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Preface

Distributed database systems are an integral part of most businesses and the vast
majority of software applications. These applications provide logic and a user inter‐
face, while database systems take care of data integrity, consistency, and redundancy.

Back in 2000, if you were to choose a database, you would have just a few options,
and most of them would be within the realm of relational databases, so differences
between them would be relatively small. Of course, this does not mean that all data‐
bases were completely the same, but their functionality and use cases were very
similar.

Some of these databases have focused on horizontal scaling (scaling out)—improving
performance and increasing capacity by running multiple database instances acting
as a single logical unit: Gamma Database Machine Project, Teradata, Greenplum, Par‐
allel DB2, and many others. Today, horizontal scaling remains one of the most impor‐
tant properties that customers expect from databases. This can be explained by the
rising popularity of cloud-based services. It is often easier to spin up a new instance
and add it to the cluster than scaling vertically (scaling up) by moving the database to
a larger, more powerful machine. Migrations can be long and painful, potentially
incurring downtime.

Around 2010, a new class of eventually consistent databases started appearing, and
terms such as NoSQL, and later, big data grew in popularity. Over the last 15 years,
the open source community, large internet companies, and database vendors have
created so many databases and tools that it’s easy to get lost trying to understand use
cases, details, and specifics.

The Dynamo paper [DECANDIA07], published by the team at Amazon in 2007, had
so much impact on the database community that within a short period it inspired
many variants and implementations. The most prominent of them were Apache Cas‐
sandra, created at Facebook; Project Voldemort, created at LinkedIn; and Riak, cre‐
ated by former Akamai engineers.
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Today, the field is changing again: after the time of key-value stores, NoSQL, and
eventual consistency, we have started seeing more scalable and performant databases,
able to execute complex queries with stronger consistency guarantees.

Audience of This Book
In conversations at technical conferences, I often hear the same question: “How can I
learn more about database internals? I don’t even know where to start.” Most of the
books on database systems do not go into details of storage engine implementation,
and cover the access methods, such as B-Trees, on a rather high level. There are very
few books that cover more recent concepts, such as different B-Tree variants and log-
structured storage, so I usually recommend reading papers.

Everyone who reads papers knows that it’s not that easy: you often lack context, the
wording might be ambiguous, there’s little or no connection between papers, and
they’re hard to find. This book contains concise summaries of important database
systems concepts and can serve as a guide for those who’d like to dig in deeper, or as a
cheat sheet for those already familiar with these concepts.

Not everyone wants to become a database developer, but this book will help people
who build software that uses database systems: software developers, reliability engi‐
neers, architects, and engineering managers.

If your company depends on any infrastructure component, be it a database, a mes‐
saging queue, a container platform, or a task scheduler, you have to read the project
change-logs and mailing lists to stay in touch with the community and be up-to-date
with the most recent happenings in the project. Understanding terminology and
knowing what’s inside will enable you to yield more information from these sources
and use your tools more productively to troubleshoot, identify, and avoid potential
risks and bottlenecks. Having an overview and a general understanding of how data‐
base systems work will help in case something goes wrong. Using this knowledge,
you’ll be able to form a hypothesis, validate it, find the root cause, and present it to
other project maintainers.

This book is also for curious minds: for the people who like learning things without
immediate necessity, those who spend their free time hacking on something fun, cre‐
ating compilers, writing homegrown operating systems, text editors, computer
games, learning programming languages, and absorbing new information.

The reader is assumed to have some experience with developing backend systems and
working with database systems as a user. Having some prior knowledge of different
data structures will help to digest material faster.
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Why Should I Read This Book?
We often hear people describing database systems in terms of the concepts and algo‐
rithms they implement: “This database uses gossip for membership propagation” (see
Chapter 12), “They have implemented Dynamo,” or “This is just like what they’ve
described in the Spanner paper” (see Chapter 13). Or, if you’re discussing the algo‐
rithms and data structures, you can hear something like “ZAB and Raft have a lot in
common” (see Chapter 14), “Bw-Trees are like the B-Trees implemented on top of log
structured storage” (see Chapter 6), or “They are using sibling pointers like in Blink-
Trees” (see Chapter 5).

We need abstractions to discuss complex concepts, and we can’t have a discussion
about terminology every time we start a conversation. Having shortcuts in the form
of common language helps us to move our attention to other, higher-level problems.

One of the advantages of learning the fundamental concepts, proofs, and algorithms
is that they never grow old. Of course, there will always be new ones, but new algo‐
rithms are often created after finding a flaw or room for improvement in a classical
one. Knowing the history helps to understand differences and motivation better.

Learning about these things is inspiring. You see the variety of algorithms, see how
our industry was solving one problem after the other, and get to appreciate that work.
At the same time, learning is rewarding: you can almost feel how multiple puzzle
pieces move together in your mind to form a full picture that you will always be able
to share with others.

Scope of This Book
This is neither a book about relational database management systems nor about
NoSQL ones, but about the algorithms and concepts used in all kinds of database sys‐
tems, with a focus on a storage engine and the components responsible for
distribution.

Some concepts, such as query planning, query optimization, scheduling, the rela‐
tional model, and a few others, are already covered in several great textbooks on data‐
base systems. Some of these concepts are usually described from the user’s
perspective, but this book concentrates on the internals. You can find some pointers
to useful literature in the Part II Conclusion and in the chapter summaries. In these
books you’re likely to find answers to many database-related questions you might
have.

Query languages aren’t discussed, since there’s no single common language among
the database systems mentioned in this book.

To collect material for this book, I studied over 15 books, more than 300 papers,
countless blog posts, source code, and the documentation for several open source
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databases. The rule of thumb for whether or not to include a particular concept in the
book was the question: “Do the people in the database industry and research circles
talk about this concept?” If the answer was “yes,” I added the concept to the long list
of things to discuss.

Structure of This Book
There are some examples of extensible databases with pluggable components (such as
[SCHWARZ86]), but they are rather rare. At the same time, there are plenty of exam‐
ples where databases use pluggable storage. Similarly, we rarely hear database vendors
talking about query execution, while they are very eager to discuss the ways their
databases preserve consistency.

The most significant distinctions between database systems are concentrated around
two aspects: how they store and how they distribute the data. (Other subsystems can
at times also be of importance, but are not covered here.) The book is arranged into
parts that discuss the subsystems and components responsible for storage (Part I) and
distribution (Part II).

Part I discusses node-local processes and focuses on the storage engine, the central
component of the database system and one of the most significant distinctive factors.
First, we start with the architecture of a database management system and present
several ways to classify database systems based on the primary storage medium and
layout.

We continue with storage structures and try to understand how disk-based structures
are different from in-memory ones, introduce B-Trees, and cover algorithms for effi‐
ciently maintaining B-Tree structures on disk, including serialization, page layout,
and on-disk representations. Later, we discuss multiple variants to illustrate the power
of this concept and the diversity of data structures influenced and inspired by B-
Trees.

Last, we discuss several variants of log-structured storage, commonly used for imple‐
menting file and storage systems, motivation, and reasons to use them.

Part II is about how to organize multiple nodes into a database cluster. We start with
the importance of understanding the theoretical concepts for building fault-tolerant
distributed systems, how distributed systems are different from single-node applica‐
tions, and which problems, constraints, and complications we face in a distributed
environment.

After that, we dive deep into distributed algorithms. Here, we start with algorithms
for failure detection, helping to improve performance and stability by noticing and
reporting failures and avoiding the failed nodes. Since many algorithms discussed
later in the book rely on understanding the concept of leadership, we introduce sev‐
eral algorithms for leader election and discuss their suitability.
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As one of the most difficult things in distributed systems is achieving data consis‐
tency, we discuss concepts of replication, followed by consistency models, possible
divergence between replicas, and eventual consistency. Since eventually consistent
systems sometimes rely on anti-entropy for convergence and gossip for data dissemi‐
nation, we discuss several anti-entropy and gossip approaches. Finally, we discuss log‐
ical consistency in the context of database transactions, and finish with consensus
algorithms.

It would’ve been impossible to write this book without all the research and publica‐
tions. You will find many references to papers and publications in the text, in square
brackets with monospace font; for example, [DECANDIA07]. You can use these ref‐
erences to learn more about related concepts in more detail.

After each chapter, you will find a summary section that contains material for further
study, related to the content of the chapter.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Database Internals by Alex Petrov
(O’Reilly). Copyright 2019 Oleksandr Petrov, 978-1-492-04034-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/database-internals.

To comment or ask technical questions about this book, please send an email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Storage Engines

The primary job of any database management system is reliably storing data and
making it available for users. We use databases as a primary source of data, helping us
to share it between the different parts of our applications. Instead of finding a way to
store and retrieve information and inventing a new way to organize data every time
we create a new app, we use databases. This way we can concentrate on application
logic instead of infrastructure.

Since the term database management system (DBMS) is quite bulky, throughout this
book we use more compact terms, database system and database, to refer to the same
concept.

Databases are modular systems and consist of multiple parts: a transport layer accept‐
ing requests, a query processor determining the most efficient way to run queries, an
execution engine carrying out the operations, and a storage engine (see “DBMS
Architecture” on page 8).

The storage engine (or database engine) is a software component of a database man‐
agement system responsible for storing, retrieving, and managing data in memory
and on disk, designed to capture a persistent, long-term memory of each node
[REED78]. While databases can respond to complex queries, storage engines look at
the data more granularly and offer a simple data manipulation API, allowing users to
create, update, delete, and retrieve records. One way to look at this is that database
management systems are applications built on top of storage engines, offering a
schema, a query language, indexing, transactions, and many other useful features.



For flexibility, both keys and values can be arbitrary sequences of bytes with no pre‐
scribed form. Their sorting and representation semantics are defined in higher-level
subsystems. For example, you can use int32 (32-bit integer) as a key in one of the
tables, and ascii (ASCII string) in the other; from the storage engine perspective
both keys are just serialized entries.

Storage engines such as BerkeleyDB, LevelDB and its descendant RocksDB, LMDB
and its descendant libmdbx, Sophia, HaloDB, and many others were developed inde‐
pendently from the database management systems they’re now embedded into. Using
pluggable storage engines has enabled database developers to bootstrap database sys‐
tems using existing storage engines, and concentrate on the other subsystems.

At the same time, clear separation between database system components opens up an
opportunity to switch between different engines, potentially better suited for particu‐
lar use cases. For example, MySQL, a popular database management system, has sev‐
eral storage engines, including InnoDB, MyISAM, and RocksDB (in the MyRocks
distribution). MongoDB allows switching between WiredTiger, In-Memory, and the
(now-deprecated) MMAPv1 storage engines.

Comparing Databases
Your choice of database system may have long-term consequences. If there’s a chance
that a database is not a good fit because of performance problems, consistency issues,
or operational challenges, it is better to find out about it earlier in the development
cycle, since it can be nontrivial to migrate to a different system. In some cases, it may
require substantial changes in the application code.

Every database system has strengths and weaknesses. To reduce the risk of an expen‐
sive migration, you can invest some time before you decide on a specific database to
build confidence in its ability to meet your application’s needs.

Trying to compare databases based on their components (e.g., which storage engine
they use, how the data is shared, replicated, and distributed, etc.), their rank (an arbi‐
trary popularity value assigned by consultancy agencies such as ThoughtWorks or
database comparison websites such as DB-Engines or Database of Databases), or
implementation language (C++, Java, or Go, etc.) can lead to invalid and premature
conclusions. These methods can be used only for a high-level comparison and can be
as coarse as choosing between HBase and SQLite, so even a superficial understanding
of how each database works and what’s inside it can help you land a more weighted
conclusion.

Every comparison should start by clearly defining the goal, because even the slightest
bias may completely invalidate the entire investigation. If you’re searching for a data‐
base that would be a good fit for the workloads you have (or are planning to facili‐
tate), the best thing you can do is to simulate these workloads against different
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database systems, measure the performance metrics that are important for you, and
compare results. Some issues, especially when it comes to performance and scalabil‐
ity, start showing only after some time or as the capacity grows. To detect potential
problems, it is best to have long-running tests in an environment that simulates the
real-world production setup as closely as possible.

Simulating real-world workloads not only helps you understand how the database
performs, but also helps you learn how to operate, debug, and find out how friendly
and helpful its community is. Database choice is always a combination of these fac‐
tors, and performance often turns out not to be the most important aspect: it’s usually
much better to use a database that slowly saves the data than one that quickly loses it.

To compare databases, it’s helpful to understand the use case in great detail and define
the current and anticipated variables, such as:

• Schema and record sizes
• Number of clients
• Types of queries and access patterns
• Rates of the read and write queries
• Expected changes in any of these variables

Knowing these variables can help to answer the following questions:

• Does the database support the required queries?
• Is this database able to handle the amount of data we’re planning to store?
• How many read and write operations can a single node handle?
• How many nodes should the system have?
• How do we expand the cluster given the expected growth rate?
• What is the maintenance process?

Having these questions answered, you can construct a test cluster and simulate your
workloads. Most databases already have stress tools that can be used to reconstruct
specific use cases. If there’s no standard stress tool to generate realistic randomized
workloads in the database ecosystem, it might be a red flag. If something prevents
you from using default tools, you can try one of the existing general-purpose tools, or
implement one from scratch.

If the tests show positive results, it may be helpful to familiarize yourself with the
database code. Looking at the code, it is often useful to first understand the parts of
the database, how to find the code for different components, and then navigate
through those. Having even a rough idea about the database codebase helps you bet‐



1 The service-level agreement (or SLA) is a commitment by the service provider about the quality of provided
services. Among other things, the SLA can include information about latency, throughput, jitter, and the
number and frequency of failures.

ter understand the log records it produces, its configuration parameters, and helps
you find issues in the application that uses it and even in the database code itself.

It’d be great if we could use databases as black boxes and never have to take a look
inside them, but the practice shows that sooner or later a bug, an outage, a perfor‐
mance regression, or some other problem pops up, and it’s better to be prepared for
it. If you know and understand database internals, you can reduce business risks and
improve chances for a quick recovery.

One of the popular tools used for benchmarking, performance evaluation, and com‐
parison is Yahoo! Cloud Serving Benchmark (YCSB). YCSB offers a framework and a
common set of workloads that can be applied to different data stores. Just like any‐
thing generic, this tool should be used with caution, since it’s easy to make wrong
conclusions. To make a fair comparison and make an educated decision, it is neces‐
sary to invest enough time to understand the real-world conditions under which the
database has to perform, and tailor benchmarks accordingly.

TPC-C Benchmark
The Transaction Processing Performance Council (TPC) has a set of benchmarks that
database vendors use for comparing and advertising performance of their products.
TPC-C is an online transaction processing (OLTP) benchmark, a mixture of read-
only and update transactions that simulate common application workloads.

This benchmark concerns itself with the performance and correctness of executed
concurrent transactions. The main performance indicator is throughput: the number
of transactions the database system is able to process per minute. Executed transac‐
tions are required to preserve ACID properties and conform to the set of properties
defined by the benchmark itself.

This benchmark does not concentrate on any particular business segment, but pro‐
vides an abstract set of actions important for most of the applications for which OLTP
databases are suitable. It includes several tables and entities such as warehouses, stock
(inventory), customers and orders, specifying table layouts, details of transactions
that can be performed against these tables, the minimum number of rows per table,
and data durability constraints.

This doesn’t mean that benchmarks can be used only to compare databases. Bench‐
marks can be useful to define and test details of the service-level agreement,1 under‐
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standing system requirements, capacity planning, and more. The more knowledge
you have about the database before using it, the more time you’ll save when running
it in production.

Choosing a database is a long-term decision, and it’s best to keep track of newly
released versions, understand what exactly has changed and why, and have an
upgrade strategy. New releases usually contain improvements and fixes for bugs and
security issues, but may introduce new bugs, performance regressions, or unexpected
behavior, so testing new versions before rolling them out is also critical. Checking
how database implementers were handling upgrades previously might give you a
good idea about what to expect in the future. Past smooth upgrades do not guarantee
that future ones will be as smooth, but complicated upgrades in the past might be a
sign that future ones won’t be easy, either.

Understanding Trade-Offs
As users, we can see how databases behave under different conditions, but when
working on databases, we have to make choices that influence this behavior directly.

Designing a storage engine is definitely more complicated than just implementing a
textbook data structure: there are many details and edge cases that are hard to get
right from the start. We need to design the physical data layout and organize pointers,
decide on the serialization format, understand how data is going to be garbage-
collected, how the storage engine fits into the semantics of the database system as a
whole, figure out how to make it work in a concurrent environment, and, finally,
make sure we never lose any data, under any circumstances.

Not only there are many things to decide upon, but most of these decisions involve
trade-offs. For example, if we save records in the order they were inserted into the
database, we can store them quicker, but if we retrieve them in their lexicographical
order, we have to re-sort them before returning results to the client. As you will see
throughout this book, there are many different approaches to storage engine design,
and every implementation has its own upsides and downsides.

When looking at different storage engines, we discuss their benefits and shortcom‐
ings. If there was an absolutely optimal storage engine for every conceivable use case,
everyone would just use it. But since it does not exist, we need to choose wisely, based
on the workloads and use cases we’re trying to facilitate.

There are many storage engines, using all sorts of data structures, implemented in
different languages, ranging from low-level ones, such as C, to high-level ones, such
as Java. All storage engines face the same challenges and constraints. To draw a paral‐
lel with city planning, it is possible to build a city for a specific population and choose
to build up or build out. In both cases, the same number of people will fit into the city,
but these approaches lead to radically different lifestyles. When building the city up,



people live in apartments and population density is likely to lead to more traffic in a
smaller area; in a more spread-out city, people are more likely to live in houses, but
commuting will require covering larger distances.

Similarly, design decisions made by storage engine developers make them better
suited for different things: some are optimized for low read or write latency, some try
to maximize density (the amount of stored data per node), and some concentrate on
operational simplicity.

You can find complete algorithms that can be used for the implementation and other
additional references in the chapter summaries. Reading this book should make you
well equipped to work productively with these sources and give you a solid under‐
standing of the existing alternatives to concepts described there.



CHAPTER 1

Introduction and Overview

Database management systems can serve different purposes: some are used primarily
for temporary hot data, some serve as a long-lived cold storage, some allow complex
analytical queries, some only allow accessing values by the key, some are optimized to
store time-series data, and some store large blobs efficiently. To understand differ‐
ences and draw distinctions, we start with a short classification and overview, as this
helps us to understand the scope of further discussions.

Terminology can sometimes be ambiguous and hard to understand without a com‐
plete context. For example, distinctions between column and wide column stores that
have little or nothing to do with each other, or how clustered and nonclustered indexes
relate to index-organized tables. This chapter aims to disambiguate these terms and
find their precise definitions.

We start with an overview of database management system architecture (see “DBMS
Architecture” on page 8), and discuss system components and their responsibilities.
After that, we discuss the distinctions among the database management systems in
terms of a storage medium (see “Memory- Versus Disk-Based DBMS” on page 10),
and layout (see “Column- Versus Row-Oriented DBMS” on page 12).

These two groups do not present a full taxonomy of database management systems
and there are many other ways they’re classified. For example, some sources group
DBMSs into three major categories:

Online transaction processing (OLTP) databases
These handle a large number of user-facing requests and transactions. Queries
are often predefined and short-lived.
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Online analytical processing (OLAP) databases
These handle complex aggregations. OLAP databases are often used for analytics
and data warehousing, and are capable of handling complex, long-running ad
hoc queries.

Hybrid transactional and analytical processing (HTAP)
These databases combine properties of both OLTP and OLAP stores.

There are many other terms and classifications: key-value stores, relational databases,
document-oriented stores, and graph databases. These concepts are not defined here,
since the reader is assumed to have a high-level knowledge and understanding of
their functionality. Because the concepts we discuss here are widely applicable and are
used in most of the mentioned types of stores in some capacity, complete taxonomy is
not necessary or important for further discussion.

Since Part I of this book focuses on the storage and indexing structures, we need to
understand the high-level data organization approaches, and the relationship
between the data and index files (see “Data Files and Index Files” on page 17).

Finally, in “Buffering, Immutability, and Ordering” on page 21, we discuss three tech‐
niques widely used to develop efficient storage structures and how applying these
techniques influences their design and implementation.

DBMS Architecture
There’s no common blueprint for database management system design. Every data‐
base is built slightly differently, and component boundaries are somewhat hard to see
and define. Even if these boundaries exist on paper (e.g., in project documentation),
in code seemingly independent components may be coupled because of performance
optimizations, handling edge cases, or architectural decisions.

Sources that describe database management system architecture (for example, [HEL‐
LERSTEIN07], [WEIKUM01], [ELMASRI11], and [MOLINA08]), define compo‐
nents and relationships between them differently. The architecture presented in
Figure 1-1 demonstrates some of the common themes in these representations.

Database management systems use a client/server model, where database system
instances (nodes) take the role of servers, and application instances take the role of
clients.

Client requests arrive through the transport subsystem. Requests come in the form of
queries, most often expressed in some query language. The transport subsystem is
also responsible for communication with other nodes in the database cluster.
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Figure 1-1. Architecture of a database management system

Upon receipt, the transport subsystem hands the query over to a query processor,
which parses, interprets, and validates it. Later, access control checks are performed,
as they can be done fully only after the query is interpreted.

The parsed query is passed to the query optimizer, which first eliminates impossible
and redundant parts of the query, and then attempts to find the most efficient way to
execute it based on internal statistics (index cardinality, approximate intersection size,
etc.) and data placement (which nodes in the cluster hold the data and the costs asso‐
ciated with its transfer). The optimizer handles both relational operations required
for query resolution, usually presented as a dependency tree, and optimizations, such
as index ordering, cardinality estimation, and choosing access methods.

The query is usually presented in the form of an execution plan (or query plan): a
sequence of operations that have to be carried out for its results to be considered
complete. Since the same query can be satisfied using different execution plans that
can vary in efficiency, the optimizer picks the best available plan.

DBMS Architecture | 9



The execution plan is handled by the execution engine, which collects the results of
the execution of local and remote operations. Remote execution can involve writing
and reading data to and from other nodes in the cluster, and replication.

Local queries (coming directly from clients or from other nodes) are executed by the
storage engine. The storage engine has several components with dedicated
responsibilities:

Transaction manager
This manager schedules transactions and ensures they cannot leave the database
in a logically inconsistent state.

Lock manager
This manager locks on the database objects for the running transactions, ensur‐
ing that concurrent operations do not violate physical data integrity.

Access methods (storage structures)
These manage access and organizing data on disk. Access methods include heap
files and storage structures such as B-Trees (see “Ubiquitous B-Trees” on page
33) or LSM Trees (see “LSM Trees” on page 130).

Buffer manager
This manager caches data pages in memory (see “Buffer Management” on page
81).

Recovery manager
This manager maintains the operation log and restoring the system state in case
of a failure (see “Recovery” on page 88).

Together, transaction and lock managers are responsible for concurrency control (see
“Concurrency Control” on page 93): they guarantee logical and physical data integrity
while ensuring that concurrent operations are executed as efficiently as possible.

Memory- Versus Disk-Based DBMS
Database systems store data in memory and on disk. In-memory database manage‐
ment systems (sometimes called main memory DBMS) store data primarily in memory
and use the disk for recovery and logging. Disk-based DBMS hold most of the data on
disk and use memory for caching disk contents or as a temporary storage. Both types
of systems use the disk to a certain extent, but main memory databases store their
contents almost exclusively in RAM.
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1 You can find a visualization and comparison of disk, memory access latencies, and many other relevant num‐
bers over the years at https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html.

Accessing memory has been and remains several orders of magnitude faster than
accessing disk,1 so it is compelling to use memory as the primary storage, and it
becomes more economically feasible to do so as memory prices go down. However,
RAM prices still remain high compared to persistent storage devices such as SSDs
and HDDs.

Main memory database systems are different from their disk-based counterparts not
only in terms of a primary storage medium, but also in which data structures, organi‐
zation, and optimization techniques they use.

Databases using memory as a primary data store do this mainly because of perfor‐
mance, comparatively low access costs, and access granularity. Programming for
main memory is also significantly simpler than doing so for the disk. Operating sys‐
tems abstract memory management and allow us to think in terms of allocating and
freeing arbitrarily sized memory chunks. On disk, we have to manage data references,
serialization formats, freed memory, and fragmentation manually.

The main limiting factors on the growth of in-memory databases are RAM volatility
(in other words, lack of durability) and costs. Since RAM contents are not persistent,
software errors, crashes, hardware failures, and power outages can result in data loss.
There are ways to ensure durability, such as uninterrupted power supplies and
battery-backed RAM, but they require additional hardware resources and operational
expertise. In practice, it all comes down to the fact that disks are easier to maintain
and have significantly lower prices.

The situation is likely to change as the availability and popularity of Non-Volatile
Memory (NVM) [ARULRAJ17] technologies grow. NVM storage reduces or com‐
pletely eliminates (depending on the exact technology) asymmetry between read and
write latencies, further improves read and write performance, and allows byte-
addressable access.

Durability in Memory-Based Stores
In-memory database systems maintain backups on disk to provide durability and
prevent loss of the volatile data. Some databases store data exclusively in memory,
without any durability guarantees, but we do not discuss them in the scope of this
book.

Before the operation can be considered complete, its results have to be written to a
sequential log file. We discuss write-ahead logs in more detail in “Recovery” on page
88. To avoid replaying complete log contents during startup or after a crash, in-
memory stores maintain a backup copy. The backup copy is maintained as a sorted
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disk-based structure, and modifications to this structure are often asynchronous
(decoupled from client requests) and applied in batches to reduce the number of I/O
operations. During recovery, database contents can be restored from the backup and
logs.

Log records are usually applied to backup in batches. After the batch of log records is
processed, backup holds a database snapshot for a specific point in time, and log con‐
tents up to this point can be discarded. This process is called checkpointing. It reduces
recovery times by keeping the disk-resident database most up-to-date with log entries
without requiring clients to block until the backup is updated.

It is unfair to say that the in-memory database is the equivalent of
an on-disk database with a huge page cache (see “Buffer Manage‐
ment” on page 81). Even though pages are cached in memory, seri‐
alization format and data layout incur additional overhead and do
not permit the same degree of optimization that in-memory stores
can achieve.

Disk-based databases use specialized storage structures, optimized for disk access. In
memory, pointers can be followed comparatively quickly, and random memory
access is significantly faster than the random disk access. Disk-based storage struc‐
tures often have a form of wide and short trees (see “Trees for Disk-Based Storage” on
page 28), while memory-based implementations can choose from a larger pool of
data structures and perform optimizations that would otherwise be impossible or dif‐
ficult to implement on disk [MOLINA92]. Similarly, handling variable-size data on
disk requires special attention, while in memory it’s often a matter of referencing the
value with a pointer.

For some use cases, it is reasonable to assume that an entire dataset is going to fit in
memory. Some datasets are bounded by their real-world representations, such as stu‐
dent records for schools, customer records for corporations, or inventory in an online
store. Each record takes up not more than a few Kb, and their number is limited.

Column- Versus Row-Oriented DBMS
Most database systems store a set of data records, consisting of columns and rows in
tables. Field is an intersection of a column and a row: a single value of some type.
Fields belonging to the same column usually have the same data type. For example, if
we define a table holding user records, all names would be of the same type and
belong to the same column. A collection of values that belong logically to the same
record (usually identified by the key) constitutes a row.

One of the ways to classify databases is by how the data is stored on disk: row- or
column-wise. Tables can be partitioned either horizontally (storing values belonging
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2 Spatial locality is one of the Principles of Locality, stating that if a memory location is accessed, its nearby
memory locations will be accessed in the near future.

to the same row together), or vertically (storing values belonging to the same column
together). Figure 1-2 depicts this distinction: (a) shows the values partitioned
column-wise, and (b) shows the values partitioned row-wise.

Figure 1-2. Data layout in column- and row-oriented stores

Examples of row-oriented database management systems are abundant: MySQL,
PostgreSQL, and most of the traditional relational databases. The two pioneer open
source column-oriented stores are MonetDB and C-Store (C-Store is an open source
predecessor to Vertica).

Row-Oriented Data Layout
Row-oriented database management systems store data in records or rows. Their lay‐
out is quite close to the tabular data representation, where every row has the same set
of fields. For example, a row-oriented database can efficiently store user entries, hold‐
ing names, birth dates, and phone numbers:

| ID | Name  | Birth Date  | Phone Number   |
| 10 | John  | 01 Aug 1981 | +1 111 222 333 |
| 20 | Sam   | 14 Sep 1988 | +1 555 888 999 |
| 30 | Keith | 07 Jan 1984 | +1 333 444 555 |

This approach works well for cases where several fields constitute the record (name,
birth date, and a phone number) uniquely identified by the key (in this example, a
monotonically incremented number). All fields representing a single user record are
often read together. When creating records (for example, when the user fills out a
registration form), we write them together as well. At the same time, each field can be
modified individually.

Since row-oriented stores are most useful in scenarios when we have to access data by
row, storing entire rows together improves spatial locality2 [DENNING68].

Because data on a persistent medium such as a disk is typically accessed block-wise
(in other words, a minimal unit of disk access is a block), a single block will contain
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data for all columns. This is great for cases when we’d like to access an entire user
record, but makes queries accessing individual fields of multiple user records (for
example, queries fetching only the phone numbers) more expensive, since data for
the other fields will be paged in as well.

Column-Oriented Data Layout
Column-oriented database management systems partition data vertically (i.e., by col‐
umn) instead of storing it in rows. Here, values for the same column are stored con‐
tiguously on disk (as opposed to storing rows contiguously as in the previous
example). For example, if we store historical stock market prices, price quotes are
stored together. Storing values for different columns in separate files or file segments
allows efficient queries by column, since they can be read in one pass rather than con‐
suming entire rows and discarding data for columns that weren’t queried.

Column-oriented stores are a good fit for analytical workloads that compute aggre‐
gates, such as finding trends, computing average values, etc. Processing complex
aggregates can be used in cases when logical records have multiple fields, but some of
them (in this case, price quotes) have different importance and are often consumed
together.

From a logical perspective, the data representing stock market price quotes can still
be expressed as a table:

| ID | Symbol | Date        | Price     |
| 1  | DOW    | 08 Aug 2018 | 24,314.65 |
| 2  | DOW    | 09 Aug 2018 | 24,136.16 |
| 3  | S&P    | 08 Aug 2018 | 2,414.45  |
| 4  | S&P    | 09 Aug 2018 | 2,232.32  |

However, the physical column-based database layout looks entirely different. Values
belonging to the same row are stored closely together:

Symbol: 1:DOW; 2:DOW; 3:S&P; 4:S&P
Date:   1:08 Aug 2018; 2:09 Aug 2018; 3:08 Aug 2018; 4:09 Aug 2018
Price:  1:24,314.65; 2:24,136.16; 3:2,414.45; 4:2,232.32

To reconstruct data tuples, which might be useful for joins, filtering, and multirow
aggregates, we need to preserve some metadata on the column level to identify which
data points from other columns it is associated with. If you do this explicitly, each
value will have to hold a key, which introduces duplication and increases the amount
of stored data. Some column stores use implicit identifiers (virtual IDs) instead and
use the position of the value (in other words, its offset) to map it back to the related
values [ABADI13].

During the last several years, likely due to a rising demand to run complex analytical
queries over growing datasets, we’ve seen many new column-oriented file formats
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3 Vectorized instructions, or Single Instruction Multiple Data (SIMD), describes a class of CPU instructions
that perform the same operation on multiple data points.

such as Apache Parquet, Apache ORC, RCFile, as well as column-oriented stores,
such as Apache Kudu, ClickHouse, and many others [ROY12].

Distinctions and Optimizations
It is not sufficient to say that distinctions between row and column stores are only in
the way the data is stored. Choosing the data layout is just one of the steps in a series
of possible optimizations that columnar stores are targeting.

Reading multiple values for the same column in one run significantly improves cache
utilization and computational efficiency. On modern CPUs, vectorized instructions
can be used to process multiple data points with a single CPU instruction3 [DREP‐
PER07].

Storing values that have the same data type together (e.g., numbers with other num‐
bers, strings with other strings) offers a better compression ratio. We can use different
compression algorithms depending on the data type and pick the most effective com‐
pression method for each case.

To decide whether to use a column- or a row-oriented store, you need to understand
your access patterns. If the read data is consumed in records (i.e., most or all of the
columns are requested) and the workload consists mostly of point queries and range
scans, the row-oriented approach is likely to yield better results. If scans span many
rows, or compute aggregate over a subset of columns, it is worth considering a
column-oriented approach.

Wide Column Stores
Column-oriented databases should not be mixed up with wide column stores, such as
BigTable or HBase, where data is represented as a multidimensional map, columns
are grouped into column families (usually storing data of the same type), and inside
each column family, data is stored row-wise. This layout is best for storing data
retrieved by a key or a sequence of keys.

A canonical example from the Bigtable paper [CHANG06] is a Webtable. A Webtable
stores snapshots of web page contents, their attributes, and the relations among them
at a specific timestamp. Pages are identified by the reversed URL, and all attributes
(such as page content and anchors, representing links between pages) are identified by
the timestamps at which these snapshots were taken. In a simplified way, it can be
represented as a nested map, as Figure 1-3 shows.
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Figure 1-3. Conceptual structure of a Webtable

Data is stored in a multidimensional sorted map with hierarchical indexes: we can
locate the data related to a specific web page by its reversed URL and its contents or
anchors by the timestamp. Each row is indexed by its row key. Related columns are
grouped together in column families—contents and anchor in this example—which
are stored on disk separately. Each column inside a column family is identified by the
column key, which is a combination of the column family name and a qualifier (html,
cnnsi.com, my.look.ca in this example). Column families store multiple versions of
data by timestamp. This layout allows us to quickly locate the higher-level entries
(web pages, in this case) and their parameters (versions of content and links to the
other pages).

While it is useful to understand the conceptual representation of wide column stores,
their physical layout is somewhat different. A schematic representation of the data
layout in column families is shown in Figure 1-4: column families are stored sepa‐
rately, but in each column family, the data belonging to the same key is stored
together.
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Figure 1-4. Physical structure of a Webtable

Data Files and Index Files
The primary goal of a database system is to store data and to allow quick access to it.
But how is the data organized? Why do we need a database management system and
not just a bunch of files? How does file organization improve efficiency?

Database systems do use files for storing the data, but instead of relying on filesystem
hierarchies of directories and files for locating records, they compose files using
implementation-specific formats. The main reasons to use specialized file organiza‐
tion over flat files are:

Storage efficiency
Files are organized in a way that minimizes storage overhead per stored data
record.

Access efficiency
Records can be located in the smallest possible number of steps.

Update efficiency
Record updates are performed in a way that minimizes the number of changes on
disk.

Database systems store data records, consisting of multiple fields, in tables, where
each table is usually represented as a separate file. Each record in the table can be
looked up using a search key. To locate a record, database systems use indexes:
auxiliary data structures that allow it to efficiently locate data records without scan‐
ning an entire table on every access. Indexes are built using a subset of fields identify‐
ing the record.

A database system usually separates data files and index files: data files store data
records, while index files store record metadata and use it to locate records in data
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files. Index files are typically smaller than the data files. Files are partitioned into
pages, which typically have the size of a single or multiple disk blocks. Pages can be
organized as sequences of records or as a slotted pages (see “Slotted Pages” on page
52).

New records (insertions) and updates to the existing records are represented by key/
value pairs. Most modern storage systems do not delete data from pages explicitly.
Instead, they use deletion markers (also called tombstones), which contain deletion
metadata, such as a key and a timestamp. Space occupied by the records shadowed by
their updates or deletion markers is reclaimed during garbage collection, which reads
the pages, writes the live (i.e., nonshadowed) records to the new place, and discards
the shadowed ones.

Data Files
Data files (sometimes called primary files) can be implemented as index-organized
tables (IOT), heap-organized tables (heap files), or hash-organized tables (hashed files).

Records in heap files are not required to follow any particular order, and most of the
time they are placed in a write order. This way, no additional work or file reorganiza‐
tion is required when new pages are appended. Heap files require additional index
structures, pointing to the locations where data records are stored, to make them
searchable.

In hashed files, records are stored in buckets, and the hash value of the key deter‐
mines which bucket a record belongs to. Records in the bucket can be stored in
append order or sorted by key to improve lookup speed.

Index-organized tables (IOTs) store data records in the index itself. Since records are
stored in key order, range scans in IOTs can be implemented by sequentially scanning
its contents.

Storing data records in the index allows us to reduce the number of disk seeks by at
least one, since after traversing the index and locating the searched key, we do not
have to address a separate file to find the associated data record.

When records are stored in a separate file, index files hold data entries, uniquely iden‐
tifying data records and containing enough information to locate them in the data
file. For example, we can store file offsets (sometimes called row locators), locations of
data records in the data file, or bucket IDs in the case of hash files. In index-organized
tables, data entries hold actual data records.

Index Files
An index is a structure that organizes data records on disk in a way that facilitates
efficient retrieval operations. Index files are organized as specialized structures that
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map keys to locations in data files where the records identified by these keys (in the
case of heap files) or primary keys (in the case of index-organized tables) are stored.

An index on a primary (data) file is called the primary index. However, in most cases
we can also assume that the primary index is built over a primary key or a set of keys
identified as primary. All other indexes are called secondary.

Secondary indexes can point directly to the data record, or simply store its primary
key. A pointer to a data record can hold an offset to a heap file or an index-organized
table. Multiple secondary indexes can point to the same record, allowing a single data
record to be identified by different fields and located through different indexes. While
primary index files hold a unique entry per search key, secondary indexes may hold
several entries per search key [MOLINA08].

If the order of data records follows the search key order, this index is called clustered
(also known as clustering). Data records in the clustered case are usually stored in the
same file or in a clustered file, where the key order is preserved. If the data is stored in
a separate file, and its order does not follow the key order, the index is called nonclus‐
tered (sometimes called unclustered).

Figure 1-5 shows the difference between the two approaches:

• a) Two indexes reference data entries directly from secondary index files.
• b) A secondary index goes through the indirection layer of a primary index to

locate the data entries.

Figure 1-5. Storing data records in an index file versus storing offsets to the data file
(index segments shown in white; segments holding data records shown in gray)

Index-organized tables store information in index order and are
clustered by definition. Primary indexes are most often clustered.
Secondary indexes are nonclustered by definition, since they’re
used to facilitate access by keys other than the primary one. Clus‐
tered indexes can be both index-organized or have separate index
and data files.
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4 The original post that has stirred up the discussion was controversial and one-sided, but you can refer to the
presentation comparing MySQL and PostgreSQL index and storage formats, which references the original
source as well.

Many database systems have an inherent and explicit primary key, a set of columns
that uniquely identify the database record. In cases when the primary key is not
specified, the storage engine can create an implicit primary key (for example, MySQL
InnoDB adds a new auto-increment column and fills in its values automatically).

This terminology is used in different kinds of database systems: relational database
systems (such as MySQL and PostgreSQL), Dynamo-based NoSQL stores (such as
Apache Cassandra and in Riak), and document stores (such as MongoDB). There can
be some project-specific naming, but most often there’s a clear mapping to this termi‐
nology.

Primary Index as an Indirection
There are different opinions in the database community on whether data records
should be referenced directly (through file offset) or via the primary key index.4

Both approaches have their pros and cons and are better discussed in the scope of a
complete implementation. By referencing data directly, we can reduce the number of
disk seeks, but have to pay a cost of updating the pointers whenever the record is
updated or relocated during a maintenance process. Using indirection in the form of
a primary index allows us to reduce the cost of pointer updates, but has a higher cost
on a read path.

Updating just a couple of indexes might work if the workload mostly consists of
reads, but this approach does not work well for write-heavy workloads with multiple
indexes. To reduce the costs of pointer updates, instead of payload offsets, some
implementations use primary keys for indirection. For example, MySQL InnoDB uses
a primary index and performs two lookups: one in the secondary index, and one in a
primary index when performing a query [TARIQ11]. This adds an overhead of a pri‐
mary index lookup instead of following the offset directly from the secondary index.

Figure 1-6 shows how the two approaches are different:

• a) Two indexes reference data entries directly from secondary index files.
• b) A secondary index goes through the indirection layer of a primary index to

locate the data entries.
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Figure 1-6. Referencing data tuples directly (a) versus using a primary index as
indirection (b)

It is also possible to use a hybrid approach and store both data file offsets and primary
keys. First, you check if the data offset is still valid and pay the extra cost of going
through the primary key index if it has changed, updating the index file after finding
a new offset.

Buffering, Immutability, and Ordering
A storage engine is based on some data structure. However, these structures do not
describe the semantics of caching, recovery, transactionality, and other things that
storage engines add on top of them.

In the next chapters, we will start the discussion with B-Trees (see “Ubiquitous B-
Trees” on page 33) and try to understand why there are so many B-Tree variants, and
why new database storage structures keep emerging.

Storage structures have three common variables: they use buffering (or avoid using
it), use immutable (or mutable) files, and store values in order (or out of order). Most
of the distinctions and optimizations in storage structures discussed in this book are
related to one of these three concepts.

Buffering
This defines whether or not the storage structure chooses to collect a certain
amount of data in memory before putting it on disk. Of course, every on-disk
structure has to use buffering to some degree, since the smallest unit of data
transfer to and from the disk is a block, and it is desirable to write full blocks.
Here, we’re talking about avoidable buffering, something storage engine imple‐
menters choose to do. One of the first optimizations we discuss in this book is
adding in-memory buffers to B-Tree nodes to amortize I/O costs (see “Lazy B-
Trees” on page 114). However, this is not the only way we can apply buffering.
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For example, two-component LSM Trees (see “Two-component LSM Tree” on
page 132), despite their similarities with B-Trees, use buffering in an entirely dif‐
ferent way, and combine buffering with immutability.

Mutability (or immutability)
This defines whether or not the storage structure reads parts of the file, updates
them, and writes the updated results at the same location in the file. Immutable
structures are append-only: once written, file contents are not modified. Instead,
modifications are appended to the end of the file. There are other ways to imple‐
ment immutability. One of them is copy-on-write (see “Copy-on-Write” on page
112), where the modified page, holding the updated version of the record, is writ‐
ten to the new location in the file, instead of its original location. Often the dis‐
tinction between LSM and B-Trees is drawn as immutable against in-place
update storage, but there are structures (for example, “Bw-Trees” on page 120)
that are inspired by B-Trees but are immutable.

Ordering
This is defined as whether or not the data records are stored in the key order in
the pages on disk. In other words, the keys that sort closely are stored in contigu‐
ous segments on disk. Ordering often defines whether or not we can efficiently
scan the range of records, not only locate the individual data records. Storing data
out of order (most often, in insertion order) opens up for some write-time opti‐
mizations. For example, Bitcask (see “Bitcask” on page 153) and WiscKey (see
“WiscKey” on page 154) store data records directly in append-only files.

Of course, a brief discussion of these three concepts is not enough to show their
power, and we’ll continue this discussion throughout the rest of the book.

Summary
In this chapter, we’ve discussed the architecture of a database management system
and covered its primary components.

To highlight the importance of disk-based structures and their difference from in-
memory ones, we discussed memory- and disk-based stores. We came to the conclu‐
sion that disk-based structures are important for both types of stores, but are used for
different purposes.

To understand how access patterns influence database system design, we discussed
column- and row-oriented database management systems and the primary factors
that set them apart from each other. To start a conversation about how the data is
stored, we covered data and index files.
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Lastly, we introduced three core concepts: buffering, immutability, and ordering. We
will use them throughout this book to highlight properties of the storage engines that
use them.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Database architecture
Hellerstein, Joseph M., Michael Stonebraker, and James Hamilton. 2007. “Archi‐
tecture of a Database System.” Foundations and Trends in Databases 1, no. 2 (Feb‐
ruary): 141-259. https://doi.org/10.1561/1900000002.

Column-oriented DBMS
Abadi, Daniel, Peter Boncz, Stavros Harizopoulos, Stratos Idreaos, and Samuel
Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Hanover, MA: Now Publishers Inc.

In-memory DBMS
Faerber, Frans, Alfons Kemper, and Per-Åke Alfons. 2017. Main Memory Data‐
base Systems. Hanover, MA: Now Publishers Inc.
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CHAPTER 2

B-Tree Basics

In the previous chapter, we separated storage structures in two groups: mutable and
immutable ones, and identified immutability as one of the core concepts influencing
their design and implementation. Most of the mutable storage structures use an in-
place update mechanism. During insert, delete, or update operations, data records are
updated directly in their locations in the target file.

Storage engines often allow multiple versions of the same data record to be present in
the database; for example, when using multiversion concurrency control (see “Multi‐
version Concurrency Control” on page 99) or slotted page organization (see “Slotted
Pages” on page 52). For the sake of simplicity, for now we assume that each key is
associated only with one data record, which has a unique location.

One of the most popular storage structures is a B-Tree. Many open source database
systems are B-Tree based, and over the years they’ve proven to cover the majority of
use cases.

B-Trees are not a recent invention: they were introduced by Rudolph Bayer and
Edward M. McCreight back in 1971 and gained popularity over the years. By 1979,
there were already quite a few variants of B-Trees. Douglas Comer collected and sys‐
tematized some of them [COMER79].

Before we dive into B-Trees, let’s first talk about why we should consider alternatives
to traditional search trees, such as, for example, binary search trees, 2-3-Trees, and
AVL Trees [KNUTH98]. For that, let’s recall what binary search trees are.
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Binary Search Trees
A binary search tree (BST) is a sorted in-memory data structure, used for efficient
key-value lookups. BSTs consist of multiple nodes. Each tree node is represented by a
key, a value associated with this key, and two child pointers (hence the name binary).
BSTs start from a single node, called a root node. There can be only one root in the
tree. Figure 2-1 shows an example of a binary search tree.

Figure 2-1. Binary search tree

Each node splits the search space into left and right subtrees, as Figure 2-2 shows: a
node key is greater than any key stored in its left subtree and less than any key stored
in its right subtree [SEDGEWICK11].

Figure 2-2. Binary tree node invariants
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1 This property is imposed by AVL Trees and several other data structures. More generally, binary search trees
keep the difference in heights between subtrees within a small constant factor.

Following left pointers from the root of the tree down to the leaf level (the level where
nodes have no children) locates the node holding the smallest key within the tree and
a value associated with it. Similarly, following right pointers locates the node holding
the largest key within the tree and a value associated with it. Values are allowed to be
stored in all nodes in the tree. Searches start from the root node, and may terminate
before reaching the bottom level of the tree if the searched key was found on a higher
level.

Tree Balancing
Insert operations do not follow any specific pattern, and element insertion might lead
to the situation where the tree is unbalanced (i.e., one of its branches is longer than
the other one). The worst-case scenario is shown in Figure 2-3 (b), where we end up
with a pathological tree, which looks more like a linked list, and instead of desired
logarithmic complexity, we get linear, as illustrated in Figure 2-3 (a).

Figure 2-3. Balanced (a) and unbalanced or pathological (b) tree examples

This example might slightly exaggerate the problem, but it illustrates why the tree
needs to be balanced: even though it’s somewhat unlikely that all the items end up on
one side of the tree, at least some of them certainly will, which will significantly slow
down searches.

The balanced tree is defined as one that has a height of log2 N, where N is the total
number of items in the tree, and the difference in height between the two subtrees is
not greater than one1 [KNUTH98]. Without balancing, we lose performance benefits
of the binary search tree structure, and allow insertions and deletions order to deter‐
mine tree shape.
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In the balanced tree, following the left or right node pointer reduces the search space
in half on average, so lookup complexity is logarithmic: O(log2 N). If the tree is not
balanced, worst-case complexity goes up to O(N), since we might end up in the situa‐
tion where all elements end up on one side of the tree.

Instead of adding new elements to one of the tree branches and making it longer,
while the other one remains empty (as shown in Figure 2-3 (b)), the tree is balanced
after each operation. Balancing is done by reorganizing nodes in a way that minimi‐
zes tree height and keeps the number of nodes on each side within bounds.

One of the ways to keep the tree balanced is to perform a rotation step after nodes are
added or removed. If the insert operation leaves a branch unbalanced (two consecu‐
tive nodes in the branch have only one child), we can rotate nodes around the middle
one. In the example shown in Figure 2-4, during rotation the middle node (3), known
as a rotation pivot, is promoted one level higher, and its parent becomes its right
child.

Figure 2-4. Rotation step example

Trees for Disk-Based Storage
As previously mentioned, unbalanced trees have a worst-case complexity of O(N).
Balanced trees give us an average O(log2 N). At the same time, due to low fanout
(fanout is the maximum allowed number of children per node), we have to perform
balancing, relocate nodes, and update pointers rather frequently. Increased mainte‐
nance costs make BSTs impractical as on-disk data structures [NIEVERGELT74].

If we wanted to maintain a BST on disk, we’d face several problems. One problem is
locality: since elements are added in random order, there’s no guarantee that a newly
created node is written close to its parent, which means that node child pointers may
span across several disk pages. We can improve the situation to a certain extent by
modifying the tree layout and using paged binary trees (see “Paged Binary Trees” on
page 33).
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Another problem, closely related to the cost of following child pointers, is tree height.
Since binary trees have a fanout of just two, height is a binary logarithm of the num‐
ber of the elements in the tree, and we have to perform O(log2 N) seeks to locate the
searched element and, subsequently, perform the same number of disk transfers. 2-3-
Trees and other low-fanout trees have a similar limitation: while they are useful as
in-memory data structures, small node size makes them impractical for external stor‐
age [COMER79].

A naive on-disk BST implementation would require as many disk seeks as compari‐
sons, since there’s no built-in concept of locality. This sets us on a course to look for a
data structure that would exhibit this property.

Considering these factors, a version of the tree that would be better suited for disk
implementation has to exhibit the following properties:

• High fanout to improve locality of the neighboring keys.
• Low height to reduce the number of seeks during traversal.

Fanout and height are inversely correlated: the higher the fanout,
the lower the height. If fanout is high, each node can hold more
children, reducing the number of nodes and, subsequently, reduc‐
ing height.

Disk-Based Structures
We’ve talked about memory and disk-based storage (see “Memory- Versus Disk-
Based DBMS” on page 10) in general terms. We can draw the same distinction for
specific data structures: some are better suited to be used on disk and some work bet‐
ter in memory.

As we have discussed, not every data structure that satisfies space and complexity
requirements can be effectively used for on-disk storage. Data structures used in data‐
bases have to be adapted to account for persistent medium limitations.

On-disk data structures are often used when the amounts of data are so large that
keeping an entire dataset in memory is impossible or not feasible. Only a fraction of
the data can be cached in memory at any time, and the rest has to be stored on disk in
a manner that allows efficiently accessing it.
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Hard Disk Drives
Most traditional algorithms were developed when spinning disks were the most wide‐
spread persistent storage medium, which significantly influenced their design. Later,
new developments in storage media, such as flash drives, inspired new algorithms
and modifications to the existing ones, exploiting the capabilities of the new hard‐
ware. These days, new types of data structures are emerging, optimized to work with
nonvolatile byte-addressable storage (for example, [XIA17] [KANNAN18]).

On spinning disks, seeks increase costs of random reads because they require disk
rotation and mechanical head movements to position the read/write head to the
desired location. However, once the expensive part is done, reading or writing contig‐
uous bytes (i.e., sequential operations) is relatively cheap.

The smallest transfer unit of a spinning drive is a sector, so when some operation is
performed, at least an entire sector can be read or written. Sector sizes typically range
from 512 bytes to 4 Kb.

Head positioning is the most expensive part of an operation on the HDD. This is one
of the reasons we often hear about the positive effects of sequential I/O: reading and
writing contiguous memory segments from disk.

Solid State Drives
Solid state drives (SSDs) do not have moving parts: there’s no disk that spins, or head
that has to be positioned for the read. A typical SSD is built of memory cells, connec‐
ted into strings (typically 32 to 64 cells per string), strings are combined into arrays,
arrays are combined into pages, and pages are combined into blocks [LARRIVEE15].

Depending on the exact technology used, a cell can hold one or multiple bits of data.
Pages vary in size between devices, but typically their sizes range from 2 to 16 Kb.
Blocks typically contain 64 to 512 pages. Blocks are organized into planes and, finally,
planes are placed on a die. SSDs can have one or more dies. Figure 2-5 shows this
hierarchy.
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Figure 2-5. SSD organization schematics

The smallest unit that can be written (programmed) or read is a page. However, we
can only make changes to the empty memory cells (i.e., to ones that have been erased
before the write). The smallest erase entity is not a page, but a block that holds multi‐
ple pages, which is why it is often called an erase block. Pages in an empty block have
to be written sequentially.

The part of a flash memory controller responsible for mapping page IDs to their
physical locations, tracking empty, written, and discarded pages, is called the Flash
Translation Layer (FTL) (see “Flash Translation Layer” on page 157 for more about
FTL). It is also responsible for garbage collection, during which FTL finds blocks it
can safely erase. Some blocks might still contain live pages. In this case, it relocates
live pages from these blocks to new locations and remaps page IDs to point there.
After this, it erases the now-unused blocks, making them available for writes.

Since in both device types (HDDs and SSDs) we are addressing chunks of memory
rather than individual bytes (i.e., accessing data block-wise), most operating systems
have a block device abstraction [CESATI05]. It hides an internal disk structure and
buffers I/O operations internally, so when we’re reading a single word from a block
device, the whole block containing it is read. This is a constraint we cannot ignore and
should always take into account when working with disk-resident data structures.

In SSDs, we don’t have a strong emphasis on random versus sequential I/O, as in
HDDs, because the difference in latencies between random and sequential reads is
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not as large. There is still some difference caused by prefetching, reading contiguous
pages, and internal parallelism [GOOSSAERT14].

Even though garbage collection is usually a background operation, its effects may
negatively impact write performance, especially in cases of random and unaligned
write workloads.

Writing only full blocks, and combining subsequent writes to the same block, can
help to reduce the number of required I/O operations. We discuss buffering and
immutability as ways to achieve that in later chapters.

On-Disk Structures
Besides the cost of disk access itself, the main limitation and design condition for
building efficient on-disk structures is the fact that the smallest unit of disk operation
is a block. To follow a pointer to the specific location within the block, we have to
fetch an entire block. Since we already have to do that, we can change the layout of
the data structure to take advantage of it.

We’ve mentioned pointers several times throughout this chapter already, but this
word has slightly different semantics for on-disk structures. On disk, most of the time
we manage the data layout manually (unless, for example, we’re using memory map‐
ped files). This is still similar to regular pointer operations, but we have to compute
the target pointer addresses and follow the pointers explicitly.

Most of the time, on-disk offsets are precomputed (in cases when the pointer is writ‐
ten on disk before the part it points to) or cached in memory until they are flushed on
the disk. Creating long dependency chains in on-disk structures greatly increases
code and structure complexity, so it is preferred to keep the number of pointers and
their spans to a minimum.

In summary, on-disk structures are designed with their target storage specifics in
mind and generally optimize for fewer disk accesses. We can do this by improving
locality, optimizing the internal representation of the structure, and reducing the
number of out-of-page pointers.

In “Binary Search Trees” on page 26, we came to the conclusion that high fanout and
low height are desired properties for an optimal on-disk data structure. We’ve also just
discussed additional space overhead coming from pointers, and maintenance over‐
head from remapping these pointers as a result of balancing. B-Trees combine these
ideas: increase node fanout, and reduce tree height, the number of node pointers, and
the frequency of balancing operations.
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Paged Binary Trees
Laying out a binary tree by grouping nodes into pages, as Figure 2-6 shows, improves
the situation with locality. To find the next node, it’s only necessary to follow a pointer
in an already fetched page. However, there’s still some overhead incurred by the nodes
and pointers between them. Laying the structure out on disk and its further mainte‐
nance are nontrivial endeavors, especially if keys and values are not presorted and
added in random order. Balancing requires page reorganization, which in turn causes
pointer updates.

Figure 2-6. Paged binary trees

Ubiquitous B-Trees
We are braver than a bee, and a… longer than a tree…

—Winnie the Pooh

B-Trees can be thought of as a vast catalog room in the library: you first have to pick
the correct cabinet, then the correct shelf in that cabinet, then the correct drawer on
the shelf, and then browse through the cards in the drawer to find the one you’re
searching for. Similarly, a B-Tree builds a hierarchy that helps to navigate and locate
the searched items quickly.

As we discussed in “Binary Search Trees” on page 26, B-Trees build upon the founda‐
tion of balanced search trees and are different in that they have higher fanout (have
more child nodes) and smaller height.

In most of the literature, binary tree nodes are drawn as circles. Since each node is
responsible just for one key and splits the range into two parts, this level of detail is
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sufficient and intuitive. At the same time, B-Tree nodes are often drawn as rectangles,
and pointer blocks are also shown explicitly to highlight the relationship between
child nodes and separator keys. Figure 2-7 shows binary tree, 2-3-Tree, and B-Tree
nodes side by side, which helps to understand the similarities and differences
between them.

Figure 2-7. Binary tree, 2-3-Tree, and B-Tree nodes side by side

Nothing prevents us from depicting binary trees in the same way. Both structures
have similar pointer-following semantics, and differences start showing in how the
balance is maintained. Figure 2-8 shows that and hints at similarities between BSTs
and B-Trees: in both cases, keys split the tree into subtrees, and are used for navigat‐
ing the tree and finding searched keys. You can compare it to Figure 2-1.

Figure 2-8. Alternative representation of a binary tree

B-Trees are sorted: keys inside the B-Tree nodes are stored in order. Because of that,
to locate a searched key, we can use an algorithm like binary search. This also implies
that lookups in B-Trees have logarithmic complexity. For example, finding a searched
key among 4 billion (4 × 109) items takes about 32 comparisons (see “B-Tree Lookup
Complexity” on page 37 for more on this subject). If we had to make a disk seek for
each one of these comparisons, it would significantly slow us down, but since B-Tree
nodes store dozens or even hundreds of items, we only have to make one disk seek
per level jump. We’ll discuss a lookup algorithm in more detail later in this chapter.
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Using B-Trees, we can efficiently execute both point and range queries. Point queries,
expressed by the equality (=) predicate in most query languages, locate a single item.
On the other hand, range queries, expressed by comparison (<, >, ≤, and ≥) predicates,
are used to query multiple data items in order.

B-Tree Hierarchy
B-Trees consist of multiple nodes. Each node holds up to N keys and N + 1 pointers
to the child nodes. These nodes are logically grouped into three groups:

Root node
This has no parents and is the top of the tree.

Leaf nodes
These are the bottom layer nodes that have no child nodes.

Internal nodes
These are all other nodes, connecting root with leaves. There is usually more
than one level of internal nodes.

This hierarchy is shown in Figure 2-9.

Figure 2-9. B-Tree node hierarchy

Since B-Trees are a page organization technique (i.e., they are used to organize and
navigate fixed-size pages), we often use terms node and page interchangeably.

The relation between the node capacity and the number of keys it actually holds is
called occupancy.

B-Trees are characterized by their fanout: the number of keys stored in each node.
Higher fanout helps to amortize the cost of structural changes required to keep the
tree balanced and to reduce the number of seeks by storing keys and pointers to child
nodes in a single block or multiple consecutive blocks. Balancing operations (namely,
splits and merges) are triggered when the nodes are full or nearly empty.
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B+-Trees
We’re using the term B-Tree as an umbrella for a family of data structures that share
all or most of the mentioned properties. A more precise name for the described data
structure is B+-Tree. [KNUTH98] refers to trees with a high fanout as multiway trees.

B-Trees allow storing values on any level: in root, internal, and leaf nodes. B+-Trees
store values only in leaf nodes. Internal nodes store only separator keys used to guide
the search algorithm to the associated value stored on the leaf level.

Since values in B+-Trees are stored only on the leaf level, all operations (inserting,
updating, removing, and retrieving data records) affect only leaf nodes and propagate
to higher levels only during splits and merges.

B+-Trees became widespread, and we refer to them as B-Trees, similar to other litera‐
ture the subject. For example, in [GRAEFE11] B+-Trees are referred to as a default
design, and MySQL InnoDB refers to its B+-Tree implementation as B-tree.

Separator Keys
Keys stored in B-Tree nodes are called index entries, separator keys, or divider cells.
They split the tree into subtrees (also called branches or subranges), holding corre‐
sponding key ranges. Keys are stored in sorted order to allow binary search. A sub‐
tree is found by locating a key and following a corresponding pointer from the higher
to the lower level.

The first pointer in the node points to the subtree holding items less than the first key,
and the last pointer in the node points to the subtree holding items greater than or
equal to the last key. Other pointers are reference subtrees between the two keys: Ki-1
≤ Ks < Ki, where K is a set of keys, and Ks is a key that belongs to the subtree.
Figure 2-10 shows these invariants.

Figure 2-10. How separator keys split a tree into subtrees
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2 For example, [KNUTH98].

Some B-Tree variants also have sibling node pointers, most often on the leaf level, to
simplify range scans. These pointers help avoid going back to the parent to find the
next sibling. Some implementations have pointers in both directions, forming a
double-linked list on the leaf level, which makes the reverse iteration possible.

What sets B-Trees apart is that, rather than being built from top to bottom (as binary
search trees), they’re constructed the other way around—from bottom to top. The
number of leaf nodes grows, which increases the number of internal nodes and tree
height.

