption is where we implicitly encoded a rule for our
task: we hardcoded the shape of our input/output function; we couldn’t have approx-
imated anything other than data points sitting around a line. As the dimensionality of
a problem grows (that is, many inputs to many outputs) and input/output relation-
ships get complicated, assuming a shape for the input/output function is unlikely to
work. The job of a physicist or an applied mathematician is often to come up with a
functional description of a phenomenon from first principles, so that we can estimate
the unknown parameters from measurements and get an accurate model of the
world. Deep neural networks, on the other hand, are families of functions that have
the ability to approximate a wide range of input/output relationships without neces-
sarily requiring us to come up with an explanatory model of a phenomenon. In a way,
we’re renouncing an explanation in exchange for the possibility of tackling increas-
ingly complicated problems. In another way, we sometimes lack the ability, informa-
tion, or computational resources to build an explicit model of what we’re presented
with, so data-driven methods are our only way forward.

6.2 The PyTorch nn module
All this talking about neural networks is probably making you really curious about
building one from scratch with PyTorch. Our first step will be to replace our linear
model with a neural network unit. This will be a somewhat useless step backward from
a correctness perspective, since we’ve already verified that our calibration only
required a linear function, but it will still be instrumental for starting on a sufficiently
simple problem and scaling up later.

 PyTorch has a whole submodule dedicated to neural networks, called torch.nn. It
contains the building blocks needed to create all sorts of neural network architec-
tures. Those building blocks are called modules in PyTorch parlance (such building
blocks are often referred to as layers in other frameworks). A PyTorch module is a
Python class deriving from the nn.Module base class. A module can have one or more
Parameter instances as attributes, which are tensors whose values are optimized
during the training process (think w and b in our linear model). A module can also
have one or more submodules (subclasses of nn.Module) as attributes, and it will be
able to track their parameters as well.

152 CHAPTER 6 Using a neural network to fit the data

NOTE The submodules must be top-level attributes, not buried inside list or
dict instances! Otherwise, the optimizer will not be able to locate the sub-
modules (and, hence, their parameters). For situations where your model
requires a list or dict of submodules, PyTorch provides nn.ModuleList and
nn.ModuleDict.

Unsurprisingly, we can find a subclass of nn.Module called nn.Linear, which applies
an affine transformation to its input (via the parameter attributes weight and bias)
and is equivalent to what we implemented earlier in our thermometer experiments.
We’ll now start precisely where we left off and convert our previous code to a form
that uses nn.

6.2.1 Using __call__ rather than forward

All PyTorch-provided subclasses of nn.Module have their __call__ method defined.
This allows us to instantiate an nn.Linear and call it as if it was a function, like so
(code/p1ch6/1_neural_networks.ipynb):

In[5]:
import torch.nn as nn

linear_model = nn.Linear(1, 1)
linear_model(t_un_val)

Out[5]:
tensor([[0.6018],

[0.2877]], grad_fn=<AddmmBackward>)

Calling an instance of nn.Module with a set of arguments ends up calling a method
named forward with the same arguments. The forward method is what executes the
forward computation, while __call__ does other rather important chores before and
after calling forward. So, it is technically possible to call forward directly, and it will
produce the same output as __call__, but this should not be done from user code:

y = model(x)
y = model.forward(x)

Here’s the implementation of Module._call_ (we left out the bits related to the JIT
and made some simplifications for clarity; torch/nn/modules/module.py, line 483,
class: Module):

def __call__(self, *input, **kwargs):
for hook in self._forward_pre_hooks.values():

hook(self, input)

result = self.forward(*input, **kwargs)

for hook in self._forward_hooks.values():
hook_result = hook(self, input, result)

We’ll look into the constructor
arguments in a moment.

Correct!

Silent error. Don’t do it!

153The PyTorch nn module

...

for hook in self._backward_hooks.values():
...

return result

As we can see, there are a lot of hooks that won’t get called properly if we just use
.forward(…) directly.

6.2.2 Returning to the linear model

Back to our linear model. The constructor to nn.Linear accepts three arguments: the
number of input features, the number of output features, and whether the linear
model includes a bias or not (defaulting to True, here):

In[5]:
import torch.nn as nn

linear_model = nn.Linear(1, 1)
linear_model(t_un_val)

Out[5]:
tensor([[0.6018],

[0.2877]], grad_fn=<AddmmBackward>)

The number of features in our case just refers to the size of the input and the output
tensor for the module, so 1 and 1. If we used both temperature and barometric pres-
sure as input, for instance, we would have two features in input and one feature in out-
put. As we will see, for more complex models with several intermediate modules, the
number of features will be associated with the capacity of the model.

 We have an instance of nn.Linear with one input and one output feature. That
only requires one weight and one bias:

In[6]:
linear_model.weight

Out[6]:
Parameter containing:
tensor([[-0.0674]], requires_grad=True)

In[7]:
linear_model.bias

Out[7]:
Parameter containing:
tensor([0.7488], requires_grad=True)

The arguments are input size, output
size, and bias defaulting to True.

154 CHAPTER 6 Using a neural network to fit the data

We can call the module with some input:

In[8]:
x = torch.ones(1)
linear_model(x)

Out[8]:
tensor([0.6814], grad_fn=<AddBackward0>)

Although PyTorch lets us get away with it, we don’t actually provide an input with the
right dimensionality. We have a model that takes one input and produces one output,
but PyTorch nn.Module and its subclasses are designed to do so on multiple samples at
the same time. To accommodate multiple samples, modules expect the zeroth dimen-
sion of the input to be the number of samples in the batch. We encountered this con-
cept in chapter 4, when we learned how to arrange real-world data into tensors.

BATCHING INPUTS

Any module in nn is written to produce outputs for a batch of multiple inputs at the
same time. Thus, assuming we need to run nn.Linear on 10 samples, we can create an
input tensor of size B × Nin, where B is the size of the batch and Nin is the number of
input features, and run it once through the model. For example:

In[9]:
x = torch.ones(10, 1)
linear_model(x)

Out[9]:
tensor([[0.6814],

[0.6814],
[0.6814],
[0.6814],
[0.6814],
[0.6814],
[0.6814],
[0.6814],
[0.6814],
[0.6814]], grad_fn=<AddmmBackward>)

Let’s dig into what’s going on here, with figure 6.7 showing a similar situation with
batched image data. Our input is B × C × H × W with a batch size of 3 (say, images
of a dog, a bird, and then a car), three channel dimensions (red, green, and blue),
and an unspecified number of pixels for height and width. As we can see, the out-
put is a tensor of size B × Nout, where Nout is the number of output features: four, in
this case.

155The PyTorch nn module

OPTIMIZING BATCHES

The reason we want to do this batching is multifaceted. One big motivation is to make
sure the computation we’re asking for is big enough to saturate the computing
resources we’re using to perform the computation. GPUs in particular are highly par-
allelized, so a single input on a small model will leave most of the computing units idle.
By providing batches of inputs, the calculation can be spread across the otherwise-idle
units, which means the batched results come back just as quickly as a single result
would. Another benefit is that some advanced models use statistical information from
the entire batch, and those statistics get better with larger batch sizes.

 Back to our thermometer data, t_u and t_c were two 1D tensors of size B. Thanks
to broadcasting, we could write our linear model as w * x + b, where w and b were
two scalar parameters. This worked because we had a single input feature: if we had
two, we would need to add an extra dimension to turn that 1D tensor into a matrix
with samples in the rows and features in the columns.

 That’s exactly what we need to do to switch to using nn.Linear. We reshape our B
inputs to B × Nin, where Nin is 1. That is easily done with unsqueeze:

In[2]:
t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c).unsqueeze(1)
t_u = torch.tensor(t_u).unsqueeze(1)

t_u.shape

Out[2]:
torch.Size([11, 1])

HEIGHT

WIDTH

RED

GREe
N

BLU
E

CHANn
EL

B=3
B=3

BATCH = 3

B X C X H X W

Figure 6.7 Three
RGB images batched
together and fed into
a neural network. The
output is a batch of
three vectors of size 4.

Adds the extra dimension at axis 1

156 CHAPTER 6 Using a neural network to fit the data

We’re done; let’s update our training code. First, we replace our handmade model
with nn.Linear(1,1), and then we need to pass the linear model parameters to the
optimizer:

In[10]:
linear_model = nn.Linear(1, 1)
optimizer = optim.SGD(

linear_model.parameters(),
lr=1e-2)

Earlier, it was our responsibility to create parameters and pass them as the first argu-
ment to optim.SGD. Now we can use the parameters method to ask any nn.Module for
a list of parameters owned by it or any of its submodules:

In[11]:
linear_model.parameters()

Out[11]:
<generator object Module.parameters at 0x7f94b4a8a750>

In[12]:
list(linear_model.parameters())

Out[12]:
[Parameter containing:
tensor([[0.7398]], requires_grad=True), Parameter containing:
tensor([0.7974], requires_grad=True)]

This call recurses into submodules defined in the module’s init constructor and
returns a flat list of all parameters encountered, so that we can conveniently pass it to
the optimizer constructor as we did previously.

 We can already figure out what happens in the training loop. The optimizer is pro-
vided with a list of tensors that were defined with requires_grad = True—all Parameters
are defined this way by definition, since they need to be optimized by gradient descent.
When training_loss.backward() is called, grad is accumulated on the leaf nodes of the
graph, which are precisely the parameters that were passed to the optimizer.

 At this point, the SGD optimizer has everything it needs. When optimizer.step()
is called, it will iterate through each Parameter and change it by an amount propor-
tional to what is stored in its grad attribute. Pretty clean design.

 Let’s take a look a the training loop now:

In[13]:
def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val,

t_c_train, t_c_val):
for epoch in range(1, n_epochs + 1):

t_p_train = model(t_u_train)
loss_train = loss_fn(t_p_train, t_c_train)

t_p_val = model(t_u_val)

This is just a redefinition
from earlier.

This method call
replaces [params].

The model is now
passed in, instead of
the individual params.

157The PyTorch nn module

loss_val = loss_fn(t_p_val, t_c_val)

optimizer.zero_grad()
loss_train.backward()
optimizer.step()

if epoch == 1 or epoch % 1000 == 0:
print(f"Epoch {epoch}, Training loss {loss_train.item():.4f},"

f" Validation loss {loss_val.item():.4f}")

It hasn’t changed practically at all, except that now we don’t pass params explicitly to
model since the model itself holds its Parameters internally.

 There’s one last bit that we can leverage from torch.nn: the loss. Indeed, nn comes
with several common loss functions, among them nn.MSELoss (MSE stands for Mean
Square Error), which is exactly what we defined earlier as our loss_fn. Loss functions
in nn are still subclasses of nn.Module, so we will create an instance and call it as a
function. In our case, we get rid of the handwritten loss_fn and replace it:

In[15]:
linear_model = nn.Linear(1, 1)
optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)

training_loop(
n_epochs = 3000,
optimizer = optimizer,
model = linear_model,
loss_fn = nn.MSELoss(),
t_u_train = t_un_train,
t_u_val = t_un_val,
t_c_train = t_c_train,
t_c_val = t_c_val)

print()
print(linear_model.weight)
print(linear_model.bias)

Out[15]:
Epoch 1, Training loss 134.9599, Validation loss 183.1707
Epoch 1000, Training loss 4.8053, Validation loss 4.7307
Epoch 2000, Training loss 3.0285, Validation loss 3.0889
Epoch 3000, Training loss 2.8569, Validation loss 3.9105

Parameter containing:
tensor([[5.4319]], requires_grad=True)
Parameter containing:
tensor([-17.9693], requires_grad=True)

Everything else input into our training loop stays the same. Even our results remain
the same as before. Of course, getting the same results is expected, as a difference
would imply a bug in one of the two implementations.

The loss function is also passed
in. We’ll use it in a moment.

We are no longer using our hand-
written loss function from earlier.

158 CHAPTER 6 Using a neural network to fit the data

6.3 Finally a neural network
It’s been a long journey—there has been a lot to explore for these 20-something lines
of code we require to define and train a model. Hopefully by now the magic involved
in training has vanished and left room for the mechanics. What we learned so far will
allow us to own the code we write instead of merely poking at a black box when things
get more complicated.

 There’s one last step left to take: replacing our linear model with a neural network
as our approximating function. We said earlier that using a neural network will not
result in a higher-quality model, since the process underlying our calibration problem
was fundamentally linear. However, it’s good to make the leap from linear to neural
network in a controlled environment so we won’t feel lost later.

6.3.1 Replacing the linear model
We are going to keep everything else fixed, including the loss function, and only rede-
fine model. Let’s build the simplest possible neural network: a linear module, followed
by an activation function, feeding into another linear module. The first linear + activa-
tion layer is commonly referred to as a hidden layer for historical reasons, since its out-
puts are not observed directly but fed into the output layer. While the input and output
of the model are both of size 1 (they have one input and one output feature), the size
of the output of the first linear module is usually larger than 1. Recalling our earlier
explanation of the role of activations, this can lead different units to respond to different
ranges of the input, which increases the capacity of our model. The last linear layer will
take the output of activations and combine them linearly to produce the output value.

 There is no standard way to depict neural networks. Figure 6.8 shows two ways that
seem to be somewhat prototypical: the left side shows how our network might be
depicted in basic introductions, whereas a style similar to that on the right is often
used in the more advanced literature and research papers. It is common to make dia-
gram blocks that roughly correspond to the neural network modules PyTorch offers
(though sometimes things like the Tanh activation layer are not explicitly shown).
Note that one somewhat subtle difference between the two is that the graph on the
left has the inputs and (intermediate) results in the circles as the main elements. On
the right, the computational steps are more prominent.

Tanh

Output (1)

input (1)

linear (1)

linear (13)...

OutputHiDdeninput

Figure 6.8 Our simplest neural
network in two views. Left: beginner’s
version. Right: higher-level version.

159Finally a neural network

nn provides a simple way to concatenate modules through the nn.Sequential
container:

In[16]:
seq_model = nn.Sequential(

nn.Linear(1, 13),
nn.Tanh(),
nn.Linear(13, 1))

seq_model

Out[16]:
Sequential(

(0): Linear(in_features=1, out_features=13, bias=True)
(1): Tanh()
(2): Linear(in_features=13, out_features=1, bias=True)

)

The end result is a model that takes the inputs expected by the first module specified
as an argument of nn.Sequential, passes intermediate outputs to subsequent mod-
ules, and produces the output returned by the last module. The model fans out from
1 input feature to 13 hidden features, passes them through a tanh activation, and lin-
early combines the resulting 13 numbers into 1 output feature.

6.3.2 Inspecting the parameters

Calling model.parameters() will collect weight and bias from both the first and sec-
ond linear modules. It’s instructive to inspect the parameters in this case by printing
their shapes:

In[17]:
[param.shape for param in seq_model.parameters()]

Out[17]:
[torch.Size([13, 1]), torch.Size([13]), torch.Size([1, 13]), torch.Size([1])]

These are the tensors that the optimizer will get. Again, after we call model.backward(),
all parameters are populated with their grad, and the optimizer then updates their val-
ues accordingly during the optimizer.step() call. Not that different from our previous
linear model, eh? After all, they’re both differentiable models that can be trained using
gradient descent.

 A few notes on parameters of nn.Modules. When inspecting parameters of a model
made up of several submodules, it is handy to be able to identify parameters by name.
There’s a method for that, called named_parameters:

In[18]:
for name, param in seq_model.named_parameters():

print(name, param.shape)

Out[18]:
0.weight torch.Size([13, 1])

We chose 13 arbitrarily. We wanted a number
that was a different size from the other
tensor shapes we have floating around.

This 13 must match
the first size, however.

160 CHAPTER 6 Using a neural network to fit the data

0.bias torch.Size([13])
2.weight torch.Size([1, 13])
2.bias torch.Size([1])

The name of each module in Sequential is just the ordinal with which the module
appears in the arguments. Interestingly, Sequential also accepts an OrderedDict,4 in
which we can name each module passed to Sequential:

In[19]:
from collections import OrderedDict

seq_model = nn.Sequential(OrderedDict([
('hidden_linear', nn.Linear(1, 8)),
('hidden_activation', nn.Tanh()),
('output_linear', nn.Linear(8, 1))

]))

seq_model

Out[19]:
Sequential(

(hidden_linear): Linear(in_features=1, out_features=8, bias=True)
(hidden_activation): Tanh()
(output_linear): Linear(in_features=8, out_features=1, bias=True)

)

This allows us to get more explanatory names for submodules:

In[20]:
for name, param in seq_model.named_parameters():

print(name, param.shape)

Out[20]:
hidden_linear.weight torch.Size([8, 1])
hidden_linear.bias torch.Size([8])
output_linear.weight torch.Size([1, 8])
output_linear.bias torch.Size([1])

This is more descriptive; but it does not give us more flexibility in the flow of data
through the network, which remains a purely sequential pass-through—the
nn.Sequential is very aptly named. We will see how to take full control of the process-
ing of input data by subclassing nn.Module ourselves in chapter 8.

 We can also access a particular Parameter by using submodules as attributes:

In[21]:
seq_model.output_linear.bias

Out[21]:
Parameter containing:
tensor([-0.0173], requires_grad=True)

4 Not all versions of Python specify the iteration order for dict, so we’re using OrderedDict here to ensure
the ordering of the layers and emphasize that the order of the layers matters.

161Finally a neural network

This is useful for inspecting parameters or their gradients: for instance, to monitor
gradients during training, as we did at the beginning of this chapter. Say we want to
print out the gradients of weight of the linear portion of the hidden layer. We can run
the training loop for the new neural network model and then look at the resulting
gradients after the last epoch:

In[22]:
optimizer = optim.SGD(seq_model.parameters(), lr=1e-3)

training_loop(
n_epochs = 5000,
optimizer = optimizer,
model = seq_model,
loss_fn = nn.MSELoss(),
t_u_train = t_un_train,
t_u_val = t_un_val,
t_c_train = t_c_train,
t_c_val = t_c_val)

print('output', seq_model(t_un_val))
print('answer', t_c_val)
print('hidden', seq_model.hidden_linear.weight.grad)

Out[22]:
Epoch 1, Training loss 182.9724, Validation loss 231.8708
Epoch 1000, Training loss 6.6642, Validation loss 3.7330
Epoch 2000, Training loss 5.1502, Validation loss 0.1406
Epoch 3000, Training loss 2.9653, Validation loss 1.0005
Epoch 4000, Training loss 2.2839, Validation loss 1.6580
Epoch 5000, Training loss 2.1141, Validation loss 2.0215
output tensor([[-1.9930],

[20.8729]], grad_fn=<AddmmBackward>)
answer tensor([[-4.],

[21.]])
hidden tensor([[0.0272],

[0.0139],
[0.1692],
[0.1735],
[-0.1697],
[0.1455],
[-0.0136],
[-0.0554]])

6.3.3 Comparing to the linear model

We can also evaluate the model on all of the data and see how it differs from a line:

In[23]:
from matplotlib import pyplot as plt

t_range = torch.arange(20., 90.).unsqueeze(1)

fig = plt.figure(dpi=600)

We’ve dropped the
learning rate a bit to
help with stability.

162 CHAPTER 6 Using a neural network to fit the data

plt.xlabel("Fahrenheit")
plt.ylabel("Celsius")
plt.plot(t_u.numpy(), t_c.numpy(), 'o')
plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')
plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')

The result is shown in figure 6.9. We can appreciate that the neural network has a ten-
dency to overfit, as we discussed in chapter 5, since it tries to chase the measurements,
including the noisy ones. Even our tiny neural network has too many parameters to fit
the few measurements we have. It doesn’t do a bad job, though, overall.

6.4 Conclusion
We’ve covered a lot in chapters 5 and 6, although we have been dealing with a very
simple problem. We dissected building differentiable models and training them using
gradient descent, first using raw autograd and then relying on nn. By now you should
have confidence in your understanding of what’s going on behind the scenes. Hope-
fully this taste of PyTorch has given you an appetite for more!

6.5 Exercises
1 Experiment with the number of hidden neurons in our simple neural network

model, as well as the learning rate.
a What changes result in more linear output from the model?
b Can you get the model to obviously overfit the data?

Figure 6.9 The plot of our neural network model, with input data (circles) and
model output (Xs). The continuous line shows behavior between samples.

30

25

20

15

10

5

0

20 20 40 50 60

FAHRENHEIT

C
E

L
S
I
U
S

70 80 90

-5

163Summary

2 The third-hardest problem in physics is finding a proper wine to celebrate dis-
coveries. Load the wine data from chapter 4, and create a new model with the
appropriate number of input parameters.
a How long does it take to train compared to the temperature data we have

been using?
b Can you explain what factors contribute to the training times?
c Can you get the loss to decrease while training on this dataset?
d How would you go about graphing this dataset?

6.6 Summary
 Neural networks can be automatically adapted to specialize themselves on the

problem at hand.
 Neural networks allow easy access to the analytical derivatives of the loss with

respect to any parameter in the model, which makes evolving the parameters
very efficient. Thanks to its automated differentiation engine, PyTorch provides
such derivatives effortlessly.

 Activation functions around linear transformations make neural networks capa-
ble of approximating highly nonlinear functions, at the same time keeping
them simple enough to optimize.

 The nn module together with the tensor standard library provide all the build-
ing blocks for creating neural networks.

 To recognize overfitting, it’s essential to maintain the training set of data points
separate from the validation set. There’s no one recipe to combat overfitting,
but getting more data, or more variability in the data, and resorting to simpler
models are good starts.

 Anyone doing data science should be plotting data all the time.

164

Telling birds
 from airplanes:

 Learning from images

The last chapter gave us the opportunity to dive into the inner mechanics of learn-
ing through gradient descent, and the facilities that PyTorch offers to build models
and optimize them. We did so using a simple regression model of one input and
one output, which allowed us to have everything in plain sight but admittedly was
only borderline exciting.

 In this chapter, we’ll keep moving ahead with building our neural network foun-
dations. This time, we’ll turn our attention to images. Image recognition is argu-
ably the task that made the world realize the potential of deep learning.

This chapter covers
 Building a feed-forward neural network

 Loading data using Datasets and DataLoaders

 Understanding classification loss

165A dataset of tiny images

 We will approach a simple image recognition problem step by step, building from
a simple neural network like the one we defined in the last chapter. This time, instead
of a tiny dataset of numbers, we’ll use a more extensive dataset of tiny images. Let’s
download the dataset first and get to work preparing it for use.

7.1 A dataset of tiny images
There is nothing like an intuitive understanding of a subject, and there is nothing to
achieve that like working on simple data. One of the most basic datasets for image
recognition is the handwritten digit-recognition dataset known as MNIST. Here
we will use another dataset that is similarly simple and a bit more fun. It’s called
CIFAR-10, and, like its sibling CIFAR-100, it has been a computer vision classic for
a decade.

 CIFAR-10 consists of 60,000 tiny 32 × 32 color (RGB) images, labeled with an inte-
ger corresponding to 1 of 10 classes: airplane (0), automobile (1), bird (2), cat (3),
deer (4), dog (5), frog (6), horse (7), ship (8), and truck (9).1 Nowadays, CIFAR-10 is
considered too simple for developing or validating new research, but it serves our
learning purposes just fine. We will use the torchvision module to automatically
download the dataset and load it as a collection of PyTorch tensors. Figure 7.1 gives us
a taste of CIFAR-10.

1 The images were collected and labeled by Krizhevsky, Nair, and Hinton of the Canadian Institute For
Advanced Research (CIFAR) and were drawn from a larger collection of unlabeled 32 × 32 color images: the
“80 million tiny images dataset” from the Computer Science and Artificial Intelligence Laboratory (CSAIL)
at the Massachusetts Institute of Technology.

AIRPLANE AUTOMOBILE BIRD CAT DEeR

DOG FROG HORSE SHIP TRUCK

Figure 7.1 Image samples from all CIFAR-10 classes

166 CHAPTER 7 Telling birds from airplanes: Learning from images

7.1.1 Downloading CIFAR-10
As we anticipated, let’s import torchvision and use the datasets module to down-
load the CIFAR-10 data:

In[2]:
from torchvision import datasets
data_path = '../data-unversioned/p1ch7/'
cifar10 = datasets.CIFAR10(data_path, train=True, download=True)
cifar10_val = datasets.CIFAR10(data_path, train=False, download=True)

The first argument we provide to the CIFAR10 function is the location from which the
data will be downloaded; the second specifies whether we’re interested in the training
set or the validation set; and the third says whether we allow PyTorch to download the
data if it is not found in the location specified in the first argument.

 Just like CIFAR10, the datasets submodule gives us precanned access to the most
popular computer vision datasets, such as MNIST, Fashion-MNIST, CIFAR-100,
SVHN, Coco, and Omniglot. In each case, the dataset is returned as a subclass of
torch.utils.data.Dataset. We can see that the method-resolution order of our
cifar10 instance includes it as a base class:

In[4]:
type(cifar10).__mro__

Out[4]:
(torchvision.datasets.cifar.CIFAR10,
torchvision.datasets.vision.VisionDataset,
torch.utils.data.dataset.Dataset,
object)

7.1.2 The Dataset class
It’s a good time to discover what being a subclass of torch.utils.data.Dataset
means in practice. Looking at figure 7.2, we see what PyTorch Dataset is all about. It
is an object that is required to implement two methods: __len__ and __getitem__.
The former should return the number of items in the dataset; the latter should return
the item, consisting of a sample and its corresponding label (an integer index).2

 In practice, when a Python object is equipped with the __len__ method, we can
pass it as an argument to the len Python built-in function:

In[5]:
len(cifar10)

Out[5]:
50000

2 For some advanced uses, PyTorch also provides IterableDataset. This can be used in cases like datasets in
which random access to the data is prohibitively expensive or does not make sense: for example, because data
is generated on the fly.

Instantiates a dataset for the training data;
TorchVision downloads the data if it is not present. With train=False, this gets us a

dataset for the validation data,
again downloading as necessary.

167A dataset of tiny images

Similarly, since the dataset is equipped with the __getitem__ method, we can use the
standard subscript for indexing tuples and lists to access individual items. Here, we get
a PIL (Python Imaging Library, the PIL package) image with our desired output—an
integer with the value 1, corresponding to “automobile”:

In[6]:
img, label = cifar10[99]
img, label, class_names[label]

Out[6]:
(<PIL.Image.Image image mode=RGB size=32x32 at 0x7FB383657390>,
1,
'automobile')

So, the sample in the data.CIFAR10 dataset is an instance of an RGB PIL image. We
can plot it right away:

In[7]:
plt.imshow(img)
plt.show()

This produces the output shown in figure 7.3. It’s a red car!3

3 It doesn’t translate well to print; you’ll have to take our word for it, or check it out in the eBook or the Jupyter
Notebook.

ACTUAL

DATA

HUMAN DOG HUMAN

DOG
HUMAN

DATASET
Q: HOW MANY ELEMENTS ?

Q: MAY I GET ITEM 4 ?

4

5

4

“HUMAN”

Figure 7.2 Concept of a PyTorch Dataset object: it doesn’t necessarily hold the data, but it
provides uniform access to it through __len__ and __getitem__.

168 CHAPTER 7 Telling birds from airplanes: Learning from images

7.1.3 Dataset transforms

That’s all very nice, but we’ll likely need a way to convert the PIL image to a PyTorch
tensor before we can do anything with it. That’s where torchvision.transforms
comes in. This module defines a set of composable, function-like objects that can be
passed as an argument to a torchvision dataset such as datasets.CIFAR10(…), and
that perform transformations on the data after it is loaded but before it is returned by
__getitem__. We can see the list of available objects as follows:

In[8]:
from torchvision import transforms
dir(transforms)

Out[8]:
['CenterCrop',
'ColorJitter',
...
'Normalize',
'Pad',
'RandomAffine',
...
'RandomResizedCrop',
'RandomRotation',
'RandomSizedCrop',
...
'TenCrop',
'ToPILImage',
'ToTensor',
...

]

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 7.3 The 99th image from the
CIFAR-10 dataset: an automobile

169A dataset of tiny images

Among those transforms, we can spot ToTensor, which turns NumPy arrays and PIL
images to tensors. It also takes care to lay out the dimensions of the output tensor as
C × H × W (channel, height, width; just as we covered in chapter 4).

 Let’s try out the ToTensor transform. Once instantiated, it can be called like a
function with the PIL image as the argument, returning a tensor as output:

In[9]:
from torchvision import transforms

to_tensor = transforms.ToTensor()
img_t = to_tensor(img)
img_t.shape

Out[9]:
torch.Size([3, 32, 32])

The image has been turned into a 3 × 32 × 32 tensor and therefore a 3-channel (RGB)
32 × 32 image. Note that nothing has happened to label; it is still an integer.

 As we anticipated, we can pass the transform directly as an argument to dataset
.CIFAR10:

In[10]:
tensor_cifar10 = datasets.CIFAR10(data_path, train=True, download=False,

transform=transforms.ToTensor())

At this point, accessing an element of the dataset will return a tensor, rather than a
PIL image:

In[11]:
img_t, _ = tensor_cifar10[99]
type(img_t)

Out[11]:
torch.Tensor

As expected, the shape has the channel as the first dimension, while the scalar type is
float32:

In[12]:
img_t.shape, img_t.dtype

Out[12]:
(torch.Size([3, 32, 32]), torch.float32)

Whereas the values in the original PIL image ranged from 0 to 255 (8 bits per chan-
nel), the ToTensor transform turns the data into a 32-bit floating-point per channel,
scaling the values down from 0.0 to 1.0. Let’s verify that:

170 CHAPTER 7 Telling birds from airplanes: Learning from images

In[13]:
img_t.min(), img_t.max()

Out[13]:
(tensor(0.), tensor(1.))

And let’s verify that we’re getting the same image out:

In[14]:
plt.imshow(img_t.permute(1, 2, 0))
plt.show()

Out[14]:
<Figure size 432x288 with 1 Axes>

As we can see in figure 7.4, we get the same output as before.

It checks. Note how we have to use permute to change the order of the axes from
C × H × W to H × W × C to match what Matplotlib expects.

7.1.4 Normalizing data

Transforms are really handy because we can chain them using transforms.Compose,
and they can handle normalization and data augmentation transparently, directly in
the data loader. For instance, it’s good practice to normalize the dataset so that each
channel has zero mean and unitary standard deviation. We mentioned this in chapter
4, but now, after going through chapter 5, we also have an intuition for why: by choosing
activation functions that are linear around 0 plus or minus 1 (or 2), keeping the data
in the same range means it’s more likely that neurons have nonzero gradients and,

Changes the order of the axes from
C × H × W to H × W × C

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 7.4 We’ve seen
this one already.

171A dataset of tiny images

hence, will learn sooner. Also, normalizing each channel so that it has the same
distribution will ensure that channel information can be mixed and updated through
gradient descent using the same learning rate. This is just like the situation in section
5.4.4 when we rescaled the weight to be of the same magnitude as the bias in our
temperature-conversion model.

 In order to make it so that each channel has zero mean and unitary standard devi-
ation, we can compute the mean value and the standard deviation of each channel
across the dataset and apply the following transform: v_n[c] = (v[c] - mean[c]) /
stdev[c]. This is what transforms.Normalize does. The values of mean and stdev
must be computed offline (they are not computed by the transform). Let’s compute
them for the CIFAR-10 training set.

 Since the CIFAR-10 dataset is small, we’ll be able to manipulate it entirely in mem-
ory. Let’s stack all the tensors returned by the dataset along an extra dimension:

In[15]:
imgs = torch.stack([img_t for img_t, _ in tensor_cifar10], dim=3)
imgs.shape

Out[15]:
torch.Size([3, 32, 32, 50000])

Now we can easily compute the mean per channel:

In[16]:
imgs.view(3, -1).mean(dim=1)

Out[16]:
tensor([0.4915, 0.4823, 0.4468])

Computing the standard deviation is similar:

In[17]:
imgs.view(3, -1).std(dim=1)

Out[17]:
tensor([0.2470, 0.2435, 0.2616])

With these numbers in our hands, we can initialize the Normalize transform

In[18]:
transforms.Normalize((0.4915, 0.4823, 0.4468), (0.2470, 0.2435, 0.2616))

Out[18]:
Normalize(mean=(0.4915, 0.4823, 0.4468), std=(0.247, 0.2435, 0.2616))

and concatenate it after the ToTensor transform:

In[19]:
transformed_cifar10 = datasets.CIFAR10(

data_path, train=True, download=False,

Recall that view(3, -1) keeps the three channels and
merges all the remaining dimensions into one, figuring
out the appropriate size. Here our 3 × 32 × 32 image is
transformed into a 3 × 1,024 vector, and then the mean
is taken over the 1,024 elements of each channel.

172 CHAPTER 7 Telling birds from airplanes: Learning from images

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4915, 0.4823, 0.4468),

(0.2470, 0.2435, 0.2616))
]))

Note that, at this point, plotting an image drawn from the dataset won’t provide us
with a faithful representation of the actual image:

In[21]:
img_t, _ = transformed_cifar10[99]

plt.imshow(img_t.permute(1, 2, 0))
plt.show()

The renormalized red car we get is shown in figure 7.5. This is because normalization
has shifted the RGB levels outside the 0.0 to 1.0 range and changed the overall magni-
tudes of the channels. All of the data is still there; it’s just that Matplotlib renders it as
black. We’ll keep this in mind for the future.

Still, we have a fancy dataset loaded that contains tens of thousands of images! That’s
quite convenient, because we were going to need something exactly like it.

7.2 Distinguishing birds from airplanes
Jane, our friend at the bird-watching club, has set up a fleet of cameras in the woods
south of the airport. The cameras are supposed to save a shot when something enters
the frame and upload it to the club’s real-time bird-watching blog. The problem is
that a lot of planes coming and going from the airport end up triggering the camera,

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 7.5 Our random CIFAR-10
image after normalization

173Distinguishing birds from airplanes

so Jane spends a lot of time deleting pictures of airplanes from the blog. What she
needs is an automated system like that shown in figure 7.6. Instead of manually delet-
ing, she needs a neural network—an AI if we’re into fancy marketing speak—to throw
away the airplanes right away.

 No worries! We’ll take care of that, no problem—we just got the perfect dataset for
it (what a coincidence, right?). We’ll pick out all the birds and airplanes from our
CIFAR-10 dataset and build a neural network that can tell birds and airplanes apart.

7.2.1 Building the dataset

The first step is to get the data in the right shape. We could create a Dataset subclass
that only includes birds and airplanes. However, the dataset is small, and we only need
indexing and len to work on our dataset. It doesn’t actually have to be a subclass of
torch.utils.data.dataset.Dataset! Well, why not take a shortcut and just filter the
data in cifar10 and remap the labels so they are contiguous? Here’s how:

In[5]:
label_map = {0: 0, 2: 1}
class_names = ['airplane', 'bird']
cifar2 = [(img, label_map[label])

for img, label in cifar10
if label in [0, 2]]

cifar2_val = [(img, label_map[label])
for img, label in cifar10_val
if label in [0, 2]]

AI
RPLANE!

BIRD!

KEe
P

Figure 7.6 The problem at hand: we’re going to help our friend tell birds from airplanes
for her blog, by training a neural network to do the job.

174 CHAPTER 7 Telling birds from airplanes: Learning from images

The cifar2 object satisfies the basic requirements for a Dataset—that is, __len__ and
__getitem__ are defined—so we’re going to use that. We should be aware, however,
that this is a clever shortcut and we might wish to implement a proper Dataset if we
hit limitations with it.4

 We have a dataset! Next, we need a model to feed our data to.

7.2.2 A fully connected model

We learned how to build a neural network in chapter 5. We know that it’s a tensor of
features in, a tensor of features out. After all, an image is just a set of numbers laid out
in a spatial configuration. OK, we don’t know how to handle the spatial configuration
part just yet, but in theory if we just take the image pixels and straighten them into a
long 1D vector, we could consider those numbers as input features, right? This is what
figure 7.7 illustrates.

 Let’s try that. How many features per sample? Well, 32 × 32 × 3: that is, 3,072 input
features per sample. Starting from the model we built in chapter 5, our new model
would be an nn.Linear with 3,072 input features and some number of hidden features,

4 Here, we built the new dataset manually and also wanted to remap the classes. In some cases, it may be enough
to take a subset of the indices of a given dataset. This can be accomplished using the torch.utils
.data.Subset class. Similarly, there is ConcatDataset to join datasets (of compatible items) into a larger
one. For iterable datasets, ChainDataset gives a larger, iterable dataset.

PDOG

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

10

11

13

12

14

15

9

8

7

6

5

4

3

0

11

15141312

0 1 2 3

7654

8 9 10

2

1

0

0

0

0

0

0

0

0

PHUMAN

Figure 7.7 Treating our image as a 1D vector of values and training a fully connected classifier
on it

175Distinguishing birds from airplanes

followed by an activation, and then another nn.Linear that tapers the network down to
an appropriate output number of features (2, for this use case):

In[6]:
import torch.nn as nn

n_out = 2

model = nn.Sequential(
nn.Linear(

3072,
512,

),
nn.Tanh(),
nn.Linear(

512,
n_out,

)
)

We somewhat arbitrarily pick 512 hidden features. A neural network needs at least
one hidden layer (of activations, so two modules) with a nonlinearity in between in
order to be able to learn arbitrary functions in the way we discussed in section 6.3—
otherwise, it would just be a linear model. The hidden features represent (learned)
relations between the inputs encoded through the weight matrix. As such, the model
might learn to “compare” vector elements 176 and 208, but it does not a priori focus
on them because it is structurally unaware that these are, indeed (row 5, pixel 16) and
(row 6, pixel 16), and thus adjacent.

 So we have a model. Next we’ll discuss what our model output should be.

7.2.3 Output of a classifier

In chapter 6, the network produced the predicted temperature (a number with a
quantitative meaning) as output. We could do something similar here: make our net-
work output a single scalar value (so n_out = 1), cast the labels to floats (0.0 for air-
plane and 1.0 for bird), and use those as a target for MSELoss (the average of squared
differences in the batch). Doing so, we would cast the problem into a regression prob-
lem. However, looking more closely, we are now dealing with something a bit different
in nature.5

 We need to recognize that the output is categorical: it’s either a bird or an air-
plane (or something else if we had all 10 of the original classes). As we learned in
chapter 4, when we have to represent a categorical variable, we should switch to a
one-hot-encoding representation of that variable, such as [1, 0] for airplane or [0, 1]

5 Using distance on the “probability” vectors would already have been much better than using MSELoss with
the class numbers—which, recalling our discussion of types of values in the sidebar “Continuous, ordinal, and
categorical values” from chapter 4, does not make sense for categories and does not work at all in practice.
Still, MSELoss is not very well suited to classification problems.

Input features

Hidden layer size

Output classes

176 CHAPTER 7 Telling birds from airplanes: Learning from images

for bird (the order is arbitrary). This will still work if we have 10 classes, as in the full
CIFAR-10 dataset; we’ll just have a vector of length 10.6

 In the ideal case, the network would output torch.tensor([1.0, 0.0]) for an air-
plane and torch.tensor([0.0, 1.0]) for a bird. Practically speaking, since our clas-
sifier will not be perfect, we can expect the network to output something in between.
The key realization in this case is that we can interpret our output as probabilities: the
first entry is the probability of “airplane,” and the second is the probability of “bird.”

 Casting the problem in terms of probabilities imposes a few extra constraints on
the outputs of our network:

 Each element of the output must be in the [0.0, 1.0] range (a probability of
an outcome cannot be less than 0 or greater than 1).

 The elements of the output must add up to 1.0 (we’re certain that one of the
two outcomes will occur).

It sounds like a tough constraint to enforce in a differentiable way on a vector of num-
bers. Yet there’s a very smart trick that does exactly that, and it’s differentiable: it’s
called softmax.

7.2.4 Representing the output as probabilities

Softmax is a function that takes a vector of values and produces another vector of the
same dimension, where the values satisfy the constraints we just listed to represent
probabilities. The expression for softmax is shown in figure 7.8.

 That is, we take the elements of the vector, compute the elementwise exponential,
and divide each element by the sum of exponentials. In code, it’s something like this:

In[7]:
def softmax(x):

return torch.exp(x) / torch.exp(x).sum()

Let’s test it on an input vector:

In[8]:
x = torch.tensor([1.0, 2.0, 3.0])

softmax(x)

Out[8]:
tensor([0.0900, 0.2447, 0.6652])

6 For the special binary classification case, using two values here is redundant, as one is always 1 minus the
other. And indeed PyTorch lets us output only a single probability using the nn.Sigmoid activation at the
end of the model to get a probability and the binary cross-entropy loss function nn.BCELoss. There also is
an nn.BCELossWithLogits merging these two steps.

177Distinguishing birds from airplanes

As expected, it satisfies the constraints on probability:

In[9]:
softmax(x).sum()

Out[9]:
tensor(1.)

Softmax is a monotone function, in that lower values in the input will correspond to
lower values in the output. However, it’s not scale invariant, in that the ratio between
values is not preserved. In fact, the ratio between the first and second elements of the
input is 0.5, while the ratio between the same elements in the output is 0.3678. This is
not a real issue, since the learning process will drive the parameters of the model in a
way that values have appropriate ratios.

 The nn module makes softmax available as a module. Since, as usual, input tensors
may have an additional batch 0th dimension, or have dimensions along which they
encode probabilities and others in which they don’t, nn.Softmax requires us to specify
the dimension along which the softmax function is applied:

In[10]:
softmax = nn.Softmax(dim=1)

x = torch.tensor([[1.0, 2.0, 3.0],
[1.0, 2.0, 3.0]])

Figure 7.8 Handwritten softmax

EACH ELEMENT

BETWEeN

0 AND 1

1

1

0

x1

x1

x2

x2
x3

x2
x2

x1

x1

x1
x

x x

x1

x1

x1 x1

x 1 , x2, x3

x1 , x2

x1 , ... , x

x2 x3
x1 x2

x3
x1

x2 x3

x1

x2

x1 x2

x1 x2 x1 x2

x1 x2

x1 x2

+

+

+

++ + +

+

=

=

=

+ + + + +

+

= =

+

SUM OF ELEMENTS

EQUALS 1

178 CHAPTER 7 Telling birds from airplanes: Learning from images

softmax(x)

Out[10]:
tensor([[0.0900, 0.2447, 0.6652],

[0.0900, 0.2447, 0.6652]])

In this case, we have two input vectors in two rows (just like when we work with
batches), so we initialize nn.Softmax to operate along dimension 1.

 Excellent! We can now add a softmax at the end of our model, and our network
will be equipped to produce probabilities:

In[11]:
model = nn.Sequential(

nn.Linear(3072, 512),
nn.Tanh(),
nn.Linear(512, 2),
nn.Softmax(dim=1))

We can actually try running the model before even training it. Let’s do it, just to see
what comes out. We first build a batch of one image, our bird (figure 7.9):

In[12]:
img, _ = cifar2[0]

plt.imshow(img.permute(1, 2, 0))
plt.show()

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 7.9 A random bird
from the CIFAR-10 dataset
(after normalization)

179Distinguishing birds from airplanes

Oh, hello there. In order to call the model, we need to make the input have the right
dimensions. We recall that our model expects 3,072 features in the input, and that nn
works with data organized into batches along the zeroth dimension. So we need to
turn our 3 × 32 × 32 image into a 1D tensor and then add an extra dimension in the
zeroth position. We learned how to do this in chapter 3:

In[13]:
img_batch = img.view(-1).unsqueeze(0)

Now we’re ready to invoke our model:

In[14]:
out = model(img_batch)
out

Out[14]:
tensor([[0.4784, 0.5216]], grad_fn=<SoftmaxBackward>)

So, we got probabilities! Well, we know we shouldn’t get too excited: the weights and
biases of our linear layers have not been trained at all. Their elements are initialized
randomly by PyTorch between –1.0 and 1.0. Interestingly, we also see grad_fn for the
output, which is the tip of the backward computation graph (it will be used as soon as
we need to backpropagate).7

 In addition, while we know which output probability is supposed to be which
(recall our class_names), our network has no indication of that. Is the first entry “air-
plane” and the second “bird,” or the other way around? The network can’t even tell
that at this point. It’s the loss function that associates a meaning with these two num-
bers, after backpropagation. If the labels are provided as index 0 for “airplane” and
index 1 for “bird,” then that’s the order the outputs will be induced to take. Thus,
after training, we will be able to get the label as an index by computing the argmax of
the output probabilities: that is, the index at which we get the maximum probability.
Conveniently, when supplied with a dimension, torch.max returns the maximum ele-
ment along that dimension as well as the index at which that value occurs. In our case,
we need to take the max along the probability vector (not across batches), therefore,
dimension 1:

In[15]:
_, index = torch.max(out, dim=1)

index

Out[15]:
tensor([1])

7 While it is, in principle, possible to say that here the model is uncertain (because it assigns 48% and 52% prob-
abilities to the two classes), it will turn out that typical training results in highly overconfident models. Bayes-
ian neural networks can provide some remedy, but they are beyond the scope of this book.

180 CHAPTER 7 Telling birds from airplanes: Learning from images

It says the image is a bird. Pure luck. But we have adapted our model output to the
classification task at hand by getting it to output probabilities. We also have now run
our model against an input image and verified that our plumbing works. Time to get
training. As in the previous two chapters, we need a loss to minimize during training.

7.2.5 A loss for classifying

We just mentioned that the loss is what gives probabilities meaning. In chapters 5 and
6, we used mean square error (MSE) as our loss. We could still use MSE and make our
output probabilities converge to [0.0, 1.0] and [1.0, 0.0]. However, thinking about
it, we’re not really interested in reproducing these values exactly. Looking back at the
argmax operation we used to extract the index of the predicted class, what we’re really
interested in is that the first probability is higher than the second for airplanes and vice
versa for birds. In other words, we want to penalize misclassifications rather than pains-
takingly penalize everything that doesn’t look exactly like a 0.0 or 1.0.

 What we need to maximize in this case is the probability associated with the correct
class, out[class_index], where out is the output of softmax and class_index is a vec-
tor containing 0 for “airplane” and 1 for “bird” for each sample. This quantity—that
is, the probability associated with the correct class—is referred to as the likelihood (of
our model’s parameters, given the data).8 In other words, we want a loss function that
is very high when the likelihood is low: so low that the alternatives have a higher prob-
ability. Conversely, the loss should be low when the likelihood is higher than the alter-
natives, and we’re not really fixated on driving the probability up to 1.

 There’s a loss function that behaves that way, and it’s called negative log likelihood
(NLL). It has the expression NLL = - sum(log(out_i[c_i])), where the sum is taken
over N samples and c_i is the correct class for sample i. Let’s take a look at figure 7.10,
which shows the NLL as a function of predicted probability.

8 For a succinct definition of the terminology, refer to David MacKay’s Information Theory, Inference, and Learning
Algorithms (Cambridge University Press, 2003), section 2.3.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.0 0.2 0.4

predicted likelihOod of target claSs

N
Ll

 l
o

Ss

0.6 0.8 1.0
Figure 7.10 The NLL
loss as a function of the
predicted probabilities

181Distinguishing birds from airplanes

The figure shows that when low probabilities are assigned to the data, the NLL grows
to infinity, whereas it decreases at a rather shallow rate when probabilities are greater
than 0.5. Remember that the NLL takes probabilities as input; so, as the likelihood
grows, the other probabilities will necessarily decrease.

 Summing up, our loss for classification can be computed as follows. For each sam-
ple in the batch:

1 Run the forward pass, and obtain the output values from the last (linear) layer.
2 Compute their softmax, and obtain probabilities.
3 Take the predicted probability corresponding to the correct class (the likeli-

hood of the parameters). Note that we know what the correct class is because
it’s a supervised problem—it’s our ground truth.

4 Compute its logarithm, slap a minus sign in front of it, and add it to the loss.

So, how do we do this in PyTorch? PyTorch has an nn.NLLLoss class. However (gotcha
ahead), as opposed to what you might expect, it does not take probabilities but rather
takes a tensor of log probabilities as input. It then computes the NLL of our model
given the batch of data. There’s a good reason behind the input convention: taking
the logarithm of a probability is tricky when the probability gets close to zero. The
workaround is to use nn.LogSoftmax instead of nn.Softmax, which takes care to make
the calculation numerically stable.

 We can now modify our model to use nn.LogSoftmax as the output module:

model = nn.Sequential(
nn.Linear(3072, 512),
nn.Tanh(),
nn.Linear(512, 2),
nn.LogSoftmax(dim=1))

Then we instantiate our NLL loss:

loss = nn.NLLLoss()

The loss takes the output of nn.LogSoftmax for a batch as the first argument and a
tensor of class indices (zeros and ones, in our case) as the second argument. We can
now test it with our birdie:

img, label = cifar2[0]

out = model(img.view(-1).unsqueeze(0))

loss(out, torch.tensor([label]))

tensor(0.6509, grad_fn=<NllLossBackward>)

Ending our investigation of losses, we can look at how using cross-entropy loss
improves over MSE. In figure 7.11, we see that the cross-entropy loss has some slope

182 CHAPTER 7 Telling birds from airplanes: Learning from images

when the prediction is off target (in the low-loss corner, the correct class is assigned a
predicted probability of 99.97%), while the MSE we dismissed at the beginning satu-
rates much earlier and—crucially—also for very wrong predictions. The underlying
reason is that the slope of the MSE is too low to compensate for the flatness of the soft-
max function for wrong predictions. This is why the MSE for probabilities is not a
good fit for classification work.

7.2.6 Training the classifier

All right! We’re ready to bring back the training loop we wrote in chapter 5 and see
how it trains (the process is illustrated in figure 7.12):

import torch
import torch.nn as nn

model = nn.Sequential(
nn.Linear(3072, 512),
nn.Tanh(),
nn.Linear(512, 2),
nn.LogSoftmax(dim=1))

learning_rate = 1e-2

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

suCceSsful and leSs suCceSsful claSsification loSses

1.75

10

8

6

4

2

1.50

1.25

1.00
m

s
e

 l
o

Ss

c
r

o
Ss

 e
n
t
r

o
p
y
 l

o
Ss

s
c
o
r
e
 o

f
 ta

r
g
e
t
 c

l
a
Ss

score o
f w

rong c
laSs

0.75

0.50

0.25

-4

-2

0
2

4

score o
f w

rong c
laSs

-4

-2

0
2

4

-4

-2

0

2

4s
c
o
r
e
 o

f
 ta

r
g
e
t
 c

l
a
Ss

-4

-2

0

2

4

Figure 7.11 The cross entropy (left) and MSE between predicted probabilities and the target probability vector
(right) as functions of the predicted scores—that is, before the (log-) softmax

183Distinguishing birds from airplanes

loss_fn = nn.NLLLoss()

n_epochs = 100

for epoch in range(n_epochs):
for img, label in cifar2:

out = model(img.view(-1).unsqueeze(0))
loss = loss_fn(out, torch.tensor([label]))

optimizer.zero_grad()
loss.backward()
optimizer.step()

print("Epoch: %d, Loss: %f" % (epoch, float(loss)))

Looking more closely, we made a small change to the training loop. In chapter 5, we
had just one loop: over the epochs (recall that an epoch ends when all samples in the
training set have been evaluated). We figured that evaluating all 10,000 images in a
single batch would be too much, so we decided to have an inner loop where we evalu-
ate one sample at a time and backpropagate over that single sample.

 While in the first case the gradient is accumulated over all samples before being
applied, in this case we apply changes to parameters based on a very partial estimation

Prints the loss for the
last image. In the next
chapter, we will
improve our output to
give an average over
the entire epoch.

EPOCH

ITERATION

FWD

BWD

UPDATE

C

A B

EPOCH

ITERATION

for n epochs:

 with every sample in dataset:

 evaluate model (forward)

 compute loSs

 aCcumulate gradient of loSs

 (backward)

 update model with aCcumulated gradient

for n epochs:

 with every sample in dataset:

 evaluate model (forward)

 compute loSs

 compute gradient of loSs

 (backward)

 update model with gradient

for n epochs:

 split dataset in minibatches

 for every minibatch:

 with every sample in minibatch:

 evaluate model (forward)

 compute loSs

 aCcumulate gradient of loSs (backward)

 update model with aCcumulated gradient

FWD

BWD

UPDATE

Figure 7.12 Training loops: (A) averaging updates over the whole dataset; (B) updating the model
at each sample; (C) averaging updates over minibatches

184 CHAPTER 7 Telling birds from airplanes: Learning from images

of the gradient on a single sample. However, what is a good direction for reducing the
loss based on one sample might not be a good direction for others. By shuffling samples
at each epoch and estimating the gradient on one or (preferably, for stability) a few
samples at a time, we are effectively introducing randomness in our gradient descent.
Remember SGD? It stands for stochastic gradient descent, and this is what the S is about:
working on small batches (aka minibatches) of shuffled data. It turns out that following
gradients estimated over minibatches, which are poorer approximations of gradients
estimated across the whole dataset, helps convergence and prevents the optimization
process from getting stuck in local minima it encounters along the way. As depicted in
figure 7.13, gradients from minibatches are randomly off the ideal trajectory, which is
part of the reason why we want to use a reasonably small learning rate. Shuffling the
dataset at each epoch helps ensure that the sequence of gradients estimated over mini-
batches is representative of the gradients computed across the full dataset.

 Typically, minibatches are a constant size that we need to set prior to training, just
like the learning rate. These are called hyperparameters, to distinguish them from the
parameters of a model.

Figure 7.13 Gradient descent averaged over the whole dataset (light path) versus stochastic
gradient descent, where the gradient is estimated on randomly picked minibatches

GRADIENT

OVER

MINIBATCH

GRADIENT

OVER ALl DATA

UPDATE OVER

MINIBATCH

LOSs

185Distinguishing birds from airplanes

In our training code, we chose minibatches of size 1 by picking one item at a time from
the dataset. The torch.utils.data module has a class that helps with shuffling and
organizing the data in minibatches: DataLoader. The job of a data loader is to sample
minibatches from a dataset, giving us the flexibility to choose from different sampling
strategies. A very common strategy is uniform sampling after shuffling the data at each
epoch. Figure 7.14 shows the data loader shuffling the indices it gets from the Dataset.

Let’s see how this is done. At a minimum, the DataLoader constructor takes a Dataset
object as input, along with batch_size and a shuffle Boolean that indicates whether
the data needs to be shuffled at the beginning of each epoch:

train_loader = torch.utils.data.DataLoader(cifar2, batch_size=64,
shuffle=True)

A DataLoader can be iterated over, so we can use it directly in the inner loop of our
new training code:

import torch
import torch.nn as nn

train_loader = torch.utils.data.DataLoader(cifar2, batch_size=64,
shuffle=True)

model = nn.Sequential(
nn.Linear(3072, 512),
nn.Tanh(),
nn.Linear(512, 2),
nn.LogSoftmax(dim=1))

learning_rate = 1e-2

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

loss_fn = nn.NLLLoss()

n_epochs = 100

for epoch in range(n_epochs):
for imgs, labels in train_loader:

DATASET

24, 13, 18, 7

10, 4, 11, 2

= 4

=

DATA LOADER

Figure 7.14 A data loader dispensing minibatches by using a dataset to sample
individual data items

186 CHAPTER 7 Telling birds from airplanes: Learning from images

batch_size = imgs.shape[0]
outputs = model(imgs.view(batch_size, -1))
loss = loss_fn(outputs, labels)

optimizer.zero_grad()
loss.backward()
optimizer.step()

print("Epoch: %d, Loss: %f" % (epoch, float(loss)))

At each inner iteration, imgs is a tensor of size 64 × 3 × 32 × 32—that is, a minibatch of
64 (32 × 32) RGB images—while labels is a tensor of size 64 containing label indices.

 Let’s run our training:

Epoch: 0, Loss: 0.523478
Epoch: 1, Loss: 0.391083
Epoch: 2, Loss: 0.407412
Epoch: 3, Loss: 0.364203
...
Epoch: 96, Loss: 0.019537
Epoch: 97, Loss: 0.008973
Epoch: 98, Loss: 0.002607
Epoch: 99, Loss: 0.026200

We see that the loss decreases somehow, but we have no idea whether it’s low enough.
Since our goal here is to correctly assign classes to images, and preferably do that on
an independent dataset, we can compute the accuracy of our model on the validation
set in terms of the number of correct classifications over the total:

val_loader = torch.utils.data.DataLoader(cifar2_val, batch_size=64,
shuffle=False)

correct = 0
total = 0

with torch.no_grad():
for imgs, labels in val_loader:

batch_size = imgs.shape[0]
outputs = model(imgs.view(batch_size, -1))
_, predicted = torch.max(outputs, dim=1)
total += labels.shape[0]
correct += int((predicted == labels).sum())

print("Accuracy: %f", correct / total)

Accuracy: 0.794000

Not a great performance, but quite a lot better than random. In our defense, our
model was quite a shallow classifier; it’s a miracle that it worked at all. It did because
our dataset is really simple—a lot of the samples in the two classes likely have system-
atic differences (such as the color of the background) that help the model tell birds
from airplanes, based on a few pixels.

Due to the shuffling, this now
prints the loss for a random

batch—clearly something we
want to improve in chapter 8.

187Distinguishing birds from airplanes

 We can certainly add some bling to our model by including more layers, which will
increase the model’s depth and capacity. One rather arbitrary possibility is

model = nn.Sequential(
nn.Linear(3072, 1024),
nn.Tanh(),
nn.Linear(1024, 512),
nn.Tanh(),
nn.Linear(512, 128),
nn.Tanh(),
nn.Linear(128, 2),
nn.LogSoftmax(dim=1))

Here we are trying to taper the number of features more gently toward the output, in
the hope that intermediate layers will do a better job of squeezing information in
increasingly shorter intermediate outputs.

 The combination of nn.LogSoftmax and nn.NLLLoss is equivalent to using
nn.CrossEntropyLoss. This terminology is a particularity of PyTorch, as the
nn.NLLoss computes, in fact, the cross entropy but with log probability predictions as
inputs where nn.CrossEntropyLoss takes scores (sometimes called logits). Techni-
cally, nn.NLLLoss is the cross entropy between the Dirac distribution, putting all mass
on the target, and the predicted distribution given by the log probability inputs.

 To add to the confusion, in information theory, up to normalization by sample size,
this cross entropy can be interpreted as a negative log likelihood of the predicted dis-
tribution under the target distribution as an outcome. So both losses are the negative
log likelihood of the model parameters given the data when our model predicts the
(softmax-applied) probabilities. In this book, we won’t rely on these details, but don’t
let the PyTorch naming confuse you when you see the terms used in the literature.

 It is quite common to drop the last nn.LogSoftmax layer from the network and use
nn.CrossEntropyLoss as a loss. Let us try that:

model = nn.Sequential(
nn.Linear(3072, 1024),
nn.Tanh(),
nn.Linear(1024, 512),
nn.Tanh(),
nn.Linear(512, 128),
nn.Tanh(),
nn.Linear(128, 2))

loss_fn = nn.CrossEntropyLoss()

Note that the numbers will be exactly the same as with nn.LogSoftmax and nn.NLLLoss.
It’s just more convenient to do it all in one pass, with the only gotcha being that the out-
put of our model will not be interpretable as probabilities (or log probabilities). We’ll
need to explicitly pass the output through a softmax to obtain those.

188 CHAPTER 7 Telling birds from airplanes: Learning from images

 Training this model and evaluating the accuracy on the validation set (0.802000)
lets us appreciate that a larger model bought us an increase in accuracy, but not that
much. The accuracy on the training set is practically perfect (0.998100). What is this
telling us? That we are overfitting our model in both cases. Our fully connected
model is finding a way to discriminate birds and airplanes on the training set by mem-
orizing the training set, but performance on the validation set is not all that great,
even if we choose a larger model.

 PyTorch offers a quick way to determine how many parameters a model has
through the parameters() method of nn.Model (the same method we use to provide
the parameters to the optimizer). To find out how many elements are in each tensor
instance, we can call the numel method. Summing those gives us our total count.
Depending on our use case, counting parameters might require us to check whether a
parameter has requires_grad set to True, as well. We might want to differentiate the
number of trainable parameters from the overall model size. Let’s take a look at what
we have right now:

In[7]:
numel_list = [p.numel()

for p in connected_model.parameters()
if p.requires_grad == True]

sum(numel_list), numel_list

Out[7]:
(3737474, [3145728, 1024, 524288, 512, 65536, 128, 256, 2])

Wow, 3.7 million parameters! Not a small network for such a small input image, is it?
Even our first network was pretty large:

In[9]:
numel_list = [p.numel() for p in first_model.parameters()]
sum(numel_list), numel_list

Out[9]:
(1574402, [1572864, 512, 1024, 2])

The number of parameters in our first model is roughly half that in our latest model.
Well, from the list of individual parameter sizes, we start having an idea what’s
responsible: the first module, which has 1.5 million parameters. In our full network,
we had 1,024 output features, which led the first linear module to have 3 million
parameters. This shouldn’t be unexpected: we know that a linear layer computes y =
weight * x + bias, and if x has length 3,072 (disregarding the batch dimension for
simplicity) and y must have length 1,024, then the weight tensor needs to be of size
1,024 × 3,072 and the bias size must be 1,024. And 1,024 * 3,072 + 1,024 = 3,146,752,
as we found earlier. We can verify these quantities directly:

189Distinguishing birds from airplanes

In[10]:
linear = nn.Linear(3072, 1024)

linear.weight.shape, linear.bias.shape

Out[10]:
(torch.Size([1024, 3072]), torch.Size([1024]))

What is this telling us? That our neural network won’t scale very well with the number
of pixels. What if we had a 1,024 × 1,024 RGB image? That’s 3.1 million input values.
Even abruptly going to 1,024 hidden features (which is not going to work for our clas-
sifier), we would have over 3 billion parameters. Using 32-bit floats, we’re already at 12
GB of RAM, and we haven’t even hit the second layer, much less computed and stored
the gradients. That’s just not going to fit on most present-day GPUs.

7.2.7 The limits of going fully connected

Let’s reason about what using a linear module on a 1D view of our image entails—figure
7.15 shows what is going on. It’s like taking every single input value—that is, every single
component in our RGB image—and computing a linear combination of it with all the
other values for every output feature. On one hand, we are allowing for the combina-
tion of any pixel with every other pixel in the image being potentially relevant for our
task. On the other hand, we aren’t utilizing the relative position of neighboring or far-
away pixels, since we are treating the image as one big vector of numbers.

Figure 7.15 Using a fully connected module with an input image: every input pixel is combined with
every other to produce each element in the output.

INPUT IMAGE OUTPUT IMAGE

THERE’S ONE VECTOR Of WEIGHTS

PER OUTPUT PIXEL.

ALl INPUT PIXELS CONTRIBUTE TO

EVERY OUTPUT PIXEL.

NOTE:OUTPUT

PIXEL

=

4 4

IMAGE

16
-
V
E

C
T
O
R

16
-
V
E

C
T
O
R

4 4

IMAGE16 16

WEIGHTS

WEIGHTS RELATIVE TO OUTPUT PIXEL

TO VECTOR

OF INPUT

PIXELS

OVERALl:

190 CHAPTER 7 Telling birds from airplanes: Learning from images

An airplane flying in the sky captured in a 32 × 32 image will be very roughly similar to
a dark, cross-like shape on a blue background. A fully connected network as in figure
7.15 would need to learn that when pixel 0,1 is dark, pixel 1,1 is also dark, and so on,
that’s a good indication of an airplane. This is illustrated in the top half of figure 7.16.
However, shift the same airplane by one pixel or more as in the bottom half of the fig-
ure, and the relationships between pixels will have to be relearned from scratch: this
time, an airplane is likely when pixel 0,2 is dark, pixel 1,2 is dark, and so on. In more
technical terms, a fully connected network is not translation invariant. This means a
network that has been trained to recognize a Spitfire starting at position 4,4 will not
be able to recognize the exact same Spitfire starting at position 8,8. We would then have
to augment the dataset—that is, apply random translations to images during training—
so the network would have a chance to see Spitfires all over the image, and we would
need to do this for every image in the dataset (for the record, we could concatenate a

PLANE

PLANE (TRANSLATED)

WEIGHTS

OUTPUT

5

0

0

0

0

0 0

0

0 0

0

00

0

0 0 0 0

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

X +

+X

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1 1 1

1

1

1

1

Figure 7.16 Translation invariance, or the lack thereof, with fully connected layers

191Exercises

transform from torchvision.transforms to do this transparently). However, this data
augmentation strategy comes at a cost: the number of hidden features—that is, of
parameters—must be large enough to store the information about all of these trans-
lated replicas.

 So, at the end of this chapter, we have a dataset, a model, and a training loop, and
our model learns. However, due to a mismatch between our problem and our network
structure, we end up overfitting our training data, rather than learning the general-
ized features of what we want the model to detect.

 We’ve created a model that allows for relating every pixel to every other pixel in
the image, regardless of their spatial arrangement. We have a reasonable assumption
that pixels that are closer together are in theory a lot more related, though. This
means we are training a classifier that is not translation-invariant, so we’re forced to
use a lot of capacity for learning translated replicas if we want to hope to do well on
the validation set. There has to be a better way, right?

 Of course, most such questions in a book like this are rhetorical. The solution to
our current set of problems is to change our model to use convolutional layers. We’ll
cover what that means in the next chapter.

7.3 Conclusion
In this chapter, we have solved a simple classification problem from dataset, to model,
to minimizing an appropriate loss in a training loop. All of these things will be stan-
dard tools for your PyTorch toolbelt, and the skills needed to use them will be useful
throughout your PyTorch tenure.

 We’ve also found a severe shortcoming of our model: we have been treating 2D
images as 1D data. Also, we do not have a natural way to incorporate the translation
invariance of our problem. In the next chapter, you’ll learn how to exploit the 2D
nature of image data to get much better results.9

 We could use what we have learned right away to process data without this translation
invariance. For example, using it on tabular data or the time-series data we met in chap-
ter 4, we can probably do great things already. To some extent, it would also be possible
to use it on text data that is appropriately represented.10

7.4 Exercises
1 Use torchvision to implement random cropping of the data.

a How are the resulting images different from the uncropped originals?
b What happens when you request the same image a second time?
c What is the result of training using randomly cropped images?

9 The same caveat about translation invariance also applies to purely 1D data: an audio classifier should likely
produce the same output even if the sound to be classified starts a tenth of a second earlier or later.

10 Bag-of-words models, which just average over word embeddings, can be processed with the network design from
this chapter. More contemporary models take the positions of the words into account and need more
advanced models.

192 CHAPTER 7 Telling birds from airplanes: Learning from images

2 Switch loss functions (perhaps MSE).
a Does the training behavior change?

3 Is it possible to reduce the capacity of the network enough that it stops overfitting?
a How does the model perform on the validation set when doing so?

7.5 Summary
 Computer vision is one of the most extensive applications of deep learning.
 Several datasets of annotated images are publicly available; many of them can

be accessed via torchvision.
 Datasets and DataLoaders provide a simple yet effective abstraction for loading

and sampling datasets.
 For a classification task, using the softmax function on the output of a network

produces values that satisfy the requirements for being interpreted as probabili-
ties. The ideal loss function for classification in this case is obtained by using the
output of softmax as the input of a non-negative log likelihood function. The
combination of softmax and such loss is called cross entropy in PyTorch.

 Nothing prevents us from treating images as vectors of pixel values, dealing
with them using a fully connected network, just like any other numerical data.
However, doing so makes it much harder to take advantage of the spatial rela-
tionships in the data.

 Simple models can be created using nn.Sequential.

193

Using convolutions
 to generalize

In the previous chapter, we built a simple neural network that could fit (or overfit)
the data, thanks to the many parameters available for optimization in the linear lay-
ers. We had issues with our model, however, in that it was better at memorizing the
training set than it was at generalizing properties of birds and airplanes. Based on
our model architecture, we’ve got a guess as to why that’s the case. Due to the fully
connected setup needed to detect the various possible translations of the bird or
airplane in the image, we have both too many parameters (making it easier for the
model to memorize the training set) and no position independence (making it
harder to generalize). As we discussed in the last chapter, we could augment our

This chapter covers
 Understanding convolution

 Building a convolutional neural network

 Creating custom nn.Module subclasses

 The difference between the module and
functional APIs

 Design choices for neural networks

194 CHAPTER 8 Using convolutions to generalize

training data by using a wide variety of recropped images to try to force generaliza-
tion, but that won’t address the issue of having too many parameters.

 There is a better way! It consists of replacing the dense, fully connected affine trans-
formation in our neural network unit with a different linear operation: convolution.

8.1 The case for convolutions
Let’s get to the bottom of what convolutions are and how we can use them in our neu-
ral networks. Yes, yes, we were in the middle of our quest to tell birds from airplanes,
and our friend is still waiting for our solution, but this diversion is worth the extra
time spent. We’ll develop an intuition for this foundational concept in computer
vision and then return to our problem equipped with superpowers.

 In this section, we’ll see how convolutions deliver locality and translation invariance.
We’ll do so by taking a close look at the formula defining convolutions and applying it
using pen and paper—but don’t worry, the gist will be in pictures, not formulas.

 We said earlier that taking a 1D view of our input image and multiplying it by an
n_output_features × n_input_features weight matrix, as is done in nn.Linear,
means for each channel in the image, computing a weighted sum of all the pixels mul-
tiplied by a set of weights, one per output feature.

 We also said that, if we want to recognize patterns corresponding to objects, like an
airplane in the sky, we will likely need to look at how nearby pixels are arranged, and
we will be less interested in how pixels that are far from each other appear in combi-
nation. Essentially, it doesn’t matter if our image of a Spitfire has a tree or cloud or
kite in the corner or not.

 In order to translate this intuition into mathematical form, we could compute the
weighted sum of a pixel with its immediate neighbors, rather than with all other pixels
in the image. This would be equivalent to building weight matrices, one per output
feature and output pixel location, in which all weights beyond a certain distance from
a center pixel are zero. This will still be a weighted sum: that is, a linear operation.

8.1.1 What convolutions do

We identified one more desired property earlier: we would like these localized patterns
to have an effect on the output regardless of their location in the image: that is, to be
translation invariant. To achieve this goal in a matrix applied to the image-as-a-vector we
used in chapter 7 would require implementing a rather complicated pattern of weights
(don’t worry if it is too complicated; it’ll get better shortly): most of the weight matrix
would be zero (for entries corresponding to input pixels too far away from the output
pixel to have an influence). For other weights, we would have to find a way to keep
entries in sync that correspond to the same relative position of input and output pixels.
This means we would need to initialize them to the same values and ensure that all these
tied weights stayed the same while the network is updated during training. This way, we
would ensure that weights operate in neighborhoods to respond to local patterns, and
local patterns are identified no matter where they occur in the image.

195The case for convolutions

 Of course, this approach is more than impractical. Fortunately, there is a readily
available, local, translation-invariant linear operation on the image: a convolution. We
can come up with a more compact description of a convolution, but what we are going
to describe is exactly what we just delineated—only taken from a different angle.

 Convolution, or more precisely, discrete convolution1 (there’s an analogous continu-
ous version that we won’t go into here), is defined for a 2D image as the scalar prod-
uct of a weight matrix, the kernel, with every neighborhood in the input. Consider a
3 × 3 kernel (in deep learning, we typically use small kernels; we’ll see why later on) as
a 2D tensor

weight = torch.tensor([[w00, w01, w02],
[w10, w11, w12],
[w20, w21, w22]])

and a 1-channel, MxN image:

image = torch.tensor([[i00, i01, i02, i03, ..., i0N],
[i10, i11, i12, i13, ..., i1N],
[i20, i21, i22, i23, ..., i2N],
[i30, i31, i32, i33, ..., i3N],
...
[iM0, iM1m iM2, iM3, ..., iMN]])

We can compute an element of the output image (without bias) as follows:

o11 = i11 * w00 + i12 * w01 + i22 * w02 +
i21 * w10 + i22 * w11 + i23 * w12 +
i31 * w20 + i32 * w21 + i33 * w22

Figure 8.1 shows this computation in action.
 That is, we “translate” the kernel on the i11 location of the input image, and we

multiply each weight by the value of the input image at the corresponding location.
Thus, the output image is created by translating the kernel on all input locations and
performing the weighted sum. For a multichannel image, like our RGB image, the
weight matrix would be a 3 × 3 × 3 matrix: one set of weights for every channel, con-
tributing together to the output values.

 Note that, just like the elements in the weight matrix of nn.Linear, the weights in
the kernel are not known in advance, but they are initialized randomly and updated
through backpropagation. Note also that the same kernel, and thus each weight in the
kernel, is reused across the whole image. Thinking back to autograd, this means the use
of each weight has a history spanning the entire image. Thus, the derivative of the loss
with respect to a convolution weight includes contributions from the entire image.

1 There is a subtle difference between PyTorch’s convolution and mathematics’ convolution: one argument’s
sign is flipped. If we were in a pedantic mood, we could call PyTorch’s convolutions discrete cross-correlations.

196 CHAPTER 8 Using convolutions to generalize

It’s now possible to see the connection to what we were stating earlier: a convolution is
equivalent to having multiple linear operations whose weights are zero almost every-
where except around individual pixels and that receive equal updates during training.

 Summarizing, by switching to convolutions, we get

 Local operations on neighborhoods
 Translation invariance
 Models with a lot fewer parameters

The key insight underlying the third point is that, with a convolution layer, the num-
ber of parameters depends not on the number of pixels in the image, as was the case
in our fully connected model, but rather on the size of the convolution kernel (3 × 3,
5 × 5, and so on) and on how many convolution filters (or output channels) we decide
to use in our model.

8.2 Convolutions in action
Well, it looks like we’ve spent enough time down a rabbit hole! Let’s see some PyTorch
in action on our birds versus airplanes challenge. The torch.nn module provides con-
volutions for 1, 2, and 3 dimensions: nn.Conv1d for time series, nn.Conv2d for images,
and nn.Conv3d for volumes or videos.

 For our CIFAR-10 data, we’ll resort to nn.Conv2d. At a minimum, the arguments we
provide to nn.Conv2d are the number of input features (or channels, since we’re dealing

0

0

1 1

1

1

1 1

1 1 1 1 1 1

1

11

1

1 11

0 0 0 0

5 2

22

0 0

0 0 0

000 0

00

1 1

1

1

1 1 1 1

1

1 00

0 0

0

0

0 0

1

0

0

00 01 0

0

0

0

1

1 0 0

0

0

0 0 0

0

0000

00

0

00

0 00 0

1

image kernel

output

kernel

weights

Locality TRanslation

invariance

scalar product

betwEen translated

kernel and image

(zeros outside the kernel)

same kernel weights

used acroSs the image

Figure 8.1 Convolution: locality and translation invariance

197Convolutions in action

with multichannel images: that is, more than one value per pixel), the number of output
features, and the size of the kernel. For instance, for our first convolutional module,
we’ll have 3 input features per pixel (the RGB channels) and an arbitrary number of
channels in the output—say, 16. The more channels in the output image, the more the
capacity of the network. We need the channels to be able to detect many different types
of features. Also, because we are randomly initializing them, some of the features we’ll
get, even after training, will turn out to be useless.2 Let’s stick to a kernel size of 3 × 3.

 It is very common to have kernel sizes that are the same in all directions, so
PyTorch has a shortcut for this: whenever kernel_size=3 is specified for a 2D convo-
lution, it means 3 × 3 (provided as a tuple (3, 3) in Python). For a 3D convolution, it
means 3 × 3 × 3. The CT scans we will see in part 2 of the book have a different voxel
(volumetric pixel) resolution in one of the three axes. In such a case, it makes sense to
consider kernels that have a different size for the exceptional dimension. But for now,
we stick with having the same size of convolutions across all dimensions:

In[11]:
conv = nn.Conv2d(3, 16, kernel_size=3)
conv

Out[11]:
Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1))

What do we expect to be the shape of the weight tensor? The kernel is of size 3 × 3, so
we want the weight to consist of 3 × 3 parts. For a single output pixel value, our kernel
would consider, say, in_ch = 3 input channels, so the weight component for a single
output pixel value (and by translation the invariance for the entire output channel) is
of shape in_ch × 3 × 3. Finally, we have as many of those as we have output channels,
here out_ch = 16, so the complete weight tensor is out_ch × in_ch × 3 × 3, in our case
16 × 3 × 3 × 3. The bias will have size 16 (we haven’t talked about bias for a while for
simplicity, but just as in the linear module case, it’s a constant value we add to each
channel of the output image). Let’s verify our assumptions:

In[12]:
conv.weight.shape, conv.bias.shape

Out[12]:
(torch.Size([16, 3, 3, 3]), torch.Size([16]))

We can see how convolutions are a convenient choice for learning from images. We
have smaller models looking for local patterns whose weights are optimized across the
entire image.

 A 2D convolution pass produces a 2D image as output, whose pixels are a weighted
sum over neighborhoods of the input image. In our case, both the kernel weights and

2 This is part of the lottery ticket hypothesis: that many kernels will be as useful as losing lottery tickets. See Jona-
than Frankle and Michael Carbin, “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Net-
works,” 2019, https://arxiv.org/abs/1803.03635.

Instead of the shortcut kernel_size=3, we
could equivalently pass in the tuple that we
see in the output: kernel_size=(3, 3).

https://arxiv.org/abs/1803.03635

198 CHAPTER 8 Using convolutions to generalize

the bias conv.weight are initialized randomly, so the output image will not be particu-
larly meaningful. As usual, we need to add the zeroth batch dimension with
unsqueeze if we want to call the conv module with one input image, since nn.Conv2d
expects a B × C × H × W shaped tensor as input:

In[13]:
img, _ = cifar2[0]
output = conv(img.unsqueeze(0))
img.unsqueeze(0).shape, output.shape

Out[13]:
(torch.Size([1, 3, 32, 32]), torch.Size([1, 16, 30, 30]))

We’re curious, so we can display the output, shown in figure 8.2:

In[15]:
plt.imshow(output[0, 0].detach(), cmap='gray')
plt.show()

Wait a minute. Let’s take a look a the size of output: it’s torch.Size([1, 16, 30,
30]). Huh; we lost a few pixels in the process. How did that happen?

8.2.1 Padding the boundary

The fact that our output image is smaller than the input is a side effect of deciding what
to do at the boundary of the image. Applying a convolution kernel as a weighted sum
of pixels in a 3 × 3 neighborhood requires that there are neighbors in all directions. If
we are at i00, we only have pixels to the right of and below us. By default, PyTorch will
slide the convolution kernel within the input picture, getting width - kernel_width + 1
horizontal and vertical positions. For odd-sized kernels, this results in images that are

0

output

5

10

15

20

25

30

0 5 10 15 20 25 30

0

input

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 8.2 Our bird after a random convolution treatment. (We cheated a little with the code
to show you the input, too.)

199Convolutions in action

one-half the convolution kernel’s width (in our case, 3//2 = 1) smaller on each side.
This explains why we’re missing two pixels in each dimension.

 However, PyTorch gives us the possibility of padding the image by creating ghost pix-
els around the border that have value zero as far as the convolution is concerned. Fig-
ure 8.3 shows padding in action.

 In our case, specifying padding=1 when kernel_size=3 means i00 has an extra set
of neighbors above it and to its left, so that an output of the convolution can be com-
puted even in the corner of our original image.3 The net result is that the output has
now the exact same size as the input:

In[16]:
conv = nn.Conv2d(3, 1, kernel_size=3, padding=1)
output = conv(img.unsqueeze(0))
img.unsqueeze(0).shape, output.shape

Out[16]:
(torch.Size([1, 3, 32, 32]), torch.Size([1, 1, 32, 32]))

3 For even-sized kernels, we would need to pad by a different number on the left and right (and top and bot-
tom). PyTorch doesn’t offer to do this in the convolution itself, but the function torch.nn.functional
.pad can take care of it. But it’s best to stay with odd kernel sizes; even-sized kernels are just odd.

zeros

outside

OUTPUT

0 0 0 0

0 0

1

1

1

1 1 1 1

1

0 0

0 0

1
0 0

0 0

1

1

1

1 1
11 1

1

0

2

2

2

2

5

2

2

2 2

0

1

0 1 0 0

0

0 1

11 1

00 1

00 1

11 1

00 1

00 1

11 1

00 1

1

1

0 0

0 0

0

001

0

0

0

0

0

0

0

0

0

01

0

0

0

0

0100010

0111

0

0

0

0

0010

00 1

11 1

00 1

011

0

0

00

1

0 1

00000

00

0

01

0

00

000

0

0 0

0 0

1 1

1

1

1

0 0

0 0

1 1

1

1

1
0

1

0 00

0

0

1

0

0

0

0

0

0

1

1

1

0000

1

0 0

0 0

1 1

1

1

1

0 0

0 0

1 1

1

1

1

0 0

0 0

1 1

1

1

1

0 0

0 0

1 1

1

1

1

0

1

0

0

0

1

0

1

1

1

0 0 0 0000

0

0

0

1

0 0 0

0

0

1

1

1

0

1

001

0 0

0 0

1 1

1

1

1

1

0

0

011

0 001

0 0

0 0

1 1

1

1

1

1 011

0 001

0 1

0 0

0

01

0

0000

0 1 0

Figure 8.3 Zero padding to preserve the image size in the output

Now with padding

200 CHAPTER 8 Using convolutions to generalize

Note that the sizes of weight and bias don’t change, regardless of whether padding is
used.

 There are two main reasons to pad convolutions. First, doing so helps us separate
the matters of convolution and changing image sizes, so we have one less thing to
remember. And second, when we have more elaborate structures such as skip con-
nections (discussed in section 8.5.3) or the U-Nets we’ll cover in part 2, we want the
tensors before and after a few convolutions to be of compatible size so that we can
add them or take differences.

8.2.2 Detecting features with convolutions
We said earlier that weight and bias are parameters that are learned through back-
propagation, exactly as it happens for weight and bias in nn.Linear. However, we can
play with convolution by setting weights by hand and see what happens.

 Let’s first zero out bias, just to remove any confounding factors, and then set
weights to a constant value so that each pixel in the output gets the mean of its neigh-
bors. For each 3 × 3 neighborhood:

In[17]:
with torch.no_grad():

conv.bias.zero_()

with torch.no_grad():
conv.weight.fill_(1.0 / 9.0)

We could have gone with conv.weight.one_()—that would result in each pixel in the
output being the sum of the pixels in the neighborhood. Not a big difference, except
that the values in the output image would have been nine times larger.

 Anyway, let’s see the effect on our CIFAR image:

In[18]:
output = conv(img.unsqueeze(0))
plt.imshow(output[0, 0].detach(), cmap='gray')
plt.show()

As we could have predicted, the filter produces a blurred version of the image, as shown
in figure 8.4. After all, every pixel of the output is the average of a neighborhood of the
input, so pixels in the output are correlated and change more smoothly.

 Next, let’s try something different. The following kernel may look a bit mysterious
at first:

In[19]:
conv = nn.Conv2d(3, 1, kernel_size=3, padding=1)

with torch.no_grad():
conv.weight[:] = torch.tensor([[-1.0, 0.0, 1.0],

[-1.0, 0.0, 1.0],
[-1.0, 0.0, 1.0]])

conv.bias.zero_()

201Convolutions in action

Working out the weighted sum for an arbitrary pixel in position 2,2, as we did earlier
for the generic convolution kernel, we get

o22 = i13 - i11 +
i23 - i21 +
i33 - i31

which performs the difference of all pixels on the right of i22 minus the pixels on the
left of i22. If the kernel is applied on a vertical boundary between two adjacent regions
of different intensity, o22 will have a high value. If the kernel is applied on a region of
uniform intensity, o22 will be zero. It’s an edge-detection kernel: the kernel highlights the
vertical edge between two horizontally adjacent regions.

 Applying the convolution kernel to our image, we see the result shown in figure
8.5. As expected, the convolution kernel enhances the vertical edges. We could build

0

output

5

10

15

20

25

30

0 5 10 15 20 25 30

0

input

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 8.4 Our bird, this time blurred thanks to a constant convolution kernel

0

output

5

10

15

20

25

30

0 5 10 15 20 25 30

0

input

5

10

15

20

25

30

0 5 10 15 20 25 30

Figure 8.5 Vertical edges throughout our bird, courtesy of a handcrafted convolution kernel

202 CHAPTER 8 Using convolutions to generalize

lots more elaborate filters, such as for detecting horizontal or diagonal edges, or cross-
like or checkerboard patterns, where “detecting” means the output has a high magni-
tude. In fact, the job of a computer vision expert has historically been to come up with
the most effective combination of filters so that certain features are highlighted in
images and objects can be recognized.