Since B-Trees reserve extra space inside nodes for future insertions and updates, tree
storage utilization can get as low as 50%, but is usually considerably higher. Higher
occupancy does not influence B-Tree performance negatively.

B-Tree Lookup Complexity
B-Tree lookup complexity can be viewed from two standpoints: the number of block
transfers and the number of comparisons done during the lookup.

In terms of number of transfers, the logarithm base is N (number of keys per node).
There are K times more nodes on each new level, and following a child pointer
reduces the search space by the factor of N. During lookup, at most logK M (where M is
a total number of items in the B-Tree) pages are addressed to find a searched key. The
number of child pointers that have to be followed on the root-to-leaf pass is also
equal to the number of levels, in other words, the height h of the tree.

From the perspective of number of comparisons, the logarithm base is 2, since
searching a key inside each node is done using binary search. Every comparison
halves the search space, so complexity is log2 M.

Knowing the distinction between the number of seeks and the number of compari‐
sons helps us gain the intuition about how searches are performed and understand
what lookup complexity is, from both perspectives.

In textbooks and articles,2 B-Tree lookup complexity is generally referenced as log M.
Logarithm base is generally not used in complexity analysis, since changing the base
simply adds a constant factor, and multiplication by a constant factor does not
change complexity. For example, given the nonzero constant factor c, O(|c| × n) ==
O(n) [KNUTH97].
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B-Tree Lookup Algorithm
Now that we have covered the structure and internal organization of B-Trees, we can
define algorithms for lookups, insertions, and removals. To find an item in a B-Tree,
we have to perform a single traversal from root to leaf. The objective of this search is
to find a searched key or its predecessor. Finding an exact match is used for point
queries, updates, and deletions; finding its predecessor is useful for range scans and
inserts.

The algorithm starts from the root and performs a binary search, comparing the
searched key with the keys stored in the root node until it finds the first separator key
that is greater than the searched value. This locates a searched subtree. As we’ve
discussed previously, index keys split the tree into subtrees with boundaries between
two neighboring keys. As soon as we find the subtree, we follow the pointer that cor‐
responds to it and continue the same search process (locate the separator key, follow
the pointer) until we reach a target leaf node, where we either find the searched key
or conclude it is not present by locating its predecessor.

On each level, we get a more detailed view of the tree: we start on the most coarse-
grained level (the root of the tree) and descend to the next level where keys represent
more precise, detailed ranges, until we finally reach leaves, where the data records are
located.

During the point query, the search is done after finding or failing to find the searched
key. During the range scan, iteration starts from the closest found key-value pair and
continues by following sibling pointers until the end of the range is reached or the
range predicate is exhausted.

Counting Keys
Across the literature, you can find different ways to describe key and child offset
counts. [BAYER72] mentions the device-dependent natural number k that represents
an optimal page size. Pages, in this case, can hold between k and 2k keys, but can be
partially filled and hold at least k + 1 and at most 2k + 1 pointers to child nodes.
The root page can hold between 1 and 2k keys. Later, a number l is introduced, and it
is said that any nonleaf page can have l + 1 keys.

Other sources, for example [GRAEFE11], describe nodes that can hold up to N sepa‐
rator keys and N + 1 pointers, with otherwise similar semantics and invariants.

Both approaches bring us to the same result, and differences are only used to empha‐
size the contents of each source. In this book, we stick to N as the number of keys (or
key-value pairs, in the case of the leaf nodes) for clarity.
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B-Tree Node Splits
To insert the value into a B-Tree, we first have to locate the target leaf and find the
insertion point. For that, we use the algorithm described in the previous section.
After the leaf is located, the key and value are appended to it. Updates in B-Trees
work by locating a target leaf node using a lookup algorithm and associating a new
value with an existing key.

If the target node doesn’t have enough room available, we say that the node has over‐
flowed [NICHOLS66] and has to be split in two to fit the new data. More precisely,
the node is split if the following conditions hold:

• For leaf nodes: if the node can hold up to N key-value pairs, and inserting one
more key-value pair brings it over its maximum capacity N.

• For nonleaf nodes: if the node can hold up to N + 1 pointers, and inserting one
more pointer brings it over its maximum capacity N + 1.

Splits are done by allocating the new node, transferring half the elements from the
splitting node to it, and adding its first key and pointer to the parent node. In this
case, we say that the key is promoted. The index at which the split is performed is
called the split point (also called the midpoint). All elements after the split point
(including split point in the case of nonleaf node split) are transferred to the newly
created sibling node, and the rest of the elements remain in the splitting node.

If the parent node is full and does not have space available for the promoted key and
pointer to the newly created node, it has to be split as well. This operation might
propagate recursively all the way to the root.

As soon as the tree reaches its capacity (i.e., split propagates all the way up to the
root), we have to split the root node. When the root node is split, a new root, holding
a split point key, is allocated. The old root (now holding only half the entries) is
demoted to the next level along with its newly created sibling, increasing the tree
height by one. The tree height changes when the root node is split and the new root is
allocated, or when two nodes are merged to form a new root. On the leaf and internal
node levels, the tree only grows horizontally.

Figure 2-11 shows a fully occupied leaf node during insertion of the new element 11.
We draw the line in the middle of the full node, leave half the elements in the node,
and move the rest of elements to the new one. A split point value is placed into the
parent node to serve as a separator key.
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Figure 2-11. Leaf node split during the insertion of 11. New element and promoted key
are shown in gray.

Figure 2-12 shows the split process of a fully occupied nonleaf (i.e., root or internal)
node during insertion of the new element 11. To perform a split, we first create a new
node and move elements starting from index N/2 + 1 to it. The split point key is pro‐
moted to the parent.

Figure 2-12. Nonleaf node split during the insertion of 11. New element and promoted
key are shown in gray.

Since nonleaf node splits are always a manifestation of splits propagating from the
levels below, we have an additional pointer (to the newly created node on the next
level). If the parent does not have enough space, it has to be split as well.

It doesn’t matter whether the leaf or nonleaf node is split (i.e., whether the node holds
keys and values or just the keys). In the case of leaf split, keys are moved together
with their associated values.

When the split is done, we have two nodes and have to pick the correct one to finish
insertion. For that, we can use the separator key invariants. If the inserted key is less
than the promoted one, we finish the operation by inserting to the split node. Other‐
wise, we insert to the newly created one.
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To summarize, node splits are done in four steps:

1. Allocate a new node.
2. Copy half the elements from the splitting node to the new one.
3. Place the new element into the corresponding node.
4. At the parent of the split node, add a separator key and a pointer to the new

node.

B-Tree Node Merges
Deletions are done by first locating the target leaf. When the leaf is located, the key
and the value associated with it are removed.

If neighboring nodes have too few values (i.e., their occupancy falls under a thres‐
hold), the sibling nodes are merged. This situation is called underflow. [BAYER72]
describes two underflow scenarios: if two adjacent nodes have a common parent and
their contents fit into a single node, their contents should be merged (concatenated);
if their contents do not fit into a single node, keys are redistributed between them to
restore balance (see “Rebalancing” on page 70). More precisely, two nodes are merged
if the following conditions hold:

• For leaf nodes: if a node can hold up to N key-value pairs, and a combined num‐
ber of key-value pairs in two neighboring nodes is less than or equal to N.

• For nonleaf nodes: if a node can hold up to N + 1 pointers, and a combined
number of pointers in two neighboring nodes is less than or equal to N + 1.

Figure 2-13 shows the merge during deletion of element 16. To do this, we move ele‐
ments from one of the siblings to the other one. Generally, elements from the right
sibling are moved to the left one, but it can be done the other way around as long as
the key order is preserved.

Figure 2-13. Leaf node merge
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Figure 2-14 shows two sibling nonleaf nodes that have to be merged during deletion
of element 10. If we combine their elements, they fit into one node, so we can have
one node instead of two. During the merge of nonleaf nodes, we have to pull the cor‐
responding separator key from the parent (i.e., demote it). The number of pointers is
reduced by one because the merge is a result of the propagation of the pointer dele‐
tion from the lower level, caused by the page removal. Just as with splits, merges can
propagate all the way to the root level.

Figure 2-14. Nonleaf node merge

To summarize, node merges are done in three steps, assuming the element is already
removed:

1. Copy all elements from the right node to the left one.
2. Remove the right node pointer from the parent (or demote it in the case of a non‐

leaf merge).
3. Remove the right node.

One of the techniques often implemented in B-Trees to reduce the number of splits
and merges is rebalancing, which we discuss in “Rebalancing” on page 70.

Summary
In this chapter, we started with a motivation to create specialized structures for on-
disk storage. Binary search trees might have similar complexity characteristics, but
still fall short of being suitable for disk because of low fanout and a large number of
relocations and pointer updates caused by balancing. B-Trees solve both problems by
increasing the number of items stored in each node (high fanout) and less frequent
balancing operations.

After that, we discussed internal B-Tree structure and outlines of algorithms for
lookup, insert, and delete operations. Split and merge operations help to restructure
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the tree to keep it balanced while adding and removing elements. We keep the tree
depth to a minimum and add items to the existing nodes while there’s still some free
space in them.

We can use this knowledge to create in-memory B-Trees. To create a disk-based
implementation, we need to go into details of how to lay out B-Tree nodes on disk
and compose on-disk layout using data-encoding formats.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Binary search trees
Sedgewick, Robert and Kevin Wayne. 2011. Algorithms (4th Ed.). Boston:
Pearson.

Knuth, Donald E. 1997. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Boston: Addison-Wesley Longman.

Algorithms for splits and merges in B-Trees
Elmasri, Ramez and Shamkant Navathe. 2011. Fundamentals of Database Systems
(6th Ed.). Boston: Pearson.

Silberschatz, Abraham, Henry F. Korth, and S. Sudarshan. 2010. Database Sys‐
tems Concepts (6th Ed.). New York: McGraw-Hill.
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CHAPTER 3

File Formats

With the basic semantics of B-Trees covered, we are now ready to explore how exactly
B-Trees and other structures are implemented on disk. We access the disk in a way
that is different from how we access main memory: from an application developer’s
perspective, memory accesses are mostly transparent. Because of virtual memory
[BHATTACHARJEE17], we do not have to manage offsets manually. Disks are
accessed using system calls (see https://databass.dev/links/54). We usually have to
specify the offset inside the target file, and then interpret on-disk representation into
a form suitable for main memory.

This means that efficient on-disk structures have to be designed with this distinction
in mind. To do that, we have to come up with a file format that’s easy to construct,
modify, and interpret. In this chapter, we’ll discuss general principles and practices
that help us to design all sorts of on-disk structures, not only B-Trees.

There are numerous possibilities for B-Tree implementations, and here we discuss
several useful techniques. Details may vary between implementations, but the general
principles remain the same. Understanding the basic mechanics of B-Trees, such as
splits and merges, is necessary, but they are insufficient for the actual implementa‐
tion. There are many things that have to play together for the final result to be useful.

The semantics of pointer management in on-disk structures are somewhat different
from in-memory ones. It is useful to think of on-disk B-Trees as a page management
mechanism: algorithms have to compose and navigate pages. Pages and pointers to
them have to be calculated and placed accordingly.
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Since most of the complexity in B-Trees comes from mutability, we discuss details of
page layouts, splitting, relocations, and other concepts applicable to mutable data
structures. Later, when talking about LSM Trees (see “LSM Trees” on page 130), we
focus on sorting and maintenance, since that’s where most LSM complexity comes
from.

Motivation
Creating a file format is in many ways similar to how we create data structures in lan‐
guages with an unmanaged memory model. We allocate a block of data and slice it
any way we like, using fixed-size primitives and structures. If we want to reference a
larger chunk of memory or a structure with variable size, we use pointers.

Languages with an unmanaged memory model allow us to allocate more memory
any time we need (within reasonable bounds) without us having to think or worry
about whether or not there’s a contiguous memory segment available, whether or not
it is fragmented, or what happens after we free it. On disk, we have to take care of
garbage collection and fragmentation ourselves.

Data layout is much less important in memory than on disk. For a disk-resident data
structure to be efficient, we need to lay out data on disk in ways that allow quick
access to it, and consider the specifics of a persistent storage medium, come up with
binary data formats, and find a means to serialize and deserialize data efficiently.

Anyone who has ever used a low-level language such as C without additional libraries
knows the constraints. Structures have a predefined size and are allocated and freed
explicitly. Manually implementing memory allocation and tracking is even more
challenging, since it is only possible to operate with memory segments of predefined
size, and it is necessary to track which segments are already released and which ones
are still in use.

When storing data in main memory, most of the problems with memory layout do
not exist, are easier to solve, or can be solved using third-party libraries. For example,
handling variable-length fields and oversize data is much more straightforward, since
we can use memory allocation and pointers, and do not need to lay them out in any
special way. There still are cases when developers design specialized main memory
data layouts to take advantage of CPU cache lines, prefetching, and other hardware-
related specifics, but this is mainly done for optimization purposes [FOWLER11].

Even though the operating system and filesystem take over some of the responsibili‐
ties, implementing on-disk structures requires attention to more details and has more
pitfalls.
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Binary Encoding
To store data on disk efficiently, it needs to be encoded using a format that is compact
and easy to serialize and deserialize. When talking about binary formats, you hear the
word layout quite often. Since we do not have primitives such as malloc and free,
but only read and write, we have to think of accesses differently and prepare data
accordingly.

Here, we discuss the main principles used to create efficient page layouts. These prin‐
ciples apply to any binary format: you can use similar guidelines to create file and
serialization formats or communication protocols.

Before we can organize records into pages, we need to understand how to represent
keys and data records in binary form, how to combine multiple values into more
complex structures, and how to implement variable-size types and arrays.

Primitive Types
Keys and values have a type, such as integer, date, or string, and can be repre‐
sented (serialized to and deserialized from) in their raw binary forms.

Most numeric data types are represented as fixed-size values. When working with
multibyte numeric values, it is important to use the same byte-order (endianness) for
both encoding and decoding. Endianness determines the sequential order of bytes:

Big-endian
The order starts from the most-significant byte (MSB), followed by the bytes in
decreasing significance order. In other words, MSB has the lowest address.

Little-endian
The order starts from the least-significant byte (LSB), followed by the bytes in
increasing significance order.

Figure 3-1 illustrates this. The hexadecimal 32-bit integer 0xAABBCCDD, where AA is the
MSB, is shown using both big- and little-endian byte order.

Figure 3-1. Big- and little-endian byte order. The most significant byte is shown in gray.
Addresses, denoted by a, grow from left to right.
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1 Depending on the platform (macOS, Solaris, Aix, or one of the BSD flavors, or Windows), the kLittleEndian
variable is set to whether or not the platform supports little-endian.

For example, to reconstruct a 64-bit integer with a corresponding byte order,
RocksDB has platform-specific definitions that help to identify target platform byte
order.1 If the target platform endianness does not match value endianness (Encode
Fixed64WithEndian looks up kLittleEndian value and compares it with value
endianness), it reverses the bytes using EndianTransform, which reads values byte-
wise in reverse order and appends them to the result.

Records consist of primitives like numbers, strings, booleans, and their combinations.
However, when transferring data over the network or storing it on disk, we can only
use byte sequences. This means that, in order to send or write the record, we have to
serialize it (convert it to an interpretable sequence of bytes) and, before we can use it
after receiving or reading, we have to deserialize it (translate the sequence of bytes
back to the original record).

In binary data formats, we always start with primitives that serve as building blocks
for more complex structures. Different numeric types may vary in size. byte value is
8 bits, short is 2 bytes (16 bits), int is 4 bytes (32 bits), and long is 8 bytes (64 bits).

Floating-point numbers (such as float and double) are represented by their sign,
fraction, and exponent. The IEEE Standard for Binary Floating-Point Arithmetic
(IEEE 754) standard describes widely accepted floating-point number representation.
A 32-bit float represents a single-precision value. For example, a floating-point
number 0.15652 has a binary representation, as shown in Figure 3-2. The first 23 bits
represent a fraction, the following 8 bits represent an exponent, and 1 bit represents a
sign (whether or not the number is negative).

Figure 3-2. Binary representation of single-precision float number

Since a floating-point value is calculated using fractions, the number this representa‐
tion yields is just an approximation. Discussing a complete conversion algorithm is
out of the scope of this book, and we only cover representation basics.

The double represents a double-precision floating-point value [SAVARD05]. Most
programming languages have means for encoding and decoding floating-point values
to and from their binary representation in their standard libaries.
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2 It’s worth noting that compilers can add padding to structures, which is also architecture dependent. This may
break the assumptions about the exact byte offsets and locations. You can read more about structure packing
here: https://databass.dev/links/58.

Strings and Variable-Size Data
All primitive numeric types have a fixed size. Composing more complex values
together is much like struct2 in C. You can combine primitive values into structures
and use fixed-size arrays or pointers to other memory regions.

Strings and other variable-size data types (such as arrays of fixed-size data) can be
serialized as a number, representing the length of the array or string, followed by size
bytes: the actual data. For strings, this representation is often called UCSD String or
Pascal String, named after the popular implementation of the Pascal programming
language. We can express it in pseudocode as follows:

String
{
    size    uint_16
    data    byte[size]
}

An alternative to Pascal strings is null-terminated strings, where the reader consumes
the string byte-wise until the end-of-string symbol is reached. The Pascal string
approach has several advantages: it allows finding out a length of a string in constant
time, instead of iterating through string contents, and a language-specific string can
be composed by slicing size bytes from memory and passing the byte array to a
string constructor.

Bit-Packed Data: Booleans, Enums, and Flags
Booleans can be represented either by using a single byte, or encoding true and
false as 1 and 0 values. Since a boolean has only two values, using an entire byte for
its representation is wasteful, and developers often batch boolean values together in
groups of eight, each boolean occupying just one bit. We say that every 1 bit is set and
every 0 bit is unset or empty.

Enums, short for enumerated types, can be represented as integers and are often used
in binary formats and communication protocols. Enums are used to represent often-
repeated low-cardinality values. For example, we can encode a B-Tree node type
using an enum:

enum NodeType {
   ROOT,     // 0x00h
   INTERNAL, // 0x01h
   LEAF      // 0x02h
};
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Another closely related concept is flags, kind of a combination of packed booleans
and enums. Flags can represent nonmutually exclusive named boolean parameters.
For example, we can use flags to denote whether or not the page holds value cells,
whether the values are fixed-size or variable-size, and whether or not there are over‐
flow pages associated with this node. Since every bit represents a flag value, we can
only use power-of-two values for masks (since powers of two in binary always have a
single set bit; for example, 23 == 8 == 1000b, 24 == 16 == 0001 0000b, etc.):

int IS_LEAF_MASK         = 0x01h; // bit #1
int VARIABLE_SIZE_VALUES = 0x02h; // bit #2
int HAS_OVERFLOW_PAGES   = 0x04h; // bit #3

Just like packed booleans, flag values can be read and written from the packed value
using bitmasks and bitwise operators. For example, in order to set a bit responsible
for one of the flags, we can use bitwise OR (|) and a bitmask. Instead of a bitmask, we
can use bitshift (<<) and a bit index. To unset the bit, we can use bitwise AND (&) and
the bitwise negation operator (~). To test whether or not the bit n is set, we can com‐
pare the result of a bitwise AND with 0:

// Set the bit
flags |= HAS_OVERFLOW_PAGES;
flags |= (1 << 2);

// Unset the bit
flags &= ~HAS_OVERFLOW_PAGES;
flags &= ~(1 << 2);

// Test whether or not the bit is set
is_set = (flags & HAS_OVERFLOW_PAGES) != 0;
is_set = (flags & (1 << 2)) != 0;

General Principles
Usually, you start designing a file format by deciding how the addressing is going to
be done: whether the file is going to be split into same-sized pages, which are repre‐
sented by a single block or multiple contiguous blocks. Most in-place update storage
structures use pages of the same size, since it significantly simplifies read and write
access. Append-only storage structures often write data page-wise, too: records are
appended one after the other and, as soon as the page fills up in memory, it is flushed
on disk.

The file usually starts with a fixed-size header and may end with a fixed-size trailer,
which hold auxiliary information that should be accessed quickly or is required for
decoding the rest of the file. The rest of the file is split into pages. Figure 3-3 shows
this file organization schematically.
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Figure 3-3. File organization

Many data stores have a fixed schema, specifying the number, order, and type of fields
the table can hold. Having a fixed schema helps to reduce the amount of data stored
on disk: instead of repeatedly writing field names, we can use their positional
identifiers.

If we wanted to design a format for the company directory, storing names, birth
dates, tax numbers, and genders for each employee, we could use several approaches.
We could store the fixed-size fields (such as birth date and tax number) in the head of
the structure, followed by the variable-size ones:

Fixed-size fields:
| (4 bytes) employee_id                |
| (4 bytes) tax_number                 |
| (3 bytes) date                       |
| (1 byte)  gender                     |
| (2 bytes) first_name_length          |
| (2 bytes) last_name_length           |

Variable-size fields:
| (first_name_length bytes) first_name |
| (last_name_length bytes) last_name   |

Now, to access first_name, we can slice first_name_length bytes after the fixed-size
area. To access last_name, we can locate its starting position by checking the sizes of
the variable-size fields that precede it. To avoid calculations involving multiple fields,
we can encode both offset and length to the fixed-size area. In this case, we can locate
any variable-size field separately.

Building more complex structures usually involves building hierarchies: fields com‐
posed out of primitives, cells composed of fields, pages composed of cells, sections
composed of pages, regions composed of sections, and so on. There are no strict rules
you have to follow here, and it all depends on what kind of data you need to create a
format for.

Database files often consist of multiple parts, with a lookup table aiding navigation
and pointing to the start offsets of these parts written either in the file header, trailer,
or in the separate file.
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Page Structure
Database systems store data records in data and index files. These files are partitioned
into fixed-size units called pages, which often have a size of multiple filesystem blocks.
Page sizes usually range from 4 to 16 Kb.

Let’s take a look at the example of an on-disk B-Tree node. From a structure perspec‐
tive, in B-Trees, we distinguish between the leaf nodes that hold keys and data records
pairs, and nonleaf nodes that hold keys and pointers to other nodes. Each B-Tree node
occupies one page or multiple pages linked together, so in the context of B-Trees the
terms node and page (and even block) are often used interchangeably.

The original B-Tree paper [BAYER72] describes a simple page organization for fixed-
size data records, where each page is just a concatenation of triplets, as shown in
Figure 3-4: keys are denoted by k, associated values are denoted by v, and pointers to
child pages are denoted by p.

Figure 3-4. Page organization for fixed-size records

This approach is easy to follow, but has some downsides:

• Appending a key anywhere but the right side requires relocating elements.
• It doesn’t allow managing or accessing variable-size records efficiently and works

only for fixed-size data.

Slotted Pages
When storing variable-size records, the main problem is free space management:
reclaiming the space occupied by removed records. If we attempt to put a record of
size n into the space previously occupied by the record of size m, unless m == n or we
can find another record that has a size exactly m – n, this space will remain unused.
Similarly, a segment of size m cannot be used to store a record of size k if k is larger
than m, so it will be inserted without reclaiming the unused space.

To simplify space management for variable-size records, we can split the page into
fixed-size segments. However, we end up wasting space if we do that, too. For exam‐
ple, if we use a segment size of 64 bytes, unless the record size is a multiple of 64, we
waste 64 - (n modulo 64) bytes, where n is the size of the inserted record. In other
words, unless the record is a multiple of 64, one of the blocks will be only partially
filled.
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Space reclamation can be done by simply rewriting the page and moving the records
around, but we need to preserve record offsets, since out-of-page pointers might be
using these offsets. It is desirable to do that while minimizing space waste, too.

To summarize, we need a page format that allows us to:

• Store variable-size records with a minimal overhead.
• Reclaim space occupied by the removed records.
• Reference records in the page without regard to their exact locations.

To efficiently store variable-size records such as strings, binary large objects (BLOBs),
etc., we can use an organization technique called slotted page (i.e., a page with slots)
[SILBERSCHATZ10] or slot directory [RAMAKRISHNAN03]. This approach is used
by many databases, for example, PostgreSQL.

We organize the page into a collection of slots or cells and split out pointers and cells
in two independent memory regions residing on different sides of the page. This
means that we only need to reorganize pointers addressing the cells to preserve the
order, and deleting a record can be done either by nullifying its pointer or removing
it.

A slotted page has a fixed-size header that holds important information about the
page and cells (see “Page Header” on page 61). Cells may differ in size and can hold
arbitrary data: keys, pointers, data records, etc. Figure 3-5 shows a slotted page orga‐
nization, where every page has a maintenance region (header), cells, and pointers to
them.

Figure 3-5. Slotted page
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Let’s see how this approach fixes the problems we stated in the beginning of this
section:

• Minimal overhead: the only overhead incurred by slotted pages is a pointer array
holding offsets to the exact positions where the records are stored.

• Space reclamation: space can be reclaimed by defragmenting and rewriting the
page.

• Dynamic layout: from outside the page, slots are referenced only by their IDs, so
the exact location is internal to the page.

Cell Layout
Using flags, enums, and primitive values, we can start designing the cell layout, then
combine cells into pages, and compose a tree out of the pages. On a cell level, we have
a distinction between key and key-value cells. Key cells hold a separator key and a
pointer to the page between two neighboring pointers. Key-value cells hold keys and
data records associated with them.

We assume that all cells within the page are uniform (for example, all cells can hold
either just keys or both keys and values; similarly, all cells hold either fixed-size or
variable-size data, but not a mix of both). This means we can store metadata describ‐
ing cells once on the page level, instead of duplicating it in every cell.

To compose a key cell, we need to know:

• Cell type (can be inferred from the page metadata)
• Key size
• ID of the child page this cell is pointing to
• Key bytes

A variable-size key cell layout might look something like this (a fixed-size one would
have no size specifier on the cell level):

0                4               8
+----------------+---------------+-------------+
| [int] key_size | [int] page_id | [bytes] key |
+----------------+---------------+-------------+

We have grouped fixed-size data fields together, followed by key_size bytes. This is
not strictly necessary but can simplify offset calculation, since all fixed-size fields can
be accessed by using static, precomputed offsets, and we need to calculate the offsets
only for the variable-size data.
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The key-value cells hold data records instead of the child page IDs. Otherwise, their
structure is similar:

• Cell type (can be inferred from page metadata)
• Key size
• Value size
• Key bytes
• Data record bytes

0              1                5 ...
+--------------+----------------+
| [byte] flags | [int] key_size |
+--------------+----------------+

5                  9                    .. + key_size
+------------------+--------------------+----------------------+
| [int] value_size |     [bytes] key    | [bytes] data_record  |
+------------------+--------------------+----------------------+

You might have noticed the distinction between the offset and page ID here. Since
pages have a fixed size and are managed by the page cache (see “Buffer Management”
on page 81), we only need to store the page ID, which is later translated to the actual
offset in the file using the lookup table. Cell offsets are page-local and are relative to
the page start offset: this way we can use a smaller cardinality integer to keep the rep‐
resentation more compact.

Variable-Size Data
It is not necessary for the key and value in the cell to have a fixed size. Both the key
and value can have a variable size. Their locations can be calculated from the fixed-
size cell header using offsets.

To locate the key, we skip the header and read key_size bytes. Similarly, to locate the
value, we can skip the header plus key_size more bytes and read value_size bytes.

There are different ways to do the same; for example, by storing a total size and calcu‐
lating the value size by subtraction. It all boils down to having enough information to
slice the cell into subparts and reconstruct the encoded data.

Cell Layout | 55



Combining Cells into Slotted Pages
To organize cells into pages, we can use the slotted page technique that we discussed
in “Page Structure” on page 52. We append cells to the right side of the page (toward
its end) and keep cell offsets/pointers in the left side of the page, as shown in
Figure 3-6.

Figure 3-6. Offset and cell growth direction

Keys can be inserted out of order and their logical sorted order is kept by sorting cell
offset pointers in key order. This design allows appending cells to the page with mini‐
mal effort, since cells don’t have to be relocated during insert, update, or delete
operations.

Let’s consider an example of a page that holds names. Two names are added to the
page, and their insertion order is: Tom and Leslie. As you can see in Figure 3-7, their
logical order (in this case, alphabetical), does not match insertion order (order in
which they were appended to the page). Cells are laid out in insertion order, but off‐
sets are re-sorted to allow using binary search.

Figure 3-7. Records appended in random order: Tom, Leslie

Now, we’d like to add one more name to this page: Ron. New data is appended at the
upper boundary of the free space of the page, but cell offsets have to preserve the lexi‐
cographical key order: Leslie, Ron, Tom. To do that, we have to reorder cell offsets:
pointers after the insertion point are shifted to the right to make space for the new
pointer to the Ron cell, as you can see in Figure 3-8.
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Figure 3-8. Appending one more record: Ron

Managing Variable-Size Data
Removing an item from the page does not have to remove the actual cell and shift
other cells to reoccupy the freed space. Instead, the cell can be marked as deleted and
an in-memory availability list can be updated with the amount of freed memory and
a pointer to the freed value. The availability list stores offsets of freed segments and
their sizes. When inserting a new cell, we first check the availability list to find if
there’s a segment where it may fit. You can see an example of the fragmented page
with available segments in Figure 3-9.

Figure 3-9. Fragmented page and availability list. Occupied pages are shown in gray.
Dotted lines represent pointers to unoccupied memory regions from the availability list.

SQLite calls unoccupied segments freeblocks and stores a pointer to the first freeblock
in the page header. Additionally, it stores a total number of available bytes within the
page to quickly check whether or not we can fit a new element into the page after
defragmenting it.

Fit is calculated based on the strategy:

First fit
This might cause a larger overhead, since the space remaining after reusing the
first suitable segment might be too small to fit any other cell, so it will be effec‐
tively wasted.
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Best fit
For best fit, we try to find a segment for which insertion leaves the smallest
remainder.

If we cannot find enough consecutive bytes to fit the new cell but there are enough
fragmented bytes available, live cells are read and rewritten, defragmenting the page
and reclaiming space for new writes. If there’s not enough free space even after
defragmentation, we have to create an overflow page (see “Overflow Pages” on page
65).

To improve locality (especially when keys are small in size), some
implementations store keys and values separately on the leaf level.
Keeping keys together can improve the locality during the search.
After the searched key is located, its value can be found in a value
cell with a corresponding index. With variable-size keys, this
requires us to calculate and store an additional value cell pointer.

In summary, to simplify B-Tree layout, we assume that each node occupies a single
page. A page consists of a fixed-size header, cell pointer block, and cells. Cells hold
keys and pointers to the pages representing child nodes or associated data records. B-
Trees use simple pointer hierarchies: page identifiers to locate the child nodes in the
tree file, and cell offsets to locate cells within the page.

Versioning
Database systems constantly evolve, and developers work to add features, and to fix
bugs and performance issues. As a result of that, the binary file format can change.
Most of the time, any storage engine version has to support more than one serializa‐
tion format (e.g., current and one or more legacy formats for backward compatibil‐
ity). To support that, we have to be able to find out which version of the file we’re up
against.

This can be done in several ways. For example, Apache Cassandra is using version
prefixes in filenames. This way, you can tell which version the file has without even
opening it. As of version 4.0, a data file name has the na prefix, such as na-1-big-
Data.db. Older files have different prefixes: files written in version 3.0 have the ma
prefix.

Alternatively, the version can be stored in a separate file. For example, PostgreSQL
stores the version in the PG_VERSION file.

The version can also be stored directly in the index file header. In this case, a part of
the header (or an entire header) has to be encoded in a format that does not change
between versions. After finding out which version the file is encoded with, we can
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create a version-specific reader to interpret the contents. Some file formats identify
the version using magic numbers, which we discuss in more detail in “Magic Num‐
bers” on page 62.

Checksumming
Files on disk may get damaged or corrupted by software bugs and hardware failures.
To identify these problems preemptively and avoid propagating corrupt data to other
subsystems or even nodes, we can use checksums and cyclic redundancy checks
(CRCs).

Some sources make no distinction between cryptographic and noncryptographic
hash functions, CRCs, and checksums. What they all have in common is that they
reduce a large chunk of data to a small number, but their use cases, purposes, and
guarantees are different.

Checksums provide the weakest form of guarantee and aren’t able to detect corrup‐
tion in multiple bits. They’re usually computed by using XOR with parity checks or
summation [KOOPMAN15].

CRCs can help detect burst errors (e.g., when multiple consecutive bits got corrup‐
ted) and their implementations usually use lookup tables and polynomial division
[STONE98]. Multibit errors are crucial to detect, since a significant percentage of fail‐
ures in communication networks and storage devices manifest this way.

Noncryptographic hashes and CRCs should not be used to verify
whether or not the data has been tampered with. For this, you
should always use strong cryptographic hashes designed for secu‐
rity. The main goal of CRC is to make sure that there were no unin‐
tended and accidental changes in data. These algorithms are not
designed to resist attacks and intentional changes in data.

Before writing the data on disk, we compute its checksum and write it together with
the data. When reading it back, we compute the checksum again and compare it with
the written one. If there’s a checksum mismatch, we know that corruption has occur‐
red and we should not use the data that was read.

Since computing a checksum over the whole file is often impractical and it is unlikely
we’re going to read the entire content every time we access it, page checksums are
usually computed on pages and placed in the page header. This way, checksums can
be more robust (since they are performed on a small subset of the data), and the
whole file doesn’t have to be discarded if corruption is contained in a single page.
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Summary
In this chapter, we learned about binary data organization: how to serialize primitive
data types, combine them into cells, build slotted pages out of cells, and navigate
these structures.

We learned how to handle variable-size data types such as strings, byte sequences,
and arrays, and compose special cells that hold a size of values contained in them.

We discussed the slotted page format, which allows us to reference individual cells
from outside the page by cell ID, store records in the insertion order, and preserve the
key order by sorting cell offsets.

These principles can be used to compose binary formats for on-disk structures and
network protocols.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

File organization techniques
Folk, Michael J., Greg Riccardi, and Bill Zoellick. 1997. File Structures: An Object-
Oriented Approach with C++ (3rd Ed.). Boston: Addison-Wesley Longman.

Giampaolo, Dominic. 1998. Practical File System Design with the Be File System
(1st Ed.). San Francisco: Morgan Kaufmann.

Vitter, Jeffrey Scott. 2008. “Algorithms and data structures for external memory.”
Foundations and Trends in Theoretical Computer Science 2, no. 4 (January):
305-474. https://doi.org/10.1561/0400000014.
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CHAPTER 4

Implementing B-Trees

In the previous chapter, we talked about general principles of binary format composi‐
tion, and learned how to create cells, build hierarchies, and connect them to pages
using pointers. These concepts are applicable for both in-place update and append-
only storage structures. In this chapter, we discuss some concepts specific to B-Trees.

The sections in this chapter are split into three logical groups. First, we discuss orga‐
nization: how to establish relationships between keys and pointers, and how to imple‐
ment headers and links between pages.

Next, we discuss processes that occur during root-to-leaf descends, namely how to
perform binary search and how to collect breadcrumbs and keep track of parent
nodes in case we later have to split or merge nodes.

Lastly, we discuss optimization techniques (rebalancing, right-only appends, and bulk
loading), maintenance processes, and garbage collection.

Page Header
The page header holds information about the page that can be used for navigation,
maintenance, and optimizations. It usually contains flags that describe page contents
and layout, number of cells in the page, lower and upper offsets marking the empty
space (used to append cell offsets and data), and other useful metadata.

For example, PostgreSQL stores the page size and layout version in the header. In
MySQL InnoDB, page header holds the number of heap records, level, and some
other implementation-specific values. In SQLite, page header stores the number of
cells and a rightmost pointer.
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Magic Numbers
One of the values often placed in the file or page header is a magic number. Usually,
it’s a multibyte block, containing a constant value that can be used to signal that the
block represents a page, specify its kind, or identify its version.

Magic numbers are often used for validation and sanity checks [GIAMPAOLO98]. It’s
very improbable that the byte sequence at a random offset would exactly match the
magic number. If it did match, there’s a good chance the offset is correct. For exam‐
ple, to verify that the page is loaded and aligned correctly, during write we can place
the magic number 50 41 47 45 (hex for PAGE) into the header. During the read, we
validate the page by comparing the four bytes from the read header with the expected
byte sequence.

Sibling Links
Some implementations store forward and backward links, pointing to the left and
right sibling pages. These links help to locate neighboring nodes without having to
ascend back to the parent. This approach adds some complexity to split and merge
operations, as the sibling offsets have to be updated as well. For example, when a non-
rightmost node is split, its right sibling’s backward pointer (previously pointing to the
node that was split) has to be re-bound to point to the newly created node.

In Figure 4-1 you can see that to locate a sibling node, unless the siblings are linked,
we have to refer to the parent node. This operation might ascend all the way up to the
root, since the direct parent can only help to address its own children. If we store sib‐
ling links directly in the header, we can simply follow them to locate the previous or
next node on the same level.

Figure 4-1. Locating a sibling by following parent links (a) versus sibling links (b)
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1 You can find this algorithm in the balance_deeper function in the project repository.

One of the downsides of storing sibling links is that they have to be updated during
splits and merges. Since updates have to happen in a sibling node, not in a splitting/
merging node, it may require additional locking. We discuss how sibling links can be
useful in a concurrent B-Tree implementation in “Blink-Trees” on page 107.

Rightmost Pointers
B-Tree separator keys have strict invariants: they’re used to split the tree into subtrees
and navigate them, so there is always one more pointer to child pages than there are
keys. That’s where the +1 mentioned in “Counting Keys” on page 38 is coming from.

In “Separator Keys” on page 36, we described separator key invariants. In many
implementations, nodes look more like the ones displayed in Figure 4-2: each separa‐
tor key has a child pointer, while the last pointer is stored separately, since it’s not
paired with any key. You can compare this to Figure 2-10.

Figure 4-2. Rightmost pointer

This extra pointer can be stored in the header as, for example, it is implemented in
SQLite.

If the rightmost child is split and the new cell is appended to its parent, the rightmost
child pointer has to be reassigned. As shown in Figure 4-3, after the split, the cell
appended to the parent (shown in gray) holds the promoted key and points to the
split node. The pointer to the new node is assigned instead of the previous rightmost
pointer. A similar approach is described and implemented in SQLite.1
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Figure 4-3. Rightmost pointer update during node split. The promoted key is shown in
gray.

Node High Keys
We can take a slightly different approach and store the rightmost pointer in the cell
along with the node high key. The high key represents the highest possible key that
can be present in the subtree under the current node. This approach is used by Post‐
greSQL and is called Blink-Trees (for concurrency implications of this approach, see
“Blink-Trees” on page 107).

B-Trees have N keys (denoted with Ki) and N + 1 pointers (denoted with Pi). In each
subtree, keys are bounded by Ki-1 ≤ Ks < Ki. The K0 = -∞ is implicit and is not
present in the node.

Blink-Trees add a KN+1 key to each node. It specifies an upper bound of keys that can be
stored in the subtree to which the pointer PN points, and therefore is an upper bound
of values that can be stored in the current subtree. Both approaches are shown in
Figure 4-4: (a) shows a node without a high key, and (b) shows a node with a high key.

Figure 4-4. B-Trees without (a) and with (b) a high key

In this case, pointers can be stored pairwise, and each cell can have a corresponding
pointer, which might simplify rightmost pointer handling as there are not as many
edge cases to consider.

In Figure 4-5, you can see schematic page structure for both approaches and how the
search space is split differently for these cases: going up to +∞ in the first case, and up
to the upper bound of K3 in the second.
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Figure 4-5. Using +∞ as a virtual key (a) versus storing the high key (b)

Overflow Pages
Node size and tree fanout values are fixed and do not change dynamically. It would
also be difficult to come up with a value that would be universally optimal: if variable-
size values are present in the tree and they are large enough, only a few of them can fit
into the page. If the values are tiny, we end up wasting the reserved space.

The B-Tree algorithm specifies that every node keeps a specific number of items.
Since some values have different sizes, we may end up in a situation where, according
to the B-Tree algorithm, the node is not full yet, but there’s no more free space on the
fixed-size page that holds this node. Resizing the page requires copying already writ‐
ten data to the new region and is often impractical. However, we still need to find a
way to increase or extend the page size.

To implement variable-size nodes without copying data to the new contiguous region,
we can build nodes from multiple linked pages. For example, the default page size is 4
K, and after inserting a few values, its data size has grown over 4 K. Instead of allow‐
ing arbitrary sizes, nodes are allowed to grow in 4 K increments, so we allocate a 4 K
extension page and link it from the original one. These linked page extensions are
called overflow pages. For clarity, we call the original page the primary page in the
scope of this section.

Most B-Tree implementations allow storing only up to a fixed number of payload
bytes in the B-Tree node directly and spilling the rest to the overflow page. This value
is calculated by dividing the node size by fanout. Using this approach, we cannot end
up in a situation where the page has no free space, as it will always have at least
max_payload_size bytes. For more information on overflow pages in SQLite, see the
SQLite source code repository; also check out the MySQL InnoDB documentation.
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When the inserted payload is larger than max_payload_size, the node is checked for
whether or not it already has any associated overflow pages. If an overflow page
already exists and has enough space available, extra bytes from the payload are spilled
there. Otherwise, a new overflow page is allocated.

In Figure 4-6, you can see a primary page and an overflow page with records pointing
from the primary page to the overflow one, where their payload continues.

Figure 4-6. Overflow pages

Overflow pages require some extra bookkeeping, since they may get fragmented as
well as primary pages, and we have to be able to reclaim this space to write new data,
or discard the overflow page if it’s not needed anymore.

When the first overflow page is allocated, its page ID is stored in the header of the
primary page. If a single overflow page is not enough, multiple overflow pages are
linked together by storing the next overflow page ID in the previous one’s header.
Several pages may have to be traversed to locate the overflow part for the given
payload.

Since keys usually have high cardinality, storing a portion of a key makes sense, as
most of the comparisons can be made on the trimmed key part that resides in the
primary page.
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For data records, we have to locate their overflow parts to return them to the user.
However, this doesn’t matter much, since it’s an infrequent operation. If all data
records are oversize, it is worth considering specialized blob storage for large values.

Binary Search
We’ve already discussed the B-Tree lookup algorithm (see “B-Tree Lookup Algo‐
rithm” on page 38) and mentioned that we locate a searched key within the node
using the binary search algorithm. Binary search works only for sorted data. If keys
are not ordered, they can’t be binary searched. This is why keeping keys in order and
maintaining a sorted invariant is essential.

The binary search algorithm receives an array of sorted items and a searched key, and
returns a number. If the returned number is positive, we know that the searched key
was found and the number specifies its position in the input array. A negative return
value indicates that the searched key is not present in the input array and gives us an
insertion point.

The insertion point is the index of the first element that is greater than the given key.
An absolute value of this number is the index at which the searched key can be inser‐
ted to preserve order. Insertion can be done by shifting elements over one position,
starting from an insertion point, to make space for the inserted element [SEDGE‐
WICK11].

The majority of searches on higher levels do not result in exact matches, and we’re
interested in the search direction, in which case we have to find the first value that is
greater than the searched one and follow the corresponding child link into the associ‐
ated subtree.

Binary Search with Indirection Pointers
Cells in the B-Tree page are stored in the insertion order, and only cell offsets pre‐
serve the logical element order. To perform binary search through page cells, we pick
the middle cell offset, follow its pointer to locate the cell, compare the key from this
cell with the searched key to decide whether the search should continue left or right,
and continue this process recursively until the searched element or the insertion
point is found, as shown in Figure 4-7.
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Figure 4-7. Binary search with indirection pointers. The searched element is shown in
gray. Dotted arrows represent binary search through cell pointers. Solid lines represent
accesses that follow the cell pointers, necessary to compare the cell value with a searched
key.

Propagating Splits and Merges
As we’ve discussed in previous chapters, B-Tree splits and merges can propagate to
higher levels. For that, we need to be able to traverse a chain back to the root node
from the splitting leaf or a pair of merging leaves.

B-Tree nodes may include parent node pointers. Since pages from lower levels are
always paged in when they’re referenced from a higher level, it is not even necessary
to persist this information on disk.

Just like sibling pointers (see “Sibling Links” on page 62), parent pointers have to be
updated whenever the parent changes. This happens in all the cases when the separa‐
tor key with the page identifier is transferred from one node to another: during the
parent node splits, merges, or rebalancing of the parent node.

Some implementations (for example, WiredTiger) use parent pointers for leaf traver‐
sal to avoid deadlocks, which may happen when using sibling pointers (see
[MILLER78], [LEHMAN81]). Instead of using sibling pointers to traverse leaf nodes,
the algorithm employs parent pointers, much like we saw in Figure 4-1.

To address and locate a sibling, we can follow a pointer from the parent node and
recursively descend back to the lower level. Whenever we reach the end of the parent
node after traversing all the siblings sharing the parent, the search continues upward
recursively, eventually reaching up to the root and continuing back down to the leaf
level.
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2 You can read more about it in the project repository: https://databass.dev/links/21.

Breadcrumbs
Instead of storing and maintaining parent node pointers, it is possible to keep track of
nodes traversed on the path to the target leaf node, and follow the chain of parent
nodes in reverse order in case of cascading splits during inserts, or merges during
deletes.

During operations that may result in structural changes of the B-Tree (insert or
delete), we first traverse the tree from the root to the leaf to find the target node and
the insertion point. Since we do not always know up front whether or not the opera‐
tion will result in a split or merge (at least not until the target leaf node is located), we
have to collect breadcrumbs.

Breadcrumbs contain references to the nodes followed from the root and are used to
backtrack them in reverse when propagating splits or merges. The most natural data
structure for this is a stack. For example, PostgreSQL stores breadcrumbs in a stack,
internally referenced as BTStack.2

If the node is split or merged, breadcrumbs can be used to find insertion points for
the keys pulled to the parent and to walk back up the tree to propagate structural
changes to the higher-level nodes, if necessary. This stack is maintained in memory.

Figure 4-8 shows an example of root-to-leaf traversal, collecting breadcrumbs con‐
taining pointers to the visited nodes and cell indices. If the target leaf node is split, the
item on top of the stack is popped to locate its immediate parent. If the parent node
has enough space, a new cell is appended to it at the cell index from the breadcrumb
(assuming the index is still valid). Otherwise, the parent node is split as well. This
process continues recursively until either the stack is empty and we have reached the
root, or there was no split on the level.
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Figure 4-8. Breadcrumbs collected during lookup, containing traversed nodes and cell
indices. Dotted lines represent logical links to visited nodes. Numbers in the breadcrumbs
table represent indices of the followed child pointers.

Rebalancing
Some B-Tree implementations attempt to postpone split and merge operations to
amortize their costs by rebalancing elements within the level, or moving elements
from more occupied nodes to less occupied ones for as long as possible before finally
performing a split or merge. This helps to improve node occupancy and may reduce
the number of levels within the tree at a potentially higher maintenance cost of
rebalancing.

Load balancing can be performed during insert and delete operations [GRAEFE11].
To improve space utilization, instead of splitting the node on overflow, we can trans‐
fer some of the elements to one of the sibling nodes and make space for the insertion.
Similarly, during delete, instead of merging the sibling nodes, we may choose to move
some of the elements from the neighboring nodes to ensure the node is at least half
full.

B*-Trees keep distributing data between the neighboring nodes until both siblings are
full [KNUTH98]. Then, instead of splitting a single node into two half-empty ones,
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the algorithm splits two nodes into three nodes, each of which is two-thirds full.
SQLite uses this variant in the implementation. This approach improves an average
occupancy by postponing splits, but requires additional tracking and balancing logic.
Higher utilization also means more efficient searches, because the height of the tree is
smaller and fewer pages have to be traversed on the path to the searched leaf.

Figure 4-9 shows distributing elements between the neighboring nodes, where the left
sibling contains more elements than the right one. Elements from the more occupied
node are moved to the less occupied one. Since balancing changes the min/max
invariant of the sibling nodes, we have to update keys and pointers at the parent node
to preserve it.

Figure 4-9. B-Tree balancing: Distributing elements between the more occupied node
and the less occupied one

Load balancing is a useful technique used in many database implementations. For
example, SQLite implements the balance-siblings algorithm, which is somewhat close
to what we have described in this section. Balancing might add some complexity to
the code, but since its use cases are isolated, it can be implemented as an optimization
at a later stage.

Right-Only Appends
Many database systems use auto-incremented monotonically increasing values as pri‐
mary index keys. This case opens up an opportunity for an optimization, since all the
insertions are happening toward the end of the index (in the rightmost leaf), so most
of the splits occur on the rightmost node on each level. Moreover, since the keys are
monotonically incremented, given that the ratio of appends versus updates and dele‐
tes is low, nonleaf pages are also less fragmented than in the case of randomly ordered
keys.
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PostgreSQL is calling this case a fastpath. When the inserted key is strictly greater
than the first key in the rightmost page, and the rightmost page has enough space to
hold the newly inserted entry, the new entry is inserted into the appropriate location
in the cached rightmost leaf, and the whole read path can be skipped.

SQLite has a similar concept and calls it quickbalance. When the entry is inserted on
the far right end and the target node is full (i.e., it becomes the largest entry in the
tree upon insertion), instead of rebalancing or splitting the node, it allocates the new
rightmost node and adds its pointer to the parent (for more on implementing balanc‐
ing in SQLite, see “Rebalancing” on page 70). Even though this leaves the newly cre‐
ated page nearly empty (instead of half empty in the case of a node split), it is very
likely that the node will get filled up shortly.

Bulk Loading
If we have presorted data and want to bulk load it, or have to rebuild the tree (for
example, for defragmentation), we can take the idea with right-only appends even
further. Since the data required for tree creation is already sorted, during bulk loading
we only need to append the items at the rightmost location in the tree.

In this case, we can avoid splits and merges altogether and compose the tree from the
bottom up, writing it out level by level, or writing out higher-level nodes as soon as
we have enough pointers to already written lower-level nodes.

One approach for implementing bulk loading is to write presorted data on the leaf
level page-wise (rather then inserting individual elements). After the leaf page is writ‐
ten, we propagate its first key to the parent and use a normal algorithm for building
higher B-Tree levels [RAMAKRISHNAN03]. Since appended keys are given in the
sorted order, all splits in this case occur on the rightmost node.

Since B-Trees are always built starting from the bottom (leaf) level, the complete leaf
level can be written out before any higher-level nodes are composed. This allows hav‐
ing all child pointers at hand by the time the higher levels are constructed. The main
benefits of this approach are that we do not have to perform any splits or merges on
disk and, at the same time, have to keep only a minimal part of the tree (i.e., all
parents of the currently filling leaf node) in memory for the time of construction.

Immutable B-Trees can be created in the same manner but, unlike mutable B-Trees,
they require no space overhead for subsequent modifications, since all operations on
a tree are final. All pages can be completely filled up, improving occupancy and
resulting into better performance.
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Compression
Storing the raw, uncompressed data can induce significant overhead, and many data‐
bases offer ways to compress it to save space. The apparent trade-off here is between
access speed and compression ratio: larger compression ratios can improve data size,
allowing you to fetch more data in a single access, but might require more RAM and
CPU cycles to compress and decompress it.

Compression can be done at different granularity levels. Even though compressing
entire files can yield better compression ratios, it has limited application as a whole
file has to be recompressed on an update, and more granular compression is usually
better-suited for larger datasets. Compressing an entire index file is both impractical
and hard to implement efficiently: to address a particular page, the whole file (or its
section containing compression metadata) has to be accessed (in order to locate a
compressed section), decompressed, and made available.

An alternative is to compress data page-wise. It fits our discussion well, since the
algorithms we’ve been discussing so far use fixed-size pages. Pages can be compressed
and uncompressed independently from one another, allowing you to couple com‐
pression with page loading and flushing. However, a compressed page in this case can
occupy only a fraction of a disk block and, since transfers are usually done in units of
disk blocks, it might be necessary to page in extra bytes [RAY95]. In Figure 4-10, you
can see a compressed page (a) taking less space than the disk block. When we load
this page, we also page in additional bytes that belong to the other page. With pages
that span multiple disk blocks, like (b) in the same image, we have to read an addi‐
tional block.

Figure 4-10. Compression and block padding

Another approach is to compress data only, either row-wise (compressing entire data
records) or column-wise (compressing columns individually). In this case, page man‐
agement and compression are decoupled.
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Most of the open source databases reviewed while writing this book have pluggable
compression methods, using available libraries such as Snappy, zLib, lz4, and many
others.

As compression algorithms yield different results depending on a dataset and poten‐
tial objectives (e.g., compression ratio, performance, or memory overhead), we will
not go into comparison and implementation details in this book. There are many
overviews available that evaluate different compression algorithms for different block
sizes (for example, Squash Compression Benchmark), usually focusing on four met‐
rics: memory overhead, compression performance, decompression performance, and
compression ratio. These metrics are important to consider when picking a compres‐
sion library.

Vacuum and Maintenance
So far we’ve been mostly talking about user-facing operations in B-Trees. However,
there are other processes that happen in parallel with queries that maintain storage
integrity, reclaim space, reduce overhead, and keep pages in order. Performing these
operations in the background allows us to save some time and avoid paying the price
of cleanup during inserts, updates, and deletes.

The described design of slotted pages (see “Slotted Pages” on page 52) requires main‐
tenance to be performed on pages to keep them in good shape. For example, subse‐
quent splits and merges in internal nodes or inserts, updates, and deletes on the leaf
level can result in a page that has enough logical space but does not have enough con‐
tiguous space, since it is fragmented. Figure 4-11 shows an example of such a situa‐
tion: the page still has some logical space available, but it’s fragmented and is split
between the two deleted (garbage) records and some remaining free space between
the header/cell pointers and cells.

Figure 4-11. An example of a fragmented page
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B-Trees are navigated from the root level. Data records that can be reached by follow‐
ing pointers down from the root node are live (addressable). Nonaddressable data
records are said to be garbage: these records are not referenced anywhere and cannot
be read or interpreted, so their contents are as good as nullified.

You can see this distinction in Figure 4-11: cells that still have pointers to them are
addressable, unlike the removed or overwritten ones. Zero-filling of garbage areas is
often skipped for performance reasons, as eventually these areas are overwritten by
the new data anyway.

Fragmentation Caused by Updates and Deletes
Let’s consider under which circumstances pages get into the state where they have
nonaddressable data and have to be compacted. On the leaf level, deletes only remove
cell offsets from the header, leaving the cell itself intact. After this is done, the cell is
not addressable anymore, its contents will not appear in the query results, and nullify‐
ing it or moving neighboring cells is not necessary.

When the page is split, only offsets are trimmed and, since the rest of the page is not
addressable, cells whose offsets were truncated are not reachable, so they will be over‐
written whenever the new data arrives, or garbage-collected when the vacuum pro‐
cess kicks in.

Some databases rely on garbage collection, and leave removed and
updated cells in place for multiversion concurrency control (see
“Multiversion Concurrency Control” on page 99). Cells remain
accessible for the concurrently executing transactions until the
update is complete, and can be collected as soon as no other thread
accesses them. Some databases maintain structures that track ghost
records, which are collected as soon as all transactions that may
have seen them complete [WEIKUM01].

Since deletes only discard cell offsets and do not relocate remaining cells or physically
remove the target cells to occupy the freed space, freed bytes might end up scattered
across the page. In this case, we say that the page is fragmented and requires
defragmentation.

To make a write, we often need a contiguous block of free bytes where the cell fits. To
put the freed fragments back together and fix this situation, we have to rewrite the
page.

Insert operations leave tuples in their insertion order. This does not have as signifi‐
cant an impact, but having naturally sorted tuples can help with cache prefetch dur‐
ing sequential reads.
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3 For example, SQLite maintains a list of pages that are not used by the database, where trunk pages are held in
a linked list and hold addresses of freed pages.

Updates are mostly applicable to the leaf level: internal page keys are used for guided
navigation and only define subtree boundaries. Additionally, updates are performed
on a per-key basis, and generally do not result in structural changes in the tree, apart
from the creation of overflow pages. On the leaf level, however, update operations do
not change cell order and attempt to avoid page rewrite. This means that multiple
versions of the cell, only one of which is addressable, may end up being stored.

Page Defragmentation
The process that takes care of space reclamation and page rewrites is called compac‐
tion, vacuum, or just maintenance. Page rewrites can be done synchronously on write
if the page does not have enough free physical space (to avoid creating unnecessary
overflow pages), but compaction is mostly referred to as a distinct, asynchronous
process of walking through pages, performing garbage collection, and rewriting their
contents.

This process reclaims the space occupied by dead cells, and rewrites cells in their logi‐
cal order. When pages are rewritten, they may also get relocated to new positions in
the file. Unused in-memory pages become available and are returned to the page
cache. IDs of the newly available on-disk pages are added to the free page list (some‐
times called a freelist3). This information has to be persisted to survive node crashes
and restarts, and to make sure free space is not lost or leaked.

Summary
In this chapter, we discussed the concepts specific to on-disk B-Tree implementa‐
tions, such as:

Page header
What information is usually stored there.

Rightmost pointers
These are not paired with separator keys, and how to handle them.

High keys
Determine the maximum allowed key that can be stored in the node.

Overflow pages
Allow you to store oversize and variable-size records using fixed-size pages.
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After that, we went through some details related to root-to-leaf traversals:

• How to perform binary search with indirection pointers
• How to keep track of tree hierarchies using parent pointers or breadcrumbs

Lastly, we went through some optimization and maintenance techniques:

Rebalancing
Moves elements between neighboring nodes to reduce a number of splits and
merges.

Right-only appends
Appends the new rightmost cell instead of splitting it under the assumption that
it will quickly fill up.

Bulk loading
A technique for efficiently building B-Trees from scratch from sorted data.

Garbage collection
A process that rewrites pages, puts cells in key order, and reclaims space occupied
by unaddressable cells.

These concepts should bridge the gap between the basic B-Tree algorithm and a real-
world implementation, and help you better understand how B-Tree–based storage
systems work.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Disk-based B-Trees
Graefe, Goetz. 2011. “Modern B-Tree Techniques.” Foundations and Trends in
Databases 3, no. 4 (April): 203-402. https://doi.org/10.1561/1900000028.

Healey, Christopher G. 2016. Disk-Based Algorithms for Big Data (1st Ed.). Boca
Raton: CRC Press.
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CHAPTER 5

Transaction Processing and Recovery

In this book, we’ve taken a bottom-up approach to database system concepts: we first
learned about storage structures. Now, we’re ready to move to the higher-level com‐
ponents responsible for buffer management, lock management, and recovery, which
are the prerequisites for understanding database transactions.

A transaction is an indivisible logical unit of work in a database management system,
allowing you to represent multiple operations as a single step. Operations executed by
transactions include reading and writing database records. A database transaction has
to preserve atomicity, consistency, isolation, and durability. These properties are
commonly referred as ACID [HAERDER83]:

Atomicity
Transaction steps are indivisible, which means that either all the steps associated
with the transaction execute successfully or none of them do. In other words,
transactions should not be applied partially. Each transaction can either commit
(make all changes from write operations executed during the transaction visible),
or abort (roll back all transaction side effects that haven’t yet been made visible).
Commit is a final operation. After an abort, the transaction can be retried.

Consistency
Consistency is an application-specific guarantee; a transaction should only bring
the database from one valid state to another valid state, maintaining all database
invariants (such as constraints, referential integrity, and others). Consistency is
the most weakly defined property, possibly because it is the only property that is
controlled by the user and not only by the database itself.

Isolation
Multiple concurrently executing transactions should be able to run without inter‐
ference, as if there were no other transactions executing at the same time.
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Isolation defines when the changes to the database state may become visible, and
what changes may become visible to the concurrent transactions. Many databases
use isolation levels that are weaker than the given definition of isolation for per‐
formance reasons. Depending on the methods and approaches used for concur‐
rency control, changes made by a transaction may or may not be visible to other
concurrent transactions (see “Isolation Levels” on page 96).

Durability
Once a transaction has been committed, all database state modifications have to
be persisted on disk and be able to survive power outages, system failures, and
crashes.

Implementing transactions in a database system, in addition to a storage structure
that organizes and persists data on disk, requires several components to work
together. On the node locally, the transaction manager coordinates, schedules, and
tracks transactions and their individual steps.

The lock manager guards access to these resources and prevents concurrent accesses
that would violate data integrity. Whenever a lock is requested, the lock manager
checks if it is already held by any other transaction in shared or exclusive mode, and
grants access to it if the requested access level results in no contradiction. Since exclu‐
sive locks can be held by at most one transaction at any given moment, other transac‐
tions requesting them have to wait until locks are released, or abort and retry later. As
soon as the lock is released or whenever the transaction terminates, the lock manager
notifies one of the pending transactions, letting it acquire the lock and continue.

The page cache serves as an intermediary between persistent storage (disk) and the
rest of the storage engine. It stages state changes in main memory and serves as a
cache for the pages that haven’t been synchronized with persistent storage. All
changes to a database state are first applied to the cached pages.

The log manager holds a history of operations (log entries) applied to cached pages
but not yet synchronized with persistent storage to guarantee they won’t be lost in
case of a crash. In other words, the log is used to reapply these operations and recon‐
struct the cached state during startup. Log entries can also be used to undo changes
done by the aborted transactions.