 With deep learning, we let kernels be estimated from data in whatever way the dis-
crimination is most effective: for instance, in terms of minimizing the negative cross-
entropy loss between the output and the ground truth that we introduced in section
7.2.5. From this angle, the job of a convolutional neural network is to estimate the ker-
nel of a set of filter banks in successive layers that will transform a multichannel image
into another multichannel image, where different channels correspond to different
features (such as one channel for the average, another channel for vertical edges, and
so on). Figure 8.6 shows how the training automatically learns the kernels.

8.2.3 Looking further with depth and pooling

This is all well and good, but conceptually there’s an elephant in the room. We got all
excited because by moving from fully connected layers to convolutions, we achieve
locality and translation invariance. Then we recommended the use of small kernels,
like 3 × 3, or 5 × 5: that’s peak locality, all right. What about the big picture? How do we
know that all structures in our images are 3 pixels or 5 pixels wide? Well, we don’t,
because they aren’t. And if they aren’t, how are our networks going to be equipped to
see those patterns with larger scope? This is something we’ll really need if we want to

convolution

activation

kernels

chaNnels

weight

update

backdrop

loSs

learning

rate

derivative of

loSs with respect

to weight

one output

chaNnel per

kernel

R

G

B

N input3x x3

Figure 8.6 The process of learning with convolutions by estimating the gradient at the kernel weights and
updating them individually in order to optimize for the loss

203Convolutions in action

solve our birds versus airplanes problem effectively, since although CIFAR-10 images
are small, the objects still have a (wing-)span several pixels across.

 One possibility could be to use large convolution kernels. Well, sure, at the limit we
could get a 32 × 32 kernel for a 32 × 32 image, but we would converge to the old fully
connected, affine transformation and lose all the nice properties of convolution.
Another option, which is used in convolutional neural networks, is stacking one con-
volution after the other and at the same time downsampling the image between suc-
cessive convolutions.

FROM LARGE TO SMALL: DOWNSAMPLING

Downsampling could in principle occur in different ways. Scaling an image by half is
the equivalent of taking four neighboring pixels as input and producing one pixel as
output. How we compute the value of the output based on the values of the input is
up to us. We could

 Average the four pixels. This average pooling was a common approach early on but
has fallen out of favor somewhat.

 Take the maximum of the four pixels. This approach, called max pooling, is currently
the most commonly used approach, but it has a downside of discarding the
other three-quarters of the data.

 Perform a strided convolution, where only every Nth pixel is calculated. A 3 × 4 convolu-
tion with stride 2 still incorporates input from all pixels from the previous layer.
The literature shows promise for this approach, but it has not yet supplanted
max pooling.

We will be focusing on max pooling, illustrated in figure 8.7, going forward. The fig-
ure shows the most common setup of taking non-overlapping 2 x 2 tiles and taking the
maximum over each of them as the new pixel at the reduced scale.

 Intuitively, the output images from a convolution layer, especially since they are fol-
lowed by an activation just like any other linear layer, tend to have a high magnitude

2 2 2

2

2 5

5

2

output

INput

(output of conv + activation)

maxpOol

2

2 1

max=2

max=2

max=5

max=2

2

22

2 2 2

10

0

0

00

0

2 5 2 1

2 2 2 0

0 1 0 0

Figure 8.7 Max pooling in detail

204 CHAPTER 8 Using convolutions to generalize

where certain features corresponding to the estimated kernel are detected (such as
vertical lines). By keeping the highest value in the 2 × 2 neighborhood as the downs-
ampled output, we ensure that the features that are found survive the downsampling,
at the expense of the weaker responses.

 Max pooling is provided by the nn.MaxPool2d module (as with convolution, there are
versions for 1D and 3D data). It takes as input the size of the neighborhood over which
to operate the pooling operation. If we wish to downsample our image by half, we’ll want
to use a size of 2. Let’s verify that it works as expected directly on our input image:

In[21]:
pool = nn.MaxPool2d(2)
output = pool(img.unsqueeze(0))

img.unsqueeze(0).shape, output.shape

Out[21]:
(torch.Size([1, 3, 32, 32]), torch.Size([1, 3, 16, 16]))

COMBINING CONVOLUTIONS AND DOWNSAMPLING FOR GREAT GOOD

Let’s now see how combining convolutions and downsampling can help us recognize
larger structures. In figure 8.8, we start by applying a set of 3 × 3 kernels on our 8 × 8
image, obtaining a multichannel output image of the same size. Then we scale down
the output image by half, obtaining a 4 × 4 image, and apply another set of 3 × 3 ker-
nels to it. This second set of kernels operates on a 3 × 3 neighborhood of something
that has been scaled down by half, so it effectively maps back to 8 × 8 neighborhoods
of the input. In addition, the second set of kernels takes the output of the first set of
kernels (features like averages, edges, and so on) and extracts additional features on
top of those.

 So, on one hand, the first set of kernels operates on small neighborhoods on first-
order, low-level features, while the second set of kernels effectively operates on wider
neighborhoods, producing features that are compositions of the previous features.
This is a very powerful mechanism that provides convolutional neural networks with
the ability to see into very complex scenes—much more complex than our 32 × 32
images from the CIFAR-10 dataset.

input

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1 13 3

1 13 3

1 142 24 2 10 13 10

2 4 2

1

10 13 10 1

13 21 14 21

21

14

14

13

13

10

10

5

2 4

4 1
1 1

1

1

1
4 5

22 4

1 142 24

3 3 154 45

3 3 154 45

1

11 1

1

11

1 1

1 1

image conv

= =

conv

kernel

conv

output

output max pOol

output max pOol

output

“croSs

top

left”

conv

kernel

Figure 8.8 More convolutions by hand, showing the effect of stacking convolutions and downsampling: a large
cross is highlighted using two small, cross-shaped kernels and max pooling.

205Convolutions in action

8.2.4 Putting it all together for our network

With these building blocks in our hands, we can now proceed to build our convolu-
tional neural network for detecting birds and airplanes. Let’s take our previous fully
connected model as a starting point and introduce nn.Conv2d and nn.MaxPool2d as
described previously:

In[22]:
model = nn.Sequential(

nn.Conv2d(3, 16, kernel_size=3, padding=1),
nn.Tanh(),
nn.MaxPool2d(2),
nn.Conv2d(16, 8, kernel_size=3, padding=1),
nn.Tanh(),
nn.MaxPool2d(2),
...
)

The first convolution takes us from 3 RGB channels to 16, thereby giving the network
a chance to generate 16 independent features that operate to (hopefully) discrimi-
nate low-level features of birds and airplanes. Then we apply the Tanh activation func-
tion. The resulting 16-channel 32 × 32 image is pooled to a 16-channel 16 × 16 image
by the first MaxPool3d. At this point, the downsampled image undergoes another con-
volution that generates an 8-channel 16 × 16 output. With any luck, this output will
consist of higher-level features. Again, we apply a Tanh activation and then pool to an
8-channel 8 × 8 output.

 Where does this end? After the input image has been reduced to a set of 8 × 8 fea-
tures, we expect to be able to output some probabilities from the network that we can
feed to our negative log likelihood. However, probabilities are a pair of numbers in a
1D vector (one for airplane, one for bird), but here we’re still dealing with multichan-
nel 2D features.

The receptive field of output pixels
When the second 3 × 3 convolution kernel produces 21 in its conv output in figure
8.8, this is based on the top-left 3 × 3 pixels of the first max pool output. They, in turn,
correspond to the 6 × 6 pixels in the top-left corner in the first conv output, which in
turn are computed by the first convolution from the top-left 7 × 7 pixels. So the pixel
in the second convolution output is influenced by a 7 × 7 input square. The first
convolution also uses an implicitly “padded” column and row to produce the output in
the corner; otherwise, we would have an 8 × 8 square of input pixels informing a given
pixel (away from the boundary) in the second convolution’s output. In fancy language,
we say that a given output neuron of the 3 × 3-conv, 2 × 2-max-pool, 3 × 3-conv
construction has a receptive field of 8 × 8.

206 CHAPTER 8 Using convolutions to generalize

 Thinking back to the beginning of this chapter, we already know what we need to
do: turn the 8-channel 8 × 8 image into a 1D vector and complete our network with a
set of fully connected layers:

In[23]:
model = nn.Sequential(

nn.Conv2d(3, 16, kernel_size=3, padding=1),
nn.Tanh(),
nn.MaxPool2d(2),
nn.Conv2d(16, 8, kernel_size=3, padding=1),
nn.Tanh(),
nn.MaxPool2d(2),
...
nn.Linear(8 * 8 * 8, 32),
nn.Tanh(),
nn.Linear(32, 2))

This code gives us a neural network as shown in figure 8.9.

Ignore the “something missing” comment for a minute. Let’s first notice that the size
of the linear layer is dependent on the expected size of the output of MaxPool2d: 8 × 8
× 8 = 512. Let’s count the number of parameters for this small model:

In[24]:
numel_list = [p.numel() for p in model.parameters()]
sum(numel_list), numel_list

Out[24]:
(18090, [432, 16, 1152, 8, 16384, 32, 64, 2])

That’s very reasonable for a limited dataset of such small images. In order to increase
the capacity of the model, we could increase the number of output channels for the
convolution layers (that is, the number of features each convolution layer generates),
which would lead the linear layer to increase its size as well.

 We put the “Warning” note in the code for a reason. The model has zero chance of
running without complaining:

Warning: Something
important is missing here!

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Pbird = 0.8

Pairplane = 0.2

Figure 8.9 Shape of a typical convolutional network, including the one we’re building. An image is fed to a series
of convolutions and max pooling modules and then straightened into a 1D vector and fed into fully connected modules.

207Subclassing nn.Module

In[25]:
model(img.unsqueeze(0))

Out[25]:
...
RuntimeError: size mismatch, m1:

➥ [64 x 8], m2: [512 x 32] at c:\...\THTensorMath.cpp:940

Admittedly, the error message is a bit obscure, but not too much so. We find refer-
ences to linear in the traceback: looking back at the model, we see that only module
that has to have a 512 × 32 tensor is nn.Linear(512, 32), the first linear module after
the last convolution block.

 What’s missing there is the reshaping step from an 8-channel 8 × 8 image to a 512-
element, 1D vector (1D if we ignore the batch dimension, that is). This could be
achieved by calling view on the output of the last nn.MaxPool2d, but unfortunately, we
don’t have any explicit visibility of the output of each module when we use
nn.Sequential.4

8.3 Subclassing nn.Module
At some point in developing neural networks, we will find ourselves in a situation where
we want to compute something that the premade modules do not cover. Here, it is some-
thing very simple like reshaping,5; but in section 8.5.3, we use the same construction to
implement residual connections. So in this section, we learn how to make our own
nn.Module subclasses that we can then use just like the prebuilt ones or nn.Sequential.

 When we want to build models that do more complex things than just applying
one layer after another, we need to leave nn.Sequential for something that gives us
added flexibility. PyTorch allows us to use any computation in our model by subclass-
ing nn.Module.

 In order to subclass nn.Module, at a minimum we need to define a forward function
that takes the inputs to the module and returns the output. This is where we define our
module’s computation. The name forward here is reminiscent of a distant past, when
modules needed to define both the forward and backward passes we met in section
5.5.1. With PyTorch, if we use standard torch operations, autograd will take care of the
backward pass automatically; and indeed, an nn.Module never comes with a backward.

 Typically, our computation will use other modules—premade like convolutions or
customized. To include these submodules, we typically define them in the constructor
__init__ and assign them to self for use in the forward function. They will, at the
same time, hold their parameters throughout the lifetime of our module. Note that you
need to call super().__init__() before you can do that (or PyTorch will remind you).

4 Not being able to do this kind of operation inside of nn.Sequential was an explicit design choice by the
PyTorch authors and was left that way for a long time; see the linked comments from @soumith at
https://github.com/pytorch/pytorch/issues/2486. Recently, PyTorch gained an nn.Flatten layer.

5 We could have used nn.Flatten starting from PyTorch 1.3.

https://github.com/pytorch/pytorch/issues/2486

208 CHAPTER 8 Using convolutions to generalize

Linear (512d->32d)

Tanh

Linear (32d->2d)

Output (2d)

Net

Tanh

Tanh

View (512d)

MaxPOol (2x2)

8cx8x8

Conv2d (3x3, 16c->8c)

MaxPOol (2x2)

16cx16x16

16cx32x32

Conv2d (3x3, 3c->16c)

Input (3c, 32x32)

Figure 8.10 Our baseline convolu-
tional network architecture

8.3.1 Our network as an nn.Module

Let’s write our network as a submodule. To do so, we instantiate all the nn.Conv2d,
nn.Linear, and so on that we previously passed to nn.Sequential in the constructor,
and then use their instances one after another in forward:

In[26]:
class Net(nn.Module):

def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.act1 = nn.Tanh()
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(16, 8, kernel_size=3, padding=1)
self.act2 = nn.Tanh()
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(8 * 8 * 8, 32)
self.act3 = nn.Tanh()
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = self.pool1(self.act1(self.conv1(x)))
out = self.pool2(self.act2(self.conv2(out)))
out = out.view(-1, 8 * 8 * 8)
out = self.act3(self.fc1(out))
out = self.fc2(out)
return out

The Net class is equivalent to the nn.Sequential model
we built earlier in terms of submodules; but by writing
the forward function explicitly, we can manipulate the
output of self.pool3 directly and call view on it to turn
it into a B × N vector. Note that we leave the batch
dimension as –1 in the call to view, since in principle we
don’t know how many samples will be in the batch.

 Here we use a subclass of nn.Module to contain
our entire model. We could also use subclasses to
define new building blocks for more complex net-
works. Picking up on the diagram style in chapter 6,
our network looks like the one shown in figure 8.10.
We are making some ad hoc choices about what infor-
mation to present where.

 Recall that the goal of classification networks typi-
cally is to compress information in the sense that we
start with an image with a sizable number of pixels
and compress it into (a vector of probabilities of)
classes. Two things about our architecture deserve
some commentary with respect to this goal.

This reshape
is what we

were missing
earlier.

209Subclassing nn.Module

 First, our goal is reflected by the size of our intermediate values generally
shrinking—this is done by reducing the number of channels in the convolutions, by
reducing the number of pixels through pooling, and by having an output dimension
lower than the input dimension in the linear layers. This is a common trait of
classification networks. However, in many popular architectures like the ResNets we saw
in chapter 2 and discuss more in section 8.5.3, the reduction is achieved by pooling in
the spatial resolution, but the number of channels increases (still resulting in a
reduction in size). It seems that our pattern of fast information reduction works well
with networks of limited depth and small images; but for deeper networks, the decrease
is typically slower.

 Second, in one layer, there is not a reduction of output size with regard to input
size: the initial convolution. If we consider a single output pixel as a vector of 32 ele-
ments (the channels), it is a linear transformation of 27 elements (as a convolution of
3 channels × 3 × 3 kernel size)—only a moderate increase. In ResNet, the initial con-
volution generates 64 channels from 147 elements (3 channels × 7 × 7 kernel size).6

So the first layer is exceptional in that it greatly increases the overall dimension (as in
channels times pixels) of the data flowing through it, but the mapping for each out-
put pixel considered in isolation still has approximately as many outputs as inputs.7

8.3.2 How PyTorch keeps track of parameters and submodules

Interestingly, assigning an instance of nn.Module to an attribute in an nn.Module, as
we did in the earlier constructor, automatically registers the module as a submodule.

NOTE The submodules must be top-level attributes, not buried inside list or
dict instances! Otherwise the optimizer will not be able to locate the sub-
modules (and, hence, their parameters). For situations where your model
requires a list or dict of submodules, PyTorch provides nn.ModuleList and
nn.ModuleDict.

We can call arbitrary methods of an nn.Module subclass. For example, for a model
where training is substantially different than its use, say, for prediction, it may make
sense to have a predict method. Be aware that calling such methods will be similar to
calling forward instead of the module itself—they will be ignorant of hooks, and the
JIT does not see the module structure when using them because we are missing the
equivalent of the __call__ bits shown in section 6.2.1.

 This allows Net to have access to the parameters of its submodules without further
action by the user:

6 The dimensions in the pixel-wise linear mapping defined by the first convolution were emphasized by Jeremy
Howard in his fast.ai course (https://www.fast.ai).

7 Outside of and older than deep learning, projecting into high-dimensional space and then doing conceptu-
ally simpler (than linear) machine learning is commonly known as the kernel trick. The initial increase in the
number of channels could be seen as a somewhat similar phenomenon, but striking a different balance
between the cleverness of the embedding and the simplicity of the model working on the embedding.

https://www.fast.ai

210 CHAPTER 8 Using convolutions to generalize

In[27]:
model = Net()

numel_list = [p.numel() for p in model.parameters()]
sum(numel_list), numel_list

Out[27]:
(18090, [432, 16, 1152, 8, 16384, 32, 64, 2])

What happens here is that the parameters() call delves into all submodules assigned
as attributes in the constructor and recursively calls parameters() on them. No mat-
ter how nested the submodule, any nn.Module can access the list of all child parame-
ters. By accessing their grad attribute, which has been populated by autograd, the
optimizer will know how to change parameters to minimize the loss. We know that
story from chapter 5.

 We now know how to implement our own modules—and we will need this a lot for
part 2. Looking back at the implementation of the Net class, and thinking about the
utility of registering submodules in the constructor so that we can access their param-
eters, it appears a bit of a waste that we are also registering submodules that have no
parameters, like nn.Tanh and nn.MaxPool2d. Wouldn’t it be easier to call these
directly in the forward function, just as we called view?

8.3.3 The functional API

It sure would! And that’s why PyTorch has functional counterparts for every nn module.
By “functional” here we mean “having no internal state”—in other words, “whose out-
put value is solely and fully determined by the value input arguments.” Indeed, torch
.nn.functional provides many functions that work like the modules we find in nn.
But instead of working on the input arguments and stored parameters like the mod-
ule counterparts, they take inputs and parameters as arguments to the function call.
For instance, the functional counterpart of nn.Linear is nn.functional.linear,
which is a function that has signature linear(input, weight, bias=None). The
weight and bias parameters are arguments to the function.

 Back to our model, it makes sense to keep using nn modules for nn.Linear and
nn.Conv2d so that Net will be able to manage their Parameters during training. How-
ever, we can safely switch to the functional counterparts of pooling and activation,
since they have no parameters:

In[28]:
import torch.nn.functional as F

class Net(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 8, kernel_size=3, padding=1)
self.fc1 = nn.Linear(8 * 8 * 8, 32)
self.fc2 = nn.Linear(32, 2)

211Subclassing nn.Module

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.conv1(x)), 2)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)
out = out.view(-1, 8 * 8 * 8)
out = torch.tanh(self.fc1(out))
out = self.fc2(out)
return out

This is a lot more concise than and fully equivalent to our previous definition of Net
in section 8.3.1. Note that it would still make sense to instantiate modules that require
several parameters for their initialization in the constructor.

TIP While general-purpose scientific functions like tanh still exist in
torch.nn.functional in version 1.0, those entry points are deprecated in
favor of functions in the top-level torch namespace. More niche functions
like max_pool2d will remain in torch.nn.functional.

Thus, the functional way also sheds light on what the nn.Module API is all about: a
Module is a container for state in the forms of Parameters and submodules combined
with the instructions to do a forward.

 Whether to use the functional or the modular API is a decision based on style and
taste. When part of a network is so simple that we want to use nn.Sequential, we’re in
the modular realm. When we are writing our own forwards, it may be more natural to
use the functional interface for things that do not need state in the form of parameters.

 In chapter 15, we will briefly touch on quantization. Then stateless bits like activa-
tions suddenly become stateful because information about the quantization needs to
be captured. This means if we aim to quantize our model, it might be worthwhile to
stick with the modular API if we go for non-JITed quantization. There is one style mat-
ter that will help you avoid surprises with (originally unforeseen) uses: if you need sev-
eral applications of stateless modules (like nn.HardTanh or nn.ReLU), it is probably a
good idea to have a separate instance for each. Reusing the same module appears to
be clever and will give correct results with our standard Python usage here, but tools
analyzing your model may trip over it.

 So now we can make our own nn.Module if we need to, and we also have the func-
tional API for cases when instantiating and then calling an nn.Module is overkill. This
has been the last bit missing to understand how the code organization works in just
about any neural network implemented in PyTorch.

 Let’s double-check that our model runs, and then we’ll get to the training loop:

In[29]:
model = Net()
model(img.unsqueeze(0))

Out[29]:
tensor([[-0.0157, 0.1143]], grad_fn=<AddmmBackward>)

212 CHAPTER 8 Using convolutions to generalize

We got two numbers! Information flows correctly. We might not realize it right now,
but in more complex models, getting the size of the first linear layer right is some-
times a source of frustration. We’ve heard stories of famous practitioners putting in
arbitrary numbers and then relying on error messages from PyTorch to backtrack the
correct sizes for their linear layers. Lame, eh? Nah, it’s all legit!

8.4 Training our convnet
We’re now at the point where we can assemble our complete training loop. We already
developed the overall structure in chapter 5, and the training loop looks much like
the one from chapter 6, but here we will revisit it to add some details like some track-
ing for accuracy. After we run our model, we will also have an appetite for a little more
speed, so we will learn how to run our models fast on a GPU. But first let’s look at the
training loop.

 Recall that the core of our convnet is two nested loops: an outer one over the
epochs and an inner one of the DataLoader that produces batches from our Dataset.
In each loop, we then have to

1 Feed the inputs through the model (the forward pass).
2 Compute the loss (also part of the forward pass).
3 Zero any old gradients.
4 Call loss.backward() to compute the gradients of the loss with respect to all

parameters (the backward pass).
5 Have the optimizer take a step in toward lower loss.

Also, we collect and print some information. So here is our training loop, looking
almost as it does in the previous chapter—but it is good to remember what each thing
is doing:

In[30]:
import datetime

def training_loop(n_epochs, optimizer, model, loss_fn, train_loader):
for epoch in range(1, n_epochs + 1):

loss_train = 0.0
for imgs, labels in train_loader:

outputs = model(imgs)

loss = loss_fn(outputs, labels)

optimizer.zero_grad()

loss.backward()

optimizer.step()

Uses the datetime module
included with Python Our loop over the epochs,

numbered from 1 to n_epochs
rather than starting at 0

Loops over our dataset in
the batches the data loader
creates for us

Feeds a batch
through our

model …

… and computes the loss
we wish to minimizeAfter getting rid of

the gradients from
the last round …

… performs the backward step. That is, we
compute the gradients of all parameters we
want the network to learn.Updates

the model

213Training our convnet

loss_train += loss.item()

if epoch == 1 or epoch % 10 == 0:
print('{} Epoch {}, Training loss {}'.format(

datetime.datetime.now(), epoch,
loss_train / len(train_loader)))

We use the Dataset from chapter 7; wrap it into a DataLoader; instantiate our net-
work, an optimizer, and a loss function as before; and call our training loop.

 The substantial changes in our model from the last chapter are that now our
model is a custom subclass of nn.Module and that we’re using convolutions. Let’s run
training for 100 epochs while printing the loss. Depending on your hardware, this
may take 20 minutes or more to finish!

In[31]:
train_loader = torch.utils.data.DataLoader(cifar2, batch_size=64,

shuffle=True)

model = Net() #
optimizer = optim.SGD(model.parameters(), lr=1e-2) #
loss_fn = nn.CrossEntropyLoss() #

training_loop(
n_epochs = 100,
optimizer = optimizer,
model = model,
loss_fn = loss_fn,
train_loader = train_loader,

)

Out[31]:
2020-01-16 23:07:21.889707 Epoch 1, Training loss 0.5634813266954605
2020-01-16 23:07:37.560610 Epoch 10, Training loss 0.3277610331109375
2020-01-16 23:07:54.966180 Epoch 20, Training loss 0.3035225479086493
2020-01-16 23:08:12.361597 Epoch 30, Training loss 0.28249378549824855
2020-01-16 23:08:29.769820 Epoch 40, Training loss 0.2611226033253275
2020-01-16 23:08:47.185401 Epoch 50, Training loss 0.24105800626574048
2020-01-16 23:09:04.644522 Epoch 60, Training loss 0.21997178820477928
2020-01-16 23:09:22.079625 Epoch 70, Training loss 0.20370126601047578
2020-01-16 23:09:39.593780 Epoch 80, Training loss 0.18939699422401987
2020-01-16 23:09:57.111441 Epoch 90, Training loss 0.17283396527266046
2020-01-16 23:10:14.632351 Epoch 100, Training loss 0.1614033816868712

So now we can train our network. But again, our friend the bird watcher will likely not
be impressed when we tell her that we trained to very low training loss.

Sums the losses
we saw over the epoch.
Recall that it is important
to transform the loss to a
Python number with .item(),
to escape the gradients.

Divides by the length of the
training data loader to get the
average loss per batch. This is a
much more intuitive measure than
the sum.

The DataLoader batches up the examples of our cifar2 dataset.
Shuffling randomizes the order of the examples from the dataset.

Instantiates our network … … the stochastic gradient
descent optimizer we have
been working with …

… and the cross entropy
loss we met in 7.10Calls the training

loop we defined
earlier

214 CHAPTER 8 Using convolutions to generalize

8.4.1 Measuring accuracy

In order to have a measure that is more interpretable than the loss, we can take a look
at our accuracies on the training and validation datasets. We use the same code as in
chapter 7:

In[32]:
train_loader = torch.utils.data.DataLoader(cifar2, batch_size=64,

shuffle=False)
val_loader = torch.utils.data.DataLoader(cifar2_val, batch_size=64,

shuffle=False)

def validate(model, train_loader, val_loader):
for name, loader in [("train", train_loader), ("val", val_loader)]:

correct = 0
total = 0

with torch.no_grad():
for imgs, labels in loader:

outputs = model(imgs)
_, predicted = torch.max(outputs, dim=1)
total += labels.shape[0]
correct += int((predicted == labels).sum())

print("Accuracy {}: {:.2f}".format(name , correct / total))

validate(model, train_loader, val_loader)

Out[32]:
Accuracy train: 0.93
Accuracy val: 0.89

We cast to a Python int—for integer tensors, this is equivalent to using .item(), simi-
lar to what we did in the training loop.

 This is quite a lot better than the fully connected model, which achieved only 79%
accuracy. We about halved the number of errors on the validation set. Also, we used
far fewer parameters. This is telling us that the model does a better job of generalizing
its task of recognizing the subject of images from a new sample, through locality and
translation invariance. We could now let it run for more epochs and see what perfor-
mance we could squeeze out.

8.4.2 Saving and loading our model

Since we’re satisfied with our model so far, it would be nice to actually save it, right?
It’s easy to do. Let’s save the model to a file:

In[33]:
torch.save(model.state_dict(), data_path + 'birds_vs_airplanes.pt')

The birds_vs_airplanes.pt file now contains all the parameters of model: that is,
weights and biases for the two convolution modules and the two linear modules. So,

We do not want gradients
here, as we will not want to
update the parameters.

Gives us the index
of the highest

value as output

Counts the number of
examples, so total is
increased by the batch
size

Comparing the predicted class that had the
maximum probability and the ground-truth

labels, we first get a Boolean array. Taking the
sum gives the number of items in the batch

where the prediction and ground truth agree.

215Training our convnet

no structure—just the weights. This means when we deploy the model in production
for our friend, we’ll need to keep the model class handy, create an instance, and then
load the parameters back into it:

In[34]:
loaded_model = Net()
loaded_model.load_state_dict(torch.load(data_path

+ 'birds_vs_airplanes.pt'))

Out[34]:
<All keys matched successfully>

We have also included a pretrained model in our code repository, saved to ../data/
p1ch7/birds_vs_airplanes.pt.

8.4.3 Training on the GPU

We have a net and can train it! But it would be good to make it a bit faster. It is no sur-
prise by now that we do so by moving our training onto the GPU. Using the .to
method we saw in chapter 3, we can move the tensors we get from the data loader to
the GPU, after which our computation will automatically take place there. But we also
need to move our parameters to the GPU. Happily, nn.Module implements a .to func-
tion that moves all of its parameters to the GPU (or casts the type when you pass a
dtype argument).

 There is a somewhat subtle difference between Module.to and Tensor.to.
Module.to is in place: the module instance is modified. But Tensor.to is out of place
(in some ways computation, just like Tensor.tanh), returning a new tensor. One
implication is that it is good practice to create the Optimizer after moving the param-
eters to the appropriate device.

 It is considered good style to move things to the GPU if one is available. A good
pattern is to set the a variable device depending on torch.cuda.is_available:

In[35]:
device = (torch.device('cuda') if torch.cuda.is_available()

else torch.device('cpu'))
print(f"Training on device {device}.")

Then we can amend the training loop by moving the tensors we get from the data
loader to the GPU by using the Tensor.to method. Note that the code is exactly like
our first version at the beginning of this section except for the two lines moving the
inputs to the GPU:

In[36]:
import datetime

def training_loop(n_epochs, optimizer, model, loss_fn, train_loader):
for epoch in range(1, n_epochs + 1):

loss_train = 0.0

We will have to make sure we don’t change
the definition of Net between saving and
later loading the model state.

216 CHAPTER 8 Using convolutions to generalize

for imgs, labels in train_loader:
imgs = imgs.to(device=device)
labels = labels.to(device=device)
outputs = model(imgs)
loss = loss_fn(outputs, labels)

optimizer.zero_grad()
loss.backward()
optimizer.step()

loss_train += loss.item()

if epoch == 1 or epoch % 10 == 0:
print('{} Epoch {}, Training loss {}'.format(

datetime.datetime.now(), epoch,
loss_train / len(train_loader)))

The same amendment must be made to the validate function. We can then instanti-
ate our model, move it to device, and run it as before:8

In[37]:
train_loader = torch.utils.data.DataLoader(cifar2, batch_size=64,

shuffle=True)

model = Net().to(device=device)
optimizer = optim.SGD(model.parameters(), lr=1e-2)
loss_fn = nn.CrossEntropyLoss()

training_loop(
n_epochs = 100,
optimizer = optimizer,
model = model,
loss_fn = loss_fn,
train_loader = train_loader,

)

Out[37]:
2020-01-16 23:10:35.563216 Epoch 1, Training loss 0.5717791349265227
2020-01-16 23:10:39.730262 Epoch 10, Training loss 0.3285350770137872
2020-01-16 23:10:45.906321 Epoch 20, Training loss 0.29493294959994637
2020-01-16 23:10:52.086905 Epoch 30, Training loss 0.26962305994550134
2020-01-16 23:10:56.551582 Epoch 40, Training loss 0.24709946277794564
2020-01-16 23:11:00.991432 Epoch 50, Training loss 0.22623272664892446
2020-01-16 23:11:05.421524 Epoch 60, Training loss 0.20996672821462534
2020-01-16 23:11:09.951312 Epoch 70, Training loss 0.1934866009719053
2020-01-16 23:11:14.499484 Epoch 80, Training loss 0.1799132404908253
2020-01-16 23:11:19.047609 Epoch 90, Training loss 0.16620008706761774
2020-01-16 23:11:23.590435 Epoch 100, Training loss 0.15667157247662544

8 There is a pin_memory option for the data loader that will cause the data loader to use memory pinned to
the GPU, with the goal of speeding up transfers. Whether we gain something varies, though, so we will not
pursue this here.

These two lines that move imgs and
labels to the device we are training
on are the only difference from our
previous version.

Moves our model (all
parameters) to the GPU. If
you forget to move either the
model or the inputs to the
GPU, you will get errors about
tensors not being on the same
device, because the PyTorch
operators do not support
mixing GPU and CPU inputs.

217Model design

Even for our small network here, we do see a sizable increase in speed. The advantage
of computing on GPUs is more visible for larger models.

 There is a slight complication when loading network weights: PyTorch will attempt
to load the weight to the same device it was saved from—that is, weights on the GPU
will be restored to the GPU. As we don’t know whether we want the same device, we
have two options: we could move the network to the CPU before saving it, or move it
back after restoring. It is a bit more concise to instruct PyTorch to override the device
information when loading weights. This is done by passing the map_location keyword
argument to torch.load:

In[39]:
loaded_model = Net().to(device=device)
loaded_model.load_state_dict(torch.load(data_path

+ 'birds_vs_airplanes.pt',
map_location=device))

Out[39]:
<All keys matched successfully>

8.5 Model design
We built our model as a subclass of nn.Module, the de facto standard for all but the
simplest models. Then we trained it successfully and saw how to use the GPU to train
our models. We’ve reached the point where we can build a feed-forward convolutional
neural network and train it successfully to classify images. The natural question is,
what now? What if we are presented with a more complicated problem? Admittedly,
our birds versus airplanes dataset wasn’t that complicated: the images were very small,
and the object under investigation was centered and took up most of the viewport.

 If we moved to, say, ImageNet, we would find larger, more complex images, where
the right answer would depend on multiple visual clues, often hierarchically orga-
nized. For instance, when trying to predict whether a dark brick shape is a remote
control or a cell phone, the network could be looking for something like a screen.

 Plus images may not be our sole focus in the real world, where we have tabular
data, sequences, and text. The promise of neural networks is sufficient flexibility to
solve problems on all these kinds of data given the proper architecture (that is, the
interconnection of layers or modules) and the proper loss function.

 PyTorch ships with a very comprehensive collection of modules and loss functions
to implement state-of-the-art architectures ranging from feed-forward components to
long short-term memory (LSTM) modules and transformer networks (two very popu-
lar architectures for sequential data). Several models are available through PyTorch
Hub or as part of torchvision and other vertical community efforts.

 We’ll see a few more advanced architectures in part 2, where we’ll walk through an
end-to-end problem of analyzing CT scans, but in general, it is beyond the scope of this
book to explore variations on neural network architectures. However, we can build on
the knowledge we’ve accumulated thus far to understand how we can implement

218 CHAPTER 8 Using convolutions to generalize

almost any architecture thanks to the expressivity of PyTorch. The purpose of this
section is precisely to provide conceptual tools that will allow us to read the latest
research paper and start implementing it in PyTorch—or, since authors often release
PyTorch implementations of their papers, to read the implementations without chok-
ing on our coffee.

8.5.1 Adding memory capacity: Width

Given our feed-forward architecture, there are a couple of dimensions we’d likely
want to explore before getting into further complications. The first dimension is the
width of the network: the number of neurons per layer, or channels per convolution.
We can make a model wider very easily in PyTorch. We just specify a larger number of
output channels in the first convolution and increase the subsequent layers accord-
ingly, taking care to change the forward function to reflect the fact that we’ll now
have a longer vector once we switch to fully connected layers:

In[40]:
class NetWidth(nn.Module):

def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 16, kernel_size=3, padding=1)
self.fc1 = nn.Linear(16 * 8 * 8, 32)
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.conv1(x)), 2)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)
out = out.view(-1, 16 * 8 * 8)
out = torch.tanh(self.fc1(out))
out = self.fc2(out)
return out

If we want to avoid hardcoding numbers in the definition of the model, we can easily
pass a parameter to init and parameterize the width, taking care to also parameterize
the call to view in the forward function:

In[42]:
class NetWidth(nn.Module):

def __init__(self, n_chans1=32):
super().__init__()
self.n_chans1 = n_chans1
self.conv1 = nn.Conv2d(3, n_chans1, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(n_chans1, n_chans1 // 2, kernel_size=3,

padding=1)
self.fc1 = nn.Linear(8 * 8 * n_chans1 // 2, 32)
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.conv1(x)), 2)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)

219Model design

out = out.view(-1, 8 * 8 * self.n_chans1 // 2)
out = torch.tanh(self.fc1(out))
out = self.fc2(out)
return out

The numbers specifying channels and features for each layer are directly related to
the number of parameters in a model; all other things being equal, they increase the
capacity of the model. As we did previously, we can look at how many parameters our
model has now:

In[44]:
sum(p.numel() for p in model.parameters())

Out[44]:
38386

The greater the capacity, the more variability in the inputs the model will be able to
manage; but at the same time, the more likely overfitting will be, since the model can
use a greater number of parameters to memorize unessential aspects of the input. We
already went into ways to combat overfitting, the best being increasing the sample size
or, in the absence of new data, augmenting existing data through artificial modifica-
tions of the same data.

 There are a few more tricks we can play at the model level (without acting on the
data) to control overfitting. Let’s review the most common ones.

8.5.2 Helping our model to converge and generalize: Regularization

Training a model involves two critical steps: optimization, when we need the loss to
decrease on the training set; and generalization, when the model has to work not only
on the training set but also on data it has not seen before, like the validation set. The
mathematical tools aimed at easing these two steps are sometimes subsumed under
the label regularization.

KEEPING THE PARAMETERS IN CHECK: WEIGHT PENALTIES

The first way to stabilize generalization is to add a regularization term to the loss. This
term is crafted so that the weights of the model tend to be small on their own, limiting
how much training makes them grow. In other words, it is a penalty on larger weight
values. This makes the loss have a smoother topography, and there’s relatively less to
gain from fitting individual samples.

 The most popular regularization terms of this kind are L2 regularization, which is
the sum of squares of all weights in the model, and L1 regularization, which is the sum
of the absolute values of all weights in the model.9 Both of them are scaled by a
(small) factor, which is a hyperparameter we set prior to training.

9 We’ll focus on L2 regularization here. L1 regularization—popularized in the more general statistics literature
by its use in Lasso—has the attractive property of resulting in sparse trained weights.

220 CHAPTER 8 Using convolutions to generalize

 L2 regularization is also referred to as weight decay. The reason for this name is that,
thinking about SGD and backpropagation, the negative gradient of the L2 regulariza-
tion term with respect to a parameter w_i is - 2 * lambda * w_i, where lambda is the
aforementioned hyperparameter, simply named weight decay in PyTorch. So, adding L2
regularization to the loss function is equivalent to decreasing each weight by an
amount proportional to its current value during the optimization step (hence, the
name weight decay). Note that weight decay applies to all parameters of the network,
such as biases.

 In PyTorch, we could implement regularization pretty easily by adding a term to
the loss. After computing the loss, whatever the loss function is, we can iterate the
parameters of the model, sum their respective square (for L2) or abs (for L1), and
backpropagate:

In[45]:
def training_loop_l2reg(n_epochs, optimizer, model, loss_fn,

train_loader):
for epoch in range(1, n_epochs + 1):

loss_train = 0.0
for imgs, labels in train_loader:

imgs = imgs.to(device=device)
labels = labels.to(device=device)
outputs = model(imgs)
loss = loss_fn(outputs, labels)

l2_lambda = 0.001
l2_norm = sum(p.pow(2.0).sum()

for p in model.parameters())
loss = loss + l2_lambda * l2_norm

optimizer.zero_grad()
loss.backward()
optimizer.step()

loss_train += loss.item()
if epoch == 1 or epoch % 10 == 0:

print('{} Epoch {}, Training loss {}'.format(
datetime.datetime.now(), epoch,
loss_train / len(train_loader)))

However, the SGD optimizer in PyTorch already has a weight_decay parameter that
corresponds to 2 * lambda, and it directly performs weight decay during the update
as described previously. It is fully equivalent to adding the L2 norm of weights to the
loss, without the need for accumulating terms in the loss and involving autograd.

NOT RELYING TOO MUCH ON A SINGLE INPUT: DROPOUT

An effective strategy for combating overfitting was originally proposed in 2014 by Nit-
ish Srivastava and coauthors from Geoff Hinton’s group in Toronto, in a paper aptly
entitled “Dropout: a Simple Way to Prevent Neural Networks from Overfitting”
(http://mng.bz/nPMa). Sounds like pretty much exactly what we’re looking for,

Replaces pow(2.0)
with abs() for L1
regularization

http://mng.bz/nPMa

221Model design

right? The idea behind dropout is indeed simple: zero out a random fraction of out-
puts from neurons across the network, where the randomization happens at each
training iteration.

 This procedure effectively generates slightly different models with different neu-
ron topologies at each iteration, giving neurons in the model less chance to coordi-
nate in the memorization process that happens during overfitting. An alternative
point of view is that dropout perturbs the features being generated by the model,
exerting an effect that is close to augmentation, but this time throughout the network.

 In PyTorch, we can implement dropout in a model by adding an nn.Dropout mod-
ule between the nonlinear activation function and the linear or convolutional module
of the subsequent layer. As an argument, we need to specify the probability with which
inputs will be zeroed out. In case of convolutions, we’ll use the specialized nn.Drop-
out2d or nn.Dropout3d, which zero out entire channels of the input:

In[47]:
class NetDropout(nn.Module):

def __init__(self, n_chans1=32):
super().__init__()
self.n_chans1 = n_chans1
self.conv1 = nn.Conv2d(3, n_chans1, kernel_size=3, padding=1)
self.conv1_dropout = nn.Dropout2d(p=0.4)
self.conv2 = nn.Conv2d(n_chans1, n_chans1 // 2, kernel_size=3,

padding=1)
self.conv2_dropout = nn.Dropout2d(p=0.4)
self.fc1 = nn.Linear(8 * 8 * n_chans1 // 2, 32)
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.conv1(x)), 2)
out = self.conv1_dropout(out)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)
out = self.conv2_dropout(out)
out = out.view(-1, 8 * 8 * self.n_chans1 // 2)
out = torch.tanh(self.fc1(out))
out = self.fc2(out)
return out

Note that dropout is normally active during training, while during the evaluation of a
trained model in production, dropout is bypassed or, equivalently, assigned a proba-
bility equal to zero. This is controlled through the train property of the Dropout
module. Recall that PyTorch lets us switch between the two modalities by calling

model.train()

or

model.eval()

222 CHAPTER 8 Using convolutions to generalize

on any nn.Model subclass. The call will be automatically replicated on the submodules
so that if Dropout is among them, it will behave accordingly in subsequent forward
and backward passes.

KEEPING ACTIVATIONS IN CHECK: BATCH NORMALIZATION

Dropout was all the rage when, in 2015, another seminal paper was published by
Sergey Ioffe and Christian Szegedy from Google, entitled “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift”
(https://arxiv.org/abs/1502.03167). The paper described a technique that had mul-
tiple beneficial effects on training: allowing us to increase the learning rate and make
training less dependent on initialization and act as a regularizer, thus representing an
alternative to dropout.

 The main idea behind batch normalization is to rescale the inputs to the activa-
tions of the network so that minibatches have a certain desirable distribution. Recall-
ing the mechanics of learning and the role of nonlinear activation functions, this
helps avoid the inputs to activation functions being too far into the saturated portion
of the function, thereby killing gradients and slowing training.

 In practical terms, batch normalization shifts and scales an intermediate input
using the mean and standard deviation collected at that intermediate location over
the samples of the minibatch. The regularization effect is a result of the fact that an
individual sample and its downstream activations are always seen by the model as
shifted and scaled, depending on the statistics across the randomly extracted mini-
batch. This is in itself a form of principled augmentation. The authors of the paper
suggest that using batch normalization eliminates or at least alleviates the need
for dropout.

 Batch normalization in PyTorch is provided through the nn.BatchNorm1D,
nn.BatchNorm2d, and nn.BatchNorm3d modules, depending on the dimensionality of
the input. Since the aim for batch normalization is to rescale the inputs of the activa-
tions, the natural location is after the linear transformation (convolution, in this case)
and the activation, as shown here:

In[49]:
class NetBatchNorm(nn.Module):

def __init__(self, n_chans1=32):
super().__init__()
self.n_chans1 = n_chans1
self.conv1 = nn.Conv2d(3, n_chans1, kernel_size=3, padding=1)
self.conv1_batchnorm = nn.BatchNorm2d(num_features=n_chans1)
self.conv2 = nn.Conv2d(n_chans1, n_chans1 // 2, kernel_size=3,

padding=1)
self.conv2_batchnorm = nn.BatchNorm2d(num_features=n_chans1 // 2)
self.fc1 = nn.Linear(8 * 8 * n_chans1 // 2, 32)
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = self.conv1_batchnorm(self.conv1(x))
out = F.max_pool2d(torch.tanh(out), 2)

https://arxiv.org/abs/1502.03167

223Model design

out = self.conv2_batchnorm(self.conv2(out))
out = F.max_pool2d(torch.tanh(out), 2)
out = out.view(-1, 8 * 8 * self.n_chans1 // 2)
out = torch.tanh(self.fc1(out))
out = self.fc2(out)
return out

Just as for dropout, batch normalization needs to behave differently during training
and inference. In fact, at inference time, we want to avoid having the output for a spe-
cific input depend on the statistics of the other inputs we’re presenting to the model.
As such, we need a way to still normalize, but this time fixing the normalization
parameters once and for all.

 As minibatches are processed, in addition to estimating the mean and standard
deviation for the current minibatch, PyTorch also updates the running estimates for
mean and standard deviation that are representative of the whole dataset, as an
approximation. This way, when the user specifies

model.eval()

and the model contains a batch normalization module, the running estimates are fro-
zen and used for normalization. To unfreeze running estimates and return to using
the minibatch statistics, we call model.train(), just as we did for dropout.

8.5.3 Going deeper to learn more complex structures: Depth

Earlier, we talked about width as the first dimension to act on in order to make a
model larger and, in a way, more capable. The second fundamental dimension is obvi-
ously depth. Since this is a deep learning book, depth is something we’re supposedly
into. After all, deeper models are always better than shallow ones, aren’t they? Well, it
depends. With depth, the complexity of the function the network is able to approxi-
mate generally increases. In regard to computer vision, a shallower network could
identify a person’s shape in a photo, whereas a deeper network could identify the per-
son, the face on their top half, and the mouth within the face. Depth allows a model
to deal with hierarchical information when we need to understand the context in
order to say something about some input.

 There’s another way to think about depth: increasing depth is related to increasing
the length of the sequence of operations that the network will be able to perform
when processing input. This view—of a deep network that performs sequential opera-
tions to carry out a task—is likely fascinating to software developers who are used to
thinking about algorithms as sequences of operations like “find the person’s boundar-
ies, look for the head on top of the boundaries, look for the mouth within the head.”

SKIP CONNECTIONS

Depth comes with some additional challenges, which prevented deep learning models
from reaching 20 or more layers until late 2015. Adding depth to a model generally
makes training harder to converge. Let’s recall backpropagation and think about it in

224 CHAPTER 8 Using convolutions to generalize

the context of a very deep network. The derivatives of the loss function with respect to
the parameters, especially those in early layers, need to be multiplied by a lot of other
numbers originating from the chain of derivative operations between the loss and the
parameter. Those numbers being multiplied could be small, generating ever-smaller
numbers, or large, swallowing smaller numbers due to floating-point approximation.
The bottom line is that a long chain of multiplications will tend to make the contribu-
tion of the parameter to the gradient vanish, leading to ineffective training of that layer
since that parameter and others like it won’t be properly updated.

 In December 2015, Kaiming He and
coauthors presented residual networks
(ResNets), an architecture that uses a
simple trick to allow very deep networks
to be successfully trained (https://
arxiv.org/abs/1512.03385). That work
opened the door to networks ranging
from tens of layers to 100 layers in depth,
surpassing the then state of the art in
computer vision benchmark problems.
We encountered residual networks
when we were playing with pretrained
models in chapter 2. The trick we men-
tioned is the following: using a skip con-
nection to short-circuit blocks of layers, as
shown in figure 8.11.

 A skip connection is nothing but
the addition of the input to the output
of a block of layers. This is exactly how
it is done in PyTorch. Let’s add one
layer to our simple convolutional
model, and let’s use ReLU as the acti-
vation for a change. The vanilla mod-
ule with an extra layer looks like this:

In[51]:
class NetDepth(nn.Module):

def __init__(self, n_chans1=32):
super().__init__()
self.n_chans1 = n_chans1
self.conv1 = nn.Conv2d(3, n_chans1, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(n_chans1, n_chans1 // 2, kernel_size=3,

padding=1)
self.conv3 = nn.Conv2d(n_chans1 // 2, n_chans1 // 2,

kernel_size=3, padding=1)
self.fc1 = nn.Linear(4 * 4 * n_chans1 // 2, 32)
self.fc2 = nn.Linear(32, 2)

Linear (32d->2d)

Output (2d)

relu

relu

relu

relu

Skip

coNnection

NetDepth / NetRes

MaxPOol (2x2)

Conv2d(3x3, n/2c->n/2c)

MaxPOol (2x2)

Conv2d(3x3, nc->n/2c)

Conv2d (3x3, 3c->nc)

Linear ((n/2*16)d->32d)

View ((n/2*16)d)

Input (3c, 32x32)

ncx16x16

ncx32x32

MaxPOol (2x2)

n/2cx8x8

n/2cx4x4

Figure 8.11 The architecture of our network with
three convolutional layers. The skip connection is
what differentiates NetRes from NetDepth.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

225Model design

def forward(self, x):
out = F.max_pool2d(torch.relu(self.conv1(x)), 2)
out = F.max_pool2d(torch.relu(self.conv2(out)), 2)
out = F.max_pool2d(torch.relu(self.conv3(out)), 2)
out = out.view(-1, 4 * 4 * self.n_chans1 // 2)
out = torch.relu(self.fc1(out))
out = self.fc2(out)
return out

Adding a skip connection a la ResNet to this model amounts to adding the output of
the first layer in the forward function to the input of the third layer:

In[53]:
class NetRes(nn.Module):

def __init__(self, n_chans1=32):
super().__init__()
self.n_chans1 = n_chans1
self.conv1 = nn.Conv2d(3, n_chans1, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(n_chans1, n_chans1 // 2, kernel_size=3,

padding=1)
self.conv3 = nn.Conv2d(n_chans1 // 2, n_chans1 // 2,

kernel_size=3, padding=1)
self.fc1 = nn.Linear(4 * 4 * n_chans1 // 2, 32)
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = F.max_pool2d(torch.relu(self.conv1(x)), 2)
out = F.max_pool2d(torch.relu(self.conv2(out)), 2)
out1 = out
out = F.max_pool2d(torch.relu(self.conv3(out)) + out1, 2)
out = out.view(-1, 4 * 4 * self.n_chans1 // 2)
out = torch.relu(self.fc1(out))
out = self.fc2(out)
return out

In other words, we’re using the output of the first activations as inputs to the last, in
addition to the standard feed-forward path. This is also referred to as identity mapping.
So, how does this alleviate the issues with vanishing gradients we were mentioning
earlier?

 Thinking about backpropagation, we can appreciate that a skip connection, or a
sequence of skip connections in a deep network, creates a direct path from the deeper
parameters to the loss. This makes their contribution to the gradient of the loss more
direct, as partial derivatives of the loss with respect to those parameters have a chance
not to be multiplied by a long chain of other operations.

 It has been observed that skip connections have a beneficial effect on convergence
especially in the initial phases of training. Also, the loss landscape of deep residual
networks is a lot smoother than feed-forward networks of the same depth and width.

 It is worth noting that skip connections were not new to the world when ResNets
came along. Highway networks and U-Net made use of skip connections of one form

226 CHAPTER 8 Using convolutions to generalize

or another. However, the way ResNets used skip connections enabled models of
depths greater than 100 to be amenable to training.

 Since the advent of ResNets, other architectures have taken skip connections to
the next level. One in particular, DenseNet, proposed to connect each layer with sev-
eral other layers downstream through skip connections, achieving state-of-the-art
results with fewer parameters. By now, we know how to implement something like
DenseNets: just arithmetically add earlier intermediate outputs to downstream inter-
mediate outputs.

BUILDING VERY DEEP MODELS IN PYTORCH

We talked about exceeding 100 layers in a convolutional neural network. How can we
build that network in PyTorch without losing our minds in the process? The standard
strategy is to define a building block, such as a (Conv2d, ReLU, Conv2d) + skip
connection block, and then build the network dynamically in a for loop. Let’s see it
done in practice. We will create the network depicted in figure 8.12.

We first create a module subclass whose sole job is to provide the computation for one
block—that is, one group of convolutions, activation, and skip connection:

Linear (32d->2d)

Output (2d)

...

relu

BatchNorm2d (nc)

ReLU

+

Output (2d, n chaNnels)

Input (2d, n chaNnels)

ResBlock

relu

NetResDEep

100

ResBlocks

Linear ((n*64)d->32d)

MaxPOol (2x2)

ResBlock(nc)

ResBlock(nc)

Conv2d (3x3, 3c->nc)

View ((n*64)d)

MaxPOol (2x2)

ncx16x16

ncx16x16

ncx32x32

ncx8x8

ncx16x16

Input (3c, 32x32)

Conv2d(3x3, nc->nc)

Figure 8.12 Our deep architecture with residual connections. On the left, we define a simplistic
residual block. We use it as a building block in our network, as shown on the right.

227Model design

In[55]:
class ResBlock(nn.Module):

def __init__(self, n_chans):
super(ResBlock, self).__init__()
self.conv = nn.Conv2d(n_chans, n_chans, kernel_size=3,

padding=1, bias=False)
self.batch_norm = nn.BatchNorm2d(num_features=n_chans)
torch.nn.init.kaiming_normal_(self.conv.weight,

nonlinearity='relu')
torch.nn.init.constant_(self.batch_norm.weight, 0.5)
torch.nn.init.zeros_(self.batch_norm.bias)

def forward(self, x):
out = self.conv(x)
out = self.batch_norm(out)
out = torch.relu(out)
return out + x

Since we’re planning to generate a deep model, we are including batch normalization
in the block, since this will help prevent gradients from vanishing during training.
We’d now like to generate a 100-block network. Does this mean we have to prepare for
some serious cutting and pasting? Not at all; we already have the ingredients for imag-
ining how this could look like.

 First, in init, we create nn.Sequential containing a list of ResBlock instances.
nn.Sequential will ensure that the output of one block is used as input to the next. It
will also ensure that all the parameters in the block are visible to Net. Then, in forward,
we just call the sequential to traverse the 100 blocks and generate the output:

In[56]:
class NetResDeep(nn.Module):

def __init__(self, n_chans1=32, n_blocks=10):
super().__init__()
self.n_chans1 = n_chans1
self.conv1 = nn.Conv2d(3, n_chans1, kernel_size=3, padding=1)
self.resblocks = nn.Sequential(

*(n_blocks * [ResBlock(n_chans=n_chans1)]))
self.fc1 = nn.Linear(8 * 8 * n_chans1, 32)
self.fc2 = nn.Linear(32, 2)

def forward(self, x):
out = F.max_pool2d(torch.relu(self.conv1(x)), 2)
out = self.resblocks(out)
out = F.max_pool2d(out, 2)
out = out.view(-1, 8 * 8 * self.n_chans1)
out = torch.relu(self.fc1(out))
out = self.fc2(out)
return out

In the implementation, we parameterize the actual number of layers, which is import-
ant for experimentation and reuse. Also, needless to say, backpropagation will work as
expected. Unsurprisingly, the network is quite a bit slower to converge. It is also more

The BatchNorm layer would
cancel the effect of bias, so

it is customarily left out.

Uses custom initializations
. kaiming_normal_ initializes with

 normal random elements with standard
 deviation as computed in the ResNet paper.

 The batch norm is initialized to produce output
distributions that initially have 0 mean and 0.5 variance.

228 CHAPTER 8 Using convolutions to generalize

fragile in convergence. This is why we used more-detailed initializations and trained
our NetRes with a learning rate of 3e – 3 instead of the 1e – 2 we used for the other
networks. We trained none of the networks to convergence, but we would not have
gotten anywhere without these tweaks.

 All this shouldn’t encourage us to seek depth on a dataset of 32 × 32 images, but it
clearly demonstrates how this can be achieved on more challenging datasets like Image-
Net. It also provides the key elements for understanding existing implementations for
models like ResNet, for instance, in torchvision.

INITIALIZATION

Let’s briefly comment about the earlier initialization. Initialization is one of the
important tricks in training neural networks. Unfortunately, for historical reasons,
PyTorch has default weight initializations that are not ideal. People are looking at fix-
ing the situation; if progress is made, it can be tracked on GitHub (https://
github.com/pytorch/pytorch/issues/18182). In the meantime, we need to fix the
weight initialization ourselves. We found that our model did not converge and looked
at what people commonly choose as initialization (a smaller variance in weights; and
zero mean and unit variance outputs for batch norm), and then we halved the output
variance in the batch norm when the network would not converge.

 Weight initialization could fill an entire chapter on its own, but we think that
would be excessive. In chapter 11, we’ll bump into initialization again and use what
arguably could be PyTorch defaults without much explanation. Once you’ve pro-
gressed to the point where the details of weight initialization are of specific interest to
you—probably not before finishing this book—you might revisit this topic.10

8.5.4 Comparing the designs from this section

We summarize the effect of each of our design modifications in isolation in figure
8.13. We should not overinterpret any of the specific numbers—our problem setup
and experiments are simplistic, and repeating the experiment with different random
seeds will probably generate variation at least as large as the differences in validation
accuracy. For this demonstration, we left all other things equal, from learning rate to
number of epochs to train; in practice, we would try to get the best results by varying
those. Also, we would likely want to combine some of the additional design elements.

 But a qualitative observation may be in order: as we saw in section 5.5.3, when dis-
cussing validatioin and overfitting, The weight decay and dropout regularizations,
which have a more rigorous statistical estimation interpretation as regularization than
batch norm, have a much narrower gap between the two accuracies. Batch norm, which

10 The seminal paper on the topic is by X. Glorot and Y. Bengio: “Understanding the Difficulty of Training Deep
Feedforward Neural Networks” (2010), which introduces PyTorch’s Xavier initializations (http://
mng.bz/vxz7). The ResNet paper we mentioned expands on the topic, too, giving us the Kaiming initializa-
tions used earlier. More recently, H. Zhang et al. have tweaked initialization to the point that they do not need
batch norm in their experiments with very deep residual networks (https://arxiv.org/abs/1901.09321).

https://github.com/pytorch/pytorch/issues/18182
https://github.com/pytorch/pytorch/issues/18182
https://github.com/pytorch/pytorch/issues/18182
http://mng.bz/vxz7
http://mng.bz/vxz7
http://mng.bz/vxz7
https://arxiv.org/abs/1901.09321

229Conclusion

serves more as a convergence helper, lets us train the network to nearly 100% training
accuracy, so we interpret the first two as regularization.

8.5.5 It’s already outdated

The curse and blessing of a deep learning practitioner is that neural network architec-
tures evolve at a very rapid pace. This is not to say that what we’ve seen in this chapter
is necessarily old school, but a thorough illustration of the latest and greatest architec-
tures is a matter for another book (and they would cease to be the latest and the great-
est pretty quickly anyway). The take-home message is that we should make every effort
to proficiently translate the math behind a paper into actual PyTorch code, or at least
understand the code that others have written with the same intention. In the last few
chapters, you have hopefully gathered quite a few of the fundamental skills to trans-
late ideas into implemented models in PyTorch.

8.6 Conclusion
After quite a lot of work, we now have a model that our fictional friend Jane can use to
filter images for her blog. All we have to do is take an incoming image, crop and resize
it to 32 × 32, and see what the model has to say about it. Admittedly, we have solved
only part of the problem, but it was a journey in itself.

 We have solved just part of the problem because there are a few interesting
unknowns we would still have to face. One is picking out a bird or airplane from a

0.70

0.75
train

val

0.80

0.85

A
Cc

u
r
a
c
y

0.90

0.95

1.00

b
a
s
e
l
in
e

w
id

t
h

12
 r

e
g

d
r
o
p
o
u
t

b
at

c
h
_
n
o
r
m

d
e
p
t
h

r
e
s

r
e
s
 d

Ee

p

Figure 8.13 The modified networks all perform similarly.

230 CHAPTER 8 Using convolutions to generalize

larger image. Creating bounding boxes around objects in an image is something a
model like ours can’t do.

 Another hurdle concerns what happens when Fred the cat walks in front of the
camera. Our model will not refrain from giving its opinion about how bird-like the cat
is! It will happily output “airplane” or “bird,” perhaps with 0.99 probability. This issue
of being very confident about samples that are far from the training distribution is
called overgeneralization. It’s one of the main problems when we take a (presumably
good) model to production in those cases where we can’t really trust the input (which,
sadly, is the majority of real-world cases).

 In this chapter, we have built reasonable, working models in PyTorch that can
learn from images. We did it in a way that helped us build our intuition around convo-
lutional networks. We also explored ways in which we can make our models wider and
deeper, while controlling effects like overfitting. Although we still only scratched the
surface, we have taken another significant step ahead from the previous chapter. We
now have a solid basis for facing the challenges we’ll encounter when working on
deep learning projects.

 Now that we’re familiar with PyTorch conventions and common features, we’re
ready to tackle something bigger. We’re going to transition from a mode where each
chapter or two presents a small problem, to spending multiple chapters breaking
down a bigger, real-world problem. Part 2 uses automatic detection of lung cancer as
an ongoing example; we will go from being familiar with the PyTorch API to being
able to implement entire projects using PyTorch. We’ll start in the next chapter by
explaining the problem from a high level, and then we’ll get into the details of the
data we’ll be using.

8.7 Exercises
1 Change our model to use a 5 × 5 kernel with kernel_size=5 passed to the

nn.Conv2d constructor.
a What impact does this change have on the number of parameters in the

model?
b Does the change improve or degrade overfitting?
c Read https://pytorch.org/docs/stable/nn.html#conv2d.
d Can you describe what kernel_size=(1,3) will do?
e How does the model behave with such a kernel?

2 Can you find an image that contains neither a bird nor an airplane, but that the
model claims has one or the other with more than 95% confidence?
a Can you manually edit a neutral image to make it more airplane-like?
b Can you manually edit an airplane image to trick the model into reporting a

bird?
c Do these tasks get easier with a network with less capacity? More capacity?

https://pytorch.org/docs/stable/nn.html#conv2d

231Summary

8.8 Summary
 Convolution can be used as the linear operation of a feed-forward network

dealing with images. Using convolution produces networks with fewer parame-
ters, exploiting locality and featuring translation invariance.

 Stacking multiple convolutions with their activations one after the other, and
using max pooling in between, has the effect of applying convolutions to
increasingly smaller feature images, thereby effectively accounting for spatial
relationships across larger portions of the input image as depth increases.

 Any nn.Module subclass can recursively collect and return its and its children’s
parameters. This technique can be used to count them, feed them into the opti-
mizer, or inspect their values.

 The functional API provides modules that do not depend on storing internal
state. It is used for operations that do not hold parameters and, hence, are not
trained.

 Once trained, parameters of a model can be saved to disk and loaded back in
with one line of code each.

Part 2

Learning from images
 in the real world: Early
 detection of lung cancer

Part 2 is structured differently than part 1; it’s almost a book within a book.
We’ll take a single use case and explore it in depth over the course of several chap-
ters, starting with the basic building blocks we learned in part 1, and building out
a more complete project than we’ve seen so far. Our first attempts are going to be
incomplete and inaccurate, and we’ll explore how to diagnose those problems
and then fix them. We’ll also identify various other improvements to our solution,
implement them, and measure their impact. In order to train the models we’ll
develop in part 2, you will need access to a GPU with at least 8 GB of RAM as well
as several hundred gigabytes of free disk space to store the training data.

 Chapter 9 introduces the project, environment, and data we will consume and
the structure of the project we’ll implement. Chapter 10 shows how we can turn
our data into a PyTorch dataset, and chapters 11 and 12 introduce our classifica-
tion model: the metrics we need to gauge how well the dataset is training, and
implement solutions to problems preventing the model from training well. In
chapter 13, we’ll shift gears to the beginning of the end-to-end project by creating
a segmentation model that produces a heatmap rather than a single classifica-
tion. That heatmap will be used to generate locations to classify. Finally, in chap-
ter 14, we’ll combine our segmentation and classification models to perform a
final diagnosis.

235

Using PyTorch
 to fight cancer

We have two main goals for this chapter. We’ll start by covering the overall plan for
part 2 of the book so that we have a solid idea of the larger scope the following indi-
vidual chapters will be building toward. In chapter 10, we will begin to build out the
data-parsing and data-manipulation routines that will produce data to be con-
sumed in chapter 11 while training our first model. In order to do what’s needed
for those upcoming chapters well, we’ll also use this chapter to cover some of the
context in which our project will be operating: we’ll go over data formats, data
sources, and exploring the constraints that our problem domain places on us. Get
used to performing these tasks, since you’ll have to do them for any serious deep
learning project!

This chapter covers
 Breaking a large problem into smaller, easier ones

 Exploring the constraints of an intricate deep
learning problem, and deciding on a structure
and approach

 Downloading the training data

236 CHAPTER 9 Using PyTorch to fight cancer

9.1 Introduction to the use case
Our goal for this part of the book is to give you the tools to deal with situations where
things aren’t working, which is a far more common state of affairs than part 1 might have
led you to believe. We can’t predict every failure case or cover every debugging tech-
nique, but hopefully we’ll give you enough to not feel stuck when you encounter a new
roadblock. Similarly, we want to help you avoid situations with your own projects where
you have no idea what you could do next when your projects are under-performing.
Instead, we hope your ideas list will be so long that the challenge will be to prioritize!

 In order to present these ideas and techniques, we need a context with some
nuance and a fair bit of heft to it. We’ve chosen automatic detection of malignant
tumors in the lungs using only a CT scan of a patient’s chest as input. We’ll be focus-
ing on the technical challenges rather than the human impact, but make no mis-
take—even from just an engineering perspective, part 2 will require a more serious,
structured approach than we needed in part 1 in order to have the project succeed.

NOTE CT scans are essentially 3D X-rays, represented as a 3D array of single-
channel data. We’ll cover them in more detail soon.

As you might have guessed, the title of this chapter is more eye-catching, implied hyper-
bole than anything approaching a serious statement of intent. Let us be precise: our
project in this part of the book will take three-dimensional CT scans of human torsos as
input and produce as output the location of suspected malignant tumors, if any exist.

 Detecting lung cancer early has a huge impact on survival rate, but is difficult to do
manually, especially in any comprehensive, whole-population sense. Currently, the
work of reviewing the data must be performed by highly trained specialists, requires
painstaking attention to detail, and it is dominated by cases where no cancer exists.

 Doing that job well is akin to being placed in front of 100 haystacks and being told,
“Determine which of these, if any, contain a needle.” Searching this way results in the
potential for missed warning signs, particularly in the early stages when the hints are
more subtle. The human brain just isn’t built well for that kind of monotonous work.
And that, of course, is where deep learning comes in.

 Automating this process is going to give us experience working in an uncoopera-
tive environment where we have to do more work from scratch, and there are fewer
easy answers to problems that we might run into. Together, we’ll get there, though!
Once you’re finished reading part 2, we think you’ll be ready to start working on a
real-world, unsolved problem of your own choosing.

 We chose this problem of lung tumor detection for a few reasons. The primary rea-
son is that the problem itself is unsolved! This is important, because we want to make
it clear that you can use PyTorch to tackle cutting-edge projects effectively. We hope
that increases your confidence in PyTorch as a framework, as well as in yourself as a
developer. Another nice aspect of this problem space is that while it’s unsolved, a lot
of teams have been paying attention to it recently and have seen promising results.
That means this challenge is probably right at the edge of our collective ability to
solve; we won’t be wasting our time on a problem that’s actually decades away from

237Preparing for a large-scale project

reasonable solutions. That attention on the problem has also resulted in a lot of high-
quality papers and open source projects, which are a great source of inspiration and
ideas. This will be a huge help once we conclude part 2 of the book, if you are inter-
ested in continuing to improve on the solution we create. We’ll provide some links to
additional information in chapter 14.

 This part of the book will remain focused on the problem of detecting lung
tumors, but the skills we’ll teach are general. Learning how to investigate, preprocess,
and present your data for training is important no matter what project you’re working
on. While we’ll be covering preprocessing in the specific context of lung tumors, the
general idea is that this is what you should be prepared to do for your project to succeed.
Similarly, setting up a training loop, getting the right performance metrics, and tying
the project’s models together into a final application are all general skills that we’ll
employ as we go through chapters 9 through 14.

NOTE While the end result of part 2 will work, the output will not be accurate
enough to use clinically. We’re focusing on using this as a motivating example
for teaching PyTorch, not on employing every last trick to solve the problem.

9.2 Preparing for a large-scale project
This project will build off of the foundational skills learned in part 1. In particular, the
content covering model construction from chapter 8 will be directly relevant.
Repeated convolutional layers followed by a resolution-reducing downsampling layer
will still make up the majority of our model. We will use 3D data as input to our
model, however. This is conceptually similar to the 2D image data used in the last few
chapters of part 1, but we will not be able to rely on all of the 2D-specific tools avail-
able in the PyTorch ecosystem.

 The main differences between the work we did with convolutional models in chap-
ter 8 and what we’ll do in part 2 are related to how much effort we put into things out-
side the model itself. In chapter 8, we used a provided, off-the-shelf dataset and did
little data manipulation before feeding the data into a model for classification. Almost
all of our time and attention were spent building the model itself, whereas now we’re
not even going to begin designing the first of our two model architectures until chap-
ter 11. That is a direct consequence of having nonstandard data without prebuilt
libraries ready to hand us training samples suitable to plug into a model. We’ll have to
learn about our data and implement quite a bit ourselves.

 Even when that’s done, this will not end up being a case where we convert the CT to
a tensor, feed it into a neural network, and have the answer pop out the other side. As
is common for real-world use cases such as this, a workable approach will be more com-
plicated to account for confounding factors such as limited data availability, finite
computational resources, and limitations on our ability to design effective models. Please
keep that in mind as we build to a high-level explanation of our project architecture.

 Speaking of finite computational resources, part 2 will require access to a GPU to
achieve reasonable training speeds, preferably one with at least 8 GB of RAM. Trying

238 CHAPTER 9 Using PyTorch to fight cancer

to train the models we will build on CPU could take weeks!1 If you don’t have a GPU
handy, we provide pretrained models in chapter 14; the nodule analysis script there
can probably be run overnight. While we don’t want to tie the book to proprietary ser-
vices if we don’t have to, we should note that at the time of writing, Colaboratory
(https://colab.research.google.com) provides free GPU instances that might be of
use. PyTorch even comes preinstalled! You will also need to have at least 220 GB of
free disk space to store the raw training data, cached data, and trained models.

NOTE Many of the code examples presented in part 2 have complicating
details omitted. Rather than clutter the examples with logging, error han-
dling, and edge cases, the text of this book contains only code that expresses
the core idea under discussion. Full working code samples can be found on
the book’s website (www.manning.com/books/deep-learning-with-pytorch)
and GitHub (https://github.com/deep-learning-with-pytorch/dlwpt-code).

OK, we’ve established that this is a hard, multifaceted problem, but what are we going
to do about it? Instead of looking at an entire CT scan for signs of tumors or their
potential malignancy, we’re going to solve a series of simpler problems that will com-
bine to provide the end-to-end result we’re interested in. Like a factory assembly line,
each step will take raw materials (data) and/or output from previous steps, perform
some processing, and hand off the result to the next station down the line. Not every
problem needs to be solved this way, but breaking off chunks of the problem to solve
in isolation is often a great way to start. Even if it turns out to be the wrong approach
for a given project, it’s likely we’ll have learned enough while working on the individ-
ual chunks that we’ll have a good idea how to restructure our approach into some-
thing successful.

 Before we get into the details of how we’ll break down our problem, we need to
learn some details about the medical domain. While the code listings will tell you what
we’re doing, learning about radiation oncology will explain why. Learning about the
problem space is crucial, no matter what domain it is. Deep learning is powerful, but
it’s not magic, and trying to apply it blindly to nontrivial problems will likely fail.
Instead, we have to combine insights into the space with intuition about neural net-
work behavior. From there, disciplined experimentation and refinement should give
us enough information to close in on a workable solution.

9.3 What is a CT scan, exactly?
Before we get too far into the project, we need to take a moment to explain what a CT
scan is. We will be using data from CT scans extensively as the main data format for
our project, so having a working understanding of the data format’s strengths, weak-
nesses, and fundamental nature will be crucial to utilizing it well. The key point we
noted earlier is this: CT scans are essentially 3D X-rays, represented as a 3D array of

1We presume—we haven’t tried it, much less timed it.

https://colab.research.google.com
https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code

239What is a CT scan, exactly?

single-channel data. As we might recall from chapter 4, this is like a stacked set of gray-
scale PNG images.

In addition to medical data, we can see similar voxel data in fluid simulations, 3D
scene reconstructions from 2D images, light detection and ranging (LIDAR) data for
self-driving cars, and many other problem spaces. Those spaces all have their individ-
ual quirks and subtleties, and while the APIs that we’re going to cover here apply gen-
erally, we must also be aware of the nature of the data we’re using with those APIs if we
want to be effective.

 Each voxel of a CT scan has a numeric value that roughly corresponds to the aver-
age mass density of the matter contained inside. Most visualizations of that data show
high-density material like bones and metal implants as white, low-density air and lung
tissue as black, and fat and tissue as various shades of gray. Again, this ends up looking
somewhat similar to an X-ray, with some key differences.

 The primary difference between CT scans and X-rays is that whereas an X-ray is a
projection of 3D intensity (in this case, tissue and bone density) onto a 2D plane, a CT
scan retains the third dimension of the data. This allows us to render the data in a vari-
ety of ways: for example, as a grayscale solid, which we can see in figure 9.1.

Voxel
A voxel is the 3D equivalent to the familiar two-dimensional pixel. It encloses a vol-
ume of space (hence, “volumetric pixel”), rather than an area, and is typically
arranged in a 3D grid to represent a field of data. Each of those dimensions will have
a measurable distance associated with it. Often, voxels are cubic, but for this chap-
ter, we will be dealing with voxels that are rectangular prisms.

Figure 9.1 A CT scan of a human torso
showing, from the top, skin, organs,
spine, and patient support bed. Source:
http://mng.bz/04r6; Mindways CT
Software / CC BY-SA 3.0 (https://
creativecommons.org/licenses/by-sa/
3.0/deed.en).

http://mng.bz/04r6
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

240 CHAPTER 9 Using PyTorch to fight cancer

NOTE CT scans actually measure radiodensity, which is a function of both
mass density and atomic number of the material under examination. For our
purposes here, the distinction isn’t relevant, since the model will consume
and learn from the CT data no matter what the exact units of the input hap-
pen to be.

This 3D representation also allows us to “see inside” the subject by hiding tissue types
we are not interested in. For example, we can render the data in 3D and restrict visibil-
ity to only bone and lung tissue, as in figure 9.2.

CT scans are much more difficult to acquire than X-rays, because doing so requires a
machine like the one shown in figure 9.3 that typically costs upward of a million dol-
lars new and requires trained staff to operate it. Most hospitals and some well-
equipped clinics have a CT scanner, but they aren’t nearly as ubiquitous as X-ray
machines. This, combined with patient privacy regulations, can make it somewhat dif-
ficult to get CT scans unless someone has already done the work of gathering and
organizing a collection of them.

 Figure 9.3 also shows an example bounding box for the area contained in the CT
scan. The bed the patient is resting on moves back and forth, allowing the scanner to
image multiple slices of the patient and hence fill the bounding box. The scanner’s
darker, central ring is where the actual imaging equipment is located.

 A final difference between a CT scan and an X-ray is that the data is a digital-only format.
CT stands for computed tomography (https://en.wikipedia.org/wiki/CT_scan#Process).

600.0

500.0

500.0

500.0

X

y

Z

400.0

400.0

400.0

300.0

300.0

300.0

200.0

200.0

200.0100.0

100.0

100.0

0.0

Figure 9.2 A CT scan
showing ribs, spine, and
lung structures

https://en.wikipedia.org/wiki/CT_scan#Process

241The project: An end-to-end detector for lung cancer

The raw output of the scanning process doesn’t look particularly meaningful to the human
eye and must be properly reinterpreted by a computer into something we can understand.
The settings of the CT scanner when the scan is taken can have a large impact on the result-
ing data.

 While this information might not seem particularly relevant, we have actually
learned something that is: from figure 9.3, we can see that the way the CT scanner
measures distance along the head-to-foot axis is different than the other two axes. The
patient actually moves along that axis! This explains (or at least is a strong hint as to)
why our voxels might not be cubic, and also ties into how we approach massaging our
data in chapter 12. This is a good example of why we need to understand our problem
space if we’re going to make effective choices about how to solve our problem. When
starting to work on your own projects, be sure you do the same investigation into the
details of your data.

9.4 The project: An end-to-end detector for lung cancer
Now that we’ve got our heads wrapped around the basics of CT scans, let’s discuss the
structure of our project. Most of the bytes on disk will be devoted to storing the CT
scans’ 3D arrays containing density information, and our models will primarily con-
sume various subslices of those 3D arrays. We’re going to use five main steps to go
from examining a whole-chest CT scan to giving the patient a lung cancer diagnosis.

 Our full, end-to-end solution shown in figure 9.4 will load CT data files to produce
a Ct instance that contains the full 3D scan, combine that with a module that per-
forms segmentation (flagging voxels of interest), and then group the interesting voxels
into small lumps in the search for candidate nodules.

 The nodule locations are combined back with the CT voxel data to produce nod-
ule candidates, which can then be examined by our nodule classification model to
determine whether they are actually nodules in the first place and, eventually, whether

Figure 9.3 A patient
inside a CT scanner, with
the CT scan’s bounding
box overlaid. Other than
in stock photos, patients
don’t typically wear
street clothes while
in the machine.

242 CHAPTER 9 Using PyTorch to fight cancer

they’re malignant. This latter task is particularly difficult because malignancy might
not be apparent from CT imaging alone, but we’ll see how far we get. Last, each of
those individual, per-nodule classifications can then be combined into a whole-patient
diagnosis.

 In more detail, we will do the following:

1 Load our raw CT scan data into a form that we can use with PyTorch. Putting
raw data into a form usable by PyTorch will be the first step in any project you
face. The process is somewhat less complicated with 2D image data and simpler
still with non-image data.

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

[()

candidate

Locations

Step 4 (ch. 11+

ClaSsificatio

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

Figure 9.4 The end-to-end process of taking a full-chest CT scan and determining whether the patent has a
malignant tumor

Nodules
A mass of tissue made of proliferating cells in the lung is a tumor. A tumor can be benign
or it can be malignant, in which case it is also referred to as cancer. A small tumor in
the lung (just a few millimeters wide) is called a nodule. About 40% of lung nodules turn
out to be malignant—small cancers. It is very important to catch those as early as pos-
sible, and this depends on medical imaging of the kind we are looking at here.

243The project: An end-to-end detector for lung cancer

2 Identify the voxels of potential tumors in the lungs using PyTorch to implement
a technique known as segmentation. This is roughly akin to producing a heatmap
of areas that should be fed into our classifier in step 3. This will allow us to focus
on potential tumors inside the lungs and ignore huge swaths of uninteresting
anatomy (a person can’t have lung cancer in the stomach, for example).

Generally, being able to focus on a single, small task is best while learning.
With experience, there are some situations where more complicated model
structures can yield superlative results (for example, the GAN game we saw in
chapter 2), but designing those from scratch requires extensive mastery of the
basic building blocks first. Gotta walk before you run, and all that.

3 Group interesting voxels into lumps: that is, candidate nodules (see figure 9.5
for more information on nodules). Here, we will find the rough center of each
hotspot on our heatmap.

Each nodule can be located by the index, row, and column of its center point.
We do this to present a simple, constrained problem to the final classifier.
Grouping voxels will not involve PyTorch directly, which is why we’ve pulled this
out into a separate step. Often, when working with multistep solutions, there will
be non-deep-learning glue steps between the larger, deep-learning-powered
portions of the project.

4 Classify candidate nodules as actual nodules or non-nodules using 3D convolution.
This will be similar in concept to the 2D convolution we covered in chapter 8.

The features that determine the nature of a tumor from a candidate structure are
local to the tumor in question, so this approach should provide a good balance
between limiting input data size and excluding relevant information. Making
scope-limiting decisions like this can keep each individual task constrained,
which can help limit the amount of things to examine when troubleshooting.

5 Diagnose the patient using the combined per-nodule classifications.
Similar to the nodule classifier in the previous step, we will attempt to deter-

mine whether the nodule is benign or malignant based on imaging data alone. We
will take a simple maximum of the per-tumor malignancy predictions, as only one
tumor needs to be malignant for a patient to have cancer. Other projects might
want to use different ways of aggregating the per-instance predictions into a file
score. Here, we are asking, “Is there anything suspicious?” so maximum is a good
fit for aggregation. If we were looking for quantitative information like “the ratio
of type A tissue to type B tissue,” we might take an appropriate mean instead.

Figure 9.4 only depicts the final path through the system once we’ve built and trained
all of the requisite models. The actual work required to train the relevant models will
be detailed as we get closer to implementing each step.

 The data we’ll use for training provides human-annotated output for both steps 3
and 4. This allows us to treat steps 2 and 3 (identifying voxels and grouping them into
nodule candidates) as almost a separate project from step 4 (nodule candidate

244 CHAPTER 9 Using PyTorch to fight cancer

classification). Human experts have annotated the data with nodule locations, so we can
work on either steps 2 and 3 or step 4 in whatever order we prefer.

 We will first work on step 1 (data loading), and then jump to step 4 before we come
back and implement steps 2 and 3, since step 4 (classification) requires an approach
similar to what we used in chapter 8, using multiple convolutional and pooling layers to
aggregate spatial information before feeding it into a linear classifier. Once we’ve got
a handle on our classification model, we can start working on step 2 (segmentation).
Since segmentation is the more complicated topic, we want to tackle it without having
to learn both segmentation and the fundamentals of CT scans and malignant tumors at
the same time. Instead, we’ll explore the cancer-detection space while working on a
more familiar classification problem.

 This approach of starting in the middle of the problem and working our way out
probably seems odd. Starting at step 1 and working our way forward would make more
intuitive sense. Being able to carve up the problem and work on steps independently
is useful, however, since it can encourage more modular solutions; in addition, it’s eas-
ier to partition the workload between members of a small team. Also, actual clinical
users would likely prefer a system that flags suspicious nodules for review rather than
provides a single binary diagnosis. Adapting our modular solution to different use
cases will probably be easier than if we’d done a monolithic, from-the-top system.

 As we work our way through implementing each step, we’ll be going into a fair bit
of detail about lung tumors, as well as presenting a lot of fine-grained detail about CT
scans. While that might seem off-topic for a book that’s focused on PyTorch, we’re
doing so specifically so that you begin to develop an intuition about the problem
space. That’s crucial to have, because the space of all possible solutions and
approaches is too large to effectively code, train, and evaluate.

 If we were working on a different project (say, the one you tackle after finishing
this book), we’d still need to do an investigation to understand the data and problem
space. Perhaps you’re interested in satellite mapping, and your next project needs to
consume pictures of our planet taken from orbit. You’d need to ask questions about
the wavelengths being collected—do you get only normal RGB, or something more

On the shoulders of giants
We are standing on the shoulders of giants when deciding on this five-step approach.
We’ll discuss these giants and their work more in chapter 14. There isn’t any partic-
ular reason why we should know in advance that this project structure will work well
for this problem; instead, we’re relying on others who have actually implemented sim-
ilar things and reported success when doing so. Expect to have to experiment to find
workable approaches when transitioning to a different domain, but always try to learn
from earlier efforts in the space and from those who have worked in similar areas and
have discovered things that might transfer well. Go out there, look for what others
have done, and use that as a benchmark. At the same time, avoid getting code and
running it blindly, because you need to fully understand the code you’re running in
order to use the results to make progress for yourself.

245The project: An end-to-end detector for lung cancer

exotic? What about infrared or ultraviolet? In addition, there might be impacts on the
images based on time of day, or if the imaged location isn’t directly under the satellite,
skewing the image. Will the image need correction?

 Even if your hypothetical third project’s data type remains the same, it’s probable
that the domain you’ll be working in will change things, possibly drastically. Processing
camera output for self-driving cars still involves 2D images, but the complications and
caveats are wildly different. For example, it’s much less likely that a mapping satellite
will need to worry about the sun shining into the camera, or getting mud on the lens!

 We must be able to use our intuition to guide our investigation into potential opti-
mizations and improvements. That’s true of deep learning projects in general, and
we’ll practice using our intuition as we go through part 2. So, let’s do that. Take a
quick step back, and do a gut check. What does your intuition say about this
approach? Does it seem overcomplicated to you?

9.4.1 Why can’t we just throw data at a neural network until it works?
After reading the last section, we couldn’t blame you for thinking, “This is nothing
like chapter 8!” You might be wondering why we’ve got two separate model architec-
tures or why the overall data flow is so complicated. Well, our approach is different
from that in chapter 8 for a reason. It’s a hard task to automate, and people haven’t
fully figured it out yet. That difficulty translates to complexity; once we as a society
have solved this problem definitively, there will probably be an off-the-shelf library
package we can grab to have it Just Work, but we’re not there just yet.

 Why so difficult, though?
 Well, for starters, the majority of a CT scan is fundamentally uninteresting with

regard to answering the question, “Does this patient have a malignant tumor?” This
makes intuitive sense, since the vast majority of the patient’s body will consist of
healthy cells. In the cases where there is a malignant tumor, up to 99.9999% of the
voxels in the CT still won’t be cancer. That ratio is equivalent to a two-pixel blob of
incorrectly tinted color somewhere on a high-definition television, or a single mis-
spelled word out of a shelf of novels.

 Can you identify the white dot in the three views of figure 9.5 that has been flagged
as a nodule?2

 If you need a hint, the index, row, and column values can be used to help find the
relevant blob of dense tissue. Do you think you could figure out the relevant proper-
ties of tumors given only images (and that means only the images—no index, row, and
column information!) like these? What if you were given the entire 3D scan, not just
three slices that intersect the interesting part of the scan?

NOTE Don’t fret if you can’t locate the tumor! We’re trying to illustrate just
how subtle this data can be—the fact that it is hard to identify visually is the
entire point of this example.

2The series_uid of this sample is 1.3.6.1.4.1.14519.5.2.1.6279.6001.12626457893177825889037
1755354, which can be useful if you’d like to look at it in detail later.

246 CHAPTER 9 Using PyTorch to fight cancer

You might have seen elsewhere that end-to-end approaches for detection and classi-
fication of objects are very successful in general vision tasks. TorchVision includes end-
to-end models like Fast R-CNN/Mask R-CNN, but these are typically trained on
hundreds of thousands of images, and those datasets aren’t constrained by the number
of samples from rare classes. The project architecture we will use has the benefit of
working well with a more modest amount of data. So while it’s certainly theoretically
possible to just throw an arbitrarily large amount of data at a neural network until it
learns the specifics of the proverbial lost needle, as well as how to ignore the hay, it’s
going to be practically prohibitive to collect enough data and wait for a long enough
time to train the network properly. That won’t be the best approach since the results are
poor, and most readers won’t have access to the compute resources to pull it off at all.

 To come up with the best solution, we could investigate proven model designs that
can better integrate data in an end-to-end manner.3 These complicated designs are
capable of producing high-quality results, but they’re not the best because understand-
ing the design decisions behind them requires having mastered fundamental con-
cepts first. That makes these advanced models poor candidates to use while teaching
those same fundamentals!

 That’s not to say that our multistep design is the best approach, either, but that’s
because “best” is only relative to the criteria we chose to evaluate approaches. There are
many “best” approaches, just as there are many goals we could have in mind as we work
on a project. Our self-contained, multistep approach has some disadvantages as well.

 Recall the GAN game from chapter 2. There, we had two networks cooperating to
produce convincing forgeries of old master artists. The artist would produce a candi-
date work, and the scholar would critique it, giving the artist feedback on how to

3For example, Retina U-Net (https://arxiv.org/pdf/1811.08661.pdf) and FishNet (http://mng.bz/K240).

index 522 row 267 col 367
0

100

200

300

400

500

0 100 200 300 400 500

600

0

500

400

300

200

100

0

100 200 300 400 500

600

0

500

400

300

200

100

0

100 200 300 400 500

Figure 9.5 A CT scan with approximately 1,000 structures that look like tumors to the untrained eye. Exactly one
has been identified as a nodule when reviewed by a human specialist. The rest are normal anatomical structures
like blood vessels, lesions, and other non-problematic lumps.

http://mng.bz/K240
https://arxiv.org/pdf/1811.08661.pdf

247The project: An end-to-end detector for lung cancer

improve. Put in technical terms, the structure of the model allowed gradients to back-
propagate from the final classifier (fake or real) to the earliest parts of the project
(the artist).

 Our approach for solving the problem won’t use end-to-end gradient backpropa-
gation to directly optimize for our end goal. Instead, we’ll optimize discrete chunks of
the problem individually, since our segmentation model and classification model
won’t be trained in tandem with each other. That might limit the top-end effectiveness
of our solution, but we feel that this will make for a much better learning experience.

 We feel that being able to focus on a single step at a time allows us to zoom in and
concentrate on the smaller number of new skills we’re learning. Each of our two mod-
els will be focused on performing exactly one task. Similar to a human radiologist as
they review slice after slice of CT, the job gets much easier to train for if the scope is
well contained. We also want to provide tools that allow for rich manipulation of the
data. Being able to zoom in and focus on the detail of a particular location will have a
huge impact on overall productivity while training the model compared to having to
look at the entire image at once. Our segmentation model is forced to consume the
entire image, but we will structure things so that our classification model gets a
zoomed-in view of the areas of interest.

 Step 3 (grouping) will produce and step 4 (classification) will consume data simi-
lar to the image in figure 9.6 containing sequential transverse slices of a tumor. This
image is a close-up view of a (potentially malignant, or at least indeterminate) tumor,
and it is what we’re going to train the step 4 model to identify, and the step 5 model to
classify as either benign or malignant. While this lump may seem nondescript to an
untrained eye (or untrained convolutional network), identifying the warning signs of
malignancy in this sample is at least a far more constrained problem than having to
consume the entire CT we saw earlier. Our code for the next chapter will provide rou-
tines to produce zoomed-in nodule images like figure 9.6.

 We will perform the step 1 data-loading work in chapter 10, and chapters 11 and
12 will focus on solving the problem of classifying these nodules. After that, we’ll back
up to work on step 2 (using segmentation to find the candidate tumors) in chapter 13,
and then we’ll close out part 2 of the book in chapter 14 by implementing the end-to-
end project with step 3 (grouping) and step 5 (nodule analysis and diagnosis).

NOTE Standard rendering of CTs places the superior at the top of the image
(basically, the head goes up), but CTs order their slices such that the first slice
is the inferior (toward the feet). So, Matplotlib renders the images upside
down unless we take care to flip them. Since that flip doesn’t really matter to
our model, we won’t complicate the code paths between our raw data and the
model, but we will add a flip to our rendering code to get the images right-
side up. For more information about CT coordinate systems, see section 10.4.

248 CHAPTER 9 Using PyTorch to fight cancer

Let’s repeat our high-level overview in figure 9.7.

slice 5

0

10

20

30

40

0 10 20 30 40

slice 7

0

10

20

30

40

0 10 20 30 40

slice 9

0

10

20

30

40

0 10 20 30 40

slice 11

0

10

20

30

40

0 10 20 30 40

slice 12

0

10

20

30

40

0 10 20 30 40

slice 13

0

10

20

30

40

0 10 20 30 40

slice 15

0

10

20

30

40

0 10 20 30 40

slice 17

0

10

20

30

40

0 10 20 30 40

slice 21

0

10

20

30

40

0 10 20 30 40

Figure 9.6 A close-up, multislice crop of the tumor from the CT scan in figure 9.5

249The project: An end-to-end detector for lung cancer

9.4.2 What is a nodule?

As we’ve said, in order to understand our data well enough to use it effectively, we
need to learn some specifics about cancer and radiation oncology. One last key thing
we need to understand is what a nodule is. Simply put, a nodule is any of the myriad
lumps and bumps that might appear inside someone’s lungs. Some are problematic
from a health-of-the-patient perspective; some are not. The precise definition4 limits
the size of a nodule to 3 cm or less, with a larger lump being a lung mass ; but we’re
going to use nodule interchangeably for all such anatomical structures, since it’s a
somewhat arbitrary cutoff and we’re going to deal with lumps on both sides of 3 cm
using the same code paths. A nodule—a small mass in the lung—can turn out to be
benign or a malignant tumor (also referred to as cancer). From a radiological perspec-
tive, a nodule is really similar to other lumps that have a wide variety of causes: infec-
tion, inflammation, blood-supply issues, malformed blood vessels, and diseases other
than tumors.

4Eric J. Olson, “Lung nodules: Can they be cancerous?” Mayo Clinic, http://mng.bz/yyge.

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

[()

candidate

Locations

Step 4 (ch. 11+

ClaSsificatio

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

Figure 9.7 The end-to-end process of taking a full-chest CT scan and determining whether the patient has a
malignant tumor

http://mng.bz/yyge

250 CHAPTER 9 Using PyTorch to fight cancer

 The key part is this: the cancers that we are trying to detect will always be nodules,
either suspended in the very non-dense tissue of the lung or attached to the lung wall.
That means we can limit our classifier to only nodules, rather than have it examine all
tissue. Being able to restrict the scope of expected inputs will help our classifier learn
the task at hand.

 This is another example of how the underlying deep learning techniques we’ll use
are universal, but they can’t be applied blindly.5 We’ll need to understand the field
we’re working in to make choices that will serve us well.

 In figure 9.8, we can see a stereotypical example of a malignant nodule. The smallest
nodules we’ll be concerned with are only a few millimeters across, though the one in
figure 9.8 is larger. As we discussed earlier in the chapter, this makes the smallest nod-
ules approximately a million times smaller than the CT scan as a whole. More than half
of the nodules detected in patients are not malignant.6

5Not if we want decent results, at least.
6According to the National Cancer Institute Dictionary of Cancer Terms: http://mng.bz/jgBP.

index 522

row 332

0

100

200

300

400

500

0 100 200 300 400 500

0

0

25

50

75

100

125

100 200 300 400 500

row 332

0

0

5

10

15

20

10 20 30 40

col 174

0

0

5

10

15

20

10 20 30 40

col 174

0

0

25

50

75

100

125

100 200 300 400 500

index 93
0

10

20

30

40

0 10 20 30 40

Figure 9.8 A CT scan with a malignant nodule displaying a visual discrepancy from other nodules

http://mng.bz/jgBP

251The project: An end-to-end detector for lung cancer

9.4.3 Our data source: The LUNA Grand Challenge

The CT scans we were just looking at come from the LUNA (LUng Nodule Analysis)
Grand Challenge. The LUNA Grand Challenge is the combination of an open dataset
with high-quality labels of patient CT scans (many with lung nodules) and a public
ranking of classifiers against the data. There is something of a culture of publicly shar-
ing medical datasets for research and analysis; open access to such data allows
researchers to use, combine, and perform novel work on this data without having to
enter into formal research agreements between institutions (obviously, some data is
kept private as well). The goal of the LUNA Grand Challenge is to encourage
improvements in nodule detection by making it easy for teams to compete for high
positions on the leader board. A project team can test the efficacy of their detection
methods against standardized criteria (the dataset provided). To be included in the
public ranking, a team must provide a scientific paper describing the project architec-
ture, training methods, and so on. This makes for a great resource to provide further
ideas and inspiration for project improvements.

NOTE Many CT scans “in the wild” are incredibly messy, in terms of idiosyn-
crasies between various scanners and processing programs. For example,
some scanners indicate areas of the CT scan that are outside of the scanner’s
field of view by setting the density of those voxels to something negative. CT
scans can also be acquired with a variety of settings on the CT scanner, which
can change the resulting image in ways ranging from subtly to wildly differ-
ent. Although the LUNA data is generally clean, be sure to check your
assumptions if you incorporate other data sources.

We will be using the LUNA 2016 dataset. The LUNA site (https://luna16.grand-challenge
.org/Description) describes two tracks for the challenge: the first track, “Nodule detec-
tion (NDET),” roughly corresponds to our step 1 (segmentation); and the second track,
“False positive reduction (FPRED),” is similar to our step 3 (classification). When the site
discusses “locations of possible nodules,” it is talking about a process similar to what we’ll
cover in chapter 13.

9.4.4 Downloading the LUNA data

Before we go any further into the nuts and bolts of our project, we’ll cover how to get
the data we’ll be using. It’s about 60 GB of data compressed, so depending on your
internet connection, it might take a while to download. Once uncompressed, it takes
up about 120 GB of space; and we’ll need another 100 GB or so of cache space to
store smaller chunks of data so that we can access it more quickly than reading in the
whole CT.7

7The cache space required is per chapter, but once you’re done with a chapter, you can delete the cache to free
up space.

https://luna16.grand-challenge.org/Description
https://luna16.grand-challenge.org/Description
https://luna16.grand-challenge.org/Description

252 CHAPTER 9 Using PyTorch to fight cancer

 Navigate to https://luna16.grand-challenge.org/download and either register
using email or use the Google OAuth login. Once logged in, you should see two down-
load links to Zenodo data, as well as a link to Academic Torrents. The data should be
the same from either.

TIP The luna.grand-challenge.org domain does not have links to the data
download page as of this writing. If you are having issues finding the down-
load page, double-check the domain for luna16., not luna., and reenter the
URL if needed.

The data we will be using comes in 10 subsets, aptly named subset0 through subset9.
Unzip each of them so you have separate subdirectories like code/data-unversioned/
part2/luna/subset0, and so on. On Linux, you’ll need the 7z decompression utility
(Ubuntu provides this via the p7zip-full package). Windows users can get an
extractor from the 7-Zip website (www.7-zip.org). Some decompression utilities will
not be able to open the archives; make sure you have the full version of the extractor
if you get an error.

 In addition, you need the candidates.csv and annotations.csv files. We’ve included
these files on the book’s website and in the GitHub repository for convenience, so
they should already be present in code/data/part2/luna/*.csv. They can also be
downloaded from the same location as the data subsets.

NOTE If you do not have easy access to ~220 GB of free disk space, it’s possi-
ble to run the examples using only 1 or 2 of the 10 subsets of data. The
smaller training set will result in the model performing much more poorly,
but that’s better than not being able to run the examples at all.

Once you have the candidates file and at least one subset downloaded, uncompressed,
and put in the correct location, you should be able to start running the examples in
this chapter. If you want to jump ahead, you can use the code/p2ch09_explore_data
.ipynb Jupyter Notebook to get started. Otherwise, we’ll return to the notebook in
more depth later in the chapter. Hopefully your downloads will finish before you start
reading the next chapter!

9.5 Conclusion
We’ve made major strides toward finishing our project! You might have the feeling
that we haven’t accomplished much; after all, we haven’t implemented a single line of
code yet. But keep in mind that you’ll need to do research and preparation as we have
here when you tackle projects on your own.

 In this chapter, we set out to do two things:

1 Understand the larger context around our lung cancer-detection project
2 Sketch out the direction and structure of our project for part 2

If you still feel that we haven’t made real progress, please recognize that mindset as a
trap—understanding the space your project is working in is crucial, and the design

https://luna16.grand-challenge.org/download

253Summary

work we’ve done will pay off handsomely as we move forward. We’ll see those divi-
dends shortly, once we start implementing our data-loading routines in chapter 10.

 Since this chapter has been informational only, without any code, we’ll skip the
exercises for now.

9.6 Summary
 Our approach to detecting cancerous nodules will have five rough steps: data load-

ing, segmentation, grouping, classification, and nodule analysis and diagnosis.
 Breaking down our project into smaller, semi-independent subprojects makes

teaching each subproject easier. Other approaches might make more sense for
future projects with different goals than the ones for this book.

 A CT scan is a 3D array of intensity data with approximately 32 million voxels,
which is around a million times larger than the nodules we want to recognize.
Focusing the model on a crop of the CT scan relevant to the task at hand will
make it easier to get reasonable results from training.

 Understanding our data will make it easier to write processing routines for our
data that don’t distort or destroy important aspects of the data. The array of CT
scan data typically will not have cubic voxels; mapping location information in
real-world units to array indexes requires conversion. The intensity of a CT scan
corresponds roughly to mass density but uses unique units.

 Identifying the key concepts of a project and making sure they are well repre-
sented in our design can be crucial. Most aspects of our project will revolve
around nodules, which are small masses in the lungs and can be spotted on a
CT along with many other structures that have a similar appearance.

 We are using the LUNA Grand Challenge data to train our model. The LUNA
data contains CT scans, as well as human-annotated outputs for classification and
grouping. Having high-quality data has a major impact on a project’s success.

254

Combining data sources
 into a unified dataset

Now that we’ve discussed the high-level goals for part 2, as well as outlined how the
data will flow through our system, let’s get into specifics of what we’re going to do in
this chapter. It’s time to implement basic data-loading and data-processing routines
for our raw data. Basically, every significant project you work on will need something
analogous to what we cover here.1 Figure 10.1 shows the high-level map of our proj-
ect from chapter 9. We’ll focus on step 1, data loading, for the rest of this chapter.

 Our goal is to be able to produce a training sample given our inputs of raw CT
scan data and a list of annotations for those CTs. This might sound simple, but
quite a bit needs to happen before we can load, process, and extract the data we’re

This chapter covers
 Loading and processing raw data files

 Implementing a Python class to represent our data

 Converting our data into a format usable by PyTorch

 Visualizing the training and validation data

1 To the rare researcher who has all of their data well prepared for them in advance: lucky you! The rest of
us will be busy writing code for loading and parsing.

255

interested in. Figure 10.2 shows what we’ll need to do to turn our raw data into a train-
ing sample. Luckily, we got a head start on understanding our data in the last chapter,
but we have more work to do on that front as well.

Figure 10.1 Our end-to-end lung cancer detection project, with a focus on this chapter’s topic: step 1, data loading

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

on

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

,

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

[()

candidate

Locations

Step 4 (ch. 11+

ClaSsificatio

.MMHD

.RRAW

CT

DataData

segmentattion

model

candidate

Sample

ANnotations

.CSV

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

sample aRray

(,

T/F,

“1.2.3”,

(I,R,C))

is nodule?

Series_uid

candidate

location

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinate

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ANnNnotations

.CSV

.MHD

.RAW

CT

ARray

CT Files

Figure 10.2 The data transforms required to
make a sample tuple. These sample tuples will
be used as input to our model training routine.

256 CHAPTER 10 Combining data sources into a unified dataset

This is a crucial moment, when we begin to transmute the leaden raw data, if not into
gold, then at least into the stuff that our neural network will spin into gold. We first dis-
cussed the mechanics of this transformation in chapter 4.

10.1 Raw CT data files
Our CT data comes in two files: a .mhd file containing metadata header information,
and a .raw file containing the raw bytes that make up the 3D array. Each file’s name starts
with a unique identifier called the series UID (the name comes from the Digital Imaging
and Communications in Medicine [DICOM] nomenclature) for the CT scan in ques-
tion. For example, for series UID 1.2.3, there would be two files: 1.2.3.mhd and 1.2.3.raw.

 Our Ct class will consume those two files and produce the 3D array, as well as the
transformation matrix to convert from the patient coordinate system (which we will
discuss in more detail in section 10.6) to the index, row, column coordinates needed
by the array (these coordinates are shown as (I,R,C) in the figures and are denoted
with _irc variable suffixes in the code). Don’t sweat the details of all this right now;
just remember that we’ve got some coordinate system conversion to do before we can
apply these coordinates to our CT data. We’ll explore the details as we need them.

 We will also load the annotation data provided by LUNA, which will give us a list of
nodule coordinates, each with a malignancy flag, along with the series UID of the rel-
evant CT scan. By combining the nodule coordinate with coordinate system transfor-
mation information, we get the index, row, and column of the voxel at the center of
our nodule.

 Using the (I,R,C) coordinates, we can crop a small 3D slice of our CT data to use as
the input to our model. Along with this 3D sample array, we must construct the rest of
our training sample tuple, which will have the sample array, nodule status flag, series
UID, and the index of this sample in the CT list of nodule candidates. This sample
tuple is exactly what PyTorch expects from our Dataset subclass and represents the
last section of our bridge from our original raw data to the standard structure of
PyTorch tensors.

 Limiting or cropping our data so as not to drown our model in noise is important,
as is making sure we’re not so aggressive that our signal gets cropped out of our
input. We want to make sure the range of our data is well behaved, especially after
normalization. Clamping our data to remove outliers can be useful, especially if our
data is prone to extreme outliers. We can also create handcrafted, algorithmic trans-
formations of our input; this is known as feature engineering; and we discussed it briefly
in chapter 1. We’ll usually want to let the model do most of the heavy lifting; feature
engineering has its uses, but we won’t use it here in part 2.

10.2 Parsing LUNA’s annotation data
The first thing we need to do is begin loading our data. When working on a new proj-
ect, that’s often a good place to start. Making sure we know how to work with the raw
input is required no matter what, and knowing how our data will look after it loads

257Parsing LUNA’s annotation data

can help inform the structure of our early experiments. We could try loading individ-
ual CT scans, but we think it makes sense to parse the CSV files that LUNA provides,
which contain information about the points of interest in each CT scan. As we can see
in figure 10.3, we expect to get some coordinate information, an indication of
whether the coordinate is a nodule, and a unique identifier for the CT scan. Since
there are fewer types of information in the CSV files, and they’re easier to parse, we’re
hoping they will give us some clues about what to look for once we start loading CTs.

The candidates.csv file contains information about all lumps that potentially look like
nodules, whether those lumps are malignant, benign tumors, or something else alto-
gether. We’ll use this as the basis for building a complete list of candidates that can
then be split into our training and validation datasets. The following Bash shell ses-
sion shows what the file contains:

$ wc -l candidates.csv
551066 candidates.csv

$ head data/part2/luna/candidates.csv
seriesuid,coordX,coordY,coordZ,class
1.3...6860,-56.08,-67.85,-311.92,0
1.3...6860,53.21,-244.41,-245.17,0
1.3...6860,103.66,-121.8,-286.62,0

ANnotations

.CSV

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

sample aRray

(,

T/F,

“1.2.3”,

(I,R,C))

is nodule?

Series_uid

candidate

location

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinate

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.MHD

.RAW

CT

ARray

CT Files

[(I,R,C),[

 (I,R,C),

 (I,R,C)))))))))))))))))))))))))))),

]

Training

candidate

location

Sample tuple

aysample aRra

T/F,

.2.3”,“1

,R,C)(I

is nodule?iiiiisiii nodule?

ries_uidSe

aaaaaaaaaaaaaannndnnnnnnnnnn idatecacaacaaaacacacaaacaaacccccccccc

ocationlo

(X,Y,Z)

xyzxyz22ircirc

Transform

Candidate

COordinateCOordinate

1 0 0 01 0 0 0

0 1 0 0

0 0 1 0

0 0 0 10 0 0 1

ANnANnNnANnNnNnNnANnANnANnNnNnNnANnANnANnNnNnNnAAAAAAAAAANnNnNnNnNnNnNnNnNnNnNnNnNnNnNnNnNnNnotations

.CSV

.MMHD

.RRAW

CT

ARray

CT Files

Figure 10.3 The LUNA annotations in candidates.csv contain the CT series, the nodule
candidate’s position, and a flag indicating if the candidate is actually a nodule or not.

Counts the number
of lines in the file

Prints the first few
lines of the file

The first line of the .csv file
defines the column headers.

258 CHAPTER 10 Combining data sources into a unified dataset

1.3...6860,-33.66,-72.75,-308.41,0
...

$ grep ',1$' candidates.csv | wc -l
1351

NOTE The values in the seriesuid column have been elided to better fit the
printed page.

So we have 551,000 lines, each with a seriesuid (which we’ll call series_uid in the
code), some (X,Y,Z) coordinates, and a class column that corresponds to the nodule
status (it’s a Boolean value: 0 for a candidate that is not an actual nodule, and 1 for a
candidate that is a nodule, either malignant or benign). We have 1,351 candidates
flagged as actual nodules.

 The annotations.csv file contains information about some of the candidates that
have been flagged as nodules. We are interested in the diameter_mm information in
particular:

$ wc -l annotations.csv
1187 annotations.csv

$ head data/part2/luna/annotations.csv
seriesuid,coordX,coordY,coordZ,diameter_mm
1.3.6...6860,-128.6994211,-175.3192718,-298.3875064,5.651470635
1.3.6...6860,103.7836509,-211.9251487,-227.12125,4.224708481
1.3.6...5208,69.63901724,-140.9445859,876.3744957,5.786347814
1.3.6...0405,-24.0138242,192.1024053,-391.0812764,8.143261683
...

We have size information for about 1,200 nodules. This is useful, since we can use it to
make sure our training and validation data includes a representative spread of nodule
sizes. Without this, it’s possible that our validation set could end up with only extreme
values, making it seem as though our model is underperforming.

10.2.1 Training and validation sets

For any standard supervised learning task (classification is the prototypical example),
we’ll split our data into training and validation sets. We want to make sure both sets
are representative of the range of real-world input data we’re expecting to see and han-
dle normally. If either set is meaningfully different from our real-world use cases, it’s
pretty likely that our model will behave differently than we expect—all of the training
and statistics we collect won’t be predictive once we transfer over to production use!
We’re not trying to make this an exact science, but you should keep an eye out in
future projects for hints that you are training and testing on data that doesn’t make
sense for your operating environment.

 Let’s get back to our nodules. We’re going to sort them by size and take every Nth
one for our validation set. That should give us the representative spread we’re looking

Counts the number of lines
that end with 1, which
indicates malignancy

This is a different
number than in the
candidates.csv file.

The last column
is also different.

259Parsing LUNA’s annotation data

for. Unfortunately, the location information provided in annotations.csv doesn’t
always precisely line up with the coordinates in candidates.csv:

$ grep 100225287222365663678666836860 annotations.csv
1.3.6...6860,-128.6994211,-175.3192718,-298.3875064,5.651470635
1.3.6...6860,103.7836509,-211.9251487,-227.12125,4.224708481

$ grep '100225287222365663678666836860.*,1$' candidates.csv
1.3.6...6860,104.16480444,-211.685591018,-227.011363746,1
1.3.6...6860,-128.94,-175.04,-297.87,1

If we truncate the corresponding coordinates from each file, we end up with (–128.70,
–175.32,–298.39) versus (–128.94,–175.04,–297.87). Since the nodule in question has
a diameter of 5 mm, both of these points are clearly meant to be the “center” of the
nodule, but they don’t line up exactly. It would be a perfectly valid response to decide
that dealing with this data mismatch isn’t worth it, and to ignore the file. We are going
to do the legwork to make things line up, though, since real-world datasets are often
imperfect this way, and this is a good example of the kind of work you will need to do
to assemble data from disparate data sources.

10.2.2 Unifying our annotation and candidate data

Now that we know what our raw data files look like, let’s build a getCandidateInfo-
List function that will stitch it all together. We’ll use a named tuple that is defined at
the top of the file to hold the information for each nodule.

from collections import namedtuple
... line 27
CandidateInfoTuple = namedtuple(

'CandidateInfoTuple',
'isNodule_bool, diameter_mm, series_uid, center_xyz',

)

These tuples are not our training samples, as they’re missing the chunks of CT data we
need. Instead, these represent a sanitized, cleaned, unified interface to the human-
annotated data we’re using. It’s very important to isolate having to deal with messy
data from model training. Otherwise, your training loop can get cluttered quickly,
because you have to keep dealing with special cases and other distractions in the mid-
dle of code that should be focused on training.

TIP Clearly separate the code that’s responsible for data sanitization from
the rest of your project. Don’t be afraid to rewrite your data once and save it
to disk if needed.

Our list of candidate information will have the nodule status (what we’re going to be
training the model to classify), diameter (useful for getting a good spread in training,

Listing 10.1 dsets.py:7

These two
coordinates

are very close
to each other.

260 CHAPTER 10 Combining data sources into a unified dataset

since large and small nodules will not have the same features), series (to locate the
correct CT scan), and candidate center (to find the candidate in the larger CT). The
function that will build a list of these NoduleInfoTuple instances starts by using an in-
memory caching decorator, followed by getting the list of files present on disk.

@functools.lru_cache(1)
def getCandidateInfoList(requireOnDisk_bool=True):

mhd_list = glob.glob('data-unversioned/part2/luna/subset*/*.mhd')
presentOnDisk_set = {os.path.split(p)[-1][:-4] for p in mhd_list}

Since parsing some of the data files can be slow, we’ll cache the results of this function
call in memory. This will come in handy later, because we’ll be calling this function
more often in future chapters. Speeding up our data pipeline by carefully applying in-
memory or on-disk caching can result in some pretty impressive gains in training
speed. Keep an eye out for these opportunities as you work on your projects.

 Earlier we said that we’ll support running our training program with less than the
full set of training data, due to the long download times and high disk space require-
ments. The requireOnDisk_bool parameter is what makes good on that promise;
we’re detecting which LUNA series UIDs are actually present and ready to be loaded
from disk, and we’ll use that information to limit which entries we use from the CSV
files we’re about to parse. Being able to run a subset of our data through the training
loop can be useful to verify that the code is working as intended. Often a model’s
training results are bad to useless when doing so, but exercising our logging, metrics,
model check-pointing, and similar functionality is beneficial.

 After we get our candidate information, we want to merge in the diameter infor-
mation from annotations.csv. First we need to group our annotations by series_uid,
as that’s the first key we’ll use to cross-reference each row from the two files.

diameter_dict = {}
with open('data/part2/luna/annotations.csv', "r") as f:

for row in list(csv.reader(f))[1:]:
series_uid = row[0]
annotationCenter_xyz = tuple([float(x) for x in row[1:4]])
annotationDiameter_mm = float(row[4])

diameter_dict.setdefault(series_uid, []).append(
(annotationCenter_xyz, annotationDiameter_mm)

)

Listing 10.2 dsets.py:32

Listing 10.3 dsets.py:40, def getCandidateInfoList

Standard library in-
memory caching

requireOnDisk_bool defaults to
screening out series from data

subsets that aren’t in place yet.

261Parsing LUNA’s annotation data

Now we’ll build our full list of candidates using the information in the candidates.csv
file.

candidateInfo_list = []
with open('data/part2/luna/candidates.csv', "r") as f:

for row in list(csv.reader(f))[1:]:
series_uid = row[0]

if series_uid not in presentOnDisk_set and requireOnDisk_bool:
continue

isNodule_bool = bool(int(row[4]))
candidateCenter_xyz = tuple([float(x) for x in row[1:4]])

candidateDiameter_mm = 0.0
for annotation_tup in diameter_dict.get(series_uid, []):

annotationCenter_xyz, annotationDiameter_mm = annotation_tup
for i in range(3):

delta_mm = abs(candidateCenter_xyz[i] - annotationCenter_xyz[i])
if delta_mm > annotationDiameter_mm / 4:
break

else:
candidateDiameter_mm = annotationDiameter_mm
break

candidateInfo_list.append(CandidateInfoTuple(
isNodule_bool,
candidateDiameter_mm,
series_uid,
candidateCenter_xyz,

))

For each of the candidate entries for a given series_uid, we loop through the annota-
tions we collected earlier for the same series_uid and see if the two coordinates are
close enough to consider them the same nodule. If they are, great! Now we have diam-
eter information for that nodule. If we don’t find a match, that’s fine; we’ll just treat
the nodule as having a 0.0 diameter. Since we’re only using this information to get a
good spread of nodule sizes in our training and validation sets, having incorrect diam-
eter sizes for some nodules shouldn’t be a problem, but we should remember we’re
doing this in case our assumption here is wrong.

 That’s a lot of somewhat fiddly code just to merge in our nodule diameter. Unfor-
tunately, having to do this kind of manipulation and fuzzy matching can be fairly com-
mon, depending on your raw data. Once we get to this point, however, we just need to
sort the data and return it.

Listing 10.4 dsets.py:51, def getCandidateInfoList

If a series_uid isn’t
present, it’s in a subset
we don’t have on disk,

so we should skip it.

Divides the diameter by 2 to get
the radius, and divides the
radius by 2 to require that the
two nodule center points not be
too far apart relative to the size
of the nodule. (This results in a
bounding-box check, not a true
distance check.)

262 CHAPTER 10 Combining data sources into a unified dataset

candidateInfo_list.sort(reverse=True)
return candidateInfo_list

The ordering of the tuple members in noduleInfo_list is driven by this sort. We’re
using this sorting approach to help ensure that when we take a slice of the data, that
slice gets a representative chunk of the actual nodules with a good spread of nodule
diameters. We’ll discuss this more in section 10.5.3.

10.3 Loading individual CT scans
Next up, we need to be able to take our CT data from a pile of bits on disk and turn it
into a Python object from which we can extract 3D nodule density data. We can see this
path from the .mhd and .raw files to Ct objects in figure 10.4. Our nodule annotation
information acts like a map to the interesting parts of our raw data. Before we can follow
that map to our data of interest, we need to get the data into an addressable form.

TIP Having a large amount of raw data, most of which is uninteresting, is a
common situation; look for ways to limit your scope to only the relevant data
when working on your own projects.

Listing 10.5 dsets.py:80, def getCandidateInfoList

This means we have all of the actual nodule
samples starting with the largest first, followed
by all of the non-nodule samples (which don’t
have nodule size information).

ANnotations

.CSV

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

sample aRray

(,

T/F,

“1.2.3”,

(I,R,C))

is nodule?

Series_uid

candidate

location

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinate

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.MHD

.RAW

CT

ARray

CT Files

[[[[[[[[[[[[[[[[[[[[[[[[[[[[(I,R,C),[[[[[[[[

 (I,R,C),

 (I,R,C),

...

]

Training

candidate

location

Sample tuple

aysample aRra

T/F,

.2.3”,“1

,R,C)(I

is nodule?is nodule?

ries_uidSe

andidateca

ocationlo

(X,Y,Z)

xyz2irc

Transform

CaCaCaCCCaCCCCCCaCaCaCaCaCCCaaaaaaaaaandnddddndddddddddddddnddndndnnnnn idddiddiddddidddidddididdddddi aaaaaaatataaaaaaaaa e

COordinateCOordinate

1 0 0 01 0 0 0

0 1 0 0

0 0 1 0

0 0 0 10 0 0 1

ANnNnotations

.CSV

.MMHD

.RRAW

CT

ARray

CT Files

Figure 10.4 Loading a CT scan produces a voxel array and a transformation from
patient coordinates to array indices.

263Loading individual CT scans

The native file format for CT scans is DICOM (www.dicomstandard.org). The first ver-
sion of the DICOM standard was authored in 1984, and as we might expect from any-
thing computing-related that comes from that time period, it’s a bit of a mess (for
example, whole sections that are now retired were devoted to the data link layer pro-
tocol to use, since Ethernet hadn’t won yet).

NOTE We’ve done the legwork of finding the right library to parse these raw
data files, but for other formats you’ve never heard of, you’ll have to find a
parser yourself. We recommend taking the time to do so! The Python ecosys-
tem has parsers for just about every file format under the sun, and your time
is almost certainly better spent working on the novel parts of your project
than writing parsers for esoteric data formats.

Happily, LUNA has converted the data we’re going to be using for this chapter into
the MetaIO format, which is quite a bit easier to use (https://itk.org/Wiki/MetaIO/
Documentation#Quick_Start). Don’t worry if you’ve never heard of the format
before! We can treat the format of the data files as a black box and use SimpleITK to
load them into more familiar NumPy arrays.

import SimpleITK as sitk
... line 83
class Ct:

def __init__(self, series_uid):
mhd_path = glob.glob(
'data-unversioned/part2/luna/subset*/{}.mhd'.format(series_uid)
)[0]

ct_mhd = sitk.ReadImage(mhd_path)
ct_a = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32)

For real projects, you’ll want to understand what types of information are contained
in your raw data, but it’s perfectly fine to rely on third-party code like SimpleITK to
parse the bits on disk. Finding the right balance of knowing everything about your
inputs versus blindly accepting whatever your data-loading library hands you will prob-
ably take some experience. Just remember that we’re mostly concerned about data,
not bits. It’s the information that matters, not how it’s represented.

 Being able to uniquely identify a given sample of our data can be useful. For exam-
ple, clearly communicating which sample is causing a problem or is getting poor clas-
sification results can drastically improve our ability to isolate and debug the issue.
Depending on the nature of our samples, sometimes that unique identifier is an atom,
like a number or a string, and sometimes it’s more complicated, like a tuple.

 We identify specific CT scans using the series instance UID (series_uid) assigned
when the CT scan was created. DICOM makes heavy use of unique identifiers (UIDs)

Listing 10.6 dsets.py:9

We don’t care to track which
subset a given series_uid is in,

so we wildcard the subset.

sitk.ReadImage implicitly consumes the .raw
file in addition to the passed-in .mhd file.

Recreates an np.array since we want
to convert the value type to np.float3

https://itk.org/Wiki/MetaIO/Documentation#Quick_Start
https://itk.org/Wiki/MetaIO/Documentation#Quick_Start
https://itk.org/Wiki/MetaIO/Documentation#Quick_Start

264 CHAPTER 10 Combining data sources into a unified dataset

for individual DICOM files, groups of files, courses of treatment, and so on. These
identifiers are similar in concept to UUIDs (https://docs.python.org/3.6/library/
uuid.html), but they have a different creation process and are formatted differently.
For our purposes, we can treat them as opaque ASCII strings that serve as unique keys
to reference the various CT scans. Officially, only the characters 0 through 9 and the
period (.) are valid characters in a DICOM UID, but some DICOM files in the wild
have been anonymized with routines that replace the UIDs with hexadecimal (0–9
and a–f) or other technically out-of-spec values (these out-of-spec values typically
aren’t flagged or cleaned by DICOM parsers; as we said before, it’s a bit of a mess).

 The 10 subsets we discussed earlier have about 90 CT scans each (888 in total),
with every CT scan represented as two files: one with a .mhd extension and one with a
.raw extension. The data being split between multiple files is hidden behind the sitk
routines, however, and is not something we need to be directly concerned with.

 At this point, ct_a is a three-dimensional array. All three dimensions are spatial,
and the single intensity channel is implicit. As we saw in chapter 4, in a PyTorch ten-
sor, the channel information is represented as a fourth dimension with size 1.

10.3.1 Hounsfield Units

Recall that earlier, we said that we need to understand our data, not the bits that store
it. Here, we have a perfect example of that in action. Without understanding the
nuances of our data’s values and range, we’ll end up feeding values into our model
that will hinder its ability to learn what we want it to.

 Continuing the __init__ method, we need to do a bit of cleanup on the ct_a val-
ues. CT scan voxels are expressed in Hounsfield units (HU; https://en.wikipedia.org/
wiki/Hounsfield_scale), which are odd units; air is –1,000 HU (close enough to 0 g/cc
[grams per cubic centimeter] for our purposes), water is 0 HU (1 g/cc), and bone is
at least +1,000 HU (2–3 g/cc).

NOTE HU values are typically stored on disk as signed 12-bit integers (shoved
into 16-bit integers), which fits well with the level of precision CT scanners
can provide. While this is perhaps interesting, it’s not particularly relevant to
the project.

Some CT scanners use HU values that correspond to negative densities to indicate
that those voxels are outside of the CT scanner’s field of view. For our purposes, every-
thing outside of the patient should be air, so we discard that field-of-view information
by setting a lower bound of the values to –1,000 HU. Similarly, the exact densities of
bones, metal implants, and so on are not relevant to our use case, so we cap density at
roughly 2 g/cc (1,000 HU) even though that’s not biologically accurate in most cases.

ct_a.clip(-1000, 1000, ct_a)

Listing 10.7 dsets.py:96, Ct.__init__

https://docs.python.org/3.6/library/uuid.html
https://docs.python.org/3.6/library/uuid.html
https://docs.python.org/3.6/library/uuid.html
https://en.wikipedia.org/wiki/Hounsfield_scale
https://en.wikipedia.org/wiki/Hounsfield_scale
https://en.wikipedia.org/wiki/Hounsfield_scale

265Locating a nodule using the patient coordinate system

Values above 0 HU don’t scale perfectly with density, but the tumors we’re interested
in are typically around 1 g/cc (0 HU), so we’re going to ignore that HU doesn’t map
perfectly to common units like g/cc. That’s fine, since our model will be trained to
consume HU directly.

 We want to remove all of these outlier values from our data: they aren’t directly rel-
evant to our goal, and having those outliers can make the model’s job harder. This can
happen in many ways, but a common example is when batch normalization is fed
these outlier values and the statistics about how to best normalize the data are skewed.
Always be on the lookout for ways to clean your data.

 All of the values we’ve built are now assigned to self.

self.series_uid = series_uid
self.hu_a = ct_a

It’s important to know that our data uses the range of –1,000 to +1,000, since in chap-
ter 13 we end up adding channels of information to our samples. If we don’t account
for the disparity between HU and our additional data, those new channels can easily
be overshadowed by the raw HU values. We won’t add more channels of data for the
classification step of our project, so we don’t need to implement special handling
right now.

10.4 Locating a nodule using the patient coordinate system
Deep learning models typically need fixed-size inputs,2 due to having a fixed number
of input neurons. We need to be able to produce a fixed-size array containing the can-
didate so that we can use it as input to our classifier. We’d like to train our model
using a crop of the CT scan that has a candidate nicely centered, since then our
model doesn’t have to learn how to notice nodules tucked away in the corner of the
input. By reducing the variation in expected inputs, we make the model’s job easier.

10.4.1 The patient coordinate system

Unfortunately, all of the candidate center data we loaded in section 10.2 is expressed
in millimeters, not voxels! We can’t just plug locations in millimeters into an array
index and expect everything to work out the way we want. As we can see in figure 10.5,
we need to transform our coordinates from the millimeter-based coordinate system
(X,Y,Z) they’re expressed in, to the voxel-address-based coordinate system (I,R,C)
used to take array slices from our CT scan data. This is a classic example of how it’s
important to handle units consistently!

 As we have mentioned previously, when dealing with CT scans, we refer to the array
dimensions as index, row, and column, because a separate meaning exists for X, Y, and Z,

Listing 10.8 dsets.py:98, Ct.__init__

2 There are exceptions, but they’re not relevant right now.

266 CHAPTER 10 Combining data sources into a unified dataset

as illustrated in figure 10.6. The patient coordinate system defines positive X to be patient-
left (left), positive Y to be patient-behind (posterior), and positive Z to be toward-patient-
head (superior). Left-posterior-superior is sometimes abbreviated LPS.

ANnotations

.CSV

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

sample aRray

(,

T/F,

“1.2.3”,

(I,R,C))

is nodule?

Series_uid

candidate

location

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinate

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.MHD

.RAW

CT

ARray

CT Files

[(I,R,C),[

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

aysample aRra

T/F,

.2.3”,“1

,R,C)(I

is nodule?is nodule?

ries_uidSe

andidateca

ocationlo

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinateCOordinate

1 0 0 01 0 0 0

0 1 0 0

0 0 1 0

0 0 0 10 0 0 1

ANnNnotations

.CSV

.MMHD

.RRAW

CT

ARray

CT Files

Figure 10.5 Using the transformation information to convert a nodule center
coordinate in patient coordinates (X,Y,Z) to an array index (Index,Row,Column).

Figure 10.6 Our inappropriately clothed patient demonstrating the axes of the patient coordinate system

Right

Anterior

Inferior

Superior
(+Z)

Left

(+X)

Posterior(+Y)

267Locating a nodule using the patient coordinate system

The patient coordinate system is measured in millimeters and has an arbitrarily posi-
tioned origin that does not correspond to the origin of the CT voxel array, as shown in
figure 10.7.

 The patient coordinate system is often used to specify the locations of interesting
anatomy in a way that is independent of any particular scan. The metadata that
defines the relationship between the CT array and the patient coordinate system is
stored in the header of DICOM files, and that meta-image format preserves the data
in its header as well. This metadata allows us to construct the transformation from
(X,Y,Z) to (I,R,C) that we saw in figure 10.5. The raw data contains many other fields
of similar metadata, but since we don’t have a use for them right now, those unneeded
fields will be ignored.

10.4.2 CT scan shape and voxel sizes
One of the most common variations between CT scans is the size of the voxels; typi-
cally, they are not cubes. Instead, they can be 1.125 mm × 1.125 mm × 2.5 mm or simi-
lar. Usually the row and column dimensions have voxel sizes that are the same, and
the index dimension has a larger value, but other ratios can exist.

 When plotted using square pixels, the non-cubic voxels can end up looking some-
what distorted, similar to the distortion near the north and south poles when using a
Mercator projection map. That’s an imperfect analogy, since in this case the distortion
is uniform and linear—the patient looks far more squat or barrel-chested in figure
10.8 than they would in reality. We will need to apply a scaling factor if we want the
images to depict realistic proportions.

 Knowing these kinds of details can help when trying to interpret our results visually.
Without this information, it would be easy to assume that something was wrong with our
data loading: we might think the data looked so squat because we were skipping half of

-100 +100 +200 +300

-100

+100

+200

+X axis

+Y Axis(511, 511)

(0, 0)

ARray

COordinates

Patient

COordinates

-100

-100

+100

+200

(511, 511)(511 511)

(0, 0)(220, 150)

Figure 10.7 Array coordinates and patient coordinates have different origins and scaling.

268 CHAPTER 10 Combining data sources into a unified dataset

the slices by accident, or something along those lines. It can be easy to waste a lot of time
debugging something that’s been working all along, and being familiar with your data
can help prevent that.

 CTs are commonly 512 rows by 512 columns, with the index dimension ranging from
around 100 total slices up to perhaps 250 slices (250 slices times 2.5 millimeters is
typically enough to contain the anatomical region of interest). This results in a lower
bound of approximately 225 voxels, or about 32 million data points. Each CT specifies
the voxel size in millimeters as part of the file metadata; for example, we’ll call ct_mhd
.GetSpacing() in listing 10.10.

10.4.3 Converting between millimeters and voxel addresses

We will define some utility code to assist with the conversion between patient coordi-
nates in millimeters (which we will denote in the code with an _xyz suffix on variables
and the like) and (I,R,C) array coordinates (which we will denote in code with an
_irc suffix).

 You might wonder whether the SimpleITK library comes with utility functions to
convert these. And indeed, an Image instance does feature two methods—Transform-

IndexToPhysicalPoint and TransformPhysicalPointToIndex—to do just that
(except shuffling from CRI [column,row,index] IRC). However, we want to be able to
do this computation without keeping the Image object around, so we’ll perform the
math manually here.

 Flipping the axes (and potentially a rotation or other transforms) is encoded in a
3 × 3 matrix returned as a tuple from ct_mhd.GetDirections(). To go from voxel
indices to coordinates, we need to follow these four steps in order:

1 Flip the coordinates from IRC to CRI, to align with XYZ.
2 Scale the indices with the voxel sizes.
3 Matrix-multiply with the directions matrix, using @ in Python.
4 Add the offset for the origin.

index 41
0

100

200

300

400

500

0 100 200 300 400 500

row 229

0

0

25

50

75

100

175

125

150

100 200 300 400 500

col 457

0

0

25

50

75

100

175

125

150

100 200 300 400 500

Figure 10.8 A CT scan with non-cubic voxels along the index-axis. Note how compressed the lungs are from top
to bottom.

269Locating a nodule using the patient coordinate system

To go back from XYZ to IRC, we need to perform the inverse of each step in the
reverse order.

 We keep the voxel sizes in named tuples, so we convert these into arrays.

IrcTuple = collections.namedtuple('IrcTuple', ['index', 'row', 'col'])
XyzTuple = collections.namedtuple('XyzTuple', ['x', 'y', 'z'])

def irc2xyz(coord_irc, origin_xyz, vxSize_xyz, direction_a):
cri_a = np.array(coord_irc)[::-1]
origin_a = np.array(origin_xyz)
vxSize_a = np.array(vxSize_xyz)
coords_xyz = (direction_a @ (cri_a * vxSize_a)) + origin_a
return XyzTuple(*coords_xyz)

def xyz2irc(coord_xyz, origin_xyz, vxSize_xyz, direction_a):
origin_a = np.array(origin_xyz)
vxSize_a = np.array(vxSize_xyz)
coord_a = np.array(coord_xyz)
cri_a = ((coord_a - origin_a) @ np.linalg.inv(direction_a)) / vxSize_a
cri_a = np.round(cri_a)
return IrcTuple(int(cri_a[2]), int(cri_a[1]), int(cri_a[0]))

Phew. If that was a bit heavy, don’t worry. Just remember that we need to convert and
use the functions as a black box. The metadata we need to convert from patient coor-
dinates (_xyz) to array coordinates (_irc) is contained in the MetaIO file alongside
the CT data itself. We pull the voxel sizing and positioning metadata out of the .mhd
file at the same time we get the ct_a.

class Ct:
def __init__(self, series_uid):

mhd_path = glob.glob('data-
unversioned/part2/luna/subset*/{}.mhd'.format(series_uid))[0]

ct_mhd = sitk.ReadImage(mhd_path)
... line 91
self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin())
self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing())
self.direction_a = np.array(ct_mhd.GetDirection()).reshape(3, 3)

These are the inputs we need to pass into our xyz2irc conversion function, in addition
to the individual point to covert. With these attributes, our CT object implementation

Listing 10.9 util.py:16

Listing 10.10 dsets.py:72, class Ct

Swaps the order while we
convert to a NumPy array

The bottom three steps of
our plan, all in one line

Inverse of the last three steps

Sneaks in proper rounding
before converting to integers

Shuffles and
converts to
integers

Converts the directions to an array, and
reshapes the nine-element array to its

proper 3 × 3 matrix shape

270 CHAPTER 10 Combining data sources into a unified dataset

now has all the data needed to convert a candidate center from patient coordinates to
array coordinates.

10.4.4 Extracting a nodule from a CT scan

As we mentioned in chapter 9, up to 99.9999% of the voxels in a CT scan of a patient
with a lung nodule won’t be part of the actual nodule (or cancer, for that matter).
Again, that ratio is equivalent to a two-pixel blob of incorrectly tinted color some-
where on a high-definition television, or a single misspelled word out of a shelf of nov-
els. Forcing our model to examine such huge swaths of data looking for the hints of
the nodules we want it to focus on is going to work about as well as asking you to find
a single misspelled word from a set of novels written in a language you don’t know!3

 Instead, as we can see in figure 10.9, we will extract an area around each candidate
and let the model focus on one candidate at a time. This is akin to letting you read
individual paragraphs in that foreign language: still not an easy task, but far less
daunting! Looking for ways to reduce the scope of the problem for our model can
help, especially in the early stages of a project when we’re trying to get our first work-
ing implementation up and running.

3 Have you found a misspelled word in this book yet? ;)

ANnotations

.CSV

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

sample aRray

(,

T/F,

“1.2.3”,

(I,R,C))

is nodule?

Series_uid

candidate

location

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinate

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.MHD

.RAW

CT

ARray

CT Files

[(I,R,C),[

 (I,R,C),

 (I,R,C),

 ...

]

Training

candidate

location

Sample tuple

aysample aRra

TTTTTTTTTTTT/F,

.2.3”,“1

,R,C)(I

is noddddddodddddddddddddddddddddddule?is noddduuuluuuuuuuu e?

ries_uidSe

andidateca

ocationlo

(X,Y,Z)

xyz2irc

Transform

Candidate

COordinateCOordinate

1 0 0 01 0 0 0

0 1 0 0

0 0 1 0

0 0 0 10 0 0 1

ANnNnotations

.CSV

.MMHD

.RRAW

CT

ARray

CT Files

Figure 10.9 Cropping a candidate sample out of the larger CT voxel array using the
candidate center’s array coordinate information (Index,Row,Column)

271A straightforward dataset implementation

The getRawNodule function takes the center expressed in the patient coordinate sys-
tem (X,Y,Z), just as it’s specified in the LUNA CSV data, as well as a width in voxels. It
returns a cubic chunk of CT, as well as the center of the candidate converted to array
coordinates.

def getRawCandidate(self, center_xyz, width_irc):
center_irc = xyz2irc(

center_xyz,
self.origin_xyz,
self.vxSize_xyz,
self.direction_a,

)

slice_list = []
for axis, center_val in enumerate(center_irc):

start_ndx = int(round(center_val - width_irc[axis]/2))
end_ndx = int(start_ndx + width_irc[axis])
slice_list.append(slice(start_ndx, end_ndx))

ct_chunk = self.hu_a[tuple(slice_list)]

return ct_chunk, center_irc

The actual implementation will need to deal with situations where the combination of
center and width puts the edges of the cropped areas outside of the array. But as
noted earlier, we will skip complications that obscure the larger intent of the function.
The full implementation can be found on the book’s website (www.manning.com/
books/deep-learning-with-pytorch?query=pytorch) and in the GitHub repository
(https://github.com/deep-learning-with-pytorch/dlwpt-code).

10.5 A straightforward dataset implementation
We first saw PyTorch Dataset instances in chapter 7, but this will be the first time
we’ve implemented one ourselves. By subclassing Dataset, we will take our arbitrary
data and plug it into the rest of the PyTorch ecosystem. Each Ct instance represents
hundreds of different samples that we can use to train our model or validate its effec-
tiveness. Our LunaDataset class will normalize those samples, flattening each CT’s
nodules into a single collection from which samples can be retrieved without regard
for which Ct instance the sample originates from. This flattening is often how we want
to process data, although as we’ll see in chapter 12, in some situations a simple flatten-
ing of the data isn’t enough to train a model well.

 In terms of implementation, we are going to start with the requirements imposed
from subclassing Dataset and work backward. This is different from the datasets we’ve
worked with earlier; there we were using classes provided by external libraries,
whereas here we need to implement and instantiate the class ourselves. Once we have
done so, we can use it similarly to those earlier examples. Luckily, the implementation

Listing 10.11 dsets.py:105, Ct.getRawCandidate

https://www.manning.com/books/deep-learning-with-pytorch?query=pytorch
https://www.manning.com/books/deep-learning-with-pytorch?query=pytorch
https://www.manning.com/books/deep-learning-with-pytorch?query=pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code

272 CHAPTER 10 Combining data sources into a unified dataset

of our custom subclass will not be too difficult, as the PyTorch API only requires that
any Dataset subclasses we want to implement must provide these two functions:

 An implementation of __len__ that must return a single, constant value after
initialization (the value ends up being cached in some use cases)

 The __getitem__ method, which takes an index and returns a tuple with sam-
ple data to be used for training (or validation, as the case may be)

First, let’s see what the function signatures and return values of those functions look like.

def __len__(self):
return len(self.candidateInfo_list)

def __getitem__(self, ndx):
... line 200
return (

candidate_t, 1((CO10-1))
pos_t, 1((CO10-2))
candidateInfo_tup.series_uid,
torch.tensor(center_irc),

)

Our __len__ implementation is straightforward: we have a list of candidates, each can-
didate is a sample, and our dataset is as large as the number of samples we have. We don’t
have to make the implementation as simple as it is here; in later chapters, we’ll see this
change!4 The only rule is that if __len__ returns a value of N, then __getitem__ needs
to return something valid for all inputs 0 to N – 1.

 For __getitem__, we take ndx (typically an integer, given the rule about support-
ing inputs 0 to N – 1) and return the four-item sample tuple as depicted in figure 10.2.
Building this tuple is a bit more complicated than getting the length of our dataset,
however, so let’s take a look.

 The first part of this method implies that we need to construct self.candidateInfo
_list as well as provide the getCtRawNodule function.

def __getitem__(self, ndx):
candidateInfo_tup = self.candidateInfo_list[ndx]
width_irc = (32, 48, 48)

candidate_a, center_irc = getCtRawCandidate(
candidateInfo_tup.series_uid,
candidateInfo_tup.center_xyz,
width_irc,

)

Listing 10.12 dsets.py:176, LunaDataset.__len__

4 To something simpler, actually; but the point is, we have options.

Listing 10.13 dsets.py:179, LunaDataset.__getitem__

This is our training sample.

The return value candidate_a has
shape (32,48,48); the axes are
depth, height, and width.

273A straightforward dataset implementation

We will get to those in a moment in sections 10.5.1 and 10.5.2.
 The next thing we need to do in the __getitem__ method is manipulate the data

into the proper data types and required array dimensions that will be expected by
downstream code.

candidate_t = torch.from_numpy(candidate_a)
candidate_t = candidate_t.to(torch.float32)
candidate_t = candidate_t.unsqueeze(0)

Don’t worry too much about exactly why we are manipulating dimensionality for now;
the next chapter will contain the code that ends up consuming this output and impos-
ing the constraints we’re proactively meeting here. This will be something you should
expect for every custom Dataset you implement. These conversions are a key part of
transforming your Wild West data into nice, orderly tensors.

 Finally, we need to build our classification tensor.

pos_t = torch.tensor([
not candidateInfo_tup.isNodule_bool,
candidateInfo_tup.isNodule_bool

],
dtype=torch.long,

)

This has two elements, one each for our possible candidate classes (nodule or non-
nodule; or positive or negative, respectively). We could have a single output for the
nodule status, but nn.CrossEntropyLoss expects one output value per class, so that’s
what we provide here. The exact details of the tensors you construct will change based
on the type of project you’re working on.

 Let’s take a look at our final sample tuple (the larger nodule_t output isn’t partic-
ularly readable, so we elide most of it in the listing).

In[10]:
LunaDataset()[0]

Out[10]:
(tensor([[[[-899., -903., -825., ..., -901., -898., -893.],

...,
[-92., -63., 4., ..., 63., 70., 52.]]]]),

tensor([0, 1]),
'1.3.6...287966244644280690737019247886',
tensor([91, 360, 341]))

Listing 10.14 dsets.py:189, LunaDataset.__getitem__

Listing 10.15 dsets.py:193, LunaDataset.__getitem__

Listing 10.16 p2ch10_explore_data.ipynb

.unsqueeze(0) adds the
‘Channel’ dimension.

candidate_t

cls_t
candidate_tup.series_uid (elided)

center_irc

274 CHAPTER 10 Combining data sources into a unified dataset

Here we see the four items from our __getitem__ return statement.

10.5.1 Caching candidate arrays with the getCtRawCandidate function

In order to get decent performance out of LunaDataset, we’ll need to invest in some
on-disk caching. This will allow us to avoid having to read an entire CT scan from disk
for every sample. Doing so would be prohibitively slow! Make sure you’re paying atten-
tion to bottlenecks in your project and doing what you can to optimize them once
they start slowing you down. We’re kind of jumping the gun here since we haven’t
demonstrated that we need caching here. Without caching, the LunaDataset is easily
50 times slower! We’ll revisit this in the chapter’s exercises.

 The function itself is easy. It’s a file-cache-backed (https://pypi.python.org/pypi/
diskcache) wrapper around the Ct.getRawCandidate method we saw earlier.

@functools.lru_cache(1, typed=True)
def getCt(series_uid):

return Ct(series_uid)

@raw_cache.memoize(typed=True)
def getCtRawCandidate(series_uid, center_xyz, width_irc):

ct = getCt(series_uid)
ct_chunk, center_irc = ct.getRawCandidate(center_xyz, width_irc)
return ct_chunk, center_irc

We use a few different caching methods here. First, we’re caching the getCt return
value in memory so that we can repeatedly ask for the same Ct instance without hav-
ing to reload all of the data from disk. That’s a huge speed increase in the case of
repeated requests, but we’re only keeping one CT in memory, so cache misses will be
frequent if we’re not careful about access order.

 The getCtRawCandidate function that calls getCt also has its outputs cached, how-
ever; so after our cache is populated, getCt won’t ever be called. These values are
cached to disk using the Python library diskcache. We’ll discuss why we have this spe-
cific caching setup in chapter 11. For now, it’s enough to know that it’s much, much
faster to read in 215 float32 values from disk than it is to read in 225 int16 values, con-
vert to float32, and then select a 215 subset. From the second pass through the data
forward, I/O times for input should drop to insignificance.

NOTE If the definitions of these functions ever materially change, we will
need to remove the cached values from disk. If we don’t, the cache will con-
tinue to return them, even if now the function will not map the given inputs
to the old output. The data is stored in the data-unversioned/cache directory.

Listing 10.17 dsets.py:139

https://pypi.python.org/pypi/diskcache
https://pypi.python.org/pypi/diskcache
https://pypi.python.org/pypi/diskcache

275A straightforward dataset implementation

10.5.2 Constructing our dataset in LunaDataset.__init__

Just about every project will need to separate samples into a training set and a valida-
tion set. We are going to do that here by designating every tenth sample, specified by
the val_stride parameter, as a member of the validation set. We will also accept an
isValSet_bool parameter and use it to determine whether we should keep only the
training data, the validation data, or everything.

class LunaDataset(Dataset):
def __init__(self,

val_stride=0,
isValSet_bool=None,
series_uid=None,

):
self.candidateInfo_list = copy.copy(getCandidateInfoList())

if series_uid:
self.candidateInfo_list = [

x for x in self.candidateInfo_list if x.series_uid == series_uid
]

If we pass in a truthy series_uid, then the instance will only have nodules from that
series. This can be useful for visualization or debugging, by making it easier to look at,
for instance, a single problematic CT scan.

10.5.3 A training/validation split

We allow for the Dataset to partition out 1/Nth of the data into a subset used for vali-
dating the model. How we will handle that subset is based on the value of the isValSet
_bool argument.

if isValSet_bool:
assert val_stride > 0, val_stride
self.candidateInfo_list = self.candidateInfo_list[::val_stride]
assert self.candidateInfo_list

elif val_stride > 0:
del self.candidateInfo_list[::val_stride]
assert self.candidateInfo_list

This means we can create two Dataset instances and be confident that there is strict
segregation between our training data and our validation data. Of course, this
depends on there being a consistent sorted order to self.candidateInfo_list,
which we ensure by having there be a stable sorted order to the candidate info tuples,
and by the getCandidateInfoList function sorting the list before returning it.

Listing 10.18 dsets.py:149, class LunaDataset

Listing 10.19 dsets.py:162, LunaDataset.__init__

Copies the return value so the
cached copy won’t be impacted by

altering self.candidateInfo_list

Deletes the validation images (every
val_stride-th item in the list) from
self.candidateInfo_list. We made a
copy earlier so that we don’t alter
the original list.

276 CHAPTER 10 Combining data sources into a unified dataset

 The other caveat regarding separation of training and validation data is that,
depending on the task at hand, we might need to ensure that data from a single
patient is only present either in training or in testing but not both. Here this is not a
problem; otherwise, we would have needed to split the list of patients and CT scans
before going to the level of nodules.

 Let’s take a look at the data using p2ch10_explore_data.ipynb:

In[2]:
from p2ch10.dsets import getCandidateInfoList, getCt, LunaDataset
candidateInfo_list = getCandidateInfoList(requireOnDisk_bool=False)
positiveInfo_list = [x for x in candidateInfo_list if x[0]]
diameter_list = [x[1] for x in positiveInfo_list]

In[4]:
for i in range(0, len(diameter_list), 100):

print('{:4} {:4.1f} mm'.format(i, diameter_list[i]))

Out[4]:
0 32.3 mm

100 17.7 mm
200 13.0 mm
300 10.0 mm
400 8.2 mm
500 7.0 mm
600 6.3 mm
700 5.7 mm
800 5.1 mm
900 4.7 mm

1000 4.0 mm
1100 0.0 mm
1200 0.0 mm
1300 0.0 mm

We have a few very large candidates, starting at 32 mm, but they rapidly drop off to
half that size. The bulk of the candidates are in the 4 to 10 mm range, and several
hundred don’t have size information at all. This looks as expected; you might recall
that we had more actual nodules than we had diameter annotations. Quick sanity
checks on your data can be very helpful; catching a problem or mistaken assumption
early may save hours of effort!

 The larger takeaway is that our training and validation splits should have a few
properties in order to work well:

 Both sets should include examples of all variations of expected inputs.
 Neither set should have samples that aren’t representative of expected inputs

unless they have a specific purpose like training the model to be robust to outliers.
 The training set shouldn’t offer unfair hints about the validation set that

wouldn’t be true for real-world data (for example, including the same sample in
both sets; this is known as a leak in the training set).

277Conclusion

10.5.4 Rendering the data
Again, either use p2ch10_explore_data.ipynb directly or start Jupyter Notebook and
enter

In[7]:
%matplotlib inline
from p2ch10.vis import findNoduleSamples, showNodule
noduleSample_list = findNoduleSamples()

TIP For more information about Jupyter’s matplotlib inline magic,5 please
see http://mng.bz/rrmD.

In[8]:
series_uid = positiveSample_list[11][2]
showCandidate(series_uid)

This produces images akin to those showing CT and nodule slices earlier in this chapter.
 If you’re interested, we invite you to edit the implementation of the rendering

code in p2ch10/vis.py to match your needs and tastes. The rendering code makes
heavy use of Matplotlib (https://matplotlib.org), which is too complex a library for us
to attempt to cover here.

 Remember that rendering your data is not just about getting nifty-looking pictures.
The point is to get an intuitive sense of what your inputs look like. Being able to tell at
a glance “This problematic sample is very noisy compared to the rest of my data” or
“That’s odd, this looks pretty normal” can be useful when investigating issues. Effec-
tive rendering also helps foster insights like “Perhaps if I modify things like so, I can
solve the issue I’m having.” That level of familiarity will be necessary as you start tack-
ling harder and harder projects.

NOTE Due to the way each subset has been partitioned, combined with the
sorting used when constructing LunaDataset.candidateInfo_list, the
ordering of the entries in noduleSample_list is highly dependent on which
subsets are present at the time the code is executed. Please remember this
when trying to find a particular sample a second time, especially after decom-
pressing more subsets.

10.6 Conclusion
In chapter 9, we got our heads wrapped around our data. In this chapter, we got
PyTorch’s head wrapped around our data! By transforming our DICOM-via-meta-image
raw data into tensors, we’ve set the stage to start implementing a model and a training
loop, which we’ll see in the next chapter.

 It’s important not to underestimate the impact of the design decisions we’ve
already made: the size of our inputs, the structure of our caching, and how we’re par-
titioning our training and validation sets will all make a difference to the success or

5 Their term, not ours!

This magic line sets up the ability for images
to be displayed inline via the notebook.

http://mng.bz/rrmD
https://matplotlib.org

278 CHAPTER 10 Combining data sources into a unified dataset

failure of our overall project. Don’t hesitate to revisit these decisions later, especially
once you’re working on your own projects.

10.7 Exercises
1 Implement a program that iterates through a LunaDataset instance, and time

how long it takes to do so. In the interest of time, it might make sense to have
an option to limit the iterations to the first N=1000 samples.
a How long does it take to run the first time?
b How long does it take to run the second time?
c What does clearing the cache do to the runtime?
d What does using the last N=1000 samples do to the first/second runtime?

2 Change the LunaDataset implementation to randomize the sample list during
__init__. Clear the cache, and run the modified version. What does that do to
the runtime of the first and second runs?

3 Revert the randomization, and comment out the @functools.lru_cache(1,
typed=True) decorator to getCt. Clear the cache, and run the modified
version. How does the runtime change now?

10.8 Summary
 Often, the code required to parse and load raw data is nontrivial. For this proj-

ect, we implement a Ct class that loads data from disk and provides access to
cropped regions around points of interest.

 Caching can be useful if the parsing and loading routines are expensive. Keep
in mind that some caching can be done in memory, and some is best per-
formed on disk. Each can have its place in a data-loading pipeline.

 PyTorch Dataset subclasses are used to convert data from its native form into
tensors suitable to pass in to the model. We can use this functionality to inte-
grate our real-world data with PyTorch APIs.

 Subclasses of Dataset need to provide implementations for two methods:
__len__ and __getitem__. Other helper methods are allowed but not required.

 Splitting our data into a sensible training set and a validation set requires that
we make sure no sample is in both sets. We accomplish this here by using a con-
sistent sort order and taking every tenth sample for our validation set.

 Data visualization is important; being able to investigate data visually can pro-
vide important clues about errors or problems. We are using Jupyter Notebooks
and Matplotlib to render our data.

279

Training a
 classification model

 to detect suspected tumors

In the previous chapters, we set the stage for our cancer-detection project. We cov-
ered medical details of lung cancer, took a look at the main data sources we will use
for our project, and transformed our raw CT scans into a PyTorch Dataset
instance. Now that we have a dataset, we can easily consume our training data. So
let’s do that!

This chapter covers
 Using PyTorch DataLoaders to load data

 Implementing a model that performs
classification on our CT data

 Setting up the basic skeleton for our application

 Logging and displaying metrics

280 CHAPTER 11 Training a classification model to detect suspected tumors

11.1 A foundational model and training loop
We’re going to do two main things in this chapter. We’ll start by building the nodule
classification model and training loop that will be the foundation that the rest of part 2
uses to explore the larger project. To do that, we’ll use the Ct and LunaDataset classes
we implemented in chapter 10 to feed DataLoader instances. Those instances, in turn,
will feed our classification model with data via training and validation loops.

 We’ll finish the chapter by using the results from running that training loop to intro-
duce one of the hardest challenges in this part of the book: how to get high-quality
results from messy, limited data. In later chapters, we’ll explore the specific ways in
which our data is limited, as well as mitigate those limitations.

 Let’s recall our high-level roadmap from chapter 9, shown here in figure 11.1.
Right now, we’ll work on producing a model capable of performing step 4: classifica-
tion. As a reminder, we will classify candidates as nodules or non-nodules (we’ll build
another classifier to attempt to tell malignant nodules from benign ones in chapter
14). That means we’re going to assign a single, specific label to each sample that we
present to the model. In this case, those labels are “nodule” and “non-nodule,” since
each sample represents a single candidate.

 Getting an early end-to-end version of a meaningful part of your project is a great
milestone to reach. Having something that works well enough for the results to be
evaluated analytically let’s you move forward with future changes, confident that you

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

[(I,R,CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC),

 (I,R,CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC))))),

 (I,R,C))))))))))))))))))))))))))))))))))),,,

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

on

StStStStStSSStSttttStStStepeppppeppepppepepepeepppeppepepeeeeeeeeeeee 555555555555555555555 ((((((((((ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

,

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

[()

candidateeeeeeeeeeeeeee

Locationssssssssssssssssssss

Step 4 (ch. 11+

ClaSsificatio

.MMHD

.RRAW

CT

DataData

segmentattion

model

candidate

Sample

Figure 11.1 Our end-to-end project to detect lung cancer, with a focus on this chapter’s topic:
step 4, classification

281A foundational model and training loop

are improving your results with each change—or at least that you’re able to set aside
any changes and experiments that don’t work out! Expect to have to do a lot of exper-
imentation when working on your own projects. Getting the best results will usually
require considerable tinkering and tweaking.

 But before we can get to the experimental phase, we must lay our foundation. Let’s
see what our part 2 training loop looks like in figure 11.2: it should seem generally
familiar, given that we saw a similar set of core steps in chapter 5. Here we will also use
a validation set to evaluate our training progress, as discussed in section 5.5.3.

The basic structure of what we’re going to implement is as follows:

 Initialize our model and data loading.
 Loop over a semi-arbitrarily chosen number of epochs.

– Loop over each batch of training data returned by LunaDataset.
– The data-loader worker process loads the relevant batch of data in the

background.
– Pass the batch into our classification model to get results.
– Calculate our loss based on the difference between our predicted results and

our ground-truth data.
– Record metrics about our model’s performance into a temporary data

structure.
– Update the model weights via backpropagation of the error.

Log Metrics

console

tensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Validation LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Init model

Init data loaders

 LOop over epochs

Initialized

with Random

weights

FuLly

Trained

Figure 11.2 The training and validation script we will implement in this chapter

282 CHAPTER 11 Training a classification model to detect suspected tumors

– Loop over each batch of validation data (in a manner very similar to the
training loop).

– Load the relevant batch of validation data (again, in the background worker
process).

– Classify the batch, and compute the loss.
– Record information about how well the model performed on the validation

data.
– Print out progress and performance information for this epoch.

As we go through the code for the chapter, keep an eye out for two main differences
between the code we’re producing here and what we used for a training loop in part 1.
First, we’ll put more structure around our program, since the project as a whole is quite
a bit more complicated than what we did in earlier chapters. Without that extra struc-
ture, the code can get messy quickly. And for this project, we will have our main train-
ing application use a number of well-contained functions, and we will further separate
code for things like our dataset into self-contained Python modules.

 Make sure that for your own projects, you match the level of structure and design
to the complexity level of your project. Too little structure, and it will become difficult
to perform experiments cleanly, troubleshoot problems, or even describe what you’re
doing! Conversely, too much structure means you’re wasting time writing infrastruc-
ture that you don’t need and most likely slowing yourself down by having to conform
to it after all that plumbing is in place. Plus it can be tempting to spend time on infra-
structure as a procrastination tactic, rather than digging into the hard work of making
actual progress on your project. Don’t fall into that trap!

 The other big difference between this chapter’s code and part 1 will be a focus on
collecting a variety of metrics about how training is progressing. Being able to accu-
rately determine the impact of changes on training is impossible without having good
metrics logging. Without spoiling the next chapter, we’ll also see how important it is
to collect not just metrics, but the right metrics for the job. We’ll lay the infrastructure for
tracking those metrics in this chapter, and we’ll exercise that infrastructure by collect-
ing and displaying the loss and percent of samples correctly classified, both overall
and per class. That’s enough to get us started, but we’ll cover a more realistic set of
metrics in chapter 12.

11.2 The main entry point for our application
One of the big structural differences from earlier training work we’ve done in this
book is that part 2 wraps our work in a fully fledged command-line application. It will
parse command-line arguments, have a full-featured --help command, and be easy to
run in a wide variety of environments. All this will allow us to easily invoke the training
routines from both Jupyter and a Bash shell.1

1 Any shell, really, but if you’re using a non-Bash shell, you already knew that.

283The main entry point for our application

 Our application’s functionality will be implemented via a class so that we can
instantiate the application and pass it around if we feel the need. This can make test-
ing, debugging, or invocation from other Python programs easier. We can invoke the
application without needing to spin up a second OS-level process (we won’t do
explicit unit testing in this book, but the structure we create can be helpful for real
projects where that kind of testing is appropriate).

 One way to take advantage of being able to invoke our training by either function
call or OS-level process is to wrap the function invocations into a Jupyter Notebook so
the code can easily be called from either the native CLI or the browser.

In[2]:w
def run(app, *argv):

argv = list(argv)
argv.insert(0, '--num-workers=4')
log.info("Running: {}({!r}).main()".format(app, argv))

app_cls = importstr(*app.rsplit('.', 1))
app_cls(argv).main()

log.info("Finished: {}.{!r}).main()".format(app, argv))

In[6]:
run('p2ch11.training.LunaTrainingApp', '--epochs=1')

NOTE The training here assumes that you’re on a workstation that has a four-
core, eight-thread CPU, 16 GB of RAM, and a GPU with 8 GB of RAM. Reduce
--batch-size if your GPU has less RAM, and --num-workers if you have fewer
CPU cores, or less CPU RAM.

Let’s get some semistandard boilerplate code out of the way. We’ll start at the end of
the file with a pretty standard if main stanza that instantiates the application object
and invokes the main method.

if __name__ == '__main__':
LunaTrainingApp().main()

From there, we can jump back to the top of the file and have a look at the application class
and the two functions we just called, __init__ and main. We’ll want to be able to accept
command-line arguments, so we’ll use the standard argparse library (https://docs
.python.org/3/library/argparse.html) in the application’s __init__ function. Note that
we can pass in custom arguments to the initializer, should we wish to do so. The main
method will be the primary entry point for the core logic of the application.

Listing 11.1 code/p2_run_everything.ipynb

Listing 11.2 training.py:386

We assume you have a four-core, eight-
thread CPU. Change the 4 if needed.

This is a slightly cleaner
call to __import__.

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

284 CHAPTER 11 Training a classification model to detect suspected tumors

class LunaTrainingApp:
def __init__(self, sys_argv=None):

if sys_argv is None:
sys_argv = sys.argv[1:]

parser = argparse.ArgumentParser()
parser.add_argument('--num-workers',

help='Number of worker processes for background data loading',
default=8,
type=int,

)
... line 63
self.cli_args = parser.parse_args(sys_argv)
self.time_str = datetime.datetime.now().strftime('%Y-%m-%d_%H.%M.%S')

... line 137
def main(self):

log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))

This structure is pretty general and could be reused for future projects. In particular,
parsing arguments in __init__ allows us to configure the application separately from
invoking it.

 If you check the code for this chapter on the book’s website or GitHub, you might
notice some extra lines mentioning TensorBoard. Ignore those for now; we’ll discuss
them in detail later in the chapter, in section 11.9.

11.3 Pretraining setup and initialization
Before we can begin iterating over each batch in our epoch, some initialization work
needs to happen. After all, we can’t train a model if we haven’t even instantiated one
yet! We need to do two main things, as we can see in figure 11.3. The first, as we just
mentioned, is to initialize our model and optimizer; and the second is to initialize
our Dataset and DataLoader instances. LunaDataset will define the randomized
set of samples that will make up our training epoch, and our DataLoader instance
will perform the work of loading the data out of our dataset and providing it to
our application.

Listing 11.3 training.py:31, class LunaTrainingApp

If the caller doesn’t provide
arguments, we get them from
the command line.

We’ll use the timestamp to
help identify training runs.

285Pretraining setup and initialization

11.3.1 Initializing the model and optimizer

For this section, we are treating the details of LunaModel as a black box. In section 11.4,
we will detail the internal workings. You are welcome to explore changes to the imple-
mentation to better meet our goals for the model, although that’s probably best done
after finishing at least chapter 12.

 Let’s see what our starting point looks like.

class LunaTrainingApp:
def __init__(self, sys_argv=None):

... line 70
self.use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if self.use_cuda else "cpu")

self.model = self.initModel()
self.optimizer = self.initOptimizer()

Listing 11.4 training.py:31, class LunaTrainingApp

Log Metrics

console

tensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Validation LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Init model

Init data loaders

 LOop over epochs

Initialized

with Random

weights

FuLly

Trained

Log Metrics

console

tensorboardtensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Ooplidation LOoVal

d batch tupleLoad

aSsify BatchCla

lculate LoSsCal

cord metricsReccord metricsRec

Init modelt model

IInitt data loadeers

 LOop over epochs

Initialized

with Randomwith RRandomRandom

weiights

FuLly

Trained

Figure 11.3 The training and validation script we will implement in this chapter, with
a focus on the preloop variable initialization

286 CHAPTER 11 Training a classification model to detect suspected tumors

def initModel(self):
model = LunaModel()
if self.use_cuda:

log.info("Using CUDA; {} devices.".format(torch.cuda.device_count()))
if torch.cuda.device_count() > 1:

model = nn.DataParallel(model)
model = model.to(self.device)

return model

def initOptimizer(self):
return SGD(self.model.parameters(), lr=0.001, momentum=0.99)

If the system used for training has more than one GPU, we will use the nn.DataParallel
class to distribute the work between all of the GPUs in the system and then collect and
resync parameter updates and so on. This is almost entirely transparent in terms of both
the model implementation and the code that uses that model.

Assuming that self.use_cuda is true, the call self.model.to(device) moves the
model parameters to the GPU, setting up the various convolutions and other calcula-
tions to use the GPU for the heavy numerical lifting. It’s important to do so before
constructing the optimizer, since, otherwise, the optimizer would be left looking at
the CPU-based parameter objects rather than those copied to the GPU.

 For our optimizer, we’ll use basic stochastic gradient descent (SGD;
https://pytorch.org/docs/stable/optim.html#torch.optim.SGD) with momentum.
We first saw this optimizer in chapter 5. Recall from part 1 that many different opti-
mizers are available in PyTorch; while we won’t cover most of them in any detail, the
official documentation (https://pytorch.org/docs/stable/optim.html#algorithms)
does a good job of linking to the relevant papers.

Detects
multiple

GPUs
Wraps the model

Sends model
parameters to the GPU

DataParallel vs. DistributedDataParallel
In this book, we use DataParallel to handle utilizing multiple GPUs. We chose Data-
Parallel because it’s a simple drop-in wrapper around our existing models. It is not
the best-performing solution for using multiple GPUs, however, and it is limited to work-
ing with the hardware available in a single machine.

PyTorch also provides DistributedDataParallel, which is the recommended wrap-
per class to use when you need to spread work between more than one GPU or
machine. Since the proper setup and configuration are nontrivial, and we suspect that
the vast majority of our readers won’t see any benefit from the complexity, we won’t
cover DistributedDataParallel in this book. If you wish to learn more, we suggest
reading the official documentation: https://pytorch.org/tutorials/intermediate/
ddp_tutorial.html.

https://pytorch.org/docs/stable/optim.html#torch.optim.SGD
https://pytorch.org/docs/stable/optim.html#algorithms
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

287Pretraining setup and initialization

 Using SGD is generally considered a safe place to start when it comes to picking an
optimizer; there are some problems that might not work well with SGD, but they’re
relatively rare. Similarly, a learning rate of 0.001 and a momentum of 0.9 are pretty
safe choices. Empirically, SGD with those values has worked reasonably well for a wide
range of projects, and it’s easy to try a learning rate of 0.01 or 0.0001 if things aren’t
working well right out of the box.

 That’s not to say any of those values is the best for our use case, but trying to find bet-
ter ones is getting ahead of ourselves. Systematically trying different values for learning
rate, momentum, network size, and other similar configuration settings is called a hyper-
parameter search. There are other, more glaring issues we need to address first in the com-
ing chapters. Once we address those, we can begin to fine-tune these values. As we
mentioned in the section “Testing other optimizers” in chapter 5, there are also other,
more exotic optimizers we might choose; but other than perhaps swapping
torch.optim.SGD for torch.optim.Adam, understanding the trade-offs involved is a
topic too advanced for this book.

11.3.2 Care and feeding of data loaders

The LunaDataset class that we built in the last chapter acts as the bridge between
whatever Wild West data we have and the somewhat more structured world of tensors
that the PyTorch building blocks expect. For example, torch.nn.Conv3d (https://
pytorch.org/docs/stable/nn.html#conv3d) expects five-dimensional input: (N, C, D,
H, W): number of samples, channels per sample, depth, height, and width. Quite dif-
ferent from the native 3D our CT provides!

 You may recall the ct_t.unsqueeze(0) call in LunaDataset.__getitem__ from the
last chapter; it provides the fourth dimension, a “channel” for our data. Recall from
chapter 4 that an RGB image has three channels, one each for red, green, and blue.
Astronomical data could have dozens, one each for various slices of the electromag-
netic spectrum—gamma rays, X-rays, ultraviolet light, visible light, infrared, micro-
waves, and/or radio waves. Since CT scans are single-intensity, our channel dimension
is only size 1.

 Also recall from part 1 that training on single samples at a time is typically an inef-
ficient use of computing resources, because most processing platforms are capable of
more parallel calculations than are required by a model to process a single training or
validation sample. The solution is to group sample tuples together into a batch tuple,
as in figure 11.4, allowing multiple samples to be processed at the same time. The fifth
dimension (N) differentiates multiple samples in the same batch.

https://pytorch.org/docs/stable/nn.html#conv3d
https://pytorch.org/docs/stable/nn.html#conv3d
https://pytorch.org/docs/stable/nn.html#conv3d

288 CHAPTER 11 Training a classification model to detect suspected tumors

Conveniently, we don’t have to implement any of this batching: the PyTorch Data-
Loader class will handle all of the collation work for us. We’ve already built the bridge
from the CT scans to PyTorch tensors with our LunaDataset class, so all that remains
is to plug our dataset into a data loader.

def initTrainDl(self):
train_ds = LunaDataset(

val_stride=10,
isValSet_bool=False,

)

batch_size = self.cli_args.batch_size
if self.use_cuda:

batch_size *= torch.cuda.device_count()

train_dl = DataLoader(
train_ds,
batch_size=batch_size,
num_workers=self.cli_args.num_workers,
pin_memory=self.use_cuda,

)

Listing 11.5 training.py:89, LunaTrainingApp.initTrainDl

Luna Dataset
Data Loader

1d bOol aRray

List of Strings

List of IRC

tuples

Batch tuple

5d fp32 aRray

(,

[T, F...]

[“123”, “456”...],

[IRC, IRC...])

is nodule?