Distributed (multipartition) transactions require additional coordination and remote
execution. We discuss distributed transaction protocols in Chapter 13.
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Buffer Management
Most databases are built using a two-level memory hierarchy: slower persistent stor‐
age (disk) and faster main memory (RAM). To reduce the number of accesses to
persistent storage, pages are cached in memory. When the page is requested again by
the storage layer, its cached copy is returned.

Cached pages available in memory can be reused under the assumption that no other
process has modified the data on disk. This approach is sometimes referenced as vir‐
tual disk [BAYER72]. A virtual disk read accesses physical storage only if no copy of
the page is already available in memory. A more common name for the same concept
is page cache or buffer pool. The page cache is responsible for caching pages read from
disk in memory. In case of a database system crash or unorderly shutdown, cached
contents are lost.

Since the term page cache better reflects the purpose of this structure, this book
defaults to this name. The term buffer pool sounds like its primary purpose is to pool
and reuse empty buffers, without sharing their contents, which can be a useful part of
a page cache or even as a separate component, but does not reflect the entire purpose
as precisely.

The problem of caching pages is not limited in scope to databases. Operating systems
have the concept of a page cache, too. Operating systems utilize unused memory seg‐
ments to transparently cache disk contents to improve performance of I/O syscalls.

Uncached pages are said to be paged in when they’re loaded from disk. If any changes
are made to the cached page, it is said to be dirty, until these changes are flushed back
on disk.

Since the memory region where cached pages are held is usually substantially smaller
than an entire dataset, the page cache eventually fills up and, in order to page in a
new page, one of the cached pages has to be evicted.

In Figure 5-1, you can see the relation between the logical representation of B-Tree
pages, their cached versions, and the pages on disk. The page cache loads pages into
free slots out of order, so there’s no direct mapping between how pages are ordered
on disk and in memory.
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Figure 5-1. Page cache

The primary functions of a page cache can be summarized as:

• It keeps cached page contents in memory.
• It allows modifications to on-disk pages to be buffered together and performed

against their cached versions.
• When a requested page isn’t present in memory and there’s enough space avail‐

able for it, it is paged in by the page cache, and its cached version is returned.
• If an already cached page is requested, its cached version is returned.
• If there’s not enough space available for the new page, some other page is evicted

and its contents are flushed to disk.

Bypassing the Kernel Page Cache
Many database systems open files using O_DIRECT flag. This flag allows I/O system
calls to bypass the kernel page cache, access the disk directly, and use database-
specific buffer management. This is sometimes frowned upon by the operating sys‐
tems folks.

Linus Torvalds has criticized usage of O_DIRECT since it’s not asynchronous and has
no readahead or other means for instructing the kernel about access patterns. How‐
ever, until operating systems start offering better mechanisms, O_DIRECT is still going
to be useful.

We can gain some control over how the kernel evicts pages from its cache is by using
fadvise, but this only allows us to ask the kernel to consider our opinion and does
not guarantee it will actually happen. To avoid syscalls when performing I/O, we can
use memory mapping, but then we lose control over caching.
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Caching Semantics
All changes made to buffers are kept in memory until they are eventually written
back to disk. As no other process is allowed to make changes to the backing file, this
synchronization is a one-way process: from memory to disk, and not vice versa. The
page cache allows the database to have more control over memory management and
disk accesses. You can think of it as an application-specific equivalent of the kernel
page cache: it accesses the block device directly, implements similar functionality, and
serves a similar purpose. It abstracts disk accesses and decouples logical write opera‐
tions from the physical ones.

Caching pages helps to keep the tree partially in memory without making additional
changes to the algorithm and materializing objects in memory. All we have to do is
replace disk accesses by the calls to the page cache.

When the storage engine accesses (in other words, requests) the page, we first check
if its contents are already cached, in which case the cached page contents are
returned. If the page contents are not yet cached, the cache translates the logical page
address or page number to its physical address, loads its contents in memory, and
returns its cached version to the storage engine. Once returned, the buffer with
cached page contents is said to be referenced, and the storage engine has to hand it
back to the page cache or dereference it once it’s done. The page cache can be instruc‐
ted to avoid evicting pages by pinning them.

If the page is modified (for example, a cell was appended to it), it is marked as dirty. A
dirty flag set on the page indicates that its contents are out of sync with the disk and
have to be flushed for durability.

Cache Eviction
Keeping caches populated is good: we can serve more reads without going to persis‐
tent storage, and more same-page writes can be buffered together. However, the page
cache has a limited capacity and, sooner or later, to serve the new contents, old pages
have to be evicted. If page contents are in sync with the disk (i.e., were already flushed
or were never modified) and the page is not pinned or referenced, it can be evicted
right away. Dirty pages have to be flushed before they can be evicted. Referenced
pages should not be evicted while some other thread is using them.

Since triggering a flush on every eviction might be bad for performance, some data‐
bases use a separate background process that cycles through the dirty pages that are
likely to be evicted, updating their disk versions. For example, PostgreSQL has a
background flush writer that does just that.

Another important property to keep in mind is durability: if the database has crashed,
all data that was not flushed is lost. To make sure that all changes are persisted,
flushes are coordinated by the checkpoint process. The checkpoint process controls
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the write-ahead log (WAL) and page cache, and ensures that they work in lockstep.
Only log records associated with operations applied to cached pages that were flushed
can be discarded from the WAL. Dirty pages cannot be evicted until this process
completes.

This means there is always a trade-off between several objectives:

• Postpone flushes to reduce the number of disk accesses
• Preemptively flush pages to allow quick eviction
• Pick pages for eviction and flush in the optimal order
• Keep cache size within its memory bounds
• Avoid losing the data as it is not persisted to the primary storage

We explore several techniques that help us to improve the first three characteristics
while keeping us within the boundaries of the other two.

Locking Pages in Cache
Having to perform disk I/O on each read or write is impractical: subsequent reads
may request the same page, just as subsequent writes may modify the same page.
Since B-Tree gets “narrower” toward the top, higher-level nodes (ones that are closer
to the root) are hit for most of the reads. Splits and merges also eventually propagate
to the higher-level nodes. This means there’s always at least a part of a tree that can
significantly benefit from being cached.

We can “lock” pages that have a high probability of being used in the nearest time.
Locking pages in the cache is called pinning. Pinned pages are kept in memory for a
longer time, which helps to reduce the number of disk accesses and improve perfor‐
mance [GRAEFE11].

Since each lower B-Tree node level has exponentially more nodes than the higher
one, and higher-level nodes represent just a small fraction of the tree, this part of the
tree can reside in memory permanently, and other parts can be paged in on demand.
This means that, in order to perform a query, we won’t have to make h disk accesses
(as discussed in “B-Tree Lookup Complexity” on page 37, h is the height of the tree),
but only hit the disk for the lower levels, for which pages are not cached.

Operations performed against a subtree may result in structural changes that contra‐
dict each other—for example, multiple delete operations causing merges followed by
writes causing splits, or vice versa. Likewise for structural changes that propagate
from different subtrees (structural changes occurring close to each other in time, in
different parts of the tree, propagating up). These operations can be buffered together
by applying changes only in memory, which can reduce the number of disk writes
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and amortize the operation costs, since only one write can be performed instead of
multiple writes.

Prefetching and Immediate Eviction
The page cache also allows the storage engine to have fine-grained control over pre‐
fetching and eviction. It can be instructed to load pages ahead of time, before they are
accessed. For example, when the leaf nodes are traversed in a range scan, the next
leaves can be preloaded. Similarly, if a maintenance process loads the page, it can be
evicted immediately after the process finishes, since it’s unlikely to be useful for the
in-flight queries. Some databases, for example, PostgreSQL, use a circular buffer (in
other words, FIFO page replacement policy) for large sequential scans.

Page Replacement
When cache capacity is reached, to load new pages, old ones have to be evicted. How‐
ever, unless we evict pages that are least likely to be accessed again soon, we might
end up loading them several times subsequently even though we could’ve just kept
them in memory for all that time. We need to find a way to estimate the likelihood of
subsequent page access to optimize this.

For this, we can say that pages should be evicted according to the eviction policy (also
sometimes called the page-replacement policy). It attempts to find pages that are least
likely to be accessed again any time soon. When the page is evicted from the cache,
the new page can be loaded in its place.

For a page cache implementation to be performant, it needs an efficient page-
replacement algorithm. An ideal page-replacement strategy would require a crystal
ball that would predict the order in which pages are going to be accessed and evict
only pages that will not be touched for the longest time. Since requests do not neces‐
sarily follow any specific pattern or distribution, precisely predicting behavior can be
complicated, but using a right page replacement strategy can help to reduce the num‐
ber of evictions.

It seems logical that we can reduce the number of evictions by simply using a larger
cache. However, this does not appear to be the case. One of the examples demonstrat‐
ing this dilemma this is called Bélády’s anomaly [BEDALY69]. It shows that increasing
the number of pages might increase the number of evictions if the used page-
replacement algorithm is not optimal. When pages that might be required soon are
evicted and then loaded again, pages start competing for space in the cache. Because
of that, we need to wisely consider the algorithm we’re using, so that it would
improve the situation, not make it worse.
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FIFO and LRU
The most naïve page-replacement strategy is first in, first out (FIFO). FIFO maintains
a queue of page IDs in their insertion order, adding new pages to the tail of the queue.
Whenever the page cache is full, it takes the element from the head of the queue to
find the page that was paged in at the farthest point in time. Since it does not account
for subsequent page accesses, only for page-in events, this proves to be impractical for
the most real-world systems. For example, the root and topmost-level pages are
paged in first and, according to this algorithm, are the first candidates for eviction,
even though it’s clear from the tree structure that these pages are likely to paged in
again soon, if not immediately.

A natural extension of the FIFO algorithm is least-recently used (LRU) [TANEN‐
BAUM14]. It also maintains a queue of eviction candidates in insertion order, but
allows you to place a page back to the tail of the queue on repeated accesses, as if this
was the first time it was paged in. However, updating references and relinking nodes
on every access can become expensive in a concurrent environment.

There are other LRU-based cache eviction strategies. For example, 2Q (Two-Queue
LRU) maintains two queues and puts pages into the first queue during the initial
access and moves them to the second hot queue on subsequent accesses, allowing you
to distinguish between the recently and frequently accessed pages [JONSON94].
LRU-K identifies frequently referenced pages by keeping track of the last K accesses,
and using this information to estimate access times on a page basis [ONEIL93].

CLOCK
In some situations, efficiency may be more important than precision. CLOCK algo‐
rithm variants are often used as compact, cache-friendly, and concurrent alternatives
to LRU [SOUNDARARARJAN06]. Linux, for example, uses a variant of the CLOCK
algorithm.

CLOCK-sweep holds references to pages and associated access bits in a circular
buffer. Some variants use counters instead of bits to account for frequency. Every time
the page is accessed, its access bit is set to 1. The algorithm works by going around
the circular buffer, checking access bits:

• If the access bit is 1, and the page is unreferenced, it is set to 0, and the next page
is inspected.

• If the access bit is already 0, the page becomes a candidate and is scheduled for
eviction.

• If the page is currently referenced, its access bit remains unchanged. It is assumed
that the access bit of an accessed page cannot be 0, so it cannot be evicted. This
makes referenced pages less likely to be replaced.
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Figure 5-2 shows a circular buffer with access bits.

Figure 5-2. CLOCK-sweep example. Counters for currently referenced pages are shown
in gray. Counters for unreferenced pages are shown in white. The arrow points to the ele‐
ment that will be checked next.

An advantage of using a circular buffer is that both the clock hand pointer and con‐
tents can be modified using compare-and-swap operations, and do not require addi‐
tional locking mechanisms. The algorithm is easy to understand and implement and
is often used in both textbooks [TANENBAUM14] and real-wold systems.

LRU is not always the best replacement strategy for a database system. Sometimes, it
may be more practical to consider usage frequency rather than recency as a predictive
factor. In the end, for a database system under a heavy load, recency might not be
very indicative as it only represents the order in which items were accessed.

LFU
To improve the situation, we can start tracking page reference events rather than page-
in events. One of the approaches allowing us to do this tracks least-frequently used
(LFU) pages.

TinyLFU, a frequency-based page-eviction policy [EINZIGER17], does precisely this:
instead of evicting pages based on page-in recency, it orders pages by usage frequency.
It is implemented in the popular Java library called Caffeine.

TinyLFU uses a frequency histogram [CORMODE11] to maintain compact cache
access history, since preserving an entire history might be prohibitively expensive for
practical purposes.
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Elements can be in one of the three queues:

• Admission, maintaining newly added elements, implemented using LRU policy.
• Probation, holding elements most likely to get evicted.
• Protected, holding elements that are to stay in the queue for a longer time.

Rather than choosing which elements to evict every time, this approach chooses
which ones to promote for retention. Only the items that have a frequency larger than
the item that would be evicted as a result of promoting them, can be moved to the
probation queue. On subsequent accesses, items can get moved from probation to the
protected queue. If the protected queue is full, one of the elements from it may have
to be placed back into probation. More frequently accessed items have a higher
chance of retention, and less frequently used ones are more likely to be evicted.

Figure 5-3 shows the logical connections between the admission, probation, and pro‐
tected queues, the frequency filter, and eviction.

Figure 5-3. TinyLFU admission, protected, and probation queues

There are many other algorithms that can be used for optimal cache eviction. The
choice of a page-replacement strategy has a significant impact on latency and the
number of performed I/O operations, and has to be taken into consideration.

Recovery
Database systems are built on top of several hardware and software layers that can
have their own stability and reliability problems. Database systems themselves, as well
as the underlying software and hardware components, may fail. Database implement‐
ers have to consider these failure scenarios and make sure that the data that was
“promised” to be written is, in fact, written.

A write-ahead log (WAL for short, also known as a commit log) is an append-only
auxiliary disk-resident structure used for crash and transaction recovery. The page
cache allows buffering changes to page contents in memory. Until the cached con‐
tents are flushed back to disk, the only disk-resident copy preserving the operation
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history is stored in the WAL. Many database systems use append-only write-ahead
logs; for example, PostgreSQL and MySQL.

The main functionality of a write-ahead log can be summarized as:

• Allow the page cache to buffer updates to disk-resident pages while ensuring
durability semantics in the larger context of a database system.

• Persist all operations on disk until the cached copies of pages affected by these
operations are synchronized on disk. Every operation that modifies the database
state has to be logged on disk before the contents of the associated pages can be
modified.

• Allow lost in-memory changes to be reconstructed from the operation log in case
of a crash.

In addition to this functionality, the write-ahead log plays an important role in trans‐
action processing. It is hard to overstate the importance of the WAL as it ensures that
data makes it to the persistent storage and is available in case of a crash, as uncom‐
mitted data is replayed from the log and the pre-crash database state is fully restored.
In this section, we will often refer to ARIES (Algorithm for Recovery and Isolation
Exploiting Semantics), a state-of-the-art recovery algorithm that is widely used and
cited [MOHAN92].

PostgreSQL Versus fsync()
PostgreSQL uses checkpoints to ensure that index and data files have been updated
with all information up to a certain record in the logfile. Flushing all dirty (modified)
pages at once is done periodically by the checkpoint process. Synchronizing dirty
page contents with disk is done by making the fsync() kernel call, which is supposed
to sync dirty pages to disk, and unset the dirty flag on the kernel pages. As you would
expect, fsync returns with an error if it isn’t able to flush pages on disk.

In Linux and a few other operating systems, fsync unsets the dirty flag even from
unsuccessfully flushed pages after I/O errors. Additionally, errors will be reported
only to the file descriptors that were open at the time of failure, so fsync will not
return any errors that have occurred before the descriptor it was called upon was
opened [CORBET18].

Since the checkpointer doesn’t keep all files open at any given point in time, it may
happen that it misses error notifications. Because dirty page flags are cleared, the
checkpointer will assume that data has successfully made it on disk while, in fact, it
might have not been written.

A combination of these behaviors can be a source of data loss or database corruption
in the presence of potentially recoverable failures. Such behaviors can be difficult to
detect and some of the states they lead to may be unrecoverable. Sometimes, even
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triggering such behavior can be nontrivial. When working on recovery mechanisms,
we should always take extra care and think through and attempt to test every possible
failure scenario.

Log Semantics
The write-ahead log is append-only and its written contents are immutable, so all
writes to the log are sequential. Since the WAL is an immutable, append-only data
structure, readers can safely access its contents up to the latest write threshold while
the writer continues appending data to the log tail.

The WAL consists of log records. Every record has a unique, monotonically increas‐
ing log sequence number (LSN). Usually, the LSN is represented by an internal counter
or a timestamp. Since log records do not necessarily occupy an entire disk block, their
contents are cached in the log buffer and are flushed on disk in a force operation.
Forces happen as the log buffers fill up, and can be requested by the transaction man‐
ager or a page cache. All log records have to be flushed on disk in LSN order.

Besides individual operation records, the WAL holds records indicating transaction
completion. A transaction can’t be considered committed until the log is forced up to
the LSN of its commit record.

To make sure the system can continue functioning correctly after a crash during roll‐
back or recovery, some systems use compensation log records (CLR) during undo and
store them in the log.

The WAL is usually coupled with a primary storage structure by the interface that
allows trimming it whenever a checkpoint is reached. Logging is one of the most criti‐
cal correctness aspects of the database, which is somewhat tricky to get right: even the
slightest disagreements between log trimming and ensuring that the data has made it
to the primary storage structure may cause data loss.

Checkpoints are a way for a log to know that log records up to a certain mark are
fully persisted and aren’t required anymore, which significantly reduces the amount
of work required during the database startup. A process that forces all dirty pages to
be flushed on disk is generally called a sync checkpoint, as it fully synchronizes the pri‐
mary storage structure.

Flushing the entire contents on disk is rather impractical and would require pausing
all running operations until the checkpoint is done, so most database systems imple‐
ment fuzzy checkpoints. In this case, the last_checkpoint pointer stored in the log
header contains the information about the last successful checkpoint. A fuzzy check‐
point begins with a special begin_checkpoint log record specifying its start, and ends
with end_checkpoint log record, containing information about the dirty pages, and
the contents of a transaction table. Until all the pages specified by this record are
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flushed, the checkpoint is considered to be incomplete. Pages are flushed asynchro‐
nously and, once this is done, the last_checkpoint record is updated with the LSN
of the begin_checkpoint record and, in case of a crash, the recovery process will start
from there [MOHAN92].

Operation Versus Data Log
Some database systems, for example System R [CHAMBERLIN81], use shadow pag‐
ing: a copy-on-write technique ensuring data durability and transaction atomicity.
New contents are placed into the new unpublished shadow page and made visible
with a pointer flip, from the old page to the one holding updated contents.

Any state change can be represented by a before-image and an after-image or by cor‐
responding redo and undo operations. Applying a redo operation to a before-image
produces an after-image. Similarly, applying an undo operation to an after-image pro‐
duces a before-image.

We can use a physical log (that stores complete page state or byte-wise changes to it)
or a logical log (that stores operations that have to be performed against the current
state) to move records or pages from one state to the other, both backward and for‐
ward in time. It is important to track the exact state of the pages that physical and
logical log records can be applied to.

Physical logging records before and after images, requiring entire pages affected by
the operation to be logged. A logical log specifies which operations have to be applied
to the page, such as "insert a data record X for key Y", and a corresponding
undo operation, such as "remove the value associated with Y".

In practice, many database systems use a combination of these two approaches, using
logical logging to perform an undo (for concurrency and performance) and physical
logging to perform a redo (to improve recovery time) [MOHAN92].

Steal and Force Policies
To determine when the changes made in memory have to be flushed on disk, data‐
base management systems define steal/no-steal and force/no-force policies. These
policies are mostly applicable to the page cache, but they’re better discussed in the
context of recovery, since they have a significant impact on which recovery
approaches can be used in combination with them.

A recovery method that allows flushing a page modified by the transaction even
before the transaction has committed is called a steal policy. A no-steal policy does
not allow flushing any uncommitted transaction contents on disk. To steal a dirty
page here means flushing its in-memory contents to disk and loading a different page
from disk in its place.
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A force policy requires all pages modified by the transactions to be flushed on disk
before the transaction commits. On the other hand, a no-force policy allows a transac‐
tion to commit even if some pages modified during this transaction were not yet
flushed on disk. To force a dirty page here means to flush it on disk before the
commit.

Steal and force policies are important to understand, since they have implications for
transaction undo and redo. Undo rolls back updates to forced pages for committed
transactions, while redo applies changes performed by committed transactions on
disk.

Using the no-steal policy allows implementing recovery using only redo entries: old
copy is contained in the page on disk and modification is stored in the log [WEI‐
KUM01]. With no-force, we potentially can buffer several updates to pages by defer‐
ring them. Since page contents have to be cached in memory for that time, a larger
page cache may be needed.

When the force policy is used, crash recovery doesn’t need any additional work to
reconstruct the results of committed transactions, since pages modified by these
transactions are already flushed. A major drawback of using this approach is that
transactions take longer to commit due to the necessary I/O.

More generally, until the transaction commits, we need to have enough information
to undo its results. If any pages touched by the transaction are flushed, we need to
keep undo information in the log until it commits to be able to roll it back. Other‐
wise, we have to keep redo records in the log until it commits. In both cases, transac‐
tion cannot commit until either undo or redo records are written to the logfile.

ARIES
ARIES is a steal/no-force recovery algorithm. It uses physical redo to improve perfor‐
mance during recovery (since changes can be installed quicker) and logical undo to
improve concurrency during normal operation (since logical undo operations can be
applied to pages independently). It uses WAL records to implement repeating history
during recovery, to completely reconstruct the database state before undoing uncom‐
mitted transactions, and creates compensation log records during undo
[MOHAN92].

When the database system restarts after the crash, recovery proceeds in three phases:

1. The analysis phase identifies dirty pages in the page cache and transactions that
were in progress at the time of a crash. Information about dirty pages is used to
identify the starting point for the redo phase. A list of in-progress transactions is
used during the undo phase to roll back incomplete transactions.
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2. The redo phase repeats the history up to the point of a crash and restores the
database to the previous state. This phase is done for incomplete transactions as
well as ones that were committed but whose contents weren’t flushed to persis‐
tent storage.

3. The undo phase rolls back all incomplete transactions and restores the database
to the last consistent state. All operations are rolled back in reverse chronological
order. In case the database crashes again during recovery, operations that undo
transactions are logged as well to avoid repeating them.

ARIES uses LSNs for identifying log records, tracks pages modified by running trans‐
actions in the dirty page table, and uses physical redo, logical undo, and fuzzy check‐
pointing. Even though the paper describing this system was released in 1992, most
concepts, approaches, and paradigms are still relevant in transaction processing and
recovery today.

Concurrency Control
When discussing database management system architecture in “DBMS Architecture”
on page 8, we mentioned that the transaction manager and lock manager work
together to handle concurrency control. Concurrency control is a set of techniques for
handling interactions between concurrently executing transactions. These techniques
can be roughly grouped into the following categories:

Optimistic concurrency control (OCC)
Allows transactions to execute concurrent read and write operations, and deter‐
mines whether or not the result of the combined execution is serializable. In
other words, transactions do not block each other, maintain histories of their
operations, and check these histories for possible conflicts before commit. If exe‐
cution results in a conflict, one of the conflicting transactions is aborted.

Multiversion concurrency control (MVCC)
Guarantees a consistent view of the database at some point in the past identified
by the timestamp by allowing multiple timestamped versions of the record to be
present. MVCC can be implemented using validation techniques, allowing only
one of the updating or committing transactions to win, as well as with lockless
techniques such as timestamp ordering, or lock-based ones, such as two-phase
locking.

Pessimistic (also known as conservative) concurrency control (PCC)
There are both lock-based and nonlocking conservative methods, which differ in
how they manage and grant access to shared resources. Lock-based approaches
require transactions to maintain locks on database records to prevent other
transactions from modifying locked records and assessing records that are being
modified until the transaction releases its locks. Nonlocking approaches maintain
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read and write operation lists and restrict execution, depending on the schedule
of unfinished transactions. Pessimistic schedules can result in a deadlock when
multiple transactions wait for each other to release a lock in order to proceed.

In this chapter, we concentrate on node-local concurrency control techniques. In
Chapter 13, you can find information about distributed transactions and other
approaches, such as deterministic concurrency control (see “Distributed Transactions
with Calvin” on page 266).

Before we can further discuss concurrency control, we need to define a set of prob‐
lems we’re trying to solve and discuss how transaction operations overlap and what
consequences this overlapping has.

Serializability
Transactions consist of read and write operations executed against the database state,
and business logic (transformations, applied to the read contents). A schedule is a list
of operations required to execute a set of transactions from the database-system per‐
spective (i.e., only ones that interact with the database state, such as read, write, com‐
mit, or abort operations), since all other operations are assumed to be side-effect free
(in other words, have no impact on the database state) [MOLINA08].

A schedule is complete if contains all operations from every transaction executed in it.
Correct schedules are logical equivalents to the original lists of operations, but their
parts can be executed in parallel or get reordered for optimization purposes, as long
as this does not violate ACID properties and the correctness of the results of individ‐
ual transactions [WEIKUM01].

A schedule is said to be serial when transactions in it are executed completely inde‐
pendently and without any interleaving: every preceding transaction is fully executed
before the next one starts. Serial execution is easy to reason about, as contrasted with
all possible interleavings between several multistep transactions. However, always
executing transactions one after another would significantly limit the system
throughput and hurt performance.

We need to find a way to execute transaction operations concurrently, while main‐
taining the correctness and simplicity of a serial schedule. We can achieve this with
serializable schedules. A schedule is serializable if it is equivalent to some complete
serial schedule over the same set of transactions. In other words, it produces the same
result as if we executed a set of transactions one after another in some order.
Figure 5-4 shows three concurrent transactions, and possible execution histories
(3! = 6 possibilities, in every possible order).
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Figure 5-4. Concurrent transactions and their possible sequential execution histories

Transaction Isolation
Transactional database systems allow different isolation levels. An isolation level
specifies how and when parts of the transaction can and should become visible to
other transactions. In other words, isolation levels describe the degree to which trans‐
actions are isolated from other concurrently executing transactions, and what kinds
of anomalies can be encountered during execution.

Achieving isolation comes at a cost: to prevent incomplete or temporary writes from
propagating over transaction boundaries, we need additional coordination and syn‐
chronization, which negatively impacts the performance.

Read and Write Anomalies
The SQL standard [MELTON06] refers to and describes read anomalies that can
occur during execution of concurrent transactions: dirty, nonrepeatable, and phan‐
tom reads.

A dirty read is a situation in which a transaction can read uncommitted changes from
other transactions. For example, transaction T1 updates a user record with a new
value for the address field, and transaction T2 reads the updated address before T1
commits. Transaction T1 aborts and rolls back its execution results. However, T2 has
already been able to read this value, so it has accessed the value that has never been
committed.

A nonrepeatable read (sometimes called a fuzzy read) is a situation in which a transac‐
tion queries the same row twice and gets different results. For example, this can hap‐
pen even if transaction T1 reads a row, then transaction T2 modifies it and commits
this change. If T1 requests the same row again before finishing its execution, the result
will differ from the previous run.

If we use range reads during the transaction (i.e., read not a single data record, but a
range of records), we might see phantom records. A phantom read is when a
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transaction queries the same set of rows twice and receives different results. It is simi‐
lar to a nonrepeatable read, but holds for range queries.

There are also write anomalies with similar semantics: lost update, dirty write, and
write skew.

A lost update occurs when transactions T1 and T2 both attempt to update the value of
V. T1 and T2 read the value of V. T1 updates V and commts, and T2 updates V after that
and commits as well. Since the transactions are not aware about each other’s exis‐
tence, if both of them are allowed to commit, the results of T1 will be overwritten by
the results of T2, and the update from T1 will be lost.

A dirty write is a situation in which one of the transactions takes an uncommitted
value (i.e., dirty read), modifies it, and saves it. In other words, when transaction
results are based on the values that have never been committed.

A write skew occurs when each individual transaction respects the required invari‐
ants, but their combination does not satisfy these invariants. For example, transac‐
tions T1 and T2 modify values of two accounts A1 and A2. A1 starts with 100$ and A2
starts with 150$. The account value is allowed to be negative, as long as the sum of the
two accounts is nonnegative: A1 + A2 >= 0. T1 and T2 each attempt to withdraw 200$
from A1 and A2, respectively. Since at the time these transactions start A1 + A2 = 250$,
250$ is available in total. Both transactions assume they’re preserving the invariant
and are allowed to commit. After the commit, A1 has -100$ and A2 has -50$, which
clearly violates the requirement to keep a sum of the accounts positive [FEKETE04].

Isolation Levels
The lowest (in other words, weakest) isolation level is read uncommitted. Under this
isolation level, the transactional system allows one transaction to observe uncommit‐
ted changes of other concurrent transactions. In other words, dirty reads are allowed.

We can avoid some of the anomalies. For example, we can make sure that any read
performed by the specific transaction can only read already committed changes. How‐
ever, it is not guaranteed that if the transaction attempts to read the same data record
once again at a later stage, it will see the same value. If there was a committed modifi‐
cation between two reads, two queries in the same transaction would yield different
results. In other words, dirty reads are not permitted, but phantom and nonrepeata‐
ble reads are. This isolation level is called read committed. If we further disallow non‐
repeatable reads, we get a repeatable read isolation level.

The strongest isolation level is serializability. As we already discussed in “Serializabil‐
ity” on page 94, it guarantees that transaction outcomes will appear in some order as
if transactions were executed serially (i.e., without overlapping in time). Disallowing
concurrent execution would have a substantial negative impact on the database per‐

96 | Chapter 5: Transaction Processing and Recovery



formance. Transactions can get reordered, as long as their internal invariants hold
and can be executed concurrently, but their outcomes have to appear in some serial
order.

Figure 5-5 shows isolation levels and the anomalies they allow.

Figure 5-5. Isolation levels and allowed anomalies

Transactions that do not have dependencies can be executed in any order since their
results are fully independent. Unlike linearizability (which we discuss in the context
of distributed systems; see “Linearizability” on page 223), serializability is a property
of multiple operations executed in arbitrary order. It does not imply or attempt to
impose any particular order on executing transactions. Isolation in ACID terms
means serializability [BAILIS14a]. Unfortunately, implementing serializability
requires coordination. In other words, transactions executing concurrently have to
coordinate to preserve invariants and impose a serial order on conflicting executions
[BAILIS14b].

Some databases use snapshot isolation. Under snapshot isolation, a transaction can
observe the state changes performed by all transactions that were committed by the
time it has started. Each transaction takes a snapshot of data and executes queries
against it. This snapshot cannot change during transaction execution. The transac‐
tion commits only if the values it has modified did not change while it was executing.
Otherwise, it is aborted and rolled back.

If two transactions attempt to modify the same value, only one of them is allowed to
commit. This precludes a lost update anomaly. For example, transactions T1 and T2
both attempt to modify V. They read the current value of V from the snapshot that
contains changes from all transactions that were committed before they started.
Whichever transaction attempts to commit first, will commit, and the other one will
have to abort. The failed transactions will retry instead of overwriting the value.

A write skew anomaly is possible under snapshot isolation, since if two transactions
read from local state, modify independent records, and preserve local invariants, they
both are allowed to commit [FEKETE04]. We discuss snapshot isolation in more
detail in the context of distributed transactions in “Distributed Transactions with Per‐
colator” on page 272.
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Optimistic Concurrency Control
Optimistic concurrency control assumes that transaction conflicts occur rarely and,
instead of using locks and blocking transaction execution, we can validate transac‐
tions to prevent read/write conflicts with concurrently executing transactions and
ensure serializability before committing their results. Generally, transaction execution
is split into three phases [WEIKUM01]:

Read phase
The transaction executes its steps in its own private context, without making any
of the changes visible to other transactions. After this step, all transaction depen‐
dencies (read set) are known, as well as the side effects the transaction produces
(write set).

Validation phase
Read and write sets of concurrent transactions are checked for the presence of
possible conflicts between their operations that might violate serializability. If
some of the data the transaction was reading is now out-of-date, or it would
overwrite some of the values written by transactions that committed during its
read phase, its private context is cleared and the read phase is restarted. In other
words, the validation phase determines whether or not committing the transac‐
tion preserves ACID properties.

Write phase
If the validation phase hasn’t determined any conflicts, the transaction can com‐
mit its write set from the private context to the database state.

Validation can be done by checking for conflicts with the transactions that have
already been committed (backward-oriented), or with the transactions that are cur‐
rently in the validation phase (forward-oriented). Validation and write phases of dif‐
ferent transactions should be done atomically. No transaction is allowed to commit
while some other transaction is being validated. Since validation and write phases are
generally shorter than the read phase, this is an acceptable compromise.

Backward-oriented concurrency control ensures that for any pair of transactions T1
and T2, the following properties hold:

• T1 was committed before the read phase of T2 began, so T2 is allowed to commit.
• T1 was committed before the T2 write phase, and the write set of T1 doesn’t inter‐

sect with the T2 read set. In other words, T1 hasn’t written any values T2 should
have seen.

• The read phase of T1 has completed before the read phase of T2, and the write set
of T2 doesn’t intersect with the read or write sets of T1. In other words,
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transactions have operated on independent sets of data records, so both are
allowed to commit.

This approach is efficient if validation usually succeeds and transactions don’t have to
be retried, since retries have a significant negative impact on performance. Of course,
optimistic concurrency still has a critical section, which transactions can enter one at
a time. Another approach that allows nonexclusive ownership for some operations is
to use readers-writer locks (to allow shared access for readers) and upgradeable locks
(to allow conversion of shared locks to exclusive when needed).

Multiversion Concurrency Control
Multiversion concurrency control is a way to achieve transactional consistency in
database management systems by allowing multiple record versions and using
monotonically incremented transaction IDs or timestamps. This allows reads and
writes to proceed with a minimal coordination on the storage level, since reads can
continue accessing older values until the new ones are committed.

MVCC distinguishes between committed and uncommitted versions, which corre‐
spond to value versions of committed and uncommitted transactions. The last com‐
mitted version of the value is assumed to be current. Generally, the goal of the
transaction manager in this case is to have at most one uncommitted value at a time.

Depending on the isolation level implemented by the database system, read opera‐
tions may or may not be allowed to access uncommitted values [WEIKUM01]. Multi‐
version concurrency can be implemented using locking, scheduling, and conflict
resolution techniques (such as two-phase locking), or timestamp ordering. One of the
major use cases for MVCC for implementing snapshot isolation [HELLERSTEIN07].

Pessimistic Concurrency Control
Pessimistic concurrency control schemes are more conservative than optimistic ones.
These schemes determine transaction conflicts while they’re running and block or
abort their execution.

One of the simplest pessimistic (lock-free) concurrency control schemes is timestamp
ordering, where each transaction has a timestamp. Whether or not transaction opera‐
tions are allowed to be executed is determined by whether or not any transaction with
an earlier timestamp has already been committed. To implement that, the transaction
manager has to maintain max_read_timestamp and max_write_timestamp per value,
describing read and write operations executed by concurrent transactions.
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Read operations that attempt to read a value with a timestamp lower than
max_write_timestamp cause the transaction they belong to be aborted, since there’s
already a newer value, and allowing this operation would violate the transaction
order.

Similarly, write operations with a timestamp lower than max_read_timestamp would
conflict with a more recent read. However, write operations with a timestamp lower
than max_write_timestamp are allowed, since we can safely ignore the outdated writ‐
ten values. This conjecture is commonly called the Thomas Write Rule [THOMAS79].
As soon as read or write operations are performed, the corresponding maximum
timestamp values are updated. Aborted transactions restart with a new timestamp,
since otherwise they’re guaranteed to be aborted again [RAMAKRISHNAN03].

Lock-Based Concurrency Control
Lock-based concurrency control schemes are a form of pessimistic concurrency con‐
trol that uses explicit locks on the database objects rather than resolving schedules,
like protocols such as timestamp ordering do. Some of the downsides of using locks
are contention and scalability issues [REN16].

One of the most widespread lock-based techniques is two-phase locking (2PL), which
separates lock management into two phases:

• The growing phase (also called the expanding phase), during which all locks
required by the transaction are acquired and no locks are released.

• The shrinking phase, during which all locks acquired during the growing phase
are released.

A rule that follows from these two definitions is that a transaction cannot acquire any
locks as soon as it has released at least one of them. It’s important to note that 2PL
does not preclude transactions from executing steps during either one of these pha‐
ses; however, some 2PL variants (such as conservative 2PL) do impose these
limitations.

Despite similar names, two-phase locking is a concept that is
entirely different from two-phase commit (see “Two-Phase Com‐
mit” on page 259). Two-phase commit is a protocol used for dis‐
tributed multipartition transactions, while two-phase locking is a
concurrency control mechanism often used to implement
serializability.
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Deadlocks
In locking protocols, transactions attempt to acquire locks on the database objects
and, in case a lock cannot be granted immediately, a transaction has to wait until the
lock is released. A situation may occur when two transactions, while attempting to
acquire locks they require in order to proceed with execution, end up waiting for
each other to release the other locks they hold. This situation is called a deadlock.

Figure 5-6 shows an example of a deadlock: T1 holds lock L1 and waits for lock L2 to be
released, while T2 holds lock L2 and waits for L1 to be released.

Figure 5-6. Example of a deadlock

The simplest way to handle deadlocks is to introduce timeouts and abort long-
running transactions under the assumption that they might be in a deadlock. Another
strategy, conservative 2PL, requires transactions to acquire all the locks before they
can execute any of their operations and abort if they cannot. However, these
approaches significantly limit system concurrency, and database systems mostly use a
transaction manager to detect or avoid (in other words, prevent) deadlocks.

Detecting deadlocks is generally done using a waits-for graph, which tracks relation‐
ships between the in-flight transactions and establishes waits-for relationships
between them.

Cycles in this graph indicate the presence of a deadlock: transaction T1 is waiting for
T2 which, in turn, waits for T1. Deadlock detection can be done periodically (once per
time interval) or continuously (every time the waits-for graph is updated) [WEI‐
KUM01]. One of the transactions (usually, the one that attempted to acquire the lock
more recently) is aborted.
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To avoid deadlocks and restrict lock acquisition to cases that will not result in a dead‐
lock, the transaction manager can use transaction timestamps to determine their pri‐
ority. A lower timestamp usually implies higher priority and vice versa.

If transaction T1 attempts to acquire a lock currently held by T2, and T1 has higher pri‐
ority (it started before T2), we can use one of the following restrictions to avoid dead‐
locks [RAMAKRISHNAN03]:

Wait-die
T1 is allowed to block and wait for the lock. Otherwise, T1 is aborted and restar‐
ted. In other words, a transaction can be blocked only by a transaction with a
higher timestamp.

Wound-wait
T2 is aborted and restarted (T1 wounds T2). Otherwise (if T2 has started before T1),
T1 is allowed to wait. In other words, a transaction can be blocked only by a
transaction with a lower timestamp.

Transaction processing requires a scheduler to handle deadlocks. At the same time,
latches (see “Latches” on page 103) rely on the programmer to ensure that deadlocks
cannot happen and do not rely on deadlock avoidance mechanisms.

Locks
If two transactions are submitted concurrently, modifying overlapping segments of
data, neither one of them should observe partial results of the other one, hence main‐
taining logical consistency. Similarly, two threads from the same transaction have to
observe the same database contents, and have access to each other’s data.

In transaction processing, there’s a distinction between the mechanisms that guard
the logical and physical data integrity. The two concepts responsible logical and phys‐
ical integrity are, correspondingly, locks and latches. The naming is somewhat unfor‐
tunate since what’s called a latch here is usually referred to as a lock in systems
programming, but we’ll clarify the distinction and implications in this section.

Locks are used to isolate and schedule overlapping transactions and manage database
contents but not the internal storage structure, and are acquired on the key. Locks can
guard either a specific key (whether it’s existing or nonexisting) or a range of keys.
Locks are generally stored and managed outside of the tree implementation and rep‐
resent a higher-level concept, managed by the database lock manager.

Locks are more heavyweight than latches and are held for the duration of the
transaction.
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Latches
On the other hand, latches guard the physical representation: leaf page contents are
modified during insert, update, and delete operations. Nonleaf page contents and a
tree structure are modified during operations resulting in splits and merges that
propagate from leaf under- and overflows. Latches guard the physical tree representa‐
tion (page contents and the tree structure) during these operations and are obtained
on the page level. Any page has to be latched to allow safe concurrent access to it.
Lockless concurrency control techniques still have to use latches.

Since a single modification on the leaf level might propagate to higher levels of the B-
Tree, latches might have to be obtained on multiple levels. Executing queries should
not be able to observe pages in an inconsistent state, such as incomplete writes or
partial node splits, during which data might be present in both the source and target
node, or not yet propagated to the parent.

The same rules apply to parent or sibling pointer updates. A general rule is to hold a
latch for the smallest possible duration—namely, when the page is read or updated—
to increase concurrency.

Interferences between concurrent operations can be roughly grouped into three
categories:

• Concurrent reads, when several threads access the same page without modifying
it.

• Concurrent updates, when several threads attempt to make modifications to the
same page.

• Reading while writing, when one of the threads is trying to modify the page con‐
tents, and the other one is trying to access the same page for a read.

These scenarios also apply to accesses that overlap with database maintenance (such
as background processes, as described in “Vacuum and Maintenance” on page 74).

Readers-writer lock
The simplest latch implementation would grant exclusive read/write access to the
requesting thread. However, most of the time, we do not need to isolate all the pro‐
cesses from each other. For example, reads can access pages concurrently without
causing any trouble, so we only need to make sure that multiple concurrent writers do
not overlap, and readers do not overlap with writers. To achieve this level of granular‐
ity, we can use a readers-writer lock or RW lock.

An RW lock allows multiple readers to access the object concurrently, and only writ‐
ers (which we usually have fewer of) have to obtain exclusive access to the object.
Figure 5-7 shows the compatibility table for readers-writer locks: only readers can
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share lock ownership, while all other combinations of readers and writers should
obtain exclusive ownership.

Figure 5-7. Readers-writer lock compatibility table

In Figure 5-8 (a), we have multiple readers accessing the object, while the writer is
waiting for its turn, since it can’t modify the page while readers access it. In Figure 5-8
(b), writer 1 holds an exclusive lock on the object, while another writer and three
readers have to wait.

Figure 5-8. Readers-writer locks

Since two overlapping reads attempting to access the same page do not require syn‐
chronization other than preventing the page from being fetched from disk by the
page cache twice, reads can be safely executed concurrently in shared mode. As soon
as writes come into play, we need to isolate them from both concurrent reads and
other writes.

Busy-Wait and Queueing Techniques
To manage shared access to pages, we can either use blocking algorithms, which de-
schedule threads and wake them up as soon as they can proceed, or use busy-wait
algorithms. Busy-wait algorithms allow threads to wait for insignificant amounts of
time instead of handing control back to the scheduler.

Queuing is usually implemented using compare-and-swap instructions, used to per‐
form operations guaranteeing lock acquisition and queue update atomicity. If the
queue is empty, the thread obtains access immediately. Otherwise, the thread appends
itself to the waiting queue and spins on the variable that can be updated only by the
thread preceding it in the queue. This helps to reduce the amount of CPU traffic for
lock acquisition and release [MELLORCRUMMEY91].
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Latch crabbing
The most straightforward approach for latch acquisition is to grab all the latches on
the way from the root to the target leaf. This creates a concurrency bottleneck and
can be avoided in most cases. The time during which a latch is held should be mini‐
mized. One of the optimizations that can be used to achieve that is called latch crab‐
bing (or latch coupling) [RAMAKRISHNAN03].

Latch crabbing is a rather simple method that allows holding latches for less time and
releasing them as soon as it’s clear that the executing operation does not require them
anymore. On the read path, as soon as the child node is located and its latch is
acquired, the parent node’s latch can be released.

During insert, the parent latch can be released if the operation is guaranteed not to
result in structural changes that can propagate to it. In other words, the parent latch
can be released if the child node is not full.

Similarly, during deletes, if the child node holds enough elements and the operation
will not cause sibling nodes to merge, the latch on the parent node is released.

Figure 5-9 shows a root-to-leaf pass during insert:

• a) The write latch is acquired on the root level.
• b) The next-level node is located, and its write latch is acquired. The node is

checked for potential structural changes. Since the node is not full, the parent
latch can be released.

• c) The operation descends to the next level. The write latch is acquired, the target
leaf node is checked for potential structural changes, and the parent latch is
released.

This approach is optimistic: most insert and delete operations do not cause structural
changes that propagate multiple levels up. In fact, the probability of structural
changes decreases at higher levels. Most of the operations only require the latch on
the target node, and the number of cases when the parent latch has to be retained is
relatively small.

If the child page is still not loaded in the page cache, we can either latch a future load‐
ing page, or release a parent latch and restart the root-to-leaf pass after the page is
loaded to reduce contention. Restarting root-to-leaf traversal sounds rather expen‐
sive, but in reality, we have to perform it rather infrequently, and can employ mecha‐
nisms to detect whether or not there were any structural changes at higher levels
since the time of traversal [GRAEFE10].
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Figure 5-9. Latch crabbing during insert
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Latch Upgrading and Pointer Chasing
Instead of acquiring latches during traversal in an exclusive mode right away, latch
upgrading can be employed instead. This approach involves acquisition of shared
locks along the search path and upgrading them to exclusive locks when necessary.

Write operations first acquire exclusive locks only at the leaf level. If the leaf has to be
split or merged, the algorithm walks up the tree and attempts to upgrade a shared lock
that the parent holds, acquiring exclusive ownership of latches for the affected por‐
tion of the tree (i.e., nodes that will also be split or merged as a result of that opera‐
tion). Since multiple threads might attempt to acquire exclusive locks on one of the
higher levels, one of them has to wait or restart.

You might have noticed that the mechanisms described so far all start by acquiring a
latch on the root node. Every request has to go through the root node, and it quickly
becomes a bottleneck. At the same time, the root is always the last to be split, since all
of its children have to fill up first. This means that the root node can always be latched
optimistically, and the price of a retry (pointer chasing) is seldom paid.

Blink-Trees
Blink-Trees build on top of B*-Trees (see “Rebalancing” on page 70) and add high keys
(see “Node High Keys” on page 64) and sibling link pointers [LEHMAN81]. A high
key indicates the highest possible subtree key. Every node but root in a Blink-Tree has
two pointers: a child pointer descending from the parent and a sibling link from the
left node residing on the same level.

Blink-Trees allow a state called half-split, where the node is already referenced by the
sibling pointer, but not by the child pointer from its parent. Half-split is identified by
checking the node high key. If the search key exceeds the high key of the node (which
violates the high key invariant), the lookup algorithm concludes that the structure has
been changed concurrently and follows the sibling link to proceed with the search.

The pointer has to be quickly added to the parent guarantee the best performance,
but the search process doesn’t have to be aborted and restarted, since all elements in
the tree are accessible. The advantage here is that we do not have to hold the parent
lock when descending to the child level, even if the child is going to be split: we can
make a new node visible through its sibling link and update the parent pointer lazily
without sacrificing correctness [GRAEFE10].

While this is slightly less efficient than descending directly from the parent and
requires accessing an extra page, this results in correct root-to-leaf descent while sim‐
plifying concurrent access. Since splits are a relatively infrequent operation and B-
Trees rarely shrink, this case is exceptional, and its cost is insignificant. This approach
has quite a few benefits: it reduces contention, prevents holding a parent lock during
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splits, and reduces the number of locks held during tree structure modification to a
constant number. More importantly, it allows reads concurrent to structural tree
changes, and prevents deadlocks otherwise resulting from concurrent modifications
ascending to the parent nodes.

Summary
In this chapter, we discussed the storage engine components responsible for transac‐
tion processing and recovery. When implementing transaction processing, we are
presented with two problems:

• To improve efficiency, we need to allow concurrent transaction execution.
• To preserve correctness, we have to ensure that concurrently executing transac‐

tions preserve ACID properties.

Concurrent transaction execution can cause different kinds of read and write anoma‐
lies. Presence or absence of these anomalies is described and limited by implementing
different isolation levels. Concurrency control approaches determine how transac‐
tions are scheduled and executed.

The page cache is responsible for reducing the number of disk accesses: it caches
pages in memory and allows read and write access to them. When the cache reaches
its capacity, pages are evicted and flushed back on disk. To make sure that unflushed
changes are not lost in case of node crashes and to support transaction rollback, we
use write-ahead logs. The page cache and write-ahead logs are coordinated using
force and steal policies, ensuring that every transaction can be executed efficiently
and rolled back without sacrificing durability.
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CHAPTER 6

B-Tree Variants

B-Tree variants have a few things in common: tree structure, balancing through splits
and merges, and lookup and delete algorithms. Other details, related to concurrency,
on-disk page representation, links between sibling nodes, and maintenance processes,
may vary between implementations.

In this chapter, we’ll discuss several techniques that can be used to implement effi‐
cient B-Trees and structures that employ them:

• Copy-on-write B-Trees are structured like B-Trees, but their nodes are immutable
and are not updated in place. Instead, pages are copied, updated, and written to
new locations.

• Lazy B-Trees reduce the number of I/O requests from subsequent same-node
writes by buffering updates to nodes. In the next chapter, we also cover two-
component LSM trees (see “Two-component LSM Tree” on page 132), which take
buffering a step further to implement fully immutable B-Trees.

• FD-Trees take a different approach to buffering, somewhat similar to LSM Trees
(see “LSM Trees” on page 130). FD-Trees buffer updates in a small B-Tree. As
soon as this tree fills up, its contents are written into an immutable run. Updates
propagate between levels of immutable runs in a cascading manner, from higher
levels to lower ones.

• Bw-Trees separate B-Tree nodes into several smaller parts that are written in an
append-only manner. This reduces costs of small writes by batching updates to
the different nodes together.

• Cache-oblivious B-Trees allow treating on-disk data structures in a way that is
very similar to how we build in-memory ones.
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Copy-on-Write
Some databases, rather than building complex latching mechanisms, use the copy-on-
write technique to guarantee data integrity in the presence of concurrent operations.
In this case, whenever the page is about to be modified, its contents are copied, the
copied page is modified instead of the original one, and a parallel tree hierarchy is
created.

Old tree versions remain accessible for readers that run concurrently to the writer,
while writers accessing modified pages have to wait until preceding write operations
are complete. After the new page hierarchy is created, the pointer to the topmost page
is atomically updated. In Figure 6-1, you can see a new tree being created parallel to
the old one, reusing the untouched pages.

Figure 6-1. Copy-on-write B-Trees

An obvious downside of this approach is that it requires more space (even though old
versions are retained only for brief time periods, since pages can be reclaimed imme‐
diately after concurrent operations using the old pages complete) and processor time,
as entire page contents have to be copied. Since B-Trees are generally shallow, the
simplicity and advantages of this approach often still outweigh the downsides.

The biggest advantage of this approach is that readers require no synchronization,
because written pages are immutable and can be accessed without additional latching.
Since writes are performed against copied pages, readers do not block writers. No
operation can observe a page in an incomplete state, and a system crash cannot leave
pages in a corrupted state, since the topmost pointer is switched only when all page
modifications are done.
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1 To learn more about LMDB, see the code comments and the presentation.

Implementing Copy-on-Write: LMDB
One of the storage engines using copy-on-write is the Lightning Memory-Mapped
Database (LMDB), which is a key-value store used by the OpenLDAP project. Due to
its design and architecture, LMDB doesn’t require a page cache, a write-ahead log,
checkpointing, or compaction.1

LMDB is implemented as a single-level data store, which means that read and write
operations are satisfied directly through the memory map, without additional
application-level caching in between. This also means that pages require no addi‐
tional materialization and reads can be served directly from the memory map
without copying data to the intermediate buffer. During the update, every branch
node on the path from the root to the target leaf is copied and potentially modified:
nodes for which updates propagate are changed, and the rest of the nodes remain
intact.

LMDB holds only two versions of the root node: the latest version, and the one where
new changes are going to be committed. This is sufficient since all writes have to go
through the root node. After the new root is created, the old one becomes unavailable
for new reads and writes. As soon as the reads referencing old tree sections complete,
their pages are reclaimed and can be reused. Because of LMDB’s append-only design,
it does not use sibling pointers and has to ascend back to the parent node during
sequential scans.

With this design, leaving stale data in copied nodes is impractical: there is already a
copy that can be used for MVCC and satisfy ongoing read transactions. The database
structure is inherently multiversioned, and readers can run without any locks as they
do not interfere with writers in any way.

Abstracting Node Updates
To update the page on disk, one way or the other, we have to first update its in-
memory representation. However, there are a few ways to represent a node in mem‐
ory: we can access the cached version of the node directly, do it through the wrapper
object, or create its in-memory representation native to the implementation language.

In languages with an unmanaged memory model, raw binary data stored in B-Tree
nodes can be reinterpreted and native pointers can be used to manipulate it. In this
case, the node is defined in terms of structures, which use raw binary data behind the
pointer and runtime casts. Most often, they point to the memory area managed by
the page cache or use memory mapping.
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2 This is not a commonly recognized name, but since the B-Tree variants we’re discussing here share one prop‐
erty—buffering B-Tree updates in intermediate structures instead of applying them to the tree directly—we’ll
use the term lazy, which rather precisely defines this property.

Alternatively, B-Tree nodes can be materialized into objects or structures native to the
language. These structures can be used for inserts, updates, and deletes. During flush,
changes are applied to pages in memory and, subsequently, on disk. This approach
has the advantage of simplifying concurrent accesses since changes to underlying raw
pages are managed separately from accesses to intermediate objects, but results in a
higher memory overhead, since we have to store two versions (raw binary and
language-native) of the same page in memory.

The third approach is to provide access to the buffer backing the node through the
wrapper object that materializes changes in the B-Tree as soon as they’re performed.
This approach is most often used in languages with a managed memory model.
Wrapper objects apply the changes to the backing buffers.

Managing on-disk pages, their cached versions, and their in-memory representations
separately allows them to have different life cycles. For example, we can buffer insert,
update, and delete operations, and reconcile changes made in memory with the origi‐
nal on-disk versions during reads.

Lazy B-Trees
Some algorithms (in the scope of this book, we call them lazy B-Trees2) reduce costs
of updating the B-Tree and use more lightweight, concurrency- and update-friendly
in-memory structures to buffer updates and propagate them with a delay.

WiredTiger
Let’s take a look at how we can use buffering to implement a lazy B-Tree. For that, we
can materialize B-Tree nodes in memory as soon as they are paged in and use this
structure to store updates until we’re ready to flush them.

A similar approach is used by WiredTiger, a now-default MongoDB storage engine.
Its row store B-Tree implementation uses different formats for in-memory and on-
disk pages. Before in-memory pages are persisted, they have to go through the recon‐
ciliation process.
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In Figure 6-2, you can see a schematic representation of WiredTiger pages and their
composition in a B-Tree. A clean page consists of just an index, initially constructed
from the on-disk page image. Updates are first saved into the update buffer.

Figure 6-2. WiredTiger: high-level overview

Update buffers are accessed during reads: their contents are merged with the original
on-disk page contents to return the most recent data. When the page is flushed,
update buffer contents are reconciled with page contents and persisted on disk, over‐
writing the original page. If the size of the reconciled page is greater than the maxi‐
mum, it is split into multiple pages. Update buffers are implemented using skiplists,
which have a complexity similar to search trees [PAPADAKIS93] but have a better
concurrency profile [PUGH90a].

Figure 6-3 shows that both clean and dirty pages in WiredTiger have in-memory ver‐
sions, and reference a base image on disk. Dirty pages have an update buffer in addi‐
tion to that.

The main advantage here is that the page updates and structural modifications (splits
and merges) are performed by the background thread, and read/write processes do
not have to wait for them to complete.
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Figure 6-3. WiredTiger pages

Lazy-Adaptive Tree
Rather than buffering updates to individual nodes, we can group nodes into subtrees,
and attach an update buffer for batching operations to each subtree. Update buffers in
this case will track all operations performed against the subtree top node and its
descendants. This algorithm is called Lazy-Adaptive Tree (LA-Tree) [AGRAWAL09].

When inserting a data record, a new entry is first added to the root node update
buffer. When this buffer becomes full, it is emptied by copying and propagating the
changes to the buffers in the lower tree levels. This operation can continue recursively
if the lower levels fill up as well, until it finally reaches the leaf nodes.

In Figure 6-4, you see an LA-Tree with cascaded buffers for nodes grouped in corre‐
sponding subtrees. Gray boxes represent changes that propagated from the root
buffer.
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Figure 6-4. LA-Tree

Buffers have hierarchical dependencies and are cascaded: all the updates propagate
from higher-level buffers to the lower-level ones. When the updates reach the leaf
level, batched insert, update, and delete operations are performed there, applying all
changes to the tree contents and its structure at once. Instead of performing subse‐
quent updates on pages separately, pages can be updated in a single run, requiring
fewer disk accesses and structural changes, since splits and merges propagate to the
higher levels in batches as well.

The buffering approaches described here optimize tree update time by batching write
operations, but in slightly different ways. Both algorithms require additional lookups
in in-memory buffering structures and merge/reconciliation with stale disk data.

FD-Trees
Buffering is one of the ideas that is widely used in database storage: it helps to avoid
many small random writes and performs a single larger write instead. On HDDs, ran‐
dom writes are slow because of the head positioning. On SSDs, there are no moving
parts, but the extra write I/O imposes an additional garbage collection penalty.

Maintaining a B-Tree requires a lot of random writes—leaf-level writes, splits, and
merges propagating to the parents—but what if we could avoid random writes and
node updates altogether?

So far we’ve discussed buffering updates to individual nodes or groups of nodes by
creating auxiliary buffers. An alternative approach is to group updates targeting dif‐
ferent nodes together by using append-only storage and merge processes, an idea that
has also inspired LSM Trees (see “LSM Trees” on page 130). This means that any
write we perform does not require locating a target node for the write: all updates are
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simply appended. One of the examples of using this approach for indexing is called
Flash Disk Tree (FD-Tree) [LI10].

An FD-Tree consists of a small mutable head tree and multiple immutable sorted
runs. This approach limits the surface area, where random write I/O is required, to
the head tree: a small B-Tree buffering the updates. As soon as the head tree fills up,
its contents are transferred to the immutable run. If the size of the newly written run
exceeds the threshold, its contents are merged with the next level, gradually propagat‐
ing data records from upper to lower levels.

Fractional Cascading
To maintain pointers between the levels, FD-Trees use a technique called fractional
cascading [CHAZELLE86]. This approach helps to reduce the cost of locating an item
in the cascade of sorted arrays: you perform log n steps to find the searched item in
the first array, but subsequent searches are significantly cheaper, since they start the
search from the closest match from the previous level.

Shortcuts between the levels are made by building bridges between the neighbor-level
arrays to minimize the gaps: element groups without pointers from higher levels.
Bridges are built by pulling elements from lower levels to the higher ones, if they don’t
already exist there, and pointing to the location of the pulled element in the lower-
level array.

Since [CHAZELLE86] solves a search problem in computational geometry, it
describes bidirectional bridges, and an algorithm for restoring the gap size invariant
that we won’t be covering here. We describe only the parts that are applicable to data‐
base storage and FD-Trees in particular.

We could create a mapping from every element of the higher-level array to the closest
element on the next level, but that would cause too much overhead for pointers and
their maintenance. If we were to map only the items that already exist on a higher
level, we could end up in a situation where the gaps between the elements are too
large. To solve this problem, we pull every Nth item from the lower-level array to the
higher one.

For example, if we have multiple sorted arrays:

A1 = [12, 24, 32, 34, 39]
A2 = [22, 25, 28, 30, 35]
A3 = [11, 16, 24, 26, 30]

We can bridge the gaps between elements by pulling every other element from the
array with a higher index to the one with a lower index in order to simplify searches:

A1 = [12, 24, 25, 30, 32, 34, 39]
A2 = [16, 22, 25, 26, 28, 30, 35]
A3 = [11, 16, 24, 26, 30]
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Now, we can use these pulled elements to create bridges (or fences as the FD-Tree
paper calls them): pointers from higher-level elements to their counterparts on the
lower levels, as Figure 6-5 shows.

Figure 6-5. Fractional cascading

To search for elements in all these arrays, we perform a binary search on the highest
level, and the search space on the next level is reduced significantly, since now we are
forwarded to the approximate location of the searched item by following a bridge.
This allows us to connect multiple sorted runs and reduce the costs of searching in
them.

Logarithmic Runs
An FD-Tree combines fractional cascading with creating logarithmically sized sorted
runs: immutable sorted arrays with sizes increasing by a factor of k, created by merg‐
ing the previous level with the current one.

The highest-level run is created when the head tree becomes full: its leaf contents are
written to the first level. As soon as the head tree fills up again, its contents are
merged with the first-level items. The merged result replaces the old version of the
first run. The lower-level runs are created when the sizes of the higher-level ones
reach a threshold. If a lower-level run already exists, it is replaced by the result of
merging its contents with the contents of a higher level. This process is quite similar
to compaction in LSM Trees, where immutable table contents are merged to create
larger tables.