Series_uid

candidate

location

Sample tupleS

sample aRray

(,

T,

“1.2.3”,

(I,R,C))

is nodule?

Series_uid

candidate

location

sample aRray

(,

F,

“4.5.6”,

(I,R,C))
.CSV

ANnotations

.MHD

.RAW

CT Files

Figure 11.4 Sample tuples being collated into a single batch tuple inside a data loader

Our custom dataset

An off-the-shelf class

Batching is done automatically.

Pinned memory transfers
to GPU quickly.

289Our first-pass neural network design

return train_dl

... line 137
def main(self):

train_dl = self.initTrainDl()
val_dl = self.initValDl()

In addition to batching individual samples, data loaders can also provide parallel
loading of data by using separate processes and shared memory. All we need to do is
specify num_workers=… when instantiating the data loader, and the rest is taken care of
behind the scenes. Each worker process produces complete batches as in figure 11.4.
This helps make sure hungry GPUs are well fed with data. Our validation_ds and
validation_dl instances look similar, except for the obvious isValSet_bool=True.

 When we iterate, like for batch_tup in self.train_dl:, we won’t have to wait
for each Ct to be loaded, samples to be taken and batched, and so on. Instead, we’ll
get the already loaded batch_tup immediately, and a worker process will be freed up
in the background to begin loading another batch to use on a later iteration. Using
the data-loading features of PyTorch can help speed up most projects, because we can
overlap data loading and processing with GPU calculation.

11.4 Our first-pass neural network design
The possible design space for a convolutional neural network capable of detecting
tumors is effectively infinite. Luckily, considerable effort has been spent over the past
decade or so investigating effective models for image recognition. While these have
largely focused on 2D images, the general architecture ideas transfer well to 3D, so
there are many tested designs that we can use as a starting point. This helps because
although our first network architecture is unlikely to be our best option, right now we
are only aiming for “good enough to get us going.”

 We will base the network design on what we used in chapter 8. We will have to
update the model somewhat because our input data is 3D, and we will add some com-
plicating details, but the overall structure shown in figure 11.5 should feel familiar.
Similarly, the work we do for this project will be a good base for your future projects,
although the further you get from classification or segmentation projects, the more
you’ll have to adapt this base to fit. Let’s dissect this architecture, starting with the four
repeated blocks that make up the bulk of the network.

The validation data loader
is very similar to training.

290 CHAPTER 11 Training a classification model to detect suspected tumors

11.4.1 The core convolutions

Classification models often have a structure that consists of a tail, a backbone (or
body), and a head. The tail is the first few layers that process the input to the network.
These early layers often have a different structure or organization than the rest of the
network, as they must adapt the input to the form expected by the backbone. Here we
use a simple batch normalization layer, though often the tail contains convolutional
layers as well. Such convolutional layers are often used to aggressively downsample the
size of the image; since our image size is already small, we don’t need to do that here.

 Next, the backbone of the network typically contains the bulk of the layers, which
are usually arranged in series of blocks. Each block has the same (or at least a similar)
set of layers, though often the size of the expected input and the number of filters
changes from block to block. We will use a block that consists of two 3 × 3 convolu-
tions, each followed by an activation, with a max-pooling operation at the end of the
block. We can see this in the expanded view of figure 11.5 labeled Block[block1].
Here’s what the implementation of the block looks like in code.

class LunaBlock(nn.Module):
def __init__(self, in_channels, conv_channels):

super().__init__()

Listing 11.6 model.py:67, class LunaBlock

Luna Model Architecture

T
a
il

B
a
c

k
b

o
n
e

 H
E

A
D

Input

Image

Filter

SmaLler

Output

Luna Model ArchitectureL

Filter

S

O

ChaNnels: 1

Image: 32 48 48

ChaNnels: 8

Image: 16 24 24x x

ChaNnels: 32

Image: 4 6 6

ChaNnels: 64

Image: 2 3 3x x

ChaNnels: 16

Image: 8 12 12

x x

x x

x x

Figure 11.5 The architecture of the LunaModel class consisting of a batch-normalization tail,
a four-block backbone, and a head comprised of a linear layer followed by softmax

291Our first-pass neural network design

self.conv1 = nn.Conv3d(
in_channels, conv_channels, kernel_size=3, padding=1, bias=True,

)
self.relu1 = nn.ReLU(inplace=True) 1((CO5-1))
self.conv2 = nn.Conv3d(
conv_channels, conv_channels, kernel_size=3, padding=1, bias=True,

)
self.relu2 = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool3d(2, 2)

def forward(self, input_batch):
block_out = self.conv1(input_batch)
block_out = self.relu1(block_out)
block_out = self.conv2(block_out)
block_out = self.relu2(block_out)

return self.maxpool(block_out)

Finally, the head of the network takes the output from the backbone and converts it
into the desired output form. For convolutional networks, this often involves flatten-
ing the intermediate output and passing it to a fully connected layer. For some net-
works, it makes sense to also include a second fully connected layer, although that is
usually more appropriate for classification problems in which the imaged objects have
more structure (think about cars versus trucks having wheels, lights, grill, doors, and
so on) and for projects with a large number of classes. Since we are only doing binary
classification, and we don’t seem to need the additional complexity, we have only a
single flattening layer.

 Using a structure like this can be a good first building block for a convolutional
network. There are more complicated designs out there, but for many projects they’re
overkill in terms of both implementation complexity and computational demands. It’s
a good idea to start simple and add complexity only when there’s a demonstrable
need for it.

 We can see the convolutions of our block represented in 2D in figure 11.6. Since
this is a small portion of a larger image, we ignore padding here. (Note that the ReLU
activation function is not shown, as applying it does not change the image sizes.)

 Let’s walk through the information flow between our input voxels and a single voxel
of output. We want to have a strong sense of how our output will respond when the
inputs change. It might be a good idea to review chapter 8, particularly sections 8.1
through 8.3, just to make sure you’re 100% solid on the basic mechanics of convolutions.

 We’re using 3 × 3 × 3 convolutions in our block. A single 3 × 3 × 3 convolution has
a receptive field of 3 × 3 × 3, which is almost tautological. Twenty-seven voxels are fed
in, and one comes out.

 It gets interesting when we use two 3 × 3 × 3 convolutions stacked back to back. Stack-
ing convolutional layers allows the final output voxel (or pixel) to be influenced by an
input further away than the size of the convolutional kernel suggests. If that output

These could be
implemented as calls
to the functional API
instead.

292 CHAPTER 11 Training a classification model to detect suspected tumors

voxel is fed into another 3 × 3 × 3 kernel as one of the edge voxels, then some of the
inputs to the first layer will be outside of the 3 × 3 × 3 area of input to the second. The
final output of those two stacked layers has an effective receptive field of 5 × 5 × 5. That
means that when taken together, the stacked layers act as similar to a single convolu-
tional layer with a larger size.

 Put another way, each 3 × 3 × 3 convolutional layer adds an additional one-voxel-
per-edge border to the receptive field. We can see this if we trace the arrows in fig-
ure 11.6 backward; our 2 × 2 output has a receptive field of 4 × 4, which in turn has a
receptive field of 6 × 6. Two stacked 3 × 3 × 3 layers uses fewer parameters than a full
5 × 5 × 5 convolution would (and so is also faster to compute).

 The output of our two stacked convolutions is fed into a 2 × 2 × 2 max pool, which
means we’re taking a 6 × 6 × 6 effective field, throwing away seven-eighths of the data,
and going with the one 5 × 5 × 5 field that produced the largest value.2 Now, those
“discarded” input voxels still have a chance to contribute, since the max pool that’s
one output voxel over has an overlapping input field, so it’s possible they’ll influence
the final output that way.

 Note that while we show the receptive field shrinking with each convolutional
layer, we’re using padded convolutions, which add a virtual one-pixel border around
the image. Doing so keeps our input and output image sizes the same.

 The nn.ReLU layers are the same as the ones we looked at in chapter 6. Outputs
greater than 0.0 will be left unchanged, and outputs less than 0.0 will be clamped to
zero.

 This block will be repeated multiple times to form our model’s backbone.

2 Remember that we’re actually working in 3D, despite the 2D figure.

6 6 Input

3 3 Convx

3 3 Convx

2 2

Output

x
2 2

Max POol

x

4x4 Output

4 4 Input
(same as output)

x

3 3 Convx

t

22

PMax

x22

1x1 Output

I
asas

nv

3 3 Convx33

2 2

Output

x22
Innput
as oas ooutput)output)

x

Figure 11.6
The convolutional
architecture of a
LunaModel block
consisting of two 3 × 3
convolutions followed
by a max pool. The final
pixel has a receptive
field of 6 × 6.

293Our first-pass neural network design

11.4.2 The full model

Let’s take a look at the full model implementation. We’ll skip the block definition,
since we just saw that in listing 11.6.

class LunaModel(nn.Module):
def __init__(self, in_channels=1, conv_channels=8):

super().__init__()

self.tail_batchnorm = nn.BatchNorm3d(1)

self.block1 = LunaBlock(in_channels, conv_channels)
self.block2 = LunaBlock(conv_channels, conv_channels * 2)
self.block3 = LunaBlock(conv_channels * 2, conv_channels * 4)
self.block4 = LunaBlock(conv_channels * 4, conv_channels * 8)

self.head_linear = nn.Linear(1152, 2)
self.head_softmax = nn.Softmax(dim=1)

Here, our tail is relatively simple. We are going to normalize our input using
nn.BatchNorm3d, which, as we saw in chapter 8, will shift and scale our input so that it
has a mean of 0 and a standard deviation of 1. Thus, the somewhat odd Hounsfield
unit (HU) scale that our input is in won’t really be visible to the rest of the network.
This is a somewhat arbitrary choice; we know what our input units are, and we know
the expected values of the relevant tissues, so we could probably implement a fixed
normalization scheme pretty easily. It’s not clear which approach would be better.3

 Our backbone is four repeated blocks, with the block implementation pulled out into
the separate nn.Module subclass we saw earlier in listing 11.6. Since each block ends with
a 2 × 2 × 2 max-pool operation, after 4 layers we will have decreased the resolution of the
image 16 times in each dimension. Recall from chapter 10 that our data is returned in
chunks that are 32 × 48 × 48, which will become 2 × 3 × 3 by the end of the backbone.

 Finally, our tail is just a fully connected layer followed by a call to nn.Softmax. Soft-
max is a useful function for single-label classification tasks and has a few nice proper-
ties: it bounds the output between 0 and 1, it’s relatively insensitive to the absolute
range of the inputs (only the relative values of the inputs matter), and it allows our
model to express the degree of certainty it has in an answer.

 The function itself is relatively simple. Every value from the input is used to expo-
nentiate e, and the resulting series of values is then divided by the sum of all the
results of exponentiation. Here’s what it looks like implemented in a simple fashion as
a nonoptimized softmax implementation in pure Python:

>>> logits = [1, -2, 3]
>>> exp = [e ** x for x in logits]
>>> exp

Listing 11.7 model.py:13, class LunaModel

3 Which is why there’s an exercise to experiment with both in the next chapter!

Tail

Backbone

Head

294 CHAPTER 11 Training a classification model to detect suspected tumors

[2.718, 0.135, 20.086]

>>> softmax = [x / sum(exp) for x in exp]
>>> softmax
[0.118, 0.006, 0.876]

Of course, we use the PyTorch version of nn.Softmax for our model, as it natively
understands batches and tensors and will perform autograd quickly and as expected.

COMPLICATION: CONVERTING FROM CONVOLUTION TO LINEAR

Continuing on with our model definition, we come to a complication. We can’t just
feed the output of self.block4 into a fully connected layer, since that output is a per-
sample 2 × 3 × 3 image with 64 channels, and fully connected layers expect a 1D vector
as input (well, technically they expect a batch of 1D vectors, which is a 2D array, but the
mismatch remains either way). Let’s take a look at the forward method.

def forward(self, input_batch):
bn_output = self.tail_batchnorm(input_batch)

block_out = self.block1(bn_output)
block_out = self.block2(block_out)
block_out = self.block3(block_out)
block_out = self.block4(block_out)

conv_flat = block_out.view(
block_out.size(0),
-1,

)
linear_output = self.head_linear(conv_flat)

return linear_output, self.head_softmax(linear_output)

Note that before we pass data into a fully connected layer, we must flatten it using the
view function. Since that operation is stateless (it has no parameters that govern its
behavior), we can simply perform the operation in the forward function. This is
somewhat similar to the functional interfaces we discussed in chapter 8. Almost every
model that uses convolution and produces classifications, regressions, or other non-
image outputs will have a similar component in the head of the network.

 For the return value of the forward method, we return both the raw logits and the
softmax-produced probabilities. We first hinted at logits in section 7.2.6: they are the
numerical values produced by the network prior to being normalized into probabili-
ties by the softmax layer. That might sound a bit complicated, but logits are really just
the raw input to the softmax layer. They can have any real-valued input, and the soft-
max will squash them to the range 0–1.

Listing 11.8 model.py:50, LunaModel.forward

The batch size

295Training and validating the model

 We’ll use the logits when we calculate the nn.CrossEntropyLoss during training,4

and we’ll use the probabilities for when we want to actually classify the samples. This
kind of slight difference between what’s used for training and what’s used in produc-
tion is fairly common, especially when the difference between the two outputs is a sim-
ple, stateless function like softmax.

INITIALIZATION

Finally, let’s talk about initializing our network’s parameters. In order to get well-
behaved performance out of our model, the network’s weights, biases, and other
parameters need to exhibit certain properties. Let’s imagine a degenerate case, where
all of the network’s weights are greater than 1 (and we do not have residual connec-
tions). In that case, repeated multiplication by those weights would result in layer out-
puts that became very large as data flowed through the layers of the network.
Similarly, weights less than 1 would cause all layer outputs to become smaller and van-
ish. Similar considerations apply to the gradients in the backward pass.

 Many normalization techniques can be used to keep layer outputs well behaved, but
one of the simplest is to just make sure the network’s weights are initialized such that
intermediate values and gradients become neither unreasonably small nor unreasonably
large. As we discussed in chapter 8, PyTorch does not help us as much as it should here,
so we need to do some initialization ourselves. We can treat the following _init_weights
function as boilerplate, as the exact details aren’t particularly important.

def _init_weights(self):
for m in self.modules():

if type(m) in {
nn.Linear,
nn.Conv3d,

}:
nn.init.kaiming_normal_(

m.weight.data, a=0, mode='fan_out', nonlinearity='relu',
)
if m.bias is not None:

fan_in, fan_out = \
nn.init._calculate_fan_in_and_fan_out(m.weight.data)

bound = 1 / math.sqrt(fan_out)
nn.init.normal_(m.bias, -bound, bound)

11.5 Training and validating the model
Now it’s time to take the various pieces we’ve been working with and assemble them
into something we can actually execute. This training loop should be familiar—we saw
loops like figure 11.7 in chapter 5.

4 There are numerical stability benefits for doing so. Propagating gradients accurately through an exponential
calculated using 32-bit floating-point numbers can be problematic.

Listing 11.9 model.py:30, LunaModel._init_weights

296 CHAPTER 11 Training a classification model to detect suspected tumors

The code is relatively compact (the doTraining function is only 12 statements; it’s lon-
ger here due to line-length limitations).

def main(self):
... line 143
for epoch_ndx in range(1, self.cli_args.epochs + 1):

trnMetrics_t = self.doTraining(epoch_ndx, train_dl)
self.logMetrics(epoch_ndx, 'trn', trnMetrics_t)

... line 165
def doTraining(self, epoch_ndx, train_dl):

self.model.train()
trnMetrics_g = torch.zeros(

METRICS_SIZE,
len(train_dl.dataset),
device=self.device,

)

batch_iter = enumerateWithEstimate(
train_dl,
"E{} Training".format(epoch_ndx),
start_ndx=train_dl.num_workers,

)
for batch_ndx, batch_tup in batch_iter:

self.optimizer.zero_grad()

Listing 11.10 training.py:137, LunaTrainingApp.main

Log Metrics

console

tensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Validation LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Init model

Init data loaders

 LOop over epochs

Initialized

with Random

weights

FuLly

Trained

Log Metrics

console

tensorboardtensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Ooplidation LOoVal

d batch tupleLoad

aSsify BatchCla

lculate LoSsCal

cord metricsReccord metricsRec

Init modelt model

IInitt data loadeers

LOop over epochs

Initialized

with Randomwith RRandomRandom

weiights

FuLly

Trained

Figure 11.7 The training and validation script we will implement in this chapter, with
a focus on the nested loops over each epoch and batches in the epoch

Initializes an empty
metrics array

Sets up our batch looping
with time estimate

Frees any leftover
gradient tensors

297Training and validating the model

loss_var = self.computeBatchLoss(
batch_ndx,
batch_tup,
train_dl.batch_size,
trnMetrics_g

)

loss_var.backward()
self.optimizer.step()

self.totalTrainingSamples_count += len(train_dl.dataset)

return trnMetrics_g.to('cpu')

The main differences that we see from the training loops in earlier chapters are as
follows:

 The trnMetrics_g tensor collects detailed per-class metrics during training.
For larger projects like ours, this kind of insight can be very nice to have.

 We don’t directly iterate over the train_dl data loader. We use enumerateWith-
Estimate to provide an estimated time of completion. This isn’t crucial; it’s just
a stylistic choice.

 The actual loss computation is pushed into the computeBatchLoss method.
Again, this isn’t strictly necessary, but code reuse is typically a plus.

We’ll discuss why we’ve wrapped enumerate with additional functionality in section
11.7.2; for now, assume it’s the same as enumerate(train_dl).

 The purpose of the trnMetrics_g tensor is to transport information about how
the model is behaving on a per-sample basis from the computeBatchLoss function to
the logMetrics function. Let’s take a look at computeBatchLoss next. We’ll cover
logMetrics after we’re done with the rest of the main training loop.

11.5.1 The computeBatchLoss function

The computeBatchLoss function is called by both the training and validation loops. As
the name suggests, it computes the loss over a batch of samples. In addition, the func-
tion also computes and records per-sample information about the output the model is
producing. This lets us compute things like the percentage of correct answers per
class, which allows us to hone in on areas where our model is having difficulty.

 Of course, the function’s core functionality is around feeding the batch into the
model and computing the per-batch loss. We’re using CrossEntropyLoss (https://
pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss), just like in chapter 7.
Unpacking the batch tuple, moving the tensors to the GPU, and invoking the model
should all feel familiar after that earlier training work.

We’ll discuss this method in
detail in the next section.

Actually updates
the model weights

https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss

298 CHAPTER 11 Training a classification model to detect suspected tumors

def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_g):
input_t, label_t, _series_list, _center_list = batch_tup

input_g = input_t.to(self.device, non_blocking=True)
label_g = label_t.to(self.device, non_blocking=True)

logits_g, probability_g = self.model(input_g)

loss_func = nn.CrossEntropyLoss(reduction='none')
loss_g = loss_func(

logits_g,
label_g[:,1],

)
... line 238
return loss_g.mean()

Here we are not using the default behavior to get a loss value averaged over the batch.
Instead, we get a tensor of loss values, one per sample. This lets us track the individual
losses, which means we can aggregate them as we wish (per class, for example). We’ll
see that in action in just a moment. For now, we’ll return the mean of those per-sample
losses, which is equivalent to the batch loss. In situations where you don’t want to keep
statistics per sample, using the loss averaged over the batch is perfectly fine. Whether
that’s the case is highly dependent on your project and goals.

 Once that’s done, we’ve fulfilled our obligations to the calling function in terms of
what’s required to do backpropagation and weight updates. Before we do that, how-
ever, we also want to record our per-sample stats for posterity (and later analysis).
We’ll use the metrics_g parameter passed in to accomplish this.

METRICS_LABEL_NDX=0
METRICS_PRED_NDX=1
METRICS_LOSS_NDX=2
METRICS_SIZE = 3

... line 225
def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_g):

... line 238
start_ndx = batch_ndx * batch_size
end_ndx = start_ndx + label_t.size(0)

metrics_g[METRICS_LABEL_NDX, start_ndx:end_ndx] = \
label_g[:,1].detach()

metrics_g[METRICS_PRED_NDX, start_ndx:end_ndx] = \
probability_g[:,1].detach()

metrics_g[METRICS_LOSS_NDX, start_ndx:end_ndx] = \
loss_g.detach()

return loss_g.mean()

Listing 11.11 training.py:225, .computeBatchLoss

Listing 11.12 training.py:26

reduction=‘none’ gives
the loss per sample.

Index of the one-
hot-encoded class

Recombines the loss per
sample into a single value

These named array indexes are
declared at module-level scope.

We use detach since
none of our metrics
need to hold on to
gradients.

Again, this is the loss
over the entire batch.

299Training and validating the model

By recording the label, prediction, and loss for each and every training (and later, val-
idation) sample, we have a wealth of detailed information we can use to investigate
the behavior of our model. For now, we’re going to focus on compiling per-class statis-
tics, but we could easily use this information to find the sample that is classified the
most wrongly and start to investigate why. Again, for some projects, this kind of infor-
mation will be less interesting, but it’s good to remember that you have these kinds of
options available.

11.5.2 The validation loop is similar

The validation loop in figure 11.8 looks very similar to training but is somewhat sim-
plified. The key difference is that validation is read-only. Specifically, the loss value
returned is not used, and the weights are not updated.

Nothing about the model should have changed between the start and end of the func-
tion call. In addition, it’s quite a bit faster due to the with torch.no_grad() context
manager explicitly informing PyTorch that no gradients need to be computed.

def main(self):
for epoch_ndx in range(1, self.cli_args.epochs + 1):

... line 157
valMetrics_t = self.doValidation(epoch_ndx, val_dl)

Listing 11.13 training.py:137, LunaTrainingApp.main

Log Metrics

console

tensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Validation LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Init model

Init data loaders

 LOop over epochs

Initialized

with Random

weights

FuLly

Trained

Log Metrics

console

tensorboardtensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Ooplidation LOoVal

d batch tupleLoad

aSsify BatchCla

lculate LoSsCal

cord metricsReccord metricsRec

Init modelt model

IInitt data loadeers

 LOop over epochs

Initialized

with Randomwith RRandomRandom

weiights

FuLly

Trained

Figure 11.8 The training and validation script we will implement in this chapter, with a
focus on the per-epoch validation loop

300 CHAPTER 11 Training a classification model to detect suspected tumors

self.logMetrics(epoch_ndx, 'val', valMetrics_t)

... line 203
def doValidation(self, epoch_ndx, val_dl):

with torch.no_grad():
self.model.eval()
valMetrics_g = torch.zeros(

METRICS_SIZE,
len(val_dl.dataset),
device=self.device,

)

batch_iter = enumerateWithEstimate(
val_dl,
"E{} Validation ".format(epoch_ndx),
start_ndx=val_dl.num_workers,

)
for batch_ndx, batch_tup in batch_iter:

self.computeBatchLoss(
batch_ndx, batch_tup, val_dl.batch_size, valMetrics_g)

return valMetrics_g.to('cpu')

Without needing to update network weights (recall that doing so would violate the
entire premise of the validation set; something we never want to do!), we don’t need
to use the loss returned from computeBatchLoss, nor do we need to reference the
optimizer. All that’s left inside the loop is the call to computeBatchLoss. Note that we
are still collecting metrics in valMetrics_g as a side effect of the call, even though we
aren’t using the overall per-batch loss returned by computeBatchLoss for anything.

11.6 Outputting performance metrics
The last thing we do per epoch is log our performance metrics for this epoch. As
shown in figure 11.9, once we’ve logged metrics, we return to the training loop for the
next epoch of training. Logging results and progress as we go is important, since if
training goes off the rails (“does not converge” in the parlance of deep learning), we
want to notice this is happening and stop spending time training a model that’s not
working out. In less catastrophic cases, it’s good to be able to keep an eye on how your
model behaves.

 Earlier, we were collecting results in trnMetrics_g and valMetrics_g for logging
progress per epoch. Each of these two tensors now contains everything we need to
compute our percent correct and average loss per class for our training and validation
runs. Doing this per epoch is a common choice, though somewhat arbitrary. In future
chapters, we’ll see how to manipulate the size of our epochs such that we get feedback
about training progress at a reasonable rate.

Turns off training-time behavior

301Outputting performance metrics

11.6.1 The logMetrics function

Let’s talk about the high-level structure of the logMetrics function. The signature
looks like this.

def logMetrics(
self,
epoch_ndx,
mode_str,
metrics_t,
classificationThreshold=0.5,

):

We use epoch_ndx purely for display while logging our results. The mode_str argu-
ment tells us whether the metrics are for training or validation.

 We consume either trnMetrics_t or valMetrics_t, which is passed in as the metrics
_t parameter. Recall that both of those inputs are tensors of floating-point values that we
filled with data during computeBatchLoss and then transferred back to the CPU right
before we returned them from doTraining and doValidation. Both tensors have three
rows and as many columns as we have samples (training samples or validation samples,
depending). As a reminder, those three rows correspond to the following constants.

Listing 11.14 training.py:251, LunaTrainingApp.logMetrics

Log Metrics

console

tensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Validation LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Init model

Init data loaders

 LOop over epochs

Initialized

with Random

weights

FuLly

Trained

Log Metrics

console

tensorboardtensorboard

Training LOop

Load batch tuple

ClaSsify Batch

Calculate LoSs

Record metrics

Update weights

Ooplidation LOoVal

d batch tupleLoad

aSsify BatchCla

lculate LoSsCal

cord metricsReccord metricsRec

Init modelt model

IInitt data loadeers

 LOop over epochs

Initialized

with Randomwith RRandomRandom

weiights

FuLly

Trained

Figure 11.9 The training and validation script we will implement in this chapter, with
a focus on the metrics logging at the end of each epoch

302 CHAPTER 11 Training a classification model to detect suspected tumors

METRICS_LABEL_NDX=0
METRICS_PRED_NDX=1
METRICS_LOSS_NDX=2
METRICS_SIZE = 3

CONSTRUCTING MASKS

Next, we’re going to construct masks that will let us limit our metrics to only the nod-
ule or non-nodule (aka positive or negative) samples. We will also count the total sam-
ples per class, as well as the number of samples we classified correctly.

negLabel_mask = metrics_t[METRICS_LABEL_NDX] <= classificationThreshold
negPred_mask = metrics_t[METRICS_PRED_NDX] <= classificationThreshold

posLabel_mask = ~negLabel_mask
posPred_mask = ~negPred_mask

While we don’t assert it here, we know that all of the values stored in metrics
_t[METRICS_LABEL_NDX] belong to the set {0.0, 1.0} since we know that our nodule
status labels are simply True or False. By comparing to classificationThreshold,
which defaults to 0.5, we get an array of binary values where a True value corresponds
to a non-nodule (aka negative) label for the sample in question.

 We do a similar comparison to create the negPred_mask, but we must remember
that the METRICS_PRED_NDX values are the positive predictions produced by our model
and can be any floating-point value between 0.0 and 1.0, inclusive. That doesn’t
change our comparison, but it does mean the actual value can be close to 0.5. The
positive masks are simply the inverse of the negative masks.

NOTE While other projects can utilize similar approaches, it’s important to
realize that we’re taking some shortcuts that are allowed because this is a
binary classification problem. If your next project has more than two classes
or has samples that belong to multiple classes at the same time, you’ll have to
use more complicated logic to build similar masks.

Listing 11.15 training.py:26

Listing 11.16 training.py:264, LunaTrainingApp.logMetrics

These are declared at
module-level scope.

Tensor masking and Boolean indexing
Masked tensors are a common usage pattern that might be opaque if you have not
encountered them before. You may be familiar with the NumPy concept called
masked arrays; tensor and array masks behave the same way.

If you aren’t familiar with masked arrays, an excellent page in the NumPy documen-
tation (http://mng.bz/XPra) describes the behavior well. PyTorch purposely uses the
same syntax and semantics as NumPy.

http://mng.bz/XPra

303Outputting performance metrics

Next, we use those masks to compute some per-label statistics and store them in a dic-
tionary, metrics_dict.

neg_count = int(negLabel_mask.sum())
pos_count = int(posLabel_mask.sum())

neg_correct = int((negLabel_mask & negPred_mask).sum())
pos_correct = int((posLabel_mask & posPred_mask).sum())

metrics_dict = {}
metrics_dict['loss/all'] = \

metrics_t[METRICS_LOSS_NDX].mean()
metrics_dict['loss/neg'] = \

metrics_t[METRICS_LOSS_NDX, negLabel_mask].mean()
metrics_dict['loss/pos'] = \

metrics_t[METRICS_LOSS_NDX, posLabel_mask].mean()

metrics_dict['correct/all'] = (pos_correct + neg_correct) \
/ np.float32(metrics_t.shape[1]) * 100

metrics_dict['correct/neg'] = neg_correct / np.float32(neg_count) * 100
metrics_dict['correct/pos'] = pos_correct / np.float32(pos_count) * 100

First we compute the average loss over the entire epoch. Since the loss is the single
metric that is being minimized during training, we always want to be able to keep
track of it. Then we limit the loss averaging to only those samples with a negative label
using the negLabel_mask we just made. We do the same with the positive loss. Com-
puting a per-class loss like this can be useful if one class is persistently harder to classify
than another, since that knowledge can help drive investigation and improvements.

 We’ll close out the calculations with determining the fraction of samples we classi-
fied correctly, as well as the fraction correct from each label. Since we will display
these numbers as percentages in a moment, we also multiply the values by 100. Similar
to the loss, we can use these numbers to help guide our efforts when making improve-
ments. After the calculations, we then log our results with three calls to log.info.

log.info(
("E{} {:8} {loss/all:.4f} loss, "

+ "{correct/all:-5.1f}% correct, "
).format(

epoch_ndx,
mode_str,
**metrics_dict,

)
)
log.info(

("E{} {:8} {loss/neg:.4f} loss, "
+ "{correct/neg:-5.1f}% correct ({neg_correct:} of {neg_count:})"

Listing 11.17 training.py:270, LunaTrainingApp.logMetrics

Listing 11.18 training.py:289, LunaTrainingApp.logMetrics

Converts to a normal
Python integer

Avoids integer
division by
converting to
np.float32

304 CHAPTER 11 Training a classification model to detect suspected tumors

).format(
epoch_ndx,
mode_str + '_neg',
neg_correct=neg_correct,
neg_count=neg_count,
**metrics_dict,

)
)
log.info(

... line 319
)

The first log has values computed from all of our samples and is tagged /all, while
the negative (non-nodule) and positive (nodule) values are tagged /neg and /pos,
respectively. We don’t show the third logging statement for positive values here; it’s
identical to the second except for swapping neg for pos in all cases.

11.7 Running the training script
Now that we’ve completed the core of the training.py script, we’ll actually start run-
ning it. This will initialize and train our model and print statistics about how well the
training is going. The idea is to get this kicked off to run in the background while
we’re covering the model implementation in detail. Hopefully we’ll have results to
look at once we’re done.

 We’re running this script from the main code directory; it should have subdirecto-
ries called p2ch11, util, and so on. The python environment used should have all the
libraries listed in requirements.txt installed. Once those libraries are ready, we can run:

$ python -m p2ch11.training
Starting LunaTrainingApp,

Namespace(batch_size=256, channels=8, epochs=20, layers=3, num_workers=8)
<p2ch11.dsets.LunaDataset object at 0x7fa53a128710>: 495958 training samples
<p2ch11.dsets.LunaDataset object at 0x7fa537325198>: 55107 validation samples
Epoch 1 of 20, 1938/216 batches of size 256
E1 Training ----/1938, starting
E1 Training 16/1938, done at 2018-02-28 20:52:54, 0:02:57
...

As a reminder, we also provide a Jupyter Notebook that contains invocations of the
training application.

In[5]:
run('p2ch11.prepcache.LunaPrepCacheApp')

In[6]:
run('p2ch11.training.LunaTrainingApp', '--epochs=1')

Listing 11.19 code/p2_run_everything.ipynb

The ‘pos’ logging is similar
to the ‘neg’ logging earlier.

This is the command line for Linux/Bash. Windows
users will probably need to invoke Python
differently, depending on the install method used.

305Running the training script

If the first epoch seems to be taking a very long time (more than 10 or 20 minutes), it
might be related to needing to prepare the cached data required by LunaDataset. See
section 10.5.1 for details about the caching. The exercises for chapter 10 included
writing a script to pre-stuff the cache in an efficient manner. We also provide the
prepcache.py file to do the same thing; it can be invoked with python -m p2ch11
.prepcache. Since we repeat our dsets.py files per chapter, the caching will need to be
repeated for every chapter. This is somewhat space and time inefficient, but it means we
can keep the code for each chapter much more well contained. For your future proj-
ects, we recommend reusing your cache more heavily.

 Once training is underway, we want to make sure we’re using the computing
resources at hand the way we expect. An easy way to tell if the bottleneck is data loading
or computation is to wait a few moments after the script starts to train (look for output
like E1 Training 16/7750, done at…) and then check both top and nvidia-smi:

 If the eight Python worker processes are consuming >80% CPU, then the cache
probably needs to be prepared (we know this here because the authors have
made sure there aren’t CPU bottlenecks in this project’s implementation; this
won’t be generally true).

 If nvidia-smi reports that GPU-Util is >80%, then you’re saturating your GPU.
We’ll discuss some strategies for efficient waiting in section 11.7.2.

The intent is that the GPU is saturated; we want to use as much of that computing
power as we can to complete epochs quickly. A single NVIDIA GTX 1080 Ti should
complete an epoch in under 15 minutes. Since our model is relatively simple, it
doesn’t take a lot of CPU preprocessing for the CPU to be the bottleneck. When work-
ing with models with greater depth (or more needed calculations in general), process-
ing each batch will take longer, which will increase the amount of CPU processing we
can do before the GPU runs out of work before the next batch of input is ready.

11.7.1 Needed data for training

If the number of samples is less than 495,958 for training or 55,107 for validation, it
might make sense to do some sanity checking to be sure the full data is present and
accounted for. For your future projects, make sure your dataset returns the number of
samples that you expect.

 First, let’s take a look at the basic directory structure of our data-unversioned/
part2/luna directory:

$ ls -1p data-unversioned/part2/luna/
subset0/
subset1/
...
subset9/

Next, let’s make sure we have one .mhd file and one .raw file for each series UID

306 CHAPTER 11 Training a classification model to detect suspected tumors

$ ls -1p data-unversioned/part2/luna/subset0/
1.3.6.1.4.1.14519.5.2.1.6279.6001.105756658031515062000744821260.mhd
1.3.6.1.4.1.14519.5.2.1.6279.6001.105756658031515062000744821260.raw
1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492.mhd
1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492.raw
...

and that we have the overall correct number of files:

$ ls -1 data-unversioned/part2/luna/subset?/* | wc -l
1776
$ ls -1 data-unversioned/part2/luna/subset0/* | wc -l
178
...
$ ls -1 data-unversioned/part2/luna/subset9/* | wc -l
176

If all of these seem right but things still aren’t working, ask on Manning LiveBook
(https://livebook.manning.com/book/deep-learning-with-pytorch/chapter-11) and
hopefully someone can help get things sorted out.

11.7.2 Interlude: The enumerateWithEstimate function

Working with deep learning involves a lot of waiting. We’re talking about real-world,
sitting around, glancing at the clock on the wall, a watched pot never boils (but you
could fry an egg on the GPU), straight up boredom.

 The only thing worse than sitting and staring at a blinking cursor that hasn’t
moved for over an hour is flooding your screen with this:

2020-01-01 10:00:00,056 INFO training batch 1234
2020-01-01 10:00:00,067 INFO training batch 1235
2020-01-01 10:00:00,077 INFO training batch 1236
2020-01-01 10:00:00,087 INFO training batch 1237
...etc...

At least the quietly blinking cursor doesn’t blow out your scrollback buffer!
 Fundamentally, while doing all this waiting, we want to answer the question “Do I

have time to go refill my water glass?” along with follow-up questions about having
time to

 Brew a cup of coffee
 Grab dinner
 Grab dinner in Paris5

To answer these pressing questions, we’re going to use our enumerateWithEstimate
function. Usage looks like the following:

5 If getting dinner in France doesn’t involve an airport, feel free to substitute “Paris, Texas” to make the joke
work; https://en.wikipedia.org/wiki/Paris_(disambiguation).

https://livebook.manning.com/book/deep-learning-with-pytorch/chapter-11
https://en.wikipedia.org/wiki/Paris_(disambiguation)

307Running the training script

>>> for i, _ in enumerateWithEstimate(list(range(234)), "sleeping"):
... time.sleep(random.random())
...
11:12:41,892 WARNING sleeping ----/234, starting
11:12:44,542 WARNING sleeping 4/234, done at 2020-01-01 11:15:16, 0:02:35
11:12:46,599 WARNING sleeping 8/234, done at 2020-01-01 11:14:59, 0:02:17
11:12:49,534 WARNING sleeping 16/234, done at 2020-01-01 11:14:33, 0:01:51
11:12:58,219 WARNING sleeping 32/234, done at 2020-01-01 11:14:41, 0:01:59
11:13:15,216 WARNING sleeping 64/234, done at 2020-01-01 11:14:43, 0:02:01
11:13:44,233 WARNING sleeping 128/234, done at 2020-01-01 11:14:35, 0:01:53
11:14:40,083 WARNING sleeping ----/234, done at 2020-01-01 11:14:40
>>>

That’s 8 lines of output for over 200 iterations lasting about 2 minutes. Even given the
wide variance of random.random(), the function had a pretty decent estimate after 16
iterations (in less than 10 seconds). For loop bodies with more constant timing, the
estimates stabilize even more quickly.

 In terms of behavior, enumerateWithEstimate is almost identical to the standard
enumerate (the differences are things like the fact that our function returns a genera-
tor, whereas enumerate returns a specialized <enumerate object at 0x…>).

def enumerateWithEstimate(
iter,
desc_str,
start_ndx=0,
print_ndx=4,
backoff=None,
iter_len=None,

):
for (current_ndx, item) in enumerate(iter):

yield (current_ndx, item)

However, the side effects (logging, specifically) are what make the function interest-
ing. Rather than get lost in the weeds trying to cover every detail of the implementa-
tion, if you’re interested, you can consult the function docstring (https://github
.com/deep-learning-with-pytorch/dlwpt-code/blob/master/util/util.py#L143) to get
information about the function parameters and desk-check the implementation.

 Deep learning projects can be very time intensive. Knowing when something is
expected to finish means you can use your time until then wisely, and it can also clue
you in that something isn’t working properly (or an approach is unworkable) if the
expected time to completion is much larger than expected.

Listing 11.20 util.py:143, def enumerateWithEstimate

https://github.com/deep-learning-with-pytorch/dlwpt-code/blob/master/util/util.py#L143
https://github.com/deep-learning-with-pytorch/dlwpt-code/blob/master/util/util.py#L143
https://github.com/deep-learning-with-pytorch/dlwpt-code/blob/master/util/util.py#L143

308 CHAPTER 11 Training a classification model to detect suspected tumors

11.8 Evaluating the model: Getting 99.7% correct means
we’re done, right?
Let’s take a look at some (abridged) output from our training script. As a reminder,
we’ve run this with the command line python -m p2ch11.training:

E1 Training ----/969, starting
...
E1 LunaTrainingApp
E1 trn 2.4576 loss, 99.7% correct
...
E1 val 0.0172 loss, 99.8% correct
...

After one epoch of training, both the training and validation set show at least 99.7%
correct results. That’s an A+! Time for a round of high-fives, or at least a satisfied nod
and smile. We just solved cancer! … Right?

 Well, no.
 Let’s take a closer (less-abridged) look at that epoch 1 output:

E1 LunaTrainingApp
E1 trn 2.4576 loss, 99.7% correct,
E1 trn_neg 0.1936 loss, 99.9% correct (494289 of 494743)
E1 trn_pos 924.34 loss, 0.2% correct (3 of 1215)
...
E1 val 0.0172 loss, 99.8% correct,
E1 val_neg 0.0025 loss, 100.0% correct (494743 of 494743)
E1 val_pos 5.9768 loss, 0.0% correct (0 of 1215)

On the validation set, we’re getting non-nodules 100% correct, but the actual nodules
are 100% wrong. The network is just classifying everything as not-a-nodule! The value
99.7% just means only approximately 0.3% of the samples are nodules.

 After 10 epochs, the situation is only marginally better:

E10 LunaTrainingApp
E10 trn 0.0024 loss, 99.8% correct
E10 trn_neg 0.0000 loss, 100.0% correct
E10 trn_pos 0.9915 loss, 0.0% correct
E10 val 0.0025 loss, 99.7% correct
E10 val_neg 0.0000 loss, 100.0% correct
E10 val_pos 0.9929 loss, 0.0% correct

The classification output remains the same—none of the nodule (aka positive) sam-
ples are correctly identified. It’s interesting that we’re starting to see some decrease in
the val_pos loss, however, while not seeing a corresponding increase in the val_neg
loss. This implies that the network is learning something. Unfortunately, it’s learning
very, very slowly.

 Even worse, this particular failure mode is the most dangerous in the real world!
We want to avoid the situation where we classify a tumor as an innocuous structure,

309Graphing training metrics with TensorBoard

because that would not facilitate a patient getting the evaluation and eventual treat-
ment they might need. It’s important to understand the consequences for misclassifi-
cation for all your projects, as that can have a large impact on how you design, train,
and evaluate your model. We’ll discuss this more in the next chapter.

 Before we get to that, however, we need to upgrade our tooling to make the results
easier to understand. We’re sure you love to squint at columns of numbers as much as
anyone, but pictures are worth a thousand words. Let’s graph some of these metrics.

11.9 Graphing training metrics with TensorBoard
We’re going to use a tool called TensorBoard as a quick and easy way to get our train-
ing metrics out of our training loop and into some pretty graphs. This will allow us to
follow the trends of those metrics, rather than only look at the instantaneous values per
epoch. It gets much, much easier to know whether a value is an outlier or just the lat-
est in a trend when you’re looking at a visual representation.

 “Hey, wait,” you might be thinking, “isn’t TensorBoard part of the TensorFlow proj-
ect? What’s it doing here in my PyTorch book?”

 Well, yes, it is part of another deep learning framework, but our philosophy is “use
what works.” There’s no reason to restrict ourselves by not using a tool just because it’s
bundled with another project we’re not using. Both the PyTorch and TensorBoard
devs agree, because they collaborated to add official support for TensorBoard into
PyTorch. TensorBoard is great, and it’s got some easy-to-use PyTorch APIs that let us
hook data from just about anywhere into it for quick and easy display. If you stick with
deep learning, you’ll probably be seeing (and using) a lot of TensorBoard.

 In fact, if you’ve been running the chapter examples, you should already have
some data on disk ready and waiting to be displayed. Let’s see how to run Tensor-
Board, and look at what it can show us.

11.9.1 Running TensorBoard

By default, our training script will write metrics data to the runs/ subdirectory. If you
list the directory content, you might see something like this during your Bash shell
session:

$ ls -lA runs/p2ch11/
total 24
drwxrwxr-x 2 elis elis 4096 Sep 15 13:22 2020-01-01_12.55.27-trn-dlwpt/
drwxrwxr-x 2 elis elis 4096 Sep 15 13:22 2020-01-01_12.55.27-val-dlwpt/
drwxrwxr-x 2 elis elis 4096 Sep 15 15:14 2020-01-01_13.31.23-trn-dwlpt/
drwxrwxr-x 2 elis elis 4096 Sep 15 15:14 2020-01-01_13.31.23-val-dwlpt/

To get the tensorboard program, install the tensorflow (https://pypi.org/project/
tensorflow) Python package. Since we’re not actually going to use TensorFlow proper,
it’s fine if you install the default CPU-only package. If you have another version of

The single-epoch
run from earlier

The more recent 10-epoch
training run

https://pypi.org/project/tensorflow
https://pypi.org/project/tensorflow
https://pypi.org/project/tensorflow

310 CHAPTER 11 Training a classification model to detect suspected tumors

TensorBoard installed already, using that is fine too. Either make sure the appropriate
directory is on your path, or invoke it with ../path/to/tensorboard --logdir runs/.
It doesn’t really matter where you invoke it from, as long as you use the --logdir argu-
ment to point it at where your data is stored. It’s a good idea to segregate your data into
separate folders, as TensorBoard can get a bit unwieldy once you get over 10 or 20
experiments. You’ll have to decide the best way to do that for each project as you go.
Don’t be afraid to move data around after the fact if you need to.

 Let’s start TensorBoard now:

$ tensorboard --logdir runs/
2020-01-01 12:13:16.163044: I tensorflow/core/platform/cpu_feature_guard.cc:140]

Your CPU supports instructions that this TensorFlow binary was not

➥ compiled to use: AVX2 FMA 1((CO17-2))
TensorBoard 1.14.0 at http://localhost:6006/ (Press CTRL+C to quit)

Once that’s done, you should be able to point your browser at http://localhost:6006
and see the main dashboard.6 Figure 11.10 shows us what that looks like.

6 If you’re running training on a different computer from your browser, you’ll need to replace localhost with the
appropriate hostname or IP address.

These messages might be different
or not present for you; that’s fine.

Figure 11.10 The main TensorBoard UI, showing a paired set of training and validation runs

311Graphing training metrics with TensorBoard

Along the top of the browser window, you should see the orange header. The right
side of the header has the typical widgets for settings, a link to the GitHub repository,
and the like. We can ignore those for now. The left side of the header has items for the
data types we’ve provided. You should have at least the following:

 Scalars (the default tab)
 Histograms
 Precision-Recall Curves (shown as PR Curves)

You might see Distributions as well as the second UI tab (to the right of Scalars in fig-
ure 11.10). We won’t use or discuss those here. Make sure you’ve selected Scalars by
clicking it.

 On the left is a set of controls for display options, as well as a list of runs that are
present. The smoothing option can be useful if you have particularly noisy data; it will
calm things down so that you can pick out the overall trend. The original non-
smoothed data will still be visible in the background as a faded line in the same color.
Figure 11.11 shows this, although it might be difficult to discern when printed in black
and white.

 Depending on how many times you’ve run the training script, you might have mul-
tiple runs to select from. With too many runs being rendered, the graphs can get
overly noisy, so don’t hesitate to deselect runs that aren’t of interest at the moment.

 If you want to permanently remove a run, the data can be deleted from disk while
TensorBoard is running. You can do this to get rid of experiments that crashed, had

Raw Data

ploTted

SmOothed

trend lines

Figure 11.11 The TensorBoard sidebar with Smoothing set to 0.6 and two runs selected for display

312 CHAPTER 11 Training a classification model to detect suspected tumors

bugs, didn’t converge, or are so old they’re no longer interesting. The number of runs
can grow pretty quickly, so it can be helpful to prune it often and to rename runs or
move runs that are particularly interesting to a more permanent directory so they
don’t get deleted by accident. To remove both the train and validation runs, exe-
cute the following (after changing the chapter, date, and time to match the run you
want to remove):

$ rm -rf runs/p2ch11/2020-01-01_12.02.15_*

Keep in mind that removing runs will cause the runs that are later in the list to move
up, which will result in them being assigned new colors.

 OK, let’s get to the point of TensorBoard: the pretty graphs! The main part of the
screen should be filled with data from gathering training and validation metrics, as
shown in figure 11.12.

That’s much easier to parse and absorb than E1 trn_pos 924.34 loss, 0.2% correct
(3 of 1215)! Although we’re going to save discussion of what these graphs are telling
us for section 11.10, now would be a good time to make sure it’s clear what these num-
bers correspond to from our training program. Take a moment to cross-reference the

Figure 11.12 The main TensorBoard data display area showing us that our results on actual nodules are
downright awful

313Graphing training metrics with TensorBoard

numbers you get by mousing over the lines with the numbers spit out by training.py
during the same training run. You should see a direct correspondence between the
Value column of the tooltip and the values printed during training. Once you’re com-
fortable and confident that you understand exactly what TensorBoard is showing you,
let’s move on and discuss how to get these numbers to appear in the first place.

11.9.2 Adding TensorBoard support to the metrics logging function

We are going to use the torch.utils.tensorboard module to write data in a format
that TensorBoard will consume. This will allow us to write metrics for this and any
other project quickly and easily. TensorBoard supports a mix of NumPy arrays and
PyTorch tensors, but since we don’t have any reason to put our data into NumPy
arrays, we’ll use PyTorch tensors exclusively.

 The first thing we need do is to create our SummaryWriter objects (which we
imported from torch.utils.tensorboard). The only parameter we’re going to pass
in is log_dir, which we will initialize to something like runs/p2ch11/2020-01-01_12
.55.27-trn-dlwpt. We can add a comment argument to our training script to change
dlwpt to something more informative; use python -m p2ch11.training --help for
more information.

 We create two writers, one each for the training and validation runs. Those writers
will be reused for every epoch. When the SummaryWriter class gets initialized, it also
creates the log_dir directories as a side effect. These directories show up in Tensor-
Board and can clutter the UI with empty runs if the training script crashes before any
data gets written, which can be common when you’re experimenting with something.
To avoid writing too many empty junk runs, we wait to instantiate the SummaryWriter
objects until we’re ready to write data for the first time. This function is called from
logMetrics().

def initTensorboardWriters(self):
if self.trn_writer is None:

log_dir = os.path.join('runs', self.cli_args.tb_prefix, self.time_str)

self.trn_writer = SummaryWriter(
log_dir=log_dir + '-trn_cls-' + self.cli_args.comment)

self.val_writer = SummaryWriter(
log_dir=log_dir + '-val_cls-' + self.cli_args.comment)

If you recall, the first epoch is kind of a mess, with the early output in the training
loop being essentially random. When we save the metrics from that first batch, those
random results end up skewing things a bit. Recall from figure 11.11 that Tensor-
Board has smoothing to remove noise from the trend lines, which helps somewhat.

 Another approach could be to skip metrics entirely for the first epoch’s training
data, although our model trains quickly enough that it’s still useful to see the first

Listing 11.21 training.py:127, .initTensorboardWriters

314 CHAPTER 11 Training a classification model to detect suspected tumors

epoch’s results. Feel free to change this behavior as you see fit; the rest of part 2 will
continue with this pattern of including the first, noisy training epoch.

TIP If you end up doing a lot of experiments that result in exceptions or kill-
ing the training script relatively quickly, you might be left with a number of
junk runs cluttering up your runs/ directory. Don’t be afraid to clean those
out!

WRITING SCALARS TO TENSORBOARD

Writing scalars is straightforward. We can take the metrics_dict we’ve already con-
structed and pass in each key/value pair to the writer.add_scalar method. The
torch.utils.tensorboard.SummaryWriter class has the add_scalar method (http://
mng.bz/RAqj) with the following signature.

def add_scalar(self, tag, scalar_value, global_step=None, walltime=None):
...

The tag parameter tells TensorBoard which graph we’re adding values to, and the
scalar_value parameter is our data point’s Y-axis value. The global_step parameter
acts as the X-axis value.

 Recall that we updated the totalTrainingSamples_count variable inside the
doTraining function. We’ll use totalTrainingSamples_count as the X-axis of our
TensorBoard plots by passing it in as the global_step parameter. Here’s what that
looks like in our code.

for key, value in metrics_dict.items():
writer.add_scalar(key, value, self.totalTrainingSamples_count)

Note that the slashes in our key names (such as 'loss/all') result in TensorBoard
grouping the charts by the substring before the '/'.

 The documentation suggests that we should be passing in the epoch number as the
global_step parameter, but that results in some complications. By using the number
of training samples presented to the network, we can do things like change the number
of samples per epoch and still be able to compare those future graphs to the ones we’re
creating now. Saying that a model trains in half the number of epochs is meaningless if
each epoch takes four times as long! Keep in mind that this might not be standard prac-
tice, however; expect to see a variety of values used for the global step.

Listing 11.22 PyTorch torch/utils/tensorboard/writer.py:267

Listing 11.23 training.py:323, LunaTrainingApp.logMetrics

http://mng.bz/RAqj
http://mng.bz/RAqj
http://mng.bz/RAqj

315Why isn’t the model learning to detect nodules?

11.10 Why isn’t the model learning to detect nodules?
Our model is clearly learning something—the loss trend lines are consistent as epochs
increase, and the results are repeatable. There is a disconnect, however, between what
the model is learning and what we want it to learn. What’s going on? Let’s use a quick
metaphor to illustrate the problem.

 Imagine that a professor gives students a final exam consisting of 100 True/False
questions. The students have access to previous versions of this professor’s tests going
back 30 years, and every time there are only one or two questions with a True answer.
The other 98 or 99 are False, every time.

 Assuming that the grades aren’t on a curve and instead have a typical scale of 90%
correct or better being an A, and so on, it is trivial to get an A+: just mark every ques-
tion as False! Let’s imagine that this year, there is only one True answer. A student like
the one on the left in figure 11.13 who mindlessly marked every answer as False would
get a 99% on the final but wouldn’t really demonstrate that they had learned anything
(beyond how to cram from old tests, of course). That’s basically what our model is
doing right now.

Contrast that with a student like the one on the right who also got 99% of the ques-
tions correct, but did so by answering two questions with True. Intuition tells us that
the student on the right in figure 11.13 probably has a much better grasp of the mate-
rial than the all-False student. Finding the one True question while only getting one
answer wrong is pretty difficult! Unfortunately, neither our students’ grades nor our
model’s grading scheme reflect this gut feeling.

 We have a similar situation, where 99.7% of the answers to “Is this candidate a nod-
ule?” are “Nope.” Our model is taking the easy way out and answering False on every
question.

 Still, if we look back at our model’s numbers more closely, the loss on the training
and validation sets is decreasing! The fact that we’re getting any traction at all on the
cancer-detection problem should give us hope. It will be the work of the next chapter
to realize this potential. We’ll start chapter 12 by introducing some new, relevant

1. F 6. F

2. F 7. F

3. F 8. F

4. F 9. F

5. F 10. F

1. F 6. F

2. F 7. F

3. T 8. F

4. F 9. T

5. F 10. F

6666666661 F

F

F

8. F

4. F 999999999999999 T

6.

F 7. F

F 8. F

. F 9

1. F 6

2. F 7

6. F
1 FFFFFFFFFF 6666

8. F

9......... FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

33333333333333333333333333333........... TTTTTTTTTTTTTTTTTTTT 8

4. F 9

Figure 11.13 A professor
giving two students the same
grade, despite different levels
of knowledge. Question 9 is
the only question with an
answer of True.

316 CHAPTER 11 Training a classification model to detect suspected tumors

terminology, and then we’ll come up with a better grading scheme that doesn’t lend
itself to being gamed quite as easily as what we’ve done so far.

11.11 Conclusion
We’ve come a long way this chapter—we now have a model and a training loop, and
are able to consume the data we produced in the last chapter. Our metrics are being
logged to the console as well as graphed visually.

 While our results aren’t usable yet, we’re actually closer than it might seem. In
chapter 12, we will improve the metrics we’re using to track our progress, and use
them to inform the changes we need to make to get our model producing reasonable
results.

11.12 Exercises
1 Implement a program that iterates through a LunaDataset instance by wrap-

ping it in a DataLoader instance, while timing how long it takes to do so. Com-
pare these times to the times from the exercises in chapter 10. Be aware of the
state of the cache when running the script.
a What impact does setting num_workers=… to 0, 1, and 2 have?
b What are the highest values your machine will support for a given combina-

tion of batch_size=… and num_workers=… without running out of memory?
2 Reverse the sort order of noduleInfo_list. How does that change the behavior

of the model after one epoch of training?
3 Change logMetrics to alter the naming scheme of the runs and keys that are

used in TensorBoard.

a Experiment with different forward-slash placement for keys passed in to
writer.add_scalar.

b Have both training and validation runs use the same writer, and add the trn
or val string to the name of the key.

c Customize the naming of the log directory and keys to suit your taste.

11.13 Summary
 Data loaders can be used to load data from arbitrary datasets in multiple pro-

cesses. This allows otherwise-idle CPU resources to be devoted to preparing
data to feed to the GPU.

 Data loaders load multiple samples from a dataset and collate them into a batch.
PyTorch models expect to process batches of data, not individual samples.

 Data loaders can be used to manipulate arbitrary datasets by changing the rela-
tive frequency of individual samples. This allows for “after-market” tweaks to a
dataset, though it might make more sense to change the dataset implementa-
tion directly.

317Summary

 We will use PyTorch’s torch.optim.SGD (stochastic gradient descent) optimizer
with a learning rate of 0.001 and a momentum of 0.99 for the majority of part 2.
These values are also reasonable defaults for many deep learning projects.

 Our initial model for classification will be very similar to the model we used in
chapter 8. This lets us get started with a model that we have reason to believe
will be effective. We can revisit the model design if we think it’s the thing pre-
venting our project from performing better.

 The choice of metrics that we monitor during training is important. It is easy to
accidentally pick metrics that are misleading about how the model is perform-
ing. Using the overall percentage of samples classified correctly is not useful for
our data. Chapter 12 will detail how to evaluate and choose better metrics.

 TensorBoard can be used to display a wide range of metrics visually. This makes
it much easier to consume certain forms of information (particularly trend
data) as they change per epoch of training.

318

Improving training
 with metrics and

 augmentation

The close of the last chapter left us in a predicament. While we were able to get the
mechanics of our deep learning project in place, none of the results were actually
useful; the network simply classified everything as non-nodule! To make matters
worse, the results seemed great on the surface, since we were looking at the overall
percent of the training and validation sets that were classified correctly. With our
data heavily skewed toward negative samples, blindly calling everything negative is a

This chapter covers
 Defining and computing precision, recall, and

true/false positives/negatives

 Using the F1 score versus other quality metrics

 Balancing and augmenting data to reduce
overfitting

 Using TensorBoard to graph quality metrics

319High-level plan for improvement

quick and easy way for our model to score well. Too bad doing so makes the model
basically useless!

 That means we’re still focused on the same part of figure 12.1 as we were in chap-
ter 11. But now we’re working on getting our classification model working well instead
of at all. This chapter is all about how to measure, quantify, express, and then improve
on how well our model is doing its job.

12.1 High-level plan for improvement
While a bit abstract, figure 12.2 shows us how we are going to approach that broad set
of topics.

 Let’s walk through this somewhat abstract map of the chapter in detail. We will be
dealing with the issues we’re facing, like excessive focus on a single, narrow metric and
the resulting behavior being useless in the general sense. In order to make some of this
chapter’s concepts a bit more concrete, we’ll first employ a metaphor that puts our trou-
bles in more tangible terms: in figure 12.2, (1) Guard Dogs and (2) Birds and Burglars.

 After that, we will develop a graphical language to represent some of the core con-
cepts needed to formally discuss the issues with the implementation from the last
chapter: (3) Ratios: Recall and Precision. Once we have those concepts solidified,
we’ll touch on some math using those concepts that will encapsulate a more robust
way of grading our model’s performance and condensing it into a single number: (4)
New Metric: F1 Score. We will implement the formula for those new metrics and look

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

[(I,R,CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC),

 (I,R,CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC))))))),

 (I,R,C)))))))))))))))))))))))))))))))))),,,

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

on

StStStStStSStSttttStStSStepepepepepepeppeppepepepepppepepepepeeeeeeeeeeeee 5555555555555555555555 ((((((((((((ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

,

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

[()

candidateeeeeeeeeeeeeeeeeee

Locationssssssssssssssssssssssss

Step 4 (ch. 11+

ClaSsificatio

.MMHD

.RRAW

CT

DataData

segmentattion

model

candidate

Sample

Figure 12.1 Our end-to-end lung cancer detection project, with a focus on this chapter’s topic:
step 4, classification

320 CHAPTER 12 Improving training with metrics and augmentation

at the how the resulting values change epoch by epoch during training. Finally, we’ll
make some much-needed changes to our LunaDataset implementation with an aim at
improving our training results: (5) Balancing and (6) Augmentation. Then we will see
if those experimental changes have the expected impact on our performance metrics.

 By the time we’re through with this chapter, our trained model will be performing
much better: (7) Workin’ Great! While it won’t be ready to drop into clinical use just
yet, it will be capable of producing results that are clearly better than random. This
will mean we have a workable implementation of step 4, nodule candidate classifica-
tion; and once we’re finished, we can begin to think about how to incorporate steps 2
(segmentation) and 3 (grouping) into the project.

12.2 Good dogs vs. bad guys: False positives and false negatives
Instead of models and tumors, we’re going to consider the two guard dogs in figure
12.3, both fresh out of obedience school. They both want to alert us to burglars—a
rare but serious situation that requires prompt attention.

 Unfortunately, while both dogs are good dogs, neither is a good guard dog. Our
terrier (Roxie) barks at just about everything, while our old hound dog (Preston)
barks almost exclusively at burglars—but only if he happens to be awake when they
arrive.

3. Ratios recaLl

and precision

4. new metric:

f1 score

5. Balancing

6. Augmentation

7. Workin’ great!

. Balancing

NEG

POS

4. new metric:

f1 score
7. Workin’ great!

Augmentation

EG

SPOS

3. Ratios recaLl

and precision

4 new metric:

6.

NE

1. Guard dogs

2. Birds and

burglars

Figure 12.2 The metaphors we’ll use to modify the metrics measuring our model to make it
magnificent

321Good dogs vs. bad guys: False positives and false negatives

Roxie will alert us to a burglar just about every time. She will also alert us to fire
engines, thunderstorms, helicopters, birds, the mail carrier, squirrels, passersby, and
so on. If we follow up on every bark, we’ll almost never get robbed (only the sneakiest
of sneak-thieves can slip past). Perfect! … Except that being that diligent means we
aren’t really saving any work by having a guard dog. Instead, we’ll be up every couple
of hours, flashlight in hand, due to Roxie having smelled a cat, or heard an owl, or
seen a late bus wander by. Roxie has a problematic number of false positives.

 A false positive is an event that is classified as of interest or as a member of the
desired class (positive as in “Yes, that’s the type of thing I’m interested in knowing
about”) but that in truth is not really of interest. For the nodule-detection problem, it’s
when an actually uninteresting candidate is flagged as a nodule and, hence, in need of
a radiologist’s attention. For Roxie, these would be fire engines, thunderstorms, and
so on. We will use an image of a cat as the canonical false positive in the next section
and the figures that follow throughout the rest of the chapter.

 Contrast false positives with true positives: items of interest that are classified cor-
rectly. These will be represented in the figures by a human burglar.

 Meanwhile, if Preston barks, call the police, since that means someone has almost
certainly broken in, the house is on fire, or Godzilla is attacking. Preston is a deep
sleeper, however, and the sound of an in-progress home invasion isn’t likely to rouse
him, so we’ll still get robbed just about every time someone tries. Again, while it’s bet-
ter than nothing, we’re not really ending up with the peace of mind that motivated us
to get a dog in the first place. Preston has a problematic number of false negatives.

3. Ratios recaLl

and precision

4. new metric:

f1 score

5. Balancing

6. Augmentation

7. Workin’ great!

NEG

POS

1. Guard dogs

2. Birds and

burglars

5. Balancing

4. new metric:

f1 score
7. Workin’ great!

Augmentation

EG

SPOS

3. Ratios recaLl

and precision

4 new metric:

6.

NE

1. Guard dogsgs

2. BBirds and

bburglars

Figure 12.3 The set of topics for this chapter, with a focus on the framing metaphor

322 CHAPTER 12 Improving training with metrics and augmentation

 A false negative is an event that is classified as not of interest or not a member of the
desired class (negative as in “No, that’s not the type of thing I’m interested in knowing
about”) but that in truth is actually of interest. For the nodule-detection problem, it’s
when a nodule (that is, a potential cancer) goes undetected. For Preston, these would
be the robberies that he sleeps through. We’ll get a bit creative here and use a picture
of a rodent burglar for false negatives. They’re sneaky!

 Contrast false negatives with true negatives: uninteresting items that are correctly
identified as such. We’ll go with a picture of a bird for these.

 Just to complete the metaphor, chapter 11’s model is basically a cat that refuses to
meow at anything that isn’t a can of tuna (while stoically ignoring Roxie). Our focus at
the end of the last chapter was on the percent correct for the overall training and vali-
dation sets. Clearly, that wasn’t a great way to grade ourselves, and as we can see from
each of our dogs’ myopic focus on a single metric—like the number of true positives or
true negatives—we need a metric with a broader focus to capture our overall perfor-
mance.

12.3 Graphing the positives and negatives
Let’s start developing the visual language we’ll use to describe true/false positives/
negatives. Please bear with us if our explanation gets repetitive; we want to make sure
you develop a solid mental model for the ratios we’re going to discuss. Consider figure
12.4, which shows events that might be of interest to one of our guard dogs.

True

Negative

False

Negative

True

Positive

Human

ClaSsification

Threshold

Dog Prediction

Threshold

False

Positive

Ignore Bark

True

Negative

False

Negative

T

Pos

HHuman

aSsSsSsification

hrrreshold

Dog Prediction

Threshold

Fal

Posi

Negative

Figure 12.4 Cats, birds, rodents, and robbers make up our four classification
quadrants. They are separated by a human label and the dog classification threshold.

323Graphing the positives and negatives

We’ll use two thresholds in figure 12.4. The first is the human-decided dividing line that
separates burglars from harmless animals. In concrete terms, this is the label that is given
for each training or validation sample. The second is the dog-determined classification
threshold that determines whether the dog will bark at something. For a deep learning
model, this is the predicted value that the model produces when considering a sample.

 The combination of these two thresholds divides our events into quadrants:
true/false positives/negatives. We will shade the events of concern with a darker back-
ground (what with those bad guys sneaking around in the dark all the time).

 Of course, reality is far more complicated. There is no Platonic ideal of a burglar,
and no single point relative to the classification threshold at which all burglars will be
located. Instead, figure 12.5 shows us that some burglars will be particularly sneaky,
and some birds will be particularly annoying. We will also go ahead and enclose our
instances in a graph. Our X-axis will remain the bark-worthiness of each event, as
determined by one of our guard dogs. We’re going to have the Y-axis represent some
vague set of qualities that we as humans are able to perceive, but our dogs cannot.

 Since our model produces a binary classification, we can think of the prediction
threshold as comparing a single-numerical-value output to our classification threshold
value. This is why we will require that the classification threshold line to be perfectly
vertical in figure 12.5.

 Each possible burglar is different, so our guard dogs will need to evaluate many dif-
ferent situations, and that means more opportunities to make mistakes. We can see
the clear diagonal line that separates the birds from the burglars, but Preston and
Roxie can only perceive the X-axis here: they have a muddled, overlapped set of

Bark

Ignore

Boring

Animals

Bad

Guys

Figure 12.5 Each type of event will have many possible instances that our guard
dogs will need to evaluate.

324 CHAPTER 12 Improving training with metrics and augmentation

events in the middle of our graph. They must pick a vertical bark-worthiness thresh-
old, which means it’s impossible for either one of them to do so perfectly. Sometimes
the person hauling your appliances to their van is the repair person you hired to fix
your washing machine, and sometimes burglars show up in a van that says “Washing
Machine Repair” on the side. Expecting a dog to pick up on those nuances is bound
to fail.

 The actual input data we’re going to use has high dimensionality—we need to con-
sider a ton of CT voxel values, along with more abstract things like candidate size,
overall location in the lungs, and so on. The job of our model is to map each of these
events and respective properties into this rectangle in such a way that we can separate
those positive and negative events cleanly using a single vertical line (our classification
threshold). This is done by the nn.Linear layers at the end of our model. The posi-
tion of the vertical line corresponds exactly to the classificationThreshold_float
we saw in section 11.6.1. There, we chose the hardcoded value 0.5 as our threshold.

 Note that in reality, the data presented is not two-dimensional; it goes from very-high-
dimensional after the second-to-last layer, to one-dimensional (here, our X-axis) at the
output—just a single scalar per sample (which is then bisected by the classification
threshold). Here, we use the second dimension (the Y-axis) to represent per-sample
features that our model cannot see or use: things like age or gender of the patient,
location of the nodule candidate in the lung, or even local aspects of the candidate that
the model hasn’t utilized. It also gives us a convenient way to represent confusion
between non-nodule and nodule samples.

 The quadrant areas in figure 12.5 and the count of samples contained in each will
be the values we use to discuss model performance, since we can use the ratios between
these values to construct increasingly complex metrics that we can use to objectively
measure how well we are doing. As they say, “the proof is in the proportions.”1 Next,
we’ll use ratios between these event subsets to start defining better metrics.

12.3.1 Recall is Roxie’s strength

Recall is basically “Make sure you never miss any interesting events!” Formally, recall is
the ratio of the true positives to the union of true positives and false negatives. We can
see this depicted in figure 12.6.

NOTE In some contexts, recall is referred to as sensitivity.

To improve recall, minimize false negatives. In guard dog terms, that means if you’re
unsure, bark at it, just in case. Don’t let any rodent thieves sneak by on your watch!

 Roxie accomplishes having an incredibly high recall by pushing her classification
threshold all the way to the left, such that it encompasses nearly all of the positive
events in figure 12.7. Note how doing so means her recall value is near 1.0, which
means 99% of robbers are barked at. Since that’s how Roxie defines success, in her
mind, she’s doing a great job. Never mind the huge expanse of false positives!

1 No one actually says this.

325Graphing the positives and negatives

VS.

RecaLl
is the ratio determined

by false negatives

Figure 12.6 Recall is the ratio of the true positives to the union of true positives
and false negatives. High recall minimizes false negatives.

Roxie Barks at everything

Low bark threshold, High RecaLl

Figure 12.7 Roxie’s choice of threshold prioritizes minimizing false
negatives. Every last rat is barked at . . . and cats, and most birds.

326 CHAPTER 12 Improving training with metrics and augmentation

12.3.2 Precision is Preston’s forte

Precision is basically “Never bark unless you’re sure.” To improve precision, minimize
false positives. Preston won’t bark at something unless he’s certain it’s a burglar. More
formally, precision is the ratio of the true positives to the union of true positives and
false positives, as shown in figure 12.8.

Preston accomplishes having an incredibly high precision by pushing his classification
threshold all the way to the right, such that it excludes as many uninteresting, negative
events as he can manage (see figure 12.9). This is the opposite of Roxie’s approach
and means Preston has a precision of nearly 1.0: 99% of the things he barks at are rob-
bers. This also matches his definition of being a good guard dog, even though a large
number of events pass undetected.

 While neither precision nor recall can be the single metric used to grade our
model, they are both useful numbers to have on hand during training. Let’s calculate
and display these as part of our training program, and then we’ll discuss other metrics
we can employ.

VS.

Precision
is the ratio determined

by false Positives

Figure 12.8 Precision is the ratio of the true positives to the union of true positives
and false positives. High precision minimizes false positives.

327Graphing the positives and negatives

12.3.3 Implementing precision and recall in logMetrics

Both precision and recall are valuable metrics to be able to track during training,
since they provide important insight into how the model is behaving. If either of them
drops to zero (as we saw in chapter 11!), it’s likely that our model has started to
behave in a degenerate manner. We can use the exact details of the behavior to guide
where to investigate and experiment with getting training back on track. We’d like to
update the logMetrics function to add precision and recall to the output we see for
each epoch, to complement the loss and correctness metrics we already have.

 We’ve been defining precision and recall in terms of “true positives” and the like
thus far, so we will continue to do so in the code. It turns out that we are already com-
puting some of the values we need, though we had named them differently.

neg_count = int(negLabel_mask.sum())
pos_count = int(posLabel_mask.sum())

trueNeg_count = neg_correct = int((negLabel_mask & negPred_mask).sum())
truePos_count = pos_correct = int((posLabel_mask & posPred_mask).sum())

falsePos_count = neg_count - neg_correct
falseNeg_count = pos_count - pos_correct

Listing 12.1 training.py:315, LunaTrainingApp.logMetrics

Preston Mostly SlEeps

High bark Threshold, high Precision

Pr

Figure 12.9 Preston’s choice of threshold prioritizes minimizing false
positives. Cats get left alone; only burglars are barked at!

328 CHAPTER 12 Improving training with metrics and augmentation

Here, we can see that neg_correct is the same thing as trueNeg_count! That actually
makes sense, since non-nodule is our “negative” value (as in “a negative diagnosis”),
and if the classifier gets the prediction correct, then that’s a true negative. Similarly,
correctly labeled nodule samples are true positives.

 We do need to add the variables for our false positive and false negative values.
That’s straightforward, since we can take the total number of benign labels and subtract
the count of the correct ones. What’s left is the count of non-nodule samples misclassi-
fied as positive. Hence, they are false positives. Again, the false negative calculation is of
the same form, but uses nodule counts.

 With those values, we can compute precision and recall and store them in metrics
_dict.

precision = metrics_dict['pr/precision'] = \
truePos_count / np.float32(truePos_count + falsePos_count)

recall = metrics_dict['pr/recall'] = \
truePos_count / np.float32(truePos_count + falseNeg_count)

Note the double assignment: while having separate precision and recall variables
isn’t strictly necessary, they improve the readability of the next section. We also extend
the logging statement in logMetrics to include the new values, but we skip the imple-
mentation for now (we’ll revisit logging later in the chapter).

12.3.4 Our ultimate performance metric: The F1 score

While useful, neither precision nor recall entirely captures what we need in order to be
able to evaluate a model. As we’ve seen with Roxie and Preston, it’s possible to game
either one individually by manipulating our classification threshold, resulting in a
model that scores well on one or the other but does so at the expense of any real-world
utility. We need something that combines both of those values in a way that prevents such
gamesmanship. As we can see in figure 12.10, it’s time to introduce our ultimate metric.

 The generally accepted way of combining precision and recall is by using the F1
score (https://en.wikipedia.org/wiki/F1_score). As with other metrics, the F1 score
ranges between 0 (a classifier with no real-world predictive power) and 1 (a classifier
that has perfect predictions). We will update logMetrics to include this as well.

metrics_dict['pr/f1_score'] = \
2 * (precision * recall) / (precision + recall)

At first glance, this might seem more complicated than we need, and it might not be
immediately obvious how the F1 score behaves when trading off precision for recall or

Listing 12.2 training.py:333, LunaTrainingApp.logMetrics

Listing 12.3 training.py:338, LunaTrainingApp.logMetrics

https://en.wikipedia.org/wiki/F1_score

329Graphing the positives and negatives

vice versa. This formula has a lot of nice properties, however, and it compares favor-
ably to several other, simpler alternatives that we might consider.

 One immediate possibility for a scoring function is to average the values for precision
and recall together. Unfortunately, this gives both avg(p=1.0, r=0.0) and avg(p=0.5,
r=0.5) the same score of 0.5, and as we discussed earlier, a classifier with either precision
or recall of zero is usually worthless. Giving something useless the same nonzero score
as something useful disqualifies averaging as a meaningful metric immediately.

 Still, let’s visually compare averaging and F1 in figure 12.11. A few things stand out.
First, we can see a lack of a curve or elbow in the contour lines for averaging. That’s
what lets our precision or recall skew to one side or the other! There will never be a sit-
uation where it doesn’t make sense to maximize the score by having 100% recall (the
Roxie approach) and then eliminate whichever false positives are easy to eliminate.
That puts a floor on the addition score of 0.5 right out of the gate! Having a quality
metric that is trivial to score at least 50% on doesn’t feel right.

NOTE What we are actually doing here is taking the arithmetic mean
(https://en.wikipedia.org/wiki/Arithmetic_mean) of the precision and
recall, both of which are rates rather than countable scalar values. Taking the
arithmetic mean of rates doesn’t typically give meaningful results. The F1
score is another name for the harmonic mean (https://en.wikipedia.org/wiki/
Harmonic_mean) of the two rates, which is a more appropriate way of com-
bining those kinds of values.

3. Ratios recaLl

and precision

4. new metric:

f1 score

5. Balancing

6. Augmentation

7. Workin’ great!

NEG

POS

1. Guard dogs

2. Birds and

burglars

5. Balancing

4. new metric:

f1 score
7. Workin’ great!

Augmentation

EG

SPOS

3. Ratios recaLl

and precision

4 new metric:

6.

NE

1. Guard dogsgs

2. BBirds and

bburglars

Figure 12.10 The set of topics for this chapter, with a focus on the final F1 score metric

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Harmonic_mean

330 CHAPTER 12 Improving training with metrics and augmentation

Contrast that with the F1 score: when recall is high but precision is low, trading off a
lot of recall for even a little precision will move the score closer to that balanced sweet
spot. There’s a nice, deep elbow that is easy to slide into. That encouragement to have
balanced precision and recall is what we want from our grading metric.

 Let’s say we still want a simpler metric, but one that doesn’t reward skew at all. In
order to correct for the weakness of addition, we might take the minimum of preci-
sion and recall (figure 12.12).

avg(p, r)

80

60

40

20

0

0 20 40 60 80

f1(p, r)
r

e
c

a
Ll

r
e

c
a
Ll

80

60

40

20

0

0 20 40 60 80

r
e

c
a
Ll

r
e

c
a
Ll

precision precision

Figure 12.11 Computing the final score with avg(p, r). Lighter values are closer to 1.0.

min(p, r)

80

60

40

20

0

0 20 40 60 80

f1(p, r)

r
e

c
a
Ll

r
e

c
a
Ll

80

60

40

20

0

0 20 40 60 80

r
e

c
a
Ll

r
e

c
a
Ll

precision precision

Figure 12.12 Computing the final score with min(p, r)

331Graphing the positives and negatives

This is nice, because if either value is 0, the score is also 0, and the only way to get a
score of 1.0 is to have both values be 1.0. However, it still leaves something to be
desired, since making a model change that increased the recall from 0.7 to 0.9 while
leaving precision constant at 0.5 wouldn’t improve the score at all, nor would drop-
ping recall down to 0.6! Although this metric is certainly penalizing having an imbal-
ance between precision and recall, it isn’t capturing a lot of nuance about the two
values. As we have seen, it’s easy to trade one off for the other simply by moving the
classification threshold. We’d like our metric to reflect those trades.

 We’ll have to accept at least a bit more complexity to better meet our goals. We could
multiply the two values together, as in figure 12.13. This approach keeps the nice prop-
erty that if either value is 0, the score is 0, and a score of 1.0 means both inputs are per-
fect. It also favors a balanced trade-off between precision and recall at low values,
though when it gets closer to perfect results, it becomes more linear. That’s not great,
since we really need to push both up to have a meaningful improvement at that point.

NOTE Here we’re taking the geometric mean (https://en.wikipedia.org/wiki/
Geometric_mean) of two rates, which also doesn’t produce meaningful
results.

There’s also the issue of having almost the entire quadrant from (0, 0) to (0.5, 0.5) be
very close to zero. As we’ll see, having a metric that’s sensitive to changes in that
region is important, especially in the early stages of our model design.

 While using multiplication as our scoring function is feasible (it doesn’t have any
immediate disqualifications the way the previous scoring functions did), we will be
using the F1 score to evaluate our classification model’s performance going forward.

mult(p, r)

80

60

40

20

0

0 20 40 60 80

f1(p, r)

r
e

c
a
Ll

r
e

c
a
Ll

80

60

40

20

0

0 20 40 60 80

r
e

c
a
Ll

r
e

c
a
Ll

precision precision

Figure 12.13 Computing the final score with mult(p, r)

https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Geometric_mean

332 CHAPTER 12 Improving training with metrics and augmentation

UPDATING THE LOGGING OUTPUT TO INCLUDE PRECISION, RECALL, AND F1 SCORE

Now that we have our new metrics, adding them to our logging output is pretty
straightforward. We’ll include precision, recall, and F1 in our main logging statement
for each of our training and validation sets.

log.info(
("E{} {:8} {loss/all:.4f} loss, "

+ "{correct/all:-5.1f}% correct, "
+ "{pr/precision:.4f} precision, "
+ "{pr/recall:.4f} recall, "
+ "{pr/f1_score:.4f} f1 score"

).format(
epoch_ndx,
mode_str,
**metrics_dict,

)
)

In addition, we’ll include exact values for the count of correctly identified and the total
number of samples for each of the negative and positive samples.

log.info(
("E{} {:8} {loss/neg:.4f} loss, "

+ "{correct/neg:-5.1f}% correct ({neg_correct:} of {neg_count:})"
).format(

epoch_ndx,
mode_str + '_neg',
neg_correct=neg_correct,
neg_count=neg_count,
**metrics_dict,

)
)

The new version of the positive logging statement looks much the same.

12.3.5 How does our model perform with our new metrics?

Now that we’ve implemented our shiny new metrics, let’s take them for a spin; we’ll
discuss the results after we show the results of the Bash shell session. You might want
to read ahead while your system does its number crunching; this could take perhaps
half an hour, depending on your system.2 Exactly how long it takes will depend on
your system’s CPU, GPU, and disk speeds; our system with an SSD and GTX 1080 Ti
took about 20 minutes per full epoch:

Listing 12.4 training.py:341, LunaTrainingApp.logMetrics

Listing 12.5 training.py:353, LunaTrainingApp.logMetrics

2 If it’s taking longer than that, make sure you’ve run the prepcache script.

Format string
updated

333Graphing the positives and negatives

$../.venv/bin/python -m p2ch12.training
Starting LunaTrainingApp...
...
E1 LunaTrainingApp

.../p2ch12/training.py:274: RuntimeWarning:

➥ invalid value encountered in double_scalars
metrics_dict['pr/f1_score'] = 2 * (precision * recall) /

➥ (precision + recall)

E1 trn 0.0025 loss, 99.8% correct, 0.0000 prc, 0.0000 rcl, nan f1
E1 trn_ben 0.0000 loss, 100.0% correct (494735 of 494743)
E1 trn_mal 1.0000 loss, 0.0% correct (0 of 1215)

.../p2ch12/training.py:269: RuntimeWarning:

➥ invalid value encountered in long_scalars
precision = metrics_dict['pr/precision'] = truePos_count /

➥ (truePos_count + falsePos_count)

E1 val 0.0025 loss, 99.8% correct, nan prc, 0.0000 rcl, nan f1
E1 val_ben 0.0000 loss, 100.0% correct (54971 of 54971)
E1 val_mal 1.0000 loss, 0.0% correct (0 of 136)

Bummer. We’ve got some warnings, and given that some of the values we computed
were nan, there’s probably a division by zero happening somewhere. Let’s see what we
can figure out.

 First, since none of the positive samples in the training set are getting classified as
positive, that means both precision and recall are zero, which results in our F1 score
calculation dividing by zero. Second, for our validation set, truePos_count and
falsePos_count are both zero due to nothing being flagged as positive. It follows that
the denominator of our precision calculation is also zero; that makes sense, as that’s
where we’re seeing another RuntimeWarning.

 A handful of negative training samples are classified as positive (494735 of 494743
are classified as negative, so that leaves 8 samples misclassified). While that might
seem odd at first, recall that we are collecting our training results throughout the epoch,
rather than using the model’s end-of-epoch state as we do for the validation results.
That means the first batch is literally producing random results. A few of the samples
from that first batch being flagged as positive isn’t surprising.

NOTE Due to both the random initialization of the network weights and the
random ordering of the training samples, individual runs will likely exhibit
slightly different behavior. Having exactly reproducible behavior can be desir-
able but is out of scope for what we’re trying to do in part 2 of this book.

Well, that was somewhat painful. Switching to our new metrics resulted in going from
A+ to “Zero, if you’re lucky”—and if we’re not lucky, the score is so bad that it’s not
even a number. Ouch.

 That said, in the long run, this is good for us. We’ve known that our model’s per-
formance was garbage since chapter 11. If our metrics told us anything but that, it
would point to a fundamental flaw in the metrics!

The exact count and
 line numbers of these

RuntimeWarning lines might
be different from run to run.

334 CHAPTER 12 Improving training with metrics and augmentation

12.4 What does an ideal dataset look like?
Before we start crying into our cups over the current sorry state of affairs, let’s instead
think about what we actually want our model to do. Figure 12.14 says that first we need
to balance our data so that our model can train properly. Let’s build up the logical
steps needed to get us there.

Recall figure 12.5 earlier, and the following discussion of classification thresholds.
Getting better results by moving the threshold has limited effectiveness—there’s just
too much overlap between the positive and negative classes to work with.3

 Instead, we want to see an image like figure 12.15. Here, our label threshold is nearly
vertical. That’s what we want, because it means the label threshold and our classification
threshold can line up reasonably well. Similarly, most of the samples are concentrated at
either end of the diagram. Both of these things require that our data be easily separable
and that our model have the capacity to perform that separation. Our model currently
has enough capacity, so that’s not the issue. Instead, let’s take a look at our data.