Figure 6-6 shows a schematic representation of an FD-Tree, with a head B-Tree on
the top, two logarithmic runs L1 and L2, and bridges between them.
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Figure 6-6. Schematic FD-Tree overview

To keep items in all sorted runs addressable, FD-Trees use an adapted version of frac‐
tional cascading, where head elements from lower-level pages are propagated as
pointers to the higher levels. Using these pointers, the cost of searching in lower-level
trees is reduced, since the search was already partially done on a higher level and can
continue from the closest match.

Since FD-Trees do not update pages in place, and it may happen that data records for
the same key are present on several levels, the FD-Trees delete work by inserting
tombstones (the FD-Tree paper calls them filter entries) that indicate that the data
record associated with a corresponding key is marked for deletion, and all data
records for that key in the lower levels have to be discarded. When tombstones prop‐
agate all the way to the lowest level, they can be discarded, since it is guaranteed that
there are no items they can shadow anymore.

Bw-Trees
Write amplification is one of the most significant problems with in-place update
implementations of B-Trees: subsequent updates to a B-Tree page may require updat‐
ing a disk-resident page copy on every update. The second problem is space amplifi‐
cation: we reserve extra space to make updates possible. This also means that for each
transferred useful byte carrying the requested data, we have to transfer some empty
bytes and the rest of the page. The third problem is complexity in solving concur‐
rency problems and dealing with latches.

To solve all three problems at once, we have to take an approach entirely different
from the ones we’ve discussed so far. Buffering updates helps with write and space
amplification, but offers no solution to concurrency issues.

We can batch updates to different nodes by using append-only storage, link nodes
together into chains, and use an in-memory data structure that allows installing
pointers between the nodes with a single compare-and-swap operation, making the
tree lock-free. This approach is called a Buzzword-Tree (Bw-Tree) [LEVAN‐
DOSKI14] .
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Update Chains
A Bw-Tree writes a base node separately from its modifications. Modifications (delta
nodes) form a chain: a linked list from the newest modification, through older ones,
with the base node in the end. Each update can be stored separately, without needing
to rewrite the existing node on disk. Delta nodes can represent inserts, updates
(which are indistinguishable from inserts), or deletes.

Since the sizes of base and delta nodes are unlikely to be page aligned, it makes sense
to store them contiguously, and because neither base nor delta nodes are modified
during update (all modifications just prepend a node to the existing linked list), we
do not need to reserve any extra space.

Having a node as a logical, rather than physical, entity is an interesting paradigm
change: we do not need to pre-allocate space, require nodes to have a fixed size, or
even keep them in contiguous memory segments. This certainly has a downside: dur‐
ing a read, all deltas have to be traversed and applied to the base node to reconstruct
the actual node state. This is somewhat similar to what LA-Trees do (see “Lazy-
Adaptive Tree” on page 116): keeping updates separate from the main structure and
replaying them on read.

Taming Concurrency with Compare-and-Swap
It would be quite costly to maintain an on-disk tree structure that allows prepending
items to child nodes: it would require us to constantly update parent nodes with
pointers to the freshest delta. This is why Bw-Tree nodes, consisting of a chain of del‐
tas and the base node, have logical identifiers and use an in-memory mapping table
from the identifiers to their locations on disk. Using this mapping also helps us to get
rid of latches: instead of having exclusive ownership during write time, the Bw-Tree
uses compare-and-swap operations on physical offsets in the mapping table.

Figure 6-7 shows a simple Bw-Tree. Each logical node consists of a single base node
and multiple linked delta nodes.

Figure 6-7. Bw-Tree. Dotted lines represent virtual links between the nodes, resolved
using the mapping table. Solid lines represent actual data pointers between the nodes.
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To update a Bw-Tree node, the algorithm executes the following steps:

1. The target logical leaf node is located by traversing the tree from root to leaf. The
mapping table contains virtual links to target base nodes or the latest delta nodes
in the update chain.

2. A new delta node is created with a pointer to the base node (or to the latest delta
node) located during step 1.

3. The mapping table is updated with a pointer to the new delta node created dur‐
ing step 2.

An update operation during step 3 can be done using compare-and-swap, which is an
atomic operation, so all reads, concurrent to the pointer update, are ordered either
before or after the write, without blocking either the readers or the writer. Reads
ordered before follow the old pointer and do not see the new delta node, since it was
not yet installed. Reads ordered after follow the new pointer, and observe the update.
If two threads attempt to install a new delta node to the same logical node, only one
of them can succeed, and the other one has to retry the operation.

Structural Modification Operations
A Bw-Tree is logically structured like a B-Tree, which means that nodes still might
grow to be too large (overflow) or shrink to be almost empty (underflow) and require
structure modification operations (SMOs), such as splits and merges. The semantics
of splits and merges here are similar to those of B-Trees (see “B-Tree Node Splits” on
page 39 and “B-Tree Node Merges” on page 41), but their implementation is different.

Split SMOs start by consolidating the logical contents of the splitting node, applying
deltas to its base node, and creating a new page containing elements to the right of
the split point. After this, the process proceeds in two steps [WANG18]:

1. Split—A special split delta node is appended to the splitting node to notify the
readers about the ongoing split. The split delta node holds a midpoint separator
key to invalidate records in the splitting node, and a link to the new logical sib‐
ling node.

2. Parent update—At this point, the situation is similar to that of the Blink-Tree half-
split (see “Blink-Trees” on page 107), since the node is available through the split
delta node pointer, but is not yet referenced by the parent, and readers have to go
through the old node and then traverse the sibling pointer to reach the newly cre‐
ated sibling node. A new node is added as a child to the parent node, so that
readers can directly reach it instead of being redirected through the splitting
node, and the split completes.

122 | Chapter 6: B-Tree Variants



Updating the parent pointer is a performance optimization: all nodes and their ele‐
ments remain accessible even if the parent pointer is never updated. Bw-Trees are
latch-free, so any thread can encounter an incomplete SMO. The thread is required to
cooperate by picking up and finishing a multistep SMO before proceeding. The next
thread will follow the installed parent pointer and won’t have to go through the sib‐
ling pointer.

Merge SMOs work in a similar way:

1. Remove sibling—A special remove delta node is created and appended to the right
sibling, indicating the start of the merge SMO and marking the right sibling for
deletion.

2. Merge—A merge delta node is created on the left sibling to point to the contents
of the right sibling and making it a logical part of the left sibling.

3. Parent update—At that point, the right sibling node contents are accessible from
the left one. To finish the merge process, the link to the right sibling has to be
removed from the parent.

Concurrent SMOs require an additional abort delta node to be installed on the parent
to prevent concurrent splits and merges [WANG18]. An abort delta works similarly
to a write lock: only one thread can have write access at a time, and any thread that
attempts to append a new record to this delta node will abort. On SMO completion,
the abort delta can be removed from the parent.

The Bw-Tree height grows during the root node splits. When the root node gets too
big, it is split in two, and a new root is created in place of the old one, with the old
root and a newly created sibling as its children.

Consolidation and Garbage Collection
Delta chains can get arbitrarily long without any additional action. Since reads are
getting more expensive as the delta chain gets longer, we need to try to keep the delta
chain length within reasonable bounds. When it reaches a configurable threshold, we
rebuild the node by merging the base node contents with all of the deltas, consolidat‐
ing them to one new base node. The new node is then written to the new location on
disk and the node pointer in the mapping table is updated to point to it. We discuss
this process in more detail in “LLAMA and Mindful Stacking” on page 160, as the
underlying log-structured storage is responsible for garbage collection, node consoli‐
dation, and relocation.
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As soon as the node is consolidated, its old contents (the base node and all of the
delta nodes) are no longer addressed from the mapping table. However, we cannot
free the memory they occupy right away, because some of them might be still used by
ongoing operations. Since there are no latches held by readers (readers did not have
to pass through or register at any sort of barrier to access the node), we need to find
other means to track live pages.

To separate threads that might have encountered a specific node from those that
couldn’t have possibly seen it, Bw-Trees use a technique known as epoch-based recla‐
mation. If some nodes and deltas are removed from the mapping table due to consoli‐
dations that replaced them during some epoch, original nodes are preserved until
every reader that started during the same epoch or the earlier one is finished. After
that, they can be safely garbage collected, since later readers are guaranteed to have
never seen those nodes, as they were not addressable by the time those readers
started.

The Bw-Tree is an interesting B-Tree variant, making improvements on several
important aspects: write amplification, nonblocking access, and cache friendliness. A
modified version was implemented in Sled, an experimental storage engine. The
CMU Database Group has developed an in-memory version of the Bw-Tree called
OpenBw-Tree and released a practical implementation guide [WANG18].

We’ve only touched on higher-level Bw-Tree concepts related to B-Trees in this chap‐
ter, and we continue the discussion about them in “LLAMA and Mindful Stacking”
on page 160, including the discussion about the underlying log-structured storage.

Cache-Oblivious B-Trees
Block size, node size, cache line alignments, and other configurable parameters influ‐
ence B-Tree performance. A new class of data structures called cache-oblivious struc‐
tures [DEMAINE02] give asymptotically optimal performance regardless of the
underlying memory hierarchy and a need to tune these parameters. This means that
the algorithm is not required to know the sizes of the cache lines, filesystem blocks,
and disk pages. Cache-oblivious structures are designed to perform well without
modification on multiple machines with different configurations.

So far, we’ve been mostly looking at B-Trees from a two-level memory hierarchy (with
the exception of LMDB described in “Copy-on-Write” on page 112). B-Tree nodes are
stored in disk-resident pages, and the page cache is used to allow efficient access to
them in main memory.
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The two levels of this hierarchy are page cache (which is faster, but is limited in space)
and disk (which is generally slower, but has a larger capacity) [AGGARWAL88]. Here,
we have only two parameters, which makes it rather easy to design algorithms as we
only have to have two level-specific code modules that take care of all the details rele‐
vant to that level.

The disk is partitioned into blocks, and data is transferred between disk and cache in
blocks: even when the algorithm has to locate a single item within the block, an entire
block has to be loaded. This approach is cache-aware.

When developing performance-critical software, we often program for a more com‐
plex model, taking into consideration CPU caches, and sometimes even disk hierar‐
chies (like hot/cold storage or build HDD/SSD/NVM hierarchies, and phase off data
from one level to the other). Most of the time such efforts are difficult to generalize.
In “Memory- Versus Disk-Based DBMS” on page 10, we talked about the fact that
accessing disk is several orders of magnitude slower than accessing main memory,
which has motivated database implementers to optimize for this difference.

Cache-oblivious algorithms allow reasoning about data structures in terms of a two-
level memory model while providing the benefits of a multilevel hierarchy model.
This approach allows having no platform-specific parameters, yet guarantees that the
number of transfers between the two levels of the hierarchy is within a constant fac‐
tor. If the data structure is optimized to perform optimally for any two levels of mem‐
ory hierarchy, it also works optimally for the two adjacent hierarchy levels. This is
achieved by working at the highest cache level as much as possible.

van Emde Boas Layout
A cache-oblivious B-Tree consists of a static B-Tree and a packed array structure
[BENDER05]. A static B-Tree is built using the van Emde Boas layout. It splits the tree
at the middle level of the edges. Then each subtree is split recursively in a similar
manner, resulting in subtrees of sqr(N) size. The key idea of this layout is that any
recursive tree is stored in a contiguous block of memory.

In Figure 6-8, you can see an example of a van Emde Boas layout. Nodes, logically
grouped together, are placed closely together. On top, you can see a logical layout rep‐
resentation (i.e., how nodes form a tree), and on the bottom you can see how tree
nodes are laid out in memory and on disk.
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Figure 6-8. van Emde Boas layout

To make the data structure dynamic (i.e., allow inserts, updates, and deletes), cache-
oblivious trees use a packed array data structure, which uses contiguous memory
segments for storing elements, but contains gaps reserved for future inserted ele‐
ments. Gaps are spaced based on the density threshold. Figure 6-9 shows a packed
array structure, where elements are spaced to create gaps.

Figure 6-9. Packed array

This approach allows inserting items into the tree with fewer relocations. Items have
to be relocated just to create a gap for the newly inserted element, if the gap is not
already present. When the packed array becomes too densely or sparsely populated,
the structure has to be rebuilt to grow or shrink the array.

The static tree is used as an index for the bottom-level packed array, and has to be
updated in accordance with relocated elements to point to correct elements on the
bottom level.

This is an interesting approach, and ideas from it can be used to build efficient B-Tree
implementations. It allows constructing on-disk structures in ways that are very simi‐
lar to how main memory ones are constructed. However, as of the date of writing, I’m
not aware of any nonacademic cache-oblivious B-Tree implementations.

A possible reason for that is an assumption that when cache loading is abstracted
away, while data is loaded and written back in blocks, paging and eviction still have a
negative impact on the result. Another possible reason is that in terms of block trans‐
fers, the complexity of cache-oblivious B-Trees is the same as their cache-aware coun‐
terpart. This may change when more efficient nonvolatile byte-addressable storage
devices become more widespread.
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Summary
The original B-Tree design has several shortcomings that might have worked well on
spinning disks, but make it less efficient when used on SSDs. B-Trees have high write
amplification (caused by page rewrites) and high space overhead since B-Trees have to
reserve space in nodes for future writes.

Write amplification can be reduced by using buffering. Lazy B-Trees, such as
WiredTiger and LA-Trees, attach in-memory buffers to individual nodes or groups of
nodes to reduce the number of required I/O operations by buffering subsequent
updates to pages in memory.

To reduce space amplification, FD-Trees use immutability: data records are stored in
the immutable sorted runs, and the size of a mutable B-Tree is limited.

Bw-Trees solve space amplification by using immutability, too. B-Tree nodes and
updates to them are stored in separate on-disk locations and persisted in the
log-structured store. Write amplification is reduced compared to the original B-Tree
design, since reconciling contents that belong to a single logical node is relatively
infrequent. Bw-Trees do not require latches for protecting pages from concurrent
accesses, as the virtual pointers between the logical nodes are stored in memory.
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CHAPTER 7

Log-Structured Storage

Accountants don’t use erasers or they end up in jail.
—Pat Helland

When accountants have to modify the record, instead of erasing the existing value,
they create a new record with a correction. When the quarterly report is published, it
may contain minor modifications, correcting the previous quarter results. To derive
the bottom line, you have to go through the records and calculate a subtotal [HEL‐
LAND15].

Similarly, immutable storage structures do not allow modifications to the existing
files: tables are written once and are never modified again. Instead, new records are
appended to the new file and, to find the final value (or conclude its absence), records
have to be reconstructed from multiple files. In contrast, mutable storage structures
modify records on disk in place.

Immutable data structures are often used in functional programming languages and
are getting more popular because of their safety characteristics: once created, an
immutable structure doesn’t change, all of its references can be accessed concurrently,
and its integrity is guaranteed by the fact that it cannot be modified.

On a high level, there is a strict distinction between how data is treated inside a stor‐
age structure and outside of it. Internally, immutable files can hold multiple copies,
more recent ones overwriting the older ones, while mutable files generally hold only
the most recent value instead. When accessed, immutable files are processed, redun‐
dant copies are reconciled, and the most recent ones are returned to the client.

As do other books and papers on the subject, we use B-Trees as a typical example of
mutable structure and Log-Structured Merge Trees (LSM Trees) as an example of an
immutable structure. Immutable LSM Trees use append-only storage and merge
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reconciliation, and B-Trees locate data records on disk and update pages at their orig‐
inal offsets in the file.

In-place update storage structures are optimized for read performance [GRAEFE04]:
after locating data on disk, the record can be returned to the client. This comes at the
expense of write performance: to update the data record in place, it first has to be
located on disk. On the other hand, append-only storage is optimized for write per‐
formance. Writes do not have to locate records on disk to overwrite them. However,
this is done at the expense of reads, which have to retrieve multiple data record ver‐
sions and reconcile them.

So far we’ve mostly talked about mutable storage structures. We’ve touched on the
subject of immutability while discussing copy-on-write B-Trees (see “Copy-on-Write”
on page 112), FD-Trees (see “FD-Trees” on page 117), and Bw-Trees (see “Bw-Trees”
on page 120). But there are more ways to implement immutable structures.

Because of the structure and construction approach taken by mutable B-Trees, most
I/O operations during reads, writes, and maintenance are random. Each write opera‐
tion first needs to locate a page that holds a data record and only then can modify it.
B-Trees require node splits and merges that relocate already written records. After
some time, B-Tree pages may require maintenance. Pages are fixed in size, and some
free space is reserved for future writes. Another problem is that even when only one
cell in the page is modified, an entire page has to be rewritten.

There are alternative approaches that can help to mitigate these problems, make some
of the I/O operations sequential, and avoid page rewrites during modifications. One
of the ways to do this is to use immutable structures. In this chapter, we’ll focus on
LSM Trees: how they’re built, what their properties are, and how they are different
from B-Trees.

LSM Trees
When talking about B-Trees, we concluded that space overhead and write amplifica‐
tion can be improved by using buffering. Generally, there are two ways buffering can
be applied in different storage structures: to postpone propagating writes to disk-
resident pages (as we’ve seen with “FD-Trees” on page 117 and “WiredTiger” on page
114), and to make write operations sequential.

One of the most popular immutable on-disk storage structures, LSM Tree uses
buffering and append-only storage to achieve sequential writes. The LSM Tree is a
variant of a disk-resident structure similar to a B-Tree, where nodes are fully occu‐
pied, optimized for sequential disk access. This concept was first introduced in a
paper by Patrick O’Neil and Edward Cheng [ONEIL96]. Log-structured merge trees
take their name from log-structured filesystems, which write all modifications on
disk in a log-like file [ROSENBLUM92].
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LSM Trees write immutable files and merge them together over
time. These files usually contain an index of their own to help read‐
ers efficiently locate data. Even though LSM Trees are often presen‐
ted as an alternative to B-Trees, it is common for B-Trees to be
used as the internal indexing structure for an LSM Tree’s immuta‐
ble files.

The word “merge” in LSM Trees indicates that, due to their immutability, tree con‐
tents are merged using an approach similar to merge sort. This happens during main‐
tenance to reclaim space occupied by the redundant copies, and during reads, before
contents can be returned to the user.

LSM Trees defer data file writes and buffer changes in a memory-resident table.
These changes are then propagated by writing their contents out to the immutable
disk files. All data records remain accessible in memory until the files are fully
persisted.

Keeping data files immutable favors sequential writes: data is written on the disk in a
single pass and files are append-only. Mutable structures can pre-allocate blocks in a
single pass (for example, indexed sequential access method (ISAM) [RAMAK‐
RISHNAN03] [LARSON81]), but subsequent accesses still require random reads and
writes. Immutable structures allow us to lay out data records sequentially to prevent
fragmentation. Additionally, immutable files have higher density: we do not reserve
any extra space for data records that are going to be written later, or for the cases
when updated records require more space than the originally written ones.

Since files are immutable, insert, update, and delete operations do not need to locate
data records on disk, which significantly improves write performance and through‐
put. Instead, duplicate contents are allowed, and conflicts are resolved during the
read time. LSM Trees are particularly useful for applications where writes are far
more common than reads, which is often the case in modern data-intensive systems,
given ever-growing amounts of data and ingest rates.

Reads and writes do not intersect by design, so data on disk can be read and written
without segment locking, which significantly simplifies concurrent access. In con‐
trast, mutable structures employ hierarchical locks and latches (you can find more
information about locks and latches in “Concurrency Control” on page 93) to ensure
on-disk data structure integrity, and allow multiple concurrent readers but require
exclusive subtree ownership for writers. LSM-based storage engines use linearizable
in-memory views of data and index files, and only have to guard concurrent access to
the structures managing them.

Both B-Trees and LSM Trees require some housekeeping to optimize performance,
but for different reasons. Since the number of allocated files steadily grows, LSM
Trees have to merge and rewrite files to make sure that the smallest possible number
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of files is accessed during the read, as requested data records might be spread across
multiple files. On the other hand, mutable files may have to be rewritten partially or
wholly to decrease fragmentation and reclaim space occupied by updated or deleted
records. Of course, the exact scope of work done by the housekeeping process heavily
depends on the concrete implementation.

LSM Tree Structure
We start with ordered LSM Trees [ONEIL96], where files hold sorted data records.
Later, in “Unordered LSM Storage” on page 152, we’ll also discuss structures that
allow storing data records in insertion order, which has some obvious advantages on
the write path.

As we just discussed, LSM Trees consist of smaller memory-resident and larger disk-
resident components. To write out immutable file contents on disk, it is necessary to
first buffer them in memory and sort their contents.

A memory-resident component (often called a memtable) is mutable: it buffers data
records and serves as a target for read and write operations. Memtable contents are
persisted on disk when its size grows up to a configurable threshold. Memtable
updates incur no disk access and have no associated I/O costs. A separate write-ahead
log file, similar to what we discussed in “Recovery” on page 88, is required to guaran‐
tee durability of data records. Data records are appended to the log and committed in
memory before the operation is acknowledged to the client.

Buffering is done in memory: all read and write operations are applied to a memory-
resident table that maintains a sorted data structure allowing concurrent access, usu‐
ally some form of an in-memory sorted tree, or any data structure that can give
similar performance characteristics.

Disk-resident components are built by flushing contents buffered in memory to disk.
Disk-resident components are used only for reads: buffered contents are persisted,
and files are never modified. This allows us to think in terms of simple operations:
writes against an in-memory table, and reads against disk and memory-based tables,
merges, and file removals.

Throughout this chapter, we will be using the word table as a shortcut for disk-
resident table. Since we’re discussing semantics of a storage engine, this term is not
ambiguous with a table concept in the wider context of a database management
system.

Two-component LSM Tree
We distinguish between two- and multicomponent LSM Trees. Two-component LSM
Trees have only one disk component, comprised of immutable segments. The disk
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component here is organized as a B-Tree, with 100% node occupancy and read-only
pages.

Memory-resident tree contents are flushed on disk in parts. During a flush, for each
flushed in-memory subtree, we find a corresponding subtree on disk and write out
the merged contents of a memory-resident segment and disk-resident subtree into
the new segment on disk. Figure 7-1 shows in-memory and disk-resident trees before
a merge.

Figure 7-1. Two-component LSM Tree before a flush. Flushing memory- and disk-
resident segments are shown in gray.

After the subtree is flushed, superseded memory-resident and disk-resident subtrees
are discarded and replaced with the result of their merge, which becomes addressable
from the preexisting sections of the disk-resident tree. Figure 7-2 shows the result of a
merge process, already written to the new location on disk and attached to the rest of
the tree.

Figure 7-2. Two-component LSM Tree after a flush. Merged contents are shown in gray.
Boxes with dashed lines depict discarded on-disk segments.

A merge can be implemented by advancing iterators reading the disk-resident leaf
nodes and contents of the in-memory tree in lockstep. Since both sources are sorted,
to produce a sorted merged result, we only need to know the current values of both
iterators during each step of the merge process.

LSM Trees | 133



This approach is a logical extension and continuation of our conversation on immut‐
able B-Trees. Copy-on-write B-Trees (see “Copy-on-Write” on page 112) use B-Tree
structure, but their nodes are not fully occupied, and they require copying pages on
the root-leaf path and creating a parallel tree structure. Here, we do something simi‐
lar, but since we buffer writes in memory, we amortize the costs of the disk-resident
tree update.

When implementing subtree merges and flushes, we have to make sure of three
things:

1. As soon as the flush process starts, all new writes have to go to the new memtable.
2. During the subtree flush, both the disk-resident and flushing memory-resident

subtree have to remain accessible for reads.
3. After the flush, publishing merged contents, and discarding unmerged disk- and

memory-resident contents have to be performed atomically.

Even though two-component LSM Trees can be useful for maintaining index files, no
implementations are known to the author as of time of writing. This can be explained
by the write amplification characteristics of this approach: merges are relatively fre‐
quent, as they are triggered by memtable flushes.

Multicomponent LSM Trees
Let’s consider an alternative design, multicomponent LSM Trees that have more than
just one disk-resident table. In this case, entire memtable contents are flushed in a
single run.

It quickly becomes evident that after multiple flushes we’ll end up with multiple disk-
resident tables, and their number will only grow over time. Since we do not always
know exactly which tables are holding required data records, we might have to access
multiple files to locate the searched data.

Having to read from multiple sources instead of just one might get expensive. To mit‐
igate this problem and keep the number of tables to minimum, a periodic merge pro‐
cess called compaction (see “Maintenance in LSM Trees” on page 141) is triggered.
Compaction picks several tables, reads their contents, merges them, and writes the
merged result out to the new combined file. Old tables are discarded simultaneously
with the appearance of the new merged table.

Figure 7-3 shows the multicomponent LSM Tree data life cycle. Data is first buffered
in a memory-resident component. When it gets too large, its contents are flushed on
disk to create disk-resident tables. Later, multiple tables are merged together to create
larger tables.
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Figure 7-3. Multicomponent LSM Tree data life cycle

The rest of this chapter is dedicated to multicomponent LSM Trees, building blocks,
and their maintenance processes.

In-memory tables
Memtable flushes can be triggered periodically, or by using a size threshold. Before it
can be flushed, the memtable has to be switched: a new memtable is allocated, and it
becomes a target for all new writes, while the old one moves to the flushing state.
These two steps have to be performed atomically. The flushing memtable remains
available for reads until its contents are fully flushed. After this, the old memtable is
discarded in favor of a newly written disk-resident table, which becomes available for
reads.

In Figure 7-4, you see the components of the LSM Tree, relationships between them,
and operations that fulfill transitions between them:

Current memtable
Receives writes and serves reads.

Flushing memtable
Available for reads.

On-disk flush target
Does not participate in reads, as its contents are incomplete.

Flushed tables
Available for reads as soon as the flushed memtable is discarded.

Compacting tables
Currently merging disk-resident tables.

Compacted tables
Created from flushed or other compacted tables.
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Figure 7-4. LSM component structure

Data is already sorted in memory, so a disk-resident table can be created by sequen‐
tially writing out memory-resident contents to disk. During a flush, both the flushing
memtable and the current memtable are available for read.

Until the memtable is fully flushed, the only disk-resident version of its contents is
stored in the write-ahead log. When memtable contents are fully flushed on disk, the
log can be trimmed, and the log section, holding operations applied to the flushed
memtable, can be discarded.

Updates and Deletes
In LSM Trees, insert, update, and delete operations do not require locating data
records on disk. Instead, redundant records are reconciled during the read.

Removing data records from the memtable is not enough, since other disk or mem‐
ory resident tables may hold data records for the same key. If we were to implement
deletes by just removing items from the memtable, we would end up with deletes that
either have no impact or would resurrect the previous values.

Let’s consider an example. The flushed disk-resident table contains data record v1
associated with a key k1, and the memtable holds its new value v2:

Disk Table        Memtable
| k1 | v1 |       | k1 | v2 |

If we just remove v2 from the memtable and flush it, we effectively resurrect v1, since
it becomes the only value associated with that key:

Disk Table        Memtable
| k1 | v1 |       ∅
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Because of that, deletes need to be recorded explicitly. This can be done by inserting a
special delete entry (sometimes called a tombstone or a dormant certificate), indicating
removal of the data record associated with a specific key:

Disk Table        Memtable
| k1 | v1 |       | k1 | <tombstone> |

The reconciliation process picks up tombstones, and filters out the shadowed values.

Sometimes it might be useful to remove a consecutive range of keys rather than just a
single key. This can be done using predicate deletes, which work by appending a delete
entry with a predicate that sorts according to regular record-sorting rules. During
reconciliation, data records matching the predicate are skipped and not returned to
the client.

Predicates can take a form of DELETE FROM table WHERE key ≥ "k2" AND key <
"k4" and can receive any range matchers. Apache Cassandra implements this
approach and calls it range tombstones. A range tombstone covers a range of keys
rather than just a single key.

When using range tombstones, resolution rules have to be carefully considered
because of overlapping ranges and disk-resident table boundaries. For example, the
following combination will hide data records associated with k2 and k3 from the final
result:

Disk Table 1      Disk Table 2
| k1 | v1 |       | k2 | <start_tombstone_inclusive> |
| k2 | v2 |       | k4 | <end_tombstone_exclusive>   |
| k3 | v3 |
| k4 | v4 |

LSM Tree Lookups
LSM Trees consist of multiple components. During lookups, more than one compo‐
nent is usually accessed, so their contents have to be merged and reconciled before
they can be returned to the client. To better understand the merge process, let’s see
how tables are iterated during the merge and how conflicting records are combined.

Merge-Iteration
Since contents of disk-resident tables are sorted, we can use a multiway merge-sort
algorithm. For example, we have three sources: two disk-resident tables and one
memtable. Usually, storage engines offer a cursor or an iterator to navigate through
file contents. This cursor holds the offset of the last consumed data record, can be
checked for whether or not iteration has finished, and can be used to retrieve the next
data record.
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A multiway merge-sort uses a priority queue, such as min-heap [SEDGEWICK11],
that holds up to N elements (where N is the number of iterators), which sorts its con‐
tents and prepares the next-in-line smallest element to be returned. The head of each
iterator is placed into the queue. An element in the head of the queue is then the min‐
imum of all iterators.

A priority queue is a data structure used for maintaining an
ordered queue of items. While a regular queue retains items in
order of their addition (first in, first out), a priority queue re-sorts
items on insertion and the item with the highest (or lowest) prior‐
ity is placed in the head of the queue. This is particularly useful for
merge-iteration, since we have to output elements in a sorted order.

When the smallest element is removed from the queue, the iterator associated with it
is checked for the next value, which is then placed into the queue, which is re-sorted
to preserve the order.

Since all iterator contents are sorted, reinserting a value from the iterator that held
the previous smallest value of all iterator heads also preserves an invariant that the
queue still holds the smallest elements from all iterators. Whenever one of the itera‐
tors is exhausted, the algorithm proceeds without reinserting the next iterator head.
The algorithm continues until either query conditions are satisfied or all iterators are
exhausted.

Figure 7-5 shows a schematic representation of the merge process just described:
head elements (light gray items in source tables) are placed to the priority queue. Ele‐
ments from the priority queue are returned to the output iterator. The resulting out‐
put is sorted.

It may happen that we encounter more than one data record for the same key during
merge-iteration. From the priority queue and iterator invariants, we know that if each
iterator only holds a single data record per key, and we end up with multiple records
for the same key in the queue, these data records must have come from the different
iterators.
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Figure 7-5. LSM merge mechanics

Let’s follow through one example step-by-step. As input data, we have iterators over
two disk-resident tables:

Iterator 1:         Iterator 2:
{k2: v1} {k4: v2}   {k1: v3} {k2: v4} {k3: v5}

The priority queue is filled from the iterator heads:

Iterator 1:         Iterator 2:         Priority queue:
{k4: v2}            {k2: v4} {k3: v5}   {k1: v3} {k2: v1}

Key k1 is the smallest key in the queue and is appended to the result. Since it came
from Iterator 2, we refill the queue from it:

Iterator 1:         Iterator 2:         Priority queue:      Merged Result:
{k4: v2}            {k3: v5}            {k2: v1} {k2: v4}    {k1: v3}

Now, we have two records for the k2 key in the queue. We can be sure there are no
other records with the same key in any iterator because of the aforementioned invari‐
ants. Same-key records are merged and appended to the merged result.
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The queue is refilled with data from both iterators:

Iterator 1:         Iterator 2:         Priority queue:      Merged Result:
{}                  {}                  {k3: v5} {k4: v2}    {k1: v3} {k2: v4}

Since all iterators are now empty, we append the remaining queue contents to the
output:

Merged Result:
  {k1: v3} {k2: v4} {k3: v5} {k4: v2}

In summary, the following steps have to be repeated to create a combined iterator:

1. Initially, fill the queue with the first items from each iterator.
2. Take the smallest element (head) from the queue.
3. Refill the queue from the corresponding iterator, unless this iterator is exhausted.

In terms of complexity, merging iterators is the same as merging sorted collections. It
has O(N) memory overhead, where N is the number of iterators. A sorted collection of
iterator heads is maintained with O(log N) (average case) [KNUTH98].

Reconciliation
Merge-iteration is just a single aspect of what has to be done to merge data from mul‐
tiple sources. Another important aspect is reconciliation and conflict resolution of the
data records associated with the same key.

Different tables might hold data records for the same key, such as updates and deletes,
and their contents have to be reconciled. The priority queue implementation from the
preceding example must be able to allow multiple values associated with the same key
and trigger reconciliation.

An operation that inserts the record to the database if it does not
exist, and updates an existing one otherwise, is called an upsert. In
LSM Trees, insert and update operations are indistinguishable,
since they do not attempt to locate data records previously associ‐
ated with the key in all sources and reassign its value, so we can say
that we upsert records by default.

To reconcile data records, we need to understand which one of them takes prece‐
dence. Data records hold metadata necessary for this, such as timestamps. To
establish the order between the items coming from multiple sources and find out
which one is more recent, we can compare their timestamps.

Records shadowed by the records with higher timestamps are not returned to the cli‐
ent or written during compaction.
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Maintenance in LSM Trees
Similar to mutable B-Trees, LSM Trees require maintenance. The nature of these pro‐
cesses is heavily influenced by the invariants these algorithms preserve.

In B-Trees, the maintenance process collects unreferenced cells and defragments the
pages, reclaiming the space occupied by removed and shadowed records. In LSM
Trees, the number of disk-resident tables is constantly growing, but can be reduced by
triggering periodic compaction.

Compaction picks multiple disk-resident tables, iterates over their entire contents
using the aforementioned merge and reconciliation algorithms, and writes out the
results into the newly created table.

Since disk-resident table contents are sorted, and because of the way merge-sort
works, compaction has a theoretical memory usage upper bound, since it should only
hold iterator heads in memory. All table contents are consumed sequentially, and the
resulting merged data is also written out sequentially. These details may vary between
implementations due to additional optimizations.

Compacting tables remain available for reads until the compaction process finishes,
which means that for the duration of compaction, it is required to have enough free
space available on disk for a compacted table to be written.

At any given time, multiple compactions can be executed in the system. However,
these concurrent compactions usually work on nonintersecting sets of tables. A com‐
paction writer can both merge several tables into one and partition one table into
multiple tables.

Tombstones and Compaction
Tombstones represent an important piece of information required for correct recon‐
ciliation, as some other table might still hold an outdated data record shadowed by
the tombstone.

During compaction, tombstones are not dropped right away. They are preserved until
the storage engine can be certain that no data record for the same key with a smaller
timestamp is present in any other table. RocksDB keeps tombstones until they reach
the bottommost level. Apache Cassandra keeps tombstones until the GC (garbage
collection) grace period is reached because of the eventually consistent nature of the
database, ensuring that other nodes observe the tombstone. Preserving tombstones
during compaction is important to avoid data resurrection.
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Leveled compaction
Compaction opens up multiple opportunities for optimizations, and there are many
different compaction strategies. One of the frequently implemented compaction
strategies is called leveled compaction. For example, it is used by RocksDB.

Leveled compaction separates disk-resident tables into levels. Tables on each level
have target sizes, and each level has a corresponding index number (identifier). Some‐
what counterintuitively, the level with the highest index is called the bottommost level.
For clarity, this section avoids using terms higher and lower level and uses the same
qualifiers for level index. That is, since 2 is larger than 1, level 2 has a higher index
than level 1. The terms previous and next have the same order semantics as level
indexes.

Level-0 tables are created by flushing memtable contents. Tables in level 0 may con‐
tain overlapping key ranges. As soon as the number of tables on level 0 reaches a
threshold, their contents are merged, creating new tables for level 1.

Key ranges for the tables on level 1 and all levels with a higher index do not overlap,
so level-0 tables have to be partitioned during compaction, split into ranges, and
merged with tables holding corresponding key ranges. Alternatively, compaction can
include all level-0 and level-1 tables, and output partitioned level-1 tables.

Compactions on the levels with the higher indexes pick tables from two consecutive
levels with overlapping ranges and produce a new table on a higher level. Figure 7-6
schematically shows how the compaction process migrates data between the levels.
The process of compacting level-1 and level-2 tables will produce a new table on level
2. Depending on how tables are partitioned, multiple tables from one level can be
picked for compaction.

Figure 7-6. Compaction process. Gray boxes with dashed lines represent currently com‐
pacting tables. Level-wide boxes represent the target data size limit on the level. Level 1
is over the limit.

Keeping different key ranges in the distinct tables reduces the number of tables
accessed during the read. This is done by inspecting the table metadata and filtering
out the tables whose ranges do not contain a searched key.
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Each level has a limit on the table size and the maximum number of tables. As soon
as the number of tables on level 1 or any level with a higher index reaches a threshold,
tables from the current level are merged with tables on the next level holding the
overlapping key range.

Sizes grow exponentially between the levels: tables on each next level are exponen‐
tially larger than tables on the previous one. This way, the freshest data is always on
the level with the lowest index, and older data gradually migrates to the higher ones.

Size-tiered compaction
Another popular compaction strategy is called size-tiered compaction. In size-tiered
compaction, rather than grouping disk-resident tables based on their level, they’re
grouped by size: smaller tables are grouped with smaller ones, and bigger tables are
grouped with bigger ones.

Level 0 holds the smallest tables that were either flushed from memtables or created
by the compaction process. When the tables are compacted, the resulting merged
table is written to the level holding tables with corresponding sizes. The process con‐
tinues recursively incrementing levels, compacting and promoting larger tables to
higher levels, and demoting smaller tables to lower levels.

One of the problems with size-tiered compaction is called table
starvation: if compacted tables are still small enough after compac‐
tion (e.g., records were shadowed by the tombstones and did not
make it to the merged table), higher levels may get starved of com‐
paction and their tombstones will not be taken into consideration,
increasing the cost of reads. In this case, compaction has to be
forced for a level, even if it doesn’t contain enough tables.

There are other commonly implemented compaction strategies that might optimize
for different workloads. For example, Apache Cassandra also implements a time win‐
dow compaction strategy, which is particularly useful for time-series workloads with
records for which time-to-live is set (in other words, items have to be expired after a
given time period).

The time window compaction strategy takes write timestamps into consideration and
allows dropping entire files that hold data for an already expired time range without
requiring us to compact and rewrite their contents.

Read, Write, and Space Amplification
When implementing an optimal compaction strategy, we have to take multiple factors
into consideration. One approach is to reclaim space occupied by duplicate records
and reduce space overhead, which results in higher write amplification caused by re-
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writing tables continuously. The alternative is to avoid rewriting the data continu‐
ously, which increases read amplification (overhead from reconciling data records
associated with the same key during the read), and space amplification (since redun‐
dant records are preserved for a longer time).

One of the big disputes in the database community is whether B-
Trees or LSM Trees have lower write amplification. It is extremely
important to understand the source of write amplification in both
cases. In B-Trees, it comes from writeback operations and subse‐
quent updates to the same node. In LSM Trees, write amplification
is caused by migrating data from one file to the other during com‐
paction. Comparing the two directly may lead to incorrect
assumptions.

In summary, when storing data on disk in an immutable fashion, we face three
problems:

Read amplification
Resulting from a need to address multiple tables to retrieve data.

Write amplification
Caused by continuous rewrites by the compaction process.

Space amplification
Arising from storing multiple records associated with the same key.

We’ll be addressing each one of these throughout the rest of the chapter.

RUM Conjecture
One of the popular cost models for storage structures takes three factors into consid‐
eration: Read, Update, and Memory overheads. It is called RUM Conjecture [ATHA‐
NASSOULIS16].

RUM Conjecture states that reducing two of these overheads inevitably leads to
change for the worse in the third one, and that optimizations can be done only at the
expense of one of the three parameters. We can compare different storage engines in
terms of these three parameters to understand which ones they optimize for, and
which potential trade-offs this may imply.

An ideal solution would provide the lowest read cost while maintaining low memory
and write overheads, but in reality, this is not achievable, and we are presented with a
trade-off.

B-Trees are read-optimized. Writes to the B-Tree require locating a record on disk,
and subsequent writes to the same page might have to update the page on disk multi‐
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ple times. Reserved extra space for future updates and deletes increases space
overhead.

LSM Trees do not require locating the record on disk during write and do not reserve
extra space for future writes. There is still some space overhead resulting from storing
redundant records. In a default configuration, reads are more expensive, since multi‐
ple tables have to be accessed to return complete results. However, optimizations we
discuss in this chapter help to mitigate this problem.

As we’ve seen in the chapters about B-Trees, and will see in this chapter, there are
ways to improve these characteristics by applying different optimizations.

This cost model is not perfect, as it does not take into account other important met‐
rics such as latency, access patterns, implementation complexity, maintenance over‐
head, and hardware-related specifics. Higher-level concepts important for distributed
databases, such as consistency implications and replication overhead, are also not
considered. However, this model can be used as a first approximation and a rule of
thumb as it helps understand what the storage engine has to offer.

Implementation Details
We’ve covered the basic dynamics of LSM Trees: how data is read, written, and com‐
pacted. However, there are some other things that many LSM Tree implementations
have in common that are worth discussing: how memory- and disk-resident tables
are implemented, how secondary indexes work, how to reduce the number of disk-
resident tables accessed during read and, finally, new ideas related to log-structured
storage.

Sorted String Tables
So far we’ve discussed the hierarchical and logical structure of LSM Trees (that they
consist of multiple memory- and disk-resident components), but have not yet dis‐
cussed how disk-resident tables are implemented and how their design plays together
with the rest of the system.

Disk-resident tables are often implemented using Sorted String Tables (SSTables). As
the name suggests, data records in SSTables are sorted and laid out in key order.
SSTables usually consist of two components: index files and data files. Index files are
implemented using some structure allowing logarithmic lookups, such as B-Trees, or
constant-time lookups, such as hashtables.

Since data files hold records in key order, using hashtables for indexing does not pre‐
vent us from implementing range scans, as a hashtable is only accessed to locate the
first key in the range, and the range itself can be read from the data file sequentially
while the range predicate still matches.
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The index component holds keys and data entries (offsets in the data file where the
actual data records are located). The data component consists of concatenated key-
value pairs. The cell design and data record formats we discussed in Chapter 3 are
largely applicable to SSTables. The main difference here is that cells are written
sequentially and are not modified during the life cycle of the SSTable. Since the index
files hold pointers to the data records stored in the data file, their offsets have to be
known by the time the index is created.

During compaction, data files can be read sequentially without addressing the index
component, as data records in them are already ordered. Since tables merged during
compaction have the same order, and merge-iteration is order-preserving, the result‐
ing merged table is also created by writing data records sequentially in a single run.
As soon as the file is fully written, it is considered immutable, and its disk-resident
contents are not modified.

SSTable-Attached Secondary Indexes
One of the interesting developments in the area of LSM Tree indexing is SSTable-
Attached Secondary Indexes (SASI) implemented in Apache Cassandra. To allow
indexing table contents not just by the primary key, but also by any other field, index
structures and their life cycles are coupled with the SSTable life cycle, and an index is
created per SSTable. When the memtable is flushed, its contents are written to disk,
and secondary index files are created along with the SSTable primary key index.

Since LSM Trees buffer data in memory and indexes have to work for memory-
resident contents as well as the disk-resident ones, SASI maintains a separate in-
memory structure, indexing memtable contents.

During a read, primary keys of searched records are located by searching and merg‐
ing index contents, and data records are merged and reconciled similar to how look‐
ups usually work in LSM Trees.

One of the advantages of piggybacking the SSTable life cycle is that indexes can be
created during memtable flush or compaction.

Bloom Filters
The source of read amplification in LSM Trees is that we have to address multiple
disk-resident tables for the read operation to complete. This happens because we do
not always know up front whether or not a disk-resident table contains a data record
for the searched key.

One of the ways to prevent table lookup is to store its key range (smallest and largest
keys stored in the given table) in metadata, and check if the searched key belongs to
the range of that table. This information is imprecise and can only tell us if the data
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record can be present in the table. To improve this situation, many implementations,
including Apache Cassandra and RocksDB, use a data structure called a Bloom filter.

Probabilistic data structures are generally more space efficient than
their “regular” counterparts. For example, to check set member‐
ship, cardinality (find out the number of distinct elements in a set),
or frequency (find out how many times a certain element has been
encountered), we would have to store all set elements and go
through the entire dataset to find the result. Probabilistic structures
allow us to store approximate information and perform queries
that yield results with an element of uncertainty. Some commonly
known examples of such data structures are a Bloom filter (for set
membership), HyperLogLog (for cardinality estimation) [FLAJO‐
LET12], and Count-Min Sketch (for frequency estimation) [COR‐
MODE12].

A Bloom filter, conceived by Burton Howard Bloom in 1970 [BLOOM70], is a space-
efficient probabilistic data structure that can be used to test whether the element is a
member of the set or not. It can produce false-positive matches (say that the element
is a member of the set, while it is not present there), but cannot produce false nega‐
tives (if a negative match is returned, the element is guaranteed not to be a member of
the set).

In other words, a Bloom filter can be used to tell if the key might be in the table or is
definitely not in the table. Files for which a Bloom filter returns a negative match are
skipped during the query. The rest of the files are accessed to find out if the data
record is actually present. Using Bloom filters associated with disk-resident tables
helps to significantly reduce the number of tables accessed during a read.

A Bloom filter uses a large bit array and multiple hash functions. Hash functions are
applied to keys of the records in the table to find indices in the bit array, bits for
which are set to 1. Bits set to 1 in all positions determined by the hash functions indi‐
cate a presence of the key in the set. During lookup, when checking for element pres‐
ence in a Bloom filter, hash functions are calculated for the key again and, if bits
determined by all hash functions are 1, we return the positive result stating that item
is a member of the set with a certain probability. If at least one of the bits is 0, we can
precisely say that element is not present in the set.

Hash functions applied to different keys can return the same bit position and result in
a hash collision, and 1 bits only imply that some hash function has yielded this bit
position for some key.

Probability of false positives is managed by configuring the size of the bit set and the
number of hash functions: in a larger bit set, there’s a smaller chance of collision; sim‐
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ilarly, having more hash functions, we can check more bits and have a more precise
outcome.

The larger bit set occupies more memory, and computing results of more hash func‐
tions may have a negative performance impact, so we have to find a reasonable
middle ground between acceptable probability and incurred overhead. Probability
can be calculated from the expected set size. Since tables in LSM Trees are immutable,
set size (number of keys in the table) is known up front.

Let’s take a look at a simple example, shown in Figure 7-7. We have a 16-way bit array
and 3 hash functions, which yield values 3, 5, and 10 for key1. We now set bits at
these positions. The next key is added and hash functions yield values of 5, 8, and 14
for key2, for which we set bits, too.

Figure 7-7. Bloom filter

Now, we’re trying to check whether or not key3 is present in the set, and hash func‐
tions yield 3, 10, and 14. Since all three bits were set when adding key1 and key2, we
have a situation in which the Bloom filter returns a false positive: key3 was never
appended there, yet all of the calculated bits are set. However, since the Bloom filter
only claims that element might be in the table, this result is acceptable.

If we try to perform a lookup for key4 and receive values of 5, 9, and 15, we find that
only bit 5 is set, and the other two bits are unset. If even one of the bits is unset, we
know for sure that the element was never appended to the filter.

Skiplist
There are many different data structures for keeping sorted data in memory, and one
that has been getting more popular recently because of its simplicity is called a skiplist
[PUGH90b]. Implementation-wise, a skiplist is not much more complex than a
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singly-linked list, and its probabilistic complexity guarantees are close to those of
search trees.

Skiplists do not require rotation or relocation for inserts and updates, and use proba‐
bilistic balancing instead. Skiplists are generally less cache-friendly than in-memory
B-Trees, since skiplist nodes are small and randomly allocated in memory. Some
implementations improve the situation by using unrolled linked lists.

A skiplist consists of a series of nodes of a different height, building linked hierarchies
allowing to skip ranges of items. Each node holds a key, and, unlike the nodes in a
linked list, some nodes have more than just one successor. A node of height h is
linked from one or more predecessor nodes of a height up to h. Nodes on the lowest
level can be linked from nodes of any height.

Node height is determined by a random function and is computed during insert.
Nodes that have the same height form a level. The number of levels is capped to avoid
infinite growth, and a maximum height is chosen based on how many items can be
held by the structure. There are exponentially fewer nodes on each next level.

Lookups work by following the node pointers on the highest level. As soon as the
search encounters the node that holds a key that is greater than the searched one, its
predecessor’s link to the node on the next level is followed. In other words, if the
searched key is greater than the current node key, the search continues forward. If the
searched key is smaller than the current node key, the search continues from the
predecessor node on the next level. This process is repeated recursively until the
searched key or its predecessor is located.

For example, searching for key 7 in the skiplist shown in Figure 7-8 can be done as
follows:

1. Follow the pointer on the highest level, to the node that holds key 10.
2. Since the searched key 7 is smaller than 10, the next-level pointer from the head

node is followed, locating a node holding key 5.
3. The highest-level pointer on this node is followed, locating the node holding key

10 again.
4. The searched key 7 is smaller than 10, and the next-level pointer from the node

holding key 5 is followed, locating a node holding the searched key 7.

Figure 7-8. Skiplist
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During insert, an insertion point (node holding a key or its predecessor) is found
using the aforementioned algorithm, and a new node is created. To build a tree-like
hierarchy and keep balance, the height of the node is determined using a random
number, generated based on a probability distribution. Pointers in predecessor nodes
holding keys smaller than the key in a newly created node are linked to point to that
node. Their higher-level pointers remain intact. Pointers in the newly created node
are linked to corresponding successors on each level.

During delete, forward pointers of the removed node are placed to predecessor nodes
on corresponding levels.

We can create a concurrent version of a skiplist by implementing a linearizability
scheme that uses an additional fully_linked flag that determines whether or not the
node pointers are fully updated. This flag can be set using compare-and-swap [HER‐
LIHY10]. This is required because the node pointers have to be updated on multiple
levels to fully restore the skiplist structure.

In languages with an unmanaged memory model, reference counting or hazard
pointers can be used to ensure that currently referenced nodes are not freed while
they are accessed concurrently [RUSSEL12]. This algorithm is deadlock-free, since
nodes are always accessed from higher levels.

Apache Cassandra uses skiplists for the secondary index memtable implementation.
WiredTiger uses skiplists for some in-memory operations.

Disk Access
Since most of the table contents are disk-resident, and storage devices generally allow
accessing data blockwise, many LSM Tree implementations rely on the page cache for
disk accesses and intermediate caching. Many techniques described in “Buffer Man‐
agement” on page 81, such as page eviction and pinning, still apply to log-structured
storage.

The most notable difference is that in-memory contents are immutable and therefore
require no additional locks or latches for concurrent access. Reference counting is
applied to make sure that currently accessed pages are not evicted from memory, and
in-flight requests complete before underlying files are removed during compaction.

Another difference is that data records in LSM Trees are not necessarily page aligned,
and pointers can be implemented using absolute offsets rather than page IDs for
addressing. In Figure 7-9, you can see records with contents that are not aligned with
disk blocks. Some records cross the page boundaries and require loading several
pages in memory.
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Figure 7-9. Unaligned data records

Compression
We’ve discussed compression already in context of B-Trees (see “Compression” on
page 73). Similar ideas are also applicable to LSM Trees. The main difference here is
that LSM Tree tables are immutable, and are generally written in a single pass. When
compressing data page-wise, compressed pages are not page aligned, as their sizes are
smaller than that of uncompressed ones.

To be able to address compressed pages, we need to keep track of the address bound‐
aries when writing their contents. We could fill compressed pages with zeros, aligning
them to the page size, but then we’d lose the benefits of compression.

To make compressed pages addressable, we need an indirection layer which stores
offsets and sizes of compressed pages. Figure 7-10 shows the mapping between com‐
pressed and uncompressed blocks. Compressed pages are always smaller than the
originals, since otherwise there’s no point in compressing them.
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Figure 7-10. Reading compressed blocks. Dotted lines represent pointers from the map‐
ping table to the offsets of compressed pages on disk. Uncompressed pages generally
reside in the page cache.

During compaction and flush, compressed pages are appended sequentially, and
compression information (the original uncompressed page offset and the actual com‐
pressed page offset) is stored in a separate file segment. During the read, the com‐
pressed page offset and its size are looked up, and the page can be uncompressed and
materialized in memory.

Unordered LSM Storage
Most of the storage structures discussed so far store data in order. Mutable and
immutable B-Tree pages, sorted runs in FD-Trees, and SSTables in LSM Trees store
data records in key order. The order in these structures is preserved differently: B-
Tree pages are updated in place, FD-Tree runs are created by merging contents of two
runs, and SSTables are created by buffering and sorting data records in memory.

In this section, we discuss structures that store records in random order. Unordered
stores generally do not require a separate log and allow us to reduce the cost of writes
by storing data records in insertion order.
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Bitcask
Bitcask, one of the storage engines used in Riak, is an unordered log-structured stor‐
age engine [SHEEHY10b]. Unlike the log-structured storage implementations dis‐
cussed so far, it does not use memtables for buffering, and stores data records directly
in logfiles.

To make values searchable, Bitcask uses a data structure called keydir, which holds
references to the latest data records for the corresponding keys. Old data records may
still be present on disk, but are not referenced from keydir, and are garbage-collected
during compaction. Keydir is implemented as an in-memory hashmap and has to be
rebuilt from the logfiles during startup.

During a write, a key and a data record are appended to the logfile sequentially, and
the pointer to the newly written data record location is placed in keydir.

Reads check the keydir to locate the searched key and follow the associated pointer to
the logfile, locating the data record. Since at any given moment there can be only one
value associated with the key in the keydir, point queries do not have to merge data
from multiple sources.

Figure 7-11 shows mapping between the keys and records in data files in Bitcask.
Logfiles hold data records, and keydir points to the latest live data record associated
with each key. Shadowed records in data files (ones that were superseded by later
writes or deletes) are shown in gray.

Figure 7-11. Mapping between keydir and data files in Bitcask. Solid lines represent
pointers from the key to the latest value associated with it. Shadowed key/value pairs are
shown in light gray.
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During compaction, contents of all logfiles are read sequentially, merged, and written
to a new location, preserving only live data records and discarding the shadowed
ones. Keydir is updated with new pointers to relocated data records.

Data records are stored directly in logfiles, so a separate write-ahead log doesn’t have
to be maintained, which reduces both space overhead and write amplification. A
downside of this approach is that it offers only point queries and doesn’t allow range
scans, since items are unordered both in keydir and in data files.

Advantages of this approach are simplicity and great point query performance. Even
though multiple versions of data records exist, only the latest one is addressed by key‐
dir. However, having to keep all keys in memory and rebuilding keydir on startup are
limitations that might be a deal breaker for some use cases. While this approach is
great for point queries, it does not offer any support for range queries.

WiscKey
Range queries are important for many applications, and it would be great to have a
storage structure that could have the write and space advantages of unordered stor‐
age, while still allowing us to perform range scans.

WiscKey [LU16] decouples sorting from garbage collection by keeping the keys sor‐
ted in LSM Trees, and keeping data records in unordered append-only files called
vLogs (value logs). This approach can solve two problems mentioned while discussing
Bitcask: a need to keep all keys in memory and to rebuild a hashtable on startup.

Figure 7-12 shows key components of WiscKey, and mapping between keys and log
files. vLog files hold unordered data records. Keys are stored in sorted LSM Trees,
pointing to the latest data records in the logfiles.

Since keys are typically much smaller than the data records associated with them,
compacting them is significantly more efficient. This approach can be particularly
useful for use cases with a low rate of updates and deletes, where garbage collection
won’t free up as much disk space.

The main challenge here is that because vLog data is unsorted, range scans require
random I/O. WiscKey uses internal SSD parallelism to prefetch blocks in parallel dur‐
ing range scans and reduce random I/O costs. In terms of block transfers, the costs
are still high: to fetch a single data record during the range scan, the entire page
where it is located has to be read.
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Figure 7-12. Key components of WiscKey: index LSM Trees and vLog files, and relation‐
ships between them. Shadowed records in data files (ones that were superseded by later
writes or deletes) are shown in gray. Solid lines represent pointers from the key in the
LSM tree to the latest value in the log file.

During compaction, vLog file contents are read sequentially, merged, and written to a
new location. Pointers (values in a key LSM Tree) are updated to point to these new
locations. To avoid scanning entire vLog contents, WiscKey uses head and tail
pointers, holding information about vLog segments that hold live keys.

Since data in vLog is unsorted and contains no liveness information, the key tree has
to be scanned to find which values are still live. Performing these checks during
garbage collection introduces additional complexity: traditional LSM Trees can
resolve file contents during compaction without addressing the key index.

Concurrency in LSM Trees
The main concurrency challenges in LSM Trees are related to switching table views
(collections of memory- and disk-resident tables that change during flush and com‐
paction) and log synchronization. Memtables are also generally accessed concurrently
(except core-partitioned stores such as ScyllaDB), but concurrent in-memory data
structures are out of the scope of this book.
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During flush, the following rules have to be followed:

• The new memtable has to become available for reads and writes.
• The old (flushing) memtable has to remain visible for reads.
• The flushing memtable has to be written on disk.
• Discarding a flushed memtable and making a flushed disk-resident table have to

be performed as an atomic operation.
• The write-ahead log segment, holding log entries of operations applied to the

flushed memtable, has to be discarded.

For example, Apache Cassandra solves these problems by using operation order bar‐
riers: all operations that were accepted for write will be waited upon prior to the
memtable flush. This way the flush process (serving as a consumer) knows which
other processes (acting as producers) depend on it.

More generally, we have the following synchronization points:

Memtable switch
After this, all writes go only to the new memtable, making it primary, while the
old one is still available for reads.

Flush finalization
Replaces the old memtable with a flushed disk-resident table in the table view.

Write-ahead log truncation
Discards a log segment holding records associated with a flushed memtable.

These operations have severe correctness implications. Continuing writes to the old
memtable might result in data loss; for example, if the write is made into a memtable
section that was already flushed. Similarly, failing to leave the old memtable available
for reads until its disk-resident counterpart is ready will result in incomplete results.

During compaction, the table view is also changed, but here the process is slightly
more straightforward: old disk-resident tables are discarded, and the compacted ver‐
sion is added instead. Old tables have to remain accessible for reads until the new one
is fully written and is ready to replace them for reads. Situations in which the same
tables participate in multiple compactions running in parallel have to be avoided as
well.

In B-Trees, log truncation has to be coordinated with flushing dirty pages from the
page cache to guarantee durability. In LSM Trees, we have a similar requirement:
writes are buffered in a memtable, and their contents are not durable until fully
flushed, so log truncation has to be coordinated with memtable flushes. As soon as
the flush is complete, the log manager is given the information about the latest
flushed log segment, and its contents can be safely discarded.
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Not synchronizing log truncations with flushes will also result in data loss: if a log
segment is discarded before the flush is complete, and the node crashes, log contents
will not be replayed, and data from this segment won’t be restored.

Log Stacking
Many modern filesystems are log structured: they buffer writes in a memory segment
and flush its contents on disk when it becomes full in an append-only manner. SSDs
use log-structured storage, too, to deal with small random writes, minimize write
overhead, improve wear leveling, and increase device lifetime.

Log-structured storage (LSS) systems started gaining popularity around the time
SSDs were becoming more affordable. LSM Trees and SSDs are a good match, since
sequential workloads and append-only writes help to reduce amplification from in-
place updates, which negatively affect performance on SSDs.

If we stack multiple log-structured systems on top each other, we can run into several
problems that we were trying to solve using LSS, including write amplification, frag‐
mentation, and poor performance. At the very least, we need to keep the SSD flash
translation layer and the filesystem in mind when developing our applications
[YANG14].

Flash Translation Layer
Using a log-structuring mapping layer in SSDs is motivated by two factors: small ran‐
dom writes have to be batched together in a physical page, and the fact that SSDs
work by using program/erase cycles. Writes can be done only into previously erased
pages. This means that a page cannot be programmed (in other words, written) unless
it is empty (in other words, was erased).

A single page cannot be erased, and only groups of pages in a block (typically holding
64 to 512 pages) can be erased together. Figure 7-13 shows a schematic representation
of pages, grouped into blocks. The flash translation layer (FTL) translates logical page
addresses to their physical locations and keeps track of page states (live, discarded, or
empty). When FTL runs out of free pages, it has to perform garbage collection and
erase discarded pages.
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Figure 7-13. SSD pages, grouped into blocks

There are no guarantees that all pages in the block that is about to be erased are dis‐
carded. Before the block can be erased, FTL has to relocate its live pages to one of the
blocks containing empty pages. Figure 7-14 shows the process of moving live pages
from one block to new locations.

Figure 7-14. Page relocation during garbage collection

When all live pages are relocated, the block can be safely erased, and its empty pages
become available for writes. Since FTL is aware of page states and state transitions
and has all the necessary information, it is also responsible for SSD wear leveling.

Wear leveling distributes the load evenly across the medium, avoid‐
ing hotspots, where blocks fail prematurely because of a high num‐
ber of program-erase cycles. It is required, since flash memory cells
can go through only a limited number of program-erase cycles, and
using memory cells evenly helps to extend the lifetime of the
device.

In summary, the motivation for using log-structured storage on SSDs is to amortize
I/O costs by batching small random writes together, which generally results in a
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smaller number of operations and, subsequently, reduces the number of times the
garbage collection is triggered.

Filesystem Logging
On top of that, we get filesystems, many of which also use logging techniques for
write buffering to reduce write amplification and use the underlying hardware
optimally.

Log stacking manifests in a few different ways. First, each layer has to perform its
own bookkeeping, and most often the underlying log does not expose the informa‐
tion necessary to avoid duplicating the efforts.

Figure 7-15 shows a mapping between a higher-level log (for example, the applica‐
tion) and a lower-level log (for example, the filesystem) resulting in redundant log‐
ging and different garbage collection patterns [YANG14]. Misaligned segment writes
can make the situation even worse, since discarding a higher-level log segment may
cause fragmentation and relocation of the neighboring segments’ parts.

Figure 7-15. Misaligned writes and discarding of a higher-level log segment

Because layers do not communicate LSS-related scheduling (for example, discarding
or relocating segments), lower-level subsystems might perform redundant operations
on discarded data or the data that is about to be discarded. Similarly, because there’s
no single, standard segment size, it may happen that unaligned higher-level segments
occupy multiple lower-level segments. All these overheads can be reduced or com‐
pletely avoided.

Even though we say that log-structured storage is all about sequential I/O, we have to
keep in mind that database systems may have multiple write streams (for example, log
writes parallel to data record writes) [YANG14]. When considered on a hardware
level, interleaved sequential write streams may not translate into the same sequential
pattern: blocks are not necessarily going to be placed in write order. Figure 7-16
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shows multiple streams overlapping in time, writing records that have sizes not
aligned with the underlying hardware page size.

Figure 7-16. Unaligned multistream writes

This results in fragmentation that we tried to avoid. To reduce interleaving, some
database vendors recommend keeping the log on a separate device to isolate work‐
loads and be able to reason about their performance and access patterns independ‐
ently. However, it is more important to keep partitions aligned to the underlying
hardware [INTEL14] and keep writes aligned to page size [KIM12].

LLAMA and Mindful Stacking
Well, you’ll never believe this, but that llama you’re looking at was once a human being.
And not just any human being. That guy was an emperor. A rich, powerful ball of
charisma.

—Kuzco from The Emperor’s New Groove

In “Bw-Trees” on page 120, we discussed an immutable B-Tree version called Bw-
Tree. Bw-Tree is layered on top of a latch-free, log-structured, access-method aware
(LLAMA) storage subsystem. This layering allows Bw-Trees to grow and shrink
dynamically, while leaving garbage collection and page management transparent for
the tree. Here, we’re most interested in the access-method aware part, demonstrating
the benefits of coordination between the software layers.

To recap, a logical Bw-Tree node consists of a linked list of physical delta nodes, a
chain of updates from the newest one to the oldest one, ending in a base node.
Logical nodes are linked using an in-memory mapping table, pointing to the location
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of the latest update on disk. Keys and values are added to and removed from the logi‐
cal nodes, but their physical representations remain immutable.

Log-structured storage buffers node updates (delta nodes) together in 4 Mb flush buf‐
fers. As soon as the page fills up, it’s flushed on disk. Periodically, garbage collection
reclaims space occupied by the unused delta and base nodes, and relocates the live
ones to free up fragmented pages.

Without access-method awareness, interleaved delta nodes that belong to different
logical nodes will be written in their insertion order. Bw-Tree awareness in LLAMA
allows for the consolidation of several delta nodes into a single contiguous physical
location. If two updates in delta nodes cancel each other (for example, an insert fol‐
lowed by delete), their logical consolidation can be performed as well, and only the
latter delete can be persisted.

LSS garbage collection can also take care of consolidating the logical Bw-Tree node
contents. This means that garbage collection will not only reclaim the free space, but
also significantly reduce the physical node fragmentation. If garbage collection only
rewrote several delta nodes contiguously, they would still take the same amount of
space, and readers would need to perform the work of applying the delta updates to
the base node. At the same time, if a higher-level system consolidated the nodes and
wrote them contiguously to the new locations, LSS would still have to garbage-collect
the old versions.

By being aware of Bw-Tree semantics, several deltas may be rewritten as a single base
node with all deltas already applied during garbage collection. This reduces the total
space used to represent this Bw-Tree node and the latency required to read the page
while reclaiming the space occupied by discarded pages.

You can see that, when considered carefully, stacking can yield many benefits. It is not
necessary to always build tightly coupled single-level structures. Good APIs and
exposing the right information can significantly improve efficiency.

Open-Channel SSDs
An alternative to stacking software layers is to skip all indirection layers and use the
hardware directly. For example, it is possible to avoid using a filesystem and flash
translation layer by developing for Open-Channel SSDs. This way, we can avoid at
least two layers of logs and have more control over wear-leveling, garbage collection,
data placement, and scheduling. One of the implementations that uses this approach
is LOCS (LSM Tree-based KV Store on Open-Channel SSD) [ZHANG13]. Another
example using Open-Channel SSDs is LightNVM, implemented in the Linux kernel
[BJØRLING17].

The flash translation layer usually handles data placement, garbage collection, and
page relocation. Open-Channel SSDs expose their internals, drive management, and
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I/O scheduling without needing to go through the FTL. While this certainly requires
much more attention to detail from the developer’s perspective, this approach may
yield significant performance improvements. You can draw a parallel with using the
O_DIRECT flag to bypass the kernel page cache, which gives better control, but
requires manual page management.

Software Defined Flash (SDF) [OUYANG14], a hardware/software codesigned Open-
Channel SSDs system, exposes an asymmetric I/O interface that takes SSD specifics
into consideration. Sizes of read and write units are different, and write unit size cor‐
responds to erase unit size (block), which greatly reduces write amplification. This
setting is ideal for log-structured storage, since there’s only one software layer that
performs garbage collection and relocates pages. Additionally, developers have access
to internal SSD parallelism, since every channel in SDF is exposed as a separate block
device, which can be used to further improve performance.

Hiding complexity behind a simple API might sound compelling, but can cause com‐
plications in cases in which software layers have different semantics. Exposing some
underlying system internals may be beneficial for better integration.

Summary
Log-structured storage is used everywhere: from the flash translation layer, to filesys‐
tems and database systems. It helps to reduce write amplification by batching small
random writes together in memory. To reclaim space occupied by removed segments,
LSS periodically triggers garbage collection.

LSM Trees take some ideas from LSS and help to build index structures managed in a
log-structured manner: writes are batched in memory and flushed on disk; shadowed
data records are cleaned up during compaction.

It is important to remember that many software layers use LSS, and make sure that
layers are stacked optimally. Alternatively, we can skip the filesystem level altogether
and access hardware directly.
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Part I Conclusion

In Part I, we’ve been talking about storage engines. We started from high-level data‐
base system architecture and classification, learned how to implement on-disk stor‐
age structures, and how they fit into the full picture with other components.

We’ve seen several storage structures, starting from B-Trees. The discussed structures
do not represent an entire field, and there are many other interesting developments.
However, these examples are still a good illustration of the three properties we identi‐
fied at the beginning of this part: buffering, immutability, and ordering. These proper‐
ties are useful for describing, memorizing, and expressing different aspects of the
storage structures.

Figure I-1 summarizes the discussed storage structures and shows whether or not
they’re using these properties.

Adding in-memory buffers always has a positive impact on write amplification. In in-
place update structures like WiredTiger and LA-Trees, in-memory buffering helps to
amortize the cost of multiple same-page writes by combining them. In other words,
buffering helps to reduce write amplification.

In immutable structures, such as multicomponent LSM Trees and FD-Trees, buffer‐
ing has a similar positive effect, but at a cost of future rewrites when moving data
from one immutable level to the other. In other words, using immutability may lead
to deferred write amplification. At the same time, using immutability has a positive
impact on concurrency and space amplification, since most of the discussed immuta‐
ble structures use fully occupied pages.

When using immutability, unless we also use buffering, we end up with unordered
storage structures like Bitcask and WiscKey (with the exception of copy-on-write B-
Trees, which copy, re-sort, and relocate their pages). WiscKey stores only keys in sor‐
ted LSM Trees and allows retrieving records in key order using the key index. In Bw-
Trees, some of the nodes (ones that were consolidated) hold data records in key order,
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while the rest of the logical Bw-Tree nodes may have their delta updates scattered
across different pages.

Figure I-1. Buffering, immutability, and ordering properties of discussed storage struc‐
tures. (1) WiscKey uses buffering only for keeping keys sorted order. (2) Only consolida‐
ted nodes in Bw-Trees hold ordered records.

You see that these three properties can be mixed and matched in order to achieve the
desired characteristics. Unfortunately, storage engine design usually involves trade-
offs: you increase the cost of one operation in favor of the other.

Using this knowledge, you should be able to start looking closer at the code of most
modern database systems. Some of the code references and starting points can be
found across the entire book. Knowing and understanding the terminology will make
this process easier for you.

Many modern database systems are powered by probabilistic data structures [FLAJO‐
LET12] [CORMODE04], and there’s new research being done on bringing ideas from
machine learning into database systems [KRASKA18]. We’re about to experience fur‐
ther changes in research and industry as nonvolatile and byte-addressable storage
becomes more prevalent and widely available [VENKATARAMAN11].

Knowing the fundamental concepts described in this book should help you to under‐
stand and implement newer research, since it borrows from, builds upon, and is
inspired by the same concepts. The major advantage of knowing the theory and his‐
tory is that there’s nothing entirely new and, as the narrative of this book shows, pro‐
gress is incremental.
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PART II

Distributed Systems

A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable.

—Leslie Lamport

Without distributed systems, we wouldn’t be able to make phone calls, transfer
money, or exchange information over long distances. We use distributed systems
daily. Sometimes, even without acknowledging it: any client/server application is a
distributed system.

For many modern software systems, vertical scaling (scaling by running the same
software on a bigger, faster machine with more CPU, RAM, or faster disks) isn’t via‐
ble. Bigger machines are more expensive, harder to replace, and may require special
maintenance. An alternative is to scale horizontally: to run software on multiple
machines connected over the network and working as a single logical entity.

Distributed systems might differ both in size, from a handful to hundreds of
machines, and in characteristics of their participants, from small handheld or sensor
devices to high-performance computers.

The time when database systems were mainly running on a single node is long gone,
and most modern database systems have multiple nodes connected in clusters to
increase storage capacity, improve performance, and enhance availability.

Even though some of the theoretical breakthroughs in distributed computing aren’t
new, most of their practical application happened relatively recently. Today, we see
increasing interest in the subject, more research, and new development being done.



Basic definitions
In a distributed system, we have several participants (sometimes called processes,
nodes, or replicas). Each participant has its own local state. Participants communicate
by exchanging messages using communication links between them.

Processes can access the time using a clock, which can be logical or physical. Logical
clocks are implemented using a kind of monotonically growing counter. Physical
clocks, also called wall clocks, are bound to a notion of time in the physical world and
are accessible through process-local means; for example, through an operating
system.

It’s impossible to talk about distributed systems without mentioning the inherent dif‐
ficulties caused by the fact that its parts are located apart from each other. Remote
processes communicate through links that can be slow and unreliable, which makes
knowing the exact state of the remote process more complicated.

Most of the research in the distributed systems field is related to the fact that nothing
is entirely reliable: communication channels may delay, reorder, or fail to deliver the
messages; processes may pause, slow down, crash, go out of control, or suddenly stop
responding.

There are many themes in common in the fields of concurrent and distributed pro‐
gramming, since CPUs are tiny distributed systems with links, processors, and com‐
munication protocols. You’ll see many parallels with concurrent programming in
“Consistency Models” on page 222. However, most of the primitives can’t be reused
directly because of the costs of communication between remote parties, and the unre‐
liability of links and processes.

To overcome the difficulties of the distributed environment, we need to use a particu‐
lar class of algorithms, distributed algorithms, which have notions of local and remote
state and execution and work despite unreliable networks and component failures.
We describe algorithms in terms of state and steps (or phases), with transitions
between them. Each process executes the algorithm steps locally, and a combination
of local executions and process interactions constitutes a distributed algorithm.

Distributed algorithms describe the local behavior and interaction of multiple inde‐
pendent nodes. Nodes communicate by sending messages to each other. Algorithms
define participant roles, exchanged messages, states, transitions, executed steps, prop‐
erties of the delivery medium, timing assumptions, failure models, and other charac‐
teristics that describe processes and their interactions.



Distributed algorithms serve many different purposes:

Coordination
A process that supervises the actions and behavior of several workers.

Cooperation
Multiple participants relying on one another for finishing their tasks.

Dissemination
Processes cooperating in spreading the information to all interested parties
quickly and reliably.

Consensus
Achieving agreement among multiple processes.

In this book, we talk about algorithms in the context of their usage and prefer a prac‐
tical approach over purely academic material. First, we cover all necessary abstrac‐
tions, the processes and the connections between them, and progress to building
more complex communication patterns. We start with UDP, where the sender doesn’t
have any guarantees on whether or not its message has reached its destination; and
finally, to achieve consensus, where multiple processes agree on a specific value.





1 Interleaving, where the multiplier reads before the adder, is left out for brevity, since it yields the same result
as a).

CHAPTER 8

Introduction and Overview

What makes distributed systems inherently different from single-node systems? Let’s
take a look at a simple example and try to see. In a single-threaded program, we
define variables and the execution process (a set of steps).

For example, we can define a variable and perform simple arithmetic operations over
it:

int i = 1;
i += 2;
i *= 2;

We have a single execution history: we declare a variable, increment it by two, then
multiply it by two, and get the result: 6. Let’s say that, instead of having one execution
thread performing these operations, we have two threads that have read and write
access to variable x.

Concurrent Execution
As soon as two execution threads are allowed to access the variable, the exact out‐
come of the concurrent step execution is unpredictable, unless the steps are
synchronized between the threads. Instead of a single possible outcome, we end up
with four, as Figure 8-1 shows.1
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Figure 8-1. Possible interleavings of concurrent executions

• a) x = 2, if both threads read an initial value, the adder writes its value, but it is
overwritten with the multiplication result.

• b) x = 3, if both threads read an initial value, the multiplier writes its value, but it
is overwritten with the addition result.

• c) x = 4, if the multiplier can read the initial value and execute its operation
before the adder starts.

• d) x = 6, if the adder can read the initial value and execute its operation before
the multiplier starts.

Even before we can cross a single node boundary, we encounter the first problem in
distributed systems: concurrency. Every concurrent program has some properties of a
distributed system. Threads access the shared state, perform some operations locally,
and propagate the results back to the shared variables.

To define execution histories precisely and reduce the number of possible outcomes,
we need consistency models. Consistency models describe concurrent executions and
establish an order in which operations can be executed and made visible to the partic‐
ipants. Using different consistency models, we can constraint or relax the number of
states the system can be in.

There is a lot of overlap in terminology and research in the areas of distributed sys‐
tems and concurrent computing, but there are also some differences. In a concurrent
system, we can have shared memory, which processors can use to exchange the
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information. In a distributed system, each processor has its local state and partici‐
pants communicate by passing messages.

Concurrent and Parallel
We often use the terms concurrent and parallel computing interchangeably, but these
concepts have a slight semantic difference. When two sequences of steps execute con‐
currently, both of them are in progress, but only one of them is executed at any
moment. If two sequences execute in parallel, their steps can be executed simultane‐
ously. Concurrent operations overlap in time, while parallel operations are executed
by multiple processors [WEIKUM01].

Joe Armstrong, creator of the Erlang programming language, gave an example: con‐
current execution is like having two queues to a single coffee machine, while parallel
execution is like having two queues to two coffee machines. That said, the vast major‐
ity of sources use the term concurrency to describe systems with several parallel exe‐
cution threads, and the term parallelism is rarely used.

Shared State in a Distributed System
We can try to introduce some notion of shared memory to a distributed system, for
example, a single source of information, such as database. Even if we solve the prob‐
lems with concurrent access to it, we still cannot guarantee that all processes are in
sync.

To access this database, processes have to go over the communication medium by
sending and receiving messages to query or modify the state. However, what happens
if one of the processes does not receive a response from the database for a longer
time? To answer this question, we first have to define what longer even means. To do
this, the system has to be described in terms of synchrony: whether the communica‐
tion is fully asynchronous, or whether there are some timing assumptions. These tim‐
ing assumptions allow us to introduce operation timeouts and retries.

We do not know whether the database hasn’t responded because it’s overloaded,
unavailable, or slow, or because of some problems with the network on the way to it.
This describes a nature of a crash: processes may crash by failing to participate in fur‐
ther algorithm steps, having a temporary failure, or by omitting some of the mes‐
sages. We need to define a failure model and describe ways in which failures can occur
before we decide how to treat them.

A property that describes system reliability and whether or not it can continue oper‐
ating correctly in the presence of failures is called fault tolerance. Failures are inevita‐
ble, so we need to build systems with reliable components, and eliminating a single
point of failure in the form of the aforementioned single-node database can be the
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first step in this direction. We can do this by introducing some redundancy and
adding a backup database. However, now we face a different problem: how do we
keep multiple copies of shared state in sync?

So far, trying to introduce shared state to our simple system has left us with more
questions than answers. We now know that sharing state is not as simple as just intro‐
ducing a database, and have to take a more granular approach and describe interac‐
tions in terms of independent processes and passing messages between them.

Fallacies of Distributed Computing
In an ideal case, when two computers talk over the network, everything works just
fine: a process opens up a connection, sends the data, gets responses, and everyone is
happy. Assuming that operations always succeed and nothing can go wrong is dan‐
gerous, since when something does break and our assumptions turn out to be wrong,
systems behave in ways that are hard or impossible to predict.

Most of the time, assuming that the network is reliable is a reasonable thing to do. It
has to be reliable to at least some extent to be useful. We’ve all been in the situation
when we tried to establish a connection to the remote server and got a Network is
Unreachable error instead. But even if it is possible to establish a connection, a suc‐
cessful initial connection to the server does not guarantee that the link is stable, and
the connection can get interrupted at any time. The message might’ve reached the
remote party, but the response could’ve gotten lost, or the connection was interrupted
before the response was delivered.

Network switches break, cables get disconnected, and network configurations can
change at any time. We should build our system by handling all of these scenarios
gracefully.

A connection can be stable, but we can’t expect remote calls to be as fast as the local
ones. We should make as few assumptions about latency as possible and never
assume that latency is zero. For our message to reach a remote server, it has to go
through several software layers, and a physical medium such as optic fiber or a cable.
All of these operations are not instantaneous.

Michael Lewis, in his Flash Boys book (Simon and Schuster), tells a story about com‐
panies spending millions of dollars to reduce latency by several milliseconds to able
to access stock exchanges faster than the competition. This is a great example of using
latency as a competitive advantage, but it’s worth mentioning that, according to some
other studies, such as [BARTLETT16], the chance of stale-quote arbitrage (the ability
to profit from being able to know prices and execute orders faster than the competi‐
tion) doesn’t give fast traders the ability to exploit markets.
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Learning our lessons, we’ve added retries, reconnects, and removed the assumptions
about instantaneous execution, but this still turns out not to be enough. When
increasing the number, rates, and sizes of exchanged messages, or adding new pro‐
cesses to the existing network, we should not assume that bandwidth is infinite.

In 1994, Peter Deutsch published a now-famous list of assertions,
titled “Fallacies of distributed computing,” describing the aspects of
distributed computing that are easy to overlook. In addition to net‐
work reliability, latency, and bandwidth assumptions, he describes
some other problems. For example, network security, the possible
presence of adversarial parties, intentional and unintentional topol‐
ogy changes that can break our assumptions about presence and
location of specific resources, transport costs in terms of both time
and resources, and, finally, the existence of a single authority hav‐
ing knowledge and control over the entire network.

Deutsch’s list of distributed computing fallacies is pretty exhaustive, but it focuses on
what can go wrong when we send messages from one process to another through the
link. These concerns are valid and describe the most general and low-level complica‐
tions, but unfortunately, there are many other assumptions we make about the dis‐
tributed systems while designing and implementing them that can cause problems
when operating them.

Processing
Before a remote process can send a response to the message it just received, it needs
to perform some work locally, so we cannot assume that processing is instantaneous.
Taking network latency into consideration is not enough, as operations performed by
the remote processes aren’t immediate, either.

Moreover, there’s no guarantee that processing starts as soon as the message is deliv‐
ered. The message may land in the pending queue on the remote server, and will have
to wait there until all the messages that arrived before it are processed.

Nodes can be located closer or further from one another, have different CPUs,
amounts of RAM, different disks, or be running different software versions and con‐
figurations. We cannot expect them to process requests at the same rate. If we have to
wait for several remote servers working in parallel to respond to complete the task,
the execution as a whole is as slow as the slowest remote server.

Contrary to the widespread belief, queue capacity is not infinite and piling up more
requests won’t do the system any good. Backpressure is a strategy that allows us to
cope with producers that publish messages at a rate that is faster than the rate at
which consumers can process them by slowing down the producers. Backpressure is
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one of the least appreciated and applied concepts in distributed systems, often built
post hoc instead of being an integral part of the system design.

Even though increasing the queue capacity might sound like a good idea and can help
to pipeline, parallelize, and effectively schedule requests, nothing is happening to the
messages while they’re sitting in the queue and waiting for their turn. Increasing the
queue size may negatively impact latency, since changing it has no effect on the pro‐
cessing rate.

In general, process-local queues are used to achieve the following goals:

Decoupling
Receipt and processing are separated in time and happen independently.

Pipelining
Requests in different stages are processed by independent parts of the system.
The subsystem responsible for receiving messages doesn’t have to block until the
previous message is fully processed.

Absorbing short-time bursts
System load tends to vary, but request inter-arrival times are hidden from the
component responsible for request processing. Overall system latency increases
because of the time spent in the queue, but this is usually still better than
responding with a failure and retrying the request.

Queue size is workload- and application-specific. For relatively stable workloads, we
can size queues by measuring task processing times and the average time each task
spends in the queue before it is processed, and making sure that latency remains
within acceptable bounds while throughput increases. In this case, queue sizes are rel‐
atively small. For unpredictable workloads, when tasks get submitted in bursts,
queues should be sized to account for bursts and high load as well.

The remote server can work through requests quickly, but it doesn’t mean that we
always get a positive response from it. It can respond with a failure: it couldn’t make a
write, the searched value was not present, or it could’ve hit a bug. In summary, even
the most favorable scenario still requires some attention from our side.

Clocks and Time
Time is an illusion. Lunchtime doubly so.

—Ford Prefect, The Hitchhiker’s Guide to the Galaxy

Assuming that clocks on remote machines run in sync can also be dangerous. Com‐
bined with latency is zero and processing is instantaneous, it leads to different idiosyn‐
crasies, especially in time-series and real-time data processing. For example, when
collecting and aggregating data from participants with a different perception of time,
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you should understand time drifts between them and normalize times accordingly,
rather than relying on the source timestamp. Unless you use specialized high-
precision time sources, you should not rely on timestamps for synchronization or
ordering. Of course this doesn’t mean we cannot or should not rely on time at all: in
the end, any synchronous system uses local clocks for timeouts.

It’s essential to always account for the possible time differences between the processes
and the time required for the messages to get delivered and processed. For example,
Spanner (see “Distributed Transactions with Spanner” on page 268) uses a special
time API that returns a timestamp and uncertainty bounds to impose a strict transac‐
tion order. Some failure-detection algorithms rely on a shared notion of time and a
guarantee that the clock drift is always within allowed bounds for correctness
[GUPTA01].

Besides the fact that clock synchronization in a distributed system is hard, the current
time is constantly changing: you can request a current POSIX timestamp from the
operating system, and request another current timestamp after executing several
steps, and the two will be different. This is a rather obvious observation, but under‐
standing both a source of time and which exact moment the timestamp captures is
crucial.

Understanding whether the clock source is monotonic (i.e., that it won’t ever go back‐
ward) and how much the scheduled time-related operations might drift can be help‐
ful, too.

State Consistency
Most of the previous assumptions fall into the almost always false category, but there
are some that are better described as not always true: when it’s easy to take a mental
shortcut and simplify the model by thinking of it a specific way, ignoring some tricky
edge cases.

Distributed algorithms do not always guarantee strict state consistency. Some
approaches have looser constraints and allow state divergence between replicas, and
rely on conflict resolution (an ability to detect and resolve diverged states within the
system) and read-time data repair (bringing replicas back in sync during reads in
cases where they respond with different results). You can find more information
about these concepts in Chapter 12. Assuming that the state is fully consistent across
the nodes may lead to subtle bugs.

An eventually consistent distributed database system might have the logic to handle
replica disagreement by querying a quorum of nodes during reads, but assume that
the database schema and the view of the cluster are strongly consistent. Unless we
enforce consistency of this information, relying on that assumption may have severe
consequences.
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For example, there was a bug in Apache Cassandra, caused by the fact that schema
changes propagate to servers at different times. If you tried to read from the database
while the schema was propagating, there was a chance of corruption, since one server
encoded results assuming one schema and the other one decoded them using a differ‐
ent schema.

Another example is a bug caused by the divergent view of the ring: if one of the nodes
assumes that the other node holds data records for a key, but this other node has a
different view of the cluster, reading or writing the data can result in misplacing data
records or getting an empty response while data records are in fact happily present on
the other node.

It is better to think about the possible problems in advance, even if a complete solu‐
tion is costly to implement. By understanding and handling these cases, you can
embed safeguards or change the design in a way that makes the solution more
natural.

Local and Remote Execution
Hiding complexity behind an API might be dangerous. For example, if you have an
iterator over the local dataset, you can reasonably predict what’s going on behind the
scenes, even if the storage engine is unfamiliar. Understanding the process of itera‐
tion over the remote dataset is an entirely different problem: you need to understand
consistency and delivery semantics, data reconciliation, paging, merges, concurrent
access implications, and many other things.

Simply hiding both behind the same interface, however useful, might be misleading.
Additional API parameters may be necessary for debugging, configuration, and
observability. We should always keep in mind that local and remote execution are not
the same [WALDO96].

The most apparent problem with hiding remote calls is latency: remote invocation is
many times more costly than the local one, since it involves two-way network trans‐
port, serialization/deserialization, and many other steps. Interleaving local and block‐
ing remote calls may lead to performance degradation and unintended side effects
[VINOSKI08].

Need to Handle Failures
It’s OK to start working on a system assuming that all nodes are up and functioning
normally, but thinking this is the case all the time is dangerous. In a long-running
system, nodes can be taken down for maintenance (which usually involves a graceful
shutdown) or crash for various reasons: software problems, out-of-memory killer
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2 Murphy’s Law is an adage that can be summarized as “Anything that can go wrong, will go wrong,” which was
popularized and is often used as an idiom in popular culture.

[KERRISK10], runtime bugs, hardware issues, etc. Processes do fail, and the best
thing you can do is be prepared for failures and understand how to handle them.

If the remote server doesn’t respond, we do not always know the exact reason for it. It
could be caused by the crash, a network failure, the remote process, or the link to it
being slow. Some distributed algorithms use heartbeat protocols and failure detectors
to form a hypothesis about which participants are alive and reachable.

Network Partitions and Partial Failures
When two or more servers cannot communicate with each other, we call the situation
network partition. In “Perspectives on the CAP Theorem” [GILBERT12], Seth Gilbert
and Nancy Lynch draw a distinction between the case when two participants cannot
communicate with each other and when several groups of participants are isolated
from one another, cannot exchange messages, and proceed with the algorithm.

General unreliability of the network (packet loss, retransmission, latencies that are
hard to predict) are annoying but tolerable, while network partitions can cause much
more trouble, since independent groups can proceed with execution and produce
conflicting results. Network links can also fail asymmetrically: messages can still be
getting delivered from one process to the other one, but not vice versa.

To build a system that is robust in the presence of failure of one or multiple processes,
we have to consider cases of partial failures [TANENBAUM06] and how the system
can continue operating even though a part of it is unavailable or functioning incor‐
rectly.

Failures are hard to detect and aren’t always visible in the same way from different
parts of the system. When designing highly available systems, one should always
think about edge cases: what if we did replicate the data, but received no acknowledg‐
ments? Do we need to retry? Is the data still going to be available for reads on the
nodes that have sent acknowledgments?

Murphy’s Law2 tells us that the failures do happen. Programming folklore adds that
the failures will happen in the worst way possible, so our job as distributed systems
engineers is to make sure we reduce the number of scenarios where things go wrong
and prepare for failures in a way that contains the damage they can cause.

It’s impossible to prevent all failures, but we can still build a resilient system that func‐
tions correctly in their presence. The best way to design for failures is to test for them.
It’s close to impossible to think through every possible failure scenario and predict the
behaviors of multiple processes. Setting up testing harnesses that create partitions,
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simulate bit rot [GRAY05], increase latencies, diverge clocks, and magnify relative
processing speeds is the best way to go about it. Real-world distributed system setups
can be quite adversarial, unfriendly, and “creative” (however, in a very hostile way), so
the testing effort should attempt to cover as many scenarios as possible.

Over the last few years, we’ve seen a few open source projects that
help to recreate different failure scenarios. Toxiproxy can help to
simulate network problems: limit the bandwidth, introduce latency,
timeouts, and more. Chaos Monkey takes a more radical approach
and exposes engineers to production failures by randomly shutting
down services. CharybdeFS helps to simulate filesystem and hard‐
ware errors and failures. You can use these tools to test your soft‐
ware and make sure it behaves correctly in the presence of these
failures. CrashMonkey, a filesystem agnostic record-replay-and-
test framework, helps test data and metadata consistency for persis‐
tent files.

When working with distributed systems, we have to take fault tolerance, resilience,
possible failure scenarios, and edge cases seriously. Similar to “given enough eyeballs,
all bugs are shallow,” we can say that a large enough cluster will eventually hit every
possible issue. At the same time, given enough testing, we will be able to eventually
find every existing problem.

Cascading Failures
We cannot always wholly isolate failures: a process tipping over under a high load
increases the load for the rest of cluster, making it even more probable for the other
nodes to fail. Cascading failures can propagate from one part of the system to the
other, increasing the scope of the problem.

Sometimes, cascading failures can even be initiated by perfectly good intentions. For
example, a node was offline for a while and did not receive the most recent updates.
After it comes back online, helpful peers would like to help it to catch up with recent
happenings and start streaming the data it’s missing over to it, exhausting network
resources or causing the node to fail shortly after the startup.

To protect a system from propagating failures and treat failure sce‐
narios gracefully, circuit breakers can be used. In electrical engi‐
neering, circuit breakers protect expensive and hard-to-replace
parts from overload or short circuit by interrupting the current
flow. In software development, circuit breakers monitor failures
and allow fallback mechanisms that can protect the system by
steering away from the failing service, giving it some time to
recover, and handling failing calls gracefully.
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When the connection to one of the servers fails or the server does not respond, the
client starts a reconnection loop. By that point, an overloaded server already has a
hard time catching up with new connection requests, and client-side retries in a tight
loop don’t help the situation. To avoid that, we can use a backoff strategy. Instead of
retrying immediately, clients wait for some time. Backoff can help us to avoid ampli‐
fying problems by scheduling retries and increasing the time window between subse‐
quent requests.

Backoff is used to increase time periods between requests from a single client. How‐
ever, different clients using the same backoff strategy can produce substantial load as
well. To prevent different clients from retrying all at once after the backoff period, we
can introduce jitter. Jitter adds small random time periods to backoff and reduces the
probability of clients waking up and retrying at the same time.

Hardware failures, bit rot, and software errors can result in corruption that can prop‐
agate through standard delivery mechanisms. For example, corrupted data records
can get replicated to the other nodes if they are not validated. Without validation
mechanisms in place, a system can propagate corrupted data to the other nodes,
potentially overwriting noncorrupted data records. To avoid that, we should use
checksumming and validation to verify the integrity of any content exchanged
between the nodes.

Overload and hotspotting can be avoided by planning and coordinating execution.
Instead of letting peers execute operation steps independently, we can use a coordina‐
tor that prepares an execution plan based on the available resources and predicts the
load based on the past execution data available to it.

In summary, we should always consider cases in which failures in one part of the sys‐
tem can cause problems elsewhere. We should equip our systems with circuit break‐
ers, backoff, validation, and coordination mechanisms. Handling small isolated
problems is always more straightforward than trying to recover from a large outage.

We’ve just spent an entire section discussing problems and potential failure scenarios
in distributed systems, but we should see this as a warning and not as something that
should scare us away.

Understanding what can go wrong, and carefully designing and testing our systems
makes them more robust and resilient. Being aware of these issues can help you to
identify and find potential sources of problems during development, as well as debug
them in production.

Distributed Systems Abstractions
When talking about programming languages, we use common terminology and
define our programs in terms of functions, operators, classes, variables, and pointers.
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Having a common vocabulary helps us to avoid inventing new words every time we
describe anything. The more precise and less ambiguous our definitions are, the eas‐
ier it is for our listeners to understand us.

Before we move to algorithms, we first have to cover the distributed systems vocabu‐
lary: definitions you’ll frequently encounter in talks, books, and papers.

Links
Networks are not reliable: messages can get lost, delayed, and reordered. Now, with
this thought in our minds, we will try to build several communication protocols.
We’ll start with the least reliable and robust ones, identifying the states they can be in,
and figuring out the possible additions to the protocol that can provide better
guarantees.

Fair-loss link
We can start with two processes, connected with a link. Processes can send messages
to each other, as shown in Figure 8-2. Any communication medium is imperfect, and
messages can get lost or delayed.

Let’s see what kind of guarantees we can get. After the message M is sent, from the
senders’ perspective, it can be in one of the following states:

• Not yet delivered to process B (but will be, at some point in time)
• Irrecoverably lost during transport
• Successfully delivered to the remote process

Figure 8-2. Simplest, unreliable form of communication

Notice that the sender does not have any way to find out if the message is already
delivered. In distributed systems terminology, this kind of link is called fair-loss. The
properties of this kind of link are:
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3 A more precise definition is that if a correct process A sends a message to a correct process B infinitely often,
it will be delivered infinitely often ([CACHIN11]).

Fair loss
If both sender and recipient are correct and the sender keeps retransmitting the
message infinitely many times, it will eventually be delivered.3

Finite duplication
Sent messages won’t be delivered infinitely many times.

No creation
A link will not come up with messages; in other words, it won’t deliver the mes‐
sage that was never sent.

A fair-loss link is a useful abstraction and a first building block for communication
protocols with strong guarantees. We can assume that this link is not losing messages
between communicating parties systematically and doesn’t create new messages. But,
at the same time, we cannot entirely rely on it. This might remind you of the User
Datagram Protocol (UDP), which allows us to send messages from one process to the
other, but does not have reliable delivery semantics on the protocol level.

Message acknowledgments
To improve the situation and get more clarity in terms of message status, we can
introduce acknowledgments: a way for the recipient to notify the sender that it has
received the message. For that, we need to use bidirectional communication channels
and add some means that allow us to distinguish differences between the messages;
for example, sequence numbers, which are unique monotonically increasing message
identifiers.

It is enough to have a unique identifier for every message. Sequence
numbers are just a particular case of a unique identifier, where we
achieve uniqueness by drawing identifiers from a counter. When
using hash algorithms to identify messages uniquely, we should
account for possible collisions and make sure we can still disambig‐
uate messages.

Now, process A can send a message M(n), where n is a monotonically increasing mes‐
sage counter. As soon as B receives the message, it sends an acknowledgment ACK(n)
back to A. Figure 8-3 shows this form of communication.
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Figure 8-3. Sending a message with an acknowledgment

The acknowledgment, as well as the original message, may get lost on the way. The
number of states the message can be in changes slightly. Until A receives an acknowl‐
edgment, the message is still in one of the three states we mentioned previously, but
as soon as A receives the acknowledgment, it can be confident that the message is
delivered to B.

Message retransmits
Adding acknowledgments is still not enough to call this communication protocol reli‐
able: a sent message may still get lost, or the remote process may fail before acknowl‐
edging it. To solve this problem and provide delivery guarantees, we can try
retransmits instead. Retransmits are a way for the sender to retry a potentially failed
operation. We say potentially failed, because the sender doesn’t really know whether it
has failed or not, since the type of link we’re about to discuss does not use
acknowledgments.

After process A sends message M, it waits until timeout T is triggered and tries to send
the same message again. Assuming the link between processes stays intact, network
partitions between the processes are not infinite, and not all packets are lost, we can
state that, from the sender’s perspective, the message is either not yet delivered to pro‐
cess B or is successfully delivered to process B. Since A keeps trying to send the mes‐
sage, we can say that it cannot get irrecoverably lost during transport.

In distributed systems terminology, this abstraction is called a stubborn link. It’s called
stubborn because the sender keeps resending the message again and again indefi‐
nitely, but, since this sort of abstraction would be highly impractical, we need to com‐
bine retries with acknowledgments.

Problem with retransmits
Whenever we send the message, until we receive an acknowledgment from the
remote process, we do not know whether it has already been processed, it will be pro‐
cessed shortly, it has been lost, or the remote process has crashed before receiving it—
any one of these states is possible. We can retry the operation and send the message
again, but this can result in message duplicates. Processing duplicates is only safe if
the operation we’re about to perform is idempotent.

An idempotent operation is one that can be executed multiple times, yielding the
same result without producing additional side effects. For example, a server shut‐
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down operation can be idempotent, the first call initiates the shutdown, and all subse‐
quent calls do not produce any additional effects.

If every operation was idempotent, we could think less about delivery semantics, rely
more on retransmits for fault tolerance, and build systems in an entirely reactive way:
triggering an action as a response to some signal, without causing unintended side
effects. However, operations are not necessarily idempotent, and merely assuming
that they are might lead to cluster-wide side effects. For example, charging a
customer’s credit card is not idempotent, and charging it multiple times is definitely
undesirable.

Idempotence is particularly important in the presence of partial failures and network
partitions, since we cannot always find out the exact status of a remote operation—
whether it has succeeded, failed, or will be executed shortly—and we just have to wait
longer. Since guaranteeing that each executed operation is idempotent is an unrealis‐
tic requirement, we need to provide guarantees equivalent to idempotence without
changing the underlying operation semantics. To achieve this, we can use deduplica‐
tion and avoid processing messages more than once.

Message order
Unreliable networks present us with two problems: messages can arrive out of order
and, because of retransmits, some messages may arrive more than once. We have
already introduced sequence numbers, and we can use these message identifiers on
the recipient side to ensure first-in, first-out (FIFO) ordering. Since every message has
a sequence number, the receiver can track:

• nconsecutive, specifying the highest sequence number, up to which it has seen all
messages. Messages up to this number can be put back in order.

• nprocessed, specifying the highest sequence number, up to which messages were put
back in their original order and processed. This number can be used for
deduplication.

If the received message has a nonconsecutive sequence number, the receiver puts it
into the reordering buffer. For example, it receives a message with a sequence number
5 after receiving one with 3, and we know that 4 is still missing, so we need to put 5
aside until 4 comes, and we can reconstruct the message order. Since we’re building
on top of a fair-loss link, we assume that messages between nconsecutive and nmax_seen will
eventually be delivered.

The recipient can safely discard the messages with sequence numbers up to nconsecutive
that it receives, since they’re guaranteed to be already delivered.
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4 See https://databass.dev/links/53.

Deduplication works by checking if the message with a sequence number n has
already been processed (passed down the stack by the receiver) and discarding already
processed messages.

In distributed systems terms, this type of link is called a perfect link, which provides
the following guarantees [CACHIN11]:

Reliable delivery
Every message sent once by the correct process A to the correct process B, will
eventually be delivered.

No duplication
No message is delivered more than once.

No creation
Same as with other types of links, it can only deliver the messages that were
actually sent.

This might remind you of the TCP4 protocol (however, reliable delivery in TCP is
guaranteed only in the scope of a single session). Of course, this model is just a sim‐
plified representation we use for illustration purposes only. TCP has a much more
sophisticated model for dealing with acknowledgments, which groups acknowledg‐
ments and reduces the protocol-level overhead. In addition, TCP has selective
acknowledgments, flow control, congestion control, error detection, and many other
features that are out of the scope of our discussion.

Exactly-once delivery
There are only two hard problems in distributed systems: 2. Exactly-once delivery 1.
Guaranteed order of messages 2. Exactly-once delivery.

—Mathias Verraes

There have been many discussions about whether or not exactly-once delivery is pos‐
sible. Here, semantics and precise wording are essential. Since there might be a link
failure preventing the message from being delivered from the first try, most of the
real-world systems employ at-least-once delivery, which ensures that the sender
retries until it receives an acknowledgment, otherwise the message is not considered
to be received. Another delivery semantic is at-most-once: the sender sends the mes‐
sage and doesn’t expect any delivery confirmation.

The TCP protocol works by breaking down messages into packets, transmitting them
one by one, and stitching them back together on the receiving side. TCP might
attempt to retransmit some of the packets, and more than one transmission attempt
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may succeed. Since TCP marks each packet with a sequence number, even though
some packets were transmitted more than once, it can deduplicate the packets and
guarantee that the recipient will see the message and process it only once. In TCP, this
guarantee is valid only for a single session: if the message is acknowledged and pro‐
cessed, but the sender didn’t receive the acknowledgment before the connection was
interrupted, the application is not aware of this delivery and, depending on its logic, it
might attempt to send the message once again.

This means that exactly-once processing is what’s interesting here since duplicate
deliveries (or packet transmissions) have no side effects and are merely an artifact of
the best effort by the link. For example, if the database node has only received the
record, but hasn’t persisted it, delivery has occurred, but it’ll be of no use unless the
record can be retrieved (in other words, unless it was both delivered and processed).

For the exactly-once guarantee to hold, nodes should have a common knowledge
[HALPERN90]: everyone knows about some fact, and everyone knows that everyone
else also knows about that fact. In simplified terms, nodes have to agree on the state
of the record: both nodes agree that it either was or was not persisted. As you will see
later in this chapter, this is theoretically impossible, but in practice we still use this
notion by relaxing coordination requirements.

Any misunderstanding about whether or not exactly-once delivery is possible most
likely comes from approaching the problem from different protocol and abstraction
levels and the definition of “delivery.” It’s not possible to build a reliable link without
ever transferring any message more than once, but we can create the illusion of
exactly-once delivery from the sender’s perspective by processing the message once
and ignoring duplicates.

Now, as we have established the means for reliable communication, we can move
ahead and look for ways to achieve uniformity and agreement between processes in
the distributed system.

Two Generals’ Problem
One of the most prominent descriptions of an agreement in a distributed system is a
thought experiment widely known as the Two Generals’ Problem.

This thought experiment shows that it is impossible to achieve an agreement between
two parties if communication is asynchronous in the presence of link failures. Even
though TCP exhibits properties of a perfect link, it’s important to remember that per‐
fect links, despite the name, do not guarantee perfect delivery. They also can’t guaran‐
tee that participants will be alive the whole time, and are concerned only with
transport.

Two Generals’ Problem | 187



Imagine two armies, led by two generals, preparing to attack a fortified city. The
armies are located on two sides of the city and can succeed in their siege only if they
attack simultaneously.

The generals can communicate by sending messengers, and already have devised an
attack plan. The only thing they now have to agree on is whether or not to carry out
the plan. Variants of this problem are when one of the generals has a higher rank, but
needs to make sure the attack is coordinated; or that the generals need to agree on the
exact time. These details do not change the problem definition: the generals have to
come to an agreement.

The army generals only have to agree on the fact that they both will proceed with the
attack. Otherwise, the attack cannot succeed. General A sends a message MSG(N), stat‐
ing an intention to proceed with the attack at a specified time, if the other party
agrees to proceed as well.

After A sends the messenger, he doesn’t know whether the messenger has arrived or
not: the messenger can get captured and fail to deliver the message. When general B
receives the message, he has to send an acknowledgment ACK(MSG(N)). Figure 8-4
shows that a message is sent one way and acknowledged by the other party.

Figure 8-4. Two Generals’ Problem illustrated

The messenger carrying this acknowledgment might get captured or fail to deliver it,
as well. B doesn’t have any way of knowing if the messenger has successfully delivered
the acknowledgment.

To be sure about it, B has to wait for ACK(ACK(MSG(N))), a second-order acknowledg‐
ment stating that A received an acknowledgment for the acknowledgment.

No matter how many further confirmations the generals send to each other, they will
always be one ACK away from knowing if they can safely proceed with the attack. The
generals are doomed to wonder if the message carrying this last acknowledgment has
reached the destination.
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Notice that we did not make any timing assumptions: communication between gen‐
erals is fully asynchronous. There is no upper time bound set on how long the gener‐
als can take to respond.

FLP Impossibility
In a paper by Fisher, Lynch, and Paterson, the authors describe a problem famously
known as the FLP Impossibility Problem [FISCHER85] (derived from the first letters
of authors’ last names), wherein they discuss a form of consensus in which processes
start with an initial value and attempt to agree on a new value. After the algorithm
completes, this new value has to be the same for all nonfaulty processes.

Reaching an agreement on a specific value is straightforward if the network is entirely
reliable; but in reality, systems are prone to many different sorts of failures, such as
message loss, duplication, network partitions, and slow or crashed processes.

A consensus protocol describes a system that, given multiple processes starting at its
initial state, brings all of the processes to the decision state. For a consensus protocol
to be correct, it has to preserve three properties:

Agreement
The decision the protocol arrives at has to be unanimous: each process decides
on some value, and this has to be the same for all processes. Otherwise, we have
not reached a consensus.

Validity
The agreed value has to be proposed by one of the participants, which means that
the system should not just “come up” with the value. This also implies nontrivial‐
ity of the value: processes should not always decide on some predefined default
value.

Termination
An agreement is final only if there are no processes that did not reach the deci‐
sion state.

[FISCHER85] assumes that processing is entirely asynchronous; there’s no shared
notion of time between the processes. Algorithms in such systems cannot be based on
timeouts, and there’s no way for a process to find out whether the other process has
crashed or is simply running too slow. The paper shows that, given these assump‐
tions, there exists no protocol that can guarantee consensus in a bounded time. No
completely asynchronous consensus algorithm can tolerate the unannounced crash of
even a single remote process.

If we do not consider an upper time bound for the process to complete the algorithm
steps, process failures can’t be reliably detected, and there’s no deterministic algo‐
rithm to reach a consensus.
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However, FLP Impossibility does not mean we have to pack our things and go home,
as reaching consensus is not possible. It only means that we cannot always reach con‐
sensus in an asynchronous system in bounded time. In practice, systems exhibit at
least some degree of synchrony, and the solution to this problem requires a more
refined model.

System Synchrony
From FLP Impossibility, you can see that the timing assumption is one of the critical
characteristics of the distributed system. In an asynchronous system, we do not know
the relative speeds of processes, and cannot guarantee message delivery in a bounded
time or a particular order. The process might take indefinitely long to respond, and
process failures can’t always be reliably detected.

The main criticism of asynchronous systems is that these assumptions are not realis‐
tic: processes can’t have arbitrarily different processing speeds, and links don’t take
indefinitely long to deliver messages. Relying on time both simplifies reasoning and
helps to provide upper-bound timing guarantees.

It is not always possible to solve a consensus problem in an asynchronous model
[FISCHER85]. Moreover, designing an efficient synchronous algorithm is not always
achievable, and for some tasks the practical solutions are more likely to be time-
dependent [ARJOMANDI83].

These assumptions can be loosened up, and the system can be considered to be syn‐
chronous. For that, we introduce the notion of timing. It is much easier to reason
about the system under the synchronous model. It assumes that processes are pro‐
gressing at comparable rates, that transmission delays are bounded, and message
delivery cannot take arbitrarily long.

A synchronous system can also be represented in terms of synchronized process-local
clocks: there is an upper time bound in time difference between the two process-local
time sources [CACHIN11].

Designing systems under a synchronous model allows us to use timeouts. We can
build more complex abstractions, such as leader election, consensus, failure detec‐
tion, and many others on top of them. This makes the best-case scenarios more
robust, but results in a failure if the timing assumptions don’t hold up. For example,
in the Raft consensus algorithm (see “Raft” on page 300), we may end up with multi‐
ple processes believing they’re leaders, which is resolved by forcing the lagging pro‐
cess to accept the other process as a leader; failure-detection algorithms (see
Chapter 9) can wrongly identify a live process as failed or vice versa. When designing
our systems, we should make sure to consider these possibilities.
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Properties of both asynchronous and synchronous models can be combined, and we
can think of a system as partially synchronous. A partially synchronous system exhib‐
its some of the properties of the synchronous system, but the bounds of message
delivery, clock drift, and relative processing speeds might not be exact and hold only
most of the time [DWORK88].

Synchrony is an essential property of the distributed system: it has an impact on per‐
formance, scalability, and general solvability, and has many factors necessary for the
correct functioning of our systems. Some of the algorithms we discuss in this book
operate under the assumptions of synchronous systems.

Failure Models
We keep mentioning failures, but so far it has been a rather broad and generic con‐
cept that might capture many meanings. Similar to how we can make different timing
assumptions, we can assume the presence of different types of failures. A failure
model describes exactly how processes can crash in a distributed system, and algo‐
rithms are developed using these assumptions. For example, we can assume that a
process can crash and never recover, or that it is expected to recover after some time
passes, or that it can fail by spinning out of control and supplying incorrect values.

In distributed systems, processes rely on one another for executing an algorithm, so
failures can result in incorrect execution across the whole system.

We’ll discuss multiple failure models present in distributed systems, such as crash,
omission, and arbitrary faults. This list is not exhaustive, but it covers most of the
cases applicable and important in real-life systems.

Crash Faults
Normally, we expect the process to be executing all steps of an algorithm correctly.
The simplest way for a process to crash is by stopping the execution of any further
steps required by the algorithm and not sending any messages to other processes. In
other words, the process crashes. Most of the time, we assume a crash-stop process
abstraction, which prescribes that, once the process has crashed, it remains in this
state.

This model does not assume that it is impossible for the process to recover, and does
not discourage recovery or try to prevent it. It only means that the algorithm does not
rely on recovery for correctness or liveness. Nothing prevents processes from recover‐
ing, catching up with the system state, and participating in the next instance of the
algorithm.

Failed processes are not able to continue participating in the current round of nego‐
tiations during which they failed. Assigning the recovering process a new, different
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identity does not make the model equivalent to crash-recovery (discussed next), since
most algorithms use predefined lists of processes and clearly define failure semantics
in terms of how many failures they can tolerate [CACHIN11].

Crash-recovery is a different process abstraction, under which the process stops exe‐
cuting the steps required by the algorithm, but recovers at a later point and tries to
execute further steps. The possibility of recovery requires introducing a durable state
and recovery protocol into the system [SKEEN83]. Algorithms that allow
crash-recovery need to take all possible recovery states into consideration, since the
recovering process may attempt to continue execution from the last step known to it.

Algorithms, aiming to exploit recovery, have to take both state and identity into
account. Crash-recovery, in this case, can also be viewed as a special case of omission
failure, since from the other process’s perspective there’s no distinction between the
process that was unreachable and the one that has crashed and recovered.

Omission Faults
Another failure model is omission fault. This model assumes that the process skips
some of the algorithm steps, or is not able to execute them, or this execution is not
visible to other participants, or it cannot send or receive messages to and from other
participants. Omission fault captures network partitions between the processes
caused by faulty network links, switch failures, or network congestion. Network parti‐
tions can be represented as omissions of messages between individual processes or
process groups. A crash can be simulated by completely omitting any messages to and
from the process.

When the process is operating slower than the other participants and sends responses
much later than expected, for the rest of the system it may look like it is forgetful.
Instead of stopping completely, a slow node attempts to send its results out of sync
with other nodes.

Omission failures occur when the algorithm that was supposed to execute certain
steps either skips them or the results of this execution are not visible. For example,
this may happen if the message is lost on the way to the recipient, and the sender fails
to send it again and continues to operate as if it was successfully delivered, even
though it was irrecoverably lost. Omission failures can also be caused by intermittent
hangs, overloaded networks, full queues, etc.
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Arbitrary Faults
The hardest class of failures to overcome is arbitrary or Byzantine faults: a process
continues executing the algorithm steps, but in a way that contradicts the algorithm
(for example, if a process in a consensus algorithm decides on a value that no other
participant has ever proposed).

Such failures can happen due to bugs in software, or due to processes running differ‐
ent versions of the algorithm, in which case failures are easier to find and understand.
It can get much more difficult when we do not have control over all processes, and
one of the processes is intentionally misleading other processes.

You might have heard of Byzantine fault tolerance from the airspace industry: air‐
plane and spacecraft systems do not take responses from subcomponents at face value
and cross-validate their results. Another widespread application is cryptocurrencies
[GILAD17], where there is no central authority, different parties control the nodes,
and adversary participants have a material incentive to forge values and attempt to
game the system by providing faulty responses.

Handling Failures
We can mask failures by forming process groups and introducing redundancy into
the algorithm: even if one of the processes fails, the user will not notice this failure
[CHRISTIAN91].

There might be some performance penalty related to failures: normal execution relies
on processes being responsive, and the system has to fall back to the slower execution
path for error handling and correction. Many failures can be prevented on the soft‐
ware level by code reviews, extensive testing, ensuring message delivery by introduc‐
ing timeouts and retries, and making sure that steps are executed in order locally.

Most of the algorithms we’re going to cover here assume the crash-failure model and
work around failures by introducing redundancy. These assumptions help to create
algorithms that perform better and are easier to understand and implement.

Summary
In this chapter, we discussed some of the distributed systems terminology and intro‐
duced some basic concepts. We’ve talked about the inherent difficulties and complica‐
tions caused by the unreliability of the system components: links may fail to deliver
messages, processes may crash, or the network may get partitioned.
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This terminology should be enough for us to continue the discussion. The rest of the
book talks about the solutions commonly used in distributed systems: we think back
to what can go wrong and see what options we have available.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Distributed systems abstractions, failure models, and timing assumptions
Lynch, Nancy A. 1996. Distributed Algorithms. San Francisco: Morgan
Kaufmann.

Tanenbaum, Andrew S. and Maarten van Steen. 2006. Distributed Systems: Princi‐
ples and Paradigms (2nd Ed). Boston: Pearson.

Cachin, Christian, Rachid Guerraoui, and Lus Rodrigues. 2011. Introduction to
Reliable and Secure Distributed Programming (2nd Ed.). New York: Springer.
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CHAPTER 9

Failure Detection

If a tree falls in a forest and no one is around to hear it, does it make a sound?
—Unknown Author

In order for a system to appropriately react to failures, failures should be detected in a
timely manner. A faulty process might get contacted even though it won’t be able to
respond, increasing latencies and reducing overall system availability.

Detecting failures in asynchronous distributed systems (i.e., without making any tim‐
ing assumptions) is extremely difficult as it’s impossible to tell whether the process
has crashed, or is running slowly and taking an indefinitely long time to respond. We
discussed a problem related to this one in “FLP Impossibility” on page 189.

Terms such as dead, failed, and crashed are usually used to describe a process that has
stopped executing its steps completely. Terms such as unresponsive, faulty, and slow
are used to describe suspected processes, which may actually be dead.

Failures may occur on the link level (messages between processes are lost or delivered
slowly), or on the process level (the process crashes or is running slowly), and slow‐
ness may not always be distinguishable from failure. This means there’s always a
trade-off between wrongly suspecting alive processes as dead (producing false-
positives), and delaying marking an unresponsive process as dead, giving it the benefit
of doubt and expecting it to respond eventually (producing false-negatives).

A failure detector is a local subsystem responsible for identifying failed or unreachable
processes to exclude them from the algorithm and guarantee liveness while preserv‐
ing safety.

Liveness and safety are the properties that describe an algorithm’s ability to solve a
specific problem and the correctness of its output. More formally, liveness is a prop‐
erty that guarantees that a specific intended event must occur. For example, if one of
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the processes has failed, a failure detector must detect that failure. Safety guarantees
that unintended events will not occur. For example, if a failure detector has marked a
process as dead, this process had to be, in fact, dead [LAMPORT77] [RAYNAL99]
[FREILING11].

From a practical perspective, excluding failed processes helps to avoid unnecessary
work and prevents error propagation and cascading failures, while reducing availabil‐
ity when excluding potentially suspected alive processes.

Failure-detection algorithms should exhibit several essential properties. First of all,
every nonfaulty member should eventually notice the process failure, and the algo‐
rithm should be able to make progress and eventually reach its final result. This prop‐
erty is called completeness.

We can judge the quality of the algorithm by its efficiency: how fast the failure detec‐
tor can identify process failures. Another way to do this is to look at the accuracy of
the algorithm: whether or not the process failure was precisely detected. In other
words, an algorithm is not accurate if it falsely accuses a live process of being failed or
is not able to detect the existing failures.

We can think of the relationship between efficiency and accuracy as a tunable param‐
eter: a more efficient algorithm might be less precise, and a more accurate algorithm
is usually less efficient. It is provably impossible to build a failure detector that is both
accurate and efficient. At the same time, failure detectors are allowed to produce
false-positives (i.e., falsely identify live processes as failed and vice versa) [CHAN‐
DRA96].

Failure detectors are an essential prerequisite and an integral part of many consensus
and atomic broadcast algorithms, which we’ll be discussing later in this book.

Many distributed systems implement failure detectors by using heartbeats. This
approach is quite popular because of its simplicity and strong completeness. Algo‐
rithms we discuss here assume the absence of Byzantine failures: processes do not
attempt to intentionally lie about their state or states of their neighbors.

Heartbeats and Pings
We can query the state of remote processes by triggering one of two periodic
processes:

• We can trigger a ping, which sends messages to remote processes, checking if
they are still alive by expecting a response within a specified time period.

• We can trigger a heartbeat when the process is actively notifying its peers that it’s
still running by sending messages to them.
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We’ll use pings as an example here, but the same problem can be solved using heart‐
beats, producing similar results.

Each process maintains a list of other processes (alive, dead, and suspected ones) and
updates it with the last response time for each process. If a process fails to respond to
a ping message for a longer time, it is marked as suspected.

Figure 9-1 shows the normal functioning of a system: process P1 is querying the state
of neighboring node P2, which responds with an acknowledgment.

Figure 9-1. Pings for failure detection: normal functioning, no message delays

In contrast, Figure 9-2 shows how acknowledgment messages are delayed, which
might result in marking the active process as down.

Figure 9-2. Pings for failure detection: responses are delayed, coming after the next mes‐
sage is sent

Many failure-detection algorithms are based on heartbeats and timeouts. For exam‐
ple, Akka, a popular framework for building distributed systems, has an implementa‐
tion of a deadline failure detector, which uses heartbeats and reports a process failure
if it has failed to register within a fixed time interval.

This approach has several potential downsides: its precision relies on the careful
selection of ping frequency and timeout, and it does not capture process visibility
from the perspective of other processes (see “Outsourced Heartbeats” on page 198).

Timeout-Free Failure Detector
Some algorithms avoid relying on timeouts for detecting failures. For example, Heart‐
beat, a timeout-free failure detector [AGUILERA97], is an algorithm that only counts
heartbeats and allows the application to detect process failures based on the data in
the heartbeat counter vectors. Since this algorithm is timeout-free, it operates under
asynchronous system assumptions.

The algorithm assumes that any two correct processes are connected to each other
with a fair path, which contains only fair links (i.e., if a message is sent over this link
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infinitely often, it is also received infinitely often), and each process is aware of the
existence of all other processes in the network.

Each process maintains a list of neighbors and counters associated with them. Pro‐
cesses start by sending heartbeat messages to their neighbors. Each message contains
a path that the heartbeat has traveled so far. The initial message contains the first
sender in the path and a unique identifier that can be used to avoid broadcasting the
same message multiple times.

When the process receives a new heartbeat message, it increments counters for all
participants present in the path and sends the heartbeat to the ones that are not
present there, appending itself to the path. Processes stop propagating messages as
soon as they see that all the known processes have already received it (in other words,
process IDs appear in the path).

Since messages are propagated through different processes, and heartbeat paths con‐
tain aggregated information received from the neighbors, we can (correctly) mark an
unreachable process as alive even when the direct link between the two processes is
faulty.

Heartbeat counters represent a global and normalized view of the system. This view
captures how the heartbeats are propagated relative to one another, allowing us to
compare processes. However, one of the shortcomings of this approach is that inter‐
preting heartbeat counters may be quite tricky: we need to pick a threshold that can
yield reliable results. Unless we can do that, the algorithm will falsely mark active
processes as suspected.

Outsourced Heartbeats
An alternative approach, used by the Scalable Weakly Consistent Infection-style Pro‐
cess Group Membership Protocol (SWIM) [GUPTA01] is to use outsourced heart‐
beats to improve reliability using information about the process liveness from the
perspective of its neighbors. This approach does not require processes to be aware of
all other processes in the network, only a subset of connected peers.

As shown in Figure 9-3, process P1 sends a ping message to process P2. P2 doesn’t
respond to the message, so P1 proceeds by selecting multiple random members (P3
and P4). These random members try sending heartbeat messages to P2 and, if it
responds, forward acknowledgments back to P1.
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Figure 9-3. “Outsourcing” heartbeats

This allows accounting for both direct and indirect reachability. For example, if we
have processes P1, P2, and P3, we can check the state of P3 from the perspective of both
P1 and P2.