 Recall that our data is wildly imbalanced. There’s a 400:1 ratio of positive samples
to negative ones. That’s crushingly imbalanced! Figure 12.16 shows what that looks
like. No wonder our “actually nodule” samples are getting lost in the crowd!

3 Keep in mind that these images are just a representation of the classification space and do not represent
ground truth.

3. Ratios recaLl

and precision

4. new metric:

f1 score

5. Balancing

6. Augmentation

7. Workin’ great!

NEG

POS

1. Guard dogs

2. Birds and

burglars

5. Balancing

4. new metric:

f1 score
7. Workin’ great!

Augmentatttttattatattatttttatttattatatataaaa iioioioioiiiiiii n

EG

SPOS

3. Ratios recaLl

and precision

4 new metric:

6.

NE

1. Guard dogsgs

2. BBirds and

bburglars

Figure 12.14 The set of topics for this chapter, with a focus on balancing our positive and
negative samples

335What does an ideal dataset look like?

Few incoRrect

predictions

Most events in

clearly separate claSses

Most events in

Figure 12.15 A well-trained
model can cleanly separate
data, making it easy to pick a
classification threshold with
few trade-offs.

StiLl tOo

many false

positives

StiLl tOo

many fal

positivep

Negative

Samples

Positive

Samples

Figure 12.16 An imbalanced dataset that roughly approximates the imbalance in our LUNA classification data

336 CHAPTER 12 Improving training with metrics and augmentation

Now, let’s be perfectly clear: when we’re done, our model will be able to handle this
kind of data imbalance just fine. We could probably even train the model all the way
there without changing the balancing, assuming we were willing to wait for a gajillion
epochs first.4 But we’re busy people with things to do, so rather than cook our GPU
until the heat death of the universe, let’s try to make our training data look more ideal
by changing the class balance we are training with.

12.4.1 Making the data look less like the actual and more like the “ideal”

The best thing to do would be to have relatively more positive samples. During the ini-
tial epoch of training, when we’re going from randomized chaos to something more
organized, having so few training samples be positive means they get drowned out.

 The method by which this happens is somewhat subtle, however. Recall that since
our network weights are initially randomized, the per-sample output of the network is
also randomized (but clamped to the range [0-1]).

NOTE Our loss function is nn.CrossEntropyLoss, which technically operates
on the raw logits rather than the class probabilities. For our discussion, we’ll
ignore that distinction and assume the loss and the label-prediction deltas are
the same thing.

The predictions numerically close to the correct label do not result in much change
to the weights of the network, while predictions that are significantly different from
the correct answer are responsible for a much greater change to the weights. Since
the output is random when the model is initialized with random weights, we can
assume that of our ~500k training samples (495,958, to be exact), we’ll have the fol-
lowing approximate groups:

1 250,000 negative samples will be predicted to be negative (0.0 to 0.5) and result
in at most a small change to the network weights toward predicting negative.

2 250,000 negative samples will be predicted to be positive (0.5 to 1.0) and result
in a large swing toward the network weights predicting negative.

3 500 positive samples will be predicted to be negative and result in a swing
toward the network weights predicting positive.

4 500 positive samples will be predicted to be positive and result in almost no
change to the network weights.

NOTE Keep in mind that the actual predictions are real numbers between 0.0
and 1.0 inclusive, so these groups won’t have strict delineations.

Here’s the kicker, though: groups 1 and 4 can be any size, and they will continue to
have close to zero impact on training. The only thing that matters is that groups 2 and
3 can counteract each other’s pull enough to prevent the network from collapsing to a
degenerate “only output one thing” state. Since group 2 is 500 times larger than

4 It’s not clear if this is actually true, but it’s plausible, and the loss was getting better . . .

337What does an ideal dataset look like?

group 3 and we’re using a batch size of 32, roughly 500/32 = 15 batches will go by
before seeing a single positive sample. That implies that 14 out of 15 training batches
will be 100% negative and will only pull all model weights toward predicting negative.
That lopsided pull is what produces the degenerate behavior we’ve been seeing.

 Instead, we’d like to have just as many positive samples as negative ones. For the
first part of training, then, half of both labels will be classified incorrectly, meaning
that groups 2 and 3 should be roughly equal in size. We also want to make sure we
present batches with a mix of negative and positive samples. Balance would result in
the tug-of-war evening out, and the mixture of classes per batch will give the model a
decent chance of learning to discriminate between the two classes. Since our LUNA
data has only a small, fixed number of positive samples, we’ll have to settle for taking
the positive samples that we have and presenting them repeatedly during training.

Recall our professor from chapter 11 who had a final exam with 99 false answers and 1
true answer. The next semester, after being told “You should have a more even bal-
ance of true and false answers,” the professor decided to add a midterm with 99 true
answers and 1 false one. “Problem solved!”

 Clearly, the correct approach is to intermix true and false answers in a way that
doesn’t allow the students to exploit the larger structure of the tests to answer things
correctly. Whereas a student would pick up on a pattern like “odd questions are true,
even questions are false,” the batching system used by PyTorch doesn’t allow the
model to “notice” or utilize that kind of pattern. Our training dataset will need to be
updated to alternate between positive and negative samples, as in figure 12.17.

 The unbalanced data is the proverbial needle in the haystack we mentioned at the
start of chapter 9. If you had to perform this classification work by hand, you’d proba-
bly start to empathize with Preston.

Discrimination
Here, we define discrimination as “the ability to separate two classes from each
other.” Building and training a model that can tell “actually nodule” candidates from
normal anatomical structures is the entire point of what we’re doing in part 2.

Some other definitions of discrimination are more problematic. While out of scope for
the discussion of our work here, there is a larger issue with models trained from real-
world data. If that real-world dataset is collected from sources that have a real-world-
discriminatory bias (for example, racial bias in arrest and conviction rates, or anything
collected from social media), and that bias is not corrected for during dataset prepa-
ration or training, then the resulting model will continue to exhibit the same biases
present in the training data. Just as in humans, racism is learned.

This means almost any model trained from internet-at-large data sources will be com-
promised in some fashion, unless extreme care is taken to scrub those biases from
the model. Note that like our goal in part 2, this is considered an unsolved problem.

338 CHAPTER 12 Improving training with metrics and augmentation

We will not be doing any balancing for validation, however. Our model needs to func-
tion well in the real world, and the real world is imbalanced (after all, that’s where we
got the raw data!).

 How should we accomplish this balancing? Let’s discuss our choices.

SAMPLERS CAN RESHAPE DATASETS

One of the optional arguments to DataLoader is sampler=… . This allows the data
loader to override the iteration order native to the dataset passed in and instead
shape, limit, or reemphasize the underlying data as desired. This can be incredibly
useful when working with a dataset that isn’t under your control. Taking a public data-
set and reshaping it to meet your needs is far less work than reimplementing that data-
set from scratch.

 The downside is that many of the mutations we could accomplish with samplers
require that we break encapsulation of the underlying dataset. For example, let’s
assume we have a dataset like CIFAR-10 (www.cs.toronto.edu/~kriz/cifar.html) that

Unbalanced
balanced

Batch: 0

Batch: 0

Batch: 1

Batch: 1

Batch: N

Batch: 2
Batch: 3

Batch: 13
Batch: 14

Batch: 15

First positive

Sample!

Figure 12.17 Batch after batch of imbalanced data will have nothing but negative events long before
the first positive event, while balanced data can alternate every other sample.

http://www.cs.toronto.edu/~kriz/cifar.html

339What does an ideal dataset look like?

consists of 10 equally weighted classes, and we want to instead have 1 class (say, “air-
plane”) now make up 50% of all of the training images. We could decide to use
WeightedRandomSampler (http://mng.bz/8plK) and weight each of the “airplane”
sample indexes higher, but constructing the weights argument requires that we know
in advance which indexes are airplanes.

 As we discussed, the Dataset API only specifies that subclasses provide __len__
and __getitem__, but there is nothing direct we can use to ask “Which samples are
airplanes?” We’d either have to load up every sample beforehand to inquire about the
class of that sample, or we’d have to break encapsulation and hope the information
we need is easily obtained from looking at the internal implementation of the Data-
set subclass.

 Since neither of those options is particularly ideal in cases where we have control
over the dataset directly, the code for part 2 implements any needed data shaping
inside the Dataset subclasses instead of relying on an external sampler.

IMPLEMENTING CLASS BALANCING IN THE DATASET

We are going to directly change our LunaDataset to present a balanced, one-to-one
ratio of positive and negative samples for training. We will keep separate lists of nega-
tive training samples and positive training samples, and alternate returning samples
from each of those two lists. This will prevent the degenerate behavior of the model
scoring well by simply answering “false” to every sample presented. In addition, the
positive and negative classes will be intermixed so that the weight updates are forced
to discriminate between the classes.

 Let’s add a ratio_int to LunaDataset that will control the label for the Nth sam-
ple as well as keep track of our samples separated by label.

class LunaDataset(Dataset):
def __init__(self,

val_stride=0,
isValSet_bool=None,
ratio_int=0,

):
self.ratio_int = ratio_int
... line 228
self.negative_list = [

nt for nt in self.candidateInfo_list if not nt.isNodule_bool
]
self.pos_list = [

nt for nt in self.candidateInfo_list if nt.isNodule_bool
]
... line 265

def shuffleSamples(self):
if self.ratio_int:

random.shuffle(self.negative_list)
random.shuffle(self.pos_list)

Listing 12.6 dsets.py:217, class LunaDataset

We will call this at the top of each
epoch to randomize the order of
samples being presented.

http://mng.bz/8plK

340 CHAPTER 12 Improving training with metrics and augmentation

With this, we now have dedicated lists for each label. Using these lists, it becomes
much easier to return the label we want for a given index into the dataset. In order to
make sure we’re getting the indexing right, we should sketch out the ordering we
want. Let’s assume a ratio_int of 2, meaning a 2:1 ratio of negative to positive sam-
ples. That would mean every third index should be positive:

DS Index 0 1 2 3 4 5 6 7 8 9 ...
Label + - - + - - + - - +
Pos Index 0 1 2 3
Neg Index 0 1 2 3 4 5

The relationship between the dataset index and the positive index is simple: divide
the dataset index by 3 and then round down. The negative index is slightly more com-
plicated, in that we have to subtract 1 from the dataset index and then subtract the
most recent positive index as well.

 Implemented in our LunaDataset class, that looks like the following.

def __getitem__(self, ndx):
if self.ratio_int:

pos_ndx = ndx // (self.ratio_int + 1)

if ndx % (self.ratio_int + 1):
neg_ndx = ndx - 1 - pos_ndx
neg_ndx %= len(self.negative_list)
candidateInfo_tup = self.negative_list[neg_ndx]

else:
pos_ndx %= len(self.pos_list)
candidateInfo_tup = self.pos_list[pos_ndx]

else:
candidateInfo_tup = self.candidateInfo_list[ndx]

That can get a little hairy, but if you desk-check it out, it will make sense. Keep in mind
that with a low ratio, we’ll run out of positive samples before exhausting the dataset.
We take care of that by taking the modulus of pos_ndx before indexing into
self.pos_list. While the same kind of index overflow should never happen with
neg_ndx due to the large number of negative samples, we do the modulus anyway, just
in case we later decide to make a change that might cause it to overflow.

 We’ll also make a change to our dataset’s length. Although this isn’t strictly neces-
sary, it’s nice to speed up individual epochs. We’re going to hardcode our __len__ to
be 200,000.

Listing 12.7 dsets.py:286, LunaDataset.__getitem__

A ratio_int of zero means
use the native balance.

A nonzero remainder
means this should be
a negative sample.

Overflow results
in wraparound.

Returns the Nth sample
if not balancing classes

341What does an ideal dataset look like?

def __len__(self):
if self.ratio_int:

return 200000
else:

return len(self.candidateInfo_list)

We’re no longer tied to a specific number of samples, and presenting “a full epoch”
doesn’t really make sense when we would have to repeat positive samples many, many
times to present a balanced training set. By picking 200,000 samples, we reduce the
time between starting a training run and seeing results (faster feedback is always
nice!), and we give ourselves a nice, clean number of samples per epoch. Feel free to
adjust the length of an epoch to meet your needs.

 For completeness, we also add a command-line parameter.

class LunaTrainingApp:
def __init__(self, sys_argv=None):

... line 52
parser.add_argument('--balanced',

help="Balance the training data to half positive, half negative.",
action='store_true',
default=False,

)

Then we pass that parameter into the LunaDataset constructor.

def initTrainDl(self):
train_ds = LunaDataset(

val_stride=10,
isValSet_bool=False,
ratio_int=int(self.cli_args.balanced),

)

We’re all set. Let’s run it!

12.4.2 Contrasting training with a balanced LunaDataset to previous
runs

As a reminder, our unbalanced training run had results like these:

$ python -m p2ch12.training
...
E1 LunaTrainingApp
E1 trn 0.0185 loss, 99.7% correct, 0.0000 precision, 0.0000 recall,

➥ nan f1 score

Listing 12.8 dsets.py:280, LunaDataset.__len__

Listing 12.9 training.py:31, class LunaTrainingApp

Listing 12.10 training.py:137, LunaTrainingApp.initTrainDl

Here we rely on python’s True
being convertible to a 1.

342 CHAPTER 12 Improving training with metrics and augmentation

E1 trn_neg 0.0026 loss, 100.0% correct (494717 of 494743)
E1 trn_pos 6.5267 loss, 0.0% correct (0 of 1215)
...
E1 val 0.0173 loss, 99.8% correct, nan precision, 0.0000 recall,

➥ nan f1 score
E1 val_neg 0.0026 loss, 100.0% correct (54971 of 54971)
E1 val_pos 5.9577 loss, 0.0% correct (0 of 136)

But when we run with --balanced, we see the following:

$ python -m p2ch12.training --balanced
...
E1 LunaTrainingApp
E1 trn 0.1734 loss, 92.8% correct, 0.9363 precision, 0.9194 recall,

➥ 0.9277 f1 score
E1 trn_neg 0.1770 loss, 93.7% correct (93741 of 100000)
E1 trn_pos 0.1698 loss, 91.9% correct (91939 of 100000)
...
E1 val 0.0564 loss, 98.4% correct, 0.1102 precision, 0.7941 recall,

➥ 0.1935 f1 score
E1 val_neg 0.0542 loss, 98.4% correct (54099 of 54971)
E1 val_pos 0.9549 loss, 79.4% correct (108 of 136)

This seems much better! We’ve given up about 5% correct answers on the negative
samples to gain 86% correct positive answers. We’re back into a solid B range again!5

 As in chapter 11, however, this result is deceptive. Since there are 400 times as
many negative samples as positive ones, even getting just 1% wrong means we’d be
incorrectly classifying negative samples as positive four times more often than there
are actually positive samples in total!

 Still, this is clearly better than the outright wrong behavior from chapter 11 and
much better than a random coin flip. In fact, we’ve even crossed over into being
(almost) legitimately useful in real-world scenarios. Recall our overworked radiologist
poring over each and every speck of a CT: well, now we’ve got something that can do a
reasonable job of screening out 95% of the false positives. That’s a huge help, since it
translates into about a tenfold increase in productivity for the machine-assisted human.

 Of course, there’s still that pesky issue of the 14% of positive samples that were
missed, which we should probably deal with. Perhaps some additional epochs of train-
ing would help. Let’s see (and again, expect to spend at least 10 minutes per epoch):

$ python -m p2ch12.training --balanced --epochs 20
...
E2 LunaTrainingApp
E2 trn 0.0432 loss, 98.7% correct, 0.9866 precision, 0.9879 recall,

➥ 0.9873 f1 score
E2 trn_ben 0.0545 loss, 98.7% correct (98663 of 100000)
E2 trn_mal 0.0318 loss, 98.8% correct (98790 of 100000)

5 And remember that this is after only the 200,000 training samples presented, not the 500,000+ of the unbal-
anced dataset, so we got there in less than half the time.

343What does an ideal dataset look like?

E2 val 0.0603 loss, 98.5% correct, 0.1271 precision, 0.8456 recall,

➥ 0.2209 f1 score
E2 val_ben 0.0584 loss, 98.6% correct (54181 of 54971)
E2 val_mal 0.8471 loss, 84.6% correct (115 of 136)
...
E5 trn 0.0578 loss, 98.3% correct, 0.9839 precision, 0.9823 recall,

➥ 0.9831 f1 score
E5 trn_ben 0.0665 loss, 98.4% correct (98388 of 100000)
E5 trn_mal 0.0490 loss, 98.2% correct (98227 of 100000)
E5 val 0.0361 loss, 99.2% correct, 0.2129 precision, 0.8235 recall,

➥ 0.3384 f1 score
E5 val_ben 0.0336 loss, 99.2% correct (54557 of 54971)
E5 val_mal 1.0515 loss, 82.4% correct (112 of 136)...
...
E10 trn 0.0212 loss, 99.5% correct, 0.9942 precision, 0.9953 recall,

➥ 0.9948 f1 score
E10 trn_ben 0.0281 loss, 99.4% correct (99421 of 100000)
E10 trn_mal 0.0142 loss, 99.5% correct (99530 of 100000)
E10 val 0.0457 loss, 99.3% correct, 0.2171 precision, 0.7647 recall,

➥ 0.3382 f1 score
E10 val_ben 0.0407 loss, 99.3% correct (54596 of 54971)
E10 val_mal 2.0594 loss, 76.5% correct (104 of 136)
...
E20 trn 0.0132 loss, 99.7% correct, 0.9964 precision, 0.9974 recall,

➥ 0.9969 f1 score
E20 trn_ben 0.0186 loss, 99.6% correct (99642 of 100000)
E20 trn_mal 0.0079 loss, 99.7% correct (99736 of 100000)
E20 val 0.0200 loss, 99.7% correct, 0.4780 precision, 0.7206 recall,

➥ 0.5748 f1 score
E20 val_ben 0.0133 loss, 99.8% correct (54864 of 54971)
E20 val_mal 2.7101 loss, 72.1% correct (98 of 136)

Ugh. That’s a lot of text to scroll past to get to the numbers we’re interested in. Let’s
power through and focus on the val_mal XX.X% correct numbers (or skip ahead to
the TensorBoard graph in the next section.) After epoch 2, we were at 87.5%; on
epoch 5, we peaked with 92.6%; and then by epoch 20 we dropped down to 86.8%—
below our second epoch!

NOTE As mentioned earlier, expect each run to have unique behavior due to
random initialization of network weights and random selection and ordering
of training samples per epoch.

The training set numbers don’t seem to be having the same problem. Negative train-
ing samples are classified correctly 98.8% of the time, and positive samples are 99.1%
correct. What’s going on?

12.4.3 Recognizing the symptoms of overfitting

What we are seeing are clear signs of overfitting. Let’s take a look at the graph of our
loss on positive samples, in figure 12.18.

344 CHAPTER 12 Improving training with metrics and augmentation

Here, we can see that the training loss for our positive samples is nearly zero—each
positive training sample gets a nearly perfect prediction. Our validation loss for posi-
tive samples is increasing, though, and that means our real-world performance is likely
getting worse. At this point, it’s often best to stop the training script, since the model
is no longer improving.

TIP Generally, if your model’s performance is improving on your training set
while getting worse on your validation set, the model has started overfitting.

We must take care to examine the right metrics, however, since this trend is only hap-
pening on our positive loss. If we take a look at our overall loss, everything seems fine!
That’s because our validation set is not balanced, so the overall loss is dominated by
our negative samples. As shown in figure 12.19, we are not seeing the same divergent
behavior for our negative samples. Instead, our negative loss looks great! That’s
because we have 400 times more negative samples, so it’s much, much harder for the
model to remember individual details. Our positive training set has only 1,215 sam-
ples, though. While we repeat those samples multiple times, that doesn’t make them
harder to memorize. The model is shifting from generalized principles to essentially
memorizing quirks of those 1,215 samples and claiming that anything that’s not one
of those few samples is negative. This includes both negative training samples and
everything in our validation set (both positive and negative).

 Clearly, some generalization is still going on, since we are classifying about 70% of
the positive validation set correctly. We just need to change how we’re training the
model so that our training set and validation set both trend in the right direction.

Validation

loSs goes up

Training loSs

goes down to zero

tag: loss/pos

Figure 12.18 Our positive loss showing clear signs of overfitting, as the training loss and
validation loss are trending in different directions

345Revisiting the problem of overfitting

12.5 Revisiting the problem of overfitting
We touched on the concept of overfitting in chapter 5, and now it’s time to take a
closer look at how to address this common situation. Our goal with training a model is
to teach it to recognize the general properties of the classes we are interested in, as
expressed in our dataset. Those general properties are present in some or all samples
of the class and can be generalized and used to predict samples that haven’t been
trained on. When the model starts to learn specific properties of the training set, overfit-
ting occurs, and the model starts to lose the ability to generalize. In case that’s a bit
too abstract, let’s use another analogy.

12.5.1 An overfit face-to-age prediction model

Let’s pretend we have a model that takes an image of a human face as input and out-
puts a predicted age in years. A good model would pick up on age signifiers like wrin-
kles, gray hair, hairstyle, clothing choices, and similar, and use those to build a general
model of what different ages look like. When presented with a new picture, it would
consider things like “conservative haircut” and “reading glasses” and “wrinkles” to
conclude “around 65 years old.”

 An overfit model, by contrast, instead remembers specific people by remembering
identifying details. “That haircut and those glasses mean it’s Frank. He’s 62.8 years
old”; “Oh, that scar means it’s Harry. He’s 39.3”; and so on. When shown a new per-
son, the model won’t recognize the person and will have absolutely no idea what age
to predict.

 Even worse, if shown a picture of Frank Jr. (the spittin’ image of his dad, at least
when he’s wearing his glasses!), the model will say, “I think that’s Frank. He’s 62.8
years old.” Never mind that Junior is 25 years younger!

tag: loss/neg

Both loSses

are trending

down.

Figure 12.19 Our negative loss showing no signs of overfitting

346 CHAPTER 12 Improving training with metrics and augmentation

 Overfitting is usually due to having too few training samples when compared to the
ability of the model to just memorize the answers. The median human can memorize
the birthdays of their immediate family but would have to resort to generalizations
when predicting the ages of any group larger than a small village.

 Our face-to-age model has the capacity to simply memorize the photos of anyone
who doesn’t look exactly their age. As we discussed in part 1, model capacity is a some-
what abstract concept, but is roughly a function of the number of parameters of the
model times how efficiently those parameters are used. When a model has a high
capacity relative to the amount of data needed to memorize the hard samples from
the training set, it’s likely that the model will begin to overfit on those more difficult
training samples.

12.6 Preventing overfitting with data augmentation
It’s time to take our model training from good to great. We need to cover one last step
in figure 12.20.

We augment a dataset by applying synthetic alterations to individual samples, resulting
in a new dataset with an effective size that is larger than the original. The typical goal
is for the alterations to result in a synthetic sample that remains representative of the
same general class as the source sample, but that cannot be trivially memorized along-
side the original. When done properly, this augmentation can increase the training set

3. Ratios recaLl

and precision

4. new metric:

f1 score

5. Balancing

6. Augmentation

7. Workin’ great!

NEG

POS

1. Guard dogs

2. Birds and

burglars

5. Balancing

4. new metric:

f1 score
7. Workin’ great!

Augmentation

EG

SPOS

3. Ratios recaLl

and precision

4 new metric:

6.

NE

1. Guard dogsgs

2. BBirds and

bburglars

Figure 12.20 The set of topics for this chapter, with a focus on data augmentation

347Preventing overfitting with data augmentation

size beyond what the model is capable of memorizing, resulting in the model being
forced to increasingly rely on generalization, which is exactly what we want. Doing so
is especially useful when dealing with limited data, as we saw in section 12.4.1.

 Of course, not all augmentations are equally useful. Going back to our example of
a face-to-age prediction model, we could trivially change the red channel of the four
corner pixels of each image to a random value 0–255, which would result in a dataset
4 billion times larger the original. Of course, this wouldn’t be particularly useful, since
the model can pretty trivially learn to ignore the red dots in the image corners, and
the rest of the image remains as easy to memorize as the single, unaugmented original
image. Contrast that approach with flipping the image left to right. Doing so would
only result in a dataset twice as large as the original, but each image would be quite a
bit more useful for training purposes. The general properties of aging are not cor-
related left to right, so a mirrored image remains representative. Similarly, it’s rare for
facial pictures to be perfectly symmetrical, so a mirrored version is unlikely to be trivi-
ally memorized alongside the original.

12.6.1 Specific data augmentation techniques

We are going to implement five specific types of data augmentation. Our implementa-
tion will allow us to experiment with any or all of them, individually or in aggregate.
The five techniques are as follows:

 Mirroring the image up-down, left-right, and/or front-back
 Shifting the image around by a few voxels
 Scaling the image up or down
 Rotating the image around the head-foot axis
 Adding noise to the image

For each technique, we want to make sure our approach maintains the training sam-
ple’s representative nature, while being different enough that the sample is useful to
train with.

 We’ll define a function getCtAugmentedCandidate that is responsible for taking our
standard chunk-of-CT-with-candidate-inside and modifying it. Our main approach will
define an affine transformation matrix (http://mng.bz/Edxq) and use it with the
PyTorch affine_grid (https://pytorch.org/docs/stable/nn.html#affine-grid) and grid
_sample (https://pytorch.org/docs/stable/nn.html#torch.nn.functional.grid_sample)
functions to resample our candidate.

def getCtAugmentedCandidate(
augmentation_dict,
series_uid, center_xyz, width_irc,
use_cache=True):

if use_cache:
ct_chunk, center_irc = \

Listing 12.11 dsets.py:149, def getCtAugmentedCandidate

http://mng.bz/Edxq
https://pytorch.org/docs/stable/nn.html#affine-grid
https://pytorch.org/docs/stable/nn.html#torch.nn.functional.grid_sample

348 CHAPTER 12 Improving training with metrics and augmentation

getCtRawCandidate(series_uid, center_xyz, width_irc)
else:

ct = getCt(series_uid)
ct_chunk, center_irc = ct.getRawCandidate(center_xyz, width_irc)

ct_t = torch.tensor(ct_chunk).unsqueeze(0).unsqueeze(0).to(torch.float32)

We first obtain ct_chunk, either from the cache or directly by loading the CT (some-
thing that will come in handy once we are creating our own candidate centers), and
then convert it to a tensor. Next is the affine grid and sampling code.

transform_t = torch.eye(4)
...
... line 195
affine_t = F.affine_grid(

transform_t[:3].unsqueeze(0).to(torch.float32),
ct_t.size(),
align_corners=False,

)

augmented_chunk = F.grid_sample(
ct_t,
affine_t,
padding_mode='border',
align_corners=False,

).to('cpu')
... line 214
return augmented_chunk[0], center_irc

Without anything additional, this function won’t do much. Let’s see what it takes to
add in some actual transforms.

NOTE It’s important to structure your data pipeline such that your caching
steps happen before augmentation! Doing otherwise will result in your data
being augmented once and then persisted in that state, which defeats the
purpose.

MIRRORING

When mirroring a sample, we keep the pixel values exactly the same and only change
the orientation of the image. Since there’s no strong correlation between tumor
growth and left-right or front-back, we should be able to flip those without changing
the representative nature of the sample. The index-axis (referred to as Z in patient
coordinates) corresponds to the direction of gravity in an upright human, however, so
there’s a possibility of a difference in the top and bottom of a tumor. We are going to
assume it’s fine, since quick visual investigation doesn’t show any gross bias. Were we
working toward a clinically relevant project, we’d need to confirm that assumption
with an expert.

Listing 12.12 dsets.py:162, def getCtAugmentedCandidate

Modifications to
transform_tensor will go here.

349Preventing overfitting with data augmentation

for i in range(3):
if 'flip' in augmentation_dict:

if random.random() > 0.5:
transform_t[i,i] *= -1

The grid_sample function maps the range [–1, 1] to the extents of both the old and
new tensors (the rescaling happens implicitly if the sizes are different). This range
mapping means that to mirror the data, all we need to do is multiply the relevant ele-
ment of the transformation matrix by –1.

SHIFTING BY A RANDOM OFFSET

Shifting the nodule candidate around shouldn’t make a huge difference, since convo-
lutions are translation independent, though this will make our model more robust to
imperfectly centered nodules. What will make a more significant difference is that the
offset might not be an integer number of voxels; instead, the data will be resampled
using trilinear interpolation, which can introduce some slight blurring. Voxels at the
edge of the sample will be repeated, which can be seen as a smeared, streaky section
along the border.

for i in range(3):
... line 170
if 'offset' in augmentation_dict:

offset_float = augmentation_dict['offset']
random_float = (random.random() * 2 - 1)
transform_t[i,3] = offset_float * random_float

Note that our 'offset' parameter is the maximum offset expressed in the same scale
as the [–1, 1] range the grid sample function expects.

SCALING

Scaling the image slightly is very similar to mirroring and shifting. Doing so can also
result in the same repeated edge voxels we just mentioned when discussing shifting
the sample.

for i in range(3):
... line 175
if 'scale' in augmentation_dict:

scale_float = augmentation_dict['scale']
random_float = (random.random() * 2 - 1)
transform_t[i,i] *= 1.0 + scale_float * random_float

Since random_float is converted to be in the range [–1, 1], it doesn’t actually matter
if we add scale_float * random_float to or subtract it from 1.0.

Listing 12.13 dsets.py:165, def getCtAugmentedCandidate

Listing 12.14 dsets.py:165, def getCtAugmentedCandidate

Listing 12.15 dsets.py:165, def getCtAugmentedCandidate

350 CHAPTER 12 Improving training with metrics and augmentation

ROTATING

Rotation is the first augmentation technique we’re going to use where we have to care-
fully consider our data to ensure that we don’t break our sample with a conversion that
causes it to no longer be representative. Recall that our CT slices have uniform spacing
along the rows and columns (X- and Y-axes), but in the index (or Z) direction, the vox-
els are non-cubic. That means we can’t treat those axes as interchangeable.

 One option is to resample our data so that our resolution along the index-axis is
the same as along the other two, but that’s not a true solution because the data along
that axis would be very blurry and smeared. Even if we interpolate more voxels, the
fidelity of the data would remain poor. Instead, we’ll treat that axis as special and con-
fine our rotations to the X-Y plane.

if 'rotate' in augmentation_dict:
angle_rad = random.random() * math.pi * 2
s = math.sin(angle_rad)
c = math.cos(angle_rad)

rotation_t = torch.tensor([
[c, -s, 0, 0],
[s, c, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],

])

transform_t @= rotation_t

NOISE

Our final augmentation technique is different from the others in that it is actively
destructive to our sample in a way that flipping or rotating the sample is not. If we add
too much noise to the sample, it will swamp the real data and make it effectively
impossible to classify. While shifting and scaling the sample would do something simi-
lar if we used extreme input values, we’ve chosen values that will only impact the edge
of the sample. Noise will have an impact on the entire image.

if 'noise' in augmentation_dict:
noise_t = torch.randn_like(augmented_chunk)
noise_t *= augmentation_dict['noise']

augmented_chunk += noise_t

The other augmentation types have increased the effective size of our dataset. Noise
makes our model’s job harder. We’ll revisit this once we see some training results.

Listing 12.16 dsets.py:181, def getCtAugmentedCandidate

Listing 12.17 dsets.py:208, def getCtAugmentedCandidate

351Preventing overfitting with data augmentation

EXAMINING AUGMENTED CANDIDATES

We can see the result of our efforts in figure 12.21. The upper-left image shows an un-
augmented positive candidate, and the next five show the effect of each augmentation
type in isolation. Finally, the bottom row shows the combined result three times.

 Since each __getitem__ call to the augmenting dataset reapplies the augmenta-
tions randomly, each image on the bottom row looks different. This also means it’s
nearly impossible to generate an image exactly like this again! It’s also important to

None flip oFfset
0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

scale rotate noise
0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

aLl aLl aLl
0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

Figure 12.21 Various augmentation types performed on a positive nodule sample

352 CHAPTER 12 Improving training with metrics and augmentation

remember that sometimes the 'flip' augmentation will result in no flip. Returning
always-flipped images is just as limiting as not flipping in the first place. Now let’s see if
any of this makes a difference.

12.6.2 Seeing the improvement from data augmentation

We are going to train additional models, one per augmentation type discussed in the
last section, with an additional model training run that combines all of the augmenta-
tion types. Once they’re finished, we’ll take a look at our numbers in TensorBoard.

 In order to be able to turn our new augmentation types on and off, we need to
expose the construction of augmentation_dict to our command-line interface. Argu-
ments to our program will be added by parser.add_argument calls (not shown, but
similar to the ones our program already has), which will then be fed into code that
actually constructs augmentation_dict.

self.augmentation_dict = {}
if self.cli_args.augmented or self.cli_args.augment_flip:

self.augmentation_dict['flip'] = True
if self.cli_args.augmented or self.cli_args.augment_offset:

self.augmentation_dict['offset'] = 0.1
if self.cli_args.augmented or self.cli_args.augment_scale:

self.augmentation_dict['scale'] = 0.2
if self.cli_args.augmented or self.cli_args.augment_rotate:

self.augmentation_dict['rotate'] = True
if self.cli_args.augmented or self.cli_args.augment_noise:

self.augmentation_dict['noise'] = 25.0

Now that we have those command-line arguments ready, you can either run the fol-
lowing commands or revisit p2_run_everything.ipynb and run cells 8 through 16.
Either way you run it, expect these to take a significant time to finish:

$.venv/bin/python -m p2ch12.prepcache

$.venv/bin/python -m p2ch12.training --epochs 20 \
--balanced sanity-bal

$.venv/bin/python -m p2ch12.training --epochs 10 \
--balanced --augment-flip sanity-bal-flip

$.venv/bin/python -m p2ch12.training --epochs 10 \
--balanced --augment-shift sanity-bal-shift

$.venv/bin/python -m p2ch12.training --epochs 10 \
--balanced --augment-scale sanity-bal-scale

$.venv/bin/python -m p2ch12.training --epochs 10 \
--balanced --augment-rotate sanity-bal-rotate

$.venv/bin/python -m p2ch12.training --epochs 10 \

Listing 12.18 training.py:105, LunaTrainingApp.__init__

These values were
empirically chosen
to have a reasonable
impact, but better
values probably
exist.

You only need to prep the
cache once per chapter.

You might have this run
from earlier in the chapter;
in that case there’s no
need to rerun it!

353Preventing overfitting with data augmentation

--balanced --augment-noise sanity-bal-noise

$.venv/bin/python -m p2ch12.training --epochs 20 \
--balanced --augmented sanity-bal-aug

While that’s running, we can start TensorBoard. Let’s direct it to only show these runs
by changing the logdir parameter like so: ../path/to/tensorboard --logdir

runs/p2ch12.
 Depending on the hardware you have at your disposal, the training might take a

long time. Feel free to skip the flip, shift, and scale training jobs and reduce the
first and last runs to 11 epochs if you need to move things along more quickly. We
chose 20 runs because that helps them stand out from the other runs, but 11 should
work as well.

 If you let everything run to completion, your TensorBoard should have data like
that shown in figure 12.22. We’re going to deselect everything except the validation
data, to reduce clutter. When you’re looking at your data live, you can also change the
smoothing value, which can help clarify the trend lines. Take a quick look at the fig-
ure, and then we’ll go over it in some detail.

tag: correct/all tag: correct/neg tag: correct/pos

tag: loss/all tag: loss/neg tag: loss/pos

tag: pr/f1_score tag: pr/precision tag: pr/recall

tag: correct/all tag: correct/neg correct/postag: c

tag: loss/all tag: loss/neg loss/postag:

g ptag: pr/f1_score g p ptag: pr/precision pr/recalltag:

FuLly Augmented

is Worse than unaugmented...

...Except for how unaugmented

is overfiTting on positive samples

Noise is

worse than

unaugmented

FuLly

Augmented
FuLly

Augmented

Unaugmented

Unaugmented

Individual

Augments

Figure 12.22 Percent correctly classified, loss, F1 score, precision, and recall for the validation set from
networks trained with a variety of augmentation schemes

354 CHAPTER 12 Improving training with metrics and augmentation

The first thing to notice in the upper-left graph (“tag: correct/all”) is that the individ-
ual augmentation types are something of a jumble. Our unaugmented and fully aug-
mented runs are on opposite sides of that jumble. That means when combined, our
augmentation is more than the sum of its parts. Also of interest is that our fully aug-
mented run gets many more wrong answers. While that’s bad generally, if we look at
the right column of images (which focus on the positive candidate samples we actually
care about—the ones that are really nodules), we see that our fully augmented model
is much better at finding the positive candidate samples. The recall for the fully aug-
mented model is great! It’s also much better at not overfitting. As we saw earlier, our
unaugmented model gets worse over time.

 One interesting thing to note is that the noise-augmented model is worse at identi-
fying nodules than the unaugmented model. This makes sense if we remember that
we said noise makes the model’s job harder.

 Another interesting thing to see in the live data (it’s somewhat lost in the jumble
here) is that the rotation-augmented model is nearly as good as the fully augmented
model when it comes to recall, and it has much better precision. Since our F1 score is
precision limited (due to the higher number of negative samples), the rotation-
augmented model also has a better F1 score.

 We’ll stick with the fully augmented model going forward, since our use case
requires high recall. The F1 score will still be used to determine which epoch to save
as the best. In a real-world project, we might want to devote extra time to investigating
whether a different combination of augmentation types and parameter values could
yield better results.

12.7 Conclusion
We spent a lot of time and energy in this chapter reformulating how we think about
our model’s performance. It’s easy to be misled by poor methods of evaluation, and
it’s crucial to have a strong intuitive understanding of the factors that feed into evalu-
ating a model well. Once those fundamentals are internalized, it’s much easier to spot
when we’re being led astray.

 We’ve also learned about how to deal with data sources that aren’t sufficiently pop-
ulated. Being able to synthesize representative training samples is incredibly useful.
Situations where we have too much training data are rare indeed!

 Now that we have a classifier that is performing reasonably, we’ll turn our attention
to automatically finding candidate nodules to classify. Chapter 13 will start there;
then, in chapter 14, we will feed those candidates back into the classifier we developed
here and venture into building one more classifier to tell malignant nodules from
benign ones.

355Exercises

12.8 Exercises
1 The F1 score can be generalized to support values other than 1.

a Read https://en.wikipedia.org/wiki/F1_score, and implement F2 and F0.5
scores.

b Determine which of F1, F2, and F0.5 makes the most sense for this project.
Track that value, and compare and contrast it with the F1 score. 6

2 Implement a WeightedRandomSampler approach to balancing the positive and
negative training samples for LunaDataset with ratio_int set to 0.
a How did you get the required information about the class of each sample?
b Which approach was easier? Which resulted in more readable code?

3 Experiment with different class-balancing schemes.
a What ratio results in the best score after two epochs? After 20?
b What if the ratio is a function of epoch_ndx?

4 Experiment with different data augmentation approaches.
a Can any of the existing approaches be made more aggressive (noise, offset,

and so on)?
b Does the inclusion of noise augmentation help or hinder your training

results?
– Are there other values that change this result?

c Research data augmentation that other projects have used. Are any applica-
ble here?
– Implement “mixup” augmentation for positive nodule candidates. Does it

help?
5 Change the initial normalization from nn.BatchNorm to something custom, and

retrain the model.
a Can you get better results using fixed normalization?
b What normalization offset and scale make sense?
c Do nonlinear normalizations like square roots help?

6 What other kinds of data can TensorBoard display besides those we’ve covered
here?
a Can you have it display information about the weights of your network?
b What about intermediate results from running your model on a particular

sample?
– Does having the backbone of the model wrapped in an instance of

nn.Sequential help or hinder this effort?

6 Yep, that’s a hint it’s not the F1 score!

https://en.wikipedia.org/wiki/F1_score

356 CHAPTER 12 Improving training with metrics and augmentation

12.9 Summary
 A binary label and a binary classification threshold combine to partition the

dataset into four quadrants: true positives, true negatives, false negatives, and
false positives. These four quantities provide the basis for our improved perfor-
mance metrics.

 Recall is the ability of a model to maximize true positives. Selecting every single
item guarantees perfect recall—because all the correct answers are included—
but also exhibits poor precision.

 Precision is the ability of a model to minimize false positives. Selecting nothing
guarantees perfect precision—because no incorrect answers are included—but
also exhibits poor recall.

 The F1 score combines precision and recall into a single metric that describes
model performance. We use the F1 score to determine what impact changes to
training or the model have on our performance.

 Balancing the training set to have an equal number of positive and negative
samples during training can result in the model performing better (defined as
having a positive, increasing F1 score).

 Data augmentation takes existing organic data samples and modifies them such
that the resulting augmented sample is non-trivially different from the original,
but remains representative of samples of the same class. This allows additional
training without overfitting in situations where data is limited.

 Common data augmentation strategies include changes in orientation, mirror-
ing, rescaling, shifting by an offset, and adding noise. Depending on the proj-
ect, other more specific strategies may also be relevant.

357

Using segmentation
 to find suspected nodules

In the last four chapters, we have accomplished a lot. We’ve learned about CT scans
and lung tumors, datasets and data loaders, and metrics and monitoring. We have
also applied many of the things we learned in part 1, and we have a working classi-
fier. We are still operating in a somewhat artificial environment, however, since we
require hand-annotated nodule candidate information to load into our classifier.
We don’t have a good way to create that input automatically. Just feeding the entire
CT into our model—that is, plugging in overlapping 32 × 32 × 32 patches of data—
would result in 31 × 31 × 7 = 6,727 patches per CT, or about 10 times the number of
annotated samples we have. We’d need to overlap the edges; our classifier expects
the nodule candidate to be centered, and even then the inconsistent positioning
would probably present issues.

This chapter covers
 Segmenting data with a pixel-to-pixel model

 Performing segmentation with U-Net

 Understanding mask prediction using Dice loss

 Evaluating a segmentation model’s performance

358 CHAPTER 13 Using segmentation to find suspected nodules

 As we explained in chapter 9, our project uses multiple steps to solve the problem
of locating possible nodules, identifying them, with an indication of their possible
malignancy. This is a common approach among practitioners, while in deep learning
research there is a tendency to demonstrate the ability of individual models to solve
complex problems in an end-to-end fashion. The multistage project design we use in
this book gives us a good excuse to introduce new concepts step by step.

13.1 Adding a second model to our project
In the previous two chapters, we worked on step 4 of our plan shown in figure 13.1:
classification. In this chapter, we’ll go back not just one but two steps. We need to find
a way to tell our classifier where to look. To do this, we are going to take raw CT scans
and find everything that might be a nodule.1 This is the highlighted step 2 in the fig-
ure. To find these possible nodules, we have to flag voxels that look like they might be
part of a nodule, a process known as segmentation. Then, in chapter 14, we will deal
with step 3 and provide the bridge by transforming the segmentation masks from this
image into location annotations.

 By the time we’re finished with this chapter, we’ll have created a new model with
an architecture that can perform per-pixel labeling, or segmentation. The code that

1 We expect to mark quite a few things that are not nodules; thus, we use the classification step to reduce the
number of these.

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

[[[[[[[[[[[[[[[[[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10)):)))))))))

Data Loadingggggggggg

Step 4 (ch. 11+12):

on

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

,

p=0.2

p=0.9

Steppppppppp 3333333333 (((((((((chchhchchchchhcccccc . 14414414444411):::)::)::)))))))

Grouping

[[[[[[[()

candidate

Locations

Step 4 (ch. 11+

ClaSsificatio

.MMHD

.RRAW

CT

DataData

segmentattion

model

candidate

Sample

Figure 13.1 Our end-to-end lung cancer detection project, with a focus on this chapter’s
topic: step 2, segmentation

359Adding a second model to our project

will accomplish this will be very similar to the code from the last chapter, especially if
we focus on the larger structure. All of the changes we’re going to make will be
smaller and targeted. As we see in figure 13.2, we need to make updates to our model
(step 2A in the figure), dataset (2B), and training loop (2C) to account for the new
model’s inputs, outputs, and other requirements. (Don’t worry if you don’t recognize
each component in each of these steps in step 2 on the right side of the diagram. We’ll
go through the details when we get to each step.) Finally, we’ll examine the results we
get when running our new model (step 3 in the figure).

Breaking down figure 13.2 into steps, our plan for this chapter is as follows:

1 Segmentation. First we will learn how segmentation works with a U-Net model,
including what the new model components are and what happens to them as
we go through the segmentation process. This is step 1 in figure 13.2.

2 Update. To implement segmentation, we need to change our existing code base
in three main places, shown in the substeps on the right side of figure 13.2.The
code will be structurally very similar to what we developed for classification, but
will differ in detail:
a Update the model (step 2A). We will integrate a preexisting U-Net into our seg-

mentation model. Our model in chapter 12 output a simple true/false classi-
fication; our model in this chapter will instead output an entire image.

1. Segmentation

UNet

2. Update:

2a. Model

2b. Dataset

2c. Training
3. Results

T/F

2a. Model

2b. Dataset

2c. Training

T/F

Figure 13.2 The new model architecture for segmentation, along with the model, dataset,
and training loop updates we will implement

360 CHAPTER 13 Using segmentation to find suspected nodules

b Change the dataset (step 2B). We need to change our dataset to not only
deliver bits of the CT but also provide masks for the nodules. The classifica-
tion dataset consisted of 3D crops around nodule candidates, but we’ll
need to collect both full CT slices and 2D crops for segmentation training
and validation.

c Adapt the training loop (step 2C). We need to adapt the training loop so we
bring in a new loss to optimize. Because we want to display images of our seg-
mentation results in TensorBoard, we’ll also do things like saving our model
weights to disk.

3 Results. Finally, we’ll see the fruits of our efforts when we look at the quantitative
segmentation results.

13.2 Various types of segmentation
To get started, we need to talk about different flavors of segmentation. For this project,
we will be using semantic segmentation, which is the act of classifying individual pixels
in an image using labels just like those we’ve seen for our classification tasks, for
example, “bear,” “cat,” “dog,” and so on. If done properly, this will result in distinct
chunks or regions that signify things like “all of these pixels are part of a cat.” This takes
the form of a label mask or heatmap that identifies areas of interest. We will have a
simple binary label: true values will correspond to nodule candidates, and false values
mean uninteresting healthy tissue. This partially meets our need to find nodule
candidates that we will later feed into our classification network.

 Before we get into the details, we should briefly discuss other approaches we could
take to finding our nodule candidates. For example, instance segmentation labels indi-
vidual objects of interest with distinct labels. So whereas semantic segmentation would
label a picture of two people shaking hands with two labels (“person” and “back-
ground”), instance segmentation would have three labels (“person1,” “person2,” and
“background”) with a boundary somewhere around the clasped hands. While this
could be useful for us to distinguish “nodule1” from “nodule2,” we will instead use
grouping to identify individual nodules. That approach will work well for us since
nodules are unlikely to touch or overlap.

 Another approach to these kinds of tasks is object detection, which locates an item of
interest in an image and puts a bounding box around the item. While both instance
segmentation and object detection could be great for our uses, their implementations
are somewhat complex, and we don’t feel they are the best things for you to learn
next. Also, training object-detection models typically requires much more computa-
tional resources than our approach requires. If you’re feeling up to the challenge, the
YOLOv3 paper is a more entertaining read than most deep learning research papers.2

For us, though, semantic segmentation it is.

2 Joseph Redmon and Ali Farhadi, “YOLOv3: An Incremental Improvement,” https://pjreddie.com/media/
files/papers/YOLOv3.pdf. Perhaps check it out once you’ve finished the book.

https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf

361Semantic segmentation: Per-pixel classification

NOTE As we go through the code examples in this chapter, we’re going to
rely on you checking the code from GitHub for much of the larger context.
We’ll be omitting code that’s uninteresting or similar to what’s come before
in earlier chapters, so that we can focus on the crux of the issue at hand.

13.3 Semantic segmentation: Per-pixel classification
Often, segmentation is used to answer questions of the form “Where is a cat in this pic-
ture?” Obviously, most pictures of a cat, like figure 13.3, have a lot of non-cat in them;
there’s the table or wall in the background, the keyboard the cat is sitting on, that kind
of thing. Being able to say “This pixel is part of the cat, and this other pixel is part of the
wall” requires fundamentally different model output and a different internal structure
from the classification models we’ve worked with thus far. Classification can tell us
whether a cat is present, while segmentation will tell us where we can find it.

If your project requires differentiating between a near cat and a far cat, or a cat on the
left versus a cat on the right, then segmentation is probably the right approach. The
image-consuming classification models that we’ve implemented so far can be thought
of as funnels or magnifying glasses that take a large bunch of pixels and focus them
down into a single “point” (or, more accurately, a single set of class predictions), as
shown in figure 13.4. Classification models provide answers of the form “Yes, this huge
pile of pixels has a cat in it, somewhere,” or “No, no cats here.” This is great when you
don’t care where the cat is, just that there is (or isn’t) one in the image.

 Repeated layers of convolution and downsampling mean the model starts by con-
suming raw pixels to produce specific, detailed detectors for things like texture and
color, and then builds up higher-level conceptual feature detectors for parts like eyes

CAT: Yes Cat: here

ClaSsification vs. segmentation

Figure 13.3 Classification results in one or more binary flags, while segmentation produces
a mask or heatmap.

362 CHAPTER 13 Using segmentation to find suspected nodules

and ears and mouth and nose3 that finally result in “cat” versus “dog.” Due to the increas-
ing receptive field of the convolutions after each downsampling layer, those higher-level
detectors can use information from an increasingly large area of the input image.

 Unfortunately, since segmentation needs to produce an image-like output, ending
up at a single classification-like list of binary-ish flags won’t work. As we recall from sec-
tion 11.4, downsampling is key to increasing the receptive fields of the convolutional
layers, and is what helps reduce the array of pixels that make up an image to a single
list of classes. Notice figure 13.5, which repeats figure 11.6.

 In the figure, our inputs flow from the left to right in the top row and are continued
in the bottom row. In order to work out the receptive field—the area influencing the
single pixel at bottom right—we can go backward. The max-pool operation has 2 × 2
inputs producing each final output pixel. The 3 × 3 conv in the middle of the bottom
row looks at one adjacent pixel (including diagonally) in each direction, so the total
receptive field of the convolutions that result in the 2 x 2 output is 4 x 4 (with the right
“x” characters). The 3 × 3 convolution in the top row then adds an additional pixel of
context in each direction, so the receptive field of the single output pixel at bottom right
is a 6 × 6 field in the input at top left. With the downsampling from the max pool, the
receptive field of the next block of convolutions will have double the width, and each
additional downsampling will double it again, while shrinking the size of the output.

 We’ll need a different model architecture if we want our output to be the same size
as our input. One simple model to use for segmentation would have repeated convo-
lutional layers without any downsampling. Given appropriate padding, that would
result in output the same size as the input (good), but a very limited receptive field

3 … “head, shoulders, knees, and toes, knees and toes,” as my (Eli’s) toddlers would sing.

APple: no

Bear: no

cat: yes

dog: no

eGg: no

flag: no

...

zebra: no

Pixels

Textures

Shapes

ClaSses

no Pple nAPp

no ear: nBe

yescat: yc

noog: nogdodo

no Gg: nGgeGg

no g: nlagfl

...

noa: brazeb

Figure 13.4 The magnifying glass model structure for classification

363Semantic segmentation: Per-pixel classification

(bad) due to the limited reach based on how much overlap multiple layers of small
convolutions will have. The classification model uses each downsampling layer to dou-
ble the effective reach of the following convolutions; and without that increase in
effective field size, each segmented pixel will only be able to consider a very local
neighborhood.

NOTE Assuming 3 × 3 convolutions, the receptive field size for a simple
model of stacked convolutions is 2 * L + 1, with L being the number of convo-
lutional layers.

Four layers of 3 × 3 convolutions will have a receptive field of 9 × 9 per output pixel. By
inserting a 2 × 2 max pool between the second and third convolutions, and another at
the end, we increase the receptive field to …

NOTE See if you can figure out the math yourself; when you’re done, check
back here.

... 16 × 16. The final series of conv-conv-pool has a receptive field of 6 × 6, but that
happens after the first max pool, which makes the final effective receptive field 12 × 12
in the original input resolution. The first two conv layers add a total border of 2 pixels
around the 12 × 12, for a total of 16 × 16.

 So the question remains: how can we improve the receptive field of an output pixel
while maintaining a 1:1 ratio of input pixels to output pixels? One common answer is

6 6 Input

3 3 Convx

3 3 Convx

2 2

Output

x
2 2

Max POol

x

4x4 Output

4 4 Input
(same as output)

x

3 3 Convx

t

22

PMax

x22

1x1 Output

I
asas

nv

3 3 Convx33

2 2

Output

x22
Innput
as oas ooutput)output)

x

Figure 13.5 The convolutional architecture of a LunaModel block, consisting of two 3 × 3
convolutions followed by a max pool. The final pixel has a 6 × 6 receptive field.

364 CHAPTER 13 Using segmentation to find suspected nodules

to use a technique called upsampling, which takes an image of a given resolution and
produces an image of a higher resolution. Upsampling at its simplest just means
replacing each pixel with an N × N block of pixels, each with the same value as the
original input pixel. The possibilities only get more complex from there, with options
like linear interpolation and learned deconvolution.

13.3.1 The U-Net architecture

Before we end up diving down a rabbit hole of possible upsampling algorithms, let’s
get back to our goal for the chapter. Per figure 13.6, step 1 is to get familiar with a
foundational segmentation algorithm called U-Net.

 The U-Net architecture is a design for a neural network that can produce pixel-
wise output and that was invented for segmentation. As you can see from the highlight
in figure 13.6, a diagram of the U-Net architecture looks a bit like the letter U, which
explains the origins of the name. We also immediately see that it is quite a bit more
complicated than the mostly sequential structure of the classifiers we are familiar with.
We’ll see a more detailed version of the U-Net architecture shortly, in figure 13.7, and
learn exactly what each of those components is doing. Once we understand the model
architecture, we can work on training one to solve our segmentation task.

The U-Net architecture shown in figure 13.7 was an early breakthrough for image seg-
mentation. Let’s take a look and then walk through the architecture.

 In this diagram, the boxes represent intermediate results and the arrows represent
operations between them. The U-shape of the architecture comes from the multiple

1. Segmentation

UNet

2. Update:

2a. Model

2b. Dataset

2c. Training
3. Results

T/F

1. Segmentation

UNetUNetUNet

2. Update:

2a Model2a Model

t

g
3. RRRRRRRRRRRRRRRRRRRRRRRRRRRResults

2a. Model

2b. Dataset

2c. Training

T/F

Figure 13.6 The new model architecture for segmentation, that we will be working with

365Semantic segmentation: Per-pixel classification

resolutions at which the network operates. In the top row is the full resolution (512 ×
512 for us), the row below has half that, and so on. The data flows from top left to bot-
tom center through a series of convolutions and downscaling, as we saw in the classifi-
ers and looked at in detail in chapter 8. Then we go up again, using upscaling
convolutions to get back to the full resolution. Unlike the original U-Net, we will be
padding things so we don’t lose pixels off the edges, so our resolution is the same on
the left and on the right.

 Earlier network designs already had this U-shape, which people attempted to use
to address the limited receptive field size of fully convolutional networks. To address
this limited field size, they used a design that copied, inverted, and appended the
focusing portions of an image-classification network to create a symmetrical model
that goes from fine detail to wide receptive field and back to fine detail.

 Those earlier network designs had problems converging, however, most likely due
to the loss of spatial information during downsampling. Once information reaches a
large number of very downscaled images, the exact location of object boundaries gets

UNET Architecture

skip coNnections

ClaSsification

magifying

glaSs

could be fed into linear layer

upsampling

skip coNnections

ication

fyingfying

aSs

Figure 13.7 From the U-Net paper, with annotations. Source: The base of this figure is courtesy Olaf Ronneberger
et al., from the paper “U-Net: Convolutional Networks for Biomedical Image Segmentation,” which can be found at
https://arxiv.org/abs/1505.04597 and https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.

https://arxiv.org/abs/1505.04597
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net

366 CHAPTER 13 Using segmentation to find suspected nodules

harder to encode and therefore reconstruct. To address this, the U-Net authors added
the skip connections we see at the center of the figure. We first touched on skip con-
nections in chapter 8, although they are employed differently here than in the ResNet
architecture. In U-Net, skip connections short-circuit inputs along the downsampling
path into the corresponding layers in the upsampling path. These layers receive as input
both the upsampled results of the wide receptive field layers from lower in the U as well
as the output of the earlier fine detail layers via the “copy and crop” bridge connections.
This is the key innovation behind U-Net (which, interestingly, predated ResNet).

 All of this means those final detail layers are operating with the best of both worlds.
They’ve got both information about the larger context surrounding the immediate
area and fine detail data from the first set of full-resolution layers.

 The “conv 1x1” layer at far right, in the head of the network, changes the number
of channels from 64 to 2 (the original paper had 2 output channels; we have 1 in our
case). This is somewhat akin to the fully connected layer we used in our classification
network, but per-pixel, channel-wise: it’s a way to convert from the number of filters
used in the last upsampling step to the number of output classes needed.

13.4 Updating the model for segmentation
It’s time to move through step 2A in figure 13.8. We’ve had enough theory about
segmentation and history about U-Net; now we want to update our code, starting with
the model. Instead of just outputting a binary classification that gives us a single output
of true or false, we integrate a U-Net to get to a model that’s capable of outputting a

1. Segmentation

UNet

2. Update:

2a. Model

2b. Dataset

2c. Training
3. Results

T/F

1. Segmentation

UNetUNetUNet

2. Update:

2a Model2a Model

t

g
3. Results

2a. Model

2b. Dataset

2c. Training

T/F

Figure 13.8 The outline of this chapter, with a focus on the changes needed for our
segmentation model

367Updating the model for segmentation

probability for every pixel: that is, performing segmentation. Rather than imple-
menting a custom U-Net segmentation model from scratch, we’re going to appropriate
an existing implementation from an open source repository on GitHub.

 The U-Net implementation at https://github.com/jvanvugt/pytorch-unet seems
to meet our needs well.4 It’s MIT licensed (copyright 2018 Joris), it’s contained in a
single file, and it has a number of parameter options for us to tweak. The file is
included in our code repository at util/unet.py, along with a link to the original repos-
itory and the full text of the license used.

NOTE While it’s less of an issue for personal projects, it’s important to be
aware of the license terms attached to open source software you use for a proj-
ect. The MIT license is one of the most permissive open source licenses, and
it still places requirements on users of MIT licensed code! Also be aware that
authors retain copyright even if they publish their work in a public forum
(yes, even on GitHub), and if they do not include a license, that does not
mean the work is in the public domain. Quite the opposite! It means you
don’t have any license to use the code, any more than you’d have the right to
wholesale copy a book you borrowed from the library.

We suggest taking some time to inspect the code and, based on the knowledge you have
built up until this point, identify the building blocks of the architecture as they are
reflected in the code. Can you spot skip connections? A particularly worthy exercise for
you is to draw a diagram that shows how the model is laid out, just by looking at the code.

 Now that we have found a U-Net implementation that fits the bill, we need to
adapt it so that it works well for our needs. In general, it’s a good idea to keep an eye
out for situations where we can use something off the shelf. It’s important to have a
sense of what models exist, how they’re implemented and trained, and whether any
parts can be scavenged and applied to the project we’re working on at any given
moment. While that broader knowledge is something that comes with time and expe-
rience, it’s a good idea to start building that toolbox now.

13.4.1 Adapting an off-the-shelf model to our project

We will now make some changes to the classic U-Net, justifying them along the way. A
useful exercise for you will be to compare results between the vanilla model and the
one after the tweaks, preferably removing one at a time to see the effect of each
change (this is also called an ablation study in research circles).

 First, we’re going to pass the input through batch normalization. This way, we
won’t have to normalize the data ourselves in the dataset; and, more importantly, we
will get normalization statistics (read mean and standard deviation) estimated over
individual batches. This means when a batch is dull for some reason—that is, when
there is nothing to see in all the CT crops fed into the network—it will be scaled more

4 The implementation included here differs from the official paper by using average pooling instead of max
pooling to downsample. The most recent version on GitHub has changed to use max pool.

https://github.com/jvanvugt/pytorch-unet

368 CHAPTER 13 Using segmentation to find suspected nodules

strongly. The fact that samples in batches are picked randomly at every epoch will
minimize the chances of a dull sample ending up in an all-dull batch, and hence those
dull samples getting overemphasized.

 Second, since the output values are unconstrained, we are going to pass the output
through an nn.Sigmoid layer to restrict the output to the range [0, 1]. Third, we will
reduce the total depth and number of filters we allow our model to use. While this is
jumping ahead of ourselves a bit, the capacity of the model using the standard param-
eters far outstrips our dataset size. This means we’re unlikely to find a pretrained model
that matches our exact needs. Finally, although this is not a modification, it’s important
to note that our output is a single channel, with each pixel of output representing the
model’s estimate of the probability that the pixel in question is part of a nodule.

 This wrapping of U-Net can be done rather simply by implementing a model with
three attributes: one each for the two features we want to add, and one for the U-Net
itself—which we can treat just like any prebuilt module here. We will also pass any key-
word arguments we receive into the U-Net constructor.

class UNetWrapper(nn.Module):
def __init__(self, **kwargs):

super().__init__()

self.input_batchnorm = nn.BatchNorm2d(kwargs['in_channels'])
self.unet = UNet(**kwargs)
self.final = nn.Sigmoid()

self._init_weights()

The forward method is a similarly straightforward sequence. We could use an
instance of nn.Sequential as we saw in chapter 8, but we’ll be explicit here for both
clarity of code and clarity of stack traces.5

def forward(self, input_batch):
bn_output = self.input_batchnorm(input_batch)
un_output = self.unet(bn_output)
fn_output = self.final(un_output)
return fn_output

Note that we’re using nn.BatchNorm2d here. This is because U-Net is fundamentally a
two-dimensional segmentation model. We could adapt the implementation to use 3D

Listing 13.1 model.py:17, class UNetWrapper

Listing 13.2 model.py:50, UNetWrapper.forward

5 In the unlikely event our code throws any exceptions—which it clearly won’t, will it?

kwarg is a dictionary containing all keyword
arguments passed to the constructor. BatchNorm2d wants us to

specify the number of input
channels, which we take from

the keyword argument.
The U-Net:

 a small thing
to include

here, but it’s
really doing

all the work.

Just as for the classifier in chapter 11, we use
our custom weight initialization. The function is
copied over, so we will not show the code again.

369Updating the dataset for segmentation

convolutions, in order to use information across slices. The memory usage of a straight-
forward implementation would be considerably greater: that is, we would have to chop
up the CT scan. Also, the fact that pixel spacing in the Z direction is much larger than
in-plane makes a nodule less likely to be present across many slices. These consider-
ations make a fully 3D approach less attractive for our purposes. Instead, we’ll adapt
our 3D data to be segmented a slice at a time, providing adjacent slices for context (for
example, detecting that a bright lump is indeed a blood vessel gets much easier along-
side neighboring slices). Since we’re sticking with presenting the data in 2D, we’ll use
channels to represent the adjacent slices. Our treatment of the third dimension is sim-
ilar to how we applied a fully connected model to images in chapter 7: the model will
have to relearn the adjacency relationships we’re throwing away along the axial direc-
tion, but that’s not difficult for the model to accomplish, especially with the limited
number of slices given for context owing to the small size of the target structures.

13.5 Updating the dataset for segmentation
Our source data for this chapter remains unchanged: we’re consuming CT scans and
annotation data about them. But our model expects input and will produce output of
a different form than we had previously. As we hint at in step 2B of figure 13.9, our
previous dataset produced 3D data, but we need to produce 2D data now.

 The original U-Net implementation did not use padded convolutions, which
means while the output segmentation map was smaller than the input, every pixel of
that output had a fully populated receptive field. None of the input pixels that fed

1. Segmentation

UNet

2. Update:

2a. Model

2b. Dataset

2c. Training
3. Results

T/F

1. Segmentation

UNetUNetUNet

2. Update:

2a Model2a Model

t

gggggggggg
3. Results

2a. Model

2b. Dataset

222222222222222ccccccc. TTTTTTTTTTTTTTTTTTTTTTTTTTrrrrrrrrrrrrrrrrrrrrrrrrrrraaaaaaaaaaaaaaaaaaaaaaaaiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnnggggggggggggggggggggggg

T/F

Figure 13.9 The outline of this chapter, with a focus on the changes needed for our
segmentation dataset

370 CHAPTER 13 Using segmentation to find suspected nodules

into the determination of that output pixel were padded, fabricated, or otherwise
incomplete. Thus the output of the original U-Net will tile perfectly, so it can be used
with images of any size (except at the edges of the input image, where some context
will be missing by definition).

 There are two problems with us taking the same pixel-perfect approach for our
problem. The first is related to the interaction between convolution and downsam-
pling, and the second is related to the nature of our data being three-dimensional.

13.5.1 U-Net has very specific input size requirements
The first issue is that the sizes of the input and output patches for U-Net are very specific.
In order to have the two-pixel loss per convolution line up evenly before and after
downsampling (especially when considering the further convolutional shrinkage at that
lower resolution), only certain input sizes will work. The U-Net paper used 572 × 572
image patches, which resulted in 388 × 388 output maps. The input images are bigger
than our 512 × 512 CT slices, and the output is quite a bit smaller! That would mean any
nodules near the edge of the CT scan slice wouldn’t be segmented at all. Although this
setup works well when dealing with very large images, it’s not ideal for our use case.

 We will address this issue by setting the padding flag of the U-Net constructor to
True. This will mean we can use input images of any size, and we will get output of the
same size. We may lose some fidelity near the edges of the image, since the receptive
field of pixels located there will include regions that have been artificially padded, but
that’s a compromise we decide to live with.

13.5.2 U-Net trade-offs for 3D vs. 2D data
The second issue is that our 3D data doesn’t line up exactly with U-Net’s 2D expected
input. Simply taking our 512 × 512 × 128 image and feeding it into a converted-to-3D
U-Net class won’t work, because we’ll exhaust our GPU memory. Each image is 29 by 29

by 27, with 22 bytes per voxel. The first layer of U-Net is 64 channels, or 26. That’s an expo-
nent of 9 + 9 + 7 + 2 + 6 = 33, or 8 GB just for the first convolutional layer. There are two con-
volutional layers (16 GB); and then each downsampling halves the resolution but
doubles the channels, which is another 2 GB for each layer after the first downsample
(remember, halving the resolution results in one-eighth the data, since we’re working
with 3D data). So we’ve hit 20 GB before we even get to the second downsample, much
less anything on the upsample side of the model or anything dealing with autograd.

NOTE There are a number of clever and innovative ways to get around these
problems, and we in no way suggest that this is the only approach that will
ever work.6 We do feel that this approach is one of the simplest that gets the
job done to the level we need for our project in this book. We’d rather keep
things simple so that we can focus on the fundamental concepts; the clever
stuff can come later, once you’ve mastered the basics.

6 For example, Stanislav Nikolov et al., “Deep Learning to Achieve Clinically Applicable Segmentation of Head
and Neck Anatomy for Radiotherapy,” https://arxiv.org/pdf/1809.04430.pdf.

https://arxiv.org/pdf/1809.04430.pdf

371Updating the dataset for segmentation

As anticipated, instead of trying to do things in 3D, we’re going to treat each slice as a
2D segmentation problem and cheat our way around the issue of context in the third
dimension by providing neighboring slices as separate channels. Instead of the tradi-
tional “red,” “green,” and “blue” channels that we’re familiar with from photographic
images, our main channels will be “two slices above,” “one slice above,” “the slice we’re
actually segmenting,” “one slice below,” and so on.

 This approach isn’t without trade-offs, however. We lose the direct spatial relation-
ship between slices when represented as channels, as all channels will be linearly com-
bined by the convolution kernels with no notion of them being one or two slices away,
above or below. We also lose the wider receptive field in the depth dimension that
would come from a true 3D segmentation with downsampling. Since CT slices are
often thicker than the resolution in rows and columns, we do get a somewhat wider
view than it seems at first, and this should be enough, considering that nodules typi-
cally span a limited number of slices.

 Another aspect to consider, that is relevant for both the current and fully 3D
approaches, is that we are now ignoring the exact slice thickness. This is something
our model will eventually have to learn to be robust against, by being presented with
data with different slice spacings.

 In general, there isn’t an easy flowchart or rule of thumb that can give canned
answers to questions about which trade-offs to make, or whether a given set of com-
promises compromise too much. Careful experimentation is key, however, and system-
atically testing hypothesis after hypothesis can help narrow down which changes and
approaches are working well for the problem at hand. Although it’s tempting to make
a flurry of changes while waiting for the last set of results to compute, resist that impulse.

 That’s important enough to repeat: do not test multiple modifications at the same time.
There is far too high a chance that one of the changes will interact poorly with the
other, and you’ll be left without solid evidence that either one is worth investigating
further. With that said, let’s start building out our segmentation dataset.

13.5.3 Building the ground truth data
The first thing we need to address is that we have a mismatch between our human-
labeled training data and the actual output we want to get from our model. We have
annotated points, but we want a per-voxel mask that indicates whether any given voxel
is part of a nodule. We’ll have to build that mask ourselves from the data we have and
then do some manual checking to make sure the routine that builds the mask is per-
forming well.

 Validating these manually constructed heuristics at scale can be difficult. We aren’t
going to attempt to do anything comprehensive when it comes to making sure each
and every nodule is properly handled by our heuristics. If we had more resources,
approaches like “collaborate with (or pay) someone to create and/or verify everything
by hand” might be an option, but since this isn’t a well-funded endeavor, we’ll rely on
checking a handful of samples and using a very simple “does the output look reason-
able?” approach.

372 CHAPTER 13 Using segmentation to find suspected nodules

 To that end, we’ll design our approaches and our APIs to make it easy to investi-
gate the intermediate steps that our algorithms are going through. While this might
result in slightly clunky function calls returning huge tuples of intermediate values,
being able to easily grab results and plot them in a notebook makes the clunk worth it.

BOUNDING BOXES

We are going to begin by converting the nodule locations that we have into bounding
boxes that cover the entire nodule (note that we’ll only do this for actual nodules). If
we assume that the nodule locations are roughly centered in the mass, we can trace
outward from that point in all three dimensions until we hit low-density voxels, indi-
cating that we’ve reached normal lung tissue (which is mostly filled with air). Let’s fol-
low this algorithm in figure 13.10.

We start the origin of our search (O in the figure) at the voxel at the annotated center
of our nodule. We then examine the density of the voxels adjacent to our origin on
the column axis, marked with a question mark (?). Since both of the examined voxels
contain dense tissue, shown here in lighter colors, we continue our search. After
incrementing our column search distance to 2, we find that the left voxel has a density
below our threshold, and so we stop our search at 2.

 Next, we perform the same search in the row direction. Again, we start at the ori-
gin, and this time we search up and down. After our search distance becomes 3, we
encounter a low-density voxel in both the upper and lower search locations. We only
need one to stop our search!

Col Step 1 Col Step 2 Col Finished

Row FinishedRow Start Row Finishedw Start
Final B.Box

col_radius=1 Col_radius=2 col_radius=2

Row_radius=1 row_radius=3 Slice(-2,+2),

slice(-3,+3)

Figure 13.10 An algorithm for finding a bounding box around a lung nodule

373Updating the dataset for segmentation

 We’ll skip showing the search in the third dimension. Our final bounding box is
five voxels wide and seven voxels tall. Here’s what that looks like in code, for the index
direction.

center_irc = xyz2irc(
candidateInfo_tup.center_xyz,
self.origin_xyz,
self.vxSize_xyz,
self.direction_a,

)
ci = int(center_irc.index)
cr = int(center_irc.row)
cc = int(center_irc.col)

index_radius = 2
try:

while self.hu_a[ci + index_radius, cr, cc] > threshold_hu and \
self.hu_a[ci - index_radius, cr, cc] > threshold_hu:
index_radius += 1

except IndexError:
index_radius -= 1

We first grab the center data and then do the search in a while loop. As a slight com-
plication, our search might fall off the boundary of our tensor. We are not terribly
concerned about that case and are lazy, so we just catch the index exception.7

 Note that we stop incrementing the very approximate radius values after the density
drops below threshold, so our bounding box should contain a one-voxel border of low-
density tissue (at least on one side; since nodules can be adjacent to regions like the lung
wall, we have to stop searching in both directions when we hit air on either side). Since
we check both center_index + index_radius and center_index - index_radius
against that threshold, that one-voxel boundary will only exist on the edge closest to our
nodule location. This is why we need those locations to be relatively centered. Since
some nodules are adjacent to the boundary between the lung and denser tissue like mus-
cle or bone, we can’t trace each direction independently, as some edges would end up
incredibly far away from the actual nodule.

 We then repeat the same radius-expansion process with row_radius and col
_radius (this code is omitted for brevity). Once that’s done, we can set a box in our
bounding-box mask array to True (we’ll see the definition of boundingBox_ary in just
a moment; it’s not surprising).

 OK, let’s wrap all this up in a function. We loop over all nodules. For each nodule,
we perform the search shown earlier (which we elide from listing 13.4). Then, in a
Boolean tensor boundingBox_a, we mark the bounding box we found.

Listing 13.3 dsets.py:131, Ct.buildAnnotationMask

7 The bug here is that the wraparound at 0 will go undetected. It does not matter much to us. As an exercise,
implement proper bounds checking.

candidateInfo_tup here is the same as
we’ve seen previously: as returned by
getCandidateInfoList.

Gets the center voxel
indices, our starting point

The search
described
previously

The safety net for indexing
beyond the size of the tensor

374 CHAPTER 13 Using segmentation to find suspected nodules

 After the loop, we do a bit of cleanup by taking the intersection between the
bounding-box mask and the tissue that’s denser than our threshold of –700 HU (or 0.3
g/cc). That’s going to clip off the corners of our boxes (at least, the ones not embed-
ded in the lung wall), and make it conform to the contours of the nodule a bit better.

def buildAnnotationMask(self, positiveInfo_list, threshold_hu = -700):
boundingBox_a = np.zeros_like(self.hu_a, dtype=np.bool)

for candidateInfo_tup in positiveInfo_list:
... line 169
boundingBox_a[

ci - index_radius: ci + index_radius + 1,
cr - row_radius: cr + row_radius + 1,
cc - col_radius: cc + col_radius + 1] = True

mask_a = boundingBox_a & (self.hu_a > threshold_hu)

return mask_a

Let’s take a look at figure 13.11 to see what these masks look like in practice. Addi-
tional images in full color can be found in the p2ch13_explore_data.ipynb notebook.

 The bottom-right nodule mask demonstrates a limitation of our rectangular
bounding-box approach by including a portion of the lung wall. It’s certainly something

Listing 13.4 dsets.py:127, Ct.buildAnnotationMask

Starts with an all-False tensor
of the same size as the CT

Loops over the nodules. As a reminder
that we are only looking at nodules,
we call the variable positiveInfo_list.

After we get the nodule
radius (the search itself
is left out), we mark
the bounding box.

Restricts
the mask to
voxels above
our density
threshold

positive mask
0

100

200

300

400

500

0 100 200 300 400 500

Figure 13.11 Three nodules from
ct.positive_mask, highlighted
in white

375Updating the dataset for segmentation

we could fix, but since we’re not yet convinced that’s the best use of our time and attention,
we’ll let it remain as is for now.8 Next, we’ll go about adding this mask to our CT class.

CALLING MASK CREATION DURING CT INITIALIZATION

Now that we can take a list of nodule information tuples and turn them into at CT-
shaped binary “Is this a nodule?” mask, let’s embed those masks into our CT object.
First, we’ll filter our candidates into a list containing only nodules, and then we’ll use
that list to build the annotation mask. Finally, we’ll collect the set of unique array
indexes that have at least one voxel of the nodule mask. We’ll use this to shape the
data we use for validation.

def __init__(self, series_uid):
... line 116
candidateInfo_list = getCandidateInfoDict()[self.series_uid]

self.positiveInfo_list = [
candidate_tup
for candidate_tup in candidateInfo_list
if candidate_tup.isNodule_bool

]
self.positive_mask = self.buildAnnotationMask(self.positiveInfo_list)
self.positive_indexes = (self.positive_mask.sum(axis=(1,2))

.nonzero()[0].tolist())

Keen eyes might have noticed the getCandidateInfoDict function. The definition isn’t
surprising; it’s just a reformulation of the same information as in the getCandidate-
InfoList function, but pregrouped by series_uid.

@functools.lru_cache(1)
def getCandidateInfoDict(requireOnDisk_bool=True):

candidateInfo_list = getCandidateInfoList(requireOnDisk_bool)
candidateInfo_dict = {}

for candidateInfo_tup in candidateInfo_list:
candidateInfo_dict.setdefault(candidateInfo_tup.series_uid,

[]).append(candidateInfo_tup)

return candidateInfo_dict

8 Fixing this issue would not do a great deal to teach you about PyTorch.

Listing 13.5 dsets.py:99, Ct.__init__

Listing 13.6 dsets.py:87

Filters for
nodules

Gives us a 1D vector (over the
slices) with the number of voxels
flagged in the mask in each slice

Takes indices of the mask slices that have a
nonzero count, which we make into a list

This can be useful to
keep Ct init from being a
performance bottleneck.

Takes the list of candidates for the series UID
from the dict, defaulting to a fresh, empty list

if we cannot find it. Then appends the
present candidateInfo_tup to it.

376 CHAPTER 13 Using segmentation to find suspected nodules

CACHING CHUNKS OF THE MASK IN ADDITION TO THE CT
In earlier chapters, we cached chunks of CT centered around nodule candidates,
since we didn’t want to have to read and parse all of a CT’s data every time we wanted
a small chunk of the CT. We’ll want to do the same thing with our new positive
_mask, so we need to also return it from our Ct.getRawCandidate function. This
works out to an additional line of code and an edit to the return statement.

def getRawCandidate(self, center_xyz, width_irc):
center_irc = xyz2irc(center_xyz, self.origin_xyz, self.vxSize_xyz,

self.direction_a)

slice_list = []
... line 203
ct_chunk = self.hu_a[tuple(slice_list)]
pos_chunk = self.positive_mask[tuple(slice_list)]

return ct_chunk, pos_chunk, center_irc

This will, in turn, be cached to disk by the getCtRawCandidate function, which opens
the CT, gets the specified raw candidate including the nodule mask, and clips the CT
values before returning the CT chunk, mask, and center information.

@raw_cache.memoize(typed=True)
def getCtRawCandidate(series_uid, center_xyz, width_irc):

ct = getCt(series_uid)
ct_chunk, pos_chunk, center_irc = ct.getRawCandidate(center_xyz,

width_irc)
ct_chunk.clip(-1000, 1000, ct_chunk)
return ct_chunk, pos_chunk, center_irc

The prepcache script precomputes and saves all these values for us, helping keep
training quick.

CLEANING UP OUR ANNOTATION DATA

Another thing we’re going to take care of in this chapter is doing some better screen-
ing on our annotation data. It turns out that several of the candidates listed in candi-
dates.csv are present multiple times. To make it even more interesting, those entries
are not exact duplicates of one another. Instead, it seems that the original human
annotations weren’t sufficiently cleaned before being entered in the file. They might
be annotations on the same nodule on different slices, which might even have been
beneficial for our classifier.

 We’ll do a bit of a hand wave here and provide a cleaned up annotation.csv file. In
order to fully walk through the provenance of this cleaned file, you’ll need to know that
the LUNA dataset is derived from another dataset called the Lung Image Database

Listing 13.7 dsets.py:178, Ct.getRawCandidate

Listing 13.8 dsets.py:212

Newly added

New value returned here

377Updating the dataset for segmentation

Consortium image collection (LIDC-IDRI)9 and includes detailed annotation
information from multiple radiologists. We’ve already done the legwork to get the
original LIDC annotations, pull out the nodules, dedupe them, and save them to the
file /data/part2/luna/annotations_with_malignancy.csv.

 With that file, we can update our getCandidateInfoList function to pull our nod-
ules from our new annotations file. First, we loop over the new annotations for the
actual nodules. Using the CSV reader,10 we need to convert the data to the appropri-
ate types before we stick them into our CandidateInfoTuple data structure.

candidateInfo_list = []
with open('data/part2/luna/annotations_with_malignancy.csv', "r") as f:

for row in list(csv.reader(f))[1:]:
series_uid = row[0]
annotationCenter_xyz = tuple([float(x) for x in row[1:4]])
annotationDiameter_mm = float(row[4])
isMal_bool = {'False': False, 'True': True}[row[5]]

candidateInfo_list.append(
CandidateInfoTuple(

True,
True,
isMal_bool,
annotationDiameter_mm,
series_uid,
annotationCenter_xyz,

)
)

Similarly, we loop over candidates from candidates.csv as before, but this time we only
use the non-nodules. As these are not nodules, the nodule-specific information will
just be filled with False and 0.

with open('data/part2/luna/candidates.csv', "r") as f:
for row in list(csv.reader(f))[1:]:

series_uid = row[0]
... line 72
if not isNodule_bool:

candidateInfo_list.append(
CandidateInfoTuple(

9 Samuel G. Armato 3rd et al., 2011, “The Lung Image Database Consortium (LIDC) and Image Database
Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans,” Medical Physics
38, no. 2 (2011): 915-31, https://pubmed.ncbi.nlm.nih.gov/21452728/. See also Bruce Vendt, LIDC-IDRI,
Cancer Imaging Archive, http://mng.bz/mBO4.

10 If you do this a lot, the pandas library that just released 1.0 in 2020 is a great tool to make this faster. We stick
with the CSV reader included in the standard Python distribution here.

Listing 13.9 dsets.py:43, def getCandidateInfoList

Listing 13.10 dsets.py:62, def getCandidateInfoList

For each line in
the annotations
file that
represents one
nodule, …

… we add a record to our list.

isNodule_bool

hasAnnotation_bool

For each line in the
candidates file …

… but only the non-nodules (we
have the others from earlier) …

… we add a candidate record.

https://pubmed.ncbi.nlm.nih.gov/21452728/
http://mng.bz/mBO4

378 CHAPTER 13 Using segmentation to find suspected nodules

False,
False,
False,
0.0,
series_uid,
candidateCenter_xyz,

)
)

Other than the addition of the hasAnnotation_bool and isMal_bool flags (which we
won’t use in this chapter), the new annotations will slot in and be usable just like the
old ones.

NOTE You might be wondering why we haven’t discussed the LIDC before
now. As it turns out, the LIDC has a large amount of tooling that’s already
been constructed around the underlying dataset, which is specific to the
LIDC. You could even get ready-made masks from PyLIDC. That tooling pres-
ents a somewhat unrealistic picture of what sort of support a given dataset
might have, since the LIDC is anomalously well supported. What we’ve done
with the LUNA data is much more typical and provides for better learning,
since we’re spending our time manipulating the raw data rather than learn-
ing an API that someone else cooked up.

13.5.4 Implementing Luna2dSegmentationDataset

Compared to previous chapters, we are going to take a different approach to the train-
ing and validation split in this chapter. We will have two classes: one acting as a general
base class suitable for validation data, and one subclassing the base for the training
set, with randomization and a cropped sample.

 While this approach is somewhat more complicated in some ways (the classes
aren’t perfectly encapsulated, for example), it actually simplifies the logic of selecting
randomized training samples and the like. It also becomes extremely clear which code
paths impact both training and validation, and which are isolated to training only.
Without this, we found that some of the logic can become nested or intertwined in
ways that make it hard to follow. This is important because our training data will look
significantly different from our validation data!

NOTE Other class arrangements are also viable; we considered having two
entirely separate Dataset subclasses, for example. Standard software engi-
neering design principles apply, so try to keep your structure relatively sim-
ple, and try to not copy and paste code, but don’t invent complicated
frameworks to prevent having to duplicate three lines of code.