Outsourced heartbeats allow reliable failure detection by distributing responsibility
for deciding across the group of members. This approach does not require broadcast‐
ing messages to a broad group of peers. Since outsourced heartbeat requests can be
triggered in parallel, this approach can collect more information about suspected pro‐
cesses quickly, and allow us to make more accurate decisions.

Phi-Accural Failure Detector
Instead of treating node failure as a binary problem, where the process can be only in
two states: up or down, a phi-accrual (φ-accrual) failure detector [HAYASHIBARA04]
has a continuous scale, capturing the probability of the monitored process’s crash. It
works by maintaining a sliding window, collecting arrival times of the most recent
heartbeats from the peer processes. This information is used to approximate arrival
time of the next heartbeat, compare this approximation with the actual arrival time,
and compute the suspicion level φ: how certain the failure detector is about the failure,
given the current network conditions.

The algorithm works by collecting and sampling arrival times, creating a view that
can be used to make a reliable judgment about node health. It uses these samples to
compute the value of φ: if this value reaches a threshold, the node is marked as down.
This failure detector dynamically adapts to changing network conditions by adjusting
the scale on which the node can be marked as a suspect.

From the architecture perspective, a phi-accrual failure detector can be viewed as a
combination of three subsystems:

Monitoring
Collecting liveness information through pings, heartbeats, or request-response
sampling.
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Interpretation
Making a decision on whether or not the process should be marked as suspected.

Action
A callback executed whenever the process is marked as suspected.

The monitoring process collects and stores data samples (which are assumed to fol‐
low a normal distribution) in a fixed-size window of heartbeat arrival times. Newer
arrivals are added to the window, and the oldest heartbeat data points are discarded.

Distribution parameters are estimated from the sampling window by determining the
mean and variance of samples. This information is used to compute the probability of
arrival of the message within t time units after the previous one. Given this informa‐
tion, we compute φ, which describes how likely we are to make a correct decision
about a process’s liveness. In other words, how likely it is to make a mistake and
receive a heartbeat that will contradict the calculated assumptions.

This approach was developed by researchers from the Japan Advanced Institute of
Science and Technology, and is now used in many distributed systems; for example,
Cassandra and Akka (along with the aforementioned deadline failure detector).

Gossip and Failure Detection
Another approach that avoids relying on a single-node view to make a decision is a
gossip-style failure detection service [VANRENESSE98], which uses gossip (see “Gos‐
sip Dissemination” on page 250) to collect and distribute states of neighboring
processes.

Each member maintains a list of other members, their heartbeat counters, and time‐
stamps, specifying when the heartbeat counter was incremented for the last time.
Periodically, each member increments its heartbeat counter and distributes its list to a
random neighbor. Upon the message receipt, the neighboring node merges the list
with its own, updating heartbeat counters for the other neighbors.

Nodes also periodically check the list of states and heartbeat counters. If any node did
not update its counter for long enough, it is considered failed. This timeout period
should be chosen carefully to minimize the probability of false-positives. How often
members have to communicate with each other (in other words, worst-case band‐
width) is capped, and can grow at most linearly with a number of processes in the
system.
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Figure 9-4 shows three communicating processes sharing their heartbeat counters:

• a) All three can communicate and update their timestamps.
• b) P3 isn’t able to communicate with P1, but its timestamp t6 can still be propaga‐

ted through P2.
• c) P3 crashes. Since it doesn’t send updates anymore, it is detected as failed by

other processes.

Figure 9-4. Replicated heartbeat table for failure detection

This way, we can detect crashed nodes, as well as the nodes that are unreachable by
any other cluster member. This decision is reliable, since the view of the cluster is an
aggregate from multiple nodes. If there’s a link failure between the two hosts, heart‐
beats can still propagate through other processes. Using gossip for propagating sys‐
tem states increases the number of messages in the system, but allows information to
spread more reliably.

Reversing Failure Detection Problem Statement
Since propagating the information about failures is not always possible, and propa‐
gating it by notifying every member might be expensive, one of the approaches, called
FUSE (failure notification service) [DUNAGAN04], focuses on reliable and cheap
failure propagation that works even in cases of network partitions.

To detect process failures, this approach arranges all active processes in groups. If one
of the groups becomes unavailable, all participants detect the failure. In other words,
every time a single process failure is detected, it is converted and propagated as a
group failure. This allows detecting failures in the presence of any pattern of discon‐
nects, partitions, and node failures.

Processes in the group periodically send ping messages to other members, querying
whether they’re still alive. If one of the members cannot respond to this message
because of a crash, network partition, or link failure, the member that has initiated
this ping will, in turn, stop responding to ping messages itself.
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Figure 9-5 shows four communicating processes:

• a) Initial state: all processes are alive and can communicate.
• b) P2 crashes and stops responding to ping messages.
• c) P4 detects the failure of P2 and stops responding to ping messages itself.
• d) Eventually, P1 and P3 notice that both P1 and P2 do not respond, and process

failure propagates to the entire group.

Figure 9-5. FUSE failure detection

All failures are propagated through the system from the source of failure to all other
participants. Participants gradually stop responding to pings, converting from the
individual node failure to the group failure.

Here, we use the absence of communication as a means of propagation. An advantage
of using this approach is that every member is guaranteed to learn about group fail‐
ure and adequately react to it. One of the downsides is that a link failure separating a
single process from other ones can be converted to the group failure as well, but this
can be seen as an advantage, depending on the use case. Applications can use their
own definitions of propagated failures to account for this scenario.

Summary
Failure detectors are an essential part of any distributed system. As shown by the FLP
Impossibility result, no protocol can guarantee consensus in an asynchronous system.
Failure detectors help to augment the model, allowing us to solve a consensus prob‐
lem by making a trade-off between accuracy and completeness. One of the significant
findings in this area, proving the usefulness of failure detectors, was described in
[CHANDRA96], which shows that solving consensus is possible even with a failure
detector that makes an infinite number of mistakes.

We’ve covered several algorithms for failure detection, each using a different
approach: some focus on detecting failures by direct communication, some use
broadcast or gossip for spreading the information around, and some opt out by using
quiescence (in other words, absence of communication) as a means of propagation.
We now know that we can use heartbeats or pings, hard deadlines, or continuous
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scales. Each one of these approaches has its own upsides: simplicity, accuracy, or
precision.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Failure detection and algorithms
Chandra, Tushar Deepak and Sam Toueg. 1996. “Unreliable failure detectors for
reliable distributed systems.” Journal of the ACM 43, no. 2 (March): 225-267.
https://doi.org/10.1145/226643.226647.

Freiling, Felix C., Rachid Guerraoui, and Petr Kuznetsov. 2011. “The failure
detector abstraction.” ACM Computing Surveys 43, no. 2 (January): Article 9.
https://doi.org/10.1145/1883612.1883616.

Phan-Ba, Michael. 2015. “A literature review of failure detection within the con‐
text of solving the problem of distributed consensus.” https://www.cs.ubc.ca/~best
chai/theses/michael-phan-ba-msc-essay-2015.pdf

Summary | 203

https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/1883612.1883616
https://www.cs.ubc.ca/~bestchai/theses/michael-phan-ba-msc-essay-2015.pdf
https://www.cs.ubc.ca/~bestchai/theses/michael-phan-ba-msc-essay-2015.pdf




CHAPTER 10

Leader Election

Synchronization can be quite costly: if each algorithm step involves contacting each
other participant, we can end up with a significant communication overhead. This is
particularly true in large and geographically distributed networks. To reduce synchro‐
nization overhead and the number of message round-trips required to reach a deci‐
sion, some algorithms rely on the existence of the leader (sometimes called
coordinator) process, responsible for executing or coordinating steps of a distributed
algorithm.

Generally, processes in distributed systems are uniform, and any process can take
over the leadership role. Processes assume leadership for long periods of time, but
this is not a permanent role. Usually, the process remains a leader until it crashes.
After the crash, any other process can start a new election round, assume leadership,
if it gets elected, and continue the failed leader’s work.

The liveness of the election algorithm guarantees that most of the time there will be a
leader, and the election will eventually complete (i.e., the system should not be in the
election state indefinitely).

Ideally, we’d like to assume safety, too, and guarantee there may be at most one leader
at a time, and completely eliminate the possibility of a split brain situation (when two
leaders serving the same purpose are elected but unaware of each other). However, in
practice, many leader election algorithms violate this agreement.

Leader processes can be used, for example, to achieve a total order of messages in a
broadcast. The leader collects and holds the global state, receives messages, and dis‐
seminates them among the processes. It can also be used to coordinate system reor‐
ganization after the failure, during initialization, or when important state changes
happen.
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Election is triggered when the system initializes, and the leader is elected for the first
time, or when the previous leader crashes or fails to communicate. Election has to be
deterministic: exactly one leader has to emerge from the process. This decision needs
to be effective for all participants.

Even though leader election and distributed locking (i.e., exclusive ownership over a
shared resource) might look alike from a theoretical perspective, they are slightly dif‐
ferent. If one process holds a lock for executing a critical section, it is unimportant for
other processes to know who exactly is holding a lock right now, as long as the liven‐
ess property is satisfied (i.e., the lock will be eventually released, allowing others to
acquire it). In contrast, the elected process has some special properties and has to be
known to all other participants, so the newly elected leader has to notify its peers
about its role.

If a distributed locking algorithm has any sort of preference toward some process or
group of processes, it will eventually starve nonpreferred processes from the shared
resource, which contradicts the liveness property. In contrast, the leader can remain
in its role until it stops or crashes, and long-lived leaders are preferred.

Having a stable leader in the system helps to avoid state synchronization between
remote participants, reduce the number of exchanged messages, and drive execution
from a single process instead of requiring peer-to-peer coordination. One of the
potential problems in systems with a notion of leadership is that the leader can
become a bottleneck. To overcome that, many systems partition data in non-
intersecting independent replica sets (see “Database Partitioning” on page 270).
Instead of having a single system-wide leader, each replica set has its own leader. One
of the systems that uses this approach is Spanner (see “Distributed Transactions with
Spanner” on page 268).

Because every leader process will eventually fail, failure has to be detected, reported,
and reacted upon: a system has to elect another leader to replace the failed one.

Some algorithms, such as ZAB (see “Zookeeper Atomic Broadcast (ZAB)” on page
283), Multi-Paxos (see “Multi-Paxos” on page 291), or Raft (see “Raft” on page 300),
use temporary leaders to reduce the number of messages required to reach an agree‐
ment between the participants. However, these algorithms use their own algorithm-
specific means for leader election, failure detection, and resolving conflicts between
the competing leader processes.
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1 These steps describe the modified bully election algorithm [KORDAFSHARI05] as it’s more compact and
clear.

Bully Algorithm
One of the leader election algorithms, known as the bully algorithm, uses process
ranks to identify the new leader. Each process gets a unique rank assigned to it. Dur‐
ing the election, the process with the highest rank becomes a leader [MOLINA82].

This algorithm is known for its simplicity. The algorithm is named bully because the
highest-ranked node “bullies” other nodes into accepting it. It is also known as
monarchial leader election: the highest-ranked sibling becomes a monarch after the
previous one ceases to exist.

Election starts if one of the processes notices that there’s no leader in the system (it
was never initialized) or the previous leader has stopped responding to requests, and
proceeds in three steps:1

1. The process sends election messages to processes with higher identifiers.
2. The process waits, allowing higher-ranked processes to respond. If no higher-

ranked process responds, it proceeds with step 3. Otherwise, the process notifies
the highest-ranked process it has heard from, and allows it to proceed with step
3.

3. The process assumes that there are no active processes with a higher rank, and
notifies all lower-ranked processes about the new leader.

Figure 10-1 illustrates the bully leader election algorithm:

• a) Process 3 notices that the previous leader 6 has crashed and starts a new elec‐
tion by sending Election messages to processes with higher identifiers.

• b) 4 and 5 respond with Alive, as they have a higher rank than 3.
• c) 3 notifies the highest-ranked process 5 that has responded during this round.
• d) 5 is elected as a new leader. It broadcasts Elected messages, notifying lower-

ranked processes about the election results.
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Figure 10-1. Bully algorithm: previous leader (6) fails and process 3 starts the new
election

One of the apparent problems with this algorithm is that it violates the safety guaran‐
tee (that at most one leader can be elected at a time) in the presence of network parti‐
tions. It is quite easy to end up in the situation where nodes get split into two or more
independently functioning subsets, and each subset elects its leader. This situation is
called split brain.

Another problem with this algorithm is a strong preference toward high-ranked
nodes, which becomes an issue if they are unstable and can lead to a permanent state
of reelection. An unstable high-ranked node proposes itself as a leader, fails shortly
thereafter, wins reelection, fails again, and the whole process repeats. This problem
can be solved by distributing host quality metrics and taking them into consideration
during the election.

Next-In-Line Failover
There are many versions of the bully algorithm that improve its various properties.
For example, we can use multiple next-in-line alternative processes as a failover to
shorten reelections [GHOLIPOUR09].

Each elected leader provides a list of failover nodes. When one of the processes
detects a leader failure, it starts a new election round by sending a message to the
highest-ranked alternative from the list provided by the failed leader. If one of the
proposed alternatives is up, it becomes a new leader without having to go through the
complete election round.

If the process that has detected the leader failure is itself the highest ranked process
from the list, it can notify the processes about the new leader right away.

Figure 10-2 shows the process with this optimization in place:

• a) 6, a leader with designated alternatives {5,4}, crashes. 3 notices this failure
and contacts 5, the alternative from the list with the highest rank.
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• b) 5 responds to 3 that it’s alive to prevent it from contacting other nodes from
the alternatives list.

• c) 5 notifies other nodes that it’s a new leader.

Figure 10-2. Bully algorithm with failover: previous leader (6) fails and process 3 starts
the new election by contacting the highest-ranked alternative

As a result, we require fewer steps during the election if the next-in-line process is
alive.

Candidate/Ordinary Optimization
Another algorithm attempts to lower requirements on the number of messages by
splitting the nodes into two subsets, candidate and ordinary, where only one of the
candidate nodes can eventually become a leader [MURSHED12].

The ordinary process initiates election by contacting candidate nodes, collecting
responses from them, picking the highest-ranked alive candidate as a new leader, and
then notifying the rest of the nodes about the election results.

To solve the problem with multiple simultaneous elections, the algorithm proposes to
use a tiebreaker variable δ, a process-specific delay, varying significantly between the
nodes, that allows one of the nodes to initiate the election before the other ones. The
tiebreaker time is generally greater than the message round-trip time. Nodes with
higher priorities have a lower δ, and vice versa.

Figure 10-3 shows the steps of the election process:

• a) Process 4 from the ordinary set notices the failure of leader process 6. It starts
a new election round by contacting all remaining processes from the candidate
set.

• b) Candidate processes respond to notify 4 that they’re still alive.
• c) 4 notifies all processes about the new leader: 2.
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Figure 10-3. Candidate/ordinary modification of the bully algorithm: previous leader
(6) fails and process 4 starts the new election

Invitation Algorithm
An invitation algorithm allows processes to “invite” other processes to join their
groups instead of trying to outrank them. This algorithm allows multiple leaders by
definition, since each group has its own leader.

Each process starts as a leader of a new group, where the only member is the process
itself. Group leaders contact peers that do not belong to their groups, inviting them to
join. If the peer process is a leader itself, two groups are merged. Otherwise, the con‐
tacted process responds with a group leader ID, allowing two group leaders to estab‐
lish contact and merge groups in fewer steps.

Figure 10-4 shows the execution steps of the invitation algorithm:

• a) Four processes start as leaders of groups containing one member each. 1
invites 2 to join its group, and 3 invites 4 to join its group.

• b) 2 joins a group with process 1, and 4 joins a group with process 3. 1, the leader
of the first group, contacts 3, the leader of the other group. Remaining group
members (4, in this case) are notified about the new group leader.

• c) Two groups are merged and 1 becomes a leader of an extended group.

Figure 10-4. Invitation algorithm
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Since groups are merged, it doesn’t matter whether the process that suggested the
group merge becomes a new leader or the other one does. To keep the number of
messages required to merge groups to a minimum, a leader of a larger group can
become a leader for a new group. This way only the processes from the smaller group
have to be notified about the change of leader.

Similar to the other discussed algorithms, this algorithm allows processes to settle in
multiple groups and have multiple leaders. The invitation algorithm allows creating
process groups and merging them without having to trigger a new election from
scratch, reducing the number of messages required to finish the election.

Ring Algorithm
In the ring algorithm [CHANG79], all nodes in the system form a ring and are aware
of the ring topology (i.e., their predecessors and successors in the ring). When the
process detects the leader failure, it starts the new election. The election message is
forwarded across the ring: each process contacts its successor (the next node closest
to it in the ring). If this node is unavailable, the process skips the unreachable node
and attempts to contact the nodes after it in the ring, until eventually one of them
responds.

Nodes contact their siblings, following around the ring and collecting the live node
set, adding themselves to the set before passing it over to the next node, similar to the
failure-detection algorithm described in “Timeout-Free Failure Detector” on page
197, where nodes append their identifiers to the path before passing it to the next
node.

The algorithm proceeds by fully traversing the ring. When the message comes back to
the node that started the election, the highest-ranked node from the live set is chosen
as a leader. In Figure 10-5, you can see an example of such a traversal:

• a) Previous leader 6 has failed and each process has a view of the ring from its
perspective.

• b) 3 initiates an election round by starting traversal. On each step, there’s a set of
nodes traversed on the path so far. 5 can’t reach 6, so it skips it and goes straight
to 1.

• c) Since 5 was the node with the highest rank, 3 initiates another round of mes‐
sages, distributing the information about the new leader.
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Figure 10-5. Ring algorithm: previous leader (6) fails and 3 starts the election process

Variants of this algorithm include collecting a single highest-ranked identifier instead
of a set of active nodes to save space: since the max function is commutative, it is
enough to know a current maximum. When the algorithm comes back to the node
that has started the election, the last known highest identifier is circulated across the
ring once again.

Since the ring can be partitioned in two or more parts, with each part potentially
electing its own leader, this approach doesn’t hold a safety property, either.

As you can see, for a system with a leader to function correctly, we need to know the
status of the current leader (whether it is alive or not), since to keep processes organ‐
ized and for execution to continue, the leader has to be alive and reachable to per‐
form its duties. To detect leader crashes, we can use failure-detection algorithms (see
Chapter 9).

Summary
Leader election is an important subject in distributed systems, since using a designa‐
ted leader helps to reduce coordination overhead and improve the algorithm’s perfor‐
mance. Election rounds might be costly but, since they’re infrequent, they do not
have a negative impact on the overall system performance. A single leader can
become a bottleneck, but most of the time this is solved by partitioning data and
using per-partition leaders or using different leaders for different actions.

Unfortunately, all the algorithms we’ve discussed in this chapter are prone to the split
brain problem: we can end up with two leaders in independent subnets that are not
aware of each other’s existence. To avoid split brain, we have to obtain a cluster-wide
majority of votes.

Many consensus algorithms, including Multi-Paxos and Raft, rely on a leader for
coordination. But isn’t leader election the same as consensus? To elect a leader, we
need to reach a consensus about its identity. If we can reach consensus about the
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leader identity, we can use the same means to reach consensus on anything else
[ABRAHAM13].

The identity of a leader may change without processes knowing about it, so the ques‐
tion is whether the process-local knowledge about the leader is still valid. To achieve
that, we need to combine leader election with failure detection. For example, the sta‐
ble leader election algorithm uses rounds with a unique stable leader and timeout-
based failure detection to guarantee that the leader can retain its position for as long
as it doesn’t crash and is accessible [AGUILERA01].

Algorithms that rely on leader election often allow the existence of multiple leaders
and attempt to resolve conflicts between the leaders as quickly as possible. For exam‐
ple, this is true for Multi-Paxos (see “Multi-Paxos” on page 291), where only one of
the two conflicting leaders (proposers) can proceed, and these conflicts are resolved
by collecting a second quorum, guaranteeing that the values from two different pro‐
posers won’t be accepted.

In Raft (see “Raft” on page 300), a leader can discover that its term is out-of-date,
which implies the presence of a different leader in the system, and update its term to
the more recent one.

In both cases, having a leader is a way to ensure liveness (if the current leader has
failed, we need a new one), and processes should not take indefinitely long to under‐
stand whether or not it has really failed. Lack of safety and allowing multiple leaders
is a performance optimization: algorithms can proceed with a replication phase, and
safety is guaranteed by detecting and resolving the conflicts.

We discuss consensus and leader election in the context of consensus in more detail
in Chapter 14.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Leader election algorithms
Lynch, Nancy and Boaz Patt-Shamir. 1993. “Distributed algorithms.” Lecture
notes for 6.852. Cambridge, MA: MIT.

Attiya, Hagit and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. USA: John Wiley & Sons.

Tanenbaum, Andrew S. and Maarten van Steen. 2006. Distributed Systems: Princi‐
ples and Paradigms (2nd Ed.). Upper Saddle River, NJ: Prentice-Hall.
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CHAPTER 11

Replication and Consistency

Before we move on to discuss consensus and atomic commitment algorithms, let’s
put together the last piece required for their in-depth understanding: consistency
models. Consistency models are important, since they explain visibility semantics and
behavior of the system in the presence of multiple copies of data.

Fault tolerance is a property of a system that can continue operating correctly in the
presence of failures of its components. Making a system fault-tolerant is not an easy
task, and it may be difficult to add fault tolerance to the existing system. The primary
goal is to remove a single point of failure from the system and make sure that we have
redundancy in mission-critical components. Usually, redundancy is entirely transpar‐
ent for the user.

A system can continue operating correctly by storing multiple copies of data so that,
when one of the machines fails, the other one can serve as a failover. In systems with
a single source of truth (for example, primary/replica databases), failover can be done
explicitly, by promoting a replica to become a new master. Other systems do not
require explicit reconfiguration and ensure consistency by collecting responses from
multiple participants during read and write queries.

Data replication is a way of introducing redundancy by maintaining multiple copies of
data in the system. However, since updating multiple copies of data atomically is a
problem equivalent to consensus [MILOSEVIC11], it might be quite costly to per‐
form this operation for every operation in the database. We can explore some more
cost-effective and flexible ways to make data look consistent from the user’s perspec‐
tive, while allowing some degree of divergence between participants.

Replication is particularly important in multidatacenter deployments. Geo-
replication, in this case, serves multiple purposes: it increases availability and the
ability to withstand a failure of one or more datacenters by providing redundancy. It
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can also help to reduce the latency by placing a copy of data physically closer to the
client.

When data records are modified, their copies have to be updated accordingly. When
talking about replication, we care most about three events: write, replica update, and
read. These operations trigger a sequence of events initiated by the client. In some
cases, updating replicas can happen after the write has finished from the client per‐
spective, but this still does not change the fact that the client has to be able to observe
operations in a particular order.

Achieving Availability
We’ve talked about the fallacies of distributed systems and have identified many
things that can go wrong. In the real world, nodes aren’t always alive or able to com‐
municate with one another. However, intermittent failures should not impact availa‐
bility: from the user’s perspective, the system as a whole has to continue operating as
if nothing has happened.

System availability is an incredibly important property: in software engineering, we
always strive for high availability, and try to minimize downtime. Engineering teams
brag about their uptime metrics. We care so much about availability for several rea‐
sons: software has become an integral part of our society, and many important things
cannot happen without it: bank transactions, communication, travel, and so on.

For companies, lack of availability can mean losing customers or money: you can’t
shop in the online store if it’s down, or transfer the money if your bank’s website isn’t
responding.

To make the system highly available, we need to design it in a way that allows han‐
dling failures or unavailability of one or more participants gracefully. For that, we
need to introduce redundancy and replication. However, as soon as we add redun‐
dancy, we face the problem of keeping several copies of data in sync and have to
implement recovery mechanisms.

Infamous CAP
Availability is a property that measures the ability of the system to serve a response
for every request successfully. The theoretical definition of availability mentions
eventual response, but of course, in a real-world system, we’d like to avoid services
that take indefinitely long to respond.

Ideally, we’d like every operation to be consistent. Consistency is defined here as
atomic or linearizable consistency (see “Linearizability” on page 223). Linearizable
history can be expressed as a sequence of instantaneous operations that preserves the
original operation order. Linearizability simplifies reasoning about the possible
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system states and makes a distributed system appear as if it was running on a single
machine.

We would like to achieve both consistency and availability while tolerating network
partitions. The network can get split into several parts where processes are not able to
communicate with each other: some of the messages sent between partitioned nodes
won’t reach their destinations.

Availability requires any nonfailing node to deliver results, while consistency requires
results to be linearizable. CAP conjecture, formulated by Eric Brewer, discusses trade-
offs between Consistency, Availability, and Partition tolerance [BREWER00].

Availability requirement is impossible to satisfy in an asynchronous system, and we
cannot implement a system that simultaneously guarantees both availability and con‐
sistency in the presence of network partitions [GILBERT02]. We can build systems
that guarantee strong consistency while providing best effort availability, or guarantee
availability while providing best effort consistency [GILBERT12]. Best effort here
implies that if everything works, the system will not purposefully violate any guaran‐
tees, but guarantees are allowed to be weakened and violated in the case of network
partitions.

In other words, CAP describes a continuum of potential choices, where on different
sides of the spectrum we have systems that are:

Consistent and partition tolerant
CP systems prefer failing requests to serving potentially inconsistent data.

Available and partition tolerant
AP systems loosen the consistency requirement and allow serving potentially
inconsistent values during the request.

An example of a CP system is an implementation of a consensus algorithm, requiring
a majority of nodes for progress: always consistent, but might be unavailable in the
case of a network partition. A database always accepting writes and serving reads as
long as even a single replica is up is an example of an AP system, which may end up
losing data or serving inconsistent results.

PACELEC conjecture [ABADI12], an extension of CAP, states that in presence of net‐
work partitions there’s a choice between consistency and availability (PAC). Else (E),
even if the system is running normally, we still have to make a choice between latency
and consistency.

Use CAP Carefully
It’s important to note that CAP discusses network partitions rather than node crashes
or any other type of failure (such as crash-recovery). A node, partitioned from the
rest of the cluster, can serve inconsistent requests, but a crashed node will not
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1 Quorum reads and writes in the context of eventually consistent stores, which are discussed in more detail in
“Eventual Consistency” on page 234.

respond at all. On the one hand, this implies that it’s not necessary to have any nodes
down to face consistency problems. On the other hand, this isn’t the case in the real
world: there are many different failure scenarios (some of which can be simulated
with network partitions).

CAP implies that we can face consistency problems even if all the nodes are up, but
there are connectivity issues between them since we expect every nonfailed node to
respond correctly, with no regard to how many nodes may be down.

CAP conjecture is sometimes illustrated as a triangle, as if we could turn a knob and
have more or less of all of the three parameters. However, while we can turn a knob
and trade consistency for availability, partition tolerance is a property we cannot real‐
istically tune or trade for anything [HALE10].

Consistency in CAP is defined quite differently from what ACID
(see Chapter 5) defines as consistency. ACID consistency describes
transaction consistency: transaction brings the database from one
valid state to another, maintaining all the database invariants (such
as uniqueness constraints and referential integrity). In CAP, it
means that operations are atomic (operations succeed or fail in
their entirety) and consistent (operations never leave the data in an
inconsistent state).

Availability in CAP is also different from the aforementioned high availability
[KLEPPMANN15]. The CAP definition puts no bounds on execution latency. Addi‐
tionally, availability in databases, contrary to CAP, doesn’t require every nonfailed
node to respond to every request.

CAP conjecture is used to explain distributed systems, reason about failure scenarios,
and evaluate possible situations, but it’s important to remember that there’s a fine line
between giving up consistency and serving unpredictable results.

Databases that claim to be on the availability side, when used correctly, are still able to
serve consistent results from replicas, given there are enough replicas alive. Of
course, there are more complicated failure scenarios and CAP conjecture is just a rule
of thumb, and it doesn’t necessarily tell the whole truth.1

Harvest and Yield
CAP conjecture discusses consistency and availability only in their strongest forms:
linearizability and the ability of the system to eventually respond to every request.
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This forces us to make a hard trade-off between the two properties. However, some
applications can benefit from slightly relaxed assumptions and we can think about
these properties in their weaker forms.

Instead of being either consistent or available, systems can provide relaxed guaran‐
tees. We can define two tunable metrics: harvest and yield, choosing between which
still constitutes correct behavior [FOX99]:

Harvest
Defines how complete the query is: if the query has to return 100 rows, but can
fetch only 99 due to unavailability of some nodes, it still can be better than failing
the query completely and returning nothing.

Yield
Specifies the number of requests that were completed successfully, compared to
the total number of attempted requests. Yield is different from the uptime, since,
for example, a busy node is not down, but still can fail to respond to some of the
requests.

This shifts the focus of the trade-off from the absolute to the relative terms. We can
trade harvest for yield and allow some requests to return incomplete data. One of the
ways to increase yield is to return query results only from the available partitions (see
“Database Partitioning” on page 270). For example, if a subset of nodes storing
records of some users is down, we can still continue serving requests for other users.
Alternatively, we can require the critical application data to be returned only in its
entirety, but allow some deviations for other requests.

Defining, measuring, and making a conscious choice between harvest and yield helps
us to build systems that are more resilient to failures.

Shared Memory
For a client, the distributed system storing the data acts as if it has shared storage,
similar to a single-node system. Internode communication and message passing are
abstracted away and happen behind the scenes. This creates an illusion of a shared
memory.

A single unit of storage, accessible by read or write operations, is usually called a reg‐
ister. We can view shared memory in a distributed database as an array of such
registers.

We identify every operation by its invocation and completion events. We define an
operation as failed if the process that invoked it crashes before it completes. If both
invocation and completion events for one operation happen before the other opera‐
tion is invoked, we say that this operation precedes the other one, and these two oper‐
ations are sequential. Otherwise, we say that they are concurrent.
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In Figure 11-1, you can see processes P1 and P2 executing different operations:

• a) The operation performed by process P2 starts after the operation executed by
P1 has already finished, and the two operations are sequential.

• b) There’s an overlap between the two operations, so these operations are concur‐
rent.

• c) The operation executed by P2 starts after and completes before the operation
executed by P1. These operations are concurrent, too.

Figure 11-1. Sequential and concurrent operations

Multiple readers or writers can access the register simultaneously. Read and write
operations on registers are not immediate and take some time. Concurrent read/write
operations performed by different processes are not serial: depending on how regis‐
ters behave when operations overlap, they might be ordered differently and may pro‐
duce different results. Depending on how the register behaves in the presence of
concurrent operations, we distinguish among three types of registers:

Safe
Reads to the safe registers may return arbitrary values within the range of the
register during a concurrent write operation (which does not sound very practi‐
cal, but might describe the semantics of an asynchronous system that does not
impose the order). Safe registers with binary values might appear to be flickering
(i.e., returning results alternating between the two values) during reads concur‐
rent to writes.

Regular
For regular registers, we have slightly stronger guarantees: a read operation can
return only the value written by the most recent completed write or the value
written by the write operation that overlaps with the current read. In this case,
the system has some notion of order, but write results are not visible to all the
readers simultaneously (for example, this may happen in a replicated database,
where the master accepts writes and replicates them to workers serving reads).

Atomic
Atomic registers guarantee linearizability: every write operation has a single
moment before which every read operation returns an old value and after which
every read operation returns a new one. Atomicity is a fundamental property that
simplifies reasoning about the system state.
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Ordering
When we see a sequence of events, we have some intuition about their execution
order. However, in a distributed system it’s not always that easy, because it’s hard to
know when exactly something has happened and have this information available
instantly across the cluster. Each participant may have its view of the state, so we have
to look at every operation and define it in terms of its invocation and completion
events and describe the operation bounds.

Let’s define a system in which processes can execute read(register) and write(reg
ister, value) operations on shared registers. Each process executes its own set of
operations sequentially (i.e., every invoked operation has to complete before it can
start the next one). The combination of sequential process executions forms a global
history, in which operations can be executed concurrently.

The simplest way to think about consistency models is in terms of read and write
operations and ways they can overlap: read operations have no side effects, while
writes change the register state. This helps to reason about when exactly data
becomes readable after the write. For example, consider a history in which two pro‐
cesses execute the following events concurrently:

Process 1:      Process 2:
write(x, 1)     read(x)
                read(x)

When looking at these events, it’s unclear what is an outcome of the read(x) opera‐
tions in both cases. We have several possible histories:

• Write completes before both reads.
• Write and two reads can get interleaved, and can be executed between the reads.
• Both reads complete before the write.

There’s no simple answer to what should happen if we have just one copy of data. In a
replicated system, we have more combinations of possible states, and it can get even
more complicated when we have multiple processes reading and writing the data.

If all of these operations were executed by the single process, we could enforce a strict
order of events, but it’s harder to do so with multiple processes. We can group the
potential difficulties into two groups:

• Operations may overlap.
• Effects of the nonoverlapping calls might not be visible immediately.

To reason about the operation order and have nonambiguous descriptions of possible
outcomes, we have to define consistency models. We discuss concurrency in
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distributed systems in terms of shared memory and concurrent systems, since most
of the definitions and rules defining consistency still apply. Even though a lot of ter‐
minology between concurrent and distributed systems overlap, we can’t directly apply
most of the concurrent algorithms, because of differences in communication pat‐
terns, performance, and reliability.

Consistency Models
Since operations on shared memory registers are allowed to overlap, we should define
clear semantics: what happens if multiple clients read or modify different copies of
data simultaneously or within a short period. There’s no single right answer to that
question, since these semantics are different depending on the application, but they
are well studied in the context of consistency models.

Consistency models provide different semantics and guarantees. You can think of a
consistency model as a contract between the participants: what each replica has to do
to satisfy the required semantics, and what users can expect when issuing read and
write operations.

Consistency models describe what expectations clients might have in terms of possi‐
ble returned values despite the existence of multiple copies of data and concurrent
accesses to it. In this section, we will discuss single-operation consistency models.

Each model describes how far the behavior of the system is from the behavior we
might expect or find natural. It helps us to distinguish between “all possible histories”
of interleaving operations and “histories permissible under model X,” which signifi‐
cantly simplifies reasoning about the visibility of state changes.

We can think about consistency from the perspective of state, describe which state
invariants are acceptable, and establish allowable relationships between copies of the
data placed onto different replicas. Alternatively, we can consider operation consis‐
tency, which provides an outside view on the data store, describes operations, and
puts constraints on the order in which they occur [TANENBAUM06] [AGUI‐
LERA16].

Without a global clock, it is difficult to give distributed operations a precise and
deterministic order. It’s like a Special Relativity Theory for data: every participant has
its own perspective on state and time.

Theoretically, we could grab a system-wide lock every time we want to change the
system state, but it’d be highly impractical. Instead, we use a set of rules, definitions,
and restrictions that limit the number of possible histories and outcomes.

Consistency models add another dimension to what we discussed in “Infamous CAP”
on page 216. Now we have to juggle not only consistency and availability, but also
consider consistency in terms of synchronization costs [ATTIYA94]. Synchronization
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costs may include latency, additional CPU cycles spent executing additional
operations, disk I/O used to persist recovery information, wait time, network I/O,
and everything else that can be prevented by avoiding synchronization.

First, we’ll focus on visibility and propagation of operation results. Coming back to
the example with concurrent reads and writes, we’ll be able to limit the number of
possible histories by either positioning dependent writes after one another or defin‐
ing a point at which the new value is propagated.

We discuss consistency models in terms of processes (clients) issuing read and write
operations against the database state. Since we discuss consistency in the context of
replicated data, we assume that the database can have multiple replicas.

Strict Consistency
Strict consistency is the equivalent of complete replication transparency: any write by
any process is instantly available for the subsequent reads by any process. It involves
the concept of a global clock and, if there was a write(x, 1) at instant t1, any
read(x) will return a newly written value 1 at any instant t2 > t1.

Unfortunately, this is just a theoretical model, and it’s impossible to implement, as the
laws of physics and the way distributed systems work set limits on how fast things
may happen [SINHA97].

Linearizability
Linearizability is the strongest single-object, single-operation consistency model.
Under this model, effects of the write become visible to all readers exactly once at
some point in time between its start and end, and no client can observe state transi‐
tions or side effects of partial (i.e., unfinished, still in-flight) or incomplete (i.e., inter‐
rupted before completion) write operations [LEE15].

Concurrent operations are represented as one of the possible sequential histories for
which visibility properties hold. There is some indeterminism in linearizability, as
there may exist more than one way in which the events can be ordered [HER‐
LIHY90].

If two operations overlap, they may take effect in any order. All read operations that
occur after write operation completion can observe the effects of this operation. As
soon as a single read operation returns a particular value, all reads that come after it
return the value at least as recent as the one it returns [BAILIS14a].

There is some flexibility in terms of the order in which concurrent events occur in a
global history, but they cannot be reordered arbitrarily. Operation results should not
become effective before the operation starts as that would require an oracle able to
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predict future operations. At the same time, results have to take effect before comple‐
tion, since otherwise, we cannot define a linearization point.

Linearizability respects both sequential process-local operation order and the order of
operations running in parallel relative to other processes, and defines a total order of
the events.

This order should be consistent, which means that every read of the shared value
should return the latest value written to this shared variable preceding this read, or
the value of a write that overlaps with this read. Linearizable write access to a shared
variable also implies mutual exclusion: between the two concurrent writes, only one
can go first.

Even though operations are concurrent and have some overlap, their effects become
visible in a way that makes them appear sequential. No operation happens instantane‐
ously, but still appears to be atomic.

Let’s consider the following history:

Process 1:      Process 2:     Process 3:
write(x, 1)     write(x, 2)    read(x)
                               read(x)
                               read(x)

In Figure 11-2, we have three processes, two of which perform write operations on
the register x, which has an initial value of ∅. Read operations can observe these
writes in one of the following ways:

• a) The first read operation can return 1, 2, or ∅ (the initial value, a state before
both writes), since both writes are still in-flight. The first read can get ordered
before both writes, between the first and second writes, and after both writes.

• b) The second read operation can return only 1 and 2, since the first write has
completed, but the second write didn’t return yet.

• c) The third read can only return 2, since the second write is ordered after the
first.

Figure 11-2. Example of linearizability
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Linearization point
One of the most important traits of linearizability is visibility: once the operation is
complete, everyone must see it, and the system can’t “travel back in time,” reverting it
or making it invisible for some participants. In other words, linearization prohibits
stale reads and requires reads to be monotonic.

This consistency model is best explained in terms of atomic (i.e., uninterruptible,
indivisible) operations. Operations do not have to be instantaneous (also because
there’s no such thing), but their effects have to become visible at some point in time,
making an illusion that they were instantaneous. This moment is called a lineariza‐
tion point.

Past the linearization point of the write operation (in other words, when the value
becomes visible for other processes) every process has to see either the value this
operation wrote or some later value, if some additional write operations are ordered
after it. A visible value should remain stable until the next one becomes visible after
it, and the register should not alternate between the two recent states.

Most of the programming languages these days offer atomic primi‐
tives that allow atomic write and compare-and-swap (CAS) opera‐
tions. Atomic write operations do not consider current register
values, unlike CAS, that move from one value to the next only
when the previous value is unchanged [HERLIHY94]. Reading the
value, modifying it, and then writing it with CAS is more complex
than simply checking and setting the value, because of the possible
ABA problem [DECHEV10]: if CAS expects the value A to be
present in the register, it will be installed even if the value B was set
and then switched back to A by the other two concurrent write
operations. In other words, the presence of the value A alone does
not guarantee that the value hasn’t been changed since the last read.

The linearization point serves as a cutoff, after which operation effects become visi‐
ble. We can implement it by using locks to guard a critical section, atomic read/write,
or read-modify-write primitives.

Figure 11-3 shows that linearizability assumes hard time bounds and the clock is real
time, so the operation effects have to become visible between t1, when the operation
request was issued, and t2, when the process received a response.

Figure 11-3. Time bounds of a linearizable operation
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Figure 11-4 illustrates that the linearization point cuts the history into before and
after. Before the linearization point, the old value is visible, after it, the new value is
visible.

Figure 11-4. Linearization point

Cost of linearizability
Many systems avoid implementing linearizability today. Even CPUs do not offer line‐
arizability when accessing main memory by default. This has happened because syn‐
chronization instructions are expensive, slow, and involve cross-node CPU traffic and
cache invalidations. However, it is possible to implement linearizability using low-
level primitives [MCKENNEY05a], [MCKENNEY05b].

In concurrent programming, you can use compare-and-swap operations to introduce
linearizability. Many algorithms work by preparing results and then using CAS for
swapping pointers and publishing them. For example, we can implement a concurrent
queue by creating a linked list node and then atomically appending it to the tail of the
list [KHANCHANDANI18].

In distributed systems, linearizability requires coordination and ordering. It can be
implemented using consensus: clients interact with a replicated store using messages,
and the consensus module is responsible for ensuring that applied operations are
consistent and identical across the cluster. Each write operation will appear instanta‐
neously, exactly once at some point between its invocation and completion events
[HOWARD14].

Interestingly, linearizability in its traditional understanding is regarded as a local
property and implies composition of independently implemented and verified ele‐
ments. Combining linearizable histories produces a history that is also linearizable
[HERLIHY90]. In other words, a system in which all objects are linearizable, is also
linearizable. This is a very useful property, but we should remember that its scope is
limited to a single object and, even though operations on two independent objects are
linearizable, operations that involve both objects have to rely on additional synchro‐
nization means.
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Reusable Infrastructure for Linearizability
Reusable Infrastructure for Linearizability (RIFL), is a mechanism for implementing
linearizable remote procedure calls (RPCs) [LEE15]. In RIFL, messages are uniquely
identified with the client ID and a client-local monotonically increasing sequence
number.

To assign client IDs, RIFL uses leases, issued by the system-wide service: unique iden‐
tifiers used to establish uniqueness and break sequence number ties. If the failed cli‐
ent tries to execute an operation using an expired lease, its operation will not be
committed: the client has to receive a new lease and retry.

If the server crashes before it can acknowledge the write, the client may attempt to
retry this operation without knowing that it has already been applied. We can even
end up in a situation in which client C1 writes value V1, but doesn’t receive an
acknowledgment. Meanwhile, client C2 writes value V2. If C1 retries its operation and
successfully writes V1, the write of C2 would be lost. To avoid this, the system needs to
prevent repeated execution of retried operations. When the client retries the opera‐
tion, instead of reapplying it, RIFL returns a completion object, indicating that the
operation it’s associated with has already been executed, and returns its result.

Completion objects are stored in a durable storage, along with the actual data records.
However, their lifetimes are different: the completion object should exist until either
the issuing client promises it won’t retry the operation associated with it, or until the
server detects a client crash, in which case all completion objects associated with it
can be safely removed. Creating a completion object should be atomic with the muta‐
tion of the data record it is associated with.

Clients have to periodically renew their leases to signal their liveness. If the client fails
to renew its lease, it is marked as crashed and all the data associated with its lease is
garbage collected. Leases have a limited lifetime to make sure that operations that
belong to the failed process won’t be retained in the log forever. If the failed client
tries to continue operation using an expired lease, its results will not be committed
and the client will have to start from scratch.

The advantage of RIFL is that, by guaranteeing that the RPC cannot be executed more
than once, an operation can be made linearizable by ensuring that its results are made
visible atomically, and most of its implementation details are independent from the
underlying storage system.

Sequential Consistency
Achieving linearizability might be too expensive, but it is possible to relax the model,
while still providing rather strong consistency guarantees. Sequential consistency
allows ordering operations as if they were executed in some sequential order, while
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requiring operations of each individual process to be executed in the same order they
were performed by the process.

Processes can observe operations executed by other participants in the order consis‐
tent with their own history, but this view can be arbitrarily stale from the global per‐
spective [KINGSBURY18a]. Order of execution between processes is undefined, as
there’s no shared notion of time.

Sequential consistency was initially introduced in the context of concurrency,
describing it as a way to execute multiprocessor programs correctly. The original
description required memory requests to the same cell to be ordered in the queue
(FIFO, arrival order), did not impose global ordering on the overlapping writes to
independent memory cells, and allowed reads to fetch the value from the memory
cell, or the latest value from the queue if the queue was nonempty [LAMPORT79].
This example helps to understand the semantics of sequential consistency. Operations
can be ordered in different ways (depending on the arrival order, or even arbitrarily
in case two writes arrive simultaneously), but all processes observe the operations in
the same order.

Each process can issue read and write requests in an order specified by its own pro‐
gram, which is very intuitive. Any nonconcurrent, single-threaded program executes
its steps this way: one after another. All write operations propagating from the same
process appear in the order they were submitted by this process. Operations propa‐
gating from different sources may be ordered arbitrarily, but this order will be consis‐
tent from the readers’ perspective.

Sequential consistency is often confused with linearizability since
both have similar semantics. Sequential consistency, just as linear‐
izability, requires operations to be globally ordered, but lineariza‐
bility requires the local order of each process and global order to be
consistent. In other words, linearizability respects a real-time oper‐
ation order. Under sequential consistency, ordering holds only for
the same-origin writes [VIOTTI16]. Another important distinction
is composition: we can combine linearizable histories and still
expect results to be linearizable, while sequentially consistent
schedules are not composable [ATTIYA94].

Figure 11-5 shows how write(x,1) and write(x,2) can become visible to P3 and P4.
Even though in wall-clock terms, 1 was written before 2, it can get ordered after 2. At
the same time, while P3 already reads the value 1, P4 can still read 2. However, both
orders, 1 → 2 and 2 → 1, are valid, as long as they’re consistent for different readers.
What’s important here is that both P3 and P4 have observed values in the same order:
first 2, and then 1 [TANENBAUM14].
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Figure 11-5. Ordering in sequential consistency

Stale reads can be explained, for example, by replica divergence: even though writes
propagate to different replicas in the same order, they can arrive there at different
times.

The main difference with linearizability is the absence of globally enforced time
bounds. Under linearizability, an operation has to become effective within its wall-
clock time bounds. By the time the write W₁ operation completes, its results have to be
applied, and every reader should be able to see the value at least as recent as one writ‐
ten by W₁. Similarly, after a read operation R₁ returns, any read operation that hap‐
pens after it should return the value that R₁ has seen or a later value (which, of course,
has to follow the same rule).

Sequential consistency relaxes this requirement: an operation’s results can become
visible after its completion, as long as the order is consistent from the individual pro‐
cessors’ perspective. Same-origin writes can’t “jump” over each other: their program
order, relative to their own executing process, has to be preserved. The other restric‐
tion is that the order in which operations have appeared must be consistent for all
readers.

Similar to linearizability, modern CPUs do not guarantee sequential consistency by
default and, since the processor can reorder instructions, we should use memory bar‐
riers (also called fences) to make sure that writes become visible to concurrently run‐
ning threads in order [DREPPER07] [GEORGOPOULOS16].

Causal Consistency
You see, there is only one constant, one universal, it is the only real truth: causality.
Action. Reaction. Cause and effect.

—Merovingian from The Matrix Reloaded

Even though having a global operation order is often unnecessary, it might be neces‐
sary to establish order between some operations. Under the causal consistency model,
all processes have to see causally related operations in the same order. Concurrent
writes with no causal relationship can be observed in a different order by different
processors.

Consistency Models | 229



First, let’s take a look at why we need causality and how writes that have no causal
relationship can propagate. In Figure 11-6, processes P1 and P2 make writes that aren’t
causally ordered. The results of these operations can propagate to readers at different
times and out of order. Process P3 will see the value 1 before it sees 2, while P4 will first
see 2, and then 1.

Figure 11-6. Write operations with no causal relationship

Figure 11-7 shows an example of causally related writes. In addition to a written
value, we now have to specify a logical clock value that would establish a causal order
between operations. P1 starts with a write operation write(x,∅,1)→t1, which starts
from the initial value ∅. P2 performs another write operation, write(x, t1, 2), and
specifies that it is logically ordered after t1, requiring operations to propagate only in
the order established by the logical clock.

Figure 11-7. Causally related write operations

This establishes a causal order between these operations. Even if the latter write prop‐
agates faster than the former one, it isn’t made visible until all of its dependencies
arrive, and the event order is reconstructed from their logical timestamps. In other
words, a happened-before relationship is established logically, without using physical
clocks, and all processes agree on this order.

Figure 11-8 shows processes P1 and P2 making causally related writes, which propa‐
gate to P3 and P4 in their logical order. This prevents us from the situation shown in
Figure 11-6; you can compare histories of P3 and P4 in both figures.
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Figure 11-8. Write operations with causal relationship

You can think of this in terms of communication on some online forum: you post
something online, someone sees your post and responds to it, and a third person sees
this response and continues the conversation thread. It is possible for conversation
threads to diverge: you can choose to respond to one of the conversations in the
thread and continue the chain of events, but some threads will have only a few mes‐
sages in common, so there might be no single history for all the messages.

In a causally consistent system, we get session guarantees for the application, ensur‐
ing the view of the database is consistent with its own actions, even if it executes read
and write requests against different, potentially inconsistent, servers [TERRY94].
These guarantees are: monotonic reads, monotonic writes, read-your-writes, writes-
follow-reads. You can find more information on these session models in “Session
Models” on page 233.

Causal consistency can be implemented using logical clocks [LAMPORT78] and
sending context metadata with every message, summarizing which operations logi‐
cally precede the current one. When the update is received from the server, it con‐
tains the latest version of the context. Any operation can be processed only if all
operations preceding it have already been applied. Messages for which contexts do
not match are buffered on the server as it is too early to deliver them.

The two prominent and frequently cited projects implementing causal consistency
are Clusters of Order-Preserving Servers (COPS) [LLOYD11] and Eiger [LLOYD13].
Both projects implement causality through a library (implemented as a frontend
server that users connect to) and track dependencies to ensure consistency. COPS
tracks dependencies through key versions, while Eiger establishes operation order
instead (operations in Eiger can depend on operations executed on the other nodes;
for example, in the case of multipartition transactions). Both projects do not expose
out-of-order operations like eventually consistent stores might do. Instead, they
detect and handle conflicts: in COPS, this is done by checking the key order and
using application-specific functions, while Eiger implements the last-write-wins rule.
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Vector clocks
Establishing causal order allows the system to reconstruct the sequence of events even
if messages are delivered out of order, fill the gaps between the messages, and avoid
publishing operation results in case some messages are still missing. For example, if
messages {M1(∅, t1), M2(M1, t2), M3(M2, t3)}, each specifying their dependen‐
cies, are causally related and were propagated out of order, the process buffers them
until it can collect all operation dependencies and restore their causal order [KINGS‐
BURY18b]. Many databases, for example, Dynamo [DECANDIA07] and Riak
[SHEEHY10a], use vector clocks [LAMPORT78] [MATTERN88] for establishing
causal order.

A vector clock is a structure for establishing a partial order between the events, detect‐
ing and resolving divergence between the event chains. With vector clocks, we can
simulate common time, global state, and represent asynchronous events as synchro‐
nous ones. Processes maintain vectors of logical clocks, with one clock per process.
Every clock starts at the initial value and is incremented every time a new event
arrives (for example, a write occurs). When receiving clock vectors from other pro‐
cesses, a process updates its local vector to the highest clock values per process from
the received vectors (i.e., highest clock values the transmitting node has ever seen).

To use vector clocks for conflict resolution, whenever we make a write to the data‐
base, we first check if the value for the written key already exists locally. If the previ‐
ous value already exists, we append a new version to the version vector and establish
the causal relationship between the two writes. Otherwise, we start a new chain of
events and initialize the value with a single version.

We were talking about consistency in terms of access to shared memory registers and
wall-clock operation ordering, and first mentioned potential replica divergence when
talking about sequential consistency. Since only write operations to the same memory
location have to be ordered, we cannot end up in a situation where we have a write
conflict if values are independent [LAMPORT79].

Since we’re looking for a consistency model that would improve availability and per‐
formance, we have to allow replicas to diverge not only by serving stale reads but also
by accepting potentially conflicting writes, so the system is allowed to create two
independent chains of events. Figure 11-9 shows such a divergence: from the per‐
spective of one replica, we see history as 1, 5, 7, 8 and the other one reports 1, 5,
3. Riak allows users to see and resolve divergent histories [DAILY13].

Figure 11-9. Divergent histories under causal consistency
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To implement causal consistency, we have to store causal history,
add garbage collection, and ask the user to reconcile divergent his‐
tories in case of a conflict. Vector clocks can tell you that the con‐
flict has occurred, but do not propose exactly how to resolve it,
since resolution semantics are often application-specific. Because
of that, some eventually consistent databases, for example, Apache
Cassandra, do not order operations causally and use the last-write-
wins rule for conflict resolution instead [ELLIS13].

Session Models
Thinking about consistency in terms of value propagation is useful for database
developers, since it helps to understand and impose required data invariants, but
some things are easier understood and explained from the client point of view. We
can look at our distributed system from the perspective of a single client instead of
multiple clients.

Session models [VIOTTI16] (also called client-centric consistency models [TANEN‐
BAUM06]) help to reason about the state of the distributed system from the client
perspective: how each client observes the state of the system while issuing read and
write operations.

If other consistency models we discussed so far focus on explaining operation order‐
ing in the presence of concurrent clients, client-centric consistency focuses on how a
single client interacts with the system. We still assume that each client’s operations are
sequential: it has to finish one operation before it can start executing the next one. If
the client crashes or loses connection to the server before its operation completes, we
do not make any assumptions about the state of incomplete operations.

In a distributed system, clients often can connect to any available replica and, if the
results of the recent write against one replica did not propagate to the other one, the
client might not be able to observe the state change it has made.

One of the reasonable expectations is that every write issued by the client is visible to
it. This assumption holds under the read-own-writes consistency model, which states
that every read operation following the write on the same or the other replica has to
observe the updated value. For example, read(x) that was executed immediately after
write(x,V) will return the value V.

The monotonic reads model restricts the value visibility and states that if the read(x)
has observed the value V, the following reads have to observe a value at least as recent
as V or some later value.

The monotonic writes model assumes that values originating from the same client
appear in the order this client has executed them. If, according to the client session
order, write(x,V2) was made after write(x,V1), their effects have to become visible
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in the same order (i.e., V1 first, and then V2) to all other processes. Without this
assumption, old data can be “resurrected,” resulting in data loss.

Writes-follow-reads (sometimes referred as session causality) ensures that writes are
ordered after writes that were observed by previous read operations. For example, if
write(x,V2) is ordered after read(x) that has returned V1, write(x,V2) will be
ordered after write(x,V1).

Session models make no assumptions about operations made by
different processes (clients) or from the different logical session
[TANENBAUM14]. These models describe operation ordering
from the point of view of a single process. However, the same guar‐
antees have to hold for every process in the system. In other words,
if P1 can read its own writes, P2 should be able to read its own
writes, too.

Combining monotonic reads, monotonic writes, and read-own-writes gives Pipelined
RAM (PRAM) consistency [LIPTON88] [BRZEZINSKI03], also known as FIFO con‐
sistency. PRAM guarantees that write operations originating from one process will
propagate in the order they were executed by this process. Unlike under sequential
consistency, writes from different processes can be observed in different order.

The properties described by client-centric consistency models are desirable and, in
the majority of cases, are used by distributed systems developers to validate their sys‐
tems and simplify their usage.

Eventual Consistency
Synchronization is expensive, both in multiprocessor programming and in dis‐
tributed systems. As we discussed in “Consistency Models” on page 222, we can relax
consistency guarantees and use models that allow some divergence between the
nodes. For example, sequential consistency allows reads to be propagated at different
speeds.

Under eventual consistency, updates propagate through the system asynchronously.
Formally, it states that if there are no additional updates performed against the data
item, eventually all accesses return the latest written value [VOGELS09]. In case of a
conflict, the notion of latest value might change, as the values from diverged replicas
are reconciled using a conflict resolution strategy, such as last-write-wins or using
vector clocks (see “Vector clocks” on page 232).

Eventually is an interesting term to describe value propagation, since it specifies no
hard time bound in which it has to happen. If the delivery service provides nothing
more than an “eventually” guarantee, it doesn’t sound like it can be relied upon.
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However, in practice, this works well, and many databases these days are described as
eventually consistent.

Tunable Consistency
Eventually consistent systems are sometimes described in CAP terms: you can trade
availability for consistency or vice versa (see “Infamous CAP” on page 216). From the
server-side perspective, eventually consistent systems usually implement tunable con‐
sistency, where data is replicated, read, and written using three variables:

Replication Factor N
Number of nodes that will store a copy of data.

Write Consistency W
Number of nodes that have to acknowledge a write for it to succeed.

Read Consistency R
Number of nodes that have to respond to a read operation for it to succeed.

Choosing consistency levels where (R + W > N), the system can guarantee returning
the most recent written value, because there’s always an overlap between read and
write sets. For example, if N = 3, W = 2, and R = 2, the system can tolerate a failure of
just one node. Two nodes out of three must acknowledge the write. In the ideal sce‐
nario, the system also asynchronously replicates the write to the third node. If the
third node is down, anti-entropy mechanisms (see Chapter 12) eventually propagate
it.

During the read, two replicas out of three have to be available to serve the request for
us to respond with consistent results. Any combination of nodes will give us at least
one node that will have the most up-to-date record for a given key.

When performing a write, the coordinator should submit it to N
nodes, but can wait for only W nodes before it proceeds (or W - 1 in
case the coordinator is also a replica). The rest of the write opera‐
tions can complete asynchronously or fail. Similarly, when per‐
forming a read, the coordinator has to collect at least R responses.
Some databases use speculative execution and submit extra read
requests to reduce coordinator response latency. This means if one
of the originally submitted read requests fails or arrives slowly,
speculative requests can be counted toward R instead.

Write-heavy systems may sometimes pick W = 1 and R = N, which allows writes to be
acknowledged by just one node before they succeed, but would require all the replicas
(even potentially failed ones) to be available for reads. The same is true for the W = N,
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R = 1 combination: the latest value can be read from any node, as long as writes suc‐
ceed only after being applied on all replicas.

Increasing read or write consistency levels increases latencies and raises requirements
for node availability during requests. Decreasing them improves system availability
while sacrificing consistency.

Quorums
A consistency level that consists of ⌊N/2⌋ + 1 nodes is called a quorum, a majority of
nodes. In the case of a network partition or node failures, in a system with 2f + 1
nodes, live nodes can continue accepting writes or reads, if up to f nodes are unavail‐
able, until the rest of the cluster is available again. In other words, such systems can
tolerate at most f node failures.

When executing read and write operations using quorums, a system cannot tolerate
failures of the majority of nodes. For example, if there are three replicas in total, and
two of them are down, read and write operations won’t be able to achieve the number
of nodes necessary for read and write consistency, since only one node out of three
will be able to respond to the request.

Reading and writing using quorums does not guarantee monotonicity in cases of
incomplete writes. If some write operation has failed after writing a value to one rep‐
lica out of three, depending on the contacted replicas, a quorum read can return
either the result of the incomplete operation, or the old value. Since subsequent same-
value reads are not required to contact the same replicas, values they return can alter‐
nate. To achieve read monotonicity (at the cost of availability), we have to use
blocking read-repair (see “Read Repair” on page 245).

Witness Replicas
Using quorums for read consistency helps to improve availability: even if some of the
nodes are down, a database system can still accept reads and serve writes. The major‐
ity requirement guarantees that, since there’s an overlap of at least one node in any
majority, any quorum read will observe the most recent completed quorum write.
However, using replication and majorities increases storage costs: we have to store a
copy of the data on each replica. If our replication factor is five, we have to store five
copies.

We can improve storage costs by using a concept called witness replicas. Instead of
storing a copy of the record on each replica, we can split replicas into copy and wit‐
ness subsets. Copy replicas still hold data records as previously. Under normal opera‐
tion, witness replicas merely store the record indicating the fact that the write
operation occurred. However, a situation might occur when the number of copy
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replicas is too low. For example, if we have three copy replicas and two witness ones,
and two copy replicas go down, we end up with a quorum of one copy and two wit‐
ness replicas.

In cases of write timeouts or copy replica failures, witness replicas can be upgraded to
temporarily store the record in place of failed or timed-out copy replicas. As soon as
the original copy replicas recover, upgraded replicas can revert to their previous state,
or recovered replicas can become witnesses.

Let’s consider a replicated system with three nodes, two of which are holding copies
of data and the third serves as a witness: [1c, 2c, 3w]. We attempt to make a write,
but 2c is temporarily unavailable and cannot complete the operation. In this case, we
temporarily store the record on the witness replica 3w. Whenever 2c comes back up,
repair mechanisms can bring it back up-to-date and remove redundant copies from
witnesses.

In a different scenario, we can attempt to perform a read, and the record is present on
1c and 3w, but not on 2c. Since any two replicas are enough to constitute a quorum, if
any subset of nodes of size two is available, whether it’s two copy replicas [1c, 2c],
or one copy replica and one witness [1c, 3w] or [2c, 3w], we can guarantee to serve
consistent results. If we read from [1c, 2c], we fetch the latest record from 1c and
can replicate it to 2c, since the value is missing there. In case only [2c, 3w] are avail‐
able, the latest record can be fetched from 3w. To restore the original configuration
and bring 2c up-to-date, the record can be replicated to it, and removed from the
witness.