The data that we produce will be two-dimensional CT slices with multiple channels.
The extra channels will hold adjacent slices of CT. Recall figure 4.2, shown here as
figure 13.12; we can see that each slice of CT scan can be thought of as a 2D grayscale
image.

isNodule_bool

hasAnnotation_boolisMal_bool

379Updating the dataset for segmentation

How we combine those slices is up to us. For the input to our classification model, we
treated those slices as a 3D array of data and used 3D convolutions to process each
sample. For our segmentation model, we are going to instead treat each slice as a sin-
gle channel, and produce a multichannel 2D image. Doing so will mean that we are
treating each slice of CT scan as if it was a color channel of an RGB image, like we saw
in figure 4.1, repeated here as figure 13.13. Each input slice of the CT will get stacked
together and consumed just like any other 2D image. The channels of our stacked CT
image won’t correspond to colors, but nothing about 2D convolutions requires the
input channels to be colors, so it works out fine.

 For validation, we’ll need to produce one sample per slice of CT that has an entry
in the positive mask, for each validation CT we have. Since different CT scans can
have different slice counts,11 we’re going to introduce a new function that caches the

11 Most CT scanners produce 512 × 512 slices, and we’re not going to worry about the ones that do something
different.

Figure 13.12 Each slice of a CT scan represents a different position in space.

top

brain

eye

more

brain

nose

tEe
th

spine

top of

skuLl

miDdle boTtom

Figure 13.13 Each channel of a photographic image represents a different color.

red grEen blue

380 CHAPTER 13 Using segmentation to find suspected nodules

size of each CT scan and its positive mask to disk. We need this to be able to quickly
construct the full size of a validation set without having to load each CT at Dataset ini-
tialization. We’ll continue to use the same caching decorator as before. Populating
this data will also take place during the prepcache.py script, which we must run once
before we start any model training.

@raw_cache.memoize(typed=True)
def getCtSampleSize(series_uid):

ct = Ct(series_uid)
return int(ct.hu_a.shape[0]), ct.positive_indexes

The majority of the Luna2dSegmentationDataset.__init__ method is similar to what
we’ve seen before. We have a new contextSlices_count parameter, as well as an
augmentation_dict similar to what we introduced in chapter 12.

 The handling for the flag indicating whether this is meant to be a training or vali-
dation set needs to change somewhat. Since we’re no longer training on individual
nodules, we will have to partition the list of series, taken as a whole, into training and
validation sets. This means an entire CT scan, along with all nodule candidates it con-
tains, will be in either the training set or the validation set.

if isValSet_bool:
assert val_stride > 0, val_stride
self.series_list = self.series_list[::val_stride]
assert self.series_list

elif val_stride > 0:
del self.series_list[::val_stride]
assert self.series_list

Speaking of validation, we’re going to have two different modes we can validate our
training with. First, when fullCt_bool is True, we will use every slice in the CT for our
dataset. This will be useful when we’re evaluating end-to-end performance, since we
need to pretend that we’re starting off with no prior information about the CT. We’ll
use the second mode for validation during training, which is when we’re limiting our-
selves to only the CT slices that have a positive mask present.

 As we now only want certain CT series to be considered, we loop over the series
UIDs we want and get the total number of slices and the list of interesting ones.

self.sample_list = []
for series_uid in self.series_list:

Listing 13.11 dsets.py:220

Listing 13.12 dsets.py:242, .__init__

Listing 13.13 dsets.py:250, .__init__

Starting with a series list
containing all our series, we
keep only every val_stride-th
element, starting with 0.

If we are training, we delete every
val_stride-th element instead.

381Updating the dataset for segmentation

index_count, positive_indexes = getCtSampleSize(series_uid)

if self.fullCt_bool:
self.sample_list += [(series_uid, slice_ndx)

for slice_ndx in range(index_count)]
else:

self.sample_list += [(series_uid, slice_ndx)
for slice_ndx in positive_indexes]

Doing it this way will keep our validation relatively quick and ensure that we’re getting
complete stats for true positives and false negatives, but we’re making the assumption
that other slices will have false positive and true negative stats relatively similar to the
ones we evaluate during validation.

 Once we have the set of series_uid values we’ll be using, we can filter our candi-
dateInfo_list to contain only nodule candidates with a series_uid that is included
in that set of series. Additionally, we’ll create another list that has only the positive can-
didates so that during training, we can use those as our training samples.

self.candidateInfo_list = getCandidateInfoList()

series_set = set(self.series_list)
self.candidateInfo_list = [cit for cit in self.candidateInfo_list

if cit.series_uid in series_set]

self.pos_list = [nt for nt in self.candidateInfo_list
if nt.isNodule_bool]

Our __getitem__ implementation will also be a bit fancier by delegating a lot of the
logic to a function that makes it easier to retrieve a specific sample. At the core of it,
we’d like to retrieve our data in three different forms. First, we have the full slice of
the CT, as specified by a series_uid and ct_ndx. Second, we have a cropped area
around a nodule, which we’ll use for training data (we’ll explain in a bit why we’re not
using full slices). Finally, the DataLoader is going to ask for samples via an integer ndx,
and the dataset will need to return the appropriate type based on whether it’s training
or validation.

 The base class or subclass __getitem__ functions will convert from the integer ndx
to either the full slice or training crop, as appropriate. As mentioned, our validation
set’s __getitem__ just calls another function to do the real work. Before that, it wraps
the index around into the sample list in order to decouple the epoch size (given by
the length of the dataset) from the actual number of samples.

Listing 13.14 dsets.py:261, .__init__

Here we extend sample_list
with every slice of the CT by
using range …

… while here we take
only the interesting slices.

This is cached.

Makes a set for faster lookup

Filters out the candidates
from series not in our set

For the data balancing yet to come,
we want a list of actual nodules.

382 CHAPTER 13 Using segmentation to find suspected nodules

def __getitem__(self, ndx):
series_uid, slice_ndx = self.sample_list[ndx % len(self.sample_list)]
return self.getitem_fullSlice(series_uid, slice_ndx)

That was easy, but we still need to implement the interesting functionality from the
getItem_fullSlice method.

def getitem_fullSlice(self, series_uid, slice_ndx):
ct = getCt(series_uid)
ct_t = torch.zeros((self.contextSlices_count * 2 + 1, 512, 512))

start_ndx = slice_ndx - self.contextSlices_count
end_ndx = slice_ndx + self.contextSlices_count + 1
for i, context_ndx in enumerate(range(start_ndx, end_ndx)):

context_ndx = max(context_ndx, 0)
context_ndx = min(context_ndx, ct.hu_a.shape[0] - 1)
ct_t[i] = torch.from_numpy(ct.hu_a[context_ndx].astype(np.float32))

ct_t.clamp_(-1000, 1000)

pos_t = torch.from_numpy(ct.positive_mask[slice_ndx]).unsqueeze(0)

return ct_t, pos_t, ct.series_uid, slice_ndx

Splitting the functions like this means we can always ask a dataset for a specific slice
(or cropped training chunk, which we’ll see in the next section) indexed by series
UID and position. Only for the integer indexing do we go through __getitem__,
which then gets a sample from the (shuffled) list.

 Aside from ct_t and pos_t, the rest of the tuple we return is all information that
we include for debugging and display. We don’t need any of it for training.

13.5.5 Designing our training and validation data

Before we get into the implementation for our training dataset, we need to explain
why our training data will look different from our validation data. Instead of the full
CT slices, we’re going to train on 64 × 64 crops around our positive candidates (the
actually-a-nodule candidates). These 64 × 64 patches will be taken randomly from a 96
× 96 crop centered on the nodule. We will also include three slices of context in both
directions as additional “channels” to our 2D segmentation.

 We’re doing this to make training more stable, and to converge more quickly. The
only reason we know to do this is because we tried to train on whole CT slices, but we
found the results unsatisfactory. After some experimentation, we found that the 64 ×
64 semirandom crop approach worked well, so we decided to use that for the book.

Listing 13.15 dsets.py:281, .__getitem__

Listing 13.16 dsets.py:285, .getitem_fullSlice

The modulo operation does the wrapping.

Preallocates the output

When we reach
beyond the bounds of
the ct_a, we duplicate
the first or last slice.

383Updating the dataset for segmentation

When you work on your own projects, you’ll need to do that kind of experimentation
for yourself!

 We believe the whole-slice training was unstable essentially due to a class-balancing
issue. Since each nodule is so small compared to the whole CT slice, we were right
back in a needle-in-a-haystack situation similar to the one we got out of in the last
chapter, where our positive samples were swamped by the negatives. In this case, we’re
talking about pixels rather than nodules, but the concept is the same. By training on
crops, we’re keeping the number of positive pixels the same and reducing the nega-
tive pixel count by several orders of magnitude.

 Because our segmentation model is pixel-to-pixel and takes images of arbitrary
size, we can get away with training and validating on samples with different dimen-
sions. Validation uses the same convolutions with the same weights, just applied to a
larger set of pixels (and so with fewer border pixels to fill in with edge data).

 One caveat to this approach is that since our validation set contains orders of mag-
nitude more negative pixels, our model will have a huge false positive rate during vali-
dation. There are many more opportunities for our segmentation model to get
tricked! It doesn’t help that we’re going to be pushing for high recall as well. We’ll dis-
cuss that more in section 13.6.3.

13.5.6 Implementing TrainingLuna2dSegmentationDataset

With that out of the way, let’s get back to the code. Here’s the training set’s __getitem__.
It looks just like the one for the validation set, except that we now sample from pos_list
and call getItem_trainingCrop with the candidate info tuple, since we need the series
and the exact center location, not just the slice.

def __getitem__(self, ndx):
candidateInfo_tup = self.pos_list[ndx % len(self.pos_list)]
return self.getitem_trainingCrop(candidateInfo_tup)

To implement getItem_trainingCrop, we will use a getCtRawCandidate function
similar to the one we used during classification training. Here, we’re passing in a dif-
ferent size crop, but the function is unchanged except for now returning an addi-
tional array with a crop of the ct.positive_mask as well.

 We limit our pos_a to the center slice that we’re actually segmenting, and then con-
struct our 64 × 64 random crops of the 96 × 96 we were given by getCtRawCandidate.
Once we have those, we return a tuple with the same items as our validation dataset.

def getitem_trainingCrop(self, candidateInfo_tup):
ct_a, pos_a, center_irc = getCtRawCandidate(

candidateInfo_tup.series_uid,
candidateInfo_tup.center_xyz,

Listing 13.17 dsets.py:320, .__getitem__

Listing 13.18 dsets.py:324, .getitem_trainingCrop

Gets the candidate with a
bit of extra surrounding

384 CHAPTER 13 Using segmentation to find suspected nodules

(7, 96, 96),
)
pos_a = pos_a[3:4]

row_offset = random.randrange(0,32)
col_offset = random.randrange(0,32)
ct_t = torch.from_numpy(ct_a[:, row_offset:row_offset+64,

col_offset:col_offset+64]).to(torch.float32)
pos_t = torch.from_numpy(pos_a[:, row_offset:row_offset+64,

col_offset:col_offset+64]).to(torch.long)

slice_ndx = center_irc.index

return ct_t, pos_t, candidateInfo_tup.series_uid, slice_ndx

You might have noticed that data augmentation is missing from our dataset imple-
mentation. We’re going to handle that a little differently this time around: we’ll aug-
ment our data on the GPU.

13.5.7 Augmenting on the GPU
One of the key concerns when it comes to training a deep learning model is avoiding
bottlenecks in your training pipeline. Well, that’s not quite true—there will always be a
bottleneck.12 The trick is to make sure the bottleneck is at the resource that’s the most
expensive or difficult to upgrade, and that your usage of that resource isn’t wasteful.

 Some common places to see bottlenecks are as follows:

 In the data-loading pipeline, either in raw I/O or in decompressing data once
it’s in RAM. We addressed this with our diskcache library usage.

 In CPU preprocessing of the loaded data. This is often data normalization or
augmentation.

 In the training loop on the GPU. This is typically where we want our bottleneck
to be, since total deep learning system costs for GPUs are usually higher than
for storage or CPU.

 Less commonly, the bottleneck can sometimes be the memory bandwidth between
CPU and GPU. This implies that the GPU isn’t doing much work compared to
the data size that’s being sent in.

Since GPUs can be 50 times faster than CPUs when working on tasks that fit GPUs
well, it often makes sense to move those tasks to the GPU from the CPU in cases where
CPU usage is becoming high. This is especially true if the data gets expanded during
this processing; by moving the smaller input to the GPU first, the expanded data is
kept local to the GPU, and less memory bandwidth is used.

 In our case, we’re going to move data augmentation to the GPU. This will keep
our CPU usage light, and the GPU will easily be able to accommodate the additional
workload. Far better to have the GPU busy with a small bit of extra work than idle
waiting for the CPU to struggle through the augmentation process.

12 Otherwise, your model would train instantly!

Taking a one-element slice keeps
the third dimension, which will be
the (single) output channel.

With two random
numbers between 0
and 31, we crop
both CT and mask.

385Updating the dataset for segmentation

 We’ll accomplish this by using a second model, similar to all the other subclasses of
nn.Module we’ve seen so far in this book. The main difference is that we’re not inter-
ested in backpropagating gradients through the model, and the forward method will
be doing decidedly different things. There will be some slight modifications to the
actual augmentation routines since we’re working with 2D data for this chapter, but
otherwise, the augmentation will be very similar to what we saw in chapter 12. The
model will consume tensors and produce different tensors, just like the other models
we’ve implemented.

 Our model’s __init__ takes the same data augmentation arguments—flip,
offset, and so on—that we used in the last chapter, and assigns them to self.

class SegmentationAugmentation(nn.Module):
def __init__(

self, flip=None, offset=None, scale=None, rotate=None, noise=None
):

super().__init__()

self.flip = flip
self.offset = offset
... line 64

Our augmentation forward method takes the input and the label, and calls out to
build the transform_t tensor that will then drive our affine_grid and grid_sample
calls. Those calls should feel very familiar from chapter 12.

def forward(self, input_g, label_g):
transform_t = self._build2dTransformMatrix()
transform_t = transform_t.expand(input_g.shape[0], -1, -1)
transform_t = transform_t.to(input_g.device, torch.float32)
affine_t = F.affine_grid(transform_t[:,:2],

input_g.size(), align_corners=False)

augmented_input_g = F.grid_sample(input_g,
affine_t, padding_mode='border',
align_corners=False)

augmented_label_g = F.grid_sample(label_g.to(torch.float32),
affine_t, padding_mode='border',
align_corners=False)

if self.noise:
noise_t = torch.randn_like(augmented_input_g)
noise_t *= self.noise

augmented_input_g += noise_t

return augmented_input_g, augmented_label_g > 0.5

Listing 13.19 model.py:56, class SegmentationAugmentation

Listing 13.20 model.py:68, SegmentationAugmentation.forward

Note that we’re augmenting
2D data.

The first dimension of the
transformation is the batch,
but we only want the first two
rows of the 3 × 3 matrices per
batch item.

We need the same transformation applied to CT and
mask, so we use the same grid. Because grid_sample
only works with floats, we convert here.

Just before returning, we convert the mask back to
Booleans by comparing to 0.5. The interpolation

that grid_sample results in fractional values.

386 CHAPTER 13 Using segmentation to find suspected nodules

Now that we know what we need to do with transform_t to get our data out, let’s take
a look at the _build2dTransformMatrix function that actually creates the transforma-
tion matrix we use.

def _build2dTransformMatrix(self):
transform_t = torch.eye(3)

for i in range(2):
if self.flip:

if random.random() > 0.5:
transform_t[i,i] *= -1

... line 108
if self.rotate:

angle_rad = random.random() * math.pi * 2
s = math.sin(angle_rad)
c = math.cos(angle_rad)

rotation_t = torch.tensor([
[c, -s, 0],
[s, c, 0],
[0, 0, 1]])

transform_t @= rotation_t

return transform_t

Other than the slight differences to deal with 2D data, our GPU augmentation code
looks very similar to our CPU augmentation code. That’s great, because it means
we’re able to write code that doesn’t have to care very much about where it runs. The
primary difference isn’t in the core implementation: it’s how we wrapped that imple-
mentation into a nn.Module subclass. While we’ve been thinking about models as
exclusively a deep learning tool, this shows us that with PyTorch, tensors can be used
quite a bit more generally. Keep this in mind when you start your next project—the
range of things you can accomplish with a GPU-accelerated tensor is pretty large!

13.6 Updating the training script for segmentation
We have a model. We have data. We need to use them, and you won’t be surprised
when step 2C of figure 13.14 suggests we should train our new model with the new
data.
To be more precise about the process of training our model, we will update three
things affecting the outcome from the training code we got in chapter 12:

 We need to instantiate the new model (unsurprisingly).
 We will introduce a new loss: the Dice loss.
 We will also look at an optimizer other than the venerable SGD we’ve used so

far. We’ll stick with a popular one and use Adam.

Listing 13.21 model.py:90, ._build2dTransformMatrix

Creates a 3 × 3 matrix, but we
will drop the last row later.

Again, we’re augmenting
2D data here.

Takes a random angle in radians,
so in the range 0 .. 2{pi}

Rotation matrix for the 2D rotation by the
random angle in the first two dimensions

Applies the rotation to the transformation matrix
using the Python matrix multiplication operator

387Updating the training script for segmentation

But we will also step up our bookkeeping, by

 Logging images for visual inspection of the segmentation to TensorBoard
 Performing more metrics logging in TensorBoard
 Saving our best model based on the validation

Overall, the training script p2ch13/training.py is even more similar to what we used
for classification training in chapter 12 than the adapted code we’ve seen so far. Any
significant changes will be covered here in the text, but be aware that some of the
minor tweaks are skipped. For the full story, check the source.

13.6.1 Initializing our segmentation and augmentation models

Our initModel method is very unsurprising. We are using the UNetWrapper class and
giving it our configuration parameters—which we will look at in detail shortly. Also, we
now have a second model for augmentation. Just like before, we can move the model
to the GPU if desired and possibly set up multi-GPU training using DataParallel. We
skip these administrative tasks here.

def initModel(self):
segmentation_model = UNetWrapper(

in_channels=7,

Listing 13.22 training.py:133, .initModel

1. Segmentation

UNet

2. Update:

2a. Model

2b. Dataset

2c. Training
3. Results

T/F

1. Segmentation

UNetUNetUNet

2. Update:

2a Model2a Model

t

g
3. Results

2a. Model

2b. Dataset

2c. Training

T/F

Figure 13.14 The outline of this chapter, with a focus on the changes needed for our
training loop

388 CHAPTER 13 Using segmentation to find suspected nodules

n_classes=1,
depth=3,
wf=4,
padding=True,
batch_norm=True,
up_mode='upconv',

)

augmentation_model = SegmentationAugmentation(**self.augmentation_dict)

... line 154
return segmentation_model, augmentation_model

For input into UNet, we’ve got seven input channels: 3 + 3 context slices, and 1 slice
that is the focus for what we’re actually segmenting. We have one output class indicat-
ing whether this voxel is part of a nodule. The depth parameter controls how deep the
U goes; each downsampling operation adds 1 to the depth. Using wf=5 means the first
layer will have 2**wf == 32 filters, which doubles with each downsampling. We want
the convolutions to be padded so that we get an output image the same size as our
input. We also want batch normalization inside the network after each activation func-
tion, and our upsampling function should be an upconvolution layer, as implemented
by nn.ConvTranspose2d (see util/unet.py, line 123).

13.6.2 Using the Adam optimizer

The Adam optimizer (https://arxiv.org/abs/1412.6980) is an alternative to using
SGD when training our models. Adam maintains a separate learning rate for each
parameter and automatically updates that learning rate as training progresses. Due to
these automatic updates, we typically won’t need to specify a non-default learning rate
when using Adam, since it will quickly determine a reasonable learning rate by itself.

 Here’s how we instantiate Adam in code.

def initOptimizer(self):
return Adam(self.segmentation_model.parameters())

It’s generally accepted that Adam is a reasonable optimizer to start most projects
with.13 There is often a configuration of stochastic gradient descent with Nesterov
momentum that will outperform Adam, but finding the correct hyperparameters to
use when initializing SGD for a given project can be difficult and time consuming.

 There have been a large number of variations on Adam—AdaMax, RAdam,
Ranger, and so on—that each have strengths and weaknesses. Delving into the details
of those is outside the scope of this book, but we think that it’s important to know that
those alternatives exist. We’ll use Adam in chapter 13.

Listing 13.23 training.py:156, .initOptimizer

13 See http://cs231n.github.io/neural-networks-3.

https://arxiv.org/abs/1412.6980
http://cs231n.github.io/neural-networks-3

389Updating the training script for segmentation

13.6.3 Dice loss

The Sørensen-Dice coefficient (https://en.wikipedia.org/wiki/S%C3%B8rensen%E2
%80%93Dice_coefficient), also known as the Dice loss, is a common loss metric for seg-
mentation tasks. One advantage of using Dice loss over a per-pixel cross-entropy loss is
that Dice handles the case where only a small portion of the overall image is flagged as
positive. As we recall from chapter 11 in section 11.10, unbalanced training data can be
problematic when using cross-entropy loss. That’s exactly the situation we have here—
most of a CT scan isn’t a nodule. Luckily, with Dice, that won’t pose as much of a problem.

 The Sørensen-Dice coefficient is based on the ratio of correctly segmented pixels
to the sum of the predicted and actual pixels. Those ratios are laid out in figure 13.15.
On the left, we see an illustration of the Dice score. It is twice the joint area (true posi-
tives, striped) divided by the sum of the entire predicted area and the entire ground-
truth marked area (the overlap being counted twice). On the right are two prototypi-
cal examples of high agreement/high Dice score and low agreement/low Dice score.

That might sound familiar; it’s the same ratio that we saw in chapter 12. We’re basi-
cally going to be using a per-pixel F1 score!

NOTE This is a per-pixel F1 score where the “population” is one image’s pixels. Since
the population is entirely contained within one training sample, we can use it
for training directly. In the classification case, the F1 score is not calculable
over a single minibatch, and, hence, we cannot use it for training directly.

x 2

= 0.9

= 0.1

= DICE

Predicted Actual

CoRrect

= 0.

= 0x

CooRrectect

Figure 13.15 The ratios that make up the Dice score

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

390 CHAPTER 13 Using segmentation to find suspected nodules

Since our label_g is effectively a Boolean mask, we can multiply it with our predic-
tions to get our true positives. Note that we aren’t treating prediction_devtensor as a
Boolean here. A loss defined with it wouldn’t be differentiable. Instead, we’re replac-
ing the number of true positives with the sum of the predicted values for the pixels
where the ground truth is 1. This converges to the same thing as the predicted values
approach 1, but sometimes the predicted values will be uncertain predictions in the
0.4 to 0.6 range. Those undecided values will contribute roughly the same amount to
our gradient updates, no matter which side of 0.5 they happen to fall on. A Dice coef-
ficient utilizing continuous predictions is sometimes referred to as soft Dice.

 There’s one tiny complication. Since we’re wanting a loss to minimize, we’re going
to take our ratio and subtract it from 1. Doing so will invert the slope of our loss func-
tion so that in the high-overlap case, our loss is low; and in the low-overlap case, it’s
high. Here’s what that looks like in code.

def diceLoss(self, prediction_g, label_g, epsilon=1):
diceLabel_g = label_g.sum(dim=[1,2,3])
dicePrediction_g = prediction_g.sum(dim=[1,2,3])
diceCorrect_g = (prediction_g * label_g).sum(dim=[1,2,3])

diceRatio_g = (2 * diceCorrect_g + epsilon) \
/ (dicePrediction_g + diceLabel_g + epsilon)

return 1 - diceRatio_g

We’re going to update our computeBatchLoss function to call self.diceLoss. Twice.
We’ll compute the normal Dice loss for the training sample, as well as for only the pixels
included in label_g. By multiplying our predictions (which, remember, are floating-point
values) times the label (which are effectively Booleans), we’ll get pseudo-predictions that
got every negative pixel “exactly right” (since all the values for those pixels are multiplied
by the false-is-zero values from label_g). The only pixels that will generate loss are the
false negative pixels (everything that should have been predicted true, but wasn’t). This
will be helpful, since recall is incredibly important for our overall project; after all, we can’t
classify tumors properly if we don’t detect them in the first place!

def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_g,
classificationThreshold=0.5):

input_t, label_t, series_list, _slice_ndx_list = batch_tup

input_g = input_t.to(self.device, non_blocking=True)
label_g = label_t.to(self.device, non_blocking=True)

Listing 13.24 training.py:315, .diceLoss

Listing 13.25 training.py:282, .computeBatchLoss

Sums over everything except the batch dimension to
get the positively labeled, (softly) positively detected,
and (softly) correct positives per batch item

The Dice ratio. To
 avoid problems when we
accidentally have neither

predictions nor labels, we
add 1 to both numerator

and denominator.

To make it a loss, we take 1 – Dice
ratio, so lower loss is better.

Transfers
to GPU

391Updating the training script for segmentation

if self.segmentation_model.training and self.augmentation_dict:
input_g, label_g = self.augmentation_model(input_g, label_g)

prediction_g = self.segmentation_model(input_g)

diceLoss_g = self.diceLoss(prediction_g, label_g)
fnLoss_g = self.diceLoss(prediction_g * label_g, label_g)
... line 313
return diceLoss_g.mean() + fnLoss_g.mean() * 8

Let’s talk a bit about what we’re doing with our return statement of diceLoss_g
.mean() + fnLoss_g.mean() * 8.

LOSS WEIGHTING

In chapter 12, we discussed shaping our dataset so that our classes were not wildly
imbalanced. That helped training converge, since the positive and negative samples
present in each batch were able to counteract the general pull of the other, and the
model had to learn to discriminate between them to improve. We’re approximating
that same balance here by cropping down our training samples to include fewer non-
positive pixels; but it’s incredibly important to have high recall, and we need to make
sure that as we train, we’re providing a loss that reflects that fact.

 We are going to have a weighted loss that favors one class over the other. What we’re
saying by multiplying fnLoss_g by 8 is that getting the entire population of our posi-
tive pixels right is eight times more important than getting the entire population of
negative pixels right (nine, if you count the one in diceLoss_g). Since the area cov-
ered by the positive mask is much, much smaller than the whole 64 × 64 crop, that also
means each individual positive pixel wields that much more influence when it comes
to backpropagation.

 We’re willing to trade away many correctly predicted negative pixels in the general
Dice loss to gain one correct pixel in the false negative loss. Since the general Dice
loss is a strict superset of the false negative loss, the only correct pixels available to
make that trade are ones that start as true negatives (all of the true positive pixels are
already included in the false negative loss, so there’s no trade to be made).

 Since we’re willing to sacrifice huge swaths of true negative pixels in the pursuit of
having better recall, we should expect a large number of false positives in general.14

We’re doing this because recall is very, very important to our use case, and we’d much
rather have some false positives than even a single false negative.

 We should note that this approach only works when using the Adam optimizer.
When using SGD, the push to overpredict would lead to every pixel coming back as
positive. Adam’s ability to fine-tune the learning rate means stressing the false nega-
tive loss doesn’t become overpowering.

14 Roxie would be proud!

Augments as needed if we are training.
In validation, we would skip this.

Runs the segmentation
model …

… and applies
our fine Dice loss

Oops. What is this?

392 CHAPTER 13 Using segmentation to find suspected nodules

COLLECTING METRICS

Since we’re going to purposefully skew our numbers for better recall, let’s see just how
tilted things will be. In our classification computeBatchLoss, we compute various per-
sample values that we used for metrics and the like. We also compute similar values for
the overall segmentation results. These true positive and other metrics were previ-
ously computed in logMetrics, but due to the size of the result data (recall that each
single CT slice from the validation set is a quarter-million pixels!), we need to com-
pute these summary stats live in the computeBatchLoss function.

start_ndx = batch_ndx * batch_size
end_ndx = start_ndx + input_t.size(0)

with torch.no_grad():
predictionBool_g = (prediction_g[:, 0:1]

> classificationThreshold).to(torch.float32)

tp = (predictionBool_g * label_g).sum(dim=[1,2,3])
fn = ((1 - predictionBool_g) * label_g).sum(dim=[1,2,3])
fp = (predictionBool_g * (~label_g)).sum(dim=[1,2,3])

metrics_g[METRICS_LOSS_NDX, start_ndx:end_ndx] = diceLoss_g
metrics_g[METRICS_TP_NDX, start_ndx:end_ndx] = tp
metrics_g[METRICS_FN_NDX, start_ndx:end_ndx] = fn
metrics_g[METRICS_FP_NDX, start_ndx:end_ndx] = fp

As we discussed at the beginning of this section, we can compute our true positives and
so on by multiplying our prediction (or its negation) and our label (or its negation)
together. Since we’re not as worried about the exact values of our predictions here (it
doesn’t really matter if we flag a pixel as 0.6 or 0.9—as long as it’s over the threshold,
we’ll call it part of a nodule candidate), we are going to create predictionBool_g by
comparing it to our threshold of 0.5.

13.6.4 Getting images into TensorBoard

One of the nice things about working on segmentation tasks is that the output is easily
represented visually. Being able to eyeball our results can be a huge help for determin-
ing whether a model is progressing well (but perhaps needs more training), or if it has
gone off the rails (so we need to stop wasting our time with further training). There
are many ways we could package up our results as images, and many ways we could dis-
play them. TensorBoard has great support for this kind of data, and we already have
TensorBoard SummaryWriter instances integrated with our training runs, so we’re
going to use TensorBoard. Let’s see what it takes to get everything hooked up.

 We’ll add a logImages function to our main application class and call it with both
our training and validation data loaders. While we are at it, we will make another

Listing 13.26 training.py:297, .computeBatchLoss

We threshold the
prediction to get “hard”

Dice but convert to float for
the later multiplication.

Computing true
positives, false

positives, and false
negatives is similar

to what we did
when computing

the Dice loss.

We store our metrics to a large
tensor for future reference. This

is per batch item rather than
averaged over the batch.

393Updating the training script for segmentation

change to our training loop: we’re only going to perform validation and image log-
ging on the first and then every fifth epoch. We do this by checking the epoch num-
ber against a new constant, validation_cadence.

 When training, we’re trying to balance a few things:

 Getting a rough idea of how our model is training without having to wait very
long

 Spending the bulk of our GPU cycles training, rather than validating
 Making sure we are still performing well on the validation set

The first point means we need to have relatively short epochs so that we get to call
logMetrics more often. The second, however, means we want to train for a relatively
long time before calling doValidation. The third means we need to call doValidation
regularly, rather than once at the end of training or something unworkable like that. By
only doing validation on the first and then every fifth epoch, we can meet all of those
goals. We get an early signal of training progress, spend the bulk of our time training,
and have periodic check-ins with the validation set as we go along.

def main(self):
... line 217
self.validation_cadence = 5
for epoch_ndx in range(1, self.cli_args.epochs + 1):

... line 228
trnMetrics_t = self.doTraining(epoch_ndx, train_dl)
self.logMetrics(epoch_ndx, 'trn', trnMetrics_t)

if epoch_ndx == 1 or epoch_ndx % self.validation_cadence == 0:
... line 239
self.logImages(epoch_ndx, 'trn', train_dl)
self.logImages(epoch_ndx, 'val', val_dl)

There isn’t a single right way to structure our image logging. We are going to grab a
handful of CTs from both the training and validation sets. For each CT, we will select 6
evenly spaced slices, end to end, and show both the ground truth and our model’s
output. We chose 6 slices only because TensorBoard will show 12 images at a time, and
we can arrange the browser window to have a row of label images over the model out-
put. Arranging things this way makes it easy to visually compare the two, as we can see
in figure 13.16.

 Also note the small slider-dot on the prediction images. That slider will allow us to
view previous versions of the images with the same label (such as val/0_prediction_3,
but at an earlier epoch). Being able to see how our segmentation output changes over
time can be useful when we’re trying to debug something or make tweaks to achieve a
specific result. As training progresses, TensorBoard will limit the number of images

Listing 13.27 training.py:210, SegmentationTrainingApp.main

Our outermost loop,
over the epochs

Trains
for one
epoch

Logs the (scalar)
metrics from training
after each epoch

Only every validation
cadence-th interval …

… we validate the model and log images.

394 CHAPTER 13 Using segmentation to find suspected nodules

viewable from the slider to 10, probably to avoid overwhelming the browser with a huge
number of images.

 The code that produces this output starts by getting 12 series from the pertinent
data loader and 6 images from each series.

def logImages(self, epoch_ndx, mode_str, dl):
self.segmentation_model.eval()

images = sorted(dl.dataset.series_list)[:12]
for series_ndx, series_uid in enumerate(images):

ct = getCt(series_uid)

for slice_ndx in range(6):
ct_ndx = slice_ndx * (ct.hu_a.shape[0] - 1) // 5
sample_tup = dl.dataset.getitem_fullSlice(series_uid, ct_ndx)

ct_t, label_t, series_uid, ct_ndx = sample_tup

After that, we feed ct_t it into the model. This looks very much like what we see in
computeBatchLoss; see p2ch13/training.py for details if desired.

 Once we have prediction_a, we need to build an image_a that will hold RGB values
to display. We’re using np.float32 values, which need to be in a range from 0 to 1.

Listing 13.28 training.py:326, .logImages

positive

label

False

Positives

Positive

Prediction

abel

False

Positiv

sitive

diction

Epoch

Slider

No Label

Figure 13.16 Top row: label data for training. Bottom row: output from the segmentation

Sets the model to eval

Takes (the same) 12 CTs by
bypassing the data loader and using
the dataset directly. The series list
might be shuffled, so we sort.

Selects six equidistant
slices throughout the CT

395Updating the training script for segmentation

Our approach will cheat a little by adding together various images and masks to get
data in the range 0 to 2, and then multiplying the entire array by 0.5 to get it back into
the right range.

ct_t[:-1,:,:] /= 2000
ct_t[:-1,:,:] += 0.5

ctSlice_a = ct_t[dl.dataset.contextSlices_count].numpy()

image_a = np.zeros((512, 512, 3), dtype=np.float32)
image_a[:,:,:] = ctSlice_a.reshape((512,512,1))
image_a[:,:,0] += prediction_a & (1 - label_a)
image_a[:,:,0] += (1 - prediction_a) & label_a
image_a[:,:,1] += ((1 - prediction_a) & label_a) * 0.5

image_a[:,:,1] += prediction_a & label_a
image_a *= 0.5
image_a.clip(0, 1, image_a)

Our goal is to have a grayscale CT at half intensity, overlaid with predicted-nodule (or,
more correctly, nodule-candidate) pixels in various colors. We’re going to use red for
all pixels that are incorrect (false positives and false negatives). This will mostly be
false positives, which we don’t care about too much (since we’re focused on recall).
1 - label_a inverts the label, and that multiplied by the prediction_a gives us only
the predicted pixels that aren’t in a candidate nodule. False negatives get a half-
strength mask added to green, which means they will show up as orange (1.0 red and
0.5 green renders as orange in RGB). Every correctly predicted pixel inside a nodule
is set to green; since we got those pixels right, no red will be added, and so they will
render as pure green.

 After that, we renormalize our data to the 0…1 range and clamp it (in case we start
displaying augmented data here, which would cause speckles when the noise was out-
side our expected CT range). All that remains is to save the data to TensorBoard.

writer = getattr(self, mode_str + '_writer')
writer.add_image(

f'{mode_str}/{series_ndx}_prediction_{slice_ndx}',
image_a,
self.totalTrainingSamples_count,
dataformats='HWC',

)

Listing 13.29 training.py:346, .logImages

Listing 13.30 training.py:361, .logImages

CT intensity is assigned to all RGB channels
to provide a grayscale base image.

False positives are flagged as
red and overlaid on the image.

False negatives
are orange.

True positives
are green.

396 CHAPTER 13 Using segmentation to find suspected nodules

This looks very similar to the writer.add_scalar calls we’ve seen before. The data-
formats='HWC' argument tells TensorBoard that the order of axes in our image has
our RGB channels as the third axis. Recall that our network layers often specify out-
puts that are B × C × H × W, and we could put that data directly into TensorBoard as
well if we specified 'CHW'.

 We also want to save the ground truth that we’re using to train, which will form the
top row of our TensorBoard CT slices we saw earlier in figure 13.16. The code for that
is similar enough to what we just saw that we’ll skip it. Again, check p2ch13/training.py
if you want the details.

13.6.5 Updating our metrics logging

To give us an idea how we are doing, we compute per-epoch metrics: in particular,
true positives, false negatives, and false positives. This is what the following listing
does. Nothing here will be particularly surprising.

sum_a = metrics_a.sum(axis=1)
allLabel_count = sum_a[METRICS_TP_NDX] + sum_a[METRICS_FN_NDX]
metrics_dict['percent_all/tp'] = \

sum_a[METRICS_TP_NDX] / (allLabel_count or 1) * 100
metrics_dict['percent_all/fn'] = \

sum_a[METRICS_FN_NDX] / (allLabel_count or 1) * 100
metrics_dict['percent_all/fp'] = \

sum_a[METRICS_FP_NDX] / (allLabel_count or 1) * 100

We are going to start scoring our models as a way to determine whether a particular
training run is the best we’ve seen so far. In chapter 12, we said we’d be using the F1
score for our model ranking, but our goals are different here. We need to make sure
our recall is as high as possible, since we can’t classify a potential nodule if we don’t
find it in the first place!

 We will use our recall to determine the “best” model. As long as the F1 score is rea-
sonable for that epoch,15 we just want to get recall as high as possible. Screening out
any false positives will be the responsibility of the classification model.

def logMetrics(self, epoch_ndx, mode_str, metrics_t):
... line 453
score = metrics_dict['pr/recall']

return score

Listing 13.31 training.py:400, .logMetrics

15 And yes, “reasonable” is a bit of a dodge. “Nonzero” is a good starting place, if you’d like something more
specific.

Listing 13.32 training.py:393, .logMetrics

Can be larger than 100%
since we’re comparing to
the total number of pixels
labeled as candidate
nodules, which is a tiny
fraction of each image

397Updating the training script for segmentation

When we add similar code to our classification training loop in the next chapter, we’ll
use the F1 score.

 Back in the main training loop, we’ll keep track of the best_score we’ve seen so
far in this training run. When we save our model, we’ll include a flag that indicates
whether this is the best score we’ve seen so far. Recall from section 13.6.4 that we’re
only calling the doValidation function for the first and then every fifth epochs. That
means we’re only going to check for a best score on those epochs. That shouldn’t be a
problem, but it’s something to keep in mind if you need to debug something happen-
ing on epoch 7. We do this checking just before we save the images.

def main(self):
best_score = 0.0
for epoch_ndx in range(1, self.cli_args.epochs + 1):

if validation is wanted
... line 233
valMetrics_t = self.doValidation(epoch_ndx, val_dl)
score = self.logMetrics(epoch_ndx, 'val', valMetrics_t)
best_score = max(score, best_score)

self.saveModel('seg', epoch_ndx, score == best_score)

Let’s take a look at how we persist our model to disk.

13.6.6 Saving our model

PyTorch makes it pretty easy to save our model to disk. Under the hood, torch.save
uses the standard Python pickle library, which means we could pass our model
instance in directly, and it would save properly. That’s not considered the ideal way to
persist our model, however, since we lose some flexibility.

 Instead, we will save only the parameters of our model. Doing this allows us to load
those parameters into any model that expects parameters of the same shape, even if
the class doesn’t match the model those parameters were saved under. The save-
parameters-only approach allows us to reuse and remix our models in more ways than
saving the entire model.

 We can get at our model’s parameters using the model.state_dict() function.

def saveModel(self, type_str, epoch_ndx, isBest=False):
... line 496
model = self.segmentation_model
if isinstance(model, torch.nn.DataParallel):

model = model.module

Listing 13.33 training.py:210, SegmentationTrainingApp.main

Listing 13.34 training.py:480, .saveModel

The epoch-loop
we already saw

Computes the
score. As we saw
earlier, we take

the recall.

Now we only need to write saveModel. The third parameter
is whether we want to save it as best model, too.

Gets rid of the DataParallel
wrapper, if it exists

398 CHAPTER 13 Using segmentation to find suspected nodules

state = {
'sys_argv': sys.argv,
'time': str(datetime.datetime.now()),
'model_state': model.state_dict(),
'model_name': type(model).__name__,
'optimizer_state' : self.optimizer.state_dict(),
'optimizer_name': type(self.optimizer).__name__,
'epoch': epoch_ndx,
'totalTrainingSamples_count': self.totalTrainingSamples_count,

}
torch.save(state, file_path)

We set file_path to something like data-unversioned/part2/models/p2ch13/
seg_2019-07-10_02.17.22_ch12.50000.state. The .50000. part is the number of
training samples we’ve presented to the model so far, while the other parts of the path
are obvious.

TIP By saving the optimizer state as well, we could resume training seamlessly.
While we don’t provide an implementation of this, it could be useful if your access
to computing resources is likely to be interrupted. Details on loading a model and
optimizer to restart training can be found in the official documentation
(https://pytorch.org/tutorials/beginner/saving_loading_models.html).

If the current model has the best score we’ve seen so far, we save a second copy of
state with a .best.state filename. This might get overwritten later by another, higher-
score version of the model. By focusing only on this best file, we can divorce custom-
ers of our trained model from the details of how each epoch of training went (assum-
ing, of course, that our score metric is of high quality).

if isBest:
best_path = os.path.join(

'data-unversioned', 'part2', 'models',
self.cli_args.tb_prefix,
f'{type_str}_{self.time_str}_{self.cli_args.comment}.best.state')

shutil.copyfile(file_path, best_path)

log.info("Saved model params to {}".format(best_path))

with open(file_path, 'rb') as f:
log.info("SHA1: " + hashlib.sha1(f.read()).hexdigest())

We also output the SHA1 of the model we just saved. Similar to sys.argv and the
timestamp we put into the state dictionary, this can help us debug exactly what model
we’re working with if things become confused later (for example, if a file gets
renamed incorrectly).

Listing 13.35 training.py:514, .saveModel

The important part

Preserves momentum,
and so on

https://pytorch.org/tutorials/beginner/saving_loading_models.html

399Results

 We will update our classification training script in the next chapter with a similar
routine for saving the classification model. In order to diagnose a CT, we’ll need to
have both models.

13.7 Results
Now that we’ve made all of our code changes, we’ve hit the last section in step 3 of fig-
ure 13.17. It’s time to run python -m p2ch13.training --epochs 20 --augmented
final_seg. Let’s see what our results look like!

Here is what our training metrics look like if we limit ourselves to the epochs we have
validation metrics for (we’ll be looking at those metrics next, so this will keep it an
apples-to-apples comparison):

E1 trn 0.5235 loss, 0.2276 precision, 0.9381 recall, 0.3663 f1 score
E1 trn_all 0.5235 loss, 93.8% tp, 6.2% fn, 318.4% fp
...
E5 trn 0.2537 loss, 0.5652 precision, 0.9377 recall, 0.7053 f1 score
E5 trn_all 0.2537 loss, 93.8% tp, 6.2% fn, 72.1% fp
...
E10 trn 0.2335 loss, 0.6011 precision, 0.9459 recall, 0.7351 f1 score
E10 trn_all 0.2335 loss, 94.6% tp, 5.4% fn, 62.8% fp

1. Segmentation

UNet

2. Update:

2a. Model

2b. Dataset

2c. Training
3. Results

T/F

1. Segmentation

UNetUNetUNet

2. Update:

2a Model2a Model

t

g
3. Results

2a. Model

2b. Dataset

2c. Training

T/F

Figure 13.17 The outline of this chapter, with a focus on the results we see from training

TPs are trending up, too. Great! And
FNs and FPs are trending down.

In these rows, we are particularly interested
in the F1 score—it is trending up. Good!

400 CHAPTER 13 Using segmentation to find suspected nodules

...
E15 trn 0.2226 loss, 0.6234 precision, 0.9536 recall, 0.7540 f1 score
E15 trn_all 0.2226 loss, 95.4% tp, <2> 4.6% fn, 57.6% fp
...

E20 trn 0.2149 loss, 0.6368 precision, 0.9584 recall, 0.7652 f1 score
E20 trn_all 0.2149 loss, 95.8% tp, <2> 4.2% fn, 54.7% fp

Overall, it looks pretty good. True positives and the F1 score are trending up, false
positives and negatives are trending down. That’s what we want to see! The validation
metrics will tell us whether these results are legitimate. Keep in mind that since we’re
training on 64 × 64 crops, but validating on whole 512 × 512 CT slices, we are almost
certainly going to have drastically different TP:FN:FP ratios. Let’s see:

E1 val 0.9441 loss, 0.0219 precision, 0.8131 recall, 0.0426 f1 score
E1 val_all 0.9441 loss, 81.3% tp, 18.7% fn, 3637.5% fp

E5 val 0.9009 loss, 0.0332 precision, 0.8397 recall, 0.0639 f1 score
E5 val_all 0.9009 loss, 84.0% tp, 16.0% fn, 2443.0% fp

E10 val 0.9518 loss, 0.0184 precision, 0.8423 recall, 0.0360 f1 score
E10 val_all 0.9518 loss, 84.2% tp, 15.8% fn, 4495.0% fp

E15 val 0.8100 loss, 0.0610 precision, 0.7792 recall, 0.1132 f1 score
E15 val_all 0.8100 loss, 77.9% tp, 22.1% fn, 1198.7% fp

E20 val 0.8602 loss, 0.0427 precision, 0.7691 recall, 0.0809 f1 score
E20 val_all 0.8602 loss, 76.9% tp, 23.1% fn, 1723.9% fp

Ouch—false positive rates over 4,000%? Yes, actually, that’s expected. Our validation
slice area is 218 pixels (512 is 29), while our training crop is only 212. That means we’re
validating on a slice surface that’s 26 = 64 times bigger! Having a false positive count
that’s also 64 times bigger makes sense. Remember that our true positive rate won’t
have changed meaningfully, since it would all have been included in the 64 × 64 sam-
ple we trained on in the first place. This situation also results in very low precision,
and, hence, a low F1 score. That’s a natural result of how we’ve structured the training
and validation, so it’s not a cause for alarm.

 What’s problematic, however, is our recall (and, hence, our true positive rate). Our
recall plateaus between epochs 5 and 10 and then starts to drop. It’s pretty obvious that
we begin overfitting very quickly, and we can see further evidence of that in figure
13.18—while the training recall keeps trending upward, the validation recall decreases
after 3 million samples. This is how we identified overfitting in chapter 5, in particular
figure 5.14.

In these rows, we are particularly interested
in the F1 score—it is trending up. Good!

TPs are trending up, too. Great! And
FNs and FPs are trending down.

The highest TP rate (great). Note that the TP rate is the same
as recall. But FPs are 4495%—that sounds like a lot.

401Conclusion

NOTE Always keep in mind that TensorBoard will smooth your data lines by
default. The lighter ghost line behind the solid color shows the raw values.

The U-Net architecture has a lot of capacity, and even with our reduced filter and
depth counts, it’s able to memorize our training set pretty quickly. One upside is that
we don’t end up needing to train the model for very long!

 Recall is our top priority for segmentation, since we’ll let issues with precision be
handled downstream by the classification models. Reducing those false positives is the
entire reason we have those classification models! This skewed situation does mean it
is more difficult than we’d like to evaluate our model. We could instead use the F2
score, which weights recall more heavily (or F5, or F10 …), but we’d have to pick an N
high enough to almost completely discount precision. We’ll skip the intermediates
and just score our model by recall, and use our human judgment to make sure a given
training run isn’t being pathological about it. Since we’re training on the Dice loss,
rather than directly on recall, it should work out.

 This is one of the situations where we are cheating a little, because we (the
authors) have already done the training and evaluation for chapter 14, and we know
how all of this is going to turn out. There isn’t any good way to look at this situation
and know that the results we’re seeing will work. Educated guesses are helpful, but
they are no substitute for actually running experiments until something clicks.

 As it stands, our results are good enough to use going forward, even if our metrics
have some pretty extreme values. We’re one step closer to finishing our end-to-end
project!

13.8 Conclusion
In this chapter, we’ve discussed a new way of structuring models for pixel-to-pixel seg-
mentation; introduced U-Net, an off-the-shelf, proven model architecture for those
kinds of tasks; and adapted an implementation for our own use. We’ve also changed
our dataset to provide data for our new model’s training needs, including small crops

Plateau

Training dataset

Validation dataset

OverfiTting
Plateau

Training dataset

Validation dataset

fiTtOverf

Figure 13.18 The validation
set recall, showing signs of
overfitting when recall goes
down after epoch 10 (3 million
samples)

402 CHAPTER 13 Using segmentation to find suspected nodules

for training and a limited set of slices for validation. Our training loop now has the
ability to save images to TensorBoard, and we have moved augmentation from the
dataset into a separate model that can operate on the GPU. Finally, we looked at our
training results and discussed how even though the false positive rate (in particular)
looks different from what we might hope, our results will be acceptable given our
requirements for them from the larger project. In chapter 14, we will pull together
the various models we’ve written into a cohesive, end-to-end whole.

13.9 Exercises
1 Implement the model-wrapper approach to augmentation (like what we used

for segmentation training) for the classification model.
a What compromises did you have to make?
b What impact did the change have on training speed?

2 Change the segmentation Dataset implementation to have a three-way split for
training, validation, and test sets.
a What fraction of the data did you use for the test set?
b Do performance on the test set and the validation set seem consistent with

each other?
c How badly does training suffer with the smaller training set?

3 Make the model try to segment malignant versus benign in addition to is-nod-
ule status.
a How does your metrics reporting need to change? Your image generation?
b What kind of results do you see? Is the segmentation good enough to skip

the classification step?
4 Can you train the model on a combination of 64 × 64 crops and whole-CT

slices?16

5 Can you find additional sources of data to use beyond just the LUNA (or LIDC)
data?

13.10 Summary
 Segmentation flags individual pixels or voxels for membership in a class. This is

in contrast to classification, which operates at the level of the entire image.
 U-Net was a breakthrough model architecture for segmentation tasks.
 Using segmentation followed by classification, we can implement detection with

relatively modest data and computation requirements.
 Naive approaches to 3D segmentation can quickly use too much RAM for

current-generation GPUs. Carefully limiting the scope of what is presented to
the model can help limit RAM usage.

16 Hint: Each sample tuple to be batched together must have the same shape for each corresponding tensor, but
the next batch could have different samples with different shapes.

403Summary

 It is possible to train a segmentation model on image crops while validating on
whole-image slices. This flexibility can be important for class balancing.

 Loss weighting is an emphasis on the loss computed from certain classes or sub-
sets of the training data, to encourage the model to focus on the desired results.
It can complement class balancing and is a useful tool when trying to tweak
model training performance.

 TensorBoard can display 2D images generated during training and will save a
history of how those models changed over the training run. This can be used to
visually track changes to model output as training progresses.

 Model parameters can be saved to disk and loaded back to reconstitute a model
that was saved earlier. The exact model implementation can change as long as
there is a 1:1 mapping between old and new parameters.

404

End-to-end
 nodule analysis,

 and where to go next

Over the past several chapters, we have built a decent number of systems that are
important components of our project. We started loading our data, built and
improved classifiers for nodule candidates, trained segmentation models to find
those candidates, handled the support infrastructure needed to train and evaluate
those models, and started saving the results of our training to disk. Now it’s time to
unify the components we have into a cohesive whole, so that we may realize the full
goal of our project: it’s time to automatically detect cancer.

This chapter covers
 Connecting segmentation and classification

models

 Fine-tuning a network for a new task

 Adding histograms and other metric types to
TensorBoard

 Getting from overfitting to generalizing

405Towards the finish line

14.1 Towards the finish line
We can get a hint of the work remaining by looking at figure 14.1. In step 3 (grouping)
we see that we still need to build the bridge between the segmentation model from
chapter 13 and the classifier from chapter 12 that will tell us whether what the segmen-
tation network found is, indeed, a nodule. On the right is step 5 (nodule analysis and
diagnosis), the last step to the overall goal: seeing whether a nodule is cancer. This is
another classification task; but to learn something in the process, we’ll take a fresh
angle at how to approach it by building on the nodule classifier we already have.

Of course, these brief descriptions and their simplified depiction in figure 14.1 leave
out a lot of detail. Let’s zoom in a little with figure 14.2 and see what we’ve got left to
accomplish.

 As you can see, three important tasks remain. Each item in the following list corre-
sponds to a major line item from figure 14.2:

1 Generate nodule candidates. This is step 3 in the overall project. Three tasks go
into this step:
a Segmentation—The segmentation model from chapter 13 will predict if a

given pixel is of interest: if we suspect it is part of a nodule. This will be done
per 2D slice, and every 2D result will be stacked to form a 3D array of voxels
containing nodule candidate predictions.

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]

MAL/BEN

candidate

Locations

ClaSsification

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

ClaSsification

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

.MHD

.RAW

CT

Data

segmentation

model

candidate

Sample

[(I,R,C),

 (I,R,C),

 (I,R,C),

 ...

]

[NEG,

 POS,

 NEG,

 ...

]]]]]]]]]]]]

MAL/BEN

ClaSsificacaacaaaacacccc tiotiotiottiioootiot nnnnnnnn

model

STep 2 (ch. 13):

Segmentation

Step 1 (ch. 10):

Data Loading

Step 4 (ch. 11+12):

on

Step 5 (ch. 14):

Nodule analysis

and Diagnosis

p=0.1

p=0.9

,

p=0.2

p=0.9

Step 3 (ch. 14):

Grouping

[()

candidate

Locations

Step 4 (ch. 11+

ClaSsificatio

.MMHD

.RRAW

CT

DataData

segmentattion

model

candidate

Sample

Figure 14.1 Our end-to-end lung cancer detection project, with a focus on this chapter’s
topics: steps 3 and 5, grouping and nodule analysis

406 CHAPTER 14 End-to-end nodule analysis, and where to go next

b Grouping—We will group the voxels into nodule candidates by applying a thresh-
old to the predictions, and then grouping connected regions of flagged voxels.

c Constructing sample tuples—Each identified nodule candidate will be used to
construct a sample tuple for classification. In particular, we need to produce
the coordinates (index, row, column) of that nodule’s center.

Once this is achieved, we will have an application that takes a raw CT scan from a
patient and produces a list of detected nodule candidates. Producing such a list is the
task in the LUNA challenge. If this project were to be used clinically (and we
reemphasize that our project should not be!), this nodule list would be suitable for
closer inspection by a doctor.

2 Classify nodules and malignancy. We’ll take the nodule candidates we just pro-
duced and pass them to the candidate classification step we implemented in
chapter 12, and then perform malignancy detection on the candidates flagged
as nodules:
a Nodule classification—Each nodule candidate from segmentation and group-

ing will be classified as either nodule or non-nodule. Doing so will allow us to
screen out the many normal anatomical structures flagged by our segmenta-
tion process.

1. Nodule Candidate Generation

2. Nodule and malignancy claSsification

3. End-to-end detection

1a. Segmentation 1b. Grouping 1c. sample tuples

(
 ...

 (..., IRC))

 (..., IRC),

2. Nodule and malignancy claSsificatio

3. End-to-end detection

n 1b. Grouping 1c. sample tup

(
...

(..., IRC

(..., IRC(
1a Segmentation1a. Segmentation

2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy model

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

Figure 14.2 A detailed look at the work remaining for our end-to-end project

407Independence of the validation set

b ROC/AUC metrics—Before we can start our last classification step, we’ll define
some new metrics for examining the performance of classification models, as
well as establish a baseline metric against which to compare our malignancy
classifiers.

c Fine-tuning the malignancy model—Once our new metrics are in place, we will
define a model specifically for classifying benign and malignant nodules,
train it, and see how it performs. We will do the training by fine-tuning: a
process that cuts out some of the weights of an existing model and replaces
them with fresh values that we then adapt to our new task.

At that point we will be within arm’s reach of our ultimate goal: to classify nodules into
benign and malignant classes and then derive a diagnosis from the CT. Again, diag-
nosing lung cancer in the real world involves much more than staring at a CT scan, so
our performing this diagnosis is more an experiment to see how far we can get using
deep learning and imaging data alone.

3 End-to-end detection. Finally, we will put all of this together to get to the finish
line, combining the components into an end-to-end solution that can look at a
CT and answer the question “Are there malignant nodules present in the
lungs?”
a IRC—We will segment our CT to get nodule candidate samples to classify.
b Determine the nodules—We will perform nodule classification on the candidate

to determine whether it should be fed into the malignancy classifier.
c Determine malignancy—We will perform malignancy classification on the nod-

ules that pass through the nodule classifier to determine whether the patient
has cancer.

We’ve got a lot to do. To the finish line!

NOTE As in the previous chapter, we will discuss the key concepts in detail in
the text and leave out the code for repetitive, tedious, or obvious parts. Full
details can be found in the book’s code repository.

14.2 Independence of the validation set
We are in danger of making a subtle but critical mistake, which we need to discuss and
avoid: we have a potential leak from the training set to the validation set! For each of
the segmentation and classification models, we took care of splitting the data into a
training set and an independent validation set by taking every tenth example for vali-
dation and the remainder for training.

 However, the split for the classification model was done on the list of nodules, and
the split for the segmentation model was done on the list of CT scans. This means we
likely have nodules from the segmentation validation set in the training set of the clas-
sification model and vice versa. We must avoid that! If left unfixed, this situation could
lead to performance figures that would be artificially higher compared to what we

408 CHAPTER 14 End-to-end nodule analysis, and where to go next

would obtain on an independent dataset. This is called a leak, and it would invalidate
our validation.

 To rectify this potential data leak, we need to rework the classification dataset to also
work at the CT scan level, just as we did for the segmentation task in chapter 13. Then
we need to retrain the classification model with this new dataset. On the bright side, we
didn’t save our classification model earlier, so we would have to retrain anyway.

 Your takeaway from this should be to keep an eye on the end-to-end process when
defining the validation set. Probably the easiest way to do this (and the way it is done
for most important datasets) is to make the validation split as explicit as possible—for
example, by having two separate directories for training and validation—and then
stick to this split for your entire project. When you need to redo the split (for exam-
ple, when you need to add stratification of the dataset split by some criterion), you
need to retrain all of your models with the newly split dataset.

 So what we did for you was to take LunaDataset from chapters 10–12 and copy
over getting the candidate list and splitting it into test and validation datasets from
Luna2dSegmentationDataset in chapter 13. As this is very mechanical, and there is
not much to learn from the details (you are a dataset pro by now), we won’t show the
code in detail.

 We’ll retrain our classification model by rerunning the training for the classifier:1

$ python3 -m p2ch14.training --num-workers=4 --epochs 100 nodule-nonnodule

After 100 epochs, we achieve about 95% accuracy for positive samples and 99% for
negative ones. As the validation loss isn’t seen to be trending upward again, we could
train the model longer to see if things continued to improve.

 After 90 epochs, we reach the maximal F1 score and have 99.2% validation accu-
racy, albeit only 92.8% on the actual nodules. We’ll take this model, even though we
might also try to trade a bit of overall accuracy for better accuracy on the malignant
nodules (in between, the model got 95.4% accuracy on actual nodules for 98.9% total
accuracy). This will be good enough for us, and we are ready to bridge the models.

14.3 Bridging CT segmentation and nodule candidate classification
Now that we have a segmentation model saved from chapter 13 and a classification
model we just trained in the previous section, figure 14.3, steps 1a, 1b, and 1c show
that we’re ready to work on writing the code that will convert our segmentation out-
put into sample tuples. We are doing the grouping: finding the dashed outline around
the highlight of step 1b in figure 14.3. Our input is the segmentation: the voxels flagged
by the segmentation model in 1a. We want to find 1c, the coordinates of the center of
mass of each “lump” of flagged voxels: the index, row, and column of the 1b plus mark
is what we need to provide in the list of sample tuples as output.

1 You can also use the p2_run_everything notebook.

409Bridging CT segmentation and nodule candidate classification

Running the models will naturally look very similar to how we handled them during
training and validation (validation in particular). The difference here is the loop over
the CTs. For each CT, we segment every slice and then take all the segmented output as
the input to grouping. The output from grouping will be fed into a nodule classifier,
and the nodules that survive that classification will be fed into a malignancy classifier.

 This is accomplished by the following outer loop over the CTs, which for each CT
segments, groups, classifies candidates, and provides the classifications for further
processing.

for _, series_uid in series_iter:
ct = getCt(series_uid)
mask_a = self.segmentCt(ct, series_uid)

candidateInfo_list = self.groupSegmentationOutput(
series_uid, ct, mask_a)

classifications_list = self.classifyCandidates(
ct, candidateInfo_list)

Listing 14.1 nodule_analysis.py:324, NoduleAnalysisApp.main

1. Nodule Candidate Generation

2. Nodule and malignancy claSsification

3. End-to-end detection

1a. Segmentation 1b. Grouping 1c. sample tuples

(
 ...

 (..., IRC))

 (..., IRC),

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy model

1. Nodule Candidate Geennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnneeeeeeeeeeeeeeeeeerationn

on

n 1b Grouping 1c sample tuples

C))

C),

2. Nodule and malignancy claSsificatio

3. End-to-end detection

n 1b. Grouping 1c. sample tup

(
 ...

 (..., IRC

(..., IRC(
1a Segmentation1a. Segmentation

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

odel2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy mo

Figure 14.3 Our plan for this chapter, with a focus on grouping segmented voxels into nodule candidates

Loops over the series UIDs Gets the CT (step 1 in the big picture)

Runs our segmentation
model on it (step 2)

Groups the flagged voxels
in the output (step 3)

Runs our nodule classifier
on them (step 4)

410 CHAPTER 14 End-to-end nodule analysis, and where to go next

We’ll break down the segmentCt, groupSegmentationOutput, and classifyCandi-
dates methods in the following sections.

14.3.1 Segmentation

First up, we are going to perform segmentation on every slice of the entire CT scan.
As we need to feed a given patient’s CT slice by slice, we build a Dataset that loads a
CT with a single series_uid and returns each slice, one per __getitem__ call.

NOTE The segmentation step in particular can take quite a while when exe-
cuted on the CPU. Even though we gloss over it here, the code will use the
GPU if available.

Other than the more expansive input, the main difference is what we do with the out-
put. Recall that the output is an array of per-pixel probabilities (that is, in the range
0…1) that the given pixel is part of a nodule. While iterating over the slices, we collect
the slice-wise predictions in a mask array that has the same shape as our CT input.
Afterward, we threshold the predictions to get a binary array. We will use a threshold
of 0.5, but if we wanted to, we could experiment with thresholding to trade getting
more true positives for an increase in false positives.

 We also include a small cleanup step using the erosion operation from
scipy.ndimage.morphology. It deletes one layer of boundary voxels and only keeps
the inner ones—those for which all eight neighboring voxels in the axis direction are
also flagged. This makes the flagged area smaller and causes very small components
(smaller than 3 × 3 × 3 voxels) to vanish. Put together with the loop over the data
loader, which we instruct to feed us all slices from a single CT, we have the following.

def segmentCt(self, ct, series_uid):
with torch.no_grad():

output_a = np.zeros_like(ct.hu_a, dtype=np.float32)
seg_dl = self.initSegmentationDl(series_uid) #
for input_t, _, _, slice_ndx_list in seg_dl:

input_g = input_t.to(self.device)
prediction_g = self.seg_model(input_g)

for i, slice_ndx in enumerate(slice_ndx_list):
output_a[slice_ndx] = prediction_g[i].cpu().numpy()

mask_a = output_a > 0.5
mask_a = morphology.binary_erosion(mask_a, iterations=1)

return mask_a

Listing 14.2 nodule_analysis.py:384, .segmentCt

We do not need gradients here,
so we don’t build the graph.

This array will hold
our output: a float

array of probability
annotations. We get a data

loader that lets
us loop over our
CT in batches.

After moving the
input to the GPU …… we run the

segmentation
model … … and copy each

element to the
output array.

Thresholds the probability outputs
to get a binary output, and then

applies binary erosion as cleanup

411Bridging CT segmentation and nodule candidate classification

This was easy enough, but now we need to invent the grouping.

14.3.2 Grouping voxels into nodule candidates

We are going to use a simple connected-components algorithm for grouping our sus-
pected nodule voxels into chunks to feed into classification. This grouping approach
labels connected components, which we will accomplish using scipy.ndimage
.measurements.label. The label function will take all nonzero pixels that share an
edge with another nonzero pixel and mark them as belonging to the same group.
Since our output from the segmentation model has mostly blobs of highly adjacent
pixels, this approach matches our data well.

def groupSegmentationOutput(self, series_uid, ct, clean_a):
candidateLabel_a, candidate_count = measurements.label(clean_a)
centerIrc_list = measurements.center_of_mass(

ct.hu_a.clip(-1000, 1000) + 1001,
labels=candidateLabel_a,
index=np.arange(1, candidate_count+1),

)

The output array candidateLabel_a is the same shape as clean_a, which we used for
input, but it has 0 where the background voxels are, and increasing integer labels 1, 2,
…, with one number for each of the connected blobs of voxels making up a nodule can-
didate. Note that the labels here are not the same as labels in a classification sense! These
are just saying “This blob of voxels is blob 1, this blob over here is blob 2, and so on.”

 SciPy also sports a function to get the centers of mass of the nodule candidates:
scipy.ndimage.measurements.center_of_mass. It takes an array with per-voxel den-
sities, the integer labels from the label function we just called, and a list of which of
those labels need to have a center calculated. To match the function’s expectation
that the mass is non-negative, we offset the (clipped) ct.hu_a by 1,001. Note that this
leads to all flagged voxels carrying some weight, since we clamped the lowest air value
to –1,000 HU in the native CT units.

candidateInfo_list = []
for i, center_irc in enumerate(centerIrc_list):

center_xyz = irc2xyz(
center_irc,
ct.origin_xyz,
ct.vxSize_xyz,
ct.direction_a,

)

Listing 14.3 nodule_analysis.py:401

Listing 14.4 nodule_analysis.py:409

Assigns each voxel the label
of the group it belongs to

Gets the center of mass for
each group as index, row,
column coordinates

Converts the voxel
coordinates to real
patient coordinates

412 CHAPTER 14 End-to-end nodule analysis, and where to go next

candidateInfo_tup = \
CandidateInfoTuple(False, False, False, 0.0, series_uid, center_xyz)

candidateInfo_list.append(candidateInfo_tup)

return candidateInfo_list

As output, we get a list of three arrays (one each for the index, row, and column) the
same length as our candidate_count. We can use this data to populate a list of
candidateInfo_tup instances; we have grown attached to this little data structure, so
we stick our results into the same kind of list we’ve been using since chapter 10. As we
don’t really have suitable data for the first four values (isNodule_bool,
hasAnnotation_bool, isMal_bool, and diameter_mm), we insert placeholder values of
a suitable type. We then convert our coordinates from voxels to physical coordinates in
a loop, creating the list. It might seem a bit silly to move our coordinates away from our
array-based index, row, and column, but all of the code that consumes
candidateInfo_tup instances expects center_xyz, not center_irc. We’d get wildly
wrong results if we tried to swap one for the other!

 Yay—we’ve conquered step 3, getting nodule locations from the voxel-wise detec-
tions! We can now crop out the suspected nodules and feed them to our classifier to
weed out some more false positives.

14.3.3 Did we find a nodule? Classification to reduce false positives

As we started part 2 of this book, we described the job of a radiologist looking through
CT scans for signs of cancer thus:

Currently, the work of reviewing the data must be performed by highly trained specialists,
requires painstaking attention to detail, and it is dominated by cases where no cancer exists.

Doing that job well is akin to being placed in front of 100 haystacks and being told,
“Determine which of these, if any, contain a needle.”

We’ve spent time and energy discussing the proverbial needles; let’s discuss the hay
for a moment by looking at figure 14.4. Our job, so to speak, is to fork away as much
hay as we can from in front of our glassy-eyed radiologist, so that they can refocus
their highly trained attention where it can do the most good.

 Let’s look at how much we are discarding at each step while we perform our end-
to-end diagnosis. The arrows in figure 14.4 show the data as it flows from the raw CT
voxels through our project to our final malignancy determination. Each arrow that
ends with an X indicates a swath of data discarded by the previous step; the arrow
pointing to the next step represents the data that survived the culling. Note that the
numbers here are very approximate.

Builds our candidate info tuple and
appends it to the list of detections

413Bridging CT segmentation and nodule candidate classification

Let’s go through the steps in figure 14.4 in more detail:

1 Segmentation—Segmentation starts with the entire CT: hundreds of slices, or
about 33 million (225) voxels (give or take quite a lot). About 220 voxels are
flagged as being of interest; this is orders of magnitude smaller than the total
input, which means we’re throwing out 97% of the voxels (that’s the 225 on the
left leading to the X).

2 Grouping. While grouping doesn’t remove anything explicitly, it does reduce the
number of items we’re considering, since we consolidate voxels into nodule
candidates. The grouping produces about 1,000 candidates (210) from 1 million
voxels. A nodule of 16 × 16 × 2 voxels would have a total of 210 voxels.2

3 Nodule classification. This process throws away the majority of the remaining ~210

items. From our thousands of nodule candidates, we’re left with tens of nod-
ules: about 25.

4 Malignant classification. Finally, the malignancy classifier takes tens of nodules
(25) and finds the one or two (21) that are cancer.

2 The size of any given nodule is highly variable, obviously.

3. nodule

claSsification

4. malignant

claSsification

~2^10 ~2^5

~2^5 ~2^1

1. Segmentation

2. Grouping

~2^25 voxels ~2^10

candidates

~2^25 ~2^20

Figure 14.4 The steps of our end-to-end detection project, and the rough order of magnitude of data removed at
each step

414 CHAPTER 14 End-to-end nodule analysis, and where to go next

Each step along the way allows us to discard a huge amount of data that our model is
confident is irrelevant to our cancer-detection goal. We went from millions of data
points to a handful of tumors.

Now that we have identified regions in the image that our segmentation model con-
siders probable candidates, we need to crop these candidates from the CT and feed
them into the classification module. Happily, we have candidateInfo_list from the
previous section, so all we need to do is make a DataSet from it, put it into a Data-
Loader, and iterate over it. Column 1 of the probability predictions is the predicted
probability that this is a nodule and is what we want to keep. Just as before, we collect
the output from the entire loop.

def classifyCandidates(self, ct, candidateInfo_list):
cls_dl = self.initClassificationDl(candidateInfo_list)
classifications_list = []
for batch_ndx, batch_tup in enumerate(cls_dl):

input_t, _, _, series_list, center_list = batch_tup

input_g = input_t.to(self.device)
with torch.no_grad():

_, probability_nodule_g = self.cls_model(input_g)
if self.malignancy_model is not None:

_, probability_mal_g = self.malignancy_model(input_g)
else:

probability_mal_g = torch.zeros_like(probability_nodule_g)

zip_iter = zip(center_list,
probability_nodule_g[:,1].tolist(),
probability_mal_g[:,1].tolist())

for center_irc, prob_nodule, prob_mal in zip_iter:
center_xyz = irc2xyz(center_irc,

direction_a=ct.direction_a,

Listing 14.5 nodule_analysis.py:357, .classifyCandidates

Fully automated vs. assistive systems
There is a difference between a fully automated system and one that is designed to
augment a human’s abilities. For our automated system, once a piece of data is
flagged as irrelevant, it is gone forever. When presenting data for a human to con-
sume, however, we should allow them to peel back some of the layers and look at
the near misses, as well as annotate our findings with a degree of confidence. Were
we designing a system for clinical use, we’d need to carefully consider our exact
intended use and make sure our system design supported those use cases well.
Since our project is fully automated, we can move forward without having to consider
how best to surface the near misses and the unsure answers.

Again, we get a data loader to loop over,
this time based on our candidate list.

Sends the
inputs to
the device

Runs the inputs
through the nodule
vs. non-nodule
network

If we have a
malignancy model,
we run that, too.

Does our bookkeeping,
constructing a list of our
results

415Bridging CT segmentation and nodule candidate classification

origin_xyz=ct.origin_xyz,
vxSize_xyz=ct.vxSize_xyz,

)
cls_tup = (prob_nodule, prob_mal, center_xyz, center_irc)
classifications_list.append(cls_tup)

return classifications_list

This is great! We can now threshold the output probabilities to get a list of things our
model thinks are actual nodules. In a practical setting, we would probably want to out-
put them for a radiologist to inspect. Again, we might want to adjust the threshold to
err a bit on the safe side: that is, if our threshold was 0.3 instead of 0.5, we would pres-
ent a few more candidates that turn out not to be nodules, while reducing the risk of
missing actual nodules.

 if not self.cli_args.run_validation:
print(f"found nodule candidates in {series_uid}:")
for prob, prob_mal, center_xyz, center_irc in classifications_list:

if prob > 0.5:
s = f"nodule prob {prob:.3f}, "
if self.malignancy_model:
s += f"malignancy prob {prob_mal:.3f}, "

s += f"center xyz {center_xyz}"
print(s)

if series_uid in candidateInfo_dict:
one_confusion = match_and_score(

classifications_list, candidateInfo_dict[series_uid]
)
all_confusion += one_confusion
print_confusion(

series_uid, one_confusion, self.malignancy_model is not None
)

print_confusion(
"Total", all_confusion, self.malignancy_model is not None

)

Let’s run this for a given CT from the validation set:3

$ python3.6 -m p2ch14.nodule_analysis 1.3.6.1.4.1.14519.5.2.1.6279.6001

➥ .592821488053137951302246128864
...
found nodule candidates in 1.3.6.1.4.1.14519.5.2.1.6279.6001.5928214880

➥ 53137951302246128864:

Listing 14.6 nodule_analysis.py:333, NoduleAnalysisApp.main

3 We chose this series specifically because it has a nice mix of results.

If we don’t pass run_validation, we
print individual information …

… for all candidates found by
the segmentation where the
classifier assigned a nodule
probability of 50% or more.

If we have the ground truth data, we
compute and print the confusion matrix and
also add the current results to the total.

416 CHAPTER 14 End-to-end nodule analysis, and where to go next

nodule prob 0.533, malignancy prob 0.030, center xyz XyzTuple

➥ (x=-128.857421875, y=-80.349609375, z=-31.300007820129395)
nodule prob 0.754, malignancy prob 0.446, center xyz XyzTuple

➥ (x=-116.396484375, y=-168.142578125, z=-238.30000233650208)
...
nodule prob 0.974, malignancy prob 0.427, center xyz XyzTuple

➥ (x=121.494140625, y=-45.798828125, z=-211.3000030517578)
nodule prob 0.700, malignancy prob 0.310, center xyz XyzTuple

➥ (x=123.759765625, y=-44.666015625, z=-211.3000030517578)
...

The script found 16 nodule candidates in total. Since we’re using our validation set, we
have a full set of annotations and malignancy information for each CT, which we can
use to create a confusion matrix with our results. The rows are the truth (as defined by
the annotations), and the columns show how our project handled each case:

1.3.6.1.4.1.14519.5.2.1.6279.6001.592821488053137951302246128864
| Complete Miss | Filtered Out | Pred. Nodule

Non-Nodules | | 1088 | 15
Benign | 1 | 0 | 0

 Malignant | 0 | 0 | 1

The Complete Miss column is when our segmenter did not flag a nodule at all. Since
the segmenter was not trying to flag non-nodules, we leave that cell blank. Our seg-
menter was trained to have high recall, so there are a large number of non-nodules,
but our nodule classifier is well equipped to screen those out.

 So we found the 1 malignant nodule in this scan, but missed a 17th benign one. In
addition, 15 false positive non-nodules made it through the nodule classifier. The
filtering by the classifier brought the false positives down from over 1,000! As we saw
earlier, 1,088 is about O(210), so that lines up with what we expect. Similarly, 15 is
about O(24), which isn’t far from the O(25) we ballparked.

 Cool! But what’s the larger picture?

14.4 Quantitative validation
Now that we have anecdotal evidence that the thing we built might be working on one
case, let’s take a look at the performance of our model on the entire validation set.
Doing so is simple: we run our validation set through the previous prediction and
check how many nodules we get, how many we miss, and how many candidates are
erroneously identified as nodules.

This candidate is assigned a 53% probability of being malignant, so it barely makes the probability
threshold of 50%. The malignancy classification assigns a very low (3%) probability.

Detected as a nodule with very high confidence
and assigned a 42% probability of malignancy

Scan ID

Prognosis: Complete Miss means the segmentation
didn’t find a nodule, Filtered Out is the classifier’s work,

and Predicted Nodules are those it marked as nodules.

The rows contain the ground truth.

417Predicting malignancy

 We run the following, which should take half an hour to an hour when run on the
GPU. After coffee (or a full-blown nap), here is what we get:

$ python3 -m p2ch14.nodule_analysis --run-validation

...
Total

| Complete Miss | Filtered Out | Pred. Nodule
Non-Nodules | | 164893 | 2156

Benign | 12 | 3 | 87
Malignant | 1 | 6 | 45

We detected 132 of the 154 nodules, or 85%. Of the 22 we missed, 13 were not consid-
ered candidates by the segmentation, so this would be the obvious starting point for
improvements.

 About 95% of the detected nodules are false positives. This is of course not great; on
the other hand, it’s a lot less critical—having to look at 20 nodule candidates to find one
nodule will be much easier than looking at the entire CT. We will go into this in more detail
in section 14.7.2, but we want to stress that rather than treating these mistakes as a black
box, it’s a good idea to investigate the misclassified cases and see if they have commonal-
ities. Are there characteristics that differentiate them from the samples that were correctly
classified? Can we find anything that could be used to improve our performance?

 For now, we’re going to accept our numbers as is: not bad, but not perfect. The
exact numbers may differ when you run your self-trained model. Toward the end of
this chapter, we will provide some pointers to papers and techniques that can help
improve these numbers. With inspiration and some experimentation, we are confi-
dent that you can achieve better scores than we show here.

14.5 Predicting malignancy
Now that we have implemented the nodule-detection task of the LUNA challenge and
can produce our own nodule predictions, we ask ourselves the logical next question:
can we distinguish malignant nodules from benign ones? We should say that even with
a good system, diagnosing malignancy would probably take a more holistic view of the
patient, additional non-CT context, and eventually a biopsy, rather than just looking
at single nodules in isolation on a CT scan. As such, this seems to be a task that is likely
to be performed by a doctor for some time to come.

14.5.1 Getting malignancy information

The LUNA challenge focuses on nodule detection and does not come with malig-
nancy information. The LIDC-IDRI dataset (http://mng.bz/4A4R) has a superset of
the CT scans used for the LUNA dataset and includes additional information about
the degree of malignancy of the identified tumors. Conveniently, there is a PyLIDC
library that can be installed easily, as follows:

$ pip3 install pylidc

http://mng.bz/4A4R

418 CHAPTER 14 End-to-end nodule analysis, and where to go next

The pylicd library gives us ready access to the additional malignancy information we
want. Just like matching the annotations with the candidates by location as we did in
chapter 10, we need to associate the annotation information from LIDC with the coor-
dinates of the LUNA candidates.

 In the LIDC annotations, the malignancy information is encoded per nodule and
diagnosing radiologist (up to four looked at the same nodule) using an ordinal five-value
scale from 1 (highly unlikely) through moderately unlikely, indeterminate, and moder-
ately suspicious, and ending with 5 (highly suspicious).4 These annotations are based on
the image alone and subject to assumptions about the patient. To convert the list of num-
bers to a single Boolean yes/no, we will consider nodules to be malignant when at least
two radiologists rated that nodule as “moderately suspicious” or greater. Note that this cri-
terion is somewhat arbitrary; indeed, the literature has many different ways of dealing
with this data, including predicting the five steps, using averages, or removing nodules
from the dataset where the rating radiologists were uncertain or disagreed.

 The technical aspects of combining the data are the same as in chapter 10, so we skip
showing the code here (it is in the code repository for this chapter) and will use the
extended CSV file. We will use the dataset in a way very similar to what we did for the nod-
ule classifier, except that we now only need to process actual nodules and use whether
a given nodule is malignant or not as the label to predict. This is structurally very similar
to the balancing we used in chapter 12, but instead of sampling from pos_list and
neg_list, we sample from mal_list and ben_list. Just as we did for the nodule classi-
fier, we want to keep the training data balanced. We put this into the MalignancyLuna-
Dataset class, which subclasses the LunaDataset but is otherwise very similar.

 For convenience, we create a dataset command-line argument in training.py and
dynamically use the dataset class specified on the command line. We do this by using
Python’s getattr function. For example, if self.cli_args.dataset is the string
MalignancyLunaDataset, it will get p2ch14.dsets.MalignancyLunaDataset and
assign this type to ds_cls, as we can see here.

ds_cls = getattr(p2ch14.dsets, self.cli_args.dataset)

train_ds = ds_cls(
val_stride=10,
isValSet_bool=False,
ratio_int=1,

)

14.5.2 An area under the curve baseline: Classifying by diameter
It is always good to have a baseline to see what performance is better than nothing. We
could go for better than random, but here we can use the diameter as a predictor for
malignancy—larger nodules are more likely to be malignant. Step 2b of figure 14.5
hints at a new metric we can use to compare classifiers.

4 See the PyLIDC documentation for full details: http://mng.bz/Qyv6.

Listing 14.7 training.py:154, .initTrainDl

Dynamic class-name
lookup

Recall that this is the one-to-one balancing of the
training data, here between benign and malignant.

http://mng.bz/Qyv6

419Predicting malignancy

We could use the nodule diameter as the sole input to a hypothetical classifier predict-
ing whether a nodule is malignant. It wouldn’t be a very good classifier, but it turns
out that saying “Everything bigger than this threshold X is malignant” is a better pre-
dictor of malignancy than we might expect. Of course, picking the right threshold is
key—there’s a sweet spot that gets all the huge tumors and none of the tiny specks,
and roughly splits the uncertain area that’s a jumble of larger benign nodules and
smaller malignant ones.

 As we might recall from chapter 12, our true positive, false positive, true negative,
and false negative counts change based on what threshold value we choose. As we
decrease the threshold over which we predict that a nodule is malignant, we will
increase the number of true positives, but also the number of false positives. The false
positive rate (FPR) is FP / (FP + TN), while the true positive rate (TPR) is TP / (TP +
FN), which you might also remember from chapter 12 as the recall.

 Let’s set a range for our threshold. The lower bound will be the value at which all
of our samples are classified as positive, and the upper bound will be the opposite,
where all samples are classified as negative. At one extreme, our FPR and TPR will
both be zero, since there won’t be any positives; and at the other, both will be one,
since TNs and FNs won’t exist (everything is positive!).

1. Nodule Candidate Generation

2. Nodule and malignancy claSsification

3. End-to-end detection

1a. Segmentation 1b. Grouping 1c. sample tuples

(
 ...

 (..., IRC))

 (..., IRC),

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy model

1. Nodule Candidate Generation

on

n 1b. Grouping 1c. sample tuples

C))

C),

2. Nodule and mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmaaaaaaaaaaaaaaaaaaaallllllllllllllllllllllllllligggggggggggggggggggggggggnnnnnnnnnnnnancy claSsificatio

3. End-to-end detection

n 1b. Grouping 1c. sample tup

(
 ...

 (..., IRC

(..., IRC(
1a Segmentation1a. Segmentation

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

odel2a. Nodule claSsificationnnnnnnnnnnnnnnnnnnnnnn 2b. ROC/AUC Metrics 2c. fine-tuning malignancy mo

Figure 14.5 The end-to-end project we are implementing in this chapter, with a focus on the ROC graph

420 CHAPTER 14 End-to-end nodule analysis, and where to go next

For our nodule data, that’s from 3.25 mm (the smallest nodule) to 22.78 mm (the
largest). If we pick a threshold value somewhere between those two values, we can
then compute FPR(threshold) and TPR(threshold). If we set the FPR value to X and
TPR to Y, we can plot a point that represents that threshold; and if we instead plot the
FPR versus TPR for every possible threshold, we get a diagram called the receiver operat-
ing characteristic (ROC) shown in figure 14.6. The shaded area is the area under the
(ROC) curve, or AUC. It is between 0 and 1, and higher is better.5

5 Note that random predictions on a balanced dataset would result in an AUC of 0.5, so that gives us a floor for
how good our classifier must be.

No one true way to measure false positives: Precision vs. false positive rate
The FPR here and the precision from chapter 12 are rates (between 0 and 1) that
measure things that are not quite opposites. As we discussed, precision is TP /
(TP + FP) and measures how many of the samples predicted to be positive will actu-
ally be positive. The FPR is FP / (FP + TN) and measures how many of the actually
negative samples are predicted to be positive. For heavily imbalanced datasets (like
the nodule versus non-nodule classification), our model might achieve a very good
FPR (which is closely related to the cross-entropy criterion as a loss) while the preci-
sion—and thus the F1 score—is still very poor. A low FPR means we’re weeding out
a lot of what we’re not interested in, but if we are looking for that proverbial needle,
we still have mostly hay.

Figure 14.6 Receiver operating characteristic (ROC) curve for our baseline

5.42 Mm

threshold

10.55 Mm

Threshold

0.0

0.0 0.2

false positive rate

t
r

u
e

 p
o
s
it

iv
e

 r
a
t
e

0.4 0.6

roc diameter baseline, auc=0.901

0.8 1.0

0.2

0.4

0.6

0.8

1.0

5 42 Mm

T

421Predicting malignancy

Here, we also call out two specific threshold values: diameters of 5.42 mm and 10.55
mm. We chose those two values because they give us somewhat reasonable endpoints
for the range of thresholds we might consider, were we to need to pick a single thresh-
old. Anything smaller than 5.42 mm, and we’d only be dropping our TPR. Larger
than 10.55 mm, and we’d just be flagging malignant nodules as benign for no gain.
The best threshold for this classifier will probably be in the middle somewhere.

 How do we actually compute the values shown here? We first grab the candidate
info list, filter out the annotated nodules, and get the malignancy label and diameter.
For convenience, we also get the number of benign and malignant nodules.

In[2]:
ds = p2ch14.dsets.MalignantLunaDataset(val_stride=10, isValSet_bool=True)
nodules = ds.ben_list + ds.mal_list
is_mal = torch.tensor([n.isMal_bool for n in nodules])
diam = torch.tensor([n.diameter_mm for n in nodules])
num_mal = is_mal.sum()
num_ben = len(is_mal) - num_mal

To compute the ROC curve, we need an array of the possible thresholds. We get this
from torch.linspace, which takes the two boundary elements. We wish to start at
zero predicted positives, so we go from maximal threshold to minimal. This is the 3.25
to 22.78 we already mentioned:

In[3]:
threshold = torch.linspace(diam.max(), diam.min())

We then build a two-dimensional tensor in which the rows are per threshold, the col-
umns are per-sample information, and the value is whether this sample is predicted as
positive. This Boolean tensor is then filtered by whether the label of the sample is
malignant or benign. We sum the rows to count the number of True entries. Dividing
by the number of malignant or benign nodules gives us the TPR and FPR—the two
coordinates for the ROC curve:

In[4]:
predictions = (diam[None] >= threshold[:, None])
tp_diam = (predictions & is_mal[None]).sum(1).float() / num_mal
fp_diam = (predictions & ~is_mal[None]).sum(1).float() / num_ben

Listing 14.8 p2ch14_malben_baseline.ipynb

Takes the regular dataset and in particular
the list of benign and malignant nodules

Gets lists of
malignancy status
and diameterFor normalization of the TPR and

FPR , we take the number of
malignant and benign nodules.

Indexing by None adds a dimension of size 1, just like
.unsqueeze(ndx). This gets us a 2D tensor of whether a
given nodule (in a column) is classified as malignant for

a given diameter (in the row).

With the predictions matrix, we can
compute the TPRs and FPRs for each

diameter by summing over the columns.

422 CHAPTER 14 End-to-end nodule analysis, and where to go next

To compute the area under this curve, we use numeric integration by the trapezoidal
rule (https://en.wikipedia.org/wiki/Trapezoidal_rule), where we multiply the aver-
age TPRs (on the Y-axis) between two points by the difference of the two FPRs (on the
X-axis)—the area of trapezoids between two points of the graph. Then we sum the
area of the trapezoids:

In[5]:
fp_diam_diff = fp_diam[1:] - fp_diam[:-1]
tp_diam_avg = (tp_diam[1:] + tp_diam[:-1])/2
auc_diam = (fp_diam_diff * tp_diam_avg).sum()

Now, if we run pyplot.plot(fp_diam, tp_diam, label=f"diameter baseline,

AUC={auc_diam:.3f}") (along with the appropriate figure setup we see in cell 8), we
get the plot we saw in figure 14.6.

14.5.3 Reusing preexisting weights: Fine-tuning
One way to quickly get results (and often also get by with much less data) is to start not
from random initializations but from a network trained on some task with related data.
This is called transfer learning or, when training only the last few layers, fine-tuning. Look-
ing at the highlighted part in figure 14.7, we see that in step 2c, we’re going to cut out
the last bit of the model and replace it with something new.

Figure 14.7 The end-to-end project we’re implementing in this chapter, with a focus on fine-tuning

1. Nodule Candidate Generation

2. Nodule and malignancy claSsification

3. End-to-end detection

1a. Segmentation 1b. Grouping 1c. sample tuples

(
 ...

 (..., IRC))

 (..., IRC),

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy model

1. Nodule Candidate Generation

ooooooooooooooooooooooooooooooooon

n 1b. Grouping 1c. sample tuples

C))

C),

2. Nodule and malignanccyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy ccccccccccccccccccccccccccccccccccclllllllllllllllaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaSsiiiiiiiiiiiiiiiiiifffffffffffficattttttttttttttiiiiiiiiiiiiiiiiiiooooooooooooooooooooo

3. End-to-end detectttttttttttttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

n 1b. Grouping 1c. sample tup

(
 ...

 (..., IRC

(..., IRC(
1a Segmentation1a. Segmentation

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

odellllllllllllll2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy mo

https://en.wikipedia.org/wiki/Trapezoidal_rule

423Predicting malignancy

Recall from chapter 8 that we could interpret the intermediate values as features
extracted from the image—features could be edges or corners that the model detects
or indications of any pattern. Before deep learning, it was very common to use hand-
crafted features similar to what we briefly experimented with when starting with con-
volutions. Deep learning has the network derive features useful for the task at hand,
such as discrimination between classes, from the data. Now, fine-tuning has us mix the
ancient ways (almost a decade ago!) of using preexisting features and the new way of
using learned features. We treat some (often large) part of the network as a fixed fea-
ture extractor and only train a relatively small part on top of it.

 This generally works very well. Pretrained networks trained on ImageNet as we saw
in chapter 2 are very useful as feature extractors for many tasks dealing with natural
images—sometimes they also work amazingly for completely different inputs, from
paintings or imitations thereof in style transfer to audio spectrograms. There are cases
when this strategy works less well. For example, one of the common data augmentation
strategies in training models on ImageNet is randomly flipping the images—a dog
looking right is the same class as one looking left. As a result, the features between
flipped images are very similar. But if we now try to use the pretrained model for a task
where left or right matters, we will likely encounter accuracy problems. If we want to
identify traffic signs, turn left here is quite different than turn right here; but a network
building on ImageNet-based features will probably make lots of wrong assignments
between the two classes.6

 In our case, we have a network that has been trained on similar data: the nodule
classification network. Let’s try using that.

 For the sake of exposition, we will stay very basic in our fine-tuning approach. In
the model architecture in figure 14.8, the two bits of particular interest are high-
lighted: the last convolutional block and the head_linear module. The simplest fine-
tuning is to cut out the head_linear part—in truth, we are just keeping the random
initialization. After we try that, we will also explore a variant where we retrain both
head_linear and the last convolutional block.

 We need to do the following:

 Load the weights of the model we wish to start with, except for the last linear
layer, where we want to keep the initialization.

 Disable gradients for the parameters we do not want to train (everything except
parameters with names starting with head).

When we do fine-tuning training on more than head_linear, we still only reset head
_linear to random, because we believe the previous feature-extraction layers might

6 You can try it yourself with the venerable German Traffic Sign Recognition Benchmark dataset at http://
mng.bz/XPZ9.

http://mng.bz/XPZ9
http://mng.bz/XPZ9
http://mng.bz/XPZ9

424 CHAPTER 14 End-to-end nodule analysis, and where to go next

not be ideal for our problem, but we expect them to be a reasonable starting point.
This is easy: we add some loading code into our model setup.

d = torch.load(self.cli_args.finetune, map_location='cpu')
model_blocks = [

n for n, subm in model.named_children()
if len(list(subm.parameters())) > 0

]
finetune_blocks = model_blocks[-self.cli_args.finetune_depth:]
model.load_state_dict(

{
k: v for k,v in d['model_state'].items()
if k.split('.')[0] not in model_blocks[-1]

},

Listing 14.9 training.py:124, .initModel

Luna Model Architecture
T
a
il

B

a
c

k
b

o
n
e

 H

E
A
D

Input

Image

Filter

SmaLler

Output

ChaNnels: 1

Image: 32 48 48

ChaNnels: 8

Image: 16 24 24x x

ChaNnels: 32

Image: 4 6 6

ChaNnels: 64

Image: 2 3 3x x

ChaNnels: 16

Image: 8 12 12

x x

x x

x x

A
T
a
il

B

a
c

k
b

n

 H

A
D

Input

Image

maLler

Output

L

Filter

S

O

Nnels: 1ChaNn

e: 32Image 2 48 48

Nnels: 8ChaNn

e: 16Image 24 24x x

ls: 32ChhhhhhhhhaNnaNnNnaNnNnNnNnNnaNnNnNnNnNnNnaNnNnaNnNnNnNnaNnaNnaaa el

4Image: 6 6

ChChChCChChCCChhhhhhhaNnaNnaNnaaNnaNnaaNnaNnaNnaNnNnNnNnNnNnel

Image:

Nnels: 16ChaNn

e: 8Image 122 12

x x

x x

x x

--finetune-Depth=1

--finetune-Depth=2

ls 32el

s: 666666666664444444444444444444444ls

222222222222 3 33333333333333333xxxxxxxxxx x

--fine

--fine

Figure 14.8 The model architecture from chapter 11, with the depth-1 and depth-2 weights highlighted

Filters out top-level modules
that have parameters (as
opposed to the final activation)

Takes the last finetune_depth blocks.
The default (if fine-tuning) is 1.

Filters out the last block (the final
linear part) and does not load it.
Starting from a fully initialized model
would have us begin with (almost) all
nodules labeled as malignant,
because that output means “nodule”
in the classifier we start from.

425Predicting malignancy

strict=False,
)
for n, p in model.named_parameters():

if n.split('.')[0] not in finetune_blocks:
p.requires_grad_(False)

We’re set! We can train only the head by running this:

python3 -m p2ch14.training \
--malignant \
--dataset MalignantLunaDataset \
--finetune data/part2/models/cls_2020-02-06_14.16.55_final-nodule-

➥ nonnodule.best.state \
--epochs 40 \
malben-finetune

Let’s run our model on the validation set and get the ROC curve, shown in figure
14.9. It’s a lot better than random, but given that we’re not outperforming the base-
line, we need to see what is holding us back.

Figure 14.10 shows the TensorBoard graphs for our training. Looking at the validation
loss, we see that while the AUC slowly increases and the loss decreases, even the training
loss seems to plateau at a somewhat high level (say, 0.3) instead of trending toward zero.
We could run a longer training to check whether it is just very slow; but comparing this
to the loss progression discussed in chapter 5—in particular, figure 5.14—we can see
our loss value has not flatlined as badly as case A in the figure, but our problem with

Passing strict=False lets us load only some weights
of the module (with the filtered ones missing).

For all but finetune_blocks,
we do not want gradients.

0.0

0.0 0.2 0.4 0.6 0.8 1.0

diameter baseline, auc = 0.901

finetuned-1 model, auc = 0.888

0.2

0.4

0.6

0.8

1.0

Figure 14.9 ROC curve for our fine-tuned model with a retrained final linear
layer. Not too bad, but not quite as good as the baseline.

426 CHAPTER 14 End-to-end nodule analysis, and where to go next

losses stagnating is qualitatively similar. Back then, case A indicated that we did not have
enough capacity, so we should consider the following three possible causes:

 Features (the output of the last convolution) obtained by training the network
on nodule versus non-nodule classification are not useful for malignancy detec-
tion.

 The capacity of the head—the only part we are training—is not large enough.
 The network might have too little capacity overall.

If training only the fully connected part in fine-tuning is not enough, the next thing to
try is to include the last convolutional block in the fine-tuning training. Happily, we
introduced a parameter for that, so we can include the block4 part into our training:

python3 -m p2ch14.training \
--malignant \
--dataset MalignantLunaDataset \
--finetune data/part2/models/cls_2020-02-06_14.16.55_final-nodule-

➥ nonnodule.best.state \
--finetune-depth 2 \
--epochs 10 \
malben-finetune-twolayer

Once done, we can check our new best model against the baseline. Figure 14.11 looks
more reasonable! We flag about 75% of the malignant nodules with almost no false
positives. This is clearly better than the 65% the diameter baseline can give us. Trying
to push beyond 75%, our model’s performance falls back to the baseline. When we go
back to the classification problem, we will want to pick a point on the ROC curve to
balance true positives versus false positives.

 We are roughly on par with the baseline, and we will be content with that. In sec-
tion 14.7, we hint at the many things that you can explore to improve these results,
but that didn’t fit in this book.

depth 1 validation

depth 1 training

depth 1 training

depth 1 validation

Figure 14.10 AUC (left) and loss (right) for the fine-tuning of the last linear layer

This CLI
parameter is new.

427Predicting malignancy

Looking at the loss curves in figure 14.12, we see that our model is now overfitting
very early; thus the next step would be to check into further regularization methods.
We will leave that for you.

 There are more refined methods of fine-tuning. Some advocate gradually unfreeze
the layers, starting from the top. Others propose to train the later layers with the usual
learning rate and use a smaller rate for the lower layers. PyTorch does natively support
using different optimization parameters like learning rates, weight decay, and
momentum for different parameters by separating them in several parameter groups
that are just that: lists of parameters with separate hyperparameters (https://pytorc
.org/docs/stable/optim.html#per-parameter-options).

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

diameter baseline, auc = 0.901

finetuned-1lr model, auc = 0.888

finetuned-2lr model, auc = 0.911

Figure 14.11 ROC
curve for our modified
model. Now we’re
getting really close to
the baseline.

depth 1 validation

depth 1 training

depth 1 training

depth 1 validation

dededededededededdededededededededededededddedddddeedededdeeeeedeed ptptptpttttpttptptptpppptptpttptppptttpptpttpttpttpttptttppppp h hh hhhhhhhhhhh h hhhhhhhhhhhhhh hhhhhh 1 1111111111 vavvavvvvvvavvv lilililidaddadddddadd titititionnononnnnnnonnn

deeeedeeptpthh 11 trtraiaaaaaia nininggggggnggg

deed pth hhhh 1 traiaaaa ninggggg

dedededededeededeeedeeeeededeeeedeeededddeedddeededeeddddddd ptptpppptptppttptptppptttttttptpppppppttptptppttpttpptttttthhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhh 11111111111111 1 vavavavavvvvvvvvvvvvvvvvvvvvvvvvvvvvv lililililllllllllll daddadadddddatitititionononnnnnnon

Depth 2 training

depth 1 training

depth 1 validation

depth 2 validation

depth 2 validation

depth 1 validation

depth 1 training

depth 2 training

Figure 14.12 AUC (left) and loss (right) for the fine-tuning of the last convolutional block and the fully connected
layer

https://pytorch.org/docs/stable/optim.html#per-parameter-options
https://pytorch.org/docs/stable/optim.html#per-parameter-options
https://pytorch.org/docs/stable/optim.html#per-parameter-options

428 CHAPTER 14 End-to-end nodule analysis, and where to go next

14.5.4 More output in TensorBoard
While we are retraining the model, it might be worth looking at a few more outputs
we could add to TensorBoard to see how we are doing. For histograms, TensorBoard
has a premade recording function. For ROC curves, it does not, so we have an oppor-
tunity to meet the Matplotlib interface.

HISTOGRAMS

We can take the predicted probabilities for malignancy and make a histogram of
them. Actually, we make two: one for (according to the ground truth) benign and one
for malignant nodules. These histograms give us a fine-grained view into the outputs
of the model and let us see if there are large clusters of output probabilities that are
completely wrong.

NOTE In general, shaping the data you display is an important part of getting
quality information from the data. If you have many extremely confident cor-
rect classifications, you might want to exclude the leftmost bin. Getting the
right things onscreen will typically require some iteration of careful thought
and experimentation. Don’t hesitate to tweak what you’re showing, but also
take care to remember if you change the definition of a particular metric with-
out changing the name. It can be easy to compare apples to oranges unless
you’re disciplined about naming schemes or removing now-invalid runs of data.

We first create some space in the tensor metrics_t holding our data. Recall that we
defined the indices somewhere near the top.

METRICS_LABEL_NDX=0
METRICS_PRED_NDX=1
METRICS_PRED_P_NDX=2
METRICS_LOSS_NDX=3
METRICS_SIZE = 4

Once that’s done, we can call writer.add_histogram with a label, the data, and the
global_step counter set to our number of training samples presented; this is similar
to the scalar call earlier. We also pass in bins set to a fixed scale.

bins = np.linspace(0, 1)

writer.add_histogram(
'label_neg',
metrics_t[METRICS_PRED_P_NDX, negLabel_mask],
self.totalTrainingSamples_count,
bins=bins

)
writer.add_histogram(

'label_pos',

Listing 14.10 training.py:31

Listing 14.11 training.py:496, .logMetrics

Our new index, carrying the prediction probabilities
(rather than prethresholded predictions)

429Predicting malignancy

metrics_t[METRICS_PRED_P_NDX, posLabel_mask],
self.totalTrainingSamples_count,
bins=bins

)

Now we can take a look at our prediction distribution for benign samples and how it
evolves over each epoch. We want to examine two main features of the histograms in
figure 14.13. As we would expect if our network is learning anything, in the top row of
benign samples and non-nodules, there is a mountain on the left where the network is
very confident that what it sees is not malignant. Similarly, there is a mountain on the
right for the malignant samples.

 But looking closer, we see the capacity problem of fine-tuning only one layer.
Focusing on the top-left series of histograms, we see the mass to the left is somewhat
spread out and does not seem to reduce much. There is even a small peak round 1.0,
and quite a bit of probability mass is spread out across the entire range. This reflects
the loss that didn’t want to decrease below 0.3.

Figure 14.13 TensorBoard histogram display for fine-tuning the head only

430 CHAPTER 14 End-to-end nodule analysis, and where to go next

Given this observation on the training loss, we would not have to look further, but let’s
pretend for a moment that we do. In the validation results on the right side, it appears
that the probability mass away from the “correct” side is larger for the non-malignant
samples in the top-right diagram than for the malignant ones in the bottom-right dia-
gram. So the network gets non-malignant samples wrong more often than malignant
ones. This might have us look into rebalancing the data to show more non-malignant
samples. But again, this is when we pretend there was nothing wrong with the training
on the left side. We typically want to fix training first!

 For comparison, let’s take a look at the same graph for our depth 2 fine-tuning
(figure 14.14). On the training side (the left two diagrams), we have very sharp peaks
at the correct answer and not much else. This reflects that training works well.

 On the validation side, we now see that the most pronounced artifact is the little
peak at 0 predicted probability for malignancy in the bottom-right histogram. So our
systematic problem is that we’re misclassifying malignant samples as non-malignant.
(This is the reverse of what we had earlier!) This is the overfitting we saw with two-layer

Figure 14.14 TensorBoard histogram display for fine-tuning with depth 2

431Predicting malignancy

fine-tuning. It probably would be good to pull up a few images of that type to see
what’s happening.

ROC AND OTHER CURVES IN TENSORBOARD

As mentioned earlier, TensorBoard does not natively support drawing ROC curves. We
can, however, use the ability to export any graph from Matplotlib. The data prepara-
tion looks just like in section 14.5.2: we use the data that we also plotted in the histo-
gram to compute the TPR and FPR—tpr and fpr, respectively. We again plot our
data, but this time we keep track of pyplot.figure and pass it to the SummaryWriter
method add_figure.

fig = pyplot.figure()
pyplot.plot(fpr, tpr)
writer.add_figure('roc', fig, self.totalTrainingSamples_count)

Because this is given to TensorBoard as an image, it appears under that heading. We
didn’t draw the comparison curve or anything else, so as not to distract you from the
actual function call, but we could use any Matplotlib facilities here. In figure 14.15, we
see again that the depth-2 fine-tuning (left) overfits, while the head-only fine-tuning
(right) does not.

Listing 14.12 training.py:482, .logMetrics

Sets up a new Matplotlib figure. We usually don’t need it
because it is implicitly done in Matplotlib, but here we do.

Uses arbitrary pyplot functions

Adds our figure to TensorBoard

Figure 14.15 Training ROC curves in TensorBoard. A slider lets us go through the iterations.

432 CHAPTER 14 End-to-end nodule analysis, and where to go next

14.6 What we see when we diagnose
Following along with steps 3a, 3b, and 3c in figure 14.16, we now need to run the full
pipeline from the step 3a segmentation on the left to the step 3c malignancy model on
the right. The good news is that almost all of our code is in place already! We just need
to stitch it together: the moment has come to actually write and run our end-to-end
diagnosis script.

We saw our first hints at handling the malignancy model back in the code in section
14.3.3. If we pass an argument --malignancy-path to the nodule_analysis call, it
runs the malignancy model found at this path and outputs the information. This
works for both a single scan and the --run-validation variant.

 Be warned that the script will probably take a while to finish; even just the 89 CTs
in the validation set took about 25 minutes.7

7 Most of the delay is from SciPy’s processing of the connected components. At the time of writing, we are not
aware of an accelerated implementation.

1. Nodule Candidate Generation

2. Nodule and malignancy claSsification

3. End-to-end detection

1a. Segmentation 1b. Grouping 1c. sample tuples

(
 ...

 (..., IRC))

 (..., IRC),

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy model

1. Nodule Candidate Generation

on

n 1b. Grouping 1c. sample tuples

C))

C),

2. Nodule and malignancy claSsificatio

3. End-to-end detection

n 1b. Grouping 1c. sample tup

(
 ...

 (..., IRC

(..., IRC(
1a Segmentation1a. Segmentation

3a. (..., IRC) 3b. Is nodule? 3c. is Malignant?

odel2a. Nodule claSsification 2b. ROC/AUC Metrics 2c. fine-tuning malignancy mo

Figure 14.16 The end-to-end project we are implementing in this chapter, with a focus on end-to-end detection

433What we see when we diagnose

 Let’s see what we get:

Total
| Complete Miss | Filtered Out | Pred. Benign | Pred. Malignant

Non-Nodules | | 164893 | 1593 | 563
Benign | 12 | 3 | 70 | 17

Malignant | 1 | 6 | 9 | 36

Not too bad! We detect about 85% of the nodules and correctly flag about 70% of the
malignant ones, end to end.8 While we have a lot of false positives, it would seem that
having 16 of them per true nodule reduces what needs to be looked at (well, if it were
not for the 30% false negatives). As we already warned in chapter 9, this isn’t at the
level where you could collect millions of funding for your medical AI startup,9 but it’s
a pretty reasonable starting point. In general, we should be pretty happy that we’re
getting results that are clearly meaningful; and of course our real goal has been to
study deep learning along the way.

 We might next choose to look at the nodules that are actually misclassified. Keep
in mind that for our task at hand, even the radiologists who annotated the dataset dif-
fered in opinion. We might stratify our validation set by how clearly they identified a
nodule as malignant.

14.6.1 Training, validation, and test sets
There is one caveat that we must mention. While we didn’t explicitly train our model on
the validation set, although we ran this risk at the beginning of the chapter, we did choose
the epoch of training to use based on the model’s performance on the validation set.
That’s a bit of a data leak, too. In fact, we should expect our real-world performance to be
slightly worse than this, as it’s unlikely that whatever model performs best on our valida-
tion set will perform equally well on every other unseen set of data (on average, at least).

 For this reason, practitioners often split data into three sets:

 A training set, exactly as we’ve done here
 A validation set, used to determine which epoch of evolution of the model to

consider “best”
 A test set, used to actually predict performance for the model (as chosen by the

validation set) on unseen, real-world data

Adding a third set would have led us to pull another nontrivial chunk of our training
data, which would have been somewhat painful, given how badly we had to fight over-
fitting already. It would also have complicated the presentation, so we purposely left it
out. Were this a project with the resources to get more data and an imperative to build
the best possible system to use in the wild, we’d have to make a different decision here
and actively seek more data to use as an independent test set.

8 Recall that our earlier “75% with almost no false positives” ROC number was looking at malignancy classification
in isolation. Here we are filtering out seven malignant nodules before we even get to the malignancy classifier.

9 If it were, we’d have done that instead of writing this book!

434 CHAPTER 14 End-to-end nodule analysis, and where to go next

 The general message is that there are subtle ways for bias to creep into our models.
We should use extra care to control information leakage at every step of the way and
verify its absence using independent data as much as possible. The price to pay for tak-
ing shortcuts is failing egregiously at a later stage, at the worst possible time: when
we’re closer to production.

14.7 What next? Additional sources of inspiration (and data)
Further improvements will be difficult to measure at this point. Our classification vali-
dation set contains 154 nodules, and our nodule classification model is typically get-
ting at least 150 of them right, with most of the variance coming from epoch-by-epoch
training changes. Even if we were to make a significant improvement to our model, we
don’t have enough fidelity in our validation set to tell whether that change is an
improvement for certain! This is also very pronounced in the benign versus malignant
classification, where the validation loss zigzags a lot. If we reduced our validation
stride from 10 to 5, the size of our validation set would double, at the cost of one-ninth
of our training data. That might be worth it if we wanted to try other improvements.
Of course, we would also need to address the question of a test set, which would take
away from our already limited training data.

 We would also want to take a good look at the cases where the network does not
perform as well as we’d like, to see if we can identify any pattern. But beyond that, let’s
talk briefly about some general ways we could improve our project. In a way, this sec-
tion is like section 8.5 in chapter 8. We will endeavor to fill you with ideas to try; don’t
worry if you don’t understand each in detail.10

14.7.1 Preventing overfitting: Better regularization

Reflecting on what we did throughout part 2, in each of the three problems—the clas-
sifiers in chapter 11 and section 14.5, as well as the segmentation in chapter 13—we
had overfitting models. Overfitting in the first case was catastrophic; we dealt with it
by balancing the data and augmentation in chapter 12. This balancing of the data to
prevent overfitting has also been the main motivation to train the U-Net on crops
around nodules and candidates rather than full slices. For the remaining overfitting,
we bailed out, stopping training early when the overfitting started to affect our valida-
tion results. This means preventing or reducing overfitting would be a great way to
improve our results.

 This pattern—get a model that overfits, and then work to reduce that overfitting—
can really can be seen as a recipe.11 So this two-step process should be used when we
want to improve on the state we have achieved now.

10 At least one of the authors would love to write an entire book on the topics touched on in this section.
11 See also Andrej Karparthy’s blog post “A Recipe for Training Neural Networks” at https://karpathy.github

.io/2019/04/25/recipe for a more elaborate recipe.

https://karpathy.github.io/2019/04/25/recipe
https://karpathy.github.io/2019/04/25/recipe
https://karpathy.github.io/2019/04/25/recipe

435What next? Additional sources of inspiration (and data)

CLASSIC REGULARIZATION AND AUGMENTATION

You might have noticed that we did not even use all the regularization techniques
from chapter 8. For example, dropout would be an easy thing to try.

 While we have some augmentation in place, we could go further. One relatively pow-
erful augmentation method we did not attempt to employ is elastic deformations,
where we put “digital crumples” into the inputs.12 This makes for much more variability
than rotation and flipping alone and would seem to be applicable to our tasks as well.

MORE ABSTRACT AUGMENTATION

So far, our augmentation has been geometrically inspired—we transformed our input
to more or less look like something plausible we might see. It turns out that we need
not limit ourselves to that type of augmentation.

 Recall from chapter 8 that mathematically, the cross-entropy loss we have been using
is a measure of the discrepancy between two probability distributions—that of the pre-
dictions and the distribution that puts all probability mass on the label and can be rep-
resented by the one-hot vector for the label. If overconfidence is a problem for our
network, one simple thing we could try is not using the one-hot distribution but rather
putting a small probability mass on the “wrong” classes.13 This is called label smoothing.

 We can also mess with inputs and labels at the same time. A very general and also
easy-to-apply augmentation technique for doing this has been proposed under the
name of mixup :14 the authors propose to randomly interpolate both inputs and labels.
Interestingly, with a linearity assumption for the loss (which is satisfied by binary cross
entropy), this is equivalent to just manipulating the inputs with a weight drawn from
an appropriately adapted distribution.15 Clearly, we don’t expect blended inputs to
occur when working on real data, but it seems that this mixing encourages stability of
the predictions and is very effective.

BEYOND A SINGLE BEST MODEL: ENSEMBLING

One perspective we could have on the problem of overfitting is that our model is
capable of working the way we want if we knew the right parameters, but we don’t
actually know them.16 If we followed this intuition, we might try to come up with sev-
eral sets of parameters (that is, several models), hoping that the weaknesses of each
might compensate for the other. This technique of evaluating several models and
combining the output is called ensembling. Simply put, we train several models and
then, in order to predict, run all of them and average the predictions. When each
individual model overfits (or we have taken a snapshot of the model just before we
started to see the overfitting), it seems plausible that the models might start to make
bad predictions on different inputs, rather than always overfit the same sample first.

12 You can find a recipe (albeit aimed at TensorFlow) at http://mng.bz/Md5Q.
13 You can use nn.KLDivLoss loss for this.
14 Hongyi Zhang et al., “mixup: Beyond Empirical Risk Minimization,” https://arxiv.org/abs/1710.09412.
15 See Ferenc Huszár’s post at http://mng.bz/aRJj/; he also provides PyTorch code.
16 We might expand that to be outright Bayesian, but we’ll just go with this bit of intuition.

http://mng.bz/Md5Q
https://arxiv.org/abs/1710.09412
http://mng.bz/aRJj/

436 CHAPTER 14 End-to-end nodule analysis, and where to go next

 In ensembling, we typically use completely separate training runs or even varying
model structures. But if we were to make it particularly simple, we could take several
snapshots of the model from a single training run—preferably shortly before the end
or before we start to observe overfitting. We might try to build an ensemble of these
snapshots, but as they will still be somewhat close to each other, we could instead aver-
age them. This is the core idea of stochastic weight averaging.17 We need to exercise
some care when doing so: for example, when our models use batch normalization, we
might want to adjust the statistics, but we can likely get a small accuracy boost even
without that.

GENERALIZING WHAT WE ASK THE NETWORK TO LEARN

We could also look at multitask learning, where we require a model to learn additional
outputs beyond the ones we will then evaluate,18 which has a proven track record of
improving results. We could try to train on nodule versus non-nodule and benign ver-
sus malignant at the same time. Actually, the data source for the malignancy data pro-
vides additional labeling we could use as additional tasks; see the next section. This
idea is closely related to the transfer-learning concept we looked at earlier, but here
we would typically train both tasks in parallel rather than first doing one and then try-
ing to move to the next.

 If we do not have additional tasks but rather have a stash of additional unlabeled
data, we can look into semi-supervised learning. An approach that was recently proposed
and looks very effective is unsupervised data augmentation.19 Here we train our model
as usual on the data. On the unlabeled data, we make a prediction on an unaug-
mented sample. We then take that prediction as the target for this sample and train
the model to predict that target on the augmented sample as well. In other words, we
don’t know if the prediction is correct, but we ask the network to produce consistent
outputs whether we augment or not.

 When we run out of tasks of genuine interest but do not have additional data, we
may look at making things up. Making up data is somewhat difficult (although people
sometimes use GANs similar to the ones we briefly saw in chapter 2, with some suc-
cess), so we instead make up tasks. This is when we enter the realm of self-supervised
learning; the tasks are often called pretext tasks. A very popular crop of pretext tasks
apply some sort of corruption to some of the inputs. Then we can train a network to
reconstruct the original (for example, using a U-Net-like architecture) or train a clas-
sifier to detect real from corrupted data while sharing large parts of the model (such
as the convolutional layers).

 This is still dependent on us coming up with a way to corrupt our inputs. If we
don’t have such a method in mind and aren’t getting the results we want, there are

17 Pavel Izmailov and Andrew Gordon Wilson present an introduction with PyTorch code at http://mng.bz/gywe.
18 See Sebastian Ruder, “An Overview of Multi-Task Learning in Deep Neural Networks,” https://arxiv.org/

abs/1706.05098; but this is also a key idea in many areas.
19 Q. Xie et al., “Unsupervised Data Augmentation for Consistency Training,” https://arxiv.org/abs/

1904.12848.

http://mng.bz/gywe
https://arxiv.org/abs/1706.05098
https://arxiv.org/abs/1706.05098
https://arxiv.org/abs/1706.05098
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1904.12848

437What next? Additional sources of inspiration (and data)

other ways to do self-supervised learning. A very generic task would be if the features
the model learns are good enough to let the model discriminate between different
samples of our dataset. This is called contrastive learning.

 To make things more concrete, consider the following: we take the extracted features
from the current image and a largish number K of other images. This is our key set of
features. Now we set up a classification pretext task as follows: given the features of the
current image, the query, to which of the K + 1 key features does it belong? This might
seem trivial at first, but even if there is perfect agreement between the query features
and the key features for the correct class, training on this task encourages the feature
of the query to be maximally dissimilar from those of the K other images (in terms of
being assigned low probability in the classifier output). Of course, there are many details
to fill in; we recommend (somewhat arbitrarily) looking at momentum contrast.20

14.7.2 Refined training data

We could improve our training data in a few ways. We mentioned earlier that the malig-
nancy classification is actually based on a more nuanced categorization by several
radiologists. An easy way to use the data we discarded by making it into the dichotomy
“malignant or not?” would be to use the five classes. The radiologists’ assessments could
then be used as a smoothed label: we could one-hot-encode each one and then average
over the assessments of a given nodule. So if four radiologists look at a nodule and two
call it “indeterminate,” one calls that same nodule “moderately suspicious,” and the
fourth labels it “highly suspicious,” we would train on the cross entropy between the
model output and the target probability distribution given by the vector 0 0 0.5 0.25
0.25. This would be similar to the label smoothing we mentioned earlier, but in a
smarter, problem-specific way. We would, however, have to find a new way of evaluating
these models, as we lose the simple accuracy, ROC, and AUC notions we have in
binary classification.

 Another way to use multiple assessments would be to train a number of models
instead of one, each trained on the annotations given by an individual radiologist. At
inference we would then ensemble the models by, for example, averaging their output
probabilities.

 In the direction of multiple tasks mentioned earlier, we could again go back to the
PyLIDC-provided annotation data, where other classifications are provided for each
annotation (subtlety, internal structure, calcification, sphericity, margin definedness,
lobulation, spiculation, and texture (https://pylidc.github.io/annotation.html). We
might have to learn a lot more about nodules, first, though.

 In the segmentation, we could try to see whether the masks provided by PyLIDC
work better than those we generated ourselves. Since the LIDC data has annotations
from multiple radiologists, it would be possible to group nodules into “high agree-
ment” and “low agreement” groups. It might be interesting to see if that corresponds

20 K. He et al., “Momentum Contrast for Unsupervised Visual Representation Learning,” https://arxiv.org/
abs/1911.05722.

https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://pylidc.github.io/annotation.html

438 CHAPTER 14 End-to-end nodule analysis, and where to go next

to “easy” and “hard” to classify nodules in terms of seeing whether our classifier gets
almost all easy ones right and only has trouble on the ones that were more ambiguous
to the human experts. Or we could approach the problem from the other side, by
defining how difficult nodules are to detect in terms of our model performance:
“easy” (correctly classified after an epoch or two of training), “medium” (eventually
gotten right), and “hard” (persistently misclassified) buckets.

 Beyond readily available data, one thing that would probably make sense is to fur-
ther partition the nodules by malignancy type. Getting a professional to examine our
training data in more detail and flag each nodule with a cancer type, and then forcing
the model to report that type, could result in more efficient training. The cost to con-
tract out that work is prohibitive for hobby projects, but paying might make sense in
commercial contexts.

 Especially difficult cases could also be subject to a limited repeat review by human
experts to check for errors. Again, that would require a budget but is certainly within
reason for serious endeavors.

14.7.3 Competition results and research papers

Our goal in part 2 was to present a self-contained path from problem to solution, and
we did that. But the particular problem of finding and classifying lung nodules has
been worked on before; so if you want to dig deeper, you can also see what other peo-
ple have done.

DATA SCIENCE BOWL 2017
While we have limited the scope of part 2 to the CT scans in the LUNA dataset, there
is also a wealth of information available from Data Science Bowl 2017 (www.kaggle
.com/c/data-science-bowl-2017), hosted by Kaggle (www.kaggle.com). The data itself
is no longer available, but there are many accounts of people describing what worked
for them and what did not. For example, some of the Data Science Bowl (DSB) final-
ists reported that the detailed malignancy level (1…5) information from LIDC was
useful during training.

 Two highlights you could look at are these:21

 Second-place solution write-up by Daniel Hammack and Julian de Wit: http://
mng.bz/Md48

 Ninth-place solution write-up by Team Deep Breath: http://mng.bz/aRAX

NOTE Many of the newer techniques we hinted at previously were not yet
available to the DSB participants. The three years between the 2017 DSB and
this book going to print are an eternity in deep learning!

One idea for a more legitimate test set would be to use the DSB dataset instead of
reusing our validation set. Unfortunately, the DSB stopped sharing the raw data, so
unless you happen to have access to an old copy, you would need another data source.

21 Thanks to the Internet Archive for saving them from redesigns.

http://mng.bz/Md48
http://mng.bz/Md48
http://mng.bz/Md48
https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/
http://mng.bz/aRAX

439Conclusion

LUNA PAPERS

The LUNA Grand Challenge has collected several results (https://luna16.grand-chal-
lenge.org/Results) that show quite a bit of promise. While not all of the papers pro-
vided include enough detail to reproduce the results, many do contain enough
information to improve our project. You could review some of the papers and attempt
to replicate approaches that seem interesting.

14.8 Conclusion
This chapter concludes part 2 and delivers on the promise we made back in chapter 9:
we now have a working, end-to-end system that attempts to diagnose lung cancer from
CT scans. Looking back at where we started, we’ve come a long way and, hopefully,
learned a lot. We trained a model to do something interesting and difficult using pub-
licly available data. The key question is, “Will this be good for anything in the real
world?” with the follow-up question, “Is this ready for production?” The definition of
production critically depends on the intended use, so if we’re wondering whether our
algorithm can replace an expert radiologist, this is definitely not the case. We’d argue
that this can represent version 0.1 of a tool that could in the future support a radiolo-
gist during clinical routine: for instance, by providing a second opinion about some-
thing that could have gone unnoticed.

 Such a tool would require clearance by regulatory bodies of competence (like the
Food and Drug Administration in the United States) in order for it to be employed
outside of research contexts. Something we would certainly be missing is an extensive,
curated dataset to further train and, even more importantly, validate our work. Indi-
vidual cases would need to be evaluated by multiple experts in the context of a
research protocol; and a proper representation of a wide spectrum of situations, from
common presentations to corner cases, would be mandatory.

 All these cases, from pure research use to clinical validation to clinical use, would
require us to execute our model in an environment amenable to be scaled up. Need-
less to say, this comes with its own set of challenges, both technical and in terms of
process. We’ll discuss some of the technical challenges in chapter 15.

14.8.1 Behind the curtain
As we close out the modeling in part 2, we want to pull back the curtain a bit and give
you a glimpse at the unvarnished truth of working on deep learning projects. Funda-
mentally, this book has presented a skewed take on things: a curated set of obstacles
and opportunities; a well-tended garden path through the larger wilds of deep learn-
ing. We think this semi-organic series of challenges (especially in part 2) makes for a
better book, and we hope a better learning experience. It does not, however, make for
a more realistic experience.

 In all likelihood, the vast majority of your experiments will not work out. Not every
idea will be a discovery, and not every change will be a breakthrough. Deep learning is
fiddly. Deep learning is fickle. And remember that deep learning is literally pushing at
the forefront of human knowledge; it’s a frontier that we are exploring and mapping

https://luna16.grand-challenge.org/Results
https://luna16.grand-challenge.org/Results

440 CHAPTER 14 End-to-end nodule analysis, and where to go next

further every day, right now. It’s an exciting time to be in the field, but as with most
fieldwork, you’re going to get some mud on your boots.

 In the spirit of transparency, here are some things that we tried, that we tripped
over, that didn’t work, or that at least didn’t work well enough to bother keeping:

 Using HardTanh instead of Softmax for the classification network (it was simpler
to explain, but it didn’t actually work well).

 Trying to fix the issues caused by HardTanh by making the classification network
more complicated (skip connections, and so on).

 Poor weight initialization causing training to be unstable, particularly for
segmentation.

 Training on full CT slices for segmentation.
 Loss weighting for segmentation with SGD. It didn’t work, and Adam was

needed for it to be useful.
 True 3D segmentation of CT scans. It didn’t work for us, but then DeepMind

went and did it anyway.22 This was before we moved to cropping to nodules, and
we ran out of memory, so you might try again based on the current setup.

 Misunderstanding the meaning of the class column from the LUNA data,
which caused some rewrites partway through authoring the book.

 Accidentally leaving in an “I want results quickly” hack that threw away 80% of
the candidate nodules found by the segmentation module, causing the results
to look atrocious until we figured out what was going on (that cost an entire
weekend!).

 A host of different optimizers, loss functions, and model architectures.
 Balancing the training data in various ways.

There are certainly more that we’ve forgotten. A lot of things went wrong before they
went right! Please learn from our mistakes.

 We might also add that for many things in this text, we just picked an approach; we
emphatically do not imply that other approaches are inferior (many of them are prob-
ably better!). Additionally, coding style and project design typically differ a lot
between people. In machine learning, it is very common for people to do a lot of pro-
gramming in Jupyter Notebooks. Notebooks are a great tool to try things quickly, but
they come with their own caveats: for example, around how to keep track of what you
did. Finally, instead of using the caching mechanism we used with prepcache, we
could have had a separate preprocessing step that wrote out the data as serialized ten-
sors. Each of these approaches seems to be a matter of taste; even among the three
authors, any one of us would do things slightly differently.23 It is always good to try
things and find which one works best for you while remaining flexible when cooperat-
ing with your peers.

22 Stanislav Nikolov et al., “Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck
Anatomy for Radiotherapy,” https://arxiv.org/pdf/1809.04430.pdf

23 Oh, the discussions we’ve had!

https://arxiv.org/pdf/1809.04430.pdf

441Summary

14.9 Exercises
1 Implement a test set for classification, or reuse the test set from chapter 13’s

exercises. Use the validation set to pick the best epochs while training, but use
the test set to evaluate the end-to-end project. How well does performance on
the validation set line up with performance on the test set?

2 Can you train a single model that is able to do three-way classification, distin-
guishing among non-nodules, benign modules, and malignant nodules in one
pass?
a What class-balancing split works best for training?
b How does this single-pass model perform, compared to the two-pass

approach we are using in the book?
3 We trained our classifier on annotations, but expect it to perform on the output

of our segmentation. Use the segmentation model to build a list of non-nodules
to use during training instead of the non-nodules provided.
a Does the classification model performance improve when trained on this

new set?
b Can you characterize what kinds of nodule candidates see the biggest

changes with the newly trained model?
4 The padded convolutions we use result in less than full context near the edges

of the image. Compute the loss for segmented pixels near the edges of the CT
scan slice, versus those in the interior. Is there a measurable difference between
the two?

5 Try running the classifier on the entire CT by using overlapping 32 × 48 × 48
patches. How does this compare to the segmentation approach?

14.10 Summary
 An unambiguous split between training and validation (and test) sets is crucial.

Here, splitting by patient is much less prone to getting things wrong. This is
even more true when you have several models in your pipeline.

 Getting from pixel-wise marks to nodules can be achieved using very traditional
image processing. We don’t want to look down on the classics, but value these
tools and use them where appropriate.

 Our diagnosis script performs both segmentation and classification. This allows
us to diagnose a CT that we have not seen before, though our current Dataset
implementation is not configured to accept series_uids from sources other
than LUNA.

 Fine-tuning is a great way to fit a model while using a minimum of training data.
Make sure the pretrained model has features relevant to your task, and make
sure that you retrain a portion of the network with enough capacity.

442 CHAPTER 14 End-to-end nodule analysis, and where to go next

 TensorBoard allows us to write out many different types of diagrams that help
us determine what’s going on. But this is not a replacement for looking at data
on which our model works particularly badly.

 Successful training seems to involve an overfitting network at some stage, and
which we then regularize. We might as well take that as a recipe; and we should
probably learn more about regularization.

 Training neural networks is about trying things, seeing what goes wrong, and
improving on it. There usually isn’t a magic bullet.

 Kaggle is an excellent source of project ideas for deep learning. Many new data-
sets have cash prizes for the top performers, and older contests have examples
that can be used as starting points for further experimentation.

Part 3

Deployment

In part 3, we’ll look at how to get our models to the point where they can be
used. We saw how to build models in the previous parts: part 1 introduced the
building and training of models, and part 2 thoroughly covered an example
from start to finish, so the hard work is done.

 But no model is useful until you can actually use it. So, now we need to put
the models out there and apply them to the tasks they are designed to solve. This
part is closer to part 1 in spirit, because it introduces a lot of PyTorch compo-
nents. As before, we’ll focus on applications and tasks we wish to solve rather
than just looking at PyTorch for its own sake.

 In part 3’s single chapter, we’ll take a tour of the PyTorch deployment land-
scape as of early 2020. We’ll get to know and use the PyTorch just-in-time com-
piler (JIT) to export models for use in third-party applications to the C++ API
for mobile support.

445

Deploying to production

In part 1 of this book, we learned a lot about models; and part 2 left us with a
detailed path for creating good models for a particular problem. Now that we have
these great models, we need to take them where they can be useful. Maintaining
infrastructure for executing inference of deep learning models at scale can be
impactful from an architectural as well as cost standpoint. While PyTorch started
off as a framework focused on research, beginning with the 1.0 release, a set of
production-oriented features were added that today make PyTorch an ideal end-to-
end platform from research to large-scale production.

This chapter covers
 Options for deploying PyTorch models

 Working with the PyTorch JIT

 Deploying a model server and exporting models

 Running exported and natively implemented
models from C++

 Running models on mobile

446 CHAPTER 15 Deploying to production

 What deploying to production means will vary with the use case:

 Perhaps the most natural deployment for the models we developed in part 2
would be to set up a network service providing access to our models. We’ll do
this in two versions using lightweight Python web frameworks: Flask (http://
flask.pocoo.org) and Sanic (https://sanicframework.org). The first is arguably
one of the most popular of these frameworks, and the latter is similar in spirit
but takes advantage of Python’s new async/await support for asynchronous
operations for efficiency.

 We can export our model to a well-standardized format that allows us to ship it
using optimized model processors, specialized hardware, or cloud services. For
PyTorch models, the Open Neural Network Exchange (ONNX) format fills this
role.

 We may wish to integrate our models into larger applications. For this it would
be handy if we were not limited to Python. Thus we will explore using PyTorch
models from C++ with the idea that this also is a stepping-stone to any language.

 Finally, for some things like the image zebraification we saw in chapter 2, it may
be nice to run our model on mobile devices. While it is unlikely that you will have
a CT module for your mobile, other medical applications like do-it-yourself skin
screenings may be more natural, and the user might prefer running on the
device versus having their skin sent to a cloud service. Luckily for us, PyTorch has
gained mobile support recently, and we will explore that.

As we learn how to implement these use cases, we will use the classifier from chapter
14 as our first example for serving, and then switch to the zebraification model for the
other bits of deployment.

15.1 Serving PyTorch models
We’ll begin with what it takes to put our model on a server. Staying true to our hands-
on approach, we’ll start with the simplest possible server. Once we have something
basic that works, we’ll take look at its shortfalls and take a stab at resolving them.
Finally, we’ll look at what is, at the time of writing, the future. Let’s get something that
listens on the network.1

15.1.1 Our model behind a Flask server

Flask is one of the most widely used Python modules. It can be installed using pip:2

pip install Flask

1 To play it safe, do not do this on an untrusted network.
2 Or pip3 for Python3. You also might want to run it from a Python virtual environment.

https://sanicframework.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org

447Serving PyTorch models

The API can be created by decorating functions.

from flask import Flask
app = Flask(__name__)

@app.route("/hello")
def hello():

return "Hello World!"

if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)

When started, the application will run at port 8000 and expose one route, /hello, that
returns the “Hello World” string. At this point, we can augment our Flask server by
loading a previously saved model and exposing it through a POST route. We will use
the nodule classifier from chapter 14 as an example.

 We’ll use Flask’s (somewhat curiously imported) request to get our data. More pre-
cisely, request.files contains a dictionary of file objects indexed by field names. We’ll use
JSON to parse the input, and we’ll return a JSON string using flask’s jsonify helper.

 Instead of /hello, we will now expose a /predict route that takes a binary blob (the
pixel content of the series) and the related metadata (a JSON object containing a dic-
tionary with shape as a key) as input files provided with a POST request and returns a
JSON response with the predicted diagnosis. More precisely, our server takes one sam-
ple (rather than a batch) and returns the probability that it is malignant.

 In order to get to the data, we first need to decode the JSON to binary, which we
can then decode into a one-dimensional array with numpy.frombuffer. We’ll convert
this to a tensor with torch.from_numpy and view its actual shape.

 The actual handling of the model is just like in chapter 14: we’ll instantiate Luna-
Model from chapter 14, load the weights we got from our training, and put the model
in eval mode. As we are not training anything, we’ll tell PyTorch that we will not want
gradients when running the model by running in a with torch.no_grad() block.

import numpy as np
import sys
import os
import torch
from flask import Flask, request, jsonify
import json

from p2ch13.model_cls import LunaModel

app = Flask(__name__)

model = LunaModel()

Listing 15.1 flask_hello_world.py:1

Listing 15.2 flask_server.py:1

Sets up our model, loads
the weights, and moves
to evaluation mode

448 CHAPTER 15 Deploying to production

model.load_state_dict(torch.load(sys.argv[1],
map_location='cpu')['model_state'])

model.eval()

def run_inference(in_tensor):
with torch.no_grad():

LunaModel takes a batch and outputs a tuple (scores, probs)
out_tensor = model(in_tensor.unsqueeze(0))[1].squeeze(0)

probs = out_tensor.tolist()
out = {'prob_malignant': probs[1]}
return out

@app.route("/predict", methods=["POST"])
def predict():

meta = json.load(request.files['meta'])
blob = request.files['blob'].read()
in_tensor = torch.from_numpy(np.frombuffer(

blob, dtype=np.float32))
in_tensor = in_tensor.view(*meta['shape'])
out = run_inference(in_tensor)
return jsonify(out)

if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)
print (sys.argv[1])

Run the server as follows:

python3 -m p3ch15.flask_server

➥ data/part2/models/cls_2019-10-19_15.48.24_final_cls.best.state

We prepared a trivial client at cls_client.py that sends a single example. From the code
directory, you can run it as

python3 p3ch15/cls_client.py

It should tell you that the nodule is very unlikely to be malignant. Clearly, our server
takes inputs, runs them through our model, and returns the outputs. So are we done?
Not quite. Let’s look at what could be better in the next section.

15.1.2 What we want from deployment

Let’s collect some things we desire for serving models.3 First, we want to support mod-
ern protocols and their features. Old-school HTTP is deeply serial, which means when a
client wants to send several requests in the same connection, the next requests will
only be sent after the previous request has been answered. Not very efficient if you
want to send a batch of things. We will partially deliver here—our upgrade to Sanic
certainly moves us to a framework that has the ambition to be very efficient.

3 One of the earliest public talks discussing the inadequacy of Flask serving for PyTorch models is Christian
Perone’s “PyTorch under the Hood,” http://mng.bz/xWdW.

No autograd for us.

We expect a form submission
(HTTP POST) at the “/predict”
endpoint.

Our request will have
one file called meta.

Converts our data from
binary blob to torch

Encodes our response
content as JSON

http://mng.bz/xWdW

449Serving PyTorch models

 When using GPUs, it is often much more efficient to batch requests than to process
them one by one or fire them in parallel. So next, we have the task of collecting requests
from several connections, assembling them into a batch to run on the GPU, and then
getting the results back to the respective requesters. This sounds elaborate and (again,
when we write this) seems not to be done very often in simple tutorials. That is reason
enough for us to do it properly here! Note, though, that until latency induced by the
duration of a model run is an issue (in that waiting for our own run is OK; but waiting
for the batch that’s running when the request arrives to finish, and then waiting for our
run to give results, is prohibitive), there is little reason to run multiple batches on one
GPU at a given time. Increasing the maximum batch size will generally be more efficient.

 We want to serve several things in parallel. Even with asynchronous serving, we
need our model to run efficiently on a second thread—this means we want to escape
the (in)famous Python global interpreter lock (GIL) with our model.

 We also want to do as little copying as possible. Both from a memory-consumption
and a time perspective, copying things over and over is bad. Many HTTP things are
encoded in Base64 (a format restricted to 6 bits per byte to encode binary in more or
less alphanumeric strings), and—say, for images—decoding that to binary and then
again to a tensor and then to the batch is clearly relatively expensive. We will partially
deliver on this—we’ll use streaming PUT requests to not allocate Base64 strings and to
avoid growing strings by successively appending to them (which is terrible for perfor-
mance for strings as much as tensors). We say we do not deliver completely because we
are not truly minimizing the copying, though.

 The last desirable thing for serving is safety. Ideally, we would have safe decoding.
We want to guard against both overflows and resource exhaustion. Once we have a
fixed-size input tensor, we should be mostly good, as it is hard to crash PyTorch start-
ing from fixed-sized inputs. The stretch to get there, decoding images and the like, is
likely more of a headache, and we make no guarantees. Internet security is a large
enough field that we will not cover it at all. We should note that neural networks are
known to be susceptible to manipulation of the inputs to generate desired but wrong
or unforeseen outputs (known as adversarial examples), but this isn’t extremely perti-
nent to our application, so we’ll skip it here.

 Enough talk. Let’s improve on our server.

15.1.3 Request batching
Our second example server will use the Sanic framework (installed via the Python
package of the same name). This will give us the ability to serve many requests in par-
allel using asynchronous processing, so we’ll tick that off our list. While we are at it, we
will also implement request batching.

 Asynchronous programming can sound scary, and it usually comes with lots of ter-
minology. But what we are doing here is just allowing functions to non-blockingly wait
for results of computations or events.4

4 Fancy people call these asynchronous function generators or sometimes, more loosely, coroutines: https://
en.wikipedia.org/wiki/Coroutine.

https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Coroutine

450 CHAPTER 15 Deploying to production

In order to do request batching, we have to decouple the request handling from run-
ning the model. Figure 15.1 shows the flow of the data.

 At the top of figure 15.1 are the clients, making requests. One by one, these go
through the top half of the request processor. They cause work items to be enqueued
with the request information. When a full batch has been queued or the oldest
request has waited for a specified maximum time, a model runner takes a batch from
the queue, processes it, and attaches the result to the work items. These are then pro-
cessed one by one by the bottom half of the request processor.

Client

Client

Client

M
o
d

e
l
 R

u
Nn

e
r

QueueResults

Work

Item

Work

Item

Work

Item

Work

Item

Result

Work

Item

Result

Work

Item

Result

Request

ProceSsor

(boTtom half)

n
Ee

d
s
_

p
r

o
c

e
Ss

in
g

(
b

a
s
e

d
 o

n
 q

u
e

u
e

 s
iz

e

o
r

 t
im

e
r

)

Request

ProceSsor

(top half)

Work

Batch

Work

Batch

Figure 15.1 Dataflow with request batching

451Serving PyTorch models

IMPLEMENTATION

We implement this by writing two functions. The model runner function starts at the
beginning and runs forever. Whenever we need to run the model, it assembles a batch
of inputs, runs the model in a second thread (so other things can happen), and
returns the result.

 The request processor then decodes the request, enqueues inputs, waits for the
processing to be completed, and returns the output with the results. In order to
appreciate what asynchronous means here, think of the model runner as a wastepaper
basket. All the figures we scribble for this chapter can be quickly disposed of to the
right of the desk. But every once in a while—either because the basket is full or when
it is time to clean up in the evening—we need to take all the collected paper out to the
trash can. Similarly, we enqueue new requests, trigger processing if needed, and wait
for the results before sending them out as the answer to the request. Figure 15.2 shows
our two functions in the blocks we execute uninterrupted before handing back to the
event loop.

 A slight complication relative to this picture is that we have two occasions when we
need to process events: if we have accumulated a full batch, we start right away; and
when the oldest request reaches the maximum wait time, we also want to run. We
solve this by setting a timer for the latter.5

5 An alternative might be to forgo the timer and just run whenever the queue is not empty. This would
potentially run smaller “first” batches, but the overall performance impact might not be so large for most
applications.

Model RuNner (runs forever, with pauses)

while True:

 wait_for_work()

 batch = get_batch_from_queue()

 if more_work_left:

 schedule_next_proceSsor_run()

 result = launch_model_in_other_thread(batch)

 extract_result_and_signal_ready()

Request proceSsor (caLled for each request)

d = get_request_data()

im = decode_image_to_tensor(d)

work_item['input'] = image

aDd_to_queue(work_item)

schedule_next_proceSsor_run()

wait_for_ready(work_item)

im_out = work_item['result']

return encode_in_response(im_out)

Model Execution (launched by Model RuNner)

Runs in other thread to not block

run_model_in_jit() # no GIL once in JIT

signal to event lOop (and thus Model RuNner)

Event

LOop

Figure 15.2 Our asynchronous server consists of three blocks: request processor, model runner, and model
execution. These blocks are a bit like functions, but the first two will yield to the event loop in between.

452 CHAPTER 15 Deploying to production

All our interesting code is in a ModelRunner class, as shown in the following listing.

class ModelRunner:
def __init__(self, model_name):

self.model_name = model_name
self.queue = []

self.queue_lock = None

self.model = get_pretrained_model(self.model_name,
map_location=device)

self.needs_processing = None

self.needs_processing_timer = None

ModelRunner first loads our model and takes care of some administrative things. In
addition to the model, we also need a few other ingredients. We enter our requests
into a queue. This is a just a Python list in which we add work items at the back and
remove them in the front.

 When we modify the queue, we want to prevent other tasks from changing the
queue out from under us. To this effect, we introduce a queue_lock that will be an
asyncio.Lock provided by the asyncio module. As all asyncio objects we use here
need to know the event loop, which is only available after we initialize the application,
we temporarily set it to None in the instantiation. While locking like this may not be
strictly necessary because our methods do not hand back to the event loop while hold-
ing the lock, and operations on the queue are atomic thanks to the GIL, it does explic-
itly encode our underlying assumption. If we had multiple workers, we would need to
look at locking. One caveat: Python’s async locks are not threadsafe. (Sigh.)

 ModelRunner waits when it has nothing to do. We need to signal it from Request-
Processor that it should stop slacking off and get to work. This is done via an
asyncio.Event called needs_processing. ModelRunner uses the wait() method to
wait for the needs_processing event. The RequestProcessor then uses set() to sig-
nal, and ModelRunner wakes up and clear()s the event.

 Finally, we need a timer to guarantee a maximal wait time. This timer is created
when we need it by using app.loop.call_at. It sets the needs_processing event; we
just reserve a slot now. So actually, sometimes the event will be set directly because a
batch is complete or when the timer goes off. When we process a batch before the
timer goes off, we will clear it so we don’t do too much work.

FROM REQUEST TO QUEUE

Next we need to be able to enqueue requests, the core of the first part of Request-
Processor in figure 15.2 (without the decoding and reencoding). We do this in our
first async method, process_input.

Listing 15.3 request_batching_server.py:32, ModelRunner

The queueThis will
become

our lock.

Loads and instantiates the
model. This is the (only) thing
we will need to change for
switching to the JIT. For now,
we import the CycleGAN (with
the slight modification of
standardizing to 0..1 input
and output) from
p3ch15/cyclegan.py.Our signal

to run the
model

Finally, the timer

453Serving PyTorch models

async def process_input(self, input):
our_task = {"done_event": asyncio.Event(loop=app.loop),

"input": input,
"time": app.loop.time()}

async with self.queue_lock:
if len(self.queue) >= MAX_QUEUE_SIZE:

raise HandlingError("I'm too busy", code=503)
self.queue.append(our_task)
self.schedule_processing_if_needed()

await our_task["done_event"].wait()
return our_task["output"]

We set up a little Python dictionary to hold our task’s information: the input of
course, the time it was queued, and a done_event to be set when the task has been
processed. The processing adds an output.

 Holding the queue lock (conveniently done in an async with block), we add our
task to the queue and schedule processing if needed. As a precaution, we error out if
the queue has become too large. Then all we have to do is wait for our task to be pro-
cessed, and return it.

NOTE It is important to use the loop time (typically a monotonic clock),
which may be different from the time.time(). Otherwise, we might end up
with events scheduled for processing before they have been queued, or no
processing at all.

This is all we need for the request processing (except decoding and encoding).

RUNNING BATCHES FROM THE QUEUE

Next, let’s look at the model_runner function on the right side of figure 15.2, which
does the model invocation.

async def model_runner(self):
self.queue_lock = asyncio.Lock(loop=app.loop)
self.needs_processing = asyncio.Event(loop=app.loop)
while True:

await self.needs_processing.wait()
self.needs_processing.clear()
if self.needs_processing_timer is not None:

self.needs_processing_timer.cancel()
self.needs_processing_timer = None

async with self.queue_lock:
... line 87
to_process = self.queue[:MAX_BATCH_SIZE]
del self.queue[:len(to_process)]

Listing 15.4 request_batching_server.py:54

Listing 15.5 request_batching_server.py:71, .run_model

Sets up the
task dataWith the lock, we

add our task and …

… schedule processing.
Processing will set
needs_processing if we have a
full batch. If we don’t and no
timer is set, it will set one to
when the max wait time is up.

Waits (and hands back to the loop using
await) for the processing to finish

Waits until there is something to do

Cancels the timer if it is set

Grabs a batch and schedules
the running of the next batch,
if needed

454 CHAPTER 15 Deploying to production

self.schedule_processing_if_needed()
batch = torch.stack([t["input"] for t in to_process], dim=0)
we could delete inputs here...

result = await app.loop.run_in_executor(
None, functools.partial(self.run_model, batch)

)
for t, r in zip(to_process, result):

t["output"] = r
t["done_event"].set()

del to_process

As indicated in figure 15.2, model_runner does some setup and then infinitely loops
(but yields to the event loop in between). It is invoked when the app is instantiated, so
it can set up queue_lock and the needs_processing event we discussed earlier. Then
it goes into the loop, await-ing the needs_processing event.

 When an event comes, first we check whether a time is set and, if so, clear it,
because we’ll be processing things now. Then model_runner grabs a batch from the
queue and, if needed, schedules the processing of the next batch. It assembles the
batch from the individual tasks and launches a new thread that evaluates the model
using asyncio's app.loop.run_in_executor. Finally, it adds the outputs to the tasks
and sets done_event.

 And that’s basically it. The web framework—roughly looking like Flask with async
and await sprinkled in—needs a little wrapper. And we need to start the model_runner
function on the event loop. As mentioned earlier, locking the queue really is not nec-
essary if we do not have multiple runners taking from the queue and potentially inter-
rupting each other, but knowing our code will be adapted to other projects, we stay on
the safe side of losing requests.

 We start our server with

python3 -m p3ch15.request_batching_server data/p1ch2/horse2zebra_0.4.0.pth

Now we can test by uploading the image data/p1ch2/horse.jpg and saving the result:

curl -T data/p1ch2/horse.jpg

➥ http://localhost:8000/image --output /tmp/res.jpg

Note that this server does get a few things right—it batches requests for the GPU and
runs asynchronously—but we still use the Python mode, so the GIL hampers running
our model in parallel to the request serving in the main thread. It will not be safe for
potentially hostile environments like the internet. In particular, the decoding of
request data seems neither optimal in speed nor completely safe.

 In general, it would be nicer if we could have decoding where we pass the request
stream to a function along with a preallocated memory chunk, and the function
decodes the image from the stream to us. But we do not know of a library that does
things this way.

Runs the model in a separate
thread, moving data to the
device and then handing over
to the model. We continue
processing after it is done.

Adds the results to the work-
item and sets the ready event

455Exporting models

15.2 Exporting models
So far, we have used PyTorch from the Python interpreter. But this is not always desir-
able: the GIL is still potentially blocking our improved web server. Or we might want
to run on embedded systems where Python is too expensive or unavailable. This is
when we export our model. There are several ways in which we can play this. We might
go away from PyTorch entirely and move to more specialized frameworks. Or we
might stay within the PyTorch ecosystem and use the JIT, a just in time compiler for a
PyTorch-centric subset of Python. Even when we then run the JITed model in Python,
we might be after two of its advantages: sometimes the JIT enables nifty optimizations,
or—as in the case of our web server—we just want to escape the GIL, which JITed
models do. Finally (but we take some time to get there), we might run our model
under libtorch, the C++ library PyTorch offers, or with the derived Torch Mobile.

15.2.1 Interoperability beyond PyTorch with ONNX

Sometimes we want to leave the PyTorch ecosystem with our model in hand—for
example, to run on embedded hardware with a specialized model deployment pipe-
line. For this purpose, Open Neural Network Exchange provides an interoperational
format for neural networks and machine learning models (https://onnx.ai). Once
exported, the model can be executed using any ONNX-compatible runtime, such as
ONNX Runtime,6 provided that the operations in use in our model are supported by
the ONNX standard and the target runtime. It is, for example, quite a bit faster on the
Raspberry Pi than running PyTorch directly. Beyond traditional hardware, a lot of spe-
cialized AI accelerator hardware supports ONNX (https://onnx.ai/supported-tools
.html#deployModel).

 In a way, a deep learning model is a program with a very specific instruction set,
made of granular operations like matrix multiplication, convolution, relu, tanh, and
so on. As such, if we can serialize the computation, we can reexecute it in another run-
time that understands its low-level operations. ONNX is a standardization of a format
describing those operations and their parameters.

 Most of the modern deep learning frameworks support serialization of their com-
putations to ONNX, and some of them can load an ONNX file and execute it
(although this is not the case for PyTorch). Some low-footprint (“edge”) devices
accept an ONNX files as input and generate low-level instructions for the specific
device. And some cloud computing providers now make it possible to upload an
ONNX file and see it exposed through a REST endpoint.

 In order to export a model to ONNX, we need to run a model with a dummy
input: the values of the input tensors don’t really matter; what matters is that they are
the correct shape and type. By invoking the torch.onnx.export function, PyTorch

6 The code lives at https://github.com/microsoft/onnxruntime, but be sure to read the privacy statement!
Currently, building ONNX Runtime yourself will get you a package that does not send things to the mother-
ship.

https://onnx.ai
https://onnx.ai/supported-tools.html#deployModel
https://onnx.ai/supported-tools.html#deployModel
https://onnx.ai/supported-tools.html#deployModel
https://github.com/microsoft/onnxruntime

456 CHAPTER 15 Deploying to production

will trace the computations performed by the model and serialize them into an ONNX
file with the provided name:

torch.onnx.export(seg_model, dummy_input, "seg_model.onnx")

The resulting ONNX file can now be run in a runtime, compiled to an edge device, or
uploaded to a cloud service. It can be used from Python after installing onnxruntime
or onnxruntime-gpu and getting a batch as a NumPy array.

import onnxruntime

sess = onnxruntime.InferenceSession("seg_model.onnx")
input_name = sess.get_inputs()[0].name
pred_onnx, = sess.run(None, {input_name: batch})

Not all TorchScript operators can be represented as standardized ONNX operators. If
we export operations foreign to ONNX, we will get errors about unknown aten opera-
tors when we try to use the runtime.

15.2.2 PyTorch’s own export: Tracing

When interoperability is not the key, but we need to escape the Python GIL or other-
wise export our network, we can use PyTorch’s own representation, called the Torch-
Script graph. We will see what that is and how the JIT that generates it works in the next
section. But let’s give it a spin right here and now.

 The simplest way to make a TorchScript model is to trace it. This looks exactly like
ONNX exporting. This isn’t surprising, because that is what the ONNX model uses
under the hood, too. Here we just feed dummy inputs into the model using the
torch.jit.trace function. We import UNetWrapper from chapter 13, load the
trained parameters, and put the model into evaluation mode.

 Before we trace the model, there is one additional caveat: none of the parameters
should require gradients, because using the torch.no_grad() context manager is
strictly a runtime switch. Even if we trace the model within no_grad but then run it
outside, PyTorch will record gradients. If we take a peek ahead at figure 15.4, we see
why: after the model has been traced, we ask PyTorch to execute it. But the traced
model will have parameters requiring gradients when executing the recorded opera-
tions, and they will make everything require gradients. To escape that, we would have
to run the traced model in a torch.no_grad context. To spare us this—from experi-
ence, it is easy to forget and then be surprised by the lack of performance—we loop
through the model parameters and set all of them to not require gradients.

Listing 15.6 onnx_example.py

The ONNX runtime API uses
sessions to define models and
then calls the run method
with a set of named inputs.
This is a somewhat typical
setup when dealing with
computations defined in
static graphs.

457Exporting models

 But then all we need to do is call torch.jit.trace. 7

import torch
from p2ch13.model_seg import UNetWrapper

seg_dict = torch.load('data-unversioned/part2/models/p2ch13/seg_2019-10-20_15

➥ .57.21_none.best.state', map_location='cpu')
seg_model = UNetWrapper(in_channels=8, n_classes=1, depth=4, wf=3,

➥ padding=True, batch_norm=True, up_mode='upconv')
seg_model.load_state_dict(seg_dict['model_state'])
seg_model.eval()
for p in seg_model.parameters():

p.requires_grad_(False)

dummy_input = torch.randn(1, 8, 512, 512)
traced_seg_model = torch.jit.trace(seg_model, dummy_input)

The tracing gives us a warning:

TracerWarning: Converting a tensor to a Python index might cause the trace
to be incorrect. We can't record the data flow of Python values, so this
value will be treated as a constant in the future. This means the trace
might not generalize to other inputs!

return layer[:, :, diff_y:(diff_y + target_size[0]), diff_x:(diff_x +

➥ target_size[1])]

This stems from the cropping we do in U-Net, but as long as we only ever plan to feed
images of size 512 × 512 into the model, we will be OK. In the next section, we’ll take
a closer look at what causes the warning and how to get around the limitation it high-
lights if we need to. It will also be important when we want to convert models that are
more complex than convolutional networks and U-Nets to TorchScript.

 We can save the traced model

torch.jit.save(traced_seg_model, 'traced_seg_model.pt')

and load it back without needed anything but the saved file, and then we can call it:

loaded_model = torch.jit.load('traced_seg_model.pt')
prediction = loaded_model(batch)

The PyTorch JIT will keep the model’s state from when we saved it: that we had put it
into evaluation mode and that our parameters do not require gradients. If we had not
taken care of it beforehand, we would need to use with torch.no_grad(): in the
execution.

Listing 15.7 trace_example.py

7 Strictly speaking, this traces the model as a function. Recently, PyTorch gained the ability to preserve more
of the module structure using torch.jit.trace_module, but for us, the plain tracing is sufficient.

Sets the parameters to
not require gradients

The tracing

458 CHAPTER 15 Deploying to production

TIP You can run the JITed and exported PyTorch model without keeping the
source. However, we always want to establish a workflow where we automati-
cally go from source model to installed JITed model for deployment. If we do
not, we will find ourselves in a situation where we would like to tweak some-
thing with the model but have lost the ability to modify and regenerate.
Always keep the source, Luke!

15.2.3 Our server with a traced model

Now is a good time to iterate our web server to what is, in this case, our final version.
We can export the traced CycleGAN model as follows:

python3 p3ch15/cyclegan.py data/p1ch2/horse2zebra_0.4.0.pth

➥ data/p3ch15/traced_zebra_model.pt

Now we just need to replace the call to get_pretrained_model with torch.jit.load
in our server (and drop the now-unnecessary import of get_pretrained_model). This
also means our model runs independent of the GIL—and this is what we wanted our
server to achieve here. For your convenience, we have put the small modifications in
request_batching_jit_server.py. We can run it with the traced model file path as a
command-line argument.

 Now that we have had a taste of what the JIT can do for us, let’s dive into the
details!

15.3 Interacting with the PyTorch JIT
Debuting in PyTorch 1.0, the PyTorch JIT is at the center of quite a few recent innova-
tions around PyTorch, not least of which is providing a rich set of deployment options.

15.3.1 What to expect from moving beyond classic Python/PyTorch

Quite often, Python is said to lack speed. While there is some truth to this, the tensor
operations we use in PyTorch usually are in themselves large enough that the Python
slowness between them is not a large issue. For small devices like smartphones, the
memory overhead that Python brings might be more important. So keep in mind that
frequently, the speedup gained by taking Python out of the computation is 10% or less.

 Another immediate speedup from not running the model in Python only appears
in multithreaded environments, but then it can be significant: because the intermedi-
ates are not Python objects, the computation is not affected by the menace of all
Python parallelization, the GIL. This is what we had in mind earlier and realized when
we used a traced model in our server.

 Moving from the classic PyTorch way of executing one operation before looking at
the next does give PyTorch a holistic view of the calculation: that is, it can consider the
calculation in its entirety. This opens the door to crucial optimizations and higher-
level transformations. Some of those apply mostly to inference, while others can also
provide a significant speedup in training.

459Interacting with the PyTorch JIT

 Let’s use a quick example to give you a taste of why looking at several operations at
once can be beneficial. When PyTorch runs a sequence of operations on the GPU, it
calls a subprogram (kernel, in CUDA parlance) for each of them. Every kernel reads
the input from GPU memory, computes the result, and then stores the result. Thus
most of the time is typically spent not computing things, but reading from and writing
to memory. This can be improved on by reading only once, computing several opera-
tions, and then writing at the very end. This is precisely what the PyTorch JIT fuser
does. To give you an idea of how this works, figure 15.3 shows the pointwise computa-
tion taking place in long short-term memory (LSTM; https://en.wikipedia.org/wiki/
Long_short-term_memory) cell, a popular building block for recurrent networks.

 The details of figure 15.3 are not important to us here, but there are 5 inputs at
the top, 2 outputs at the bottom, and 7 intermediate results represented as rounded
indices. By computing all of this in one go in a single CUDA function and keeping the
intermediates in registers, the JIT reduces the number of memory reads from 12 to 5
and the number of writes from 9 to 2. These are the large gains the JIT gets us; it can
reduce the time to train an LSTM network by a factor of four. This seemingly simple

ingate ceLlgate forgetgate

forgetgate

sigmoid tanh

tanh

cx hx

sigmoid sigmoid

ingate ceLlgate

cx outgate

outgate

Figure 15.3 LSTM cell pointwise operations. From five inputs at the top, this block computes
two outputs at the bottom. The boxes in between are intermediate results that vanilla PyTorch
will store in memory but the JIT fuser will just keep in registers.

https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory

460 CHAPTER 15 Deploying to production

trick allows PyTorch to significantly narrow the gap between the speed of LSTM and
generalized LSTM cells flexibly defined in PyTorch and the rigid but highly optimized
LSTM implementation provided by libraries like cuDNN.

 In summary, the speedup from using the JIT to escape Python is more modest than
we might naively expect when we have been told that Python is awfully slow, but avoid-
ing the GIL is a significant win for multithreaded applications. The large speedups in
JITed models come from special optimizations that the JIT enables but that are more
elaborate than just avoiding Python overhead.

15.3.2 The dual nature of PyTorch as interface and backend

To understand how moving beyond Python works, it is beneficial to mentally separate
PyTorch into several parts. We saw a first glimpse of this in section 1.4. Our PyTorch
torch.nn modules—which we first saw in chapter 6 and which have been our main
tool for modeling ever since—hold the parameters of our network and are
implemented using the functional interface: functions taking and returning tensors.
These are implemented as a C++ extension, handed over to the C++-level autograd-
enabled layer. (This then hands the actual computation to an internal library called
ATen, performing the computation or relying on backends to do so, but this is
not important.)

 Given that the C++ functions are already there, the PyTorch developers made them
into an official API. This is the nucleus of LibTorch, which allows us to write C++ ten-
sor operations that look almost like their Python counterparts. As the torch.nn mod-
ules are Python-only by nature, the C++ API mirrors them in a namespace torch::nn
that is designed to look a lot like the Python part but is independent.

 This would allow us to redo in C++ what we did in Python. But that is not what we
want: we want to export the model. Happily, there is another interface to the same
functions provided by PyTorch: the PyTorch JIT. The PyTorch JIT provides a “sym-
bolic” representation of the computation. This representation is the TorchScript inter-
mediate representation (TorchScript IR, or sometimes just TorchScript). We mentioned
TorchScript in section 15.2.2 when discussing delayed computation. In the following
sections, we will see how to get this representation of our Python models and how they
can be saved, loaded, and executed. Similar to what we discussed for the regular
PyTorch API, the PyTorch JIT functions to load, inspect, and execute TorchScript
modules can also be accessed both from Python and from C++.

 In summary, we have four ways of calling PyTorch functions, illustrated in figure
15.4: from both C++ and Python, we can either call functions directly or have the JIT
as an intermediary. All of these eventually call the C++ LibTorch functions and from
there ATen and the computational backend.

461Interacting with the PyTorch JIT

15.3.3 TorchScript

TorchScript is at the center of the deployment options envisioned by PyTorch. As
such, it is worth taking a close look at how it works.

 There are two straightforward ways to create a TorchScript model: tracing and
scripting. We will look at each of them in the following sections. At a very high level,
the two work as follows:

 In tracing, which we used in in section 15.2.2, we execute our usual PyTorch
model using sample (random) inputs. The PyTorch JIT has hooks (in the C++
autograd interface) for every function that allows it to record the computation.
In a way, it is like saying “Watch how I compute the outputs—now you can do
the same.” Given that the JIT only comes into play when PyTorch functions
(and also nn.Modules) are called, you can run any Python code while tracing,
but the JIT will only notice those bits (and notably be ignorant of control flow).
When we use tensor shapes—usually a tuple of integers—the JIT tries to follow
what’s going on but may have to give up. This is what gave us the warning when
tracing the U-Net.

 In scripting, the PyTorch JIT looks at the actual Python code of our computation
and compiles it into the TorchScript IR. This means that, while we can be sure
that every aspect of our program is captured by the JIT, we are restricted to
those parts understood by the compiler. This is like saying “I am telling you how
to do it—now you do the same.” Sounds like programming, really.

C++ LibTorch

(includes autograd)

ATen (Tensors)

CuDNn NnPACK ...Backends:

ATen "native" Kernels

claSsic PyTorch:

 torch, torch.Nn

JIT Execution

C++-ProgramsPython Programs

Custom Ops

(JIT Extensions)

PyTorch

torch.jit

Figure 15.4 Many ways of calling into PyTorch

462 CHAPTER 15 Deploying to production

We are not here for theory, so let’s try tracing and scripting with a very simple function
that adds inefficiently over the first dimension:

In[2]:
def myfn(x):

y = x[0]
for i in range(1, x.size(0)):

y = y + x[i]
return y

We can trace it:

In[3]:
inp = torch.randn(5,5)
traced_fn = torch.jit.trace(myfn, inp)
print(traced_fn.code)

Out[3]:
def myfn(x: Tensor) -> Tensor:

y = torch.select(x, 0, 0)
y0 = torch.add(y, torch.select(x, 0, 1), alpha=1)
y1 = torch.add(y0, torch.select(x, 0, 2), alpha=1)
y2 = torch.add(y1, torch.select(x, 0, 3), alpha=1)
_0 = torch.add(y2, torch.select(x, 0, 4), alpha=1)
return _0

TracerWarning: Converting a tensor to a Python index might cause the trace
to be incorrect. We can't record the data flow of Python values, so this
value will be treated as a constant in the future. This means the
trace might not generalize to other inputs!

We see the big warning—and indeed, the code has fixed indexing and additions for
five rows, and it would not deal as intended with four or six rows.

 This is where scripting helps:

In[4]:
scripted_fn = torch.jit.script(myfn)
print(scripted_fn.code)

Out[4]:
def myfn(x: Tensor) -> Tensor:

y = torch.select(x, 0, 0)
_0 = torch.__range_length(1, torch.size(x, 0), 1)
y0 = y
for _1 in range(_0):

i = torch.__derive_index(_1, 1, 1)
y0 = torch.add(y0, torch.select(x, 0, i), alpha=1)

return y0

Indexing in the first
line of our function Our loop—but completely

unrolled and fixed to 1…4
regardless of the size of x

Scary, but so true!

PyTorch constructs the
range length from the
tensor size.

Our for loop—even if we have to take the
funny-looking next line to get our index i

Our loop body, which is
just a tad more verbose

463Interacting with the PyTorch JIT

We can also print the scripted graph, which is closer to the internal representation of
TorchScript:

In[5]:
xprint(scripted_fn.graph)
end::cell_5_code[]

tag::cell_5_output[]
Out[5]:
graph(%x.1 : Tensor):

%10 : bool = prim::Constant[value=1]()
%2 : int = prim::Constant[value=0]()
%5 : int = prim::Constant[value=1]()
%y.1 : Tensor = aten::select(%x.1, %2, %2)
%7 : int = aten::size(%x.1, %2)
%9 : int = aten::__range_length(%5, %7, %5)
%y : Tensor = prim::Loop(%9, %10, %y.1)

block0(%11 : int, %y.6 : Tensor):
%i.1 : int = aten::__derive_index(%11, %5, %5)
%18 : Tensor = aten::select(%x.1, %2, %i.1)
%y.3 : Tensor = aten::add(%y.6, %18, %5)
-> (%10, %y.3)

return (%y)

In practice, you would most often use torch.jit.script in the form of a decorator:

@torch.jit.script
def myfn(x):

...

You could also do this with a custom trace decorator taking care of the inputs, but
this has not caught on.

 Although TorchScript (the language) looks like a subset of Python, there are fun-
damental differences. If we look very closely, we see that PyTorch has added type spec-
ifications to the code. This hints at an important difference: TorchScript is statically
typed—every value (variable) in the program has one and only one type. Also, the
types are limited to those for which the TorchScript IR has a representation. Within
the program, the JIT will usually infer the type automatically, but we need to annotate
any non-tensor arguments of scripted functions with their types. This is in stark con-
trast to Python, where we can assign anything to any variable.

 So far, we’ve traced functions to get scripted functions. But we graduated from just
using functions in chapter 5 to using modules a long time ago. Sure enough, we can
also trace or script models. These will then behave roughly like the modules we know
and love. For both tracing and scripting, we pass an instance of Module to
torch.jit.trace (with sample inputs) or torch.jit.script (without sample
inputs), respectively. This will give us the forward method we are used to. If we want
to expose other methods (this only works in scripting) to be called from the outside,
we decorate them with @torch.jit.export in the class definition.

Seems a lot more
verbose than we need

The first
assignment of y

Constructing the range is
recognizable after we see
the code.

Our for loop
returns the
value (y) it
calculates.

Body of the for loop:
selects a slice, and
adds to y

464 CHAPTER 15 Deploying to production

 When we said that the JITed modules work like they did in Python, this includes
the fact that we can use them for training, too. On the flip side, this means we need to
set them up for inference (for example, using the torch.no_grad() context) just like
our traditional models, to make them do the right thing.

 With algorithmically relatively simple models—like the CycleGAN, classification
models and U-Net-based segmentation—we can just trace the model as we did earlier.
For more complex models, a nifty property is that we can use scripted or traced func-
tions from other scripted or traced code, and that we can use scripted or traced sub-
modules when constructing and tracing or scripting a module. We can also trace
functions by calling nn.Models, but then we need to set all parameters to not require
gradients, as the parameters will be constants for the traced model.

 As we have seen tracing already, let’s look at a practical example of scripting in
more detail.