More generally, having n copy and m witness replicas has same availability guarantees
as n + m copies, given that we follow two rules:

• Read and write operations are performed using majorities (i.e., with N/2 + 1
participants)

• At least one of the replicas in this quorum is necessarily a copy one

This works because data is guaranteed to be either on the copy or witness replicas.
Copy replicas are brought up-to-date by the repair mechanism in case of a failure,
and witness replicas store the data in the interim.

Using witness replicas helps to reduce storage costs while preserving consistency
invariants. There are several implementations of this approach; for example, Spanner
[CORBETT12] and Apache Cassandra.
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Strong Eventual Consistency and CRDTs
We’ve discussed several strong consistency models, such as linearizability and serial‐
izability, and a form of weak consistency: eventual consistency. A possible middle
ground between the two, offering some benefits of both models, is strong eventual
consistency. Under this model, updates are allowed to propagate to servers late or out
of order, but when all updates finally propagate to target nodes, conflicts between
them can be resolved and they can be merged to produce the same valid state
[GOMES17].

Under some conditions, we can relax our consistency requirements by allowing oper‐
ations to preserve additional state that allows the diverged states to be reconciled (in
other words, merged) after execution. One of the most prominent examples of such
an approach is Conflict-Free Replicated Data Types (CRDTs, [SHAPIRO11a]) imple‐
mented, for example, in Redis [BIYIKOGLU13].

CRDTs are specialized data structures that preclude the existence of conflict and
allow operations on these data types to be applied in any order without changing the
result. This property can be extremely useful in a distributed system. For example, in
a multinode system that uses conflict-free replicated counters, we can increment
counter values on each node independently, even if they cannot communicate with
one another due to a network partition. As soon as communication is restored,
results from all nodes can be reconciled, and none of the operations applied during
the partition will be lost.

This makes CRDTs useful in eventually consistent systems, since replica states in such
systems are allowed to temporarily diverge. Replicas can execute operations locally,
without prior synchronization with other nodes, and operations eventually propagate
to all other replicas, potentially out of order. CRDTs allow us to reconstruct the com‐
plete system state from local individual states or operation sequences.

The simplest example of CRDTs is operation-based Commutative Replicated Data
Types (CmRDTs). For CmRDTs to work, we need the allowed operations to be:

Side-effect free
Their application does not change the system state.

Commutative
Argument order does not matter: x • y = y • x. In other words, it doesn’t mat‐
ter whether x is merged with y, or y is merged with x.

Causally ordered
Their successful delivery depends on the precondition, which ensures that the
system has reached the state the operation can be applied to.
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For example, we could implement a grow-only counter. Each server can hold a state
vector consisting of last known counter updates from all other participants, initialized
with zeros. Each server is only allowed to modify its own value in the vector. When
updates are propagated, the function merge(state1, state2) merges the states from
the two servers.

For example, we have three servers, with initial state vectors initialized:

Node 1:          Node 2:          Node 3:
[0, 0, 0]        [0, 0, 0]        [0, 0, 0]

If we update counters on the first and third nodes, their states change as follows:

Node 1:          Node 2:          Node 3:
[1, 0, 0]        [0, 0, 0]        [0, 0, 1]

When updates propagate, we use a merge function to combine the results by picking
the maximum value for each slot:

Node 1 (Node 3 state vector propagated):
merge([1, 0, 0], [0, 0, 1]) = [1, 0, 1]

Node 2 (Node 1 state vector propagated):
merge([0, 0, 0], [1, 0, 0]) = [1, 0, 0]

Node 2 (Node 3 state vector propagated):
merge([1, 0, 0], [0, 0, 1]) = [1, 0, 1]

Node 3 (Node 1 state vector propagated):
merge([0, 0, 1], [1, 0, 0]) = [1, 0, 1]

To determine the current vector state, the sum of values in all slots is computed:
sum([1, 0, 1]) = 2. The merge function is commutative. Since servers are only
allowed to update their own values and these values are independent, no additional
coordination is required.

It is possible to produce a Positive-Negative-Counter (PN-Counter) that supports both
increments and decrements by using payloads consisting of two vectors: P, which
nodes use for increments, and N, where they store decrements. In a larger system, to
avoid propagating huge vectors, we can use super-peers. Super-peers replicate counter
states and help to avoid constant peer-to-peer chatter [SHAPIRO11b].

To save and replicate values, we can use registers. The simplest version of the register
is the last-write-wins register (LWW register), which stores a unique, globally ordered
timestamp attached to each value to resolve conflicts. In case of a conflicting write,
we preserve only the one with the larger timestamp. The merge operation (picking
the value with the largest timestamp) here is also commutative, since it relies on the
timestamp. If we cannot allow values to be discarded, we can supply application-
specific merge logic and use a multivalue register, which stores all values that were
written and allows the application to pick the right one.
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2 These short definitions are given for recap only, the reader is advised to refer to the complete definitions for
context.

Another example of CRDTs is an unordered grow-only set (G-Set). Each node main‐
tains its local state and can append elements to it. Adding elements produces a valid
set. Merging two sets is also a commutative operation. Similar to counters, we can use
two sets to support both additions and removals. In this case, we have to preserve an
invariant: only the values contained in the addition set can be added into the removal
set. To reconstruct the current state of the set, all elements contained in the removal
set are subtracted from the addition set [SHAPIRO11b].

An example of a conflict-free type that combines more complex structures is a
conflict-free replicated JSON data type, allowing modifications such as insertions,
deletions, and assignments on deeply nested JSON documents with list and map
types. This algorithm performs merge operations on the client side and does not
require operations to be propagated in any specific order [KLEPPMANN14].

There are quite a few possibilities CRDTs provide us with, and we can see more data
stores using this concept to provide Strong Eventual Consistency (SEC). This is a
powerful concept that we can add to our arsenal of tools for building fault-tolerant
distributed systems.

Summary
Fault-tolerant systems use replication to improve availability: even if some processes
fail or are unresponsive, the system as a whole can continue functioning correctly.
However, keeping multiple copies in sync requires additional coordination.

We’ve discussed several single-operation consistency models, ordered from the one
with the most guarantees to the one with the least:2

Linearizability
Operations appear to be applied instantaneously, and the real-time operation
order is maintained.

Sequential consistency
Operation effects are propagated in some total order, and this order is consistent
with the order they were executed by the individual processes.

Causal consistency
Effects of the causally related operations are visible in the same order to all
processes.
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PRAM/FIFO consistency
Operation effects become visible in the same order they were executed by indi‐
vidual processes. Writes from different processes can be observed in different
orders.

After that, we discussed multiple session models:

Read-own-writes
Read operations reflect the previous writes. Writes propagate through the system
and become available for later reads that come from the same client.

Monotonic reads
Any read that has observed a value cannot observe a value that is older that the
observed one.

Monotonic writes
Writes coming from the same client propagate to other clients in the order they
were made by this client.

Writes-follow-reads
Write operations are ordered after the writes whose effects were observed by the
previous reads executed by the same client.

Knowing and understanding these concepts can help you to understand the guaran‐
tees of the underlying systems and use them for application development. Consis‐
tency models describe rules that operations on data have to follow, but their scope is
limited to a specific system. Stacking systems with weaker guarantees on top of ones
with stronger guarantees or ignoring consistency implications of underlying systems
may lead to unrecoverable inconsistencies and data loss.

We also discussed the concept of eventual and tunable consistency. Quorum-based
systems use majorities to serve consistent data. Witness replicas can be used to reduce
storage costs.
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CHAPTER 12

Anti-Entropy and Dissemination

Most of the communication patterns we’ve been discussing so far were either peer-to-
peer or one-to-many (coordinator and replicas). To reliably propagate data records
throughout the system, we need the propagating node to be available and able to
reach the other nodes, but even then the throughput is limited to a single machine.

Quick and reliable propagation may be less applicable to data records and more
important for the cluster-wide metadata, such as membership information (joining
and leaving nodes), node states, failures, schema changes, etc. Messages containing
this information are generally infrequent and small, but have to be propagated as
quickly and reliably as possible.

Such updates can generally be propagated to all nodes in the cluster using one of the
three broad groups of approaches [DEMERS87]; schematic depictions of these com‐
munication patterns are shown in Figure 12-1:

• a) Notification broadcast from one process to all others.
• b) Periodic peer-to-peer information exchange. Peers connect pairwise and

exchange messages.
• c) Cooperative broadcast, where message recipients become broadcasters and

help to spread the information quicker and more reliably.
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Figure 12-1. Broadcast (a), anti-entropy (b), and gossip (c)

Broadcasting the message to all other processes is the most straightforward approach
that works well when the number of nodes in the cluster is small, but in large clusters
it can get expensive because of the number of nodes, and unreliable because of overde‐
pendence on a single process. Individual processes may not always know about the
existence of all other processes in the network. Moreover, there has to be some over‐
lap in time during which both the broadcasting process and each one of its recipients
are up, which might be difficult to achieve in some cases.

To relax these constraints, we can assume that some updates may fail to propagate.
The coordinator will do its best and deliver the messages to all available participants,
and then anti-entropy mechanisms will bring nodes back in sync in case there were
any failures. This way, the responsibility for delivering messages is shared by all nodes
in the system, and is split into two steps: primary delivery and periodic sync.

Entropy is a property that represents the measure of disorder in the system. In a dis‐
tributed system, entropy represents a degree of state divergence between the nodes.
Since this property is undesired and its amount should be kept to a minimum, there
are many techniques that help to deal with entropy.

Anti-entropy is usually used to bring the nodes back up-to-date in case the primary
delivery mechanism has failed. The system can continue functioning correctly even if
the coordinator fails at some point, since the other nodes will continue spreading the
information. In other words, anti-entropy is used to lower the convergence time
bounds in eventually consistent systems.

To keep nodes in sync, anti-entropy triggers a background or a foreground process
that compares and reconciles missing or conflicting records. Background anti-
entropy processes use auxiliary structures such as Merkle trees and update logs to
identify divergence. Foreground anti-entropy processes piggyback read or write
requests: hinted handoff, read repairs, etc.

If replicas diverge in a replicated system, to restore consistency and bring them back
in sync, we have to find and repair missing records by comparing replica states pair‐
wise. For large datasets, this can be very costly: we have to read the whole dataset on
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both nodes and notify replicas about more recent state changes that weren’t yet
propagated. To reduce this cost, we can consider ways in which replicas can get out-
of-date and patterns in which data is accessed.

Read Repair
It is easiest to detect divergence between the replicas during the read, since at that
point we can contact replicas, request the queried state from each one of them, and
see whether or not their responses match. Note that in this case we do not query an
entire dataset stored on each replica, and we limit our goal to just the data that was
requested by the client.

The coordinator performs a distributed read, optimistically assuming that replicas are
in sync and have the same information available. If replicas send different responses,
the coordinator sends missing updates to the replicas where they’re missing.

This mechanism is called read repair. It is often used to detect and eliminate inconsis‐
tencies. During read repair, the coordinator node makes a request to replicas, waits
for their responses, and compares them. In case some of the replicas have missed the
recent updates and their responses differ, the coordinator detects inconsistencies and
sends updates back to the replicas [DECANDIA07].

Some Dynamo-style databases choose to lift the requirement of contacting all replicas
and use tunable consistency levels instead. To return consistent results, we do not
have to contact and repair all the replicas, but only the number of nodes that satisfies
the consistency level. If we do quorum reads and writes, we still get consistent results,
but some of the replicas still might not contain all the writes.

Read repair can be implemented as a blocking or asynchronous operation. During
blocking read repair, the original client request has to wait until the coordinator
“repairs” the replicas. Asynchronous read repair simply schedules a task that can be
executed after results are returned to the user.

Blocking read repair ensures read monotonicity (see “Session Models” on page 233)
for quorum reads: as soon as the client reads a specific value, subsequent reads return
the value at least as recent as the one it has seen, since replica states were repaired. If
we’re not using quorums for reads, we lose this monotonicity guarantee as data might
have not been propagated to the target node by the time of a subsequent read. At the
same time, blocking read repair sacrifices availability, since repairs should be
acknowledged by the target replicas and the read cannot return until they respond.

To detect exactly which records differ between replica responses, some databases (for
example, Apache Cassandra) use specialized iterators with merge listeners, which
reconstruct differences between the merged result and individual inputs. Its output is
then used by the coordinator to notify replicas about the missing data.
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Read repair assumes that replicas are mostly in sync and we do not expect every
request to fall back to a blocking repair. Because of the read monotonicity of blocking
repairs, we can also expect subsequent requests to return the same consistent results,
as long as there was no write operation that has completed in the interim.

Digest Reads
Instead of issuing a full read request to each node, the coordinator can issue only one
full read request and send only digest requests to the other replicas. A digest request
reads the replica-local data and, instead of returning a full snapshot of the requested
data, it computes a hash of this response. Now, the coordinator can compute a hash of
the full read and compare it to digests from all other nodes. If all the digests match, it
can be confident that the replicas are in sync.

In case digests do not match, the coordinator does not know which replicas are
ahead, and which ones are behind. To bring lagging replicas back in sync with the rest
of the nodes, the coordinator has to issue full reads to any replicas that responded
with different digests, compare their responses, reconcile the data, and send updates
to the lagging replicas.

Digests are usually computed using a noncryptographic hash func‐
tion, such as MD5, since it has to be computed quickly to make the
“happy path” performant. Hash functions can have collisions, but
their probability is negligible for most real-world systems. Since
databases often use more than just one anti-entropy mechanism,
we can expect that, even in the unlikely event of a hash collision,
data will be reconciled by the different subsystem.

Hinted Handoff
Another anti-entropy approach is called hinted handoff [DECANDIA07], a write-side
repair mechanism. If the target node fails to acknowledge the write, the write coordi‐
nator or one of the replicas stores a special record, called a hint, which is replayed to
the target node as soon as it comes back up.

In Apache Cassandra, unless the ANY consistency level is in use [ELLIS11], hinted
writes aren’t counted toward the replication factor (see “Tunable Consistency” on
page 235), since the data in the hint log isn’t accessible for reads and is only used to
help the lagging participants catch up.

Some databases, for example Riak, use sloppy quorums together with hinted handoff.
With sloppy quorums, in case of replica failures, write operations can use additional
healthy nodes from the node list, and these nodes do not have to be target replicas for
the executed operations.
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For example, say we have a five-node cluster with nodes {A, B, C, D, E}, where {A,
B, C} are replicas for the executed write operation, and node B is down. A, being the
coordinator for the query, picks node D to satisfy the sloppy quorum and maintain
the desired availability and durability guarantees. Now, data is replicated to {A, D,
C}. However, the record at D will have a hint in its metadata, since the write was origi‐
nally intended for B. As soon as B recovers, D will attempt to forward a hint back to it.
Once the hint is replayed on B, it can be safely removed without reducing the total
number of replicas [DECANDIA07].

Under similar circumstances, if nodes {B, C} are briefly separated from the rest of
the cluster by the network partition, and a sloppy quorum write was done against {A,
D, E}, a read on {B, C}, immediately following this write, would not observe the lat‐
est read [DOWNEY12]. In other words, sloppy quorums improve availability at the
cost of consistency.

Merkle Trees
Since read repair can only fix inconsistencies on the currently queried data, we
should use different mechanisms to find and repair inconsistencies in the data that is
not actively queried.

As we already discussed, finding exactly which rows have diverged between the repli‐
cas requires exchanging and comparing the data records pairwise. This is highly
impractical and expensive. Many databases employ Merkle trees [MERKLE87] to
reduce the cost of reconciliation.

Merkle trees compose a compact hashed representation of the local data, building a
tree of hashes. The lowest level of this hash tree is built by scanning an entire table
holding data records, and computing hashes of record ranges. Higher tree levels con‐
tain hashes of the lower-level hashes, building a hierarchical representation that
allows us to quickly detect inconsistencies by comparing the hashes, following the
hash tree nodes recursively to narrow down inconsistent ranges. This can be done by
exchanging and comparing subtrees level-wise, or by exchanging and comparing
entire trees.

Figure 12-2 shows a composition of a Merkle tree. The lowest level consists of the
hashes of data record ranges. Hashes for each higher level are computed by hashing
underlying level hashes, repeating this process recursively up to the tree root.
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Figure 12-2. Merkle tree. Gray boxes represent data record ranges. White boxes represent
a hash tree hierarchy.

To determine whether or not there’s an inconsistency between the two replicas, we
only need to compare the root-level hashes from their Merkle trees. By comparing
hashes pairwise from top to bottom, it is possible to locate ranges holding differences
between the nodes, and repair data records contained in them.

Since Merkle trees are calculated recursively from the bottom to the top, a change in
data triggers recomputation of the entire subtree. There’s also a trade-off between the
size of a tree (consequently, sizes of exchanged messages) and its precision (how
small and exact data ranges are).

Bitmap Version Vectors
More recent research on this subject introduces bitmap version vectors [GON‐
ÇALVES15], which can be used to resolve data conflicts based on recency: each node
keeps a per-peer log of operations that have occurred locally or were replicated. Dur‐
ing anti-entropy, logs are compared, and missing data is replicated to the target node.

Each write, coordinated by a node, is represented by a dot (i,n): an event with a
node-local sequence number i coordinated by the node n. The sequence number i
starts with 1 and is incremented each time the node executes a write operation.

To track replica states, we use node-local logical clocks. Each clock represents a set of
dots, representing writes this node has seen directly (coordinated by the node itself),
or transitively (coordinated by and replicated from the other nodes).

In the node logical clock, events coordinated by the node itself will have no gaps. If
some writes aren’t replicated from the other nodes, the clock will contain gaps. To get
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two nodes back in sync, they can exchange logical clocks, identify gaps represented by
the missing dots, and then replicate data records associated with them. To do this, we
need to reconstruct the data records each dot refers to. This information is stored in a
dotted causal container (DCC), which maps dots to causal information for a given key.
This way, conflict resolution captures causal relationships between the writes.

Figure 12-3 (adapted from [GONÇALVES15]) shows an example of the state repre‐
sentation of three nodes in the system, P1, P2 and P3, from the perspective of P2, track‐
ing which values it has seen. Each time P2 makes a write or receives a replicated value,
it updates this table.

Figure 12-3. Bitmap version vector example

During replication, P2 creates a compact representation of this state and creates a map
from the node identifier to a pair of latest values, up to which it has seen consecutive
writes, and a bitmap where other seen writes are encoded as 1. (3, 011012) here
means that node P2 has seen consecutive updates up to the third value, and it has seen
values on the second, third, and fifth position relative to 3 (i.e., it has seen the values
with sequence numbers 5, 6, and 8).

During exchange with other nodes, it will receive the missing updates the other node
has seen. As soon as all the nodes in the system have seen consecutive values up to
the index i, the version vector can be truncated up to this index.

An advantage of this approach is that it captures the causal relation between the value
writes and allows nodes to precisely identify the data points missing on the other
nodes. A possible downside is that, if the node was down for an extended time
period, peer nodes can’t truncate the log, since data still has to be replicated to the
lagging node once it comes back up.
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Gossip Dissemination
Masses are always breeding grounds of psychic epidemics.

—Carl Jung

To involve other nodes, and propagate updates with the reach of a broadcast and the
reliability of anti-entropy, we can use gossip protocols.

Gossip protocols are probabilistic communication procedures based on how rumors
are spread in human society or how diseases propagate in the population. Rumors
and epidemics provide rather illustrative ways to describe how these protocols work:
rumors spread while the population still has an interest in hearing them; diseases
propagate until there are no more susceptible members in the population.

The main objective of gossip protocols is to use cooperative propagation to dissemi‐
nate information from one process to the rest of the cluster. Just as a virus spreads
through the human population by being passed from one individual to another,
potentially increasing in scope with each step, information is relayed through the sys‐
tem, getting more processes involved.

A process that holds a record that has to be spread around is said to be infective. Any
process that hasn’t received the update yet is then susceptible. Infective processes not
willing to propagate the new state after a period of active dissemination are said to be
removed [DEMERS87]. All processes start in a susceptible state. Whenever an update
for some data record arrives, a process that received it moves to the infective state and
starts disseminating the update to other random neighboring processes, infecting
them. As soon as the infective processes become certain that the update was propaga‐
ted, they move to the removed state.

To avoid explicit coordination and maintaining a global list of recipients and requir‐
ing a single coordinator to broadcast messages to each other participant in the sys‐
tem, this class of algorithms models completeness using the loss of interest function.
The protocol efficiency is then determined by how quickly it can infect as many nodes
as possible, while keeping overhead caused by redundant messages to a minimum.

Gossip can be used for asynchronous message delivery in homogeneous decentral‐
ized systems, where nodes may not have long-term membership or be organized in
any topology. Since gossip protocols generally do not require explicit coordination,
they can be useful in systems with flexible membership (where nodes are joining and
leaving frequently) or mesh networks.

Gossip protocols are very robust and help to achieve high reliability in the presence
of failures inherent to distributed systems. Since messages are relayed in a random‐
ized manner, they still can be delivered even if some communication components
between them fail, just through the different paths. It can be said that the system
adapts to failures.
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Gossip Mechanics
Processes periodically select f peers at random (where f is a configurable parameter,
called fanout) and exchange currently “hot” information with them. Whenever the
process learns about a new piece of information from its peers, it will attempt to pass
it on further. Because peers are selected probabilistically, there will always be some
overlap, and messages will get delivered repeatedly and may continue circulating for
some time. Message redundancy is a metric that captures the overhead incurred by
repeated delivery. Redundancy is an important property, and it is crucial to how gos‐
sip works.

The amount of time the system requires to reach convergence is called latency.
There’s a slight difference between reaching convergence (stopping the gossip pro‐
cess) and delivering the message to all peers, since there might be a short period dur‐
ing which all peers are notified, but gossip continues. Fanout and latency depend on
the system size: in a larger system, we either have to increase the fanout to keep
latency stable, or allow higher latency.

Over time, as the nodes notice they’ve been receiving the same information again and
again, the message will start losing importance and nodes will have to eventually stop
relaying it. Interest loss can be computed either probabilistically (the probability of
propagation stop is computed for each process on every step) or using a threshold
(the number of received duplicates is counted, and propagation is stopped when this
number is too high). Both approaches have to take the cluster size and fanout into
consideration. Counting duplicates to measure convergence can improve latency and
reduce redundancy [DEMERS87].

In terms of consistency, gossip protocols offer convergent consistency [BIRMAN07]:
nodes have a higher probability to have the same view of the events that occurred fur‐
ther in the past.

Overlay Networks
Even though gossip protocols are important and useful, they’re usually applied for a
narrow set of problems. Nonepidemic approaches can distribute the message with
nonprobabilistic certainty, less redundancy, and generally in a more optimal way
[BIRMAN07]. Gossip algorithms are often praised for their scalability and the fact it
is possible to distribute a message within log N message rounds (where N is the size
of the cluster) [KREMARREC07], but it’s important to keep the number of redundant
messages generated during gossip rounds in mind as well. To achieve reliability,
gossip-based protocols produce some duplicate message deliveries.

Selecting nodes at random greatly improves system robustness: if there is a network
partition, messages will be delivered eventually if there are links that indirectly con‐
nect two processes. The obvious downside of this approach is that it is not message-
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1 This example is only used for illustration: nodes in the network are generally not arranged in a grid.

optimal: to guarantee robustness, we have to maintain redundant connections
between the peers and send redundant messages.

A middle ground between the two approaches is to construct a temporary fixed topol‐
ogy in a gossip system. This can be achieved by creating an overlay network of peers:
nodes can sample their peers and select the best contact points based on proximity
(usually measured by the latency).

Nodes in the system can form spanning trees: unidirected, loop-free graphs with dis‐
tinct edges, covering the whole network. Having such a graph, messages can be dis‐
tributed in a fixed number of steps.

Figure 12-4 shows an example of a spanning tree:1

• a) We achieve full connectivity between the points without using all the edges.
• b) We can lose connectivity to the entire subtree if just a single link is broken.

Figure 12-4. Spanning tree. Dark points represent nodes. Dark lines represent an overlay
network. Gray lines represent other possible existing connections between the nodes.

One of the potential downsides of this approach is that it might lead to forming inter‐
connected “islands” of peers having strong preferences toward each other.

To keep the number of messages low, while allowing quick recovery in case of a con‐
nectivity loss, we can mix both approaches—fixed topologies and tree-based broad‐
cast—when the system is in a stable state, and fall back to gossip for failover and
system recovery.
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Hybrid Gossip
Push/lazy-push multicast trees (Plumtrees) [LEITAO07] make a trade-off between epi‐
demic and tree-based broadcast primitives. Plumtrees work by creating a spanning
tree overlay of nodes to actively distribute messages with the smallest overhead.
Under normal conditions, nodes send full messages to just a small subset of peers
provided by the peer sampling service.

Each node sends the full message to the small subset of nodes, and for the rest of the
nodes, it lazily forwards only the message ID. If the node receives the identifier of a
message it has never seen, it can query its peers to get it. This lazy-push step ensures
high reliability and provides a way to quickly heal the broadcast tree. In case of fail‐
ures, protocol falls back to the gossip approach through lazy-push steps, broadcasting
the message and repairing the overlay.

Due to the nature of distributed systems, any node or link between the nodes might
fail at any time, making it impossible to traverse the tree when the segment becomes
unreachable. The lazy gossip network helps to notify peers about seen messages in
order to construct and repair the tree.

Figure 12-5 shows an illustration of such double connectivity: nodes are connected
with an optimal spanning tree (solid lines) and the lazy gossip network (dotted lines).
This illustration does not represent any particular network topology, but only connec‐
tions between the nodes.

Figure 12-5. Lazy and eager push networks. Solid lines represent a broadcast tree. Dot‐
ted lines represent lazy gossip connections.

One of the advantages of using the lazy-push mechanism for tree construction and
repair is that in a network with constant load, it will tend to generate a tree that also
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minimizes message latency, since nodes that are first to respond are added to the
broadcast tree.

Partial Views
Broadcasting messages to all known peers and maintaining a full view of the cluster
can get expensive and impractical, especially if the churn (measure of the number of
joining and leaving nodes in the system) is high. To avoid this, gossip protocols often
use a peer sampling service. This service maintains a partial view of the cluster, which
is periodically refreshed using gossip. Partial views overlap, as some degree of redun‐
dancy is desired in gossip protocols, but too much redundancy means we’re doing
extra work.

For example, the Hybrid Partial View (HyParView) protocol [LEITAO07] maintains a
small active view and a larger passive view of the cluster. Nodes from the active view
create an overlay that can be used for dissemination. Passive view is used to maintain
a list of nodes that can be used to replace the failed ones from the active view.

Periodically, nodes perform a shuffle operation, during which they exchange their
active and passive views. During this exchange, nodes add the members from both
passive and active views they receive from their peers to their passive views, cycling
out the oldest values to cap the list size.

The active view is updated depending on the state changes of nodes in this view and
requests from peers. If a process P1 suspects that P2, one of the peers from its active
view, has failed, P1 removes P2 from its active view and attempts to establish a connec‐
tion with a replacement process P3 from the passive view. If the connection fails, P3 is
removed from the passive view of P1.

Depending on the number of processes in P1’s active view, P3 may choose to decline
the connection if its active view is already full. If P1’s view is empty, P3 has to replace
one of its current active view peers with P1. This helps bootstrapping or recovering
nodes to quickly become effective members of the cluster at the cost of cycling some
connections.

This approach helps to reduce the number of messages in the system by using only
active view nodes for dissemination, while maintaining high reliability by using pas‐
sive views as a recovery mechanism. One of the performance and quality measures is
how quickly a peer sampling service converges to a stable overlay in cases of topology
reorganization [JELASITY04]. HyParView scores rather high here, because of how
the views are maintained and since it gives priority to bootstrapping processes.

HyParView and Plumtree use a hybrid gossip approach: using a small subset of peers
for broadcasting messages and falling back to a wider network of peers in case of
failures and network partitions. Both systems do not rely on a global view that
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includes all the peers, which can be helpful not only because of a large number of
nodes in the system (which is not the case most of the time), but also because of costs
associated with maintaining an up-to-date list of members on every node. Partial
views allow nodes to actively communicate with only a small subset of neighboring
nodes.

Summary
Eventually consistent systems allow replica state divergence. Tunable consistency
allows us to trade consistency for availability and vice versa. Replica divergence can
be resolved using one of the anti-entropy mechanisms:

Hinted handoff
Temporarily store writes on neighboring nodes in case the target is down, and
replay them on the target as soon as it comes back up.

Read-repair
Reconcile requested data ranges during the read by comparing responses, detect‐
ing missing records, and sending them to lagging replicas.

Merkle trees
Detect data ranges that require repair by computing and exchanging hierarchical
trees of hashes.

Bitmap version vectors
Detect missing replica writes by maintaining compact records containing infor‐
mation about the most recent writes.

These anti-entropy approaches optimize for one of the three parameters: scope
reduction, recency, or completeness. We can reduce the scope of anti-entropy by only
synchronizing the data that is being actively queried (read-repairs) or individual
missing writes (hinted handoff). If we assume that most failures are temporary and
participants recover from them as quickly as possible, we can store the log of the
most recent diverged events and know exactly what to synchronize in the event of
failure (bitmap version vectors). If we need to compare entire datasets on multiple
nodes pairwise and efficiently locate differences between them, we can hash the data
and compare hashes (Merkle trees).

To reliably distribute information in a large-scale system, gossip protocols can be
used. Hybrid gossip protocols reduce the number of exchanged messages while
remaining resistant to network partitions, when possible.

Many modern systems use gossip for failure detection and membership information
[DECANDIA07]. HyParView is used in Partisan, the high-performance, high-
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scalability distributed computing framework. Plumtree was used in the Riak core for
cluster-wide information.

Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Gossip protocols
Shah, Devavrat. 2009. “Gossip Algorithms.” Foundations and Trends in Network‐
ing 3, no. 1 (January): 1-125. https://doi.org/10.1561/1300000014.

Jelasity, Márk. 2003. “Gossip-based Protocols for Large-scale Distributed Sys‐
tems.” Dissertation. http://www.inf.u-szeged.hu/~jelasity/dr/doktori-mu.pdf.

Demers, Alan, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. 1987. “Epidemic algorithms for
replicated database maintenance.” In Proceedings of the sixth annual ACM Sympo‐
sium on Principles of distributed computing (PODC ’87), 1-12. New York: Associa‐
tion for Computing Machinery. https://doi.org/10.1145/41840.41841.
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CHAPTER 13

Distributed Transactions

To maintain order in a distributed system, we have to guarantee at least some consis‐
tency. In “Consistency Models” on page 222, we talked about single-object, single-
operation consistency models that help us to reason about the individual operations.
However, in databases we often need to execute multiple operations atomically.

Atomic operations are explained in terms of state transitions: the database was in
state A before a particular transaction was started; by the time it finished, the state
went from A to B. In operation terms, this is simple to understand, since transactions
have no predetermined attached state. Instead, they apply operations to data records
starting at some point in time. This gives us some flexibility in terms of scheduling
and execution: transactions can be reordered and even retried.

The main focus of transaction processing is to determine permissible histories, to
model and represent possible interleaving execution scenarios. History, in this case,
represents a dependency graph: which transactions have been executed prior to exe‐
cution of the current transaction. History is said to be serializable if it is equivalent
(i.e., has the same dependency graph) to some history that executes these transactions
sequentially. You can review concepts of histories, their equivalence, serializability,
and other concepts in “Serializability” on page 94. Generally, this chapter is a dis‐
tributed systems counterpart of Chapter 5, where we discussed node-local transaction
processing.

Single-partition transactions involve the pessimistic (lock-based or tracking) or opti‐
mistic (try and validate) concurrency control schemes that we discussed in Chapter 5,
but neither one of these approaches solves the problem of multipartition transactions,
which require coordination between different servers, distributed commit, and roll‐
back protocols.
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Generally speaking, when transferring money from one account to another, you’d like
to both credit the first account and debit the second one simultaneously. However, if
we break down the transaction into individual steps, even debiting or crediting
doesn’t look atomic at first sight: we need to read the old balance, add or subtract the
required amount, and save this result. Each one of these substeps involves several
operations: the node receives a request, parses it, locates the data on disk, makes a
write and, finally, acknowledges it. Even this is a rather high-level view: to execute a
simple write, we have to perform hundreds of small steps.

This means that we have to first execute the transaction and only then make its results
visible. But let’s first define what transactions are. A transaction is a set of operations,
an atomic unit of execution. Transaction atomicity implies that all its results become
visible or none of them do. For example, if we modify several rows, or even tables in a
single transaction, either all or none of the modifications will be applied.

To ensure atomicity, transactions should be recoverable. In other words, if the transac‐
tion cannot complete, is aborted, or times out, its results have to be rolled back com‐
pletely. A nonrecoverable, partially executed transaction can leave the database in an
inconsistent state. In summary, in case of unsuccessful transaction execution, the
database state has to be reverted to its previous state, as if this transaction was never
tried in the first place.

Another important aspect is network partitions and node failures: nodes in the sys‐
tem fail and recover independently, but their states have to remain consistent. This
means that the atomicity requirement holds not only for the local operations, but also
for operations executed on other nodes: changes have to be durably propagated to all
of the nodes involved in the transaction or none of them [LAMPSON79].

Making Operations Appear Atomic
To make multiple operations appear atomic, especially if some of them are remote, we
need to use a class of algorithms called atomic commitment. Atomic commitment
doesn’t allow disagreements between the participants: a transaction will not commit if
even one of the participants votes against it. At the same time, this means that failed
processes have to reach the same conclusion as the rest of the cohort. Another impor‐
tant implication of this fact is that atomic commitment algorithms do not work in the
presence of Byzantine failures: when the process lies about its state or decides on an
arbitrary value, since it contradicts unanimity [HADZILACOS05].

The problem that atomic commitment is trying to solve is reaching an agreement on
whether or not to execute the proposed transaction. Cohorts cannot choose, influ‐
ence, or change the proposed transaction or propose any alternative: they can only
give their vote on whether or not they are willing to execute it [ROBINSON08].
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1 The fine print says “assuming a highly reliable network.” In other words, a network that precludes partitions
[ALHOUMAILY10]. Implications of this assumption are discussed in the paper’s section about algorithm
description.

Atomic commitment algorithms do not set strict requirements for the semantics of
transaction prepare, commit, or rollback operations. Database implementers have to
decide on:

• When the data is considered ready to commit, and they’re just a pointer swap
away from making the changes public.

• How to perform the commit itself to make transaction results visible in the short‐
est timeframe possible.

• How to roll back the changes made by the transaction if the algorithm decides
not to commit.

We discussed node-local implementations of these processes in Chapter 5.

Many distributed systems use atomic commitment algorithms—for example, MySQL
(for distributed transactions) and Kafka (for producer and consumer interaction
[MEHTA17]).

In databases, distributed transactions are executed by the component commonly
known as a transaction manager. The transaction manager is a subsystem responsible
for scheduling, coordinating, executing, and tracking transactions. In a distributed
environment, the transaction manager is responsible for ensuring that node-local vis‐
ibility guarantees are consistent with the visibility prescribed by distributed atomic
operations. In other words, transactions commit in all partitions, and for all replicas.

We will discuss two atomic commitment algorithms: two-phase commit, which solves
a commitment problem, but doesn’t allow for failures of the coordinator process; and
three-phase commit [SKEEN83], which solves a nonblocking atomic commitment
problem,1 and allows participants proceed even in case of coordinator failures
[BABAOGLU93].

Two-Phase Commit
Let’s start with the most straightforward protocol for a distributed commit that allows
multipartition atomic updates. (For more information on partitioning, you can refer
to “Database Partitioning” on page 270.) Two-phase commit (2PC) is usually dis‐
cussed in the context of database transactions. 2PC executes in two phases. During
the first phase, the decided value is distributed, and votes are collected. During the
second phase, nodes just flip the switch, making the results of the first phase visible.
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2PC assumes the presence of a leader (or coordinator) that holds the state, collects
votes, and is a primary point of reference for the agreement round. The rest of the
nodes are called cohorts. Cohorts, in this case, are usually partitions that operate over
disjoint datasets, against which transactions are performed. The coordinator and
every cohort keep local operation logs for each executed step. Participants vote to
accept or reject some value, proposed by the coordinator. Most often, this value is an
identifier of the distributed transaction that has to be executed, but 2PC can be used
in other contexts as well.

The coordinator can be a node that received a request to execute the transaction, or it
can be picked at random, using a leader-election algorithm, assigned manually, or
even fixed throughout the lifetime of the system. The protocol does not place restric‐
tions on the coordinator role, and the role can be transferred to another participant
for reliability or performance.

As the name suggests, a two-phase commit is executed in two steps:

Prepare
The coordinator notifies cohorts about the new transaction by sending a Propose
message. Cohorts make a decision on whether or not they can commit the part of
the transaction that applies to them. If a cohort decides that it can commit, it
notifies the coordinator about the positive vote. Otherwise, it responds to the
coordinator, asking it to abort the transaction. All decisions taken by cohorts are
persisted in the coordinator log, and each cohort keeps a copy of its decision
locally.

Commit/abort
Operations within a transaction can change state across different partitions (each
represented by a cohort). If even one of the cohorts votes to abort the transac‐
tion, the coordinator sends the Abort message to all of them. Only if all cohorts
have voted positively does the coordinator send them a final Commit message.

This process is shown in Figure 13-1.

During the prepare phase, the coordinator distributes the proposed value and collects
votes from the participants on whether or not this proposed value should be commit‐
ted. Cohorts may choose to reject the coordinator’s proposal if, for example, another
conflicting transaction has already committed a different value.
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Figure 13-1. Two-phase commit protocol. During the first phase, cohorts are notified
about the new transaction. During the second phase, the transaction is committed or
aborted.

After the coordinator has collected the votes, it can make a decision on whether to
commit the transaction or abort it. If all cohorts have voted positively, it decides to
commit and notifies them by sending a Commit message. Otherwise, the coordinator
sends an Abort message to all cohorts and the transaction gets rolled back. In other
words, if one node rejects the proposal, the whole round is aborted.

During each step the coordinator and cohorts have to write the results of each opera‐
tion to durable storage to be able to reconstruct the state and recover in case of local
failures, and be able to forward and replay results for other participants.

In the context of database systems, each 2PC round is usually responsible for a single
transaction. During the prepare phase, transaction contents (operations, identifiers,
and other metadata) are transferred from the coordinator to the cohorts. The transac‐
tion is executed by the cohorts locally and is left in a partially committed state (some‐
times called precommitted), making it ready for the coordinator to finalize execution
during the next phase by either committing or aborting it. By the time the transaction
commits, its contents are already stored durably on all other nodes [BERNSTEIN09].

Cohort Failures in 2PC
Let’s consider several failure scenarios. For example, as Figure 13-2 shows, if one of
the cohorts fails during the propose phase, the coordinator cannot proceed with a
commit, since it requires all votes to be positive. If one of the cohorts is unavailable,
the coordinator will abort the transaction. This requirement has a negative impact on
availability: failure of a single node can prevent transactions from happening. Some
systems, for example, Spanner (see “Distributed Transactions with Spanner” on page
268), perform 2PC over Paxos groups rather than individual nodes to improve proto‐
col availability.
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Figure 13-2. Cohort failure during the propose phase

The main idea behind 2PC is a promise by a cohort that, once it has positively respon‐
ded to the proposal, it will not go back on its decision, so only the coordinator can
abort the transaction.

If one of the cohorts has failed after accepting the proposal, it has to learn about the
actual outcome of the vote before it can serve values correctly, since the coordinator
might have aborted the commit due to the other cohorts’ decisions. When a cohort
node recovers, it has to get up to speed with a final coordinator decision. Usually, this
is done by persisting the decision log on the coordinator side and replicating decision
values to the failed participants. Until then, the cohort cannot serve requests because
it is in an inconsistent state.

Since the protocol has multiple spots where processes are waiting for the other partic‐
ipants (when the coordinator collects votes, or when the cohort is waiting for the
commit/abort phase), link failures might lead to message loss, and this wait will con‐
tinue indefinitely. If the coordinator does not receive a response from the replica dur‐
ing the propose phase, it can trigger a timeout and abort the transaction.

Coordinator Failures in 2PC
If one of the cohorts does not receive a commit or abort command from the coordi‐
nator during the second phase, as shown in Figure 13-3, it should attempt to find out
which decision was made by the coordinator. The coordinator might have decided
upon the value but wasn’t able to communicate it to the particular replica. In such
cases, information about the decision can be replicated from the peers’ transaction
logs or from the backup coordinator. Replicating commit decisions is safe since it’s
always unanimous: the whole point of 2PC is to either commit or abort on all sites,
and commit on one cohort implies that all other cohorts have to commit.
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2 However, the documentation says that as of v3.6, 2PC provides only transaction-like semantics: https://data
bass.dev/links/7.

Figure 13-3. Coordinator failure after the propose phase

During the first phase, the coordinator collects votes and, subsequently, promises
from cohorts, that they will wait for its explicit commit or abort command. If the
coordinator fails after collecting the votes, but before broadcasting vote results, the
cohorts end up in a state of uncertainty. This is shown in Figure 13-4. Cohorts do not
know what precisely the coordinator has decided, and whether or not any of the par‐
ticipants (potentially also unreachable) might have been notified about the transac‐
tion results [BERNSTEIN87].

Figure 13-4. Coordinator failure before it could contact any cohorts

Inability of the coordinator to proceed with a commit or abort leaves the cluster in an
undecided state. This means that cohorts will not be able to learn about the final deci‐
sion in case of a permanent coordinator failure. Because of this property, we say that
2PC is a blocking atomic commitment algorithm. If the coordinator never recovers,
its replacement has to collect votes for a given transaction again, and proceed with a
final decision.

Many databases use 2PC: MySQL, PostgreSQL, MongoDB,2 and others. Two-phase
commit is often used to implement distributed transactions because of its simplicity
(it is easy to reason about, implement, and debug) and low overhead (message com‐
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plexity and the number of round-trips of the protocol are low). It is important to
implement proper recovery mechanisms and have backup coordinator nodes to
reduce the chance of the failures just described.

Three-Phase Commit
To make an atomic commitment protocol robust against coordinator failures and
avoid undecided states, the three-phase commit (3PC) protocol adds an extra step,
and timeouts on both sides that can allow cohorts to proceed with either commit or
abort in the event of coordinator failure, depending on the system state. 3PC assumes
a synchronous model and that communication failures are not possible [BABAO‐
GLU93].

3PC adds a prepare phase before the commit/abort step, which communicates cohort
states collected by the coordinator during the propose phase, allowing the protocol to
carry on even if the coordinator fails. All other properties of 3PC and a requirement
to have a coordinator for the round are similar to its two-phase sibling. Another use‐
ful addition to 3PC is timeouts on the cohort side. Depending on which step the pro‐
cess is currently executing, either a commit or abort decision is forced on timeout.

As Figure 13-5 shows, the three-phase commit round consists of three steps:

Propose
The coordinator sends out a proposed value and collects the votes.

Prepare
The coordinator notifies cohorts about the vote results. If the vote has passed and
all cohorts have decided to commit, the coordinator sends a Prepare message,
instructing them to prepare to commit. Otherwise, an Abort message is sent and
the round completes.

Commit
Cohorts are notified by the coordinator to commit the transaction.

Figure 13-5. Three-phase commit

264 | Chapter 13: Distributed Transactions



During the propose step, similar to 2PC, the coordinator distributes the proposed
value and collects votes from cohorts, as shown in Figure 13-5. If the coordinator
crashes during this phase and the operation times out, or if one of the cohorts votes
negatively, the transaction will be aborted.

After collecting the votes, the coordinator makes a decision. If the coordinator
decides to proceed with a transaction, it issues a Prepare command. It may happen
that the coordinator cannot distribute prepare messages to all cohorts or it fails to
receive their acknowledgments. In this case, cohorts may abort the transaction after
timeout, since the algorithm hasn’t moved all the way to the prepared state.

As soon as all the cohorts successfully move into the prepared state and the coordina‐
tor has received their prepare acknowledgments, the transaction will be committed if
either side fails. This can be done since all participants at this stage have the same
view of the state.

During commit, the coordinator communicates the results of the prepare phase to all
the participants, resetting their timeout counters and effectively finishing the
transaction.

Coordinator Failures in 3PC
All state transitions are coordinated, and cohorts can’t move on to the next phase
until everyone is done with the previous one: the coordinator has to wait for the rep‐
licas to continue. Cohorts can eventually abort the transaction if they do not hear
from the coordinator before the timeout, if they didn’t move past the prepare phase.

As we discussed previously, 2PC cannot recover from coordinator failures, and
cohorts may get stuck in a nondeterministic state until the coordinator comes back.
3PC avoids blocking the processes in this case and allows cohorts to proceed with a
deterministic decision.

The worst-case scenario for the 3PC is a network partition, shown in Figure 13-6.
Some nodes successfully move to the prepared state, and now can proceed with com‐
mit after the timeout. Some can’t communicate with the coordinator, and will abort
after the timeout. This results in a split brain: some nodes proceed with a commit and
some abort, all according to the protocol, leaving participants in an inconsistent and
contradictory state.
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Figure 13-6. Coordinator failure during the second phase

While in theory 3PC does, to a degree, solve the problem with 2PC blocking, it has a
larger message overhead, introduces potential contradictions, and does not work well
in the presence of network partitions. This might be the primary reason 3PC is not
widely used in practice.

Distributed Transactions with Calvin
We’ve already touched on the subject of synchronization costs and several ways
around it. But there are other ways to reduce contention and the total amount of time
during which transactions hold locks. One of the ways to do this is to let replicas
agree on the execution order and transaction boundaries before acquiring locks and
proceeding with execution. If we can achieve this, node failures do not cause transac‐
tion aborts, since nodes can recover state from other participants that execute the
same transaction in parallel.

Traditional database systems execute transactions using two-phase locking or opti‐
mistic concurrency control and have no deterministic transaction order. This means
that nodes have to be coordinated to preserve order. Deterministic transaction order
removes coordination overhead during the execution phase and, since all replicas get
the same inputs, they also produce equivalent outputs. This approach is commonly
known as Calvin, a fast distributed transaction protocol [THOMSON12]. One of the
prominent examples implementing distributed transactions using Calvin is FaunaDB.

To achieve deterministic order, Calvin uses a sequencer: an entry point for all transac‐
tions. The sequencer determines the order in which transactions are executed, and
establishes a global transaction input sequence. To minimize contention and batch
decisions, the timeline is split into epochs. The sequencer collects transactions and
groups them into short time windows (the original paper mentions 10-millisecond
batches), which also become replication units, so transactions do not have to be com‐
municated separately.
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As soon as a transaction batch is successfully replicated, sequencer forwards it to the
scheduler, which orchestrates transaction execution. The scheduler uses a
deterministic scheduling protocol that executes parts of transaction in parallel, while
preserving the serial execution order specified by the sequencer. Since applying trans‐
action to a specific state is guaranteed to produce only changes specified by the trans‐
action and transaction order is predetermined, replicas do not have to further
communicate with the sequencer.

Each transaction in Calvin has a read set (its dependencies, which is a collection of
data records from the current database state required to execute it) and a write set
(results of the transaction execution; in other words, its side effects). Calvin does not
natively support transactions that rely on additional reads that would determine read
and write sets.

A worker thread, managed by the scheduler, proceeds with execution in four steps:

1. It analyzes the transaction’s read and write sets, determines node-local data
records from the read set, and creates the list of active participants (i.e., ones that
hold the elements of the write set, and will perform modifications on the data).

2. It collects the local data required to execute the transaction, in other words, the
read set records that happen to reside on that node. The collected data records
are forwarded to the corresponding active participants.

3. If this worker thread is executing on an active participant node, it receives data
records forwarded from the other participants, as a counterpart of the operations
executed during step 2.

4. Finally, it executes a batch of transactions, persisting results into local storage. It
does not have to forward execution results to the other nodes, as they receive the
same inputs for transactions and execute and persist results locally themselves.

A typical Calvin implementation colocates sequencer, scheduler, worker, and storage
subsystems, as Figure 13-7 shows. To make sure that sequencers reach consensus on
exactly which transactions make it into the current epoch/batch, Calvin uses the
Paxos consensus algorithm (see “Paxos” on page 285) or asynchronous replication, in
which a dedicated replica serves as a leader. While using a leader can improve latency,
it comes with a higher cost of recovery as nodes have to reproduce the state of the
failed leader in order to proceed.
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Figure 13-7. Calvin architecture

Distributed Transactions with Spanner
Calvin is often contrasted with another approach for distributed transaction manage‐
ment called Spanner [CORBETT12]. Its implementations (or derivatives) include
several open source databases, most prominently CockroachDB and YugaByte DB.
While Calvin establishes the global transaction execution order by reaching consen‐
sus on sequencers, Spanner uses two-phase commit over consensus groups per parti‐
tion (in other words, per shard). Spanner has a rather complex setup, and we only
cover high-level details in the scope of this book.

To achieve consistency and impose transaction order, Spanner uses TrueTime: a high-
precision wall-clock API that also exposes an uncertainty bound, allowing local oper‐
ations to introduce artificial slowdowns to wait for the uncertainty bound to pass.

Spanner offers three main operation types: read-write transactions, read-only transac‐
tions, and snapshot reads. Read-write transactions require locks, pessimistic concur‐
rency control, and presence of the leader replica. Read-only transactions are lock-free
and can be executed at any replica. A leader is required only for reads at the latest
timestamp, which takes the latest committed value from the Paxos group. Reads at
the specific timestamp are consistent, since values are versioned and snapshot
contents can’t be changed once written. Each data record has a timestamp assigned,
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which holds a value of the transaction commit time. This also implies that multiple
timestamped versions of the record can be stored.

Figure 13-8 shows the Spanner architecture. Each spanserver (replica, a server
instance that serves data to clients) holds several tablets, with Paxos (see “Paxos” on
page 285) state machines attached to them. Replicas are grouped into replica sets
called Paxos groups, a unit of data placement and replication. Each Paxos group has a
long-lived leader (see “Multi-Paxos” on page 291). Leaders communicate with each
other during multishard transactions.

Figure 13-8. Spanner architecture

Every write has to go through the Paxos group leader, while reads can be served
directly from the tablet on up-to-date replicas. The leader holds a lock table that is
used to implement concurrency control using the two-phase locking (see “Lock-
Based Concurrency Control” on page 100) mechanism and a transaction manager
that is responsible for multishard distributed transactions. Operations that require
synchronization (such as writes and reads within a transaction) have to acquire the
locks from the lock table, while other operations (snapshot reads) can access the data
directly.

For multishard transactions, group leaders have to coordinate and perform a two-
phase commit to ensure consistency, and use two-phase locking to ensure isolation.
Since the 2PC algorithm requires the presence of all participants for a successful
commit, it hurts availability. Spanner solves this by using Paxos groups rather than
individual nodes as cohorts. This means that 2PC can continue operating even if
some of the members of the group are down. Within the Paxos group, 2PC contacts
only the node that serves as a leader.
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Paxos groups are used to consistently replicate transaction manager states across
multiple nodes. The Paxos leader first acquires write locks, and chooses a write time‐
stamp that is guaranteed to be larger than any previous transactions’ timestamp, and
records a 2PC prepare entry through Paxos. The transaction coordinator collects
timestamps and generates a commit timestamp that is greater than any of the prepare
timestamps, and logs a commit entry through Paxos. It then waits until after the time‐
stamp it has chosen for commit, since it has to guarantee that clients will only see
transaction results whose timestamps are in the past. After that, it sends this time‐
stamp to the client and leaders, which log the commit record with the new timestamp
in their local Paxos group and are now free to release the locks.

Single-shard transactions do not have to consult the transaction manager (and, sub‐
sequently, do not have to perform a cross-partition two-phase commit), since con‐
sulting a Paxos group and a lock table is enough to guarantee transaction order and
consistency within the shard.

Spanner read-write transactions offer a serialization order called external consistency:
transaction timestamps reflect serialization order, even in cases of distributed trans‐
actions. External consistency has real-time properties equivalent to linearizability: if
transaction T1 commits before T2 starts, T1’s timestamp is smaller than the timestamp
of T2.

To summarize, Spanner uses Paxos for consistent transaction log replication, two-
phase commit for cross-shard transactions, and TrueTime for deterministic transac‐
tion ordering. This means that multipartition transactions have a higher cost due to
an additional two-phase commit round, compared to Calvin [ABADI17]. Both
approaches are important to understand since they allow us to perform transactions
in partitioned distributes data stores.

Database Partitioning
While discussing Spanner and Calvin, we’ve been using the term partitioning quite
heavily. Let’s now discuss it in more detail. Since storing all database records on a sin‐
gle node is rather unrealistic for the majority of modern applications, many databases
use partitioning: a logical division of data into smaller manageable segments.

The most straightforward way to partition data is by splitting it into ranges and
allowing replica sets to manage only specific ranges (partitions). When executing
queries, clients (or query coordinators) have to route requests based on the routing
key to the correct replica set for both reads and writes. This partitioning scheme is
typically called sharding: every replica set acts as a single source for a subset of data.

To use partitions most effectively, they have to be sized, taking the load and value dis‐
tribution into consideration. This means that frequently accessed, read/write heavy
ranges can be split into smaller partitions to spread the load between them. At the
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same time, if some value ranges are more dense than other ones, it might be a good
idea to split them into smaller partitions as well. For example, if we pick zip code as a
routing key, since the country population is unevenly spread, some zip code ranges
can have more data (e.g., people and orders) assigned to them.

When nodes are added to or removed from the cluster, the database has to re-
partition the data to maintain the balance. To ensure consistent movements, we
should relocate the data before we update the cluster metadata and start routing
requests to the new targets. Some databases perform auto-sharding and relocate the
data using placement algorithms that determine optimal partitioning. These algo‐
rithms use information about read, write loads, and amounts of data in each shard.

To find a target node from the routing key, some database systems compute a hash of
the key, and use some form of mapping from the hash value to the node ID. One of
the advantages of using the hash functions for determining replica placement is that
it can help to reduce range hot-spotting, since hash values do not sort the same way
as the original values. While two lexicographically close routing keys would be placed
at the same replica set, using hashed values would place them on different ones.

The most straightforward way to map hash values to node IDs is by taking a remain‐
der of the division of the hash value by the size of the cluster (modulo). If we have N
nodes in the system, the target node ID is picked by computing hash(v) modulo N.
The main problem with this approach is that whenever nodes are added or removed
and the cluster size changes from N to N’, many values returned by hash(v) modulo
N’ will differ from the original ones. This means that most of the data will have to be
moved.

Consistent Hashing
In order to mitigate this problem, some databases, such as Apache Cassandra and
Riak (among others), use a different partitioning scheme called consistent hashing. As
previously mentioned, routing key values are hashed. Values returned by the hash
function are mapped to a ring, so that after the largest possible value, it wraps around
to its smallest value. Each node gets its own position on the ring and becomes
responsible for the range of values, between its predecessor’s and its own positions.

Using consistent hashing helps to reduce the number of relocations required for
maintaining balance: a change in the ring affects only the immediate neighbors of the
leaving or joining node, and not an entire cluster. The word consistent in the defini‐
tion implies that, when the hash table is resized, if we have K possible hash keys and n
nodes, on average we have to relocate only K/n keys. In other words, a consistent hash
function output changes minimally as the function range changes [KARGER97].
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Distributed Transactions with Percolator
Coming back to the subject of distributed transactions, isolation levels might be diffi‐
cult to reason about because of the allowed read and write anomalies. If serializability
is not required by the application, one of the ways to avoid the write anomalies
described in SQL-92 is to use a transactional model called snapshot isolation (SI).

Snapshot isolation guarantees that all reads made within the transaction are consis‐
tent with a snapshot of the database. The snapshot contains all values that were com‐
mitted before the transaction’s start timestamp. If there’s a write-write conflict (i.e.,
when two concurrently running transactions attempt to make a write to the same
cell), only one of them will commit. This characteristic is usually referred to as first
committer wins.

Snapshot isolation prevents read skew, an anomaly permitted under the read-
committed isolation level. For example, a sum of x and y is supposed to be 100.
Transaction T1 performs an operation read(x), and reads the value 70. T2 updates
two values write(x, 50) and write(y, 50), and commits. If T1 attempts to run
read(y), and proceeds with transaction execution based on the value of y (50), newly
committed by T2, it will lead to an inconsistency. The value of x that T1 has read
before T2 committed and the new value of y aren’t consistent with each other. Since
snapshot isolation only makes values up to a specific timestamp visible for transac‐
tions, the new value of y, 50, won’t be visible to T1 [BERENSON95].

Snapshot isolation has several convenient properties:

• It allows only repeatable reads of committed data.
• Values are consistent, as they’re read from the snapshot at a specific timestamp.
• Conflicting writes are aborted and retried to prevent inconsistencies.

Despite that, histories under snapshot isolation are not serializable. Since only con‐
flicting writes to the same cells are aborted, we can still end up with a write skew (see
“Read and Write Anomalies” on page 95). Write skew occurs when two transactions
modify disjoint sets of values, each preserving invariants for the data it writes. Both
transactions are allowed to commit, but a combination of writes performed by these
transactions may violate these invariants.

Snapshot isolation provides semantics that can be useful for many applications and
has the major advantage of efficient reads, because no locks have to be acquired since
snapshot data cannot be changed.

Percolator is a library that implements a transactional API on top of the distributed
database Bigtable (see “Wide Column Stores” on page 15). This is a great example of
building a transaction API on top of the existing system. Percolator stores data
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records, committed data point locations (write metadata), and locks in different col‐
umns. To avoid race conditions and reliably lock tables in a single RPC call, it uses a
conditional mutation Bigtable API that allows it to perform read-modify-write opera‐
tions with a single remote call.

Each transaction has to consult the timestamp oracle (a source of clusterwide-
consistent monotonically increasing timestamps) twice: for a transaction start time‐
stamp, and during commit. Writes are buffered and committed using a client-driven
two-phase commit (see “Two-Phase Commit” on page 259).

Figure 13-9 shows how the contents of the table change during execution of the
transaction steps:

• a) Initial state. After the execution of the previous transaction, TS1 is the latest
timestamp for both accounts. No locks are held.

• b) The first phase, called prewrite. The transaction attempts to acquire locks for
all cells written during the transaction. One of the locks is marked as primary and
is used for client recovery. The transaction checks for the possible conflicts: if any
other transaction has already written any data with a later timestamp or there are
unreleased locks at any timestamp. If any conflict is detected, the transaction
aborts.

• c) If all locks were successfully acquired and the possibility of conflict is ruled
out, the transaction can continue. During the second phase, the client releases its
locks, starting with the primary one. It publishes its write by replacing the lock
with a write record, updating write metadata with the timestamp of the latest data
point.

Since the client may fail while trying to commit the transaction, we need to make sure
that partial transactions are finalized or rolled back. If a later transaction encounters
an incomplete state, it should attempt to release the primary lock and commit the
transaction. If the primary lock is already released, transaction contents have to be
committed. Only one transaction can hold a lock at a time and all state transitions are
atomic, so situations in which two transactions attempt to perform operations on the
contents are not possible.

Distributed Transactions with Percolator | 273



Figure 13-9. Percolator transaction execution steps. Transaction credits $150 from
Account2 and debits it to Account1.

Snapshot isolation is an important and useful abstraction, commonly used in transac‐
tion processing. Since it simplifies semantics, precludes some of the anomalies, and
opens up an opportunity to improve concurrency and performance, many MVCC
systems offer this isolation level.

One of the examples of databases based on the Percolator model is TiDB (“Ti” stands
for Titatium). TiDB is a strongly consistent, highly available, and horizontally scalable
open source database, compatible with MySQL.
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Coordination Avoidance
One more example, discussing costs of serializability and attempting to reduce the
amount of coordination while still providing strong consistency guarantees, is coor‐
dination avoidance [BAILIS14b]. Coordination can be avoided, while preserving data
integrity constraints, if operations are invariant confluent. Invariant Confluence (I-
Confluence) is defined as a property that ensures that two invariant-valid but
diverged database states can be merged into a single valid, final state. Invariants in
this case preserve consistency in ACID terms.

Because any two valid states can be merged into a valid state, I-Confluent operations
can be executed without additional coordination, which significantly improves per‐
formance characteristics and scalability potential.

To preserve this invariant, in addition to defining an operation that brings our data‐
base to the new state, we have to define a merge function that accepts two states. This
function is used in case states were updated independently and bring diverged states
back to convergence.

Transactions are executed against the local database versions (snapshots). If a trans‐
action requires any state from other partitions for execution, this state is made avail‐
able for it locally. If a transaction commits, resulting changes made to the local
snapshot are migrated and merged with the snapshots on the other nodes. A system
model that allows coordination avoidance has to guarantee the following properties:

Global validity
Required invariants are always satisfied, for both merged and divergent commit‐
ted database states, and transactions cannot observe invalid states.

Availability
If all nodes holding states are reachable by the client, the transaction has to reach
a commit decision, or abort, if committing it would violate one of the transaction
invariants.

Convergence
Nodes can maintain their local states independently, but in the absence of further
transactions and indefinite network partitions, they have to be able to reach the
same state.

Coordination freedom
Local transaction execution is independent from the operations against the local
states performed on behalf of the other nodes.