15.3.4 Scripting the gaps of traceability

In more complex models, such as those from the Fast R-CNN family for detection or
recurrent networks used in natural language processing, the bits with control flow like
for loops need to be scripted. Similarly, if we needed the flexibility, we would find the
code bit the tracer warned about.

class UNetUpBlock(nn.Module):
...
def center_crop(self, layer, target_size):

_, _, layer_height, layer_width = layer.size()
diff_y = (layer_height - target_size[0]) // 2
diff_x = (layer_width - target_size[1]) // 2
return layer[:, :, diff_y:(diff_y + target_size[0]),

➥ diff_x:(diff_x + target_size[1])]

def forward(self, x, bridge):
...
crop1 = self.center_crop(bridge, up.shape[2:])

...

What happens is that the JIT magically replaces the shape tuple up.shape with a 1D
integer tensor with the same information. Now the slicing [2:] and the calculation of
diff_x and diff_y are all traceable tensor operations. However, that does not save us,
because the slicing then wants Python ints; and there, the reach of the JIT ends, giv-
ing us the warning.

 But we can solve this issue in a straightforward way: we script center_crop. We
slightly change the cut between caller and callee by passing up to the scripted center
_crop and extracting the sizes there. Other than that, all we need is to add the
@torch.jit.script decorator. The result is the following code, which makes the
U-Net model traceable without warnings.

Listing 15.8 From utils/unet.py

The tracer warns here.

465LibTorch: PyTorch in C++

@torch.jit.script
def center_crop(layer, target):

_, _, layer_height, layer_width = layer.size()
_, _, target_height, target_width = target.size()
diff_y = (layer_height - target_height) // 2
diff_x = (layer_width - target_width]) // 2
return layer[:, :, diff_y:(diff_y + target_height),

➥ diff_x:(diff_x + target_width)]

class UNetUpBlock(nn.Module):
...

def forward(self, x, bridge):
...
crop1 = center_crop(bridge, up)

...

Another option we could choose—but that we will not use here—would be to move
unscriptable things into custom operators implemented in C++. The TorchVision
library does that for some specialty operations in Mask R-CNN models.

15.4 LibTorch: PyTorch in C++
We have seen various way to export our models, but so far, we have used Python. We’ll
now look at how we can forgo Python and work with C++ directly.

 Let’s go back to the horse-to-zebra CycleGAN example. We will now take the JITed
model from section 15.2.3 and run it from a C++ program.

15.4.1 Running JITed models from C++

The hardest part about deploying PyTorch vision models in C++ is choosing an image
library to choose the data.8 Here, we go with the very lightweight library CImg
(http://cimg.eu). If you are very familiar with OpenCV, you can adapt the code to use
that instead; we just felt that CImg is easiest for our exposition.

 Running a JITed model is very simple. We’ll first show the image handling; it is not
really what we are after, so we will do this very quickly.9

#include "torch/script.h"
#define cimg_use_jpeg
#include "CImg.h"
using namespace cimg_library;
int main(int argc, char **argv) {

CImg<float> image(argv[2]);

Listing 15.9 Rewritten excerpt from utils/unet.py

8 But TorchVision may develop a convenience function for loading images.

Listing 15.10 cyclegan_jit.cpp

9 The code works with PyTorch 1.4 and, hopefully, above. In PyTorch versions before 1.3 you needed data in
place of data_ptr.

Changes the signature, taking
target instead of target_size

Gets the sizes within
the scripted part

The indexing uses the
size values we got.

We adapt our call to pass
up rather than the size.

Includes the PyTorch script header
and CImg with native JPEG support

Loads and decodes the
image into a float array

http://cimg.eu

466 CHAPTER 15 Deploying to production

image = image.resize(227, 227);
// ...here we need to produce an output tensor from input
CImg<float> out_img(output.data_ptr<float>(), output.size(2),

output.size(3), 1, output.size(1));
out_img.save(argv[3]);
return 0;

}

For the PyTorch side, we include a C++ header torch/script.h. Then we need to set up
and include the CImg library. In the main function, we load an image from a file given
on the command line and resize it (in CImg). So we now have a 227 × 227 image in
the CImg<float> variable image. At the end of the program, we’ll create an out_img of
the same type from our (1, 3, 277, 277)-shaped tensor and save it.

 Don’t worry about these bits. They are not the PyTorch C++ we want to learn, so we
can just take them as is.

 The actual computation is straightforward, too. We need to make an input tensor
from the image, load our model, and run the input tensor through it.

auto input_ = torch::tensor(
torch::ArrayRef<float>(image.data(), image.size()));

auto input = input_.reshape({1, 3, image.height(),
image.width()}).div_(255);

auto module = torch::jit::load(argv[1]);

std::vector<torch::jit::IValue> inputs;
inputs.push_back(input);
auto output_ = module.forward(inputs).toTensor();

auto output = output_.contiguous().mul_(255);

Recall from chapter 3 that PyTorch keeps the values of a tensor in a large chunk of
memory in a particular order. So does CImg, and we can get a pointer to this memory
chunk (as a float array) using image.data() and the number of elements using
image.size(). With these two, we can create a somewhat smarter reference: a
torch::ArrayRef (which is just shorthand for pointer plus size; PyTorch uses those at
the C++ level for data but also for returning sizes without copying). Then we can just
parse that into the torch::tensor constructor, just as we would with a list.

TIP Sometimes you might want to use the similar-working torch::from_blob
instead of torch::tensor. The difference is that tensor will copy the data. If
you do not want copying, you can use from_blob, but then you need to take care
that the underpinning memory is available during the lifetime of the tensor.

Listing 15.11 cyclegan_jit.cpp

Resizes to a smaller size

The method data_ptr<float>() gives us a pointer
to the tensor storage. With it and the shape

information, we can construct the output image.Saves the image

Puts the image data into a tensor
Reshapes and rescales
to move from CImg
conventions to
PyTorch’s

Loads the JITed model
or function from a file

Packs the input into a (one-
element) vector of IValues

Calls the module and extracts the result tensor. For
efficiency, the ownership is moved, so if we held on
to the IValue, it would be empty afterward.

Makes sure our result
is contiguous

467LibTorch: PyTorch in C++

Our tensor is only 1D, so we need to reshape it. Conveniently, CImg uses the same
ordering as PyTorch (channel, rows, columns). If not, we would need to adapt the
reshaping and permute the axes as we did in chapter 4. As CImg uses a range of
0…255 and we made our model to use 0…1, we divide here and multiply later.
This could, of course, be absorbed into the model, but we wanted to reuse our
traced model.

Loading the traced model is very straightforward using torch::jit::load. Next, we
have to deal with an abstraction PyTorch introduces to bridge between Python and
C++: we need to wrap our input in an IValue (or several IValues), the generic data type
for any value. A function in the JIT is passed a vector of IValues, so we declare that
and then push_back our input tensor. This will automatically wrap our tensor into an
IValue. We feed this vector of IValues to the forward and get a single one back. We
can then unpack the tensor in the resulting IValue with .toTensor.

 Here we see a bit about IValues: they have a type (here, Tensor), but they could also
be holding int64_ts or doubles or a list of tensors. For example, if we had multiple
outputs, we would get an IValue holding a list of tensors, which ultimately stems from
the Python calling conventions. When we unpack a tensor from an IValue using
.toTensor, the IValue transfers ownership (becomes invalid). But let’s not worry about
it; we got a tensor back. Because sometimes the model may return non-contiguous data
(with gaps in the storage from chapter 3), but CImg reasonably requires us to provide
it with a contiguous block, we call contiguous. It is important that we assign this
contiguous tensor to a variable that is in scope until we are done working with the
underlying memory. Just like in Python, PyTorch will free memory if it sees that no
tensors are using it anymore.

 So let’s compile this! On Debian or Ubuntu, you need to install cimg-dev,
libjpeg-dev, and libx11-dev to use CImg.

A common pitfall to avoid: pre- and postprocessing
When switching from one library to another, it is easy to forget to check that the con-
version steps are compatible. They are non-obvious unless we look up the memory
layout and scaling convention of PyTorch and the image processing library we use. If
we forget, we will be disappointed by not getting the results we anticipate.

Here, the model would go wild because it gets extremely large inputs. However, in
the end, the output convention of our model is to give RGB values in the 0..1 range.
If we used this directly with CImg, the result would look all black.

Other frameworks have other conventions: for example OpenCV likes to store images
as BGR instead of RGB, requiring us to flip the channel dimension. We always want
to make sure the input we feed to the model in the deployment is the same as what
we fed into it in Python.

468 CHAPTER 15 Deploying to production

 You can download a C++ library of PyTorch from the PyTorch page. But given that
we already have PyTorch installed,10 we might as well use that; it comes with all we
need for C++. We need to know where our PyTorch installation lives, so open Python
and check torch.__file__, which may say /usr/local/lib/python3.7/dist-packages/
torch/__init__.py. This means the CMake files we need are in /usr/local/lib/
python3.7/dist-packages/torch/share/cmake/.

 While using CMake seems like overkill for a single source file project, linking to
PyTorch is a bit complex; so we just use the following as a boilerplate CMake file.11

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(cyclegan-jit)

find_package(Torch REQUIRED)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")

add_executable(cyclegan-jit cyclegan_jit.cpp)
target_link_libraries(cyclegan-jit pthread jpeg X11)
target_link_libraries(cyclegan-jit "${TORCH_LIBRARIES}")
set_property(TARGET cyclegan-jit PROPERTY CXX_STANDARD 14)

It is best to make a build directory as a subdirectory of where the source code resides
and then in it run CMake as12 CMAKE_PREFIX_PATH=/usr/local/lib/python3.7/
dist-packages/torch/share/cmake/ cmake .. and finally make. This will build the
cyclegan-jit program, which we can then run as follows:

./cyclegan-jit ../traced_zebra_model.pt ../../data/p1ch2/horse.jpg /tmp/z.jpg

We just ran our PyTorch model without Python. Awesome! If you want to ship your
application, you likely want to copy the libraries from /usr/local/lib/python3.7/dist-
packages/torch/lib into where your executable is, so that they will always be found.

15.4.2 C++ from the start: The C++ API

The C++ modular API is intended to feel a lot like the Python one. To get a taste, we
will translate the CycleGAN generator into a model natively defined in C++, but with-
out the JIT. We do, however, need the pretrained weights, so we’ll save a traced version
of the model (and here it is important to trace not a function but the model).

10 We hope you have not been slacking off about trying out things you read.

Listing 15.12 CMakeLists.txt

11 The code directory has a bit longer version to work around Windows issues.
12 You might have to replace the path with where your PyTorch or LibTorch installation is located. Note that

the C++ library can be more picky than the Python one in terms of compatibility: If you are using a CUDA-
enabled library, you need to have the matching CUDA headers installed. If you get cryptic error messages
about “Caffe2 using CUDA,” you need to install a CPU-only version of the library, but CMake found a CUDA-
enabled one.

Project name. Replace it with your
own here and on the other lines.

We need Torch. We want to compile
an executable named
cyclegan-jit from the
cyclegan_jit.cpp
source file.

Links to the bits required
for CImg. CImg itself is all-
include, so it does not
appear here.

469LibTorch: PyTorch in C++

 We’ll start with some administrative details: includes and namespaces.

#include <torch/torch.h>
#define cimg_use_jpeg
#include <CImg.h>
using torch::Tensor;

When we look at the source code in the file, we find that ConvTransposed2d is ad hoc
defined, when ideally it should be taken from the standard library. The issue here is
that the C++ modular API is still under development; and with PyTorch 1.4, the pre-
made ConvTranspose2d module cannot be used in Sequential because it takes an
optional second argument.13 Usually we could just leave Sequential—as we did for
Python—but we want our model to have the same structure as the Python CycleGAN
generator from chapter 2.

 Next, let’s look at the residual block.

struct ResNetBlock : torch::nn::Module {
torch::nn::Sequential conv_block;
ResNetBlock(int64_t dim)

: conv_block(
torch::nn::ReflectionPad2d(1),
torch::nn::Conv2d(torch::nn::Conv2dOptions(dim, dim, 3)),
torch::nn::InstanceNorm2d(
torch::nn::InstanceNorm2dOptions(dim)),
torch::nn::ReLU(/*inplace=*/true),

torch::nn::ReflectionPad2d(1),
torch::nn::Conv2d(torch::nn::Conv2dOptions(dim, dim, 3)),
torch::nn::InstanceNorm2d(
torch::nn::InstanceNorm2dOptions(dim))) {

register_module("conv_block", conv_block);
}

Tensor forward(const Tensor &inp) {
return inp + conv_block->forward(inp);

}
};

Just as we would in Python, we register a subclass of torch::nn::Module. Our residual
block has a sequential conv_block submodule.

 And just as we did in Python, we need to initialize our submodules, notably
Sequential. We do so using the C++ initialization statement. This is similar to how we

Listing 15.13 cyclegan_cpp_api.cpp

13 This is a great improvement over PyTorch 1.3, where we needed to implement custom modules for ReLU,
ÌnstanceNorm2d, and others.

Listing 15.14 Residual block in cyclegan_cpp_api.cpp

Imports the one-stop
torch/torch.h header and CImg

Spelling out torch::Tensor can be tedious, so
we import the name into the main namespace.

Initializes Sequential,
including its submodules

Always remember to register
the modules you assign, or
bad things will happen!

As might be expected, our forward
function is pretty simple.

470 CHAPTER 15 Deploying to production

construct submodules in Python in the __init__ constructor. Unlike Python, C++
does not have the introspection and hooking capabilities that enable redirection of
__setattr__ to combine assignment to a member and registration.

 Since the lack of keyword arguments makes the parameter specification awkward
with default arguments, modules (like tensor factory functions) typically take an
options argument. Optional keyword arguments in Python correspond to methods of
the options object that we can chain. For example, the Python module
nn.Conv2d(in_channels, out_channels, kernel_size, stride=2, padding=1) that
we need to convert translates to torch::nn::Conv2d(torch::nn::Conv2dOptions
(in_channels, out_channels, kernel_size).stride(2).padding(1)). This is a bit
more tedious, but you’re reading this because you love C++ and aren’t deterred by the
hoops it makes you jump through.

 We should always take care that registration and assignment to members is in sync,
or things will not work as expected: for example, loading and updating parameters
during training will happen to the registered module, but the actual module being
called is a member. This synchronization was done behind the scenes by the Python
nn.Module class, but it is not automatic in C++. Failing to do so will cause us many
headaches.

 In contrast to what we did (and should!) in Python, we need to call m->forward(…)
for our modules. Some modules can also be called directly, but for Sequential, this is
not currently the case.

 A final comment on calling conventions is in order: depending on whether you
modify tensors provided to functions,14 tensor arguments should always be passed as
const Tensor& for tensors that are left unchanged or Tensor if they are changed. Ten-
sors should be returned as Tensor. Wrong argument types like non-const references
(Tensor&) will lead to unparsable compiler errors.

 In the main generator class, we’ll follow a typical pattern in the C++ API more
closely by naming our class ResNetGeneratorImpl and promoting it to a torch module
ResNetGenerator using the TORCH_MODULE macro. The background is that we want to
mostly handle modules as references or shared pointers. The wrapped class
accomplishes this.

struct ResNetGeneratorImpl : torch::nn::Module {
torch::nn::Sequential model;
ResNetGeneratorImpl(int64_t input_nc = 3, int64_t output_nc = 3,

int64_t ngf = 64, int64_t n_blocks = 9) {
TORCH_CHECK(n_blocks >= 0);
model->push_back(torch::nn::ReflectionPad2d(3));

14 This is a bit blurry because you can create a new tensor sharing memory with an input and modify it in place,
but it’s best to avoid that if possible.

Listing 15.15 ResNetGenerator in cyclegan_cpp_api.cpp

Adds modules to the Sequential container in the
constructor. This allows us to add a variable

number of modules in a for loop.

471LibTorch: PyTorch in C++

...
model->push_back(torch::nn::Conv2d(

torch::nn::Conv2dOptions(ngf * mult, ngf * mult * 2, 3)
.stride(2)
.padding(1)));

...
register_module("model", model);

}
Tensor forward(const Tensor &inp) { return model->forward(inp); }

};

TORCH_MODULE(ResNetGenerator);

That’s it—we’ve defined the perfect C++ analogue of the Python ResNetGenerator
model. Now we only need a main function to load parameters and run our model.
Loading the image with CImg and converting from image to tensor and tensor back
to image are the same as in the previous section. To include some variation, we’ll dis-
play the image instead of writing it to disk.

ResNetGenerator model;
...
torch::load(model, argv[1]);
...
cimg_library::CImg<float> image(argv[2]);
image.resize(400, 400);
auto input_ =

torch::tensor(torch::ArrayRef<float>(image.data(), image.size()));
auto input = input_.reshape({1, 3, image.height(), image.width()});
torch::NoGradGuard no_grad;

model->eval();

auto output = model->forward(input);
...
cimg_library::CImg<float> out_img(output.data_ptr<float>(),

output.size(3), output.size(2),
1, output.size(1));

cimg_library::CImgDisplay disp(out_img, "See a C++ API zebra!");
while (!disp.is_closed()) {

disp.wait();
}

The interesting changes are in how we create and run the model. Just as expected, we
instantiate the model by declaring a variable of the model type. We load the model
using torch::load (here it is important that we wrapped the model). While this looks
very familiar to PyTorch practitioners, note that it will work on JIT-saved files rather
than Python-serialized state dictionaries.

 When running the model, we need the equivalent of with torch.no_grad():. This
is provided by instantiating a variable of type NoGradGuard and keeping it in scope for

Listing 15.16 cyclegan_cpp_api.cpp main

Spares us from
reproducing some
tedious things An example of Options in action

Creates a wrapper ResNetGenerator around our
ResNetGeneratorImpl class. As archaic as it seems,
the matching names are important here.

Instantiates our model

Loads the
parameters

Declaring a guard variable
is the equivalent of the

torch.no_grad() context.
You can put it in a { … }
block if you need to limit

how long you turn off
gradients.

As in Python, eval mode is turned on (for our
model, it would not be strictly relevant).

Again, we call
forward rather
than the model.

Displaying the image, we need to wait for a key
rather than immediately exiting our program.

472 CHAPTER 15 Deploying to production

as long as we do not want gradients. Just like in Python, we set the model into evaluation
mode calling model->eval(). This time around, we call model->forward with our input
tensor and get a tensor as a result—no JIT is involved, so we do not need IValue packing
and unpacking.

 Phew. Writing this in C++ was a lot of work for the Python fans that we are. We are
glad that we only promised to do inference here, but of course LibTorch also offers
optimizers, data loaders, and much more. The main reason to use the API is, of
course, when you want to create models and neither the JIT nor Python is a good fit.

 For your convenience, CMakeLists.txt contains also the instructions for building
cyclegan-cpp-api, so building is just like in the previous section.

 We can run the program as

./cyclegan_cpp_api ../traced_zebra_model.pt ../../data/p1ch2/horse.jpg

But we knew what the model would be doing, didn’t we?

15.5 Going mobile
As the last variant of deploying a model, we will consider deployment to mobile
devices. When we want to bring our models to mobile, we are typically looking at
Android and/or iOS. Here, we’ll focus on Android.

 The C++ parts of PyTorch—LibTorch—can be compiled for Android, and we
could access that from an app written in Java using the Android Java Native Interface
(JNI). But we really only need a handful of functions from PyTorch—loading a JITed
model, making inputs into tensors and IValues, running them through the model,
and getting results back. To save us the trouble of using the JNI, the PyTorch develop-
ers wrapped these functions into a small library called PyTorch Mobile.

 The stock way of developing apps in Android is to use the Android Studio IDE,
and we will be using it, too. But this means there are a few dozen files of administra-
tiva—which also happen to change from one Android version to the next. As such, we
focus on the bits that turn one of the Android Studio templates (Java App with Empty
Activity) into an app that takes a picture, runs it through our zebra-CycleGAN, and
displays the result. Sticking with the theme of the book, we will be efficient with the
Android bits (and they can be painful compared with writing PyTorch code) in the
example app.

 To infuse life into the template, we need to do three things. First, we need to define
a UI. To keep things as simple as we can, we have two elements: a TextView named head-
line that we can click to take and transform a picture; and an ImageView to show our
picture, which we call image_view. We will leave the picture-taking to the camera app
(which you would likely avoid doing in an app for a smoother user experience), because
dealing with the camera directly would blur our focus on deploying PyTorch models.15

15 We are very proud of the topical metaphor.

473Going mobile

 Then, we need to include PyTorch as a dependency. This is done by editing our app’s
build.gradle file and adding pytorch_android and pytorch_android_torchvision.

dependencies {
...
implementation 'org.pytorch:pytorch_android:1.4.0'

implementation 'org.pytorch:pytorch_android_torchvision:1.4.0'
}

We need to add our traced model as an asset.
 Finally, we can get to the meat of our shiny app: the Java class derived from activity

that contains our main code. We’ll just discuss an excerpt here. It starts with imports
and model setup.

...
import org.pytorch.IValue;
import org.pytorch.Module;
import org.pytorch.Tensor;
import org.pytorch.torchvision.TensorImageUtils;
...
public class MainActivity extends AppCompatActivity {

private org.pytorch.Module model;

@Override
protected void onCreate(Bundle savedInstanceState) {

...
try {

model = Module.load(assetFilePath(this, "traced_zebra_model.pt"));
} catch (IOException e) {

Log.e("Zebraify", "Error reading assets", e);
finish();

}
...

}
...

}

We need some imports from the org.pytorch namespace. In the typical style that is a
hallmark of Java, we import IValue, Module, and Tensor, which do what we might
expect; and the class org.pytorch.torchvision.TensorImageUtils, which holds util-
ity functions to convert between tensors and images.

 First, of course, we need to declare a variable holding our model. Then, when our
app is started—in onCreate of our activity—we’ll load the module using the Model.load

Listing 15.17 Additions to build.gradle

Listing 15.18 MainActivity.java part 1

The dependencies section is very likely
already there. If not, add it at the bottom.

The pytorch_android
library gets the core things
mentioned in the text.

The helper library pytorch_android_torchvision—perhaps a bit immodestly named
when compared to its larger TorchVision sibling—contains a few utilities to convert

bitmap objects to tensors, but at the time of writing not much more.

Don’t you love imports?

Holds our JITed model

In Java we have to catch the exceptions.

Loads the module from a file

474 CHAPTER 15 Deploying to production

method from the location given as an argument. There is a slight complication though:
apps’ data is provided by the supplier as assets that are not easily accessible from the
filesystem. For this reason, a utility method called assetFilePath (taken from the
PyTorch Android examples) copies the asset to a location in the filesystem. Finally, in
Java, we need to catch exceptions that our code throws, unless we want to (and are able
to) declare the method we are coding as throwing them in turn.

 When we get an image from the camera app using Android’s Intent mechanism, we
need to run it through our model and display it. This happens in the onActivityResult
event handler.

@Override
protected void onActivityResult(int requestCode, int resultCode,

Intent data) {
if (requestCode == REQUEST_IMAGE_CAPTURE &&

resultCode == RESULT_OK) {
Bitmap bitmap = (Bitmap) data.getExtras().get("data");

final float[] means = {0.0f, 0.0f, 0.0f};
final float[] stds = {1.0f, 1.0f, 1.0f};

final Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(
bitmap, means, stds);

final Tensor outputTensor = model.forward(
IValue.from(inputTensor)).toTensor();

Bitmap output_bitmap = tensorToBitmap(outputTensor, means, stds,
Bitmap.Config.RGB_565);

image_view.setImageBitmap(output_bitmap);
}

}

Converting the bitmap we get from Android to a tensor is handled by the Tensor-
ImageUtils.bitmapToFloat32Tensor function (static method), which takes two float
arrays, means and stds, in addition to bitmap. Here we specify the mean and standard
deviation of our input data(set), which will then be mapped to have zero mean and unit
standard deviation just like TorchVision’s Normalize transform. Android already gives
us the images in the 0..1 range that we need to feed into our model, so we specify mean
0 and standard deviation 1 to prevent the normalization from changing our image.

 Around the actual call to model.forward, we then do the same IValue wrapping and
unwrapping dance that we did when using the JIT in C++, except that our forward takes
a single IValue rather than a vector of them. Finally, we need to get back to a bitmap.
Here PyTorch will not help us, so we need to define our own tensorToBitmap (and
submit the pull request to PyTorch). We spare you the details here, as they are tedious

Listing 15.19 MainActivity.java, part 2

This is executed when the
camera app takes a picture.

Performs normalization, but the default is images in
the range of 0…1 so we do not need to transform:
that is, have 0 shift and a scaling divisor of 1.

Gets a tensor from a bitmap, combining
steps like TorchVision’s ToTensor

(converting to a float tensor with entries
between 0 and 1) and Normalize

This looks almost like
what we did in C++.

tensorToBitmap is
our own invention.

475Going mobile

and full of copying (from the tensor to a float[]
array to a int[] array containing ARGB values to
the bitmap), but it is as it is. It is designed to be the
inverse of bitmapToFloat32Tensor.

 And that’s all we need to do to get PyTorch
into Android. Using the minimal additions to the
code we left out here to request a picture, we have
a Zebraify Android app that looks like in what
we see in figure 15.5. Well done!16

 We should note that we end up with a full ver-
sion of PyTorch with all ops on Android. This will,
in general, also include operations you will not
need for a given task, leading to the question of
whether we could save some space by leaving
them out. It turns out that starting with PyTorch
1.4, you can build a customized version of
the PyTorch library that includes only the opera-
tions you need (see https://pytorch.org/mobile/
android/#custom-build).

15.5.1 Improving efficiency: Model design and
quantization

If we want to explore mobile in more detail, our
next step is to try to make our models faster.
When we wish to reduce the memory and compute footprint of our models, the first
thing to look at is streamlining the model itself: that is, computing the same or very
similar mappings from inputs to outputs with fewer parameters and operations. This
is often called distillation. The details of distillation vary—sometimes we try to shrink
each weight by eliminating small or irrelevant weights;17 in other examples, we com-
bine several layers of a net into one (DistilBERT) or even train a fully different, sim-
pler model to reproduce the larger model’s outputs (OpenNMT’s original
CTranslate). We mention this because these modifications are likely to be the first step
in getting models to run faster.

 Another approach to is to reduce the footprint of each parameter and operation:
instead of expending the usual 32-bit per parameter in the form of a float, we convert
our model to work with integers (a typical choice is 8-bit). This is quantization.18

16 At the time of writing, PyTorch Mobile is still relatively young, and you may hit rough edges. On Pytorch 1.3,
the colors were off on an actual 32-bit ARM phone while working in the emulator. The reason is likely a bug
in one of the computational backend functions that are only used on ARM. With PyTorch 1.4 and a newer
phone (64-bit ARM), it seemed to work better.

17 Examples include the Lottery Ticket Hypothesis and WaveRNN.
18 In contrast to quantization, (partially) moving to 16-bit floating-point for training is usually called reduced or

(if some bits stay 32-bit) mixed-precision training.

Figure 15.5 Our CycleGAN zebra app

https://pytorch.org/mobile/android/#custom-build
https://pytorch.org/mobile/android/#custom-build
https://pytorch.org/mobile/android/#custom-build

476 CHAPTER 15 Deploying to production

 PyTorch does offer quantized tensors for this purpose. They are exposed as a set
of scalar types similar to torch.float, torch.double, and torch.long (compare sec-
tion 3.5). The most common quantized tensor scalar types are torch.quint8 and
torch.qint8, representing numbers as unsigned and signed 8-bit integers, respec-
tively. PyTorch uses a separate scalar type here in order to use the dispatch mecha-
nism we briefly looked at in section 3.11.

 It might seem surprising that using 8-bit integers instead of 32-bit floating-points
works at all; and typically there is a slight degradation in results, but not much. Two
things seem to contribute: if we consider rounding errors as essentially random, and
convolutions and linear layers as weighted averages, we may expect rounding errors to
typically cancel.19 This allows reducing the relative precision from more than 20 bits in
32-bit floating-points to the 7 bits that signed integers offer. The other thing quantiza-
tion does (in contrast to training with 16-bit floating-points) is move from floating-
point to fixed precision (per tensor or channel). This means the largest values are
resolved to 7-bit precision, and values that are one-eighth of the largest values to only
7 – 3 = 4 bits. But if things like L1 regularization (briefly mentioned in chapter 8)
work, we might hope similar effects allow us to afford less precision to the smaller val-
ues in our weights when quantizing. In many cases, they do.

 Quantization debuted with PyTorch 1.3 and is still a bit rough in terms of sup-
ported operations in PyTorch 1.4. It is rapidly maturing, though, and we recommend
checking it out if you are serious about computationally efficient deployment.

15.6 Emerging technology: Enterprise serving of PyTorch models
We may ask ourselves whether all the deployment aspects discussed so far should
involve as much coding as they do. Sure, it is common enough for someone to code
all that. As of early 2020, while we are busy with the finishing touches to the book, we
have great expectations for the near future; but at the same time, we feel that the
deployment landscape will significantly change by the summer.

 Currently, RedisAI (https://github.com/RedisAI/redisai-py), which one of the
authors is involved with, is waiting to apply Redis goodness to our models. PyTorch has just
experimentally released TorchServe (after this book is finalized, see https://pytorch.org/
blog/pytorch-library-updates-new-model-serving-library/#torchserve-experimental).

 Similarly, MLflow (https://mlflow.org) is building out more and more support, and
Cortex (https://cortex.dev) wants us to use it to deploy models. For the more specific task
of information retrieval, there also is EuclidesDB (https://euclidesdb.readthedocs.io/
en/latest) to do AI-based feature databases.

 Exciting times, but unfortunately, they do not sync with our writing schedule. We
hope to have more to tell in the second edition (or a second book)!

19 Fancy people would refer to the Central Limit Theorem here. And indeed, we must take care that the inde-
pendence (in the statistical sense) of rounding errors is preserved. For example, we usually want zero (a prom-
inent output of ReLU) to be exactly representable. Otherwise, all the zeros would be changed by the exact
same quantity in rounding, leading to errors adding up rather than canceling.

https://github.com/RedisAI/redisai-py
https://pytorch.org/blog/pytorch-library-updates-new-model-serving-library/#torchserve-experimental
https://pytorch.org/blog/pytorch-library-updates-new-model-serving-library/#torchserve-experimental
https://pytorch.org/blog/pytorch-library-updates-new-model-serving-library/#torchserve-experimental
https://mlflow.org
https://cortex.dev
https://euclidesdb.readthedocs.io/en/latest
https://euclidesdb.readthedocs.io/en/latest
https://euclidesdb.readthedocs.io/en/latest

477Summary

15.7 Conclusion
This concludes our short tour of how to get our models out to where we want to apply
them. While the ready-made Torch serving is not quite there yet as we write this, when
it arrives you will likely want to export your models through the JIT—so you’ll be glad
we went through it here. In the meantime, you now know how to deploy your model
to a network service, in a C++ application, or on mobile. We look forward to seeing
what you will build!

 Hopefully we’ve also delivered on the promise of this book: a working knowledge
of deep learning basics, and a level of comfort with the PyTorch library. We hope
you’ve enjoyed reading as much as we’ve enjoyed writing.20

15.8 Exercises
As we close out Deep Learning with PyTorch, we have one final exercise for you:

1 Pick a project that sounds exciting to you. Kaggle is a great place to start looking.
Dive in.

You have acquired the skills and learned the tools you need to succeed. We can’t wait
to hear what you do next; drop us a line on the book’s forum and let us know!

15.9 Summary
 We can serve PyTorch models by wrapping them in a Python web server frame-

work such as Flask.
 By using JITed models, we can avoid the GIL even when calling them from

Python, which is a good idea for serving.
 Request batching and asynchronous processing helps use resources efficiently,

in particular when inference is on the GPU.
 To export models beyond PyTorch, ONNX is a great format. ONNX Runtime

provides a backend for many purposes, including the Raspberry Pi.
 The JIT allows you to export and run arbitrary PyTorch code in C++ or on

mobile with little effort.
 Tracing is the easiest way to get JITed models; you might need to use scripting

for some particularly dynamic parts.
 There also is good support for C++ (and an increasing number of other lan-

guages) for running models both JITed and natively.
 PyTorch Mobile lets us easily integrate JITed models into Android or iOS apps.
 For mobile deployments, we want to streamline the model architecture and

quantize models if possible.
 A few deployment frameworks are emerging, but a standard isn’t quite visible yet.

20 More, actually; writing books is hard!

479

index

Numerics

3D images
data representation using

tensors 75–76
loading 76

7-Zip website 252

A

ablation studies 367
activation functions 143, 145

capping output range 146
choosing 148–149
compressing output

range 146–147
actual nodules 372
Adam optimizer 388
add_figure 431
add_scalar method 314
advanced indexing 85
affine_grid 347, 385
AlexNet 19–22
align_as method 49
Android Studio IDE 472
annotations.csv file 258
app.loop.call_at 452
app.loop.run_in_executor 454
argmax 179
argument unpacking 122
arithmetic mean 329
array coordinates 269
array dimensions 265
arXiV public preprint

repository 7

ASCII (American Standard Code
for Information
Interchange) 94–95

assetFilePath method 474
async method 452
asynchronous function

generators 449
asyncio module 452
asyncio.Lock 452
aten operators 456
AUC (area under the ROC

curve) 420
augmentation

abstract 435
regularization and 435

augmentation_dict 352, 380
augmenting datasets 190, 346
autograd component 123–138

computing gradient
automatically 123–127
accumulating grad

functions 125–127
applying autograd 123–124
grad attribute 124

evaluating training loss
132–133

generalizing to validation
set 133–134

optimizers 127–131
gradient descent

optimizers 128–130
testing optimizers 130–131

splitting datasets 134–136
switching off 137–138

average pooling 203

B

backpropagation 148, 225
bad_indexes tensor 85
--balanced 342
batch direction 76
batch normalization

25, 222–223, 227
batch_tup 289
--batch-size 283
batching requests 449
BatchNorm layer 227
BatchNorm2d 368
bias parameter 200
bikes tensor 89
bikes.stride() method 90
birds vs. airplanes

challenge 172–191,
196–207

building dataset 173–174
detecting features 200–202
downsampling 203–204
fully connected model

174–175
limits of 189–191
loss for classifying 180–182
output of classifier 175–176
padding boundary 198–200
pooling 203–204
representing output as

probabilities 176–180
training the classifier 182–189

bitmapToFloat32Tensor 475
BLAS (Basic Linear Algebra

Subprograms) 53
blocks 290

INDEX480

bool tensors 51
Boolean indexing 302
Bottleneck modules 23
bounding boxes 372–375
boundingBox_a 373
boxed numeric values 43
boxing 50
broadcasting 47, 111, 155
buffer protocol 64
_build2dTransformMatrix

function 386
byte pair encoding method 97

C

C++
C++ API 468–472
LibTorch 465–472
running JITed models from

C++ 465–468
__call__ method 152–153
cancer detector project

classification model training
disconnect 315–316
evaluating the model

308–309
first-pass neural network

design 289–295
foundational model and

training loop 280–282
graphing training

metrics 309–314
main entry point for

application 282–284
outputting performance

metrics 300–304
pretraining setup and

initialization 284–289
running training

script 304–307
training and validating the

model 295–300
CT scans 238–241
data augmentation 346–354

improvement from
352–354

techniques 347–352
data loading

loading individual CT
scans 262–265

locating nodules 265–271
parsing LUNA's annotation

data 256–262
raw CT data files 256

straightforward dataset
implementation
271–277

deployment
enterprise serving of

PyTorch models 476
exporting models 455–458
interacting with PyTorch

JIT 458–465
LibTorch 465–472
mobile 472–476
serving PyTorch

models 446–454
difficulty of 245–247
end-to-end analysis 405–407

bridging CT segmentation
and nodule candidate
classification 408–416

diagnosis script 432–434
independence of validation

set 407–408
predicting

malignancy 417–431
quantitative validation

416–417
training, validation, and test

sets 433–434
false positives and false

negatives 320–322
high-level plan for

improvement 319–320
LUNA Grand Challenge data

source
downloading 251–252
overview 251

metrics
graphing positives and

negatives 322–333
ideal dataset 334–344

nodules 249–250
overview 236–237
preparing for large-scale

projects 237–238
second model 358–360
segmentation

semantic
segmentation 361–366

types of 360–361
updating dataset for

369–386
updating model for

366–369
updating training script

for 386–399
structure of 241–252

candidate_count 412
candidateInfo_list 381, 414
candidateInfo_tup 373
CandidateInfoTuple data

structure 377
candidateLabel_a array 411
categorical values 80
center_crop 464
center_index - index_radius 373
center_index +

index_radius 373
chain rule 123
ChainDataset 174
channel dimension 76
channels 197
CIFAR-10 dataset 165–173

data transforms 168–170
Dataset class 166–167
downloading 166
normalizing data 170–172

CIFAR-100 166
cifar2 object 174
CImg library 465–468
class balancing 339–341
class_index 180
classification

classifying by diameter
419–422

to reduce false positives
412–416

classification model training
disconnect 315–316
evaluating the model

308–309
first-pass neural network

design 289–295
converting from convolu-

tion to linear 294–295
core convolutions 290–292
full model 293–295
initialization 295

foundational model and train-
ing loop 280–282

graphing training
metrics 309–314
adding TensorBoard sup-

port to the metrics log-
ging function 313–314

running TensorBoard
309–313

writing scalars to
TensorBoard 314

main entry point for
application 282–284

INDEX 481

classification model training
(continued)

outputting performance
metrics 300–304
constructing masks

302–304
logMetrics function

301–304
pretraining setup and

initialization 284–289
care and feeding of data

loaders 287–289
initializing model and

optimizer 285–287
running training script

304–307
enumerateWithEstimate

function 306–307
needed data for

training 305–306
training and validating the

model 295–300
computeBatchLoss

function 297–299
validation loop 299–300

classification threshold 323
classificationThreshold 302
classificationThreshold_float

324
classifyCandidates method 410
clean_a 411
clean_words tensor 96
clear() method 452
CMake 468
CMakeLists.txt 472
Coco 166
col_radius 373
comparison ops 53
Complete Miss 416
computeBatchLoss

function 297–300, 390, 392
ConcatDataset 174
contextSlices_count

parameter 380
contiguous block 467
contiguous method 61
contiguous tensors 60
continuous values 80
contrastive learning 437
conv.weight 198
conv.weight.one_() method 200
convolutional layers 370
convolutions 194–229

birds vs. airplanes
challenge 196–207

as nn module 208–209
detecting features 200–202
downsampling 203–204
padding boundary 198–200
pooling 203–204

function of 194–196
model design 217–229

comparing designs
228–229

depth of network 223–228
outdated 229
regularization 219–223
width of network 218–219

subclassing nn module
207–212

training 212–217
measuring accuracy 214
on GPU 215–217
saving and loading 214–215

ConvTransposed2d 469
copying 449
coroutines 449
Cortex 476
cost function 109
cpu method 64
create_dataset function 67
creation ops 53
CrossEntropyLoss 297
csv module 78
CT (computed tomography)

scans 75, 240
Ct class 256, 262, 264, 271,

280, 289
CT scans 238–241

bridging CT segmentation
and nodule candidate
classification 408–416
classification to reduce false

positives 412–416
grouping voxels into

nodule candidates
411–412

segmentation 410–411
caching chunks of mask in

addition to CT 376
calling mask creation during

CT initialization 375
extracting nodules from

270–271
Hounsfield units 264–265
loading individual 262–265
scan shape and voxel

sizes 267–268
ct_a values 264
ct_chunk function 348

ct_mhd.GetDirections()
method 268

ct_mhd.GetSpacing()
method 268

ct_ndx 381
ct_t 382, 394
Ct.buildAnnotationMask 374
Ct.getRawCandidate

function 274, 376
ct.positive_mask 383
cuda method 64
cuDNN library 460
CycleGAN 29–30, 452, 458,

464, 468
cyclegan_jit.cpp source file 468
cyclegan-cpp-api 472

D

daily_bikes tensor 90, 92
data augmentation 346–354

improvement from 352–354
on GPU 384–386
techniques 347–352

mirroring 348–349
noise 350
rotating 350
scaling 349
shifting 349

data augmentation strategy 191
data loading

loading individual CT
scans 262–265

locating nodules 265–271
converting between milli-

meters and voxel
addresses 268–270

CT scan shape and voxel
sizes 267–268

extracting nodules from CT
scans 270–271

patient coordinate
system 265–267

parsing LUNA's annotation
data 256–262
training and validation

sets 258–259
unifying annotation and

candidate data 259–
262

raw CT data files 256
straightforward dataset

implementation 271–277
caching candidate

arrays 274

INDEX482

data loading (continued)
constructing dataset in

LunaDataset.__init__
275

rendering data 277
segregation between

training and validation
sets 275–276

data representation using
tensors

images 71–75
3D images 75–76
adding color channels 72
changing layout 73–74
loading image files 72–73
normalizing data 74–75

tabular data 77–87
categorization 83–84
loading a data tensor 78–80
one-hot encoding 81–83
real-world dataset 77–78
representing scores 81
thresholds 84–87

text 93–101
converting text to

numbers 94
one-hot encoding

characters 94–95
one-hot encoding whole

words 96–98
text embeddings 98–100
text embeddings as

blueprint 100–101
time series 87–93

adding time
dimensions 88–89

shaping data by time
period 89–90

training 90–93
Data Science Bowl 2017 438
data tensor 85
data.CIFAR10 dataset 167
DataLoader class 11, 280, 284,

288, 381, 414
DataParallel 286, 387
dataset argument 418
Dataset class 11, 166–167
Dataset subclass 173, 256,

271–273, 275, 279, 284,
339, 378, 414

dataset.CIFAR10 169
datasets module 166
deep learning

exercises 15

hardware and software
requirements 13–15

paradigm shift from 4–6
PyTorch for 6–9

how supports deep learn-
ing projects 10–13

reasons for using 7–9
def __len__ method 272
dense tensors 65
DenseNet 226
deployment

enterprise serving of PyTorch
models 476

exporting models 455–458
ONNX 455–456
tracing 456–458

interacting with PyTorch
JIT 458–465
dual nature of PyTorch as

interface and
backend 460

expectations 458–460
scripting gaps of

traceability 464–465
TorchScript 461–464

LibTorch 465–472
C++ API 468–472
running JITed models from

C++ 465–468
mobile 472–476
serving PyTorch models

446–454
Flask server 446–448
goals of deployment

448–449
request batching 449–454

depth of network 223–228
building very deep

models 226–228
initialization 228
skip connections 223–226

device argument 64
device attribute 63–64
device variable 215
diameter_mm 258
Dice loss 389–392

collecting metrics 392
loss weighting 391

diceLoss_g 391
DICOM (Digital Imaging and

Communications in
Medicine) 76, 256, 267

DICOM UID 264
Dirac distribution 187
discrete convolution 195

discrete cross-correlations 195
discrimination 337
discriminator network 28
diskcache library 274, 384
dispatching mechanism 65
DistilBERT 475
distillation 475
DistributedDataParallel 286
doTraining function

296, 301, 314
doValidation function

301, 393, 397
downsampling 203–204
dropout 25, 220–222
Dropout module 221
DSB (Data Science Bowl) 438
dsets.py:32 260
dtype argument 64

managing 51–52
precision levels 51
specifying numeric types

with 50–51
dtype torch.float 65
dull batches 367

E

edge detection kernel 201
einsum function 48
embedding text

as blueprint 100–101
data representation with

tensors 98–100
embeddings 96, 99
end-to-end analysis 405–407

bridging CT segmentation
and nodule candidate
classification 408–416
classification to reduce false

positives 412–416
grouping voxels into

nodule candidates
411–412

segmentation 410–411
diagnosis script 432–434
independence of validation

set 407–408
predicting malignancy 417–431

classifying by
diameter 419–422

getting malignancy
information 417–418

reusing preexisting
weights 422–427

TensorBoard 428–431

INDEX 483

end-to-end analysis (continued)
quantitative validation

416–417
training, validation, and test

sets 433–434
English Corpora 94
ensembling 435–436
enterprise serving 476
enumerateWithEstimate

function 297, 306–307
epoch_ndx 301
epochs 116, 212–213
error function 144–145
eval mode 25

F

F1 score
overview 328–332
updating logging output to

include 332
face-to-age prediction

model 345–346
false negatives 324, 395
false positives 321–322, 326,

329, 395, 401
falsePos_count 333
falsifying images, pretrained

networks for 27–33
CycleGAN 29–30
GAN game 28
generating images 30–33

Fashion-MNIST 166
Fast R-CNN 246
feature engineering 256
feature extractor 423
fine-tuning 101, 422
FishNet 246
Flask 446–448
flip augmentation 352
float array 466
float method 52
float32 type 169
float32 values 274
floating-point numbers 40–42,

50, 77
fnLoss_g 391
for batch_tup in

self.train_dl 289
for loop 226, 464
forward function 152, 207,

218, 225
forward method 294, 368, 385
forward pass 22
FPR (false positive rate) 419–421

FPRED (False positive
reduction) 251

from_blob 466
fullCt_bool 380
fully automated system 414
function docstring 307

G

GAN (generative adversarial
network) game 17, 28

generalized classes 345
generalized tensors 65–66
generator network 28
geometric mean 331
get_pretrained_model 458
getattr function 418
getCandidateInfoDict

function 375
getCandidateInfoList

function 259, 275, 373,
375, 377

getCt value 274
getCtRawCandidate

function 274, 376, 383
getCtRawNodule function 272
__getitem__ method 272–274,

351, 381
_getitem__ method 272
getitem method 166
getItem_fullSlice method 382
getItem_trainingCrop 383
getRawNodule function 271
ghost pixels 199
GIL (global interpreter

lock) 449
global_step parameter 314, 428
Google Colab 63
Google OAuth 252
GPUs (graphical processing

units) 41
moving tensors to 62–64
training networks on 215–217

grad attribute 124–125
grad_fn 179
gradient descent

algorithm 113–122
applying derivatives to

model 115
computing derivatives 115
data visualization 122
decreasing loss 113–114
defining gradient

function 116

Iterating to fit model 116–119
overtraining 118–119
training loop 116–117

normalizing inputs 119–121
grid_sample function

347, 349, 385
grouping 247, 406, 408, 413
groupSegmentationOutput

method 410

H

h5py library, serializing tensors
to HDF5 with 67–68

HardTanh 440
Hardtanh function 148
hardware for deep learning

13–15
harmonic mean 329
hasAnnotation_bool flag 378
HDF5, serializing tensors to

67–68
head_linear module 423
--help command 282
hidden layer 158
histograms 311, 428–431
HU (Hounsfield units)

264–265, 293
hyperparameter search 287
hyperparameter tuning 118
hyperparameters 184

I

identity mapping 225
IDRI (Image Database Resource

Initiative) 377
ILSVRC (ImageNet Large

Scale Visual Recognition
Challenge) 18, 20

image data representation 71–75
3D images

data representation 75–76
loading 76

adding color channels 72
changing layout 73–74
loading image files 72–73
normalizing data 74–75

Image object 268
image recognition

CIFAR-10 dataset 165–172
data transforms 168–170
Dataset class 166–167
downloading 166
normalizing data 170–172

INDEX484

image recognition (continued)
example network 172–191

building dataset 173–174
fully connected

model 174–175
limits of 189–191
loss for classifying 180–182
output of classifier 175–176
representing output as

probabilities 176–180
training the classifier

182–189
image_a 394
image.size() method 466
imageio module 72–73, 76
ImageNet 17, 423
ImageView 472
img array 73
img_t tensor 47
in-memory caching 260
in-place operations 55
indexing ops 53
indexing tensors

into storages 54–55
list indexing in Python vs. 42
range indexing 46

inference 25–27
__init__ constructor 470
init constructor 156
__init__ method 264, 283, 385
init parameter 218
_init_weights function 295
input object 22
input voxels 292
instance segmentation 360
ÌnstanceNorm2d 469
interval scale 80
_irc suffix 268
_irc variable 256
isMal_bool flag 378
isValSet_bool parameter 275
IterableDataset 166
IValue 466–467, 474

J

Java App 472
JAX 9
JIT (just in time) 455–456,

458–459
JITed model 473
JNI (Java Native Interface) 472
joining ops 53
Jupyter notebooks 14

K

Kepler’s laws 105
kernel trick 209
kernels 195, 459
kwarg 368

L

L2 regularization 219
label function 411
label smoothing 435
label_g 390
labeling images, pretrained

networks for 33–35
LAPACK operations 53
last_points tensor 68
layers 23
leaks 408
LeakyReLU function 148
__len__ method 272, 340
len method 166
LibTorch 465–472

C++ API 468–472
running JITed models from

C++ 465–468
LIDAR (light detection and

ranging) 239
LIDC (Lung Image Database

Consortium) 377–378
LIDC-IDRI (Lung Image Data-

base Consortium image
collection) 377, 417

linear model 153–157
batching inputs 154
comparing to 161–162
optimizing batches 155–157
replacing 158–159

list indexing 42
lists 50
load_state_dict method 31
localhost 310
log_dir 313
log.info method 303
--logdir argument 310
logdir parameter 353
logits 187, 294
logMetrics function 297, 313, 393

implementing precision and
recall in 327–328

overview 301–304
loss function 109–112
loss tensor 124
loss.backward() method

124, 126, 212

lottery ticket hypothesis 197
LPS (left-posterior-superior)

266
LSTM (long short-term

memory) 217, 459–460
LUNA (LUng Nodule

Analysis) 251, 256, 263,
337, 378, 417, 438

LUNA Grand Challenge data
source

contrasting training with
balanced LUNA Dataset to
previous runs 341–343

downloading 251–252
LUNA papers 439
overview 251
parsing annotation data

256–262
training and validation

sets 258–259
unifying annotation and

candidate data
259–262

Luna2dSegmentationDataset
378–382

Luna2dSegmentationDataset
.__init__ method 380

LunaDataset class 271, 274,
280, 284, 287–288, 305,
320, 339–340

LunaDataset.__init__,
constructing dataset in 275

LunaDataset.candidateInfo_list
277

LunaModel 285, 447

M

machine learning
autograd component

123–138
computing gradient

automatically 123–127
evaluating training

loss 132–133
generalizing to validation

set 133–134
optimizers 127–131
splitting datasets 134–136
switching off 137–138

gradient descent
algorithm 113–122
applying derivatives to

model 115

INDEX 485

machine learning: gradient
descent (continued)
computing derivatives 115
data visualization 122
decreasing loss 113–114
defining gradient

function 116
Iterating to fit model

116–119
normalizing inputs

119–121
loss function 109–112
modeling 104–106
parameter estimation

106–109
choosing linear

model 108–109
data gathering 107–108
data visualization 108
example problem 107

switching to PyTorch 110–112
main method 283, 471
malignancy classification 407
malignancy model 407
--malignancy-path argument 432
MalignancyLunaDataset

class 418
malignant classification 413
map_location keyword

argument 217
Mask R-CNN 246
Mask R-CNN models 465
masked arrays 302
masks

caching chunks of mask in
addition to CT 376

calling mask creation during
CT initialization 375

constructing 302–304
math ops 53
Matplotlib 172, 247, 431
max function 26
max pooling 203
mean square loss 111
memory bandwidth 384
Mercator projection map 267
metadata, tensor 55–62

contiguous tensors 60–62
transposing in higher

dimensions 60
transposing without

copying 58–59
views of another tensor’s

storage 56–58
MetaIO format 263

metrics
graphing positives and

negatives 322–333
F1 score 328–332
performance 332–333
precision 326–328, 332
recall 324, 327–328, 332

ideal dataset 334–344
class balancing 339–341
contrasting training with

balanced LUNA
Dataset to previous
runs 341–343

making data look less like
the actual and more
like the ideal 336–341

samplers 338–339
symptoms of

overfitting 343–344
metrics_dict 303, 314
METRICS_PRED_NDX

values 302
metrics_t parameter 298, 301
metrics_t tensor 428
millimeter-based coordinate

system 265
minibatches 129, 184–185
mirroring 348–349
MIT license 367
mixed-precision training 475
mixup 435
MLflow 476
MNIST dataset 165–166
mobile deployment 472–476
mode_str argument 301
model design 217–229

comparing designs 228–229
depth of network 223–228

building very deep
models 226–228

initialization 228
skip connections 223–226

outdated 229
regularization 219–223

batch normalization
222–223

dropout 220–222
weight penalties 219–220

width of network 218–219
model function 131, 142
Model Runner function

450–451
model_runner function

453–454
model.backward() method 159

Model.load method 474
model.parameters()

method 159
model.state_dict() function 397
model.train() method 223
ModelRunner class 452
models module 22
modules 151
MS COCO dataset 35
MSE (Mean Square Error)

157, 180, 182
MSELoss 175
multichannel images 197
multidimensional arrays,

tensors as 42
multitask learning 436
mutating ops 53

N

N dimension 89
named tensors 46, 48–49
named_parameters method 159
names argument 48
NDET (Nodule detection) 251
ndx integer 272
needs_processing event

452, 454
needs_processing.

ModelRunner 452
neg_list 418
neg_ndx 340
negLabel_mask 303
negPred_mask 302
netG model 30
neural networks

__call__ method 152–153
activation functions 145–149

capping output range 146
choosing 148–149
compressing output

range 146–147
composing multilayer

networks 144
error function 144–145
first-pass, for cancer

detector 289–295
converting from convolu-

tion to linear 294–295
core convolutions 290–292
full model 293–295
initialization 295

inspecting parameters
159–161

INDEX486

neural networks (continued)
linear model 153–157

batching inputs 154
comparing to 161–162
optimizing batches

155–157
replacing 158–159

nn module 151–157
what learning means for

149–151
NeuralTalk2 model 33–35
neurons 143
NLL (negative log

likelihood) 180–181
NLP (natural language

processing) 93
nn module 151–157, 207–212
nn.BatchNorm1D module 222
nn.BatchNorm2D module 222
nn.BatchNorm3D module 222
nn.BCELoss function 176
nn.BCELossWithLogits 176
nn.Conv2d 196, 205
nn.ConvTranspose2d 388
nn.CrossEntropyLoss 187, 273,

295, 336
nn.DataParallel class 286
nn.Dropout module 221
nn.Flatten layer 207
nn.functional.linear

function 210
nn.HardTanh module 211
nn.KLDivLoss 435
nn.Linear 152–153, 155, 174,

194
nn.LogSoftmax 181, 187
nn.MaxPool2d module

204–205, 210
nn.Module class 151–152,

154, 159, 207, 209, 293,
385–386, 470

nn.ModuleDict 152, 209
nn.ModuleList 152, 209
nn.NLLLoss class 181, 187
nn.ReLU layers 292
nn.ReLU module 211
nn.Sequential 368
nn.Sequential model

159, 207–208
nn.Sigmoid activation 176
nn.Sigmoid layer 368
nn.Softmax 177–178, 181,

293–294
nn.Tanh module 210
nodule classification 406

nodule_t output 273
noduleInfo_list 262
NoduleInfoTuple 260
nodules 249–250

finding through segmentation
semantic

segmentation 361–366
types of 360–361
updating dataset for

369–386
updating model for

366–369
updating training script

for 386–399
locating 265–271

converting between
millimeters and voxel
addresses 268–270

CT scan shape and voxel
sizes 267–268

extracting nodules from CT
scans 270–271

patient coordinate
system 265–267

noduleSample_list 277
NoGradGuard 471
noise 350
noise-augmented model 354
nominal scale 80
non-nodule values 304
Normalize transform 474
--num-workers 283
NumPy arrays 41, 78
NumPy, tensors and 64–65
numpy.frombuffer 447
nvidia-smi 305

O

object detection 360
object recognition, pretrained

networks for 17–27
AlexNet 20–22
obtaining 19–20
ResNet 22–27

offset argument 385
offset parameter 349
Omniglot 166
onActivityResult 474
one-dimensional tensors 111
one-hot encoding 91–92

tabular data 81–83
text data

characters 94–95
whole words 96–98

ONNX (Open Neural Network
Exchange) 446, 455–456

ONNXRuntime 455
onnxruntime-gpu 456
OpenCL 63
OpenCV 465, 467
OpenNMT’s original

CTranslate 475
optim module 129
optim submodule 127
optim.SGD 156
optimizer.step() method

156, 159
optimizers 127–131

gradient descent
optimizers 128–130

testing optimizers 130–131
options argument 470
ordered tabular data 71
OrderedDict 160
ordinal values 80
org.pytorch namespace 473
org.pytorch.torchvision.Tensor-

ImageUtils class 473
OS-level process 283
Other operations 53
out tensor 26
overfitting 132, 134, 136,

345–346, 434–437
abstract augmentation 435
classic regularization and

augmentation 435
ensembling 435–436
face-to-age prediction

model 345–346
generalizing what we ask the

network to learn 436–437
preventing with data

augmentation 346–354
improvement from

352–354
mirroring 348–349
noise 350
rotating 350
scaling 349
shifting by a random

offset 349
symptoms of 343–344

P

p2_run_everything
notebook 408

p7zip-full package 252

INDEX 487

padded convolutions 292
padding 362
padding flag 370
pandas library 41, 78, 377
parallelism 53
parameter estimation 106–109

choosing linear model
108–109

data gathering 107–108
data visualization 108
example problem 107

parameter groups 427
parameters 120, 145, 160, 188,

196, 225, 397
parameters() method

156, 188, 210
params tensor 124, 126, 129
parser.add_argument 352
patient coordinate system

266–267
converting between

millimeters and voxel
addresses 268–270

CT scan shape and voxel
sizes 267–268

extracting nodules from CT
scans 270–271

overview 265–267
penalization terms 134
permute method 73, 170
pickle library 397
pin_memory option 216
points tensor 46, 57, 64
points_gpu tensor 64
pointwise ops 53
pooling 203–204
pos_list 383, 418
pos_ndx 340
pos_t 382
positive loss 344
positive_mask 376
POST route 447
PR (Precision-Recall)

Curves 311
precision 326

implementing in
logMetrics 327–328

updating logging output to
include 332

predict method 209
Predicted Nodules 395, 416
prediction images 393
prediction_a 394
prediction_devtensor 390
prepcache script 376, 440

preprocess function 23
pretext tasks 436
pretrained keyword

argument 36
pretrained networks 423

describing content of
images 33–35

fabricating false images from
real images 27–33
CycleGAN 29–30
GAN game 28
generating images 30–33

recognizing subject of
images 17–27
AlexNet 20–22
inference 25–27
obtaining 19–20
ResNet 22–27

Torch Hub 35–37
principled augmentation 222
Project Gutenberg 94
PyLIDC library 417–418
pyplot.figure 431
Python, list indexing in 42
PyTorch 6

functional API 210–212
how supports deep learning

projects 10–13
keeping track of parameters

and submodules 209–210
reasons for using 7–9

PyTorch JIT 458–465
dual nature of PyTorch as

interface and backend 460
expectations 458–460
scripting gaps of

traceability 464–465
TorchScript 461–464

PyTorch models
enterprise serving of 476
exporting 455–458

ONNX 455–456
tracing 456–458

serving 446–454
Flask server 446–448
goals of deployment

448–449
request batching 449–454

PyTorch Serving 476
pytorch_android library 473
pytorch_android_torchvision

473

Q

quantization 475–476
quantized tensors 65
queue_lock 452

R

random sampling 53
random_float function 349
random.random() function 307
randperm function 134
range indexing 46
ratio_int 339–340
recall 324

implementing in
logMetrics 327–328

updating logging output to
include 332

recurrent neural network 34
RedisAI 476
reduced training 475
reduction ops 53
refine_names method 48
regression problems 107
regularization 219–223

augmentation and 435
batch normalization 222–223
dropout 220–222
weight penalties 219–220

ReLU (rectified linear
unit) 147, 224

rename method 48
request batching 449–454

from request to queue
452–453

implementation 451–452
running batches from

queue 453–454
RequestProcessor 450, 452
requireOnDisk_bool

parameter 260
requires_grad attribute 138
requires_grad–True

argument 124
residual networks 224
ResNet 19, 225

creating network instance 22
details about structure of

22–25
inference 25–27

resnet variable 23
resnet101 function 22
resnet18 function 36
ResNetGenerator class 30

INDEX488

ResNetGenerator module
470–471

ResNetGeneratorImpl class 471
ResNets 224–226, 366
REST endpoint 455
Retina U-Net 246
return statement 376
RGB (red, green, blue) 24, 47,

72, 165, 172, 189, 195, 197,
205, 244, 395

RNNs (recurrent neural
networks) 93

ROC (receiver operating
characteristic) 420–421,
428, 433

ROC curves 431
ROC/AUC metrics 407
ROCm 63
rotating 350
row_radius 373
--run-validation variant 432
RuntimeError 49
RuntimeWarning lines 333

S

samplers 338–339
Sanic framework 449
scalar values 314, 329
scalars 311
scale invariant 177
scaling 349
scatter_ method 82
Scikit-learn 41
SciPy 41
scipy.ndimage.measurements

.center_of_mass 411
scipy.ndimage.measurements

.label 411
scipy.ndimage.morphology 410
scripting 461
segmentation 241, 243, 358,

405, 408, 413
bridging CT segmentation

and nodule candidate
classification 408–416
classification to reduce false

positives 412–416
grouping voxels into

nodule candidates
411–412

segmentation 410–411
semantic segmentation

361–366
types of 360–361

updating dataset for 369–386
augmenting on GPU

384–386
designing training and vali-

dation data 382–383
ground truth data 371–378
input size

requirements 370
Luna2dSegmentation-

Dataset 378–382
TrainingLuna2dSegmentati

onDataset 383–384
U-Net trade-offs for 3D vs.

2D data 370–371
updating model for 366–369
updating training script

for 386–399
Adam optimizer 388
Dice loss 389–392
getting images into

TensorBoard 392–396
initializing segmentation

and augmentation
models 387–388

saving model 397–399
updating metrics

logging 396–397
segmentCt method 410
self-supervised learning 436
self.block4 294
self.candidateInfo_list 272, 275
self.cli_args.dataset 418
self.diceLoss 390
self.model.to(device) 286
self.pos_list 340
self.use_cuda 286
semantic segmentation 360–366
semi-supervised learning 436
sensitivity 324
SentencePiece libraries 97
Sequential 160
serialization 53
serializing tensors 66–68
series instance UID 263
series_uid 245, 256, 260–261,

275, 375, 381, 410
seriesuid column 258
set_grad_enabled 138
set() method 452
SGD (stochastic gradient

descent) 129–130, 135, 156,
184, 220, 286

shifting by a random offset 349
show method 24
Sigmoid function 148

SimpleITK 263, 268
singleton dimension 83
sitk routines 264
Size class 56
skip connections 223–226
slicing ops 53
soft Dice 390
softmax 176–177, 181, 293
Softplus function 147
software requirements for

deep learning 13–15
sort function 26
spectral ops 53
Spitfire 190
step. zero_grad method 128
stochastic weight averaging 436
storages 53–55

in-place operations 55
indexing into 54–55

strided convolution 203
strided tensors 65
submodules 207
subword-nmt 97
SummaryWriter class

313, 392, 431
SVHN 166
sys.argv 398

T

t_c values 108–109
t_p value 109–110
t_u values 108
tabular data representation

77–87
categorization 83–84
loading a data tensor 78–80
one-hot encoding 81–83
real-world dataset 77–78
representing scores 81
thresholds 84–87

Tanh function 143, 147, 149, 158
target tensor 81, 84
temperature variable 92
tensor masking 302
Tensor.to method 215
TensorBoard 284, 309–314, 343,

428–431
adding support to metrics

logging function 313–314
getting images into 392–396
histograms 428–431
ROC and other curves 431
running 309–313
writing scalars to 314

INDEX 489

tensorboard program 309
TensorFlow 9
tensorflow package 309
TensorImageUtils.bitmapTo-

Float32Tensor function 474
tensors

API 52–53
as multidimensional arrays 42
constructing 43
data representation

images 71–75
tabular data 77–87
text 93–101
time series 87–93

element types
dtype argument 50–52
standard 50

essence of 43–46
floating-point numbers 40–42
generalized 65–66
indexing

list indexing in Python
vs. 42

range indexing 46
metadata 55–62

contiguous tensors 60–62
transposing in higher

dimensions 60
transposing without

copying 58–59
views of another tensor’s

storage 56–58
moving to GPU 62–64
named 46–49
NumPy interoperability

64–65
serializing 66–68
storages 53–55

in-place operations 55
indexing into 54–55

tensorToBitmap 474
test set 433
text data representation 93–101

converting text to
numbers 94

one-hot encoding
characters 94–95
whole words 96–98

text embeddings 98–100
text embeddings as

blueprint 100–101
time series data

representation 87–93
adding time dimensions

88–89

shaping data by time
period 89–90

training 90–93
time.time() method 453
to method 51, 64
top-level attributes 152, 209
Torch Hub 35–37
torch module 43, 52, 127
TORCH_MODULE macro 470
torch.bool type 85
torch.cuda.is_available 215
torch.from_numpy function

68, 447
torch.jit.script 463
@torch.jit.script decorator 464
torch.jit.trace function

456–457, 463
torch.linspace 421
torch.max module 179
torch.nn module 151, 196
torch.nn.functional 210–211
torch.nn.functional.pad

function 199
torch.nn.functional.softmax 26
torch.nn.Hardtanh

function 146
torch.nn.Sigmoid 146
torch.no_grad() method

138, 456, 464, 471
torch.onnx.export function 455
torch.optim.Adam 287
torch.optim.SGD 287
torch.save 397
torch.sort 89
torch.Tensor class 19
torch.util.data 11
torch.utils.data module 185
torch.utils.data.Dataset 166
torch.utils.data.dataset.Dataset

173
torch.utils.data.Subset class 174
torch.utils.tensorboard

module 313
torch.utils.tensorboard

.SummaryWriter class 314
TorchScript 12, 460–464
TorchVision library 465
torchvision module 165, 228
TorchVision project 19
torchvision.models 20
torchvision.resnet101

function 31
torchvision.transforms 168, 191
totalTrainingSamples_count

variable 314

ToTensor 169, 171
TPR (true positive rate)

419–421
TPUs (tensor processing

units) 63, 65
tracing 456–458

scripting gaps of
traceability 464–465

server with traced model 458
train property 221
train_dl data loader 297
train_loss.backward()

method 138
training and validation sets

parsing annotation data
258–259

segregation between 275–276
training set 433
training_loss.backward()

method 156
TrainingLuna2dSegmentation-

Dataset 383–384
transfer learning 422
transform_t 386
TransformIndexToPhysical-

Point method 268
TransformPhysicalPointTo-

Index method 268
transforms.Compose 170
transforms.Normalize 171
translation-invariant 190, 194
transpose function 52
trnMetrics_g tensor 297, 300
trnMetrics_t 301
true negatives 322
true positives 321, 324, 327,

389, 392
trueNeg_count 328
truePos_count 333
tuples 259, 406
two-layer networks 149

U

U-Net architecture
364–367, 388

input size requirements 370
trade-offs for 3D vs. 2D

data 370–371
UIDs (unique identifiers) 263
un-augmented model 354
unboxed numeric values 43
UNetWrapper class 368, 387
up.shape 464
upsampling 364

INDEX490

V

val_loss tensor 138
val_neg loss 308
val_pos loss 308
val_stride parameter 275
validate function 216
validation 383, 409
validation loop 299–300
validation set 132, 433
validation_cadence 393
validation_dl 289
validation_ds 289
valMetrics_g 300
valMetrics_t 301
vanilla gradient descent 127
vanilla model 367
view function 294
volread function 76
volumetric data

data representation using
tensors 75–76

loading 76
volumetric pixel 239

voxel-address-based coordinate
system 265

voxels 239
converting between

millimeters and voxel
addresses 268–270

grouping voxels into nodule
candidates 411–412

voxel sizes 267–268

W

wait() method 452
weight decay 220
weight matrix 195
weight parameter 200
weight penalties 219–220
weight tensor 197
weighted loss 391
WeightedRandomSampler 339
weights 106
weights argument 339
whole-slice training 383
width of network 218–219
Wine Quality dataset 77

with statement 126
with torch.no_grad()

method 299, 447, 457, 471
word2index_dict 96
WordNet 17
writer.add_histogram 428
writer.add_scalar method

314, 396

X

Xavier initializations 228
_xyz suffix 268
xyz2irc function 269

Y

YOLOv3 paper 360

Z

zero_grad method 128
zeros function 50, 55, 125

INPUT

REPRESENTATION

(VALUES OF PIXELS)

158 186 220

0.19

0.23

0.46

0.77

...

0.91 0.01

0.0

0.52

0.91

0.0
...

0.74

0.45

...
172 175 ...

INTERMEDIATE

REPRESENTATIONS

SIMILAR INPUTS

SHOULD LEAD TO

CLOSE REPRESENTATIONS

(ESPECIALlY AT DEePER LEVELS)

OUTPUT

REPRESENTATION

(PROBABILITY OF CLASsES)

“SUN”

“SEASIdE”

“SCENERY”

Stevens ● Antiga ● Viehmann

ISBN: 978-1-61729-526-3

A
lthough many deep learning tools use Python, the
PyTorch library is truly Pythonic. Instantly familiar
to anyone who knows PyData tools like NumPy and

scikit-learn, PyTorch simplifi es deep learning without sacrifi c-
ing advanced features. It’s excellent for building quick models,
and it scales smoothly from laptop to enterprise. Because
companies like Apple, Facebook, and JPMorgan Chase rely
on PyTorch, it’s a great skill to have as you expand your
career options.

Deep Learning with PyTorch teaches you to create neural net-
works and deep learning systems with PyTorch. This practical
book quickly gets you to work building a real-world example
from scratch: a tumor image classifi er. Along the way, it covers
best practices for the entire DL pipeline, including the
PyTorch Tensor API, loading data in Python, monitoring
training, and visualizing results.

What’s Inside
● Training deep neural networks
● Implementing modules and loss functions
● Utilizing pretrained models from PyTorch Hub
● Exploring code samples in Jupyter Notebooks

For Python programmers with an interest in machine
learning.

Eli Stevens had roles from software engineer to CTO, and is
currently working on machine learning in the self-driving-
car industry. Luca Antiga is cofounder of an AI engineering
company and an AI tech startup, as well as a former PyTorch
contributor. Thomas Viehmann is a PyTorch core developer and
machine learning trainer and consultant.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/deep-learning-with-pytorch

$49.99 / Can $65.99 [INCLUDING eBOOK]

Deep Learning with PyTorch

PYTHON/DATA SCIENCE

M A N N I N G

“With this publication,
we fi nally have a defi nitive

treatise on PyTorch. It covers
the basics and abstractions

in great detail.”
—From the Foreword by Soumith

Chintala, Cocreator of PyTorch

“Deep learning divided
into digestible chunks with

code samples that build
 up logically.”—Mathieu Zhang, NVIDIA

“Timely, practical, and
thorough. Don’t put it on
your bookshelf, but next

 to your laptop.”—Philippe Van Bergen
P² Consulting

“Deep Learning with
PyTorch offers a very

pragmatic overview of
deep learning . . . It is a
 didactical resource.”—Orlando Alejo Méndez Morales

Experian

See first page

	Deep Learning with PyTorch
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Hardware and software requirements
	liveBook discussion forum
	Other online resources

	about the authors
	about the cover illustration
	Part 1: Core PyTorch
	Chapter 1: Introducing deep learning and the PyTorch Library
	1.1 The deep learning revolution
	1.2 PyTorch for deep learning
	1.3 Why PyTorch?
	1.3.1 The deep learning competitive landscape

	1.4 An overview of how PyTorch supports deep learning projects
	1.5 Hardware and software requirements
	1.5.1 Using Jupyter Notebooks

	1.6 Exercises
	1.7 Summary

	Chapter 2: Pretrained networks
	2.1 A pretrained network that recognizes the subject of an image
	2.1.1 Obtaining a pretrained network for image recognition
	2.1.2 AlexNet
	2.1.3 ResNet
	2.1.4 Ready, set, almost run
	2.1.5 Run!

	2.2 A pretrained model that fakes it until it makes it
	2.2.1 The GAN game
	2.2.2 CycleGAN
	2.2.3 A network that turns horses into zebras

	2.3 A pretrained network that describes scenes
	2.3.1 NeuralTalk2

	2.4 Torch Hub
	2.5 Conclusion
	2.6 Exercises
	2.7 Summary

	Chapter 3: It starts with a tensor
	3.1 The world as floating-point numbers
	3.2 Tensors: Multidimensional arrays
	3.2.1 From Python lists to PyTorch tensors
	3.2.2 Constructing our first tensors
	3.2.3 The essence of tensors

	3.3 Indexing tensors
	3.4 Named tensors
	3.5 Tensor element types
	3.5.1 Specifying the numeric type with dtype
	3.5.2 A dtype for every occasion
	3.5.3 Managing a tensor’s dtype attribute

	3.6 The tensor API
	3.7 Tensors: Scenic views of storage
	3.7.1 Indexing into storage
	3.7.2 Modifying stored values: In-place operations

	3.8 Tensor metadata: Size, offset, and stride
	3.8.1 Views of another tensor’s storage
	3.8.2 Transposing without copying
	3.8.3 Transposing in higher dimensions
	3.8.4 Contiguous tensors

	3.9 Moving tensors to the GPU
	3.9.1 Managing a tensor’s device attribute

	3.10 NumPy interoperability
	3.11 Generalized tensors are tensors, too
	3.12 Serializing tensors
	3.12.1 Serializing to HDF5 with h5py

	3.13 Conclusion
	3.14 Exercises
	3.15 Summary

	Chapter 4: Real-world data representation using tensors
	4.1 Working with images
	4.1.1 Adding color channels
	4.1.2 Loading an image file
	4.1.3 Changing the layout
	4.1.4 Normalizing the data

	4.2 3D images: Volumetric data
	4.2.1 Loading a specialized format

	4.3 Representing tabular data
	4.3.1 Using a real-world dataset
	4.3.2 Loading a wine data tensor
	4.3.3 Representing scores
	4.3.4 One-hot encoding
	4.3.5 When to categorize
	4.3.6 Finding thresholds

	4.4 Working with time series
	4.4.1 Adding a time dimension
	4.4.2 Shaping the data by time period
	4.4.3 Ready for training

	4.5 Representing text
	4.5.1 Converting text to numbers
	4.5.2 One-hot-encoding characters
	4.5.3 One-hot encoding whole words
	4.5.4 Text embeddings
	4.5.5 Text embeddings as a blueprint

	4.6 Conclusion
	4.7 Exercises
	4.8 Summary

	Chapter 5: The mechanics of learning
	5.1 A timeless lesson in modeling
	5.2 Learning is just parameter estimation
	5.2.1 A hot problem
	5.2.2 Gathering some data
	5.2.3 Visualizing the data
	5.2.4 Choosing a linear model as a first try

	5.3 Less loss is what we want
	5.3.1 From problem back to PyTorch

	5.4 Down along the gradient
	5.4.1 Decreasing loss
	5.4.2 Getting analytical
	5.4.3 Iterating to fit the model
	5.4.4 Normalizing inputs
	5.4.5 Visualizing (again)

	5.5 PyTorch’s autograd: Backpropagating all things
	5.5.1 Computing the gradient automatically
	5.5.2 Optimizers a la carte
	5.5.3 Training, validation, and overfitting
	5.5.4 Autograd nits and switching it off

	5.6 Conclusion
	5.7 Exercise
	5.8 Summary

	Chapter 6: Using a neural network to fit the data
	6.1 Artificial neurons
	6.1.1 Composing a multilayer network
	6.1.2 Understanding the error function
	6.1.3 All we need is activation
	6.1.4 More activation functions
	6.1.5 Choosing the best activation function
	6.1.6 What learning means for a neural network

	6.2 The PyTorch nn module
	6.2.1 Using __call__ rather than forward
	6.2.2 Returning to the linear model

	6.3 Finally a neural network
	6.3.1 Replacing the linear model
	6.3.2 Inspecting the parameters
	6.3.3 Comparing to the linear model

	6.4 Conclusion
	6.5 Exercises
	6.6 Summary

	Chapter 7: Telling birds from airplanes: Learning from images
	7.1 A dataset of tiny images
	7.1.1 Downloading CIFAR-10
	7.1.2 The Dataset class
	7.1.3 Dataset transforms
	7.1.4 Normalizing data

	7.2 Distinguishing birds from airplanes
	7.2.1 Building the dataset
	7.2.2 A fully connected model
	7.2.3 Output of a classifier
	7.2.4 Representing the output as probabilities
	7.2.5 A loss for classifying
	7.2.6 Training the classifier
	7.2.7 The limits of going fully connected

	7.3 Conclusion
	7.4 Exercises
	7.5 Summary

	Chapter 8: Using convolutions to generalize
	8.1 The case for convolutions
	8.1.1 What convolutions do

	8.2 Convolutions in action
	8.2.1 Padding the boundary
	8.2.2 Detecting features with convolutions
	8.2.3 Looking further with depth and pooling
	8.2.4 Putting it all together for our network

	8.3 Subclassing nn.Module
	8.3.1 Our network as an nn.Module
	8.3.2 How PyTorch keeps track of parameters and submodules
	8.3.3 The functional API

	8.4 Training our convnet
	8.4.1 Measuring accuracy
	8.4.2 Saving and loading our model
	8.4.3 Training on the GPU

	8.5 Model design
	8.5.1 Adding memory capacity: Width
	8.5.2 Helping our model to converge and generalize: Regularization
	8.5.3 Going deeper to learn more complex structures: Depth
	8.5.4 Comparing the designs from this section
	8.5.5 It’s already outdated

	8.6 Conclusion
	8.7 Exercises
	8.8 Summary

	Part 2: Learning from images in the real world: Early detection of lung cancer
	Chapter 9: Using PyTorch to fight cancer
	9.1 Introduction to the use case
	9.2 Preparing for a large-scale project
	9.3 What is a CT scan, exactly?
	9.4 The project: An end-to-end detector for lung cancer
	9.4.1 Why can’t we just throw data at a neural network until it works?
	9.4.2 What is a nodule?
	9.4.3 Our data source: The LUNA Grand Challenge
	9.4.4 Downloading the LUNA data

	9.5 Conclusion
	9.6 Summary

	Chapter 10: Combining data sources into a unified dataset
	10.1 Raw CT data files
	10.2 Parsing LUNA’s annotation data
	10.2.1 Training and validation sets
	10.2.2 Unifying our annotation and candidate data

	10.3 Loading individual CT scans
	10.3.1 Hounsfield Units

	10.4 Locating a nodule using the patient coordinate system
	10.4.1 The patient coordinate system
	10.4.2 CT scan shape and voxel sizes
	10.4.3 Converting between millimeters and voxel addresses
	10.4.4 Extracting a nodule from a CT scan

	10.5 A straightforward dataset implementation
	10.5.1 Caching candidate arrays with the getCtRawCandidate function
	10.5.2 Constructing our dataset in LunaDataset.__init__
	10.5.3 A training/validation split
	10.5.4 Rendering the data

	10.6 Conclusion
	10.7 Exercises
	10.8 Summary

	Chapter 11: Training a classification model to detect suspected tumors
	11.1 A foundational model and training loop
	11.2 The main entry point for our application
	11.3 Pretraining setup and initialization
	11.3.1 Initializing the model and optimizer
	11.3.2 Care and feeding of data loaders

	11.4 Our first-pass neural network design
	11.4.1 The core convolutions
	11.4.2 The full model

	11.5 Training and validating the model
	11.5.1 The computeBatchLoss function
	11.5.2 The validation loop is similar

	11.6 Outputting performance metrics
	11.6.1 The logMetrics function

	11.7 Running the training script
	11.7.1 Needed data for training
	11.7.2 Interlude: The enumerateWithEstimate function

	11.8 Evaluating the model: Getting 99.7% correct means we’re done, right?
	11.9 Graphing training metrics with TensorBoard
	11.9.1 Running TensorBoard
	11.9.2 Adding TensorBoard support to the metrics logging function

	11.10 Why isn’t the model learning to detect nodules?
	11.11 Conclusion
	11.12 Exercises
	11.13 Summary

	Chapter 12: Improving training with metrics and augmentation
	12.1 High-level plan for improvement
	12.2 Good dogs vs. bad guys: False positives and false negatives
	12.3 Graphing the positives and negatives
	12.3.1 Recall is Roxie’s strength
	12.3.2 Precision is Preston’s forte
	12.3.3 Implementing precision and recall in logMetrics
	12.3.4 Our ultimate performance metric: The F1 score
	12.3.5 How does our model perform with our new metrics?

	12.4 What does an ideal dataset look like?
	12.4.1 Making the data look less like the actual and more like the “ideal”
	12.4.2 Contrasting training with a balanced LunaDataset to previous runs
	12.4.3 Recognizing the symptoms of overfitting

	12.5 Revisiting the problem of overfitting
	12.5.1 An overfit face-to-age prediction model

	12.6 Preventing overfitting with data augmentation
	12.6.1 Specific data augmentation techniques
	12.6.2 Seeing the improvement from data augmentation

	12.7 Conclusion
	12.8 Exercises
	12.9 Summary

	Chapter 13: Using segmentation to find suspected nodules
	13.1 Adding a second model to our project
	13.2 Various types of segmentation
	13.3 Semantic segmentation: Per-pixel classification
	13.3.1 The U-Net architecture

	13.4 Updating the model for segmentation
	13.4.1 Adapting an off-the-shelf model to our project

	13.5 Updating the dataset for segmentation
	13.5.1 U-Net has very specific input size requirements
	13.5.2 U-Net trade-offs for 3D vs. 2D data
	13.5.3 Building the ground truth data
	13.5.4 Implementing Luna2dSegmentationDataset
	13.5.5 Designing our training and validation data
	13.5.6 Implementing TrainingLuna2dSegmentationDataset
	13.5.7 Augmenting on the GPU

	13.6 Updating the training script for segmentation
	13.6.1 Initializing our segmentation and augmentation models
	13.6.2 Using the Adam optimizer
	13.6.3 Dice loss
	13.6.4 Getting images into TensorBoard
	13.6.5 Updating our metrics logging
	13.6.6 Saving our model

	13.7 Results
	13.8 Conclusion
	13.9 Exercises
	13.10 Summary

	Chapter 14: End-to-end nodule analysis, and where to go next
	14.1 Towards the finish line
	14.2 Independence of the validation set
	14.3 Bridging CT segmentation and nodule candidate classification
	14.3.1 Segmentation
	14.3.2 Grouping voxels into nodule candidates
	14.3.3 Did we find a nodule? Classification to reduce false positives

	14.4 Quantitative validation
	14.5 Predicting malignancy
	14.5.1 Getting malignancy information
	14.5.2 An area under the curve baseline: Classifying by diameter
	14.5.3 Reusing preexisting weights: Fine-tuning
	14.5.4 More output in TensorBoard

	14.6 What we see when we diagnose
	14.6.1 Training, validation, and test sets

	14.7 What next? Additional sources of inspiration (and data)
	14.7.1 Preventing overfitting: Better regularization
	14.7.2 Refined training data
	14.7.3 Competition results and research papers

	14.8 Conclusion
	14.8.1 Behind the curtain

	14.9 Exercises
	14.10 Summary

	Part 3: Deployment
	Chapter 15: Deploying to production
	15.1 Serving PyTorch models
	15.1.1 Our model behind a Flask server
	15.1.2 What we want from deployment
	15.1.3 Request batching

	15.2 Exporting models
	15.2.1 Interoperability beyond PyTorch with ONNX
	15.2.2 PyTorch’s own export: Tracing
	15.2.3 Our server with a traced model

	15.3 Interacting with the PyTorch JIT
	15.3.1 What to expect from moving beyond classic Python/PyTorch
	15.3.2 The dual nature of PyTorch as interface and backend
	15.3.3 TorchScript
	15.3.4 Scripting the gaps of traceability

	15.4 LibTorch: PyTorch in C++
	15.4.1 Running JITed models from C++
	15.4.2 C++ from the start: The C++ API

	15.5 Going mobile
	15.5.1 Improving efficiency: Model design and quantization

	15.6 Emerging technology: Enterprise serving of PyTorch models
	15.7 Conclusion
	15.8 Exercises
	15.9 Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