One of the examples of implementing coordination avoidance is Read-Atomic Multi
Partition (RAMP) transactions [BAILIS14c]. RAMP uses multiversion concurrency
control and metadata of current in-flight operations to fetch any missing state
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updates from other nodes, allowing read and write operations to be executed concur‐
rently. For example, readers that overlap with some writer modifying the same entry
can be detected and, if necessary, repaired by retrieving required information from
the in-flight write metadata in an additional round of communication.

Using lock-based approaches in a distributed environment might be not the best idea,
and instead of doing that, RAMP provides two properties:

Synchronization independence
One client’s transactions won’t stall, abort, or force the other client’s transactions
to wait.

Partition independence
Clients do not have to contact partitions whose values aren’t involved in their
transactions.

RAMP introduces the read atomic isolation level: transactions cannot observe any in-
process state changes from in-flight, uncommitted, and aborted transactions. In other
words, all (or none) transaction updates are visible to concurrent transactions. By
that definition, the read atomic isolation level also precludes fractured reads: when a
transaction observes only a subset of writes executed by some other transaction.

RAMP offers atomic write visibility without requiring mutual exclusion, which other
solutions, such as distributed locks, often couple together. This means that transac‐
tions can proceed without stalling each other.

RAMP distributes transaction metadata that allows reads to detect concurrent in-
flight writes. By using this metadata, transactions can detect the presence of newer
record versions, find and fetch the latest ones, and operate on them. To avoid coordi‐
nation, all local commit decisions must also be valid globally. In RAMP, this is solved
by requiring that, by the time a write becomes visible in one partition, writes from the
same transaction in all other involved partitions are also visible for readers in those
partitions.

To allow readers and writers to proceed without blocking other concurrent readers
and writers, while maintaining the read atomic isolation level both locally and
system-wide (in all other partitions modified by the committing transaction), writes
in RAMP are installed and made visible using two-phase commit:

Prepare
The first phase prepares and places writes to their respective target partitions
without making them visible.

Commit/abort
The second phase publishes the state changes made by the write operation of the
committing transaction, making them available atomically across all partitions,
or rolls back the changes.
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RAMP allows multiple versions of the same record to be present at any given
moment: latest value, in-flight uncommitted changes, and stale versions, overwritten
by later transactions. Stale versions have to be kept around only for in-progress read
requests. As soon as all concurrent readers complete, stale values can be discarded.

Making distributed transactions performant and scalable is difficult because of the
coordination overhead associated with preventing, detecting, and avoiding conflicts
for the concurrent operations. The larger the system, or the more transactions it
attempts to serve, the more overhead it incurs. The approaches described in this sec‐
tion attempt to reduce the amount of coordination by using invariants to determine
where coordination can be avoided, and only paying the full price if it’s absolutely
necessary.

Summary
In this chapter, we discussed several ways of implementing distributed transactions.
First, we discussed two atomic commitment algorithms: two- and three-phase com‐
mits. The big advantage of these algorithms is that they’re easy to understand and
implement, but have several shortcomings. In 2PC, a coordinator (or at least its sub‐
stitute) has to be alive for the length of the commitment process, which significantly
reduces availability. 3PC lifts this requirement for some cases, but is prone to split
brain in case of network partition.

Distributed transactions in modern database systems are often implemented using
consensus algorithms, which we’re going to discuss in the next chapter. For example,
both Calvin and Spanner, discussed in this chapter, use Paxos.

Consensus algorithms are more involved than atomic commit ones, but have much
better fault-tolerance properties, and decouple decisions from their initiators and
allow participants to decide on a value rather than on whether or not to accept the
value [GRAY04].

Summary | 277



Further Reading
If you’d like to learn more about the concepts mentioned in this chapter, you can refer
to the following sources:

Atomic commitment integration with local transaction processing and recovery
subsystems

Silberschatz, Abraham, Henry F. Korth, and S. Sudarshan. 2010. Database Sys‐
tems Concepts (6th Ed.). New York: McGraw-Hill.

Garcia-Molina, Hector, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2nd Ed.). Boston: Pearson.

Recent progress in the area of distributed transactions (ordered chronologically; this list
is not intended to be exhaustive)

Cowling, James and Barbara Liskov. 2012. “Granola: low-overhead distributed
transaction coordination.” In Proceedings of the 2012 USENIX conference on
Annual Technical Conference (USENIX ATC ’12): 21-21. USENIX.

Balakrishnan, Mahesh, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabha‐
karan, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck. 2013.
“Tango: distributed data structures over a shared log.” In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13):
324-340.

Ding, Bailu, Lucja Kot, Alan Demers, and Johannes Gehrke. 2015. “Centiman:
elastic, high performance optimistic concurrency control by watermarking.” In
Proceedings of the Sixth ACM Symposium on Cloud Computing (SoCC ’15):
262-275.

Dragojević, Aleksandar, Dushyanth Narayanan, Edmund B. Nightingale, Mat‐
thew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. “No
compromises: distributed transactions with consistency, availability, and perfor‐
mance.” In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15): 54-70.

Zhang, Irene, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan R. K. Ports. 2015. “Building consistent transactions with inconsistent repli‐
cation.” In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15): 263-278.

278 | Chapter 13: Distributed Transactions



CHAPTER 14

Consensus

We’ve discussed quite a few concepts in distributed systems, starting with basics, such
as links and processes, problems with distributed computing; then going through fail‐
ure models, failure detectors, and leader election; discussed consistency models; and
we’re finally ready to put it all together for a pinnacle of distributed systems research:
distributed consensus.

Consensus algorithms in distributed systems allow multiple processes to reach an
agreement on a value. FLP impossibility (see “FLP Impossibility” on page 189) shows
that it is impossible to guarantee consensus in a completely asynchronous system in a
bounded time. Even if message delivery is guaranteed, it is impossible for one process
to know whether the other one has crashed or is running slowly.

In Chapter 9, we discussed that there’s a trade-off between failure-detection accuracy
and how quickly the failure can be detected. Consensus algorithms assume an asyn‐
chronous model and guarantee safety, while an external failure detector can provide
information about other processes, guaranteeing liveness [CHANDRA96]. Since fail‐
ure detection is not always fully accurate, there will be situations when a consensus
algorithm waits for a process failure to be detected, or when the algorithm is restarted
because some process is incorrectly suspected to be faulty.

Processes have to agree on some value proposed by one of the participants, even if
some of them happen to crash. A process is said to be correct if hasn’t crashed and
continues executing algorithm steps. Consensus is extremely useful for putting events
in a particular order, and ensuring consistency among the participants. Using consen‐
sus, we can have a system where processes move from one value to the next one
without losing certainty about which values the clients observe.
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From a theoretical perspective, consensus algorithms have three properties:

Agreement
The decision value is the same for all correct processes.

Validity
The decided value was proposed by one of the processes.

Termination
All correct processes eventually reach the decision.

Each one of these properties is extremely important. The agreement is embedded in
the human understanding of consensus. The dictionary definition of consensus has
the word “unanimity” in it. This means that upon the agreement, no process is
allowed to have a different opinion about the outcome. Think of it as an agreement to
meet at a particular time and place with your friends: all of you would like to meet,
and only the specifics of the event are being agreed upon.

Validity is essential, because without it consensus can be trivial. Consensus algo‐
rithms require all processes to agree on some value. If processes use some predeter‐
mined, arbitrary default value as a decision output regardless of the proposed values,
they will reach unanimity, but the output of such an algorithm will not be valid and it
wouldn’t be useful in reality.

Without termination, our algorithm will continue forever without reaching any con‐
clusion or will wait indefinitely for a crashed process to come back, which is not very
useful, either. Processes have to agree eventually and, for a consensus algorithm to be
practical, this has to happen rather quickly.

Broadcast
A broadcast is a communication abstraction often used in distributed systems. Broad‐
cast algorithms are used to disseminate information among a set of processes. There
exist many broadcast algorithms, making different assumptions and providing differ‐
ent guarantees. Broadcast is an important primitive and is used in many places,
including consensus algorithms. We’ve discussed one of the forms of broadcast—gos‐
sip dissemination—already (see “Gossip Dissemination” on page 250).

Broadcasts are often used for database replication when a single coordinator node has
to distribute the data to all other participants. However, making this process reliable
is not a trivial matter: if the coordinator crashes after distributing the message to
some nodes but not the other ones, it leaves the system in an inconsistent state: some
of the nodes observe a new message and some do not.

The simplest and the most straightforward way to broadcast messages is through a
best effort broadcast [CACHIN11]. In this case, the sender is responsible for ensuring
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message delivery to all the targets. If it fails, the other participants do not try to
rebroadcast the message, and in the case of coordinator crash, this type of broadcast
will fail silently.

For a broadcast to be reliable, it needs to guarantee that all correct processes receive
the same messages, even if the sender crashes during transmission.

To implement a naive version of a reliable broadcast, we can use a failure detector
and a fallback mechanism. The most straightforward fallback mechanism is to allow
every process that received the message to forward it to every other process it’s aware
of. When the source process fails, other processes detect the failure and continue
broadcasting the message, effectively flooding the network with N2 messages (as
shown in Figure 14-1). Even if the sender has crashed, messages still are picked up
and delivered by the rest of the system, improving its reliability, and allowing all
receivers to see the same messages [CACHIN11].

Figure 14-1. Broadcast

One of the downsides of this approach is the fact that it uses N2 messages, where N is
the number of remaining recipients (since every broadcasting process excludes the
original process and itself). Ideally, we’d want to reduce the number of messages
required for a reliable broadcast.

Atomic Broadcast
Even though the flooding algorithm just described can ensure message delivery, it
does not guarantee delivery in any particular order. Messages reach their destination
eventually, at an unknown time. If we need to deliver messages in order, we have to
use the atomic broadcast (also called the total order multicast), which guarantees both
reliable delivery and total order.

While a reliable broadcast ensures that the processes agree on the set of messages
delivered, an atomic broadcast also ensures they agree on the same sequence of mes‐
sages (i.e., message delivery order is the same for every target).

In summary, an atomic broadcast has to ensure two essential properties:
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Atomicity
Processes have to agree on the set of received messages. Either all nonfailed pro‐
cesses deliver the message, or none do.

Order
All nonfailed processes deliver the messages in the same order.

Messages here are delivered atomically: every message is either delivered to all pro‐
cesses or none of them and, if the message is delivered, every other message is
ordered before or after this message.

Virtual Synchrony
One of the frameworks for group communication using broadcast is called virtual
synchrony. An atomic broadcast helps to deliver totally ordered messages to a static
group of processes, and virtual synchrony delivers totally ordered messages to a
dynamic group of peers.

Virtual synchrony organizes processes into groups. As long as the group exists, mes‐
sages are delivered to all of its members in the same order. In this case, the order is
not specified by the model, and some implementations can take this to their advan‐
tage for performance gains, as long as the order they provide is consistent across all
members [BIRMAN10].

Processes have the same view of the group, and messages are associated with the
group identity: processes can see the identical messages only as long as they belong to
the same group.

As soon as one of the participants joins, leaves the group, or fails and is forced out of
it, the group view changes. This happens by announcing the group change to all its
members. Each message is uniquely associated with the group it has originated from.

Virtual synchrony distinguishes between the message receipt (when a group member
receives the message) and its delivery (which happens when all the group members
receive the message). If the message was sent in one view, it can be delivered only in
the same view, which can be determined by comparing the current group with the
group the message is associated with. Received messages remain pending in the
queue until the process is notified about successful delivery.

Since every message belongs to a specific group, unless all processes in the group have
received it before the view change, no group member can consider this message deliv‐
ered. This implies that all messages are sent and delivered between the view changes,
which gives us atomic delivery guarantees. In this case, group views serve as a barrier
that message broadcasts cannot pass.

Some total broadcast algorithms order messages by using a single process (sequencer)
that is responsible for determining it. Such algorithms can be easier to implement,
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but rely on detecting the leader failures for liveness. Using a sequencer can improve
performance, since we do not need to establish consensus between processes for
every message, and can use a sequencer-local view instead. This approach can still
scale by partitioning the requests.

Despite its technical soundness, virtual synchrony has not received broad adoption
and isn’t commonly used in end-user commercial systems [BIRMAN06].

Zookeeper Atomic Broadcast (ZAB)
One of the most popular and widely known implementations of the atomic broadcast
is ZAB used by Apache Zookeeper [HUNT10] [JUNQUEIRA11], a hierarchical dis‐
tributed key-value store, where it’s used to ensure the total order of events and atomic
delivery necessary to maintain consistency between the replica states.

Processes in ZAB can take on one of two roles: leader and follower. Leader is a tempo‐
rary role. It drives the process by executing algorithm steps, broadcasts messages to
followers, and establishes the event order. To write new records and execute reads
that observe the most recent values, clients connect to one of the nodes in the cluster.
If the node happens to be a leader, it will handle the request. Otherwise, it forwards
the request to the leader.

To guarantee leader uniqueness, the protocol timeline is split into epochs, identified
with a unique monotonically- and incrementally-sequenced number. During any
epoch, there can be only one leader. The process starts from finding a prospective
leader using any election algorithm, as long as it chooses a process that is up with a
high probability. Since safety is guaranteed by the further algorithm steps, determin‐
ing a prospective leader is more of a performance optimization. A prospective leader
can also emerge as a consequence of the previous leader’s failure.

As soon as a prospective leader is established, it executes a protocol in three phases:

Discovery
The prospective leader learns about the latest epoch known by every other pro‐
cess, and proposes a new epoch that is greater than the current epoch of any fol‐
lower. Followers respond to the epoch proposal with the identifier of the latest
transaction seen in the previous epoch. After this step, no process will accept
broadcast proposals for the earlier epochs.

Synchronization
This phase is used to recover from the previous leader’s failure and bring lagging
followers up to speed. The prospective leader sends a message to the followers
proposing itself as a leader for the new epoch and collects their acknowledg‐
ments. As soon as acknowledgments are received, the leader is established. After
this step, followers will not accept attempts to become the epoch leader from any
other processes. During synchronization, the new leader ensures that followers

Atomic Broadcast | 283

https://databass.dev/links/67


have the same history and delivers committed proposals from the established
leaders of earlier epochs. These proposals are delivered before any proposal from
the new epoch is delivered.

Broadcast
As soon as the followers are back in sync, active messaging starts. During this
phase, the leader receives client messages, establishes their order, and broadcasts
them to the followers: it sends a new proposal, waits for a quorum of followers to
respond with acknowledgments and, finally, commits it. This process is similar to
a two-phase commit without aborts: votes are just acknowledgments, and the cli‐
ent cannot vote against a valid leader’s proposal. However, proposals from the
leaders from incorrect epochs should not be acknowledged. The broadcast phase
continues until the leader crashes, is partitioned from the followers, or is suspec‐
ted to be crashed due to the message delay.

Figure 14-2 shows the three phases of the ZAB algorithm, and messages exchanged
during each step.

Figure 14-2. ZAB protocol summary

The safety of this protocol is guaranteed if followers ensure they accept proposals
only from the leader of the established epoch. Two processes may attempt to get elec‐
ted, but only one of them can win and establish itself as an epoch leader. It is also
assumed that processes perform the prescribed steps in good faith and follow the
protocol.

Both the leader and followers rely on heartbeats to determine the liveness of the
remote processes. If the leader does not receive heartbeats from the quorum of fol‐
lowers, it steps down as a leader, and restarts the election process. Similarly, if one of
the followers has determined the leader crashed, it starts a new election process.

Messages are totally ordered, and the leader will not attempt to send the next message
until the message that preceded it was acknowledged. Even if some messages are
received by a follower more than once, their repeated application do not produce
additional side effects, as long as delivery order is followed. ZAB is able to handle
multiple outstanding concurrent state changes from clients, since a unique leader will
receive write requests, establish the event order, and broadcast the changes.

Total message order also allows ZAB to improve recovery efficiency. During the syn‐
chronization phase, followers respond with a highest committed proposal. The leader
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can simply choose the node with the highest proposal for recovery, and this can be
the only node messages have to be copied from.

One of the advantages of ZAB is its efficiency: the broadcast process requires only
two rounds of messages, and leader failures can be recovered from by streaming the
missing messages from a single up-to-date process. Having a long-lived leader can
have a positive impact on performance: we do not require additional consensus
rounds to establish a history of events, since the leader can sequence them based on
its local view.

Paxos
An atomic broadcast is a problem equivalent to consensus in an asynchronous system
with crash failures [CHANDRA96], since participants have to agree on the message
order and must be able to learn about it. You will see many similarities in both moti‐
vation and implementation between atomic broadcast and consensus algorithms.

Probably the most widely known consensus algorithm is Paxos. It was first intro‐
duced by Leslie Lamport in “The Part-Time Parliament” paper [LAMPORT98]. In
this paper, consensus is described in terms of terminology inspired by the legislative
and voting process on the Aegian island of Paxos. In 2001, the author released a
follow-up paper titled “Paxos Made Simple” [LAMPORT01] that introduced simpler
terms, which are now commonly used to explain this algorithm.

Participants in Paxos can take one of three roles: proposers, acceptors, or learners:

Proposers
Receive values from clients, create proposals to accept these values, and attempt
to collect votes from acceptors.

Acceptors
Vote to accept or reject the values proposed by the proposer. For fault tolerance,
the algorithm requires the presence of multiple acceptors, but for liveness, only a
quorum (majority) of acceptor votes is required to accept the proposal.

Learners
Take the role of replicas, storing the outcomes of the accepted proposals.

Any participant can take any role, and most implementations colocate them: a single
process can simultaneously be a proposer, an acceptor, and a learner.

Every proposal consists of a value, proposed by the client, and a unique monotoni‐
cally increasing proposal number. This number is then used to ensure a total order of
executed operations and establish happened-before/after relationships among them.
Proposal numbers are often implemented using an (id, timestamp) pair, where
node IDs are also comparable and can be used to break ties for timestamps.
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Paxos Algorithm
The Paxos algorithm can be generally split into two phases: voting (or propose phase)
and replication. During the voting phase, proposers compete to establish their leader‐
ship. During replication, the proposer distributes the value to the acceptors.

The proposer is an initial point of contact for the client. It receives a value that should
be decided upon, and attempts to collect votes from the quorum of acceptors. When
this is done, acceptors distribute the information about the agreed value to the learn‐
ers, ratifying the result. Learners increase the replication factor of the value that’s
been agreed on.

Only one proposer can collect the majority of votes. Under some circumstances, votes
may get split evenly between the proposers, and neither one of them will be able to
collect a majority during this round, forcing them to restart. We discuss this and
other scenarios of competing proposers in “Failure Scenarios” on page 288.

During the propose phase, the proposer sends a Prepare(n) message (where n is a
proposal number) to a majority of acceptors and attempts to collect their votes.

When the acceptor receives the prepare request, it has to respond, preserving the fol‐
lowing invariants [LAMPORT01]:

• If this acceptor hasn’t responded to a prepare request with a higher sequence
number yet, it promises that it will not accept any proposal with a lower sequence
number.

• If this acceptor has already accepted (received an Accept!(m,vaccepted) message)
any other proposal earlier, it responds with a Promise(m, vaccepted) message,
notifying the proposer that it has already accepted the proposal with a sequence
number m.

• If this acceptor has already responded to a prepare request with a higher
sequence number, it notifies the proposer about the existence of a higher-
numbered proposal.

• Acceptor can respond to more than one prepare request, as long as the later one
has a higher sequence number .

During the replication phase, after collecting a majority of votes, the proposer can
start the replication, where it commits the proposal by sending acceptors an Accept!
(n, v) message with value v and proposal number n. v is the value associated with
the highest-numbered proposal among the responses it received from acceptors, or
any value of its own if their responses did not contain old accepted proposals.

The acceptor accepts the proposal with a number n, unless during the propose phase
it has already responded to Prepare(m), where m is greater than n. If the acceptor
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rejects the proposal, it notifies the proposer about it by sending the highest sequence
number it has seen along with the request to help the proposer catch up [LAMP‐
ORT01].

You can see a generalized depiction of a Paxos round in Figure 14-3.

Figure 14-3. Paxos algorithm: normal execution

Once a consensus was reached on the value (in other words, it was accepted by at
least one acceptor), future proposers have to decide on the same value to guarantee
the agreement. This is why acceptors respond with the latest value they’ve accepted. If
no acceptor has seen a previous value, the proposer is free to choose its own value.

A learner has to find out the value that has been decided, which it can know after
receiving notification from the majority of acceptors. To let the learner know about
the new value as soon as possible, acceptors can notify it about the value as soon as
they accept it. If there’s more than one learner, each acceptor will have to notify each
learner. One or more learners can be distinguished, in which case it will notify other
learners about accepted values.

In summary, the goal of the first algorithm phase is to establish a leader for the round
and understand which value is going to be accepted, allowing the leader to proceed
with the second phase: broadcasting the value. For the purpose of the base algorithm,
we assume that we have to perform both phases every time we’d like to decide on a
value. In practice, we’d like to reduce the number of steps in the algorithm, so we
allow the proposer to propose more than one value. We discuss this in more detail
later in “Multi-Paxos” on page 291.

Quorums in Paxos
Quorums are used to make sure that some of the participants can fail, but we still can
proceed as long as we can collect votes from the alive ones. A quorum is the minimum
number of votes required for the operation to be performed. This number usually
constitutes a majority of participants. The main idea behind quorums is that even if
participants fail or happen to be separated by the network partition, there’s at least
one participant that acts as an arbiter, ensuring protocol correctness.
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Once a sufficient number of participants accept the proposal, the value is guaranteed
to be accepted by the protocol, since any two majorities have at least one participant
in common.

Paxos guarantees safety in the presence of any number of failures. There’s no configu‐
ration that can produce incorrect or inconsistent states since this would contradict
the definition of consensus.

Liveness is guaranteed in the presence of f failed processes. For that, the protocol
requires 2f + 1 processes in total so that, if f processes happen to fail, there are still
f + 1 processes able to proceed. By using quorums, rather than requiring the pres‐
ence of all processes, Paxos (and other consensus algorithms) guarantee results even
when f process failures occur. In “Flexible Paxos” on page 296, we talk about quo‐
rums in slightly different terms and describe how to build protocols requiring quo‐
rum intersection between algorithm steps only.

It is important to remember that quorums only describe the block‐
ing properties of the system. To guarantee safety, for each step we
have to wait for responses from at least a quorum of nodes. We can
send proposals and accept commands to more nodes; we just do
not have to wait for their responses to proceed. We may send mes‐
sages to more nodes (some systems use speculative execution: issu‐
ing redundant queries that help to achieve the required response
count in case of node failures), but to guarantee liveness, we can
proceed as soon as we hear from the quorum.

Failure Scenarios
Discussing distributed algorithms gets particularly interesting when failures are dis‐
cussed. One of the failure scenarios, demonstrating fault tolerance, is when the pro‐
poser fails during the second phase, before it is able to broadcast the value to all the
acceptors (a similar situation can happen if the proposer is alive but is slow or cannot
communicate with some acceptors). In this case, the new proposer may pick up and
commit the value, distributing it to the other participants.
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1 For example, such a situation was described in https://databass.dev/links/68.

Figure 14-4 shows this situation:

• Proposer P1 goes through the election phase with a proposal number 1, but fails
after sending the value V1 to just one acceptor A1.

• Another proposer P2 starts a new round with a higher proposal number 2, col‐
lects a quorum of acceptor responses (A1 and A2 in this case), and proceeds by
committing the old value V1, proposed by P1.

Figure 14-4. Paxos failure scenario: proposer failure, deciding on the old value

Since the algorithm state is replicated to multiple nodes, proposer failure does not
result in failure to reach a consensus. If the current proposer fails after even a single
acceptor A1 has accepted the value, its proposal can be picked by the next proposer.
This also implies that all of it may happen without the original proposer knowing
about it.

In a client/server application, where the client is connected only to the original pro‐
poser, this might lead to situations where the client doesn’t know about the result of
the Paxos round execution.1

However, other scenarios are possible, too, as Figure 14-5 shows. For example:

• P1 has failed just like in the previous example, after sending the value V1 only to
A1.

• The next proposer, P2, starts a new round with a higher proposal number 2, and
collects a quorum of acceptor responses, but this time A2 and A3 are first to
respond. After collecting a quorum, P2 commits its own value despite the fact that
theoretically there’s a different committed value on A1.
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Figure 14-5. Paxos failure scenario: proposer failure, deciding on the new value

There’s one more possibility here, shown in Figure 14-6:

• Proposer P1 fails after only one acceptor A1 accepts the value V1. A1 fails shortly
after accepting the proposal, before it can notify the next proposer about its
value.

• Proposer P2, which started the round after P1 failed, does not overlap with A1 and
proceeds to commit its value instead.

• Any proposer that comes after this round that will overlap with A1, will ignore A1’s
value and choose a more recent accepted proposal instead.

Figure 14-6. Paxos failure scenario: proposer failure, followed by the acceptor failure

Another failure scenario is when two or more proposers start competing, each trying
to get through the propose phase, but keep failing to collect a majority because the
other one beat them to it.

While acceptors promise not to accept any proposals with a lower number, they still
may respond to multiple prepare requests, as long as the later one has a higher
sequence number. When a proposer tries to commit the value, it might find that
acceptors have already responded to a prepare request with a higher sequence num‐
ber. This may lead to multiple proposers constantly retrying and preventing each
other from further progress. This problem is usually solved by incorporating a ran‐
dom backoff, which eventually lets one of the proposers proceed while the other one
sleeps.
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The Paxos algorithm can tolerate acceptor failures, but only if there are still enough
acceptors alive to form a majority.

Multi-Paxos
So far we discussed the classic Paxos algorithm, where we pick an arbitrary proposer
and attempt to start a Paxos round. One of the problems with this approach is that a
propose round is required for each replication round that occurs in the system. Only
after the proposer is established for the round, which happens after a majority of
acceptors respond with a Promise to the proposer’s Prepare, can it start the replica‐
tion. To avoid repeating the propose phase and let the proposer reuse its recognized
position, we can use Multi-Paxos, which introduces the concept of a leader: a
distinguished proposer [LAMPORT01]. This is a crucial addition, significantly
improving algorithm efficiency.

Having an established leader, we can skip the propose phase and proceed straight to
replication: distributing a value and collecting acceptor acknowledgments.

In the classic Paxos algorithm, reads can be implemented by running a Paxos round
that would collect any values from incomplete rounds if they’re present. This has to
be done because the last known proposer is not guaranteed to hold the most recent
data, since there might have been a different proposer that has modified state without
the proposer knowing about it.

A similar situation may occur in Multi-Paxos: we’re trying to perform a read from the
known leader after the other leader is already elected, returning stale data, which con‐
tradicts the linearizability guarantees of consensus. To avoid that and guarantee that
no other process can successfully submit values, some Multi-Paxos implementations
use leases. The leader periodically contacts the participants, notifying them that it is
still alive, effectively prolonging its lease. Participants have to respond and allow the
leader to continue operation, promising that they will not accept proposals from
other leaders for the period of the lease [CHANDRA07].

Leases are not a correctness guarantee, but a performance optimization that allows
reads from the active leader without collecting a quorum. To guarantee safety, leases
rely on the bounded clock synchrony between the participants. If their clocks drift
too much and the leader assumes its lease is still valid while other participants think
its lease has expired, linearizability cannot be guaranteed.

Multi-Paxos is sometimes described as a replicated log of operations applied to some
structure. The algorithm is oblivious to the semantics of this structure and is only
concerned with consistently replicating values that will be appended to this log. To
preserve the state in case of process crashes, participants keep a durable log of
received messages.
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To prevent a log from growing indefinitely large, its contents should be applied to the
aforementioned structure. After the log contents are synchronized with a primary
structure, creating a snapshot, the log can be truncated. Log and state snapshots
should be mutually consistent, and snapshot changes should be applied atomically
with truncation of the log segment [CHANDRA07].

We can think of single-decree Paxos as a write-once register: we have a slot where we
can put a value, and as soon as we’ve written the value there, no subsequent modifica‐
tions are possible. During the first step, proposers compete for ownership of the reg‐
ister, and during the second phase, one of them writes the value. At the same time,
Multi-Paxos can be thought of as an append-only log, consisting of a sequence of
such values: we can write one value at a time, all values are strictly ordered, and we
cannot modify already written values [RYSTSOV16]. There are examples of
consensus algorithms that offer collections of read-modify-write registers and use
state sharing rather than replicated state machines, such as Active Disk Paxos
[CHOCKLER15] and CASPaxos [RYSTSOV18].

Fast Paxos
We can reduce the number of round-trips by one, compared to the classic Paxos algo‐
rithm, by letting any proposer contact acceptors directly rather than going through
the leader. For this, we need to increase the quorum size to 2f + 1 (where f is the
number of processes allowed to fail), compared to f + 1 in classic Paxos, and a total
number of acceptors to 3f + 1 [JUNQUEIRA07]. This optimization is called Fast
Paxos [LAMPORT06].

The classic Paxos algorithm has a condition, where during the replication phase, the
proposer can pick any value it has collected during the propose phase. Fast Paxos has
two types of rounds: classic, where the algorithm proceeds the same way as the classic
version, and fast, where it allows acceptors to accept other values.

While describing this algorithm, we will refer to the proposer that has collected a suf‐
ficient number of responses during the propose phase as a coordinator, and reserve
term proposer for all other proposers. Some Fast Paxos descriptions say that clients
can contact acceptors directly [ZHAO15].

In a fast round, if the coordinator is permitted to pick its own value during the repli‐
cation phase, it can instead issue a special Any message to acceptors. Acceptors, in this
case, are allowed to treat any proposer’s value as if it is a classic round and they
received a message with this value from the coordinator. In other words, acceptors
independently decide on values they receive from different proposers.
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Figure 14-7 shows an example of classic and fast rounds in Fast Paxos. From the
image it might look like the fast round has more execution steps, but keep in mind
that in a classic round, in order to submit its value, the proposer would need to go
through the coordinator to get its value committed.

Figure 14-7. Fast Paxos algorithm: fast and classic rounds

This algorithm is prone to collisions, which occur if two or more proposers attempt to
use the fast step and reduce the number of round-trips, and acceptors receive differ‐
ent values. The coordinator has to intervene and start recovery by initiating a new
round.

This means that acceptors, after receiving values from different proposers, may
decide on conflicting values. When the coordinator detects a conflict (value colli‐
sion), it has to reinitiate a Propose phase to let acceptors converge to a single value.

One of the disadvantages of Fast Paxos is the increased number of round-trips and
request latency on collisions if the request rate is high. [JUNQUEIRA07] shows that,
due to the increased number of replicas and, subsequently, messages exchanged
between the participants, despite a reduced number of steps, Fast Paxos can have
higher latencies than its classic counterpart.

Egalitarian Paxos
Using a distinguished proposer as a leader makes a system prone to failures: as soon
as the leader fails, the system has to elect a new one before it can proceed with further
steps. Another problem is that having a leader can put a disproportionate load on it,
impairing system performance.
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One of the ways to avoid putting an entire system load on the
leader is partitioning. Many systems split the range of possible val‐
ues into smaller segments and allow a part of the system to be
responsible for a specific range without having to worry about the
other parts. This helps with availability (by isolating failures to a
single partition and preventing propagation to other parts of the
system), performance (since segments serving different values are
nonoverlapping), and scalability (since we can scale the system by
increasing the number of partitions). It is important to keep in
mind that performing an operation against multiple partitions will
require an atomic commitment.

Instead of using a leader and proposal numbers for sequencing commands, we can
use a leader responsible for the commit of the specific command, and establish the
order by looking up and setting dependencies. This approach is commonly called
Egalitarian Paxos, or EPaxos [MORARU11]. The idea of allowing nonconflicting
writes to be committed to the replicated state machine independently was first intro‐
duced in [LAMPORT05] and called Generalized Paxos. EPaxos is a first implementa‐
tion of Generalized Paxos.

EPaxos attempts to offer benefits of both the classic Paxos algorithm and Multi-
Paxos. Classic Paxos offers high availability, since a leader is established during each
round, but has a higher message complexity. Multi-Paxos offers high throughput and
requires fewer messages, but a leader may become a bottleneck.

EPaxos starts with a Pre-Accept phase, during which a process becomes a leader for
the specific proposal. Every proposal has to include:

Dependencies
All commands that potentially interfere with a current proposal, but are not nec‐
essarily already committed.

A sequence number
This breaks cycles between the dependencies. Set it with a value larger than any
sequence number of the known dependencies.

After collecting this information, it forwards a Pre-Accept message to a fast quorum
of replicas. A fast quorum is ⌈3f/4⌉ replicas, where f is the number of tolerated
failures.

Replicas check their local command logs, update the proposal dependencies based on
their view of potentially conflicting proposals, and send this information back to the
leader. If the leader receives responses from a fast quorum of replicas, and their
dependency lists are in agreement with each other and the leader itself, it can commit
the command.
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If the leader does not receive enough responses or if the command lists received from
the replicas differ and contain interfering commands, it updates its proposal with a
new dependency list and a sequence number. The new dependency list is based on
previous replica responses and combines all collected dependencies. The new
sequence number has to be larger than the highest sequence number seen by the rep‐
licas. After that, the leader sends the new, updated command to ⌊f/2⌋ + 1 replicas.
After this is done, the leader can finally commit the proposal.

Effectively, we have two possible scenarios:

Fast path
When dependencies match and the leader can safely proceed with the commit
phase with only a fast quorum of replicas.

Slow path
When there’s a disagreement between the replicas, and their command lists have
to be updated before the leader can proceed with a commit.

Figure 14-8 shows these scenarios—P1 initiating a fast path run, and P5 initiating a
slow path run:

• P1 starts with proposal number 1 and no dependencies, and sends a PreAc
cept(1, ∅) message. Since the command logs of P2 and P3 are empty, P1 can pro‐
ceed with a commit.

• P5 creates a proposal with sequence number 2. Since its command log is empty by
that point, it also declares no dependencies and sends a PreAccept(2, ∅) mes‐
sage. P4 is not aware of the committed proposal 1, but P3 notifies P5 about the
conflict and sends its command log: {1}.

• P5 updates its local dependency list and sends a message to make sure replicas
have the same dependencies: Accept(2,{1}). As soon as the replicas respond, it
can commit the value.

Figure 14-8. EPaxos algorithm run
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Two commands, A and B, interfere only if their execution order matters; in other
words, if executing A before B and executing B before A produce different results.

Commit is done by responding to the client and asynchronously notifying replicas
with a Commit message. Commands are executed after they’re committed.

Since dependencies are collected during the Pre-Accept phase, by the time requests
are executed, the command order is already established and no command can sud‐
denly appear somewhere in-between: it can only get appended after the command
with the largest sequence number.

To execute a command, replicas build a dependency graph and execute all commands
in a reverse dependency order. In other words, before a command can be executed,
all its dependencies (and, subsequently, all their dependencies) have to be executed.
Since only interfering commands have to depend on each other, this situation should
be relatively rare for most workloads [MORARU13].

Similar to Paxos, EPaxos uses proposal numbers, which prevent stale messages from
being propagated. Sequence numbers consist of an epoch (identifier of the current
cluster configuration that changes when nodes leave and join the cluster), a monot‐
onically incremented node-local counter, and a replica ID. If a replica receives a pro‐
posal with a sequence number lower than one it has already seen, it negatively
acknowledges the proposal, and sends the highest sequence number and an updated
command list known to it in response.

Flexible Paxos
A quorum is usually defined as a majority of processes. By definition, we have an
intersection between two quorums no matter how we pick nodes: there’s always at
least one node that can break ties.

We have to answer two important questions:

• Is it necessary to contact the majority of servers during every execution step?
• Do all quorums have to intersect? In other words, does a quorum we use to pick

a distinguished proposer (first phase), a quorum we use to decide on a value (sec‐
ond phase), and every execution instance (for example, if multiple instances of
the second step are executed concurrently), have to have nodes in common?

Since we’re still talking about consensus, we cannot change any safety definitions: the
algorithm has to guarantee the agreement.

In Multi-Paxos, the leader election phase is infrequent, and the distinguished pro‐
poser is allowed to commit several values without rerunning the election phase,
potentially staying in the lead for a longer period. In “Tunable Consistency” on page
235, we discussed formulae that help us to find configurations where we have
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intersections between the node sets. One of the examples was to wait for just one
node to acknowledge the write (and let the requests to the rest of nodes finish asyn‐
chronously), and read from all the nodes. In other words, as long as we keep R + W >
N, there’s at least one node in common between read and write sets.

Can we use a similar logic for consensus? It turns out that we can, and in Paxos we
only require the group of nodes from the first phase (that elects a leader) to overlap
with the group from the second phase (that participates in accepting proposals).

In other words, a quorum doesn’t have to be defined as a majority, but only as a non-
empty group of nodes. If we define a total number of participants as N, the number of
nodes required for a propose phase to succeed as Q₁, and the number of nodes
required for the accept phase to succeed as Q₂, we only need to ensure that Q₁ + Q₂ >
N. Since the second phase is usually more common than the first one, Q₂ can contain
only N/2 acceptors, as long as Q₁ is adjusted to be correspondingly larger (Q₁ = N -
Q₂ + 1). This finding is an important observation crucial for understanding consen‐
sus. The algorithm that uses this approach is called Flexible Paxos [HOWARD16].

For example, if we have five acceptors, as long as we require collecting votes from
four of them to win the election round, we can allow the leader to wait for responses
from two nodes during the replication stage. Moreover, since there’s an overlap
between any subset consisting of two acceptors with the leader election quorum, we
can submit proposals to disjoint sets of acceptors. Intuitively, this works because
whenever a new leader is elected without the current one being aware of it, there will
always be at least one acceptor that knows about the existence of the new leader.

Flexible Paxos allows trading availability for latency: we reduce the number of nodes
participating in the second phase but have to collect more votes, requiring more par‐
ticipants to be available during the leader election phase. The good news is that this
configuration can continue the replication phase and tolerate failures of up to N - Q₂
nodes, as long as the current leader is stable and a new election round is not required.

Another Paxos variant using the idea of intersecting quorums is Vertical Paxos. Verti‐
cal Paxos distinguishes between read and write quorums. These quorums must inter‐
sect. A leader has to collect a smaller read quorum for one or more lower-numbered
proposals, and a larger write quorum for its own proposal [LAMPORT09]. [LAMP‐
SON01] also distinguishes between the out and decision quorums, which translate to
prepare and accept phases, and gives a quorum definition similar to Flexible Paxos.

Generalized Solution to Consensus
Paxos might sometimes be a bit difficult to reason about: multiple roles, steps, and all
the possible variations are hard to keep track of. But we can think of it in simpler
terms. Instead of splitting roles between the participants and having decision rounds,
we can use a simple set of concepts and rules to achieve guarantees of a single-decree
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Paxos. We discuss this approach only briefly as this is a relatively new development
[HOWARD19]—it’s important to know, but we’ve yet to see its implementations and
practical applications.

We have a client and a set of servers. Each server has multiple registers. A register has
an index identifying it, can be written only once, and it can be in one of three states:
unwritten, containing a value, and containing nil (a special empty value).

Registers with the same index located on different servers form a register set. Each
register set can have one or more quorums. Depending on the state of the registers in
it, a quorum can be in one of the undecided (Any and Maybe v), or decided (None and
Decided v) states:

Any

Depending on future operations, this quorum set can decide on any value.

Maybe v

If this quorum reaches a decision, its decision can only be v.

None

This quorum cannot decide on the value.

Decided v

This quorum has decided on the value v.

The client exchanges messages with the servers and maintains a state table, where it
keeps track of values and registers, and can infer decisions made by the quorums.

To maintain correctness, we have to limit how clients can interact with servers and
which values they may write and which they may not. In terms of reading values, the
client can output the decided value only if it has read it from the quorum of servers in
the same register set.

The writing rules are slightly more involved because to guarantee algorithm safety, we
have to preserve several invariants. First, we have to make sure that the client doesn’t
just come up with new values: it is allowed to write a specific value to the register only
if it has received it as input or has read it from a register. Clients cannot write values
that allow different quorums in the same register to decide on different values. Lastly,
clients cannot write values that override previous decisions made in the previous reg‐
ister sets (decisions made in register sets up to r - 1 have to be None, Maybe v, or
Decided v).

Generalized Paxos algorithm
Putting all these rules together, we can implement a generalized Paxos algorithm that
achieves consensus over a single value using write-once registers [HOWARD19]. Let’s
say we have three servers [S0, S1, S2], registers [R0, R1, …], and clients
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[C0, C1, ...], where the client can only write to the assigned subset of registers. We
use simple majority quorums for all registers ({S0, S1}, {S0, S2}, {S1, S2}).

The decision process here consists of two phases. The first phase ensures that it is safe
to write a value to the register, and the second phase writes the value to the register:

During phase 1
The client checks if the register it is about to write is unwritten by sending a
P1A(register) command to the server. If the register is unwritten, all registers
up to register - 1 are set to nil, which prevents clients from writing to previ‐
ous registers. The server responds with a set of registers written so far. If it
receives responses from the majority of servers, the client chooses either the non‐
empty value from the register with the largest index or its own value in case no
value is present. Otherwise, it restarts the first phase.

During phase 2
The client notifies all servers about the value it has picked during the first phase
by sending them P2A(register, value). If the majority of servers respond to
this message, it can output the decision value. Otherwise, it starts again from
phase 1.

Figure 14-9 shows this generalization of Paxos (adapted from [HOWARD19]). Client
C0 tries to commit value V. During the first step, its state table is empty, and servers S0
and S1 respond with the empty register set, indicating that no registers were written
so far. During the second step, it can submit its value V, since no other value was
written.

Figure 14-9. Generalization of Paxos
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At that point, any other client can query servers to find out the current state. Quorum
{S0, S1} has reached Decided A state, and quorums {S0, S2} and {S1, S2} have
reached the Maybe V state for R0, so C1 chooses the value V. At that point, no client
can decide on a value other than V.

This approach helps to understand the semantics of Paxos. Instead of thinking about
the state from the perspective of interactions of remote actors (e.g., a proposer find‐
ing out whether or not an acceptor has already accepted a different proposal), we can
think in terms of the last known state, making our decision process simple and
removing possible ambiguities. Immutable state and message passing can also be eas‐
ier to implement correctly.

We can also draw parallels with original Paxos. For example, in a scenario in which
the client finds that one of the previous register sets has the Maybe V decision, it picks
up V and attempts to commit it again, which is similar to how a proposer in Paxos can
propose the value after the failure of the previous proposer that was able to commit
the value to at least one acceptor. Similarly, if in Paxos leader conflicts are resolved by
restarting the vote with a higher proposal number, in the generalized algorithm any
unwritten lower-ranked registers are set to nil.

Raft
Paxos was the consensus algorithm for over a decade, but in the distributed systems
community it’s been known as difficult to reason about. In 2013, a new algorithm
called Raft appeared. The researchers who developed it wanted to create an algorithm
that’s easy to understand and implement. It was first presented in a paper titled “In
Search of an Understandable Consensus Algorithm” [ONGARO14].

There’s enough inherent complexity in distributed systems, and having simpler algo‐
rithms is very desirable. Along with a paper, the authors have released a reference
implementation called LogCabin to resolve possible ambiguities and help future
implementors to gain a better understanding.

Locally, participants store a log containing the sequence of commands executed by
the state machine. Since inputs that processes receive are identical and logs contain
the same commands in the same order, applying these commands to the state
machine guarantees the same output. Raft simplifies consensus by making the con‐
cept of leader a first-class citizen. A leader is used to coordinate state machine manip‐
ulation and replication. There are many similarities between Raft and atomic
broadcast algorithms, as well as Multi-Paxos: a single leader emerges from replicas,
makes atomic decisions, and establishes the message order.
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Each participant in Raft can take one of three roles:

Candidate
Leadership is a temporary condition, and any participant can take this role. To
become a leader, the node first has to transition into a candidate state, and
attempt to collect a majority of votes. If a candidate neither wins nor loses the
election (the vote is split between multiple candidates and none of them has a
majority of votes), the new term is slated and election restarts.

Leader
A current, temporary cluster leader that handles client requests and interacts
with a replicated state machine. The leader is elected for a period called a term.
Each term is identified by a monotonically increasing number and may continue
for an arbitrary time period. A new leader is elected if the current one crashes,
becomes unresponsive, or is suspected by other processes to have failed, which
can happen because of network partitions and message delays.

Follower
A passive participant that persists log entries and responds to requests from the
leader and candidates. Follower in Raft is a role similar to acceptor and learner
from Paxos. Every process begins as a follower.

To guarantee global partial ordering without relying on clock synchronization, time is
divided into terms (also called epoch), during which the leader is unique and stable.
Terms are monotonically numbered, and each command is uniquely identified by the
term number and the message number within the term [HOWARD14].

It may happen that different participants disagree on which term is current, since they
can find out about the new term at different times, or could have missed the leader
election for one or multiple terms. Since each message contains a term identifier, if
one of the participants discovers that its term is out-of-date, it updates the term to the
higher-numbered one [ONGARO14]. This means that there may be several terms in
flight at any given point in time, but the higher-numbered one wins in case of a con‐
flict. A node updates the term only if it starts a new election process or finds out that
its term is out-of-date.

On startup, or whenever a follower doesn’t receive messages from the leader and sus‐
pects that it has crashed, it starts the leader election process. A participant attempts to
become a leader by transitioning into the candidate state and collecting votes from
the majority of nodes.

Figure 14-10 shows a sequence diagram representing the main components of the
Raft algorithm:
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Leader election
Candidate P1 sends a RequestVote message to the other processes. This message
includes the candidate’s term, the last term known by it, and the ID of the last log
entry it has observed. After collecting a majority of votes, the candidate is
successfully elected as a leader for the term. Each process can give its vote to at
most one candidate.

Periodic heartbeats
The protocol uses a heartbeat mechanism to ensure the liveness of participants.
The leader periodically sends heartbeats to all followers to maintain its term. If a
follower doesn’t receive new heartbeats for a period called an election timeout, it
assumes that the leader has failed and starts a new election.

Log replication / broadcast
The leader can repeatedly append new values to the replicated log by sending
AppendEntries messages. The message includes the leader’s term, index, and
term of the log entry that immediately precedes the ones it’s currently sending,
and one or more entries to store.

Figure 14-10. Raft consensus algorithm summary

Leader Role in Raft
A leader can be elected only from the nodes holding all committed entries: if during
the election, the follower’s log information is more up-to-date (in other words, has a
higher term ID, or a longer log entry sequence, if terms are equal) than the candi‐
date’s, its vote is denied.

To win the vote, a candidate has to collect a majority of votes. Entries are always repli‐
cated in order, so it is always enough to compare IDs of the latest entries to under‐
stand whether or not one of the participants is up-to-date.

Once elected, the leader has to accept client requests (which can also be forwarded to
it from other nodes) and replicate them to the followers. This is done by appending
the entry to its log and sending it to all the followers in parallel.

When a follower receives an AppendEntries message, it appends the entries from the
message to the local log, and acknowledges the message, letting the leader know that
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it was persisted. As soon as enough replicas send their acknowledgments, the entry is
considered committed and is marked correspondingly in the leader log.

Since only the most up-to-date candidates can become a leader, followers never have
to bring the leader up-to-date, and log entries are only flowing from leader to fol‐
lower and not vice versa.

Figure 14-11 shows this process:

• a) A new command x = 8 is appended to the leader’s log.
• b) Before the value can be committed, it has to be replicated to the majority of

participants.
• c) As soon as the leader is done with replication, it commits the value locally.
• d) The commit decision is replicated to the followers.

Figure 14-11. Procedure of a commit in Raft with P1 as a leader

Figure 14-12 shows an example of a consensus round where P₁ is a leader, which has
the most recent view of the events. The leader proceeds by replicating the entries to
the followers, and committing them after collecting acknowledgments. Committing
an entry also commits all entries preceding it in the log. Only the leader can make a
decision on whether or not the entry can be committed. Each log entry is marked
with a term ID (a number in the top-right corner of each log entry box) and a log
index, identifying its position in the log. Committed entries are guaranteed to be
replicated to the quorum of participants and are safe to be applied to the state
machine in the order they appear in the log.
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Figure 14-12. Raft state machine

Failure Scenarios
When multiple followers decide to become candidates, and no candidate can collect a
majority of votes, the situation is called a split vote. Raft uses randomized timers to
reduce the probability of multiple subsequent elections ending up in a split vote. One
of the candidates can start the next election round earlier and collect enough votes,
while the others sleep and give way to it. This approach speeds up the election
without requiring any additional coordination between candidates.

Followers may be down or slow to respond, and the leader has to make the best effort
to ensure message delivery. It can try sending messages again if it doesn’t receive an
acknowledgment within the expected time bounds. As a performance optimization, it
can send multiple messages in parallel.

Since entries replicated by the leader are uniquely identified, repeated message deliv‐
ery is guaranteed not to break the log order. Followers deduplicate messages using
their sequence IDs, ensuring that double delivery has no undesired side effects.

Sequence IDs are also used to ensure the log ordering. A follower rejects a higher-
numbered entry if the ID and term of the entry that immediately precedes it, sent by
the leader, do not match the highest entry according to its own records. If entries in
two logs on different replicas have the same term and the same index, they store the
same command and all entries that precede them are the same.

Raft guarantees to never show an uncommitted message as a committed one, but, due
to network or replica slowness, already committed messages can still be seen as in
progress, which is a rather harmless property and can be worked around by retrying a
client command until it is finally committed [HOWARD14].
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For failure detection, the leader has to send heartbeats to the followers. This way, the
leader maintains its term. When one of the nodes notices that the current leader is
down, it attempts to initiate the election. The newly elected leader has to restore the
state of the cluster to the last known up-to-date log entry. It does so by finding a com‐
mon ground (the highest log entry on which both the leader and follower agree), and
ordering followers to discard all (uncommitted) entries appended after this point. It
then sends the most recent entries from its log, overwriting the followers’ history. The
leader’s own log records are never removed or overwritten: it can only append entries
to its own log.

Summing up, the Raft algorithm provides the following guarantees:

• Only one leader can be elected at a time for a given term; no two leaders can be
active during the same term.

• The leader does not remove or reorder its log contents; it only appends new mes‐
sages to it.

• Committed log entries are guaranteed to be present in logs for subsequent leaders
and cannot get reverted, since before the entry is committed it is known to be
replicated by the leader.

• All messages are identified uniquely by the message and term IDs; neither cur‐
rent nor subsequent leaders can reuse the same identifier for the different entry.

Since its appearance, Raft has become very popular and is currently used in many
databases and other distributed systems, including CockroachDB, Etcd, and Consul.
This can be attributed to its simplicity, but also may mean that Raft lives up to the
promise of being a reliable consensus algorithm.

Byzantine Consensus
All the consensus algorithms we have been discussing so far assume non-Byzantine
failures (see “Arbitrary Faults” on page 193). In other words, nodes execute the algo‐
rithm in “good faith” and do not try to exploit it or forge the results.

As we will see, this assumption allows achieving consensus with a smaller number of
available participants and with fewer round-trips required for a commit. However,
distributed systems are sometimes deployed in potentially adversarial environments,
where the nodes are not controlled by the same entity, and we need algorithms that
can ensure a system can function correctly even if some nodes behave erratically or
even maliciously. Besides ill intentions, Byzantine failures can also be caused by bugs,
misconfiguration, hardware issues, or data corruption.

Most Byzantine consensus algorithms require N2 messages to complete an algorithm
step, where N is the size of the quorum, since each node in the quorum has to com‐
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municate with each other. This is required to cross-validate each step against other
nodes, since nodes cannot rely on each other or on the leader and have to verify other
nodes’ behaviors by comparing returned results with the majority responses.

We’ll only discuss one Byzantine consensus algorithm here, Practical Byzantine Fault
Tolerance (PBFT) [CASTRO99]. PBFT assumes independent node failures (i.e., fail‐
ures can be coordinated, but the entire system cannot be taken over at once, or at
least with the same exploit method). The system makes weak synchrony assumptions,
like how you would expect a network to behave normally: failures may occur, but
they are not indefinite and are eventually recovered from.

All communication between the nodes is encrypted, which serves to prevent message
forging and network attacks. Replicas know one another’s public keys to verify identi‐
ties and encrypt messages. Faulty nodes may leak information from inside the system,
since, even though encryption is used, every node needs to interpret message con‐
tents to react upon them. This doesn’t undermine the algorithm, since it serves a dif‐
ferent purpose.

PBFT Algorithm
For PBFT to guarantee both safety and liveness, no more than (n - 1)/3 replicas can
be faulty (where n is the total number of participants). For a system to sustain f com‐
promised nodes, it is required to have at least n = 3f + 1 nodes. This is the case
because a majority of nodes have to agree on the value: f replicas might be faulty, and
there might be f replicas that are not responding but may not be faulty (for example,
due to a network partition, power failure, or maintenance). The algorithm has to be
able to collect enough responses from nonfaulty replicas to still outnumber those
from the faulty ones.

Consensus properties for PBFT are similar to those of other consensus algorithms: all
nonfaulty replicas have to agree both on the set of received values and their order,
despite the possible failures.

To distinguish between cluster configurations, PBFT uses views. In each view, one of
the replicas is a primary and the rest of them are considered backups. All nodes are
numbered consecutively, and the index of the primary node is v mod N, where v is the
view ID, and N is the number of nodes in the current configuration. The view can
change in cases when the primary fails. Clients execute their operations against the
primary. The primary broadcasts the requests to the backups, which execute the
requests and send a response back to the client. The client waits for f + 1 replicas to
respond with the same result for any operation to succeed.

After the primary receives a client request, protocol execution proceeds in three
phases:
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Pre-prepare
The primary broadcasts a message containing a view ID, a unique monotonically
increasing identifier, a payload (client request), and a payload digest. Digests are
computed using a strong collision-resistant hash function, and are signed by the
sender. The backup accepts the message if its view matches with the primary view
and the client request hasn’t been tampered with: the calculated payload digest
matches the received one.

Prepare
If the backup accepts the pre-prepare message, it enters the prepare phase and
starts broadcasting Prepare messages, containing a view ID, message ID, and a
payload digest, but without the payload itself, to all other replicas (including the
primary). Replicas can move past the prepare state only if they receive 2f pre‐
pares from different backups that match the message received during pre-
prepare: they have to have the same view, same ID, and a digest.

Commit
After that, the backup moves to the commit phase, where it broadcasts Commit
messages to all other replicas and waits to collect 2f + 1 matching Commit mes‐
sages (possibly including its own) from the other participants.

A digest in this case is used to reduce the message size during the prepare phase, since
it’s not necessary to rebroadcast an entire payload for verification, as the digest serves
as a payload summary. Cryptographic hash functions are resistant to collisions: it is
difficult to produce two values that have the same digest, let alone two messages with
matching digests that make sense in the context of the system. In addition, digests are
signed to make sure that the digest itself is coming from a trusted source.

The number 2f is important, since the algorithm has to make sure that at least f + 1
nonfaulty replicas respond to the client.

Figure 14-13 shows a sequence diagram of a normal-case PBFT algorithm round: the
client sends a request to P1, and nodes move between phases by collecting a sufficient
number of matching responses from properly behaving peers. P4 may have failed or
could’ve responded with unmatching messages, so its responses wouldn’t have been
counted.
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Figure 14-13. PBFT consensus, normal-case operation

During the prepare and commit phases, nodes communicate by sending messages to
each other node and waiting for the messages from the corresponding number of
other nodes, to check if they match and make sure that incorrect messages are not
broadcasted. Peers cross-validate all messages so that only nonfaulty nodes can suc‐
cessfully commit messages. If a sufficient number of matching messages cannot be
collected, the node doesn’t move to the next step.

When replicas collect enough commit messages, they notify the client, finishing the
round. The client cannot be certain about whether or not execution was fulfilled cor‐
rectly until it receives f + 1 matching responses.

View changes occur when replicas notice that the primary is inactive, and suspect
that it might have failed. Nodes that detect a primary failure stop responding to fur‐
ther messages (apart from checkpoint and view-change related ones), broadcast a
view change notification, and wait for confirmations. When the primary of the new
view receives 2f view change events, it initiates a new view.

To reduce the number of messages in the protocol, clients can collect 2f + 1 match‐
ing responses from nodes that tentatively execute a request (e.g., after they’ve collec‐
ted a sufficient number of matching Prepared messages). If the client cannot collect
enough matching tentative responses, it retries and waits for f + 1 nontentative
responses as described previously.

Read-only operations in PBFT can be done in just one round-trip. The client sends a
read request to all replicas. Replicas execute the request in their tentative states, after
all ongoing state changes to the read value are committed, and respond to the client.
After collecting 2f + 1 responses with the same value from different replicas, the
operation completes.
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Recovery and Checkpointing
Replicas save accepted messages in a stable log. Every message has to be kept until it
has been executed by at least f + 1 nodes. This log can be used to get other replicas
up to speed in case of a network partition, but recovering replicas need some means
of verifying that the state they receive is correct, since otherwise recovery can be used
as an attack vector.

To show that the state is correct, nodes compute a digest of the state for messages up
to a given sequence number. Nodes can compare digests, verify state integrity, and
make sure that messages they received during recovery add up to a correct final state.
This process is too expensive to perform on every request.

After every N requests, where N is a configurable constant, the primary makes a stable
checkpoint, where it broadcasts the latest sequence number of the latest request whose
execution is reflected in the state, and the digest of this state. It then waits for 2f + 1
replicas to respond. These responses constitute a proof for this checkpoint, and a
guarantee that replicas can safely discard state for all pre-prepare, prepare, commit,
and checkpoint messages up to the given sequence number.

Byzantine fault tolerance is essential to understand and is used in storage systems
deployed in potentially adversarial networks. Most of the time, it is enough to
authenticate and encrypt internode communication, but when there’s no trust
between the parts of the system, algorithms similar to PBFT have to be employed.

Since algorithms resistant to Byzantine faults impose significant overhead in terms of
the number of exchanged messages, it is important to understand their use cases.
Other protocols, such as the ones described in [BAUDET19] and [BUCHMAN18],
attempt to optimize the PBFT algorithm for systems with a large number of
participants.

Summary
Consensus algorithms are one of the most interesting yet most complex subjects in
distributed systems. Over the last few years, new algorithms and many implementa‐
tions of the existing algorithms have emerged, which proves the rising importance
and popularity of the subject.

In this chapter, we discussed the classic Paxos algorithm, and several variants of
Paxos, each one improving its different properties:

Multi-Paxos
Allows a proposer to retain its role and replicate multiple values instead of just
one.
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Fast Paxos
Allows us to reduce a number of messages by using fast rounds, when acceptors
can proceed with messages from proposers other than the established leader.

EPaxos
Establishes event order by resolving dependencies between submitted messages.

Flexible Paxos
Relaxes quorum requirements and only requires a quorum for the first phase
(voting) to intersect with a quorum for the second phase (replication).

Raft simplifies the terms in which consensus is described, and makes leadership a
first-class citizen in the algorithm. Raft separates log replication, leader election, and
safety.

To guarantee consensus safety in adversarial environments, Byzantine fault-tolerant
algorithms should be used; for example, PBFT. In PBFT, participants cross-validate
one another’s responses and only proceed with execution steps when there’s enough
nodes that obey the prescribed algorithm rules.

Further Reading
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Junqueira, Flavio P., Benjamin C. Reed, and Marco Serafini. “Zab: High-
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2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks
(DSN ’11): 245-256.
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Part II Conclusion

Performance and scalability are important properties of any database system. The
storage engine and node-local read-write path can have a larger impact on perfor‐
mance of the system: how quickly it can process requests locally. At the same time, a
subsystem responsible for communication in the cluster often has a larger impact on
the scalability of the database system: maximum cluster size and capacity. However,
the storage engine can only be used for a limited number of use cases if it’s not scala‐
ble and its performance degrades as the dataset grows. At the same time, putting a
slow atomic commit protocol on top of the fastest storage engine will not yield good
results.

Distributed, cluster-wide, and node-local processes are interconnected, and have to
be considered holistically. When designing a database system, you have to consider
how different subsystems fit and work together.

Part II began with a discussion of how distributed systems are different from single-
node applications, and which difficulties are to be expected in such environments.

We discussed the basic distributed system building blocks, different consistency mod‐
els, and several important classes of distributed algorithms, some of which can be
used to implement these consistency models:

Failure detection
Identify remote process failures accurately and efficiently.

Leader election
Quickly and reliably choose a single process to temporarily serve as a coordina‐
tor.

Dissemination
Reliably distribute information using peer-to-peer communication.

Anti-entropy
Identify and repair state divergence between the nodes.
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Distributed transactions
Execute series of operations against multiple partitions atomically.

Consensus
Reach an agreement between remote participants while tolerating process
failures.

These algorithms are used in many database systems, message queues, schedulers,
and other important infrastructure software. Using the knowledge from this book,
you’ll be able to better understand how they work, which, in turn, will help to make
better decisions about which software to use, and identify potential problems.

Further Reading
At the end of each chapter, you can find resources related to the material presented in
the chapter. Here, you’ll find books you can address for further study, covering both
concepts mentioned in this book and other concepts. This list is not meant to be
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